
IBM VSE/Enterprise Systems Architecture

VSE/ESA e-business Connectors
User’s Guide
Version 2 Release 7

SC33-6719-04

���

IBM VSE/Enterprise Systems Architecture

VSE/ESA e-business Connectors
User’s Guide
Version 2 Release 7

SC33-6719-04

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xv.

Fifth Edition (March 2003)

This edition applies to Version 2 Release 7 of IBM Virtual Storage Extended/Enterprise Systems Architecture
(VSE/ESA), Program Number 5690-VSE, and to all subsequent releases and modifications until otherwise indicated
in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the addresses given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address
your comments to:
IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:
Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xiii

Notices xv
Trademarks and Service Marks xv

About This Book xvii
Who Should Use This Book xvii
How to Use This Book xvii
Where to Find More Information xix

Summary of Changes xxi
Changes for Fifth Edition (March 2003) xxi
Changes for Fourth Edition (June 2002) xxii
Changes for Third Edition (December 2001) . . . xxii

Part 1. Introduction 1

Chapter 1. Introduction to e-business
with VSE/ESA 3
What the VSE/ESA e-business Connectors Provide . 4

Overview of the Java-Based Connector 4
Overview of the DB2-Based Connector 6
Overview of the VSAM Redirector Connector . . 6
Overview of the VSE Script Connector. 7
Overview of VSE/ESA Support for Web Services
and SOAP 8

Overview of CICS Connectivity 9
Overview of MQSeries Connectivity 9
Overview of the IBM WebSphere Application Server 9

Chapter 2. Overview of 2- and 3-Tier
Environments 11
Overview of 2-Tier Environments 12
Overview of 3-Tier Environments 13

Part 2. Installation & Customization 15

Chapter 3. Choosing the Connectivity
You Require 17
Connectivity Possibilities in 2-Tier Environments . . 17
Connectivity Possibilities in 3-Tier Environments . . 18

Chapter 4. Installing the Common
Prerequisite Programs 21
Configuring and Activating TCP/IP for VSE/ESA 21
Configuring and Activating the VSE HTTP Server 21
Installing and Configuring Java. 21

Downloading the Java Base Code 22
Deciding Which Java Package to Install 22

Installing the IBM HTTP Server 22

Installing the WebSphere Application Server . . . 23
Installing the WebSphere Application Server on
z/OS 23
Installing the WebSphere Application Server on
Other Platforms 23

Chapter 5. Installing and Operating the
Java-Based Connector 25
Installing the VSE Connector Client 25

Obtaining a Copy of the VSE Connector Client 25
Performing the VSE Connector Client Installation 26
Using the Online Documentation Options . . . 28
Configuring for WebSphere Support 29

Uninstalling the VSE Connector Client 29
Configuring the VSE Connector Server 30

Job SKVCSSTJ – Startup Job 30
Job SKVCSCAT – Catalog Members 31
VSE Library Member SKVCSCFG – General
Settings. 32
VSE Library Member SKVCSLIB – Specify
Libraries to Be Accessed 33
VSE Library Member SKVCSPLG – Specify
Plugins to Be Loaded 33
VSE Library Member SKVCSUSR – Specify
Logon Access 34
VSE Library Member SKVCSSSL – Configure for
SSL 35

Starting the VSE Connector Server. 36
Testing the Communication Between VSE Connector
Client and Connector Server 37
Obtaining a List of VSE Connector Server
Commands 38
Entering a Command for the VSE Connector Server 38
Maintaining Security Using the VSE Connector
Server 38

Chapter 6. Configuring DL/I for Access
Via VSE Java Beans 41
Host Installation Activities That Must Be Already
Completed 41
Step 1: Skeleton SKDLISMP – Define Sample
Database 42
Step 2: Customize CICS TS 42

Chapter 7. Installing the VSE Script
Connector 43
Step 1: Download the Install-File and Perform the
Installation 43

Step 1.1: Obtain a Copy of the VSE Script Server 43
Step 1.2: Perform the Installation of the VSE
Script Server 44

Step 2: Configure the VSEScriptServer Properties
File 45
Step 3: Configure the Connections Properties File. . 46

© Copyright IBM Corp. 2000, 2003 iii

Chapter 8. Installing the VSAM
Redirector Connector 47
How the VSAM Redirector Connector Works . . . 47

VSAM Integration Considerations 48
Installing and Configuring the VSAM Redirector
Client 50

Step 1: Enable the VSAM Redirector Client on
VSE/ESA 50
Step 2: Decide Upon Your Redirection Mode . . 51
Step 3 (Optional): Transfer Your VSAM Data . . 56
Step 4: Create the Configuration Phase 56

Installing the VSAM Redirector Server 60
Step 1: Download the Install-File and Perform the
Installation 60
Step 2: Configure the Properties File 61
Step 3: Implement a VSAM Request Handler . . 62

IBM-Supplied Example of DB2-Related Handler . . 64
IBM-Supplied Example of HTML-Related Handler 65

Code for HTML-Related Request Handler . . . 65

Chapter 9. Customizing the DB2-Based
Connector 71
Host Installation Activities That Must Be Already
Completed 71
Step 1: Customize CICS TS 72
Step 2: Customize TCP/IP 72
Step 3: Customize DB2 and Define Sample Database 72

Step 3.1: Define User Catalog 73
Step 3.2: Catalog New ARISIVAR.Z 73
Step 3.3: Job Manager for Preparation /
Installation Steps 74
Step 3.4: Activate DRDA Server Support 75
Step 3.5: Startup Job for Stored Procedure Server 75
Step 3.6: Prepare DB2 Sample Database 75
Step 3.7: Install DB2 Sample Database 77

Step 4: Set Up for DRDA Support 80
Step 5: Set Up Stored Procedure Server and Define
to DB2 81

Step 5.1: Set Up the Stored Procedure Server . . 81
Step 5.2: Define Stored Procedure Server to DB2 82

Step 6: Set Up for Stored Procedures 82
Step 7: Customize the DB2-Based Connector for
VSAM Data Access 83
Step 8: Customize the DB2-Based Connector for
DL/I Data Access 83
Step 9: Start DB2, and Start Stored Procedure Server 84
Step 10: Install DB2 Connect and Establish
Client-Host Connection 85

Chapter 10. Configuring the
VSAM-Via-CICS Service 87
Configuring the IBM-Supplied CICS System . . . 87
Configuring a Further CICS System for
VSAM-Via-CICS 88
How the VSAM-Via-CICS Service Works 89
CICS Transactions for Use with VSAM-Via-CICS . . 89

Chapter 11. Configuring Your VSE/ESA
Host for SSL 91

Configuring for SSL Using IBM-Supplied
Keys/Certificates 92

Step 1: Activate TCP/IP for VSE/ESA 92
Step 2: Catalog Keyring Set Into the VSE Keyring
Library 92

Configuring for SSL Using Your Own
Keys/Certificates 95

Step 1: Activate TCP/IP for VSE/ESA 95
Step 2: Install/Configure Utility CIALCLNT On a
Web Client 95
Step 3: Generate a Key Pair, Request a Server
Certificate 95
Step 4: Obtain a Signed Server Certificate and
Copy to Job CIALCERT 98
Step 5: Obtain a Root Certificate and Copy to
Job CIALROOT. 101
Step 6: Verify Your Certificates on the Host . . 103
Step 7: Secure Your VSE Keyring Library Entries 103

SSL Examples Provided With the Online
Documentation 104

Chapter 12. Configuring the
Java-Based Connector for Server
Authentication 105
Configuring the VSE Connector Server for Server
Authentication 105

Step 1: Configure and Catalog the VSE
Connector Server’s SSL Profile. 105
Step 2: Activate SSL Profile in Main
Configuration File 106

Configuring the VSE Connector Client for Server
Authentication 108

Step 1: Set SSL Flag in Class
VSEConnectionSpec 108
Step 2: Configure SSL Profile 109
Step 3: Copy a Server Certificate Into Client
Keyring File 110
Description of the IBM-Supplied Client Keyring
File 111
Currently-Supported SSL Cipher Suites 112

Chapter 13. Configuring the
Java-Based Connector for Client
Authentication 115
Configuring the VSE Connector Server for Client
Authentication 116
Configuring the VSE Connector Client for Client
Authentication 117

Step 1: Generate a Key Pair. 117
Step 2: Generate and Store a Client Certificate 118
Step 3: Import the CA’s Root Certificate into the
Client Keyring File 120
Step 4: Save Your Client Keyring File 121
Step 5: Define Access Rights for VSE Connector
Client to Use Host Resources 121

Chapter 14. Service Functions for
Client Authentication 123
Prerequisites. 123

iv VSE/ESA: e-business Connectors, User’s Guide

Using the Batch Service Function BSSDCERT . . . 123
Changing the Defaults (Optional). 125
Using the Client-Certificates/User-IDs Dialog . . 125

Step 1: Starting the Dialog 125
Step 2: Selecting an Option 126
Step 3: Creating the Output Job 127
Step 4: Submitting or Storing the Output Job 128

Chapter 15. Mapping VSE/VSAM Data
to a Relational Structure 129
Introduction to Mapping VSE/VSAM Data . . . 129
How VSAM Maps Are Structured 130
How Maps Are Stored on the VSE/ESA host . . . 130
Defining a Map Using RECMAP 132
Defining a Map Using the Sample Applet 134
Defining a Map Using a Java Application 134
Defining a Map Using the VSAM MapTool . . . 140

Part 3. Programming 143

Chapter 16. Migrating Your Programs 145
Migrating from CCF to CCI 145
Migrating to Secure Connections Using SSL . . . 147
Migrating to VSAM-Access Via JDBC 149
Migrating Your Applets to JDK 1.3 or Later . . . 151
Using the New Methods in VSE Java Beans . . . 152
Migrating Servlets and EJBs 152

Chapter 17. Using VSE Java Beans to
Implement Java Programs 153
Where VSE Java Beans Are Installed and Used . . 153
How JavaBeans and EJBs Compare to VSE Java
Beans 154
Contents of the VSE Java Beans Class Library . . 155
Example of a Javadoc for a VSE Java Bean . . . 158
Using the Callback Mechanism of VSE Java Beans 159
Using VSE Java Beans to Connect to a VSE/ESA
host 162
Using VSE Java Beans for Accessing VSAM Data 164
Using VSE Java Beans for Accessing DL/I Data 167
Using VSE Java Beans for Accessing VSE/POWER
Data 172
Using VSE Java Beans for Submitting Jobs. . . . 173
Using VSE Java Beans for Accessing Librarian Data 175
Using VSE Java Beans for Accessing VSE/ICCF
Data 177
Using VSE Java Beans for Accessing the Operator
Console 180
Using the VSE Navigator Application 182

Prerequisite for Using the VSE Navigator . . . 183
Migrating From Earlier Versions 183
Installing the VSE Navigator 183
Starting the VSE Navigator Client 183
Adding Your Own VSE Navigator Plug-Ins . . 184

Chapter 18. Using JDBC to Access
VSAM Data 187
SQL Statements That Are Supported by JDBC . . 187
Relational and VSE Java Beans Terminology . . . 190

Specifying Table Names 190
Example of Using JDBC to Access VSAM Data . . 191

Step 1. Include the Imports and Class Definition 191
Step 2. Perform the doGet() Method 192
Step 3. Display List of Available Flights . . . 193
Step 4. Display Flight Properties and Entry
Form 194
Step 5. Get and Display the Data Field Values 195
Step 6. Update the VSAM Cluster 196
Step 7. Get Order Values and Check Availability 197
Step 8. Create the New Order 198
Step 9. Check Processing and Increase Reserved
Seats 199

Chapter 19. Using Java Applets to
Access Data 201
How Applets Are Used in 2-Tier Environments . . 202
How Applets Are Used in 3-Tier Environments . . 203
How the VSEAppletServer Is Used 205
Disadvantages and Restrictions Of Using Applets 206
Running the Sample Data-Mapping Applet . . . 207

Description of the Data-Mapping Applet . . . 207
Activities Required on the VSE/ESA Host . . . 208
Deploying the Data-Mapping Applet 209
Calling the Data-Mapping Applet 209
Setting Up the Data-Mapping Applet Class . . 210
Initializing the Data-Mapping Applet 210
Re-Displaying or Leaving an HTML Page . . . 211
Using the Data-Mapping Applet to Add a Map
to a VSAM Cluster 211
Using the Data-Mapping Applet to Modify a
Map 212
Using the Data-Mapping Applet to Modify a
Map’s Data Fields 213
Running the Data-Mapping Applet Locally
Using the AppletViewer 215

Running the Sample VSAM Applet 216
Description of the VSAM Applet 216
Getting Started With the Sample VSAM Applet 218
Calling the VSAM Applet 221
Description of DB2ConnectorJDBCApplet.java
(the Client-Side Program) 223
Description of VSAMSEL 226

Running the Sample DL/I Applet 230
Description of the DL/I Applet 230
Getting Started With the Sample DL/I Applet 232
Calling the DL/I Applet 233
Description of
DB2DLIConnectorJDBCApplet.java (the
Client-Side Program) 235
Description of DLIREAD 238

Chapter 20. Using Java Servlets to
Access Data 243
How Servlets Are Used in 3-Tier Environments . . 243
Compiling and Calling Servlets 245
How the WebSphere Application Server Stores
Session Information 245
Example of How to Implement a Servlet 246

General Description of the Sample Servlet . . . 246

Contents v

Creating the VSAM Clusters for the Sample . . 247
HTML Constructs Used With the Sample . . . 247

Chapter 21. Using Java Server Pages
to Access Data. 263
How JSPs Are Used in 3-Tier Environments . . . 263
Example of a Simple Java Server Page 265

Chapter 22. Using EJBs to Represent
Data 267
Overview of the EJB Architecture. 267

Overview of How EJB Containers are Used . . 268
How EJBs Compare to JavaBeans / Java Servlets 269
Implementing Your Client Applications. . . . 270
How an EJB Client Accesses EJBs. 271

Example of Using EJBs to Access VSAM Data . . 273
Example of Implementing VSAM-Based EJBs . . . 274

Step 1: Define the Sample’s VSAM Cluster . . 275
Step 2: Create the Record Layout for Employees 275
Step 3: Specify the EJB’s Home Interface . . . 276
Step 4: Specify the EJB’s Remote Interface . . . 276
Step 5: Implement the RecordPK Class 277
Step 6: Implement the EJB Code 277
Step 7: Compile the Java Source Files 282
Step 8: Deploy the EJBs 282
Step 9: Access the EJBs from an EJB Client . . 283

Chapter 23. Extending the Java-Based
Connector 287
Implementing a Server Plugin 288

Implementing a PluginMainEntryPoint Function 292
Implementing a SetupPlugin Function 293
Implementing a CleanupPlugin Function . . . 294
Implementing a GetHandledCommands
Function 295
Implementing a SetupHandler Function . . . 296
Implementing an ExecuteHandler Function . . 297
Implementing a CleanupHandler Function . . 299
Creating Your Own Plugin Callback Functions 299
Action Codes Supported by the VSE Connector
Server 300
Utility Functions Supported by the VSE
Connector Server 301
Using the IBM-Supplied Server Plugin Example 302
Registering and Compiling Your Server Plugin 302

Implementing a Client Plugin 303
Using the VSEPlugin class 303

General Considerations When Designing Your
Plugin 305

Specifying the Protocol Between VSE Connector
Server and Plugin 305
Choosing the Access Method to the Data /
Application 306
Considerations for ASCII / EBCDIC and Big /
Little Endian 306
Deciding Which Requests / Functions Should
Be Supported 306
Transferring Data Over the Network 307
Structuring the Client Plugin’s View. 307

Chapter 24. Using the DB2-Based
Connector to Access Data 309
How You Use DB2 Stored Procedures 310

Grouping Stored Procedure Servers 310
Programming Requirements When Using DB2
Stored Procedures 311

Using DB2 Stored Procedures to Access VSAM
Data 312

Overview: Accessing VSAM Data via DB2
Stored Procedures 313
Using the Call Level Interface: Activities on the
Requestor 314
Using Call Level Interface: Activities on the
VSE/ESA host 315
Example of the Syntax of a CLI Function –
VSAMSQLCloseTable. 316
Program Flow When Using the VSAMSQL Call
Level Interface 317
SQL Statements Supported by VSAMSQL Call
Level Interface 318

Using DB2 Stored Procedures to Access DL/I Data 320
Overview of the AIBTDLI Interface 321
Creating Programs That Use AIBTDLI 323
Invoking the AIBTDLI Interface 324
Compiling and Link-Editing Your Programs . . 326
Return and Status Codes 326
Scheduling with Single and Multiple MPS
Systems 328
Task Termination and Abend Handling 329
Messages and Return Codes 329

Chapter 25. Using SOAP for
Inter-Program Communication 331
Overview of the SOAP Syntax. 331
How the VSE/ESA Host Can Act As the SOAP
Server 332
How the VSE/ESA Host Can Act As the SOAP
Client 334
How the IBM-Supplied SOAP Control Blocks Are
Used 335

How the SOAP_PARAM_HDR Control Block Is
Used 335
How the SOAP_PROG_PARAM Control Block
Is Used 337
How the SOAP_DEC_PARAM Control Block Is
Used 338

Description of the IBM-Supplied SOAP Service
(getquote.c) 339
Description of the IBM-Supplied SOAP Client
(soapclnt.c) 341
Using a Java SOAP Client 343
Running the IBM-Supplied SOAP Sample 344

Step 1: Download and Install the Java SOAP
Client Packages on the Client 344
Step 2: Extract and Install the Required Java
Programs 344
Step 3: Compile /Link the Sample C Programs,
and Define Them to CICS 345
Step 4: Define the SOAP Server to CICS . . . 346
Step 5: Activate the ASCII to EBCDIC Converter 346

vi VSE/ESA: e-business Connectors, User’s Guide

Step 6: Compile the Java Sample 346
Step 7: Run the Java SOAP Client Sample . . . 347
Step 8: Run the C-Program SOAP Client Sample 347

Writing Your Own SOAP Programs 348

Chapter 26. Using the VSE Script
Connector for Non-Java Access . . . 349
How the VSE Script Connector Is Used. 349
Overview of the Protocol Used Between Client and
Server 350
Writing VSE Scripts Using the VSE Script
Language. 351

General Rules That Apply to the VSE Script
Language. 351
VSE Script Language Built-In General Functions 352
VSE Script Language Built-In String Functions 353
VSE Script Language Built-In Console Functions 353
VSE Script Language Built-In POWER Functions 353
VSE Script Language Built-In VSAM Functions 354

Sample Files You Can Use for Writing VSE Script
Clients 355
Example of Writing a VSE Script Client (and Its
VSE Script) 356

Step 1: Setup the VSE Script Server Properties
File 356
Step 2: Setup the Connections Properties File 356
Step 3: Define the Sample VSAM Data 357
Step 4: Modify the Sample VSE Script 357
Step 5: Start the VSE Connector Server on the
VSE/ESA Host 358
Step 6: Start the VSE Script Server Locally. . . 358
Step 7(a): Open the Sample Lotus 1-2-3
Spreadsheet File 359
Step 7(b): Open the Sample MS Office
Spreadsheet 362
Step 7(c): Start a Sample VSE Script from the
Command Line. 364

Appendix. AIBTDLI DL/I Messages
and Return Codes 365

Glossary 367

Index 371

Contents vii

viii VSE/ESA: e-business Connectors, User’s Guide

Figures

1. Overview of Connection Possibilities under
VSE/ESA 4

2. Overview of 2-Tier Environments and the
Programs You Can Use. 12

3. Overview of 3-Tier Environments and the
Programs You Can Use. 13

4. Selecting the Components of the VSE
Connector Client That You Require. 27

5. Online Help Options of the VSE Connector
Client 28

6. Uninstalling the VSE Connector Client . . . 29
7. Job SKVCSSTJ (for Placing Startup Job in

Reader Queue) 31
8. Job SKVCSCAT (for Cataloging Members for

VSE Connector Server) 31
9. Member SKVCSCFG (for Specifying General

Settings for VSE Connector Server). 32
10. Member SKVCSLIB (for Specifying Libraries to

Be Accessed by VSE Connector Server) . . . 33
11. Member SKVCSPLG (for Specifying Plugins

for VSE Connector Server) 33
12. Member SKVCSUSR (for Specifying Logon

Access to VSE Connector Server) 34
13. Member SKVCSSSL (for Configuring the VSE

Connector Server for SSL). 35
14. Startup Job STARTVCS (for Starting the VSE

Connector Server) 36
15. Displaying the Commands Provided by the

VSE Connector Server 38
16. Example of How the VSAM Redirector

Connector Is Used 48
17. Flow of Control for VSAM PUT Request 52
18. Flow of Control for VSAM GET Request 53
19. Flow of Control for VSAM PUT Request 54
20. Flow of Control for VSAM GET Request 55
21. Job to Produce a Configuration Phase for the

VSAM Redirector Connector 58
22. Data Layout Used With the HTMLHandler 66
23. Implementation of the HTMLHandler. . . . 66
24. Initialize Method of the HTMLHandler 66
25. Cleanup Method of the HTMLHandler 67
26. Open Method of the HTMLHandler 67
27. Close Method of the HTMLHandler 67
28. Request Method of the HTMLHandler . . . 68
29. Finished Method of the HTMLHandler 68
30. Console Listing from Running the

HTMLHandler Request Handler 69
31. Output from Running the HTMLHandler

Request Handler 69
32. Job SKSSLKEY to Catalog a Sample Keyring

Set into the VSE Keyring Library 93
33. Job to Start Utility CIALSRVR on the

VSE/ESA Host 96
34. ″TCP/IP for VSE Key Generator″ window 96
35. ″Generate RSA Private Key″ window 97
36. Job CIALCREQ to Request a Server Certificate 98

37. Example Output Listing From Job CIALCREQ 99
38. Thawte ″Certificate Signing Request″ Window 100
39. A Thawte Signed Server Certificate 100
40. Job CIALCERT to Catalog the Server

Certificate. 101
41. Thawte Certificate Authority Web Site 102
42. Job CIALROOT to Catalog the Root

Certificate. 103
43. Job CIALSIGV to Verify Certificates 103
44. Skeleton SKVCSSSL (Configure SSL for the

VSE Connector Server) 106
45. Skeleton SKVCSCFG (Activate SSL Profile for

the VSE Connector Server) 107
46. Set VSE Connector Client’s SSL Parameters

Using a Properties Object 109
47. Example of Java Properties File for the VSE

Connector Client 110
48. Example of a Client Keyring File 112
49. Job to Configure the VSE Connector Server

for Client Authentication 116
50. ″Generate Key″ Window 118
51. ″KM: Request a Certificate″ Window – Choose

Request Method. 118
52. ″KM: Request a Certificate″ Window – Enter

Personal Details 119
53. ″KM: Import″ Window – Import Certificate

into Client Keyring File 120
54. ″KM: KeyRing″ Window – Display Client

Certificate. 120
55. ″KM: KeyRing″ Window – Import Root

Certificate. 121
56. Sample Job to Catalog Client Certificate into

VSE Keyring Library 122
57. Listing All Client-Certificate/User-ID Pairs 126
58. Adding a Client-Certificate/User-ID Pair 127
59. Hierarchical Structure of VSAM Maps 130
60. Job To Define the Cluster for

VSAM.RECORD.MAPPING.DEFS. 131
61. Syntax of RECMAP Command (IDCAMS) 132
62. Example of Creating a Local VSAM Map

Object 135
63. Example of Creating Data Fields for a Map 136
64. Example of Displaying the Properties of a

Map 136
65. Example of Creating a View for a Map 137
66. Example of Adding Data Fields to a View 137
67. Example of Displaying the Properties of a

View 138
68. Example of How to Delete a Map. 138
69. Example of a VSAM MapTool Window 140
70. Code Containing CCF Statements (VSE/ESA

2.5) 145
71. Equivalent Code Containing CCI Statements

(VSE/ESA 2.6) 146
72. Code Without SSL Support (VSE/ESA 2.5) 147

© Copyright IBM Corp. 2000, 2003 ix

73. Equivalent Code Containing SSL Support
(VSE/ESA 2.6) 148

74. Code Using VSE Java Beans to Access VSAM
Data (VSE/ESA 2.5) 149

75. Equivalent Code Using JDBC to Access
VSAM Data (VSE/ESA 2.6) 150

76. Example of a Javadoc Belonging to the VSE
Java Beans Class Library 158

77. Example of a VSEResourceListener
implementation 160

78. Program Flow for Using VSE Java Classes to
Obtain a List of VSAM Catalogs 162

79. Creating a VSEConnectionSpec for
Connecting to the VSE/ESA Host 162

80. Creating a VSESystem for Connecting to the
VSE/ESA Host 163

81. Example of Accessing VSAM Data Using VSE
Java Beans 164

82. Example of Accessing DL/I Data Using VSE
Java Beans 167

83. Accessing VSE/POWER Data Using VSE Java
Beans 172

84. Example of Submitting Jobs Using VSE Java
Beans 174

85. Example of Accessing Librarian Using VSE
Java Beans 175

86. Example of Accessing ICCF Data Using VSE
Java Beans 177

87. Example of Accessing the Operator Console
Using VSE Java Beans 180

88. Graphical User Interface, as Provided by the
VSE Navigator 182

89. Configure Hosts for the VSE Navigator 184
90. Using the VSE Navigator to Access CICS

Data 185
91. JDBC Example: Imports and Class Definition 191
92. JDBC Example: Perform the doGet() Method 192
93. JDBC Example: Display List of Available

Flights 193
94. JDBC Example: Display Flight Properties and

Entry Form 194
95. JDBC Example: Get and Display the Data

Field Values 195
96. JDBC Example: Update the VSAM Cluster 196
97. JDBC Example: Get Order Values and Check

Availability 197
98. JDBC Example: Create the New Order 198
99. JDBC Example: Check Processing and

Increase Number of Reserved Seats 199
100. How Applets Are Used in the VSE/ESA

2-Tier Environment 202
101. How Applets Are Used in the VSE/ESA

3-Tier Environment 204
102. How the VSEApplet Server Is Used in the

3-Tier Environment 205
103. Window for VSAM Data-Mapping Applet 208
104. Data-Mapping Applet Code for Setting Up

the Java Class 210
105. Sample Code for Initializing the

Data-Mapping Applet. 210

106. Data-Mapping Applet Code for Adding a
Map to a VSAM Cluster 211

107. Sample Applet Code for Modifying a Map 212
108. Window for Changing a Map’s Properties 212
109. Sample Applet Code for Modifying a Map’s

Data Fields 213
110. Window for Changing a Map’s Data Fields 214
111. Using the Sample VSAM Applet to Access

VSAM Data 217
112. Window Displayed by the Sample VSAM

Applet 222
113. Using the Sample DL/I Applet to Access

DL/I Data 231
114. Window Displayed by the Sample DL/I

Applet 234
115. How Servlets Are Used in the VSE/ESA

3-Tier Environment 243
116. How Session Information Is Re-Used by the

WebSphere Application Server 246
117. VSAM Structure of

FLIGHT.ORDERING.FLIGHTS 247
118. VSAM Structure of

FLIGHT.ORDERING.ORDERS 247
119. Example of a Servlet Using Forms to Obtain a

User’s Input 248
120. Example of Using Forms to Display Window

Controls 249
121. Sample Servlet Code for Displaying a List of

Flights 250
122. Sample Servlet Code for Getting Flight

Instances from the Host 251
123. Flight Order Selection Window, As Generated

by the Sample Servlet 252
124. Sample Servlet Code for Displaying

Properties of a Flight 253
125. Flight Order Entry Window, As Generated by

the Sample Servlet 255
126. Sample Servlet Code for Placing an Order 256
127. Sample Servlet Code for Creating a New

Flight 259
128. Sample Servlet Code for Creating a New

Order 260
129. Flight Order Confirmation Window,

Generated by the Sample Servlet 261
130. How JSPs Are Used in the VSE/ESA 3-Tier

Environment 264
131. Example of a Java Server Page /JSP) 265
132. How Containers Are Used To Manage EJBs 269
133. Overview of the Entities Involved in an EJB

Method Call 270
134. How an EJB Client Communicates with an

EJB 271
135. How EJBs Are Used Together with an Applet

in the 3-Tier Environment 273
136. How the EJB Client Accesses EJBs in the

Provided Example 284
137. Example of EJB Client Code 285
138. Overview of How a Server Plugin’s Functions

Are Called 288
139. How a Plugin’s Functions Are Called During

Startup. 289

x VSE/ESA: e-business Connectors, User’s Guide

140. How a Plugin’s Functions Are Called When a
Request Is Received 290

141. Overview of How a Plugin’s Functions Are
Called During Server Shutdown 291

142. Sample Code for Implementing
PluginMainEntryPoint Function 292

143. Sample Code for Implementing the
SetupPlugin Function 293

144. Sample Code for Implementing the
CleanupPlugin Function 294

145. Sample Code for Implementing the
GetHandledCommands Function 295

146. Sample Code for Implementing the
SetupHandler Function 296

147. Sample Code for Implementing the
ExecuteHandler Function 298

148. Sample Code for Distinguishing Between
Multiple Requests Within a Plugin 298

149. Example of Calling a Stub Code Written in a
Language Other Than C 299

150. How You Use DB2 Stored Procedures To
Access VSAM Data 313

151. Typical Program Flow When Performing a
VSAMSQL CLI Update 317

152. SQL Statements Supported by VSAMSQL Call
Level Interface (CLI) 318

153. How You Use DB2 Stored Procedures To
Access DL/I Data 320

154. DL/I Partition Layout for Batch, MPS Batch,
CICS/DLI Online, and AIBTDLI Interface . . 322

155. How SOAP Is Used When the VSE/ESA Host
Acts As SOAP Server 333

156. How SOAP Is Used When the VSE/ESA Host
Acts As SOAP Client 334

157. Contents of the SOAP Parameter 336
158. Possible Values for Type of Value Field 336
159. Fields Contained in SOAP_PROG_PARAM

Control Block 337
160. Fields Contained in SOAP_DEC_PARAM

Control Block 338

161. Proxy Types That Can Be Used With
SOAP_DEC_PARAM Control Block 338

162. Mapping COMMAREA to
SOAP_PROG_PARAM Control Block . . . 339

163. Checking Which SOAP Method Has Been
Requested. 339

164. Get Input Parameters from CICS Queue 340
165. Put Parameter Into the CICS Output Queue 340
166. Preparing the SOAP Client’s Call Parameter 341
167. SOAP Client Prepares the

SOAP_DEC_PARAM Structure. 341
168. SOAP Client Inserts Values into the SOAP

Server’s Input Queue 341
169. SOAP Client Calls SOAP Converter

(IESSOAPE) to Handle Requests 342
170. SOAP Client Obtains Results of the SOAP

Call 342
171. SOAP Client Deletes CICS Queues 342
172. 343
173. Using CEDA to Define Sample SOAP Service

to CICS 346
174. Using CEDA to Define SOAP Server to CICS 346
175. How the VSE Script Connector is Used 349
176. VSE Script Provided With the VSE Script

Connector Example 358
177. Sample Lotus 1-2-3 Spreadsheet for VSE

Script Connector Example 359
178. Transferring Data from VSAM Cluster to

Lotus 1-2-3 Spreadsheet 359
179. Sample Script As Defined in Lotus 1-2-3 360
180. Visual Basic Script Used With Lotus 1-2-3

Spreadsheet Example 360
181. Sample Spreadsheet for MS Office

Spreadsheet Example 362
182. Transferring Data from VSAM Cluster to MS

Office Spreadsheet 362
183. Sample Script as Defined in MS Office 363

Figures xi

xii VSE/ESA: e-business Connectors, User’s Guide

Tables

1. Connectivity Possibilities in 2-Tier
Environments 17

2. Connectivity Possibilities in 3-Tier
Environments 18

3. Currently Supported SSL Cipher Suites 112
4. Contents of the VSE Java Beans Class Library 155

5. SQL Statements Supported by JDBC 187
6. Relational Terms and Their VSE Equivalents 190
7. Properties of Session Beans and Entity Beans 267
8. CLI Functions You Can Use for Accessing

Mapped VSAM Data 315
9. Files Supplied for Writing VSE Script Clients 355

© Copyright IBM Corp. 2000, 2003 xiii

xiv VSE/ESA: e-business Connectors, User’s Guide

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement. IBM accepts
no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
IBM Deutschland Informationssysteme GmbH
Department 0215
Pascalstr. 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

Trademarks and Service Marks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX ES/9000 S/390
AS/400 IBM SQL/DS
AT Language Environment Tivoli
C/370 MQSeries VisualAge
CICS Netfinity VM/ESA
CICS/VSE Nways VSE/ESA
DB2 OS/2 VTAM
DB2 Connect OS/390 WebSphere
DB2 Server for VSE OS/400 xSeries
DB2 Universal Database pSeries z/OS
Distributed Relational
Database Architecture

pSeries zSeries

© Copyright IBM Corp. 2000, 2003 xv

DRDA RS/6000

Java, Java Beans, and JavaScript are trademarks or registered trademarks of Sun
Microsystems, Inc..

Microsoft, Windows, the Windows 95 logo, Windows NT and Windows XP, are
trademarks or registered trademarks of Microsoft Corporation.

Visual Basic is a registered trademark of Microsoft Corporation.

Lotus, 1-2-3, Domino, and Notes are trademarks or registered trademarks of the
IBM-Lotus Corporation.

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction
LLC.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

LINUX is a registered trademark of Linus Torvalds and others.

Other company, product, and service names, may be trademarks or service marks
of others.

xvi VSE/ESA: e-business Connectors, User’s Guide

About This Book

This manual describes how you can use the VSE/ESA e-business Connectors to
develop e-business applications that access programs and data based on the
VSE/ESA host.

Who Should Use This Book
This manual is intended for systems programmers who install additional VSE/ESA
programs, and application programmers who are familiar with the Java
object-oriented programming language.

How to Use This Book
This book is divided into four parts, as follows.
v Part 1 provides you with an introduction to the VSE/ESA e-business Connectors,

and the basic possible configurations of e-business solutions.
– Chapter 1, “Introduction to e-business with VSE/ESA”, on page 3 provides an

introduction to the IBM Application Framework for e-business, and describes
the Java-based connector and the DB2-based connector, which support the
Application Framework for e-business. CICS and MQSeries connectivity
possibilities under VSE/ESA are also described.

– Chapter 2, “Overview of 2- and 3-Tier Environments”, on page 11 describes
the 2-tier and 3-tier environments that you can implement.

v Part 2 describes the installation and customization activities you might carry out,
in order to establish e-business connectivity within your VSE/ESA system.
– Chapter 3, “Choosing the Connectivity You Require”, on page 17 provides you

with the information you require to decide which type of connectivity you
require.

– Chapter 4, “Installing the Common Prerequisite Programs”, on page 21
provides instructions on how you install and configure the programs you
require in order to use the VSE/ESA e-business Connectors.

– Chapter 5, “Installing and Operating the Java-Based Connector”, on page 25
describes how you install the VSE Connector Client on your middle-tier, and
how you configure and start the VSE Connector Server on the VSE/ESA host.

– Chapter 6, “Configuring DL/I for Access Via VSE Java Beans”, on page 41
describes how you configure your DL/I system so that it can be accessed via
VSE Java Beans.

– Chapter 7, “Installing the VSE Script Connector”, on page 43 describes how
you install the server-part (the VSE Script Server) of the VSE Script Connector.

– Chapter 8, “Installing the VSAM Redirector Connector”, on page 47 describes
how you install and implement the VSAM Redirector connector.

– Chapter 9, “Customizing the DB2-Based Connector”, on page 71 describes
how you customize the DB2-based connector.

– Chapter 10, “Configuring the VSAM-Via-CICS Service”, on page 87 describes
how you configure the VSAM-via-CICS service to access VSAM data without
the restriction that you must use VSAM shareoption 4.

© Copyright IBM Corp. 2000, 2003 xvii

– Chapter 11, “Configuring Your VSE/ESA Host for SSL”, on page 91 describes
how you configure your VSE/ESA host for Secure Sockets Layer (SSL)
support.

– Chapter 12, “Configuring the Java-Based Connector for Server Authentication”
, on page 105 describes how you configure the VSE Connector Server and VSE
Connector Clients for SSL server authentication support.

– Chapter 13, “Configuring the Java-Based Connector for Client Authentication”
, on page 115 describes how you configure the VSE Connector Server and VSE
Connector Clients for SSL client authentication support

– Chapter 14, “Service Functions for Client Authentication”, on page 123
describes the utilities and dialog you can use to manage client certificates,
when you implement client authentication.

– Chapter 15, “Mapping VSE/VSAM Data to a Relational Structure”, on
page 129 describes how you can map VSAM data to a relational structure.

v Part 3 provides theoretical and practical information describing how to use the
Java-based connector and DB2-based connector to develop your e-business
applications.
– Chapter 16, “Migrating Your Programs”, on page 145 describes the actions you

must take to migrate your programs so that they can take advantage of
VSE/ESA support for the Common Client Interface (CCI), Secure Sockets
Layer, and Java Database Connectivity (JDBC). It also describes how you can
migrate applets to JDK 1.3, and new methods for the VSE Java Beans.

– Chapter 17, “Using VSE Java Beans to Implement Java Programs”, on
page 153 describes how you use the VSE Java Beans class library to write
applets, servlets, Java Server Pages, and Enterprise Java Beans, that access
VSE data.

– Chapter 18, “Using JDBC to Access VSAM Data”, on page 187 describes how
you can setup and issue relational database queries and update requests
against VSAM data using a Java Database Connectivity (JDBC) driver.

– Chapter 19, “Using Java Applets to Access Data”, on page 201 describes how
you implement applets in 2- and 3-tier environments.

– Chapter 20, “Using Java Servlets to Access Data”, on page 243 describes how
you implement servlets in 3-tier environments.

– Chapter 21, “Using Java Server Pages to Access Data”, on page 263 describes
how you implement Java Server Pages (JSPs) in 3-tier environments.

– Chapter 22, “Using EJBs to Represent Data”, on page 267 describes how you
use Enterprise Java Beans (EJBs) in a 3-tier environment to represent DB2,
DL/I, or VSAM data.

– Chapter 23, “Extending the Java-Based Connector”, on page 287 describes how
you can extend the Java-based connector in 2-tier and 3-tier environments, by
writing your own “plugins”.

– Chapter 24, “Using the DB2-Based Connector to Access Data”, on page 309
describes how you use the DB2-based connector to access VSAM and DL/I
data, using the DB2 infrastructure.

– Chapter 25, “Using SOAP for Inter-Program Communication”, on page 331
describes how you use the Simple Object Access Protocol (abbreviated to
SOAP) to send and receive information between CICS programs and other
modules, over the Internet.

– Chapter 26, “Using the VSE Script Connector for Non-Java Access”, on
page 349 describes how you use the VSE Script connector to access VSE/ESA
host data from Java or non-Java platforms.

xviii VSE/ESA: e-business Connectors, User’s Guide

v “AIBTDLI DL/I Messages and Return Codes”, on page 365 lists the new DL/I
messages that can be generated by the AIBTDLI interface of the DB2-based
connector

Where to Find More Information
Here is a list of IBM publications and publications from other vendors, that you
might find useful. The IBM redbooks listed here are usually not kept up-to-date,
but on the other hand at the time they are written they are at the forefront of the
technical areas they describe.
v VSE/ESA Planning, SC33-6703
v TCP/IP for VSE/ESA IBM Program Setup and Supplementary Information, SC33-6601
v CICS Transaction Server for VSE/ESA, Enhancements Guide, GC34-5763
v e-business Solutions for VSE/ESA (Redbook), SG24-5662
v e-business Connectivity for VSE/ESA (Redbook), SG24-5950
v Getting Started with TCP/IP for VSE/ESA 1.4 (Redbook), SG24-5626
v TCP/IP Tutorial and Technical Overview (Redbook), GG24-3376
v WebSphere Application Servers: Standard and Advanced Editions (Redbook), SG24-5460
v WebSphere Application Server V4 for Linux, Implementation and Deployment Guide

(Redpaper), REDP0405
v IBM WebSphere V4.0 Advanced Edition Handbook (Redbook), SG24-6176
v Linux on IBM zSeries and S/390: Server Consolidation with Linux for zSeries

(Redpaper), REDP0222
v Linux on IBM zSeries and S/390: High Availability for z/VM and Linux (Redpaper),

REDP0220
v Linux for S/390 (Redbook), SG24-4987
v MQSeries for VSE/ESA (Redbook), SG24-5647

The online documentation provided by the VSE Connector Client includes a list of
useful Internet sites, and online books. See “Using the Online Documentation
Options” on page 28 for a description.

In addition, you might refer to the ...

VSE/ESA Home Page
VSE/ESA has a home page on the World Wide Web, which offers up-to-date
information about VSE-related products and services, new VSE/ESA
functions, and other items of interest to VSE users.

You can find the VSE/ESA home page at:

http://www.ibm.com/servers/eserver/zseries/os/vse/

About This Book xix

xx VSE/ESA: e-business Connectors, User’s Guide

Summary of Changes

Changes for Fifth Edition (March 2003)
VSE/ESA 2.7 includes:
v A change in the way the VSE Connector Client is downloaded and installed. For

details, see “Obtaining a Copy of the VSE Connector Client” on page 25.
v A change in the way the classpath environment variable is set for the VSE

Connector Client. Previously, you had to set the classpath environment variable
manually. From VSE/ESA 2.7 onwards, it is set automatically in the installation
batch files. For details, see “Performing the VSE Connector Client Installation”
on page 26.

v The option to activate a new configuration of the VSAM Redirector Client while
the VSAM system is running (that is, without restarting your VSAM
applications). For details, see “Installing and Configuring the VSAM Redirector
Client” on page 50.

v Optional parameters when specifying the names of clusters that are to be
redirected by the VSAM Redirector connector. You can use these parameters for
more exact filtering (for example, to include only clusters that are contained in a
specific partition). For details, see “Optional Parameters” on page 56.

v A change in the way the VSAM Redirector Server is downloaded and installed.
For details, see “Step 1: Download the Install-File and Perform the Installation”
on page 60.

v VSE Connector Client support for the client-certificates dialog and various
client-authentication service functions. These were first introduced with
VSE/ESA 2.6.1 for use with CICS Web Support. For details, see Chapter 14,
“Service Functions for Client Authentication”, on page 123.

v A new parameter STA, which shows the status of the client-certificate/User-ID
mapping list that is used with client authentication. For details, see “Using the
Batch Service Function BSSDCERT” on page 123.

v Support for accessing DL/I data via VSE Java Beans. For details, see Chapter 6,
“Configuring DL/I for Access Via VSE Java Beans”, on page 41, and (for a code
example of how to access DL/I data via VSE Java Beans) “Using VSE Java Beans
for Accessing DL/I Data” on page 167.

v A change in the way the VSE Navigator is downloaded and installed. For
details, see “Installing the VSE Navigator” on page 183.

v Support for SOAP (the Simple Object Access Protocol) which you can use for
communicating between CICS Transaction Server for VSE/ESA programs, and
programs running on other platforms. For details, see Chapter 25, “Using SOAP
for Inter-Program Communication”, on page 331.

v The VSE Script connector, which allows non-Java access to programs and data
located on the VSE/ESA host. For details, see Chapter 7, “Installing the VSE
Script Connector”, on page 43 and Chapter 26, “Using the VSE Script Connector
for Non-Java Access”, on page 349.

v Support for Windows XP.
v Support for Java Development Kit (JDK) 1.4 and WebSphere 4.5.

The appendixes in this manual that described TCP/IP and SSL have been
removed, since this information is now widely available on the internet, and can
be obtained for all levels of user skill.

© Copyright IBM Corp. 2000, 2003 xxi

Changes for Fourth Edition (June 2002)
VSE/ESA 2.6.1 included:
v Minor changes to the procedure for implementing client authentication for VSE

Connector Clients. This was mainly due to difficulties that could arise if a test
certificate from the Thawte Corporation was used as a client certificate. For
details, see “Configuring the VSE Connector Client for Client Authentication” on
page 117.

v A new dialog and various service functions that you could use to help you
implement client authentication, and manage client certificates. For details, see
Chapter 14, “Service Functions for Client Authentication”, on page 123.

Changes for Third Edition (December 2001)
VSE/ESA 2.6 included:
v The VSAM Redirector connector, which handles requests to VSAM datasets and

then redirects them to a different Java platform (for example to Linux on zSeries,
Windows NT, or Windows 2000) and to a different file system (for example to
DB2 or flat files). Your source programs do not need to be changed. For details,
see Chapter 8, “Installing the VSAM Redirector Connector”, on page 47.

v Access to VSAM files using the VSAM-via-CICS service. This service can be
used by your VSE Connector Client applications, or applications that call DB2
Stored Procedures. Using the VSAM-via-CICS service avoids the use of VSAM
share option 4 for multiple writes when accessed from one CICS. For details, see
Chapter 10, “Configuring the VSAM-Via-CICS Service”, on page 87.

v SSL support for the Java-based connector (see “Configuring the VSE Connector
Server for Server Authentication” on page 105 and “Configuring the VSE
Connector Client for Server Authentication” on page 108 for details). This SSL
support also includes client authentication (see Chapter 13, “Configuring the
Java-Based Connector for Client Authentication”, on page 115 for details).

v The VSAM MapTool, which allows you to create a map by parsing a COBOL
copybook. For details, see “Defining a Map Using the VSAM MapTool” on
page 140.

v VSE Java Beans that are based on the Java platform 2 (J2EE 1.3). You must
however migrate your applets because of the changes in applet security. For
details, see “Migrating Your Applets to JDK 1.3 or Later” on page 151.

v New methods for accessing “in-creation” entries, that have been added to
VSE/POWER-related VSE Java. For details, see “Using the New Methods in VSE
Java Beans” on page 152.

v JDBC support for the the Java-based connector. This includes a JDBC driver with
a limited set of supported SQL constructs. For details, see Chapter 18, “Using
JDBC to Access VSAM Data”, on page 187.

v The Common Connector Interface (CCI) as a replacement for the IBM Common
Connector Framework (CCF). In addition, the reuse of connections is now
handled internally by the WebSphere Application Server (Version 4.0 and later).
The former CCF package com.ibm.connector is no longer included in the
VSEConnector.jar file. Instead, the CCI package (javax.resource) is shipped as a
separate JAR file cci.jar, and must be imported by user applications. As a result
of these changes, the chapter “Reusing Connections” that was present in
VSE/ESA 2.5, no longer applies from VSE/ESA 2.6 onwards. For details about
reusing connections, you should now refer to the online documentation
provided with the VSE Connector Client.

xxii VSE/ESA: e-business Connectors, User’s Guide

Part 1. Introduction

Part 1 contains these chapters:
v Chapter 1, “Introduction to e-business with VSE/ESA”, on page 3
v Chapter 2, “Overview of 2- and 3-Tier Environments”, on page 11

© Copyright IBM Corp. 2000, 2003 1

2 VSE/ESA: e-business Connectors, User’s Guide

Chapter 1. Introduction to e-business with VSE/ESA

To help you be successful in meeting your Internet and e-business requirements,
IBM has developed an Application Framework for e-business. This framework has
been developed with the aim of helping you to protect your investment in existing
information assets, while enabling you to exploit the emerging e-business
opportunities. The Application Framework for e-business consists of three logical
layers:
1. A client, which is usually a workstation that has a standard Web browser

installed. However, this can also be a wireless telephone or Personal Digital
Assistant (PDA).

2. A Web application server, which is the “hub” that processes requests from
clients, controls access to business logic and data. If the logic or data are stored
on a different system, the Web application server uses connectors to access
them. The Web application server also integrates static and dynamic content,
and then returns Web pages to clients.

3. Connectors, which provide access to external services such as business logic and
data. The connectors provided with VSE/ESA are now introduced.

The Application Framework for e-business covers the most up-to-date security
standards such as SSL, SET, and firewall, and supports:
v WebSphere Application Server
v VisualAge for Java
v DB2 Universal Database
v Lotus Domino
v CICS Transaction Gateway
v MQSeries

The VSE/ESA e-business Connectors support the Application Framework for
e-business, and provide you with the resources to extend your core applications to
e-business applications. By doing so, you can protect and leverage existing
core-application investments.
v Core applications (typically CICS, COBOL, VSAM) typically run on the VSE/ESA

host, are critical to the company’s operations, are expected to remain in
production for many years to come, and usually represent an enormous
investment of past resources.

v e-business applications are typically based upon common standards such as
TCP/IP, HTML, XML, Secure Sockets Layer (SSL), Secure Electronic Transaction
(SET) and so on, include both the server and client code written in Java, access
relational data locally or remotely, and interface with end-users via a standard
Web browser.

You can, for example, extend your core applications to the Web and combine S/390
with non-S/390 servers (RS/6000, Netfinity, and AS/400), to produce
state-of-the-art e-business solutions.

© Copyright IBM Corp. 2000, 2003 3

What the VSE/ESA e-business Connectors Provide
These are the current VSE/ESA e-business Connectors:
v The Java-based connector, which consists of a client-part (the VSE Connector

Client) and a server-part (the VSE Connector Server).
v The DB2-based connector, including the new DB2 Stored Procedure support.
v The VSAM Redirector connector, which consists of a client-part (the VSAM

Redirector Client) and a server-part (the VSAM Redirector Server).
v The VSE Script connector, which consists of a client-part (any user-written Java

or non-Java application called the VSE Script Client) and a server-part (the
IBM-supplied VSE Script Server, which is a Java application).

Figure 1 shows the connections you can make between Web clients /the
middle-tier and the VSE/ESA host.

Notes:

1. The components of the Java-based connector are shown as shaded.
2. The DB2-based connector uses a connection between DB2 Connect on the

middle-tier and DB2 Server for VSE on the VSE/ESA host.

Overview of the Java-Based Connector
The Java-based connector consists of a client-part (the VSE Connector Client), and a
server-part (the VSE Connector Server).

Overview of the VSE Connector Client
To install the VSE Connector Client, you install these three components on any
Java-enabled middle-tier platform:

Figure 1. Overview of Connection Possibilities under VSE/ESA

e-business with VSE/ESA

4 VSE/ESA: e-business Connectors, User’s Guide

v a file VSEConnector.jar which contains the VSE Java Beans class library. The
VSE Java Beans provide a Java programming interface for communicating with
VSE/VSAM, VSE/Librarian, VSE/POWER, VSE/ICCF, and Operator Console,
on the VSE/ESA host.

v a set of samples, including Java source code, that show you how to write Java
programs that are based upon the use of VSE Java Beans.

v online documentation (a set of HTML pages) describing the various concepts
and samples.

To develop your Web applications, you will probably use all the three components
listed above. However, the completed Web applications require only the VSE Java
Beans class library at run-time. Therefore, when your Web applications are ready
for the production environment (the end-user environment), you install only the
VSEConnector.jar file (which contains the VSE Java Beans class library) on the:
v Middle-tier (for 3-tier environments)
v Web clients (for 2-tier environments).

The difference between 2-tier and 3-tier environment is explained in Chapter 2,
“Overview of 2- and 3-Tier Environments”, on page 11.

For a detailed description of how to install the VSE Connector Client, see
“Installing the VSE Connector Client” on page 25.

Overview of the VSE Connector Server
The VSE Connector Server is installed on the VSE/ESA host. It is a batch
application that runs by default in dynamic class R. After you have configured the
VSE Connector Server, it must simply be started in order to become operational. It
then provides a TCP/IP socket listener which can handle multiple clients.

Java programs running on Web clients or the middle-tier use the VSE Java Beans to
build connections to the VSE Connector Server running on the VSE/ESA host.

To start the VSE Connector Server, you use the job STARTVCS, which is placed in
the POWER reader queue during the installation of the VSE/ESA base. When
started, the VSE Connector Server listens to incoming TCP/IP traffic on port 2893
by default. For details of how to start the VSE Connector Server, see “Starting the
VSE Connector Server” on page 36.

The VSE Connector Server is pre-configured for your use, and should require no
major configuration effort by yourself. However, you can modify various
configuration members to specify:
v The VSE/AF libraries that can be accessed by the VSE Connector Server. You

may extend or restrict this list according to your needs.
v Plugins to be loaded at VSE Connector Server startup. You can extend the

Java-based connector by specifying your own host-side plugins, as described in
Chapter 23, “Extending the Java-Based Connector”, on page 287.

v Which users or groups of users are allowed to logon to the VSE Connector
Server.

For details of how to modify the configuration members belonging to the VSE
Connector Server, see “Configuring the VSE Connector Server” on page 30.

For an overview of where the VSE Connector Client and VSE Connector Server are
used in 2-tier and 3-tier environments, see Figure 2 on page 12 and Figure 3 on
page 13.

e-business with VSE/ESA

Chapter 1. Introduction to e-business with VSE/ESA 5

Overview of the DB2-Based Connector
The DB2-based connector is an optional feature that allows you to use the Distributed
Relational Database Architecture (DRDA) to access non-relational data such as
VSE/VSAM and DL/I data. Your application programs use standard interfaces
such as JDBC, ODBC, or Call Level Interface (CLI) to request data.

The implementation of the DB2-based connector is based upon the use of DB2
Stored Procedures, which you can use with the DB2 Server for VSE & VM, Version 6
or later. DB2 Stored Procedures are application programs that you write, and then
compile and store on your VSE/ESA host.

You can write DB2 Stored Procedures in any LE (Language Environment)-
compliant language (COBOL, C, or PL/I). Local or remote DRDA applications can
then invoke these DB2 Stored Procedures.

The DB2-based connector enables you to access VSE/VSAM and DL/I data from
within the same DB2 Stored Procedure that you use to access DB2 data:
v To access VSE/VSAM data, you use the VSAM Call Level Interface. See “Using

DB2 Stored Procedures to Access VSAM Data” on page 312 for details.
v To access DL/I data, you use the AIBTDLI interface. See “Using DB2 Stored

Procedures to Access DL/I Data” on page 320 for details.

For an overview of where the DB2-based connector is used in a 3-tier environment,
see Figure 3 on page 13.

Overview of the VSAM Redirector Connector
The VSAM Redirector Connector enables VSE programs to access data on remote
systems, in real-time. Using the VSAM Redirector Connector:
v VSAM data can be migrated to other file systems or databases.
v Data can be synchronized on different systems with VSE VSAM data.
v VSE programs can work transparently with data on other file systems or

databases.

A Java handler provides access to the specific file system or database on the
remote system. For example, you can migrate your VSAM data into DB2 tables
residing on a remote system, and your VSE programs will then work with this
data, without requiring any changes to these VSE programs.

The VSAM Redirector connector handles requests to VSAM datasets and redirects
them to a different:
v Java platform (for example Linux on zSeries, Windows NT, Windows 2000,

Windows XP).
v file system (for example DB2 or flat files).

Your existing VSE/ESA host programs that are:
v written in any language (COBOL, PL/I, ASSEMBLER)
v batch or CICS programs

can therefore work with migrated VSAM data without the need to amend and
recompile these VSE/ESA host programs. The VSAM Redirector connector
manages all connections and data conversions.

The VSAM Redirector connector consists of:
v The VSAM Redirector Client (installed on your VSE/ESA host).

e-business with VSE/ESA

6 VSE/ESA: e-business Connectors, User’s Guide

v A VSAM Redirector Server installed on each Java platform.

For further details about the VSAM Redirector connector, see Chapter 8, “Installing
the VSAM Redirector Connector”, on page 47.

Overview of the VSE Script Connector
As described in “Overview of the Java-Based Connector” on page 4, VSE Java
Beans provide direct access to the VSE/ESA host from any kind of Java program
(servlets, applets, EJBs, and so on) running on a Java platform. In addition, you can
use the VSE Script connector to access VSE/ESA host data from non-Java platforms.
This is the main advantage of using the VSE Script connector (although it can also
be used to access VSE/ESA host data from Java platforms).

The VSE Script connector is supplied as part of the Java-based connector. It can
only be used in a 3-tier environment (explained in “Overview of 3-Tier
Environments” on page 13), and consists of:
v a VSE Script Client running on a Java or non-Java platform, and which can be

either:
– a user-written Java application (for example a Web-service).
– a user-written non-Java application (for example a Windows C-program, a

Windows CGI-program, or a COBOL application).
– an office product, such as a word-processing or spreadsheet program (for

example Lotus 1-2-3 or Lotus WordPro), where for example, a Visual Basic
script is used to call a VSE Script.

v the VSE Script Server running on the middle-tier of a 3-tier environment, which
interprets and executes VSE Script files.

v online documentation, including a programming reference manual.

The VSE Script connector works in this general way:
1. The VSE Script Client calls a VSE Script, to make a request for data stored on

the VSE/ESA host. These VSE Script (batch) files contain statements written
using the VSE Script language, which is a special programming language. The
VSE Script language can be used in any environment (even in Visual Basic
scripts).

2. The VSE Script Server running on a Java-enabled middle-tier platform then
reads, interprets, and translates, the VSE Script file statements into VSE Java
Beans requests. The VSE Script Server uses the VSE Java Beans to connect to
the VSE Connector Server running on the VSE/ESA host, and to forward the
VSE Java Beans requests.

3. The VSE Connector Server accesses the required VSE/ESA data and functions,
and sends the reply back to the VSE Script Server.

4. The VSE Script Server converts the data to the format that the VSE Script Client
can use, and returns the data to the VSE Script Client.

For details about the VSE Script connector, see Chapter 7, “Installing the VSE Script
Connector”, on page 43, and Chapter 26, “Using the VSE Script Connector for
Non-Java Access”, on page 349.

e-business with VSE/ESA

Chapter 1. Introduction to e-business with VSE/ESA 7

Overview of VSE/ESA Support for Web Services and SOAP
SOAP is a standard, XML-based, industry-wide protocol that allows applications to
exchange information over the Internet via HTTP.

XML is a universal format that is used for structured documents and data on the
Web. It is independent of both the Web client’s operating-system platform and the
programming language used. HTTP is supported by all Internet Web browsers and
servers.

SOAP combines the benefits of both XML and HTTP into one standard application
protocol. As a result, you can send and receive information to/from various
platforms.

Using Web browsers, you can view information contained on Web sites. However,
using SOAP you can:
v combine the contents of different Web sites and services.
v generate a complete view of all the relevant information.

VSE/ESA supports the SOAP protocol and therefore allows you to implement Web
services.

An example of using SOAP might be when a travel agent requires a combined
view of the Web services covering hotel reservation, flight booking, and car rental.
After the travel agent has entered the required data, all three Web services from
the three different providers would be processed in one transparent step. This is an
example of how a “Business-to-Business” (B2B) relationship can be implemented.

For details of how to implement SOAP in your VSE/ESA system, see Chapter 25,
“Using SOAP for Inter-Program Communication”, on page 331.

e-business with VSE/ESA

8 VSE/ESA: e-business Connectors, User’s Guide

Overview of CICS Connectivity
CICS connectivity in a 2-tier environment enables CICS applications to be accessed
using the CICS Web Support and 3270 Bridge (functions delivered with CICS
Transaction Server for VSE/ESA).

CICS connectivity in a 3-tier environment enables:
v A Java gateway application, that is usually stored on the middle-tier, to

communicate with CICS applications running in the CICS TS through the ECI
(External Call Interface) or EPI (External Presentation Interface) provided by the
CICS Universal Client.
– The ECI Interface enables a non-CICS Client application to call a CICS

program synchronously or asynchronously as a subroutine.
– The EPI Interface enables a non-CICS Client application to act as a logical 3270

terminal and so control a CICS 3270 application.

The CICS Universal Client communicates with the CICS TS via the APPC
protocol.

v A CICS Java class library to be used for communication between the Java
gateway application and a Java application (applet or servlet). The CICS Java
class library also includes classes that provide an application programming
interface (API):
– Java programs can use the JavaGateway class to establish communication with

the Gateway process, and this class uses Java’s sockets protocol.
– Java programs can use the:

- ECIRequest class to specify the ECI calls that are flowed to the gateway.
- EPIRequest class to specify EPI calls that are flowed to the gateway.

v A Web browser to be used as an emulator for a 3270 CICS application running
on the CICS Transaction Server for VSE/ESA, via a Terminal Servlet.

v A set of Java EPI Beans to be used for creating Java front-ends for existing CICS
3270 applications, without any programming effort.

v The Simple Object Access Protocol (abbreviated to SOAP) to be used to send and
receive information between CICS programs and other modules, over the
Internet. For further information about SOAP, see Chapter 25, “Using SOAP for
Inter-Program Communication”, on page 331.

Overview of MQSeries Connectivity
MQSeries connectivity in a 3-tier environment enables:
v Java applets to access MQSeries queues on the VSE/ESA host. By exploiting the

trigger facility provided by MQSeries, you can start CICS applications that
access CICS data and resources on the VSE/ESA host.

v a Web Client to participate in transactions, instead of simply providing and
receiving information.

For further information about MQSeries connectivity in a 3-tier environment, see
Table 2 on page 18.

Overview of the IBM WebSphere Application Server
You implement the WebSphere Application Server on the middle-tier of the 3-tier
Application Framework for e-business environment shown in Figure 3 on page 13.
It is used together with a Web server (such as the IBM HTTP Server, or Apache
server).

e-business with VSE/ESA

Chapter 1. Introduction to e-business with VSE/ESA 9

The WebSphere Application Server is fully compatible with industry standards
such as Enterprise Java Beans (EJBs), eXtensible Markup Language (XML), and
Common Object Request Broker Architecture (CORBA), and provides you with a
solid framework for implementing your e-business applications.

Complementary programs include the:
1. WebSphere Studio, which is a powerful set of application development tools

and facilities.
2. WebSphere Performance Pack.

In addition, you can use Tivoli’s TME-10 network management together with the
WebSphere Application Server.

Using the WebSphere Application Server, you can write applications (using Web
development tools) for the middle-tier that can access data and programs stored on
the VSE/ESA host (CICS, DB2, and so on). These applications can be written to
take advantage of the full benefits of Java and Internet technologies.

For an overview of where the WebSphere Application Server is used in 3-tier
environments, see Figure 3 on page 13.

For more information about the WebSphere Application Server range, you might
also refer to this Internet address:

www-4.ibm.com/software/webservers/appserv

e-business with VSE/ESA

10 VSE/ESA: e-business Connectors, User’s Guide

Chapter 2. Overview of 2- and 3-Tier Environments

You can choose between 2-tier and/or 3-tier environments for the communication
between Web clients, and the programs and data stored on the VSE/ESA host.
These environments are illustrated in Figure 2 on page 12 and Figure 3 on page 13
respectively:
v In 2-tier environments, the Web client and VSE/ESA host communicate directly

with each other.
v In 3-tier environments, the Web client or non-Java client, and VSE/ESA host

communicate with each other via an intermediate tier called the middle-tier.

Notes:

1. The 2-tier environment is not the typical environment under which you will
develop your Java programs, since it is not:
v part of the IBM Application Framework for e-business (it does not, for example,

use the IBM WebSphere Application Server on the middle-tier).
v secured by the state-of-the-art security services (firewall, and so on) provided

by the IBM Application Framework for e-business.

The 2-tier environment is generally suitable for intranet solutions only.
2. The Java-based connector is normally used in a 3-tier environment, but the

DB2-based connector can only be used in a 3-tier environment. The 3-tier
environment requires a middle-tier server (such as Netfinity, or RS/6000) on
which the WebSphere Application Server is installed.

This chapter contains these main sections:
v “Overview of 2-Tier Environments” on page 12
v “Overview of 3-Tier Environments” on page 13

© Copyright IBM Corp. 2000, 2003 11

Overview of 2-Tier Environments
In 2-tier environments as shown in Figure 2:
1. The VSE Java Beans class library, which is part of the VSE Connector Client,

must be accessible from each Java program running on a Web client, that
communicates with the VSE Connector Server. This is achieved by copying the
file VSEConnector.jar (which contains the VSE Java Beans) to each Web client
on which your Java programs are to run.

2. The VSE Java Beans are used for establishing connections between the Java
program running on the Web client and the VSE Connector Server running on
the VSE/ESA host. Java applications or applets running on the Web clients can
then use standard Web browsers to communicate directly with the VSE HTTP
Server and VSE Connector Server running on the VSE/ESA host. When the
work is complete, replies are sent from the VSE Connector Server to the Web
client.

3. You can redirect VSAM requests to any Java-enabled platform using the VSAM
Redirector connector.

An example of a 2-tier implementation might be a Java application that directly
communicates with the VSE Connector Server, to access POWER data.

For a detailed description of how applets can be used in 2-tier environments, see
Figure 100 on page 202

Figure 2. Overview of 2-Tier Environments and the Programs You Can Use

2- and 3-Tier Environments

12 VSE/ESA: e-business Connectors, User’s Guide

Overview of 3-Tier Environments
In your 3-tier environments as shown in Figure 3, a WebSphere Application Server
running for example, on an IBM eServer zSeries, Netfinity, or RS/6000, is the
central “hub”:
1. Either:

v Web clients use standard Web browsers to communicate with an application
that is based upon the WebSphere Application Server on the middle-tier.

v Non-Java clients (for example a spreadsheet application running under
Windows) use a VSE Script to communicate with the VSE Script Server
running on the middle-tier.

2. WebSphere applications, such as servlets, EJBs, or the VSE Script Server, use the
VSE Java Beans to access VSE data or start an application on the VSE/ESA
host.

3. Replies are sent from the VSE Connector Server to the application running on
the WebSphere Application Server. When the activities are completed, the
application packages the data with other information, and sends a reply back to
either the Web client or to the non-Java client.

Note: In this manual, a firewall used in a 3-tier environment is not considered as a
separate tier.

An example of a 3-tier implementation might be a Java servlet running on the Web
Application Server (WebSphere) that provides access to VSAM data. The servlet
might allow regular customers to enter orders over the Internet, using the required
security layers.

Another (non-Java) example of a 3-tier implementation might be a Lotus 1-2-3
application running under Windows (the VSE Script Client) that obtains VSAM

Figure 3. Overview of 3-Tier Environments and the Programs You Can Use

2- and 3-Tier Environments

Chapter 2. Overview of 2- and 3-Tier Environments 13

data stored on the VSE/ESA host, via the VSE Script Server running on the
middle-tier. VSE Script connector is the term used to refer to both the VSE Script
Client and the VSE Script Server.

For a detailed description of how:
v Applets can be used in 3-tier environments, see Figure 101 on page 204.
v Servlets can be used in 3-tier environments, see Figure 115 on page 243.
v Java Server Pages (JSPs) can be used in 3-tier environments, see Figure 130 on

page 264.
v Enterprise Java Beans (EJBs) can be used in 3-tier environments, see Figure 135

on page 273.
v DB2 Stored Procedures can be used to access VSE/VSAM data, see Figure 150 on

page 313
v DB2 Stored Procedures can be used to access DL/I data, see Figure 153 on

page 320.
v The VSAM Redirector Connector can be used to redirect requests for VSAM

data, see Figure 16 on page 48.
v The Simple Object Access Protocol (abbreviated to SOAP) can be used to send

and receive information between CICS programs and other modules over the
Internet, see Chapter 25, “Using SOAP for Inter-Program Communication”, on
page 331.

v The VSE Script connector can be used for non-Java access to functions and data
stored on the VSE/ESA host, see Chapter 26, “Using the VSE Script Connector
for Non-Java Access”, on page 349.

2- and 3-Tier Environments

14 VSE/ESA: e-business Connectors, User’s Guide

Part 2. Installation & Customization

Part 2 contains these chapters:
v Chapter 3, “Choosing the Connectivity You Require”, on page 17
v Chapter 4, “Installing the Common Prerequisite Programs”, on page 21
v Chapter 5, “Installing and Operating the Java-Based Connector”, on page 25
v Chapter 6, “Configuring DL/I for Access Via VSE Java Beans”, on page 41
v Chapter 7, “Installing the VSE Script Connector”, on page 43
v Chapter 8, “Installing the VSAM Redirector Connector”, on page 47
v Chapter 9, “Customizing the DB2-Based Connector”, on page 71
v Chapter 10, “Configuring the VSAM-Via-CICS Service”, on page 87
v Chapter 11, “Configuring Your VSE/ESA Host for SSL”, on page 91
v Chapter 12, “Configuring the Java-Based Connector for Server Authentication”,

on page 105
v Chapter 13, “Configuring the Java-Based Connector for Client Authentication”,

on page 115
v Chapter 14, “Service Functions for Client Authentication”, on page 123
v Chapter 15, “Mapping VSE/VSAM Data to a Relational Structure”, on page 129

© Copyright IBM Corp. 2000, 2003 15

16 VSE/ESA: e-business Connectors, User’s Guide

Chapter 3. Choosing the Connectivity You Require

For 2-tier and 3-tier environments, this chapter describes the types of connectivity
you can establish using the Java-based connector, the DB2-based connector, the
VSAM Redirector connector, the VSE Script connector, CICS (including the SOAP
server and SOAP client), and MQSeries.

This chapter contains these main sections:
v “Connectivity Possibilities in 2-Tier Environments”
v “Connectivity Possibilities in 3-Tier Environments” on page 18

Connectivity Possibilities in 2-Tier Environments
For 2-tier environments, you can use:
v The Java-based connector
v The CICS Web Support feature
v The VSAM Redirector connector

to carry out the functions described in Table 1.

Table 1. Connectivity Possibilities in 2-Tier Environments

Connectivity Java Applications Servlets / Java Server
Pages

Applets Enterprise Java Beans

Java-Based
Connector

Implement a Java
application on the
client, that uses the
VSE Beans class library
to access all VSE file
systems (see Note
below), submit jobs,
issue console
commands, etc.

Not possible Download an applet
from VSE to your Web
browser. Then use the
VSE Beans class library
to access all VSE file
systems (see Note
below), submit jobs,
issue console
commands, and so on.
The VSE Beans classes
can be put into the
same JAR file together
with the applet code.

Not possible

CICS Use the Web Support feature provided by the CICS Transaction Server for VSE/ESA, to access CICS
transactions directly from a Web browser. The CICS transactions generate the required Web pages,
which are then displayed by the Web browser. However, since the use of the Web Support feature in
a VSE/ESA environment is generally outside the scope of this manual, for details you should refer
to the CICS Transaction Server for VSE/ESA, CICS Internet Guide, SC34-5765.

VSAM
Redirector
connector

The VSAM Redirector connector handles requests to VSAM datasets and then redirects them to a
different Java platform (for example to Linux on zSeries, Windows NT, Windows 2000, or Windows
XP) and to a different file system (for example to DB2 or flat files). Your source programs do not
need to be changed. For details, see Chapter 8, “Installing the VSAM Redirector Connector”, on
page 47.

Note: The term VSE file systems includes VSE/VSAM, VSE/POWER,
VSE/Librarian, and VSE/ICCF.

© Copyright IBM Corp. 2000, 2003 17

Connectivity Possibilities in 3-Tier Environments
For 3-tier environments, you can use:
v The Java-based connector
v The DB2-based connector
v The VSE Script connector
v CICS connectivity, including the Simple Object Access Protocol (abbreviated to

SOAP)
v MQSeries connectivity

to carry out the functions described in Table 2.

Table 2. Connectivity Possibilities in 3-Tier Environments

Connectivity Java Applications Servlets / Java Server
Pages

Applets Enterprise Java Beans

Java-based
connector

Not applicable. Implement a servlet
using the VSE Beans
class library to access
the VSE/ESA host data
and display it through
HTML pages. Refer to
the online
documentation
(described on page 28
) for details.

Download an applet
from the middle tier’s
Web server and use
the VSEAppletServer
(see page 205 for a
description) to connect
to a remote VSE/ESA
host to access VSE file
systems (see Note at
end of this table).
Refer to the online
documentation
(described on page 28
) for details.

Write an EJB that uses
the VSE Java Beans class
library to communicate
with the VSE/ESA host
and access your database
on the VSE/ESA host.
Normally, this will be
either DB2 data or
VSE/VSAM data. Refer
to the online
documentation
(described on page 28)
for details.

DB2-based
connector

Implement a Java
application on the Web
client, that uses DB2
Connect on the
middle-tier to access
VSAM and DL/I data
by calling a DB2 Stored
Procedure on the
VSE/ESA host.

Write a servlet or JSP
that uses DB2 Connect
to access VSAM and
DL/I data by calling a
DB2 Stored Procedure
on the VSE/ESA host.
The servlet or JSP can
be accessed from any
Web client through
WebSphere.

Download an applet
from the middle-tier’s
web server. The applet
connects to DB2
Connect on the
middle-tier, which
accesses VSAM and
DL/I data by calling a
DB2 Stored Procedure
on the VSE/ESA host.

Write an EJB that uses
DB2 Connect to access
VSAM and DL/I data by
calling a DB2 Stored
Procedure on the
VSE/ESA host.

VSE Script
connector

Implement a non-Java
program to call a VSE
Script to access VSE
functions and data. For
example, write a Visual
Basic™ script within an
Office product such as
Lotus 1-2-3, to include
VSE data in a
spreadsheet or
document.

Not applicable. Not applicable. Not applicable.

Connectivity Possibilities

18 VSE/ESA: e-business Connectors, User’s Guide

Table 2. Connectivity Possibilities in 3-Tier Environments (continued)

Connectivity Java Applications Servlets / Java Server
Pages

Applets Enterprise Java Beans

CICS Implement a Java
application on the Web
client, that connects to
the CICS Transaction
Gateway on the
middle-tier. Use the
ECI/EPI interface to
communicate with the
CICS TS.

Write a servlet or JSP
that uses the CICS
ECI/EPI interface to
communicate with the
CICS TS. The servlet
or JSP can be accessed
from any Web client
through WebSphere.

Download an applet
from the middle-tier’s
Web server. The applet
connects to the CICS
Transaction Gateway
on the middle-tier,
which then
communicates with the
CICS TS.

Write an EJB that uses
the CICS client’s
ECI/EPI interface to
communicate with the
CICS TS.

MQSeries Implement a Java
application on the Web
client, that uses the
MQSeries Client for
Java to connect to (for
example) the MQSeries
Server for Windows
2000 on the middle-tier.
The MQSeries Server
for Windows 2000 (for
example) on the
middle-tier in turn
connects to the
MQSeries Server for
VSE/ESA on the
VSE/ESA host. You can
then start any CICS
transaction on the
VSE/ESA host from a
Java application on the
Web client.

Write a servlet or Java
Server Page (JSP) that
uses the MQSeries
Client for Java to start
any CICS transaction
on the VSE/ESA host.
The servlet or JSP can
be accessed from any
Web client through
WebSphere.

Download an applet
from the middle-tier’s
Web server and use a
″router″ to connect to
a remote VSE/ESA
host to access VSE
based data.

Write an Enterprise Java
Bean (EJB) that uses the
MQSeries Client for Java
to communicate with the
VSE/ESA host and
access a database there.

Note: The term VSE file systems includes VSE/VSAM, VSE/POWER,
VSE/Librarian, and VSE/ICCF.

Connectivity Possibilities

Chapter 3. Choosing the Connectivity You Require 19

Connectivity Possibilities

20 VSE/ESA: e-business Connectors, User’s Guide

Chapter 4. Installing the Common Prerequisite Programs

This chapter describes the activities you must perform and which are independent
of your choice of connectors. It describes how you:
v Activate and configure TCP/IP on your VSE/ESA host (see “Configuring and

Activating TCP/IP for VSE/ESA”).
v Install the VSE HTTP Server on your VSE/ESA host (see “Configuring and

Activating the VSE HTTP Server”).
v Install Java on your middle-tier (see “Installing and Configuring Java”).
v Install the IBM HTTP Server on your middle-tier (see “Installing the IBM HTTP

Server” on page 22).
v Install the WebSphere Application Server on your middle-tier (see “Installing the

WebSphere Application Server” on page 23).

Configuring and Activating TCP/IP for VSE/ESA
You require TCP/IP for VSE/ESA in order to use the:
v Java-based connector
v DB2-based connector
v VSAM Redirector connector
v VSE Script connector

TCP/IP for VSE/ESA is supplied with VSE/ESA, but requires a key to be
activated, which you must purchase. For details on how to activate and configure
TCP/IP for VSE/ESA, refer to the TCP/IP for VSE/ESA IBM Program Setup and
Supplementary Information. This manual is also available online at
http://www.ibm.com/servers/s390/os390/bkserv/vse.html .

Note: Where you can use VTAM / APPC instead of TCP/IP, is noted in this
manual.

Configuring and Activating the VSE HTTP Server
The TCP/IP for VSE/ESA Application Pak includes the VSE HTTP Server. You
should therefore refer to the TCP/IP for VSE/ESA Installation Guide, SC33-6741, for
details of how to configure and activate the VSE HTTP Server. This manual is
available as a PDF file only. You can obtain this manual from:
v Disk 3 (PDFs) of the VSE Collection Online Library, SK2T-0060.
v URL http://www.ibm.com/servers/s390/os390/bkserv/vse/vsepdf/

Installing and Configuring Java
Java is a programming language in which bytecode is created from Java source files.
This bytecode is stored in Java class files. These class files are read and executed by
the Java interpreter (for Windows and OS/2, this is the program java.exe).

© Copyright IBM Corp. 2000, 2003 21

As stated previously, the VSE/ESA Java-based connector consists of the VSE
Connector Client and the VSE Connector Server. To develop Web applications that
use the VSE Connector Client, you must install the Java Development Kit 1.3 or
later on your development platform.

Notes:

1. You can install different versions of Java on the same middle-tier platform, but
to do so you must ensure that the correct paths are set for the Java version that
is to run.

2. To use some of the samples supplied with the Java-based connector, you
require the Java Swing classes. These are supplied when you install the VSE
Connector Client (described in “Installing the VSE Connector Client” on
page 25).

Downloading the Java Base Code
You can download Java-related code from these IBM web sites:
v http://www.ibm.com/java/jdk/ from which you can download, for example, the

Java Development Kits (JDKs) for AIX, OS/2, z/OS (Unix services), OS/400,
VM/ESA, Linux, and Windows. You can download the code (without payment)
either from this site or from other related sites.

v http://www.ibm.com/developer/java/ from which you are given access to various
libraries containing both tools and documentation.

Deciding Which Java Package to Install
You can install Java in one of two ways on your middle-tier server:
v As a Java Development Kit (JDK) installation, in which you use java.exe to run

your Java programs. The JDK contains the run-time environment, together with
tools and facilities such as debugger, compiler, and so on. You will require the
JDK if you are developing your own Java programs.

v As a Java Runtime Environment (JRE) installation, in which the JRE contains
only the runtime library required to run Java applications (development tools
are not included). Here, you use jre.exe to run your Java programs.

Installing the IBM HTTP Server
On your middle-tier, you must install a Web Server which can be, for example, the:
v IBM HTTP Server
v Lotus Domino Go Webserver
v Apache Server

The IBM HTTP Server is part of the WebSphere Application Server package.
During the installation of the WebSphere Application Server, you are asked if you
wish to:
v install the IBM HTTP Server as your Web Server.
v use another Web Server (for example, the Apache Server).

For details of how to install the IBM HTTP Server on your middle-tier, refer to the
installation instructions provided with the WebSphere Application Server.

Common Prerequisite Programs

22 VSE/ESA: e-business Connectors, User’s Guide

Installing the WebSphere Application Server

On your middle-tier you must install an Application Server, which can be the IBM
WebSphere Application Server, or any other vendor’s application server.

The WebSphere Application Server is supplied in these editions:
v The Standard Edition, which supports servlets and Java Server Pages (JSPs).
v The Advanced Edition or the Enterprise Edition, which both support servlets,

JSPs, and Enterprise Java Beans (EJBs).

Because the installation of the WebSphere Application Server on various platforms
is both complex and subject to change, this section only provides documentation
references and/or a description of the general installation steps.

Installing the WebSphere Application Server on z/OS
Refer to the relevant IBM publications for information on how to install the
WebSphere Application Server and Supporting Products on the z/OS platform.

Installing the WebSphere Application Server on Other
Platforms

These are the general steps you might follow to install the WebSphere Application
Server on platforms such as Windows (NT/2000/XP ...), Linux, AIX or Sun Solaris:
1. Make sure you meet the hardware and software prerequisites for the platform

and configuration you plan to install.
2. Decide on which of the installation steps you need to follow. For example, if

your system does not already have the WebSphere Application Server, IBM Java
Development Kit, IBM HTTP Server, and DB2 Universal Database installed, you
will follow a different procedure than if your system already has these products
installed.

3. Install the IBM Java Development Kit by:
a. running an exec file
b. following the instructions displayed on each window.

4. Install the IBM HTTP Server (or another Web Server, such as Apache).
5. Install the IBM DB2 Universal Database (or another database system, such as

Oracle).
6. Test the installation of the prerequisite products for your configuration.
7. Install the WebSphere Application Server on the platform you have chosen.
8. Test the installation of the WebSphere Application Server, together with the

prerequisite products.

However, your main source of information for installing the WebSphere
Application Server on platforms such as Windows (NT/2000/XP ...), Linux, AIX, or
Sun Solaris, should be the IBM Web pages that are kept up-to-date. You can find
the IBM Web pages at:
http://www.ibm.com/software/webservers/appserv/library.html

Common Prerequisite Programs

Chapter 4. Installing the Common Prerequisite Programs 23

Common Prerequisite Programs

24 VSE/ESA: e-business Connectors, User’s Guide

Chapter 5. Installing and Operating the Java-Based Connector

This chapter describes how you:
v Install the client-part of the VSE/ESA Java-based connector, that is the VSE

Connector Client, on your middle-tier (see page 25). A section is also provided
describing how you can uninstall the VSE Connector Client, if this should be
necessary (see page 29).

v Configure the server-part of the VSE/ESA Java-based connector, that is the VSE
Connector Server, on the VSE/ESA host (see page 30).

v Start the VSE Connector Server on the VSE/ESA host (see page 36).
v Test the communication between the VSE Connector Client and VSE Connector

Server (see page 37).
v Obtain a list of the commands that you can enter for the VSE Connector Server

on the VSE/ESA host (see page 38).
v Enter commands for the VSE Connector Server on the VSE/ESA host (see page

38).
v Use the VSE Connector Server to maintain security for the VSE/ESA host

resources (see page 38).

Installing the VSE Connector Client

This section describes how you install the VSE Connector Client on the middle-tier
server of a 3-tier environment.

If you plan to implement a 2-tier environment using applets and Java applications
that run on the Web clients, you must copy the VSE Java Beans part of the VSE
Connector Client (file VSEConnector.jar) to each Web client on which the applets
and Java applications are to run. The VSE Java Beans are required in order to
establish connections between Web clients and the VSE Connector Server running
on the VSE/ESA host.

The VSE Connector Client is included in VSE/ESA Central Functions and consists
of one file iesincon.w.

Obtaining a Copy of the VSE Connector Client
Before you begin, you must already have installed the Java Development Kit (JDK)
1.3 or higher on the development platform where you plan to install the VSE
Connector Client. If you do not have JDK 1.3 or higher installed, refer to
“Installing and Configuring Java” on page 21 for details of how to install it.

To obtain a copy of the VSE Connector Client, you must decide if you wish to
obtain the client from the Internet, or from VSE/ESA library PRD1.BASE.

To obtain the client from the Internet, start your Web browser and go to URL:
http://www.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/conmain.htm

From within the VSE Connector Client section, select (for the VSE/ESA version
you require) Details and Download, then download the file vseconnnn.zip to the

© Copyright IBM Corp. 2000, 2003 25

directory where you wish to install the VSE Connector Client. Note: nnn refers to
the current VSE version (for example, vsecon270.zip).

To obtain the client from the VSE/ESA library PRD1.BASE, you use the FTP (file
transfer program) utility of TCP/IP for VSE/ESA to download iesincon.w to the
directory where you wish to install the VSE Connector Client.

Notes:

1. You must download iesincon.w in binary.
2. Make sure that Unix mode is turned off. Otherwise iesincon.w will be

downloaded in ASCII mode, even when you specify binary. Unix mode is one
parameter of your VSE FTP daemon. Some FTP clients might force Unix mode
to be turned on!. The example below shows how a successful transfer of
iesincon.w was made using a batch FTP client. The place where the UNIX
mode is set, is shown as bold.
c:\temp>ftp 9.164.155.2
Connected to 9.164.155.2.
220-TCP/IP for VSE -- Version 01.04.00 -- FTP Daemon

Copyright (c) 1995,2000 Connectivity Systems Incorporated
220 Service ready for new user.
User (9.164.155.2:(none)): sysa
331 User name okay, need password.
Password:
230 User logged in, proceed.
ftp> cd prd1
250 Requested file action okay, completed.
ftp> cd base
250 Requested file action okay, completed.
ftp> binary
200 Command okay.
ftp> get iesincon.w
200 Command okay.
150-File: PRD1.BASE.IESINCON.W

Type: Binary Recfm: FB Lrecl: 80 Blksize: 80
CC=ON UNIX=OFF RECLF=OFF TRCC=OFF CRLF=ON NAT=NO

150 File status okay; about to open data connection
226-Bytes sent: 4,756,400

Records sent: 59,455
Transfer Seconds: 16.52 (290K/Sec)
File I/O Seconds: 3.94 (1,548K/Sec)

226 Closing data connection.
4756400 bytes received in 17,12 seconds (277,91 Kbytes/sec)
ftp> bye
221 Service closing control connection.
c:\temp>ren iesincon.w vsecon.zip

Performing the VSE Connector Client Installation
To perform the installation of the VSE Connector Client, you must:
1. Unzip the file vsecon.zip, which contains these files:

v install.class (contains the VSE Connector Client code)
v install.bat (an install batch file for Windows)
v install.cmd (an install batch file for OS/2)
v install.sh (an install script for Linux/Unix)

2. Start the batch file (by double-clicking the file) that is applicable to your
operating-system platform.

3. The installation process now begins, and you are guided through various
installation menus.

4. The Select Components to Install window provides you with a choice:

Java-Based Connector

26 VSE/ESA: e-business Connectors, User’s Guide

Select ... If you wish to ...

VSE Java Beans develop and run Java programs in 2- or 3-tier environments. You
will normally select this component to be installed.

Online
Documentation

use the online documentation (Javadoc and HTML-based) with the
development of your own Java programs. This documentation is
not for the end-users, only for developers.

Samples use the online samples for developing your Java programs. These
samples provide you with an introduction to developing your
programs based upon the use of the Java-based connector and
DB2-based connector. In addition, there are samples showing how
you can develop programs that use the CICS Transaction Gateway
and MQSeries Client for Java.

After making your selection, click Next.
5. The Setup Complete window is now displayed:

Select ... If you wish to ...

Yes, I want to view
the ReadMe file

open the ReadMe file that contains instructions on how to use the
client.

Add VSEConnector.jar
to local classpath

add the file VSEConnector.jar to your local Windows classpath. If
you are installing on a platform other than Windows
(NT/2000/XP), you will receive the message “please append the
file VSEConnector.jar to your local classpath”. You must therefore
manually perform this action yourself for the platform onto which
you are installing.

After making your selection, click Finish. The installation now completes.

Note: Desktop icons are only created for Windows and OS/2 platforms (not for
AIX, Linux, or z/OS).

6. To access the HTML-based documentation, you can now use your Web browser
to open the file VSEConnectors.html.

Figure 4. Selecting the Components of the VSE Connector Client That You Require

Java-Based Connector

Chapter 5. Installing and Operating the Java-Based Connector 27

Using the Online Documentation Options
After installing the VSE Connector Client on your middle-tier server, you can then
access all information (including samples and source code) via the online
documentation.

The main window of the Online Documentation is shown in Figure 5, and contains
links (on the left of this window) to:
v The Java-based connector and DB2-based connector, but also to the CICS

connectivity and MQSeries connectivity setups. Here you find information and
examples for these connectors and setups.

v Explanations of the concepts, such as Java applets, servlets, Java Server Pages
(JSPs), Enterprise Java Beans (EJBs), and JDBC. Here you find information and
examples related to these topics.

v Online reference (under All classes), including references to information about
how you can extend the VSE Java Beans by writing your own Plugins.

v Samples that you can run directly from a Web browser. To run these samples,
you must have TCP/IP for VSE/ESA and the VSE Connector Server running on
your VSE/ESA host.

Note: Before you can run any of the samples, or write your own Java programs
that use the VSE Java Beans, you must include the VSEConnector.jar file
in your local CLASSPATH variable.

Figure 5. Online Help Options of the VSE Connector Client

Java-Based Connector

28 VSE/ESA: e-business Connectors, User’s Guide

Configuring for WebSphere Support
If you plan to implement the IBM WebSphere Application Server on your
middle-tier, you should now complete the steps contained in the online
documentation which describe how to configure your middle-tier for WebSphere.
To find this information, click Further Information on the right of the window
shown in Figure 5 on page 28, then select WebSphere4.

Now follow the steps described in the WebSphere4 section.

Uninstalling the VSE Connector Client
You have three possible methods to uninstall the VSE Connector Client:
v Using the Uninstall option provided by the VSE Connector Client. From the

Windows Start, select Programs — VSE Connector — Uninstall, and the
Uninstall window is displayed:

Then select the components you wish to uninstall. If you select Remove All
Components, after all components have been uninstalled, the icons on your
desktop will also be removed.

Note: For Windows (NT/2000/XP) and OS/2 systems, you are recommended to
use this method to uninstall the client.

v Running the batch uninstall program juninst manually. Using this method, you
can only uninstall all components. Your desktop icons will also be removed. Under
Windows NT for example, this uninstall batch file is contained in the directory
\WINNT\Profiles, and under OS/2 it is placed in the directory \os2.

v A third method is available under Windows NT/2000/XP only. From the
Windows NT/2000/XP Start, select Settings — Control Panel — Add/Remove
Programs. Now you can select juninst.bat and click Install/Uninstall to remove
the client.

Figure 6. Uninstalling the VSE Connector Client

Java-Based Connector

Chapter 5. Installing and Operating the Java-Based Connector 29

Configuring the VSE Connector Server

The VSE Connector Server is an application that runs in batch in one of your
VSE/ESA partitions, and which implements a TCP/IP connection. A description is
provided in “Overview of the VSE Connector Server” on page 5.

This section describes the jobs you use to configure your VSE Connector Server:

SKVCSSTJ A skeleton startup job.

SKVCSCAT A job to catalog the VSE Connector Server’s configuration
members. These are the skeletons contained within job SKVCSCAT:
SKVCSCFG

A VSE library member in which you specify the general
settings for the VSE Connector Server

SKVCSLIB
A VSE library member in which you specify the VSE
libraries that can be accessed by the VSE Connector Server

SKVCSPLG
A VSE library member in which you specify the server
plugins to be loaded during startup of the VSE Connector
Server.

SKVCSUSR
A VSE library member in which you specify the users, or
groups of users, who can logon to the VSE Connector
Server.

SKVCSSL
A VSE library member in which you configure the VSE
Connector Server for Secure Sockets Layer (SSL) security.

Job SKVCSSTJ – Startup Job
You can find the skeleton job SKVCSSTJ in the VSE/ICCF library 59.

You use SKVCSSTJ to place a startup job (for starting the VSE Connector Server) in
the VSE/POWER reader queue. SKVCSSTJ is also available as a Z book, which is
loaded into the POWER reader queue during initial installation of VSE/ESA, or
during a cold startup of VSE/ESA.

Java-Based Connector

30 VSE/ESA: e-business Connectors, User’s Guide

Job SKVCSCAT – Catalog Members
You can find the job SKVCSCAT in the VSE/ICCF library 59.

You use SKVCSCAT to catalog the configuration members listed in this section.

* $$ JOB JNM=CATSTVCS,DISP=D,CLASS=0
// JOB CATSTVCS CATALOG STARTVCS AND LDVCS, LOAD STARTVCS
// EXEC LIBR,PARM=’MSHP’
ACC S=IJSYSRS.SYSLIB
CATALOG STARTVCS.Z REPLACE=YES
$$$$ JOB JNM=STARTVCS,DISP=L,CLASS=R
$$$$ LST CLASS=A,DISP=D
// JOB STARTVCS START UP VSE CONNECTOR SERVER
// ID USER=VCSRV
// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD1.BASE,PRD2.SCEEBASE)
// OPTION SYSPARM=’00’
// EXEC IESVCSRV,PARM=’DD:PRD2.CONFIG(IESVCSRV.Z)’
$$/*
$$/&
$$$$ EOJ
/+
CATALOG LDVCS.PROC REPLACE=YES DATA=YES
// EXEC DTRIINIT

LOAD STARTVCS.Z
/*
/+
/*
// EXEC PROC=LDVCS TO LOAD VCS STARTUP INTO RDR QUEUE
/&
* $$ EOJ

Figure 7. Job SKVCSSTJ (for Placing Startup Job in Reader Queue)

* $$ JOB JNM=VCSCAT,DISP=D,CLASS=0
// JOB VCSCAT CATALOG VCS CONFIGURATION MEMBERS
// EXEC LIBR,PARM=’MSHP’
ACCESS S=PRD2.CONFIG
CATALOG IESVCSRV.Z REPLACE=Y
* $$ SLI ICCF=(SKVCSCFG),LIB=(YY)
/+
CATALOG IESLIBDF.Z REPLACE=Y
* $$ SLI ICCF=(SKVCSLIB),LIB=(YY)
/+
CATALOG IESUSERS.Z REPLACE=Y
* $$ SLI ICCF=(SKVCSUSR),LIB=(YY)
/+
CATALOG IESPLGIN.Z REPLACE=Y
* $$ SLI ICCF=(SKVCSPLG),LIB=(YY)
/+
CATALOG IESSSLCF.Z REPLACE=Y
* $$ SLI ICCF=(SKVCSSSL),LIB=(YY)
/+
/*
/&
* $$ EOJ

Figure 8. Job SKVCSCAT (for Cataloging Members for VSE Connector Server)

Java-Based Connector

Chapter 5. Installing and Operating the Java-Based Connector 31

VSE Library Member SKVCSCFG – General Settings
You can find the skeleton SKVCSCFG in the VSE/ICCF library 59, which you use
to specify your general settings for the VSE Connector Server.

; ***
; MAIN CONFIGURATION MEMBER FOR VSE CONNECTOR SERVER
; ***
; TRACING SPECIFIC SETTINGS:
; - TRACEON : A 32 BIT HEX VALUE PREFIXED WITH ’0X’
; 0X00000000 IS OFF, 0XFFFFFFFF IN ON
; - TRACEFILE : DESTINATION FOR TRACE MESSAGES
; DD:SYSLOG, DD:SYSLST OR DD:LIB.SLIB(NAME.TYPE)
; ***

TRACEON = 0X00000000 ; TRACE IS OFF
TRACEFILE = DD:SYSLOG ; TRACE GOES TO SYSLOG

; ***
; TCP/IP - SERVER SPECIFIC CONFIGURATIONS
; - SERVERPORT : THE TCP PORT WHERE THE SERVER IS LISTENING
; - MAXCLIENTS : THE MAXIMUM NUMBER OF CONCURRENT CLIENTS
; - SSLENABLE : YES/NO - USE SECURE SOCKET LAYER
; ***

SERVERPORT = 2893
MAXCLIENTS = 256
SSLENABLE = NO

; ***
; DEFAULT CLASS FOR JOBS
; - DEFAULTCLASS : THE JOB CLASS WHERE UTILITY JOBS SHOULD RUN
; ***

DEFAULTCLASS = P
; ***
; CODE PAGE CONVERSIONS
; - ASCII_CP : ASCII CODE PAGE
; - EBCDIC_CP : EBCDIC CODE PAGE
; ***

ASCII_CP = IBM-850
EBCDIC_CP = IBM-1047

; ***
; SYSTEM LANGUAGE
; - LANGUAGE : THY SYSTEM’S LANGUAGE (E, G, S, J)
; ***

LANGUAGE = E
; ***
; DESCRIPTION SENT AS IDENTIFY
; - DESCRIPTION : THIS STRING IS SENT AS IDENTIFY TO THE CLIENT
; CHANGE ’<YOUR SYSTEM>’ TO YOUR SYSTEM’S NAME
; ***
; SUB CONFIGURATION MEMBERS NEEDED FOR VSE CONNECTOR SERVER
; - LIBRCFGFILE : LIBRARY DEFINITION FILE. CONTAINS THE LIBRARIES
; THAT ARE VISIBLE FOR THE VSE CONNECTOR SERVER.
; - USERSCFGFILE : USER/SECURITY CONFIG FILE. DEFINES ADDITIONAL
; SECURITY FOR USERS AND IP ADDRESSES.
; - PLUGINCFGFILE : PLUGIN CONFIG FILE. DEFINES THE PLUGINS THAT
; ARE LOADED AT SERVER STARTUP.
; - SSLCFGFILE : SSL CONFIG FILE. DEFINES SSL PARAMETERS
; NOTE: YOU HAVE TO CHANGE THE NAMES AND LOCATIONS OF THESE MEMBERS
; IN THIS MEMBER IF YOU MOVE THEM TO ANOTHER LIBRARY
; ***

LIBRCFGFILE = DD:PRD2.CONFIG(IESLIBDF.Z)
USERSCFGFILE = DD:PRD2.CONFIG(IESUSERS.Z)
PLUGINCFGFILE = DD:PRD2.CONFIG(IESPLGIN.Z)
SSLCFGFILE = DD:PRD2.CONFIG(IESSSLCF.Z)

Figure 9. Member SKVCSCFG (for Specifying General Settings for VSE Connector Server)

Java-Based Connector

32 VSE/ESA: e-business Connectors, User’s Guide

VSE Library Member SKVCSLIB – Specify Libraries to Be
Accessed

You can find the skeleton SKVCSLIB in the VSE/ICCF library 59.

You use SKVCSLIB to specify the libraries that can be accessed by the VSE
Connector Server. This skeleton consists of a list of libraries, which you can extend
or restrict according to your own requirements. You must, however, enter each
library name on a separate line.

VSE Library Member SKVCSPLG – Specify Plugins to Be
Loaded

You can find the skeleton SKVCSPLG in the VSE/ICCF library 59.

You use SKVCSPLG to specify the VSE Connector Server plugins to be loaded,
when the VSE Connector Server is started.

This is the syntax of the PLUGIN statement:

PP PLUGIN = phase_name , PARM =
parameter_string

PQ

Figure 11 shows the member you use to specify VSE Connector Server plugins:

For details of how to write your own plugins, see Chapter 23, “Extending the
Java-Based Connector”, on page 287.

PRD1
PRD2
PRIMARY
IJSYSRS

Figure 10. Member SKVCSLIB (for Specifying Libraries to Be Accessed by VSE Connector
Server)

* **
* VSE CONNECTOR SERVER PLUGIN CONFIGURATION MEMBER
* **
* THE FOLLOWING PLUGINS ARE LOADED DURING STARTUP OF THE SERVER
* UNCOMMENT THE SAMPLES BELOW TO CHANGE THEM
* **

PLUGIN=IESSAPLG,PARM=CICS=F2,CONS=IESA,TRANS=IEXM,EXIT=IESSAEXT
PLUGIN=IESCOMPH,PARM=
PLUGIN=IESHTOHP,PARM=

* PLUGIN=SAMPLE,PARM=MY PARAMTER STRING
* PLUGIN=<PHASE NAME>,PARM=<PARAMETER STRING>

Figure 11. Member SKVCSPLG (for Specifying Plugins for VSE Connector Server)

Java-Based Connector

Chapter 5. Installing and Operating the Java-Based Connector 33

VSE Library Member SKVCSUSR – Specify Logon Access
You can find the skeleton SKVCSUSR in the VSE/ICCF library 59.

You use SKVCSUSR to specify the users, or groups of users, who can logon to the
VSE Connector Server. Using this skeleton, you can also prevent specific users or
IP addresses from being able to access the VSE Connector Server.

This is the syntax of this member:

PP
*

IP = ip_addr
*

USER = userid

, LOGON = ALLOWED
DENIED

PQ

Notes:

1. If you do not make any entries in Figure 12, no access authorizations will be
defined!.

2. You can use the wildcard (*) within an IP address or user name.

* **
* VSE CONNECTOR SERVER USER SECURITY CONFIGURATION MEMBER
* YOU CAN EITHER ALLOW OR DENY THE LOGON FOR A SPECIFIED
* USER OR IP OR GROUP OF USERS AND IP ADDRESSES.
* **
* USERS FROM THIS IP’S ARE ALLOWED TO LOGON
* UNCOMMENT THE SAMPLES AND MODIFY THEM
* **
IP = *, LOGON = ALLOWED
* IP = 9.164.123.456, LOGON = DENIED
* IP = 9.165.* , LOGON = DENIED
* IP = 10.0.0.* , LOGON = ALLOWED
* **
* THIS USERS ARE ALLOWED TO LOGON
* UNCOMMENT THE SAMPLES AND MODIFY THEM
* **
USER = *, LOGON = ALLOWED
* USER = BOBY, LOGON = ALLOWED
* USER = SYS*, LOGON = DENIED

Figure 12. Member SKVCSUSR (for Specifying Logon Access to VSE Connector Server)

Java-Based Connector

34 VSE/ESA: e-business Connectors, User’s Guide

VSE Library Member SKVCSSSL – Configure for SSL
You can find the skeleton SKVCSSSL in the VSE/ICCF library 59.

You use SKVCSSSL to specify the:
v Version of SSL to be used.
v Name of the VSE Keyring Library to be used by the VSE Connector Server (see

“Step 2: Catalog Keyring Set Into the VSE Keyring Library” on page 92 for
details).

v Name of the server certificate to be used by the VSE Connector Server (see “Step
4: Obtain a Signed Server Certificate and Copy to Job CIALCERT” on page 98 for
details).

v Session timeout in seconds – the number of seconds that the VSE Connector
Server allows a VSE Connector Client to reconnect, without requiring a full
handshake.

; ***
; SSL CONFIGURATION MEMBER FOR VSE CONNECTOR SERVER
; ***

; ***
; SSLVERSION SPECIFIES THE MINIMUM VERSION THAT IS TO BE USED
; POSSIBLE VALUES ARE: SSL30 AND TLS31
; KEYRING SPECIFIES THE SUBLIBRARY WHERE THE KEY FILES ARE
; STORED.
; CERTNAME NAME OF THE CERTIFICATE THAT IS USED BY THE SERVER
; SESSIONTIMEOUT NUMBER OF SECONDS THAT THE SERVER WILL USE TO
; ALLOW A CLIENT TO RECONNECT WITHOUT PERFORMING A
; FULL HANDSHAKE. (86440 SEC = 24 HOURS)
; AUTHENTICATION TYPE OF AUTHENTICATION. POSSIBLE VALUES ARE:
; SERVER - SERVER AUTHENTICATION ONLY
; CLIENT - SERVER AND CLIENT AUTHENTICATION
; ***
SSLVERSION = SSL30
KEYRING = CRYPTO.KEYRING
CERTNAME = SAMPLE
SESSIONTIMEOUT = 86440
AUTHENTICATION = SERVER

; **
; CIPHERSUITES SPECIFIES A LIST OF CIPHER SUITES THAT ARE ALLOWED
; **
CIPHERSUITES = ; COMMA SEPARATED LIST OF NUMERIC VALUES

01, ; RSA512_NULL_MD5
02, ; RSA512_NULL_SHA
08, ; RSA512_DES40CBC_SHA
09, ; RSA1024_DESCBC_SHA
0A, ; RSA1024_3DESCBC_SHA
62 ; RSA1024_EXPORT_DESCBC_SHA

Figure 13. Member SKVCSSSL (for Configuring the VSE Connector Server for SSL)

Java-Based Connector

Chapter 5. Installing and Operating the Java-Based Connector 35

Starting the VSE Connector Server
You start the VSE Connector Server by releasing the startup job STARTVCS from
the VSE/POWER reader queue. By default, the server then runs in a partition of
dynamic class R.

STARTVCS is placed in the POWER reader queue either:
v During initial installation of VSE/ESA
v During a cold startup of VSE/ESA

TCP/IP Must Be Running
Before you start the VSE Connector Server, TCP/IP must be running. Refer to
TCP/IP for VSE/ESA IBM Program Setup and Supplementary Information for
details of how to start TCP/IP. Alternatively, you can refer to the online copy
of this book at http://www.ibm.com/servers/s390/os390/bkserv/vse.html

When started, the VSE Connector Server listens to incoming TCP/IP traffic on port
2893:
v The server’s security subsystem uses RACROUTE requests to check logon and

resource authorization.
v The server can handle multiple concurrent clients.

Figure 14 shows the startup job STARTVCS:

* $$ JOB JNM=STARTVCS,CLASS=R,DISP=L
* $$ LST CLASS=A,DISP=D
// JOB STARTVCS START UP VSE CONNECTOR SERVER
// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD1.BASE,PRD2.SCEEBASE)
// ID USER=VCSRV
// OPTION SYSPARM=’00’
// EXEC IESVCSRV,PARM=’DD:PRD2.CONFIG(IESVCSRV.Z)’
/*
/&
* $$ EOJ

Figure 14. Startup Job STARTVCS (for Starting the VSE Connector Server)

Java-Based Connector

36 VSE/ESA: e-business Connectors, User’s Guide

Testing the Communication Between VSE Connector Client and
Connector Server

Once you have completed the installation of the VSE Connector Client and VSE
Connector Server, you can test if these two parts of the Java-based connector
communicate correctly with each other by running some pre-compiled sample Java
applications.

Before you begin, you must ensure that:
v TCP/IP for VSE/ESA is running on your VSE/ESA host.
v The VSE Connector Server is running on your VSE/ESA host.
v A TCP/IP connection exists between your local workstation and the VSE/ESA

host.

The VSE Connector Client installation includes a set of batch files that run on
Windows, OS/2, and Unix/Linux operating systems. They are stored in samples,
which is a sub-directory below the directory where you installed the VSE
Connector Client.

Each of the batch files contained in samples runs one sample Java application or
sample applet. To run a sample, you should:
1. Open a command prompt.
2. Proceed to the samples sub-directory.
3. Run any batch file (you are not required to enter any parameters).

To obtain a list (with descriptions) of all the samples you can run, you should:
1. Start the VSE Connector Client.
2. Click Run examples in the left frame of this window.

Java-Based Connector

Chapter 5. Installing and Operating the Java-Based Connector 37

Obtaining a List of VSE Connector Server Commands
To obtain a list of the VSE Connector Server commands that you can use, simply
enter Help or ? at the operator console. Figure 15 shows what will be displayed.

Entering a Command for the VSE Connector Server
To enter a command that the VSE Connector Server should process, you should
use this command syntax:
msg <jobname>,data=<command>

where:
v <jobname> is the actual name of the VSE Connector Server startup job.
v <command> is one of the command strings shown in Figure 15.

For example:
msg startvcs,data=status

Maintaining Security Using the VSE Connector Server
When a Web application uses the VSE Java Beans class library (described in “Using
VSE Java Beans to Connect to a VSE/ESA host” on page 162) to connect to the
VSE/ESA host, the Web application must first perform a logon to the VSE/ESA
host (supplying a valid user ID and password). Providing this logon is successful,
the Web application obtains its access rights from the supplied user ID.

When the VSE Connector Server receives a request from a Web application, it
passes this request to the currently-active VSE security manager (either the Basic
Security Manager or External Security Manager). The security manager then checks
whether or not the Web application should be allowed to access the requested
resources or data.

The VSE Connector Server also uses a configuration file SKVCSUSR, which
contains two lists of user IDs and IP addresses that:
1. are allowed to connect to the VSE Connector Server.
2. are not allowed to connect to the VSE Connector Server.

SYSTEM: VSE/ESA VSE/ESA 2.6 TURBO (01) USER: JSCH
TIME: 14:25:53

F7-0112 IPN300I Enter TCP/IP Command
msg startvcs,data=?
AR 0015 1I40I READY
R1 0045 IESC1043I HELP COMMAND
R1 0045 HELP|? PRINTS THIS MESSAGE
R1 0045 STATUS [ALL|CONFIG|CLIENTS|PLUGINS|VSAM] PRINTS STATUS INFORMATION
R1 0045 SENDMSG <USER(S)> <MESSAGE TEXT> SENDS A MESSAGE TO A USER
R1 0045 SHUTDOWN [NOPROMPT] SHUTS DOWN THE SERVER
R1 0045 SETTRACE <TRACEFILE> <TRACELEVEL> SET TRACING ON/OFF
R1 0045 STOP CLIENT <CLIENT-ID|ALL> STOPS THE SPECIFIED CLIENT
R1 0045 CLOSE VSAM <SLOT-ID|ALL> CLOSES A VSAM CLUSTER

==>

1=HLP 2=CPY 3=END 4=RTN 5=DEL 6=DELS 7=RED 8=CONT 9=EXPL 10=HLD 12=RTRV

Figure 15. Displaying the Commands Provided by the VSE Connector Server

Java-Based Connector

38 VSE/ESA: e-business Connectors, User’s Guide

This is explained in “VSE Library Member SKVCSUSR – Specify Logon Access” on
page 34.

When you write servlets, you might use a special VSE/ESA user ID which then
allows the servlet to connect to the VSE Connector Server, without forcing the
end-user to logon to the VSE Connector Server. Using this user ID, your servlets
can restrict the type of requests, and also restrict access to data.

When you write applets, you should never “hard-code” any user IDs and
passwords in the applet code: when the applet is downloaded to a Web browser
and is stored in the Web browser’s cache, this information could possibly be
displayed by unauthorized persons (hackers).

TCP/IP for VSE/ESA also contains its own security functions. However, these
functions are applicable only when using TCP/IP applications such as FTP, HTTP,
or Telnet daemons. The VSE Connector Server always communicates with the VSE
security manager.

Note: Security between the middle-tier and Web clients is established using SSL.
SSL is, however, not used between the middle-tier and your VSE/ESA host:
however, since this is an intranet connection, it should (by definition) be
secure.

Java-Based Connector

Chapter 5. Installing and Operating the Java-Based Connector 39

Java-Based Connector

40 VSE/ESA: e-business Connectors, User’s Guide

Chapter 6. Configuring DL/I for Access Via VSE Java Beans

This chapter describes how you configure your DL/I system so that it can be
accessed via VSE Java Beans, and contains these main sections:
v “Host Installation Activities That Must Be Already Completed”
v “Step 1: Skeleton SKDLISMP – Define Sample Database” on page 42
v “Step 2: Customize CICS TS” on page 42

Three VSE Java Beans are used for DL/I access: VSEDli, VSEDliPsb, and
VSEDliPcb. For descriptions of these VSE Java Beans, see “Contents of the VSE
Java Beans Class Library” on page 155.

For an example of the coding you can use to access DL/I data via VSE Java Beans,
see “Using VSE Java Beans for Accessing DL/I Data” on page 167.

Host Installation Activities That Must Be Already Completed
This section provides a summary of the installation activities that must already be
completed on the VSE/ESA host, before you use VSE Java Beans to access DL/I
data.
v The AIBTDLI interface must be installed for accessing DL/I data via VSE Java

Beans. To use the AIBTDLI interface:
– DL/I VSE 1.11 or later must be installed.
– APAR PQ39683 for DL/I must be applied.
– Your CICS/DLI system must have all databases (DBDs) that you wish to use

defined to CICS, together with the AIBTDLI interface.
– Your CICS/DLI system must have:

- all PSBs defined in the DL/I online nucleus DLZNUCxx
- an active MPS system.

– The DL/I task termination exit DLZBSEOT (described in “Task Termination
and Abend Handling” on page 329) must be resident in the SVA.

© Copyright IBM Corp. 2000, 2003 41

Step 1: Skeleton SKDLISMP – Define Sample Database
Use skeleton SKDLISMP (available in VSE/ICCF library 59) to define and load a
DL/I sample database, if you:
v wish to use the IBM-supplied sample database for testing and learning purposes
v have not already defined and loaded this database during previous installations.

The skeleton SKDLISMP contains these jobs:
1. STJDBDGN (generate the DBDs for the sample database).
2. STJPSBGN (generate the PSBs for the sample database).
3. STJACBGN (generate the ACBs for the sample database).
4. STJPREOR (a pre-reorganization utility).
5. STJDFINV (define the cluster for the sample database).
6. STJLDCST (load the sample database).
7. STJPRRES (prefix resolution).
8. STJPRUPD (prefix update).

Step 2: Customize CICS TS
To access DL/I data via VSE Java Beans, you must customize a CICS TS - DL/I
online system (providing you have not already done so during previous
installation activities):
1. Configure your CICS/DLI online system, as described in:

v Part 6 of the DL/I Resource Definition and Utilities manual.
v The section “CICS – DL/I Tables – Requirements” of the DL/I Resource

Definition and Utilities manual.
v Section “Migrating to DL/I VSE 1.11 and the CICS Transaction Server for

VSE/ESA 1.1” of the DL/I 1.11 Release Guide.
2. Define in the CICS FCT the sample database STDIDBP and other databases you

wish to access.
3. Provide labels for the sample database STDIDBP (// DLBL STDIDBC ...) and

other databases you wish to access.
4. Create a new DL/I online nucleus (DLZACT generation), by including all DL/I

online programs and PSBs that you wish to use. The CICS/DLI mirror program
DLZBPC00 must be authorized for PSB STBICLG, used for accessing the DL/I
sample database. The CICS/DLI mirror program DLZBPC00 must also be
authorized for any other PSBs you wish to use for accessing other DL/I
databases.

5. Account for an increased number of concurrent DLZBPC00 mirror tasks in the
CICS/DLI online system: you must accordingly adjust the MAXTASK and
CMAXTSK parameters in the DLZACT generation.

6. Load the DL/I exit routine DLZBSEOT into the SVA.
7. Start an MPS system.

DLZMPX00 is SVA-eligible, and is used for accessing DL/I data via the AIBTDLI
interface (see “Overview of the AIBTDLI Interface” on page 321 for an explanation
of DLZMPX00 and the AIBTDLI interface). The AIBTDLI interface uses DLZMPX00
from the SVA (if it resides there), or loads DLZMPX00 into partition space and uses
it from there.

DL/I via VSE Java Beans

42 VSE/ESA: e-business Connectors, User’s Guide

Chapter 7. Installing the VSE Script Connector

This chapter describes how you install the server-part (the VSE Script Server) of the
VSE Script Connector. The client-part (the VSE Script Client) is not installed here,
but can be either:
v a user-written Java application.
v a user-written non-Java application.
v an existing office product, such as a word-processing or spreadsheet program.

This chapter consists of these main sections:
v “Step 1: Download the Install-File and Perform the Installation”
v “Step 2: Configure the VSEScriptServer Properties File” on page 45
v “Step 3: Configure the Connections Properties File” on page 46

Notes:

1. The VSE Script Server must run on a Java-enabled platform.
2. The client-part (the VSE Script Client) can run on either a Java-enabled

platform or a non-Java-enabled platform.
3. You are not required to write your own Java code in order to use the VSE

Script Connector. Instead, you simply write your own VSE Scripts, using the
IBM-supplied VSE Script Language.

Related Sections:
v “Overview of the VSE Script Connector” on page 7
v Chapter 26, “Using the VSE Script Connector for Non-Java Access”, on page 349

Step 1: Download the Install-File and Perform the Installation
You install the VSE Script Server on a Java-enabled platform.

Before you begin, you must already have installed the Java Development Kit (JDK)
1.3 or higher on the development platform where you plan to install the VSE Script
Server. If you do not have JDK 1.3 or higher installed, refer to “Installing and
Configuring Java” on page 21 for details of how to install it.

Step 1.1: Obtain a Copy of the VSE Script Server
You must decide if you wish to obtain a copy of the VSE Script Server either from
the Internet, or from VSE/ESA library PRD1.BASE:
v To obtain the VSE Script Server from the Internet, start your Web browser and

go to URL:
http://www.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/conmain.htm

From within the VSE Script Server section, select Details and Download, then
download the file vsescriptnnn.zip to the directory where you wish to install the
VSE Script Server. Note: nnn refers to the current VSE version (for example,
vsescript270.zip).

v To obtain the VSE Script Server from the VSE/ESA library PRD1.BASE, use the
FTP (file transfer program) utility of TCP/IP for VSE/ESA to download
iesscrpt.w to the directory where you wish to install it.

© Copyright IBM Corp. 2000, 2003 43

Notes:

1. You must download iesscrpt.w in binary.
2. Make sure that Unix mode is turned off. Otherwise iesscrpt.w will be

downloaded in ASCII mode, even when you specify binary. Unix mode is one
parameter of your VSE FTP daemon. Some FTP clients might force Unix
mode to be turned on!. The example below shows how a successful transfer
of iesscrpt.w was made using a batch FTP client. The place where the UNIX
mode is set, is shown as bold.
c:\temp>ftp 9.164.155.2
Connected to 9.164.155.2.
220-TCP/IP for VSE -- Version 01.04.00 -- FTP Daemon

Copyright (c) 1995,2000 Connectivity Systems Incorporated
220 Service ready for new user.
User (9.164.155.2:(none)): sysa
331 User name okay, need password.
Password:
230 User logged in, proceed.
ftp> cd prd1
250 Requested file action okay, completed.
ftp> cd base
250 Requested file action okay, completed.
ftp> binary
200 Command okay.
ftp> get iesscrpt.w
200 Command okay.
150-File: PRD1.BASE.IESSCRPT.W

Type: Binary Recfm: FB Lrecl: 80 Blksize: 80
CC=ON UNIX=OFF RECLF=OFF TRCC=OFF CRLF=ON NAT=NO

150 File status okay; about to open data connection
226-Bytes sent: 2,378,200

Records sent: 29,728
Transfer Seconds: 8.26 (290K/Sec)
File I/O Seconds: 1.97 (1,548K/Sec)

226 Closing data connection.
2378200 bytes received in 8,56 seconds (277,82 Kbytes/sec)
ftp> bye
221 Service closing control connection.
c:\temp>ren iesscrpt.w vsescript.zip

Step 1.2: Perform the Installation of the VSE Script Server
To perform the installation of the VSE Script Server, you must:
1. Unzip the file vsescript.zip, which contains these files:

v install.class (contains the VSE Script Connector code)
v install.bat (an install batch file for Windows)
v install.cmd (an install batch file for OS/2)
v install.sh (an install script for Linux/Unix)

2. Start the batch file (by double-clicking the file) that is applicable to your
operating-system platform.

3. The installation process now begins, and you are guided through various
installation menus.

4. The Setup Complete window is displayed when the installation is complete.
After making your selection, click Finish. The installation now completes.

Note: Desktop icons are only created for Windows and OS/2 platforms (not for
AIX, Linux, and so on).

5. To access the HTML-based documentation, you can now use your Web browser
to open the file server.html in the /doc subdirectory.

Installing VSE Script Connector

44 VSE/ESA: e-business Connectors, User’s Guide

Step 2: Configure the VSEScriptServer Properties File
The properties file for the VSE Script Server is called VSEScriptServer.properties,
which is a text file that you can edit using any text editor.

Comment lines begin with a # character in the first column.

These are the settings that you define in VSEScriptServer.properties:

messages= on|off
If you define messages= on, all messages will be printed. If you
define messages= off, messages will not printed (and “quiet
mode” will be active).

listenport = TCP/IP portnumber
Port number which the VSE Script Server uses to listen for
requests.

maxconnections = number
Maximum number of simultaneous connections that are allowed
from VSE Script Clients.

scriptdirectory = ./scripts
Root directory to contain the Scripts.

connectionconfig = Connections.properties
Name of the connection configuration file (described in “Step 3:
Configure the Connections Properties File” on page 46).

If you wish to use a different properties file than the default, you must specify the
file name of your properties file as a parameter, using this command.
java com.ibm.vse.script.VSEScriptServer MyPropertiesFile.properties

Installing VSE Script Connector

Chapter 7. Installing the VSE Script Connector 45

Step 3: Configure the Connections Properties File
You define each connection from the VSE Script Server to the VSE/ESA host using
a set of five properties (connection.1.name, up to connection.1.password)
contained in a properties file. This is a text file that you can edit using any text
editor. For an overview of how these connections are used, see Figure 175 on
page 349.

Here is an example of a Connections properties file:
#Connection.properties

connection.1.name=vsecon
connection.1.ip=9.164.155.2
connection.1.port=2893
connection.1.userid=fran
connection.1.password=mypasswd

connection.2.name=vsefran
connection.2.ip=9.164.155.95
connection.2.port=2893
connection.2.userid=sysa
connection.2.password=mypasswd

...
connection.timeout=100
...

Comment lines begin with a # character in the first column.

These are the settings that you define in Connections.properties for each
connection.

name = name The logical name you give to the VSE/ESA host. Your VSE Scripts
will refer to this name when accessing the VSE/ESA host. For an
example of how name is used, see “Step 4: Modify the Sample VSE
Script” on page 357.

ip = IP address The TCP/IP address of the VSE/ESA host to which the VSE Script
Server is to connect.

port = number The port number used by VSE Connector Server to listen for
incoming requests.

userid = user-ID name
The VSE/ESA user ID used by the VSE Script Server to build a
connection to the VSE/ESA host.

password = password
The password you wish to assign to the connection from the VSE
Script Server to the VSE/ESA host. During the initial startup of the
VSE Script Server, the password is encrypted and stored using the
property connection.n.encpassword.

In addition, you can define in Connections.properties this global setting:

connection.timeout = seconds
The time in seconds before an unused connection in the pool (to
the VSE/ESA host) is closed and destroyed.

Installing VSE Script Connector

46 VSE/ESA: e-business Connectors, User’s Guide

Chapter 8. Installing the VSAM Redirector Connector

This chapter describes how you install and implement the VSAM Redirector
connector. It consists of these main sections:
v “How the VSAM Redirector Connector Works”
v “Installing and Configuring the VSAM Redirector Client” on page 50
v “Installing the VSAM Redirector Server” on page 60
v “IBM-Supplied Example of DB2-Related Handler” on page 64
v “IBM-Supplied Example of HTML-Related Handler” on page 65

For a general description of the VSAM Redirector connector, see “Overview of the
VSAM Redirector Connector” on page 6.

How the VSAM Redirector Connector Works
The VSAM Redirector connector consists of:
v The VSAM Redirector Client which is installed on your VSE/ESA host. It is

responsible for communication and redirection of VSAM requests.
v The VSAM Redirector Server which is installed on each remote Java platform, as

shown in Figure 16 on page 48. It is a Java program that:
1. Is responsible for connection-handling.
2. Is responsible for data conversion.
3. Builds the interface to the different file system request handlers.
4. Generates error messages that are the same as those generated before VSAM

datasets were migrated. Therefore your application programs do not need to
be amended for changes in error-message handling.

VSAM request handlers (referred to simply as request handlers) are also stored on the
Java platform, and have a common interface. They are specific to the file system
with which they work. For all connections, information about the file and the
request are sent to the request handler.

Figure 16 on page 48 provides an overview of how the VSAM Redirector connector
can be used to redirect VSAM requests from an application running on the
VSE/ESA host, to a DB2 database stored on a Java platform. It uses the
IBM-supplied DB2Handler on the Java platform. Each handler can decide at each of
the above requests, which processing is required for the remote data.

© Copyright IBM Corp. 2000, 2003 47

The general processing shown in Figure 16 is as follows:

�1� An application running on the VSE/ESA host issues a VSAM command
(for example, to open a VSAM file). The request is passed to the generic exit
(IKQVEX01.PHASE).

�2� The generic exit checks whether the VSAM file has been set up to be
redirected. To do so, it checks the configuration phase (IESRDCFG.PHASE).

�3� If the VSAM file has not been redirected to another Java platform (and is
therefore still stored as a VSAM record on the VSE/ESA host), the generic
exit returns and indicates that the VSAM file has not been redirected. It
also indicates that the generic exit should not be called again for any
request against this VSAM file. Normal VSAM processing then continues.

�4� If the VSAM file has been redirected to another Java platform, the generic
exit (IESREDIR.PHASE) calls the VSAM Redirector Client.

�5� The VSAM Redirector Client establishes a connection to the VSAM
Redirector Server running on the Java platform, and forwards the VSAM
file request, together with any data (such as a VSAM record contents) to
the VSAM Redirector Server.

�6� The VSAM Redirector Server uses the request handler that is specified in
the configuration phase, to perform access to the target file system or
database. In Figure 16, the specified request handler is DB2Handler (which
is supplied by IBM during the installation of the VSAM Redirector Server).
DB2Handler implements access to a DB2 database.

VSAM Integration Considerations
For VSAM internal processing (such as the POINT to END OF FILE) changes have
been made to VSAM so that the VSAM Redirector Client can perform its
processing. The original VSAM cluster of a redirected file must, however, still exist
on the VSE/ESA host. It must also contain a dummy record (which you can insert
using, for example, the DITTO utility).

In order for all VSAM requests to be redirected, the exit phase (IKQVEX01.PHASE)
must return a return code of -1. This indicates to VSAM that no VSAM processing
at all is required against this file.

Figure 16. Example of How the VSAM Redirector Connector Is Used

VSAM Redirector Connector

48 VSE/ESA: e-business Connectors, User’s Guide

If the exit phase cannot open the configuration phase (IESRDCFG.PHASE), or if a
TCP/IP connection is not available, the exit phase reports this to VSAM using two
error definitions:
v If the exit phase returns -3 to VSAM, this is converted to a DDNAME NOT

FOUND error message, which indicates that the exit phase was unable to
connect to the specified Java platform.

v The second error code is -4, converted to a UNABLE TO CDLOAD error, which means
that the exit phase was unable to load either the VSAM Redirector Client or the
configuration phase.

For further details about processing and return-code changes, refer to the online
documentation provided with the VSAM Redirector Server.

VSAM Redirector Connector

Chapter 8. Installing the VSAM Redirector Connector 49

Installing and Configuring the VSAM Redirector Client

The VSAM Redirector Client is automatically installed on your VSE/ESA host
during the installation of VSE/ESA, and consists of three PHASE files:
v IKQVEX01.PHASE (the exit phase)
v IESREDIR.PHASE (the VSAM Redirector Client)
v IESRDCFG.PHASE (the configuration phase)

IKQVEX01 is called each time a VSAM OPEN request is made. IKQVEX01 then
decides if a cluster is to be redirected or not:
v If a cluster is to be redirected, IKQVEX01 loads and starts IESREDIR.PHASE.

This phase handles the network operations, and communicates with the VSAM
Redirector Server. All relevant information must be specified in the configuration
phase IESRDCFG.PHASE (see “Step 1: Enable the VSAM Redirector Client on
VSE/ESA” for details).

v If a cluster is not to be redirected, normal VSAM processing takes place.

An overview of this processing is shown in Figure 16 on page 48.

To configure the VSAM Redirector Client, you must follow these steps:
v “Step 1: Enable the VSAM Redirector Client on VSE/ESA”
v “Step 2: Decide Upon Your Redirection Mode” on page 51
v “Step 3 (Optional): Transfer Your VSAM Data” on page 56
v “Step 4: Create the Configuration Phase” on page 56

Fast Service Upgrade Considerations
If you are performing a Fast Service Upgrade (FSU), you must run the
configuration job SKRDCFG to update the IKQVEX01.PHASE in library
PRD2.CONFIG.

Step 1: Enable the VSAM Redirector Client on VSE/ESA
The VSAM Redirector connector is based upon the existing VSAM Data Access
(VDA) exit. The VDA exit is represented by the dummy exit phase
IKQVEX01.PHASE, which is shipped in library IJSYSRS.SYSLIB.

The VSAM Redirector Client also uses the VDA exit. Therefore to avoid
over-writing any existing changes you have made to IKQVEX01.PHASE, all phases
that belong to the VSAM Redirector Client are shipped in library PRD1.BASE.

To enable the VSAM Redirector Client, you must use skeleton SKRDCFG in
Library 59 to configure your VSAM Redirector Client. You use this skeleton to
1. Assemble/link the member IESRDCFG.PHASE, and store it in library

PRD2.CONFIG.
2. Load the IESRDCFG.PHASE into the SVA (optional).
3. Copy IESVEX01.PHASE to the library PRD2.CONFIG with the name

IKQVEX01.PHASE, to activate the exit phase.
4. Load the IKQVEX01.PHASE into the SVA (optional).

Note: Normally, your original IKQVEX01.PHASE will have been loaded into
the SVA. To enable the VSAM Redirector Client, you must replace it in
the SVA with the new phase loaded from PRD2.CONFIG. Alternatively,
to replace the IKQVEX01 phase you can re-IPL your VSE/ESA system.

VSAM Redirector Client

50 VSE/ESA: e-business Connectors, User’s Guide

If you wish to activate a new configuration while the system is running (that is,
without restarting your VSAM applications), after completing the steps above you
must then:
5. Load the IESRDANC.PHASE into the SVA (you need to do this only once, of

course).
6. Execute program IESRDLDA. However, IESRDCFG.PHASE must be already

loaded into the SVA (as in Step 2, above). Program IESRDLDA will then activate
the new copy of IESRECFG so that it is the current configuration, and the
changes become immediately active. However, VSAM files will not be changed
if they are already open. To activate the changes for any VSAM files that are
open, you must close and then reopen such files.

The VSAM Redirector connector uses TCP/IP as its communication protocol.
Therefore, any of your applications that you wish to use with the VSAM
Redirector connector must be modified accordingly. You must add the statement:
// OPTION SYSPARM=’nn’

to the JCL for these jobs. The value ’nn’ (the system ID) is contained in the:
// EXEC IPNET,SIZE=IPNET,PARM=’ID=nn,INIT=... ’

statement of your TCP/IP startup job.

Note: The value of ’00’ is the default for the system ID. If you accept this default,
you are not required to add the statement // OPTION SYSPARM=’00’.

Step 2: Decide Upon Your Redirection Mode
There are two possible modes in which you can use the VSAM Redirector Client:
1. Working with data that resides on another platform.
2. Synchronizing your existing VSAM data with data that resides on another

platform.

You set the mode of operation using the OWNER parameter within the
configuration phase. See “Step 4: Create the Configuration Phase” on page 56 for
details.

Notes:

1. For each redirection mode, the VSAM cluster must be defined to the VSE/ESA
system. Therefore, when the VSAM OPEN request is executed for this cluster, the
VSAM Redirector Client must obtain the following information from the VSAM
cluster:
v Cluster type
v Key position
v Key length
v Maximum record length

2. When you open a redirected file (on a Java platform) for READ processing, the
original VSAM cluster must still be defined on the VSE/ESA host, and must
contain at least one ‘dummy’ record. Otherwise, a VSAM error will occur when
the OPEN request is processed.

3. READ requests will not generate any data transfer to the remote Java platform.

VSAM Redirector Client

Chapter 8. Installing the VSAM Redirector Connector 51

Mode 1. Working With Data Residing On Another Platform
If you use this redirection mode (OWNER=REDIRECTOR), your programs that work
with VSAM data will never perform any VSAM access operations. All requests are
redirected to the VSAM Redirector Client (iesredir.phase), which then connects to
the VSAM Redirector Server running on a Java platform. The VSAM Redirector
Server then performs the request.

Note: You cannot chain exits if any one of these exits has OWNER set to REDIRECTOR.

Figure 17 shows the flow of control when a VSAM PUT is executed.

�1� VSAM calls �Exit-1� before VSAM starts to process the request.

�2� VSAM does not process any requests.

�3� VSAM calls �Exit-2� after VSAM has finished processing the request.

Figure 18 on page 53 shows the flow of control when a VSAM GET is executed.

Figure 17. Flow of Control for VSAM PUT Request

VSAM Redirector Client

52 VSE/ESA: e-business Connectors, User’s Guide

�1� VSAM calls �Exit-1� before VSAM starts to process the request.

�2� VSAM does not process any requests.

�3� VSAM calls �Exit-2� after VSAM has finished processing the request.

Figure 18. Flow of Control for VSAM GET Request

VSAM Redirector Client

Chapter 8. Installing the VSAM Redirector Connector 53

Mode 2. Synchronizing Your Existing VSAM data
If you use this mode (OWNER=VSAM), your programs that work with VSAM data will
perform a VSAM access and redirected access. Each VSAM request issues two
requests to the VSAM Redirector Client (iesredir.phase).

Figure 19 shows the flow of control when a VSAM PUT is executed.

�1� VSAM calls �Exit-1� before VSAM starts to process the request.

�2� VSAM processes the request.

�3� VSAM calls �Exit-2� after VSAM has finished processing the request.

Figure 20 on page 55 shows the flow of control when a VSAM GET is executed.

Figure 19. Flow of Control for VSAM PUT Request

VSAM Redirector Client

54 VSE/ESA: e-business Connectors, User’s Guide

�1� VSAM calls �Exit-1� before VSAM starts to process the request.

�2� VSAM processes the request.

�3� VSAM calls �Exit-2� after VSAM has finished processing the request.

Figure 20. Flow of Control for VSAM GET Request

VSAM Redirector Client

Chapter 8. Installing the VSAM Redirector Connector 55

Step 3 (Optional): Transfer Your VSAM Data
To use your existing VSAM datasets with the VSAM Redirector connector, you can
migrate your VSAM data to the file system you require (for example, DB2 format).
For details of how to map VSAM data to a relational structure suitable for DB2
processing, refer to Chapter 15, “Mapping VSE/VSAM Data to a Relational
Structure”, on page 129.

To transfer your data from the VSE/ESA host to your target Java platform’s file
system, you can use the IDCAMS REPRO utility:
1. Define a VSAM cluster (that has the same properties as the source cluster) as

the target for your redirection / transfer process.
2. Change the configuration phase, so that your VSAM cluster is redirected

(OWNER=REDIRECTOR). For details, see “Step 4: Create the Configuration Phase”.
3. Ensure that the VSAM Redirector Server, and the handler you have defined in

the configuration phase, are both running on your your target Java platform.
4. Copy the data into your redirected VSAM cluster, using the IDCAMS REPRO

utility. After completing this action, your data will now be stored on the target
Java platform’s file system.

Step 4: Create the Configuration Phase
VSE library 59 contains an example skeleton SKRDCFG which you can use to
create a configuration phase. Figure 21 on page 58 shows the sample job skeleton
SKRDCFG. Below are are the parameters you set in this job.

Mandatory Parameters
CATALOG= VSAM catalog name of the file to be redirected. You can use the

wildcard * in your parameter definition. In this case, you must also
set CLUSTER=*. However, be aware that if you use CATALOG=* this
will redirect all catalogs (and clusters contained in those catalogs).

Notes:

1. If the master catalog is redirected, you might not be able to
startup your VSE/ESA system!.

2. Entries that contain wildcards will only used providing no
other matching entry can be found.

CLUSTER= VSAM cluster name. You can use the wildcard * in your parameter
definition. However, be aware that if you use CLUSTER=* this will
redirect all clusters belonging to the specified catalog.

EXIT= Name of the exit phase to use.
v If you specify EXIT=IESREDIR, all the parameters listed below

apply.
v If you specify another value for EXIT (for example, a

vendor-provided exit), no further parameters apply.

Optional Parameters
Using these optional parameters, you can specify additional filters when specifying
the clusters that are to be redirected.

CATDD= The label name of the catalog. The default is CATDD='*'. If you
enter a value for CATDD (other than the default), both the
CATALOG and CATDD will be used for checking if the file is to be
redirected.

CLUDD= The label name of the cluster. The default is CLUDD='*'. If you

VSAM Redirector Client

56 VSE/ESA: e-business Connectors, User’s Guide

specify a value for CLUDD (other than the default), both the
CLUSTER and CLUDD are used to check if the file is to be
redirected.

PART= The partition ID (for example F4) of the partition from which
redirection is only possible. The default value is PART='*'.

NOTPART= The partition ID (for example F4) of the partition from which
redirection is not possible. The default is that all partitions are
available for redirection.

Parameters That Apply When EXIT=IESREDIR
OWNER= Can take one of these values:

REDIRECTOR
All requests are redirected to the VSAM Redirector Client
(IESREDIR.PHASE), which then connects to the VSAM
Redirector Server running on a Java platform. The VSAM
Redirector Server then performs the request.

Note: You cannot chain exits if any one of these exits has
OWNER=REDIRECTOR.

VSAM
Dual processing occurs (both VSAM processing and
redirecting requests to the VSAM Redirector Client).

IP= A mandatory parameter. The IP address of the server where the
VSAM Redirector Server is installed, and to which a connection is
to be made.

PORT= An optional parameter. The port number of the server where the
VSAM Redirector Server is installed, and to which a connection is
to be made. The default port number used with the VSAM
Redirector Server is 2387, which has been assigned by the Internet
Assigned Numbers Authority (IANA).

HANDLER= A mandatory parameter. The name of the Java class to be started,
which represents the request handler to be used with this
configuration entry.

OPTIONS= A mandatory parameter. A string containing data to be transferred
to the request handler, as an option string. You can insert your
own settings here. In the example shown in Figure 21 on page 58,
this string contains information required by the IBM-supplied
DB2Handler (DB/2 system, username, password, and so on). If you
specify a blank value for this parameter (‘ ’), the request handler
will receive blanks as the option string.

Parameters That Apply When OWNER=VSAM
IGNOREERROR=

An optional parameter, whose default is IGNOREERROR=NO. If you set
IGNOREERROR=YES, a VSAM OPEN request will not return an error, even
if the VSAM Redirector Server cannot be accessed.

PUTREQONLY=
An optional parameter, whose default is PUTREQONLY=NO. If you set
PUTREQONLY=YES, only INSERT and UPDATE requests will be redirected
to the VSAM Redirector Server. You might find this parameter
useful if you want to collect statistics about your request handler,
excluding requests such as POINT, GET, and so on.

VSAM Redirector Client

Chapter 8. Installing the VSAM Redirector Connector 57

* $$ JOB JNM=RDCONFIG,CLASS=A,DISP=D
// JOB RDCONFIG GENERATE REDIRECTOR CONFIG PHASE
* **
* STEP 1: ASSEMBLE AND LINK THE CONFIG TABLE *
* **
// LIBDEF *,CATALOG=PRD2.CONFIG
// LIBDEF *,SEARCH=PRD1.BASE
// OPTION ERRS,SXREF,SYM,NODECK,CATAL,LISTX

PHASE IESRDCFG,*,SVA
// EXEC ASMA90,SIZE=(ASMA90,64K),PARM=’EXIT(LIBEXIT(EDECKXIT)),SIZE(MAXC

-200K,ABOVE)’
IESRDCFG CSECT
IESRDCFG AMODE ANY
IESRDCFG RMODE ANY
*

IESRDENT CATALOG=’VSESP.USER.CATALOG’, X
CLUSTER=’MY.TEST.CLUSTER1’, X
EXIT=’IESREDIR’, X
OWNER=REDIRECTOR, X
IP=’10.0.0.1’, X
HANDLER=’com.ibm.vse.db2handler.DB2Handler’, X
OPTIONS=’db2url=jdbc:db2:redir;db2user=hugo; X

db2password=hugospw;db2table=mydata’
*

IESRDENT CATALOG=’VSESP.USER.CATALOG’, X
CLUSTER=’MY.TEST.CLUSTER2’, X
EXIT=’VENDOREX’

*
END

/*
// IF $MRC GT 4 THEN
// GOTO NOLINK
// EXEC LNKEDT,PARM=’MSHP’
/. NOLINK
/*
* **
* STEP 2: LOAD THE IESRDCFG.PHASE INTO THE SVA (OPTIONAL) *
* **
* LIBDEF *,SEARCH=PRD2.CONFIG
* SET SDL
* IESRDCFG,SVA
* /*
* **
* STEP 3: COPY IESVEX01.PHASE INTO PRD2.CONFIG AS IKQVEX01 *
* **
// EXEC LIBR,PARM=’MSHP’

CONNECT S=PRD1.BASE:PRD2.CONFIG
COPY IESVEX01.PHASE:IKQVEX01.PHASE REPLACE=YES

/*

Figure 21. Job to Produce a Configuration Phase for the VSAM Redirector Connector (Part 1
of 2)

VSAM Redirector Client

58 VSE/ESA: e-business Connectors, User’s Guide

* **
* STEP 4: LOAD THE IKQVEX01.PHASE INTO THE SVA (OPTIONAL) *
* **
* LIBDEF *,SEARCH=PRD2.CONFIG
* SET SDL
* IKQVEX01,SVA
* /*
* **
* STEP 5: LOAD THE IESRDANC.PHASE INTO THE SVA (OPTIONAL) *
* THIS SHOULD BE DONE ONLY ONCE !! *
* **
* // LIBDEF *,SEARCH=PRD2.CONFIG
* SET SDL
* IESRDANC,SVA
* /*
* **
* STEP 6: REGISTER THE CURRENT CONFIGURATION PHASE *
* **
* // LIBDEF *,SEARCH=PRD1.BASE
* // EXEC IESRDLDA
* /*
/&
* $$ EOJ

Figure 21. Job to Produce a Configuration Phase for the VSAM Redirector Connector (Part 2
of 2)

VSAM Redirector Client

Chapter 8. Installing the VSAM Redirector Connector 59

Installing the VSAM Redirector Server

The main activities that you must perform on each Java platform where you plan
to install migrated datasets, are:
v “Step 1: Download the Install-File and Perform the Installation”
v “Step 2: Configure the Properties File” on page 61
v “Step 3: Implement a VSAM Request Handler” on page 62

Step 1: Download the Install-File and Perform the Installation
You install the VSAM Redirector Server on a Java-enabled platform.

Before you begin, you must already have installed the Java Development Kit (JDK)
1.2.2 or higher on the development platform where you plan to install the VSAM
Redirector Server. If you do not have JDK 1.2.2 or higher installed, refer to
“Installing and Configuring Java” on page 21 for details of how to install it.

Step 1.1: Obtain a Copy of the VSAM Redirector Server
You must decide if you wish to obtain a copy of the VSAM Redirector Server
either from the Internet, or from VSE/ESA library PRD1.BASE:
v To obtain the VSAM Redirector Server from the Internet, start your Web browser

and go to URL:
http://www.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/conmain.htm

From within the VSAM Redirector Server section, select Details and Download,
then download the file redirnnn.zip to the directory where you wish to install
the VSAM Redirector Server. Note: nnn refers to the current VSE version (for
example, redir270.zip).

v To obtain the VSAM Redirector Server from the VSE/ESA library PRD1.BASE,
use the FTP (file transfer program) utility of TCP/IP for VSE/ESA to download
iesvsmrd.w to the directory where you wish to install it.

Notes:

1. You must download iesvsmrd.w in binary.
2. Make sure that Unix mode is turned off. Otherwise iesvsmrd.w will be

downloaded in ASCII mode, even when you specify binary. Unix mode is one
parameter of your VSE FTP daemon. Some FTP clients might force Unix
mode to be turned on!. The example below shows how a successful transfer
of iesvsmrd.w was made using a batch FTP client. The place where the
UNIX mode is set, is shown as bold.
c:\temp>ftp 9.164.155.2
Connected to 9.164.155.2.
220-TCP/IP for VSE -- Version 01.04.00 -- FTP Daemon

Copyright (c) 1995,2000 Connectivity Systems Incorporated
220 Service ready for new user.
User (9.164.155.2:(none)): sysa
331 User name okay, need password.
Password:
230 User logged in, proceed.
ftp> cd prd1
250 Requested file action okay, completed.
ftp> cd base
250 Requested file action okay, completed.
ftp> binary
200 Command okay.
ftp> get iesvsmrd.w
200 Command okay.
150-File: PRD1.BASE.IESVSMRD.W

VSAM Redirector Server

60 VSE/ESA: e-business Connectors, User’s Guide

Type: Binary Recfm: FB Lrecl: 80 Blksize: 80
CC=ON UNIX=OFF RECLF=OFF TRCC=OFF CRLF=ON NAT=NO

150 File status okay; about to open data connection
226-Bytes sent: 4,756,400

Records sent: 59,455
Transfer Seconds: 16.52 (290K/Sec)
File I/O Seconds: 3.94 (1,548K/Sec)

226 Closing data connection.
4756400 bytes received in 17,12 seconds (277,91 Kbytes/sec)
ftp> bye
221 Service closing control connection.
c:\temp>ren iesvsmrd.w redir.zip

Step 1.2: Perform the Installation of the VSAM Redirector Server
To perform the installation of the VSAM Redirector Server, you must:
1. Unzip the file redir.zip, which contains these files:

v install.class (contains the VSAM Redirector Server code)
v install.bat (an install batch file for Windows)
v install.cmd (an install batch file for OS/2)
v install.sh (an install script for Linux/Unix)

2. Start the batch file (by double-clicking the file) that is applicable to your
operating-system platform.

3. The installation process now begins, and you are guided through various
installation menus.

4. The Setup Complete window is displayed when the installation is complete:

Select ... If you wish to ...

Yes, I want to view
the ReadMe file

open the ReadMe file that contains instructions on how to use the
VSAM Redirector Server.

Add VSAMRedir.jar
to local classpath

add the file VSAMRedir.jar to your local Windows classpath. If you
are installing on a platform other than Windows NT/2000/XP, you
will receive the message “please append the file VSAMRedir.jar to
your local classpath”. You must therefore manually perform this
action yourself for the platform onto which you are installing.

After making your selection, click Finish. The installation now completes.

Note: Desktop icons are only created for Windows and OS/2 platforms (not for
AIX, Linux, or z/OS).

5. To access the HTML-based documentation, you can now use your Web browser
to open the file ... (Redirector root directory)/doc/redir.html.

Step 2: Configure the Properties File
The properties file for the VSAM Redirector Server is called
VSAMRedirectorServer.properties, which is a text file that you can edit using any
text editor.

Comment lines begin with a # character in the first column.

These are the settings that you define in VSAMRedirectorServer.properties:

messages= on|off
If you define messages= on, all messages will be printed. If you
define messages= off, messages will not printed (and “quiet
mode” will be active).

VSAM Redirector Server

Chapter 8. Installing the VSAM Redirector Connector 61

listenport = TCP/IP portnumber
Port number which the VSAM Redirector Server uses to listen for
requests.

maxconnections = number
Maximum number of connections that are allowed from VSAM
Redirector Clients.

codepagetranslator = com.ibm.vse.server.DefaultTranslator
Codepage translator class to be used for converting Strings from:
v EBCDIC into ASCII
v ASCII into EBCDIC

The IBM-supplied default is shown above.

Step 3: Implement a VSAM Request Handler

VSAM request handlers (referred to simply as request handlers) are used by the
VSAM Redirector Server as shown in Figure 16 on page 48, and are programmed in
Java. This section describes how request handlers are implemented, under these
headings:
v “Coding VSAM Logic and Parameters”
v “Calling a VSAM Request Handler” on page 63
v “Error Reporting” on page 63
v “Datatype Conversions” on page 63
v “Getting a Map Dynamically Into Your Request Handler” on page 64
v “IBM-Supplied Example of DB2-Related Handler” on page 64
v “IBM-Supplied Example of HTML-Related Handler” on page 65

Note: Refer to “Code for HTML-Related Request Handler” on page 65 for an
explanation of the code used to implement this request handler.

Coding VSAM Logic and Parameters
To redirect VSAM data into other data formats (SQL database, flat file, and so on)
so that this data is transparent to existing applications, you must simulate all
VSAM behavior in your request handler. Therefore you must include positioning
and error-reporting logic in your request handler.

You can program your own request handlers and include them for use by the
VSAM Redirector connector. You must also code an interface which your request
handler provides, by implementing case methods to handle:
v OPEN requests
v CLOSE requests
v Record requests, which are:

– GET
– PUT (UPDATE+INSERT)
– ENDRQ
– POINT

If you wish to write a request handler that is to copy VSAM files (in the same way
as the IBM-supplied DB2Handler), your request handler must:
1. Copy the VSAM logic.
2. Respond in the same way as VSAM itself would.

For details of how to code VSAM logic and parameters, refer to the:
v VSE/VSAM User’s Guide and Application Programming, SC33-6732
v VSE/VSAM Commands, SC33-6731

VSAM Redirector Server

62 VSE/ESA: e-business Connectors, User’s Guide

v Javadoc for VSAMRequestInfo.java and VSAMFileInfo.java.

Calling a VSAM Request Handler
The VSAM Redirector Server is implemented in Java and is not delivered with
source code. The VSAM Redirector Server can be started after the:
1. properties file has been configured,
2. request handler code has been copied into the directory where the VSAM

Redirector Server is installed.

When the VSAM Redirector Server has been started:
1. The VSAM Redirector Server reads the properties file.
2. The VSAM Redirector Server listens for VSAM Redirector Clients on the

TCP/IP port that you defined in “Step 2: Configure the Properties File” on
page 61.

3. When the VSAM Redirector Server receives an OPEN request:
a. The request handler that was defined in configuration.phase, is instantiated.
b. The request handler’s OPEN method is called.

4. The request handler terminates in the way that is defined by the CLOSE method
call.

Error Reporting
Request handlers report an error by producing an Exception. The VSAM Redirector
Server intercepts the Exception and sends the error code to the VSAM Redirector
Client running on the VSE/ESA host. No data is sent together with the error code.

Error codes that are sent to the VSAM Redirector Client:
v must be an internal VSAM return code
v are returned to VSAM into register 15 (R15).

A new error code has been created for use with the VSAM Redirector connector:
when a request handler sends a DUPLICATE RECORD warning to a VSAM application
(when more than one record is found in alternate index access/path access and
when other records follow) it produces an Exception. However, in this case the
record data is not sent!. To return this warning message, you must therefore use
error code 255 (which will be converted in the server-part to the required warning
message).

Also refer to “VSAM Integration Considerations” on page 48 for further
error-reporting considerations.

Datatype Conversions
Record data that is transferred from the VSAM Redirector Client running on the
VSE/ESA host, consists of EBCDIC characters. Therefore, all data that is
interpreted as Strings must be converted to ASCII characters.

An instance of the CodepageTranslator class is used for converting EBCDIC to ASCII.
You can also write your own translators and configure (in the properties file) the
VSAM Redirector Server to use these translators.

The VSAMRequestInfo class contains many methods that are implemented to get
and set data areas in a record. You must specify the part (offset plus length) of the
record and the method’s return the data in this area interpreted as:
v String
v Number (Signed/Unsigned)
v Packed Decimal
v Binary bytes

VSAM Redirector Server

Chapter 8. Installing the VSAM Redirector Connector 63

The get/set String method always uses the CodepageTranslator.

Getting a Map Dynamically Into Your Request Handler
These are the ways in which you can get a map into your request handler
dynamically:
v Define the map as an option string in the config.phase and parse it.
v Use the VSE/ESA Connector framework to get a VSAM map from the cluster.
v Use an XML file and then parse it (you can create such a file using the MapTool –

see CreateDB2Tables.java for an example of how to do so).
v Store the map in another location (for example, in a database table – see

DB2Handler.java for an example of how to do so).

IBM-Supplied Example of DB2-Related Handler
This example (DB2Handler) shows how you can redirect all VSAM requests for a
specific file, to a remote DB2 database. To use this example, you must have
installed on the remote system:
v DB2 database
v Java Development Kit

DB2Handler is represented by the Java class com.ibm.vse.db2handler.DB2Handler,
whose option string delivers:
v username
v tablename
v password
v systemname

To run DB2Handler you must:
v Include the DB/2 JDBC 1.2 driver (db2java.zip) in your CLASSPATH variable.
v Obtain the xerces package, which is required by CreateDB2Tables in order to parse

the XML file. You can download the xerces package from the Apache Foundation
(address xml.apache.org).

DB2Handler starts various sub-handlers that handle ESDS/KSDS and RRDS/VRDS
files. Each sub-handler then:
1. Opens a database table containing the field definitions.
2. Reads the database table.
3. Prepares the database table for record requests.
4. Analyzes each incoming request, and processes each request.
5. Sends the result back to the VSAM Redirector Client.

For further information, refer to the source code for each sub-handler, which
contain detailed comments.

These are the restrictions for using DB2Handler:
v Share option 1 and 2 only are supported. Concurrent updates to the same DB2

table are not supported. However, your request handler can be coded to respond
to database locks.

v STRING fields only are supported as KEY fields in KSDS files (for BASE Cluster
and AIX).

v There is no support for NON-UNIQUE AIX access. You should avoid this type
of access completely.

VSAM Redirector Server

64 VSE/ESA: e-business Connectors, User’s Guide

v Fields that contain 0x00 (NULL fields) are not supported as KEY fields (for BASE
Cluster and AIX), because Key columns are defined as NOT NULL.

The CreateDB2Tables program (com.ibm.vse.db2handler.create.CreateDB2Tables)
creates the field definition table on the DB/2 system. To use CreateDB2Tables you
should:
1. Create an XML file containing the field definitions required to create your

tables. A sample XML file is supplied with the DTD, which you can use as a
template. You can define the field types STRING, UNSIGNED, SIGNED,
PACKED and BINARY. In the database:
v STRING is a CHAR
v UNSIGNED, SIGNED and PACKED are INT
v BINARY is mapped to a BLOB (binary large object).

2. Start program CreateDB2Tables and follow the instructions that this program
provides.

3. Your tables (including field definitions and data table) will be created and, if
required, indexes built.

IBM-Supplied Example of HTML-Related Handler
The IBM-supplied example of an HTML-related VSAM request handler is
htmlhandler.java, which does not require any configuration actions. Furthermore, all
parameters are set in the source code.

htmlhandler.java is an application that is automatically started by VSE/ESA in order
to collect daily statistics about the status of flight bookings. During the night, a
new cluster is created, into which a VSAM data cluster is “copied”:
1. The empty cluster is redirected to a Java system.
2. The request handler on the Java system then extracts the data from the record,

and enters a statistic in the HTML file.

The logic for the above steps is contained in the Java request handler. Therefore each
morning, an updated HTML file is automatically placed in the intranet.

Code for HTML-Related Request Handler

You implement a VSAM Request Handler by implementing the Java interface
VSAMRequestHandler (documented in the Javadoc of the VSAM Redirector Server
installation). This Java interface describes methods to access the file system or
database to which the VSAM requests are redirected.

The example in this section describes the implementation of the HTMLHandler,
which is part of the VSAM Redirector Server installation. It is a sample VSAM
Request Handler, which writes the received data into an HTML file.

The sample request handler processes only INSERT requests (only writes to the
target HTML file). It cannot, for example, delete already-written data from the file.
The data used with the HTMLHandler is taken from a sample VSAM cluster which
is also used in the FlightOrderingServlet example (see “Example of How to
Implement a Servlet” on page 246 for details).

VSAM Redirector Server

Chapter 8. Installing the VSAM Redirector Connector 65

You must perform an IDCAMS REPRO of the data from the VSAM cluster
FLIGHT.ORDERING.ORDERS to a second VSAM file, which will be redirected to
the HTML request handler on the Java platform where the VSAM Redirector
Server is installed.

Data Layout Used With HTMLHandler
The data layout for use with the HTMLHandler sample is shown in Figure 22:

The data consists of a mapped VSAM data. Therefore, the request handler can use
the VSEVsamField offsets within the source cluster. An external VSEVsamMap
definition is not used.

Note: Normally, you would have to provide a data mapping for your VSAM
record layout, as described in Chapter 15, “Mapping VSE/VSAM Data to a
Relational Structure”, on page 129.

Implementation of HTMLHandler
The request handler HTMLHandler implements a set of callback routines. These
callback routines are called by the VSAM Redirector Server each time access to the
target file or database system is performed.

Initialize Method: The method shown in Figure 24 is called to initialize the
HTMLHandler request handler. The parameter translator points to the codepage
translator to be used for ASCII to EBCDIC translation.

Offset Length Type Meaning

0 20 STRING first name
20 20 STRING last name
40 4 UNSIGNED flight number
44 4 UNSIGNED seats
48 1 BINARY smoking/non-smoking (non=0)

Figure 22. Data Layout Used With the HTMLHandler

package com.ibm.vse.htmlhandler;
import java.io.*;
import com.ibm.vse.redirector.*;
import com.ibm.vse.server.*;

public class HtmlHandler implements VSAMRequestHandler
{

CodepageTranslator trnsl = null;
VSAMFileInfo finfo = null;
BufferedWriter htmloutput = null;
int record_counter = 0;
String htmlfilename = "output.html";

Figure 23. Implementation of the HTMLHandler

public void initialize(CodepageTranslator translator)
{

this.trnsl = translator;
}

Figure 24. Initialize Method of the HTMLHandler

VSAM Redirector Server

66 VSE/ESA: e-business Connectors, User’s Guide

Cleanup Method: The method shown in Figure 25 is called to cleanup the
HTMLHandler request handler.

Open Method: The method shown in Figure 26 is called to open the file. The
fileInfo parameter contains information about the file to open, and options
parameter contains the options string.

Close Method: The method shown in Figure 27 is called to close the file.

Request Method: The method shown in Figure 28 on page 68 is called to execute
a VSAM request. The requestInfo parameter contains information about the request
to execute. This example only implements the INSERT request. However, you
would use this method to perform other actions on the data. You could even send
an e-mail containing this data!.

public void cleanup()
{

trnsl = null;
}

Figure 25. Cleanup Method of the HTMLHandler

public void open(VSAMFileInfo fileInfo,String options) throws VSAMRequestException
{

this.finfo = fileInfo;
try {

// create the HTML file
htmloutput = new BufferedWriter(new FileWriter(this.htmlfilename));
// write the first part of HTML file
htmloutput.write("<html><head><title>Redirector sample</title></head>

</body>");
htmloutput.write("<h2>Output from redirected VSAM FLIGHT.ORDERING.ORDERS

cluster:</h2>");
htmloutput.write("<table><tr><th>Flight Number</th><th>First name</th>

<th>Last name</th><th>Seats</th><th>Smoker?</th></tr>");
} catch(Exception ex) { System.out.println("Error creating output file!"+ex); }

System.out.println("Now receiving records:");
}

Figure 26. Open Method of the HTMLHandler

public void close() throws VSAMRequestException
{

System.out.println("\nReady, "+this.record_counter+" records received.");
try {

// write the end of the HTML file
htmloutput.write("</table></body></html>");
// close the HTML file
htmloutput.close();

}
catch (Exception ex) { }
System.out.println("HTML file created: ’" + this.htmlfilename + "’");

}

Figure 27. Close Method of the HTMLHandler

VSAM Redirector Server

Chapter 8. Installing the VSAM Redirector Connector 67

Finished Method: The method shown in Figure 29 is called to inform that a
request that has been finished.

Screenshots of HTMLHandler Console and Output
Figure 30 on page 69 shows the console listing produced from running the
HTMLHandler request handler.

public void request(VSAMRequestInfo requestInfo)
throws VSAMRequestException
{

String flightnumber = null;
int max_seats = 0;
int seats_booked = 0;
String sout = null;
if (requestInfo.isINSERT())
{

firstname = requestInfo.getString(0, 20);
lastname = requestInfo.getString(20, 20);
flightnumber = requestInfo.getNumber(40, 4);
seats = requestInfo.getNumber(44, 4);
smoktmp = requestInfo.getBinary(48, 1);
if(smoktmp.length > 0)

if(smoktmp[0] == 0)
smoker = false;

else
smoker = true;

// now output data to html file
sout = "<tr><td>"+flightnumber+"</td><td>"+firstname+"</td>

<td>"+lastname+"</td><td>"+seats+"</td><td>"+smoker+"</td></tr>";
try {

htmloutput.write(sout);
htmloutput.newLine();

}
catch (Exception ex)
{

System.out.println(
"Exception while writing another line into the HTML file:"+ex);

}
}
System.out.print("."); // print out a progress indicator
this.record_counter++;

}

Figure 28. Request Method of the HTMLHandler

public void finished(byte success) throws VSAMRequestException
{

return;
}

}

Figure 29. Finished Method of the HTMLHandler

VSAM Redirector Server

68 VSE/ESA: e-business Connectors, User’s Guide

Figure 31 shows the output produced by running the HTMLHandler request
handler.

Figure 30. Console Listing from Running the HTMLHandler Request Handler

Figure 31. Output from Running the HTMLHandler Request Handler

VSAM Redirector Server

Chapter 8. Installing the VSAM Redirector Connector 69

70 VSE/ESA: e-business Connectors, User’s Guide

Chapter 9. Customizing the DB2-Based Connector

This chapter describes the customization activities required before the DB2-based
connector can be used, and contains these main sections:
v “Host Installation Activities That Must Be Already Completed”
v “Step 1: Customize CICS TS” on page 72
v “Step 2: Customize TCP/IP” on page 72
v “Step 3: Customize DB2 and Define Sample Database” on page 72
v “Step 4: Set Up for DRDA Support” on page 80
v “Step 5: Set Up Stored Procedure Server and Define to DB2” on page 81
v “Step 6: Set Up for Stored Procedures” on page 82
v “Step 7: Customize the DB2-Based Connector for VSAM Data Access” on page 83
v “Step 8: Customize the DB2-Based Connector for DL/I Data Access” on page 83
v “Step 9: Start DB2, and Start Stored Procedure Server” on page 84
v “Step 10: Install DB2 Connect and Establish Client-Host Connection” on page 85

DB2 Version!
The jobs and examples provided in this chapter use DB2 Server for VSE
Version 7.2 . If you are using a later release of DB2, the jobs and samples
might have a slightly different layout.

Host Installation Activities That Must Be Already Completed
This section provides a summary of the installation activities that must already be
completed on the VSE/ESA host, before you begin to customize the DB2-based
connector (for a more detailed description of these activities, refer to the chapter
“VSE/ESA e-business Connectors” in the VSE/ESA Planning):
v The DB2 Server for VSE must be restored from the VSE/ESA Extended Base

Tape to sub-library PRD2.DB2720. The startup job for the DB2 Server for VSE is
defined for dynamic partition of class S. It is either installed:
– During the initial installation of VSE/ESA 2.7
– Following an FSU (Fast Service Upgrade).

v The AIBTDLI interface must be installed for accessing DL/I data via DB2 Stored
Procedures. To use the AIBTDLI interface:
– DL/I VSE 1.11 or later must be installed.
– APAR PQ39683 for DL/I must be applied.
– Your CICS/DLI system must have all databases (DBDs) that you wish to use

defined in the CICS FCT, together with the AIBTDLI interface.
– Your CICS/DLI system must have:

- all PSBs defined in the DL/I online nucleus DLZNUCxx
- an active MPS system.

– The DL/I task termination exit DLZBSEOT (described in “Task Termination
and Abend Handling” on page 329) must be resident in the SVA.

© Copyright IBM Corp. 2000, 2003 71

v One or more CICS TS systems must be customized for use with the DB2 Server
for VSE.

Step 1: Customize CICS TS
If you have more than one CICS TS running, you must first decide which (one or
more) of your CICS systems is to have access to the DB2 Server for VSE. To
customize a selected CICS TS you must:
v Have journaling active. Use the corresponding DFHSITxx skeleton to set JCT=SP

(for DFHJCTSP) or another suffix.
v Compile the JCT using the modified skeleton DFHJCTSP.
v Define the journal files. For CICSICCF use the provided skeleton SKJOURN. For

PRODCICS use the provided skeleton SKJOUR2. Both are available in VSE/ICCF
library 59.

Step 2: Customize TCP/IP
Ensure that your TCP/IP startup job has the following two values set:
SET WINDOW = 8192
SET MAX_SEGMENT = 700

For editing, use the TCP/IP dialog on your client workstation, or modify the
appropriate startup member in your VSE library.

For details, refer to the TCP/IP for VSE/ESA IBM Program Setup and Supplementary
Information manual.

Step 3: Customize DB2 and Define Sample Database
Step 3 involves running SKDB2VAR (in partition BG), which is the main skeleton
you use for customizing the DB2-based connector. The jobs included in this
skeleton are now described.

Notes:

1. Before starting this step, you must have activated the license key for using DB2.
If not, refer to the VSE/ESA Planning manual for details of how to activate this
key using the skeleton SKUSERBG (contained in ICCF Library 59).

2. Skeleton SKDB2VAR assumes you are using an IBM 3380 disk device for
storage allocations. If you use a different disk device type, you must change
these allocations accordingly (especially in the case of FBA devices).

These are the jobs that skeleton SKDB2VAR runs:
v “Step 3.1: Define User Catalog” on page 73
v “Step 3.2: Catalog New ARISIVAR.Z” on page 73
v “Step 3.3: Job Manager for Preparation / Installation Steps” on page 74
v “Step 3.4: Activate DRDA Server Support” on page 75
v “Step 3.5: Startup Job for Stored Procedure Server” on page 75
v “Step 3.6: Prepare DB2 Sample Database” on page 75
v “Step 3.7: Install DB2 Sample Database” on page 77

Customizing the DB2-Based Connector

72 VSE/ESA: e-business Connectors, User’s Guide

Step 3.1: Define User Catalog
The job DB2DEFCT defines a User Catalog and space on a separate volume.

For the DB2UCAT catalog, the allocated space consists of 150 cylinders.

A standard label is inserted for the new catalog, with the name DB2UCAT. You
must enter your own values for these variable:

- -V001- -
The Id of your volume. This VOLID is also used in job DB2CTVAR.

- -V002- -
The number of tracks allocated for the catalog space. The recommended
allocation is 150 cylinders.

$$ JOB JNM=DB2DEFCT,CLASS=0,DISP=D,NTFY=YES
$$ LST CLASS=Q,DISP=H
// JOB DB2DEFCT DEFINE USER CATALOG DB2UCAT
* THIS JOB WILL TERMINATE IN CASE THE DB2UCAT IS ALREADY DEFINED.
// EXEC IDCAMS,SIZE=AUTO

LISTCAT ALL CATALOG(DB2.USER.CATALOG)
IF LASTCC EQ 8 THEN DO

SET LASTCC = 0
SET MAXCC = 0

DEFINE USERCATALOG(NAME(DB2.USER.CATALOG) -
VOL(--V001--) -
NOTRECOVERABLE -
TRK(15))

DEFINE SPACE(VOLUMES(--V001--) -
CYL(--V002--)) -
CATALOG(DB2.USER.CATALOG)

END
ELSE DO

SET LASTCC = 0
SET MAXCC = 0

END
/*
// OPTION STDLABEL=DELETE
DB2UCAT
/*
// OPTION STDLABEL=ADD
// DLBL DB2UCAT,’DB2.USER.CATALOG’,0,VSAM
/*
// EXEC IESVCLUP,SIZE=AUTO ADD LABEL TO STDLABUP PROC
D DB2UCAT
D DB2.SQLGLOB.MASTER SQLGLOB
A DB2.USER.CATALOG DB2UCAT
A DB2.SQLGLOB.MASTER SQLGLOB DB2UCAT OLD KEEP
/*
/&
$$ EOJ

Step 3.2: Catalog New ARISIVAR.Z
In this step, Job DB2CTVAR first renames the original DB2-supplied ARISIVAR.Z
to ARISIVAR.ORIG, and catalogs the global variable member ARISIVAR.Z. Then
the new ARISIVAR.Z is used to test the installation of the DB2-based connector
and the sample database.

Note that the processing of ARISIVAR.Z is controlled by the DB2 Job Manager.

You start the Job Manager by releasing the job DB2JMGR in the VSE/POWER
reader queue (placed there by skeleton SKDB2VAR). You must release the Job
Manager once for each step: Preparation, Installation (or Migration).

Customizing the DB2-Based Connector

Chapter 9. Customizing the DB2-Based Connector 73

As described in detail in the Program Directory for the DB2 Server for VSE,
ARISIVAR.Z processes many parameters, globals and variables, to define DB2
characteristics and resources.

Major definitions include, for example:
v The DB2 sample database SQLDS which is defined on volume - -V001- -

(variable in skeleton SKDB2VAR).
v The DB2 Server for VSE Help component, the installation of which is controlled

by the following variable:
ARIS72JZ HELP YES

You are recommended to install the DB2 Server for VSE Help (you must replace
- -V003- - with the address of your tape drive). When this variable is processed,
you are requested to mount the corresponding tape (containing the DB2 Help
files). This is the fourth tape (the extra tape) of the Base distribution tapes you
received.

v The creation of DB2 (work) files such as BINDFILE, BINDWFILE, and
SQLGLOB.

v The setting of CICS TS parameters as required for a DB2 environment.

Here are the contents of DB2CTVAR:
$$ JOB JNM=DB2CTVAR,CLASS=0,DISP=D,NTFY=YES
$$ LST CLASS=Q,DISP=H
// JOB DB2CTVAR CATALOG GLOBAL VARIABLE MEMBER FOR DB2
* ORIGINAL ARISIVAR.Z RENAMED TO ARISIVAR.ORIG
// EXEC LIBR,PARM=’MSHP’

ACCESS SUBLIB = PRD2.DB2720
RENAME ARISIVAR.Z:=.ORIG

CATALOG ARISIVAR.Z EOD=&& REPLACE=YES...

(for further details, refer to the sample SKDB2VAR in Library 59

Step 3.3: Job Manager for Preparation / Installation Steps
$$ JOB JNM=DB2JMGR,CLASS=R,DISP=L,NTFY=YES
$$ LST CLASS=Q,DISP=H
// JOB DB2JMGR DB2 JOB MANAGER
// LIBDEF *,SEARCH=(PRD2.DB2720)
// EXEC REXX=ARISIMGR
/*
/&
$$ EOJ

Job DB2JMGR is used in “Step 3.6: Prepare DB2 Sample Database” on page 75 and
“Step 3.7: Install DB2 Sample Database” on page 77.

Customizing the DB2-Based Connector

74 VSE/ESA: e-business Connectors, User’s Guide

Step 3.4: Activate DRDA Server Support
This job will be later used in Step 4.
$$ JOB JNM=DB2DRDA,CLASS=R,DISP=L,NTFY=YES
$$ LST CLASS=Q,DISP=H
// JOB DB2DRDA ACTIVATE DRDA SERVER SUPPORT
* **
* LINK EDIT RDS WITH DRDA SERVER SUPPORT
* **
// LIBDEF *,SEARCH=PRD2.DB2720
// LIBDEF PHASE,CATALOG=PRD2.DB2720
// OPTION CATAL
INCLUDE ARISLKRA
// EXEC PGM=LNKEDT,PARM=’MSHP,AMODE=31,RMODE=ANY’
/*
/&
$$ EOJ

Step 3.5: Startup Job for Stored Procedure Server
In this step, skeleton SKDB2VAR loads the job to start the Stored Procedure Server,
into the VSE/POWER reader queue.
$$ JOB JNM=PSERVER,CLASS=0,DISP=L
$$ LST CLASS=W,DISP=H
// JOB PSERVER
// LIBDEF PROC,SEARCH=(PRD2.DB2720)
// DLBL SQLGLOB,’DB2.SQLGLOB.MASTER’,,VSAM,CAT=DB2UCAT,DISP=(OLD,KEEP)
// EXEC PROC=ARIS72PL *-- DB2 PROD. LIBRARY ID PROC
// EXEC PROC=ARIS72DB *-- DB2 DATABASE ID PROC
// EXEC ARIDBS,SIZE=AUTO
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
CREATE PSERVER SPSERV01 AUTOSTART YES;
/*
/&
$$ EOJ

Step 3.6: Prepare DB2 Sample Database
This job uses the preparation-related global definitions contained within
ARISIVAR.Z (catalogued in Step 3.2). To run the preparation step, DB2 Job
Manager (DB2JMGR) must be released. Refer to the console listing below for
details of how to run this step.

Note: You must enter a 0 (partition BG) to run the preparation job – in the sample
below, the DB2 Job Manager runs in partition F4, and DB2 Server for VSE
Version 7.2 is used.

r rdr,db2jmgr
AR 0015 1C39I COMMAND PASSED TO VSE/POWER
F1 0001 1R88I OK
F4 0001 1Q47I F4 DB2JMGR 00249 FROM (HEHA) , TIME= 9:28:39
F4 0004 // JOB DB2JMGR DB2 JOB MANAGER

DATE 07/07/2001, CLOCK 09/28/39
F4 0004 ***
F4 0004 PREPARE FOR INSTALLATION/MIGRATION PROCESS
F4 0004 ***
F4 0004 ENTER INSTALLATION LIBRARY NAME (PRD2.DB2720 default)
F4-0004
4
F4 0004 YOU HAVE SELECTED PRD2.DB2720
F4 0004 PRESS ENTER TO CONTINUE OR ENTER ANY OTHER KEY TO
F4 0004 MODIFY YOUR SELECTION:
F4-0004
4
F4 0004 WHICH CLASS WILL YOU USE TO RUN THE PROCESS ? (4 default)

Customizing the DB2-Based Connector

Chapter 9. Customizing the DB2-Based Connector 75

F4-0004
4 0
F4 0004 YOU HAVE SELECTED 0
F4 0004 PRESS ENTER TO CONTINUE OR ENTER ANY OTHER KEY TO
F4 0004 MODIFY YOUR SELECTION:
F4-0004
4
F4 0004 PLEASE SELECT ONE OF THE FOLLOWING :
F4 0004 FOR PREPARATION.... ENTER (P)
F4 0004 FOR INSTALLATION... ENTER (I)
F4 0004 FOR MIGRATION...... ENTER (M)
F4-0004
F4-0004
4 p
F4 0004 IF PREPARATION FOR:
F4 0004 INSTALLATION... PLEASE ENTER (I)
F4 0004 MIGRATION...... PLEASE ENTER (M)
F4-0004
4 i
F4 0004 DO YOU WANT TO EXECUTE ALL JOBS? {Y|N-default}
F4-0004
4 y
F4 0004
F4 0004 ************ JOB ARIS72JD ********************
F4 0004 * DEFINE DB2720 PROGRAMS AND TRANSACTIONS
F4 0004 **
F4 0004 JOB ARIS72JD IS OPTIONAL.
F4 0004 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F4-0004
4 y
BG 0001 1Q47I BG ARIS72JD 00281 FROM (HEHA) , TIME=11:12:37
BG 0000 * ** JOB JNM=ARIS72JD,CLASS=0,DISP=D
BG 0000 * ** LST CLASS=V,DISP=D,DEST=(,XXXXXXX)...
F4 0004 JOB ARIS729D IS OPTIONAL.
F4 0004 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F4-0004
4 y
BG 0001 1Q47I BG ARIS729D 00285 FROM (HEHA) , TIME=11:13:10
BG 0000 // JOB ARIS729D
BG 0000 * ***
BG 0000 * ARIS729D: DEFINE VSAM CLUSTER FOR THE BINDWKF FILE
BG 0000 * ***
BG 0000 EOJ ARIS729D MAX.RETURN CODE=0000
BG 0000 EOJ NO NAME
BG 0001 1Q34I BG WAITING FOR WORK
F4 0004 **
F4 0004 * Job ARIS729D executed successfully
F4 0004 **
F4 0004
F4 0004 ************ JOB ARISIQBD ********************
F4 0004 * ISQL BIND FILE CONVERSION
F4 0004 **
F4 0004 JOB ARISIQBD IS OPTIONAL.
F4 0004 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F4-0004
4 y
BG 0001 1Q47I BG ARISIQBD 00286 FROM (HEHA) , TIME=11:13:20
BG 0000 // JOB ARISIQBD -- ISQL BIND FILE CONVERSION
BG-0000 // PAUSE
0
BG 0000 EOJ ARISIQBD MAX.RETURN CODE=0000
BG 0000 EOJ NO NAME
BG 0001 1Q34I BG WAITING FOR WORK
F4 0004 **
F4 0004 * Job ARISIQBD executed successfully
F4 0004 **

Customizing the DB2-Based Connector

76 VSE/ESA: e-business Connectors, User’s Guide

F4 0004
F4 0004 ************ JOB ARIS72CD ********************
F4 0004 * DB2 SERVER STARTER DATABASE VSAM DEFINITIONS
F4 0004 **
BG 0001 1Q47I BG ARIS72CD 00294 FROM (HEHA) , TIME=11:28:08
BG 0000 // JOB ARIS72CD DB2 FOR VSE STARTER DB VSAM DEFINITIONS
BG 0000 EOJ ARIS72CD MAX.RETURN CODE=0
F4 0004
F4 0004 ************ JOB ARISSTDL ********************
F4 0004 * ADD NEW LABELS TO STANDARD LABELS
F4 0004 **
F4 0004 JOB ARISSTDL IS OPTIONAL.
F4 0004 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F4-0004
4 y
BG 0001 1Q47I BG ARISSTDL 00297 FROM (HEHA) , TIME=11:30:06
BG 0000 // JOB ARISSTDL
BG 0000 EOJ ARISSTDL
BG 0000 EOJ NO NAME
BG 0001 1Q34I BG WAITING FOR WORK
F4 0004 READ CONSOLE FOR DETAILS.
F4 0004 EOJ DB2JMGR MAX.RETURN CODE=0000

Step 3.7: Install DB2 Sample Database
This job uses the installation-related global definitions contained within
ARISIVAR.Z (catalogued in Step 3.2). To run the installation step, DB2 Job Manager
(DB2JMGR) must be released. Refer to the console listing below for details of how
to run this step.

Note: You must run this installation step in a static partition (the example below
uses static partition F4) – in the sample below, the DB2 Job Manager runs in
partition F7.

r rdr,db2jmgr
AR 0015 1C39I COMMAND PASSED TO VSE/POWER
F1 0001 1R88I OK
F7 0007 // JOB DB2JMGR DB2 JOB MANAGER
F7 0007 ***
F7 0007 PREPARE FOR INSTALLATION/MIGRATION PROCESS
F7 0007 ***
F7 0007 ENTER INSTALLATION LIBRARY NAME (PRD2.DB2720 default)
F7-0007
7
F7 0007 YOU HAVE SELECTED PRD2.DB2720
F7 0007 PRESS ENTER TO CONTINUE OR ENTER ANY OTHER KEY TO
F7 0007 MODIFY YOUR SELECTION:
F7-0007
7
F7 0007 WHICH CLASS WILL YOU USE TO RUN THE PROCESS ? (4 default)
F7-0007
7 4
F7 0007 YOU HAVE SELECTED 4
F7 0007 PRESS ENTER TO CONTINUE OR ENTER ANY OTHER KEY TO
F7 0007 MODIFY YOUR SELECTION:
F7-0007
7
F7 0007 PLEASE SELECT ONE OF THE FOLLOWING :
F7 0007 FOR PREPARATION.... ENTER (P)
F7 0007 FOR INSTALLATION... ENTER (I)
F7 0007 FOR MIGRATION...... ENTER (M)
F7-0007
7 i
F7 0007 DO YOU WANT TO EXECUTE ALL JOBS? {Y|N-default}
F7-0007
7 y

Customizing the DB2-Based Connector

Chapter 9. Customizing the DB2-Based Connector 77

F7 0007
F7 0007 ************ JOB ARISBDID ********************
F7 0007 * SETUP THE DBNAME DIRECTORY
F7 0007 **
F7 0007 JOB ARISBDID IS OPTIONAL.
F7 0007 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F7-0007
7 y
F4 0001 1Q47I F4 ARISBDID 00300 FROM (HEHA) , TIME=11:36:54
F4 0004 // JOB ARISBDID -- DBNAME DIRECTORY SERVICE GENERATION
F4 0004 * ***
F4 0004 * *
F4 0004 * THIS JCL EXECUTES STEPS TO GENERATE THE DBNAME DIRECTORY SERVICE *
F4 0004 * ROUTINE (ARICDIRD.PHASE). *
F4 0004 * *
F4 0004 * STEP 1 EXECUTES THE PROCEDURE ARICCDID FOR MIGRATION *
F4 0004 * OR ARICBDID FOR INSTALLATION TO READ THE DBNAME *
F4 0004 * DIRECTORY SOURCE MEMBER ARISDIRD.A FROM THE PRODUCTION LIBRARY, *
F4 0004 * AND GENERATES THE ASSEMBLER VERSION OF ARISDIRD ON SYSPCH. *
F4 0004 * *
F4 0004 * ***
F4 0004 * ***
F4 0004 * ARISBDID STEP 1 -- BUILD ASSEMBLER VERSION OF ARISDIRD *
F4 0004 * ***
F4 0004 * SQL/DS DBNAME DIRECTORY BUILT SUCCESSFULLY
F4 0004 EOJ ARISBDID MAX.RETURN CODE=0000
F7 0007 **
F7 0007 * Job ARISBDID executed successfully
F7 0007 **
F7 0007
F7 0007 ************ JOB ARIS72BD ********************
F7 0007 * LINK EDIT DB2 SERVER ONLINE SUPPORT COMPONENTS
F7 0007 **
F7 0007 JOB ARIS72BD IS OPTIONAL.
F7 0007 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F7-0007
7 y
F4 0001 1Q47I F4 ARIS72BD 00301 FROM (HEHA) , TIME=11:37:07
F4 0004 // JOB ARIS72BD LINK EDIT DB2 FOR VSE ONLINE SUPPORT COMPONENTS
F4 0004 * **
F4 0004 * ARIS090D: LINK EDIT SQL/DS ONLINE RESOURCE ADAPTER CONTROL
F4 0004 * **
F4 0004 * **
F4 0004 * ARIS140D: LINK EDIT ISQL
F4 0004 * **
F4 0004 * **
F4 0004 * ARIS150D: LINK EDIT ISQL ITRM TERMINAL TRANSACTION
F4 0004 * **
F4 0004 * **
F4 0004 * ARIS160D: LINK EDIT ISQL ITRM TERMINAL EXTENSION PROGRAM
F4 0004 * **
F4 0004 EOJ ARIS72BD MAX.RETURN CODE=0000
F4 0004 EOJ NO NAME
F4 0001 1Q34I F4 WAITING FOR WORK
F7 0007 **
F7 0007 * Job ARIS72BD executed successfully
F7 0007 **
F7 0007
F7 0007 ************ JOB ARIS72DD ********************
F7 0007 * DATABASE DBGEN AND SET UP
F7 0007 **
F4 0001 1Q47I F4 ARIS72DD 00302 FROM (HEHA) , TIME=11:37:20
F4 0004 // JOB ARIS72DD DATABASE DBGEN AND SET UP
F4 0004 * **
F4 0004 * ARIS72SL: DB2 SERVICE/PRODUCTION LIBRARY DEFINITION
F4 0004 * **
F4 0004 * **

Customizing the DB2-Based Connector

78 VSE/ESA: e-business Connectors, User’s Guide

F4 0004 * ARIS72DB: DB2 STARTER DATABASE IDENTIFICATION
F4 0004 * **
F4 0004 * **
F4 0004 * ARIS030D: GENERATE THE STARTER DATABASE
F4 0004 * **
F4 0004 ARI0025I The program ARISQLDS is loaded at 400078.
F4 0004 ARI0025I The program ARICMOD is loaded at 564D80.
F4 0004 ARI0025I The program ARIXSXR is loaded at 581C00.
F4-0004 ARI0919D Database generation invoked.

The database will be formatted and the original
database destroyed.

Enter either:
DBGEN to continue, or
CANCEL to cancel.

4 dbgen
F4 0004 System identification at DB generation = DB2 VSE & VM 7.2
F4 0004...
F7 0007 **
F7 0007 * Job ARIS72DD executed successfully
F7 0007 **
F7 0007
F7 0007 ************ JOB ARIS72ED ********************
F7 0007 * INSTALL DATABASE COMPONENTS (ISQL, FIPS FLAGGER)
F7 0007 **
F7 0007 JOB ARIS72ED IS OPTIONAL.
F7 0007 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F7-0007
7 y
F4 0001 1Q47I F4 ARIS72ED 00303 FROM (HEHA) , TIME=11:45:41
F4 0004 // JOB ARIS72ED INSTALL DATABASE COMPONENTS
F4 0004 * **
F4 0004 * ARIS72SL: DB2 SERVICE/PRODUCTION LIBRARY DEFINITION
F4 0004 * **
F4 0004 * **
F4 0004 * ARIS72DB: DB2 STARTER DATABASE IDENTIFICATION
F4 0004 * **
F4 0004 * **
F4 0004 * ARIS080D: GRANT SCHEDULE AUTHORITY TO DBDCCICS
F4 0004 * **...
F4 0001 1Q34I F4 WAITING FOR WORK
F7 0007 **
F7 0007 * Job ARIS72WD executed successfully
F7 0007 **
F7 0007 ************ JOB ARIS72HZ ********************
F7 0007 * ENLARGE HELP TEXT DBSPACE
F7 0007 **
F7 0007 JOB ARIS72HZ IS OPTIONAL.
F7 0007 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F7-0007
7 n
F7 0007
F7 0007 ************ JOB ARIS72JZ ********************
F7 0007 * INSTALL LANGUAGE
F7 0007 **
F7 0007 JOB ARIS72JZ IS OPTIONAL.
F7 0007 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F7-0007
7 n
F7 0007
F7 0007 ************ JOB ARIS72FD ********************
F7 0007 * GRANT SCHEDULE AUTHORITY
F7 0007 **
F7 0007 JOB ARIS72FD IS OPTIONAL.
F7 0007 WOULD YOU LIKE TO RUN IT? {Y|N-Default}

Customizing the DB2-Based Connector

Chapter 9. Customizing the DB2-Based Connector 79

F7-0007
7 y
F4 0001 1Q47I F4 ARIS72FD 00305 FROM (HEHA) , TIME=11:47:09
F4 0004 // JOB ARIS72FD GRANT SCHEDULE FOR DFHSIT APPLID
F4 0004 * **
F4 0004 * ARIS72PL: DB2 PRODUCTION LIBRARY DEFINITION
F4 0004 * **
F4 0004 * **
F4 0004 * ARIS72DB: DB2 STARTER DATABASE IDENTIFICATION
F4 0004 * **
F4 0004 * ***
F4 0004 * ARISDBSD: EXECUTE THE DBS UTILITY IN SQL/DS SINGLE USER MODE
F4 0004 * ***...
F7 0007
F7 0007 ************ JOB ARIS6ASD ********************
F7 0007 * SQL ASSEMBLER SAMPLE PROGRAM
F7 0007 **
F7 0007 JOB ARIS6ASD IS OPTIONAL.
F7 0007 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F7-0007
7 y
F7 0001 1Q47I F7 ARIS6ASD 00318 FROM (HEHA) , TIME=12:33:17
F7 0007 // JOB ARIS6ASD SQL ASSEMBLER SAMPLE PROGRAM
F7 0007 * STEP 1 - PREP
F7 0007 1T20I SYS079 HAS BEEN ASSIGNED TO X’FED’ (PERM)
F7 0007 1T20I SYSPCH HAS BEEN ASSIGNED TO X’FED’ (PERM)
F7 0007 * STEP 2 - ASSEMBLE
F7 0007 1T20I SYSIPT HAS BEEN ASSIGNED TO X’FEC’ (PERM)
F7 0007 * STEP 3 - LINK EDIT
F7 0007 * STEP 4 - EXECUTE THE SAMPLE PROGRAM
F7 0007 EOJ ARIS6ASD MAX.RETURN CODE=0000
F7 0007 ************ JOB ARIS6CD ********************
F7 0007 * SQL C/370 SAMPLE PROGRAM
F7 0007 **
F7 0007 JOB ARIS6CD IS OPTIONAL.
F7 0007 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F7-0007
7 n
F7 0007
F7 0007 ************ JOB ARIS6FTD ********************
F7 0007 * SQL FORTRAN SAMPLE PROGRAM
F7 0007 **
F7 0007 ************ JOB ARIS6PLD ********************
F7 0007 * SQL PL/I SAMPLE PROGRAM
F7 0007 **
F7 0007 JOB ARIS6PLD IS OPTIONAL.
F7 0007 WOULD YOU LIKE TO RUN IT? {Y|N-Default}
F7-0007
7 n
F7 0007 INSTALLATION STEP HAS ENDED SUCCESSFULLY....
F7 0007 PLEASE READ THE PROGRAM DIRECTORY AND PERFORM NECESSARY
F7 0007 STEPS MANUALLY.
F7 0007 EOJ DB2JMGR MAX.RETURN CODE=0000

Step 4: Set Up for DRDA Support
This step, together with Steps 5 and 6, prepares your VSE/ESA environment for
use with the DB2-based connector.

To create the definitions required for the DRDA setup, release job DB2DRDA
placed by skeleton SKDB2VAR into the VSE/POWER reader queue.
* $$ JOB JNM=DB2DRDA,CLASS=R,DISP=L,NTFY=YES
* $$ LST CLASS=Q,DISP=H
// JOB DB2DRDA ACTIVATE DRDA SERVER SUPPORT

Customizing the DB2-Based Connector

80 VSE/ESA: e-business Connectors, User’s Guide

* **
* LINK EDIT RDS WITH DRDA SERVER SUPPORT
* **
// LIBDEF *,SEARCH=PRD2.DB2720
// LIBDEF PHASE,CATALOG=PRD2.DB2720
// OPTION CATAL
INCLUDE ARISLKRA
// EXEC PGM=LNKEDT,PARM=’MSHP,AMODE=31,RMODE=ANY’
/*
/&
* $$ EOJ

Step 5: Set Up Stored Procedure Server and Define to DB2
Step 5 is divided into:
v “Step 5.1: Set Up the Stored Procedure Server”
v “Step 5.2: Define Stored Procedure Server to DB2” on page 82

Step 5.1: Set Up the Stored Procedure Server
The Stored Procedure Server runs per default in a dynamic partition of class R with a
partition size of 8MB. You can, however, configure the job to run in another
partition that has a larger partition size (8MB is the minimum recommended).

Use skeleton SKDB2SPS (located in VSE/ICCF library 59) to catalog the startup
job SPSERV01 for the Stored Procedure Server into PRD2.DB2720. This job is shown
below.
$$ JOB JNM=DB2SPSCA,CLASS=0,DISP=D,NTFY=YES
$$ LST CLASS=Q,DISP=H
// JOB DB2SPSCA CATALOG STORED PROCEDURE SERVER JOB
* ** C
* * * C
* * THIS JOB WILL CATALOG THE JOB THAT WILL RUN IN THE * C
* * STORED PROCEDURE SERVER PARTITION. * C
* * SERVER PARTITION SHOULD BE A DYNAMIC PARTITION OF AT LEAST * C
* * 8MB IN SIZE, DEFAULT IS CLASS R. * C
* * MODIFY JCL AS FOR YOUR NEEDS. CLASS IN THE POWER PUN CARD * C
* * IS THE PARTITION WHERE THE SERVER RUNS. * C
* * THE STORED PROCEDURE LIBRARY PRD2.DB2STP SHOULD BE IN THE * C
* * SEARCH CHAIN. * C
* ** C

C
AFTER YOU HAVE MODIFIED THE SKELETON ENTER ’§DTRSEXIT’ C
FROM THE EDITOR’S COMMAND LINE. C
THIS MACRO WILL DELETE ALL DESCRIPTIVE TEXT FROM THIS FILE, C
BY DELETING ALL LINES WHICH ARE MARKED WITH THE CHARACTER C C
IN COLUMN 71. C

C
// EXEC LIBR,PARM=’MSHP’

ACCESS SUBLIB = PRD2.DB2720
CATALOG SPSERV01.A EOD=&& REPLACE=YES
. $$ PUN JNM=SPSERV01,DISP=I,CLASS=R
// JOB SPSERV01 START DB2 STORED PROCEDURE SERVER 01
// OPTION NODUMP,NOSYSDUMP
* // EXEC PROC=ARIS72SL
// ASSGN SYS098,SYSPCH
// LIBDEF *,SEARCH=(PRD2.DB2STP,PRD2.DB2720,PRD2.SCEEBASE,PRD1.BASE)

ON $RC > 0 GOTO END
// EXEC PGM=ARISPRC,SIZE=1M
/.END
/*
/&

Customizing the DB2-Based Connector

Chapter 9. Customizing the DB2-Based Connector 81

&&
/*
/&
$$ EOJ

A Stored Procedure Server is always dedicated to a particular DB2 Server for VSE
which starts an associated Stored Procedure Server during system startup.

Step 5.2: Define Stored Procedure Server to DB2
You can define the Stored Procedure Server SPSERV01 using:
v This DB2 command:

CREATE PSERVER SPSERV01 AUTOSTART YES

v This batch job, which you can run at this point in the installation:
* $$ JOB JNM=PSERVER,CLASS=0,DISP=D
* $$ LST CLASS=W,DISP=H,DEST=(,xxxxx)
// JOB PSERVER
// LIBDEF PROC,SEARCH=(PRD2.DB2720)
// DLBL SQLGLOB,’DB2.SQLGLOB.MASTER’,,VSAM,CAT=DB2UCAT,DISP=(OLD,KEEP)
// EXEC PROC=ARIS72PL *-- DB2 PROD. LIBRARY ID PROC
// EXEC PROC=ARIS72DB *-- DB2 DATABASE ID PROC
// EXEC ARIDBS,SIZE=AUTO
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
CREATE PSERVER SPSERV01 AUTOSTART YES;
/*
/&
* $$ EOJ

Step 6: Set Up for Stored Procedures
Stored procedures need to be catalogued into the system library PRD2.DB2STP.

You must compile your stored procedures with the reentrant parameter. For an
example of how to do so in a COBOL program, see the RENT option used in
skeleton SKDLICMP (which is located in VSE/ICCF library 59).

To create definitions for Stored Procedures, use the skeletons listed under “Step 7:
Customize the DB2-Based Connector for VSAM Data Access” on page 83 and “Step
8: Customize the DB2-Based Connector for DL/I Data Access” on page 83.

Stored Procedures are always dedicated to a particular Stored Procedure Server.

Customizing the DB2-Based Connector

82 VSE/ESA: e-business Connectors, User’s Guide

Step 7: Customize the DB2-Based Connector for VSAM Data Access
If you want to access VSAM data via the DB2-based connector, follow the steps
below to create and define the Stored Procedures. The skeletons are provided in
VSE/ICCF library 59.
v Step 7.1: Use skeleton SKCRESTP to create Stored Procedures for VSAM data

access and define them to DB2.
v Step 7.2: Use skeleton SKCPSTP to compile and link-edit Stored Procedures

written in C for VSAM data access.
v Step 7.3: Use skeleton SKVSSAMP to define a VSE/VSAM cluster and load

sample data into it.

Step 8: Customize the DB2-Based Connector for DL/I Data Access
If you want to access DL/I data via the DB2-based connector, you must first install
the VSE/ESA optional program DL/I VSE 1.11. You must also ensure that APAR
PQ39683 has been applied to get the connector support. Then you can follow the
steps below. The skeletons are located in VSE/ICCF library 59.
v Step 8.1: Use skeleton SKDLISMP to define and load a DL/I sample database.
v Step 8.2: Use skeleton SKDLISTP to create DB2 Stored Procedures used for

accessing the DL/I sample database.
v Step 8.3: Use skeleton SKDLICMP to compile and linkedit COBOL DB2 Stored

Procedures used for accessing the DL/I sample database.
v Step 8.4: Customize CICS TS. To access DL/I data via the DB2-based connector,

you must customize a CICS TS - DL/I online system:
1. Configure your CICS/DLI online system, as described in:

– Part 6 of the DL/I Resource Definition and Utilities manual.
– The section “CICS – DL/I Tables – Requirements” of the DL/I Resource

Definition and Utilities manual.
– Section “Migrating to DL/I VSE 1.11 and the CICS Transaction Server for

VSE/ESA 1.1” of the DL/I 1.11 Release Guide.
2. Define the sample database STDIDBP and other databases you wish to

access, to CICS (using either the CICS FCT or transaction CEDA).
3. Provide labels for the sample database STDIDBP (// DLBL STDIDBC ...) and

other databases you wish to access.
4. Create a new DL/I online nucleus (DLZACT generation), by including all

DL/I online programs and PSBs that you wish to use. The CICS/DLI mirror
program DLZBPC00 must be authorized for PSB STBICLG, used for
accessing the DL/I sample database. The CICS/DLI mirror program
DLZBPC00 must also be authorized for any other PSBs you wish to use for
accessing other DL/I databases.

5. Account for an increased number of concurrent DLZBPC00 mirror tasks in
the CICS/DLI online system: you must accordingly adjust the MAXTASK
and CMAXTSK parameters in the DLZACT generation.

6. Load the DL/I exit routine DLZBSEOT into the SVA.
7. Start an MPS system.

DLZMPX00 is SVA-eligible, and is used for accessing DL/I data via the AIBTDLI
interface (see “Overview of the AIBTDLI Interface” on page 321 for an
explanation of DLZMPX00 and the AIBTDLI interface). The AIBTDLI interface
uses DLZMPX00 from the SVA (if it resides there), or loads DLZMPX00 into
partition space and uses it from there.

Customizing the DB2-Based Connector

Chapter 9. Customizing the DB2-Based Connector 83

Step 9: Start DB2, and Start Stored Procedure Server
Run skeleton SKDB2STR to place the startup job DB2START into the
VSE/POWER reader queue. This skeleton is shown below.
* $$ JOB JNM=DB2START,CLASS=S,DISP=L,NTFY=YES
* $$ LST CLASS=Q,DISP=H
// JOB DB2START DB2 SERVER STARTUP JOB
// LIBDEF PROC,SEARCH=(PRD2.DB2720,PRD2.DB2STP)
// LIBDEF PHASE,SEARCH=(PRD1.BASE,PRD2.SCEEBASE,PRD2.DB2720, X

PRD2.DB2STP)
// EXEC PROC=ARIS72SL *-- DB2 PRODUCTION LIBRARY ID PROC
// EXEC PROC=ARIS72DB *-- DB2 DATABASE ID PROC
// ASSGN SYS098,SYSPCH *-- DB2 ENABLE POWER FOR STORED PROC HANDLER
// EXEC ARISQLDS,SIZE=AUTO,PARM=’TCPPORT=446,NCUSERS=05,DBNAME=SQLDS, X

DSPLYDEV=B,RMTUSERS=10’
/*
/&
* $$ EOJ

You start the DB2 Server for VSE by releasing DB2START. The DB2 Server for VSE
subsequently starts the Stored Procedure Server via startup job SPSERV01 retrieved
from PRD2.DB2720. You may include DB2START in SKJCL1 for automatic startup
processing (also refer to “Step 1: Customize CICS TS” on page 72).

DB2START requires that TCP/IP is running. To ensure that TCP/IP is running, you
can insert the following job step in DB2START, before the EXEC ARISQLDS
statement:
// EXEC REXX=IESWAITR,PARM=’TCPIP00’
/*

where TCPIP00 is the name of your TCP/IP startup job.

For further startups, you might consider opening the Sample database by inserting
the CIRB transaction into your CICS TS startup job, as shown below:
// EXEC DFHSIP,SIZE=DFHSIP,PARM=’SIT=C3,START=COLD,SEC=NO,STATRCD=OFF,S*

VA=NO,NEWSIT=YES,DSALIM=8M,EDSALIM=30M,SI’,DSPACE=2M,OS3*
90

/*
CIRB PASSWORD,8,XXX03,1,GER,PRODDBI
/*

Customizing the DB2-Based Connector

84 VSE/ESA: e-business Connectors, User’s Guide

Step 10: Install DB2 Connect and Establish Client-Host Connection
To finally establish a connection from the client to the VSE/ESA host, you must
install DB2 Connect Version 6 Release 1 or later, on your middle-tier (if not already
installed). You must then configure DB2 Connect to enable it to access DB2 data
stored on the VSE/ESA host. To do so, you can use either use the Client
Configuration Assistant (CCA), or the DB2 command-line interface, as described below.

The sample database sqlds is stored on the VSE/ESA host, and is used together
with the DB2-Based Connector. To define the sqlds database to DB2 Connect on
the middle-tier so that it has the alias db2vsewm, you must:
1. Define the communication protocol between DB2 Connect on the middle-tier,

and the database (sqlds) residing on DB2 Server for VSE. To do so, you define
a node, as follows:
db2 catalog protocol node nodename remote ip-addr server port-nr

For the DB2-Based Connector samples (the DL/I applet and VSAM applet), you
would enter a command such as:
db2 catalog tcpip node tcpvse remote 9.111.122.33 server 446

2. Define the entry for the Database Connection Services (DCS). To do so, use this
command:
db2 catalog dcs database dcs-name as vse-dbname

For the DB2-Based Connector samples (the DL/I applet and VSAM applet) you
would enter a command such as:
db2 catalog dcs database dcsdb as sqlds

3. Define the alias used by the DB2-Based Connector samples. To do so, use this
command:
db2 catalog dcs-name as vse-alias-dbname at node nodename authentication dcs

For the DB2-Based Connector samples (the DL/I applet and VSAM applet) you
would enter a command such as:
db2 catalog dcsdb as db2vsewm at node tcpvse authentication dcs

After you have completed the definition of the database sqlds to DB2 Connect,
you must now execute the bind step:
db2 bind path@ddcsvse.lst blocking all sqlerror continue messages msg-file
grant public

For example, for Windows NT/2000/XP you would enter:
db2 bind db2\bnd\@ddcsvse.lst blocking all sqlerror continue messages log.msg
grant public

For detailed information on how to install and customize DB2 Connect, refer to
the:
v DB2 Connect User’s Guide, SC09-2838.

Customizing the DB2-Based Connector

Chapter 9. Customizing the DB2-Based Connector 85

v DB2 home page at: http://www.ibm.com/db2 which has links to most manuals
covering DB2. By selecting Library and then DB2 Publications you can browse
most manuals (in PDF, Postscript, and/or HTML format) concerning both DB2
Server for VSE and DB2 Connect.

Customizing the DB2-Based Connector

86 VSE/ESA: e-business Connectors, User’s Guide

Chapter 10. Configuring the VSAM-Via-CICS Service

Until VSE/ESA 2.6, if a VSAM cluster was opened for update by CICS, the VSE
Connector Server and DB2 Stored Procedures could only access the same VSAM
cluster in read-only mode, unless the VSAM shareoption 4 was used. Using VSAM
shareoption 4 resulted in performance degradation.

From VSE/ESA 2.6 onwards and using the VSAM-via-CICS service, the VSE
Connector Server and DB2 Stored Procedures can access VSAM data without the
restriction that you must use VSAM shareoption 4.

VSAM clusters must be opened only once by CICS. The sharing problem no longer
exists, and use of VSAM shareoption 4 is no longer required.

This chapter describes how you can take advantage of this performance
improvement. It contains these main sections:
v “Configuring the IBM-Supplied CICS System”
v “Configuring a Further CICS System for VSAM-Via-CICS” on page 88
v “How the VSAM-Via-CICS Service Works” on page 89
v “CICS Transactions for Use with VSAM-Via-CICS” on page 89

Configuring the IBM-Supplied CICS System
These CICS programs are included for accessing VSAM via CICS:
v IESCVSRV (server task)
v IESCVMIR (mirror task)
v IESCVSTA (start transaction)
v IESCVSTI (internal start transaction)
v IESCVSTP (stop transaction)

These file types are supported by the VSAM-via-CICS service:
v ESDS
v KSDS
v RRDS
v KSDS-PATH
v ESDS-PATH

To use the VSAM-via-CICS service, you must therefore:
1. Define the VSAM clusters that you wish to access to CICS. To do so, use the

CEDA DEFINE transaction. Ensure that the VSAM clusters are defined (using CEDA
DEFINE) so that:
v All VSAM clusters are enabled.
v For read-only access, the VSAM clusters are readable and browsable.
v For write access, the VSAM clusters are addable, updateable, and

deleteable.
2. Ensure that the module IESCVSVA.PHASE is loaded in the SVA, before you

start:
v The VSAM-via-CICS service
v CICS

© Copyright IBM Corp. 2000, 2003 87

3. Ensure the VSAM-via-CICS service is active. The IBM-supplied CICS system is
configured so that this service will be started automatically. If you wish to start
this service yourself, use transaction ICVA to do so. To stop the VSAM-via-CICS
service, use transaction ICVP.

4. Ensure that the applications that are to access VSAM clusters via CICS (either
VSE Connector Client applications, or applications that call DB2 Stored
Procedures) use these naming conventions:
v Catalog File ID must be named as:

#VSAM.#CICS.CICS applid

For example, #VSAM.#CICS.DBDCCICS
v Cluster File ID must be the same as the one you used for CICS (consisting of

7-characters).

Here is an example of how to use these naming conventions. Assume a VSAM
cluster exists with the name MY.TEST.CLUSTER, and that this cluster resides in
the VSAM catalog MY.USER.CATALOG. The file is defined as MYTEST in the CICS
system that has applid DBDCCICS.

To access file MYTEST from either a VSE Connector Client application or an
application calling DB2 Stored Procedures, you would use these mapping
names:
Catalog File ID: #VSAM.#CICS.DBDCCICS
Cluster File ID: MYTEST

The only change that you therefore must make to your existing programs (VSE
Connector Client applications, or applications calling DB2 Stored Procedures) is to
ensure that these programs use the naming conventions for VSAM mapping, as
described above.

To optimize performance, you can:
v Access VSAM clusters in batch for read commands, using the original VSAM

name.
v Access VSAM clusters using the VSAM-via-CICS service for write commands,

using the VSAM-via-CICS service name.

Configuring a Further CICS System for VSAM-Via-CICS
From VSE/ESA 2.6 onwards, each shipped CICS system is configured by default so
that the VSAM-via-CICS service is active. Therefore, you are not required to
perform any customization activities to other CICS systems shipped from
VSE/ESA 2.6 onwards.

However, if you wish to configure a CICS system that was shipped before VSE/ESA
2.6 to make use of the VSAM-via-CICS service, you must:
1. Define the following programs (providing they are not already defined) in your

CICS in the same way as they are defined in the IBM-supplied CICS:
v IESCVSRV (server task)
v IESCVMIR (mirror task)
v IESCVSTA (start transaction)
v IESCVSTI (internal start transaction)
v IESCVSTP (stop transaction)

2. Define the following transactions (providing they are not already defined) in
your CICS in the same way as they are defined in the IBM-supplied CICS:

VSAM-Via-CICS

88 VSE/ESA: e-business Connectors, User’s Guide

v ICVS
v ICVM
v ICVA
v ICVP

(For details of these transactions, see “CICS Transactions for Use with
VSAM-Via-CICS”).

3. If you wish the VSAM-via-CICS service to be automatically started, you must:
a. Add this statement to the CICS PLT table DFHPLTPI (as the last statement

in the table):
DFHPLT TYPE=ENTRY, PROGRAM=IESCVSTI

b. Add this statement to the CICS PLT table DFHPLTSD (as the first statement
in the table):
DFHPLT TYPE=ENTRY, PROGRAM=IESCVSTP

4. Ensure that the IESCVSVA.PHASE is loaded into the SVA (the batch-side
support for VSAM access via CICS resides in $IESCVBA.PHASE), using load
list $SVACONN.

How the VSAM-Via-CICS Service Works
The VSAM-via-CICS service works in this way:
1. A VSE Connector Client application or an application calling a DB2 Stored

Procedure issues a VSAM-access request.
2. The request is sent to the batch partition where the VSE Connector Server or

DB2 Stored Procedure is running.
3. The request is forwarded to CICS via XPCC (cross-partition communication).
4. The VSAM-via-CICS service running within the CICS Transaction Server

executes the request (for example, reads a record) and passes the data back to
the batch partition where the VSE Connector Server or DB2 Stored Procedure is
running.

5. The VSE Connector Server or DB2 Stored Procedure returns the data to the
application.

CICS Transactions for Use with VSAM-Via-CICS
The following CICS transactions have been provided for use with VSAM-via-CICS
service (and are pre-defined in the VSE/ESA 2.6 system):

ICVS The server transaction. Uses program IESCVSRV.

ICVM The mirror transaction. Uses program IESCVMIR.

ICVA You can use this transaction to start the VSAM-via-CICS service. Uses
program IESCVSTA.

ICVP You can use this transaction to stop the VSAM-via-CICS service. Uses
program IESCVSTP.

VSAM-Via-CICS

Chapter 10. Configuring the VSAM-Via-CICS Service 89

VSAM-Via-CICS

90 VSE/ESA: e-business Connectors, User’s Guide

Chapter 11. Configuring Your VSE/ESA Host for SSL

This chapter describes the steps you take to configure your VSE/ESA host for
Secure Sockets Layer (SSL) support. From VSE/ESA 2.7 onwards, VSE/ESA also
provides hardware crypto support, which requires a PCI Cryptographic Accelerator
(PCICA) card or equivalent.

You can configure your host for SSL using either IBM-supplied keys and
certificates (which you can use, for example, for testing purposes) or using your
own keys and certificates. The IBM-supplied keys and certificates use a weak
encryption key, but you can start using SSL almost immediately after you have
followed the required two implementation steps.

Using your own keys and certificates, the implementation-procedure uses a
strong-encryption key, is more complicated, and involves using a Certificate
Authority such as the Thawte Corporation. You would use your own keys and
certificates, for example, when implementing SSL for internet applications.

This chapter consists of these main sections:
v “Configuring for SSL Using IBM-Supplied Keys/Certificates” on page 92
v “Configuring for SSL Using Your Own Keys/Certificates” on page 95
v “SSL Examples Provided With the Online Documentation” on page 104

You must have configured your VSE/ESA host for SSL before you implement:
v Server authentication in the Java-based connector (see Chapter 12, “Configuring

the Java-Based Connector for Server Authentication”, on page 105).
v Client authentication in the Java-based connector (see Chapter 13, “Configuring

the Java-Based Connector for Client Authentication”, on page 115).
v Server authentication and client authentication in CICS Web Support (refer to

″Configuring CICS to use SSL″ in the CICS Transaction Server for VSE/ESA,
Enhancements Guide, GC34-5763).

v Server authentication in VSE/POWER networking (refer to the VSE/POWER
Networking, SC33-6735).

v Server authentication and client authentication in any other installed TCP/IP
application that runs on VSE/ESA.

© Copyright IBM Corp. 2000, 2003 91

Configuring for SSL Using IBM-Supplied Keys/Certificates

Step 1: Activate TCP/IP for VSE/ESA
When you activate TCP/IP for VSE/ESA you have access to all TCP/IP functions,
including SSL support. Please note that for SSL support, you require the TCP/IP
for VSE/ESA Application Pak.

For details of how to activate TCP/IP for VSE/ESA, refer to the TCP/IP for
VSE/ESA IBM Program Setup and Supplementary Information, SC33-6601.

The instructions for using SSL with VSE/ESA are provided in the manual TCP/IP
for VSE 1.4, SSL for VSE User’s Guide, which you can obtain from either:
v The VSE/ESA Homepage (described on “Where to Find More Information” on

page xix).
v Disk 3 (PDFs) of the VSE Collection Online Library, SK2T-0060.

Step 2: Catalog Keyring Set Into the VSE Keyring Library

This section describes Job SKSSLKEY, which you use to catalog the IBM-supplied
sample keyring set into the VSE Keyring Library. Each keyring set consists of:
v A private key, with member type .PRVK
v A server certificate (which includes the public key), with member type .CERT
v A root certificate, with member type .ROOT

During the installation of VSE/ESA, the VSE Keyring Library (CRYPTO.KEYRING)
is automatically defined on IJSYSCT (the VSAM Master Catalog), and is used for
storing keyring sets that are used by:
v CICS Web Support (of the CICS Transaction Server for VSE/ESA).
v The VSE/ESA Java-based connector.
v VSE/POWER PNET SSL.
In the example shown in Figure 32 on page 93, Job SKSSLKEY contains a sample
keyring set (consisting of SAMPLE.PRVK, SAMPLE.CERT, and SAMPLE.ROOT)
which you can use together with CICS Web Support and/or the VSE/ESA
Java-based connector for testing purposes. But for production purposes, you should
create:
v your own keyring set to be used by the CICS Transaction Server for VSE/ESA.
v your own keyring set to be used by the VSE/ESA Java-based connector. This

keyring set must be different to the keyring set used by the CICS Transaction
Server for VSE/ESA.

SSL Using IBM-Supplied Keys/Certificates

92 VSE/ESA: e-business Connectors, User’s Guide

* $$ JOB JNM=SETUPSSL,DISP=D,CLASS=0
// JOB SETUPSSL DEFINE SSL SAMPLE ENVIRONMENT
* **
*
* STEP 1: CREATE RSA PRIVATE KEY ’SAMPLE.PRVK’
*
* **
// OPTION SYSPARM=’00’ SYSID OF MAIN TCP/IP PARTITION
// LIBDEF PHASE,SEARCH=(PRD1.BASE)
// EXEC CIALPRVK,SIZE=CIALPRVK,PARM=’CRYPTO.KEYRING.SAMPLE’
-----BEGIN RSA Private Key-----
hXNnvtgWEHuF4rhLWODrmJhG7yNyDYhXjTN1sALJEn2wCYsuaqhnmco5WbJOKdPe
g+oFi0o1MrsPQABoDtes/tNfMtTVzS6Vz/5EmpdrO0MlpNdK/QLdzyS5SgSSA0ZN
gWhVe3eY4+2FQb3x8D5pnjhGuMc3NzxZynBa2j+dz5ae8+nAH8qfQRsPfcXU715Y
EbsMmPGZIMuiFU4B3RsKFk27fkeZ5DpCwMht3M3FP8sII20h/R8BgT5UQUPbUxNS
DXVQ94nBWZI3jU5maBmgbYTxt5hk411gJe6TmfI6OdKp7XdZLpDKyS6O+u9vM4m4
bBtBnIb81DPwKyhY5949D7eTAo0o2RSzKfP1Je7PgN5DJl98DkwpW3tjFTl1kmOo
BMycTt/WF576j1R+KD36AB2rRcu9GJ4JKBWSYP3zROFueS5ON8mkN9mKjdKsgQse
cpl0glQAW48LHT6ZfPLifmYX+U3ad2mfiVVm3RyNNxxFtgE0JLZj/6zzyp3S538L
gBIh1PptdTyAF+rAXCop3NShvIq9lxsF0/sGo5RxraQ8GjVjeljhOztP2z9id6vB
GXt1vHTh5XmJT6PPTmR/wTJeF/8rM6PibNLuAjmG4mETj0sSns9lxniXb3qyME/v
btyuSgTNpgWE0Gaq29eauUhEiOD473xc6hkHFkUtm2RqjWOq+PtyNRWrb7xCup0S
9Feklc+GnX6bWbms3IySIak+2WYKFl/EyfAz7FYMVbjKDA30ngZSWpRK1upAIbXv
c24WW317FpIY5Cm8MBKFNfsWf3W4PD1/e+lyvuMGEi20Sk0fGdAXbxsPBhT2VV4t
dh4vQTjgla0nFQjb9gPz0YA39LIaf4pBaS/Uh63BEL4mRaY9BowDbwB5AwmDwwqt
CqZBXCR+vpOoQwXDGXy0Juo8rIRkW+TJDojVBC0DnDZos0b8IpX3ZcAEz5lUVJPF
GovDWJDr4rvGXMS0M2WbTX0tbZFNfqK5k64p5CPwAW8s05nYLmRRpjAolrv/NGYz
mRdqyddhIhl5YivWDxSMh+2hSqXOAd8S/NxeNJ09cKrdkSVSi2KidL1wFgYSxq6M
MX9l6tYUB2vgWOece4tMgWuSie1UE9qitQMit902hwpQdZqIStHXpA//RV3AhiBo
e/z3edoki/AofaCvMeh5lUZ20iI4upoN9CLeLFTbPQQBgRHnCT9TyltG9pACstsN
i+Qsr3iLX4rUSOnpp1zB2wm31aRGqvbKmkBBvOmCkEUQorqfBvC58T1Yolx3vumk
vJcsjTeEJEWB2yPT6tSiDb8Kz+3cdv1VJTkL2ouk4mJezyFkk8kL+IDqJW9vgV8q
FPZZLkdG/h2+W4wux3OccQ==
-----END RSA Private Key-----
/*
* **
*
* STEP 2: CREATE VSE SERVER CERTIFICATE ’SAMPLE.CERT’
*
* **
// OPTION SYSPARM=’00’ SysId of main TCP/IP partition
// LIBDEF PHASE,SEARCH=(PRD1.BASE)
// EXEC CIALCERT,SIZE=CIALCERT,PARM=’CRYPTO.KEYRING.SAMPLE’
-----BEGIN CERTIFICATE-----
MIICJTCCAc8CBHiMye4wDQYJKoZIhvcNAQEFBQAwgZYxIDAeBgkqhkiG9w0BCQEW
EXZzZWVzYUBkZS5pYm0uY29tMQswCQYDVQQGEwJERTETMBEGA1UEBxMKQm9lYmxp
bmdlbjEUMBIGA1UEChMLSUJNIEdlcm1hbnkxGDAWBgNVBAsTD1ZTRSBEZXZlbG9w
bWVudDEgMB4GA1UEAxMXU2FtcGxlIFJPT1QgQ2VydGlmaWNhdGUwHhcNMDIxMTEy
MTQwMDEwWhcNMDcxMTExMTQwMDEwWjCBoDEkMCIGCSqGSIb3DQEJARYVaW5mb0B5
b3VyLmNvbXBhbnkuY29tMQswCQYDVQQGEwJERTEWMBQGA1UEBxMNWW91ciBsb2Nh
dGlvbjEVMBMGA1UEChMMWW91ciBjb21wYW55MRQwEgYDVQQLEwtEZXZlbG9wbWVu
dDEmMCQGA1UEAxMdU2FtcGxlIFZTRSBTZXJ2ZXIgQ2VydGlmaWNhdGUwXDANBgkq
hkiG9w0BAQEFAANLADBIAkEAvFjIzkhM8Ur5jPVRfNOvwE3f4XKNDJKN2t6ah04A
ijZ5HdMsPzL1xzmL6YQc3fSQry46zvR89PA8tTm71T3aEQIDAQABMA0GCSqGSIb3
DQEBBQUAA0EAGusgSg0xHL8jijzkCWHiI6k+3BC0uzp6NXUDFkXVPzuDp9uUfDi1
dE270tVeiwBbPIMr8IX4S7G8uaDJ8L0RJQ==
-----END CERTIFICATE-----

Figure 32. Job SKSSLKEY to Catalog a Sample Keyring Set into the VSE Keyring Library
(Part 1 of 2)

SSL Using IBM-Supplied Keys/Certificates

Chapter 11. Configuring Your VSE/ESA Host for SSL 93

/*
* **
*
* STEP 3: CREATE ROOT CERTIFICATE ’SAMPLE.ROOT’
*
* **
// OPTION SYSPARM=’00’ SysId of main TCP/IP partition
// LIBDEF PHASE,SEARCH=(PRD1.BASE)
// EXEC CIALROOT,SIZE=CIALROOT,PARM=’CRYPTO.KEYRING.SAMPLE’
-----BEGIN CERTIFICATE-----
MIICGzCCAcUCBHiLtz0wDQYJKoZIhvcNAQEFBQAwgZYxIDAeBgkqhkiG9w0BCQEW
EXZzZWVzYUBkZS5pYm0uY29tMQswCQYDVQQGEwJERTETMBEGA1UEBxMKQm9lYmxp
bmdlbjEUMBIGA1UEChMLSUJNIEdlcm1hbnkxGDAWBgNVBAsTD1ZTRSBEZXZlbG9w
bWVudDEgMB4GA1UEAxMXU2FtcGxlIFJPT1QgQ2VydGlmaWNhdGUwHhcNMDIxMTEy
MTM1OTAwWhcNMDcxMTExMTM1OTAwWjCBljEgMB4GCSqGSIb3DQEJARYRdnNlZXNh
QGRlLmlibS5jb20xCzAJBgNVBAYTAkRFMRMwEQYDVQQHEwpCb2VibGluZ2VuMRQw
EgYDVQQKEwtJQk0gR2VybWFueTEYMBYGA1UECxMPVlNFIERldmVsb3BtZW50MSAw
HgYDVQQDExdTYW1wbGUgUk9PVCBDZXJ0aWZpY2F0ZTBcMA0GCSqGSIb3DQEBAQUA
A0sAMEgCQQCrLnONFQiXWHsUoPntYZLDBiIEZst07iiXsHXtypXIyHmw3TDmTV0j
/BuwF39m37NpoU16/0YHud9ERMXPF4NjAgMBAAEwDQYJKoZIhvcNAQEFBQADQQAQ
cKdj1cTozx1hAGTlsRm7YpI5PNRBByD2SBkmIChfVf/5aQnpt9igsU6ipenEfo7X
3RZwGWqKvx+QihfytlSX
-----END CERTIFICATE-----
/*
/&
* $$ EOJ

Figure 32. Job SKSSLKEY to Catalog a Sample Keyring Set into the VSE Keyring Library
(Part 2 of 2)

SSL Using IBM-Supplied Keys/Certificates

94 VSE/ESA: e-business Connectors, User’s Guide

Configuring for SSL Using Your Own Keys/Certificates

Check Home Page for Latest Information!
Before starting to configure your VSE/ESA host for production SSL, you are
advised to check the VSE/ESA e-business Connectors and Utilities home page for
any new information relating to SSL. The URL is:
http://www.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/conmain.htm

Step 1: Activate TCP/IP for VSE/ESA
This procedure is the same as when you configure for SSL using your own keys
and certificates. Therefore complete the instructions provided in “Step 1: Activate
TCP/IP for VSE/ESA” on page 92.

Step 2: Install/Configure Utility CIALCLNT On a Web Client
The CIALCLNT utility provides a Graphical User Interface that enables you to:
1. Create a private key.
2. Send the private key to the VSE/ESA host (as described in “Step 3.2: Start

Utility CIALCLNT on the Web Client” on page 96). The private key is stored on
the VSE/ESA host in the .PRVK member (see “Step 2: Catalog Keyring Set Into
the VSE Keyring Library” on page 92 for details).

For details of how to obtain the CIALCLNT utility, refer to the TCP/IP for VSE 1.4,
SSL for VSE User’s Guide.

The CIALCLNT utility also uses the CIALSRVR utility which runs on the
VSE/ESA host, to set up a connection to VSE/ESA (as described in “Step 3:
Generate a Key Pair, Request a Server Certificate” below).

To install CIALCLNT on a Web client:
1. Run the SETUP.EXE for CIALCLNT.
2. Update the file VSESYS.TXT (automatically installed into the directory of your

choice) so that it contains the IP address of your VSE/ESA host. For example:
"VSEDRS", "009", "164", "155", "002", "6045"

The port number 6045 will be used by the CIALSRVR utility to receive the key
on the VSE/ESA host, as described in “Step 3: Generate a Key Pair, Request a
Server Certificate”.

Step 3: Generate a Key Pair, Request a Server Certificate
This step requires actions on both the:
v Web client where you installed the CIALCLNT utility
v VSE/ESA host

Step 3.1: Start Utility CIALSRVR on the VSE/ESA Host
Submit job CIALSRVR.JCL on the target VSE/ESA host system (where the VSE
Keyring Library is located) before you perform “Step 3.2: Start Utility CIALCLNT
on the Web Client” on page 96.

SSL Using Your Own Keys/Certificates

Chapter 11. Configuring Your VSE/ESA Host for SSL 95

After starting utility CIALSRVR, this information will be displayed on the console:

BG 0001 1Q47I BG CIALSRVR 44667 FROM (JSCH) , TIME=13:00:54
BG 0000 // JOB CIALSRVR

DATE 11/30/2000, CLOCK 13/00/54
BG 0000 CIALSRVR=00501000
BG 0000 SETPORT 6045

Step 3.2: Start Utility CIALCLNT on the Web Client
1. Start the CIALCLNT utility on your Web client. The TCP/IP for VSE Key

Generator window is displayed:

2. Click Generate Key to begin the process of generating an RSA key pair
consisting of:
v a private key
v a public key

3. The CIAL_Client window is displayed. Click OK to confirm.
4. The Generate RSA private key window is displayed (shown in Figure 35 on

page 97) which contains the private key. Now send the private key to the
CIALSRVR utility running on the VSE/ESA host, by clicking Send it to VSE.

* $$ JOB JNM=CIALSRVR,CLASS=A,DISP=D
* $$ LST CLASS=A
// JOB CIALSRVR
// OPTION SYSPARM=’00’ SysId of main TCP/IP partition
// LIBDEF PHASE,SEARCH=PRD1.BASE
// EXEC CIALSRVR,SIZE=CIALSRVR
SETPORT 6045
/*
/&
* $$ EOJ

Figure 33. Job to Start Utility CIALSRVR on the VSE/ESA Host

Figure 34. ″TCP/IP for VSE Key Generator″ window

SSL Using Your Own Keys/Certificates

96 VSE/ESA: e-business Connectors, User’s Guide

The private and public keys are then sent (in binary format) to the CIALSRVR
utility running on the VSE/ESA host.

5. The CIALSRVR utility running on the VSE/ESA host then catalogs the data
that was sent from CIAL_Client into the .PRVK member in the VSE Keyring
Library.

Step 3.3: Submit Job CIALCREQ (Submit a Server Certificate
Request)
Modify the sample job CIALCREQ.JCL, and submit it to the target VSE system.

You can submit the sample CIALCREQ.JCL either from a Web client or the
VSE/ESA host.

Note: If you submit the job from a Web client, ensure you have uppercase
translation set to OFF. For example, if you submit the job from a 3270
Emulator, you enter:
send cialcreq.job a: (file=rdr crlf nouc

Figure 36 on page 98 shows the sample job CIALCREQ.JCL, in which sub-library
PRD2.CONFIG contains the $SOCKOPT phase (shown in Figure 32 on page 93).

Figure 35. ″Generate RSA Private Key″ window

SSL Using Your Own Keys/Certificates

Chapter 11. Configuring Your VSE/ESA Host for SSL 97

The output from this job is sent to the VSE/POWER list queue. An example is
shown in Figure 37 on page 99.

Step 4: Obtain a Signed Server Certificate and Copy to Job
CIALCERT

During this step, the public key that was created during “Step 3: Generate a Key
Pair, Request a Server Certificate” on page 95 is first entered onto a certificate, to
create a server certificate request. This server certificate request is then sent to a
Certificate Authority (CA) to be “signed” and therefore to create a server certificate.
When a server certificate is signed:
v The CA calculates a digital signature over the certificate (including the public

key). It uses the CA’s own private key to do so.
v Thereafter, clients in an SSL conversation can use the CA’s public key which is

stored on a root certificate, to decrypt the server certificate and use its public key.

Step 4.1: Submit Request for Server Certificate to be
Created/Signed
The output from job CIALCREQ.JCL of the previous step, is shown below. It
contains mixed characters, and includes the public key that was generated during
“Step 3.2: Start Utility CIALCLNT on the Web Client” on page 96.

* $$ JOB JNM=CIALCREQ,CLASS=A,DISP=D
* $$ LST CLASS=A
// JOB CIALCREQ
// OPTION SYSPARM=’00’ SysId of main TCP/IP partition
// LIBDEF PHASE,SEARCH=(PRD2.CONFIG,PRD1.BASE)
// EXEC CIALCREQ,SIZE=CIALCREQ
Webmaster: vseesa@de.ibm.com
Phone:
Server: SSL for VSE
Common-name: www.ibm.com
Organization Unit: Development
Organization: International Business Machines
Locality: Boeblingen
State: BW
Country: Germany
/*
/&
* $$ EOJ

Figure 36. Job CIALCREQ to Request a Server Certificate

SSL Using Your Own Keys/Certificates

98 VSE/ESA: e-business Connectors, User’s Guide

The output from job CIALCREQ contains a certificate request. To obtain a signed
server certificate (digital certificate), you can now submit this certificate request to
any Certificate Authority. This example shows you how to obtain a free test signed
server certificate from the Thawte Corporation.
1. Start your Web browser and proceed to the Thawte Corporation site where you

can obtain a signed SSL Server certificate at:
https://www.thawte.com/cgi/server/test.exe

After you have registered with Thawte, the site then provides clear instructions
on how to obtain a signed certificate.

2. Copy and Paste via the Clipboard the server certificate request details, shown
in bold-text within Figure 37, into the appropriate area of the Test Thawte
Certificates – Netscape window. An example is shown in Figure 38 on page 100:

// JOB CIALCREQ
// OPTION SYSPARM=’00’ SysId of main TCP/IP partition
// LIBDEF PHASE,SEARCH=(PRD2.CONFIG,PRD1.BASE)
// EXEC CIALCREQ,SIZE=CIALCREQ
CIALCREQ 01.04.00 20001116 12.37
Webmaster: vseesa@de.ibm.com
Phone:
Server: SSL for VSE
Common-name: www.ibm.com
Organization Unit: Development
Organization: International Business Machines
Locality: Boeblingen
State: BW
Country: Germany
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIByzCCATQCAQAwgYoxEDAOBgNVBAYTB0dlcm1hbnkxCzAJBgNVBAgTAkJXMRMw
EQYDVQQHEwpCb2VibGluZ2VuMSgwJgYDVQQKEx9JbnRlcm5hdGlvbmFsIEJ1c2lu
ZXNzIE1hY2hpbmVzMRQwEgYDVQQLEwtEZXZlbG9wbWVudDEUMBIGA1UEAxMLd3d3
LmlibS5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAK+jXsPgzjOjdrYs
RL2izE6bnfMQfjci2w8GwcTx9hQCnllSQoG64GWzUVRk+NMK8GcchcFK/Wq7KtjN
77TwS6k8lE6jKWR6Cy0iQny/HixoV6C8G6/dp0tEy4w3iqkMKk/MiC5r5fJvspin
nkFdyidhWXcdQ81MFvay82VLiUudAgMBAAGgADANBgkqhkiG9w0BAQQFAAOBgQAm
lRNm9J75VnKAG63enqB6tVyNtplYTALruwGfww1cItHn4n1/ylxUWgr3JMEtY+0X
7Dmyt7xxJAUsddtxTpnUGIcUeYCAf7ryZonZ1PhFTlkZsVMOOnMacXMcGRMFYmGX
+49/hdM/IaOYj8AzA8JBXHpXb1TL+8mZpWcwas8/wA==
-----END NEW CERTIFICATE REQUEST-----
1S55I LAST RETURN CODE WAS 0000
EOJ CIALCREQ MAX.RETURN CODE=0000

Figure 37. Example Output Listing From Job CIALCREQ

SSL Using Your Own Keys/Certificates

Chapter 11. Configuring Your VSE/ESA Host for SSL 99

Complete the other details, such as:
v Validity: you can choose a number of days up to one year.
v Type of test certificate: select Test X509v3 SSL Cert.
v Format for Chained CA Certs: select Use the ″standard″ format (the BASE64

encoding of an X.509v3 certificate).
3. Click Generate Test Certificate. The output from this request is a signed server

certificate such as that shown in Figure 39.

Figure 38. Thawte ″Certificate Signing Request″ Window

-----BEGIN CERTIFICATE-----
MIICsDCCAhmgAwIBAgIDBYAlMA0GCSqGSIb3DQEBBAUAMIGHMQswCQYDVQQGEwJa
QTEiMCAGA1UECBMZRk9SIFRFU1RJTkcgUFVSUE9TRVMgT05MWTEdMBsGA1UEChMU
VGhhd3RlIENlcnRpZmljYXRpb24xFzAVBgNVBAsTDlRFU1QgVEVTVCBURVNUMRww
GgYDVQQDExNUaGF3dGUgVGVzdCBDQSBSb290MB4XDTAwMTEzMDE0NDk1MloXDTAx
MTEzMDE0NDk1MlowgYoxEDAOBgNVBAYTB0dlcm1hbnkxCzAJBgNVBAgTAkJXMRMw
EQYDVQQHEwpCb2VibGluZ2VuMSgwJgYDVQQKEx9JbnRlcm5hdGlvbmFsIEJ1c2lu
ZXNzIE1hY2hpbmVzMRQwEgYDVQQLEwtEZXZlbG9wbWVudDEUMBIGA1UEAxMLd3d3
LmlibS5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAK+jXsPgzjOjdrYs
RL2izE6bnfMQfjci2w8GwcTx9hQCnllSQoG64GWzUVRk+NMK8GcchcFK/Wq7KtjN
77TwS6k8lE6jKWR6Cy0iQny/HixoV6C8G6/dp0tEy4w3iqkMKk/MiC5r5fJvspin
nkFdyidhWXcdQ81MFvay82VLiUudAgMBAAGjJTAjMBMGA1UdJQQMMAoGCCsGAQUF
BwMBMAwGA1UdEwEB/wQCMAAwDQYJKoZIhvcNAQEEBQADgYEAXLBSZq1l1X36JU1A
1HX+xg218B7F8rZGmiM9GqvVfC5bsAkbJYZC7BcEevrTsTFStAe2XfExkXj2jdFn
GEgejK7ByI1RYvcAuJrTMJYtKCQV0HAtzOibKg6mJOihr60uj23c+LOxtyWfss+3
9xHLMQztYJ32YelZKFTSNbC4rkA=
-----END CERTIFICATE-----

Figure 39. A Thawte Signed Server Certificate

SSL Using Your Own Keys/Certificates

100 VSE/ESA: e-business Connectors, User’s Guide

Step 4.2: Copy/Paste Signed Server Certificate Into Job
CIALCERT
Now Copy and Paste via the Clipboard the signed server certificate (shown in
Figure 39 on page 100) into a CIALCERT job, as shown in Figure 40.

Now you should submit this job.

Step 5: Obtain a Root Certificate and Copy to Job CIALROOT
A root certificate is supplied by a Certificate Authority, and is the “starting point”
for using SSL. You must obtain a root certificate for applications that both:
v run on your VSE/ESA host
v are to use SSL security

On Web clients, the root certificate enables clients to verify the server certificates that
the clients receive. “Verify” means checking that the server certificate has been
issued by an approved Certificate Authority, and not simply by any person or
organization. The server certificate includes a public key, organization’s name,
address, and so on.

On the server (the VSE/ESA host), the root certificate enables the server to verify
any client certificates that the server receives. This takes place when client
authentication has been implemented (see Chapter 13, “Configuring the Java-Based
Connector for Client Authentication”, on page 115 for details).

Usually, each Web client stores a number of root certificates. Each root certificate
has been issued from a different Certificate Authority (CA). Therefore, if the Web
client receives a server certificate that has been signed by a CA, there is a good
chance that the Web client can use a root certificate issued by the same CA, to
decrypt the server certificate (and its public key). But even if the Web client does

* $$ JOB JNM=CIALCERT,CLASS=0,DISP=D
* $$ LST CLASS=A
// JOB CIALCERT
// OPTION SYSPARM=’00’ SysId of main TCP/IP partition
// LIBDEF PHASE,SEARCH=(PRD1.BASE)
// EXEC CIALCERT,SIZE=CIALCERT,PARM=’CRYPTO.KEYRING.PROD1024’
-----BEGIN CERTIFICATE-----
MIICtDCCAh0AAAAAwkQwDQYJKoZIhvcNAQEFBQAwgaAxIDAeBgkqhkiG9w0BCQEW
EXZzZWVzYUBkZS5pYm0uY29tMQswCQYDVQQGEwJERTEbMBkGA1UECBMSQmFkZW4t
V3VlcnR0ZW1iZXJnMRMwEQYDVQQHEwpCb2VibGluZ2VuMQwwCgYDVQQKEwNJQk0x
FDASBgNVBAsTC0lCTSBHZXJtYW55MRkwFwYDVQQDExBURVNUMDcgUk9PVCBDZXJ0
MB4XDTAyMTExMjA5MTUwNFoXDTAzMTExMjA5MTUwNFowgaAxHjAcBgkqhkiG9w0B
CQEWD2JsYWhAZGUuaWJtLmNvbTELMAkGA1UEBhMCREUxGzAZBgNVBAgTEkJhZGVu
LVd1ZXJ0dGVtYmVyZzETMBEGA1UEBxMKQm9lYmxpbmdlbjEMMAoGA1UEChMDSUJN
MRQwEgYDVQQLEwtEZXZlbG9wbWVudDEbMBkGA1UEAxMSVEVTVDA3IFNlcnZlciBD
ZXJ0MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCNH1UAPPobaRKShjuxZ7ol
TpQh4LNgzBTBkpt2FhfPtz3dSvxbMSsOaOfmDXGrgEiCdzWoln7GxrwNGBRfoYih
6JzKFSLGJ2HkCKujAJ1VqgSrsS30c+0PUcGUdB78NgiYYo0Glo8CurrtPemZlExX
wvVqJOXO2mpbR4fJkXi+YwIDAQABMA0GCSqGSIb3DQEBBQUAA4GBAFO6inZU9nGq
8MqiEARXTbsEpUTZSkM2Ez2URIMenHMUnWp/grDcajrG8IrPuG5U0XW2o4nilhBk
laZaET+Xfm1YSJuN87lnJ0sLPhJ8GrHe9JvK648Jokn2nxU0wINtwtZOKfjDlNum
jgZfiZUZAE39HRCgOM3YvnjHAACXpsY8
-----END CERTIFICATE-----
/*
/&
* $$ EOJ

Figure 40. Job CIALCERT to Catalog the Server Certificate

SSL Using Your Own Keys/Certificates

Chapter 11. Configuring Your VSE/ESA Host for SSL 101

not have a root certificate issued by the required CA, this is not a problem since
the CAs are arranged in a kind of “tree structure”. The Web client can search the
CAs until a required root certificate has been found.

After you have obtained a root certificate, by copying and renaming it, you can use
the same root certificate, for example, for:
v The VSE Connector Server
v CICS1 (a CICS Transaction Server running in a partition)
v CICS2 (a second CICS Transaction Server running in a different partition)
v CICS3 (a third CICS Transaction Server running in a different partition)

The procedure below describes how you might obtain a free root certificate from
the Thawte Corporation for a trial period.
1. Start your Web browser, and proceed to this Thawte Web page:

https://www.thawte.com/cgi/server/test.exe

2. When you arrive at the Web page, the introductory paragraph reads:
Welcome to our Test CA. Please note that the certs issued here are for
testing and evaluation only ...

Click the link from which you obtain a root certificate in text format.

3. Copy and Paste (via the Clipboard) the root certificate’s contents into Job
CIALROOT, in Figure 42 on page 103.

Figure 41. Thawte Certificate Authority Web Site

SSL Using Your Own Keys/Certificates

102 VSE/ESA: e-business Connectors, User’s Guide

4. Submit this job to your VSE/ESA host.

Step 6: Verify Your Certificates on the Host
To verify that your root certificate and server certificate are valid and correct,
submit the job CIALSIGV.JCL. The resulting output is shown in Figure 43:

Step 7: Secure Your VSE Keyring Library Entries
You must ensure that your own library members such as private keys, server
certificates, and root certificates are securely stored in the VSE Keyring Library
(CRYPTO.KEYRING). To do so, use the:

* $$ JOB JNM=CIALROOT,CLASS=0,DISP=D
* $$ LST CLASS=A
// JOB CIALROOT
// OPTION SYSPARM=’00’ SysId of main TCP/IP partition
// LIBDEF PHASE,SEARCH=PRD1.BASE
// EXEC CIALROOT,SIZE=CIALROOT,PARM=’CRYPTO.KEYRING.PROD1024’
-----BEGIN CERTIFICATE-----
MIICLjCCAAAAAAdem7MwDQYJKoZIhvcNAQEFBQAwXjEWMBQGA1UEAxMNSlNDSDEw
MjQgUk9PVDEUMBIGA1UECxMLRGV2ZWxvcG1lbnQxDDAKBgNVBAoTA0lCTTETMBEG
A1UEBxMKQm9lYmxpbmdlbjELMAkGA1UEBhMCREUwHhcNMDIxMDE4MTE1ODQzWhcN
MDMxMTE3MjMwMDAwWjBeMRYwFAYDVQQDEw1KU0NIMTAyNCBST09UMRQwEgYDVQQL
EwtEZXZlbG9wbWVudDEMMAoGA1UEChMDSUJNMRMwEQYDVQQHEwpCb2VibGluZ2Vu
MQswCQYDVQQGEwJERTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA5hLlm9O5
piEONbipLmKoLZcnCae7m04yO2EKf7BxggWN8jEro2dN5U/rGuvjD40rAbbtCm/J
Nems3GKJffQjrs/GoJwYuq7ExIgv02kPBsryTSnMAfy7EeIoZcSZ7sIJRZCuvLRk
HRkEp8LaSYFgbU2wp+3tjpI8FvvBTELZZ5MCAwEAATANBgkqhkiG9w0BAQUFAAOB
gQAmXSS1jGsXZOgQMxiH5x7/CVhIto6Mx9cVS0Tg6eRU2QjrqxPchogmVctUWN7L
BzCWLNjPtw2KecDhB2RrBB467W+WoNRFbn+sTz3RgjwGNAC5DdjqtiV2JzvLZ8DR
4Qqz6fY/HwOWKzjuI3nSCarpXSF0ArTVHbULbvCWC8D8fg==
-----END CERTIFICATE-----
/*
/&
* $$ EOJ

Figure 42. Job CIALROOT to Catalog the Root Certificate

// JOB CIALSIGV DATE 11/30/2
// OPTION LOG
// OPTION SYSPARM=’00’ SysId of main TCP/IP partition
*
* * The following is a sample job that will validate the
* * signature in the VSE SSL server certificate is signed by
* * the installed root certificate.
* * It can be used for initial testing on your system.
* *
*
// LIBDEF PHASE,SEARCH=(PRD2.CONFIG,PRD1.BASE)
// EXEC CIALSIGV,SIZE=CIALSIGV,PARM=’CRYPTO.KEYRING.PROD1024’
The digital signature contained in the CERTFIL is verified with the
ROOTFIL public key.
Root certificate contains a 1024-bit public key.
Certificate signature successfully verified.
1S55I LAST RETURN CODE WAS 0000
EOJ CIALSIGV MAX.RETURN CODE=0000 DATE 11/30/2

Figure 43. Job CIALSIGV to Verify Certificates

SSL Using Your Own Keys/Certificates

Chapter 11. Configuring Your VSE/ESA Host for SSL 103

v VSE/ESA Access Control Function, which is part of the Basic Security Manager
(BSM).

v Access control table DTSECTAB. The default VSE Keyring Library
(CRYPTO.KEYRING) is secured with all parts.

For details, refer to the section ″Protecting Resources with Access Control Table
DTSECTAB″ of the VSE/ESA Administration, SC33-6705.

In addition, you must:
v Ensure that your system is started with SEC=YES in the IPL SYS parameter.
v Ensure that your private key and server certificate have full read/write access

protection.
v Include an ID statement in the startup job of each application that is to use

certificates for SSL. The application might be a CICS application or the VSE
Connector Server, for example.

v Submit the startup job for an application:
– when security is active (that is, SEC=YES in the IPL SYS parameter).
– using an authorized user (for example, the Administrator).

v Ensure that your VSE Keyring Library (the IBM-default is CRYPTO.KEYRING)
cannot be accessed via FTP. For example, you should not specify the name of
your VSE Keyring Library in any DEFINE FILE statement.

SSL Examples Provided With the Online Documentation
You might also refer to the SSL examples provided with the VSE Connector
Client’s online documentation:
v SSLApiExample shows how to code a Java application to connect to the VSE

Connector Server via SSL.
v SSLConsoleExample shows how to connect via SSL, to submit a console

command, and then obtain the resulting console messages.

Both of these examples are ready-to-run, and use the IBM-provided Client Keyring
File (Keyring.pfx). In addition, you must also have submitted job SKSSLKEY to
catalog the corresponding entries in the VSE Keyring Library (CRYPTO.KEYRING).
For details, see “Step 2: Catalog Keyring Set Into the VSE Keyring Library” on
page 92.

You can find the complete Java source code for the above SSL examples in the
Samples sub-directory of the directory where you installed the VSE Connector
Client. For details of how to use the online documentation, see “Using the Online
Documentation Options” on page 28.

SSL Using Your Own Keys/Certificates

104 VSE/ESA: e-business Connectors, User’s Guide

Chapter 12. Configuring the Java-Based Connector for Server
Authentication

This chapter describes how you configure the Java-based connector (that is, the
VSE Connector Server and VSE Connector Client) for server authentication.

Before starting this section, you should have first completed the actions described
in Chapter 11, “Configuring Your VSE/ESA Host for SSL”, on page 91.

Note: If you require client authentication in addition to server authentication for
your Java-based connector, after completing the steps in this chapter you
must then complete the steps described in Chapter 13, “Configuring the
Java-Based Connector for Client Authentication”, on page 115.

This chapter contains these main sections:
v “Configuring the VSE Connector Server for Server Authentication”
v “Configuring the VSE Connector Client for Server Authentication” on page 108

Configuring the VSE Connector Server for Server Authentication

These are the changes you must make to each VSE Connector Server installation, in
order to implement server authentication.

You can run the VSE Connector Server either in SSL-mode, or in non-SSL-mode.

Note: You cannot have both SSL-mode and non-SSL-mode connections using the
same VSE Connector Server. However you can, of course, run multiple VSE
Connector Servers in different partitions on the VSE/ESA hostVSE/ESA
host, and with or without SSL.

This section contains these main sub-sections:
v “Step 1: Configure and Catalog the VSE Connector Server’s SSL Profile”
v “Step 2: Activate SSL Profile in Main Configuration File” on page 106

Step 1: Configure and Catalog the VSE Connector Server’s
SSL Profile

Use job skeleton SKVCSSSL (in ICCF library 59) to configure and catalog the VSE
Connector Server’s SSL profile on the VSE/ESA host. Here is an example of
skeleton SKVCSSSL:

© Copyright IBM Corp. 2000, 2003 105

Notes:

1. You specify cipher suites as a list of hex numbers.
2. For a complete list of supported cipher suites refer to Table 3 on page 112.
3. The cipher suite with hex number 62 (shown above) is currently not supported

by the VSE Connector Client.

Step 2: Activate SSL Profile in Main Configuration File
Use job skeleton SKVCSCFG (in ICCF library 59) to enable SSL and catalog the SSL
profile in the VSE Connector Server’s main configuration file. Here is an example
of skeleton SKVCSCFG:

; ***
; SSL CONFIGURATION MEMBER FOR VSE CONNECTOR SERVER
; ***

; ***
; SSLVERSION SPECIFIES THE MINIMUM VERSION THAT IS TO BE USED
; POSSIBLE VALUES ARE: SSL30 AND TLS31
; KEYRING SPECIFIES THE SUBLIBRARY WHERE THE KEY FILES ARE
; STORED.
; CERTNAME NAME OF THE CERTIFICATE THAT IS USED BY THE SERVER
; SESSIONTIMEOUT NUMBER OF SECONDS THAT THE SERVER WILL USE TO
; ALLOW A CLIENT TO RECONNECT WITHOUT PERFORMING A
; FULL HANDSHAKE. (86440 SEC = 24 HOURS)
; AUTHENTICATION TYPE OF AUTHENTICATION. POSSIBLE VALUES ARE:
; SERVER - SERVER AUTHENTICATION ONLY
; CLIENT - SERVER AND CLIENT AUTHENTICATION
; LOGON - SERVER AND CLIENT AUTENTICATION WITH LOGON.
; THE CLIENT CERTIFICATE IS USED FOR THE LOGON.
; ***
SSLVERSION = SSL30
KEYRING = CRYPTO.KEYRING
CERTNAME = SAMPLE
SESSIONTIMEOUT = 86440
AUTHENTICATION = SERVER

; **
; CIPHERSUITES SPECIFIES A LIST OF CIPHER SUITES THAT ARE ALLOWED
; **
CIPHERSUITES = ; COMMA SEPARATED LIST OF NUMERIC VALUES

01, ; RSA512_NULL_MD5
02, ; RSA512_NULL_SHA
08, ; RSA512_DES40CBC_SHA
09, ; RSA1024_DESCBC_SHA
0A, ; RSA1024_3DESCBC_SHA
62 ; RSA1024_EXPORT_DESCBC_SHA

Figure 44. Skeleton SKVCSSSL (Configure SSL for the VSE Connector Server)

VSE Connector Server for Server Authentication

106 VSE/ESA: e-business Connectors, User’s Guide

...
SERVERPORT = 2893
MAXCLIENTS = 256
SSLENABLE = YES

...
LIBRCFGFILE = DD:PRIMARY.TEST(IESLIBDF.Z)
USERSCFGFILE = DD:PRIMARY.TEST(IESUSERS.Z)
PLUGINCFGFILE = DD:PRIMARY.TEST(IESPLGIN.Z)
SSLCFGFILE = DD:PRIMARY.TEST(IESSSLCF.Z)

...

Figure 45. Skeleton SKVCSCFG (Activate SSL Profile for the VSE Connector Server)

VSE Connector Server for Server Authentication

Chapter 12. Configuring the Java-Based Connector for Server Authentication 107

Configuring the VSE Connector Client for Server Authentication

This section describes the changes for SSL server-authentication support that you
must make to:
v Each VSE Connector Client installed on Web clients of the 2-tier environment

shown in Figure 2 on page 12.
v The VSE Connector Client installed on the middle-tier of the 3-tier environment

shown in Figure 3 on page 13.

This section contains these main sub-sections:
v “Step 1: Set SSL Flag in Class VSEConnectionSpec”
v “Step 2: Configure SSL Profile” on page 109
v “Step 3: Copy a Server Certificate Into Client Keyring File” on page 110
v “Description of the IBM-Supplied Client Keyring File” on page 111
v “Currently-Supported SSL Cipher Suites” on page 112

Step 1: Set SSL Flag in Class VSEConnectionSpec
From VSE/ESA 2.6 onwards, class VSEConnectionSpec of the VSE Connector
Client’s VSE Java Beans supports an SSL flag, which can be set for your user
applications. When this flag is set, you must also specify additional SSL-related
parameters. To do so, you can either:
v Define a Java properties object.
v Create a Java properties file to contain the required SSL parameters.

In the example shown in Figure 46 on page 109, the SSL parameters are set using a
Java properties object.

VSE Connector Client for Server Authentication

108 VSE/ESA: e-business Connectors, User’s Guide

Step 2: Configure SSL Profile
Configure the SSL profile for each VSE Connector Client. To do so, you must create
a Java properties file containing these pairs of keys / values (an example of which is
shown in Figure 47 on page 110:

Key Value

SSLVERSION SSL or TLS

CIPHERSUITES
Specifies a list of symmetric encryption/decryption algorithms
which the VSE Connector Client can use to negotiate the cipher
used in the related connection. For an SSL-connection to be
established, both the VSE Connector Client and the VSE Connector
Server must support the same cipher with the same encryption
strength (40-bit, 56-bit, 128-bit, and so on). For a list of the
currently-supported cipher suites, see Table 3 on page 112.

KEYRINGFILE
Pathname of a client keyring file which is stored on either each Web
client of a 2-tier environment or on the middle-tier of a 3-tier
environment, and is protected by a password. See “Description of
the IBM-Supplied Client Keyring File” on page 111 for a description
of the keyring file.

...
try {

spec = new VSEConnectionSpec(
InetAddress.getByName(ipAddr),
2893,userID,password);

}
catch (UnknownHostException e) { ... }

/* Specify secure SSL connection */
spec.setSSL(true);

/* Specify SSL properties */
sslProps = new Properties();
sslProps.put("SSLVERSION", "SSL");
sslProps.put("CIPHERSUITES",

"SSL_RSA_WITH_NULL_MD5," +
"SSL_RSA_WITH_NULL_SHA," +
"SSL_RSA_EXPORT_WITH_DES40_CBC_SHA," +
"SSL_RSA_WITH_DES_CBC_SHA," +
"SSL_RSA_WITH_3DES_EDE_CBC_SHA");

sslProps.put("KEYRINGFILE", "c:\\vsecon\\KeyRing.pfx");
sslProps.put("KEYRINGPWD", "ssltest");
spec.setSSLProperties(sslProps);

/* Create VSE system instance with this connection */
system = new VSESystem(spec);

/* Connect to host */
system.connect();

...

Figure 46. Set VSE Connector Client’s SSL Parameters Using a Properties Object

VSE Connector Client for Server Authentication

Chapter 12. Configuring the Java-Based Connector for Server Authentication 109

Note: The name that you define here must also be used when you
create your client keyring file for the first time. See “Step 2:
Generate and Store a Client Certificate” on page 118 for
details.

KEYRINGPWD
Password to protect the client keyring file. For the client keyring
file automatically created during installation, ″ssltest″ is the pre-set
password.

LOGONWITHCERT
YES or NO. An implicit logon is possible providing:
1. The Client Keyring File contains a client certificate which is also

stored as a .CCERT member in the VSE Keyring Library on the
VSE/ESA host.

2. The .CCERT member in the VSE Keyring Library has been
mapped to a VSE/ESA User ID.

An implicit logon means that the VSE Connector Client does not
have to provide logon information (that is, a User ID and
password) explicitly. If LOGONWITHCERT is set to YES, you must
also specify AUTHENTICATION=LOGON in the VSE Connector
Server’s configuration file (see Figure 44 on page 106 for details).

You can use the hash character ‘#’ as a comment delimiter.

Here is an example of a Java properties file:

Notes:

1. You are not required to define all SSL parameters in your Java properties file.
2. If you do not define an SSL parameter in your Java properties file, you must

ensure that your user application requests any missing information from the
user, before connecting to the server.

3. In Figure 47, parameter KEYRINGPWD has not been specified.

Step 3: Copy a Server Certificate Into Client Keyring File
A server certificate includes a public key, and is required so that the VSE Connector
Client can perform server authentication.

Decide if you wish to use the IBM-supplied sample server certificate with each
VSE Connector Client, or if instead you wish to use your own server certificate.
Depending upon your decision, you must copy either:
v the IBM-supplied sample server certificate (SAMPLE.CERT),
v your own server certificate (see “Step 4: Obtain a Signed Server Certificate and

Copy to Job CIALCERT” on page 98 for details),

from the VSE Keyring Library on the VSE/ESA host, into the client keyring file
(KeyRing.pfx) located on either:

SSLVERSION=SSL # SSL or TLS
CIPHERSUITES=SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
KEYRINGFILE=c:\\vsecon\\keyring.pfx
LOGONWITHCERT=NO

Figure 47. Example of Java Properties File for the VSE Connector Client

VSE Connector Client for Server Authentication

110 VSE/ESA: e-business Connectors, User’s Guide

v Each Web client of a 2-tier environment.
v The middle-tier of a 3-tier environment.

See “Description of the IBM-Supplied Client Keyring File” for details of the client
keyring file.

For 2-tier environments, if a Web client does not contain a copy of the server
certificate and communicates with the VSE/ESA host, the user will be prompted to
decide if a copy of the server certificate should be stored on the Web client. You
can therefore either:
v Provide each Web client with a copy of the server certificate before starting.
v Let each Web client take a copy during the first processing that takes place.

Note: You can use a tool such as the IBM KeyMan (which you can download from
http://www.alphaworks.ibm.com) to copy a server certificate into the client
keyring file stored on a Web client.

Description of the IBM-Supplied Client Keyring File
During the installation of the VSE Connector Client, a client keyring file with the
name KeyRing.pfx is automatically stored in the directory:
\vsecon\samples

on either each Web client (for a 2-tier environment) or on the middle-tier (for a
3-tier environment).

After being created during the installation, the client keyring file contains a sample
server certificate, which includes a public key. This public key is one of a key pair –
the matching private key (SAMPLE.PRVK) is installed on the VSE Connector
Server.

Providing you have already run job SKSSLKEY (see Figure 32 on page 93), the
sample server certificate enables you to begin using the Java-based connector with
SSL immediately after installation, to communicate between the VSE Connector
Client and the VSE Connector Server.

The client keyring file is initially protected by the password ‘ssltest’.

To:
v change the password,
v manage the certificates stored in the client keyring file,

you can use:
1. The IBM KeyMan tool, which you can download from

http://www.alphaworks.ibm.com/tech/keyman .
2. The ikeyman tool, contained in the JSSE package of the IBM Java Development

Kit for Windows 1.3 onwards.
3. The keytool.exe, contained in the Java Development Kit 1.3 onwards from IBM

and Sun Microsystems.

Note: The description contained in this manual (for example Figure 48 on page 112
below) is based upon the use of the IBM KeyMan tool.

Figure 48 on page 112 shows how the contents of the IBM-supplied client keyring
file might look.

VSE Connector Client for Server Authentication

Chapter 12. Configuring the Java-Based Connector for Server Authentication 111

Currently-Supported SSL Cipher Suites
Table 3 shows the SSL cipher suites that are currently supported by the VSE
Connector Client and VSE Connector Server:

Table 3. Currently Supported SSL Cipher Suites

Hex
Code

Cipher Suite Handshaking Encryption

01 SSL_RSA_WITH_NULL_MD5 512-bit No

02 SSL_RSA_WITH_NULL_SHA 512-bit No

08 SSL_RSA_EXPORT_WITH_DES40_CBC_SHA 512-bit 40-bit

09 SSL_RSA_WITH_DES_CBC_SHA 1024-bit 56-bit

0A SSL_RSA_WITH_3DES_EDE_CBC_SHA 1024-bit 168-bit

Notes:

1. Table 3 represents the format you use when defining these cipher suites for the
VSE Connector Client.

2. Refer to Figure 44 on page 106 for the format you use when defining these
cipher suites for the VSE Connector Server.

3. Hex code 62 (VSE name RSA1024_EXPORT_DESCBC_SHA) is not supported by
the VSE Connector Client. For a detailed description of the SSL V3 protocol and
supported cipher suites, refer to the SSL Protocol Version 3.0.

4. The exportable ciphers 01 and 02 (also 62) require the SSL 3.0 handshaking.
They cannot be used with TLS 1.0 handshaking. The other ciphers (08, 09, 0A)
can be used with both SSL 3.0 and TLS 1.0, handshaking. You define the SSL
Version using SSLVERSION, which is contained in the:
v Java properties object of the VSE Connector Client (see Figure 46 on

page 109).
v Java properties file of the VSE Connector Client (see Figure 47 on page 110).

Figure 48. Example of a Client Keyring File

VSE Connector Client for Server Authentication

112 VSE/ESA: e-business Connectors, User’s Guide

v SSL configuration file of the VSE Connector Server (see Figure 44 on
page 106).

5. The NULL_MD5 (01) and NULL_SHA (02), and DES40_CBC_SHA (08) cipher
suites require to have a 512-bit key on the VSE side. They cannot be used with
a 1024-bit key.

6. The cipher suites that use 1024-bit handshaking, also require a 1024-bit key on
the VSE/ESA host.

7. See “Step 2: Generate and Store a Client Certificate” on page 118 for other
information about key lengths used for client authentication.

VSE Connector Client for Server Authentication

Chapter 12. Configuring the Java-Based Connector for Server Authentication 113

VSE Connector Client for Server Authentication

114 VSE/ESA: e-business Connectors, User’s Guide

Chapter 13. Configuring the Java-Based Connector for Client
Authentication

This chapter describes the steps you must take to configure the Java-based
connector (that is, the VSE Connector Server and VSE Connector Client) for client
authentication.

Digital certificates can be either root certificates, server certificates, or client
certificates. If client authentication is required (in addition to server authentication),
a client certificate is provided by clients to authenticate the client to the server.

To configure the Java-based connector for client authentication, you must
configure:
v The VSE Connector Server installed on the VSE/ESA host.
v Each VSE Connector Client installed on Web clients of a 2-tier environment.
v The VSE Connector Client installed on the middle-tier of a 3-tier environment.
v The client-certificate/User-ID mapping list on the VSE/ESA host, which you can

use to control access rights from VSE Connector Clients to VSE/ESA host
resources.

Notes:

1. If you do not plan to implement client authentication, you can skip this
chapter.

2. The description and pictures contained in this chapter are based upon the IBM
KeyMan tool.

3. Instead of using the IBM Keyman tool, you can use for example the ikeyman
tool (contained in the JSSE package of the IBM Java Development Kit for
Windows 1.3 onwards), or the keytool.exe (part of the Java Development Kit
1.3 onwards, from IBM and Sun Microsystems).

This chapter consists of these main sections:
v “Configuring the VSE Connector Server for Client Authentication” on page 116
v “Configuring the VSE Connector Client for Client Authentication” on page 117

© Copyright IBM Corp. 2000, 2003 115

Configuring the VSE Connector Server for Client Authentication
To configure the VSE Connector Server for client authentication, you use SSL
configuration member SKVCSSSL contained in ICCF Library 59. An example of the
required settings is shown in Figure 49.

You can set the parameter AUTHENTICATION to specify:

SERVER Server authentication only.

CLIENT Server authentication and client authentication.

LOGON Server authentication and client authentication that uses a client
certificate to logon.

Note: If you specify that you require client authentication in Figure 49, then each
client (where a VSE Connector Client is installed) must:
v have a valid client certificate stored in the client keyring file (see “Step 2:

Generate and Store a Client Certificate” on page 118 for details).
v provide a client certificate when connecting to the VSE Connector Server

(it is not possible to have client authentication for some clients only).

; ***
; SSL CONFIGURATION MEMBER FOR VSE CONNECTOR SERVER
; ***

; ***
; SSLVERSION SPECIFIES THE MINIMUM VERSION THAT IS TO BE USED
; POSSIBLE VALUES ARE: SSL30 AND TLS31
; KEYRING SPECIFIES THE SUBLIBRARY WHERE THE KEY FILES ARE
; STORED.
; CERTNAME NAME OF THE CERTIFICATE THAT IS USED BY THE SERVER
; SESSIONTIMEOUT NUMBER OF SECONDS THAT THE SERVER WILL USE TO
; ALLOW A CLIENT TO RECONNECT WITHOUT PERFORMING A
; FULL HANDSHAKE. (86440 SEC = 24 HOURS)
; AUTHENTICATION TYPE OF AUTHENTICATION. POSSIBLE VALUES ARE:
; SERVER - SERVER AUTHENTICATION ONLY
; CLIENT - SERVER AND CLIENT AUTENTICATION
; LOGON - SERVER AND CLIENT AUTENTICATION WITH LOGON
; THE CLIENT CERTIFICATE IS USED TO LOGON.
; ***
SSLVERSION = SSL30
KEYRING = CRYPTO.KEYRING
CERTNAME = SAMPLE
SESSIONTIMEOUT = 86440
AUTHENTICATION = CLIENT or LOGON

...

Figure 49. Job to Configure the VSE Connector Server for Client Authentication

VSE Connector Server for Client Authentication

116 VSE/ESA: e-business Connectors, User’s Guide

Configuring the VSE Connector Client for Client Authentication
This section describes the steps you must follow to configure for client
authentication:
v each VSE Connector Client installed on Web clients of the 2-tier environment

shown in Figure 2 on page 12,
v the VSE Connector Client installed on the middle-tier of the 3-tier environment

shown in Figure 3 on page 13,

To configure each VSE Connector Client for client authentication, you should
follow these steps:
v “Step 1: Generate a Key Pair”
v “Step 2: Generate and Store a Client Certificate” on page 118
v “Step 3: Import the CA’s Root Certificate into the Client Keyring File” on

page 120
v “Step 4: Save Your Client Keyring File” on page 121
v “Step 5: Define Access Rights for VSE Connector Client to Use Host Resources”

on page 121

Step 1: Generate a Key Pair

During the initial “handshake”, SSL uses a “key pair” consisting of:
v A private key
v A public key

This description of how to generate a key pair uses the IBM KeyMan tool to
generate a key pair (private and public keys). The public key will be later stored
on a client certificate. You can obtain KeyMan from:
http://www.alphaworks.ibm.com/

However you can, of course, use another tool of your choice to generate a key pair
and store them in the client keyring file (described in “Description of the
IBM-Supplied Client Keyring File” on page 111).
These are the steps you take to generate a key pair:
1. Start the KeyMan program. Open an existing client keyring file or create a new

client keyring file (with PKCS#12 token) by clicking the appropriate icon in the
first window.

2. In the KM: Keyring window, from the Menu pull-down select Actions and
Generate key. The window shown in Figure 50 on page 118 is displayed.

VSE Connector Client for Client Authentication

Chapter 13. Configuring the Java-Based Connector for Client Authentication 117

3. Select the key length you require, and start the generation process. After a few
seconds, a window KM: New is displayed, showing the new entry for a key
pair.

Notes:

a. Although the window has the title Generate New Key, there are (always) two
keys that are generated: a private key and a public key.

b. You must ensure that the key length you choose matches the length of the
key used on the VSE/ESA host:
v Cipher suites that use 512-bit handshaking can only be used with a

512-bit key that is stored on the VSE/ESA host.
v Cipher suites that use 1024-bit handshaking can only be used with a

1024-bit key that is stored on the VSE/ESA host.

Also see “Currently-Supported SSL Cipher Suites” on page 112 for further
details.

Step 2: Generate and Store a Client Certificate
In this step, a client certificate is generated and then stored in a client keyring file.
The client certificate will include the public key that was generated in the previous
step.
1. Click on the key pair that was generated in the previous step, and from the

menu pull-down select Actions — Request Certificate. The KM: Request a
Certificate window is displayed, as shown in Figure 51.

Figure 50. ″Generate Key″ Window

Figure 51. ″KM: Request a Certificate″ Window – Choose Request Method

VSE Connector Client for Client Authentication

118 VSE/ESA: e-business Connectors, User’s Guide

Now select Go to an online CA. Click Next dialog page (the arrow pointing to
the right), and you are then given a choice of Certificate Authorities (CAs) from
which you wish to obtain a certificate.

2. Select the Thawte Trial Server and click Next dialog page.
3. You are now presented with a dialog into which you enter your personal

details (Figure 52).

4. KeyMan now launches your default Web browser, and connects to
www.thawte.com. Your certificate request has been automatically copied onto
your Clipboard.

5. Now you must decide if you wish to:
v purchase a client certificate from Thawte for production use.
v obtain a personal certificate from Thawte for trial use, which is free of

charge, and use this as a client certificate.

After you have pasted your certificate request into an area on the Web page
provided by Thawte, your client certificate is generated and displayed. Copy
this certificate to the Clipboard, and then import it into the client keyring file
(Figure 53 on page 120).

Figure 52. ″KM: Request a Certificate″ Window – Enter Personal Details

VSE Connector Client for Client Authentication

Chapter 13. Configuring the Java-Based Connector for Client Authentication 119

Also from the Clipboard, paste the client certificate into an ASCII text file on
your client workstation, then select Save As and give the file a name that you
can later easily refer to. This file containing a client certificate will be required
in “Step 5: Define Access Rights for VSE Connector Client to Use Host
Resources” on page 121.

6. The client keyring file (Figure 54) now shows your client certificate. The public
key that you generated has been merged into this client certificate.

7. If you created a new client keyring file at “Step 2: Generate and Store a Client
Certificate” on page 118, save it by selecting File and Save from the menu
pull-down. Then give the new client keyring file a password and file name.

Note: The name that you give to your client keyring file must also be defined
when you configure each VSE Connector Client for SSL. See Figure 47 on
page 110 for an example job.

Step 3: Import the CA’s Root Certificate into the Client
Keyring File

Now return to the Thawte selection panel, and click the option for obtaining the
root certificate (that is related to your client certificate).

Figure 53. ″KM: Import″ Window – Import Certificate into Client Keyring File

Figure 54. ″KM: KeyRing″ Window – Display Client Certificate

VSE Connector Client for Client Authentication

120 VSE/ESA: e-business Connectors, User’s Guide

Ensure that this root certificate is copied to the Clipboard, and then import it into
the client keyring file as shown in Figure 55.

Step 4: Save Your Client Keyring File
After the root certificate has been imported into your client keyring file, you must
save the client keyring file by selecting File and Save from the menu pull-down.

You are also prompted to enter a password to protect this client keyring file.

Step 5: Define Access Rights for VSE Connector Client to Use
Host Resources

You can use the service functions provided with client authentication to control the
access rights that a VSE Connector Client has to VSE/ESA host resources, using a
VSE/ESA User ID that is associated with the client certificate that the client
provides. A client-certificates/User-IDs mapping list is managed on the VSE/ESA
host, where each client certificate in the mapping list is associated with a VSE/ESA
User ID.

To control the access rights for a VSE Connector Client, you must:
1. Paste the client certificate that you saved in a new file (in “Step 2: Generate and

Store a Client Certificate” on page 118) into a job on the VSE/ESA host similar
to the one shown in Figure 56 on page 122. This job will catalog your client
certificate into the VSE Keyring Library on the VSE/ESA host.

Figure 55. ″KM: KeyRing″ Window – Import Root Certificate

VSE Connector Client for Client Authentication

Chapter 13. Configuring the Java-Based Connector for Client Authentication 121

2. Submit the job.
3. Use the Client Certificates/User-IDs dialog on the VSE/ESA host to assign a

VSE/ESA User ID to this client certificate.
4. Define access rights for the VSE/ESA User ID, giving it access to the VSE/ESA

host resources you think are appropriate.

For details of the Client Certificates/User-IDs dialog and client-authentication service
functions, see Chapter 14, “Service Functions for Client Authentication”, on
page 123.

* $$ JOB JNM=SKCCERT,CLASS=0,DISP=D
// JOB SKCCERT,
// ID USER=<uid>,PWD=<password>
*
* * The following is a sample job that contains a x509v3
* * client certificate in Base64 format.
*
// EXEC LIBR,PARM=’MSHP’
A S=CRYPTO.KEYRING
CATALOG SAMPLE.CCERT DATA=YES REPLACE=YES EOD=/#
-----BEGIN CERTIFICATE-----
MIICLTCCAdcCBJzu1UQwDQYJKoZIhvcNAQEFBQAwgZYxIDAeBgkqhkiG9w0BCQEW
EXZzZWVzYUBkZS5pYm0uY29tMQswCQYDVQQGEwJERTETMBEGA1UEBxMKQm9lYmxp
bmdlbjEUMBIGA1UEChMLSUJNIEdlcm1hbnkxFDASBgNVBAsTC0RldmVsb3BtZW50
MSQwIgYDVQQDExtWU0UvRVNBIERldmVsb3BtZW50IENBIFJPT1QwHhcNMDIxMTE5
MTUzMzM1WhcNMDcxMTE4MTUzMzM1WjCBqDEmMCQGCSqGSIb3DQEJARYXY2xpZW50
QHlvdXIuY29tcGFueS5jb20xCzAJBgNVBAYTAkRFMRcwFQYDVQQHEw5Zb3VyIGxv
Y2FjdGlvbjEaMBgGA1UEChMRWW91ciBvcmdhbml6YXRpb24xFDASBgNVBAsTC0Rl
dmVsb3BtZW50MSYwJAYDVQQDEx1TYW1wbGUgVlNFIENsaWVudCBDZXJ0aWZpY2F0
ZTBcMA0GCSqGSIb3DQEBAQUAA0sAMEgCQQDk7yzQsyauG5yFTI1ouxJ5QAaVdHA5
8zsqq2kyV1M/95l3SACbAw6CHSEBRj1NyXBy8K0L1ZaGvlzYQxL7gs7PAgMBAAEw
DQYJKoZIhvcNAQEFBQADQQB1bcAvxQANxKbVdoWtnROoQBKI9WURLP6Qvvf9NqD1
N6xvdf1pWzjY8A22am+3vXemZx/8RdOtzJOdZJ/kHGNx
-----END CERTIFICATE-----
/#
/*
/&
* $$ EOJ

Figure 56. Sample Job to Catalog Client Certificate into VSE Keyring Library

VSE Connector Client for Client Authentication

122 VSE/ESA: e-business Connectors, User’s Guide

Chapter 14. Service Functions for Client Authentication

If client authentication is required in addition to server authentication, a client
certificate is provided by clients to authenticate the client to the server.

Using the service functions for client authentication described in this chapter, you
can introduce access checking on client certificates via VSE/ESA User IDs that
have been assigned to these client certificates.

The client certificates belong to either CICS clients or VSE Connector Clients.
Therefore using client certificates, you can control the access rights from:
v CICS clients to VSE/ESA host resources.
v VSE Connector Clients to VSE/ESA host resources.

A client-certificate/User-ID mapping list can be built and maintained using either
the batch function BSSDCERT, or using the Client-Certificates/User-IDs dialog.

This chapter consists of these main sections:
v “Prerequisites”
v “Using the Batch Service Function BSSDCERT”
v “Changing the Defaults (Optional)” on page 125
v “Using the Client-Certificates/User-IDs Dialog” on page 125

Prerequisites
Before you can use the service functions described here, you must have obtained
and stored in the VSE Keyring Library on the VSE/ESA host (default
CRYPTO.KEYRING) at least one client certificate. This is a client certificate in
Base64 format, to which you wish to assign a VSE/ESA User ID.

For details of how to obtain and store client certificates for CICS Web Support,
refer to the chapter “Configuring CICS to use SSL” in the CICS Transaction Server
for VSE/ESA, Enhancements Guide.

Using the Batch Service Function BSSDCERT

This section describes how you can use the BSSDCERT service in batch to build
and to maintain the mapping list of client-certificate/User-ID pairs.
EXEC BSSDCERT,PARM=’options’

options:
ADD,<CertMemName>,<Uid>,TRUST|NOTRUST
CHG,<CertMemName>,<Uid>,TRUST|NOTRUST
DEL,<CertMemName>
LST[,<ListMemName>[,I]]
ACT
CML,<CmdListMemName>
STA,<ALL>

where:

ADD Adds a new certificate to the client-certificate/User-ID mapping
list.

© Copyright IBM Corp. 2000, 2003 123

CHG Changes the details of an entry in the client-certificate/User-ID
mapping list.

DEL Deletes an entry for a given certificate in the client-
certificate/User-ID mapping list.

LST Extracts a readable list from the contents of the
client-certificate/User-ID mapping list. The list contains the
CertMemName, the assigned userid, the trusted indication, and
from the certificate information about the subject. This can be the
subject’s common name (for example, the certificate owner), and
the subject’s organization. However, the information will be
truncated to fit on the line. The created mapping list can be either
displayed on the console, or written to a librarian member in plain
text format or IPF format. IPF format is required so that the
mapping list can be displayed in the Client-Certificates/User-IDs
Dialog (Figure 57 on page 126).

ACT Builds an incore version of the client-certificate/User-ID mapping
list. It also activates the list so that it can be used by CICS Web
Support (CWS).

CML Specifies a librarian member name that contains a list of
BSSDCERT function calls.

STA Shows the status of the client-certificate/User-ID mapping list. If
this list is active, the storage size of this list and the number of
records, will be displayed. If you specify parameter ALL, the
current name settings of the related VSE/ESA library members are
also displayed. For further details about name settings, see
“Changing the Defaults (Optional)” on page 125.

CertMemName The name of the library member that contains the client certificate.
The member suffix is CCERT. The client certificate is a Base64
encoded X.509 certificate as returned from a PKCS #10 certificate
request. The data must include the string ’-----BEGIN
CERTIFICATE-----’ immediately before the Base64 encoding, and
the string ’-----END CERTIFICATE-----’ immediately following it.

Uid The VSE/ESA User ID defined using, for example, the Basic
Security Manager (BSM). This User ID will be associated with a
client certificate. The client (a CICS client or a VSE Connector
Client) will then have the access rights defined for this User ID,
during a connection to the VSE/ESA host.

TRUST The specified client certificate is trusted.

NOTRUST The specified client certificate is not trusted.

ListMemName The name of librarian member to which the output of the LST
function should be written.

I Specifies that the output of the LST function should be written to
in IPF format to the librarian member specified using
ListMemName. (IPF format is required so that the mapping list can
be displayed in the Client-Certificates/User-IDs Dialog).

CmdListMemName
The name of a librarian member that contains a list BSSDCERT
function calls.

Client-Authentication Service Functions

124 VSE/ESA: e-business Connectors, User’s Guide

Changing the Defaults (Optional)
You might wish to change the library and member-names defaults that are used by
BSSDCERT (for example, the name of the VSE Keyring Library). However
normally, you should not need to change these defaults.

The SETPARM defaults are shown below. To change any of the defaults, you use
the SETPARM SYSTEM,BSSDC..=’value’ statement.
Certificate/userid mapping file:

BSSDCUI=’l.s[.mn[.mt]]’
default: CRYPTO.KEYRING.BSSDCUID.MAPPING

Client certificates:
BSSDCCL=’l.s’

default: CRYPTO.KEYRING

List output in files:
BSSDCLT=’l.s’

default: IJSYSRS.SYSLIB

Command list input file:
BSSDCCS=’l.s’

default: IJSYSRS.SYSLIB

For example, to change the Certificate/Userid mapping file default to
MYCRYPTO.KEYRING, you would enter at the system console:
SETPARM SYSTEM,BSSDCUI=’MYCRYPTO.KEYRING’

Please Note!
If you change the above defaults for List output in files or Command list input
file, you will no longer be able to use the Client-Certificates/User-IDs Dialog.

For details of how to use the SETPARM command, refer to VSE/ESA System Control
Statements.

Using the Client-Certificates/User-IDs Dialog
The Client-Certificates/User-IDs dialog is provided so that you can more easily
manage your client-certificate/User-ID mapping list. It calls the BSSDCERT
function, which was described in “Using the Batch Service Function BSSDCERT”
on page 123.

Step 1: Starting the Dialog
To start the Client-Certificates/User-IDs dialog, you select 29 Maintain Certificate -
User ID List on the administrator’s Resource Definition Selection panel (IESEDEF).
The panel shown in Figure 57 on page 126 is then displayed, which shows the list
of all client-certificate/User-ID pairs defined for your VSE/ESA system.

Client-Authentication Service Functions

Chapter 14. Service Functions for Client Authentication 125

Here is an explanation of the fields displayed in Figure 57:

OPT In this column you can enter either a 1 (to add a certificate to the
mapping list), 2 (to change a certificate in the mapping list), or 5
(to delete a certificate from the mapping list). Explained in “Step 2:
Selecting an Option”.

CERTIFICATE COMMON NAME
Common name contained on the client certificate, and the
organization of the certificate owner.

CERTIFICATE MEMBER NAME
Name of the member that contains the client certificate.

USERID VSE/ESA User ID that the administrator has assigned to the client
certificate.

TRUSTED If an X is displayed next to a client certificate, then the
administrator has decided that this client’s User ID can be used for
access checking. Otherwise, this client’s User ID will not be used
for access checking. You can use this field to temporarily deactivate
the assignment of a client certificate to a User ID.

The use of the PF5 (Process) and PF6 (Activate) keys are described in “Step 3:
Creating the Output Job” on page 127.

Step 2: Selecting an Option
From the panel shown in Figure 57, you can enter in the OPT column one of these
options:

1 (ADD) If you enter a 1 (in Figure 57) to add a new client-
certificate/User-ID pair, you get the panel shown in Figure 58 on
page 127. The system displays default values if you select an
empty line. If you selected an already-defined
client-certificate/User-ID pair, the dialog uses this
client-certificate/User-ID pair and its parameters (for USER ID and
TRUSTED) as a model for the new client-certificate/User-ID pair.

TAS$CERS CLIENT CERTIFICATES - USER IDS
Enter the required data and press ENTER

OPTIONS: 1 = ADD 2 = CHANGE 5 = DELETE

OPT CERTIFICATE USERID TRUSTED
COMMON NAME MEMBER NAME

_ John Haeberle, IBM KRL00010 JOHNHB X
_ Paul Gallagher, IBM KRL00012 PAULGL X
_ Helmut Hellner, IBM KRL00015 HELHELL
_ Alexander Schoettle, IBM KRL00017 ASCHOETT X
_ TCPIP4VSE, Connectivity Systems KRL00018 473337 X
_ TCPIP5VSE, Connectivity Systems KRL00019 460341 X
_ TCPIP6VSE, Connectivity Systems KRL00022 155287 X
_ Herbert Nass, IBM KRL00024 NASSHER
_ Anita Stark, IBM KRL00026 NETTANI
_ Elke Schaefer, IBM KRL00027 ELKESCHA X

LOCATE MEMBER NAME == > ________
PF1=HELP 2=REDISPLAY 3=END 5=PROCESS 6=ACTIVATE

8=FORWARD

Figure 57. Listing All Client-Certificate/User-ID Pairs

Client-Authentication Service Functions

126 VSE/ESA: e-business Connectors, User’s Guide

You must then enter in the field:

Member Name
The name of the member that contains the client
certificate. By default, this member will be stored
in the VSE Keyring Library.

User ID The VSE/ESA User ID of the client-
certificate/User-ID pair to be added.

Trusted Either the value:
1 The client certificate should be trusted.
2 The client certificate should not be trusted.

After completing the fields above, you press Enter to save your
changes and return to the Client-Certificates/User-IDs dialog
(Figure 57 on page 126).

2 (CHANGE) After entering a 2 next to a client-certificate/User-ID pair, you can
then overtype either the User ID or the Trusted parameter of the
pair, Press Enter to save your changes.

5 (DELETE) After entering a 5 next to a client-certificate/User-ID pair, you can
then press Enter to carry out the deletion.

Step 3: Creating the Output Job
After all your changes have been entered, you can either press PF5 (Process) or
PF6 (Activate).

PF5 (Process only)
A job is created (shown in “Step 4: Submitting or Storing the
Output Job” on page 128) in which the mapping list of
Client-Certificates/User-IDs is to be updated with a list of your
changes. These changes might include:
v new pairs whose details you have defined using Option 1.
v changed pairs whose details you have defined using Option 2.
v pairs to be deleted, which you have identified using Option 5.

You can activate these changes at a later time using the PF6
function.

TAS$CER CLIENT CERTIFICATES - USER IDS: ADD

Enter the required data and press ENTER.

MEMBER NAME............ ________ Unique name of the library member
that contains the client certificate

USER ID................ UAX VSE User Id associated to
the certificate.

TRUSTED................ 1 The certificate is trusted.
Enter 1 for yes and 2 for no.

PF1=HELP 2=REDISPLAY 3=END

Figure 58. Adding a Client-Certificate/User-ID Pair

Client-Authentication Service Functions

Chapter 14. Service Functions for Client Authentication 127

PF6 (Process and Activate)
As for PF5, a job is created in which the mapping list of
Client-Certificates/User-IDs is to be updated with a list of your
changes. In addition however:
v an incore version of the new mapping list will be built and

activated.
v the automatic activation of the new mapping list during all

subsequent system-startups, is prepared.

Step 4: Submitting or Storing the Output Job
After completing “Step 3: Creating the Output Job” on page 127, the dialog creates
a job with the default name CATCERT. On the Job Disposition panel, you can
submit the job to batch, file it in your default primary library, or both.

Client-Authentication Service Functions

128 VSE/ESA: e-business Connectors, User’s Guide

Chapter 15. Mapping VSE/VSAM Data to a Relational Structure

This chapter describes how VSE/VSAM data is mapped to a relational structure,
and then the four methods that you can use to do so. It contains these main
sections:
v “Introduction to Mapping VSE/VSAM Data”
v “How VSAM Maps Are Structured” on page 130
v “How Maps Are Stored on the VSE/ESA host” on page 130
v “Defining a Map Using RECMAP” on page 132
v “Defining a Map Using the Sample Applet” on page 134
v “Defining a Map Using a Java Application” on page 134
v “Defining a Map Using the VSAM MapTool” on page 140

Introduction to Mapping VSE/VSAM Data
You must map VSAM records to a relational structure, if you wish to access VSAM
data using:
v A DB2 Stored Procedure via the VSAM CLI (Call Level Interface), as described

in “Using DB2 Stored Procedures to Access VSAM Data” on page 312.
v VSE Java Beans, as described in “Contents of the VSE Java Beans Class Library”

on page 155.

In the past, VSAM data was mainly accessed using application programs that
understood the internal structure of the VSAM data: the record layout was
represented by data structures within the application programs. The disadvantages
of using this method are:
v There is no way to share a given record layout with other applications.
v If the record layout changes, the application program must also be changed.
v The data structure is dependent on the programming language (for example

COBOL, Assembler, or PL/I).
v Formatted data reports have to be created on the operating-system platform on

which the application programs run.

However, the development of e-business applications as described in this book,
requires:
v A sharing of data representation across operating-system platforms.
v Easy access to data representations from different applications.
v That data representation and data display are independent of operating-system

platform and programming language.

VSE/ESA therefore provides you with two methods of mapping your VSAM data
so it can be used within e-business applications:
v Creating a data map (referred to simply as a map) for a given VSAM record or

record type. A map splits the VSAM record into columns and their data fields,
that have a name, a length, a datatype, and an offset within the record.

v Creating a data view (referred to simply as a view) that contains a subset of the
fields contained within a map. A view always points to a subset of the data
fields of a given VSAM map. Therefore, if you change a VSAM map, the views
that use this map will also be affected. For example, deleting a map will also

© Copyright IBM Corp. 2000, 2003 129

delete all views of this map. You can use views to give different user groups
different views of the same data (for example, to hide some information from
specific users).

How VSAM Maps Are Structured
The mapping definitions have the following hierarchical structure:

A data field represents one specific column of a VSAM record. It is always part of
a given map or view. It consists of:
v a name (the column name)
v a length
v a datatype
v an offset within the record
v a description

When an application accesses VSAM data using a map, only the map’s fields are
used.

You can also specify filters when accessing VSAM data using a map. For example,
you might display only those records where a given column (data field) matches a
given filter string. You can use filters in any Java program (Java applications, Java
servlets, Java applets, or Enterprise Java Beans).

Note: When you define a map for a cluster, no check is made to see if a cluster
exists. Therefore you must take steps to ensure that your mapping
definitions are always in synchronization with your VSAM clusters.

How Maps Are Stored on the VSE/ESA host
On the host, the maps of all VSAM clusters are stored in one single VSAM file,
VSE.VSAM.RECORD.MAPPING.DEFS. This file is created automatically during the initial
installation or FSU of VSE/ESA.

The short name for this VSAM file is IESMAPD, and the cluster for this file is
stored in VSESP.USER.CATALOG.

Note: If you have migrated from VSE/ESA 2.5, you do not have to redefine your
VSE.VSAM.RECORD.MAPPING.DEFS file: your previous mappings can be used as
they were originally defined. However from VSE/ESA 2.6 onwards, each
field of your previous mappings will now contain a blank description field.

CATALOG (MY.USER.CATALOG)
CLUSTER (MY.DATA.CLUSTER)
MAP (Map One)
COLUMN (Name, Ofs=0,Len=10,Type=String,Description=xxxxx)
COLUMN (Street, Ofs=10,Len=20,Type=String,Description=xxxxx)
...
VIEW (View One)

COLUMN (PersonInfo, Ref=Name,Description=xxxxx)
COLUMN (Address, Ref=Street,Description=xxxxx)
...

VIEW (View Two)
...
MAP (Map Two)
...

Figure 59. Hierarchical Structure of VSAM Maps

Mapping VSE/VSAM Data

130 VSE/ESA: e-business Connectors, User’s Guide

Figure 60 is an example of a job used to define the cluster for file
VSE.VSAM.RECORD.MAPPING.DEFS . You can find this example job in the member
VSAMDEFS.Z in Library IJSYSRS.SYSLIB.

Notes:

1. You should not normally need to run this job, since it runs automatically
during VSE/ESA installation.

2. You should not delete or move this file.

* $$ JOB JNM=DEFINE,CLASS=0,DISP=D
// JOB DEFINE FILE
// EXEC IDCAMS,SIZE=AUTO

DEFINE CLUSTER (NAME (VSE.VSAM.RECORD.MAPPING.DEFS) -
RECORDS(2000,1000) -
SHAREOPTIONS (2) -
RECORDSIZE (284 284) -
VOLUMES (DOSRES SYSWK1) -
NOREUSE -
INDEXED -
FREESPACE (15 7) -
KEYS (222 0) -
NOCOMPRESSED -
TO (99366)) -
DATA (NAME (VSE.VSAM.RECORD.MAPPING.DEFS.@D@) -
CONTROLINTERVALSIZE (4096)) -
INDEX (NAME (VSE.VSAM.RECORD.MAPPING.DEFS.@I@)) -
CATALOG (VSESP.USER.CATALOG)

IF LASTCC NE 0 THEN CANCEL JOB
/*
/&
* $$ EOJ

Figure 60. Job To Define the Cluster for VSAM.RECORD.MAPPING.DEFS

Mapping VSE/VSAM Data

Chapter 15. Mapping VSE/VSAM Data to a Relational Structure 131

Defining a Map Using RECMAP
This method of defining a map for a VSAM cluster uses the IDCAMS RECMAP
command. Using RECMAP, you can also delete, change (alter), or list the contents
of a map or view. For a practical example of how RECMAP can be used, see “4.
Define the VSAM Data Cluster” on page 219.

The syntax of this command is shown in Figure 61.

PP RECMAP P

P DEFINE (MAP (name) DEFINE-spec) CLUSTER-spec
DELETE (MAP (name) DELETE-spec)
ALTER (MAP (name) ALTER-spec)

LIST (LIST-spec)
CLUSTER (name) CATALOG (name)

PQ

DEFINE-spec:

^

^

MAPCOLUMN ((mname FIELD-spec))
POSITION (position)

VIEW (name) VIEWCOLUMN ((vname REFCOLUMN (name)))
POSITION (position)

DELETE-spec:

MAP (name)
VIEW (name)

^COLUMN (name)

ALTER-spec:

MAPCOLUMN (name)
FIELD-spec POSITION (position)

VIEW (name) VIEWCOLUMN (name)
REFCOLUMN (name) POSITION (position)

P

P
NEWNAME (name)

LIST-spec:

CLUSTERS
MAPS
MAP (name) COLUMNS

VIEWS
VIEW (name)

COLUMNS

Figure 61. Syntax of RECMAP Command (IDCAMS)

Mapping VSE/VSAM Data

132 VSE/ESA: e-business Connectors, User’s Guide

FIELD-spec:

FIELD (OFFSET (offset) , LENGTH (length) , TYPE (BINARY)
STRING
UINTEG
SINTEG
PACKED

P

P
, DESCRIPTION (Text)

)

CLUSTER-spec:

CLUSTER (name) CATALOG (name)

These are the parameters you can define for use with this command:

name A character string of maximum length 44 characters.

MAP(name) The name of a map you want to define and reference.

MAPCOLUMN
A parameter used when you want to define one or more columns
for a map.

mname The name of a column you want to define for a map.

Field(OFFSET(o),LENGTH(l),TYPE(type))
The VSAM record’s offset, length and data-type that you want to
map. You can write these parameters in any order.

Position(position)
The position number of a column in a map or view.

VIEW(name) The name of a view that you want to define. This parameter
requires that you specify MAP(name).

VIEWCOLUMN
The name of a column contained in a view (which can be different
from this column as specified in MAPCOLUMN).

REFCOLUMN(name)
The name of a pointer to the corresponding MAPCOLUMN.

COLUMN(name)
The name of a column that will be deleted from a map or view,
when you specify VIEW(name).

NEWNAME(name)
The new name for a column/view/map (which depends upon the
previous parameter that was specified).

CLUSTERS You use this parameter to list all maps, views and columns
belonging to all clusters.

MAPS You use this parameter to list all columns belonging to all maps.

COLUMNS You use this parameter to list all columns belonging to a specific
map.

VIEWS You use this parameter to list all columns belonging to all views.

Mapping VSE/VSAM Data

Chapter 15. Mapping VSE/VSAM Data to a Relational Structure 133

View(name) Columns
You use this parameter to list all columns belonging to a specific
view.

DESCRIPTION(text)
Description of the field.

CLUSTER(name)
The name of a VSAM cluster (maximum 44 characters length) that
you want to reference.

CATALOG(name)
The name of a VSAM catalog (maximum 44 characters length) that
you want to reference.

Defining a Map Using the Sample Applet
This method of defining a map for a VSAM cluster uses an applet that runs on a
Web browser.

A sample applet for used for defining maps is contained in
VsamMappingApplet.html of the VSE/ESA e-business Connectors online
documentation, and is described in “Running the Sample Data-Mapping Applet”
on page 207.

Defining a Map Using a Java Application
This method of defining a map for a VSAM cluster uses a Java application that runs
on a workstation.

The example described here is for a simple Java application that creates a map for
a given VSAM cluster, and also defines two different views. The example is taken
from the VSE/ESA e-business Connectors online documentation.

If you require the online version of this example, refer to VsamDataMapping.html.
The source code is contained in Java source file VsamDataMapping.java, which is
located in the com.ibm.vse.samples directory, that is positioned below the samples
directory of your connector client installation (described in “Installing the VSE
Connector Client” on page 25).

The following steps describe how you code a Java application that defines a map
for a VSAM cluster.
1. Create a Map for the VSAM Cluster:

To create a map, you must first instantiate a local object of the VSEVsamMap
class. The creation of the map definition on the host also requires a call to the
create() method.
To use an existing map, you must first instantiate a local object of class
VSEVsamMap and then use the isExistent() method to check if this map exists
on the host.

Note: Be aware that distributed objects are being used. Therefore, when local
objects of class VSEVsamMap and VSEVsamView are created, this does
not automatically imply that the related definitions are created on the
host.

Create a local map object and check whether it exists on the host. If it does not
exist, create it on the host using the create() method. Put the code into try/catch

Mapping VSE/VSAM Data

134 VSE/ESA: e-business Connectors, User’s Guide

blocks, since the create() and isExistent() methods can produce exception errors.
Here is an example of how to create a local VSAM map object:

2. Create Data Fields for the Map

Data fields of a given view of a map are simply references to the fields of the
map. But the same field can have different names in different views. Deleting a
field of a map, for example, will also make this field unavailable for all views.
Deleting the whole map will also delete all views of this map. However, your
local view objects are not notified that their map has been deleted. When the
next access is made to a field that belongs to a view, an exception will be
generated.
Now you must add fields to the map, which describe the record’s internal
structure. Note that these field names must be in uppercase (otherwise they will
be translated to uppercase when sending the request to the host). Whereas
creating a VSEVsamField object is a local operation only, the addField() method
sends this request to the host. Here is an example of how to create data fields
for a map:

...
public static void main(String argv[]) throws IOException
{

VSESystem system;
VSEVsamMap map;
VSEVsamView employeeView=null, managerView=null;
VSEVsamField dataField;
...
// Create VSESystem and connect
...

// Create map ...
String catalogID = "VSESP.USER.CATALOG";
String clusterID = "VSAM.DISPLAY.DEMO.CLUSTER";
try
{

System.out.println("Creating map MYMAP ...");
map = new VSEVsamMap(system, catalogID, clusterID, "MYMAP");
if (!(map.isExistent()))
{

System.out.println(" Map does not exist on host. Create it ...");
map.create();

}
else

System.out.println(" Map already exists on host. Continue ...");
}
catch (Exception e)
{

System.out.println(" Exception when creating map: ");
System.out.println(e);
return;

}
... (Continued)

Figure 62. Example of Creating a Local VSAM Map Object

Mapping VSE/VSAM Data

Chapter 15. Mapping VSE/VSAM Data to a Relational Structure 135

3. Display the Properties of the Map

Here is an example of how to display some of the properties of the map you
have created:

4. Create the Employee View for the Map

The example provided in the VSE/ESA e-business Connectors online
documentation creates two different views within this map: a manager’s view
(not shown here), and an employee’s view. Again, creating the view object is
only local, but the create() method creates the view on the host.

System.out.println(" ");
System.out.println("Adding fields to the map...");
String[] fields = {"LAST NAME", "FIRST NAME", "DEPARTMENT", "AGE"};
int[] types = {VSEVsamMap.TYPE_STRING, VSEVsamMap.TYPE_STRING,

VSEVsamMap.TYPE_UNSIGNED, VSEVsamMap.TYPE_UNSIGNED};
int[] lengths = {20, 10, 4, 2};
int[] offsets = {0, 20, 30, 34};

for (int i=0;i<fields.length;i++)
{

try
{

dataField = new VSEVsamField(system, fields[i], types[i],
lengths[i], offsets[i]);

map.addField(dataField);
}
catch (Exception e)
{

System.out.println("Exception when adding " + fields[i] + "
to the map: ");

}
}
... (Continued)

Figure 63. Example of Creating Data Fields for a Map

...
/* Now display some properties of the map */
System.out.println("Map properties");
System.out.println(" Map name : " + map.getName());
System.out.println(" Catalog name : " + map.getCatalog());
System.out.println(" Cluster name : " + map.getCluster());
System.out.println(" System name : " + map.getVSESystem());
System.out.println(" Number of fields : " + new Integer(

(map.getNoOfFields())).toString());
for (int i=0;i<map.getNoOfFields();i++)
{

System.out.println(" Field " + new Integer(i).toString() + " : " +
map.getFieldName(i));

System.out.println(" type = " + new Integer(
(map.getFieldType(i))).toString());

System.out.println(" length = " + new Integer(
(map.getFieldLength(i))).toString());

System.out.println(" offset = " + new Integer(
(map.getFieldOffset(i))).toString());

}
... (Continued)

Figure 64. Example of Displaying the Properties of a Map

Mapping VSE/VSAM Data

136 VSE/ESA: e-business Connectors, User’s Guide

5. Add Data Fields to the Employee View

In the example we now add fields to the employee view. This uses the same
method as adding fields to a map. We also decide that employees are allowed
to see only three fields of a VSAM record: the last name, the first name, and the
department number. Here is the code for such a scenario:

...
System.out.println(" ");
System.out.println("Creating employee’s view on the map ...");
try
{

employeeView = new VSEVsamView(system, catalogID, clusterID,
"MYMAP", "EMPLOYEEVIEW");

if (!(employeeView.isExistent()))
{

System.out.println("Employee view does not exist. Create it ...");
employeeView.create();

}
else

System.out.println("Employee already exists. Continue ...");
}
catch (Exception e)
{

System.out.println("Exception when creating employeeView: ");
return;

}
...
...

Figure 65. Example of Creating a View for a Map

String[] empFields = {"LAST NAME", "FIRST NAME", "DEPARTMENT"};
System.out.println("Adding fields to employeeView ...");
for (int i=0;i<emp.Fields.length;i++)
{

try
{

employeeView.addField(empFields[i]);
}
catch (Exception e)
{

System.out.println("Exception when adding " + empFields[i] + "
to employeeView: ");

}
}

... (Continued)

Figure 66. Example of Adding Data Fields to a View

Mapping VSE/VSAM Data

Chapter 15. Mapping VSE/VSAM Data to a Relational Structure 137

6. Display Properties of the Employee View

Here is an example of how to display the properties of the employee view:

7. Delete the Map

Here the map is deleted, together with its views and fields:

Java Console Output Produced By the Sample

The following output was produced on the Java console when running this sample
from the Web browser (using file RunExamples.html) on the IBM test system.
C:\vsecon\samples>java com.ibm.vse.samples.VsamDataMapping
Please enter your VSE IP address:
9.164.155.95
Please enter your VSE user ID:
sysa
Please enter password:
***** (password will display in clear)
Creating map MYMAP ...

Map does not exist on host. Create it ...

/* Now display some properties of the employeeView */
System.out.println("employeeView properties");
System.out.println(" View name : " + employeeView.getName());
System.out.println(" Catalog name : " + employeeView.getCatalog());
System.out.println(" Cluster name : " + employeeView.getCluster());
System.out.println(" System name : " + employeeView.getVSESystem());
System.out.println(" Number of fields : " + new Integer(

(employeeView.getNoOfFields())).toString());
for (int i=0;i<employeeView.getNoOfFields();i++)
{
System.out.println(" Field " + new Integer(i).toString() + " : " +

employeeView.getFieldName(i));
System.out.println(" type = " + new

Integer((employeeView.getFieldType(i))).toString());
System.out.println(" length = " + new

Integer((employeeView.getFieldLength(i))).toString());
System.out.println(" offset = " + new

Integer((employeeView.getFieldOffset(i))).toString());
}
... (Continued)

Figure 67. Example of Displaying the Properties of a View

/* Now delete the map including all views and fields */
try
{

System.out.println("Deleting map MYMAP ...");
map.delete();

}
catch (Exception e)
{

System.out.println("Exception when deleting map:");
System.out.println(e);

}
...

}

Figure 68. Example of How to Delete a Map

Mapping VSE/VSAM Data

138 VSE/ESA: e-business Connectors, User’s Guide

Adding fields to the map...
Map properties

Map name : MYMAP
Catalog name : VSESP.USER.CATALOG
Cluster name : VSAM.DISPLAY.DEMO.CLUSTER
System name : 9.164.155.95
Number of fields : 4
Field 0 : LAST NAME
type = 2
length = 20
offset = 0
Field 1 : FIRST NAME
type = 2
length = 10
offset = 20
Field 2 : DEPARTMENT
type = 3
length = 4
offset = 30
Field 3 : AGE
type = 3
length = 2
offset = 34

Creating employee’s view on the map ...
Employee view does not exist. Create it ...
Adding fields to employeeView ...
employeeView properties

View name : EMPLOYEEVIEW
Catalog name : VSESP.USER.CATALOG
Cluster name : VSAM.DISPLAY.DEMO.CLUSTER
System name : 9.164.155.95
Number of fields : 3
Field 0 : LAST NAME
type = 2
length = 20
offset = 0
Field 1 : FIRST NAME
type = 2
length = 10
offset = 20
Field 2 : DEPARTMENT
type = 3
length = 4
offset = 30

Creating manager’s view on the map ...
Manager view does not exist. Create it ...
Adding fields to managerView ...
Exception when adding MONTHLY SALARY to managerView:
managerView properties

View name : MANAGERVIEW
Catalog name : VSESP.USER.CATALOG
Cluster name : VSAM.DISPLAY.DEMO.CLUSTER
System name : 9.164.155.95
Number of fields : 4
Field 0 : LAST NAME
type = 2
length = 20
offset = 0
Field 1 : FIRST NAME
type = 2
length = 10
offset = 20
Field 2 : DEPARTMENT
type = 3
length = 4

Mapping VSE/VSAM Data

Chapter 15. Mapping VSE/VSAM Data to a Relational Structure 139

offset = 30
Field 3 : AGE
type = 3
length = 2
offset = 34

Deleting map MYMAP ...
Finished.

C:\vsecon\samples>pause
Press any key to continue . . .

After you have defined one or more maps for a VSAM cluster (which describe the
internal structure of VSAM records), you can display the mapped VSAM data
using:
v A DB2 Stored Procedure via the VSAM CLI Interface (described in “Using DB2

Stored Procedures to Access VSAM Data” on page 312)
v The VSE Java Beans (described in “Using VSE Java Beans for Accessing VSAM

Data” on page 164).

Defining a Map Using the VSAM MapTool
This method of defining a map for a VSAM cluster uses the VSAM MapTool, which
creates a map by parsing a COBOL copybook.

In addition, you can use the VSAM MapTool to:
v Import (receive) a specified map from a specified VSE/ESA system.
v Export a map to a VSE/ESA system (that is, send it to VSE).
v Import a map from an XML file.
v Export a map to an XML file.
v Create a Java source file from a specified map. The Java program can obtain all

records from the related VSAM file, by using this map.

Figure 69 shows window that the VSAM MapTool displays:

To install the VSAM MapTool you must:
1. Download the file maptool.zip from this internet address:

Figure 69. Example of a VSAM MapTool Window

Mapping VSE/VSAM Data

140 VSE/ESA: e-business Connectors, User’s Guide

http://www.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/maptool.htm

2. Run the installation procedure described on the Web site whose address is
given above.

The installation package includes many examples of how to use the VSAM
MapTool.

Mapping VSE/VSAM Data

Chapter 15. Mapping VSE/VSAM Data to a Relational Structure 141

142 VSE/ESA: e-business Connectors, User’s Guide

Part 3. Programming

Part 3 contains these chapters:
v Chapter 16, “Migrating Your Programs”, on page 145
v Chapter 17, “Using VSE Java Beans to Implement Java Programs”, on page 153
v Chapter 18, “Using JDBC to Access VSAM Data”, on page 187
v Chapter 19, “Using Java Applets to Access Data”, on page 201
v Chapter 20, “Using Java Servlets to Access Data”, on page 243
v Chapter 21, “Using Java Server Pages to Access Data”, on page 263
v Chapter 22, “Using EJBs to Represent Data”, on page 267
v Chapter 23, “Extending the Java-Based Connector”, on page 287
v Chapter 24, “Using the DB2-Based Connector to Access Data”, on page 309
v Chapter 25, “Using SOAP for Inter-Program Communication”, on page 331
v Chapter 26, “Using the VSE Script Connector for Non-Java Access”, on page 349

© Copyright IBM Corp. 2000, 2003 143

144 VSE/ESA: e-business Connectors, User’s Guide

Chapter 16. Migrating Your Programs

This chapter describes the actions you must take to migrate your programs so that
they can take advantage of the latest support. It contains these main sections:
v “Migrating from CCF to CCI”
v “Migrating to Secure Connections Using SSL” on page 147
v “Migrating to VSAM-Access Via JDBC” on page 149
v “Migrating Your Applets to JDK 1.3 or Later” on page 151
v “Using the New Methods in VSE Java Beans” on page 152
v “Migrating Servlets and EJBs” on page 152

Migrating from CCF to CCI
From VSE/ESA 2.6 onwards, IBM’s Common Connector Framework (CCF) that
was previously used with VSE/ESA 2.5, was replaced by the J2EE Common Client
Interface (CCI). This change is only relevant for 3-tier applications, in which (for
example) servlets and EJBs are used.

These are the changes you must make to your code, in order to use CCI instead of
CCF:

/* Import CCF classes */
import com.ibm.connector.*;
import com.ibm.connector.internal.*;

...
/* Create VSESystem and connection */
try {

spec = new VSEConnectionSpec(InetAddress.getByName(ipAddr),
2893,userid,password);

}
catch (Exception e)
{

...
return;

}

spec.setReapTime(5);
spec.setMaxConnections(5);
spec.setMinConnections(0);
spec.setUnusedTimeout(10000);
spec.setLogonMode(true);

/* Create VSE system instance with this connection */
system = new VSESystem(spec);

if (system.getConnectionManager() != connmgr)
system.setConnectionManager(connmgr);

...

Figure 70. Code Containing CCF Statements (VSE/ESA 2.5)

© Copyright IBM Corp. 2000, 2003 145

The CCI-related classes are stored in file cci.jar. Your local classpath must contain
this file.

/* Import CCI classes */
import javax.resource.*;

...
/* Create VSESystem and connection */
try {

spec = new VSEConnectionSpec(InetAddress.getByName(ipAddr),
2893,userid,password);

}
catch (Exception e)
{

...
return;

}

spec.setMaxConnections(5);
spec.setLogonMode(true);

/* Create VSE system instance with this connection */
system = new VSESystem(spec);

/* Note: The following statements are only required */
/* if you use a Web Application Server */
/* (for example IBM WebSphere) */

Context ctx = new InitialContext();
spec.setJNDIContext(ctx);
spec.setJNDIName("eis/VSEConnector");

...

Note: String eis/VSEConnector (above) is an example of a JNDI Binding Path, which is a
property of a WebSphere Connection Factory. For further details, refer to the VSE
Connector Client online documentation (see “Using the Online Documentation
Options” on page 28).

Figure 71. Equivalent Code Containing CCI Statements (VSE/ESA 2.6)

Migrating Programs

146 VSE/ESA: e-business Connectors, User’s Guide

Migrating to Secure Connections Using SSL
From VSE/ESA 2.6 onwards, Secure Sockets Layer (SSL) security is supported for
connecting between VSE Connector Clients and the VSE Connector Server running
on the VSE/ESA host. For details, see “Configuring the VSE Connector Server for
Server Authentication” on page 105 and “Configuring the VSE Connector Client for
Server Authentication” on page 108.

The SSL-related Java classes are contained in file ibmjsse.jar, which must be
contained in your local classpath.

These are the changes you must make to your code, in order to include SSL
connections:

...
try {

spec = new VSEConnectionSpec(InetAddress.getByName(ipAddr),
2893,userID,password);

}
catch (UnknownHostException e)
{

System.out.println("Unknown host : " + e);
return;

}

...

/* Create VSE system instance with this connection */
system = new VSESystem(spec);

/* Connect to host */
system.connect();

...

Figure 72. Code Without SSL Support (VSE/ESA 2.5)

Migrating Programs

Chapter 16. Migrating Your Programs 147

...
try {

spec = new VSEConnectionSpec(
InetAddress.getByName(ipAddr),
2893,userID,password);

}
catch (UnknownHostException e) { ... }

/* Specify secure SSL connection */
spec.setSSL(true);

/* Specify SSL properties */
sslProps = new Properties();
sslProps.put("SSLVERSION", "SSL");
sslProps.put("CIPHERSUITES",

"SSL_RSA_WITH_NULL_MD5," +
"SSL_RSA_WITH_NULL_SHA," +
"SSL_RSA_EXPORT_WITH_DES40_CBC_SHA," +
"SSL_RSA_WITH_DES_CBC_SHA," +
"SSL_RSA_WITH_3DES_EDE_CBC_SHA");

sslProps.put("KEYRINGFILE", "c:\\vsecon\\KeyRing.pfx");
sslProps.put("KEYRINGPWD", "ssltest");
spec.setSSLProperties(sslProps);

/* Create VSE system instance with this connection */
system = new VSESystem(spec);

/* Connect to host */
system.connect();

...

Figure 73. Equivalent Code Containing SSL Support (VSE/ESA 2.6)

Migrating Programs

148 VSE/ESA: e-business Connectors, User’s Guide

Migrating to VSAM-Access Via JDBC
From VSE/ESA 2.6 onwards, JDBC support was introduced for the Java-based
connector. This included a JDBC driver with a limited set of supported SQL
constructs. For details, see Chapter 18, “Using JDBC to Access VSAM Data”, on
page 187.

These are the changes you must make to your code, in order to include JDBC for
VSAM access:

...
/* Create VSE system instance */
system = new VSESystem(spec);
vsam = system.getVSEVsam();

/* Create a listener that gets notified when objects */
/* are retrieved from the host */
rl = new RecordListener();
vsam.addVSEResourceListener(rl);

/* Get VSAM records from host using the given map */
map = new VSEVsamMap(system, catName, fileName, mapName);
cluster = new VSEVsamCluster(system, catName, fileName);
cluster.addVSEResourceListener(rl);
cluster.selectRecords(map);
cluster.removeVSEResourceListener(rl);

/* Get vector containing all records from listener */
vRecords = rl.getRecords();

/* Display records ... */
int numMapFields = map.getNoOfFields();
for (int k=0;k<vRecords.size();k++)
{

record = (VSEVsamRecord)(vRecords.elementAt(k));
for (int i=0;i<numMapFields;i++)
{

try {
if (map.isFieldPartOfPrimaryKey(i))

System.out.println(map.getFieldName(i) +
" (Key) : " + record.getField(i).toString());

else
System.out.println(map.getFieldName(i) +

" : " + record.getField(i).toString());
}
catch (Exception e)
{

...
}

}
}

...

Figure 74. Code Using VSE Java Beans to Access VSAM Data (VSE/ESA 2.5)

Migrating Programs

Chapter 16. Migrating Your Programs 149

/* Setup JDBC driver */

...
try {

/* Create an instance of the JDBC driver */
jdbcDriver = (java.sql.Driver) Class.forName(

"com.ibm.vse.jdbc.VsamJdbcDriver").newInstance();

// Build the URL to use to connect
String url = "jdbc:vsam:"+vseHostName;

// Assign properties for the driver
java.util.Properties prop = new java.util.Properties();
prop.put("port", vsePort);
prop.put("user", userID);
prop.put("password", password);

// Connect to the driver
jdbcCon = DriverManager.getConnection(url, prop);

// Set the catalog.
jdbcCon.setCatalog(vsamCatalog);

}
catch (Throwable t)
{

...
}

/* Display a list of database rows */
try
{

// get a statement
java.sql.Statement stmt = jdbcCon.createStatement();

// execute the query
java.sql.ResultSet rs = stmt.executeQuery("SELECT * FROM "+

vsamCatalog+"\\"+flightsCluster+"\\"+flightsMapName);

// Walk through the results
while (rs.next())
{

// get the values
flightNumber = rs.getInt("FLIGHT_NUMBER");
start = rs.getString("START");
destination = rs.getString("DESTINATION");
departure = rs.getString("DEPARTURE");
arrival = rs.getString("ARRIVAL");
price = rs.getInt("PRICE");
airline = rs.getString("AIRLINE");

}
rs.close();
stmt.close();

}
catch (SQLException t)
{

...
}

Figure 75. Equivalent Code Using JDBC to Access VSAM Data (VSE/ESA 2.6)

Migrating Programs

150 VSE/ESA: e-business Connectors, User’s Guide

Migrating Your Applets to JDK 1.3 or Later
The behavior of applets was changed with JDK 1.3. For example, by default the
appletviewer no longer allowed applets to connect to other platforms.

Because of the new security concept of the Java 2 platform, a policy must be used
so that the appletviewer can allow default security restrictions. To do so, you use the
“policy tool” that is supplied with the JDK or JRE.

Below are the steps you must carry out in order to set up a policy file. For further
details, refer to the online documentation provided with the VSE Connector Client
(see “Using the Online Documentation Options” on page 28 for details).
1. Write your applet and ensure that it compiles correctly. Create a .jar file

containing the applet class, and any other classes that are required.
2. Create an HTML file from which the applet is called.
3. Test the HTML file using the applet viewer, as follows:

a. Run policytool from the command prompt (DOS Console).
b. Follow the instructions for setting up your policy file, as provided by the

tool. For details of the policy tool, refer to the documentation provided with
the Sun Microsystems Inc. Java Tutorial.

c. Save the policy file, and then exit from the policy tool.
d. Run the appletviewer for the created policy file, by typing:

appletviewer -J-Djava.security.policy=<policyFile> <URL>

After you have tested the policy file using the appletviewer, you can test it
using your Web browser.

Because differences exist between various Web browsers and Java APIs, you
must modify the standard HTML file that you created above, so that the file is
compatible with all Web browsers and Java APIs. To do so, use the Java Plug-in
HTML Converter, which you can download from Sun Microsystems at
http://java.sun.com/products/plugin.

4. Go to the directory where you downloaded and unzipped the HTML
Converter. In this directory there should be a file called htmlconv1_3_0_01.jar.
You execute this file by typing:
java -jar htmlconv1_3_0_01.jar

After being started, you can specify the name of the file or directory that you
want to convert.

Migrating Programs

Chapter 16. Migrating Your Programs 151

Using the New Methods in VSE Java Beans
From VSE/ESA 2.6 onwards, a number of new methods were introduced in the
IBM-supplied VSE Java Beans classes. Here are the VSE Java Beans classes, and
most important new methods:

VSEVsamCluster
getFirstRecord(), getLastRecord()

VSEVsamRecord
getPrevious(), getNext()

VSEPowerQueue
isInCreationQueue()

VSEVsamField
A new field “Description” has a textual description for this data field. It is
compatible with VSE/ESA 2.5 map and view fields (that is, old fields
simply contain an empty string as their description).

Note: If have migrated from VSE/ESA 2.5, you must not redefine your
VSE.VSAM.RECORD.MAPPING.DEFS file: your previous mappings can be
used as they were originally defined. However from VSE/ESA 2.6
onwards, each field of your previous mappings will now contain a
blank description field.

Migrating Servlets and EJBs
For details of how to migrate your servlets and EJBs to the latest supported
version of WebSphere, refer to the VSE Connector Client online documentation (see
“Using the Online Documentation Options” on page 28).

Migrating Programs

152 VSE/ESA: e-business Connectors, User’s Guide

Chapter 17. Using VSE Java Beans to Implement Java
Programs

This chapter describes how you use the VSE Connector Client’s VSE Java Beans
within 2-tier and 3-tier environments. It contains these main sections:
v “Where VSE Java Beans Are Installed and Used”
v “How JavaBeans and EJBs Compare to VSE Java Beans” on page 154
v “Contents of the VSE Java Beans Class Library” on page 155
v “Example of a Javadoc for a VSE Java Bean” on page 158
v “Using the Callback Mechanism of VSE Java Beans” on page 159
v “Using VSE Java Beans to Connect to a VSE/ESA host” on page 162
v “Using VSE Java Beans for Accessing VSAM Data” on page 164
v “Using VSE Java Beans for Accessing DL/I Data” on page 167
v “Using VSE Java Beans for Accessing VSE/POWER Data” on page 172
v “Using VSE Java Beans for Submitting Jobs” on page 173
v “Using VSE Java Beans for Accessing Librarian Data” on page 175
v “Using VSE Java Beans for Accessing VSE/ICCF Data” on page 177
v “Using VSE Java Beans for Accessing the Operator Console” on page 180
v “Using the VSE Navigator Application” on page 182

Where VSE Java Beans Are Installed and Used
All VSE Java Beans classes are contained in one Java archive VSEConnector.jar,
which are included in the VSE Connector Client.

You will usually install the VSE Java Beans in this way:
1. Install the VSE Connector Client on the workstations where you develop your

Java applications.
2. When these Java applications are ready to be implemented in your production

systems, copy file VSEConnector.jar to either the Web clients of 2-tier
environments, or middle-tier of 3-tier environments.

The use of VSE Java Beans is described for:
v applets in 2-tier environments, in Figure 100 on page 202.
v applets in 3-tier environments, in Figure 101 on page 204.
v servlets in 3-tier environments, in Figure 115 on page 243.
v JSPs in 3-tier environments, in Figure 130 on page 264.
v EJBs in 3-tier environments, in Figure 135 on page 273.

© Copyright IBM Corp. 2000, 2003 153

How JavaBeans and EJBs Compare to VSE Java Beans
You should distinguish between JavaBeans, Enterprise Java Beans (EJBs), and VSE
Java Beans:
v JavaBeans are usually visual components, such as push buttons, sliders, and list

boxes. VisualAge for Java allows you to assemble dialogs using these components
without any programming effort. Refer to http://www.javasoft.com/beans/docs
for more information.

v Enterprise Java Beans (EJBs) are distributed Java Beans. The term distributed is
used because:
– One part of an EJB runs inside the JVM of a Web application server (such as

IBM’s WebSphere Application Server).
– One part runs (typically) inside the JVM of a Web browser.

An EJB represents either one data row in a database (an entity bean), or a
connection to a remote database (a session bean). Usually, entity beans and
session beans are used together, to allow data to be represented and accessed in
a standardized way, and in heterogeneous environments that contain both
relational and non-relational data. For further information about EJBs, refer to
Chapter 22, “Using EJBs to Represent Data”, on page 267.

v The VSE Java Beans supplied with the VSE/ESA e-business Connectors are not
visual Java Beans: they conform to the specifications for Java Beans, but are not
visual components. Instead, they represent VSE/ESA-based objects such as:
– File systems (VSE/Librarian, VSE/POWER, VSE/ICCF, VSE/VSAM).
– System components (such as the operator console).
– Data objects (such as VSE libraries, POWER queue entries, and VSAM

catalogs).

Using VSE Java Beans

154 VSE/ESA: e-business Connectors, User’s Guide

Contents of the VSE Java Beans Class Library
The following table shows the classes of the VSE Java Beans (package
com.ibm.vse.connector). The Java interfaces are shown in italics.

Table 4. Contents of the VSE Java Beans Class Library

Class Description

VSECertificateEvent This class is a event that is specific to an SSL Certificate. It contains the
VSEConnectionSpec as source of this event and information about the certificate

VSECertificateListener This interface must be implemented by any VSECertificateListener. You can register
a VSECertificateListener using the method addVSECertificateListener of the
VSEConnectionSpec bean. This Listener is used to notify about certificates of a SSL
connection.

VSEConnectionManager Maintains connections to remote VSE systems.

VSEConnectionSpec This class represents the specification of a connection from your workstation to a
VSE/ESA host. It implements interface ConnectionSpec, which is part of the IBM
Common Connector Framework (CCF). CCF maintains a pool of connections that
can be reused by different Java programs. This is important especially when writing
WebSphere based Java programs, such as servlets, or Enterprise Java Beans. In this
case, short living programs, such as servlets, can reuse existing connections to the
VSE/ESA host.

VSEConnectorTrace This interface must be implemented by any Trace-Class. During startup of the VSE
Connector Beans the system tries to load a class called Trace.class in the default
package. This class is loaded using Class.forName(). Normally there is no Trace.class
available. In this case no trace messages are written. Users can implement its own
Trace.class by implementing the interface VSEConnectorTrace. The VSE Connector
Beans will call the method writeTrace for each line that is to be written. The Trace
class will typically write the trace text to System.out or to a file.

VSEConsole This class represents the VSE operator console. It allows you to issue console
commands, obtain the message output, and get message explanation for a given
message number.

VSEConsoleExplanation This class represents a textual explanation of a given console message. It provides
methods to get the message lines and the number of lines.

VSEConsoleMessage This class represents a console message. It provides methods to get properties, such
as message number, color, attributes, and so on.

VSEDli This class represents the DL/I subsystem on VSE/ESA. It provides methods to get a
list of PSBs.

VSEDliPsb This class represents a DL/I PSB with its corresponding PSB name. It provides
methods to schedule or terminate a PSB, to take a checkpoint or to do a rollback. It
also provides a list of PCBs.

VSEDliPcb This class represents a DL/I PCB witch can be used to execute DL/I requests like
GN, GNP, GU, GHU, GHN, GHNP, DLET, ISRT, REPL.

VSEIccf This class represents the VSE/ICCF component of a VSESystem. It provides read only
access to the VSE/ICCF libraries and members. It provides methods to get a list of
VSE/ICCF libraries, search for members, and get properties.

VSEIccfLibrary This class represents an VSE/ICCF library. It provides methods to get a list of it’s
members, search for members, and so on.

VSEIccfMember This class represents an ICCF member. It provides methods to copy and download a
member, and get properties.

VSELibrarian This class represents the Librarian of a VSE System. It is required in order to get
access to the VSE library system. It provides methods to list libraries and search for
members. The list of libraries is specified in the VSE Connector Server configuration
file IESLIBDF.

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 155

Table 4. Contents of the VSE Java Beans Class Library (continued)

Class Description

VSELibrary This class represents a VSE library. It provides methods to access its sub-libraries,
search for members, get library properties, and so on. See also VSESubLibrary.

VSELibraryExtent This class represents extent information of a VSELibrary.

VSELibraryMember This class represents a VSE library member. It provides methods to copy, delete,
download, upload a member instance, get and set properties, and so on.

VSEMessage This class allows a message from another user to be received.

VSEPlugin This abstract class is the base class of all user written plugin beans. It allows you to
extend the VSE Java Beans class library by your own beans, by implementing the
basic functionality of plugins. For a description of how to write a plugin for the VSE
Java Beans, refer to “Implementing a Client Plugin” on page 303.

VSEPower This class represents the VSE/POWER component of a given VSESystem. It provides
methods to access the POWER queues, submit jobs, get the related job output, search
for queue entries, get and set properties, and so on.

VSEPowerEntry This class represents one VSE/POWER queue entry. It provides methods to copy,
delete, release, download a queue entry, get and set properties, upload a local file
into a queue entry, and so on.

VSEPowerQueue This class represents an instance of a VSE/POWER queue. This can be the reader,
list, punch, or transmit queue. It provides methods to get a list of the queue entries,
search for queue entries, get queue properties, and so on.

VSEResource This abstract class is the base class of all VSEResource beans. It implements the basic
functionality that must be present for each resource.

VSEResourceEvent This class represents an event specific to a VSEResource. It contains the source of
this event and optionally event related data. It is used, for example, when
implementing a VSEResourceListener.

VSEResourceListener This interface is used to implement callback routines that allow to synchronize
sending actions to the host and receiving data objects. A resource listener is called
from the low level functions of the VSE Java Beans to notify about received data
objects. See online documentation (VSEConnectors.html) for many samples of
resource listener implementations.

VSESubLibrary This class represents a sub-library of a given VSELibrary. It provides methods to
create and delete an instance of this class, get a list of members in this sub-library,
get and set properties, search for members, and so on. See also VSELibrary.

VSESystem This class represents a VSE/ESA host. An instance of this class is needed to connect
to the host and get access to the VSE file systems and functionality.

VSEUser This class represents a user on a given VSE system. It provides methods to check if
this user is currently active, get properties and so on.

VSEVsam This class represents the VSAM component of a given VSESystem. It provides access
to the VSAM catalogs and clusters.

VSEVsamCatalog This class represents a VSAM catalog. It provides methods to get a list of clusters in
this catalog, get and set properties.

VSEVsamCluster This class represents a VSAM file. This can be any cluster, except VRDS. It provides
methods to get a list of data maps (see VSEVsamMap), get and set properties, select
data records from the cluster, and so on.

VSEVsamField This class represents a data field of a given VSAM record. A data field represents
one specific column of a VSAM record. It is always part of a given VSAM map or
view. It consists of a name (the column name), a length, a datatype, and an offset
within the record.

Using VSE Java Beans

156 VSE/ESA: e-business Connectors, User’s Guide

Table 4. Contents of the VSE Java Beans Class Library (continued)

Class Description

VSEVsamFilter This class represents a filter when getting VSAM data from a VSAM file. It consists
of a VSEVsamField, a filter string that may contain wildcards, and boolean
operations.

VSEVsamMap This class represents a data map for a given VSAM record. A map splits the VSAM
record into columns, respectively data fields, that have a name, a length, a datatype,
and an offset within the record. In addition to data fields, a map can contain data
views that are subsets of the map’s fields.

VSEVsamRecord This class represents a data record of a given VSAM file. It provides methods to
access the data fields of the record.

VSEVsamView This class represents a data view on a given VSAM record together with a given
data map. A data view always points to a subset of the data fields of a given VSAM
map. As a consequence, actions against VSAM maps always influence the views of
the related map. For example, deleting a map will also delete all views of this map.

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 157

Example of a Javadoc for a VSE Java Bean
Figure 76 shows an example of a Javadoc that was generated from the source code
of a VSE Java Bean. The VSE Java Bean belongs to the VSE Java Beans class library.

Note: The online documentation provided with the VSE Connector Client contains
much information about the VSE Java Beans class library. See “Using the
Online Documentation Options” on page 28 for details.

Figure 76. Example of a Javadoc Belonging to the VSE Java Beans Class Library

Using VSE Java Beans

158 VSE/ESA: e-business Connectors, User’s Guide

Using the Callback Mechanism of VSE Java Beans
You use the callback mechanism of VSE Java Beans to:
v Implement a callback function (a VSEResourceListener) that is called from the low

level functions of the VSE Java Beans, which listen to the host connection,
whenever data is received from the host.

v Add the resource listener to the VSE bean from which data shall be received
Sending a request for data to the host.

v Get received data in the resource listener implementation, instance by instance.
v Remove the resource listener from the bean.
v Return data from the callback function to the caller.

This section first describes the callback mechanism in detail, and then describes
how to access the various file systems and the operator console. You should also
refer to the online documentation for other examples of resource listener
implementations.

All VSE Java Beans methods returning lists of objects from the remote VSE host,
return data instances through a callback routine. This means, the requesting
function (the caller) returns after all data items are received from the host, but each
data item can be processed immediately after it is received in the callback routine.

Note: When writing Enterprise Java Beans (EJBs) it is not possible to have callback
routines. EJBs are not multi-thread enabled, nor do they support callbacks.
Refer to the EJB samples for scenarios where EJBs are appropriate.

The VSE Java Beans class library provides the VSEResourceListener callback
interface. This Java interface must be implemented by each application that wants
to receive lists of VSE resources, such as lists of VSE libraries, sub-libraries, or
members, as well as all kind of search results. The interface has only three
methods:

listStarted(VSEResourceEvent event)
Called before the first data block is received from the host. Can be used for
initialization purposes. The event does not contain any data.

listAdded(VSEResourceEvent event)
Called for each instance of a VSE resource, which is contained in the event.

listEnded(VSEResourceEvent event)
Called after the last data block has been received from the host. Can be
used for cleanup purposes. The event does not contain any data.

Here is an example of a VSEResourceListener implementation. In addition to the
above three required methods, additional methods are implemented which allow
received data to be saved, and then returned to the caller.

The example shown in Figure 77 on page 160 listens for VSAM resources. The
example also implements:
v a general listener, that listens to all possible VSE resources.
v specialized listeners, which listen only to some selected resources.

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 159

In this part of the example, two vectors are defined to store and accumulate all data objects
that are received. As a result, a complete list of the data objects can be returned to the caller.

public class VsamListener implements VSEResourceListener
{

public Vector catVector, fileVector;

/**
* constructs a new VsamListener. Two vectors are used to store
* received resource instances.
*
*/
public VsamListener()
{

catVector = new Vector();
fileVector = new Vector();

}

/**
* allows the caller to reset the internal vectors.
*
*/
public void clear()
{

catVector.removeAllElements();
fileVector.removeAllElements();

}

/**
* returns the catalog list.
*
*/
public Vector getCatalogVector()
{

return catVector;
}

/**
* returns the VSAM file list.
*
*/
public Vector getFileVector()
{

return fileVector;
}

Figure 77. Example of a VSEResourceListener implementation (Part 1 of 2)

Using VSE Java Beans

160 VSE/ESA: e-business Connectors, User’s Guide

A typical flow for getting a list of VSAM catalogs would then look like this:

/**
* is called for the start of a list of VSEResources before
* notifying about the list elements.
* The event does not contain any data.
*
* @param event The VSEResourceEvent containing the source
*/
public void listStarted(VSEResourceEvent event)
{

System.out.println("VsamListener: listStarted()");
}
/**
* is called for each element of a list of VSEResources.
* The VSEResourceEvent contains the data instance (see getData()).
*
* @param event The VSEResourceEvent containing the source and the data
*/
public void listAdded(VSEResourceEvent event)
{

VSEResource resource = (VSEResource)(event.getData());
if (resource instanceof VSEVsamCatalog)
{

VSEVsamCatalog cat = (VSEVsamCatalog)resource;
catVector.addElement(cat);

}
else if (resource instanceof VSEVsamCluster)
{

VSEVsamCluster file = (VSEVsamCluster)resource;
fileVector.addElement(file);

}
}
/**
* is called for the end of a list of VSEResources after
* notifying about the list elements. The event does not
* contain any data.
*
* @param event The VSEResourceEvent containing the source
*/
public void listEnded(VSEResourceEvent event)
{

System.out.println("VsamListener: listEnded()");
}

}

Figure 77. Example of a VSEResourceListener implementation (Part 2 of 2)

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 161

Using VSE Java Beans to Connect to a VSE/ESA host

This section describes the definition of VSE host instances, and the setting up of
the connection to the physical VSE/ESA host.

Each VSE host is represented by an object of class VSESystem. To be able to
connect to a physical host, it is required to have a connection specification that
holds all properties of the connection. Refer to the online documentation provided
with the VSE Connector Client (see “Using the Online Documentation Options” on
page 28) for further information about creating and reusing VSE host connections.

By default, a connection is given back to this pool after each host action. There is a
method of the VSESystem class: setConnectionMode (true/false), which allows a
connection to be held during the whole lifetime of your application (i.e. to not give
it back to the pool after each host access). This should be done when implementing
long running applications. The following shows a simple code example of defining
a VSESystem and connecting to the host. These two steps are necessary to connect
to a VSE host:
1. Create a VSEConnectionSpec:

public static void main(String argv[]) throws IOException
{

VSESystem system; // the VSE host object
VSEVsam vsam; // the VSAM object
VsamListener vl; // implemented as shown above
Vector vCatalogs; // used to store the catalog list

...
vsam = system.getVSEVsam();
vl = new VsamListener();
vsam.addVSEResourceListener(vl);
vsam.getCatalogList();
vsam.removeVSEResourceListener(vl);
vCatalogs = vl.getCatalogVector();
...

}

Figure 78. Program Flow for Using VSE Java Classes to Obtain a List of VSAM Catalogs

...
/* Create connection specification. The connection spec */
/* holds information about the physical host connection and is */
/* stored permanently in the Common Connector Framework (CCF) */
try {
spec = new VSEConnectionSpec(InetAddress.getByName(ipAddr),

2893,userID,password);
}
catch (UnknownHostException e)
{

System.out.println("Unknown host : " + e);
return;

}
spec.setMaxConnections(5);

/* Stay logon with this user for lifetime of this connection */
spec.setLogonMode(true);

Figure 79. Creating a VSEConnectionSpec for Connecting to the VSE/ESA Host

Using VSE Java Beans

162 VSE/ESA: e-business Connectors, User’s Guide

2. Create a VSESystem:

Notes:

1. It is not necessary to call the connect() method of a VSESystem to be able to
communicate with the VSESystem. Instead, when calling a method that needs a
host connection, the connection is opened.

2. For details of how to configure for SSL connections, see Figure 46 on page 109.

/* Create VSE system instance with this connection */
system = new VSESystem(spec);

/* Hold connection for the lifetime of our application */
system.setConnectionMode(true);
system.connect();

Figure 80. Creating a VSESystem for Connecting to the VSE/ESA Host

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 163

Using VSE Java Beans for Accessing VSAM Data
This example includes parts taken from the VsamDisplayExample, which is
described in detail in the online documentation. The example displays the data of
a VSAM file using a map, and adds a new record to a file. It assumes that there is
a VSAM cluster FLIGHT.ORDERING.FLIGHTS containing a map FLIGHTS_MAP
that describes the columns (data fields) of the record.

Note: Refer to the online documentation provided with the VSE Connector Client
(see “Using the Online Documentation Options” on page 28) for details of
how to create and re-use VSE/ESA host connections.

public class VsamDisplayExample
{

public static void main(String argv[]) throws IOException
{

VSEConnectionSpec spec;
VSESystem system;
VSEVsam vsam;
VSEVsamCatalog catalog;
VSEVsamCluster cluster;
VSEVsamRecord record, newRec=null;
VSEVsamMap map;
RecordListener rl;
byte[] inputArray;
String ipAddr, userID, password;
Vector vRecords;
String flightNum, newField="";

String catName = "VSESP.USER.CATALOG";
String fileName = "FLIGHT.ORDERING.FLIGHTS";
String mapName = "FLIGHTS_MAP";

/* Prompt for IP address, user ID and password. We have to remove */
/* trailing blanks from the input strings before using them. */
...

/* Get file system from host */
System.out.println("Getting records from " + fileName + "...");
vsam = system.getVSEVsam();

/* Step 1: Create a listener that gets notified when objects */
/* are retrieved from the host */
rl = new RecordListener();
vsam.addVSEResourceListener(rl);

/* Step 2: Get VSAM records from host using the given map */
map = new VSEVsamMap(system, catName, fileName, mapName);
cluster = new VSEVsamCluster(system, catName, fileName);
cluster.addVSEResourceListener(rl);
cluster.selectRecords(map);
cluster.removeVSEResourceListener(rl);

Figure 81. Example of Accessing VSAM Data Using VSE Java Beans (Part 1 of 3)

Using VSE Java Beans

164 VSE/ESA: e-business Connectors, User’s Guide

/* Get vector containing all records from listener */
vRecords = rl.getRecords();

/* Step 3: Display records ... */
int numMapFields = map.getNoOfFields();
System.out.println("Records in file " + fileName + " :");
for (int k=0;k<vRecords.size();k++)
{

System.out.println("Record " + k + ":");
record = (VSEVsamRecord)(vRecords.elementAt(k));
for (int i=0;i<numMapFields;i++)
{

try {
if (map.isFieldPartOfPrimaryKey(i))

System.out.println(map.getFieldName(i) + " (Key) : " + record.getField(i).toString());
else

System.out.println(map.getFieldName(i) + " : " + record.getField(i).toString());
}
catch (Exception e)
{

System.out.println("writeRecord() : " + e);
}

}
System.out.println("------------------------------");

}

/* Step 4: Add a new flight to the cluster ... */
boolean done = false;
while (!done)
{

inputArray = new byte[map.getFieldLength(0)];
System.out.println("Please enter a new flight number:");
System.out.println("(Enter a negative value to quit)");
System.in.read(inputArray);
flightNum = new String(inputArray);
flightNum = flightNum.trim();
if ((new Integer(flightNum).intValue()) < 0)

return;

/* Check if new flight number already exists ... */
try {

newRec = new VSEVsamRecord(system, catName, fileName, mapName);
newRec.setKeyField(0, new Integer(flightNum));
newRec.add();
done = true;

}
catch (Exception e)
{

System.out.println("Exception when adding new record.");
if (e instanceof AlreadyExistentException)

System.out.println("This flight number already exists.");
else

System.out.println("e = " + e);
}

}

Figure 81. Example of Accessing VSAM Data Using VSE Java Beans (Part 2 of 3)

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 165

/* Add all other fields for new flight ... */
for (int i=1;i<numMapFields;i++)
{

inputArray = new byte[map.getFieldLength(i)];
System.out.println("Please enter value for field " + map.getFieldName(i) +

" (Length = " + map.getFieldLength(i) + ")");
done = false;
while (!done)
{

System.in.read(inputArray);
newField = new String(inputArray);
newField = newField.trim();
if (newField.length() > 0)

done = true;
}

if (map.getFieldType(i) == VSEVsamField.TYPE_STRING)
newRec.setField(i, newField);

else
newRec.setField(i, new Integer(newField));

}

/* Make changes permanent... */
newRec.commit();
System.out.println("New record added to cluster.");

}
}

Figure 81. Example of Accessing VSAM Data Using VSE Java Beans (Part 3 of 3)

Using VSE Java Beans

166 VSE/ESA: e-business Connectors, User’s Guide

Using VSE Java Beans for Accessing DL/I Data
This example includes parts taken from the DliApiExample.Java, which is described
in detail in the online documentation. The example displays the data of a DL/I
database. It assumes that the sample DL/I database has been defined and loaded,
as described in Chapter 6, “Configuring DL/I for Access Via VSE Java Beans”, on
page 41.

Note: Refer to the online documentation provided with the VSE Connector Client
(see “Using the Online Documentation Options” on page 28) for details of
how to create and re-use VSE/ESA host connections.

/**/
/* */
/* MODULE NAME : DliApiExample.java */
/* */
/* DESCRIPTIVE NAME : Shows how to use VSE/DLI related classes. */
/* */
package com.ibm.vse.samples;

import java.lang.*;
import java.net.*;
import java.io.*;
import java.util.*;

/* Import Common Client Interface (CCI) classes */
import javax.resource.*;

/* Import VSE Connector classes */
import com.ibm.vse.connector.*;

public class DliApiExample
{

protected static VSEConnectionSpec spec;
protected static VSESystem system;
protected static VSEDliPsb psb = null;
protected static VSEDliPcb pcb = null;

public static void main(String argv[])
{

String ipAddr, userID, password;
byte[] ioarea;
String[] ssas;

try
{

/* Prompt for user ID and password. */
BufferedReader r = new BufferedReader(

new InputStreamReader(System.in));
System.out.println("Please enter your VSE IP address:");
ipAddr = r.readLine();
System.out.println("Please enter your VSE user ID:");
userID = r.readLine();
System.out.println("Please enter password:");
password = r.readLine();

Figure 82. Example of Accessing DL/I Data Using VSE Java Beans (Part 1 of 5)

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 167

/* Create connection specification. */
try {
spec = new VSEConnectionSpec(InetAddress.getByName(ipAddr),

2893,userID,password);
}
catch (UnknownHostException e)
{

System.out.println("Unknown host : " + e);
return;

}

/* Stay logon with this user for lifetime of this connection */
spec.setLogonMode(true);

/* Create VSE system instance with this connection */
system = new VSESystem(spec);

/* Get the DLI subsystem */
VSEDli dli = new VSEDli(system);

/* Step 1: schedule the PSB. */
System.out.println("Schedule the PSB");
psb = dli.getDliPsb("STBICLG");
psb.schedule();
System.out.println(" Num PCBs: "+psb.getNumberOfPCBs());
System.out.println(" IO len: "+psb.getMaxLengthOfIOArea());
System.out.println();

/* Step 2: get a PCB. In this case, it’s the first PCB of the PSB. */
System.out.println("Get a PCB");
pcb = psb.getVSEDliPcb(0);
System.out.println(" DBDName = "+pcb.getDBDName());
System.out.println(" Processing Options: "+pcb.getProcessingOptions());
System.out.println();

/* Step 3: list all DL/I segments. The segments have the following
data layout, as defined in the following COBOL copybook:

01 STPIITM REDEFINES IOAREA.
02 ITNUMB PIC X(6).
02 ITDESC PIC X(25).
02 IQOH PIC X(6).
02 IQOR PIC X(6).
02 FILLER PIC X(6).
02 IUNIT PIC 9(6).
02 FILLER PIC X(105).

*/
System.out.println("List all DL/I segments");
ssas = new String[1];
ssas[0] = "STPIITM ";
do
{

/* Get the next segment */
ioarea = pcb.call("GN",null,ssas);
System.out.println(" Status = "+pcb.getStatus());
if (!pcb.getStatus().equals(" "))

break;

Figure 82. Example of Accessing DL/I Data Using VSE Java Beans (Part 2 of 5)

Using VSE Java Beans

168 VSE/ESA: e-business Connectors, User’s Guide

/* Print out the contents of the IOArea */
System.out.println(" IOArea:");
System.out.println(" ITNUMB = "+VSEDliPcb.getStringFromBuffer(ioarea,0,6));
System.out.println(" ITDESC = "+VSEDliPcb.getStringFromBuffer(ioarea,6,25));
System.out.println(" IQOH = "+VSEDliPcb.getStringFromBuffer(ioarea,31,6));
System.out.println(" IQOR = "+VSEDliPcb.getStringFromBuffer(ioarea,37,6));
System.out.println(" IUNIT = "+VSEDliPcb.getStringFromBuffer(ioarea,49,6));

}
while(true);
System.out.println();

/* Step 4: Add/update a segment */
/* First check if the segment is existing by issuing a GHU call, */
/* if yes, update the segment. Otherwise insert a new segment. */
System.out.println("Add/update a segment");

String item = "000700"; // item number to insert/update
ssas = new String[1];
ssas[0] = "STPIITM (STQIINO = "+item+")";

/* Get the segment */
ioarea = pcb.call("GHU",null,ssas);
System.out.println(" Status = "+pcb.getStatus());

if (pcb.getStatus().equals("GB") ||
pcb.getStatus().equals("GE"))

{
// segment not found -> do an insert
System.out.println(" Segment not found, do an insert");

// allocate a new ioarea
ioarea = new byte[psb.getMaxLengthOfIOArea()];
for (int i=0;i<ioarea.length;i++)

ioarea[i] = 0x00;

// set the new values into the IOArea
VSEDliPcb.setStringToBuffer(ioarea,item,0,6);
VSEDliPcb.setStringToBuffer(ioarea,"INSERTED ITEM",6,25);
VSEDliPcb.setStringToBuffer(ioarea,"000001",31,6);
VSEDliPcb.setStringToBuffer(ioarea,"000002",37,6);
VSEDliPcb.setStringToBuffer(ioarea,"000000",43,6);
VSEDliPcb.setStringToBuffer(ioarea,"000003",49,6);

System.out.println(" IOArea:");
System.out.println(" ITNUMB = "+VSEDliPcb.getStringFromBuffer(ioarea,0,6));
System.out.println(" ITDESC = "+VSEDliPcb.getStringFromBuffer(ioarea,6,25));
System.out.println(" IQOH = "+VSEDliPcb.getStringFromBuffer(ioarea,31,6));
System.out.println(" IQOR = "+VSEDliPcb.getStringFromBuffer(ioarea,37,6));
System.out.println(" IUNIT = "+VSEDliPcb.getStringFromBuffer(ioarea,49,6));

// do the insert
ssas = new String[1];
ssas[0] = "STPIITM ";

pcb.call("ISRT",ioarea,ssas);
}

Figure 82. Example of Accessing DL/I Data Using VSE Java Beans (Part 3 of 5)

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 169

else
{

// segment already existing, do a update
System.out.println(" Segment exists, do an update");
System.out.println(" IOArea:");
System.out.println(" ITNUMB = "+VSEDliPcb.getStringFromBuffer(ioarea,0,6));
System.out.println(" ITDESC = "+VSEDliPcb.getStringFromBuffer(ioarea,6,25));
System.out.println(" IQOH = "+VSEDliPcb.getStringFromBuffer(ioarea,31,6));
System.out.println(" IQOR = "+VSEDliPcb.getStringFromBuffer(ioarea,37,6));
System.out.println(" IUNIT = "+VSEDliPcb.getStringFromBuffer(ioarea,49,6));

// set the new values into the IOArea
VSEDliPcb.setStringToBuffer(ioarea,item,0,6);
VSEDliPcb.setStringToBuffer(ioarea,"UPDATED ITEM",6,25);
VSEDliPcb.setStringToBuffer(ioarea,"000004",31,6);
VSEDliPcb.setStringToBuffer(ioarea,"000005",37,6);
VSEDliPcb.setStringToBuffer(ioarea,"000000",43,6);
VSEDliPcb.setStringToBuffer(ioarea,"000006",49,6);

// Print the IOArea contents ...
System.out.println(" IOArea:");
System.out.println(" ITNUMB = "+VSEDliPcb.getStringFromBuffer(ioarea,0,6));
System.out.println(" ITDESC = "+VSEDliPcb.getStringFromBuffer(ioarea,6,25));
System.out.println(" IQOH = "+VSEDliPcb.getStringFromBuffer(ioarea,31,6));
System.out.println(" IQOR = "+VSEDliPcb.getStringFromBuffer(ioarea,37,6));
System.out.println(" IUNIT = "+VSEDliPcb.getStringFromBuffer(ioarea,49,6));

// do the update
ssas = new String[1];
ssas[0] = "STPIITM ";

pcb.call("REPL",ioarea,ssas);
};
System.out.println(" Status = "+pcb.getStatus());
System.out.println();

/* Step 5: delete a segment */
System.out.println("Delete a segment");
item = "000700"; // item number to delete

// first verify if the segment is existing
ssas = new String[1];
ssas[0] = "STPIITM (STQIINO = "+item+")";

/* Get the segment */
ioarea = pcb.call("GHU",null,ssas);
System.out.println(" Status = "+pcb.getStatus());

if(pcb.getStatus().equals("GB") ||
pcb.getStatus().equals("GE"))

{
// segment not found
System.out.println(" Segment not found");

}

Figure 82. Example of Accessing DL/I Data Using VSE Java Beans (Part 4 of 5)

Using VSE Java Beans

170 VSE/ESA: e-business Connectors, User’s Guide

else
{

// segment existing, do a delete
System.out.println(" Do the delete");
System.out.println(" IOArea:");
System.out.println(" ITNUMB = "+VSEDliPcb.getStringFromBuffer(ioarea,0,6));
System.out.println(" ITDESC = "+VSEDliPcb.getStringFromBuffer(ioarea,6,25));
System.out.println(" IQOH = "+VSEDliPcb.getStringFromBuffer(ioarea,31,6));
System.out.println(" IQOR = "+VSEDliPcb.getStringFromBuffer(ioarea,37,6));
System.out.println(" IUNIT = "+VSEDliPcb.getStringFromBuffer(ioarea,49,6));

// do the delete
ssas = new String[1];
ssas[0] = "STPIITM ";

pcb.call("DLET",null,ssas);

};
System.out.println(" Status = "+pcb.getStatus());
System.out.println();

/* Step 6: terminate the PSB */
System.out.println("Terminate the PSB");
psb.terminate();
System.out.println();

}
catch(Throwable t)
{

t.printStackTrace();
System.exit(0);

}
};

};

Figure 82. Example of Accessing DL/I Data Using VSE Java Beans (Part 5 of 5)

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 171

Using VSE Java Beans for Accessing VSE/POWER Data
This example includes code parts that are taken from the PowerApiExample, which
is shown in detail in the online documentation (see page 28). Basically we deal with
instances of VSEPower, VSEPowerQueue, and VSEPowerEntry. The example
downloads a job from the reader queue and searches for list queue entries
containing a given text string.

Note: Refer to the online documentation provided with the VSE Connector Client
(see “Using the Online Documentation Options” on page 28) for details of
how to create and re-use VSE/ESA host connections.

public class PowerApiExample
{

protected static VSEConnectionSpec spec;
protected static VSESystem system;
protected static VSEPower power = null;

public static void main(String argv[]) throws IOException
{

VSEPowerQueue readerQueue, listQueue;
VSEPowerEntry entry;
PowerListener pl;
Vector vEntries;
byte[] inputArray;
String ipAddr, userID, password;

/* Prompt for user ID and password. We have to remove trailing */
/* blanks from the input strings before using them. */
...
/* Get POWER reader queue object from host */
power = system.getVSEPower();
readerQueue = power.getReaderQueue();

/* Get all reader entries with class 0. */
/* Create a listener that gets notified when objects are */
/* retrieved from the host */
pl = new PowerListener();
readerQueue.addVSEResourceListener(pl);
readerQueue.getEntryList("*", "*", ’0’);

/* Now remove the resource listener from the queue object */
readerQueue.removeVSEResourceListener(pl);

/* Now get the entry list from the listener */
vEntries = pl.getEntryVector();
for (int i=0;i<vEntries.size();i++)
{

entry = (VSEPowerEntry)(vEntries.elementAt(i));

/* Look for the PAUSEBG job and download it */
if (entry.getName().equals("PAUSEBG"))
{

File tempFile = new File("pausebg.job");
System.out.println("Downloading pausebg...");
entry.get(tempFile);
System.out.println("pausebg downloaded.");

}
}

Figure 83. Accessing VSE/POWER Data Using VSE Java Beans (Part 1 of 2)

Using VSE Java Beans

172 VSE/ESA: e-business Connectors, User’s Guide

Using VSE Java Beans for Submitting Jobs
This example includes code parts that are taken from the JobApiExample, described
in the online documentation. The example shows how to submit jobs, and track the
status of submitted jobs. Two methods of doing so are described:
v The easiest way is to create a file on the local hard disk that contains the

complete VSE/POWER job. This file is sent to the host, the job output is
received into another local file.

v A second way, that does not need access to the local file system, is to create the
JCL in memory and also receive the job output in memory line by line.

Note: Refer to the online documentation provided with the VSE Connector Client
(see “Using the Online Documentation Options” on page 28) for details of
how to create and re-use VSE/ESA host connections.

/* Now scan some compile outputs in the list queue for */
/* compile errors. Let’s assume, we submitted a compile job */
/* called "compjob" in F4. The search() function now searches */
/* all list queue entries (with all suffixes) that belong to */
/* job "compjob", our user, with class = 4, for the string */
/* "==ERROR" not case sensitive. */
listQueue = power.getListQueue();
listQueue.addVSEResourceListener(pl);
pl.clearVector();
listQueue.search("compjob", userID, ’4’, "==ERROR", true);
listQueue.removeVSEResourceListener(pl);

/* Get the results from the listener */
vEntries = pl.getEntryVector();
if (vEntries.size() == 0)

System.out.println("No list queue entries contain the string" +
" \"==ERROR\".");

for (int i=0;i<vEntries.size();i++)
{

entry = (VSEPowerEntry)(vEntries.elementAt(i));
System.out.println("String found in : " + entry.getName() + "."

+ entry.getNumber() + "["
+ entry.getSuffix() + "]");

}
}

}

Figure 83. Accessing VSE/POWER Data Using VSE Java Beans (Part 2 of 2)

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 173

public class JobApiExample
{

protected static VSEConnectionSpec spec;
protected static VSESystem system;

public static void main(String argv[]) throws IOException
{

JobInputStream job;
JobOutputStream dest;
byte[] inputArray;
String ipAddr, userID, password, message;
VSEPower power;
File jobFile, outFile;
Vector vLines;

/* Prompt for user ID and password. We have to remove trailing */
/* blanks from the input strings before using them. */
...

/* Get POWER reader queue object from host */
power = system.getVSEPower();

/* 1. Submit a job file that is stored on the local disk */
/* The execute() method returns as soon as the job output has been */
/* transferred from the POWER list queue to outFile. */
System.out.println("1. Submitting test.job");
jobFile = new File("test.job");
outFile = new File("out.txt");
power.executeJob(jobFile, outFile);
System.out.println("Output is now in out.txt in current directory.");

/* 2. Create the job file in memory and send it to the host. */
/* This has the advantage, that we don’t need any access to */
/* the local file system. */
System.out.println("-------------------------------------");
System.out.println("2. Creating job in memory...");
job = new JobInputStream();
dest = new JobOutputStream();
power.executeJob(job, dest);
vLines = dest.getAllLines();
System.out.println("Number of output lines: " +

new Integer(vLines.size()).toString());
//for (int i=0;i<vLines.size();i++)
//{
// System.out.println((String)(vLines.elementAt(i)));
//}

}
}

Figure 84. Example of Submitting Jobs Using VSE Java Beans

Using VSE Java Beans

174 VSE/ESA: e-business Connectors, User’s Guide

Using VSE Java Beans for Accessing Librarian Data
This example includes code parts taken from the LibrApiExample, which is
described in detail in the online documentation. The example gets a list of VSE
libraries, then gets a list of sub-libraries within PRD2, then gets a list of members
within PRD2.CONFIG. Finally it downloads the first member in PRD2.CONFIG to
the local hard disk.

Note: Refer to the online documentation provided with the VSE Connector Client
(see “Using the Online Documentation Options” on page 28) for details of
how to create and re-use VSE/ESA host connections.

public class LibrApiExample
{

protected static VSEConnectionSpec spec;
protected static VSESystem system;
protected static VSELibrarian libr = null;

public static void main(String argv[]) throws IOException
{

LibrListener ll;
VSELibrary myLib=null;
VSESubLibrary mySublib=null;
VSELibraryMember myMember=null;
Vector vLibs, vSublibs, vMembers;
int num, numLibs, numSublibs, numMembers;
Calendar cal;
byte[] inputArray;
String ipAddr, userID, password;

/* Prompt for IP address, user ID and password. We have to remove */
/* trailing blanks from the input strings before using them. */
...

/* Get Librarian file system from host */
libr = system.getVSELibrarian();

/* Create a listener that gets notified when objects are */
/* retrieved from the host */
ll = new LibrListener();
libr.addVSEResourceListener(ll);

/* Get a list of VSE libraries from this host. This method will */
/* give control back when all resources are received, i.e. the */
/* listEnded() method of the listener has been called. */
libr.getLibraryList();
/* Now remove the resource listener from the libr object */
libr.removeVSEResourceListener(ll);

/* Now get the list of libraries from the listener and get the */
/* number of sublibraries in PRD2. */
vLibs = ll.getLibVector();
numLibs = vLibs.size();
System.out.println("Number of libs on host " + system.toString() +

" : " + new Integer(numLibs).toString());
for (int i=0;i<vLibs.size();i++)
{

myLib = (VSELibrary)(vLibs.elementAt(i));
if (myLib.getName().equals("PRD2"))

break;
}

Figure 85. Example of Accessing Librarian Using VSE Java Beans (Part 1 of 2)

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 175

if (myLib == null)
return;

/* Now get a list of sublibraries in PRD2 and */
/* count them. Now we have to add the Listener to the */
/* sublibrary object. */
myLib.addVSEResourceListener(ll);
myLib.getSubLibraryList();
myLib.removeVSEResourceListener(ll);
numSublibs = myLib.getNumberOfSublibs();
System.out.println("Number of sublibs in " + myLib.getName() +

" : " + new Integer(numSublibs).toString());
vSublibs = ll.getSublibVector();
for (int i=0;i<vSublibs.size();i++)
{

mySublib = (VSESubLibrary)(vSublibs.elementAt(i));
if (mySublib.getName().equals("CONFIG"))

break;
}
if (mySublib == null)

return;
/* Now get a list of members in PRD2.CONFIG.*/
mySublib.addVSEResourceListener(ll);
mySublib.getMemberList();
mySublib.removeVSEResourceListener(ll);
vMembers = ll.getMemberVector();
numMembers = mySublib.getNumberOfMembers();
System.out.println("Number of members in " + mySublib.getName() +

" : " + new Integer(numMembers).toString());

/* Now display some properties of the first member */
myMember = (VSELibraryMember)(vMembers.elementAt(0));
System.out.println("First member in " + mySublib.getName() +

" : " + myMember.getName() + "." + myMember.getType());
num = myMember.getNumberOfRecords();
System.out.println("Number of records: " +

new Integer(num).toString());
num = myMember.getLogicalRecordLength();
System.out.println("Logical record length: " +

new Integer(num).toString());
cal = myMember.getCreation();
System.out.println("Creation date: " + cal.getTime());
cal = myMember.getLastUpdate();
System.out.println("Last update: " + cal.getTime());
if (myMember.isBinary())

System.out.println("Member is binary");
else

System.out.println("Member format is text");

/* Finally download the member to the local harddisk */
/* The download method gives control back when the download */
/* is finished. */
File localFile = new File(myMember.getName() + "." +

myMember.getType());
myMember.download(localFile);
System.out.println(myMember.getName() + "." + myMember.getType() +

" downloaded.");
}

Figure 85. Example of Accessing Librarian Using VSE Java Beans (Part 2 of 2)

Using VSE Java Beans

176 VSE/ESA: e-business Connectors, User’s Guide

Using VSE Java Beans for Accessing VSE/ICCF Data
The example provided here includes code parts that are taken from the
IccfApiExample, which is described in detail in the online documentation. The
example:
1. Creates a host and gets a list of VSE/ICCF libraries.
2. Downloads member C$QCNBAT (a compile skeleton) out of VSE/ICCF library

2.
3. Displays some of the member’s properties.

Notes:

1. Access to VSE/ICCF is read only.
2. Refer to the online documentation provided with the VSE Connector Client (see

“Using the Online Documentation Options” on page 28) for details of how to
create and re-use VSE/ESA host connections.

public class IccfApiExample
{

protected static VSEConnectionSpec spec;
protected static VSESystem system;
protected static VSEIccf iccf = null;

public static void main(String argv[]) throws IOException
{

IccfListener il;
VSEIccfLibrary myLib=null;
VSEIccfMember myMember=null;
Vector vLibs, vMembers;
int num, numLibs, numMembers;
Calendar cal;
byte[] inputArray;
String ipAddr, userID, password;

/* Prompt for IP address, user ID and password. We have to remove */
/* trailing blanks from the input strings before using them. */
...

/* Get ICCF file system from host */
iccf = system.getVSEIccf();

/* Create a listener that gets notified when objects are */
/* retrieved from the host */
il = new IccfListener();
iccf.addVSEResourceListener(il);

/* Get a list of ICCF libraries from this host. This method will */
/* give control back when all resources are received, i.e. the */
/* listEnded() method of the listener has been called. */
iccf.getLibraryList();

/* Now remove the resource listener from the iccf object */
iccf.removeVSEResourceListener(il);

Figure 86. Example of Accessing ICCF Data Using VSE Java Beans (Part 1 of 3)

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 177

/* Get library numbers from listener object and download */
/* a compile skeleton from ICCF library 2. */
vLibs = il.getLibVector();
for (int i=0;i<vLibs.size();i++)
{

myLib = (VSEIccfLibrary)(vLibs.elementAt(i));
if (myLib.getLibrary() == 2)
{

/* Get memberlist of ICCF lib 2 */
myLib.addVSEResourceListener(il);
myLib.getMemberList();
myLib.removeVSEResourceListener(il);
vMembers = il.getMemberVector();
for (int j=0;j<vMembers.size();j++)
{

myMember = (VSEIccfMember)(vMembers.elementAt(j));
if (myMember.getName().equals("C$QCNBAT"))
{

myMember.download("C$QCNBAT.SKL");
}

}
}

}
System.out.println("C$QCNBAT.SKL downloaded.");

/* A shorter way to download a specific member is to search */
/* it and then directly download it. */
iccf.addVSEResourceListener(il);
il.clear();
iccf.search(2, "C$QCNBAT", "*");
iccf.removeVSEResourceListener(il);
vMembers = il.getMemberVector();
if (vMembers.size() == 1)
{

myMember = (VSEIccfMember)(vMembers.elementAt(0));
myMember.download("C$QCNBAT.SKL2");

}
System.out.println("C$QCNBAT.SKL2 downloaded.");

/* A very short way to download the member. Simply create a */
/* member object and try to download. If the member does not */
/* exist on the host, we get an exception. */
myMember = new VSEIccfMember(system, 2, "C$QCNBAT");
myMember.download("C$QCNBAT.SKL3");
System.out.println("C$QCNBAT.SKL2 downloaded.");

/* Now display some properties of the skeleton file */
System.out.println("Properties of C$QCNBAT:");
cal = myMember.getDate();
System.out.println(" Date : " + cal.getTime());
System.out.println(" User : " + myMember.getUser());
if (myMember.isCommon())

System.out.println(" Common : yes");
else

System.out.println(" Common : no");
if (myMember.isCompressed())

System.out.println(" Compressed : yes");
else

System.out.println(" Compressed : no");
if (myMember.isDBCS())

System.out.println(" DBCS : yes");
else

System.out.println(" DBCS : no");

Figure 86. Example of Accessing ICCF Data Using VSE Java Beans (Part 2 of 3)

Using VSE Java Beans

178 VSE/ESA: e-business Connectors, User’s Guide

if (myMember.isPrivate())
System.out.println(" Private : yes");

else
System.out.println(" Private : no");

/* Try a member that does not exist */
try {
myMember = new VSEIccfMember(system, 2, "MYMEMBER");
myMember.download("MYMEMBER.TXT");
}
catch (Exception e)
{

System.out.println("Exception when downloading member, ");
System.out.println("e = " + e);
System.out.println("MYMEMBER does not exist in ICCF library 2.");

}
}

}

Figure 86. Example of Accessing ICCF Data Using VSE Java Beans (Part 3 of 3)

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 179

Using VSE Java Beans for Accessing the Operator Console
There are two ways of how to get console messages when sending a console
command:
1. Using the execute() method of class VSEConsole, returns a complete list of

messages.
2. Using open(), setCommand(), getMessage(), and close(), allows you to work with

the first messages while others are still being retrieved.

This example includes code parts that are taken from the ConsoleApiExample, which
is described in detail in the online documentation.

Note: Refer to the online documentation provided with the VSE Connector Client
(see “Using the Online Documentation Options” on page 28) for details of
how to create and re-use VSE/ESA host connections.

public class ConsoleApiExample
{

protected static VSEConnectionSpec spec;
protected static VSESystem system;

public static void main(String argv[]) throws IOException
{

VSEConsole cons;
Vector vConsOutput;
byte[] inputArray;
String ipAddr, userID, password;
VSEConsoleMessage message;
boolean finished = false;

/* Prompt for user ID and password. We have to remove trailing */
/* blanks from the input strings before using them. */
...

/* Create console and send a command. The output is returned */
/* in vector vConsOutput. Note: we must specify an end string */
/* as 3rd parameter in cons.execute(). Otherwise we would not */
/* have an end condition for the function to return immediately */
/* after the last message. */
cons = new VSEConsole(system);
System.out.println("Example 1: Waiting for complete list of

console messages...");
vConsOutput = cons.execute("map", null, "AR 0015 1I40I READY", 30);
for (int i=0;i<vConsOutput.size();i++)
{

System.out.println(((VSEConsoleMessage)
(vConsOutput.elementAt(i))).getMessage());

}

Figure 87. Example of Accessing the Operator Console Using VSE Java Beans (Part 1 of 2)

Using VSE Java Beans

180 VSE/ESA: e-business Connectors, User’s Guide

/* Do the same again using open() and setCommand(). Here we have */
/* the advantage, that we can see the messages while they come in. */
/* Using the execute() function, we can display the messages after */
/* we got all of them. */
System.out.println(" ");
System.out.println("Example 2: Getting messages line by line...");
cons.open();
cons.setCommand("map");
message = cons.getMessage();
while (finished == false)
{

if (message != null)
{

System.out.println(message.getMessage());
if (message.getMessage().indexOf("AR 0015 1I40I READY") >= 0)

finished = true;
}
message = cons.getMessage();

}
cons.close();

}
}

Figure 87. Example of Accessing the Operator Console Using VSE Java Beans (Part 2 of 2)

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 181

Using the VSE Navigator Application
The VSE Navigator is a Java application that illustrates the use of the VSE Java
Beans. It uses virtually all the VSE Java Beans shown in Table 4 on page 155. It
implements a graphical user interface (GUI) that has a similar appearance to many
of the currently-available file managers.

The client-part of the VSE Navigator, which communicates with the VSE Connector
Server, provides you with a variety of functions. You can, for example:
v Access VSE file systems (POWER, Librarian, ICCF, VSAM).
v Create and submit jobs, including generating jobs based upon the skeletons

stored in ICCF library 2.
v Work with the VSE operator console.
v Compare files, and perform a full-text search in VSE-based file systems.
v Interactively insert and edit VSAM records.
v Display:

– the VSE hardware configuration, including the property dialogs for attached
devices

– the VSE system activity (CPU usage, and so on)
– the current VSE service level
– the system labels
– the system tasks
– the used and free VSAM space
– VSAM data, via maps and views

Here is the GUI provided by the VSE Navigator:

Figure 88. Graphical User Interface, as Provided by the VSE Navigator

Using VSE Java Beans

182 VSE/ESA: e-business Connectors, User’s Guide

Prerequisite for Using the VSE Navigator
Before installing and using the VSE Navigator, you should have installed the VSE
Connector Client, as described in “Installing the VSE Connector Client” on page 25.

Migrating From Earlier Versions
If you currently have a pre-VSE/ESA 2.7 version of the VSE Navigator installed,
you must migrate to the latest version that runs with VSE/ESA 2.7. To do so,
simply download the version of the VSE Navigator that runs with VSE/ESA 2.7,
and use it to replace your existing version.

For details, see “Installing the VSE Navigator” (below).

Installing the VSE Navigator
You install the VSE Navigator on a Java-enabled platform.

Before you begin, you must already have installed the Java Development Kit (JDK)
1.3 or higher on the development platform where you plan to install the VSE
Navigator. If you do not have JDK 1.3 or higher installed, refer to “Installing and
Configuring Java” on page 21 for details of how to install it.

The VSE Navigator is supplied as one Java-installation class file, install.class. To
install the VSE Navigator, you should:
1. Obtain the VSE Script Server from the Internet, by starting your Web browser

and proceeding to URL:
http://www.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/conmain.htm

From within the VSE Navigator section, select Details and Download. Then
download the latest code to the directory where you wish to install the VSE
Navigator, by selecting the file vsenavinnn.zip. Note: nnn refers to the current
VSE version (for example, vsenavi270.zip).

2. Unzip the file vsenavinnn.zip, which contains these files:
v install.class (contains the VSE Navigator code)
v install.bat (an install batch file for Windows)
v install.cmd (an install batch file for OS/2)
v install.sh (an install script for Linux/Unix)

3. Start the batch file (by double-clicking the file) that is applicable to your
operating-system platform.

4. The installation process now begins, and you are guided through various
installation menus.

5. The Setup Complete window is displayed when the installation is complete.
After making your selection, click Finish. The installation now completes.

Note: Desktop icons are only created for Windows and OS/2 platforms (not for
AIX, Linux, and so on).

Starting the VSE Navigator Client
To start the VSE Navigator client:

On Operating System... The run file or shell script is ...
Windows run.bat
OS/2 run.cmd
Unix/Linux run.sh

Using VSE Java Beans

Chapter 17. Using VSE Java Beans to Implement Java Programs 183

Note: If you are using a Java Runtime Environment (JRE), you can use the
jre11.cmd file, to start the VSE Navigator. However, the installation process
does not create a desktop icon for this file.

On Windows and OS/2 you are provided with desktop objects you can use to start
the VSE Navigator, access the online documentation (file NaviReference.html), and
so on.

When starting the VSE Navigator client for the first time, you will be required to
specify your local:
v utilities (for example, the Web browser you wish to use for displaying Help

texts)
v directories

Adding Your Own VSE Navigator Plug-Ins
The VSE Navigator provides a Java programming interface that allows you to add
your own “plug-in” functions to the VSE Navigator client. To write a VSE
Navigator plug-in, you must:
1. Implement the methods of a Java interface.
2. Copy the class files into the VSE Navigator’s plug-in directory. You may also

create a new directory for your classes within the plug-in directory.
3. Restart the VSE Navigator client. Your plug-in is then dynamically loaded, and

can be accessed from the toolbar and menus of the VSE Navigator. The online
Programming Reference manual is HTML-based, and you can access it from
NaviReference.html, which is stored in the directory where you installed the
VSE Navigator.

Here is the GUI provided for using SSL with the VSE Navigator:

Here is the GUI provided for using SSL with the VSE Navigator:

Figure 89. Configure Hosts for the VSE Navigator

Using VSE Java Beans

184 VSE/ESA: e-business Connectors, User’s Guide

Figure 90. Using the VSE Navigator to Access CICS Data

Chapter 17. Using VSE Java Beans to Implement Java Programs 185

186 VSE/ESA: e-business Connectors, User’s Guide

Chapter 18. Using JDBC to Access VSAM Data

This chapter describes how you can setup and issue relational database queries
and update requests against VSAM data using a Java Database Connectivity (JDBC)
driver. To do so, the Java-based connector provides various classes for use with
JDBC.

You can therefore use SQL constructs to access VSAM data, instead of coding
against the VSE Java Beans interface. Currently, only a subset of the SQL syntax is
supported (shown in “SQL Statements That Are Supported by JDBC”). However,
this is the same subset that can be used with the VSAM SQL call level interface
(CLI) from within a DB2-Stored Procedure (see “Using DB2 Stored Procedures to
Access VSAM Data” on page 312 for details).

The advantages of using the JDBC driver instead of the VSE Java Beans interface
are:
v JDBC and SQL are standard interfaces for accessing data in relational databases.
v Many products such as the IBM Visual Age for Java support the JDBC interface.
v You can integrate VSAM access into applications that were created using the

IBM Visual Age for Java program, without needing to include VSE-specific code.

For details of how to map non-relational VSAM data to a relational structure, refer
to Chapter 15, “Mapping VSE/VSAM Data to a Relational Structure”, on page 129.

This chapter contains these main sections:
v “SQL Statements That Are Supported by JDBC”
v “Relational and VSE Java Beans Terminology” on page 190
v “Example of Using JDBC to Access VSAM Data” on page 191

SQL Statements That Are Supported by JDBC
These are the SQL statements that are supported by JDBC:

Table 5. SQL Statements Supported by JDBC

<insert statement> = "INSERT" ["INTO"] <table name>
[<column name list>]
"VALUES"

"(" <insert values list> ")"
("," "(" <insert values list> ")")*

|
<select statement>

<table name> = <IDENTIFIER>
"\" <IDENTIFIER>
"\" <IDENTIFIER>
["\" <IDENTIFIER>]

<column name list> = "(" <column name>
("," <column name>)* ")"

<column name> = <IDENTIFIER>

<insert values list>= "(" <insert value>
("," <insert values>)* ")"

© Copyright IBM Corp. 2000, 2003 187

Table 5. SQL Statements Supported by JDBC (continued)

<insert value> = <NUMBER>
| <CHAR LITERAL>

| <PREPARED EXPR>

<update statement> = "UPDATE" <table name>
"SET" <column values>
[<where clause>]

<column values> = <column name> "=" <updated value>
("," <column name> "=" <updated value>)*

<updated value> = <NUMBER>
| <CHAR LITERAL>

| <PREPARED EXPR>

<delete statement> = "DELETE" ["FROM"] <table name>
[<where clause>]

<query statement> = <select statement>

<select statement> = <select no order>
[<order by clause>]

<select no order> = "SELECT" ["ALL" | "DISTINCT"]
<select list>
<from clause>
[<where clause>]

<select list> = "*"
|
<select item> ("," <select item>)*

<select item> = (<IDENTIFIER> "\"
[<IDENTIFIER> "\" <IDENTIFIER> "\"

[<IDENTIFIER> "\"]]
"*"

)
|
(

<sl element>
["AS"]
[<IDENTIFIER> <QUOTED IDENTIFIER>]

)

<sl element> = <sl mult expr>
(("+" | "-") <sl mult expr>)*

<sl mult expr> = <sl primary expr>
(("*" | "/") <sl primary expr>)*

<sl primary expr> = <table column>
| <NUMBER>

| <CHAR LITERAL>

| <PREPARED EXPR>

| "(" <sl element> ")"

<from clause> = "FROM" <from item>
[

("," <from item>)+
| (<join clause>)+

]

Using JDBC With VSAM

188 VSE/ESA: e-business Connectors, User’s Guide

Table 5. SQL Statements Supported by JDBC (continued)

<from item> = (
"(" <subquery> ")"
|
<table name>

)
["AS"] [<IDENTIFIER>]

<join clause> = <join type> <from item> [<join specification>]

<join type> = "INNER" "JOIN"
| "NATURAL" ["INNER"] "JOIN"

| "LEFT" ["OUTER"] "JOIN"

| "RIGHT" ["OUTER"] "JOIN"

| "FULL" ["OUTER"] "JOIN"

| "JOIN"

<join specification> = "USING" "(" <IDENTIFIER>
("," <IDENTIFIER>)* ")"

| "ON" <table column> "=" <table column>

<where clause> = "WHERE" <where expr>

<where expr> = <where and expr>
("OR" <where and expr>)*

<where and expr> = <where rel expr>
("AND" <where rel expr>)*

<where rel expr> = ["NOT"]
(

<where primary expr>
<relop>
<where primary expr>

)
| "(" <where expr> ")"

<where primary expr> = <table column>
| <NUMBER>

| <CHAR_LITERAL>

| <PREPARED EXPR>

<order by clause> = "ORDER" "BY"
<table column> ["ASC" | "DESC"]
("," <table column> ["ASC" | "DESC"])*

<relop> = "="
| "<>"

| "<"

| "<="

| ">"

| ">="

<subquery> = <select no order>

Using JDBC With VSAM

Chapter 18. Using JDBC to Access VSAM Data 189

Table 5. SQL Statements Supported by JDBC (continued)

<table column> = <IDENTIFIER>
["\" <IDENTIFIER>

["\" <IDENTIFIER> "\" <IDENTIFIER>
["\" <IDENTIFIER>]]]

Relational and VSE Java Beans Terminology
Here are some guidelines for understanding how terms that are used with
relational SQL, correspond to non-relational VSE Java Beans.

Table 6. Relational Terms and Their VSE Equivalents

SQL term VSE Java Beans term

SQL table A VSEVSAMCatalog, a VSEVsamCluster, together with a
VSEVsamMap (and optionally VSEVsamView)

Database row VSEVsamRecord, together with a VSEVsamMap describing the
column names and data field properties.

Column name VSEVsamField, describing the column’s:
Name
Offset within the record
Length
Data type (string, integer, and so on)

Specifying Table Names
The following example illustrates how you specify table names with JDBC. Assume
the cluster MY.TEST.CLUSTER resides in catalog MY.USER.CATALOG. A map has been
defined for this cluster with the name MY.TEST.MAP.

The table name used for the VSAM JDBC driver will therefore be:
MY.USER.CATALOG\MY.TEST.CLUSTER\MY.TEST.MAP

Using JDBC With VSAM

190 VSE/ESA: e-business Connectors, User’s Guide

Example of Using JDBC to Access VSAM Data

This section provides a detailed example of how you can access VSAM data using
the JDBC driver. The example performs roughly the same processing as the
FlightOrderingServlet described in “Example of How to Implement a Servlet” on
page 246. It operates on the same VSAM clusters as the FlightOrderingServlet, but
does not create these clusters. Therefore, if you have not already created these
clusters (and filled them with data), refer to “Creating the VSAM Clusters for the
Sample” on page 247 for details of how to do so.

The example servlet is implemented in the Java source file
JdbcFlightOrderingServlet.Java, which is supplied with the online documentation
(see “Using the Online Documentation Options” on page 28 for details).

Step 1. Include the Imports and Class Definition
The JDBC-related Java beans are stored in the com.ibm.vse.jdbc package. The
java.sql classes are also required in order to create the JDBC driver.

import java.lang.*;
import java.net.*;
import java.io.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.vse.jdbc.*;

public class JdbcFlightOrderingServlet extends HttpServlet
{

...
// Names of the Clusters and Maps.
String vsamCatalog = "VSESP.USER.CATALOG";
String flightsCluster = "FLIGHT.ORDERING.FLIGHTS";
String ordersCluster = "FLIGHT.ORDERING.ORDERS";
String flightsMapName = "FLIGHTS_MAP";
String ordersMapName = "ORDERS_MAP";

...

Figure 91. JDBC Example: Imports and Class Definition

Using JDBC With VSAM

Chapter 18. Using JDBC to Access VSAM Data 191

Step 2. Perform the doGet() Method
The doGet() method gets the HTTP request from your Web browser. It creates an
instance of the VSAM JDBC driver, and gets a connection to the host. The numbers
below refer to the numbers shown in Figure 92.
1. Create an initial context which is later used to perform a lookup of the data

source. The data source is accessed via its JNDI name, which is defined during
the deployment of the JDBC driver.

2. In a WebSphere environment, request a JDBC connection from the data source.
The properties of the connection (such as hostname, user ID, and so on) are
specified during the deployment of the JDBC driver. For an example of how to
create an instance of a JDBC connection in a non-WebSphere environment, see
Figure 75 on page 150.

...
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException
{

...
1 /* Create a instance of the VSAM JDBC Driver and get */

/* a connection */
java.sql.Driver jdbcDriver = null;
java.sql.Connection jdbcCon = null;

try
{

2 // Lookup a JDBC Connection
Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/vsamjdbc");
jdbcCon = ds.getConnection();

}
catch(Throwable t)
{

...
}

...
// Get Parameters

...
// check whitch action to do

...

jdbcCon.close();
}

Figure 92. JDBC Example: Perform the doGet() Method

Using JDBC With VSAM

192 VSE/ESA: e-business Connectors, User’s Guide

Step 3. Display List of Available Flights
This method displays a list of available flights that can be ordered. The numbers
below refer to the numbers shown in Figure 93.
1. Create the SQL statement.
2. Executes the request.

...
public void doOrderStep1(PrintWriter out,

java.sql.Connection jdbcCon)
{

int flightNumber,price;
String start,destination,departure,arrival,airline;

...
// write out a Table containing all available flights

...
try
{

// get a statement
1. java.sql.Statement stmt = jdbcCon.createStatement();

// execute the query
2. java.sql.ResultSet rs = stmt.executeQuery("SELECT * FROM "+

vsamCatalog+"\\"+flightsCluster+"\\"+flightsMapName);

// walk through the results
while(rs.next())
{

// get the values
flightNumber = rs.getInt("FLIGHT_NUMBER");
start = rs.getString("START");
destination = rs.getString("DESTINATION");
departure = rs.getString("DEPARTURE");
arrival = rs.getString("ARRIVAL");
price = rs.getInt("PRICE");
airline = rs.getString("AIRLINE");

// write out a line in the table

...
}
rs.close();
stmt.close();

}
catch(SQLException t)
{

...
}

...
}

...

Figure 93. JDBC Example: Display List of Available Flights

Using JDBC With VSAM

Chapter 18. Using JDBC to Access VSAM Data 193

Step 4. Display Flight Properties and Entry Form
The method used here displays the flight’s properties, together with a form in
which the order’s parameters can be entered. It illustrates how you can set up a
more complex query. The numbers below refer to the numbers shown in Figure 94.
1. All question marks in the SQL query will be later replaced by actual values.
2. Replace the placeholders.
3. Execute the query.

...
public void doOrderStep2(PrintWriter out,

java.sql.Connection jdbcCon,
Hashtable parameters)

{
int flightNumber,price,seats,reserved;
String start,destination,departure,arrival,airline;

// get the parameters

...

// get the flight and display the properties
try
{

// get a statement
1. java.sql.PreparedStatement stmt = jdbcCon.prepareStatement(

"SELECT * FROM "+vsamCatalog+"\\"+flightsCluster+"\\"+flightsMapName+
" WHERE FLIGHT_NUMBER=?");

// set the select filter
2. stmt.setInt(1,flightNumber);

// execute the query
3. java.sql.ResultSet rs = stmt.executeQuery();

...

Figure 94. JDBC Example: Display Flight Properties and Entry Form

Using JDBC With VSAM

194 VSE/ESA: e-business Connectors, User’s Guide

Step 5. Get and Display the Data Field Values
The result should be one flight only that matches the above flightNumber. Here we
get the data field values of the flight, and display them in the HTML page.

// get the values
flightNumber = rs.getInt("FLIGHT_NUMBER");
start = rs.getString("START");
destination = rs.getString("DESTINATION");
departure = rs.getString("DEPARTURE");
arrival = rs.getString("ARRIVAL");
price = rs.getInt("PRICE");
seats = rs.getInt("SEATS");
reserved = rs.getInt("RESERVED");
airline = rs.getString("AIRLINE");

rs.close();
stmt.close();

// display the fields

...

// check if enough seats are available
if (seats-reserved == 0)
{

...
return;

}

// write out a form where the user can enter his name
// and select the number of seats to order

...
}
catch (SQLException t)
{

...
}

...
}

...

Figure 95. JDBC Example: Get and Display the Data Field Values

Using JDBC With VSAM

Chapter 18. Using JDBC to Access VSAM Data 195

Step 6. Update the VSAM Cluster
The method used here illustrates how you can update a VSAM cluster. It orders a
flight, and then updates the FLIGHT.ORDERING.ORDERS cluster.

We select all records from the FLIGHTS cluster where the flight number matches
the value of the variable flightNumber. This will be, of course, the flight for which
we want to place an order.

...
public void doOrderStep3(PrintWriter out,

java.sql.Connection jdbcCon,
Hashtable parameters)

{
int flightNumber,seatsToOrder,seats,reserved,price;
String firstName,lastName;
boolean nonSmoke;
int num,counter,recNo;

// get the parameters from the form

...

try
{

// setup the SQL query
java.sql.PreparedStatement stmt = jdbcCon.prepareStatement(

"SELECT * FROM "+vsamCatalog+"\\"+flightsCluster+"\\"+flightsMapName+
" WHERE FLIGHT_NUMBER=?");

// set the select filter
stmt.setInt(1,flightNumber);

// execute the query
java.sql.ResultSet rs = stmt.executeQuery();

Figure 96. JDBC Example: Update the VSAM Cluster

Using JDBC With VSAM

196 VSE/ESA: e-business Connectors, User’s Guide

Step 7. Get Order Values and Check Availability
In this step, we obtain one record only, since the flight number is the key field in
this cluster.

// there should be only one result
if (!rs.next())
{

...
return;

}

// get the values
price = rs.getInt("PRICE");
seats = rs.getInt("SEATS");
reserved = rs.getInt("RESERVED");

rs.close();
stmt.close();

// check if enough seats are available
if (reserved + seatsToOrder > seats)
{

...
return;

}

// display the order properties

...

Figure 97. JDBC Example: Get Order Values and Check Availability

Using JDBC With VSAM

Chapter 18. Using JDBC to Access VSAM Data 197

Step 8. Create the New Order
In this step we create the new order. The numbers below refer to the numbers
shown in Figure 98.
1. The SQL statement inserts a new record. Each question mark is a placeholder

that is enumerated below when the data field values are specified.
2. The related values are specified.
3. The SQL UPDATE request is executed.

// get a statement
1. stmt = jdbcCon.prepareStatement(

"INSERT INTO "+vsamCatalog+"\\"+ordersCluster+"\\"+ordersMapName+
" (FIRST_NAME,LAST_NAME,FLIGHT_NUMBER,SEATS,NON_SMOKE) VALUES(?,?,?,?,?)");

// set the values
2. stmt.setString(1,makeString(firstName,20));

stmt.setString(2,makeString(lastName,20));
stmt.setInt(3,flightNumber);
stmt.setInt(4,seatsToOrder);
byte[] b = new byte[1];
if(nonSmoke)

b[0] = 0x01;
else

b[0] = 0x00;
stmt.setBytes(5,b);

// execute the query
3. num = stmt.executeUpdate();

stmt.close();

...

Figure 98. JDBC Example: Create the New Order

Using JDBC With VSAM

198 VSE/ESA: e-business Connectors, User’s Guide

Step 9. Check Processing and Increase Reserved Seats
In this step, a check is made to see if the previous INSERT operation into the
ORDERS cluster completed successfully. The variable num now contains the
number of successfully-inserted rows.

If successful, the number of reserved seats in the FLIGHTS cluster of the
corresponding flight is increased by the number of newly reserved seats.

// check if creating was ok
if (num == 1)
{

// now update the flight record’s fields and increase
// the reserved seats by the number of seats to order
reserved += seatsToOrder;

// get a statement
stmt = jdbcCon.prepareStatement(

"UPDATE "+vsamCatalog+"\\"+flightsCluster+"\\"+flightsMapName+
" SET RESERVED=? WHERE FLIGHT_NUMBER=?");

stmt.setInt(1,reserved);
stmt.setInt(2,flightNumber);

// execute the query
num = stmt.executeUpdate();

}
}
catch (SQLException t)
{

...
return;

}

...
}

...

...
}

Figure 99. JDBC Example: Check Processing and Increase Number of Reserved Seats

Using JDBC With VSAM

Chapter 18. Using JDBC to Access VSAM Data 199

200 VSE/ESA: e-business Connectors, User’s Guide

Chapter 19. Using Java Applets to Access Data

Java applets are Java programs that run inside the Java Virtual Machine of a Web
browser. The main advantages of using applets are that:
v They can be accessed using any Java-enabled Web browser.
v There is no need to install any further programs on the Web client.
v They allow you to build an easy-to-use User Interface (UI).

Applets are by definition secure. They cannot access:
v any of the resources of the client workstation
v the client workstation’s memory
v the network.

Here is an example of an applet tag:
<applet code="myapplet" archive="applets.jar">
</applet>

The ″applet code″ tag specifies the name of the main Java class of the applet, the
optional ″archive″ tag specifies one or more archives where the class library (and
all other required classes) are located. You can store the class and JAR files
belonging to the applet in any directory of the middle-tier.

This chapter contains these main sections:
v “How Applets Are Used in 2-Tier Environments” on page 202
v “How Applets Are Used in 3-Tier Environments” on page 203
v “How the VSEAppletServer Is Used” on page 205
v “Disadvantages and Restrictions Of Using Applets” on page 206
v “Running the Sample Data-Mapping Applet” on page 207
v “Running the Sample VSAM Applet” on page 216
v “Running the Sample DL/I Applet” on page 230

© Copyright IBM Corp. 2000, 2003 201

How Applets Are Used in 2-Tier Environments
Figure 100 shows how an applet is used within the VSE/ESA 2-tier environment:

HTTP Sessions are used between the Web Client and the VSE/ESA host for
sending and receiving data.

The number of each list item below describes a step shown in Figure 100:

�1� The client’s Web browser requests an HTML page from the VSE HTTP
Server running on the VSE/ESA host.

�2� The VSE HTTP Server sends the Web Page to the client’s Web browser.

�3� The client’s Web browser reads an <applet> tag and requests the applet
code from the VSE HTTP Server on the VSE/ESA host. The applet code is

Figure 100. How Applets Are Used in the VSE/ESA 2-Tier Environment

Using Java Applets

202 VSE/ESA: e-business Connectors, User’s Guide

stored in one or more JAR files. The Web browser also requests the VSE
Java Beans class library (VSEConnector.jar) from the VSE HTTP Server.

�4� The VSE HTTP Server sends the applet code to the client’s Web browser,
together with the VSE Java Beans class library.

�5� The client’s Web browser runs the applet. The applet uses the VSE Java
Beans class library (VSEConnector.jar) to build a connection to the VSE
Connector Server. The end-user requests data that is stored on the
VSE/ESA host. For an applet in a 2-tier environment, the data can be
VSE/POWER, VSE/VSAM, VSE/ICCF, or Librarian data.

Note: An applet cannot obtain DB2, DL/I, or CICS data in a 2-tier
environment. This is because the VSE Connector Server cannot
access these systems. In addition, the use of MQSeries Servers is not
possible in 2-tier environments.

�6� The VSE Connector Server obtains the required data using “native” calls
(using the standard access methods), and then sends the data to the client’s
Web browser via TCP/IP.

�7� The client’s Web browser runs the applet a second time, and displays the
Web Page together with the requested data.

Although applets are mainly used in 2-tier environments, you can also use an
applet within the 3-tier environment providing you implement a ″router″ on the
middle-tier, that serves as a gateway between the client and the VSE/ESA host. For
details, see “How the VSEAppletServer Is Used” on page 205.

How Applets Are Used in 3-Tier Environments
Figure 101 on page 204 shows how an applet is used within the VSE/ESA 3-tier
environment. The number of each list item below describes a step shown in this
figure.

�1� The client’s Web browser requests an HTML page from the IBM HTTP
Server running on the middle-tier.

�2� The IBM HTTP Server sends the Web Page to the client’s Web browser.

�3� The client’s Web browser reads an <applet> tag and requests the applet
code from the IBM HTTP Server running on the middle-tier. You can store
the class and JAR files belonging to the applet in any directory of the
middle-tier. The Web browser also requests the VSE Java Beans class
library (VSEConnector.jar) from the IBM HTTP Server.

�4� The IBM HTTP Server sends the applet code to the client’s Web browser,
together with the VSE Java Beans class library.

Using Java Applets

Chapter 19. Using Java Applets to Access Data 203

�5� The client’s Web browser runs the applet, and the end-user requests data
that is stored on the VSE/ESA host. The applet connects to the router on
the middle-tier, and sends the request for data to the router. The router is
the VSEAppletServer (described in “How the VSEAppletServer Is Used” on
page 205) running on the middle-tier.

�6� The router connects to the VSE Connector Server running on the VSE/ESA
host, and forwards the request for data to it.

�7� The VSE Connector Server retrieves the data using “native” calls (the
standard access method), and sends the data back to the VSEAppletServer
router running on the middle-tier (via TCP/IP).

Notes:

1. The VSE Connector Server can be used for accessing VSE/VSAM,
VSE/POWER, VSE/ICCF, or Librarian data.

2. An alternate method for accessing VSAM data stored on the VSE/ESA
host, is to use a DB2 Stored Procedure on the middle-tier which

Figure 101. How Applets Are Used in the VSE/ESA 3-Tier Environment

Using Java Applets

204 VSE/ESA: e-business Connectors, User’s Guide

communicates directly with the VSAM file system on the VSE/ESA
host. This is described in “Using DB2 Stored Procedures to Access
VSAM Data” on page 312.

�8� The router connects to the applet running in the client’s Web browser, and
sends the data to the applet (also via TCP/IP).

�9� The applet running inside the client’s Web browser displays the data
within the currently-displayed Web Page.

HTTP Sessions are used between the Web Client and the middle-tier for sending
and receiving data. Connect Sessions are used between the middle-tier and the
VSE/ESA host for sending and receiving data.

How the VSEAppletServer Is Used
Applets, by nature, have many restrictions, including:
v They can open a new network connection only to the platform from which they

are downloaded. In a 3-tier environment this is the middle-tier.
v They can only access the file system of the platform from which they are

downloaded. In a 3-tier environment this is a file system stored on the
middle-tier.

To get around these problems and allow applets to get data from the VSE
Connector Server running on the VSE/ESA host, a simple router (VSEAppletServer)
is provided. The applet simply connects to this router. The router, which does not
have this restriction, then connects to the VSE Connector Server to get VSE-based
data, and pass it back to the applet.

Figure 102. How the VSEApplet Server Is Used in the 3-Tier Environment

Using Java Applets

Chapter 19. Using Java Applets to Access Data 205

Disadvantages and Restrictions Of Using Applets
These are the disadvantages and restrictions when using applets in the VSE/ESA
environment:
v Since the applet must run in a Web browser, you do not have the advantage of

having an extremely fast middle-tier machine of the 3-tier environment. The
speed of the process is instead dependent on the resources of each individual
Web browser, and the network speed and bandwidth.

v You cannot use the MQSeries Java client as the connector for an applet, because
the MQSeries server on VSE can only communicate with another MQSeries
Server, and not directly with the MQSeries Java client.

v You can only use the archive tag with Netscape, or with the Microsoft Internet
Explorer 4 (or later), not with the Microsoft Internet Explorer 3. Check the
documentation belonging to your Web browser for details about supported
applet parameters.

v You must store class and jar files as binary in the VSE library system. You can
use the Librarian LD command to check the file format.

v When you write applets, you should never “hard-code” any user IDs and
passwords in the applet code: when the applet is downloaded to a Web browser
and is stored in the Web browser’s cache, this information could possibly be
displayed by unauthorized persons.

Using Java Applets

206 VSE/ESA: e-business Connectors, User’s Guide

Running the Sample Data-Mapping Applet

The information in this section is based upon a sample applet, the VSAM
data-mapping applet (also referred to as simply the data-mapping applet) that is
provided with the VSE Connector Client.

Other examples of applets are similarly provided with the VSE Connector Client,
such as the:
v VsamSpaceUsage (which displays the used and free VSAM space).
v DB2ConnectorJDBCApplet (which calls a DB2 Stored Procedure to access VSAM

data via the VSAMSQL Call Level Interface, abbreviated to CLI). For details, see
“Running the Sample VSAM Applet” on page 216.

v VSAM Applet (described on page 216).
v DL/I Applet (described on page 230).

Description of the Data-Mapping Applet
The data-mapping applet describes a Java applet that allows you to create and
maintain maps and views for specific VSAM files. It does not show you how to
display or modify VSAM data itself. To display or modify VSAM data, you must
either use:
v an applet with the same functionality as the sample VSAM applet (described in

“Example of How to Implement a Servlet” on page 246).
v a servlet (described in “Example of How to Implement a Servlet” on page 246).

Note!
The data-mapping applet might not run with certain combinations of
operating system and Web browser.

The applet performs this general processing:
1. The applet displays some window controls, which allow the user to enter the

IP address of a VSE/ESA host, a VSE user ID, and a password.
2. The applet connects to the VSE Connector Server, and retrieves a list of VSAM

catalogs.
3. By double-clicking on an item in the catalog list, a list with all clusters in this

catalog is displayed.
4. By double-clicking on a cluster, a list showing all maps defined to this cluster is

displayed.
5. By double-clicking on a map, two lists are displayed. The first list shows all

data fields of this map, the second list shows all views of this map.
6. By double-clicking on a view, a list with all fields of this view is displayed.

Figure 103 on page 208 shows the applet running in the Web browser window.

Running the Data-Mapping Applet

Chapter 19. Using Java Applets to Access Data 207

The VSAM file FLIGHT.ORDERING.FLIGHTS contains data records describing
flights. Each flight consists of data fields (DEPARTURE, ARRIVALS, SEATS, and so
on). These data fields are contained in the map FLIGHTS_MAP that describes the
complete record.

Using push-buttons that are displayed next to the lists shown in Figure 103, you
can add, change, or delete, the maps, views, and fields. By clicking a push button
to add or modify a map, view, or field, a dialog is displayed that allows you to
enter new data.

The map has two different data views, DEPARTURES and ARRIVALS, that provide
subsets of the data fields of the map. All maps and views are stored in a VSAM
file which contains the VSAM mapping definitions. For details, see “How Maps
Are Stored on the VSE/ESA host” on page 130.

Activities Required on the VSE/ESA Host
Before you can run the VSAM data-mapping applet, you must perform these
activities on your VSE/ESA host:
1. Define a Web server on VSE/ESA, by entering this TCP/IP command on the

VSE/ESA console:
DEFINE HTTPD,ID=MYHTTPD,ROOT=PRIMARY.TEST

This will start an HTTP daemon with root library PRIMARY.TEST.

Figure 103. Window for VSAM Data-Mapping Applet

Running the Data-Mapping Applet

208 VSE/ESA: e-business Connectors, User’s Guide

2. Create a file with the name index.html, that will be read when a Web browser
connects to the VSE/ESA host. Here is the index.html file you should use with
the sample applet:
<html>
<head>
<title>VSAM Data Mapping Example Applet</title>
</head>
<body>
<h2>VSAM Data Mapping Applet</h2>
This applet can be used to create and maintain VSAM maps and views.
Please logon to your VSE host. When the connection is established, a
list of VSAM catalogs is displayed.
<p>
<center>
<applet code="com.ibm.vse.samples.VsamMappingApplet" width=440 height=420

archive="applets.jar, vsecon.jar"> �1�
</applet>
</center>
</body>
</html>

�1� The archive tag specifies the names of the Java archives (.JAR) containing all
classes that are required to run the applet. In this example:
v File applets.jar contains the applet-specific code.
v File vsecon.jar is identical to VSEConnectors.jar, except that it has been given a

short file name so it can be placed in a VSE library.
3. Place file index.html in the HTTP server’s root library.

Deploying the Data-Mapping Applet
To deploy the data-mapping applet, you must:
1. From the vsecon\samples directory, compile the Java sources, and create the

JAR archive. To do so, use the following statements:
call javac com\ibm\vse\samples\VsamMappingApplet.java
call javac com\ibm\vse\samples\VsamAppletListener.java
call jar c0fv applets.jar com\ibm\vse\samples\VsamMappingApplet.class

com\ibm\vse\samples\VsamAppletListener.class

2. Send the created JAR archive to the VSE HTTP server’s root directory (in binary
format). To do so, you can either use an emulator program, or FTP. The JAR
utility is part of your local Java installation. For details of how to use FTP, see
page 25.

Calling the Data-Mapping Applet
To run the data-mapping applet (or any other applet), it must be:
1. Downloaded from the VSE/ESA host to a local workstation.
2. Executed in the Java Virtual Machine of a Web browser installed on the local

workstation.

If the VSE HTTP Server is running, to display the above HTML file, you simply
enter the IP address or symbolic name of your VSE/ESA host in the Web browser’s
address/location field. To start the VSE HTTP Server, you enter this TCP/IP
command at the VSE/ESA console:
xx q httpds

where xx is the reply-ID of the TCP/IP partition.

Running the Data-Mapping Applet

Chapter 19. Using Java Applets to Access Data 209

How Various Web Browsers Search for JAR and Class Files
v The Netscape Communicator does not search in the local classpath. Instead, it

always takes the classes from the path specified in the applet’s archive tag.
v The Microsoft Internet Explorer 3 cannot process the archive tag.
v The Microsoft Internet Explorer 4 and 5 place your local system classpath in front

of the path of JAR files that is specified in the applet’s archive tag. As a result, if
you have same classes locally, the VSE/ESA host-based classes will not be
loaded!. The Web browser will instead load the local classes.

Setting Up the Data-Mapping Applet Class
In general, an applet extends the Java applet class (supplied with the Java
Development Kit). The provided data-mapping applet however, also implements
an ActionListener that detects push-button actions.

Initializing the Data-Mapping Applet
The init() method is called from the Web browser when the applet is first started.
In this example:
1. The logon controls are displayed.
2. A frame is created that is required as the parent frame of the various dialogs

for adding, modifying, or deleting maps, views, and data fields.

�1� The PowerGridLayout class is a Java layout manager that is much used in

/* Import applet classes */
import java.applet.*;
...

public class VsamMappingApplet extends Applet
implements ActionListener, ItemListener
{

VSESystem system;
VSEConnectionSpec spec;
VSEVsam vsam;
VSEVsamCatalog catalog;
VSEVsamCluster cluster;
VSEVsamMap map;
VSEVsamView view;
VSEVsamField field, newField;
VsamAppletListener vl;
...

Figure 104. Data-Mapping Applet Code for Setting Up the Java Class

public void init()
{

f = new Frame();
pgl = new PowerGridLayout(100, 66); // a box with 100 x 66 units �1�
setLayout(pgl);
vMapFields = new Vector();
vViewFields = new Vector();
displayLogonDialog(); // show the dialogbox
repaint();

}

Figure 105. Sample Code for Initializing the Data-Mapping Applet

Running the Data-Mapping Applet

210 VSE/ESA: e-business Connectors, User’s Guide

the VSE Navigator function, and some examples contained in the VSE
Connector Client. The PowerGridLayout class is contained in the
com.ibm.vse.utilities package.

Re-Displaying or Leaving an HTML Page
The applet start() method is called from the Web browser whenever the HTML
page is to be re-displayed:
public void start()
{
}

The applet stop() method is called from the Web browser when leaving the HTML
page:
public void stop()
{
}

Using the Data-Mapping Applet to Add a Map to a VSAM
Cluster

This code shows how to define a VSEVsamMap using the data-mapping applet.
The same basic method is also used for defining views and fields:
1. A local map object is created using its constructor.
2. The local map object is then created on the VSE/ESA host, using the create()

method.

Accessing the VSE/ESA host can produce an IOException or a ConnectorException
error. Therefore this call must be contained in a “try-catch” clause.

public int addMap()
{

...

/* Get map name from textfield on dialogbox */
String name = tfName.getText().toUpperCase();

/* Create local object */
map = new VSEVsamMap(�1�

system,
((VSEVsamCatalog)(vCatalogs.elementAt(catIndex))).getFileID(),
((VSEVsamCluster)(vClusters.elementAt(cluIndex))).getFileID(),
name);

/* Create map on host */
try {

map.create(); �2�

/* Add new mapname to map list ... */
...

}
catch (Exception e)
{

...
}
...

}

Figure 106. Data-Mapping Applet Code for Adding a Map to a VSAM Cluster

Running the Data-Mapping Applet

Chapter 19. Using Java Applets to Access Data 211

The number below refer to the numbers in Figure 106 on page 211:

�1� Here a new local instance of class VSEVsamMap is created. At this stage, no
host action has been performed.

�2� The create() method is used to create the map definition on the host.

Using the Data-Mapping Applet to Modify a Map
A map object can be renamed using the rename() method, which sends a request to
the VSE/ESA host to change the map’s name. Accessing the VSE/ESA host can
produce an IOException or a ConnectorException error. Therefore this call must be
contained in a “try-catch” clause.

This dialog window allows you to change a map’s properties:

public int modMap()
{

...
/* Get name from textfield ... */
String name = tfName.getText().toUpperCase();
try {

/* Change map on host */
map.rename(name);
...

}
catch (Exception e)
{

...
}
...

}

Figure 107. Sample Applet Code for Modifying a Map

Figure 108. Window for Changing a Map’s Properties

Running the Data-Mapping Applet

212 VSE/ESA: e-business Connectors, User’s Guide

Using the Data-Mapping Applet to Modify a Map’s Data Fields
The example below shows how to modify a field contained within a map, in these
steps:
1. The map is retrieved by searching for the selected item in the list of maps.
2. Map-related methods (such as setFieldName(), setFieldType(), and so on) are used

to change the properties of a field.
3. After modifying the field on the host, the list of local map fields is updated

with the new name. In addition, the local field object is updated in the vector
of map fields.

public int modMapfield()
{

int i,type;
...
/* Get new name from dialogbox */
String name = tfName.getText().toUpperCase();

/* Check if this name is already there. It’s possible */
/* to leave the name unchanged, but it’s not possible */
/* to change the name to another existing name. */
...

/* Get other values from dialogbox */
if (cb1.getState() == true)

type = VSEVsamMap.TYPE_STRING;
else if (cb2.getState() == true)

type = VSEVsamMap.TYPE_BINARY;
else if (cb3.getState() == true)

type = VSEVsamMap.TYPE_PACKED;
else if (cb4.getState() == true)

type = VSEVsamMap.TYPE_SIGNED;
else

type = VSEVsamMap.TYPE_UNSIGNED;
String len = tfLength.getText().toUpperCase();
String offset = tfOffset.getText().toUpperCase();

...
/* Get related map */
i = mapList.getSelectedIndex();
map = (VSEVsamMap)(vMaps.elementAt(i)); �1�
...

Figure 109. Sample Applet Code for Modifying a Map’s Data Fields (Part 1 of 2)

Running the Data-Mapping Applet

Chapter 19. Using Java Applets to Access Data 213

�1� Here, we must keep local map, view, and field instances in a vector,
because it is not possible to store such objects in an AWT list.

This dialog window corresponds to the code shown above, and allows you to
modify a map’s data fields:

Note: Checking for valid length and offset values are not performed. You can also
overwrite fields (specify the same offset but different lengths for different
fields).

/* Modify this field on host */
try {

map.setFieldName(oldName, name);
map.setFieldType(map.getIndex(name), type);
map.setFieldLength(map.getIndex(name),new Integer(len).intValue());
map.setFieldOffset(map.getIndex(name),new Integer(offset).intValue());

}
catch (Exception e)
{

...
}

/* Modify local field */
i = mapFieldList.getSelectedIndex();
mapFieldList.replaceItem(name, i);
field = (VSEVsamField)(vMapFields.elementAt(i));
field.setName(name);
field.setType(type);
field.setLength(new Integer(len).intValue());
field.setOffset(new Integer(offset).intValue());
...

}

Figure 109. Sample Applet Code for Modifying a Map’s Data Fields (Part 2 of 2)

Figure 110. Window for Changing a Map’s Data Fields

Running the Data-Mapping Applet

214 VSE/ESA: e-business Connectors, User’s Guide

Running the Data-Mapping Applet Locally Using the
AppletViewer

For a quick test of your installation, you can run the data-mapping applet locally:
you are not required to first place the code in the VSE/ESA host. The VSE
Connector Client online documentation contains a file DataMapping.html, which
you can use to run the sample applet using your local appletviewer. The
appletviewer is supplied with your Java installation.
<html>
<body>
<h2>VSAM Data Mapping Applet</h2>
<applet code="com.ibm.vse.samples.VsamMappingApplet"

codebase="." archive="../VSEConnector.jar"
width=460 height=460>

</applet>
</body>
</html>

Please note that:
v The codebase and archive tags are different from those of the VSE/ESA

host-based HTML file. Here, we specify using the codebase tag, that all
applet-related code is located in the current directory (including sub-directories).

v The archive tag points to the original VSEConnector.jar file that contains the
VSE Java Beans class library.

v You are not required to create a second JAR file containing the applet-specific
code, since the applet viewer can take these classes directly from your local file
system.

Go to the vsecon\samples directory and call the applet in this way:
set classpath=.;..\VSEConnector.jar;%classpath%
AppletViewer MappingApplet.html

(which assumes the VSEConnector.jar file is stored in the next upper directory).

The related Unix shell script would therefore be as follows:
#! /bin/sh
export CLASSPATH=.:../VSEConnector.jar:$CLASSPATH
appletviewer MappingApplet.html

Running the Data-Mapping Applet

Chapter 19. Using Java Applets to Access Data 215

Running the Sample VSAM Applet

The information in this section is based upon a sample applet, the VSAM applet,
that is provided with the VSE Connector Client.

Other examples of applets are similarly provided with the VSE Connector Client,
such as the:
v VsamSpaceUsage applet (which displays the used and free VSAM space).
v Data-Mapping Applet (described on page 207).
v DL/I Applet (described on page 230).

Description of the VSAM Applet
The sample VSAM applet is an example of how you can use an applet together
with the DB2-Based Connector. It allows you to display and modify VSAM data
stored in a sample VSAM data cluster.

When you start the VSAM applet, it connects to the DB2 Connect database-alias
db2vsewm. The VSAM applet can then communicate with the VSE/ESA host
database sqlds, via db2vsewm.

The VSAM applet calls a sample DB2 Stored Procedure (VSAMSEL in this
example) to access VSAM data via the VSAMSQL Call Level Interface (CLI). For a
detailed description of the CLI, see “Using DB2 Stored Procedures to Access VSAM
Data” on page 312.

Before you can run the VSAM applet, you must have customized:
v The DB2-Based Connector (see Steps 1 to 6 of Chapter 9, “Customizing the

DB2-Based Connector”, on page 71 for details).
v The sample DB2 Stored Procedures (see “Step 7: Customize the DB2-Based

Connector for VSAM Data Access” on page 83 for details).
v DB2 Connect on your middle-tier (see “Step 10: Install DB2 Connect and

Establish Client-Host Connection” on page 85 for details). During this step, you
define sqlds to DB2 Connect on your middle-tier (where sqlds is the sample
database on the VSE/ESA host that is used with the VSAM applet).

Note!
The VSAM applet might not run with certain combinations of operating
system and Web browser.

How the sample VSAM applet is used within a 3-tier environment, is shown in
Figure 111 on page 217:

Running the VSAM Applet

216 VSE/ESA: e-business Connectors, User’s Guide

�1� The clients’s Web browser requests an HTML page from the IBM HTTP
Server (or another Web server) running on the middle-tier. The HTML
page contains the applet tag for the VSAM applet. The VSAM applet is
loaded into the Java Virtual Machine of the Web browser, and starts to run.

�2� The VSAM applet opens a connection to DB2 Connect running on the
middle-tier of the 3-tier platform. It does so via the JDBC Applet Server
(where “JDBC” is an abbreviation for Java Database Connectivity). The use of
the JDBC Applet Server overcomes the restrictions that applets can only:
v Open a new network connection to the platform from which they are

downloaded (in this case, the middle-tier).
v Access the file system of the platform from which they are downloaded

(in this case, the middle-tier).

The VSAM applet then calls a sample DB2 Stored Procedure (VSAMSEL in
this example).

�3� DB2 Connect communicates with the DB2 Server for VSE, via the DB2
Connect database-alias db2vsewm. DB2 Connect can now access to the
VSE/ESA host database sqlds. It uses the DRDA (Distributed Relational
Database Architecture). The underlying protocol can be either APPC or
TCP/IP.

�4� The DB2 Server for VSE executes a sample DB2 Stored Procedure
(VSAMSEL in this example), using the Stored Procedure Server.

�5� The sample DB2 Stored Procedure can now carry out the VSAM applet’s
request, by accessing the VSAM data stored on the VSE/ESA host via
VSAMSQL CLI.

Notes:

1. The WebSphere Application Server is not required on the middle-tier of the
process described above.

2. The VSE Connector Server is not required on the VSE/ESA host of the process
described above.

Figure 111. Using the Sample VSAM Applet to Access VSAM Data

Running the VSAM Applet

Chapter 19. Using Java Applets to Access Data 217

Getting Started With the Sample VSAM Applet
Before you can run the VSAM applet, you must perform the steps described in this
section.

1. Create an HTML File to Call the VSAM applet
You must write an HTML file, from which the VSAM applet can be called. Each
time this HTML page is displayed, the applet will be loaded and executed in the
Web browser’s JVM (Java Virtual Machine). The VSAM applet then connects to the
middle-tier database using JDBC.

Here is an example of such an HTML file:
<html>
<head>
<title>JDBC Example Applet to call a DB2 Stored Procedure</title>
</head>
<body>
<h2>JDBC Example Applet that access VSE/VSAM using the DB2-based connector</h2>
This applet lets you browse, insert, update and delete any records from the
VSE/VSAM sample cluster for the DB2-based connector. You can also browse all VSAM records
using the view OFFER. The JDBC Applet calls the corresponding Stored Procedures defined
within your DB2 Server for VSE.
<p>
<center>
<applet code="DB2ConnectorJDBCApplet.class" archive="db2applt.jar, db2java.zip"

width=440 height=420>
</applet>
</center>
</body>
</html>

2. Compile VSAMSEL.C
Because DB2 Stored Procedures that use the VSAMSQL CLI are written in C
language, you compile VSAMSEL.C (the sample DB2 Stored Procedure used in this
example) using the IBM LE/VSE C for VSE compiler. All DB Stored Procedures
must also be LE/VSE-compliant. Use job stream SKCPSTP, which is located in
ICCF library 59.

The sample DB2 Stored Procedures do not contain SQL statements, since they use
instead the VSAMSQL Call Level Interface (CLI). Therefore, you are not required to
run the SQL precompiler. However, if you decide to include both SQL statements
and VSAMSQL CLI to access your own data, you must run an additional SQL
precompile step.

Here is the JCL (taken from SKCPSTP) that you can use to compile the
VSAMSEL.C sample DB2 Stored Procedure. You compile the other sample DB2
Stored Procedures (VSAMINS.C, VSAMUPD.C, and VSAMDEL.C) in a similar way.
// JOB SKCPSTP COMPILE SAMPLE STORED PROCEDURE
// DLBL SYSMSGS,’CVSE.COMP.MSGS’,0,VSAM,RECSIZE=3000,RECORDS=35, X

CAT=VSESPUC
// LIBDEF *,SEARCH=(PRD2.SCEEBASE,PRD2.DBASE,PRD1.BASE)
// SETPARM CATALOG=1
// IF CATALOG = 1 THEN
// GOTO CAT
// OPTION ERRS,SXREF,SYM,LIST,NODECK
// GOTO ENDCAT
/. CAT
// LIBDEF PHASE,CATALOG=LIB.SUBLIB
// OPTION ERRS,SXREF,SYM,NODECK,CATAL

PHASE VSAMSEL,*
/. ENDCAT

Running the VSAM Applet

218 VSE/ESA: e-business Connectors, User’s Guide

INCLUDE @@TRT
INCLUDE IESVSQLO
// EXEC EDCCOMP,SIZE=EDCCOMP,PARM=’LONGNAME RENT SS SOURCE X

INFILE(DD:PRD1.BASE(VCLIUTIL.C))’
// EXEC EDCCOMP,SIZE=EDCCOMP,PARM=’LONGNAME RENT SS SOURCE X

INFILE(DD:PRD1.BASE(VSAMSEL.C))’
/*
// IF CATALOG NE 1 OR $MRC GT 4 THEN
// GOTO NOLNK
// EXEC EDCPRLK,SIZE=EDCPRLK,PARM=’NATLANG(ENU)/UPCASE’
/*
// EXEC LNKEDT,SIZE=256K
/. NOLNK
/&

3. Define VSAMSEL to the DB2 Server for VSE
Now you must make VSAMSEL (the DB2 Stored Procedure used in this example)
known to your DB2 Server for VSE system. To do so, you must:
1. Place the VSAMSEL phase (compiled in the previous step) into a library that is

contained in the Stored Procedure Server’s search path.
2. Use the CREATE PROCEDURE statement to define VSAMSEL to the database

manager. You can use the job stream SKCRESTP located in ICCF library 59 for
this purpose.
Here is the CREATE PROCEDURE statement for VSAMSEL:
CREATE PROCEDURE VSAMSEL (IN char(180),INOUT INT,OUT INT,OUT CHAR(20),-
OUT CHAR(20),OUT CHAR(20),OUT INT,OUT INT,OUT CHAR(20),OUT CHAR(20),-
OUT CHAR(20),OUT INT,OUT INT,OUT CHAR(20),OUT CHAR(20),OUT CHAR(20),-
OUT INT,OUT INT,OUT CHAR(6),OUT INT,OUT CHAR(252)) EXTERNAL,LANGUAGE C,-
STAY RESIDENT YES,SERVER GROUP,PARAMETER STYLE GENERAL

4. Define the VSAM Data Cluster
You use job SKVSSAMP (located in ICCF library 59) to:
v Create the VSAM data cluster used by the sample VSAM applet.
v Load sample records into the VSAM data cluster.
v Create a sample map and view for the VSAM data cluster, using the RECMAP

command. For detailed information about RECMAP, see “Defining a Map Using
RECMAP” on page 132.

// JOB SKVSSAMP LOAD VSE/VSAM CONNECTOR SAMPLE DATA CLUSTER
* **
* *
* NOTE: IF YOU SPECIFY A DIFFERENT CATALOG THAN *
* VSESP.USER.CATALOG, YOU HAVE TO CHANGE THE PATH FOR *
* THE RECORD MAP (CATALOG/CLUSTER/MAP/VIEW) IN THE *
* CLIENT PROGRAMS THAT CALL THE STORED PROCEDURE AS WELL *
* (CVSAMSEL.SQC ETC.) *
* *
* **
*
* DEFINING THE VSAM CONNECTOR SAMPLE DATA CLUSTER ’VCSAMPD’
*
* **
// EXEC IDCAMS,SIZE=AUTO
DELETE VSAM.CONN.SAMPLE.DATA PURGE CATALOG(VSESP.USER.CATALOG)
DEFINE CLUSTER (-

NAME (VSAM.CONN.SAMPLE.DATA) -
RECORDS (30 30) -
SHAREOPTIONS (2) -
RECORDSIZE (120 120) -
VOLUMES (DOSRES SYSWK1) -
NOREUSE -
INDEXED -
FREESPACE (15 7) -

Running the VSAM Applet

Chapter 19. Using Java Applets to Access Data 219

KEYS (4 0) -
NOCOMPRESSED) -
DATA (NAME (VSAM.CONN.SAMPLE.DATA.@D@) -
CONTROLINTERVALSIZE (4096)) -
INDEX (NAME (VSAM.CONN.SAMPLE.DATA.@I@)) -
CATALOG (VSESP.USER.CATALOG)

IF LASTCC NE 0 THEN CANCEL JOB
/*
// OPTION STDLABEL=DELETE

VCSAMPD
/*
// OPTION STDLABEL=ADD
// DLBL VCSAMPD,’VSAM.CONN.SAMPLE.DATA’,,VSAM, X

CAT=VSESPUC
/*
* **
* *
* NOW LOADING THE SAMPLE DATA *
* *
* **
// LIBDEF *,SEARCH=(PRD1.BASE)
// EXEC VSAMSMPD,SIZE=AUTO
// ON $RC>0 GOTO FINISH
/*
* **
* *
* DEFINE MAPS AND VIEWS USING THE RECORD MAPPING UTILITY *
* *
* **
// EXEC IDCAMS,SIZE=AUTO
RECMAP DEFINE (MAP(USEDCARS) -

MAPCOLUMN(-
(ARTICLENO FIELD(O(0) L(4) T(SINTEG)) POS(1)) -
(MANUFACTURER FIELD(O(4), L(20) T(STRING)) POS(2)) -
(TYPE FIELD(O(24) L(20) T(STRING)) POS(3)) -
(MODEL FIELD(O(44) L(20) T(STRING)) POS(4)) -
(HP FIELD(O(64) L(2) T(SINTEG)) POS(5)) -
(DISPLACEMENT FIELD(O(66) L(2) T(SINTEG)) POS(6)) -
(CYLINDERS FIELD(O(68) L(2) T(SINTEG)) POS(7)) -
(COLOUR FIELD(O(70) L(20) T(STRING)) POS(8)) -
(FEATURES FIELD(O(90) L(20) T(STRING)) POS(9)) -
(PRICE FIELD(O(110) L(4) T(SINTEG)) POS(10)) -
) -

) -
CATALOG(VSESP.USER.CATALOG) -
CLUSTER(VSAM.CONN.SAMPLE.DATA)
RECMAP DEFINE (MAP(USEDCARS) -

VIEW(OFFER) -
VIEWCOLUMN((ARTICLENO REFCOLUMN(ARTICLENO)) -
(MANUFACTURER REFCOLUMN(MANUFACTURER)) -
(TYPE REFCOLUMN(TYPE)) -
(MODEL REFCOLUMN(MODEL)) -
(PRICE REFCOLUMN(PRICE)) -

) -
) -
CATALOG(VSESP.USER.CATALOG) -
CLUSTER(VSAM.CONN.SAMPLE.DATA)
RECMAP LIST (CLUSTERS)
/*
/. FINISH
/*
/&

Running the VSAM Applet

220 VSE/ESA: e-business Connectors, User’s Guide

5. Create the JAR File for the VSAM applet
Before running the VSAM applet, you must:
1. Create a JAR file by copying the applet-related class files into this JAR (Java

Archive) file. To do so, go to the samples directory of your VSE Connector
Client installation, and execute these statements:
call jar c0fv db2applt.jar com\ibm\vse\db2\DB2ConnectorJDBCApplet.class

com\ibm\vse\db2\MessageDialog.class
com\ibm\vse\db2\PowerGridLayout.class
com\ibm\vse\db2\PowerGridLayoutInfo.class

2. Copy the JAR file of (1.) above, to the HTML directory of your Web Server (for
example the IBM HTTP server, or Apache server) on the middle-tier platform.

Note: Because the VSAM applet runs in a 3-tier environment, as an alternative
to (1.) above, you could copy the class files directly to the HTML
directory of your Web Server. This is because the applet code is not
stored on the VSE/ESA host, and you are therefore not required to store
class files there in a short-name archive.

3. Start the JDBC applet server on the middle-tier platform. This server handles
the requests that are initiated by the VSAM applet. You must also choose an
unused TCP/IP port number that can be used by the JDBC applet server (all
ports are defined in the services file). Therefore if you choose TCP/IP port 6789
(the default), you would enter:
db2jstrt 6789

Calling the VSAM Applet
When the HTML page is loaded, the VSAM applet is:
1. Downloaded from the middle-tier server to a local workstation.
2. Executed in the Java Virtual Machine of a Web browser installed on the local

workstation.

The VSAM applet can be called in two ways:
v Using the applet viewer directly (file AppletViewer.exe for Windows and OS/2),

which is part of your local Java installation. To do so, from a command prompt
you simply enter:
AppletViewer db2index.html

where db2index.html contains the HTML tags shown in “1. Create an HTML
File to Call the VSAM applet” on page 218.

v Using a Web browser. To do so, you must enter the symbolic name or IP address
of your middle-tier platform, followed by the name of the sample HTML file in
your Web browser’s address field. In our example, you would enter:
http://ebusvse/db2/db2index.html

After being called, the VSAM applet displays the main window shown in
Figure 112 on page 222.

Running the VSAM Applet

Chapter 19. Using Java Applets to Access Data 221

Figure 112 includes a rectangle positioned to the right of the Disconnect button.
This indicates the status of the connection between the VSAM applet and the sqlds
sample database (which is accessed using the DB2 Connect database-alias
db2vsewm). When this rectangle is:
v green the applet is connected to sqlds, and the button displays Disconnect.
v red the applet is not connected to sqlds, and the button displays Connect.

The main window shown in Figure 112 includes an Insert a record dialog window,
which you use to insert a VSAM record in the sample VSAM cluster. You can use
other similar dialog windows to refresh, update, or delete, records in the sample
VSAM data cluster. Depending upon the dialog window that is currently
displayed:

If You Press Then ...

Connect The connection to VSE/ESA is reestablished via DB2 Connect, and
then DB2 Stored Procedure VSAMSEL is used together with the
OFFER view, to select all records from a sample VSAM data
cluster.

Figure 112. Window Displayed by the Sample VSAM Applet

Running the VSAM Applet

222 VSE/ESA: e-business Connectors, User’s Guide

Insert The DB2 Stored Procedure VSAMINS is used to insert a new
record into the sample VSAM data cluster.

Update The DB2 Stored Procedure VSAMUPD is used to replace a record
in the sample VSAM data cluster.

Delete The DB2 Stored Procedure VSAMDEL is used to delete a VSAM
record from the sample VSAM data cluster.

Refresh The DB2 Stored Procedure VSAMSEL is used, together with the
OFFER view, to select all records from a sample VSAM data
cluster.

At the bottom of Figure 112 on page 222 is a “status line”, which displays error or
status messages related to the action you are currently performing.

The sample VSAM data cluster is described in “4. Define the VSAM Data Cluster”
on page 219.

Description of DB2ConnectorJDBCApplet.java (the Client-Side
Program)

This section describes the main steps of DB2ConnectorJDBCApplet.java, which is used
for most of the VSAM applet’s functions. It runs in the Web browser’s JVM of
Figure 111 on page 217.

In addition, the VSAM applet uses these helper classes:
v MessageDialog.java, which displays a message-dialog window containing a

specific row of text, together with an OK button.
v PowerGridLayout.java and PowerGridLayoutInfo.java which are a type of Java

layout manager, and are much used by the VSE Connector Client samples. This
Java layout manager is supplied in the com.ibm.vse.utilities package. You can use
this Java layout manager when writing your own applications.

Step 1. Import the JDBC (Java Database Connectivity) Classes
In the first step, the JDBC classes are imported. JDBC is required for calling
VSAMSEL (one of the sample DB2 Stored Procedures) that is used with the DB2
Server for VSE.

In addition, the applet-specific classes are imported. Since an applet generally
extends the Java Applet class, the VSAM applet implements the:
v ActionListener, that listens to mouse-clicks and push-button actions.
v WindowListener, that handles window actions.

...
/* import JDBC classes */
import java.sql.*;

/* Import AWT classes */
import java.awt.*;
import java.awt.event.*;

/* Import applet classes */
import java.applet.*;

public class DB2ConnectorJDBCApplet extends Applet
implements ActionListener, WindowListener
{

Running the VSAM Applet

Chapter 19. Using Java Applets to Access Data 223

Step 2. Load the Required JDBC Driver Class
In the second step, the required JDBC driver class is loaded. This is normally done
in a static section. The net driver class is used, which ensures that the applet can
run on any client workstation.
...
// register the JDBC driver with DriverManager
static
{

try
{

Class.forName ("COM.ibm.db2.jdbc.net.DB2Driver");
}
catch (Exception e)
{

System.out.println ("\n Error loading DB2 Driver...\n");
e.printStackTrace ();

}
} // end static block
...

Step 3. Implement the init() Method
In the third step, the init() method is implemented. The init() method is called from
the Web browser when the VSAM applet is first started. A frame is created, that is
the parent of the various dialogs used for refreshing, inserting, updating, or
deleting, VSAM records in the sample VSAM data cluster (described in “4. Define
the VSAM Data Cluster” on page 219).
...
public void init()
{

/* Create a frame that is needed for the dialogs */
/* to insert/update/delete records and to display message dialogs */
f = new Frame();

msgDialog = new MessageDialog(f, true);
pgl = new PowerGridLayout(100, 66);
setLayout(pgl);

displayMainDialog();
repaint();

}
...

Step 4. Establish the Connection to VSE/ESA Database via DB2
Connect
In the fourth step, a connection is established to the VSE/ESA host database sqlds,
via the DB2 Connect database-alias db2vsewm. DB2 Connect can then route
database requests to the VSE/ESA host.

The following JDBC URL format is used to set up the connection:
<protocol>:<subprotocol>://<hostname or tcpip address>:<port number>/<database name>

For the database specified under <database name>, the JDBC getConnection() call
supplies:
v the JDBC URL
v a user ID
v a password

The getConnection() call retrieves these values from the text fields of the Main
Window’s connect section.

Running the VSAM Applet

224 VSE/ESA: e-business Connectors, User’s Guide

...

public void connectToDB()
{

String url = "jdbc:db2://" + DBServerAddr.getText() + ":"
+ DBServerPort.getText() + "/"
+ DBName.getText();

...
try
{

// connect with user-provided username and password
con = DriverManager.getConnection(url, userid.getText(), passw.getText());

}
catch (SQLException sqlExc)
{

...
}
...

}

Step 5. Call VSAMSEL
In the final step, VSAMSEL (the sample DB2 Stored Procedure used in this
example) is called.

VSAMSEL is also called when the end-user presses the Refresh button.
...
/**
* call DB2-based connector Stored Procedure on VSE/ESA
* This will retrieve all records from view OFFER, which then will be
* put in the corresponding listbox of the applet.
* The Stored Procedure VSAMSEL uses the VSAMSQL CLI to access the VSAM
* records.
*/
public void callStpVSAMSEL()
{

...
}

For details of how JDBC issues a call to a DB2 Stored Procedure, refer to the JDBC
application samples supplied with the VSE Connector Client online documentation.
(The online documentation is described in “Using the Online Documentation
Options” on page 28).

Running the VSAM Applet

Chapter 19. Using Java Applets to Access Data 225

Description of VSAMSEL
This section describes the main steps of VSAMSEL (the sample DB2 Stored
Procedure used in this example) that runs on the VSE/ESA host of Figure 111 on
page 217. The other sample DB2 Stored Procedures (VSAMINS, VSAMUPD, and
VSAMDEL) are not described in this section.

VSAMSEL is called when either the Connect or Refresh buttons of Figure 112 on
page 222 are pressed, and it demonstrates how VSAM data is accessed via the
VSAMSQL CLI (Call Level Interface).

Step 1. Include Header File iesvsql.h in VSAMSEL
In the first step, the header file iesvsql.h is included in VSAMSEL. This header file
is required by all DB2 Stored Procedures that use the VSAMSQL CLI interface to
access VSAM data clusters.

Header file iesvsql.h:
v Maintains all function prototypes and VSAMSQL CLI definitions.
v Contains the prototype for the check_error() function, which provides examples of

error-handling routines for VSAMSQL CLI calls. The check_error() function is
called after each VSAMSQL CLI call.

...
// include VSAMSQL CLI
#include "iesvsql.h"
// include error utility functions
#include "vcliutlh.h"
...

Step 2. Initialize the VSAMSQL CLI Environment
In the second step, the VSAMSQL CLI (Call Level Interface) environment is
initialized. The VSAMSQL CLI is described in “Using DB2 Stored Procedures to
Access VSAM Data” on page 312.

These handles are initialized:
v The environment handle, which provides access to global information (such as

valid connection handles and active connection handles).
v The connection handle, which provides access to connection information (such as

the valid statement and descriptor handles on the connection).
v The statement handle, which provides access to statement information (such as

error messages and status information for VSAMSQL statement processing).
....

/**/
/* initialize VSAMSQL CLI Environment */
/**/
// allocate Environment
rc = VSAMSQLAllocHandle(VSAMSQL_HANDLE_ENV,VSAMSQL_NULL_HANDLE, &hEnv);
cont = check_error(VSAMSQL_HANDLE_ENV,hEnv,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,"VSAMSEL-1");

//allocate Connection
if (cont == STP_CONT) {

rc = VSAMSQLAllocHandle(VSAMSQL_HANDLE_DBC,hEnv,&hDBC);
cont = check_error(VSAMSQL_HANDLE_DBC,hDBC,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,VSAMSEL-2");
} // end if

//allocate Statement
if (cont == STP_CONT) {

Running the VSAM Applet

226 VSE/ESA: e-business Connectors, User’s Guide

rc = VSAMSQLAllocHandle(VSAMSQL_HANDLE_STMT,hDBC,&hStmt);
cont = check_error(VSAMSQL_HANDLE_STMT,hStmt,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,"VSAMSEL-3");
} // end if
...

Step 3. Initiate the Read of the VSAM Records
In the third step, the query statement to initiate the read of the VSAM records is
prepared and executed. All fields contained in the view i_recordmap are selected
(the view OFFER is passed from the client program within this example).

During the third step:
1. The VSAMSQLPrepare() function call associates the SELECT statement string

with the statement handle.
2. VSAMSQLBindParameter() binds i_lastkey to the WHERE clause within the

SELECT statement (where ? is the corresponding placeholder).
3. i_lastkey is passed as an input parameter for VSAMSEL (the sample DB2 Stored

Procedure).
4. VSAMSQLExecute() executes the statement, after it was successfully prepared.

The statement handle hStmt qualifies the query statement.
...

/**/
/* prepare and execute query statement */
/**/
if (cont == STP_CONT) {

sprintf(vsamsqlstmt, "SELECT * FROM %s WHERE ARTICLENO > ? ",
i_recordmap);

rc = VSAMSQLPrepare(hStmt, vsamsqlstmt, VSAMSQL_NTS);
cont = check_error(VSAMSQL_HANDLE_STMT,hStmt,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,"VSAMSEL-4");
} // end if

// Bind local Variables to Stmt
if (cont == STP_CONT) {

rc = VSAMSQLBindParameter(hStmt,1,VSAMSQL_PARAM_INPUT,
VSAMSQL_C_LONG,VSAMSQL_INTEGER,
0,0,&i_lastkey,0,NULL);

cont = check_error(VSAMSQL_HANDLE_STMT,hStmt,rc,
o_sqlstate,o_message,&o_native_error,SYSL"VSAMSEL-5");

} // end if

if (cont == STP_CONT) {
rc = VSAMSQLExecute(hStmt);
cont = check_error(VSAMSQL_HANDLE_STMT,hStmt,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,"VSAMSEL-6");
} // end if
...

Running the VSAM Applet

Chapter 19. Using Java Applets to Access Data 227

Step 4. Obtain the Results of the Query Statement
In the fourth step, since the query statement has executed, the results can now be
fetched. But primarily all columns from the result set must be associated with a
local variable (tmp.articleno). This is done using VSAMSQLBindCol() function calls,
which must be issued for each column in the result set.

Within the for()-loop, a single record from the view OFFER is retrieved using
VSAMSQLFetch().

VSAMSEL can fetch and return three result records to the client program:
1. If less than three result records exist, condition VSAMSQL_NO_DATA_FOUND

appears.
2. The VSAMSQLFetch() function call outside the for()-loop checks if more than

three result records exist.
3. If more than three result records exist, o_resultrows is increased by one. This

value is used as an indicator by the client program to determine if VSAMSEL
should be called, in order to retrieve the next records.

...

/**/
/* retrieve result set */
/**/
// bind columns to local variables and retrieve results
if (cont == STP_CONT) {

// bind parameter articleno
rc = VSAMSQLBindCol(hStmt,1,VSAMSQL_C_LONG,

&tmp.articleno,0,&buf_len);
cont = check_error(VSAMSQL_HANDLE_STMT,hStmt,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,"VSAMSEL-7");
} // end if
...

// fetch result row(s)
for (i=0; i < NUM_ROWS; i++)
{

if (cont == STP_CONT) {
rc = VSAMSQLFetch(hStmt);
cont = check_error(VSAMSQL_HANDLE_STMT,hStmt,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,"VSAMSEL-C");
} // end if

// if successful - store retrieved columns
if (cont == STP_CONT && rc != VSAMSQL_NO_DATA_FOUND) {

o_resultrows ++;
o_parm[i].articleno = tmp.articleno;
strcpy(o_parm[i].manufacturer,tmp.manufacturer);
strcpy(o_parm[i].type,tmp.type);
strcpy(o_parm[i].model,tmp.model);
o_parm[i].price = tmp.price;

} // end if
...

} // end for

// check if more result exist
if (cont == STP_CONT) {

rc = VSAMSQLFetch(hStmt);
cont = check_error(VSAMSQL_HANDLE_STMT,hStmt,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,"VSAMSEL-D");
if (rc != VSAMSQL_NO_DATA_FOUND)

o_resultrows ++;
} // end if
...

Running the VSAM Applet

228 VSE/ESA: e-business Connectors, User’s Guide

Step 5. Deallocate the VSAMSQL CLI Environment
In the fifth step, since all VSAMSQL CLI processing has been completed, the
VSAMSQL CLI environment can be de-allocated using the function
VSAMSQLFreeHandle(). This is done in the reverse order to the allocation step
(“Step 2. Initialize the VSAMSQL CLI Environment” on page 226).

...
/**/
/* free VSAMSQL CLI Environment */
/**/
// free handle Statement
rc = VSAMSQLFreeHandle(VSAMSQL_HANDLE_STMT,hStmt);
cont = check_error(VSAMSQL_HANDLE_STMT,hStmt,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,"VSAMSEL-E");

// free handle Connection
rc = VSAMSQLFreeHandle(VSAMSQL_HANDLE_DBC,hDBC);
cont = check_error(VSAMSQL_HANDLE_DBC,hDBC,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,"VSAMSEL-F");

// free handle Environment
rc = VSAMSQLFreeHandle(VSAMSQL_HANDLE_ENV,hEnv);
cont = check_error(VSAMSQL_HANDLE_ENV,hEnv,rc,

o_sqlstate,o_message,&o_native_error,SYSLST,"VSAMSEL-10");
...

Step 6. Assign Local Output Variables to Host Output Variables
In the final step, the local output variables that are to be returned to the client
program, must be assigned to the corresponding host output variables.
...
/**/
/* assign number rows with valid data, if >=4 more data exists */
/**/
*(VSAMSQLINTEGER *)argv[2] = o_resultrows; // rows returned

// copy result rows to output parameters
j=0;
for (i=0; i < NUM_ROWS; i++)
{

*(VSAMSQLINTEGER *)argv[j+3] = o_parm[i].articleno;
strcpy(argv[j+4], o_parm[i].manufacturer);
strcpy(argv[j+5], o_parm[i].type);
strcpy(argv[j+6], o_parm[i].model);
*(VSAMSQLINTEGER *)argv[j+7] = o_parm[i].price;
j = j + 5;

} // end for
...

Running the VSAM Applet

Chapter 19. Using Java Applets to Access Data 229

Running the Sample DL/I Applet

The information in this section is based upon a sample applet, the DL/I applet, that
is provided with the VSE Connector Client.

Other examples of applets are similarly provided with the VSE Connector Client,
such as the:
v VsamSpaceUsage applet (which displays the used and free VSAM space).
v Data-Mapping Applet (described on page 207).
v VSAM Applet (described on page 216).

Description of the DL/I Applet
The sample DL/I applet is an example of how you can use an applet together with
the DB2-Based Connector, and allows you to display and modify DL/I data stored
in a sample DL/I database.

When you start the DL/I applet, it connects to the DB2 Connect database-alias
db2vsewm. The DL/I applet can then communicate with the VSE/ESA host
database sqlds via db2vsewm.

The DL/I applet then calls a sample DB2 Stored Procedure (in this example
DLIREAD) to access DL/I data via the AIBTDLI interface. For a description of the
AIBTDLI interface, “Overview of the AIBTDLI Interface” on page 321.

Before you can run the DL/I applet, you must have customized:
v The DB2-Based Connector (see Steps 1 to 6 of Chapter 9, “Customizing the

DB2-Based Connector”, on page 71 for details).
v The sample DB2 Stored Procedures (see “Step 7: Customize the DB2-Based

Connector for VSAM Data Access” on page 83 for details).
v DB2 Connect on your middle-tier (see “Step 10: Install DB2 Connect and

Establish Client-Host Connection” on page 85 for details). During this step, you
define sqlds to DB2 Connect on your middle-tier (where sqlds is the sample
database on the VSE/ESA host that is used with the VSAM applet).

Note!
The DL/I Applet might not run with certain combinations of operating system
and Web browser.

How the sample DL/I applet is used within a 3-tier environment, is shown in
Figure 113 on page 231:

Running the DL/I Applet

230 VSE/ESA: e-business Connectors, User’s Guide

�1� The clients’s Web browser requests an HTML page from the IBM HTTP
Server (or another Web server) running on the middle-tier. The HTML
page contains the applet tag for the DL/I applet. The DL/I applet is loaded
into the Java Virtual Machine of the Web browser, and starts to run.

�2� The DL/I applet opens a connection to DB2 Connect running on the
middle-tier. It does so via the JDBC Applet Server (where “JDBC” is an
abbreviation for Java Database Connectivity). The use of the JDBC Applet
Server overcomes the restrictions that applets can only:
v Open a new network connection to the platform from which they are

downloaded (in this case, the middle-tier).
v Access the file system of the platform from which they are downloaded

(in this case, the middle-tier).

The DL/I applet then calls a sample DB2 Stored Procedure (DLIREAD in
this example).

�3� DB2 Connect communicates with the DB2 Server for VSE, via the DB2
Connect database-alias db2vsewm. DB2 Connect can now access the
VSE/ESA host database sqlds. It uses the DRDA (Distributed Relational
Database Architecture). The underlying protocol can be either APPC or
TCP/IP.

�4� DB2 Server for VSE manages the execution of a sample DB2 Stored
Procedure (DLIREAD in this example), using the Stored Procedure Server.

�5� The DB2 Stored Procedure can now execute the DL/I applet’s request by
accessing the DL/I data stored on the VSE/ESA host via the AIBTDLI
interface (described in “Overview of the AIBTDLI Interface” on page 321).

Notes:

1. The WebSphere Application Server is not required on the middle-tier of the
process described above.

2. The VSE Connector Server is not required on the VSE/ESA host of the process
described above.

Figure 113. Using the Sample DL/I Applet to Access DL/I Data

Running the DL/I Applet

Chapter 19. Using Java Applets to Access Data 231

Getting Started With the Sample DL/I Applet
Before you can run the DL/I applet, you must perform the steps described in this
section.

1. Create an HTML File to Call the DL/I applet
You must write an HTML file, from which the DL/I applet can be called. Each
time this HTML page is displayed, the applet will be loaded and executed in the
Web browser’s JVM (Java Virtual Machine). The applet then connects to the
middle-tier database using JDBC.

Here is an example of such an HTML file:
<html>
<head>
<title>
JDBC Example Applet that accesses DL/I using the DB2-based connector
</title>
</head>
<body>
<h2>JDBC Example Applet that accesses DL/I data</h2>
This applet lets you browse, insert, update and delete segments from/into the
DL/I inventory sample database via the DB2-based connector.
The JDBC Applet calls the corresponding Stored Procedures defined
within your DB2 Server for VSE using JDBC interface.
The Stored Procedures use the AIBTDLI interface to access the DLI/VSE data.
<p>
<center>
<applet code="DB2DLIConnectorJDBCApplet.class"

archive="db2dliapplt.jar, db2java.zip"
width=440 height=420>

</applet>
</center>
</body>
</html>

2. Compile DLIREAD.C
Because DB2 Stored Procedures that uses the AIBTDLI interface are written in
COBOL, you compile DLIREAD.C (the DB2 Stored Procedure used in this example)
using the IBM LE/VSE COBOL compiler. The compile job stream, SKDLICMP, is
located in ICCF library 59.

DLIREAD.C does not contain SQL statements, since it uses instead the AIBTDLI
interface. Therefore, you are not required to run the SQL precompiler. However, if
you decide to include both SQL statements and DL/I calls to access your own
data, you must run an additional SQL precompile step.

To compile the other sample DB2 Stored Procedures (DLIUPINS.C and DLIDEL.C)
that are used for accessing DL/I data, use the same skeleton SKDLICMP.

3. Define DLIREAD to the DB2 Server for VSE
Now you must make DLIREAD known to your DB2 Server for VSE system. To do
so, use the job skeleton SKDLISTP (located in VSE/ICCF library 59) to create DB2
Stored Procedures used for accessing the DL/I sample database.
1. Place the DLIREAD phase (compiled in the previous step) into a library that is

contained in the Stored Procedure Server’s search path.
2. Use the CREATE PROCEDURE statement to define DLIREAD to the database

manager. You can use the job stream SKDLISTP located in ICCF library 59 for
this purpose.
Here is an example of the CREATE PROCEDURE statement for DLIREAD:

Running the DL/I Applet

232 VSE/ESA: e-business Connectors, User’s Guide

CREATE PROCEDURE DLIREAD (INOUT CHAR(6),OUT SMALLINT,
OUT CHAR(6),OUT CHAR(25),
OUT INT,OUT CHAR(6),OUT CHAR(6),
OUT CHAR(6),OUT CHAR(25),
OUT INT,OUT CHAR(6),OUT CHAR(6),
OUT CHAR(6),OUT CHAR(25),
OUT INT,OUT CHAR(6),OUT CHAR(6),
OUT CHAR(4),OUT CHAR(120))
EXTERNAL,LANGUAGE COBOL,
STAY RESIDENT YES,
SERVER GROUP,
PARAMETER STYLE GENERAL;

4. Define the DL/I Database
Before you can use DL/I applet, you must have defined a DL/I database. You use
job SKDLISMP (located in ICCF library 59) to define and load the sample DL/I
database.

5. Create the JAR File for the DL/I applet
Before running the DL/I applet, you must:
1. Create a JAR file by copying the applet-related class files into this JAR (Java

Archive) file. To do so, go to the samples directory of your VSE Connector
Client installation, and execute these statements:
call jar c0fv db2dliapplt.jar com\ibm\vse\db2\DB2DLIConnectorJDBCApplet.class

com\ibm\vse\db2\MessageDialog.class
com\ibm\vse\db2\PowerGridLayout.class
com\ibm\vse\db2\PowerGridLayoutInfo.class

2. Copy the JAR file of (1.) above to the HTML directory of your Web Server (for
example the IBM HTTP server, or Apache server) on the middle-tier platform.

Note: Because the DL/I applet runs in a 3-tier environment, as an alternative to
(1.) above, you could copy the class files directly to the HTML directory
of your Web Server. This is because the applet code is not stored on the
VSE/ESA host, and you are therefore not required to store class files
there in a short-name archive.

3. Start the JDBC applet server on the middle-tier platform. This server handles
the requests that are initiated by the DL/I applet. You must also choose an
unused TCP/IP port number that can be used by the JDBC applet server.
Therefore if you choose TCP/IP port 6789 (the default), you would enter:
db2jstrt 6789

Calling the DL/I Applet
When the HTML page is loaded, the DL/I applet is:
1. Downloaded from the middle-tier server to a local workstation.
2. Executed in the Java Virtual Machine of a Web browser installed on the local

workstation.

The DL/I applet can be called in two ways:
v Using the applet viewer directly (file AppletViewer.exe for Windows and OS/2),

which is part of your local Java installation. To do so, from a command prompt
you simply enter:
AppletViewer index.html

where index.html contains the HTML tags shown in “1. Create an HTML File to
Call the DL/I applet” on page 232.

Running the DL/I Applet

Chapter 19. Using Java Applets to Access Data 233

v Using a Web browser. To do so, you must enter the symbolic name or IP address
of your middle-tier platform, followed by the name of the sample HTML file in
your Web browser’s address field. In our example, you would enter:
http://ebusvse/db2dli/index.html

After being called, the DL/I applet displays the main window shown in
Figure 114.

Figure 114 includes a rectangle positioned to the right of the Disconnect button.
This rectangle indicates the status of the connection between the DL/I applet and
the sqlds sample database on the VSE/ESA host (which is accessed using the DB2
Connect database-alias db2vsewm). When this rectangle is:
v green the applet is connected to sqlds, and the button displays Disconnect.
v red the applet is not connected to sqlds, and the button displays Connect.

The main window shown in Figure 114 includes an Update a segment dialog
window, which you use to insert a DL/I segment in the sample DL/I database.

Figure 114. Window Displayed by the Sample DL/I Applet

Running the DL/I Applet

234 VSE/ESA: e-business Connectors, User’s Guide

You can use other similar dialog windows to refresh, insert, or delete, segments in
the sample DL/I database. Depending upon the dialog window that is currently
displayed:

If You Press Then ...

Connect The connection to VSE/ESA is re-established via DB2 Connect, and
then the DB2 Stored Procedure DLIREAD is used to read all
segments in the sample DL/I database.

Insert The DB2 Stored Procedure DLIUPINS is used to insert a new
segment in the sample DL/I database.

Update The DB2 Stored Procedure DLIUPINS is used to update a segment
in the sample DL/I database.

Delete The DB2 Stored Procedure DLIDEL is used to delete a segment in
the sample DL/I database.

Refresh The DB2 Stored Procedure DLIREAD is used to read all segments
in the sample DL/I database.

At the bottom of Figure 114 on page 234 is a “status line”, which displays error or
status messages related to the action you are currently performing.

Description of DB2DLIConnectorJDBCApplet.java (the
Client-Side Program)

This section describes the main steps of DB2DLIConnectorJDBCApplet.java, which is
used for most of the DL/I applet’s functions. It runs in the Web browser’s JVM of
Figure 113 on page 231.

In addition, method callStpDLIREAD() is the part of the DL/I applet that performs
the Read/Browse of a DL/I database. All input and output variables must be set
to the appropriate parameter placeholders (which are shown in the DL/I applet
samples as question marks).

Step 1. Prepare the SQL Statement to Call DLIREAD
Before the first step can be carried out, a connection object con must exist to the
VSE/ESA host. This connection object is opened using method connectToDB()
(described in “Step 4. Establish the Connection to VSE/ESA Database via DB2
Connect” on page 224).
public void callStpDLIREAD()
{

CallableStatement stmt; // SQL Statement Handle
String sql = // JDBC Stored Procedure Call String

"Call " + name + "(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";

// Prepare Stored Procedure Call Statement
try
{

stmt = con.prepareCall(sql);
// add header lines into applet list box
RecordList.add("ITEMNO ITEM-DESCRIPTION QUAN-H QUAN-O PRICE");
RecordList.add("==");
do
{

//** set input variables **
stmt.setString (1, nextkey);

//** register output parameters **
// next key returned from procedure
stmt.registerOutParameter(1, Types.CHAR);

Running the DL/I Applet

Chapter 19. Using Java Applets to Access Data 235

stmt.registerOutParameter(2, Types.SMALLINT);

// 3 data rows that can hold data from root segment of
// inventory DB
for (int i=3; i <= 13; i=i+5)
{

stmt.registerOutParameter (i , Types.CHAR);
stmt.registerOutParameter (i+1, Types.CHAR);
stmt.registerOutParameter (i+2, Types.INTEGER);
stmt.registerOutParameter (i+3, Types.CHAR);
stmt.registerOutParameter (i+4, Types.CHAR);

}

// Variables for error handling
stmt.registerOutParameter(18, Types.CHAR); // return code
stmt.registerOutParameter(19, Types.CHAR); // error message

Step 2. Call DLIREAD
In the second step, DLIREAD (the sample DB2 Stored Procedure used in this
example) is called by executing the statement created in Step 1.
stmt.executeQuery();

Step 3. Check the Return Code from DLIREAD
In the third step, the return code is checked that was returned by DLIREAD.
// Get return code from Stored Procedure
ret_code = stmt.getString(18);

// Check if the Stored Procedure returned an error
if ((ret_code.compareTo("0000") == 0) ||

(ret_code.substring(0,1).compareTo("G") == 0))
{

// no error
// get number of result rows (1-3)
res_rows = stmt.getShort(2);

Providing an error is not found, the output variables from DLIREAD are retrieved.
The output parameters are read, and the results then displayed by the DL/I applet.
// Get returned fields from root segment
for (int i = 0, j = 3; i < 3; i++, j=j+5)
{

itemno[i] = stmt.getString(j);
itemdesc[i] = stmt.getString(j+1);
unit_cost[i] = stmt.getInt(j+2);
quan_hand[i] = stmt.getString(j+3);
quan_ord[i] = stmt.getString(j+4);

// add fields from root segment into listbox
if (i < res_rows)
{

String temp = Integer.toString(unit_cost[i]);
while(temp.length()<5)

temp += ’ ’;
RecordList.add(itemno[i] + " " + itemdesc[i]

+ " " + quan_hand[i] + " "
+ quan_ord[i] + " " + temp + "$ ");

}
}

The program now:
1. Checks to see if there are further results. If there are further results, a DLIREAD

call is made.

Running the DL/I Applet

236 VSE/ESA: e-business Connectors, User’s Guide

2. Uses the nextkey variable to check if there are further data result rows. If there
are further data rows, DLIREAD is called again for the next 3 rows.

nextkey = stmt.getString(1);
if (nextkey == "000000")

moreresults = false;
else // more data available in the database

moreresults = true;
}
else
{

// error occured
// check if DB is empty
if ((ret_code.substring(0,2) == "GB") &&

(RecordList.getItemCount() == 0))
setStatus("Inventory Database is empty!!");

else {
DLIerrmsg = stmt.getString(19); // get DLI error message
setStatus("AIBTDLI Return Code: 0x" + ret_code);
msgDialog.setTitle("Stored Procedure Error");
System.out.println("DLI Error: " + DLIerrmsg);
msgDialog.setMessage("Check Java Console for DLZ messages.");
msgDialog.setVisible(true);

} // end if
} // end if

}
while (moreresults && ret_code.compareTo("0000") == 0);

Step 4. Reset the Connection to the sqlds Database
In the final step, whenever the end-user presses the Disconnect button of
Figure 114 on page 234, the program resets the connection to the sqlds database
located on the VSE/ESA host. sqlds is accessed via the DB2 Connect database-alias
db2vsewm.

if ((ret_code.compareTo("0000") == 0) ||
(ret_code.substring(0,2).compareTo("GB") == 0)) // no error

{
setStatus(RecordList.getItemCount()-2 +

" segments retrieved from Inventory DB.");
}

// close Statement Handle
stmt.close();

}
catch (SQLException sqlExc) // handle SQL exceptions
{

closeConnection();
...
return;

}
}
...

}
...

For details of how to insert, update, or delete DL/I segments, you should refer to
the complete DL/I applet source code, supplied with the VSE Connector Client
online documentation. (The online documentation is described in “Using the
Online Documentation Options” on page 28).

Running the DL/I Applet

Chapter 19. Using Java Applets to Access Data 237

Description of DLIREAD
This section describes the main steps of DLIREAD, which is the sample DB2 Stored
Procedure used in this example. It is written in COBOL and issues DL/I calls via
the AIBTDLI interface (described in “Overview of the AIBTDLI Interface” on
page 321). DLIREAD runs on the VSE/ESA host of Figure 113 on page 231, and is
called when the Connect or Refresh buttons of Figure 114 on page 234 are pressed.

The complete source code is contained in file DLIREAD.COB, which is supplied
with the VSE Connector Client. The other sample DB2 Stored Procedures
(DLIUPINS and DLIDEL) are not described in this section.

Using one call to DLIREAD, you can read and return up to three segments from
the sample DL/I database:
v The data is returned via DLIREAD’s output parameters, where each data field of

a DL/I segment has a corresponding output parameter.
v Other output parameters include error-indicator variables, that contain information

about errors that might have occurred in DB2 or DL/I, or indicate the status of a
request from a DB2 Stored Procedure.

v The DL/I applet contains a variable which it uses to check if there are further
(more than three) DL/I segments waiting to be retrieved. If more than three
records are to be retrieved, the client program calls DLIREAD again, using an
ascending key.

Step 1. Define Variables for AIBTDLI, and I/O Area
In the first step, these are defined:
v The variables for the DL/I AIBTDLI interface.
v The I/O area used to communicate with DL/I.
...
*
* UNQUALIFIED SSA FOR GETTING FIRST ROOT SEGMENT
*

77 SSAUNQ PIC X(9) VALUE ’STPIITM ’.
*
* QUALIFIED SSA FOR GETTING ROOT SEGMENT VIA KEY
*

01 SSAQUAL.
02 FILLER PIC X(19) VALUE ’STPIITM (STQIINO = ’.
02 ROOTKEY PIC X(6).
02 FILLER PIC X(1) VALUE ’)’.

*
* I-O AREA FOR RECEIVING ALL SEGMENTS
*

01 IOAREA PIC X(160).
01 STPIITM REDEFINES IOAREA.

02 ITNUMB PIC X(6).
02 ITDESC PIC X(25).
02 IQOH PIC X(6).
02 IQOR PIC X(6).
02 FILLER PIC X(6).
02 IUNIT PIC 9(6).
02 FILLER PIC X(105).

LINKAGE SECTION.

Running the DL/I Applet

238 VSE/ESA: e-business Connectors, User’s Guide

Step 2. Define the Parameters for DLIREAD
In the second step, the parameters for DLIREAD are defined. These parameters
build the interface between the DL/I applet, and the DB2 Server for VSE running
on the VSE/ESA host.

In the example provided here, the parameters for three rows are defined.
Therefore, up to three rows can be retrieved from the DL/I sample database, using
a single call to DLIREAD.
*
* STORED PROCEDURE PARAMETERS
*

01 NEXT-KEY PIC X(6).
01 NUM-ROWS PIC S9(4) COMP.

* FIRST RESULT ROW
01 ITEM-NUMB1 PIC X(6).
01 ITEM-DESC1 PIC X(25).
01 UNIT-COST1 PIC S9(6) COMP.
01 QUAN-HAND1 PIC X(6).
01 QUAN-ORD1 PIC X(6).

* SECOND RESULT ROW
01 ITEM-NUMB2 PIC X(6).
01 ITEM-DESC2 PIC X(25).
01 UNIT-COST2 PIC S9(6) COMP.
01 QUAN-HAND2 PIC X(6).
01 QUAN-ORD2 PIC X(6).

* THIRD RESULT ROW
01 ITEM-NUMB3 PIC X(6).
01 ITEM-DESC3 PIC X(25).
01 UNIT-COST3 PIC S9(6) COMP.
01 QUAN-HAND3 PIC X(6).
01 QUAN-ORD3 PIC X(6).
01 RET-CODE PIC X(4).
01 DLI-ERR-MSG PIC X(120).
COPY DLIAIB.
...

Step 3. Define DLIREAD’s Parameters to COBOL
In the third step, in the PROCEDURE DIVISION of DLIREAD, the parameters are
defined that represent the external interface to DLIREAD.

....

* BEGIN OF PROGRAMMING SECTION

PROCEDURE DIVISION USING
NEXT-KEY NUM-ROWS
ITEM-NUMB1 ITEM-DESC1
UNIT-COST1 QUAN-HAND1
QUAN-ORD1
ITEM-NUMB2 ITEM-DESC2
UNIT-COST2 QUAN-HAND2
QUAN-ORD2
ITEM-NUMB3 ITEM-DESC3
UNIT-COST3 QUAN-HAND3
QUAN-ORD3
RET-CODE DLI-ERR-MSG.

Running the DL/I Applet

Chapter 19. Using Java Applets to Access Data 239

Step 4. Obtain the Results of the Query Statement
In the fourth step, the DL/I processing starts:
1. DLIREAD issues up to three DL/I calls, to retrieve the segments.
2. If there are no further segment to retrieve, after the third call has been made,

the processing ends .
3. If there are result-rows to be retrieved, DLIREAD is called another three times.
* **
* SCHEDULE THE PSB
* **

SCHEDULE-PSB.
MOVE ’STBICLG’ TO PSB-NAME.
CALL ’AIBTDLI’ USING FUNCT-PCB, PSB-NAME, ADDRESS OF DLIAIB.
IF AIBFCTR NOT = LOW-VALUES GO TO BASERR
SET ADDRESS OF PCB-PTRS TO AIBPCBAL.
SET ADDRESS OF INV-L-PCB TO B-PCB1-PTRS.

* **
* DO A GET NEXT CALL TO RETRIEVE THE FIRST ROOT SEGMENT
* **

MOVE NEXT-KEY TO ROOTKEY.
IF NEXT-KEY = ’000000’

CALL ’AIBTDLI’ USING FUNCT-GN, INV-L-PCB, IOAREA, SSAUNQ

The calls to DL/I are made for a maximum of 3 segments. The values are returned
to the DL/I applet via the corresponding parameters defined for the DLIREAD.
...
* **
* DO A GET UNIQUE CALL TO RETRIEVE A SEGMENT VIA KEY
* **

ELSE
CALL ’AIBTDLI’ USING FUNCT-GU, INV-L-PCB, IOAREA, SSAQUAL

END-IF.
IF AIBFCTR NOT = LOW-VALUES

GO TO BASERR.

* ***
* ASSIGN VALUES TO OUTPUT PARAMETERS FOR ROW 1
* ***

ADD 1 TO COUNTR.
MOVE ITNUMB TO ITEM-NUMB1.
MOVE ITDESC TO ITEM-DESC1.
MOVE IQOH TO QUAN-ORD1.
MOVE IQOR TO QUAN-HAND1.
MOVE IUNIT TO UNIT-COST1.
MOVE COUNTR TO NUM-ROWS.

Issue second call to the stored procedure to retrieve second result row:

* **
* ISSUE GET NEXT CALL
* **
CALL ’AIBTDLI’ USING FUNCT-GN, INV-L-PCB, IOAREA,

SSAUNQ.
IF AIBFCTR NOT = LOW-VALUES

GO TO BASERR.

* ***
* ASSIGN VALUES TO OUTPUT PARAMETERS FOR ROW 2
* ***

ADD 1 TO COUNTR.
MOVE ITNUMB TO ITEM-NUMB2.
MOVE ITDESC TO ITEM-DESC2.

Running the DL/I Applet

240 VSE/ESA: e-business Connectors, User’s Guide

MOVE IQOH TO QUAN-ORD2.
MOVE IQOR TO QUAN-HAND2.
MOVE IUNIT TO UNIT-COST2.
MOVE COUNTR TO NUM-ROWS.

Below, the third (and final) call to DLIREAD is issued. The third result-row is
retrieved.
* ***
* ISSUE GET NEXT CALL
* ***

CALL ’AIBTDLI’ USING FUNCT-GN, INV-L-PCB, IOAREA, SSAUNQ.
IF AIBFCTR NOT = LOW-VALUES

GO TO BASERR.

* ***
* ASSIGN VALUES TO OUTPUT PARAMETERS FOR ROW 3
* ***

ADD 1 TO COUNTR.
MOVE ITNUMB TO ITEM-NUMB3.
MOVE ITDESC TO ITEM-DESC3.
MOVE IQOH TO QUAN-ORD3.
MOVE IQOR TO QUAN-HAND3.
MOVE IUNIT TO UNIT-COST3.
MOVE COUNTR TO NUM-ROWS.

Step 5. Check for Further DL/I Segments
In the fifth step, a check is made to see if there are any further DL/I segments. The
variable NEXTKEY is set to the next DL/I segment key that satisfies the initial
condition.
* ***
* DETERMINE IF FURTHER SEGMENTS EXIST AND SAVE KEY
* ***

CALL ’AIBTDLI’ USING FUNCT-GN, INV-L-PCB, IOAREA, SSAUNQ.*

* MORE SEGMENTS AVAIL - SAVE KEY FOR THE NEXT PROCEDURE CALL
*

MOVE INV-KEY-FBCK(1:6) TO NEXT-KEY.
GO TO END-PROC.

Step 6. Run the Error-Handling Routines
In the final step, DLIREAD uses error-handling routines to determine if the request
has been successful.
*
* DLI-CALL ERROR HANDING
...

Running the DL/I Applet

Chapter 19. Using Java Applets to Access Data 241

Running the DL/I Applet

242 VSE/ESA: e-business Connectors, User’s Guide

Chapter 20. Using Java Servlets to Access Data

This chapter contains these main sections:
v “How Servlets Are Used in 3-Tier Environments”
v “Compiling and Calling Servlets” on page 245
v “Example of How to Implement a Servlet” on page 246

How Servlets Are Used in 3-Tier Environments
Servlets are used in the middle-tier of a 3-tier environment shown in Figure 115 in
this way (where this illustration assumes that a VSE Connector Server running on
the VSE/ESA host is used for obtaining data):

Figure 115. How Servlets Are Used in the VSE/ESA 3-Tier Environment

© Copyright IBM Corp. 2000, 2003 243

HTTP Sessions are used between the Web Client and the middle-tier for sending
and receiving data. Socket connections are used between the middle-tier and the
VSE/ESA host for sending and receiving data.

The number of each list item below describes a step shown in Figure 115 on
page 243:

�1� The client’s Web browser sends a servlet request to the IBM HTTP Server
running on the middle-tier.

�2� The IBM HTTP Server retrieves the servlet URL and passes this to the
WebSphere Application Server.

�3� The WebSphere Application Server runs the servlet in its Java Virtual
Machine (JVM). The servlet also uses the VSE Java Beans class library
(VSEConnector.jar) to build a connection to the VSE Connector Server
running on the VSE/ESA host.

�4� The servlet sends the dynamically-created HTML Web Page to the client’s
Web browser, via TCP/IP.

�5� The client’s Web browser displays the Web Page. The end-user now
requests data that is stored on the VSE/ESA host.

�6� The client’s Web browser sends the request for data to the servlet, which is
still loaded in the Java Virtual Machine of the WebSphere Application
Server.

�7� The servlet uses the VSE Java Beans to communicate with the VSE
Connector Server running on the VSE/ESA host, requesting the VSE-based
data.

�8� The VSE Connector Server obtains the data and sends it to the servlet.

Notes:

1. The VSE Connector Server can be used for accessing VSE/VSAM,
VSE/POWER, VSE/ICCF, or Librarian data.

2. An alternate method for accessing VSAM data stored on the VSE/ESA
host is to use a DB2 Stored Procedure on the middle-tier, which
communicates with the VSAM file on the VSE/ESA host. This is
described in “Using DB2 Stored Procedures to Access VSAM Data” on
page 312.

�9� The servlet generates a dynamic Web Page consisting of HTML code, and
sends this together with the requested data back to the client’s Web
browser.

�10� The client’s Web browser re-displays the Web Page together with the
requested data.

Using Java Servlets

244 VSE/ESA: e-business Connectors, User’s Guide

Compiling and Calling Servlets
To compile a servlet, you require servlet-related Java classes. These classes are
normally provided together with your WebSphere Application Server installation.
These classes are contained in a JAR file that must be included into your local
classpath (for your compilations), as well as in the WebSphere Application Server’s
classpath.

Servlets can then be called in various ways. This section describes the most
commonly-used way:

From the command line
You must simply enter:
http://server_host_name/servlet_engine_name/servlet_name

For example, from the command line of your Web browser you could
enter:
http://MyComputer/webapp/VseServletEngine/MyServlet
http://9.164.123.456/webapp/VseServletEngine/MyServlet

How the WebSphere Application Server Stores Session Information
These TCP/IP connections are short-lived:
v From the Web client to the middle-tier platform.
v From the middle-tier to the VSE/ESA host.

The servlet’s HTTPSession object allows Web clients to be identified over a series of
HTTP requests. WebSphere does this internally, for example by storing a ″cookie″
on the Web client.

Each time the servlet is invoked, it checks whether the Web client already had a
connection in the past, by searching for the HTTPSession object (which might be
bound to the “cookie”). If the session does already exist, the servlet then checks if
the session contains information about a previously-used session.

The httpSession instance is created when the servlet is invoked the first time (in this
case, the session does not already exist). Therefore two actions must be performed:
1. Create the httpSession instance and store it in the HTTPServletRequest.
2. Define certain session properties, and store them in the httpSession.

Figure 116 on page 246 shows the ″logical view″ of how session information is
stored and processed. httpSession contains the properties, and is stored on the Web
client as a cookie.

Using Java Servlets

Chapter 20. Using Java Servlets to Access Data 245

Example of How to Implement a Servlet
This section describes the FlightOrderingServlet sample, which is supplied as part of
the online documentation. This servlet sample provides the capability to maintain
flights and orders information in a simple VSAM-based flight booking system. It
first defines, and then uses, two VSAM clusters which hold the data.

For details of how to define the data maps and views for the clusters used in this
sample, refer to “Running the Sample Data-Mapping Applet” on page 207.

General Description of the Sample Servlet
The servlet is implemented in the Java source file FlightOrderingServlet.java. This
source file implements the main servlet code, together with some inner classes, to
handle flights, orders, create the VSAM clusters, and so on.

The servlet performs this general processing:
1. A Web page is displayed in which the user can choose between several actions.

From this first Web page, the user can create the required VSAM clusters and
fill them with data, order a flight, and cancel a flight.

2. When the user clicks Order a flight, a table with all available flights is
displayed. Here, the user can select a flight number. When selecting a flight
number, the servlet displays another Web page containing the properties of this
flight, and the window controls required for the user to be able to place an
order. The user can enter:
v Name
v Number of seats to order
v Whether or not the reserved seats should be in the non-smoking area.

3. After clicking the push button to order the flight, the properties of the VSAM
record that contains the flight details, are updated. In addition, a new record is
created in the ORDERS cluster.

The following sections describe the most important parts of the sample servlet’s
Java code. The complete source code is contained in the VSE Connector Client
online documentation.

Figure 116. How Session Information Is Re-Used by the WebSphere Application Server

Using Java Servlets

246 VSE/ESA: e-business Connectors, User’s Guide

You might also refer to the VSE Connector Client online documentation for these
additional servlet samples:
v SearchServlet: a servlet that shows you how to search VSE library systems

(POWER, ICCF, VSE Libraries, VSAM) for files, including those containing
specific text.

v SdlServlet: a servlet that shows you how to display a list of VSE phases loaded
into the SVA.

Creating the VSAM Clusters for the Sample
These are the two VSAM clusters you require, in order to run the sample. Both are
predefined in the VSAM catalog VSAM.VSESP.USER.CATALOG (VSESPUC) of
VSE/ESA 2.5 onwards:

HTML Constructs Used With the Sample
As servlets are used for generating dynamic Web pages, HTML syntax is therefore
an essential part of every servlet. Here are two HTML constructs that are typically
used in servlets:

How a Servlet Can Create Tables in HTML
A table is defined in HTML in this general way:
<table>
<tr><td>"First table cell"</td><td>"Second cell"</td></tr> (First row)
<tr> </tr> (Second row)
...
</table>

A servlet can create dynamic tables by writing values of program variables into a
table. A dynamic table might look like this:

FLIGHT.ORDERING.FLIGHTS (FLIGHTS) - KSDS
Offset Length Type Key Field Name Description

0 4 UNSIGNED yes FLIGHT_NUMBER Flight Number
4 20 STRING no START Start
24 20 STRING no DESTINATION Destination
44 5 STRING no DEPARTURE Departure (hh:mm)
49 5 STRING no ARRIVAL Arrival (hh:mm)
54 4 UNSIGNED no SEATS Seats
58 4 UNSIGNED no RESERVED Seats reserved
62 4 PACKED no PRICE Price
66 20 STRING no AIRLINE Airline

Figure 117. VSAM Structure of FLIGHT.ORDERING.FLIGHTS

Offset Length Type Key Field Name Description

0 20 STRING no FIRST_NAME First Name
20 20 STRING no LAST_NAME Last Name
40 4 UNSIGNED no FLIGHT_NUMBER Flight Number
44 4 UNSIGNED no SEATS Seats
48 1 BINARY no NON_SMOKE Non Smoke 0=no

Figure 118. VSAM Structure of FLIGHT.ORDERING.ORDERS

Using Java Servlets

Chapter 20. Using Java Servlets to Access Data 247

out.println("<table>");
out.println("<tr><td>" + string1 + </td></tr>");
out.println("<tr><td>" + string2 + </td></tr>");
...
out.println("</table>");

where:
v string1 and string2 are string variables.
v out is the PrintWriter instance that was obtained from HttpServletResponse in the

servlet’s doGet() or doPost() methods.

Using Forms to Obtain a User’s Input
After showing a Web page, the servlet must be able to obtain the user’s input in
order to process the next servlet request. This is usually done using forms, which
can display window controls such as text fields or push buttons. When the user
performs the action associated with the form (usually a push button), the servlet is
called again with this action and input parameters taken from text fields, check
boxes and other input controls.

By specifying method=get (at �1�), the doGet() method of the servlet will be called.
However:
v You could also specify method=post, which would cause the doPost() method to

be called.
v The difference between method=get and method=post is that:

– Using doGet() will display the generated servlet invocation string in the Web
browser’s address/location field.

– Using doPost() will suppress the Web browser’s address/location field.
v You are recommended to use doPost() if the form contains any password fields.

Passwords will then appear as clear text, when using doGet().

out.println("<form action=\"/servlet/FlightOrderingServlet\" method=get>"); �1�
out.println("<input type=hidden name=\"action\" value=\"order3\">");
out.println("<input type=hidden name=\"flight\" value=\"" +

flightNumber + "\">");
out.println("<table>");
out.println("<tr><td>First Name:</td>");
out.println("<td><input size=20 maxlength=20 name=\"firstname\"></td>");
out.println("</tr>");

out.println("<tr><td>Last Name:</td>");
out.println("<td><input size=20 maxlength=20 name=\"lastname\"></td>");
out.println("</tr>");
...

out.println("<tr><td>Non smoking:</td>");
out.println("<td><input type=checkbox name=\"nonsmoke\"

value=\"yes\">Yes</td>");
out.println("</tr>");
out.println("</table><p>");
out.println("<input type=submit value=\"Order It!\">");
out.println("</form>");

Note: The string used here to perform a servlet call is dependent on the:
v Version of the WebSphere Application Server you have installed.
v Name you have defined for your servlet engine.

Figure 119. Example of a Servlet Using Forms to Obtain a User’s Input

Using Java Servlets

248 VSE/ESA: e-business Connectors, User’s Guide

The HTML code shown in Figure 119 on page 248 will display the window controls
shown below:

If the user presses the push-button Order It!, this servlet invocation string will be
generated:
http://computername/servlet/FlightOrderingServlet?action=order3&flight=34
&firstname=name1&lastname=name2&seats=1&nonsmoke=no

where:
v name1 is the string that was entered in the firstname field.
v name2 is the string that was entered in the lastname field.
v computername is the name of your workstation in your network, or its IP address.

You could also enter this string manually in your Web browser’s address/location
field.

Figure 120. Example of Using Forms to Display Window Controls

Using Java Servlets

Chapter 20. Using Java Servlets to Access Data 249

Sample Servlet Step 1: Display a List of Flights
In this step, a list of available flights is displayed, from which the user can place
an order. The selectRecords() method receives all records in the
FLIGHT.ORDERING.FLIGHTS cluster, and displays them.

The numbers below refer to the numbers in Figure 121:

�1� A local instance flights of a VSEVsamCluster is created. Next, a new map
instance flightsMap with the specified name is created. This map will be
filled with the actual data fields, during Step 2 below. During Step 1,
however, these objects are only local, and no host access has been made.

�2� A VSEResourceListener is created, to receive the VSAM records from the
host.

�3� All records are retrieved from the host. When the selectRecords() method
returns, all VSAM records are displayed in the current HTML page.

public class FlightOrderingServlet extends HttpServlet
{

// Names of the Clusters and Maps.
String vsamCatalog = "VSESP.USER.CATALOG";
String flightsCluster = "FLIGHT.ORDERING.FLIGHTS";
String ordersCluster = "FLIGHT.ORDERING.ORDERS";
String flightsMapName = "FLIGHTS_MAP";
String ordersMapName = "ORDERS_MAP";
...

public void doOrderStep1(PrintWriter out,VSESystem system)
{

VSEVsamCluster flights = null;
VSEVsamMap flightsMap = null;
FlightsListener fl;

// create the instances of the flights cluster with its map
flights = new VSEVsamCluster(system,vsamCatalog, flightsCluster); �1�
flightsMap = flights.getVSEVsamMap(flightsMapName);
...

try
{

// use the Listener to build the table
fl = new FlightsListener(out); �2�
flights.addVSEResourceListener(fl);

// select all records of the flights cluster (no filter)
flights.selectRecords(flightsMap); �3�
flights.removeVSEResourceListener(fl);

}
catch(Throwable t)
{

...
}
...

}
...

Figure 121. Sample Servlet Code for Displaying a List of Flights

Using Java Servlets

250 VSE/ESA: e-business Connectors, User’s Guide

Sample Servlet Step 2: Get Flight Instances from the Host
The following code is an extract of the inner class FlightsListener. The listAdded()
method is a callback function that is called for each received VSAM record
instance. For further details about callback functions, see “Using the Callback
Mechanism of VSE Java Beans” on page 159.

The numbers below refer to the numbers in Figure 122:

�1� An explicit cast is necessary to get the VSEVsamRecord instance from the
VSEResourceEvent data.

�2� Refer to the VSE Connector Client online documentation for further code
details.

The Java code described in Figure 122 displays this Web page:

public void listAdded(VSEResourceEvent event)
{

String flightNumber, start, destination, departure;
String arrival, price, airline;

// The event data has to be a VSEVSamRecord
if (!(event.getData() instanceof VSEVsamRecord))

return;

// Get the record -> it is a record of the flights cluster
VSEVsamRecord flight = (VSEVsamRecord)(event.getData()); �1�
try
{

// Get the fields of the record ...
flightNumber = ((Integer)flight.getKeyField(0)).toString();
start = fli ght.getField(1).toString().trim();
destination = flight.getField(2).toString().trim();
departure = flight.getField(3).toString().trim();
arrival = flight.getField(4).toString().trim();
price = ((Integer)flight.getField(7)).toString().trim();
airline = flight.getField(8).toString().trim();

// Write out an HTML line in the table
... �2�

}
catch(Throwable t)
{

...
}

Figure 122. Sample Servlet Code for Getting Flight Instances from the Host

Using Java Servlets

Chapter 20. Using Java Servlets to Access Data 251

In Figure 123, the first servlet call has finished. This means, the servlet code is still
loaded into memory on the middle-tier platform by the WebSphere Application
Server, but no further processing will be done until the servlet is called again.

Notes:

1. The next servlet call is in fact a new program call, and there is no way to store
information in global variables, from one call to the next call. Therefore, all
input parameters must be passed as servlet parameters.

2. In fact, there is one property stored over the lifetimes of a servlet: the VSE host
connection specification (VSEConnectionSpec). This is stored in the client
connection (HttpSession), which is always the same for all servlet calls. For
further details, refer to the online documentation provided with the VSE
Connector Client (see “Using the Online Documentation Options” on page 28).

Figure 123. Flight Order Selection Window, As Generated by the Sample Servlet

Using Java Servlets

252 VSE/ESA: e-business Connectors, User’s Guide

Sample Servlet Step 3: Display the Properties of a Flight
In the method described here, the properties of a flight are displayed, together
with the controls required to place an order. An HTML form is used to:
v Get the user’s input.
v Initiate a new servlet call.

public void doOrderStep2(PrintWriter out,VSESystem system,
Hashtable parameters)

{
VSEVsamCluster flights = null;
VSEVsamMap flightsMap = null;
VSEVsamRecord flight = null;
int flightNumber, price, seats, reserved;
String start, destination, departure, arrival, airline;

// create the instances of the flights cluster and its map
flights = new VSEVsamCluster(system, vsamCatalog, flightsCluster);
flightsMap = flights.getVSEVsamMap(flightsMapName);

// get a instance of a record of the flights cluster
flight = flights.getVSEVsamRecord(flightsMap); �1�

// get the parameters
flightNumber = 0;
try
{

flightNumber = Integer.parseInt(getParameterValue(parameters, �2�
"FLIGHT",true));

}
catch (Throwable t) {}
...

// get the record and display the properties
try
{

// set the key to identify the locat record with the record
// on the host
flight.setKeyField(0,new Integer(flightNumber)); �3�

// now get the other fields
start = flight.getField(1).toString().trim();
destination = flight.getField(2).toString().trim();
departure = flight.getField(3).toString().trim();
arrival = flight.getField(4).toString().trim();
seats = ((Integer)flight.getField(5)).intValue();
reserved = ((Integer)flight.getField(6)).intValue();
price = ((Integer)flight.getField(7)).intValue();
airline = flight.getField(8).toString().trim();

// display the fields
...

// check if enough seats are available
...

// write out a form where the user can enter its name and select
// the number of seats to order
out.println("<form action=\"/servlet/FlightOrderingServlet\" �4�

method=get>");
...

Figure 124. Sample Servlet Code for Displaying Properties of a Flight (Part 1 of 2)

Using Java Servlets

Chapter 20. Using Java Servlets to Access Data 253

The numbers below refer to the numbers in Figure 124 on page 253:

�1� A local instance of class VSEVsamRecord is created. No properties have
been assigned at this point. This code simply creates an object. You could
also use a constructor of the class to obtain the same result.

�2� Function getParameterValue() is used to obtain the flight number from the
form. The source code of this method is shown in the VSE Connector
Client online documentation.

�3� This statement now identifies one specific record in the FLIGHTS cluster.
The flight number is provided in the user’s input. Now, all other properties
of this flight can be retrieved from this object.

�4� Window controls required for the user to place the order, are displayed.

The coding described in Figure 124 on page 253 will display this Web page:

out.println("<input type=submit value=\"Order It!\">");
out.println("</form><p>");

}
catch(Throwable t)
{

...
}
...

}

Figure 124. Sample Servlet Code for Displaying Properties of a Flight (Part 2 of 2)

Using Java Servlets

254 VSE/ESA: e-business Connectors, User’s Guide

Figure 125. Flight Order Entry Window, As Generated by the Sample Servlet

Using Java Servlets

Chapter 20. Using Java Servlets to Access Data 255

Sample Servlet Step 4: Place an Order
The method described in this section is used to place an order. It is called when
the user presses the Order It button:
1. The user’s input is read from the form.
2. The flight’s properties are updated (the number of reserved seats for this flight

is increased by the number of ordered seats).
3. A new record is added to the ORDERS cluster.

public void doOrderStep3(PrintWriter out, VSESystem system,
Hashtable parameters)

{
VSEVsamCluster flights = null, orders = null;
VSEVsamMap flightsMap = null, ordersMap = null;
VSEVsamRecord flight = null, order = null;
int flightNumber, seatsToOrder, seats, reserved, price;
String firstName, lastName;
boolean nonSmoke, ok;

// get the parameters from the form
try
{

flightNumber = Integer.parseInt(�1�
getParameterValue(parameters,"FLIGHT",true));

seatsToOrder = Integer.parseInt(
getParameterValue(parameters,"SEATS",true));

firstName = getParameterValue(parameters,"FIRSTNAME",false);
lastName = getParameterValue(parameters,"LASTNAME",false);

// Check user input ...
...

nonSmoke = false;
if (getParameterValue(parameters,"NONSMOKE",true) != null)

nonSmoke = true;
}
catch(Throwable t)
{

// if not all parameters has been specified -> redisplay Step 2
doOrderStep2(out,system,parameters);
return;

}

// create instances of the flight cluster and its map
flights = new VSEVsamCluster(system,vsamCatalog,flightsCluster); �2�
flightsMap = flights.getVSEVsamMap(flightsMapName);

// get a instance of a record of the flights cluster
flight = flights.getVSEVsamRecord(flightsMap);

// create instances of the orders cluster and its map
orders = new VSEVsamCluster(system,vsamCatalog,ordersCluster); �3�
ordersMap = orders.getVSEVsamMap(ordersMapName);

// get a instance of a record of the orders cluster
order = orders.getVSEVsamRecord(ordersMap);

// Write HTML header
...

Figure 126. Sample Servlet Code for Placing an Order (Part 1 of 2)

Using Java Servlets

256 VSE/ESA: e-business Connectors, User’s Guide

The numbers below refer to the numbers in Figure 126 on page 256:

�1� Obtains the servlet parameters from the form.

�2� Creates a local instance of the FLIGHTS cluster and one record belonging
to this cluster. Up to this point, no data has been associated with these
objects.

try
{

// get the flight record
// set the key to identify the local record with
// the record on the host
flight.setKeyField(0,new Integer(flightNumber)); �4�

// get some fields of interest
seats = ((Integer)flight.getField(5)).intValue();
reserved = ((Integer)flight.getField(6)).intValue();
price = ((Integer)flight.getField(7)).intValue();

// check if enough seats are available
...

// display the order properties
...
// use the OrderCounter to get teh highest record number.
// This is necessarry because RRDS can only add a record
// with a non existing record number
OrderCounter oc = new OrderCounter(); �5�

// select all records to find the highest record number
orders.addVSEResourceListener(oc);
orders.selectRecords(ordersMap);
orders.removeVSEResourceListener(oc);

// now create the new order
ok = createOrder(out,order,oc.getHighestRecNo()+1, �6�

firstName,lastName,flightNumber,seatsToOrder,nonSmoke);

out.println("</table><p>");

// check if creating was ok ...
if (ok)
{

// now update the flight record’s fields
// increase the reserved seats by the number of seats to order
reserved += seatsToOrder;

// set the field in the local record
flight.setField(6,new Integer(reserved));

// and commit the changes to make them permanent
flight.commit(); �7�

}
}
catch (Throwable t)
{

...
}

// write out some status information and HTML footer
...

}

Figure 126. Sample Servlet Code for Placing an Order (Part 2 of 2)

Using Java Servlets

Chapter 20. Using Java Servlets to Access Data 257

�3� Creates a local instance of the ORDERS cluster and one record belonging to
this cluster. Up to this point, no data has been associated with these
objects.

�4� Sets the key field of the FLIGHTS record, which is required before any
further processing of the record can take place. The information is required
internally in order to access the record on the host.

�5� For RRDS clusters, new records are added using unique relative record
numbers. Therefore, the highest relative record number must be
determined, before a new record is added. The OrderCounter class is used
to receive all records, count them, and return the highest relative record
number.

�6� Method createOrder() is now used to add a new record to the ORDERS
cluster (in the code that follows).

�7� The commit() method is used to make the updates permanent.

Using Java Servlets

258 VSE/ESA: e-business Connectors, User’s Guide

Sample Servlet Step 5: Create a New Flight
The method described here adds a new record to the FLIGHTS cluster. If the
record already exists (as identified by its key), an appropriate error message is
generated.

The numbers below refer to the numbers in Figure 127:

�1� For KSDS clusters all key fields must be set for a given record, before
performing any actions against the record.

�2� Adds the new flight record to the cluster.

public boolean createFlight(PrintWriter out,VSEVsamRecord flight,
int flightNumber,String start,String
destination,String departure, String arrival,
int seats,int reserved,int price,String airline)

throws IOException,ConnectorEx ception
{

try
{

// Set the key of the record
flight.setKeyField(0,new Integer(flightNumber)); �1�

// Set all other fields
flight.setField(1,makeString(start,20));
flight.setField(2,makeString(destination,20));
flight.setField(3,makeString(departure,5));
flight.setField(4,makeString(arrival,5));
flight.setField(5,new Integer(seats));
flight.setField(6,new Integer(reserved));
flight.setField(7,new Integer(price));
flight.setField(8,makeString(airline,20));
// try to add this record
flight.add(); �2�

// Add new row to table
out.println("<tr><td>" + flightNumber + "</td>");
out.println("<td>" + start + "</td>");
out.println("<td>" + destination + "</td>");
out.println("<td>" + departure + "</td>");
...
out.println("</tr>");

}
catch (AlreadyExistentException e)
{

// already existing
return(false);

}
return(true);

}

Figure 127. Sample Servlet Code for Creating a New Flight

Using Java Servlets

Chapter 20. Using Java Servlets to Access Data 259

Sample Servlet Step 6: Create a New Order
The method described here adds a new record to the ORDERS cluster.

The numbers below refer to the numbers in Figure 128:

�1� For RRDS clusters, the relative record number must be set before a new
record can be added.

�2� Adds the new order record to the cluster.

The coding described in Figure 128 will display this Web page:

public boolean createOrder(PrintWriter out,VSEVsamRecord order,int recNo,
String firstName,String lastName,int flightNumber,
int seats,boolean nonSmoke)

throws IOException,ConnectorException
{

byte[] b = new byte[1];
try
{

// Set the relative record number
order.setRelRecNo(recNo); �1�

// set all other fields
order.setField(0,makeString(firstName,20));
order.setField(1,makeString(lastName,20));
order.setField(2,new Integer(flightNumber));
order.setField(3,new Integer(seats));
if(nonSmoke)

b[0] = (byte)0x01;
else

b[0] = (byte)0x00;
order.setField(4,b);

// Add the new record
order.add(); �2�

// Write table row
out.println("<tr><td>"+firstName+"</td>");
out.println("<td>"+lastName+ ... +"</td></tr>");

}
catch (AlreadyExistentException e)
{

// Already existing ...
return(false);

}
return(true);

}

Figure 128. Sample Servlet Code for Creating a New Order

Using Java Servlets

260 VSE/ESA: e-business Connectors, User’s Guide

Figure 129. Flight Order Confirmation Window, Generated by the Sample Servlet

Chapter 20. Using Java Servlets to Access Data 261

262 VSE/ESA: e-business Connectors, User’s Guide

Chapter 21. Using Java Server Pages to Access Data

JSP Requests Java Server Pages (JSPs) are a way for developers who are familiar
with HTML to easily create servlets, since JSPs are compiled into servlets. They are
also useful for Java applications in which servlets, and other generators of dynamic
HTML content, must be integrated with static HTML. The commonly-used naming
conventions for JSPs is that the suffix ends with .jsp.

This chapter contains these main sections:
v “How JSPs Are Used in 3-Tier Environments”
v “Example of a Simple Java Server Page” on page 265

How JSPs Are Used in 3-Tier Environments
Figure 130 on page 264 describes how JSPs are used within the VSE/ESA 3-tier
environment. The number of each list item below describes a step shown in
Figure 130 on page 264.

�1� The client’s Web browser sends the request for a JSP URL to the IBM
HTTP Server on the middle-tier. Each JSP is stored in the IBM HTTP
Server’s normal document hierarchy.

�2� The IBM HTTP Server retrieves the JSP and sends it to the WebSphere
Application Server.

�3� The action now performed by the WebSphere Application Server depends
upon whether or not this JSP has previously been compiled to a servlet:
v If the JSP has not previously been compiled to a servlet (or if the JSP has

been modified since the last time it was used), the WebSphere
Application Server uses its JSP-engine to do so.

v If the JSP has previously been compiled to a servlet (and has not been
modified since the last time it was used), the resulting servlet will
already be stored in the servlet repository. A compilation of the JSP is
therefore not required.

The WebSphere Application Server then runs the servlet in its Java Virtual
Machine (JVM). The servlet uses the VSE Java Beans class library
(VSEConnector.jar) to build a connection to the VSE Connector Server.

�4� The servlet sends the required HTML Web Page to the client’s Web
browser, via TCP/IP.

�5� The client’s Web browser displays the Web Page. The Web browser now
sends a request for data to the servlet running in the WebSphere
Application Server’s Java Virtual Machine.

�6� The servlet sends the request for data to the VSE Connector Server running
on the VSE/ESA host (using the connection previously built using VSE
Java Beans).

© Copyright IBM Corp. 2000, 2003 263

�7� The VSE Connector Server obtains the data and sends it to the servlet.

Notes:

1. The VSE Connector Server could also be used for accessing POWER,
VSE/ICCF, or Librarian, or sending console commands.

2. An alternate to using the VSE Connector Server is for accessing data is to
use a DB2 Stored Procedure on the middle-tier, which communicates
directly with the VSAM file system on the VSE/ESA host.

3. If the end-user had requested DB2 data, the data could be retrieved
using a DB2 Connect router on the middle-tier and a DB2 Server for
VSE on the VSE/ESA host. Alternatively, the DB2 data could be
retrieved using a DB2 Connect router on the middle-tier and a DB2
Stored Procedure on the VSE/ESA host.

4. If the end-user had requested DL/I data, the data could be retrieved
using a user-written application on the middle-tier which
communicates directly with a DB2 Stored Procedure on VSE/ESA host,
which can in turn accesses the DL/I databases of the VSE/ESA host.

Figure 130. How JSPs Are Used in the VSE/ESA 3-Tier Environment

Using JSPs

264 VSE/ESA: e-business Connectors, User’s Guide

5. If the end-user had requested CICS data, the data could be retrieved
using an MQSeries Server router on the middle-tier and an MQSeries
Server for VSE/ESA on the VSE/ESA host.

�8� The servlet generates a dynamic Web Page consisting of HTML code, and
sends this together with the requested data back to the client’s Web
browser.

�9� The client’s Web browser re-displays the Web Page together with the
requested data.

HTTP Sessions are used between the Web Client and the middle-tier for sending
and receiving data. Connect Sessions are used between the middle-tier and the
VSE/ESA host for sending and receiving data.

The advantage in using JSPs rather than servlets, is that by using JSPs your HTML
has a wider functionality. You can create HTML from servlets, but you require a lot
of programming effort. Using JSPs, however, you can carry out a change and then
simply let the WebSphere Application Server recompile and execute a servlet
which contains your changes.

JSPs also have the advantage that they can be used by authors who do not possess
much HTML knowledge. A JSP normally accesses an Enterprise Java Bean (EJB)
that encapsulates database queries and business logic. The data returned by the
EJB is sent to the Web client in HTML format and can then be dynamically
included into the current Web page.

Example of a Simple Java Server Page
Figure 131 shows how a JSP can be used to display the current date. These special
tags (<% and %>) are used to enclose the Java code. The JSP engine dynamically
compiles the JSP into a servlet. The servlet is then executed, and displays the Web
page.

<html>
<head>
<title>My first JSP</title>
</head>
<% import java.util.*; %>
<% Date date = new Date();

response.println("The current date is " + date);
...

%>
</body>
</html>

Figure 131. Example of a Java Server Page /JSP)

Using JSPs

Chapter 21. Using Java Server Pages to Access Data 265

266 VSE/ESA: e-business Connectors, User’s Guide

Chapter 22. Using EJBs to Represent Data

EJBs are “write once, run anywhere” distributed beans that run in a web
application server environment, such as IBM’s WebSphere Application Server. They
are intended to represent either:
v data in a database (entity beans).
v the connection to a remote data store (session beans).

In a VSE/ESA 3-tier environment, you can use EJBs to represent:
v data in a relational database (DB2).
v non-relational data, such as DL/I or VSAM. This requires that you have

previously mapped such non-relational data to a relational structure (for details,
refer to Chapter 15, “Mapping VSE/VSAM Data to a Relational Structure”, on
page 129).

EJBs are easy to implement. Furthermore, they:
v Are the most powerful feature of the WebSphere Application Server

environment.
v Allow the application programmer to concentrate on developing the Java

applications, without having to code the access to data.

This chapter contains these main sections:
v “Overview of the EJB Architecture”
v “Example of Using EJBs to Access VSAM Data” on page 273
v “Example of Implementing VSAM-Based EJBs” on page 274

Overview of the EJB Architecture
This information provides you with an overview of the EJB architecture. A
practical example of how EJBs can be implemented, is provided in “Example of
Implementing VSAM-Based EJBs” on page 274.

The WebSphere Application Server server must provide a number of services to
EJBs in order to manage them properly. These services are provided by an entity
called an EJB Container (described in “Overview of How EJB Containers are Used”
on page 268).

There are two types of EJBs, Entity beans and Session beans. The table below shows
the properties of Entity beans and Session beans.

Table 7. Properties of Session Beans and Entity Beans

Bean Type Description State and Persistence

Session Short lived beans
tied to a single
client session

Two major forms of Session beans:

Stateless
Perform a simple operation. Holds no data.

Stateful
Maintains variables between client requests.

© Copyright IBM Corp. 2000, 2003 267

Table 7. Properties of Session Beans and Entity Beans (continued)

Bean Type Description State and Persistence

Entity Long lived beans
existing across
many client
sessions

Usually wrapped by Session beans. The EJB example
provides two session beans that access one entity bean. All
beans hold data, but there are two ways to manage
persistence (synchronization with database):

Bean managed
Bean must get and put rows into the database.

Container managed
Bean gets and puts data automatically.

The entity bean belonging to the EJB example implements
bean-managed persistence.

Session beans perform the business logic in an application. These beans could be
used to represent a shopping “cart” in an online ordering system, or to calculate
sales tax on a purchase. A Session bean is a normal Java class tied to a single client
session. They have several other restrictions. They cannot:
v Start new threads (since EJBs run inside the EJB Container and not within the

Java Virtual Machine).
v Carry out any functions except representing one row of a database (VSAM

record or DB2 row).
v Contain static read/write variables.
v Use java.io classes.

Entity beans have the following characteristic. They:
v must access data through JDBC or by some other means (since Entity beans

directly represent data). The EJB example (included on page 274) uses the VSE
Java Beans class library to access VSAM data on a remote VSE/ESA host.

v cannot be used without low-level support such as a JDBC interface or a
connector to other data sources.

v can be used by several clients at the same time.
v have a lifetime equal to the length of time that the underlying data they

represent, exists.

Overview of How EJB Containers are Used
EJB Containers act as an intermediaries between EJBs and clients, and also manage
multiple EJB instances. After an EJB is written, it must be stored in a container
which resides on the WebSphere Application Server (or another application server).

Figure 132 on page 269 shows how containers are used to manage EJBs.

Using EJBs

268 VSE/ESA: e-business Connectors, User’s Guide

Several tasks must be performed by the EJB container in order to fulfill its role as
an EJB/client intermediary. These tasks include:
v Instance Passivation/Activation - Temporarily swapping EJBs in and out of

storage.
v Instance Pooling - Sharing instances of EJBs among multiple clients.
v Database Connection Pooling - Allowing an EJB to use an open connection to

the database from a pool of existing connections.
v Pre-cached Instances - Caching EJB state information to expedite the initial

creation of EJBs.

Therefore, the container simplifies the EJB implementation process by managing all
threading and client interaction with the EJBs. It also reduces the load on servers
and databases by coordinating connection and instance pooling. As EJBs become
standardized, vendors will increasingly provide EJB containers separately from
application servers.

How EJBs Compare to JavaBeans / Java Servlets
The distinction between EJBs and JavaBeans lies primarily in their roles. JavaBeans
are intended to be used as visual components in Graphical User Interfaces (GUIs),
such as buttons and labels. On the other hand, EJBs are designed to either
represent data in a database or perform actions on this data, and therefore have a
restricted use.

Both EJBs and servlets reside in a multi-tier architecture. Servlets take in requests
over HTTP, process the requests, and send responses over HTTP in the form of
HTML code that can be viewed in a Web browser. Thus, servlets essentially
provide User Interface functionality and business logic. When using EJBs, however,
it is the client’s responsibility to provide the User Interface.

Here is a summary of the limitations of using EJBs:
v They cannot access the local file system of the web server platform.
v There is no way to implement callback mechanisms, because EJBs are always

single-thread programs. This is a disadvantage especially for long running
actions, like all kind of requests that retrieve lists of objects.

Figure 132. How Containers Are Used To Manage EJBs

Using EJBs

Chapter 22. Using EJBs to Represent Data 269

v There is no way to stop a running action, nor to begin processing the result list
before the complete action has finished.

Implementing Your Client Applications
Enterprise Java Beans allow you to separate the development of your client
User-Interface from that of your business logic. Therefore, you can use various
client platforms and multiple User Interfaces. EJBs can interact with many diverse
client types including: other EJBs, Java applications, Java applets, Java servlets, and
non-Java components by using CORBA connectivity.

Enterprise Java Beans provide easy connectivity to all Java and CORBA compatible
components.
1. Using JNDI or another naming system, the client program locates the EJB home

and uses the home to create a remote interface to access the bean.
2. This triggers the EJB container to create the bean.
3. After creating the remote interface, the bean appears to the client as any other

class except that all passed objects must be serialized and sent over the
network.

EJBs use RMI and ‘stubs’ to transmit information between the EJB container and
the client computer. RMI requires that all objects passed across the network are
serializable. Figure 133 shows the entities involved in a single EJB method call.

The general processing during a method call is as follows:
1. The User Interface invokes the container generated stub, which serializes the

arguments of the method call.
2. The generated stub sends the data over the network.
3. The skeleton stored on the EJB Server de-serializes the arguments, and passes

them to the container-generated EJBObject (which is an implementation of the
remote interface).

4. The EJBObject then interacts with the EJB.
5. When the EJB has completed its processing, it passes the result back to the

EJBObject.

The reply is passed back to the User Interface, using the reverse path as described
above. Therefore:
v The server manages calls to the EJBObject.

Figure 133. Overview of the Entities Involved in an EJB Method Call

Using EJBs

270 VSE/ESA: e-business Connectors, User’s Guide

v The container manages calls to the EJB using the EJBObject.

EJBs connect to each other using the same method of calling, so it is very easy to
implement a system of EJBs that communicate together. Even if the EJBs are in the
same container, every method call must be made through the container to avoid
multi-threading problems.

CORBA, Common Object Request Broker Architecture, provides a method for
non-Java applications to connect to EJBs. CORBA works much the same way as
RMI, but requires an application server that supports CORBA to EJB mapping and
requires the use of different naming services.

How an EJB Client Accesses EJBs
Figure 134 shows how an EJB client accesses an Enterprise Java Bean (EJB). This
information applies to both the example EJB and to EJBs in general.

The client never communicates directly with the EJB. Instead, it “talks to” the EJB
via its home interface and its remote interface. The home interface and remote
interface code are both created by the WebSphere Application Server during
deployment of the EJBs.

The EJB server and EJB container are part of your Web application server (such as
the WebSphere Application Server), and might be supplied by independent
software vendors.

Therefore, this code must be implemented for an EJB:
v The EJB client, that communicates with the EJB. This is usually a servlet or an

applet, but could also be any other Java program.
v The EJB home interface. The EJB developer simply specifies the interface. The EJB

home interface is then created by the WebSphere Application Server when it
deploys the EJB.

v The EJB remote interface. The EJB remote interface is also created by the
WebSphere Application Server when it deploys the EJB.

v The EJB class. This class implements the EJB’s business logic.

In Figure 134, the EJB client can be:

Figure 134. How an EJB Client Communicates with an EJB

Using EJBs

Chapter 22. Using EJBs to Represent Data 271

Servlet or JSP
Runs in the same WebSphere Application Server as the EJB. Using servlets
as EJB clients makes it possible to obtain access to the EJB data from any
Web browser, via your company’s Intranet or the Internet. The deployed
ejb-jar file resides on the server that runs the WebSphere Application
Server. For example, online shopping is often performed using a
combination of static Web pages and servlets.

Java application
Runs on a different workstation and communicates with the EJB via a
TCP/IP connection. You will normally use a Java application as an EJB
client for test purposes in your development environment. A Java
application is the most simple EJB client and can be used to implement a
variety of test cases. Because the deployed ejb-jar file must be accessible
by both the EJB client and the WebSphere Application Server, you must
either copy the file to the workstation where your EJB client runs, or run
the EJB client on the same machine as the WebSphere Application Server.
You might also make the file accessible to both platforms over your
company’s network.

Applet
Runs in a Web browser on a different workstation and communicates with
the EJB via a TCP/IP connection. If you require a more advanced user
interface than is possible using HTML, you can use an applet as the EJB
client. For example, online banking systems often use applets. In such
systems, all classes that the applet requires, including the deployed ejb-jar
file, are downloaded to the Web browser client when the applet runs. This
can lead to performance problems, especially where the applet is accessed
via the Internet.

Another EJB
Runs in the same or a different WebSphere Application Server as the EJB.
For example, the employer bean and employee bean provided with the
VSE Connector Client example, act as EJB clients when they access the
record bean.

In other words, an EJB client is any Java program that accesses an EJB.

Using EJBs

272 VSE/ESA: e-business Connectors, User’s Guide

Example of Using EJBs to Access VSAM Data
Figure 135 provides an illustration of how EJBs are used together with an applet in
the VSE/ESA 3-tier environment, to access VSAM data:

HTTP Sessions are used between the Web Client and the middle-tier for sending
and receiving data. Socket connections are used between the middle-tier and the
VSE/ESA host for sending and receiving data.

The number of each list item describes a step shown in Figure 135:

�1� The client’s Web browser sends a request for an HTML page to the IBM
HTTP Server running on the middle-tier. This example assumes that the
HTML file contains an applet tag which then causes the applet to be called.
The applet acts as an EJB client to access the EJB data.

�2� The IBM HTTP Server retrieves the Web Page, and sends it to the client’s
Web browser.

Figure 135. How EJBs Are Used Together with an Applet in the 3-Tier Environment

Using EJBs

Chapter 22. Using EJBs to Represent Data 273

�3� The client’s Web browser reads an <applet> tag, and sends a request for
the applet code to the IBM HTTP Server running on the middle-tier. The
IBM HTTP Server sends a JAR file (containing the applet and the Java
routines required to run it) to the client’s Web browser.

�4� The IBM HTTP Server retrieves the applet code, and sends it to the client’s
Web browser.

�5� The client’s Web browser runs the applet. The end-user now requests data
that is stored on the VSE/ESA host, via the use of EJBs that are stored on
the middle-tier. The applet uses EJB stub classes to communicate with the
EJB server-part, via RMI. See Figure 132 on page 269 and Figure 133 on
page 270 for further details. The server-part of the EJB uses the VSE Java
Beans class library (VSEConnector.jar) to build a connection to the VSE
Connector Server.

�6� The server-part of the EJB requests the data from the VSE Connector Server
running on the VSE/ESA host, using the connection previously built using
the VSE Java Beans.

�7� The VSE Connector Server obtains and then sends the requested VSAM
data to the server-part of the EJB.

�8� The server-part of the EJB sends the data to the EJB Stub running in the
client’s Web browser.

�9� The applet running inside the client’s Web browser displays the Web Page
together with the requested data.

Example of Implementing VSAM-Based EJBs

EJBs are typically used so that one EJB instance encapsulates the data of one
relational table row. The example provided here shows how to represent
non-relational VSAM data, that has been mapped to a relational structure, by an
EJB. The mapping of non-relational data to a relational structure is described in
Chapter 15, “Mapping VSE/VSAM Data to a Relational Structure”, on page 129.

This example consists of three EJBs:
v RecordBean, which is an entity bean, represents and contains a complete mapped

VSAM record that belongs to a VSAM cluster containing data about employees.
v EmployerBean and EmployeeBean, which are session beans, provide the business

logic to access the data represented by the RecordBean. They are used to
implement two different views on this data, an employee’s view and an
employer’s view.

In this example, utilities are also provided which are used to fill the VSAM cluster
with sample data.

The execution of the sample EJB is described in these sections:
v “Step 1: Define the Sample’s VSAM Cluster” on page 275
v “Step 2: Create the Record Layout for Employees” on page 275
v “Step 3: Specify the EJB’s Home Interface” on page 276
v “Step 4: Specify the EJB’s Remote Interface” on page 276
v “Step 5: Implement the RecordPK Class” on page 277
v “Step 6: Implement the EJB Code” on page 277
v “Step 7: Compile the Java Source Files” on page 282

Using EJBs

274 VSE/ESA: e-business Connectors, User’s Guide

v “Step 8: Deploy the EJBs” on page 282
v “Step 9: Access the EJBs from an EJB Client” on page 283

Step 1: Define the Sample’s VSAM Cluster
In this first step, the VSAM cluster that is used by this example is created, and
filled with sample data.

Note: Because the column placement of the label information in the IESVCLUP
step is critical, you are recommended to use the VSE/ESA Interactive
Interface dialogs to define this file!.

Use the following job to define the sample cluster EJB.VSAM.EXAMPLE:
* $$ JOB JNM=DEFINE,CLASS=0,DISP=D,NTFY=YES
// JOB DEFINE EJB SAMPLE CLUSTER
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER (-

NAME (EJB.VSAM.EXAMPLE) -
CYLINDERS(2 2) -
SHAREOPTIONS (2) -
RECORDSIZE (80 80) -
VOLUMES (DOSRES) -
NOREUSE -
INDEXED -
FREESPACE (15 7) -
KEYS (4 0) -
NOCOMPRESSED -
TO (99366)) -
DATA (NAME (EJB.VSAM.EXAMPLE.@D@) -
CONTROLINTERVALSIZE (4096)) -
INDEX (NAME (EJB.VSAM.EXAMPLE.@I@)) -
CATALOG (VSESP.USER.CATALOG)

IF LASTCC NE 0 THEN CANCEL JOB
/*
// OPTION STDLABEL=ADD
// DLBL EJBSAMP,’EJB.VSAM.EXAMPLE’,,VSAM, X

CAT=VSESPUC
/*
// EXEC IESVCLUP,SIZE=AUTO
A EJB.VSAM.EXAMPLE EJBSAMP VSESPUC
/*
/&
* $$ EOJ

Step 2: Create the Record Layout for Employees
Create the record layout for employees, using this layout:
EMPNUM Unsigned, offset=0, length=4 (employee number = key)
PASSWORD String, offset=4, length=10
NAME String, offset=14, length=25
DEPT Unsigned, offset=39, length=4 ("department number")
HOURLY Unsigned, offset=43, length=4 ("hourly wage")
PTD Unsigned, offset=47, length=4 ("paid to day")
TNP Unsigned, offset=51, length=4 ("time not paid")

v To access the record of a specific employee, you must specify the employee’s number
and a password.

v To add new data to the cluster, use the utility program EJBPrepareData.java. This
program is supplied with the VSE Connector Client.

v To create the map and its data fields, use utility program EJBPrepareData.java.
v To display the sample data, use the Java program EJBShowData.java, which is

supplied with the VSE Connector Client. You can also view the data using the

Using EJBs

Chapter 22. Using EJBs to Represent Data 275

VSE Navigator application, which can be downloaded from the VSE Homepage.
For details of how to access the VSE Homepage, see “Where to Find More
Information” on page xix.

v To run the pre-compiled utilities, go to the \vsecon\samples directory and enter:
java com.ibm.vse.ejb.vsamexample.EJBPrepareData
java com.ibm.vse.ejb.vsamexample.EJBShowData

Step 3: Specify the EJB’s Home Interface
In this step, the EJB home interface (described in Figure 134 on page 271) is specified
for the RecordBean. For details of how to specify the home interface for other EJBs,
refer to the VSE Connector Client online documentation (see “Using the Online
Documentation Options” on page 28 for details).

The EJB’s home interface inherits its methods from the interface EJBHome. It must
define method signatures for:
v Any create() methods.
v The findByPrimaryKey() method.
v Other ″finder″ methods.

When an EJB is deployed, the WebSphere Application Server creates the home
interface code, together with the remote interface and the service stub class, that
are used to access the EJB.

The method signatures are implemented in the source file RecordHome.java as
follows:
package com.ibm.vse.ejb.vsamexample;
import javax.ejb.*;
import java.rmi.*;

public interface RecordHome extends EJBHome
{

public Record create(int empnum, String name, String password, int dept,
int hourly, int paytodate, int hoursnotpaid)

throws java.rmi.RemoteException, javax.ejb.CreateException;

public Record findByPrimaryKey(RecordPK pk)
throws RemoteException, FinderException;

}

Step 4: Specify the EJB’s Remote Interface
In this step, the EJB remote interface (described in Figure 134 on page 271) is
specified for the RecordBean. For details of how to specify the remote interface for
other EJBs, refer to the VSE Connector Client online documentation (see “Using the
Online Documentation Options” on page 28 for details).

When an EJB is deployed, the WebSphere Application Server creates the remote
interface code, together with the Home Interface and the service stub class, that are
used to access the EJB.

The remote interface must provide:
v Inheritance from the interface EJBObject.
v Method signatures related to the EJB’s business methods

– The code for these methods is generated during the process of deploying the
bean.

– The method signatures are provided in the source file Record.java, as shown
below.

Using EJBs

276 VSE/ESA: e-business Connectors, User’s Guide

package com.ibm.vse.ejb.vsamexample;
import javax.ejb.*;
import java.rmi.*;
import java.io.*;
import java.util.*;

public interface Record extends EJBObject
{

public int getEMPNum() throws RemoteException;
public String getPassword() throws RemoteException;
public String getName() throws RemoteException;
public int getDept() throws RemoteException;
public int getHourly() throws RemoteException;
public int getPayToDate() throws RemoteException;
public int getTimeNotPaid() throws RemoteException;
public void setDept(int dept) throws RemoteException;
public void setEMPNum(int empnum) throws RemoteException;
public void setName(String name) throws RemoteException;
public void setHourly(int hourly) throws RemoteException;
public void setPassword(String passwd) throws RemoteException;
public void setPayToDate(int paytodate) throws RemoteException;
public void setTimeNotPaid(int timenotpaid) throws RemoteException;

}

Step 5: Implement the RecordPK Class
The RecordPK class is a helper class, required by entity beans to provide objects
that implement java.io.Serializable. Only serializable objects may be passed as
arguments or as return values over RMI.

Serializable objects are returned, for example, by ejbCreate() or
ejbFindByPrimaryKey().

The code is implemented in source file RecordPK.java. You must specify the
primary key class for entity beans, during the EJB deployment process (as
described in “Step 8: Deploy the EJBs” on page 282).
package com.ibm.vse.ejb.vsamexample;

public class RecordPK implements java.io.Serializable
{

public int empnum;
}

Step 6: Implement the EJB Code
The code provided here implements the sample EJB RecordBean. Methods are
provided to:
v Access the RecordBean’s data.
v Connect to the remote VSE/ESA host.
v Obtain data from the database.
v Update the database.

This section includes only parts of the code. If you require the complete source
code, refer to the file RecordBean.java provided with the VSE Connector Client
(see “Using the Online Documentation Options” on page 28 for details).
...
public class RecordBean implements EntityBean
{

/* the indexes of the fields in the backend map */
private int EMPNUM_INDEX = 0;
private int NAME_INDEX = 2;

Using EJBs

Chapter 22. Using EJBs to Represent Data 277

private int PASSWORD_INDEX = 1;
private int DEPT_INDEX = 3;
private int HOURLY_INDEX = 4;
private int PAYTODATE_INDEX = 5;
private int TIMENOTPAID_INDEX = 6;

private transient VSESystem system;
private transient VSEVsamRecord record;

private transient EntityContext ctx;
private int empnum = 0;
...

Step 6.1: Implement the Methods of the EntityBean Interface
The methods described here implement the methods of interface EntityBean. These
methods:
1. Access the remote database.
2. Fill the given EJB instance with one VSAM record.

The example uses the ejbFindByprimaryKey() method, because the EJB has been
implemented using bean-managed persistence1. As a result, the EJB implements all
the database calls that are required to send the object out to the database, and to
read it back in again.

The logic for accessing the database is implemented in methods ejbLoad() and
ejbStore(). The ejbCreate() method creates a new employee record with the
parameters shown below, and returns its primary key.

public RecordPK ejbCreate(int empnum, String name, String password,
int dept, int hourly, int paytodate,
int hoursnotpaid)

throws CreateException
{

RecordPK rpk= new RecordPK();
rpk.empnum = empnum;
try {

rpk = this.ejbFindByPrimaryKey(rpk);
}
catch (Exception e)
{

try {
system = connectVSE();
record = new VSEVsamRecord(system, "VSESP.USER.CATALOG",

"EJB.VSAM.EXAMPLE", "EJBMAP");
record.setKeyField(EMPNUM_INDEX, new Integer(empnum));
record.setField(NAME_INDEX, name);
record.setField(PASSWORD_INDEX, password);
record.setField(DEPT_INDEX, new Integer(dept));
record.setField(HOURLY_INDEX, new Integer(hourly));
record.setField(PAYTODATE_INDEX, new Integer(paytodate));
record.setField(TIMENOTPAID_INDEX, new Integer(hoursnotpaid));
record.add();
rpk.empnum = empnum;
this.empnum = empnum;
return (rpk);

}
catch (IOException ioe)
{

1. The opposite of bean-managed persistence is called container-managed persistence. Here, the EJB developer does not have to bother
with synchronizing with the database. Instead, the entity bean’s deployment descriptor specifies the fields that should be
managed by the EJB container. At runtime, the container calls the ejbLoad() and ejbStore() methods when required, but the EJB
developer must not provide any code for these methods.

Using EJBs

278 VSE/ESA: e-business Connectors, User’s Guide

...
}

}
}

The following three methods must be implemented, because the EJB implements
bean-managed persistence:
v ejbLoad()
v ejbStore()
v ejbFindByPrimaryKey()

/**
* fill the EJB with new data from the remote database.
*/
public void ejbLoad() throws RemoteException
{

RecordPK pk = (RecordPK) ctx.getPrimaryKey();
system = connectVSE();
try {

record = findRecord(pk.empnum, system);
}
catch (FinderException e)
{

...
}

}

/**
* make a change permanent in the remote database.
*/
public void ejbStore() throws RemoteException
{

try {
record.commit();

}
catch (IOException e)
{

...
}

}

/**
* looks up the record and returns pk back to the caller.
* If the record is not found, a FinderException is thrown
* We have to provide this method, because we implement the EJB
* using bean-managed persistence.
*/
public RecordPK ejbFindByPrimaryKey(RecordPK pk)
throws FinderException, RemoteException
{

VSESystem system = connectVSE();
VSEVsamRecord record = findRecord(pk.empnum, system);
return (pk);

}

The methods described here are also contained in the interface EntityBean. There
are a number of other interface methods that are not shown here: if you require the
complete source code, refer to the VSE Connector Client online documentation (see
“Using the Online Documentation Options” on page 28 for details).

Note: The ejbRemove() method only deletes the local instance of the VSAM record
that is related to this EJB. To commit the change in the remote database, a
call to ejbStore() is required.

Using EJBs

Chapter 22. Using EJBs to Represent Data 279

public void ejbRemove() throws RemoteException
{

try {
record.delete();

}
catch (IOException e)
{

throw new RemoteException("" + e);
}

}

public void ejbActivate () throws RemoteException
{

system = connectVSE();
try {

findRecord(empnum, system);
}
catch (FinderException e)
{

throw new RemoteException("FinderException");
}

}

Step 6.2: Access VSE/ESA Host and Get Records from the
Database
In this section, the methods are implemented to:
v Access the VSE/ESA host.
v Get records from the database.

/**
* Create connection specification. The connection spec holds
* information about the physical host connection.
*/
public VSESystem connectVSE() throws RemoteException
{

VSEConnectionSpec spec;
VSESystem system;
try
{

spec = new VSEConnectionSpec(InetAddress.getByName("9.164.155.95"),
2893, "sysa","mypassw");

// This is application server dependent
Properties p = new Properties();
p.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
p.put(javax.naming.Context.PROVIDER_URL, "iiop:///");

Context ctx = new InitialContext(p);
spec.setJNDIContext(ctx);
spec.setJNDIName("eis/VSEConnector");

/* Stay logged on with this user for lifetime of this connection */
spec.setLogonMode(true);

/* Create VSE system instance with this connection */
system = new VSESystem(spec);

}
catch (java.net.UnknownHostException e)
{

throw new RemoteException("Unknown host");
}

}

/**
* find and load the record with pk empnum from VSAM.

Using EJBs

280 VSE/ESA: e-business Connectors, User’s Guide

*/
protected VSEVsamRecord findRecord(int empnum, VSESystem system)
throws FinderException
{

try {
VSEVsamRecord rec = new VSEVsamRecord(system, "VSESP.USER.CATALOG",

"EJB.VSAM.EXAMPLE", "EJBMAP");
rec.setKeyField(EMPNUM_INDEX, new Integer(empnum));
if (rec.isExistent())
{

rec.refresh();
return rec;

}
else
{

throw new FinderException("Record not found.");
}

}
catch (IOException e)
{

throw new FinderException("IOException");
}

}

Step 6.3: Implement the Set & Get Methods to Access the Data
Fields
In this section, the set and get methods are implemented in order to access the
data fields (columns). These methods are the interface that EJB clients use, in order
to access the encapsulated data of the EJB.

For each column you wish to access, you must provide a get method.

For all columns that are to be updated, you must provide a set method.

Notes:

1. These methods do not access the remote database. Instead, they simply return
or modify the EJB’s internal data.

2. If you want to permanently update changes, you must use the interface method
ejbStore().
/**
* returns the employee number for the record.
*/
public int getEMPNum() throws RemoteException
{

try {
return ((Integer)record.getField(EMPNUM_INDEX)).intValue();

}
catch (IOException e)
{

throw new RemoteException("IOException");
}

}

/**
* set the employee number for the current record
*/
public void setEMPNum(int empnum) throws RemoteException
{

try
{

record.setField(EMPNUM_INDEX, new Integer(empnum));
}
catch (IOException e)

Using EJBs

Chapter 22. Using EJBs to Represent Data 281

{
throw new RemoteException("IOException");

}
return;

}
...

}

Step 7: Compile the Java Source Files
You must compile the Java source code described in this section, in order to setup
the EJB sample. Run the compile jobs from directory \vsecon\samples.

Note: You must include certain JAR files containing EJB-related classes, in your
local classpath. For details, refer to the:
v VSE Connector Client online documentation (see “Using the Online

Documentation Options” on page 28 for details).
v The documentation references provided within the section “Installing the

WebSphere Application Server” on page 23.

The VSE Connector Client provides already-compiled class files, for all sample Java
source files. However, the following source files belong to the EJB example.
1. Job to compile the utilities to create and display the sample data:

javac com\ibm\vse\samples\EJBPrepareData.java
javac com\ibm\vse\samples\EJBShowData.java

2. Job to compile the EJB source files:
javac com\ibm\vse\samples\Employer.java
javac com\ibm\vse\samples\EmployerHome.java
javac com\ibm\vse\samples\EmployerBean.java
javac com\ibm\vse\samples\Employee.java
javac com\ibm\vse\samples\EmployeeHome.java
javac com\ibm\vse\samples\EmployeeBean.java
javac com\ibm\vse\samples\Record.java
javac com\ibm\vse\samples\RecordHome.java
javac com\ibm\vse\samples\RecordBean.java

3. Job to compile the EJB clients:
javac com\ibm\vse\samples\EJBApplet.java
javac com\ibm\vse\samples\EJBClient.java

Step 8: Deploy the EJBs
The method you use to deploy your EJBs differs according to the version of the
WebSphere Application Server you are using. The VSE Connector Client online
documentation provides detailed instructions on how to deploy EJBs for various
versions of the WebSphere Application Server (see “Using the Online
Documentation Options” on page 28).

For details of how to deploy EJBs:
1. Proceed to the main window of the Online Documentation, as shown in

Figure 5 on page 28.
2. Select Programming Concepts.
3. Select EJBs.
4. Select An example to represent VSAM records.
5. Select either:

v Deploy the EJBs on WebSphere 3.x
v Deploy the EJBs on WebSphere 4.x

Using EJBs

282 VSE/ESA: e-business Connectors, User’s Guide

Step 9: Access the EJBs from an EJB Client

Prerequisites for Accessing the EJBs from an EJB Client
Before you can begin accessing the EJBs you have created from an EJB client, these
conditions must be met:
1. You have successfully created the VSAM cluster required for running the

sample, as described in “Step 1: Define the Sample’s VSAM Cluster” on
page 275.

2. You have filled the above cluster with sample data, for example by using the
utility EJBPrepareData, as described in “Step 2: Create the Record Layout for
Employees” on page 275.

3. TCP/IP for VSE/ESA must be running on the VSE/ESA host (as described in
“Configuring and Activating TCP/IP for VSE/ESA” on page 21).

4. The VSE Connector Server must be running on the VSE/ESA host (as described
in “Starting the VSE Connector Server” on page 36).

5. You have specified the correct IP address, a VSE user ID, and password, in
RecordBean.java (as described in “Using the Online Documentation Options”
on page 28).

6. The IBM HTTP Server must be running on the middle-tier (as described in
“Configuring and Activating the VSE HTTP Server” on page 21).

7. The WebSphere Application Server must be running on the middle-tier (refer to
the documentation references provided in “Installing the WebSphere
Application Server” on page 23).

8. The sample EJBs are running (as described in “Step 8: Deploy the EJBs” on
page 282).

How EJBs Are Accessed from an EJB Client
An EJB client accesses the business logic contained in the EJBs, in this general way:
1. The EJB client uses a naming service to locate the EJB’s home interface.
2. The naming service (usually the Java Naming and Directory Interface, JNDI)

returns a reference to an object that implements the EJB’s home interface
(described in “How an EJB Client Accesses EJBs” on page 271).

3. The EJB client makes a call on the EJB’s home interface, to gain access to the
EJB’s remote interface (described in “How an EJB Client Accesses EJBs” on
page 271).

4. The EJB client make calls to the EJB’s business methods against the remote
interface.

However, the actual code you use to access an EJB from an EJB client will vary
according to the type of Web Application Server you are using.

Figure 136 on page 284 shows how the EJBClient sample application accesses the
EJBs via their home interfaces (shown as H), and remote interfaces (shown as R). If
you wish to see the complete code for accessing the EJBs using the EJB Client, refer
to the VSE Connector Client online documentation.

Using EJBs

Chapter 22. Using EJBs to Represent Data 283

The two session beans are in fact themselves EJB clients. When accessing the
RecordBean, they perform the same processing of looking up the home interface
and remote interface, as the EJB client does when it gets access to the session
beans.

The session beans implement two different views on the same data, by including
or not a particular column into a view. In addition, however, the session beans
specify access rights for specific columns. For example, the EmployeeBean might
only be able to read a given column, whereas the EmployerBean might also be able
to update this column.

Sample EJB Client Source Code for Accessing EJBs from an
EJB Client
This section shows the source code for the sample EJBClient application, that is
part of the VSE Connector Client. The code is based upon the use of the WebSphere
Application Server as the Web Application Server type.

Figure 136. How the EJB Client Accesses EJBs in the Provided Example

Using EJBs

284 VSE/ESA: e-business Connectors, User’s Guide

The numbers below refer to the numbers in Figure 137:

�1� Define properties. Specifying iiop:/// as the PROVIDER_URL causes the EJB
client to search for a name server on the local host listening on port
number 900, which is the default for the WebSphere Application Server. In
a real environment you would specify a complete URL, such as:
iiop://bankserver.mybank.com:9019

�2� The initial context object is instantiated.

�3� The home interface of the EmployerBean is looked up. The string used
here to identify the EJB, is stored in the EJB’s deployment descriptor. You
can also view the EJB’s deployment properties by using the WebSphere
Administrative Console.

public class EJBClient
{

public static void main(String[] argv)
{

try
{

EmployerHome employerh;
Properties p = new Properties(); �1�
p.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
p.put(javax.naming.Context.PROVIDER_URL, "iiop:///");
InitialContext ic = new InitialContext(p); �2�
Object obj = (Object) ic.lookup("EmployerBean"); �3�
if (obj instanceof org.omg.CORBA.Object) �4�
{

employerh =
(EmployerHome)(javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object)obj, EmployerHome.class));
}
else
{

System.out.println(
"Did not get an org.omg.CORBA.Object from lookup().");

return;
}
Employer employer = employerh.create(1003, "newpass3"); �5�
System.out.println("employer.calcPayToDate() = " + �6�

employer.calcPayToDate());
Vector v = employer.getEMPInfo();
System.out.println("employer.getEMPInfo() :");
for (int i=0;i<v.size();i++)

System.out.println(" " + v.elementAt(i).toString());
}
catch (Exception e)
{

...
}

}
}

Figure 137. Example of EJB Client Code

Using EJBs

Chapter 22. Using EJBs to Represent Data 285

�4� Cast the returned object to the EJB’s home interface class. After an object is
returned by the lookup method, you must use the static method
PortableRemoteObject.narrow() to obtain an EJB home object for the specified
EJB.

�5� Create a remote interface object to obtain access to the EJB’s business logic
methods. This call to the remote interface create() method, invokes the
ejbCreate() method of the EJB.

�6� Access the EJB’s business logic methods. For example, get some properties
of employer that has the number 1003. Please be aware however, that the
EJB is always accessed via the remote object (in this example,
“Employer.class”). An EJB client cannot call methods that belong to the EJB
directly (in this example, the EmployerBean.class). The above example
employee number and password are taken from the EJB sample provided
with the VSE Connector Client, which also provides utilities to fill the
sample VSAM cluster with some sample data.

Using EJBs

286 VSE/ESA: e-business Connectors, User’s Guide

Chapter 23. Extending the Java-Based Connector

This chapter describes how you can extend the Java-based connector in 2-tier and
3-tier environments, by writing your own “plugins”. It makes much use of the
“Date and Time plugin” example, which obtains and displays a VSE/ESA host’s
current date and time.

By writing your own plugins, you can provide additional access to:
v resources (such as accessing VSAM files that are currently open in CICS).
v applications (such as starting CICS transactions, or starting Vendor applications).

You can write your plugin to consist of:
v A client plugin only. You do so by extending the VSE Java Beans class library. In

this case, your plugin is a JavaBean which itself uses the (existing) JavaBeans to
access data or provide services. Note: This JavaBean does not implement
VSEPlugin (see below for details).

v A client plugin and a server plugin. In this case, your server plugin extends the
capabilities of the VSE Connector Server by providing additional functionality
that is required by your client plugin.

Your server plugin consists of a VSE PHASE that is a plugin to the VSE Connector
Server. This PHASE (which you write using LE/VSE-C) is loaded during startup of
the VSE Connector Server. The PHASE must also provide a well-defined interface
to enable the VSE Connector Server to call the implemented functions.

Your client plugin consists of one or more JavaBeans written by yourself. These
JavaBeans implement the Java class VSEPlugin, which is contained in the package
com.ibm.vse.connector. For further details of how you can write your own
JavaBeans, refer to the online documentation.

This chapter contains these main sections:
v “Implementing a Server Plugin” on page 288
v “Implementing a Client Plugin” on page 303
v “General Considerations When Designing Your Plugin” on page 305

© Copyright IBM Corp. 2000, 2003 287

Implementing a Server Plugin
A server plugin consists of a set of callback functions that are called by the VSE
Connector Server in a given sequence. Each server plugin consists of a PHASE that
you write using LE/VSE-C, which is loaded during VSE Connector Server startup.
Your plugin must provide a well-defined interface to allow the VSE Connector
Server to call the functions implemented in your server plugin. These callback
functions (PluginMainEntryPoint, SetupPlugin, and so on) are described later in
this section.

An overview of how the functions are called by the VSE Connector Server, is
provided in Figure 138:

A typical sequence of how functions are called by the VSE Connector Server, is
provided in Figure 139 on page 289, Figure 140 on page 290, and Figure 141 on
page 291:
v Figure 139 describes the server plugin’s functions that are called during the

startup of the VSE Connector Server.
v Figure 140 and Figure 141 describe the server plugin’s functions that are called

when the VSE Connector Server receives a request from a client, and after the
request processing is finished, during shutdown of the VSE Connector Server.

Figure 138. Overview of How a Server Plugin’s Functions Are Called

Extending the Java-Based Connector

288 VSE/ESA: e-business Connectors, User’s Guide

�1� By loading the server plugin phase (CDLOAD), the VSE Connector Server
obtains the entry point of the server plugin (PluginMainEntryPoint). This
entry point is then called six times to obtain the entry points of the other
server plugin functions. Each call returns the entry point of a function
specified by the parameter iFuncID. When this step is completed, the
server has a list of the entry points in the plugin phase.

�2� The SetupPlugin function is the first function that the VSE Connector Server
calls, after the server plugin has been loaded. This function is used to
initialize all request-independent resources (allocate storage, open database
connections, and so on).

�3� The VSE Connector Server calls the GetHandledCommands function
immediately after calling the SetupPlugin function. GetHandledCommands
returns a list of IDs that are accepted by the server plugin. The VSE
Connector Server later uses this information in order to direct a request to
a particular server plugin. Therefore, command IDs must be unique across
all server plugins. The VSE Connector Server accepts a predefined range of
command IDs. Refer to the header file IESPLGIN.H file for details.

Figure 139. How a Plugin’s Functions Are Called During Startup

Extending the Java-Based Connector

Chapter 23. Extending the Java-Based Connector 289

Figure 140. How a Plugin’s Functions Are Called When a Request Is Received

Extending the Java-Based Connector

290 VSE/ESA: e-business Connectors, User’s Guide

�4� After a request has been received from a client, the VSE Connector Server
first determines which server plugin should handle the request, and calls
the SetupHandler function of the selected server plugin. The server plugin
allocates a request handler for this particular request, consisting of a control
block used to process the request. The control block is allocated by the
SetupHandler function and is specific to a request.

�5� To process the specific request, the VSE Connector Server calls the
ExecuteHandler function of the server plugin. The server plugin normally
splits this code into small chunks, each of which is called by the VSE
Connector Server during the next calls to the ExecuteHandler function (steps
‘6’ and ‘7’ below). The control block allocated by the SetupHandler function
is passed for each call to the ExecuteHandler function. This control block
can also be used to store local variables. The VSE Connector Server then
processes the action returned by the ExecuteHandler function, which can be
sending or receiving data, or waiting for timers or ECBs.

�6� The VSE Connector Server again calls the ExecuteHandler function of the
server plugin, to continue processing the request. The control block
allocated by the SetupHandler function is again passed to the ExecuteHandler
function. The VSE Connector Server then processes the action returned by
the ExecuteHandler function.

�7� The VSE Connector Server calls the ExecuteHandler function of the server
plugin, to continue processing the request. The VSE Connector Server then
processes the action returned by the ExecuteHandler function, which
indicates that the server plugin has finished all processing (all actions are
completed).

�8� The VSE Connector Server calls the CleanupHandler function to allow the
server plugin to cleanup all resources allocated for this specific request. If
an unexpected error occurs during request processing (for example a
network connection is broken), the CleanupHandler function should be able
to cleanup all resources that were used up to this point of time.

�9� The VSE Connector Server is shut down, and it calls the CleanupPlugin
function of all the loaded server plugins.

Figure 141. Overview of How a Plugin’s Functions Are Called During Server Shutdown

Extending the Java-Based Connector

Chapter 23. Extending the Java-Based Connector 291

Implementing a PluginMainEntryPoint Function
The VSE Connector Server calls this function to establish the entry point for a
plugin. The PluginMainEntryPoint function fetches all other entry points of the
plugin’s functions. The VSE Connector Server calls PluginMainEntryPoint several
times. Each call then returns the entry point of the plugin function specified using
the iFuncID parameter.

Notes:

1. You should not rename the function PluginMainEntryPoint. This is because the
C-Header file IESPLGIN.H contains a #pragma linkage statement which defines
this function as fetchable.

2. If you do decide to rename this function, you must provide your own #pragama
linkage statement:
#pragma linkage(MyEntryPointFunction,fetchable)

which forces MyEntryPointFunction to be used as entry point of your PHASE.

Here is an example of how the PluginMainEntryPoint function can be coded:

/***
* Function: PluginMainEntryPoint Main entry point of the Plugin *
* PHASE. *
* Parameters: iFuncID Function ID to get the entrypoint for *
* Return: Entrypoint of the requested Function or NULL *
***/
FUNC_PTR PluginMainEntryPoint(int iFuncID)
{

switch(iFuncID)
{

case PLGFUNC_SETUPPLUGIN:
return((FUNC_PTR)fetchep((FETCH_PTR)SetupPlugin));
break;

case PLGFUNC_CLENUPPLUGIN:
return((FUNC_PTR)fetchep((FETCH_PTR)CleanupPlugin));
break;

case PLGFUNC_GETHANDLEDCMDS:
return((FUNC_PTR)fetchep((FETCH_PTR)GetHandledCommands));
break;

case PLGFUNC_SETUPHANLDER:
return((FUNC_PTR)fetchep((FETCH_PTR)SetupHandler));
break;

case PLGFUNC_EXECUTEHANLDER:
return((FUNC_PTR)fetchep((FETCH_PTR)ExecuteHandler));
break;

case PLGFUNC_CLEANUPHANLDER:
return((FUNC_PTR)fetchep((FETCH_PTR)CleanupHandler));
break;

default:
return(NULL);
break;

};
return(NULL);

};

Figure 142. Sample Code for Implementing PluginMainEntryPoint Function

Extending the Java-Based Connector

292 VSE/ESA: e-business Connectors, User’s Guide

Implementing a SetupPlugin Function
The VSE Connector Server calls this function after a server plugin has been loaded.
The SetupPlugin function:
v Performs all the initialization steps required for the plugin.
v Gets a pointer to a PLUGIN_INFO block, which contains information about:

– The VSE/ESA system parameters that are specified in the plugin
configuration member.

– Entry points of utility functions that the VSE Connector Server provides.

You can also allocate your own plugin private-control block, and pass the pointer
of this block back to the VSE Connector Server. The VSE Connector Server passes
this pointer to each function belonging to your plugin, that is called from this
point-of-time onwards.

Notes:

1. If you define the same plugin more than once, the plugin will be loaded more
than once.

2. The SetupPlugin is called separately for each plugin “instance”.
3. All occurrences of plugin private-control blocks that you allocate, are separated

from each other.

Here is an example of how the SetupPlugin function can be coded:

/***
* Function: SetupPlugin Sets up the Plugin. The Plugin may alloc *
* resources used for command processing. *
* The Plugin can allocate a PluginPrivate *
* Data Area, that is passed to each function*
* Parameters: lplpPluginPrivate Pointer to a Pointer to the Plugins *
* private Data area. This pointer should be *
* set by the Plugin. *
* lpPluginInfo Pointer to a struct PLUGIN_INFO containing*
* several information about the server *
* Return: Error values see PLGERR_xxx values *
***/
int SetupPlugin(void** lplpPluginPrivate,PLUGIN_INFO* lpPluginInfo)
{

SAMPLE_PLUGIN* lpSamplePlugin;

/* Parameter checking ... */
if(lplpPluginPrivate==NULL || lpPluginInfo==NULL)

return(PLGERR_INVALID_PARAM);

/* Allocate Plugin-Private Data area */
*lplpPluginPrivate = malloc(sizeof(SAMPLE_PLUGIN));
if(*lplpPluginPrivate==NULL)

return(PLGERR_NULL_POINTER);

/* Fill the Plugin-Info */
lpPluginInfo->dwPluginVersion = PLUGIN_VERSION;
strcpy(lpPluginInfo->szDescription,PLUGIN_DESCRIPTION);

/* Initialize the Plugin ... */

lpSamplePlugin = (SAMPLE_PLUGIN*)*lplpPluginPrivate;

Figure 143. Sample Code for Implementing the SetupPlugin Function (Part 1 of 2)

Extending the Java-Based Connector

Chapter 23. Extending the Java-Based Connector 293

Implementing a CleanupPlugin Function
The VSE Connector Server calls this function before a server plugin has been
unloaded. It is the counterpart to the SetupPlugin function.

The SetupPlugin function performs all required cleanup steps. The plugin now
de-allocates plugin private-control blocks that were previously allocated.

Here is an example of how the CleanupPlugin function can be coded:

/* Open SYSLOG as trace output */
lpSamplePlugin->lpOutput = fopen("DD:SYSLOG","w");
if(lpSamplePlugin->lpOutput==NULL)

return(PLGERR_NULL_POINTER);

fprintf(lpSamplePlugin->lpOutput,"SetupPlugin Called\n");

return(PLGERR_NO_ERROR);
};

Figure 143. Sample Code for Implementing the SetupPlugin Function (Part 2 of 2)

/***
* Function: CleanupPlugin Cleans up the Plugin. *
* Parameters: lpPluginPrivate Pointer to the Plugins private data area*
* Return: Error values see PLGERR_xxx values *
***/
int CleanupPlugin(void* lpPluginPrivate)
{

SAMPLE_PLUGIN* lpSamplePlugin;

/* Parameter checking... */
if(lpPluginPrivate==NULL)

return(PLGERR_INVALID_PARAM);

/* Cleanup the Plugin ... */

lpSamplePlugin = (SAMPLE_PLUGIN*)lpPluginPrivate;

fprintf(lpSamplePlugin->lpOutput,"CleanupPlugin Called\n");

/* Close trace output */
fclose(lpSamplePlugin->lpOutput);

/* Free the Plugin Private Data */
free(lpPluginPrivate);

return(PLGERR_NO_ERROR);
};

Figure 144. Sample Code for Implementing the CleanupPlugin Function

Extending the Java-Based Connector

294 VSE/ESA: e-business Connectors, User’s Guide

Implementing a GetHandledCommands Function
The VSE Connector Server calls this function immediately after SetupPlugin has
completed. It is used to determine which commands (requests), and how many
commands (requests), are currently being handled by a server plugin.

GetHandledCommands passes an array of command-Ids back to the VSE Connector
Server.

Here is an example of how the GetHandledCommands function can be coded:

The HandledCommandIDs array is defined as follows:
int HandledCommandIDs[2] = { CMD_SAMPLE_TIME,

CMD_SAMPLE_DATE };

/***
* Function: GetHandledCommands Returns a list of CommandIDs that are*
* handled by this Plugin. *
* Parameters: lpPluginPrivate Pointer to the Plugins private data area*
* lpiNumCommands Pointer to a int that should be set by *
* Plugin to the number of Commands *
* lpCommandIDs Pointer to a array of ints. Each element *
* defines one CommandID *
* Return: Error values see PLGERR_xxx values *
***/
int GetHandledCommands(void* lpPluginPrivate,

int* lpiNumCommands,
int** lpCommandIDs)

{
SAMPLE_PLUGIN* lpSamplePlugin;

/* Parameter Checking ... */
if(lpPluginPrivate==NULL ||

lpiNumCommands==NULL ||
lpCommandIDs==NULL)
return(PLGERR_INVALID_PARAM);

lpSamplePlugin = (SAMPLE_PLUGIN*)lpPluginPrivate;

fprintf(lpSamplePlugin->lpOutput,"GetHandledCommands Called\n");

/* There are 2 Command sHandled by the Sample */
*lpiNumCommands = 2;

/* Return a Pointer to the List of Command-IDs */
*lpCommandIDs = &HandledCommandIDs[0];

return(PLGERR_NO_ERROR);
};

Figure 145. Sample Code for Implementing the GetHandledCommands Function

Extending the Java-Based Connector

Chapter 23. Extending the Java-Based Connector 295

Implementing a SetupHandler Function
The VSE Connector Server calls this function each time a request is received that
must be handled by a server plugin:
1. This function initializes the request handler for the a request.
2. The VSE Connector Server passes a pointer to a CMD_INFO control block to

this function.
3. The CMD_INFO control block contains information about the command to

handle (for example the command ID of the request). You can allocate a
handler private-control block and pass a pointer to it back to the server. The
server engine will pass this pointer to each function call belonging to the same
request.

Note: It is possible that the same request is executed multiple times. For each
’instance’ of request the function SetupHandler is called separately. That is, the
handler private-control blocks you allocate are separated from each other (you
must account for this in your coding).

You must also ensure that your handler is implemented as reentrant.

Here is an example of how the SetupHandler function can be coded:

/***
* Function: SetupHandler Sets up a Command Handler. *
* Parameters: lpPluginPrivate Pointer to the Plugins private data area*
* lplpCommandPrivate Pointer to a Pointer to the Handlers *
* private data area *
* lpCmdInfo pointer to a struct CMD_INFO defining the *
* actual command *
* Return: Error values see PLGERR_xxx values *
***/
int SetupHandler(void* lpPluginPrivate,

void** lplpCommandPrivate,
CMD_INFO* lpCmdInfo)

{
SAMPLE_PLUGIN* lpSamplePlugin;

/* parameter Checking ... */
if(lpPluginPrivate==NULL ||

lplpCommandPrivate==NULL ||
lpCmdInfo==NULL)
return(PLGERR_INVALID_PARAM);

lpSamplePlugin = (SAMPLE_PLUGIN*)lpPluginPrivate;

/* Initialize the Handler... */
fprintf(lpSamplePlugin->lpOutput,"SetupHandler Called\n");

/* check which Command we should handle */
switch(lpCmdInfo->Command.dwCommand)

Figure 146. Sample Code for Implementing the SetupHandler Function (Part 1 of 2)

Extending the Java-Based Connector

296 VSE/ESA: e-business Connectors, User’s Guide

Implementing an ExecuteHandler Function
The VSE Connector Server calls this function to execute the processing of the
handler. The VSE Connector Server passes the plugin’s private-control block and
the handler’s private-control block to this function. A pointer is also passed to the
CMD_INFO block, which contains information about the command to handle. This
block is also used to tell the VSE Connector Server what action it should take after
the ExecuteHandler function has returned control to it.

The VSE Connector Server runs in a single task only. Therefore, your server plugin
is also executed in the one (main) task. As a result, you should ensure that the
ExecuteHandler function (and all other functions) return control to the VSE
Connector Server as quickly as possible. To ensure this, you should split the
request processing into several small chunks, where each chunk is executed in a
minimum amount of time. For an example of how to split the request processing
into several chunks, refer to the “Date and Time Sample plugin” (described in
“Using the IBM-Supplied Server Plugin Example” on page 302).

Your request handler can set up a action command in the CMD_INFO block and
return control to the VSE Connector Server, if it must wait:
v for an ECB (Event Control Block)
v for a timer
v to receive data from the client
v to send data to the client

The VSE Connector Server will wait for the event you specified and will pass
control to your plugin, and will pass control to your plugin, after the event has
occurred. Therefore, your plugin should not itself wait, since this would block all
parallel-executed tasks being performed by the VSE Connector Server.

You also can set up an action command if you want to send or receive data over
the network. Your plugin does not have access to network services directly.
Instead, the VSE Connector Server handles the sending or receiving of data over
the network, on behalf of your plugin.

Here is an example of how the ExecuteHandler function can be coded:

{
case CMD_SAMPLE_TIME: /* We are Handling Time-Command */

/* allocate Command Private datat area */
...
break;

case CMD_SAMPLE_DATE: /* We are Handling Date Command */
/* allocate Command Private datat area */
...
break;

};
return(PLGERR_NO_ERROR);

};

Figure 146. Sample Code for Implementing the SetupHandler Function (Part 2 of 2)

Extending the Java-Based Connector

Chapter 23. Extending the Java-Based Connector 297

The code fragment of Figure 148 shows how to distinguish between multiple
requests within one plugin. To split the request processing into several small
chunks, the CMD_INFO block contains a field iState which can be used to store the
actual state of the handler:

When a request has been received, the VSE Connector Server sets the field iState to
zero. The ExecuteHandler function can set this field to a value representing its
actual state. The iState field will be passed to the ExecuteHandler function
unchanged at the next call. The VSE Connector Server continues to call the
ExecuteHandler function each time the client gets dispatched, until the action
PLGACT_FINISH is returned.

...
/* Check which Command to handle */
switch(lpCmdInfo->Command.dwCommand)
{

case CMD_SAMPLE_TIME: /* Time Command */
...
break;

case CMD_SAMPLE_DATE: /* Date Command */
...
break;

...
};

Figure 147. Sample Code for Implementing the ExecuteHandler Function

/* Check in which state we are (0 for first call) */
switch(lpCmdInfo->iState)
{

case 0: /* Initial State */
/* Verify that the Command is correctly sent */
if(lpCmdInfo->Command.dwDataSize!=0)

return(PLGERR_PROTOCOL_ERROR);

/* OK, start processing */
...
/* return from handler without any special action */
lpCmdInfo->iAction = PLGACT_NOTHING;
lpCmdInfo->iState = 1;
break;

case 1: /* Send the Rresponse */
/* Send the Response Command */
/* Setup the COMMAND-Struct for Response */
memset(&lpCmdInfo->Response,0,sizeof(COMMAND));
lpCmdInfo->Response.dwCommand = RES_SAMPLE_TIME;
lpCmdInfo->Response.dwDataSize = sizeof(SAMPLE_TIME);

/* Setup Action and State */
lpCmdInfo->iAction = PLGACT_SEND_RESP;
lpCmdInfo->iState = 2; /* State after Send-Command */
break;

case 2: /* state after send reponse */
...

}

Figure 148. Sample Code for Distinguishing Between Multiple Requests Within a Plugin

Extending the Java-Based Connector

298 VSE/ESA: e-business Connectors, User’s Guide

Implementing a CleanupHandler Function
The VSE Connector Server calls this function after a request has been executed. It
is the counterpart of the SetupHandler function. This function should cleanup the
handler and may free the handler private-control block (if allocated during the
SetupHandler function).

The SetupHandler function is normally called after a request processing has been
completed (that is, the ExecuteHandler function has set the action to
PLGACT_FINISH). If a networking error occurs (for example the connection is
broken), the VSE Connector Server calls the CleanupHandler function. The
CleanupHandler function should always be able to cleanup the handler. It should
check the handler’s state, and cleanup all resources that have been allocated by the
handler.

Creating Your Own Plugin Callback Functions
The plugin callback functions described previously are those that your server
plugin must implement, and which are called by the VSE Connector Server.
However, you may decide to split your code into additional plugin callback
functions. You also can decide to split the code into several modules.

As previously stated, a VSE server plugin is designed to be implemented in
LE/VSE-C. If you do not want to implement it in C, you may either:
v Implement the complete plugin in a different programming language (such as

PL1 or assembler). However, you must ensure that your code is LE/VSE
compliant, and supports the calling conventions used by LE/VSE.

v Use the skeleton as a small stub code, which calls functions implemented in a
different programming language. This is the recommended method.

Figure 149 is a chunk of code that illustrates the second method (using the skeleton
as a small stub code). In this example, a function called MyASMExecuteFunction is
called (via the symbol MYASMEXE). The calling convention’s Operating System
passes the required parameters.

/* define the ASM function */
#pragma map(MyASMExecuteFunction,"MYASMEXE")
#pragma linkage(MyASMExecuteFunction,OS)

int ExecuteHandler(void* lpPluginPrivate,
void* lpCommandPrivate,
CMD_INFO* lpCmdInfo)

{
int rc;

rc = MyASMExecuteFunction(lpCmdInfo);
/* TODO errro checking ... */

return(PLGERR_NO_ERROR);
};

Figure 149. Example of Calling a Stub Code Written in a Language Other Than C

Extending the Java-Based Connector

Chapter 23. Extending the Java-Based Connector 299

Action Codes Supported by the VSE Connector Server
On return from the ExecuteHandler function you have to setup the action code in
the field iAction of the CMD_INFO block. This tells the VSE Connector Server what
to do in the next iteration. Possible action codes are:

PLGACT_NOTHING
No special action, the handler requests to be called again as soon as
possible.

PLGACT_SEND
The handler wants to send data to the client. The handler has to setup the
following fields in the CMD_INFO block:
lpData

Pointer to buffer
dwDataSize

Size of data to send in bytes

Note: the buffer must be located in the handler’s private-control block. It
can not be a local variable, because a local variable is only valid within the
function. The handler will get control after all data has been sent.

PLGACT_RECEIVE
The handler wants to receive data from the client. The handler has to setup
the following fields in the CMD_INFO block:
lpData

Pointer to buffer
dwDataSize

Size of data to receive in bytes

Note: the buffer must be located in the handler’s private-control block. It
can not be a local variable, because a local variable is only valid within the
function. The handler gets control after all data has been received.

PLGACT_SEND_RESP
The handler wants to send the response header to the client. The handler
has to setup the field Response in the CMD_INFO block. The handler gets
control after the response header has been sent.

PLGACT_FINISH
The handler tells the VSE Connector Server that the request processing is
completed. The VSE Connector Server calls the CleanupHandler function as
a result of this action, and will never call the ExecuteHandler function for
this request.

PLGACT_CHECKCANCEL
This action is like the PLGACT_NOTHING, but the VSE Connector Server
will check if the cancel byte is available to receive. A request is cancelable
if the flag FLG_CANCANCEL is specified in the command header. The
VSE Connector Server will set the field bWasCanceled to TRUE if the
cancel byte has been received.

PLGACT_WAIT
The handler wants to wait for a ECB (Event Control Block). The handler
has to setup the field lpECB to a pointer to the ECB. The handler gets
control after the ECB has been posted.

PLGACT_WAITRECV
This action is like the PLGACT_WAIT but it also waits for the availability

Extending the Java-Based Connector

300 VSE/ESA: e-business Connectors, User’s Guide

of data to receive. That is the handler gets control after the ECB has been
posted or any data is available to receive. Note: No data is received in this
action.

PLGACT_WAITTIMER
The handler wants to wait for a specified amount of time. The handler has
to set up the field iTimer in the CMD_INFO block to the number of
seconds to wait. The handler gets control after the specified amount of
time has expired.

Utility Functions Supported by the VSE Connector Server
The VSE Connector Server supports several utility functions that can be called from
within a server plugin. The plugin:
v Obtains the entry points of the functions in the PLUGIN_INFO control block,

which is passed to the SetupPlugin function.
v Stores the entry points of the functions it needs in its plugin private-control

block.

These are the utility functions that are supported:

StrToAscii
Converts an EBCDIC string to ASCII using the codepages configured in the
VSE Connector Server configuration members

StrToEbcdic
Converts an ASCII string to EBCDIC using the codepages configured in the
VSE Connector Server configuration members

StrToUpcase
Converts a string to its uppercase equivalent

StrTrim
Removes heading and trailing blanks from a string

StrReplace
Replaces any occurrence of a character in a string with an other character

MatchWildCards
Checks if a string matches a wildcard filter (with ’*’ and ’?’)

EncryptData
Encrypts a buffer of data using the random XOR algorithm

Decryptdata
Decrypts a buffer of data using the random XOR algorithm

CheckLibrSecurity
Checks if access to a Libr resource is guaranteed

CheckPOWERSecurity
Checks if access to a POWER resource is guaranteed

CheckVSAMSecurity
Checks if access to a VSAM resource is guaranteed

CheckConsoleSecurity
Checks if access to a Console resource is guaranteed

CheckICCFSecurity
Checks if access to a ICCF resource is guaranteed

Extending the Java-Based Connector

Chapter 23. Extending the Java-Based Connector 301

Using the IBM-Supplied Server Plugin Example
IESPLGIN.H and IESPLGSK.C are members supplied with the VSE Connector
Client, that were used for writing the server plugin of the “Date and Time plugin”
example. When writing your own server plugins, you can also use the contents of
these members:
v IESPLGIN.H is a C-header file used for defining the programming interface of a

plugin.
v IESPLGSK.C is a skeleton C-program which is the basis of a plugin. This

skeleton contains all the functions you require for writing your own server
plugins. It also contains comments which provide you with guidance when
writing your own plugins.

Registering and Compiling Your Server Plugin
1. You must register your server plugin in the VSE Connector Server’s plugin

configuration member (normally IESPLGIN.L). This member consist of one or
more textual lines, where each line defines one plugin. The syntax of each line
is as follows:
PLUGIN=<phase name>,PARM=<any kind of parameters>

where you use:
v Keyword PLUGIN to enter the name of your server plugin.
v Keyword PARM to pass a parameter list to your server plugin. You can use

this parameter list to configure your server plugin. Note: You must use the
keyword PARM even if you do not pass any parameters to the plugin.

2. You must enter your phase name in the LIBDEF chain of the VSE Connector
Server startup job (see “Job SKVCSSTJ – Startup Job” on page 30 for details).

3. To compile your server plugin, you should use a job like the one below. Your
plugins must be compiled using the re-entrant option (RENT).

* $$ JOB JNM=COMPILE,CLASS=4,DISP=L
* $$ LST DISP=D,CLASS=A,RBS=100
// JOB COMPILE AND LINK VSE CONNECTOR SEVRER PLUGIN
// DLBL SYSMSGS,’CVSE.COMP.MSGS’,0,VSAM,RECSIZE=3000,RECORDS=35, X

CAT=VSESPUC
// LIBDEF *,SEARCH=(YOURLIB.YOURSLIB,PRD2.SCEEBASE,PRD2.PROD, X

PRD2.DBASE)
// LIBDEF PHASE,CATALOG=YOURLIB.YOURSLIB
// OPTION ERRS,SXREF,SYM,NODECK,CATAL,LISTX

PHASE YOURNAME,*,SVA
// EXEC EDCCOMP,SIZE=EDCCOMP,PARM=’LONGNAME RENT SS SOURCE X

INFILE(DD:YOURLIB.YOURSLIB(YOURNAME.C))’
/*
// EXEC EDCPRLK,SIZE=EDCPRLK,PARM=’UPCASE MAP’
/*
// EXEC LNKEDT,SIZE=512K
/&
* $$ EOJ

4. Now you can restart the VSE Connector Server, which will write this message
to the system console:
Fn nnnn LOADING PLUGIN: <your plugin>

Extending the Java-Based Connector

302 VSE/ESA: e-business Connectors, User’s Guide

Implementing a Client Plugin
For each server plugin that you implement (described in “Implementing a Server
Plugin” on page 288), you must also implement a client plugin. The client plugin
consists of one JavaBean for each request that your server plugin supports.

These are the requirements for developing your client plugin. You must:
v Have a JDK (Java Development Kit) installed (Version 1.1.6 or later)
v Have the VSE Connector Client installed. As a minimum, the JAR file

VSEConnector.jar must be entered in your classpath.
v Use the JavaDoc of the VSE Java Beans as a API reference.

The JavaBeans you implement use the communication services provided by the
VSE Java Beans. Therefore, your JavaBeans do not have to establish a connection to
the VSE Connector Server, since each of the VSE Java Beans that your plugin uses
is a subclass of the VSEResource class. Your JavaBeans use an instance of the class
VSESystem to identify the VSE/ESA host.

The setup of the VSESystem is the same as for all other VSE Java Beans (for
example a VSELibrarian Bean). That is, you:
1. Create a VSEConnectionSpec and set the necessary properties.
2. Create a VSESystem and use the VSEConnectionSpec to identify the target

VSE/ESA host.
3. Create an instance of your Plugin Bean (when you have a VSESystem object).

Here is the outline code for setting up the VSESystem:
VSEConnectionSpec spec = new VSEConnectionSpec(...);
...
VSESystem system = new VSESystem(spec);
...
MyPluginBean myPlugin = new MyPluginBean(system);

Using the VSEPlugin class
Any client plugin JavaBean that you write must be a subclass of VSEPlugin.
VSEPlugin is a abstract class, and is itself a subclass of VSEResource. As you can
also see in the JavaDoc of the VSE Java Beans, VSEResource implements the
following methods:

setVSESystem
Sets the VSESystem to use

getVSESystem
Gets the currently used VSESystem

addVSEResourceListener
Adds a VSEResourceListener to the bean

removeVSEREsourceListener
Removes a VSEResourceListener

notifyListStarted
Notifies all registered VSEResourceListeners

notifyListAdded
Notifies all registered VSEResourceListeners

notifyListEnded
Notifies all registered VSEResourceListeners

Extending the Java-Based Connector

Chapter 23. Extending the Java-Based Connector 303

setCancel
Cancels the current request

getCancel
Gets the current cancel state

isExistent
Checks if the resource is existent

toString
Returns a string representation

In addition you may also decide to implement some of your own methods, to add
properties to your JavaBean.

To activate the request of the client plugin JavaBean, call the method execute(). This
method is declared as protected, since it should only be called from inside the
class. For example you may override the method refresh and call execute to request
a refresh of the JavaBeans properties. The method execute will trigger the execution
of the request and will return control, after the request has been processed. During
request processing, these methods are called:
v getRequestID
v getRequestSubcommand
v getRequestFlags
v getRequestError
v getRequestDataSize
v sendRequestdata
v getResponseID
v getResponseDataSize
v receiveResponseData

For the server plugin and client plugin to be able to work together:
v The Command Ids returned by the methods getRequestID and getResponseID

must match the CommandIDs used in the server plugin.
v The data format that is transferred for a request or response, must match the

data format that is supported by the server plugin.
v The plugin JavaBean must use the protocol used for communicating between the

plugin server and the plugin client.

The methods getRequestDataSize and getResponseDataSize should return the size (in
bytes) of the data that is transferred:
v If no data is transferred, this method should return zero.
v If the request or response use a DATAEX format, the method should return the

constant SIZE_UNKNOWN. This flags the command as a DATAEX command.
v The methods sendRequestData and receiveResponseData should also return the size

of the data that has been sent or received.

In addition:
v For a DATAEX command, the method should retain control until the command

has finished. After completion of the data transfer the method should return
control to indicate the end of the command.

v For a non-DATAEX command, the return value of the sendRequestData and
receiveResponseData methods should be equal to the value returned by
getRequestDataSize or getResponseDataSize.

Extending the Java-Based Connector

304 VSE/ESA: e-business Connectors, User’s Guide

Your client plugin can call these methods:
v getResponseSubCommand
v getResponseFlags
v getResponseError

in the method receiveResponseData() or after return of control from method execute().
By calling these methods, your client plugin can obtain the sub command, flags
and error values that were sent in the response.

Your client plugin can then use these values to perform error checking and
handling.

General Considerations When Designing Your Plugin
You should consider these areas when designing your plugin:
v How should I define the protocol between the VSE Connector Server and my

server plugin?.
v How can I access the resource or application on VSE/ESA?.
v What kind of data should be accessed?.
v Which requests or functions should be allowed?.
v How is the data format to be transferred over the network?.
v How should I structure the view of the data for the client plugin, when defining

the JavaBean interface?.

Specifying the Protocol Between VSE Connector Server and
Plugin

The Java-based connector uses its own protocol for communication purposes.
However, you can extend this protocol with your own commands. The
characteristics of the protocol used by the Java-based connector is described in this
section.
The protocol used by the Java-based connector is based on a TCP/IP connection: it
uses a connection-orientated stream to transfer data. The (endless) stream is
separated into smaller parts, called stream commands. A stream command consist of:
v a command header
v a data part (optional)

The various stream commands are identified by a unique 4-byte command-Id,
which is stored in the command header. The command header can contain these
optional fields:

Field Description

Flags Bit-flags (4 bytes). For details, see predefined Flag values

Error Error code (4 bytes). For details, see predefined error codes

SubCommand SubCommand ID (4 bytes). For future use only.

The command header is directly followed by the data belonging to the stream
command. If the stream command contains no data, the command header for the
next stream command follows.

The data belonging to a stream command can be transferred in two ways:

Extending the Java-Based Connector

Chapter 23. Extending the Java-Based Connector 305

v Fixed-length data
v Variable-length data (DATAEX)

When data is transferred as fixed length, the number of data bytes is defined in the
command header. After this number of bytes, the next command header starts.

When data is transferred as variable length (the “DATAEX” method), the length of
the data is not directly specified, but is instead specified implicitly within the data.
When developing your plugin, you can therefore define any kind of indicator
within the transferred data, that marks the end of the data. The sender and the
receiver of the data must both be able to recognize this indicator. After the end of
the variable length data has been reached, the next command header follows.

When developing your plugins, you can extend the existing set of requests with
your own requests. To do so, you must define:
v Command Ids for your requests and responses.
v The format of the data that belongs to the commands.

Choosing the Access Method to the Data / Application
Your must first choose the access method on VSE/ESA to be used for accessing the
data or application for which you require a plugin. Since the VSE Connector Server
runs in a batch partition (static or dynamic), your plugin will also be executed in
the same batch environment. As a result, your access method must be able to
access the data or application from within a batch program.

Your plugin must be written within the LE/VSE environment. A VSE Connector
Server plugin should be implemented in LE/VSE C, since the VSE Connector
Server is itself implemented in LE/VSE C. You can, however, call Assembler or
PL/1 modules from within your plugin.

You also can use VSE macros (such as GETVIS) when writing your plugin, but you
must program the use of the LE/VSE register yourself.

Considerations for ASCII / EBCDIC and Big / Little Endian
You can provide access to any kind of data. If you decide to access textual data,
you must use the utility functions to convert between ASCII and EBCDIC, before
transferring the data over the network. Your plugin is responsible for carrying out
the required conversions.

You can perform the conversion between ASCII and EBCDIC on the client side, but
you are recommended to perform this conversion on the server side. The utility
function to convert form ASCII to EBCDIC and vice versa uses the configured code
pages to do the translation. If you decide to transfer binary data like integer
values, you do not usually have to be concerned about big or little endian formats.

VSE/ESA (that is the S/390 platform) uses the big endian format for integer
values. Java also uses the big endian format even if it is running on an Intel (little
endian) platform. Therefore you do not have to convert integer values before
transferring them.

Deciding Which Requests / Functions Should Be Supported
You have to decide which kind of access requests or functions your plugin should
support. A VSE Connector Server plugin can support one ore more different
requests.

Extending the Java-Based Connector

306 VSE/ESA: e-business Connectors, User’s Guide

You can decide to use one request for each kind of access (read, write, update, ...),
or you can decide to use only one request which is able to execute different kinds
of access. In the latter case, you might define a parameter which informs the
plugin when a write or read operation is requested.

Transferring Data Over the Network
You must also define the interface between the server-part and the client-part of
the plugin. That is, you must define the protocol that is used to transfer the data. A
well-defined protocol is used for communicating between the VSE Connector
Client and VSE Connector Server. Therefore, your plugin’s protocol must also
support this protocol.

The protocol used for communicating between the VSE Connector Client and VSE
Connector Server consists of requests. Each request is:
v Independent from other requests.
v Transferred as a block over the network.
v Identified by a 4-byte number, the command-Id.

Your plugin can use its own command-Ids that must be within a specific range.
Although your plugin must use the predefined protocol to transfer its data, the
format of the data itself can be defined by yourself.

Structuring the Client Plugin’s View
You must also consider how the client-part view of the data or application, should
be structured. The Java-based connector allows you to implement your own
JavaBeans plugins which use the communication methods provided by the
Java-based connector.

For each request you have to implement a corresponding JavaBean on the client
side. This JavaBean is responsible for sending and receiving the data belonging to
the request. Therefore, this JavaBean must be familiar with the format of the
transferred data.

You can design the external interfaces of the plugin JavaBeans that you develop.

Extending the Java-Based Connector

Chapter 23. Extending the Java-Based Connector 307

308 VSE/ESA: e-business Connectors, User’s Guide

Chapter 24. Using the DB2-Based Connector to Access Data

This chapter describes how you use the DB2-based connector to access:
v VSAM datasets
v DL/I databases

The DB2-based connector uses these products:
v On the VSE/ESA host:

– DB2 Server for VSE
– The DB2 Stored Procedures facility (available with Version 6 or later of the

DB2 Server for VSE).
– The VSAMSQL CLI
– DL/I VSE

v On the middle-tier:
– DB2 Connect
– ODBC, JDBC, or CLI

For a general introduction to the DB2-based connector, see “Overview of the
DB2-Based Connector” on page 6.

This chapter contains these main sections:
v “How You Use DB2 Stored Procedures” on page 310 (which includes a

description of Stored Procedure Servers)
v “Using DB2 Stored Procedures to Access VSAM Data” on page 312
v “Using DB2 Stored Procedures to Access DL/I Data” on page 320

© Copyright IBM Corp. 2000, 2003 309

How You Use DB2 Stored Procedures
A DB2 Stored Procedure is a program that you write yourself, and then compile
and catalog into a library, and then define to DB2. Your DB2 Stored Procedures can
then be called from:
v A Web Client
v The middle-tier of a 3-tier VSE/ESA environment
v A local batch program.

You can write a DB2 Stored Procedure in any LE (Language Environment)-
compliant language. The API (Application Programming Interface) within a DB2
Stored Procedure differs depending upon whether VSAM or DL/I data is being
accessed on the VSE/ESA host.

These are the main advantages of using DB2 Stored Procedures:
v When the database manager is running in multiple user mode, local applications

or remote DRDA applications can invoke a DB2 Stored Procedure. Since the SQL
statements issued by a DB2 Stored Procedure are local to the VSE/ESA host,
they do not incur the high network costs of distributed statements. Instead,
single network send and receive operations can be used for processing all the
statements contained in a DB2 Stored Procedure.

v You can use a DB2 Stored Procedure to hide the details of the database design
from application programs running on the Web Client or middle-tier.

v If a database is modified, only the DB2 Stored Procedure (and not the
application programs) needs to be modified.

v You can use a DB2 Stored Procedure to hide sensitive data from specific
application programs.

v You can encapsulate business logic at the VSE/ESA host, instead of having to
include this business logic in numerous application programs.

v It is easier to maintain an environment in which DB2 Stored Procedure
applications are maintained at the VSE/ESA host, instead of being distributed
across a number of Web Clients or middle-tiers.

Grouping Stored Procedure Servers
The Stored Procedure Server is contained in a separate static or dynamic partition,
and must be dedicated to a single DB2 Server for VSE. The DB2 Stored Procedures
described in the previous section run under the control of a Stored Procedure
Server, which is LE-compliant.

By grouping your Stored Procedure Servers, you can distribute the database
workload over multiple partitions. This might be useful if certain DB2 Stored
Procedures must always have a DB2 Server for VSE available. In this case, a Stored
Procedure Server group could be dedicated to the DB2 Stored Procedure. Other
DB2 Stored Procedures could then share other Stored Procedure Server groups:
v Some DB2 Stored Procedures might have special requirements (for example, they

require unusually large amounts of virtual storage).
v Other DB2 Stored Procedures might have to access resources that are not

required by the other DB2 Stored Procedures.

The ability to group Stored Procedure Servers provides the database administrator
with flexibility when defining the environment, and is also useful for
system-tuning purposes.

Using the DB2-Based Connector

310 VSE/ESA: e-business Connectors, User’s Guide

Programming Requirements When Using DB2 Stored
Procedures

On the Web Client or middle-tier: you require JDBC or ODBC/CLI (which do not
require a SQL precompiler). If however you use another programming language
that contains embedded SQL to call a DB2 Stored Procedure, you do require an SQL
precompiler.

On the VSE/ESA host: providing the DB2 Stored Procedure does not contain
SQL-specific calls, you do not require an SQL precompiler.

The VSAMSQL CLI consists of a small object module that you must link to each of
your DB2 Stored Procedures that will use the VSAMSQL CLI. This object module
is a “stub” that allows your DB2 Stored Procedures to use the CLI (Call Level
Interface) to access VSE/VSAM data as if the data were relational.

A DB2 Stored Procedure must be LE-compliant. Language Environment is the
prerequisite run-time environment for applications generated using compilers that
run with VSE/ESA.

These are the most important interfaces that you can use from your application
programs:
v ODBC (Open DataBase Connectivity) on your middle-tier platform
v CLI (Call Level Interface) in your DB2 Stored Procedure running on the

VSE/ESA host

Using the DB2-Based Connector

Chapter 24. Using the DB2-Based Connector to Access Data 311

Using DB2 Stored Procedures to Access VSAM Data

This section describes how you can use DB2 Stored Procedures to access
VSE/VSAM data. Although Figure 150 on page 313 shows the access to VSAM data
only, you can access DB2 and DL/I data using the same DB2 Stored Procedure.

To access the mapped VSAM data, your application programs use a VSAMSQL
Call Level Interface (CLI), which is based upon the IBM DB2 Call Level interface.
Using the VSAMSQL CLI, your application programs can issue SQL-like calls to
VSAM data from within a DB2 Stored Procedure, as described in the following
sections:
v “Overview: Accessing VSAM Data via DB2 Stored Procedures” on page 313

provides an overview of how DB2 Stored Procedures are used to display
mapped VSAM data via the VSAMSQL CLI.

v “Using the Call Level Interface: Activities on the Requestor” on page 314
describes the activities you must perform on the client in order to use a DB2
Stored Procedure to display mapped VSAM data via the VSAMSQL CLI.

v “Using Call Level Interface: Activities on the VSE/ESA host” on page 315
describes the activities you must perform on the VSE/ESA host in order to use a
DB2 Stored Procedure to display mapped VSAM data via the VSAMSQL CLI.

v “Program Flow When Using the VSAMSQL Call Level Interface” on page 317
describes the typical program flow when a DB2 Stored Procedure performs a
VSAM-CLI update on mapped VSAM data.

v “SQL Statements Supported by VSAMSQL Call Level Interface” on page 318 lists
the SQL statements that you can use when a DB2 Stored Procedure performs a
VSAM-CLI update on mapped VSAM data.

Note: For a practical example of how an application program uses the VSAMSQL
CLI, see “Step 2. Initialize the VSAMSQL CLI Environment” on page 226.

Accessing VSAM Data

312 VSE/ESA: e-business Connectors, User’s Guide

Overview: Accessing VSAM Data via DB2 Stored Procedures

The number of each list item below describes a step shown in Figure 150:

�1� The clients’s Web browser requests an HTML page from the IBM HTTP
Server running on the middle-tier.

�2� The IBM HTTP Server calls the WebSphere Application Server for requests
contained in the HTML page (for example, requests for an applet or
servlet).

�3� The interfaces (ODBC, JDBC, or CLI) communicate with the DB2 Server for
VSE, via DB2 Connect.

�4� DB2 Connect communicates with the DB2 Server for VSE, via DRDA
(Distributed Relational Database Architecture). The underlying protocol
used here can be either APPC or TCP/IP.

�5� DB2 Server for VSE manages the execution of a DB2 Stored Procedure,
using the Stored Procedure Server.

�6� The DB2 Stored Procedure can now access the VSAM data stored on the
VSE/ESA host, via VSAMSQL CLI. The DB2 Stored Procedure contains
calls to the VSAM CLI functions (described in Table 8 on page 315), which
are used to perform the access.

The process is now the reverse of steps 1 to 6. The DB2 Server for VSE passes the
results back to the requester.

As shown in Figure 150, to use a DB2 Stored Procedure to access VSAM data
stored on the VSE/ESA host, you require:
v On the middle-tier:

– A Web Server (such as the IBM HTTP Server)
– The WebSphere Application Server
– DB2 Connect

Figure 150. How You Use DB2 Stored Procedures To Access VSAM Data

Accessing VSAM Data

Chapter 24. Using the DB2-Based Connector to Access Data 313

– ODBC or CLI
v On the VSE/ESA host:

– The DB2 Server for VSE
– The VSAMSQL CLI

These are the general steps you should follow to develop application programs
that access mapped VSAM data via DB2 Stored Procedures:
1. Establish DB2 connection between the requestor and VSE/ESA host.
2. Design your application program and the VSAM cluster to be used for storing

your maps.
3. Define the maps and views for the VSAM cluster (see Chapter 15, “Mapping

VSE/VSAM Data to a Relational Structure”, on page 129).
4. Write your DB2 Stored Procedure that includes the logic and requests to VSAM

and DB2 (refer to the IBM publications DB2 Server for VSE, Database
Administration, SC092-3890 and DB2 Server for VSE, Application Programming,
SC092-3930).

5. Create an entry in DB2 for your DB2 Stored Procedure.
6. Write the requestor calls to the DB2 Stored Procedure.
7. Test and run your application program.

Using the Call Level Interface: Activities on the Requestor
On the requestor, you can invoke DB2 Stored Procedures via Stored-Procedure calls
that are implemented in relational database interfaces such as JDBC or ODBC/CLI.
Here is a summary of the stored-procedure interfaces for these relational databases:

JDBC
String sql="Call <proc_name> (?,?,?,?,?,?)";
statement = con.prepareCall (sql);
statement.execute ();

ODBC/CLI
CALL procedure_name (?,?,?,?,...)
SQLExecDirect() or
SQLPrepare() followed by SQLExecute()

Embedded SQL
CALL proc_name [(parm1[:parmind1],...,parmn[:parmindn])] or
CALL proc_name USING DESCRIPTOR :sqlda

For a detailed description of the above interfaces, refer to these documents that
describe how stored procedures are called:
v Microsoft ODBC SDK Programmer’s Reference
v IBM DB2 Universal Database Call Level Interface Guide and Reference

(S10J-8159)
v IBM Embedded SQL Programming Guide (S10J-8158)
v The JDBC Data Access API, at these Web sites:

http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/jdk/1.1/docs/guide/jdbc/index.html

Accessing VSAM Data

314 VSE/ESA: e-business Connectors, User’s Guide

Using Call Level Interface: Activities on the VSE/ESA host
On the VSE/ESA host, a VSAMSQL Call Level Interface (CLI) provides you with
C-program functions for accessing mapped VSAM data using a DB2 Stored
Procedure. This interface accesses a VSAM file in the same way as a table is used
in a relational database. Therefore, you must define a relational view for each
VSAM cluster whose mapped data you wish to access using a DB2 Stored
Procedure via the VSAMSQL interface.

All VSAMSQL CLI C-program functions have a prefix VSAMSQL, and have the
same syntax and functionality as DB2 CLI functions (where DB2 CLI functions
have a prefix SQL).

Note: To use the CLI functions, you have to include the C header file IESVSQL.h
in your program source. The object file IESVSQLO.Obj must be linked to
your application. Both IESVSQL.h and IESVSQLO.Obj are located in VSE
library PRD1.BASE.

These CLI functions are supported:

Table 8. CLI Functions You Can Use for Accessing Mapped VSAM Data

CLI Function Description

VSAMSQLAllocConnect * Allocate Connection Handle

VSAMSQLAllocEnv * Allocate Environment Handle

VSAMSQLAllocHandle Allocates Environment, Connection, Statement, or
Descriptor Handles

VSAMSQLAllocStmt * Allocate a Statement Handle

VSAMSQLBindCol Bind a Column to an Application Variable

VSAMSQLBindParameter Bind A Parameter Marker to a Buffer

VSAMSQLCloseTable Close a specified table (Cluster)

VSAMSQLColAttribute * Return a Column Attribute

VSAMSQLColAttributes Get Column Attributes

VSAMSQLColumns Get Column Information for a Table

VSAMSQLDescribeCol Return a Set of Attributes for a Column

VSAMSQLError Retrieve Error Information

VSAMSQLExecDirect Execute a Statement Directly

VSAMSQLExecute Execute a Statement

VSAMSQLFetch Fetch Next Row

VSAMSQLFreeConnect * Free Connection Handle

VSAMSQLFreeEnv * Free Environment Handle

VSAMSQLFreeHandle Free Handle Resources

VSAMSQLFreeStmt * Free (or Reset) a Statement Handle

VSAMSQLGetDiagRec Get multiple fields settings of Diagnostic Record

VSAMSQLNumParams Get Number of Parameters in A SQL Statement

VSAMSQLNumResultCols Get Number of Result Columns

VSAMSQLPrepare Prepare a Statement

VSAMSQLPrimaryKeys Get Primary Key Columns of A Table

VSAMSQLRowCount Get Row Count

Accessing VSAM Data

Chapter 24. Using the DB2-Based Connector to Access Data 315

Table 8. CLI Functions You Can Use for Accessing Mapped VSAM Data (continued)

CLI Function Description

VSAMSQLSetParam * Bind A Parameter Marker to a Buffer

VSAMSQLTables Get Table Information

Note: The functions marked with an asterisk (*) have been included in more recent
functions. For details, refer to the IBM publication DB2 Universal Database
Call Level Interface, Guide and Reference, S10J-1859.

Example of the Syntax of a CLI Function –
VSAMSQLCloseTable

Here is an example of how the CLI function VSAMSQLCloseTable is described in
the online documentation.

VSAMSQLCloseTable - Close a specified table (Cluster)
Purpose
VSAMSQLCloseTable() closes the specified VSAM clusters.

Syntax
VSAMSQLRETURN VSAMSQLCloseTable (VSAMSQLHENV henv,

VSAMSQLCHAR* szTableName,
VSAMSQLSMALLINT cbTableName);

Function Arguments
VSAMSQLCloseTable Arguments

Data Type Argument Use Description

VSAMSQLHENV henv input Environment handle

VSAMSQLCHAR* szTableName input Table name to close

VSAMSQLSMALLINT cbTableName input Length of the table name or
VSAMSQL_NTS

Return Codes
VSAMSQL_SUCCESS
VSAMSQL_ERROR
VSAMSQL_INVALID_HANDLE

Diagnostics
VSAMSQLCloseTable SQLSTATEs

SQLSTATE Description Explanation

HY009 Invalid argument value The argument was invalid

Accessing VSAM Data

316 VSE/ESA: e-business Connectors, User’s Guide

Program Flow When Using the VSAMSQL Call Level Interface
This is the typical flow of program statements, when the VSAMSQL CLI is used
for mapped VSAM data:

VSAMSQLRETURN rc; // Return Code
VSAMSQLHENV hEnv; // Environment Handle
VSAMSQLHDBC hDBC; // Connection Handle
VSAMSQLHSTMT hStmt; // statement Handle

//allocate Environment
rc = VSAMSQLAllocHandle(VSAMSQL_HANDLE_ENV,VSAMSQL_NULL_HANDLE,&hEnv);
//allocate Connection
rc = VSAMSQLAllocHandle(VSAMSQL_HANDLE_DBC,hEnv,&hDBC);
//allocate Statement
rc = VSAMSQLAllocHandle(VSAMSQL_HANDLE_STMT,hDBC,&hStmt);

// Prepare a Statement
rc = VSAMSQLPrepare(hStmt,

"UPDATE VSESP.USER.CATALOG/VSAM.DISPLAY.DEMO.CLUSTER/MAP1 SET EMAIL=?, AGE=?"
"WHERE NAME=?",VSAMSQL_NTS);

// Query the number of Parameters
rc = VSAMSQLNumParams(hStmt,&Num);

// Bind local Variables/Values to the Statement
rc = VSAMSQLBindParameter(hStmt,1,VSAMSQL_PARAM_INPUT,

VSAMSQL_C_CHAR,VSAMSQL_VARCHAR,5,0,"Hugo",5,NULL);
...

// Execute the Statement
rc = VSAMSQLExecute(hStmt);
...
rc = VSAMSQLFreeHandle(VSAMSQL_HANDLE_STMT,hStmt);
rc = VSAMSQLFreeHandle(VSAMSQL_HANDLE_DBC,hDBC);
rc = VSAMSQLFreeHandle(VSAMSQL_HANDLE_ENV,hEnv);

Figure 151. Typical Program Flow When Performing a VSAMSQL CLI Update

Accessing VSAM Data

Chapter 24. Using the DB2-Based Connector to Access Data 317

SQL Statements Supported by VSAMSQL Call Level Interface
These SQL statements are supported when you use the VSAMSQL CLI on mapped
VSAM data:

The WHERE statement supports these compare operations:
= (equal to)
< (less than)
> (greater than)
<= (less or equal)
>= (greater or equal)
<> (not equal)

Notes:

1. You can combine multiple filters using AND.
2. OR is not supported.

You specify the table using:
v VSAM Catalog
v Cluster File-ID
v map name
v view name (optional)

Here is the syntax of this statement:
MY.USER.CATALOG/MY.VSAM.CLUSTER/MYMAP1
or
MY.USER.CATALOG/MY.VSAM.CLUSTER/MYMAP1/MYVIEW1

The SQL statement can contain placeholders (’?’) for parameters. The parameters
must be bound before execution of the statement. The parameters are numbered
from the beginning of the statement, starting at one.

You can use placeholders for these parts:
v table name
v column names

INSERT INTO table
(col1, col2, ...)
VALUES (val1, val2, ...),

(val3, val4, ...),
...

UPDATE table
SET col1=val2,

col2=val2,
...

WHERE col3=val3 AND
col4=val4 AND
...

DELETE FROM table
WHERE col3=val3 AND

col4=val4 AND ...

SELECT col1, col2, ...
FROM table
WHERE col3=val3 AND

col4=val4 AND
...

Figure 152. SQL Statements Supported by VSAMSQL Call Level Interface (CLI)

Accessing VSAM Data

318 VSE/ESA: e-business Connectors, User’s Guide

v values

To get the result set of a select statement, you can bind local variables to the result
set columns. The columns of the result set are either:
v Those which have been specified in the select statement:

("SELECT col1,col2,... FROM...")

v All columns of the map/view:
("SELECT * FROM ...")

For RRDS Clusters, a special column named RELRECNO is used to specify the
relative record number of the record (=key), which is not part of the record itself. A
SELECT * FROM statement automatically adds the RELRECNO column as the
last column to the result set. You can specify the RELRECNO column as a filter in
all supported SQL statements (“UPDATE table SET col1=val1 WHERE
RELRECNO=5 ...”).

Accessing VSAM Data

Chapter 24. Using the DB2-Based Connector to Access Data 319

Using DB2 Stored Procedures to Access DL/I Data
This section describes how you can use DB2 Stored Procedures to access DL/I
data. Although Figure 153 shows the access to DL/I data only, you can access
VSE/VSAM and DB2 data using the same DB2 Stored Procedure.

To access DL/I data from within a DB2 Stored Procedure, your program can use
the AIBTDLI interface, which accesses DL/I data directly using DL/I methods. You
do not map DL/I data (as you do for VSE/VSAM data).

The number of each list item below describes a step shown in Figure 153:

�1� The clients’s Web browser requests an HTML page from the IBM HTTP
Server running on the middle-tier.

�2� The IBM HTTP Server calls the WebSphere Application Server for requests
contained in the HTML page (for example, requests for an applet or
servlet).

�3� The interfaces (ODBC, JDBC, or CLI) communicate with the DB2 Server for
VSE, via DB2 Connect.

�4� DB2 Connect communicates with the DB2 Server for VSE, via DRDA
(Distributed Relational Database Architecture). The underlying protocol
used here, can be either APPC or TCP/IP.

�5� DB2 Server for VSE manages the execution of a DB2 Stored Procedure,
using the Stored Procedure Server.

�6� The DB2 Stored Procedure can now access the DL/I data stored on the
VSE/ESA host, via the interface AIBTDLI (see “Overview of the AIBTDLI
Interface” on page 321 for details).

Figure 153. How You Use DB2 Stored Procedures To Access DL/I Data

Accessing DL/I Data

320 VSE/ESA: e-business Connectors, User’s Guide

The process is now the reverse of steps 1 to 6. The DB2 Server for VSE passes the
results back to the requester.

As shown in Figure 153 on page 320, to use a DB2 Stored Procedure to access DL/I
data stored on the VSE/ESA host, you require:
v On the middle-tier:

– A Web Server (such as the IBM HTTP Server)
– The WebSphere Application Server
– DB2 Connect
– ODBC, JDBC, or CLI

v On the VSE/ESA host:
– The DB2 Server for VSE
– DL/I VSE

These are the general steps you should follow to develop application programs
that access DL/I data via DB2 Stored Procedures:
1. Establish DB2 connection between the requestor and VSE/ESA host.
2. Design your application program.
3. Write your DB2 Stored Procedure that includes the logic and requests to DL/I

and VSAM or DB2 (refer to the IBM publications DB2 Server for VSE, Database
Administration, SC092-3890 and DB2 Server for VSE, Application Programming,
SC092-3930).

4. Create an entry in DB2 for your DB2 Stored Procedure.
5. Write the requestor calls to the DB2 Stored Procedure.
6. Test and run your application program.

Overview of the AIBTDLI Interface
The AIBTDLI Interface allows VSE batch programs, such as DB2 Stored Procedures,
to issue DL/I calls without a DL/I batch environment having been established
using DLZRRC00 or DLZMPI00.

Note: For a list of the installation requirements for using the AIBTDLI interface,
see “Step 8: Customize the DB2-Based Connector for DL/I Data Access” on
page 83.

AIBTDLI passes the DL/I calls to DLZMPX00, which connects to a running
CICS/DLI online system in the form of an MPS batch task. DLZMPX00 associates
each VSE batch task that uses AIBTDLI, with a DLZBPC00 mirror task on the
CICS/DLI online-side, which runs on its behalf in the known MPS scheme.

The databases reside (are “opened“) at the CICS/DLI online side. All DL/I calls
passed to, and results and feedback information returned from, the CICS/DLI
online system are routed through DLZMPX00 via a unique XPCC connection
between the VSE batch and the CICS/DLI BPC mirror task. Database access
contention, resource logging, and recovery are performed on the CICS/DLI online
system using existing CICS/DLI functions.

Figure 154 on page 322 illustrates the partition layout and processing flow of the
three existing DL/I environments (batch, MPS batch and CICS/DLI online), and
compares them to an environment where AIBTDLI is used:

Accessing DL/I Data

Chapter 24. Using the DB2-Based Connector to Access Data 321

�BG� A DL/I batch environment is initialized by calling the DL/I batch root
phase DLZRRC00. The application is loaded by DLZRRC00 and
communicates with DL/I via the DL/I batch program request handler
DLZBNUC0. All DL/I resources reside in the DL/I batch partition.

�F2� A CICS/DLI online environment is established by calling the CICS root
phase DFHSIP, which calls DL/I module DFHSIDL for the DL/I
initialization. The online programs communicate with DL/I via the DL/I
online program request handler DLZPRHO0, which resides in the DL/I
online nucleus DLZNUCxx. All DL/I resources reside in the CICS/DLI
partition.

�F4� An MPS batch environment is initialized by calling the DL/I MPS batch
root phase DLZMPI00. The application is loaded by DLZMPI00 and
communicates with DL/I via the MPS batch program request handler
DLZMPRH. All DL/I resources reside in the CICS/DLI online partition.

Using an XPCC connection, DLZMPRH passes DL/I calls to, and receives
data from, a CICS/DLI BPC mirror task which runs on its behalf in the
CICS/DLI online system.

�FA� In an environment where the AIBTDLI interface is used, a DL/I batch
application can be started as the main program, which communicates with
DL/I via DLZMPX00. All DL/I resources reside in the CICS/DLI online
partition.

Using an XPCC connection, DLZMPX00 passes DL/I calls to, and receives
data from, a CICS/DLI BPC mirror task which runs on its behalf in the

Figure 154. DL/I Partition Layout for Batch, MPS Batch, CICS/DLI Online, and AIBTDLI
Interface

Accessing DL/I Data

322 VSE/ESA: e-business Connectors, User’s Guide

CICS/DLI online system. The processing flow is similar to the MPS batch
environment. The difference is that the initialization of a DL/I batch
system is not required, and multiple batch programs (tasks) can use
DLZMPX00 at the same time.

Creating Programs That Use AIBTDLI
The AIBTDLI interface is used by VSE batch programs. Your programs can be
started as the main task, or attached as a subtask. Up to 128 (sub)tasks can use
AIBTDLI at the same time.

Programs using AIBTDLI can be written in COBOL for VSE, PL/I for VSE, or
Assembler. They can take any amode/rmode characteristics. All types of existing
DL/I call functions are supported:
v PCB
v GET-type
v ISRT
v REPL
v DLET
v CHKP
v TERM

In addition, two new calls are provided which allow database changes to be
backed out, providing they have not been committed by a DL/I CHKP or TERM
call, or implicitly by task termination:
ROLB The Roll Back call is used to dynamically back out database changes up to

the last syncpoint, and return control to the program.
ROLL The Roll call is used to dynamically back out database changes up to the

last syncpoint, and abnormally terminate (CANCEL) the program.

The ROLB and ROLL calls are coded like a DL/I TERM call. No further
parameters are required.

For a description of the general call format of the AIBTDLI interface, refer to
“Invoking the AIBTDLI Interface” on page 324.

From a DL/I view, applications using AIBTDLI are implemented in the same way
as CICS/DLI online programs that use the CALL interface. To access a DL/I
database, your applications:
v Must start with a DL/I scheduling call, which builds up a connection between

the user program (task) and the CICS/DLI MPS system and schedules the PSB.
You can serially schedule more than one PSB. Before scheduling a new PSB, you
must release the previous PSB using a DL/I termination call.

v Can issue any type of DL/I database calls.
v Should end with a DL/I termination call, which ends the connection between

the user program (task) and the CICS/DLI MPS system, releases the PSB, frees
all DL/I resources owned by this task, and provides for commit and syncpoint
processing.

In order to check DL/I response information as returned in the AIB (described in
“Return and Status Codes” on page 326) you must include the copybook DLIAIB.

Accessing DL/I Data

Chapter 24. Using the DB2-Based Connector to Access Data 323

You should be aware of the following differences to normal DL/I batch
applications:

COBOL and PL/I programs

v The ENTRY (COBOL) or PROCEDURE (PL/I) statement no longer
requires a reference to the PCB addresses.

v The pointers to the PCBs are instead obtained through a scheduling call
in the same way as in a CICS/DLI online program.

PL/I programs

v The AIBTDLI interface has to be declared as an assembler language
entry point:
DCL AIBTDLI ENTRY OPTIONS(ASM);

v PSBs should not be generated with LANG=PLI.

The sample programs DLZHLA80, DLZAIC50 and DLZAIP50 show how you can
write a program that uses the AIBTDLI interface, when the Assembler, COBOL or
PL/I language is used, respectively.

Invoking the AIBTDLI Interface
You can use the AIBTDLI interface in COBOL, PL/I, and assembler programs. The
format and parameters of this interface are equivalent to the respective CBLTDLI,
PLITDLI, or ASMTDLI interface, as described in DL/I CALL and RQDLI Interfaces.
The following description shows the general format of the types of DL/I calls, and
explains the scheduling call’s new parameters.

Note: For assembler programs:
v You must provide an 18-fullword register save area in register 13.
v Register 1 must point to the parameter list.

Format of the Scheduling Call
The general format of the scheduling call is for:

COBOL: CALL ’AIBTDLI’ USING [parm-count,] ’PCB ’,psbname,
aibparm[,destination].

PL/I: CALL AIBTDLI (parm-count,’PCB ’,psbname,
aibparm[,destination]);

ASSEMBLER: CALL AIBTDLI

Here is a description of the new parameters. Existing parameters retain their
previous functionality.

aibparm
is the name of a fullword to which DL/I returns the address of the
Application Interface Block (AIB). Use of this parameter is mandatory. The
AIB is a new control block used to pass to the user the address of the PCB
list and the maximum length of the I/O area following a scheduling call,
the return code after each DL/I call, and pointers to a message area and a
partition list in the event of an error. Details on the format and usage of
the AIB are shown in “Format of the AIB – User Section” on page 326. The
AIB is equivalent to the existing online UIB control block, as documented
in DL/I CALL and RQDLI Interfaces.

After a successful scheduling call, the field AIBPCBAL contains the address
of the PCB list.

Accessing DL/I Data

324 VSE/ESA: e-business Connectors, User’s Guide

destination
denotes the target system, where the scheduling (and all subsequent) calls
should be processed. As described above, DL/I calls entered via AIBTDLI
are routed to an active CICS/DLI MPS system. When MPS has been
activated in more than one CICS/DLI partition at the same time, the
destination specification allows the selection of the MPS subsystem to
which the DL/I calls should be directed.

The destination specification can be entered using one or both of the
following two parameters:

PARTID=xx
... xx denotes the MPS partition, where the DL/I calls should be
processed

APPLID=yyyyyyyy
... yyyyyyyy denotes the CICS (generic) applid, where the DL/I
calls should be processed

A destination specification is not required, if only one MPS system is
running. For more information on how to select the correct target system,
refer to “Scheduling with Single and Multiple MPS Systems” on page 328.

Format of the Database Call
The general format of the database call is for:

COBOL: CALL ’AIBTDLI’ USING [parm-count,]call-function,
db-pcb-name,i/o-area[,ssa...].

PL/I: CALL AIBTDLI (parm-count,call-function,db-pcb-name,
i/o-area[,ssa...]);

ASSEMBLER: CALL AIBTDLI

Existing parameters retain their previous functionality.

Format of the Termination Call
The general format of the termination call is for:

COBOL: CALL ’AIBTDLI’ USING [parm-count,]’TERM’.

PL/I: CALL AIBTDLI (parm-count,’TERM’);

ASSEMBLER: CALL AIBTDLI

The function code ’TERM’ can be abbreviated to ’T ’.

Format of the Roll Back Call
The general format of the Roll Back call is for:

COBOL: CALL ’AIBTDLI’ USING [parm-count,]’ROLx’.

PL/I: CALL AIBTDLI (parm-count,’ROLx’);

ASSEMBLER: CALL AIBTDLI

Accessing DL/I Data

Chapter 24. Using the DB2-Based Connector to Access Data 325

Compiling and Link-Editing Your Programs
The compile and link requirements for DL/I programs implemented in COBOL,
PL/I, and Assembler, are described in the DL/I 1.11 Release Guide. However, for
PL/I programs, there are certain differences between the information provided in
the DL/I 1.11 Release Guide and what you must specify in order to use the AIBTDLI
interface:
v Your programs should not be compiled with * PROCESS SYSTEM(DLI);
v You should exclude these two linkage-editor statements:

INCLUDE IBMRPJRA
ENTRY PLICALLB

The sample programs DLZHLA80, DLZAIC50 and DLZAIP50 illustrate how you
can compile and linkedit a DL/I program using the AIBTDLI interface, in each of
the languages COBOL, PL/I, and Assembler.

Return and Status Codes

For all types of calls, DL/I returns response and error information in the new
Application Interface Block (DLIAIB), which you use in the same way as the previous
online User Interface Block (DLIUIB). For DL/I database calls, status codes are
passed back using the PCB (as was done previously).

After each DL/I call, your checking of the information returned should start with a
check of the AIB. If the AIB return code does not suggest that an error has
occurred, you can then examine the PCB status code.

Format of the AIB – User Section
DLZAIB DSECT
AIB DS 0F START OF DSECT
AIBPCBAL DS A PCB ADDRESS LIST
AIBRCODE DS 0XL2 DL/I RETURN CODES
AIBFCTR DS X RETURN CODE
AIBDLTR DS X ADDITIONAL INFORMATION

DS 2X RESERVED
AIBMSGPT DS A POINTER TO ERROR MSG AREA
AIBPLPT DS A POINTER TO LIST OF PARTIDS
AIBIOLM DS F MAX. LENGTH OF IOAREA

DS 2F RESERVED
AIBLEN EQU *-AIB LENGTH OF USER AIB

The AIB return code is passed back in the two-byte field AIBRCODE, which can
take the same values as UIBRCODE in a CICS/DLI online program. For a list of all
possible return codes of UIBRCODE (=AIBRCODE), refer to DL/I Messages and
Codes and the DL/I 1.11 Release Guide.

In addition to the existing return codes mentioned above, the new codes X’080A’
and X’FF00’ have been introduced. For details about these codes, see “AIBTDLI
DL/I Messages and Return Codes”, on page 365. For code X’FF00’, also see “How
Return Code X’FF00’ Is Used” on page 327 (below).

After having inspected the feedback information in the AIB, the DL/I PCB status
code should be checked. A list of all PCB status codes can be found in DL/I
Messages and Codes. No new PCB status codes have been introduced.

The user section of the AIB will be delivered as member DLIAIB in an Assembler,
COBOL and PL/I version.

Accessing DL/I Data

326 VSE/ESA: e-business Connectors, User’s Guide

How Return Code X’FF00’ Is Used
When X’FF00’ is returned in AIBRCODE, the AIBTDLI interface has detected an
unrecoverable error. At such an event it ends the connection between the user task
and the CICS/DLI MPS system, releases the PSB and frees all DL/I resources
acquired by this task. Error handling for an X’FF00’ situation internally triggers a
DL/I termination call, which provides backout and syncpoint processing for the
PSB which has been scheduled.

The reason for the X’FF00’ situation is explained in a message, which DL/I writes
to the console. The address field AIBMSGPT points to a storage area containing the
message, which is formatted as follows:
v A 2-byte LL field. LL is the length of the message without the length of the

LLBB field.
v A 2-byte BB field, set to binary zero.
v A variable length field containing the text of the message.

Errors That Do Not Produce a Return Code
In the following situations, DL/I is unable to return to the caller and pass back
response information through the AIB:
v Load for DLZMPX00 has failed (message DLZ150I).
v Non-compatible environment (message DLZ151I).
v DL/I exit routine DLZBSEOT is not in the SVA (message DLZ152I).
v GETVIS for the AIB could not be obtained (message DLZ153I).
v DL/I subsystem registration has failed (message DLZ134I).
v AIB parameter missing or invalid (message DLZ154I).

In these cases the according error message is written to the console and the task
abnormally terminated (canceled).

Accessing DL/I Data

Chapter 24. Using the DB2-Based Connector to Access Data 327

Scheduling with Single and Multiple MPS Systems
When only one CICS/DLI MPS system is running, the AIBTDLI interface routes a
scheduling request to this MPS system. In this case, you are not required to
provide a destination specification.

If MPS has been started in more than one CICS/DLI partition at the same time,
you must use a destination specification as described in “Format of the Scheduling
Call” on page 324. The destination specification allows the AIBTDLI interface to
distinguish between the different MPS systems.

After a successful scheduling call, DL/I returns X’0000’ in AIBRCODE.

When a scheduling error has occurred, AIBRCODE contains either:
v One of the existing return codes, as documented in DL/I Messages and Codes and

the DL/I 1.11 Release Guide.
v Return code X’FF00’ and a pointer to an error message in AIBMSGPT. The

message provides an explanation of why the scheduling has failed.

In the second case (return code X’FF00’ and a pointer to an error message in
AIBMSGPT), the explanation may be that DL/I was not able to find a suitable
CICS/DLI MPS target system. You should then consider these situations:
v Message DLZ089I (’... MPC NOT ACTIVE OR ENDING’) is returned in

AIBMSGPT. This means that either an MPS system has not been started, or the
destination specification passed as ’PARTID=’ and/or ’APPLID=’ parameter does
not match with one of the MPS systems that are currently running.

v Message DLZ145I (’MORE THAN ONE MPS ACTIVE ...’) is returned in
AIBMSGPT. When MPS is active in more than one CICS/DLI partition, DL/I
might not be able to determine the target system. This occurs when either a
destination specification is missing in the scheduling call, or ’APPLID=’ has been
entered, but more than one CICS/DLI MPS system is running with the same
CICS (generic) applid.
If DLZ145I is returned, AIBPLPT points to a list of partition ids. The partition
ids denote the partitions where an active CICS/DLI MPS system has been
found, for the destination specification passed in the scheduling call:
– If no destination has been specified, all active MPS systems are shown.
– If ’APPLID=’ has been specified, only those MPS systems are shown which

are running under the searched-for CICS applid.

Up to 10 partition ids are returned. They are represented through a list of 2-byte
character fields, separated by a comma. A missing comma marks the end of the
list.

The partition ids returned via AIBPLPT can then be used to define/adapt the
destination specification for a retry of the scheduling call.

Accessing DL/I Data

328 VSE/ESA: e-business Connectors, User’s Guide

Task Termination and Abend Handling
VSE task termination calls the DL/I task termination exit DLZBSEOT for tasks,
which have used the AIBTDLI interface to perform final DL/I cleanup processing.
This implies an internal DL/I termination call, if a PSB is still scheduled, because:
v You have not coded a regular DL/I termination call, before terminating your

program.
v A termination call could not be given, when a program abend has occurred.

The internal DL/I termination call ends the connection between the task and the
CICS/DLI MPS system, releases the PSB, and frees all DL/I resources acquired by
this task. For a VSE normal task termination, commit and syncpoint processing is
performed. For a VSE abnormal task termination, backout and syncpoint
processing is performed.

The AIBTDLI interface does not handle any program errors or abend conditions.
Your programs must set up and contain their own exits for dealing with, for
example, AB or PC type of abends. Assembler programs may use STXIT linkage,
COBOL, and PL/I programs may run with the LE TRAP runtime option.

Note: VSE considers program failures that are handled by exit routines, as
“normal” processing conditions. When a program ends with a “normal”
processing condition, VSE normal task termination takes place. Only
unhandled program failures will lead to a VSE abnormal task termination,
and backout processing.

Messages and Return Codes
The AIBTDLI interface reuses a subset of the messages available for the existing
MPS batch function. Following each DL/I call, the AIBTDLI interface receives a
return code from the CICS/DLI online system. These messages and return codes
are described in DL/I Messages and Codes and the DL/I 1.11 Release Guide.

New messages and return codes are described in “AIBTDLI DL/I Messages and
Return Codes”, on page 365.

All messages are written to the console. Error messages are also passed to the user
program via the field AIBMSGPT, return codes are stored in AIBRCODE. See
“Return and Status Codes” on page 326 for details.

Accessing DL/I Data

Chapter 24. Using the DB2-Based Connector to Access Data 329

330 VSE/ESA: e-business Connectors, User’s Guide

Chapter 25. Using SOAP for Inter-Program Communication

This chapter describes how you use the Simple Object Access Protocol (abbreviated
to SOAP) to send and receive information between CICS programs and other
modules, over the Internet. It contains these main sections:
v “Overview of the SOAP Syntax”
v “How the VSE/ESA Host Can Act As the SOAP Server” on page 332
v “How the VSE/ESA Host Can Act As the SOAP Client” on page 334
v “How the IBM-Supplied SOAP Control Blocks Are Used” on page 335
v “Description of the IBM-Supplied SOAP Service (getquote.c)” on page 339
v “Description of the IBM-Supplied SOAP Client (soapclnt.c)” on page 341
v “Using a Java SOAP Client” on page 343
v “Running the IBM-Supplied SOAP Sample” on page 344
v “Writing Your Own SOAP Programs” on page 348

For a general introduction to SOAP, see “Overview of VSE/ESA Support for Web
Services and SOAP” on page 8. For detailed information about SOAP, you might
go to the Apache SOAP documentation website, whose URL is:
http://xml.apache.org/soap/docs/index.html

Note!
The implementation of SOAP for VSE/ESA:
1. is for use with the CICS Transaction Server for VSE/ESA only.
2. does not require the use of either:

v UDDI (Universal Description, Discovery, and Integration),
v WSDL (Web Services Description Language).

Overview of the SOAP Syntax
You do not usually need to concern yourself with the tagging described here, since
it is automatically generated by either the:
v SOAP client, and converted to native data by the SOAP server.
v SOAP server, and converted to native data by the SOAP client-processor.

However, for debugging purposes you might require a knowledge of the SOAP
tagging. In this case for detailed information, you should refer to the Apache Web
site whose URL is given in the previous section. The information below provides
you with an overview only.

A SOAP message is a standard XML document containing these main parts:
v A SOAP envelope, that defines the content of the message.
v A SOAP header (optional), that contains header information.
v A SOAP body, that contains call and reply information.

These are the types of element used for the SOAP message:
v The <Envelope> element is the root element of a SOAP message, and defines the

XML document to be a SOAP message.

© Copyright IBM Corp. 2000, 2003 331

v The <Header> element can be used to include additional, application-specific
information about the SOAP message. The information here is user-defined. For
example it might be used to define the language used for the message.

v The <Body> element is used to define the message itself.
v The <Fault> element can be optionally used within the <Body> element, and is

used to supply information about any errors that might have occurred, when the
SOAP message was processed.

Here is an example of the SOAP syntax:
<soap:Envelope>

<soap:Body>
<GetStock>

<Company>IBM</Company>
</GetStock>

</soap:Body>
</soap:Envelope>

The above example shows a SOAP XML document used for requesting the IBM
share price. It is, of course, much simplified.

How the VSE/ESA Host Can Act As the SOAP Server
Figure 155 on page 333 shows how SOAP can be used in a CICS environment,
when the VSE/ESA host acts as the SOAP server that provides SOAP services (in
the VSE/ESA environment, CICS User Transactions).

Using SOAP

332 VSE/ESA: e-business Connectors, User’s Guide

�1� The SOAP client (for example a platform using Microsoft .NET, IBM
Websphere, Apache SOAP, or AXIS) sends a SOAP envelope (in XML
format) to the SOAP server running under CICS. The SOAP envelope is
sent via the CICS Web Support (CWS) component of the CICS Transaction
Server.

�2� CWS forwards the SOAP envelope (in XML format) to the SOAP server
running under CICS.

�3� The SOAP server forwards the SOAP envelope to the XML parser, also
running under CICS. The XML parser then parses the SOAP envelope from
textual XML format into a tree-representation of the data. For example, if
the data is to be processed by a C program, the SOAP envelope would be
converted to a C program structure (with pointers) so that a C program
running on the VSE/ESA host could process the data, and returns this
parsed XML tree to the SOAP server.

�4� The SOAP server forwards the parsed XML tree to the SOAP converter
running under CICS. The SOAP converter de-serializes (decodes) the
parameter sub-tree contained in the parsed XML tree, and converts the
parameter sub-tree into a binary representation. IBM-supplied SOAP
decoder is named IESSOAPD.

�5� The SOAP converter forwards the binary representation of the parameter
sub-tree to the CICS User Transaction running on the VSE/ESA host (the
SOAP service), via the communication area (COMMAREA) of the CICS
User Transaction. The CICS User Transaction then processes the data.

Figure 155. How SOAP Is Used When the VSE/ESA Host Acts As SOAP Server

Using SOAP

Chapter 25. Using SOAP for Inter-Program Communication 333

The reply is then sent from the CICS User Transaction (the SOAP service) back to
the SOAP client, using the reverse of the above steps (that is, steps 6 to 10). The
reply is sent via the Communication area back to the SOAP converter, which
serializes the parameters and returns them to the SOAP server. The SOAP server
uses the XML parser to convert it from a tree-representation of the data to textual
XML. The SOAP server then creates a SOAP envelope, which is then sent back (via
HTTP or HTTPS) to the SOAP client. The SOAP client can then convert the SOAP
envelope to its own native data format, and process the reply.

How the VSE/ESA Host Can Act As the SOAP Client

Figure 156 shows how SOAP can be used in a CICS environment, when the
VSE/ESA host acts as the SOAP client:

�1� The CICS User Transaction running on the VSE/ESA host (the SOAP
client) sends the binary representation of the parameters to the SOAP
converter. This is done via the communication area (COMMAREA) of the
SOAP converter.

�2� The encoder-part of the SOAP converter (IESSOAPE) serializes (encodes)
the binary representation of the parameters, into an XML tree. The SOAP
converter forwards the XML tree to the SOAP client-processor running
under CICS.

Figure 156. How SOAP Is Used When the VSE/ESA Host Acts As SOAP Client

Using SOAP

334 VSE/ESA: e-business Connectors, User’s Guide

�3� The SOAP client-processor generates the SOAP envelope, and forwards it
to the XML parser running under CICS. The XML parser then converts the
XML tree into a textual XML format of the SOAP envelope. The XML
parser returns the textual XML format to the SOAP client-processor.

�4� The SOAP client-processor forwards the textual XML format to the HTTP
client running under CICS.

�5� The HTTP client sends the SOAP envelope (in textual XML format) to a
SOAP server (for example a platform using Microsoft .NET, IBM
Websphere, Apache SOAP, or AXIS) via HTTP. This can also be routed via
a SOCKS or Proxy server.

The reply is then sent from the SOAP server back to the CICS User Transaction
(the SOAP client), using the reverse of the above steps (that is, steps 6 to 10). The
SOAP server sends the reply back to the HTTP client, which forwards it to the
SOAP client-processor. The SOAP client-processor calls the XML parser to parse the
textual XML format into a tree representation. The tree is passed to the SOAP
converter, which de-serializes the parameters into a binary representation, and
forwards them to the CICS User Transaction. The CICS User Transaction then
processes the reply.

How the IBM-Supplied SOAP Control Blocks Are Used

This section describes the IBM-supplied SOAP control blocks, that are defined in
the C-language header file IESSOAPH.H. You can find IESSOAPH.H in directory
...\vsecon\samples\soap\vseSoapClient.

File IESSOAPH.H is used by all SOAP programs that run on the VSE/ESA host:
v The SOAP converter, SOAP server, and CICS User Transaction of Figure 155 on

page 333.
v The SOAP converter, SOAP client-processor, and CICS User Transaction of

Figure 156 on page 334.

Other control blocks, not described here, are used if you want to write your own
SOAP converter (when the IBM-supplied converter does not meet your
requirements). If you wish to write your own SOAP converter, refer to the header
file documents for details of such control blocks.

How the SOAP_PARAM_HDR Control Block Is Used
The SOAP_PARAM_HDR control block is used to provide each parameter’s data,
consisting of a:
v name
v value (the data itself)
v length of the value
v type of value

as shown below.

Using SOAP

Chapter 25. Using SOAP for Inter-Program Communication 335

1. A parameter’s data is either:
v passed to the CICS User Transaction,
v generated by the CICS User Transaction.

2. The data is then converted by the SOAP converter either:
v from native data (shown in Figure 157) to XML,
v from XML to native data.

Here is a list of all possible values for the type of value field of Figure 157:

The entries in Figure 158 are self-explanatory, except for the three fields described
below.

If type is ... Then the SOAP converter ...

SOAP_TYPE_PRIVATE found an unknown type which had a namespace URL.
In this case, the data is not converted and is given as
plain text. Your program must then check if it knows
the namespace URL/type pair and convert the data
itself. The namespace URL is contained in the
SOAP_PROG_PARAM control block.

SOAP_TYPE_UNSPECIFIED found an unknown type without a given namespace
URL. In this case the data is not converted and is given
as plain text. Your program must therefore check if it
recognizes the type (even without the namespace), and
must then convert the data itself.

char name[16]; // parameter name
char typename[16]; // data type name
unsigned int length; // length of block (inc. header)
unsigned int type; // type (see SOAP_TYPE_xxx)

Figure 157. Contents of the SOAP Parameter

// Values for type field in SOAP_PARAM_HDR
#define SOAP_TYPE_UNSPECIFIED 0 // unknown/unspecified type
#define SOAP_TYPE_PRIVATE 1 // private type
#define SOAP_TYPE_STRUCT 2 // hirarchical structure
#define SOAP_TYPE_STRING 10 // String
#define SOAP_TYPE_INTEGER 11 // Integer (4 bytes)
#define SOAP_TYPE_SHORT 12 // Short (2 bytes)
#define SOAP_TYPE_BYTE 13 // Byte (1 byte)
#define SOAP_TYPE_BOOLEAN 14 // Boolean (1 byte)
#define SOAP_TYPE_BINARY 15 // Binary (XML Base64)

Figure 158. Possible Values for Type of Value Field

Using SOAP

336 VSE/ESA: e-business Connectors, User’s Guide

If type is ... Then the SOAP converter ...

SOAP_TYPE_STRUCT received a hierarchical structure. This might be a type of
array, or even an array that is a member of an enclosing
array (the depth of the hierarchy is unlimited). An
example of a hierarchical structure might be:

+------------+
| Header |
+------------+
| +--------+ |
| | Header | |
| +--------+ |
| | Data | |
| +--------+ |
| +--------+ |
| | Header | |
| +--------+ |
| | Data | |
| | | |
| +--------+ |
| ... |
+------------+

The “outer” header contains the length of this header’s
data. The type is SOAP_TYPE_STRUCT.

In this example, the data of the “outer” header contains
two parameters (each consisting of a header and data).
Each parameter can be of any length. The program can
recognize if there are further parameters by checking the
length of the outer header’s data block against the
current parameter length.

How the SOAP_PROG_PARAM Control Block Is Used
The SOAP_PROG_PARAM control block is passed to a CICS User Transaction
when the transaction is called as a SOAP service (for example in Figure 155 on
page 333 the CICS User Transaction running on the host would receive
SOAP_PROG_PARAM at Step 5).

The CICS User Transaction is called by the converter program (for example
IBM-supplied IESSOAPE). It contains the requested SOAP method name, the
names of the input and output queue to use and maybe a namespace URL for the
contained parameter types (see SOAP_PARAM_HDR above). If you want to use a
private type (SOAP_TYPE_PRIVATE) as a parameter to return, you can specify
your own namespace URL here. The converter will build the XML using your
namespace/type pair.

Here is a list of fields contained in the SOAP_PROG_PARAM control block:

char method[16]; // (in) method name
char inqueue[8]; // (in) input params
char outqueue[8]; // (in) output params
char namespaceurl[128]; // (in/out) private namespace url

Figure 159. Fields Contained in SOAP_PROG_PARAM Control Block

Using SOAP

Chapter 25. Using SOAP for Inter-Program Communication 337

How the SOAP_DEC_PARAM Control Block Is Used
The SOAP_DEC_PARAM control block must be used by a CICS User Transaction
acting as a SOAP client, to call the SOAP converter. The SOAP converter then calls
the SOAP client-processor, which performs the SOAP call to the SOAP server. For
details, see Figure 156 on page 334.

If the field proxytype is not HTTP_TYPE_DIRECT (0), you have to fill in the
required proxy fields for this type.

These are the defined proxy types you can use if no direct connection to the SOAP
server is available:

char url[128]; // (in) the servers url
char method[16]; // (in) method name
char urn[128]; // (in) the urn
char inqueue[8]; // (in) input queue name
char outqueue[8]; // (in) output queue name
char namespaceurl[128]; // (in/out) namespace url
// proxy
int proxytype; // (in) proxy type (HTTP_TYPE_xxx)
char proxy[128]; // (in) proxy server
int proxyport; // (in) port number
char userid[16]; // (in) userid for socks
char password[16]; // (in) password for socks 5

Figure 160. Fields Contained in SOAP_DEC_PARAM Control Block

// Proxy types
#define HTTP_TYPE_DIRECT 0 // direct connection
#define HTTP_TYPE_PROXY 1 // connection through a proxy
#define HTTP_TYPE_SOCKS4 2 // connection through Socks V4
#define HTTP_TYPE_SOCKS5 3 // connection through Socks V5

Figure 161. Proxy Types That Can Be Used With SOAP_DEC_PARAM Control Block

Using SOAP

338 VSE/ESA: e-business Connectors, User’s Guide

Description of the IBM-Supplied SOAP Service (getquote.c)
The source code for the IBM-supplied SOAP service is getquote.c. You can find
this C for CICS program in directory ...\vsecon\samples\soap\vseSoapService.
Also in this directory you will find the jobs to compile and link getquote.c (jobs
compile.job and link.job).

1. SOAP Server Calls SOAP Service
The program getquote is invoked by the SOAP server (via the SOAP converter), as
shown in Step 5 of Figure 155 on page 333. Each request contains the:
v TargetObjectURI, which defines which object is to be called for this request
v method name of the method to call in this object.

The URI (Uniform Resource Identifier) used for getquote is
urn:iessoapd:getquote. It always starts with urn, followed by the name of the:
1. SOAP converter (the IBM-supplied iessoapd)
2. SOAP service (the IBM-supplied C for CICS program getquote).

You could use your own SOAP converter instead of iessoapd. The method name
for the IBM-supplied sample is getQuote, which is the name given to the SOAP
service. The SOAP service uses the method name to decide which operation is do
be done. Therefore each SOAP service (or CICS program) can handle several
methods.

2. Map COMMAREA to SOAP_PROG_PARAM
When the SOAP service is started, it must retrieve the pointer to the provided
CICS COMMAREA. The COMMAREA must be mapped to the C structure
SOAP_PROG_PARAM, as shown in Figure 162.

3. Check Which Method is Requested
The SOAP service can now check for the method that has been requested, as
shown in Figure 163. The IBM-supplied SOAP service knows of only one method,
getQuote: all other method names will produce an error code of 1. If the correct
method name is requested, the SOAP service calls a sub-function, and provides
two CICS queues that were built by the SOAP server to:
1. pass the given SOAP parameters to the SOAP service (via inqueue)
2. receive the output parameter from the SOAP service (via outqueue).

4. Get Input Parameters
The SOAP service gets the input parameters sequentially by reading them from the
CICS inqueue. The SOAP service then maps the value that was read to the
SOAP_PARAM_HEADER structure, as shown in Figure 164 on page 340. pName is

SOAP_PROG_PARAM* call;
EXEC CICS ADDRESS COMMAREA(call);

Figure 162. Mapping COMMAREA to SOAP_PROG_PARAM Control Block

// check if the SOAP method name is ’getQuote’
if(strncmp(call->method, "getQuote", 8) == 0)

rc = ProcessGetQuote(call->inqueue, call->outqueue);
else

rc = 1;

Figure 163. Checking Which SOAP Method Has Been Requested

Using SOAP

Chapter 25. Using SOAP for Inter-Program Communication 339

the element name of the parameter, pPtr is a pointer to the data, and pLen is the
length of the data.

5. Put Value into CICS Output Queue
To put a parameter into the CICS outqueue the SOAP service then copies the
parameter into a SOAP_PARAM_HEADER structure, and writes this structure into
the CICS outqueue , as shown in Figure 165.

Remaining Processing
The remaining processing is fairly uncomplicated:
1. The SOAP service reads the first parameter from the CICS inqueue, and checks

if the:
v parameters name is symbol
v type is SOAP_TYPE_STRING.

If not, the SOAP service returns an error code to the SOAP server.
2. For illustration purposes, the SOAP service uses a hard-coded symbol value,

and puts this value (as a parameter) into the CICS outqueue together with the
name data and SOAP_TYPE_STRING.

3. The SOAP service should now exit, returning an error code of zero to the
SOAP server (via the SOAP converter). The SOAP server creates the XML

SOAP_PARAM_HDR* param;
unsigned short length;
EXEC CICS READQ TS QUEUE(inqueue)

SET(param) LENGTH(len) NEXT
RESP(resp) RESP2(resp2);

if(param->type != SOAP_TYPE_STRING)
return 5; // invalid type (for this service)

pName = (char)¶m>name;
pPtr = (char)¶m[1];
*pLen = param->length - sizeof(SOAP_PARAM_HDR);

Figure 164. Get Input Parameters from CICS Queue

int SetNextOutParameter(char*outqueue,
char *typename, unsigned int type,
char* name, char* ptr,int len)

{
SOAP_PARAM_HDR* param;
int resp,resp2;
param = (SOAP_PARAM_HDR*)malloc(sizeof(SOAP_PARAM_HDR)+len);
if(param==NULL)

return(-1);
memset(param->name,’ ’,sizeof(param->name));
memcpy(param->name,name,strlen(name));
memset(param->typename,’ ’,sizeof(param->typename));
memcpy(param->typename,typename,strlen(typename));
param->type = type;
param->length = len + sizeof(SOAP_PARAM_HDR);
memcpy(¶m[1],ptr,len);
EXEC CICS WRITEQ TS QUEUE(outqueue)

FROM(param) LENGTH(len+sizeof(SOAP_PARAM_HDR))
RESP(resp) RESP2(resp2);

free(param);
return(0);

};

Figure 165. Put Parameter Into the CICS Output Queue

Using SOAP

340 VSE/ESA: e-business Connectors, User’s Guide

representation of the returned value in the CICS outqueue and sends it back to
the SOAP client (see Steps 9 and 10 of Figure 155 on page 333).

Description of the IBM-Supplied SOAP Client (soapclnt.c)
The source code for the IBM-supplied SOAP client is soapclnt.c. You can find this
C for CICS program in directory ...\vsecon\samples\soap\vseSoapClient. Also in
this directory you will find jobs to compile and link soapclnt.c (jobs compile.job
and link.job).

1. Preparing to Call the SOAP Service
Program soapclnt.c calls the SOAP service residing on the VSE/ESA host, as
shown in Steps 1 to 5 of Figure 156 on page 334.

Each call contains the:
v URL (Uniform Resource Locator) of the SOAP server
v name of the program that is to be called by the SOAP server (the URI)
v method to be requested from the called program (METHOD).

An example is shown in Figure 166.

2. Prepare the SOAP_DEC_PARAM Structure
The SOAP client prepares a structure of type SOAP_DEC_PARAM by copying the
values required for the call into the SOAP_DEC_PARAM structure, as shown in
Figure 167.

3. Insert Parameters into CICS Input Queue of the SOAP Server
The SOAP client uses the CICS inqueue and outqueue (as does the SOAP service)
to transmit parameters. In the IBM-supplied example, the SOAP client requests the
stock quote for symbol IBM. In response, a parameter called symbol, with value IBM,
and type SOAP_TYPE_STRING, is inserted into the CICS inqueue as shown in
Figure 168.

char *URL = "http://9.164.155.95:1080/cics/CWBA/IESSOAPS";
char *URN = "urn:iessoapd:getquote";
char *METHOD = "getQuote";

Figure 166. Preparing the SOAP Client’s Call Parameter

// prepare the call
strncpy(call.url, URL, strlen(URL));
strncpy(call.method, METHOD, strlen(METHOD));
strncpy(call.urn, URN, strlen(URN));
strncpy(call.inqueue, "INPUT ",8);
strncpy(call.outqueue,"OUTPUT ",8);
call.proxytype = 0;

Figure 167. SOAP Client Prepares the SOAP_DEC_PARAM Structure

SetNextOutParameter("INPUT ",
"string", SOAP_TYPE_STRING,
"symbol", "IBM", 3);

Figure 168. SOAP Client Inserts Values into the SOAP Server’s Input Queue

Using SOAP

Chapter 25. Using SOAP for Inter-Program Communication 341

4. Call SOAP Converter to Handle Requests
Now that the preparation of the call is complete, the SOAP client can call the
SOAP converter (IESSOAPE) to handle the SOAP client requests, as shown in
Figure 169. The SOAP converter in turn calls the SOAP client-processor (as shown
in Step 2 of Figure 156 on page 334).

5. Obtain Results of the SOAP Call
After the SOAP client has called the SOAP converter (IESSOAPE), it can then
obtain the result of this call, as shown in Figure 170. The variable call.namespaceurl
contains the namespace URL that was used by the SOAP service that was called, to
encode the content of the reply. If namespace url contains a value, then the URL was
not know to the decoder. The SOAP client must therefore deserialize the value of
the parameter itself.

6. Delete CICS Queues That Were Created
After the SOAP call is completed, the SOAP client must now delete the temporary
CICS queues that were automatically created during the preparation of the call.
This ensures that all memory is given back to CICS. This is shown in Figure 171.

EXEC CICS LINK PROGRAM("IESSOAPE")
COMMAREA(&call) LENGTH(sizeof(call))
RESP(rc) RESP2(rc2);

Figure 169. SOAP Client Calls SOAP Converter (IESSOAPE) to Handle Requests

rc = GetNextInParameter("OUTPUT ",&name,&val,&len);
if(rc!=0)

break;
cicsprintf("name/type = %.32s", name);
cicsprintf("len = %d", len);
sprintf(temp,"val = %s%ds", "%.", len);
cicsprintf(temp,val);

Figure 170. SOAP Client Obtains Results of the SOAP Call

EXEC CICS DELETEQ TS QUEUE("INPUT ")
RESP(rc) RESP2(rc2);

EXEC CICS DELETEQ TS QUEUE("OUTPUT ")
RESP(rc) RESP2(rc2);

Figure 171. SOAP Client Deletes CICS Queues

Using SOAP

342 VSE/ESA: e-business Connectors, User’s Guide

Using a Java SOAP Client
Instead of using the IBM-supplied SOAP client written in C for CICS (soapclnt.c),
you can use a Java SOAP client.

The SOAP client GetQuote.java is supplied with the Apache SOAP distribution.
This example is stored in the Apache SOAP directory soap-
2_3_1\samples\stockquote\GetQuote.java, contained in the Apache SOAP
package (see “Step 1: Download and Install the Java SOAP Client Packages on the
Client” on page 344 for details).

You can also find an IBM-modified version of GetQuote.java in the directory
...\vsecon\samples\soap\javasample, together with batch files to compile and
run the program. The sample has been modified so that it calls the IBM-supplied
getQuote SOAP service, as shown by the highlighted statement of Figure 172.

As you can see, the setup of the call is similar to the setup when a SOAP client
runs on the VSE/ESA host (as shown in Figure 167 on page 341). The Java client
sample performs the same processing as the SOAP client sample (soapclnt) that
runs on the VSE/ESA host.

You must change the run.bat file (contained in the directory
...\vsecon\samples\soap\javasample) so that the URL of the SOAP server and
the requested symbol, are given to the program on the command line. For details,
refer to “Running the IBM-Supplied SOAP Sample” on page 344.

...
// Build the call.
Call call = new Call ();
call.setTargetObjectURI ("urn:iessoapd:getquote");
call.setMethodName ("getQuote");
call.setEncodingStyleURI(encodingStyleURI);
Vector params = new Vector ();
params.addElement (new Parameter("symbol", String.class, symbol, null));
call.setParams (params);
...

Figure 172.

Using SOAP

Chapter 25. Using SOAP for Inter-Program Communication 343

Running the IBM-Supplied SOAP Sample
The IBM-supplied SOAP sample consists of three programs:
v GetQuote.java (which is a SOAP client running on a Java-enabled platform)
v getquote.c (which implements a SOAP service on the VSE/ESA host)
v soapclnt.c (which is used when the VSE/ESA host acts as a SOAP client)

The program getquote.c can be called as a SOAP service from either GetQuote.java
or soapclnt.c . The IBM-supplied SOAP sample illustrates both of these scenarios,
where the VSE/ESA host acts as:
v a SOAP client (when soapclnt.c is the SOAP client)
v a SOAP server (when GetQuote.java is the SOAP client).

To run the IBM-supplied SOAP sample, you must follow the steps described in this
section. However, before you can run this SOAP sample you must have:
v JDK 1.3 or later installed.
v The IBM C-compiler for VSE/ESA installed.

Step 1: Download and Install the Java SOAP Client Packages
on the Client

You must download various packages, if you do not already have the required files
installed. These are the packages you require:
v Apache SOAP package, which you can obtain from URL

http://xml.apache.org/soap/. At this Web site, go to the directory containing
the latest version, and download the soap-bin package (for example,soap-bin-
2.3.1.zip).

v Apache xerces XML Parser, which you can obtain from URL
http://xml.apache.org/xerces-j/index.html. At this Web site, download the
latest Xerces-J-bin package (for example Xerces-J-bin.1.4.4.zip).

v Sun J2EE, which you can obtain from URL
http://java.sun.com/j2ee/download.html. At this Web site, download the latest
J2EE SDK package.

v Sun Java Mail API, which you can obtain from URL
http://java.sun.com/products/javamail/.

v Sun JavaBeans Activation FrameWork (JAF), which you can obtain from URL
http://java.sun.com/products/javabeans/glasgow/jaf.html.

Step 2: Extract and Install the Required Java Programs

Step 2.1: Create a New Directory
In this step, you create a new directory. To simplify the CLASSPATH definition, all
.JAR files required for running the SOAP sample will be saved into this directory.
In the steps below, this directory is called work.

Step 2.2: Install the SUN J2EE Package
1. Install the Sun J2EE package. For example, start the j2sdkee-1_3_1-win.exe,

and then follow the instructions provided.
2. Change to the directory j2sdkee1.3.1/lib (assuming you installed J2EE into

j2sdkee1.3.1).
3. Copy the file j2ee.jar into the directory work.

Using SOAP

344 VSE/ESA: e-business Connectors, User’s Guide

Step 2.3: Extract JAR Files and Place in Your Directory
In this step you extract the required .JAR files from the downloaded ZIP files, and
put the extracted JAR files into your directory work:

For the ... You should extract the file ...

Apache SOAP package soap.jar from the soap-bin-2.3.1.zip file.

Apache xerces XML Parser xerces.jar from the Xerces-J-bin.1.4.4.zip file.

Sun Java Mail API mail.jar from the javamail-1_2.zip file

Sun JavaBeans Activation
FrameWork (JAF)

activation.jar from the jaf1_0_1.zip file.

Step 3: Compile /Link the Sample C Programs, and Define
Them to CICS

Before you can start to use the IBM-supplied C-for-CICS programs (the SOAP
client and the SOAP service), you must compile and link the source for these
programs, and then define the programs to CICS. You should therefore:
1. change the URL in the SOAP client (soapclnt.c) to match your VSE/ESA

system. The sample URL is as follows:
http://9.164.123.23:1080/cics/CWBA/IESSOAPS

(Usually, you simply need to change the IP-address).
2. upload the source for:

v soapclnt.c from directory ...\vsecon\samples\soap\vseSoapClient
v getquote.c from directory ...\vsecon\samples\soap\vseSoapService

to a VSE/ESA library. Use either the TCP/IP ftp utility, or the File Transfer
function provided with a 3270 Emulator.

3. compile source programs soapclnt.c and getquote.c using the IBM-supplied jobs
compile.job and link.job. which you can find in the same directories as the
relevant source programs (soapclnt.c or getquote.c). You might need to adapt
these jobs to your own environment (source and destination library names, and
so on). The compile Job performs the following processing:
a. Invokes the CICS pre-compiler.
b. Invokes the C compiler.
c. Catalogs the object deck into the VSE/ESA library that you specify in your

compile job.

The link Job performs the following processing:
a. Invokes the LE pre-linker.
b. Invokes the linkage editor.
c. Catalogs the phase into the VSE/ESA library that you specify in your link

job.
4. define the programs SOAPCLNT and GETQUOTE to CICS, using the CEDA

transaction. You must also ensure that the phase you created above, can be
located by CICS (using the LIBDEF statement of CICS). Figure 173 on page 346
shows how you use CEDA for the GETQUOTE program.

Using SOAP

Chapter 25. Using SOAP for Inter-Program Communication 345

Step 4: Define the SOAP Server to CICS
To activate the IBM-supplied SOAP server, you must define a TCP/IP service for
CICS. All SOAP clients (whether written in C-for-CICS or Java) require that you
perform this step. Perform the CEDA DEFINE shown below.

Step 5: Activate the ASCII to EBCDIC Converter
An ASCII / EBCDIC converter (DFHCNV) is provided in VSE/ICCF library 59. It
is used by CICS Web Support (and therefore by the SOAP server) to convert:
v Incoming XML data from ASCII to EBCDIC.
v Outgoing XML data from EBCDIC to ASCII.

To activate the ASCII / EBCDIC converter, submit skeleton DFHCNV to the
VSE/POWER reader queue.

Step 6: Compile the Java Sample
1. Copy these files from the directory ...\vsecon\samples\soap\javasample to

your directory work:
v compile.bat

CEDA DEFINE PROGRAM
OVERTYPE TO MODIFY
CEDA DEFine PROGram()
PROGram ==> GETQUOTE
Group ==> VSESPG
DEscription ==> SAMPLE SOAP SERVICE GETQUOTE
Language ==> C CObol | Assembler | C | Pli
RELoad ==> No No | Yes
RESident ==> No No | Yes
USAge ==> Normal Normal | Transient
USEsvacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : 00 0-24 | Public
Cedf ==> Yes Yes | No
DAtalocation ==> Any Below | Any
EXECKey ==> User User | Cics
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>

Figure 173. Using CEDA to Define Sample SOAP Service to CICS

CEDA DEFine TCpipservice(SOAP)
TCpipservice : SOAP
Group : VSESPG
Description ==> TCP/IP SERVICE FOR SOAP SEVRER
Urm ==> DFHWBADX
Portnumber ==> 01080 1-65535
Certificate ==>
STatus ==> Open Open | Closed
SSl ==> No Yes | No | Clientauth
Attachsec ==> Local Local | Verify
TRansaction ==> CWXN
Backlog ==> 00001 0-32767
TSqprefix ==>
Ipaddress ==>
SOcketclose ==> No No | 0-240000

Figure 174. Using CEDA to Define SOAP Server to CICS

Using SOAP

346 VSE/ESA: e-business Connectors, User’s Guide

v run.bat
v GetQuote.java

2. Run the file compile.bat.

Step 7: Run the Java SOAP Client Sample
1. Open the file run.bat using a text editor, and change the URL to match your

own VSE/ESA system. The sample URL is as follows:
http://9.164.123.23:1080/cics/CWBA/IESSOAPS

(Usually, you simply need to change the IP-address).
2. Start the run.bat file. A SOAP call is then sent from the SOAP client to the

SOAP server on the VSE/ESA host, requesting the price for the stock symbol of
IBM. The sample SOAP service running on the VSE/ESA host then returns a
hard-coded symbol value to the Java program.

3. The Java SOAP client outputs the value of the stock (which is “hard-coded” in
the program!) to the screen.

Step 8: Run the C-Program SOAP Client Sample
To run the C program soapclnt.c, you must:
1. define (again using CEDA) a CICS transaction that will call the CICS program

SOAPCLNT that you defined in “Step 3: Compile /Link the Sample C
Programs, and Define Them to CICS” on page 345. Note: ensure that you have
changed the URL in the SOAP client (soapclnt.c) to match your VSE/ESA
system!.

2. start the CICS transaction defined above. A SOAP call is then sent from the
SOAP client to the SOAP server on the VSE/ESA host, requesting the price for
the stock symbol of IBM. The sample SOAP service running on the VSE/ESA
host then returns a hard-coded symbol value to the C program.

Using SOAP

Chapter 25. Using SOAP for Inter-Program Communication 347

Writing Your Own SOAP Programs
The IBM-supplied sample which you can use as a template for writing your own
programs, consists of:
v a SOAP C language header file IESSOAPH.H , which is described in “How the

IBM-Supplied SOAP Control Blocks Are Used” on page 335. The COMMAREA
and memory mappings used by the VSE/ESA SOAP implementation are defined
in IESSOAPH.H. If you want to write SOAP services or clients in another language
(such as COBOL) you must adopt these definitions to this language by yourself.
A mapping for the assembler language is included in IESSOAPH.H as comments.

v a SOAP service getquote.c written in C for CICS, which is described in
“Description of the IBM-Supplied SOAP Service (getquote.c)” on page 339

v a SOAP client soapclnt.c written in C for CICS, which is described in
“Description of the IBM-Supplied SOAP Client (soapclnt.c)” on page 341.

v a SOAP client GetQuote.java written in Java, which is described in “Using a
Java SOAP Client” on page 343.

If the SOAP converters IESSOAPD and/or IESSOAPE do not meet your
requirements, you can replace them with your own programs. You specify the
name of the SOAP converter for the VSE/ESA inbound direction in the URI of the
SOAP request. For details, see “Description of the IBM-Supplied SOAP Service
(getquote.c)” on page 339.

Using SOAP

348 VSE/ESA: e-business Connectors, User’s Guide

Chapter 26. Using the VSE Script Connector for Non-Java
Access

This chapter describes how you use the VSE Script connector (which consists of the
VSE Script Client and the VSE Script Server) to access VSE/ESA host data from
Java or non-Java platforms. Since access from non-Java platforms is the main
advantage of using the VSE Script Connector, this has been included in the title of
this chapter.

For each VSE Script Client that you write, you will most probably also need to
write a corresponding VSE Script (using the VSE Script Language), to meet your
own specific requirements. However, new VSE Script Clients can use existing VSE
Scripts to access VSE/ESA host data.

This chapter contains these main sections:
v “How the VSE Script Connector Is Used”
v “Overview of the Protocol Used Between Client and Server” on page 350
v “Writing VSE Scripts Using the VSE Script Language” on page 351
v “Sample Files You Can Use for Writing VSE Script Clients” on page 355
v “Example of Writing a VSE Script Client (and Its VSE Script)” on page 356

Related Sections:
v “Overview of the VSE Script Connector” on page 7
v Chapter 7, “Installing the VSE Script Connector”, on page 43

How the VSE Script Connector Is Used
Figure 175 shows how a VSE Script can be called by a VSE Script Client, to obtain
data from the VSE/ESA host.

�1� The VSE Script Client establishes a TCP/IP connection to the VSE Script
Server on the middle-tier. The VSE Script Client then calls a VSE Script by
sending:
v the file name of the VSE Script.
v the parameters belonging to the VSE Script

Figure 175. How the VSE Script Connector is Used

© Copyright IBM Corp. 2000, 2003 349

to the VSE Script Server running on a middle-tier and Java-enabled
platform.

�2� The VSE Script Server reads the VSE Script file from the VSE Script
directory, and starts to interpret and translate the VSE Script file statements
into VSE Java Beans requests. Each VSE Script file is written using the VSE
Script Language (described in “Writing VSE Scripts Using the VSE Script
Language” on page 351).

�3� The VSE Java Beans requests are executed by the VSE Java Beans.

�4� The VSE Java Beans communicate with the VSE Connector Server running
on the VSE/ESA host, which performs the request for functions and data.

�5� The data that was obtained by the VSE Java Beans is then converted to a
format that the VSE Script Client can use, and is returned to the VSE Script
Client.

Overview of the Protocol Used Between Client and Server
This section describes the protocol used for the data flow between a VSE Script
Client and the VSE Script Server on the middle-tier. The general flow of actions is
as follows:
1. The VSE Script Client opens a connection to the VSE Script Server.
2. The VSE Script Client then sends to the VSE Script Server:

a. the name of a VSE Script, followed by a CR LF (X’0D’ X’0A’)
b. each parameter value, followed by CR LF

3. After the last parameter has been sent, an empty line is sent (only CR LF). This
indicates that all parameters have been transmitted.

4. The VSE Script Server starts to execute the VSE Script.
5. The VSE Script Server sends the output from the VSE Script back to the VSE

Script Client, line-by-line. Each line is terminated by CR LF.
6. After it has sent the last output line to the VSE Script Client, the VSE Script

Server then closes the connection.

You can easily implement the protocol described here into any kind of
programming language. The programming language is only required to support
calls to TCP/IP socket functions.

You can use a Telnet application to easily test the VSE Script Connector. To do so,
you must:
1. Create a connection between the telnet client and the VSE Script Server.
2. Type the name of your VSE Script and press Enter to terminate the line with CR

LF.
3. Type the name of each parameter and press Enter to terminate the line with CR

LF.

Note: You will not see what you type, since the VSE Script Server does not
echo the data it receives.

4. After you have entered the last parameter, press Enter to start executing your
VSE Script. The output from the VSE Script will now be displayed by the telnet
client.

The example below shows a sequence where a VSE Script called test.src which
contains three parameters, is executed. The parameters are Hello, 583, and get. The

Writing VSE Script Clients and VSE Scripts

350 VSE/ESA: e-business Connectors, User’s Guide

VSE Script Server sends the output from the VSE Script (Script test.src has
been executed) back to the VSE Script Client.
1. VSE Script Client to the VSE Script Server:

test.src<CR><LF>
Hello<CR><LF>
583<CR><LF>
get<CR><LF>
<CR><LF>

2. VSE Script Server to the VSE Script Client:
Script test.src has been executed<CR><LF>

Writing VSE Scripts Using the VSE Script Language

The VSE Script connector includes a special programming language, called the VSE
Script Language, that you can use to write your own VSE Scripts. These VSE Scripts
are required for accessing VSE functions and data from your VSE Script Clients. As
with other programming languages, the VSE Script Language consists of:
v statements (if, while, for, break, continue, sub, gosub, return)
v operators (logical, concatenation, arithmetic)
v variables
v built-in functions.

The VSE Script Language is described in detail in the Language Reference online
documentation, which is installed on your workstation during the installation of
the VSE Script Server (as described in Chapter 7, “Installing the VSE Script
Connector”, on page 43.

This section provides an introduction to the VSE Script Language in these
sub-sections:
v “General Rules That Apply to the VSE Script Language”
v “VSE Script Language Built-In General Functions” on page 352
v “VSE Script Language Built-In String Functions” on page 353
v “VSE Script Language Built-In Console Functions” on page 353
v “VSE Script Language Built-In POWER Functions” on page 353
v “VSE Script Language Built-In VSAM Functions” on page 354

General Rules That Apply to the VSE Script Language
Statements:

1. A statement can be either a:
v keyword (IF, WHILE, ...)
v function call
v variable declaration
v variable assignment.

2. Each statement must end with a semicolon (;), and any number of statements
can be written on a single line.

3. A command cannot be split over two lines (statements on one line are
considered as one command, including the do statement).

4. Blank lines are allowed.
5. The VSE Script Language is not case-sensitive.
6. Unrecoverable errors that occur when a VSE Script is interpreted are described

as ScriptErrors. A ScriptError generates this information:
v the line number and statement number where the error occurred.
v the (unique) error number.

Writing VSE Script Clients and VSE Scripts

Chapter 26. Using the VSE Script Connector for Non-Java Access 351

v a descriptive text for the error number.

Comments:

1. A comment begins with two forward slashes ''//'', and ends at the end of the
line.

2. A comment can appear behind a command, or at the beginning of a line.

Variables:

1. An unlimited number of variables can be declared.
2. Each variable can be declared only once in a VSE Script
3. After they have been declared, all variables are global in the VSE Script.
4. A variable must be declared before use, and can be defined at any time/place.
5. Variable names must start with a alphabetic character. Afterwards, all

alphabetic characters, digits and the underscore '_' are allowed.
6. There are three data types: int, string, and boolean.
7. Each variable can be accessed as an array of values.
8. var[0] is the same as the variable var itself, and therefore var[0]=1 is the

same as var=1.
9. The variable ARGV is always defined in a VSE Script, and a variable with this

name cannot be declared.
10. The variable is of type STRING, the values of the variable are the parameters

that are passed to the VSE Script during startup.

VSE Script Language Built-In General Functions

Function Description

print / println prints a comma separated list of values or expressions (int,
string, boolean) to standard out

exit exits the VSE Script with a specified return code

sleep sends the VSE Script into sleep mode for a specified time
interval

resetVar deletes all values of a given variable, especially useful with
arrays

arraySize gets the actual size of a given array variable

getLastErrorMsg gets the last internal error message. This message is set by
many VSE/ESA access functions to give a detailed description
of an error

readFile reads a specified file line by line into a string array

saveFile saves the lines in a string array to a file

getCallersIP gets the IP address of the host that called the VSE Script. This
could be used from inside a VSE Script to reject access to the
VSE Script if other IP’s than the expected try to call it.

call calls an external program on the machine where the VSE Script
Server runs.

callNoWait calls an external program on the machine where the VSE Script
Server runs. The function will return to the VSE Script
immediately, it will not wait for the called program to end.
Hence the output of the program can’t be captured and no exit
code is available.

Writing VSE Script Clients and VSE Scripts

352 VSE/ESA: e-business Connectors, User’s Guide

Function Description

VSEConnect tries to connect to the specified host. You don’t need to call
this function explicitly, each function that access the host will
automatically connect to VSE if needed. This function can be
used to check if a connection is possible before any other
operations start. Once established, the connection is pooled for
later use.

VSE Script Language Built-In String Functions

Function Description

formatNumber formats a given number to a string

toString converts a variable (int, string, boolean) to a string

toInt converts an integer or string to an integer.

indexOf gets the index of the first occurrence of a given string in
another string

lastIndexOf gets the index of the last occurrence of a given string in another
string

subString gets a substring from a given string

trim removes all leading and trailing blanks from a given string

strLen gets the length of a string

VSE Script Language Built-In Console Functions

Function Description

executeConsoleCmd executes a console command and returns the result lines

putConsoleCmd executes a console command. The output can be retrieved line
by line using getConsoleMsg

getConsoleMsg retrieves one line from the console

closeConsole closes the console

VSE Script Language Built-In POWER Functions

Function Description

executePowerJob executes a POWER job.

listPowerQueue retrieves the member list of a POWER queue.

getPowerQueueEntry receives a specified entry from a specified POWER queue.

putPowerQueueEntry creates a new POWER queue member in the specified queue.

deletePowerQueueEntry deletes a specified POWER queue entry

cancelPowerQueueEntry cancels a specified POWER queue entry

releasePowerJob releases a specified POWER queue entry in the reader queue

getPowerEntryproperties gets various properties of a POWER queue entry

setPowerEntryProperties sets various properties of a POWER queue entry

Writing VSE Script Clients and VSE Scripts

Chapter 26. Using the VSE Script Connector for Non-Java Access 353

VSE Script Language Built-In VSAM Functions

Function Description

getVsamRecord retrieves a VSAM record from a given VSAM file

getVsamRecordGE retrieves a VSAM record from a VSAM file using the
GreaterEqual search

getNextVsamRecord retrieves the next record based on given key values.

getPrevVsamRecord retrieves the previous record based on given key values

deleteVsamRecord deletes a VSAM record from a VSAM file

insertVsamRecord inserts a new VSAM record into a VSAM file.

updateVsamRecord updates a VSAM record of a VSAM file

vsamBrowseStart starts a browse session for a given VSAM map or view. Only
one session can be active for the same map or view.
Afterwards you can browse through the returned records using
vsamBrowseNext or vsamBrowsePrev. A call to
vsamBrowseEnd ends the session and discards the internal
browse data.

vsamBrowseNext can be called after a successful vsamBrowseStart. It positions to
the next record of the retrieved records. The function can be
called sequentially until the end of data is reached.

vsamBrowsePrev can be called after a successful vsamBrowseStart. It positions to
the previous record of the retrieved records. The function can
be called sequentially until the first record is reached.

vsamBrowseEnd ends the browse session for the specified filename.

Writing VSE Script Clients and VSE Scripts

354 VSE/ESA: e-business Connectors, User’s Guide

Sample Files You Can Use for Writing VSE Script Clients
The files listed in Table 9 are copied to the directory where you installed the VSE
Script Server (see “Step 1.2: Perform the Installation of the VSE Script Server” on
page 44 for details):
v VSEScriptServlet.java
v VSEScriptWebService.java

You can use the files in Table 9 to write your own VSE Script Clients.

Table 9. Files Supplied for Writing VSE Script Clients

File Description

VSEScriptClient.dll Windows DLL for use, for example, with MS Office
and Lotus Products

VSEScriptClient.h C-Header for use with VSEScriptClient.dll

VSEScriptClient.lib C-Library file for use with VSEScriptClient.dll

VSEScriptClient.123 Lotus 1-2-3 sample that uses VSEScriptClient.dll

VSEScriptClient.lss Lotus Script source of the Visual Basic script

VSEScriptClient.xls Microsoft Excel sample that uses VSEScriptClient.dll

VSEScriptClient.bas Visual Basic source of the Visual Basic Script

VSEScriptCgi.c Sample C-source of a CGI that uses VSEScriptClient.dll

VSEScriptCgi.exe Compiled CGI

com\ibm\vse\script\client\
VSEScriptServlet.java

Java source of sample servlet

com\ibm\vse\script\client\
VSEScriptWebService.java

Java source of sample WebService

Writing VSE Script Clients and VSE Scripts

Chapter 26. Using the VSE Script Connector for Non-Java Access 355

Example of Writing a VSE Script Client (and Its VSE Script)

This section provides an example of how to write a VSE Script Client and its
corresponding VSE Script, to insert VSAM data into office applications such as
Lotus 1-2-3 or Lotus Wordpro. The example uses a Windows DLL file
VSEScriptClient.dll, which is available for use with any Windows programs (for
example a Lotus Spreadsheet). You must, however, declare this DLL file using a
statement like the one shown for Lotus 1-2-3 in Figure 179 on page 360. These
statements are also contained in the online documentation, and you can easily
Copy and Paste them as required.

This section has the following sections:
v “Step 1: Setup the VSE Script Server Properties File”
v “Step 2: Setup the Connections Properties File”
v “Step 3: Define the Sample VSAM Data” on page 357
v “Step 4: Modify the Sample VSE Script” on page 357
v “Step 5: Start the VSE Connector Server on the VSE/ESA Host” on page 358
v “Step 6: Start the VSE Script Server Locally” on page 358
v “Step 7(a): Open the Sample Lotus 1-2-3 Spreadsheet File” on page 359
v “Step 7(b): Open the Sample MS Office Spreadsheet” on page 362
v “Step 7(c): Start a Sample VSE Script from the Command Line” on page 364

Other examples of how to program VSE Script Clients for other client platforms
are provided in the online documentation supplied with the VSE Script Connector.

Step 1: Setup the VSE Script Server Properties File
The parameters for the VSE Script Server are defined in the file
VSEScriptServer.properties, which you can find in the directory where you
installed the VSE Script Server (see “Step 1.2: Perform the Installation of the VSE
Script Server” on page 44 for details). An example of VSEScriptServer.properties is
shown below.
#VSEScriptServer

#print messages (on) or do not print (off)
messages=on

#port where the server listens
listenport=4711

#number of maximum connections allowed
maxconnections=256

#root directory for VSE Scripts
scriptdirectory=./scripts

#name of the connection config file
connectionconfig=Connections.properties

The properties file is pre-customized for use with the sample, and you should not
normally need to change this file. If you wish to do so, however, see “Step 2:
Configure the VSEScriptServer Properties File” on page 45 for details.

Step 2: Setup the Connections Properties File
The Connections.properties file defines the settings for the VSE/ESA systems with
which you wish to work. You can find Connections.properties in the directory
where you installed the VSE Script Server. An example of this file is shown below.

Writing VSE Script Clients and VSE Scripts

356 VSE/ESA: e-business Connectors, User’s Guide

connection.1.password=mypassw
connection.1.ip=9.12.34.56
connection.1.name=VSE01
connection.1.port=2893
connection.1.userid=jsch
connection.timeout=100

For details of the Connections.properties, see “Step 3: Configure the Connections
Properties File” on page 46.

You can edit the above file using any text editor. Type your VSE password in clear
text in the parameter password. When the VSE Script Server starts and reads the
Connections properties file, the password is encrypted to parameter encpassword,
and password is removed from the file. For details of the Connections properties
file, see “Step 3: Configure the Connections Properties File” on page 46.

Step 3: Define the Sample VSAM Data
From VSE/ESA 2.5 onwards, a sample job SKVSSAMP is provided which is stored
in ICCF library 59. It enables you to define sample data for various VSE/ESA
e-business Connectors samples.

Submit the Job SKVSSAMP to define a VSAM cluster with the name
VSAM.CONN.SAMPLE.DATA, in the VSESP.USER.CATALOG. It contains a
number of records describing “used cars”. For details of job SKVSSAMP, see “4.
Define the VSAM Data Cluster” on page 219. Job SKVSSAMP automatically uses
the IDCAMS RECMAP command to define a VSAM map that contains the field
names of the sample data. For details, see “Defining a Map Using RECMAP” on
page 132.

Step 4: Modify the Sample VSE Script
Figure 176 on page 358 shows the sample VSE Script getdata.src, which reads a
record from the VSAM file defined in “Step 3: Define the Sample VSAM Data”,
and inserts the data into the spreadsheet. You can find getdata.src in sub-directory
/scripts/samples of the directory where you installed the VSE Script Server. The
record is identified by its key, which is passed to the VSE Script by parameter. The
VSE Script is used by the Lotus 1-2-3 example of a VSE Script Client,
VSEScriptClient.123.

Make sure that you have the correct VSE/ESA host defined (using the constant
host, shown as VSE01 below). This host name must match the one defined in the
Connections.properties.

Writing VSE Script Clients and VSE Scripts

Chapter 26. Using the VSE Script Connector for Non-Java Access 357

Step 5: Start the VSE Connector Server on the VSE/ESA Host
Make sure that the VSE Connector Server is started in non-SSL mode. The server
runs in class R by default. Use job STARTVCS, which is located in the reader
queue, to start the server (for details see “Starting the VSE Connector Server” on
page 36).

Step 6: Start the VSE Script Server Locally
To start the VSE Script Server locally, you use either:
v runserver.bat on Windows
v runserver.cmd on OS/2
v runserver.sh on Linux/Unix workstations.

// constants
String host = "VSE01";
String file = "VSESP.USER.CATALOG\\VSAM.CONN.SAMPLE.DATA\\USEDCARS";

// Variables
String keyfields;
String keyvalues;
String fields;
String values;
int rc;

// prepare the fields
keyfields[0] = "ARTICLENO";
keyvalues[0] = argv[0]; // argument is key

fields[0] = "ARTICLENO";
fields[1] = "MANUFACTURER";
fields[2] = "TYPE";
fields[3] = "MODEL";
fields[4] = "HP";
fields[5] = "DISPLACEMENT";
fields[6] = "CYLINDERS";
fields[7] = "COLOUR";
fields[8] = "FEATURES";
fields[9] = "PRICE";

// get the record
getVSAMRecord(host,file,&keyfields,&keyvalues,&fields,&values, &rc);

// print received data

if (rc!=0) do;
println("Not found");

else do;
println(values[0]);
println(values[1]);
println(values[2]);
println(values[3]);
println(values[4]);
println(values[5]);
println(values[6]);
println(values[7]);
println(values[8]);
println(values[9]);

endif;

Figure 176. VSE Script Provided With the VSE Script Connector Example

Writing VSE Script Clients and VSE Scripts

358 VSE/ESA: e-business Connectors, User’s Guide

Step 7(a): Open the Sample Lotus 1-2-3 Spreadsheet File
The sample Lotus Spreadsheet file VSEScriptClient.123 already has the necessary
setup to run the VSE Script. You can find VSEScriptClient.123 in the directory
where you installed the VSE Script Server. To open the file, double-click it using
the Windows Explorer and you will see the Execute Script button as shown in
Figure 177.

Providing the VSE Script Server is running on the same workstation as your
spreadsheet, you can now press Execute Script and the data is transferred from the
VSAM cluster into the Lotus Spreadsheet as shown in Figure 178. If the VSE Script
Server is not running on the same workstation as your spreadsheet, you must first
modify the Visual Basic script using, for example, a Script editor as shown in
“How the Sample VSE Script is Defined in Lotus 1-2-3”, so that it contains the IP
address or Host name of the workstation where the VSE Script Server is running.

How the Sample VSE Script is Defined in Lotus 1-2-3
Before the sample VSE Script can be used from within an office application such as
Lotus 1-2-3, you must define it using, for example, a Visual Basic script (as shown
in Figure 179 on page 360). When you open the sample file VSEScriptClient.123

Figure 177. Sample Lotus 1-2-3 Spreadsheet for VSE Script Connector Example

Figure 178. Transferring Data from VSAM Cluster to Lotus 1-2-3 Spreadsheet

Writing VSE Script Clients and VSE Scripts

Chapter 26. Using the VSE Script Connector for Non-Java Access 359

and open the script editor, you can see the global function declarations in the
“Globals” section, as shown in Figure 179.

You can also see the Visual Basic script in the section related to Button 1 in
Figure 180. (In Figure 178 on page 359, Button 1 is labelled as Execute Script).

Note: VSEScriptClient.dll must be accessible by the office application. You may
either copy the DLL into the Lotus 1-2-3 DLL directory or simply
double-click the sample spreadsheet file in the same directory as the DLL.

Here is the complete Visual Basic code of the VSE Script Client, that is used to run
the VSE Script in Lotus 1-2-3. The parts shown in bold are specific to the Lotus
Spreadsheet environment.
Sub Click(Source As Buttoncontrol)

Dim rc As Long
Dim handle As Long
Dim buffer As String * 100

Figure 179. Sample Script As Defined in Lotus 1-2-3

Figure 180. Visual Basic Script Used With Lotus 1-2-3 Spreadsheet Example

Writing VSE Script Clients and VSE Scripts

360 VSE/ESA: e-business Connectors, User’s Guide

Dim length As Long

[A.A6].contents = ""

handle = 0

Dim host As String
Dim script As String

host = "localhost:4711"
script = "samples/getdata.src"

rc = ScriptInit(host,script,handle)
If (rc0) Then

[A.A6].contents = "rc = " &rc
Goto finish

End If

rc = ScriptAddParam(handle,"2")
If (rc0) Then

[A.A6].contents = "rc = " &rc
Goto finish

End If

rc = ScriptExecute(handle)
If (rc0) Then

[A.A6].contents = "rc = " &rc
Goto finish

End If

Dim counter As Long
Dim rows As Range
Dim cell As Variant

Set rows = Bind("A8..A65535")

counter = 0
Do

rc = ScriptGetOutput(handle,buffer,100,length)
If (rc=0) Then

buffer = Left(buffer,length)

Set cell = rows.Cell(counter,0,0)
cell.contents = buffer

counter = counter + 1
End If

Loop While rc=0

Finish:

rc = ScriptCleanup(handle)
End Sub

Writing VSE Script Clients and VSE Scripts

Chapter 26. Using the VSE Script Connector for Non-Java Access 361

Step 7(b): Open the Sample MS Office Spreadsheet
The sample MS Office Spreadsheet file VSEScriptClient.xls already has the
necessary setup to run the VSE Script. You can find VSEScriptClient.xls in the
directory where you installed the VSE Script Server. To open the file, double-click
it using the Windows Explorer and you will see the Execute Script button as
shown in Figure 181.

Providing the VSE Script Server is running on the same workstation as your
spreadsheet, you can now press Execute Script and the data is transferred from the
VSAM cluster into the MS Office Spreadsheet as shown in Figure 182. If the VSE
Script Server is not running on the same workstation as your spreadsheet, you
must first modify the Visual Basic script using, for example, a Script editor as
shown in Figure 183 on page 363, so that it contains the IP address or Host name of
the workstation where the VSE Script Server is running.

Figure 181. Sample Spreadsheet for MS Office Spreadsheet Example

Figure 182. Transferring Data from VSAM Cluster to MS Office Spreadsheet

Writing VSE Script Clients and VSE Scripts

362 VSE/ESA: e-business Connectors, User’s Guide

How the Sample VSE Script is Defined in MS Office
Before the sample VSE Script can be used from within an office application such as
MS Office, you must define it using, for example, a Visual Basic script (as shown in
Figure 183). When you open the sample file VSEScriptClient.xls and open the
Visual Basic editor, you can see the global function declarations and the Visual
Basic script.

Note: VSEScriptClient.dll must be accessible by the office application. You may
either copy the DLL into the MS Office directory or simply double-click the
sample spreadsheet file in the same directory as the DLL.

Here is the complete Visual Basic code of the VSE Script Client, that is used to run
the VSE Script in MS Office. The parts shown in bold are specific to the MS Office
Spreadsheet environment.
Attribute VB_Name = "Module1"
Public Declare Function ScriptInit Lib "VSEScriptClient.dll" (ByVal host As

String, ByVal script As String, handle As Long) As Long
Public Declare Function ScriptAddParam Lib "VSEScriptClient.dll" (ByVal handle

As Long, ByVal parameter As String) As Long
Public Declare Function ScriptExecute Lib "VSEScriptClient.dll" (ByVal handle

As Long) As Long
Public Declare Function ScriptGetOutput Lib "VSEScriptClient.dll" (ByVal handle

As Long, ByVal buffer As String, ByVal maxlen As Long, retlen As Long) As Long
Public Declare Function ScriptCleanup Lib "VSEScriptClient.dll" (ByVal handle

As Long) As Long
Sub fetchScriptData()

Dim rc As Long
Dim handle As Long
Dim buffer As String * 100
Dim length As Long

Worksheets(1).Cells(6, 1).Value = ""

handle = 0
rc = 0

Dim host As String

Figure 183. Sample Script as Defined in MS Office

Writing VSE Script Clients and VSE Scripts

Chapter 26. Using the VSE Script Connector for Non-Java Access 363

Dim script As String

host = "localhost:4711"
script = "samples/getdata.src"

rc = ScriptInit(host, script, handle)
If (rc <> 0) Then

Worksheets(1).Cells(6, 1).Value = "rc = " & rc
GoTo Finish

End If

rc = ScriptAddParam(handle, "2")
If (rc <> 0) Then

Worksheets(1).Cells(6, 1).Value = "rc = " & rc
GoTo Finish

End If

rc = ScriptExecute(handle)
If (rc <> 0) Then

Worksheets(1).Cells(6, 1).Value = "rc = " & rc
GoTo Finish

End If

Dim counter As Long

counter = 0
Do

rc = ScriptGetOutput(handle, buffer, 100, length)
If (rc = 0) Then

buffer = Left(buffer, length)

Worksheets(1).Cells(counter + 8, 1).Value = buffer

counter = counter + 1
End If

Loop While rc = 0

Finish:

rc = ScriptCleanup(handle)
End Sub

Step 7(c): Start a Sample VSE Script from the Command Line
To start a sample VSE Script from the command line, you can use the batch file
runscript.bat which is located in the directory where you installed the VSE Script
Server.

For example, to start the sample script that has the name break_cont.src, you
would enter at the command line:
runscript samples\break_cont.src

Note: The samples directory contains other sample scripts that you can use for
learning and testing purposes.

Writing VSE Script Clients and VSE Scripts

364 VSE/ESA: e-business Connectors, User’s Guide

Appendix. AIBTDLI DL/I Messages and Return Codes

These are the new messages that can be generated by the AIBTDLI interface:

DLZ150I LOAD FOR DLZMPX00 FAILED,
CDLOAD RETURN CODE = rc

Explanation: The language interface module
DLZLX000 has tried to load the DL/I connector
module DLZMPX00 on a DL/I call entered via
AIBTDLI. The load has failed for the reason given in
the return code ’rc’ shown in decimal format. The
program is canceled.

For an explanation of the CDLOAD return code rc refer
to VSE/ESA Messages and Codes, Section
″VSE/Advanced Functions Codes and SVC errors″.

User Response: Correct the error and rerun the
program.

DLZ151I NON-COMPATIBLE ENVIRONMENT
FOR AIBTDLI INTERFACE

Explanation: A user program has issued a DL/I call
via AIBTDLI. The language interface module
DLZLX000 has detected that either

v DLZRRC00 for DL/I batch

v DLZMPI00 for MPS batch or

v CICS/DLI online

is already active in this partition. DL/I calls via
AIBTDLI are only supported, when no specific DL/I
environment has been started in the partition. That
means that DLZRRC00, DLZMPI00 or CICS/DLI online
may not be running. The program is abnormally
terminated.

User Response: Rerun the program in a partition
without a pre-established DL/I environment.

DLZ152I DL/I EXIT ROUTINE DLZBSEOT NOT
LOADED IN SVA

Explanation: A user program has issued a DL/I call
via AIBTDLI, but the DL/I task termination routine
DLZBSEOT was not residing in the SVA. The program
is canceled.

User Response: Load DLZBSEOT into the SVA and
rerun the program.

DLZ153I GETVIS FOR AIB FAILED, RETURN
CODE = rc

Explanation: The DL/I connector module DLZMPX00
encountered an error while executing a GETVIS request
for the Application Interface Block (AIB) on a DL/I call
passed via AIBTDLI. The GETVIS return code ’rc’ is
given in decimal format. The program is canceled.

For an explanation of the GETVIS return code rc refer
to VSE/ESA Messages and Codes, Section
″VSE/Advanced Functions Codes and SVC errors″.

User Response: Correct the error and rerun the
program.

DLZ154I MISSING OR INVALID AIB
PARAMETER AT SCHEDULING CALL

Explanation: On a scheduling call entered via
AIBTDLI, the mandatory parameter, where DL/I
returns the address of the AIB, was missing or had an
invalid address. The program is canceled.

User Response: Correct the CALL statement and
rerun the program.

DLZ155I WRONG ’PARTID=’ OR ’APPLID=’
PARAMETER AT SCHEDULING CALL

Explanation: The ’PARTID=’ or ’APPLID=’ parameter
was incorrectly specified on a scheduling call entered
via AIBTDLI.

User Response: Correct the CALL statement and
rerun the program.

DLZ156I ERROR AT ONLINE PARTITION IN id

Explanation: The CICS/DLI online partition identified
by id has encountered an error while processing a DL/I
call passed via AIBTDLI.

User Response: To locate the problem, check the
console error messages for this partition, which were
displayed before this message.

© Copyright IBM Corp. 2000, 2003 365

These DL/I CICS return codes are new:

Type of Call AIBFCTR AIBDLTR Explanation

Scheduling 08 0A Roll Back call when not scheduled

Any FF 00 Unrecoverable error using AIBTDLI
interface. See also “How Return Code
X’FF00’ Is Used” on page 327 for
explanation.

DL/I Messages and Return Codes

366 VSE/ESA: e-business Connectors, User’s Guide

Glossary

This glossary defines technical terms and
abbreviations used in the VSE/ESA e-business
Connectors User’s Guide. If you do not find the
term you are looking for, view the IBM Dictionary
of Computing located at:
www.ibm.com/networking/nsg/nsgmain.htm.

The glossary includes definitions with symbol *
where there is a one-to-one copy from the IBM
Dictionary of Computing.

*applet. An application program, written in the Java
programming language, that can be retrieved from a
Web server and executed by a Web browser. A
reference to an applet appears in the markup for a Web
page, in the same way that a reference to a graphics file
appears; a browser retrieves an applet in the same way
that it retrieves a graphics file. For security reasons, an
applet’s access rights are limited in two ways: the
applet cannot access the file system of the client upon
which it is executing, and the applet’s communication
across the network is limited to the server from which
it was downloaded. Contrast with servlet.

Asymmetric cryptography. Synonymous with Public
key cryptography.

*authentication. (1) In computer security, verification
of the identity of a user or the user’s eligibility to
access an object. (2) In computer security, verification
that a message has not been altered or corrupted. (3) In
computer security, a process used to verify the user of
an information system or protected resources.

bytecode. See Java bytecode.

CA. See Certificate Authority.

CICS ECI. The CICS External Call Interface (ECI) is
one possible requester type of the CICS business logic
interface that is provided by the CICS Transaction
Server for VSE/ESA. It is part of the CICS client and
allows workstation programs to call CICS functions on
the VSE/ESA host.

CICS EPI. The CICS External Presentation Interface
(EPI) is part of the CICS client, and enables a non-CICS
Client application to act as a logical 3270 terminal and
so control a CICS 3270 application.

CICS EXCI. The EXternal CICS Interface (EXCI) is one
possible requester type of the CICS business logic
interface that is provided by the CICS Transaction
Server for VSE/ESA. It allows any VSE batch
application to call CICS functions.

Common Connector Framework (CCF). Is part of
IBM’s Visual Age for Java, and allows connections to
remote hosts to be created and maintained. The CCF
classes are contained in the VSEConnector.jar file and
are used internally by the VSE Java Beans. CCF is
important for multi-tier architectures where, for
example, servlets run on a middle-tier platform.
Because CCF allows open connections to be kept in a
pool, this avoids the time involved in opening and
closing TCP/IP connections to the remote VSE/ESA
host each time a servlet is invoked.

*Common Object Request Broker Architecture
(CORBA). A specification produced by the Object
Management Group (OMG) that presents standards for
various types of object request brokers (such as
client-resident ORBs, server-based ORBs, system-based
ORBs, and library-based ORBs). Implementation of
CORBA standards enables object request brokers from
different software vendors to interoperate.

ConnectionManager class. Is part of CCF, and
identifies the connection to a remote VSE/ESA host: it
holds connections between the middle-tier and the
remote VSE/ESA server. Servlets can reserve a
connection from the pool, work with it and give it back
later. This is performed internally using VSE Java
Beans.

connector. In the context of VSE/ESA, a connector
provides the middleware to connect two platforms:
Web Client and VSE/ESA host, middle-tier and
VSE/ESA host, or Web Client and middle-tier. These
connectors are described in this publication (the CICS
Connector, MQSeries Connector, and so on).

container. Is part of the JVM of application servers
such as the IBM WebSphere Application Server, and
facilitates the implementation of servlets, EJBs, and
JSPs, by providing resource and transaction
management resources. For example, an EJB developer
must not code against the JVM of the application
server, but instead against the interface provided by the
container. The main role of a container is to act as an
intermediary between EJBs and clients, and also to
manage multiple EJB instances. After EJBs have been
written, they must be stored in a container residing on
an application server. The container then manages all
threading and client-interaction with the EJBs, and
co-ordinate connection- and instance pooling.

cryptographic token. Usually referred to simply as a
token, this is a device which provides an interface for
performing cryptographic functions like generating
digital signatures or encrypting data.

© Copyright IBM Corp. 2000, 2003 367

*cryptography. (1) The transformation of data to
conceal its meaning. (2) In computer security, the
principles, means, and methods for encrypting
’plaintext’ and decrypting ’ciphertext’.

DB2-Based Connector. Is a feature introduced with
VSE/ESA 2.5, which includes a customized DB2
version, together with VSAM and DL/I functionality, to
provide access to DB2, VSAM, and DL/I data, using
DB2 Stored Procedures.

DB2 Stored Procedure. In the context of VSE/ESA, a
DB2 Stored Procedure is a Language Environment (LE)
program that accesses DB2 data. However, from
VSE/ESA 2.5 onwards you can also access VSAM and
DL/I data using a DB2 Stored Procedure. In this way, it
is possible to exchange data between VSAM and DB2.

Data Encryption Standard (DES). In computer
security, the National Institute of Standards and
Technology (NIST) Data Encryption Standard, adopted
by the U.S. government as Federal Information
Processing Standard (FIPS) Publication 46, which
allows only hardware implementations of the data
encryption algorithm.

*Decryption. In computer security, the process of
transforming encoded text or ciphertext into plaintext.

DES. See Data Encryption Standard.

*digital signature. In computer security, encrypted
data, appended to or part of a message, that enables a
recipient to prove the identity of the sender.

Digital Signature Algorithm (DSA). The Digital
Signature Algorithm is the U.S. government-defined
standard for digital signatures. The DSA digital
signature is a pair of large numbers, computed using a
set of rules (that is, the DSA) and a set of parameters
such that the identity of the signatory and integrity of
the data can be verified. The DSA provides the
capability to generate and verify signatures.

DSA. See Digital Signature Algorithm.

ECI. See CICS ECI.

*Encryption. In computer security, the process of
transforming data into an unintelligible form in such a
way that the original data either cannot be obtained or
can be obtained only by using a decryption process.

Enterprise Java Bean (EJB). An EJB is a distributed
Java Bean. ″Distributed″ means, that one part of an EJB
runs inside the JVM of a web application server, while
the other part runs inside the JVM of a Web browser.
An EJB either represents one data row in a database
(entity bean), or a connection to a remote database
(session bean). Normally, both types of an EJB work
together. This allows to represent and access data in a
standardized way in heterogenous environments with
relational and non-relational data. See also Java Bean.

EPI. See CICS EPI.

EXCI. See CICS EXCI.

*firewall. In communication, a functional unit that
protects and controls the connection of one network to
other networks. The firewall (a) prevents unwanted or
unauthorized communication traffic from entering the
protected network and (b) allows only selected
communication traffic to leave the protected network.

hash function. A hash function is a transformation
that takes a variable-size input and returns a fixed-size
string, which is called the hash value. In cryptography,
the hash functions should have some additional
properties:

v The hash function should be easy to compute.

v The hash function is one-way; that is, it is impossible
to calculate the ’inverse’ function.

v The hash function is collision-free; that is, it is
impossible that different input leads to the same
hash value.

hash value. The fixed-sized string resulting after
applying a hash function to a text.

home interface. Provides the methods to instantiate a
new EJB object, introspect an EJB, and remove an EJB
instantiation. As for the remote interface, only an
interface is needed because the deployment tool
generates the implementation class. Every Session
bean’s home interface must supply at least one create()
method.

HTTP Session. In the context of VSE/ESA, identifies
the Web-browser client that calls a servlet (in other
words, identifies the connection between the client and
the middle-tier platform).

*internet. A wide area network connecting thousands
of disparate networks in industry, education,
government, and research. The Internet network uses
TCP/IP (Transmission Control Protocol/Internet
Protocol) as the standard for transmitting information.

*interface definition language (IDL). In CORBA, a
declarative language that is used to describe object
interfaces, without regard to object implementation.

JAR. Is a platform-independet file format that
aggregates many files into one. Multiple applets and
their requisite components (.class files, images, and
sounds) can be bundled in a JAR file, and then
downloaded to a Web browser using a single HTTP
transaction (much improving the download speed). The
JAR format also supports compression, which reduces
the files size (and further improves the download
speed). The compression algorithm used is fully
compatible with the ZIP algorithm. The owner of an
applet can also digitally sign individual entries in a
JAR file, to authenticate their origin.

368 VSE/ESA: e-business Connectors, User’s Guide

Java applet. See applet.

Java application. A Java program that runs inside the
JVM of your Web browser. The program‘s code resides
on a local hard disk or on the LAN. Java applications
may be large programs using graphical interfaces. Java
applications have unlimited access to all your local
resources.

*JavaBeans. A platform-independent, software
component technology for building reusable Java
components called ″beans.″ Once built, these beans can
be made available for use by other software engineers
or can be used in Java applications. Also, using
JavaBeans, software engineers can manipulate and
assemble beans in a graphical drag-and-drop
development environment.

Java bytecode. Bytecode is created when a file
containing Java source language statements is
compiled. The compiled Java code or “bytecode” is
similar to any program module or file that is ready to
be executed (run in a computer so that instructions are
performed one at a time). However, the instructions in
the bytecode are really instructions to the Java Virtual
Machine. Instead of being interpreted one instruction at
a time, bytecode is instead recompiled for each
operating-system platform using a just-in-time (JIT)
compiler. Usually, this enables the Java program to run
faster. Bytecode is contained in binary files that have
the suffix .CLASS.

*Java Database Connectivity (JDBC). An application
programming interface (API) that has the same
characteristics as Open Database Connectivity (ODBC)
but is specifically designed for use by Java database
applications. Also, for databases that do not have a
JDBC driver, JDBC includes a JDBC to ODBC bridge,
which is a mechanism for converting JDBC to ODBC; it
presents the JDBC API to Java database applications
and converts this to ODBC. JDBC was developed by
Sun Microsystems, Inc. and various partners and
vendors.

*Java Development Kit (JDK). A software package
that can be used to write, compile, debug, and run Java
applets and applications.

*Java Runtime Environment (JRE). A subset of the
Java Development Kit (JDK) that contains the core
executables and files that constitute the standard Java
platform. The JRE includes the Java Virtual Machine,
core classes, and supporting files.

*JavaScript. A scripting language that resembles Java
and was developed by Netscape for use with the
Netscape browser.

Java Server Page (JSP). A web page, similar to a
HTML page. Parts of a JSP are compiled into a servlet
by the web server’s JSP engine while sending the web
page to the requesting browser. JSPs have the
advantage, that the developer does not have to

recompile the servlet each time it is changed. Changes
are always made in the JSP file. A JSP also creates web
pages dynamically.

Java servlet. See servlet.

*Java Virtual Machine (JVM). A software
implementation of a central processing unit (CPU) that
runs compiled Java code (applets and applications).

Lotus Domino Server. The Lotus Notes server which
is used for storing each user’s Composite Database.

*MQSeries. Pertaining to a family of IBM licensed
programs that provide message queuing services.

The VSE/ESA e-business Connectors includes the
MQSeries as a connector from a middle-tier platform to
a VSE/ESA host.

Multipurpose Internet Mail Extensions (MIME). An
Internet standard for identifying the type of object that
is transferred across the Internet. MIME types include
several variants of audio, graphics, and video.

persistence. A term used to describe the storage of
objects in a database to allow them to persist over time,
rather than being destroyed when the application
containing them terminates. Enterprise Java Bean
containers, such as WebSphere, provide persistence
services for EJBs deployed within them.

persistent storage. See Persistence.

PKCS (Public Key Cryptography Standards). PKCS is
a set of standards, issued by RSA Data Security, Inc.,
for implementation of public key cryptography.

PKI. See Public key infrastructure.

*port. A connector on a device to which cables for
other devices such as display stations and printers are
attached.

*private key. In computer security, a key that is
known only to the owner. See Public key cryptography.

*proxy server. A server that receives requests intended
for another server and that acts on the client’s behalf
(as the client’s proxy) to obtain the requested service. A
proxy server is often used when the client and the
server are incompatible for direct connection (for
example, when the client is unable to meet the security
authentication requirements of the server but should be
permitted some services).

*public key. In computer security, a key made
available to anyone who wants to encrypt information.
See Public key cryptography.

*public key cryptography. In computer security,
cryptography in which a public key is used for
encryption and a private key is used for decryption.
Synonymous with Asymmetric cryptography.

Glossary 369

remote method invocation (RMI). Is a Java-only
version of CORBA. Because RMI is specific to Java, it is
easier to use than CORBA. Instead of writing IDL to
describe objects, a program called rmic can be run on
Java class files, which then creates stub and skeleton
classes directly from the class files. RMI is used, for
example, by EJBs to communicate between the client
stub and the server part of the EJB.

remote interface. In the context of VSE/ESA, the
remote interface allows a client to make method calls to
an EJB although the EJB is on a remote VSE/ESA host.
The container uses the remote interface to create
client-side stubs and server-side proxy objects to handle
incoming method calls from a client to an EJB.

*remote procedure call (RPC). (1) A facility that a
client uses to request the execution of a procedure call
from a server. This facility includes a library of
procedures and an external data representation. (2) A
client request to a service provider located in another
node.

RSA algorithm. Public key algorithm named after its
inventors Rivest, Shamir, and Adleman.

secret key. Synonymous with private key.

Secure Electronic Transaction (SET). An open
specification for securing payment card transactions
over open networks such as the Internet. SET was
developed by Visa and MasterCard with participation
from several technology companies, such as GTE, IBM,
Microsoft, Netscape, SAIC, Terisa Systems, and
VeriSign. SET will be based on encryption technology
from RSA Data Security.

Secure Sockets Layer (SSL). A security protocol that
allows the client to authenticate the server and all data
and requests to be encrypted. SSL was developed by
Netscape Communications Corp. and RSA Data
Security, Inc..

*servlet. An application program, written in the Java
programming language, that is executed on a Web
server. A reference to a servlet appears in the markup
for a Web page, in the same way that a reference to a
graphics file appears. The Web server executes the
servlet and sends the results of the execution (if there
are any) to the Web browser. Contrast with applet.

SET. See Secure Electronic Transaction.

skeleton. In the context of CORBA, is the equivalent
of a stub but used on the server (VSE/ESA host). It
reassembles the data that arrives from the network into
a recognizable format, calls a server-side method, and
sends a reply back to the client.

*socks enabled. Pertaining to TCP/IP software, or to a
specific TCP/IP application, that understands the socks
protocol. ″Socksified″ is a slang term for socks-enabled.

*socksified. See socks enabled.

*socks protocol. A protocol that enables an application
in a secure network to communicate through a firewall
via a socks server.

*socks server. A circuit-level gateway that provides a
secure one-way connection through a firewall to server
applications in a nonsecure network.

SSL. See Secure Sockets Layer.

*thread. A stream of computer instructions that is in
control of a process. A multithreaded process begins
with one stream of instructions (one thread) and may
later create other instruction streams to perform tasks.

Uniform Resource Locator (URL). (1) A sequence of
characters that represent information resources on a
computer or in a network such as the Internet. This
sequence of characters includes (a) the abbreviated
name of the protocol used to access the information
resource and (b) the information used by the protocol
to locate the information resource. For example, in the
context of the Internet, these are abbreviated names of
some protocols used to access various information
resources: http, ftp, gopher, telnet, and news; and this
is the URL for the IBM home page:
http://www.ibm.com. (2) The address of an item on the
World Wide Web. It includes the protocol followed by
the fully qualified domain name (sometimes called the
host name) and the request. The Web server typically
maps the request portion of the URL to a path and file
name. For example, if the URL is
http://www.networking.ibm.com/nsg/nsgmain.htm, the
protocol is http, the fully qualified domain name is
www.networking.ibm.com, and the request is
/nsg/nsgmain.htm.

URL. See Uniform Resource Locator.

VSE Connector Server. Is the host part of the VSE
Java Beans, and is started using the job STARTVCS
which is placed in the VSE/POWER reader queue
during installation of VSE/ESA. Runs by default in
dynamic class R.

VSE Java Beans. Are Java Beans that allow access to
all VSE-based file systems (VSE/VSAM, Librarian,
VSE/POWER, and VSE/ICCF), submit jobs, and access
the VSE/ESA operator console. The class library is
contained in the VSEConnector.jar archive. See also
JavaBeans.

WebSphere Application Server. Is used together with
an IBM HTTP Server to process servlets, JSPs, and EJBs.
Also requires a specific JDK and DB2.

370 VSE/ESA: e-business Connectors, User’s Guide

Index

Special characters
$SOCKOPT phase 98

Numerics
2-tier environments

description 12
example of use 12
overview diagram 12
using applets 202
using CICS connectivity 17
using Java-based connector 17
using VSAM Redirector connector 17

3-tier environments
description 13
example of use 13
MQSeries connectivity 18
overview diagram 13
programs installed on middle-tier 22
storing session information 245
using applets 203
using CICS connectivity 18
using DB2-based connector 18
using EJBs 273
using Java-based connector 18
using JSPs 263
using servlets 243

A
Access Control Function of BSM 103
accessing

DL/I data using AIBTDLI
interface 321

DL/I data using DB2 Stored
Procedure 320

DL/I data using VSE Java Beans 167
ICCF data using VSE Java Beans 177
Librarian using VSE Java Beans 175
operator console using VSE Java

Beans 180
POWER data using VSE Java

Beans 172
VSAM data using DB2 Stored

Procedure 312
VSAM data using VSE Java

Beans 164
VSE data using applets 201
VSE data using JSPs 263
VSE data using servlets 243
VSE data using VSE Java Beans 153
VSE data via VSE Navigator 182

action codes for VSE Connector Server
PLGACT_CHECKCANCEL 300
PLGACT_FINISH 300
PLGACT_NOTHING 300
PLGACT_RECEIVE 300
PLGACT_SEND 300
PLGACT_SEND_RESP 300
PLGACT_WAIT 300

action codes for VSE Connector Server
(continued)

PLGACT_WAITRECV 300
PLGACT_WAITTIMER 301
supported by VSE Connector

Server 300
AIBTDLI

creating programs that use 323
format of database and checkpoint

call 325
format of Roll Back call 325
format of scheduling call 324
format of termination call 325
invoking 324

AIBTDLI callable interface 321
AIBTDLI Interface

and return code X’FF00’ 327
callable interface AIBTDLI 321
compiling & link-editing

programs 326
error messages description 329
errors with no return code 327
for accessing DL/I data 321
format of AIB 326
new messages generated by 365
partition layout 322
return & status codes 326
single / multiple MPS systems 328
task termination & abend

handling 329
Apache Server 22
APAR PQ39683 41, 71
applets

disadvantages & restrictions of 206
for accessing DL/I data via a DB2

Stored Procedure 230
for accessing VSAM data via a DB2

Stored Procedure 216
for defining a map 207
in 2-tier environments 202
in 3-tier environments 203
sample applet 201
using VSEAppletServer 205
VSAM data mapping example,

description 207
VsamSpaceUsage 207

AppletViewer 215
Application Framework for e-business

and core applications 3
and Secure Electronic Transaction

(SET) 3
and Secure Sockets Layer (SSL) 3
extending/levering core

applications 3
purpose 3

Application Interface Block
(DLIAIB) 326

application server 22
archive tag 206
ASCII, considerations in plugins 306

B
Basic Security Manager 103
BSSDCERT service function

and Client-Certificates/User-IDs
dialog 125

building mapping list of
client-certificate/User-ID pairs 123

change library and member-names
defaults 125

C
callback mechanism, of VSE Java

Beans 159
cci.jar 146
CEDA transaction, for defining SOAP

server 346
CEDA transaction, for defining SOAP

service 345
CEDA, using for SOAP sample 345
certificates

cataloging server and root 92
cataloging server certificate 92
root 101
server 98
verifying 103

CIALCLNT utility, installing 95
CIALCLNT utility, starting on Web

client 96
CIALCREQ utility 97
CIALSIGV utility 103
CIALSRVR utility 95
CICS connectivity

what it offers 9
CICS Transaction Gateway

using for CICS connectivity in 3-tier
env. 9

CICS Transaction Server
and ECIRequest class 9
and EPIRequest class 9
and the CICS Universal Client 9
and the JavaGateway 9
customizing 72
obtaining root certificate 101
the VSAM-via-CICS service 87
using for CICS connectivity in 3-tier

env. 9
CICS Universal Client 9

using for CICS connectivity in 3-tier
env. 9

CIPHERSUITES 109
CleanupHandler function 299
CleanupPlugin function 294
CLI (Call Level Interface) 311, 314
CLI interface (for C programs)

activities on the requestor 314
activities on the VSE/ESA host 315
example of syntax

(VSAMSQLCloseTable) 316
program flow when using 317

© Copyright IBM Corp. 2000, 2003 371

CLI interface (for C programs) (continued)
supported functions for accessing

mapped VSAM data 315
supported SQL statements 318

client authentication
and Client-Certificates/User-IDs

dialog 125
batch service function

BSSDCERT 123
configuring Java-based connector 115
configuring VSE Connector

Client 117
configuring VSE Connector

Server 116
service functions for 123

client certificate
generating, and storing in client

keyring file 118
Client Configuration Assistant (CCA) 85
client-certificate/User-ID pairs, mapping

list 123
Client-Certificates/User-IDs dialog

creating the output job 127
selecting an option 126
starting 125
submitting/ storing the output

job 128
codebase tag 206
configuration PHASE for VSAM

Redirector Connector 58
connection possibilities under VSE/ESA

2- and 3-tier environments 11
choosing connectors in 3-tier env. 18
downloading client-part 25
downloading host-part 60
installing VSE Connector Client 25
overview of what connectors can be

used for 17
products it supports 3
uninstalling VSE Connector Client 29

connections properties file, example for
VSE Script Server 356

Connections.properties 46, 356
console functions for VSE Script

Language 353
container (EJB) 267, 268
CORBA 270
CRYPTO.KEYRING library 92

D
data-mapping applet (sample)

activities required on Host 208
calling 209
creating file index.html 208
deploying 209
description 207
for adding map to VSAM cluster 211
for modifying a map 212
for modifying data fields of map 213
initializing 210
running using AppletViewer 215
setting up the class 210

DATAEX 305
DB2 Connect

used for accessing VSAM data 313
DB2 Connect, install / configure 85

DB2 Server for VSE 310
DB2 Stored Procedures

accessing DL/I data via 320
accessing VSAM data via 313
advantages 310
for accessing VSAM data 312
how you use 310
interfaces you can use 311
programming requirements for 311

DB2-based connector
customizing 72
define sample database 72
description 6, 309
using in 3-tier env. 18

DB2ConnectorJDBCApplet.java 223
DB2CTVAR job, catalog ARISIVAR.Z 73
DB2DEFCT job, define user catalog 73
DB2DLIConnectorJDBCApplet.java 235
DB2DRDA job, activate DRDA

support 75
DB2DRDA job, set up for DRDA

support 80
DB2Handler, sample VSAM request

handler 64
DB2JMGR, job manager 74
DB2SPSCA job, set up Stored Procedure

Server, define to DB2 81
db2vsewm database-alias 217
digital signature 98
Distributed Relational Database

Architecture
used with DB2-based connector 6

DL/I applet (sample)
and DLIREAD (sample DB2 Stored

Procedure) 238
calling 233
client-side program 235
compiling DB2 Stored Procedure

for 232
creating JAR file for 233
defining DB2 Stored Procedure for

DB2 Server for VSE 232
defining DL/I database for 233
HTML file for calling 232
main window for 234
prerequisite steps for 232

DL/I CICS return codes 365
DL/I data

accessing using AIBTDLI
interface 321

accessing using DB2 Stored
Procedures 320

accessing using VSE Java Beans 167
configuring to access DL/I data via

VSE Java Beans 41
DL/I database, for the sample DL/I

applet 233
DL/I messages (for AIBTDLI

interface) 365
DL/I return codes (for AIBTDLI

interface) 365
DLIREAD, compiling 232
DLIREAD, how used 230
DLZBSEOT (task termination exit) 41,

71
DLZLX000 323
DLZMPX00 (AIBTDLI interface) 321

DR2JMGR job, install DB2 sample
database 77

DR2JMGR job, prepare DB2 sample
DB 75

DRDA application 310
DTSECTAB table 103

E
e-business applications

description 4
EBCDIC, considerations in plugins 306
ECI Interface 9
ECIRequest 9
Enterprise Java Bean (EJB)

accessing from an EJB client 283
and CORBA 270
and EJB container 267
architecture, overview 267
as entity beans 267, 268
as session beans 267, 268
compared to JavaBeans and

servlets 269
deploying 282
description 267
entities involved in EJB method

call 270
example of implementing 274
for implementing client

applications 270
representing VSE data using 267
sample, compile Java source files 282
sample, create record layout for

employees 275
sample, defining VSAM cluster

for 275
sample, implement EJB code 277
sample, implement RecordPK

class 277
sample, specify EJB home

interface 276
sample, specify EJB remote

interface 276
used in 3-tier environment 273

entity bean 154
entity beans, properties 267, 268
EPI Interface 9
EPIRequest 9
error messages and codes

for AIBTDLI interface 365
ExecuteHandler function 297

G
general functions for VSE Script

Language 352
getdata.src (sample VSE Script) 357
GetHandledCommands function 295
getquote.c 344
getquote.c (SOAP service) 339
GetQuote.java 344
GetQuote.java (SOAP Java client) 343
glossary 367
grouping 310

372 VSE/ESA: e-business Connectors, User’s Guide

H
home interface, of EJB 276
homepage

DB2 85
for downloading Java code 22
for downloading VSAM Redirector

Server 60
for downloading VSE Connector

Client 25
for downloading VSE Script

Server 43
for obtaining KeyMan tool 117
for WebSphere Application Server 10
Thawte Corporation 102
VSE xix

homepage, VSE xix
HTML file for calling the DL/I

applet 232
HTML file for calling the VSAM

applet 218
HTMLHandler, IBM-supplied example

cleanup method 67
close method 67
code for 65
console and output 68
data layout used with 66
description 65
finish method 68
implementation of 66
initialize method 66
open method 67
request method 67

HTTPServletRequest 245
httpSession 245

I
IBM HTTP Server, installing 22
ibmjsse.jar 147
ICCF data

accessing using VSE Java Beans 177
iesincon.w 25
IESMAPD 131
IESPLGIN.H 302
IESPLGSK.C 302
iesscrpt.w, obtaining 43
IESSOAPD (SOAP decoder) 333, 350
IESSOAPE (SOAP encoder) 334
IESSOAPH.H header file for SOAP 335
init() method, example 224
installing VSE Connector Client 25
installing/ configuring your system

choosing connectors in 3-tier env. 18
CIALCLNT utility 95
CIALCREQ utility 97
CIALSIGV utility 103
CIALSRVR utility 95
configuring DL/I for access via VSE

Java Beans 41
configuring TCP/IP 21
configuring the VSAM-via-CICS

service 87
configuring the VSE Connector

Server 30
connectivity possibilities 17
for 2 and 3-tier environments 11

installing/ configuring your system
(continued)

installing Java 21
installing prerequisite programs 21
installing the VSE Script Server 43
installing VSAM Redirector

connector 47
installing VSAM Redirector

Server 60
installing VSE Connector Client 25
installing VSE Navigator 183
installing WebSphere Application

Server 23
programs installed on middle-tier 22
SKSSLKEY Job 92
the VSE HTTP Server 21
using the Java-based connector (2-tier

env.) 17
VSAM Redirector Client 50
VSE Connector Client for SSL 108
VSE Connector Server for server

authentication 105
Internet address

for WebSphere Application Server 10
VSE homepage xix

J
J2EE package, installing 344, 346
JAR file, for DL/I applet 233
JAR file, for VSAM applet 221
Java

choosing between JDK and JRE 22
downloading the Java base code 22
downloading the Java Development

Kit 22
installing & configuring 21
installing JDK 21
installing Swing classes 22
SOAP client, compile 346
SOAP client, description 343
SOAP client, running 347
SOAP-client packages,

downloading 344
Java Development Kit (JDK)

installing 21
Java Runtime Environment (JRE) 22
Java Server Page (JSP)

accessing VSE data using 263
advantages in using 265
example of 265

Java-based connector
description 4
extending, with plugins 287
overview of client-part 4
overview of server-part 5
protocol used by 305
using in 2-tier env. 17
using in 3-tier env. 18
what it is 4

JavaBeans
compared to EJBs 269

Javadoc, example for VSE Java Bean 158
JavaGateway 9
JDBC (Java database connectivity) 314
JDBC (Java Database Connectivity)

advantages of 187

JDBC (Java Database Connectivity)
(continued)

example of use 191
specifying table names 190
SQL statements supported 187

JDBC classes, importing 223
JDBC driver class, loading 224
jobs supplied

DB2CTVAR (catalog ARISIVAR.Z) 73
DB2DEFCT (define user catalog) 73
DB2DRDA (activate DRDA

support) 75
DB2DRDA (set up for DRDA

support) 80
DB2JMGR (job manager) 74
DB2SPSCA (set up Stored Procedure

Server, define to DB2) 81
DR2JMGR (install DB2 sample

database) 77
DR2JMGR (prepare DB2 sample

DB) 75
PSERVER 75

K
key pair, generating 96, 117
KeyMan tool (IBM) 117
keyring file (KeyRing.pfx)

storing client certificate in 119
used with VSE Connector Clients 111

KeyRing.pfx file 111
KEYRINGFILE 109
KEYRINGPWD 110

L
Librarian

accessing using VSE Java Beans 175
Lotus 1-2-3 spreadsheet file, sample 359
Lotus 1-2-3, example using a VSE Script

Client 356
Lotus Domino 3
Lotus Domino Go Server 22

M
map, creating 129
mapping list, of client-certificate/User-ID

pairs 123
mapping VSAM data

creating a map 129
creating a view 129
why you need to do so 129

maps
creating using the VSAM

MapTool 140
defining 132
defining using a Java application 134
defining using RECMAP 132
defining using sample applet 134
example of creating a local VSAM

map object 135
example of creating a view for a

map 137
example of creating data fields for a

map 136

Index 373

maps (continued)
example of displaying properties of a

map 136
example of how to delete 138
storing on VSE/ESA host 130
structure of 130

MessageDialog.java 223
middle-tier

configuring for SSL 108
programs you install 22

MPS systems 328
MQSeries connectivity

using in 3-tier env. 18
what it offers 9

MS Office spreadsheet, sample 362
MS Office, example using a VSE Script

Client 356

N
non-Java access using VSE Script

Connector 349

O
ODBC (Open DataBase

Connectivity) 311, 314
online documentation, description 28
operator console (VSE)

accessing using VSE Java Beans 180

P
PLGACT_CHECKCANCEL action

code 300
PLGACT_FINISH action code 300
PLGACT_NOTHING action code 300
PLGACT_RECEIVE action code 300
PLGACT_SEND action code 300
PLGACT_SEND_RESP action code 300
PLGACT_WAIT action code 300
PLGACT_WAITRECV action code 300
PLGACT_WAITTIMER action code 301
plugin functions

CleanupHandler 299
CleanupPlugin 294
ExecuteHandler 297
GetHandledCommands 295
PluginMainEntryPoint 292
SetupHandler 296
SetupPlugin 293

PluginMainEntryPoint function 292
plugins

and protocol for transferring
data 307

ASCII / EBCDIC considerations 306
Big / Little Endian

considerations 306
choosing access method for 306
compiling 302
design considerations 305
implementing server plugin 288
structure of 287
structuring client-part view 307

POWER functions for VSE Script
Language 353

PowerGridLayout class 210
PowerGridLayout.java 223
private key

cataloging 92
generating 96

properties file for VSAM Redirector
Server 61

properties file, example for VSE Script
Server 356

protocol
extending with own commands 305
used by Java-based connector 305

protocol, between VSE Script Client /
VSE Script Server 350

protocol, for communicating between
client and server 307

PSERVER job 75
public key

cataloging on a certificate 92

R
RECMAP command 132
RecordPK class 277
redbooks, to which can refer xix
remote interface, of EJB 276
rename() method 212
return code X’FF00’ 327
return codes

DL/I CICS 365
root certificate

description 101
importing into client keyring file 120
obtaining 101
Thawte 120

RSA key pair
generating 96

S
Sample script, running from command

line 364
sample VSE Script (getdata.src) 357
samples provided with VSE/ESA

e-business connectors
applet 201
applet for VSAM data mapping 207
DL/I applet 230
EJB 275
servlet 246
VSAM applet 216

Secure Electronic Transaction (SET) 3
glossary description 370
supported by Application Framework

for e-business 3
Secure Sockets Layer (SSL)

activate SSL profile for VSE Connector
Server 106

and Java properties file 109
client keyring file on Web clients or

middle-tier 111
configuring VSE Connector

Client 108
configuring VSE Connector Server for

server authentication 105
flag in VSEConnectionSpec class 108

Secure Sockets Layer (SSL) (continued)
glossary description 370
installing / activating 92, 95
profile for VSE Connector Server 105
root certificate 101
supported by Application Framework

for e-business 3
server

VSEAppletServer 205
server certificate

copying to client keyring file on Web
client or middle-tier 110

used with VSE Connector Client’s
client keyring file 110

server certificate, cataloging 92
server certificate, signing 98
service functions for client

authentication 123
servlet

accessing VSE data using 243
compared to EJBs 269
compiling and calling 245
in 3-tier environments 243, 245
sample servlet, create new flight 259
sample servlet, create new order 260
sample servlet, creating VSAM

clusters for 247
sample servlet, description 246
sample servlet, display flight

properties 253
sample servlet, displaying list of

flights 250
sample servlet, get flight

instances 251
sample servlet, HTML constructs

used 247
sample servlet, place an order 256
sample servlet, using forms to get

input 248
session bean 154
session beans, properties 267, 268
session information, storing 245
SetupHandler function 296
SetupPlugin function 293
SKCPSTP, compile DB2 Stored

Procedures 83
SKCRESTP, create DB2 Stored

Procedures 83
SKDB2SPS, catalog startup job

SPSERV01 81
SKDB2STR, put DB2START in POWER

reader 84
SKDB2VAR, customize DB2-based

connector 72
SKDLICMP, compile/link COBOL stored

procedures 83
SKDLISMP (initialize DL/I sample

database) 42, 83
SKDLISTP, create stored procedures for

DL/I access 83
skeletons

CIALCREQ.JCL 97
CIALSIGV.JCL 103
CIALSRVR.JCL 95
SKCPSTP (compile DB2 Stored

Procedures) 83

374 VSE/ESA: e-business Connectors, User’s Guide

skeletons (continued)
SKCRESTP (create DB2 Stored

Procedures) 83
SKDB2SPS (catalog startup job

SPSERV01) 81
SKDB2STR (put DB2START in

POWER reader) 84
SKDB2VAR (customize DB2-based

connector) 72
SKDLICMP (compile/link COBOL

stored procedures) 83
SKDLISMP, initialize DL/I sample

database 42, 83
SKDLISTP (create stored procedures

for DL/I access) 83
SKSSLKEY.JCL 92
SKVCSSSL (configure VSE Connector

Server for client authentication) 116
SKVSSAMP (define VSE/VSAM

cluster, load data) 83
SKJOURN, and CICS TS 72
SKSSLKEY, job to catalog a keyring

set 92
SKVCSCAT, VSE Connector Server

catalog members job 31
SKVCSCFG skeleton 106
SKVCSCFG, specify general settings for

VSE Connector Server 32
SKVCSLIB, specify libraries for VSE

Connector Server 33
SKVCSPLG, specify plugins for VSE

Connector Server 33
SKVCSSL skeleton 105
SKVCSSSL skeleton (configure VSE

Connector Server for client
authentication) 116

SKVCSSSL, configure VSE Connector
Server for SSL 35

SKVCSSTJ, for placing startup job in
reader queue 30

SKVCSUSR, and VSE Connector
Server 38

SKVCSUSR, specify logon access for VSE
Connector Server 34

SKVSSAMP job 220
SKVSSAMP sample skeleton 357
SKVSSAMP, define VSE/VSAM cluster,

load data 83
SOAP (Simple Object Access Protocol)

and COMMAREA 333, 334, 350
client (IBM-supplied), code for 341
compile /link sample C

programs 345
control blocks 335
converter 333, 334, 350
decoder (IESSOAPD) 333, 350
define SOAP server to CICS

(CEDA) 346
description 8
encoder (IESSOAPE) 334
general syntax 331
header file IESSOAPH 335
Java client (IBM-modified), code

for 343
Java SOAP-client packages 344
running IBM-supplied sample 344
service (IBM-supplied), code for 339

SOAP (Simple Object Access Protocol)
(continued)

VSE/ESA host acting as SOAP
client 334

VSE/ESA host acting as SOAP
server 332

writing own programs 348
SOAP client 334
SOAP client (C-program), running 347
SOAP client (Java), compile 346
SOAP client (Java), running 347
SOAP server 332
SOAP_DEC_PARAM control block 338
SOAP_PARAM_HDR control block 335
SOAP_PROG_PARAM control block 337
soapclnt.c 344
soapclnt.c (SOAP client) 341
SQL

comparison with VSE Java Beans
terminology 190

statements supported by JDBC 187
statements supported by VSAMSQL

CLI 318
sqlds database 216
SSLVERSION 109
STARTVCS job 36
Stored Procedure Server

description 310
string functions for VSE Script

Language 353
SUN J2EE package, installing 344

T
TCP/IP

configuring on the VSE/ESA host 21
customizing 72

Thawte Corporation 102

U
uninstalling VSE Connector Client 29

V
view, creating 129
views

example of adding data fields 137
example of creating a view for a

map 137
example of displaying properties 138

VisualAge for Java 3
VSAM applet (sample)

calling 221
client-side program 223
compiling DB2 Stored Procedure

for 218
creating JAR file for 221
defining DB2 Stored Procedure for

DB2 Server for VSE 219
defining VSAM data cluster for 219
general description 216, 230
HTML file for calling the applet 218
main window for 221
prerequisite steps for 218

VSAM applet (sample) (continued)
server-side DB2 Stored

Procedure 226
VSAM data

accessing using DB2 Stored
Procedure 312

accessing using JDBC 187
accessing using VSE Java Beans 164
accessing via DB2 Stored

Procedures 313
creating maps using the VSAM

MapTool 140
defining maps 132
defining maps using a Java

application 134
defining maps using RECMAP 132
defining maps using sample

applet 134
example of adding data fields to a

view 137
example of creating a local VSAM

map object 135
example of creating a view for a

map 137
example of creating data fields for a

map 136
example of displaying properties of a

map 136
example of displaying properties of a

view 138
program flow when using CLI 317
storing maps on VSE/ESA host 130
structure of VSAM maps 130
supported CLI functions for accessing

mapped data 315
VSAM data cluster, for the sample VSAM

applet 219
VSAM functions for VSE Script

Language 354
VSAM MapTool 140
VSAM Redirector Client

and VSAM logic 48
installing & configuring 50
overview 47

VSAM Redirector connector
diagram of how it works 47
downloading VSAM Redirector Server

from Internet 60
installing / configuring VSAM

Redirector Client 50
installing & implementing 47
installing VSAM Redirector

Server 60
obtaining VSAM Redirector Server

from PRD1.BASE 60
overview 6
overview diagram 47
prerequisites for installing 60

VSAM Redirector Server
error reporting 63
installing & implementing 60
obtaining a copy 60
overview 47
properties file for 61

VSAM request handler
calling 63
coding VSAM logic 62

Index 375

VSAM request handler (continued)
datatype conversions 63
DB2Handler sample 64
error reporting 63
getting a map dynamically 64
htmlhandler sample 65
implementing 62
overview 47
overview diagram of where used 47

VSAM-via-CICS service
CICS transactions for use with 89
configuring CICS for 87
description 87
how it works 89

VSAM.RECORD.MAPPING.DEFS 131
VSAM.VSESP.USER.CATALOG 247
VsamDataMapping.java 134
VsamMappingApplet.html 134
VSAMSEL sample Stored Procedure 226
VsamSpaceUsage 207
VSAMSQL CLI environment,

de-allocating 229
VSAMSQL CLI environment,

initializing 226
VSAMSQL prefix 315
VSAMSQLBindCol(), example 228
VSAMSQLBindParameter(),

example 227
VSAMSQLCloseTable - close a specified

table (cluster) 316
VSAMSQLExecute(), example 227
VSAMSQLFetch(), example 228
VSAMSQLPrepare(), example 227
VSE Connector Client

and copy of server certificate 110
and Java properties file for SSL

profile 109
configuring for client

authentication 115, 117
configuring for SSL 108
description 5
downloading from Internet 25
installing 25
installing online documentation

component 27
installing samples component 27
installing VSE Java Beans

component 27
obtaining from PRD1.BASE 26
prerequisites for installing 25
SSL flag in VSEConnectionSpec 108
uninstalling 29
using client keyring file 111

VSE Connector Server
action codes supported by 300
activate & cataloging SSL profile 106
and security 38
configuration file 106
configuring for client

authentication 116
configuring for SSL 105
configuring on the VSE/ESA host 30
configuring SSL profile 105
entering a command for 38
glossary description 370
job SKVCSCAT (catalog members) 31

VSE Connector Server (continued)
job SKVCSSTJ (placing startup job in

reader queue) 30
listing possible commands for 38
obtaining root certificate 101
overview 5
skeleton SKVCSCFG (specify general

settings) 32
skeleton SKVCSLIB (specify

libraries) 33
skeleton SKVCSPLG (specify

plugins) 33
skeleton SKVCSSSL (configure for

SSL) 35
skeleton SKVCSUSR (specify logon

access) 34
starting 36
testing communication with VSE

Connector Client 37
VSE data

accessing using applets 201
accessing using JSPs 263
accessing using servlets 243
representing using EJBs 267

VSE HTTP Server
configuring 21

VSE HTTP Server, configuring 21
VSE Java Beans

accessing DL/I data using 167
accessing ICCF data using 177
accessing Librarian using 175
accessing operator console using 180
accessing POWER data using 172
accessing VSAM data using 164
and the VSE Navigator

application 182
contents of class library 155
glossary description 370
how compare to EJBs 154
how compare to JavaBeans 154
installing 27
submitting jobs using 173
using for connecting to VSE/ESA

host 162
using in 3-tier env. 18
using in 3-tier environments 153
using the callback mechanism 159
what they are 154

VSE Java Beans, installing 27
VSE Keyring Library, installing 92
VSE Keyring Library, securing via

BSM 103
VSE Navigator

and the PowerGridLayout class 210
description 182

VSE Script Client
description 7
example 356
sample files you can use 355

VSE Script connector
diagram of how it is used 349
overview 7
protocol used between client and

server 350
VSE Script Language 351

VSE Script Language
built-in console functions 353

VSE Script Language (continued)
built-in functions 352
built-in POWER functions 353
built-in string functions 353
built-in VSAM functions 354
description 351
general rules 351

VSE Script sample (getdata.src) 357
VSE Script Server

description 7
installing 43
obtaining from PRD1.BASE 43
obtaining via the internet 43
performing the installation 44
prerequisites for installing 43
properties file Connections 46
properties file VSEScriptServer 45
starting locally 358

VSE Scripts, writing 351
VSE Security Manager 39
VSE/ESA host database, establishing

connection to 224
VSE/POWER data

accessing using VSE Java Beans 172
VSEAppletServer, how used 205
VSECertificateEvent 155
VSECertificateListener 155
VSEConnectionManager 155
VSEConnectionSpec 245
VSEConnectionSpec class 108, 155
VSEConnector.jar 27, 61
VSEConnectorTrace 155
VSEConsole class 155
VSEConsoleExplanation class 155
VSEConsoleMessage class 155
VSEDli class 155
VSEDliPcb class 155
VSEDliPsb class 155
VSEIccf class 155
VSEIccfLibrary class 155
VSEIccfMember class 155
VSELibrarian class 155
VSELibrary class 156
VSELibraryExtent class 156
VSELibraryMember class 156
VSEMessage class 156
VSEPlugin class 156
VSEPower class 156
VSEPowerEntry class 156
VSEPowerQueue class 156
VSEResource class 156
VSEResourceEvent class 156
VSEResourceListener class 156
VSEResourceListener, example 160
VSEScriptServer.properties 45, 356
VSESubLibrary class 156
VSESystem class 156
VSEUser class 156
VSEVsam class 156
VSEVsamCatalog class 156
VSEVsamCluster class 156
VSEVsamField class 156
VSEVsamFilter class 157
VSEVsamMap class 157
VSEVsamRecord class 157
VSEVsamView class 157

376 VSE/ESA: e-business Connectors, User’s Guide

W
Web Servers

Apache 22
IBM HTTP Server 22
Lotus Domino Go 22

WebSphere Application Server
and EJB containers 268
complementary programs 10
glossary description 370
installing on Windows, AIX, Sun

Solaris 23
installing on z/OS 23
Internet address 10
managing EJBs 267
overview 9
standard, advanced, & enterprise

editions 23
storing session information 245
used for accessing VSAM data 313

X
XML parser 333, 334

Index 377

378 VSE/ESA: e-business Connectors, User’s Guide

Readers’ Comments — We’d Like to Hear from You

IBM VSE/Enterprise Systems Architecture
VSE/ESA e-business Connectors
User’s Guide
Version 2 Release 7

Publication No. SC33-6719-04

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC33-6719-04

SC33-6719-04

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

File Number: S370/S390-34
Program Number: 5690-VSE

Printed in U.S.A.

SC33-6719-04

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
VS

E
/E

SA
e-
bu
si
ne
ss
Co
nn
ec
to
rs
,U

se
r’
s
G
ui
de

Ve
rs
io
n
2
R
el
ea
se

7
SC

33
-6
71
9-
04

	Contents
	Figures
	Tables
	Notices
	Trademarks and Service Marks

	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information

	Summary of Changes
	Changes for Fifth Edition (March 2003)
	Changes for Fourth Edition (June 2002)
	Changes for Third Edition (December 2001)

	Part 1. Introduction
	Chapter 1. Introduction to e-business with VSE/ESA
	What the VSE/ESA e-business Connectors Provide
	Overview of the Java-Based Connector
	Overview of the VSE Connector Client
	Overview of the VSE Connector Server

	Overview of the DB2-Based Connector
	Overview of the VSAM Redirector Connector
	Overview of the VSE Script Connector
	Overview of VSE/ESA Support for Web Services and SOAP

	Overview of CICS Connectivity
	Overview of MQSeries Connectivity
	Overview of the IBM WebSphere Application Server

	Chapter 2. Overview of 2- and 3-Tier Environments
	Overview of 2-Tier Environments
	Overview of 3-Tier Environments

	Part 2. Installation & Customization
	Chapter 3. Choosing the Connectivity You Require
	Connectivity Possibilities in 2-Tier Environments
	Connectivity Possibilities in 3-Tier Environments

	Chapter 4. Installing the Common Prerequisite Programs
	Configuring and Activating TCP/IP for VSE/ESA
	Configuring and Activating the VSE HTTP Server
	Installing and Configuring Java
	Downloading the Java Base Code
	Deciding Which Java Package to Install

	Installing the IBM HTTP Server
	Installing the WebSphere Application Server
	Installing the WebSphere Application Server on z/OS
	Installing the WebSphere Application Server on Other Platforms

	Chapter 5. Installing and Operating the Java-Based Connector
	Installing the VSE Connector Client
	Obtaining a Copy of the VSE Connector Client
	Performing the VSE Connector Client Installation
	Using the Online Documentation Options
	Configuring for WebSphere Support

	Uninstalling the VSE Connector Client
	Configuring the VSE Connector Server
	Job SKVCSSTJ – Startup Job
	Job SKVCSCAT – Catalog Members
	VSE Library Member SKVCSCFG – General Settings
	VSE Library Member SKVCSLIB – Specify Libraries to Be Accessed
	VSE Library Member SKVCSPLG – Specify Plugins to Be Loaded
	VSE Library Member SKVCSUSR – Specify Logon Access
	VSE Library Member SKVCSSSL – Configure for SSL

	Starting the VSE Connector Server
	Testing the Communication Between VSE Connector Client and Connector Server
	Obtaining a List of VSE Connector Server Commands
	Entering a Command for the VSE Connector Server
	Maintaining Security Using the VSE Connector Server

	Chapter 6. Configuring DL/I for Access Via VSE Java Beans
	Host Installation Activities That Must Be Already Completed
	Step 1: Skeleton SKDLISMP – Define Sample Database
	Step 2: Customize CICS TS

	Chapter 7. Installing the VSE Script Connector
	Step 1: Download the Install-File and Perform the Installation
	Step 1.1: Obtain a Copy of the VSE Script Server
	Step 1.2: Perform the Installation of the VSE Script Server

	Step 2: Configure the VSEScriptServer Properties File
	Step 3: Configure the Connections Properties File

	Chapter 8. Installing the VSAM Redirector Connector
	How the VSAM Redirector Connector Works
	VSAM Integration Considerations

	Installing and Configuring the VSAM Redirector Client
	Step 1: Enable the VSAM Redirector Client on VSE/ESA
	Step 2: Decide Upon Your Redirection Mode
	Mode 1. Working With Data Residing On Another Platform
	Mode 2. Synchronizing Your Existing VSAM data

	Step 3 (Optional): Transfer Your VSAM Data
	Step 4: Create the Configuration Phase
	Mandatory Parameters
	Optional Parameters
	Parameters That Apply When EXIT=IESREDIR
	Parameters That Apply When OWNER=VSAM

	Installing the VSAM Redirector Server
	Step 1: Download the Install-File and Perform the Installation
	Step 1.1: Obtain a Copy of the VSAM Redirector Server
	Step 1.2: Perform the Installation of the VSAM Redirector Server

	Step 2: Configure the Properties File
	Step 3: Implement a VSAM Request Handler
	Coding VSAM Logic and Parameters
	Calling a VSAM Request Handler
	Error Reporting
	Datatype Conversions
	Getting a Map Dynamically Into Your Request Handler

	IBM-Supplied Example of DB2-Related Handler
	IBM-Supplied Example of HTML-Related Handler
	Code for HTML-Related Request Handler
	Data Layout Used With HTMLHandler
	Implementation of HTMLHandler
	Screenshots of HTMLHandler Console and Output

	Chapter 9. Customizing the DB2-Based Connector
	Host Installation Activities That Must Be Already Completed
	Step 1: Customize CICS TS
	Step 2: Customize TCP/IP
	Step 3: Customize DB2 and Define Sample Database
	Step 3.1: Define User Catalog
	Step 3.2: Catalog New ARISIVAR.Z
	Step 3.3: Job Manager for Preparation / Installation Steps
	Step 3.4: Activate DRDA Server Support
	Step 3.5: Startup Job for Stored Procedure Server
	Step 3.6: Prepare DB2 Sample Database
	Step 3.7: Install DB2 Sample Database

	Step 4: Set Up for DRDA Support
	Step 5: Set Up Stored Procedure Server and Define to DB2
	Step 5.1: Set Up the Stored Procedure Server
	Step 5.2: Define Stored Procedure Server to DB2

	Step 6: Set Up for Stored Procedures
	Step 7: Customize the DB2-Based Connector for VSAM Data Access
	Step 8: Customize the DB2-Based Connector for DL/I Data Access
	Step 9: Start DB2, and Start Stored Procedure Server
	Step 10: Install DB2 Connect and Establish Client-Host Connection

	Chapter 10. Configuring the VSAM-Via-CICS Service
	Configuring the IBM-Supplied CICS System
	Configuring a Further CICS System for VSAM-Via-CICS
	How the VSAM-Via-CICS Service Works
	CICS Transactions for Use with VSAM-Via-CICS

	Chapter 11. Configuring Your VSE/ESA Host for SSL
	Configuring for SSL Using IBM-Supplied Keys/Certificates
	Step 1: Activate TCP/IP for VSE/ESA
	Step 2: Catalog Keyring Set Into the VSE Keyring Library

	Configuring for SSL Using Your Own Keys/Certificates
	Step 1: Activate TCP/IP for VSE/ESA
	Step 2: Install/Configure Utility CIALCLNT On a Web Client
	Step 3: Generate a Key Pair, Request a Server Certificate
	Step 3.1: Start Utility CIALSRVR on the VSE/ESA Host
	Step 3.2: Start Utility CIALCLNT on the Web Client
	Step 3.3: Submit Job CIALCREQ (Submit a Server Certificate Request)

	Step 4: Obtain a Signed Server Certificate and Copy to Job CIALCERT
	Step 4.1: Submit Request for Server Certificate to be Created/Signed
	Step 4.2: Copy/Paste Signed Server Certificate Into Job CIALCERT

	Step 5: Obtain a Root Certificate and Copy to Job CIALROOT
	Step 6: Verify Your Certificates on the Host
	Step 7: Secure Your VSE Keyring Library Entries

	SSL Examples Provided With the Online Documentation

	Chapter 12. Configuring the Java-Based Connector for Server Authentication
	Configuring the VSE Connector Server for Server Authentication
	Step 1: Configure and Catalog the VSE Connector Server's SSL Profile
	Step 2: Activate SSL Profile in Main Configuration File

	Configuring the VSE Connector Client for Server Authentication
	Step 1: Set SSL Flag in Class VSEConnectionSpec
	Step 2: Configure SSL Profile
	Step 3: Copy a Server Certificate Into Client Keyring File
	Description of the IBM-Supplied Client Keyring File
	Currently-Supported SSL Cipher Suites

	Chapter 13. Configuring the Java-Based Connector for Client Authentication
	Configuring the VSE Connector Server for Client Authentication
	Configuring the VSE Connector Client for Client Authentication
	Step 1: Generate a Key Pair
	Step 2: Generate and Store a Client Certificate
	Step 3: Import the CA's Root Certificate into the Client Keyring File
	Step 4: Save Your Client Keyring File
	Step 5: Define Access Rights for VSE Connector Client to Use Host Resources

	Chapter 14. Service Functions for Client Authentication
	Prerequisites
	Using the Batch Service Function BSSDCERT
	Changing the Defaults (Optional)
	Using the Client-Certificates/User-IDs Dialog
	Step 1: Starting the Dialog
	Step 2: Selecting an Option
	Step 3: Creating the Output Job
	Step 4: Submitting or Storing the Output Job

	Chapter 15. Mapping VSE/VSAM Data to a Relational Structure
	Introduction to Mapping VSE/VSAM Data
	How VSAM Maps Are Structured
	How Maps Are Stored on the VSE/ESA host
	Defining a Map Using RECMAP
	Defining a Map Using the Sample Applet
	Defining a Map Using a Java Application
	Defining a Map Using the VSAM MapTool

	Part 3. Programming
	Chapter 16. Migrating Your Programs
	Migrating from CCF to CCI
	Migrating to Secure Connections Using SSL
	Migrating to VSAM-Access Via JDBC
	Migrating Your Applets to JDK 1.3 or Later
	Using the New Methods in VSE Java Beans
	Migrating Servlets and EJBs

	Chapter 17. Using VSE Java Beans to Implement Java Programs
	Where VSE Java Beans Are Installed and Used
	How JavaBeans and EJBs Compare to VSE Java Beans
	Contents of the VSE Java Beans Class Library
	Example of a Javadoc for a VSE Java Bean
	Using the Callback Mechanism of VSE Java Beans
	Using VSE Java Beans to Connect to a VSE/ESA host
	Using VSE Java Beans for Accessing VSAM Data
	Using VSE Java Beans for Accessing DL/I Data
	Using VSE Java Beans for Accessing VSE/POWER Data
	Using VSE Java Beans for Submitting Jobs
	Using VSE Java Beans for Accessing Librarian Data
	Using VSE Java Beans for Accessing VSE/ICCF Data
	Using VSE Java Beans for Accessing the Operator Console
	Using the VSE Navigator Application
	Prerequisite for Using the VSE Navigator
	Migrating From Earlier Versions
	Installing the VSE Navigator
	Starting the VSE Navigator Client
	Adding Your Own VSE Navigator Plug-Ins

	Chapter 18. Using JDBC to Access VSAM Data
	SQL Statements That Are Supported by JDBC
	Relational and VSE Java Beans Terminology
	Specifying Table Names
	Example of Using JDBC to Access VSAM Data
	Step 1. Include the Imports and Class Definition
	Step 2. Perform the doGet() Method
	Step 3. Display List of Available Flights
	Step 4. Display Flight Properties and Entry Form
	Step 5. Get and Display the Data Field Values
	Step 6. Update the VSAM Cluster
	Step 7. Get Order Values and Check Availability
	Step 8. Create the New Order
	Step 9. Check Processing and Increase Reserved Seats

	Chapter 19. Using Java Applets to Access Data
	How Applets Are Used in 2-Tier Environments
	How Applets Are Used in 3-Tier Environments
	How the VSEAppletServer Is Used
	Disadvantages and Restrictions Of Using Applets
	Running the Sample Data-Mapping Applet
	Description of the Data-Mapping Applet
	Activities Required on the VSE/ESA Host
	Deploying the Data-Mapping Applet
	Calling the Data-Mapping Applet
	How Various Web Browsers Search for JAR and Class Files

	Setting Up the Data-Mapping Applet Class
	Initializing the Data-Mapping Applet
	Re-Displaying or Leaving an HTML Page
	Using the Data-Mapping Applet to Add a Map to a VSAM Cluster
	Using the Data-Mapping Applet to Modify a Map
	Using the Data-Mapping Applet to Modify a Map's Data Fields
	Running the Data-Mapping Applet Locally Using the AppletViewer

	Running the Sample VSAM Applet
	Description of the VSAM Applet
	Getting Started With the Sample VSAM Applet
	1. Create an HTML File to Call the VSAM applet
	2. Compile VSAMSEL.C
	3. Define VSAMSEL to the DB2 Server for VSE
	4. Define the VSAM Data Cluster
	5. Create the JAR File for the VSAM applet

	Calling the VSAM Applet
	Description of DB2ConnectorJDBCApplet.java (the Client-Side Program)
	Step 1. Import the JDBC (Java Database Connectivity) Classes
	Step 2. Load the Required JDBC Driver Class
	Step 3. Implement the init() Method
	Step 4. Establish the Connection to VSE/ESA Database via DB2 Connect
	Step 5. Call VSAMSEL

	Description of VSAMSEL
	Step 1. Include Header File iesvsql.h in VSAMSEL
	Step 2. Initialize the VSAMSQL CLI Environment
	Step 3. Initiate the Read of the VSAM Records
	Step 4. Obtain the Results of the Query Statement
	Step 5. Deallocate the VSAMSQL CLI Environment
	Step 6. Assign Local Output Variables to Host Output Variables

	Running the Sample DL/I Applet
	Description of the DL/I Applet
	Getting Started With the Sample DL/I Applet
	1. Create an HTML File to Call the DL/I applet
	2. Compile DLIREAD.C
	3. Define DLIREAD to the DB2 Server for VSE
	4. Define the DL/I Database
	5. Create the JAR File for the DL/I applet

	Calling the DL/I Applet
	Description of DB2DLIConnectorJDBCApplet.java (the Client-Side Program)
	Step 1. Prepare the SQL Statement to Call DLIREAD
	Step 2. Call DLIREAD
	Step 3. Check the Return Code from DLIREAD
	Step 4. Reset the Connection to the sqlds Database

	Description of DLIREAD
	Step 1. Define Variables for AIBTDLI, and I/O Area
	Step 2. Define the Parameters for DLIREAD
	Step 3. Define DLIREAD's Parameters to COBOL
	Step 4. Obtain the Results of the Query Statement
	Step 5. Check for Further DL/I Segments
	Step 6. Run the Error-Handling Routines

	Chapter 20. Using Java Servlets to Access Data
	How Servlets Are Used in 3-Tier Environments
	Compiling and Calling Servlets
	How the WebSphere Application Server Stores Session Information
	Example of How to Implement a Servlet
	General Description of the Sample Servlet
	Creating the VSAM Clusters for the Sample
	HTML Constructs Used With the Sample
	How a Servlet Can Create Tables in HTML
	Using Forms to Obtain a User's Input
	Sample Servlet Step 1: Display a List of Flights
	Sample Servlet Step 2: Get Flight Instances from the Host
	Sample Servlet Step 3: Display the Properties of a Flight
	Sample Servlet Step 4: Place an Order
	Sample Servlet Step 5: Create a New Flight
	Sample Servlet Step 6: Create a New Order

	Chapter 21. Using Java Server Pages to Access Data
	How JSPs Are Used in 3-Tier Environments
	Example of a Simple Java Server Page

	Chapter 22. Using EJBs to Represent Data
	Overview of the EJB Architecture
	Overview of How EJB Containers are Used
	How EJBs Compare to JavaBeans / Java Servlets
	Implementing Your Client Applications
	How an EJB Client Accesses EJBs

	Example of Using EJBs to Access VSAM Data
	Example of Implementing VSAM-Based EJBs
	Step 1: Define the Sample's VSAM Cluster
	Step 2: Create the Record Layout for Employees
	Step 3: Specify the EJB's Home Interface
	Step 4: Specify the EJB's Remote Interface
	Step 5: Implement the RecordPK Class
	Step 6: Implement the EJB Code
	Step 6.1: Implement the Methods of the EntityBean Interface
	Step 6.2: Access VSE/ESA Host and Get Records from the Database
	Step 6.3: Implement the Set & Get Methods to Access the Data Fields

	Step 7: Compile the Java Source Files
	Step 8: Deploy the EJBs
	Step 9: Access the EJBs from an EJB Client
	Prerequisites for Accessing the EJBs from an EJB Client
	How EJBs Are Accessed from an EJB Client
	Sample EJB Client Source Code for Accessing EJBs from an EJB Client

	Chapter 23. Extending the Java-Based Connector
	Implementing a Server Plugin
	Implementing a PluginMainEntryPoint Function
	Implementing a SetupPlugin Function
	Implementing a CleanupPlugin Function
	Implementing a GetHandledCommands Function
	Implementing a SetupHandler Function
	Implementing an ExecuteHandler Function
	Implementing a CleanupHandler Function
	Creating Your Own Plugin Callback Functions
	Action Codes Supported by the VSE Connector Server
	Utility Functions Supported by the VSE Connector Server
	Using the IBM-Supplied Server Plugin Example
	Registering and Compiling Your Server Plugin

	Implementing a Client Plugin
	Using the VSEPlugin class

	General Considerations When Designing Your Plugin
	Specifying the Protocol Between VSE Connector Server and Plugin
	Choosing the Access Method to the Data / Application
	Considerations for ASCII / EBCDIC and Big / Little Endian
	Deciding Which Requests / Functions Should Be Supported
	Transferring Data Over the Network
	Structuring the Client Plugin's View

	Chapter 24. Using the DB2-Based Connector to Access Data
	How You Use DB2 Stored Procedures
	Grouping Stored Procedure Servers
	Programming Requirements When Using DB2 Stored Procedures

	Using DB2 Stored Procedures to Access VSAM Data
	Overview: Accessing VSAM Data via DB2 Stored Procedures
	Using the Call Level Interface: Activities on the Requestor
	Using Call Level Interface: Activities on the VSE/ESA host
	Example of the Syntax of a CLI Function – VSAMSQLCloseTable
	VSAMSQLCloseTable - Close a specified table (Cluster)

	Program Flow When Using the VSAMSQL Call Level Interface
	SQL Statements Supported by VSAMSQL Call Level Interface

	Using DB2 Stored Procedures to Access DL/I Data
	Overview of the AIBTDLI Interface
	Creating Programs That Use AIBTDLI
	Invoking the AIBTDLI Interface
	Format of the Scheduling Call
	Format of the Database Call
	Format of the Termination Call
	Format of the Roll Back Call

	Compiling and Link-Editing Your Programs
	Return and Status Codes
	Format of the AIB – User Section
	How Return Code X'FF00' Is Used
	Errors That Do Not Produce a Return Code

	Scheduling with Single and Multiple MPS Systems
	Task Termination and Abend Handling
	Messages and Return Codes

	Chapter 25. Using SOAP for Inter-Program Communication
	Overview of the SOAP Syntax
	How the VSE/ESA Host Can Act As the SOAP Server
	How the VSE/ESA Host Can Act As the SOAP Client
	How the IBM-Supplied SOAP Control Blocks Are Used
	How the SOAP_PARAM_HDR Control Block Is Used
	How the SOAP_PROG_PARAM Control Block Is Used
	How the SOAP_DEC_PARAM Control Block Is Used

	Description of the IBM-Supplied SOAP Service (getquote.c)
	Description of the IBM-Supplied SOAP Client (soapclnt.c)
	Using a Java SOAP Client
	Running the IBM-Supplied SOAP Sample
	Step 1: Download and Install the Java SOAP Client Packages on the Client
	Step 2: Extract and Install the Required Java Programs
	Step 2.1: Create a New Directory
	Step 2.2: Install the SUN J2EE Package
	Step 2.3: Extract JAR Files and Place in Your Directory

	Step 3: Compile /Link the Sample C Programs, and Define Them to CICS
	Step 4: Define the SOAP Server to CICS
	Step 5: Activate the ASCII to EBCDIC Converter
	Step 6: Compile the Java Sample
	Step 7: Run the Java SOAP Client Sample
	Step 8: Run the C-Program SOAP Client Sample

	Writing Your Own SOAP Programs

	Chapter 26. Using the VSE Script Connector for Non-Java Access
	How the VSE Script Connector Is Used
	Overview of the Protocol Used Between Client and Server
	Writing VSE Scripts Using the VSE Script Language
	General Rules That Apply to the VSE Script Language
	VSE Script Language Built-In General Functions
	VSE Script Language Built-In String Functions
	VSE Script Language Built-In Console Functions
	VSE Script Language Built-In POWER Functions
	VSE Script Language Built-In VSAM Functions

	Sample Files You Can Use for Writing VSE Script Clients
	Example of Writing a VSE Script Client (and Its VSE Script)
	Step 1: Setup the VSE Script Server Properties File
	Step 2: Setup the Connections Properties File
	Step 3: Define the Sample VSAM Data
	Step 4: Modify the Sample VSE Script
	Step 5: Start the VSE Connector Server on the VSE/ESA Host
	Step 6: Start the VSE Script Server Locally
	Step 7(a): Open the Sample Lotus 1-2-3 Spreadsheet File
	How the Sample VSE Script is Defined in Lotus 1-2-3

	Step 7(b): Open the Sample MS Office Spreadsheet
	How the Sample VSE Script is Defined in MS Office

	Step 7(c): Start a Sample VSE Script from the Command Line

	Appendix. AIBTDLI DL/I Messages and Return Codes
	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

