7/08S

Cryptographic Services
System Secure Sockets Layer
Programming

PKCS# 12 Certificate Store Support -

APAR OA45216
Documentation for V1R13

<|lI!

Contents

Chapter 1. Overview1

Chapter 2. Updates to Chapter 2: How
System SSL works for secure socket

communication .3
System SSL application overview .3
Chapter 3. Updates to Chapter 4:
System SSL and FIPS 140-2 . .7
Certificate stores . . .7
SAF key rings and PKCS #11 tokens .7
PKCS #12 files . e .7
Chapter 4. Updates to Chapter 5: Writing
and building a z/0S System SSL
application . . . A
Writing and building a z/ OS System SSL apphcatlon 9
Create an SSL environment . . .9
Building a z/OS System SSL apphcat10n A |
Running a z/0OS System SSL application.11
Chapter 5. Updates to Chapter 7: API
reference. . . . e
gsk_attribute_get_ buffer() B
gsk_attribute_set_buffer().17

© Copyright IBM Corp. 2014

gsk_attribute_set_callback() .
gsk_attribute_set_enumy() .
gsk_attribute_set_tls extens1on()
gsk_environment_init()
gsk_environment_openy() .
gsk_get_update()
gsk_secure_socket_init() .
gsk_initialize()
gsk_secure_soc_init()

Chapter 6. Updates to Chapter 10:

Certificate/Key management

Introduction . .

gskkyman command hne mode syntax .
gskkyman .

Chapter 7. Updates to Chapter 13:
Messages and codes
SSL function return codes

Deprecated SSL function return Codes
CMS status codes

Chapter 8. Updates to Appendix A:

Environment variables .
Environment variables.

.21
. 26
.31
. 34
. 36
. 43
. 44
. 51
. 56

. 63
. 63
. 64
. 64

. 69
. 69
.70
.72

. 73
.73

iii

1V DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

Chapter 1. Overview

This document update describes PKCS#12 certificate store support and contains
alterations to information previously presented in z/OS Cryptographic Services
System Secure Sockets Layer Programming, SC24-5901-11.

The preceding book documents capabilities provided in support of z/OS Version 1
Release 13.

Technical changes or additions related to PKCS#12 certificate store support in this
document update are indicated by a vertical line to the left of the change.

These updates relate to the enhancements made to the z/OS Cryptographic
Services product by the application of APAR OA45216.

© Copyright IBM Corp. 2014

2 DPKCS#12 Certificate Store Support - APAR OA45216 (V1R13)

Chapter 2. Updates to Chapter 2: How System SSL works for
secure socket communication

System SSL application overview

[Figure 1 on page 5| describes the basic structure of the elements that are needed in
your System SSL source program.

Whether writing a server or client applications, the initial steps are the same. First,
an SSL environment must be established with these function calls:

gsk_environment_open()
This is the first function call. It returns an environment handle that is used
in all subsequent function calls. It also obtains storage and sets default
values for all internal variables and picks up the values that are specified
in system environment variables that override the built-in defaults.

gsk_attribute_set...()
One or more of these function calls are issued to set attribute values for the
environment.

gsk_environment_init()
After you set all variables, issue this function call to complete the
initialization of the SSL environment. When complete, you can open and
close SSL connections.

Now, the client and server sides diverge. The server side sets up a listen
environment. The listen environment is established by obtaining a socket
descriptor through the socket() call and the activation of a connection through the
bind(), listen() and accept() socket calls.When the listen environment is
established, the server waits for notification that a secure socket connection is
requested and issues these System SSL API function calls:

gsk_secure_socket_open()
This function call reserves a handle in which to store information for
initializing each secure socket. Default values for each SSL connection are
set from the environment.

gsk_attribute_set...()
This function call sets attribute values for this particular SSL connection.
These values could include the socket file descriptor, ciphers, protocol, and
application-supplied callback routines.

gsk_secure_socket_init()
For each connection to be started, the application must issue this function
call to complete the initialization of the SSL connection and to run the SSL
handshake protocol. The SSL handshake is a function of the System SSL
support.

gsk_secure_socket_read()
One or more read function calls is issued until the inbound data flow is
complete. The number of calls is purely application-dependent.

gsk_secure_socket_write()
One or more write function calls is issued until all appropriate data is sent
to the partner. Reads and writes may be alternated as defined by the
application protocol until the data flow is complete.

© Copyright IBM Corp. 2014 3

gsk_secure_socket_close()
This function call frees all the resources that are used for the SSL
connection.

All of the SSL API function calls are thread-safe. This is useful on the server side,
since each connection can be run on its own thread, simplifying application design.
See the sample client/server program that is shipped with z/OS® System SSL, for
an illustration of a multi-threaded application.

The client application then opens a connection to the server through the socket()
and connect() calls and issues these System SSL API function calls:

gsk_secure_socket_open()
This function call reserves a handle in which to store information for
initializing each secure socket.

gsk_attribute_set...()
This function call sets values for this particular SSL connection. These
values could include the socket file descriptor, ciphers, protocol, and
application-supplied callback routines.

gsk_secure_socket_init()
For each connection to be started, the application must issue this function
call to complete the initialization of the SSL connection and to run the SSL
handshake protocol. The SSL handshake is a function of the System SSL
support.

gsk_secure_socket_write()
One or more write function calls are issued until the outbound data flow is
complete. The number of calls is purely application-dependent.

gsk_secure_socket_read()
One or more read function calls are issued until all appropriate data is
received from the partner. Writes and reads may be alternated as defined
by the application protocol until the data flow is complete.

gsk_secure_socket_close()
This function call frees all the resources that are used for the SSL
connection.

For both client and server applications, when the application is ready to end and
all gsk_secure_socket_close() functions complete, destroy the sockets through the
close() call and issue the gsk_environment_close() function call to close the SSL
environment and return resources to the operating system.

Note: skread() and skwrite() are the routines responsible for sending and receiving
data from the socket. They are invoked by the gsk_secure_socket_init(),
gsk_secure_socket_read() and gsk_secure_socket_write() functions.

In addition to using the previous SSL programming interfaces in an application, an
application is not complete until a key database is available for use by the SSL
application. The key database contains certificate information and is a z/OS UNIX
System Services file that is built and managed using the gskkyman utility. In
addition to key database files, a PKCS #12 file, a SAF key ring or a z/OS PKCS #11
token can be utilized for certificate information.

4 DPKCS#12 Certificate Store Support - APAR OA45216 (V1R13)

Client

—» gsk_environment_open()
—» gsk_attribute_set...()
—» gsk_environment_init()

socket()

\A J

——>» gsk_secure_socket_open()
—» gsk_attribute_set_...()
—» gsk_secure_socket_init()

——» gsk_secure_socket_write()
——» gsk_secure_socket_read()
——» gsk_secure_socket_close()

connect()

skwrite()

skread()

skwrite()
skread()

—» gsk_environment_close()

Chapter 2. Updates to Chapter 2: How System SSL works for secure socket communication

» close()

O X0 ST0NVAASL T

Figure 1. Sockets programming model using System SSL

gsk_environment_open()
gsk_attribute_set...()
gsk_environment_init()

Server

listen() <«
accept() <«

gsk_secure_socket_open() «——
gsk_attribute_set_...()
gsk_secure_socket_init()

skread()

skwrite()

skread()
skwrite()

gsk_secure_socket read() «——
gsk_secure_socket_write() «——
gsk_secure_socket close() «——

close() <
close() <

gsk_environment_close() <«—

5

6 DPKCS#12 Certificate Store Support - APAR OA45216 (V1R13)

Chapter 3. Updates to Chapter 4: System SSL and FIPS 140-2

Certificate stores

To use FIPS mode, certificates can be stored in either a SAF key ring, PKCS #11
token, or a FIPS mode key database.

SAF key rings and PKCS #11 tokens

Provided a certificate and its signers chain use only valid algorithms and key sizes,
then there are no changes that are required if using a SAF key ring or a PKCS #11
token. A SAF key ring or PKCS #11 token may contain certificates with keys sizes
or algorithms that are not supported in FIPS mode if those certificates are never
used while executing in FIPS mode. While executing in FIPS mode, if an attempt to
use a certificate with unsupported key size or algorithms is made, then the process
fails. The corrective action is to either add/replace certificates with key sizes and
algorithms that are valid in FIPS mode, or execute in non-FIPS mode.

The gskkyman utility runs in non-FIPS mode when managing PKCS #11 tokens. It
is therefore possible to add certificates/keys with algorithms or key sizes that are
not supported if the PKCS #11 token is later used while executing in FIPS mode.

Key database files

To use a key database in FIPS mode, it must be created as a FIPS mode database.
Key databases that are created through gskkyman not explicitly specifying FIPS
during creation, or created through an application not executing in FIPS mode,
cannot be used by an application executing in FIPS mode. To create a FIPS mode
key database using the gskkyman utility. To create a FIPS mode key database
using the Certificate Management Services API, the application must start in FIPS
mode.

The following are key points when using FIPS key databases:

* Only certificates that meet the requirements for FIPS can be added to a FIPS key
database.

* A FIPS key database may only be modified if executing in FIPS mode. When
opening an existing FIPS key database, the gskkyman utility ensures that it is
executing in FIPS mode. If an application modifies the key database by using the
Certificate Management Services (CMS) APIs, then it too must ensure that it is
executing in FIPS mode.

* A FIPS key database can be used in non-FIPS mode if it is opened for read only.

* A non-FIPS key database cannot be opened while executing in FIPS mode.

The gskkyman utility automatically detects when a FIPS mode key database is
opened, and executes in FIPS mode. This ensures that only certificates or certificate
requests that meet the FIPS mode requirements may be added to the key database.

PKCS #12 files

To use a PKCS #12 file in FIPS mode, the file must be protected using TDES. When
creating a PKCS #12 file from certificates within a key database file, using the
gskkyman utility, the key database must be a FIPS key database.

© Copyright IBM Corp. 2014 7

Provided a certificate and its signers chain use only valid algorithms and key sizes,
there are no changes that are required if using a PKCS #12 file. A PKCS #12 file
may contain certificates with keys sizes or algorithms that are not supported in
FIPS mode. While executing in FIPS mode, if an attempt to use a certificate with
unsupported key size or algorithms is made, the process fails. The corrective action
is to either add or replace certificates with key sizes and algorithms that are valid
in FIPS mode, or to execute in non-FIPS mode.

8 DPKCS#12 Certificate Store Support - APAR OA45216 (V1R13)

Chapter 4. Updates to Chapter 5: Writing and building a z/0S
System SSL application

Writing and building a z/0S System SSL application

This topic describes how to write, build, and run a secure socket layer (SSL)
application that uses the System SSL programming interfaces. You can write both
client and server applications using the System SSL (TLS/SSL) programming
interfaces.

In Version 1 Release 2 of z/OS, a new set of functions were added that superseded
some functions from previous System SSL releases. The functions that were
superseded are referred to collectively as "the deprecated SSL interface". It is
suggested that new application programs do not use the deprecated SSL interface.

Note: When migrating from the deprecated SSL interface, the entire System SSL
application must be migrated. The application must not contain a mixture of
deprecated and superseding APlIs.

In addition to writing the SSL applications, you must have a certificate repository
available for the application. The certificate repository can be a key database file,
PKCS #12 file, PKCS #11 token, or SAF key ring. For SAF key rings, see the
RACDCERT command information in z/OS Security Server RACF Command
Language Reference for more information.

Sample programs using the new APIs are shipped in /usr/1pp/gskss1/examples.

Create an SSL environment

For both the client and server System SSL programs, you must initialize the System
SSL environment using the programming interfaces associated with the SSL
environment layer.

gsk_environment_open()
Will define and obtain storage for the SSL environment and return an
environment handle to be used on subsequent API invocations.

gsk_attribute_set...()
Sets environment attributes such as:

* The SSL protocol version to be used: SSL Version 2.0, SSL Version 3.0,
TLS Version 1.0, TLS Version 1.1, and/or TLS Version 1.2.

* The key database to be used. (key database file, PKCS #12 file, SAF key
ring or z/OS PKCS #11 token)

* The password for the key database. This can be specified directly by the
application or by using a stashed password file.

Note: When using SAF key rings or z/OS PKCS #11 tokens, the
password and stash file must not be specified.

¢ The amount of time the SSL session identifier information is valid. By
using already negotiated and agreed to SSL session identifier
information, System SSL can reduce the amount of data exchanged
during the SSL handshake that occurs during the
gsk_secure_socket_init() call.

© Copyright IBM Corp. 2014 9

gsk_environment_init()
Initializes the SSL environment.

This example code illustrates how to call the environment layer programming
interface from a client or server System SSL program. In this example, TLS Version
1.0 support is requested, /keyring/key.kdb is the key database that is used, the
password for the key database is "password", and default values are taken for the
remaining SSL environment variable attributes.

gsk_handle env_handle;
int rcs

/* create the SSL environment */
rc = gsk_environment_open(&env_handle);

/* set environment attributes */

rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV2, GSK_PROTOCOL_SSLV2_OFF);
/* By default, SSL V2 protocol is set on */

rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV3, GSK_PROTOCOL_SSLV3_OFF);

/* By default, SSL V3.0 protocol is set on */
gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1, GSK PROTOCOL_TLSV1 ON);
gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1 1, GSK_PROTOCOL_TLSV1_ 1 OFF);
gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1 2, GSK_PROTOCOL_TLSV1_ 2 OFF);
gsk_attribute_set_buffer(env_handle, GSK_KEYRING_FILE, "/keyring/key.kdb",0);
gsk_attribute_set_buffer(env_handle, GSK_KEYRING_PW, "password",0);

rc
rc
rc
rc
rc

/* initialize environment */
rc = gsk_environment_init(env_handle);

This example code illustrates how to create an SSL environment for a server
System SSL program supporting TLS Version 1.0, TLS Version 1.1, and TLS Version
1.2.

gsk_handle env_handle;
int rc

/* create the SSL environment */
rc = gsk_environment_open(&env_handle);

/* set environment attributes */

rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV2, GSK_PROTOCOL_SSLV2_OFF);
/* By default, SSL V2.0 protocol is set on */

rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL SSLV3, GSK_PROTOCOL_SSLV3 OFF);

/* By default, SSL V3.0 protocol is set on */
gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1, GSK_PROTOCOL_TLSV1_ON);
gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1_1, GSK_PROTOCOL_TLSV1_ 1 _ON);

/* By default, TLS V1.1 protocol is set off %/
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1 2, GSK_PROTOCOL_TLSV1 2 ON);

/* By default, TLS V1.2 protocol is set off */
rc = gsk_attribute_set_buffer(env_handle, GSK_KEYRING FILE, "/keyring/key.kdb",0);
rc = gsk_attribute_set_buffer(env_handle, GSK_KEYRING_PW, "password",0);

rc
rc

/* initialize environment */
rc = gsk_environment_init(env_handle);

Note: When the environment is initialized, the environment attributes cannot be
changed unless they are also attributes of the secure socket connection. In this case,
they can be changed only for that connection. If changes are necessary to the
environment, a new SSL environment can be created within the same process.

When the System SSL program successfully creates the SSL environment, it must
now perform the steps that are needed to allow the program to communicate with
a peer program. The exact sockets and System SSL calls required to allow the
program to communicate differ depending on whether the program is a client or a
server.

10 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

Building a z/0S System SSL application

1.
2.
3.

Write the System SSL source program.
Compile your System SSL source program using the DLL compiler option.

Include the /usr/11b/GSKSSL.x or /usr/1ib/GSKSSL64.x sidedeck in the prelink
or bind step input.

If using the Certificate Management APIs, include either the
/usr/1ib/GSKCMS31.x or /usr/1ib/GSKCMS64.x sidedeck in the prelink or bind
step input.

Build a key database file or z/OS PKCS #11 token using the gskkyman utility,
create a SAF key ring or PKCS #11 token using the RACDCERT command, or
utilize an existing PKCS #12 file. The name of the key database file, PKCS #12
file, z/OS PKCS #11 token, or SAF key ring must match the name you specified
as the GSK_KEYRING_FILE on the gsk_attribute_set_buffer() APl For key
database files, you need to specify either the password associated with the key
file or the stash file name. For PKCS #12 files, you need to specify the
password associated with the file. The password must match the password
specified on GSK_KEYRING_PW on the gsk_attribute_set_buffer() API or
must be set to NULL if using a SAF key ring or z/OS PKCS #11 token. Note
that the password is case-sensitive.

Running a z/OS System SSL application

After successfully writing and building the System SSL application and creating
the certificate repository, you can run the System SSL application. To run the
application follow these steps:

1.

Ensure that pdsename.SIEALNKE, the PDSE that contains the System SSL
DLLs, is in the MVS™ search order. If it is not in the linklist or LPA, you can
use the STEPLIB DD statement in your JCL or the STEPLIB environment
variable in the shell. For example, in the z/OS shell, issue this command:

export STEPLIB=$STEPLIB:pdsename.SIEALNKE

2. Ensure that the key database file, PKCS #12 file, SAF key ring, or z/OS PKCS
#11 token is accessible to the System SSL application.

3. Run the System SSL application.

Note:

1. SSL applications must be run from within a POSIX environment.

2. Once SSL applications call gsk_initialize() or gsk_environment_open(), they
cannot destroy the LE environment.

3. SSL applications must call SSL APIs from a C program, as they are C APIs.

Chapter 4. Updates to Chapter 5: Writing and building a z/OS System SSL application ~ 11

12 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

Chapter 5. Updates to Chapter 7: API reference

This topic describes the set of application programming interfaces (APIs) that z/OS
System SSL supports for performing secure sockets layer (SSL/TLS)
communication.

© Copyright IBM Corp. 2014 13

gsk_attribute_get_buffer()

gsk_attribute_get_buffer()

Gets the value of an attribute buffer.

Format
#include <gskssl.h>

gsk_status gsk attribute_get buffer (

gsk_handle ssl_handle,
GSK_BUF_ID buffer_id,
const char #** buffer_value,
int * buffer_length)
Parameters
ssl_handle

Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_open().

buffer_id
Specifies the buffer identifier.

buffer_value
Returns the address of the buffer value. The buffer is in storage owned by
the SSL run time and must not be modified or released by the application.
The buffer returned for the GSK_USER_DATA identifier may be modified
by the application but must not be released.

buffer_length
Returns the length of the buffer value.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The buffer identifier is not valid or cannot be used with the specified
handle.

[GSK_INVALID _HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The handle is closed.

Usage

The gsk_attribute_get_buffer() routine will return a buffer value for an SSL
environment or an SSL connection. The buffer is in storage owned by the SSL run
time and must not be released by the application. The address remains valid until
the SSL environment or connection is closed or until the application calls the
gsk_attribute_set_buffer() routine to set a new buffer value.

These buffer identifiers are supported:

GSK_CLIENT_ECURVE_LIST
Returns the list of elliptic curve specifications supported by the client as a
string consisting of 4-character decimal values.
GSK_CLIENT_ECURVE_LIST may be specified for an SSL environment or

14 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_attribute_get_buffer()

an SSL connection. The elliptic curve specifications are used by the client to
guide the server as to which elliptic curves can be used when using cipher
suites that use Elliptic Curve Cryptography for the TLS V1.0 or higher
protocols.

GSK_CONNECT_CIPHER_SPEC
Returns the cipher specification selected for an initialized connection.
When using the SSL V2 protocol the cipher specification will be returned
as a single character. For other protocols the cipher specification may be
returned as either a 2-character or 4-character cipher depending on the
setting in GSK_V3_CIPHERS.

GSK_CONNECT_SEC_TYPE
Returns the security protocol for an initialized connection. The value will
be "SSLV2", "SSLV3", "TLSV1", "TLSV1.1", or "TLSV1.2" depending upon the
protocol selected during the SSL handshake. GSK_CONNECT_SEC_TYPE
may be specified only for an SSL connection.

GSK_KEYRING_FILE
Returns the name of the key database file, PKCS #12 file, SAF key ring or
z/0S PKCS #11 token. A key database or PKCS #12 file is used if a
database password is defined using either an environment variable or the
gsk_attribute_set_buffer() routine. When a stash file is defined, a key
database file is used.

GSK_KEYRING_LABEL
Returns the label associated with the certificate being used by the SSL
environment or connection. This will be the value set by the application if
the environment or connection is not initialized. GSK_KEYRING_LABEL
may be specified for an SSL environment or an SSL connection.

GSK_KEYRING_PW
Returns the password for the key database or PKCS #12 file. A NULL
address will be returned after the environment is initialized.
GSK_KEYRING_PW may be specified only for an SSL environment.

GSK_KEYRING_STASH_FILE
Returns the name of the key database password stash file.
GSK_KEYRING_STASH_FILE may be specified only for an SSL
environment.

GSK_LDAP_SERVER
Returns the DNS name or IP address of the LDAP server.
GSK_LDAP_SERVER may be specified only for an SSL environment.

GSK_LDAP_USER
Returns the distinguished name to use when connecting to the LDAP
server. GSK_LDAP_USER may be specified only for an SSL environment.

GSK_LDAP_USER_PW
Returns the password to use when connecting to the LDAP server.
GSK_LDAP_USER_PW may be specified only for an SSL environment.

GSK_SID_VALUE
Returns the session identifier for an initialized connection. This is the
Base64-encoded version of the session identifier and consists of displayable
characters. GSK_SID_VALUE may be specified only for an SSL connection.

GSK_SNI_LIST
Returns the address of a list of server names passed to the server by the
client for use during server name indication callback routine. Server name

Chapter 5. Updates to Chapter 7: API reference 15

gsk_attribute_get_buffer()

indication is an extension to TLS V1.0 or higher protocols which allow the
client to pass server names to the server. The server can use the list of
server names as an aid in selection of the certificate to be used by the
server. GSK_SNI_LIST may be specified only for an SSL connection and
only on the server side of the connection. When returned, the buffer
contains a list of server names with each server name preceded by a 1-byte
name type and a 2-byte field (in large endian format) containing the length
of the server name. The name type always contains X'00' to indicate that it
is a hostname; however, new name types may be introduced in the future.
The server name content will be in UTF-8 format.

GSK_TLS_SIG_ALG_PAIRS
Returns the list of hash and signature algorithm pairs set by the client or
server as a string consisting of 1 or more 4-character values.
GSK_TLS_SIG_ALG_PAIRS may be specified for an SSL environment or an
SSL connection. The signature algorithm pair specifications are used by the
client and server to show which signature/hash algorithm combinations
are supported for digital signatures. Signature algorithm pair specification
only has relevance for sessions using TLS V1.2 or higher protocols.

GSK_USER_DATA
Returns the address of the user data to be passed to SSL exit routines. The
application may alter the user data but may not free it. GSK_USER_DATA
may be specified only for an SSL connection.

GSK_V2_CIPHER_SPECS
Returns the SSL V2 cipher specifications as a string consisting of
1-character values. GSK_V2_CIPHER_SPECS may be specified for an SSL
environment or an SSL connection.

GSK_V3_CIPHER_SPECS
Returns the SSL V3 cipher specifications as a string consisting of
2-character values. GSK_V3_CIPHER_SPECS may be specified for an SSL
environment or an SSL connection. The SSL V3 cipher specifications are
used for the SSL V3, TLS V1.0, or higher protocols.

GSK_V3_CIPHER_SPECS_EXPANDED
Returns the SSL V3 cipher specifications as a string consisting of
4-character values. GSK_V3_CIPHER_SPECS_EXPANDED may be specified
for an SSL environment or an SSL connection. The SSL V3 cipher
specifications are used for the SSL V3, TLS V1.0, and higher protocols.

16 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_attribute_set_buffer()

gsk_attribute_set_buffer()

Sets the value of an attribute buffer.

Format
#include <gskss1.h>

gsk_status gsk attribute_set_buffer (

gsk_handle ssl_handle,
GSK_BUF_ID buffer_id,
const char * buffer_value,
int buffer_length)
Parameters
ssl_handle

Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_open().

buffer_id
Specifies the buffer identifier.

buffer_value
Specifies the buffer value.

buffer_length
Specifies the buffer length. Specify 0 for this parameter if the buffer value
is a null-delimited character string.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
is one of the return codes listed in the gskssLh include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The buffer identifier is not valid or cannot be used with the specified
handle.

[GSK_ATTRIBUTE_INVALID_LENGTH]
The buffer length is not valid.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage

The gsk_attribute_set_buffer() routine sets a buffer value in an SSL environment
or an SSL connection. The environment or connection must be in the open state
and not in the initialized state (that is, gsk_environment_init() or
gsk_secure_socket_init() has not been called).

The values set using this service are treated as independent values. They are not
validated with other values set using gsk_attribute_set_buffer(),

Chapter 5. Updates to Chapter 7: API reference 17

gsk_attribute_set_buffer()

gsk_attribute_set_enum(), or gsk_attribute_set_tls_extensions() APIs until used
together to perform a SSL/TLS handshake by calling gsk_secure_socket_init().

These buffer identifiers are supported:

GSK_CLIENT_ECURVE_LIST
Specifies the list of elliptic curves that are supported by the client as a
string consisting of 1 or more 4-character decimal values in order of
preference for use. GSK_CLIENT_ECURVE_LIST may be specified for an
SSL environment or an SSL connection. The list is used by the client to
guide the server as to which elliptic curves are preferred when using
ECC-based cipher suites for the TLS V1.0 or higher protocols.

Only NIST recommended curves are able to be specified for the attribute.
To use Brainpool standard curves for an SSL connection, the buffer must be
reinitialized to NULL using either gsk_attribute_set_buffer() or the
GSK_CLIENT_ECURVE_LIST environment variable.

GSK_KEYRING_FILE
Specifies the name of the key database file, PKCS #12 file, SAF key ring, or
z/0S PKCS #11 token. A key database or PKCS #12 file is used if a
database password is defined using either an environment variable or the
gsk_attribute_set_buffer() routine. When a stash file is defined, a key
database file is used. Otherwise, a SAF key ring or z/OS PKCS #11 token
is used. GSK_KEYRING_FILE may be specified only for an SSL
environment.

The SAF key ring name is specified as "userid/keyring". The current user
ID is used if the user ID is omitted. The user must have READ access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by the user. The user must have UPDATE access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by another user.

A z/0OS PKCS #11 token name is specified as *TOKEN*/token-name.
TOKEN indicates a PKCS #11 token is being specified.

Note: Certificate private keys are not available when using a SAF key ring
owned by another user, except for SITE certificates where CONTROL
authority is given to IRR.DIGTCERT.GENCERT in the FACILITY class or
for user certificates where READ or UPDATE authority is given to
ringOwner.ringName.LST resource in the RDATALIB class.

GSK_KEYRING_LABEL
Specifies the label of the key that is used to authenticate the application.
The default key is used if a key label is not specified.
GSK_KEYRING_LABEL may be specified for an SSL environment or an
SSL connection. If either the GSK_CLIENT CERT CALLBACK function or
the GSK_SNI_CALLBACK function is registered, the key label can be set or
reset by the callback function after a call to gsk_secure_socket_init().

GSK_KEYRING_PW
Specifies the password for the key database or PKCS #12 file.
GSK_KEYRING_PW may be specified only for an SSL environment.

GSK_KEYRING_STASH_FILE
Specifies the name of the key database password stash file. The stash file
name always has an extension of ".sth" and the supplied name is changed
if it does not have the correct extension. The GSK_KEYRING_PW value is

18 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_attribute_set_buffer()

used instead of the GSK_KEYRING_STASH value if it is also specified.
GSK_KEYRING_STASH_FILE may be specified only for an SSL
environment.

GSK_LDAP_SERVER
Specifies one or more blank-separated LDAP server host names. Each host
name can contain an optional port number that is separated from the host
name by a colon. GSK_LDAP_SERVER may be specified only for an SSL
environment. The LDAP server is used to obtain CA certificates when
validating a certificate and the local database does not contain the required
certificate. The local database must contain the required certificates if no
LDAP server is specified. Even when an LDAP server is used, root CA
certificates must be found in the local database since the LDAP server is
not a trusted data source. The LDAP server is also used to obtain
certificate revocation lists.

GSK_LDAP_USER
Specifies the distinguished name to use when connecting to the LDAP
server. GSK_LDAP_USER may be specified only for an SSL environment.

GSK_LDAP_USER_PW
Specifies the password to use when connecting to the LDAP server.
GSK_LDAP_USER_PW may be specified only for an SSL environment.

GSK_TLS_SIG_ALG_PAIRS
Specifies the list of hash and signature algorithm pair specifications that
are supported by the client or server as a string consisting of 1 or more
4-character values in order of preference for use.
GSK_TLS_SIG_ALG_PAIRS may be specified for an SSL environment or an
SSL connection. The signature algorithm pair specifications are sent by
either the client or server to the session partner to indicate which
signature/hash algorithm combinations are supported for digital
signatures. Signature algorithm pair specification only has relevance for
sessions using TLS V1.2 or higher protocols.

GSK_USER_DATA
Specifies the user data to be passed to SSL exit routines. The user data is
copied to storage owned by the SSL run time and the address of this
storage is passed to the SSL exit routines. The application may alter this
copy of the user data but may not free it. GSK_USER_DATA may be
specified only for an SSL connection.

GSK_V2_CIPHER_SPECS
Specifies the SSL V2 cipher specifications as a string consisting of 1 or
more 1-character values. GSK_V2_CIPHER_SPECS may be specified for an
SSL environment or an SSL connection.

GSK_V3_CIPHER_SPECS
Specifies the SSL V3 cipher specifications as a string consisting of 1 or
more 2-character values. GSK_V3_CIPHER_SPECS may be specified for an
SSL environment or an SSL connection. The SSL V3 cipher specifications
are used for the SSL V3, TLS V1.0, or higher protocols.

GSK_V3_CIPHER_SPECS_EXPANDED
Specifies the SSL V3 cipher specifications as a string consisting of 1 or
more 4-character values. GSK_V3_CIPHER_SPECS_EXPANDED may be
specified for an SSL environment or an SSL connection. The SSL V3 cipher
specifications are used for the SSL V3, TLS V1.0, or higher protocols.
Applications wanting to use cipher suites that use Elliptic Curve

Chapter 5. Updates to Chapter 7: API reference 19

gsk_attribute_set_buffer()

Cryptography must set an appropriate cipher specification in
GSK_V3_CIPHER_SPECS_EXPANDED.

20 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_attribute_set_callback()

gsk_attribute_set_callback()
Sets an SSL callback.

Format
#include <gskss1.h>

gsk_status gsk attribute_set_callback (

gsk_handle ssl_handle,
GSK_CALLBACK_ID callback_id,
void * callback)
Parameters
ssl_handle

Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_opend().

callback_id
Specifies the callback identifier.

callback
Specifies the address of the callback parameter.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
is one of the return codes listed in the gskssLh include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The callback identifier is not valid or cannot be used with the specified
handle.

[GSK_ATTRIBUTE_INVALID_PARAMETER]
The attribute parameter value is not valid.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage

The gsk_attribute_set_callback() routine establishes a callback to an application
routine by the SSL run time. A callback allows the application to replace the
default routine used by the SSL run time. The SSL environment or SSL connection
must be in the open state and not in the initialized state (that is,
gsk_environment_init() or gsk_secure_socket_init() has not been called). The
callback routine must use standard C linkage and not C++ linkage.

These callback identifiers are supported:

GSK_CLIENT_CERT_CALLBACK
Indicates that the application is providing a routine to be used during a
full handshake to prompt a client user to select a certificate from a list
during the client authentication process. The callback parameter is the
address of this routine. The exit routine can obtain the user data address
by calling the gsk_attribute_get_buffer() routine. The
gsk_attribute_set_buffer() routine should be called to set the selected key

Chapter 5. Updates to Chapter 7: API reference 21

gsk_attribute_set_callback()

label before returning from the callback routine. The function return value
should be 0 if a key label has been set or GSK_ERR_NO_CERTIFICATE if
no client certificate is to be used. GSK_CLIENT_CERT_CALLBACK can be
specified only for an SSL environment.

This is the prototype for the callback routine provided by the application.
It shows the parameters passed to the application callback and the value
returned by the callback.

int client_cert_callback (
gsk_handle soc_handle)

GSK_IO_CALLBACK
Indicates that the application is providing the routines to perform read,
write, and control functions. The callback parameter is the address of a
gsk_iocallback structure. Each entry in the structure overrides the
corresponding SSL runtime routine. A NULL entry will cause the current
callback routine to be used or the SSL runtime routine will be used if there
is no callback routine. GSK_IO_CALLBACK can be specified for an SSL
environment or an SSL connection.

The routine specified by the io_read entry is used to read data from the
network. The fd parameter is the socket descriptor, the buffer parameter is
the address of the data buffer, the count parameter is the buffer size, and
the user_data parameter is the user data address. The function return value
should be 0 if the connection has been closed by the remote partner, -1 if
an error is detected, or the number of bytes read from the network. The
error code is returned in the errno runtime variable. The default routine
uses the recv() library routine to read data from the network.

int io_read (

int fd,

void * buffer,
int count,
char * user_data)

The routine specified by the io_write entry is used to write data to the
network. The fd parameter is the socket descriptor, the buffer parameter is
the address of the data buffer, the count parameter is the data length, and
the user_data parameter is the user data address. The function return value
should be -1 if an error is detected or the number of bytes written to the
network. The error code is returned in the errno runtime variable. The
default routine uses the send() library routine to write data to the network.

int io_write (

int fd,

void * buffer,
int count,
char = user_data)

The routine specified by the io_getpeerid entry is used to get the 32-bit
network identifier for the remote partner. The fd parameter is the socket
descriptor and the user_data parameter is the user data address. However,
the io_getpeerid entry is deprecated and should not be used since it does
not support IPv6 networks which use a 16-byte network identifier. Instead,
the io_getpeername entry should be used for both IPv4 and IPv6 networks.
The io_getpeerid entry will not be used if the io_getpeername entry is not
NULL.
unsigned long io_getpeerid (

int fd,

char * user_data)

22 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_attribute_set_callback()

The routine specified by the io_setsocketoptions entry is used to set socket
options. The fd parameter is the socket descriptor, the cmd parameter is the
function to be performed, and the user_data parameter is the user data
address. The return value should be -1 if an error is detected and 0
otherwise. The error code is returned in the errno runtime variable. The
io_setsocketoptions() routine is called by the gsk_secure_socket_init()
routine before initiating the SSL handshake
(GSK_SET_SOCKET_STATE_FOR_HANDSHAKE) and again upon
completion of the SSL handshake
(GSK_SET_SOCKET_STATE_FOR_READ_WRITE). The default
io_setsocketoptions() routine puts the socket into blocking mode for
GSK_SET_SOCKET_STATE_FOR_HANDSHAKE and restores the original
mode for GSK_SET_SOCKET_STATE_FOR_READ_WRITE.

int io_setsocketoptions (

int fd,
int cmd,
char * user_data)

The routine specified by the io_getpeername entry is used to get the network
identifier for the remote partner. The fd parameter is the socket descriptor,
the buffer parameter is the address of the return buffer, the length
parameter is the size of the return buffer, and the user_data parameter is
the user data address. Upon return, the length parameter should contain
the actual length of the network identifier. The function return value
should be -1 if an error is detected and 0 otherwise. The error code is
returned in the errno runtime variable. The default routine uses the
getpeername() library routine and returns the IP address of the remote
partner (4 bytes for IPv4 and 16 bytes for IPv6) followed by the 2-byte port

number.

int io_getpeername (
int fd,
void * buffer,
int * length,
char * user_data)

GSK_SESSION_RESET_CALLBACK
Indicates that the application is providing the routines to be called when a
session renegotiation has been initiated or completed to establish a new
session key or have the session cipher reset. The callback parameter is the
address of a gsk_reset_callback structure.

GSK_SESSION_RESET_CALLBACK can be specified for an SSL
environment or an SSL connection. The callback is only invoked when
using SSL V3, TLS V1.0, or higher protocols.

The routine specified by the Reset_Init entry is called when a session
renegotiation has been initiated, and the SSL client has commenced the
renegotiation process. The con_handle parameter is the handle for the SSL
connection.

void (Reset_Init) (
gsk_handle con_handle)

The Reset_Complete routine is called when a session renegotiation has been
completed. If session renegotiation does not successfully complete, for
example because of renegotiation not being allowed, then the
Reset_Complete routine is not invoked even though the Reset_Init routine
was called at the commencement of renegotiation. The con_handle
parameter is the handle for the SSL connection.

Chapter 5. Updates to Chapter 7: API reference 23

gsk_attribute_set_callback()

void (Reset_Complete) (
gsk_handle con_handle)

GSK_SID_CACHE_CALLBACK
Indicates that the application is providing the routines to maintain the
session identifier cache. The callback parameter is the address of a
gsk_sidcache_callback structure. GSK_SID_CACHE_CALLBACK can be
specified only for an SSL environment and will be used only for SSL
servers (the internal cache is always used for SSL clients).

The routine specified by the Get entry is called to retrieve an entry from
the session identifier cache. The session_id parameter is the session
identifier, the session_id_length parameter is the length of the session
identifier, and the ssl_version parameter is the SSL protocol version number
(GSK_SSLVERSION_V2 or GSK_SSLVERSION_V3). The function return
value is the address of the session data buffer or NULL if an error is
detected. The FreeDataBuffer routine will be called to release the session
data buffer when it is no longer needed by the SSL run time.

gsk _data_buffer » Get (

const unsigned char =* session_id,
unsigned int session_id_length,
gsk_sslversion ss1_version)

The routine specified by the Put entry is called to store an entry in the
session identifier cache. The ssl_session_data parameter is the session data,
the session_id parameter is the session identifier, the session_id_length
parameter is the length of the session identifier, and the ssl_version
parameter is the SSL protocol version number (GSK_SSLVERSION_V2 or
GSK_SSLVERSION_V3). The function return value is ignored and can be a
NULL address. The callback routine must make its own copy of the session
data since the SSL structure will be released when the connection is closed.

gsk_data_buffer » Put (

gsk_data_buffer = ss1_session_data,
const unsigned char =* session_id,
unsigned int session_id_length,
gsk_sslversion ss1_version)

The routine specified by the Delete entry is called to remove an entry from
the session identifier cache. The session_id parameter is the session
identifier, the session_id_length parameter is the length of the session
identifier, and the ssl_version parameter is the SSL protocol version number
(GSK_SSLVERSION_V2 or GSK_SSLVERSION_V3).

void Delete (

const unsigned char =* session_id,
unsigned int session_id_Tength,
gsk_sslversion ss1_version)

The routine specified by the FreeDataBuffer entry is called to release the
data buffer returned by the Get routine.

void FreeDataBuffer (
gsk _data_buffer * ss1_session_data)

GSK_SNI_CALLBACK
Indicates that the application is providing the routine to allow a server to
interrogate a list of server names supplied by the client and select an
appropriate key label for use as the server certificate based on the
information received from the client. The selected certificate from the key
database, PKCS #12 file, key ring or token will be sent to the client as the
server certificate during the handshake process. The callback parameter is
the address of this routine. The exit routine can obtain the server name list

24 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_attribute_set_callback()

provided by the client by calling the gsk_attribute_get_buffer() routine.
The gsk_attribute_set_buffer() routine should be called to set the selected
key label before returning from the callback routine.

The callback routine cannot enforce the required use of the server name
indication extension. The failure to select a key label causes a fatal
UNRECOGNIZED_NAME alert. To enforce such actions with the callback
routine the user must set the GSK_TLS_EXTID_SNI_SERVER_LABELS
extension by calling the attribute_set_tls_extension() routine. The required
and unrecognized_name_fatal fields of the extension must be set
appropriately to achieve the requested outcome, although the
serverKeyLabel list may be empty.

The function return value should be 0 if a key label has been set or
GSK_ERR_UNRECOGNIZED_NAME if no server certificate is selected.
Enforcement of the required and unrecognized_name_fatal settings occur
on return from the callback routine. GSK_SNI_CALLBACK can be specified
only for an SSL environment.

This is the prototype for the callback routine provided by the application.
It shows the parameters passed to the application callback and the value
returned by the callback.

int sni_callback (
gsk_handle soc_handle)

Chapter 5. Updates to Chapter 7: API reference 25

gsk_attribute_set_enum()

gsk_attribute_set_enum()

Sets an enumerated value.

Format
#include <gskssl.h>

gsk_status gsk attribute_set_enum (
gsk_handle ssl_handle,
GSK_ENUM_ID enum_id,
GSK_ENUM_VALUE enum_value)

Parameters

ssl_handle
Specifies an SSL environment handle that is returned by
gsk_environment_open() or an SSL connection handle that is returned by
gsk_secure_socket_opend().

enum_id
Specifies the enumeration identifier.

enum_value
Specifies the enumeration value.

Results

The function return value is 0 (GSK_OK) if no error is detected. Otherwise, it is
one of the return codes that are listed in the gskssLh include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID ID]
The enumeration identifier is not valid or cannot be used with the
specified handle.

[GSK_INVALID _HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage

The gsk_attribute_set_enum() routine sets an enumerated value for an SSL
environment or an SSL connection. The environment or connection must be in the
open state and not in the initialized state (that is, gsk_environment_init() or
gsk_secure_socket_init() has not been called).

The values set using this service are treated as independent values. They are not
validated with other values set using gsk_attribute_set_buffer(),
gsk_attribute_set_enum(), or gsk_attribute_set_tls_extensions() APIs until used
together to perform a SSL/TLS handshake by calling gsk_secure_socket_init().

These enumeration identifiers are supported:

GSK_CERT_VALIDATION_MODE
Specifies the method of certificate validation. RFC 2459 and RFC 3280
describe differing methods of certificate validation. Specify
GSK_CERT_VALIDATION_MODE_2459 if certificate validation according

26 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_attribute_set_enum()

to the RFC 2459 method is required or
GSK_CERT_VALIDATION_MODE_3280 if certificate validation according
to the RFC 3280 method is required.

Specify GSK_CERT_VALIDATION_MODE_ANY if certificate validation can
use any supported X.509 certificate validation method.

GSK_CERT_VALIDATION_MODE can only be specified for an SSL
environment.

GSK_CRL_SECURITY_LEVEL

Specify the level of security to be used when contacting an LDAP server to
check for revoked certificates in a Certificate Revocation List (CRL). CRLs
located are cached according to the GSK_CRL_CACHE_TIMEOUT setting
of the SSL environment. To enforce contact with the LDAP server for each
CRL check, CRL caching must be disabled. If a CRL is not defined, an
empty CRL is placed in the CRL cache to prevent repeated calls to the
LDAP server. This entry is not cleared until the CRL cache timeout is
reached. GSK_CRL_SECURITY_LEVEL can only be specified at the
environment level.

Three levels of security are available:

* GSK_CRL_SECURITY_LEVEL_LOW - Certificate validation does not fail
if the LDAP server cannot be contacted.

* GSK_CRL_SECURITY_LEVEL_MEDIUM - Certificate validation requires
the LDAP server to be contactable, but does not require a CRL to be
defined. This is the default.

* GSK_CRL_SECURITY_LEVEL_HIGH - Certificate validation requires the
LDAP server to be contactable, and a CRL to be defined.

GSK_CLIENT_AUTH_ALERT
Specify GSK_CLIENT_AUTH_NOCERT_ALERT_OFF if the SSL server
application is to allow client connections where client authentication is
requested and the client fails to supply an X.509 certificate. Specify
GSK_CLIENT_AUTH_NOCERT_ALERT_ON if the SSL server application
is to terminate client connections where client authentication is requested
and the client fails to supply an X.509 certificate.

GSK_CLIENT_AUTH_ALERT can be specified only for an SSL
environment and is only applicable for server sessions with client
authentication active.

GSK_CLIENT _AUTH_TYPE
Specifies GSK_CLIENT_AUTH_FULL_TYPE to validate client certificates. If
a certificate is not valid, the connection is not started and an error code is
returned by the gsk_secure_socket_init() routine. If an LDAP server is
specified, the LDAP server is queried for CA certificates and certificate
revocation lists. If the LDAP server is not available, only local validation is
performed. If no client certificate is received and either
GSK_CLIENT_AUTH_ALERT is not specified or is set to
GSK_CLIENT_AUTH_NOCERT_ALERT_OFF, the connection is successful.
The application can check for this case by calling the
gsk_attribute_get_cert_info() routine and checking for a NULL return
address.

When a client's certificate is being requested, the client can be required to
provide a certificate by setting GSK_CLIENT_AUTH_ALERT to
GSK_CLIENT_NOCERT_ALERT_ON. If no certificate is received, the
requested handshake fails.

Chapter 5. Updates to Chapter 7: API reference 27

gsk_attribute_set_enum()

Specify GSK_CLIENT_AUTH_PASSTHRU_TYPE to bypass client certificate
validation. The application can retrieve the certificate by calling the
gsk_attribute_get_cert_info() routine.

GSK_CLIENT_AUTH_TYPE can be specified only for an SSL environment
and is only applicable for server sessions with client authentication active.

GSK_EXTENDED_RENEGOTIATION_INDICATOR

Specify GSK_EXTENDED_RENEGOTIATION_INDICATOR_OPTIONAL to
not require the renegotiation indicator during initial handshake. This is the
default.

Specify GSK_EXTENDED_RENEGOTIATION_INDICATOR_CLIENT to
allow the client initial handshake to proceed only if the server indicates
support for RFC 5746 Renegotiation.

Specify GSK_EXTENDED_RENEGOTIATION_INDICATOR_SERVER to
allow the server initial handshake to proceed only if the client indicates
support for RFC 5746 Renegotiation.

Specify GSK_EXTENDED_RENEGOTIATION_INDICATOR_BOTH to allow
the server and client initial handshakes to proceed only if partner indicates
support for RFC 5746 Renegotiation.

GSK_EXTENDED_RENEGOTIATION_INDICATOR can only be specified
for an SSL environment.

GSK_PROTOCOL_SSLV2

Specifies GSK_PROTOCOL_SSLV2_ON to enable the SSL Version 2
protocol or GSK_PROTOCOL_SSLV2_OFF to disable the SSL Version 2
protocol. The SSL V2 protocol should be disabled whenever possible since
the SSL V3 and TLS protocols provide significant security enhancements.

GSK_PROTOCOL_SSLV2 can be specified for an SSL environment or an
SSL connection.

When operating in FIPS mode, the SSL Version 2 protocol is not used.
Enabling this protocol has no effect.

When TLS extensions are defined for the client and any of the TLS
protocols are enabled for the connection, the SSL Version 2 protocol is not
used. Enabling this protocol has no effect.

GSK_PROTOCOL_SSLV3

Specifies GSK_PROTOCOL_SSLV3_ON to enable the SSL Version 3
protocol or GSK_PROTOCOL_SSLV3_OFF to disable the SSL Version 3
protocol.

GSK_PROTOCOL_SSLV3 can be specified for an SSL environment or an
SSL connection.

When operating in FIPS mode, the SSL Version 3 protocol is not used.
Enabling this protocol has no effect.

GSK_PROTOCOL_TLSV1

Specifies GSK_PROTOCOL_TLSV1_ON to enable the TLS Version 1.0
protocol or GSK_PROTOCOL_TLSV1_OFF to disable the TLS Version 1.0
protocol.

GSK_PROTOCOL_TLSV1 can be specified for an SSL environment or an
SSL connection.

28 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_attribute_set_enum()

GSK_PROTOCOL_TLSV1_1
Specifies GSK_PROTOCOL_TLSV1_1_ON to enable the TLS Version 1.1
protocol or GSK_PROTOCOL_TLSV1_1_OFF to disable the TLS Version 1.1
protocol.

GSK_PROTOCOL_TLSV1_1 can be specified for an SSL environment or an
SSL connection.

GSK_PROTOCOL_TLSV1_2
Specify GSK_PROTOCOL_TLSV1_2_ON to enable the TLS Version 1.2
protocol or GSK_PROTOCOL_TLSV1_2_OFF to disable the TLS Version 1.2
protocol.

GSK_PROTOCOL_TLSV1_2 can be specified for an SSL environment or an
SSL connection.

GSK_RENEGOTIATION
Specify GSK_RENEGOTIATION_NONE to disable SSL V3 and TLS
handshake renegotiation as a server and allow RFC 5746 renegotiation.
This is the default.

Specify GSK_RENEGOTIATION_DISABLED to disable SSL V3 and TLS
handshake renegotiation as a server and also disable RFC 5746
renegotiation.

Specify GSK_RENEGOTIATION_ALL to allow SSL V3 and TLS handshake
renegotiation as a server while also allowing RFC 5746 renegotiation.

Specify GSK_RENEGOTIATION_ABBREVIATED to allow SSL V3 and TLS
abbreviated handshake renegotiation as a server for resuming the current
session only, while disabling SSL V3 and TLS full handshake renegotiation
as a server. With this enumeration value set, the System SSL session ID
cache is not checked when resuming the current session. RFC 5746
renegotiation is allowed.

GSK_RENEGOTIATION can only be specified for an SSL environment.

GSK_RENEGOTIATION_PEER_CERT_CHECK
Specify GSK_RENEGOTIATION_PEER_CERT_CHECK_OFF to not perform
an identity check against the peer's certificate during renegotiation. This
allows the peer certificate to change during renegotiation. This is the
default.

Specify GSK_RENEGOTIATION_PEER_CERT_CHECK_ON to perform a
comparison against the peer's certificate to ensure that certificate does not
change during renegotiation.

GSK_RENEGOTIATION_PEER_CERT_CHECK can only be specified for an
SSL environment.

GSK_SESSION_TYPE
Specifies GSK_CLIENT_SESSION to perform the SSL handshake as a client,
GSK_SERVER_SESSION to perform the SSL handshake as a server, or
GSK_SERVER_SESSION_WITH_CL_AUTH to perform the SSL handshake
as a server requiring client authentication.

GSK_SESSION_TYPE can be specified for an SSL environment or an SSL
connection.

GSK_SYSPLEX_SIDCACHE
Returns GSK_SYSPLEX_SIDCACHE_ON if sysplex session caching is

Chapter 5. Updates to Chapter 7: API reference 29

gsk_attribute_set_enum()

enabled for this application or GSK_SYSPLEX_SIDCACHE_OFF if sysplex
session caching is not enabled. GSK_SYSPLEX_SIDCACHE can be specified
only for an SSL environment.

GSK_T61_AS_LATIN1
Specify GSK_T61_AS_LATIN1_ON to use the ISO8859-1 character set when
processing a TELETEX string. Specify GSK_T61_AS_LATIN1_OFF to use
the T.61 character set. The default is to use the ISO8859-1 character set.

Note: Selecting the incorrect character set can cause strings to be converted
incorrectly. GSK_T61_AS_LATIN1 can be specified only for an SSL
environment. This setting is global and affects all string conversions for all
SSL environments.

GSK_V3_CIPHERS
Specify GSK_V3_CIPHERS_CHAR?2 if the cipher specification is specified
using 1 or more 2-character values in GSK_V3_CIPHER_SPECS. Specify
GSK_V3_CIPHERS_CHAR4 if the cipher specification is specified using 1
or more 4-character values in GSK_V3_CIPHER_SPECS EXPANDED.
GSK_V3_CIPHERS can be specified for an SSL environment or an SSL
connection.

30 DPKCS#12 Certificate Store Support - APAR OA45216 (V1R13)

gsk_attribute_set_tls_extension()

gsk_attribute_set_tls_extension()

Defines a TLS extension to the SSL environment or connection.

Format
#include <gskss1.h>

gsk_attribute_set_tl1s_extension (
gsk_handle ssl_handle,
gsk_t1s_extension * tis _extension)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_open().

tls_extension
Specifies the TLS extension structure containing extension data.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_TLS_EXTENSION]
The TLS extension type identifier is not valid or cannot be used with the
specified handle.

[GSK_ATTRIBUTE_INVALID_TLS_EXT_DATA]
TLS extension data has been incorrectly defined.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The handle is closed.

Usage

The gsk_attribute_set_tls_extension() routine defines a TLS extension for an SSL
environment or an SSL connection. The environment or connection must be in the
open state and not in the initialized state (that is, gsk_environment_init() or
gsk_secure_socket_init() is not called). TLS extensions that are defined for an SSL
environment applies to all connections made as part of that environment unless
explicitly deactivated or replaced using a call to gsk_attribute_set_tls_extension()
for the connection. TLS extensions are applied to TLS V1.0 or higher connections
only.

The application must prime the TLS extension structure with the appropriate TLS
extension data before calling the routine, including the TLS extension type
identifier and the specific data that is required for the TLS extension type. The TLS
extension may be designated as required or optional in the gsk_tls_extension
structure. A required setting enforces support requirements of the specific
extension type on the communicating partner. If the partner indicates that it does
not support the extension, the connection is rejected. An optional setting allows the
connection to continue without support for that particular extension type if the
communicating partner indicates that it does not support the TLS extension type.

Chapter 5. Updates to Chapter 7: API reference 31

gsk_attribute_set_tls_extension()

Note:

1. Setting an extension as required for a server means that all clients connecting to
the server must have the extension enabled. Failure for a client to do so results
in the server rejecting the connection request from the client. It is recommended
that for maximum interoperability, that the required field is not enabled on the
server side.

2. The gsk_tls_extension structure contains a 32-byte field, rsvd, which is reserved
for future use. This field must contain binary zeros; any non-zero data results
in gsk_attribute_set_tls_extension() returning a
GSK_ATTRIBUTE_INVALID_TLS_EXT_DATA error.

3. Definition of TLS extensions for the client when any of the TLS protocols are
enabled prevents the SSL V2 protocol from being used.

The values set by using this service are treated as independent values. They are
not validated with other values set using gsk_attribute_set_buffer(),
gsk_attribute_set_enum(), or gsk_attribute_set_tls_extensions() APIs until used
together to perform a SSL/TLS handshake by calling gsk_secure_socket_init().

These TLS extension type identifiers are supported:

GSK_TLS_EXTID_SNI_SERVER_LABELS
Specifies the pairings of server name to certificate key label to be used
when the TLS server receives a 'Server Name Indication' type TLS
extension from the TLS client. The server name/key label pairs are used
with the server name details received from the client to determine which
certificate from the key database, PKCS #12 file, key ring or token is sent to
the client as the servers certificate.

Set the setSni setting of the gsk_sni_server_labels extension data to TRUE to
register the extension data with the SSL environment or connection. A
setSni setting of FALSE deactivates a previously registered
GSK_TLS_EXTID_SNI_SERVER_LABELS type TLS extension setting.

If the TLS server does not recognize any server names in the clients server
name list, the server sends an 'unrecognized_name' alert to the client,
which, by default, is a warning. Set the unrecognized_name_fatal flag in the
gsk_sni_server_labels extension data to TRUE to treat the
‘unrecognized_name' alert as fatal and close the connection.

GSK_TLS_EXTID_SNI_SERVER_LABELS can be defined on both the server
and client sides. Its settings, however, are effective when running as a
server; it is ignored for clients.

Note:

1. It is recommended that the gsk_sni_server_labels structure to be included
in the gsk_tls_extension data be initialized with binary zeros before
setting the required server label data. This ensures future application
compatibility when additional bits within the gsk_sni_server_labels
structure are used.

2. System SSL only supports server names that contain US-ASCII
characters.

GSK_TLS_EXTID_SNI_CLIENT_SNAMES
Specifies the server name (or list of server names) that the client sends to
the server in a 'Server Name Indication' type TLS extension to indicate

32 DPKCS#12 Certificate Store Support - APAR OA45216 (V1R13)

gsk_attribute_set_tls_extension()

with which server the client wants to communicate. The list of server
names is defined using a pointer to an array of pointers to strings
containing the server names.

Set the setSni setting of the gsk_sni_client_names extension data to TRUE to
register the extension data with the SSL environment or connection. A
setSni setting of FALSE deactivates a previously registered
GSK_TLS_EXTID_SNI_CLIENT_SNAMES type TLS extension setting.

If the TLS server does not recognize any server names in the clients server
name list, the server sends an 'unrecognized_name' alert to the client,
which, by default, is a warning. Set the unrecognized_name_fatal flag in the
gsk_sni_client_names extension data to TRUE to treat the
‘unrecognized_name' alert as fatal and close the connection.

GSK_TLS_EXTID_SNI_CLIENT_SNAMES can be defined on both the
server and client sides. Its settings, however, are effective when running as
a client; it is ignored for servers.

Note:

1. It is recommended that the gsk_sni_client_snames structure to be
included in the gsk_tls_extension data be initialized with binary zeros
before setting the required server label data. This will ensure future
application compatibility when additional bits within the
gsk_sni_client_snames structure are used.

2. System SSL only supports server names that contain US-ASCII
characters.

GSK_TLS_EXTID_SERVER_MFL
Specifies the 'Maximum Fragment Length' type TLS extension requirements
for the TLS server. Specify to the TLS server whether to support the
‘Maximum Fragment Length' TLS extension using the GSK_TLS_MFL_ON
setting. The GSK_TLS_MFL_OFF setting deactivates a previously registered
GSK_TLS_EXTID_SERVER_MEFL type TLS extension setting.

GSK_TLS_EXTID_CLIENT_MFL
Specifies the Maximum Fragment Length' type TLS extension requirements
for the TLS client. Specify the size of the maximum fragment length to be
used using settings GSK_TLS_MFL_512 2’ bytes), GSK_TLS_MFL_1024
(2%, GSK_TLS_MFL_2048 (2') or GSK_TLS_MFL,_4096 (2'?). The
GSK_TLS_MFL_OFF setting deactivates a previously registered
GSK_TLS_EXTID_CLIENT_MFL type TLS extension setting.

GSK_TLS_EXTID_TRUNCATED_HMAC
Specifies whether the TLS server or client supports the "Truncated HMAC'
type TLS extension. Set truncateHmac to TRUE to enable the extension. A
truncateHmac setting of FALSE deactivates a previously registered
GSK_TLS_EXTID_TRUNCATED_HMAC type TLS extension setting.

Chapter 5. Updates to Chapter 7: API reference 33

gsk_environment_init()

gsk_environment_.init()

Initializes an SSL environment.

Format
#include <gskssl.h>

gsk_status gsk_environment_init (
gsk_handle env_handle)

Parameters

env_handle
Specifies the SSL environment handle returned by the
gsk_environment_open() routine.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_CERTIFICATE_NOT_AVAILABLE]
The key database, PKCS #12 file, key ring or token does not contain any
certificates.

[GSK_ERR_BAD_KEYFILE_PASSWORD]
The key database or PKCS #12 file password is not correct.

[GSK_ERR_LDAP]
Unable to initialize the LDAP client.

[GSK_ERR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[GSK_ERR_PERMISSION_DENIED]
Not authorized to access key database, PKCS #12 file, SAF key ring or
z/0S PKCS #11 token.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The environment handle is not valid.

[GSK_INVALID_STATE]
The environment is not in the open state.

[GSK_KEYFILE_INVALID_FORMAT]
The database is not a key database.

[GSK_KEYFILE _IO_ERR]
[An input/output error occurred while reading the key database, PKCS #12
[file, key ring or token.

[GSK_KEYFILE_PASSWORD_EXPIRED]
The key database password is expired.

[GSK_KEYRING_OPEN_ERROR]
Unable to open the key database, PKCS #12 file, key ring or token.

[GSK_NO_KEYFILE_PASSWORD]
The key database password is not available.

34 DPKCS#12 Certificate Store Support - APAR OA45216 (V1R13)

gsk_environment_init()

Usage

The gsk_environment_init() routine initializes an SSL environment created by the
gsk_environment_open() routine. After the SSL environment has been initialized, it
can be used to create one or more SSL connections by calling the
gsk_secure_socket_open() routine. The gsk_environment_close() routine should be
called to close the environment when it is no longer needed. The
gsk_environment_close() routine should also be called if an error is returned by
the gsk_environment_init() routine.

Chapter 5. Updates to Chapter 7: API reference 35

gsk_environment_open()

gsk_environment_open()

Creates an SSL environment.

Format
#include <gskssl.h>

gsk_status gsk_environment_open (
gsk_handle * env_handle)

Parameters

env_handle
Returns the handle for the environment. The application should call the
gsk_environment_close() routine to release the environment when it is no
longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ENUMERATION]
The value of an environment variable is not valid.

[GSK_ATTRIBUTE_INVALID_LENGTH]
The length of an environment variable value is not valid.

[GSK_ATTRIBUTE_INVALID _NUMERIC_VALUE]
The value of an environment variable is not valid.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

Usage

The gsk_environment_open() routine creates an SSL environment. The
environment will be initialized with default values and then any SSL environment
variables will be processed. These values can be changed by the application using
the appropriate gsk_attribute_set_*() routines. The gsk_environment_init() routine
should then be called to initialize the SSL environment. This environment can then
be used to establish one or more SSL connections.

When not executing in FIPS mode, the following default values are set:

* SSL V2, SSL V3, and TLS V1.0 are enabled (TLS V1.1 and TLS V1.2 are disabled
by default)

* The connection type is set to CLIENT

* The SSL V2 connection timeout is set to 100 seconds

* The SSL V3 connection timeout is set to 86400 seconds
* The SSL V2 cache size is set to 256

e The SSL V3 cache size is set to 512

* The sysplex session cache is disabled

¢ The default key will be used

* No revoked certificate checking performed

* The default callback routines will be used

36 DPKCS#12 Certificate Store Support - APAR OA45216 (V1R13)

gsk_environment_open()

¢ The SSL V2 cipher specification is set to "713642" if United States only
encryption is enabled and "642" otherwise

* 2-character cipher definitions in GSK_V3_CIPHER_SPECS will be used for SSL
V3 cipher values

* The SSL V3 cipher specification is set to
"050435363738392F303132330A1613100D0915120F0C0306020100" if United States
only encryption is enabled and "0915120F0C0306020100" otherwise

* The supported elliptic curve list is set to "00210023002400250019"

* The signature algorithm pair list is set to
"060106030501050304010403030103030201020302020101"

e No TLS extensions are initialized

When executing in FIPS mode, the following default values are set:

* TLS V1.0 is enabled (TLS V1.1 and TLS V1.2 are disabled by default)

¢ The connection type is set to CLIENT

* The connection timeout is set to 86400 seconds

* The cache size is set to 512

* The sysplex session cache is disabled

* The default key will be used

* No revoked certificate checking performed

* The default callback routines will be used

* 2-character cipher definitions in GSK_V3_CIPHER_SPECS will be used for SSL
V3 cipher values

* The cipher specification is set to "35363738392F303132330A1613100D"

¢ The supported elliptic curve list is set to "00210023002400250019"

* The signature algorithm pair list is set to
"06010603050105030401040303010303020102030202"

Applications wanting to use cipher suites that use elliptic curve certificates must
set an appropriate cipher specification in GSK_V3_CIPHER_SPECS_EXPANDED. If
an application requires an SSL V3, TLS V1.0, or higher session to use the
4-character cipher suites specified in GSK_V3_CIPHER_SPECS_EXPANDED then it
must explicitly call gsk_attribute_set_enum() and set the enumeration identifier
GSK_V3_CIPHERS to have a value of GSK_V3_CIPHERS CHARA4.

If an application has indicated it is using the 4-character cipher specifications by
setting GSK_V3_CIPHERS to GSK_V3_CIPHERS_CHAR4, but does not set a cipher
specification in GSK_V3_CIPHER_SPECS_EXPANDED the default cipher
specification will be set as follows:

* executing in non-FIPS mode with United States only encryption enabled:

"0005000400350036003700380039002F0030003100320033000A0016001300100000000900150012
000FO00CO0030006000200010000"

* executing in non-FIPS mode with United States only encryption disabled:
"000900150012000F000C00030006000200010000"

* executing in FIPS mode:
"00350036003700380039002F0030003100320033000A001600130010000D"

If executing in FIPS mode, the following cipher specifications are supported:
* When using 2-character cipher suites:

Chapter 5. Updates to Chapter 7: API reference 37

gsk_environment_open()

0A 0D 10 13 16 2F 30 31 32 33 35 36 37 38 39 3C 3D 3E 3F 40 67 68 69
6A 6B 9C 9D 9E 9F A0 Al A2 A3 A4 A5

* When using 4-character cipher suites:

000A 000D 0010 0013 0016 O02F 0030 0031 0032 0033 0035 0036 0037 0038
0039 003C 003D 003E 003F 0040 0067 0068 0069 006A 006B 009C 009D 009E
009F 00A0 O0OA1 00A2 00A3 00A4 00A5 C003 C004 CO05 CO08 C009 COOA
C00D COOE COO0F C012 C013 C014 C023 C024 C025 C026 C027 C028 C029
C02A C02B C02C C02D CO02E CO2F C030 C031 C032

If using the TLS V1.1 or higher protocols, export ciphers are not supported. The
40-bit ciphers (cipher specifications "03" and "06" or "0003" and "0006") will be
ignored if specified.

If using the TLS V1.2 or higher protocols the 56-bit DES cipher suites "09", "0C",
"OF", "12" and "15" (or "0009", "000C", "000F", "0012" and "0015") will be ignored if
specified.

These environment variables are processed:

GSK_CLIENT_ECURVE_LIST

Specifies the list of elliptic curves supported by the client as a string
consisting of 1 or more 4-character decimal values in order of preference
for use. The list is used by the client to guide the server as to which elliptic
curves are preferred when using ECC-based cipher suites for the TLS V1.0,
TLS V1.1, and TLS V1.2 protocols.

Only NIST recommended curves are able to be specified. To use Brainpool
standard curves for an SSL environment or connection, set
GSK_CLIENT_ECURVE_LIST to " or use gsk_attribute_set_buffer() to
reinitialize the GSK_CLIENT_ECURVE_LIST buffer to NULL.

GSK_CRL_SECURITY_LEVEL

Specifies the level of security SSL applications will use when contacting
LDAP servers to check CRLs for revoked certificates during certificate
validation.

GSK_EXTENDED_RENEGOTIATION_INDICATOR

Specifies the level of enforcement of renegotiation indication as specified
by RFC 5746 during the initial handshake.

Specify "OPTIONAL" to not require the renegotiation indicator during
initial handshake. This is the default.

Specify "CLIENT" to allow the client initial handshake to proceed only if
the server indicates support for RFC 5746 Renegotiation.

Specify "SERVER" to allow the server initial handshake to proceed only if
the client indicates support for RFC 5746 Renegotiation.

Specify "BOTH" to allow the server and client initial handshakes to
proceed only if partner indicates support for RFC 5746 Renegotiation.

GSK_KEY_LABEL

Specifies the label of the key used to authenticate the application. The
default key will be used if a key label is not specified.

GSK_KEYRING_FILE

Specifies the name of the key database file, PKCS #12 file, SAF key ring or
z/0S PKCS #11 token. A key database or PKCS #12 file is used if a
database password is defined using either an environment variable or the

38 DPKCS#12 Certificate Store Support - APAR OA45216 (V1R13)

gsk_environment_open()

gsk_attribute_set_buffer() routine. When a stash file is defined, a key
database file is used. Otherwise a SAF key ring or z/OS PKCS #11 token is
used. GSK_KEYRING_FILE may be specified only for an SSL environment.
See [Chapter 6, “Updates to Chapter 10: Certificate/Key management,” on|
lpage 63 for a description of the restrictions when using a PKCS #12 file as
the key database file.

The SAF key ring name is specified as "userid/keyring". The current user
ID is used if the user ID is omitted. The user must have READ access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by the user. The user must have UPDATE access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by another user.

A z/0OS PKCS #11 token name is specified as *TOKEN*/token-name.
TOKEN indicates a PKCS #11 token is being specified.

Note: Certificate private keys are not available when using a SAF key ring
owned by another user, except for SITE certificates where CONTROL
authority is given to IRR.DIGTCERT.GENCERT in the FACILITY class or
for user certificates where READ or UPDATE authority is given to
ringOwner.ringName.LST resource in the RDATALIB class.

GSK_KEYRING_PW
Specifies the password for the key database or PKCS #12 file.

GSK_KEYRING_STASH
Specifies the name of the key database password stash file. The stash file
name always has an extension of ".sth" and the supplied name will be
changed if it does not have the correct extension. The GSK_KEYRING_PW
environment variable will be used instead of the GSK_KEYRING_STASH
environment variable if it is also specified.

GSK_LDAP_SERVER
Specifies one or more blank-separated LDAP server host names. Each host
name can contain an optional port number separated from the host name
by a colon. The LDAP server is used to obtain CA certificates when
validating a certificate and the local database does not contain the required
certificate. The local database must contain the required certificates if no
LDAP server is specified. Even when an LDAP server is used, root CA
certificates must be found in the local database since the LDAP server is
not a trusted data source. The LDAP server is also used to obtain
certificate revocation lists. When multiple LDAP server names are
specified, a bind is attempted for each name in the list until a bind is
successful. Once a bind is successful, that LDAP server is used.

GSK_LDAP_PASSWORD
Specifies the password to use when connecting to the LDAP server.

GSK_LDAP_PORT
Specifies the LDAP server port. Port 389 will be used if no LDAP server
port is specified.

GSK_LDAP_USER
Specifies the distinguished name to use when connecting to the LDAP
server.

GSK_PROTOCOL_SSLV2
Specifies whether the SSL V2 protocol is supported. A value of "0", "OFF",
or "DISABLED" disables the SSL V2 protocol while a value of "1", "ON", or

Chapter 5. Updates to Chapter 7: API reference 39

gsk_environment_open()

"ENABLED" enables the SSL V2 protocol. The SSL V2 protocol should be
disabled whenever possible since the SSL V3 protocol provides significant
security enhancements.

When operating in FIPS mode, SSL Version 2 protocol will not be used.
Enabling this protocol will have no effect.

When TLS extensions are defined for the client and any of the TLS
protocols are also enabled, the SSL Version 2 protocol will not be used.
Enabling this protocol will have no effect.

GSK_PROTOCOL_SSLV3

Specifies whether the SSL V3 protocol is supported. A value of "0", "OFF",
or "DISABLED" disables the SSL V3 protocol while a value of "1", "ON", or
"ENABLED" enables the SSL V3 protocol.

When operating in FIPS mode, SSL Version 3 protocol will not be used.
Enabling this protocol will have no effect.

GSK_PROTOCOL_TLSV1

Specifies whether the TLS V1.0 protocol is supported. A value of "0",
"OFF", or "DISABLED" disables the TLS V1.0 protocol while value of "1",
"ON", or "ENABLED" enables the TLS V1.0 protocol. The TLS V1.0 protocol
uses the same session cache and cipher specifications as the SSL V3
protocol.

GSK_PROTOCOL_TLSV1_1

Specifies whether the TLS V1.1 protocol is supported. A value of "0",
"OFF", or "DISABLED" disables the TLS V1.1 protocol while value of "1",
"ON", or "ENABLED" enables the TLS V1.1 protocol. The TLS V1.1 protocol
uses the same session cache and cipher specifications as the SSL V3
protocol. The TLS V1.1 protocol will not use export (40-bit) ciphers. They
will be ignored if TLS V1.1 is negotiated as the communications protocol.

GSK_PROTOCOL_TLSV1_2

Specifies whether the TLS V1.2 protocol is supported. A value of "0",
"OFF", or "DISABLED" disables the TLS V1.2 protocol while value of "1",
"ON", or "ENABLED" enables the TLS V1.2 protocol. The TLS V1.2 protocol
uses the same session cache as the SSL V3 protocol. The TLS V1.2 protocol
will not use export cipher suites. 40-bit ciphers will be ignored if TLS V1.2
is negotiated as the communications protocol.

GSK_RENEGOTIATION

Specifies the type of session renegotiation allowed for an SSL environment.

Specify "NONE" to disable SSL V3 and TLS handshake renegotiation as a
server and allow RFC 5746 renegotiation. This is the default.

Specify "DISABLED" to disable SSL V3 and TLS handshake renegotiation
as a server and also disable RFC 5746 renegotiation.

Specify "ALL" to allow SSL V3 and TLS handshake renegotiation as a
server while also allowing RFC 5746 renegotiation.

Specify "ABBREVIATED" to allow SSL V3 and TLS abbreviated handshake
renegotiation as a server for resuming the current session only, while
disabling SSL V3 and TLS full handshake renegotiation as a server. With
this value specified, the System SSL session ID cache is not checked when
resuming the current session. RFC 5746 renegotiation is allowed.

GSK_RENEGOTIATION_PEER_CERT_CHECK

Specifies if the peer certificate is allowed to change during renegotiation.

40 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_environment_open()

Specify "OFF" or "0" to not perform an identity check against the peer's
certificate during renegotiation. This allows the peer certificate to change
during renegotiation. This is the default.

Specify "ON" or "1" to perform a comparison against the peer's certificate
to ensure certificate does not change during renegotiation.

GSK_SYSPLEX_SIDCACHE
Specifies whether sysplex session caching is supported for this application.
A value of 0, OFF or DISABLED will disable sysplex session caching while
a value of 1, ON or ENABLED will enable sysplex session caching.

GSK_TLS_SIG_ALG_PAIRS
Specifies the list of hash and signature algorithm pair specifications
supported by the client or server as a string consisting of 1 or more
4-character values in order of preference for use. The signature algorithm
pair specifications are sent by either the client or server to the session
partner to indicate which signature/hash algorithm combinations are
supported for digital signatures. Signature algorithm pair specification only
has relevance for sessions using TLS V1.2 or higher protocols.

GSK_V2_CIPHER_SPECS
Specifies the SSL V2 cipher specifications in order of preference as a
null-terminated string consisting of 1 or more 1-character values. Valid
cipher specifications that are not supported because of the installed
cryptographic level will be skipped when the connection is initialized.

GSK_V2_SESSION_TIMEOUT
Specifies the session timeout value in seconds for the SSL V2 protocol. The
valid timeout values are 0 through 100 and defaults to 100.

GSK_V2_SIDCACHE_SIZE
Specifies the number of session identifiers that can be contained in the SSL
V2 cache. The valid cache sizes are 0 through 32000 and defaults to 256.
The SSL V2 cache will be disabled if 0 is specified.

GSK_V3_CIPHER_SPECS
Specifies the SSL V3 cipher specifications in order of preference as a
null-terminated string consisting of 1 or more 2-character values. The SSL
V3 cipher specifications are used for the SSL V3, TLS V1.0, and higher
protocols. Valid cipher specifications that are not supported because of the
installed cryptographic level will be skipped when the connection is
initialized. For protocols TLS V1.1 and above, 40-bit ciphers will be ignored
if these protocols are negotiated as the security protocol. For protocols TLS
V1.2 and above, the 56-bit DES cipher suites will be ignored if these
protocols are negotiated as the communications protocol.

GSK_V3_CIPHER_SPECS_EXPANDED
Specifies the SSL V3 cipher specifications in order of preference as a
null-terminated string consisting of 1 or more 4-character values. The SSL
V3 cipher specifications are used for the SSL V3.0, TLS V1.0, and higher
protocols. Valid cipher specifications that are not supported because of the
installed cryptographic level will be skipped when the connection is
initialized. For protocols TLS V1.1 and above, 40-bit ciphers will be ignored
if these protocols are negotiated as the security protocol. For protocols TLS
V1.2 and above, the 56-bit DES cipher suites will be ignored if these
protocols are negotiated as the communications protocol.

Chapter 5. Updates to Chapter 7: API reference 41

gsk_environment_open()

GSK_V3_SESSION_TIMEOUT
Specifies the session timeout value in seconds for the SSL V3, TLS V1.0 and
higher protocols. The valid timeout values are 0 through 86400 and
defaults to 86400.

GSK_V3_SIDCACHE_SIZE
Specifies the number of session identifiers that can be contained in the SSL
V3 cache. The valid cache sizes are 0 through 64000 and defaults to 512.
The SSL V3 cache will be disabled if 0 is specified. The SSL V3 cache is
used for the SSL V3, TLS V1.0 and higher protocols.

42 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_get_update()

gsk_get_update()

Checks for a key database, PKCS #12 file, SAF key ring or z/OS PKCS #11 token
update.

Format
#include <gskss1.h>
gsk_status gsk _get_update (

gsk_handle env_handle,
long * update flag)

Parameters

env_handle
Specifies the SSL environment handle returned by the
gsk_environment_open() routine.

update_flag
Returns 1 if the key database, PKCS #12 file, SAF key ring or z/OS PKCS
#11 token has been updated or 0 if it has not been updated.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_INVALID_HANDLE]
The environment handle is not valid.

[GSK_INVALID_STATE]
The environment is not in the initialized state.

[GSK_KEYRING_OPEN_ERROR]
Unable to open the key database, PKCS #12 file, key ring or token.

Usage

The gsk_get_update() routine tests if the key database, PKCS #12 file, SAF key ring
or z/OS PKCS #11 token associated with the SSL environment has been updated
since the last time that gsk_get_update() was called or since the environment was
initialized if gsk_get_update() has not been called yet. If an update has occurred,
the application can close the current environment and then create a new
environment to pick up the updates.

Chapter 5. Updates to Chapter 7: API reference 43

gsk_secure_socket_init()

gsk_secure_socket_init()

Initializes a secure socket connection.

Format
#include <gskssl.h>

gsk_status gsk_secure_socket_init(
gsk_handle soc_handle)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open()
routine.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_CERTIFICATE_NOT_AVAILABLE]
No certificates available.

[GSK_ERR_BAD_CERT]
Certificate is not valid.

[GSK_ERR_BAD_DATE]
Certificate is not valid yet or is expired.

[GSK_ERR_BAD_EC_PARAMS]
EC parameters not supplied.

[GSK_ERR_BAD_KEYFILE_LABEL]
The specified key is not found in the key database or the key is not
trusted.

[GSK_ERR_BAD_MAC]
Message verification failed.

[GSK_ERR_BAD_MESSAGE]
Incorrectly-formatted message received from peer application.

[GSK_ERR_BAD_MSG_LEN]
Incorrectly-formatted TLS extension data contained within message
received from peer application.

[GSK_ERR_BAD_PEER]
Peer application has violated the SSL protocol.

[GSK_ERR_BAD_SIG_ALG_PAIR]
Signature algorithm pairs list is not valid.

[GSK_ERR_BAD_V2_CIPHER]
SSL V2 cipher is not valid.

[GSK_ERR_BAD_V3_CIPHER]
SSL V3 cipher is not valid.

[GSK_ERR_BAD_V3_EXPANDED_CIPHER]
SSL V3 expanded cipher is not valid.

44 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_secure_socket_init()

[GSK_ERR_CERT_VALIDATION]
Certificate validation error.

[GSK_ERR_CERTIFICATE_REVOKED]
Peer certificate is revoked.

[GSK_ERR_CRYPTO]
Cryptographic error detected.

[GSK_ERR_EC_PARAMETERS_NOT_SUPPLIED]
EC parameters not supplied.

[GSK_ERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[GSK_ERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[GSK_ERR_INCOMPATIBLE_KEY]
Certificate key is not compatible with cipher suite.

[GSK_ERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[GSK_ERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[GSK_ERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[GSK_ERR_INVALID_FRAGMENT_LENGTH]
An unsupported fragment length was received.

[GSK_ERR_IO]
I/0O error communicating with peer application.

[GSK_ERR_LDAP]
An LDAP error is detected.

[GSK_ERR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[GSK_ERR_MISSING_KEY_ALGORITHM]
Certificate key algorithm is not in signature algorithm pairs list.

[GSK_ERR_MISSING_SIGNATURE_ALGORITHM]
Signature algorithm is not in signature algorithm pairs list.

[GSK_ERR_MULTIPLE_DEFAULT]
Multiple keys are marked as the default.

[GSK_ERR_MULTIPLE_LABEL]
Multiple certificates exist for label.

[GSK_ERR_NO_CERTIFICATE]
No certificate received from partner.

[GSK_ERR_NO_CIPHERS]
No cipher specifications.

[GSK_ERR_NO_PRIVATE_KEY]
Certificate does not contain a private key or the private key is unusable.

[GSK_ERR_SELF_SIGNED]
A self-signed certificate cannot be validated.

Chapter 5. Updates to Chapter 7: API reference 45

gsk_secure_socket_init()

[GSK_ERR_SIGNATURE_NOT_SUPPLIED]
Signature not supplied.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_ERR_RNG]
Error encountered when generating random bytes.

[GSK_ERR_UNKNOWN_CA]
A certification authority certificate is missing.

[GSK_ERR_UNRECOGNIZED_NAME]
The requested server name is not recognized.

[GSK_ERR_UNSUPPORTED]
SSL protocol or certificate type is not supported.

[GSK_ERR_UNSUPPORTED_CERTIFICATE_TYPE]
The certificate type is not supported by System SSL.

[GSK_ERR_UNSUPPORTED_REQUIRED_EXTENSION]
A required TLS extension has been rejected.

[GSK_ERR_UNSUPPORTED_EXTENSION]
An unrequested TLS Extension has been encountered.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not in the open state or a previous initialization request
has failed.

[GSK_RSA_TEMP_KEY_PAIR]
Unable to generate temporary RSA public/private key pair.

[GSK_WOULD_BLOCK_READ]
An attempt to read a handshake message failed with EWOULDBLOCK.

[GSK_WOULD_BLOCK_WRITE]
An attempt to write a handshake message failed with EWOULDBLOCK.

Usage

The gsk_secure_socket_init() routine initializes a secure socket connection created
by the gsk_secure_socket_open() routine. After the connection has been initialized,
it can be used for secure data transmission using the gsk_secure_socket_read() and
gsk_secure_socket_write() routines. The gsk_secure_socket_close() routine should
be called to close the connection when it is no longer needed. The
gsk_secure_socket_close() routine should also be called if an error is returned by
the gsk_secure_socket_init() routine.

Before calling the gsk_secure_socket_init() routine, the application must create a
connected socket and store the socket descriptor in the SSL connection by calling
the gsk_attribute_set_numeric_value() routine. For a client, this means calling the
socket() and connect() routines. For a server, this means calling the socket(),
listen(), and accept() routines. However, SSL does not require the use of TCP/IP
for the communications layer. The socket descriptor can be any integer value

46 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_secure_socket_init()

which is meaningful to the application. The application must provide its own
socket routines if it is not using TCP/IP by calling the gsk_attribute_set_callback()
routine.

The gsk_secure_socket_init() routine can return GSK_WOULD_BLOCK_READ or
GSK_WOULD_BLOCK_WRITE if the socket is in non-blocking mode. The
connection is not initialized in this case and the application must call
gsk_secure_socket_init() again when the socket is ready to accept a read request
(GSK_WOULD_BLOCK_READ) or a write request
(GSK_WOULD_BLOCK_WRITE). The application must provide its own callback
routine for io_setsocketoptions() to have the SSL handshake processed in
non-blocking mode (the default io_setsocketoptions() routine places the socket into
blocking mode during the handshake processing).

Be sure a gsk_secure_socket_shutdown() call is issued before a
gsk_secure_socket_close() call.

Protocol Selection

An SSL handshake is performed as part of the processing of the
gsk_secure_socket_init() routine. This establishes the server identity and optionally
the client identity. It also negotiates the cryptographic parameters to be used for
the connection. The client and server attempts to use the highest available protocol
version as determined by the intersection of the enabled protocol versions for the
client and the server and the compatible ciphers. Thus:

e TLS V1.2 is used if it is enabled on both the client and the server

e If TLS V1.2 cannot be used and TLS V1.1 is enabled, negotiations drop back to
TLS V1.1

* If TLS V1.1 cannot be used and TLS V1.0 is enabled, negotiations drop back to
TLS V1.0

e If TLS V1.0 cannot be used and SSL V3 is enabled, negotiations drop back to SSL
V3

e If SSL V3 cannot be used, TLS V1.2 was not enabled on the client or server, and
SSL V2 is enabled, negotiations drop back to SSL V2

Note:

1. SSL V2 is not as secure as SSL V3 or TLS and should be disabled whenever
possible to avoid attacks that force the client and server to drop back to SSL V2
even though they are capable of using SSL V3, TLS V1.0 or TLS V1.1.

2. When TLS extensions are defined for a client and any of the TLS protocols are
enabled for the connection, SSL V2 is not negotiated even if it is enabled.

3. If TLS V1.2 is enabled on the client, establishment of SSL sessions with SSL V2
servers is not supported.

Cipher selection

The client sends a list of ciphers it supports during the SSL handshake. The server
application uses this list, and the defined ciphers that are supported by the server,
to determine the cipher to be used during the SSL handshake. If the client is
operating in FIPS mode, then the list provided only contains FIPS ciphers. A server
executing in FIPS mode will only use FIPS ciphers. The cipher selection is done by
looking through the servers cipher list for a match in the clients list. The first
matching cipher is used.

Chapter 5. Updates to Chapter 7: API reference 47

gsk_secure_socket_init()

When building the server's list of cipher suites for comparison with the list sent by

the client, the server might omit some ciphers from the list as follows:

* When executing in an export level cryptographic environment, any ciphers that
are not permitted for use in an export level environment.

* When executing in FIPS mode, any cipher suites that are not valid for use in
FIPS mode.

* Any cipher suites that specify a key algorithm that is not supported for use with
the server certificate's key. For example, if the cipher requires an RSA key
algorithm but the server certificate uses a DSA key algorithm.

* When using protocol SSL V3.0 or lower, any cipher suites that specify Elliptic
Curve Cryptography.

* When using protocol TLS V1.1 or lower, any cipher suites that specify:

— A sign key algorithm that is not supported for use with the server certificate's
key. For example, if the cipher requires a Diffie-Hellman certificate signed
with an RSA signature, but the server certificate is a Diffie-Hellman certificate
that is signed with a DSA signature.

— SHA-2 message authentication.

— AES-GCM encryption.

* When using protocol TLS V1.1 and higher, any cipher suites that specify 40-bit
export encryption.

* When using protocol TLS V1.2 and higher, any cipher suites that specify:

— 56-bit DES encryption.

— A key algorithm that is not specified in the signature algorithm pairs list that
is supplied by the client.

Note:

1. For protocols TLS V1.1 and above, export cipher suites cannot be used. 40-bit
ciphers is ignored if TLS V1.1 or above is negotiated as the security protocol. If
TLS V1.1 or above is the intended protocol and only 40-bit ciphers are
available, the connection fails with GSK_ERR_NO_CIPHERS.

2. To use a cipher specification that requires a fixed ECDH key exchange (C001,
€002, €003, C004, C005, C00B, CO0C, CO0D, COOE, and CO0F), the ECC private
key cannot be a secure key that is stored in ICSF PKDS.

Server certificate

The server certificate can use either RSA, DSA, Diffie-Hellman, or ECDSA as the
public/private key algorithm.

In FIPS mode, the RSA or DSA key size must be at least 1024 bits, the
Diffie-Hellman key size must be at least 2048 bits, and the ECC key size must be at
least 192 bits and use a NIST-approved named curve.

An RSA certificate can be used with an RSA, ephemeral Diffie-Hellman, or
ephemeral ECDH key exchange. A DSA certificate can be used with an ephemeral
Diffie-Hellman key exchange. A Diffie-Hellman certificate can be used in a fixed
Diffie-Hellman key exchange. An ECDSA certificate can be used with a fixed
ECDH or ephemeral ECDH key exchange.

If the servers certificate contains a key usage extension during the SSL handshake,
it must allow key usage as follows:

48 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_secure_socket_init()

* RSA certificates using export restricted ciphers (40-bit RC4 encryption and 40-bit
RC2 encryption) with a public key size greater than 512 bits must allow digital
signature. If operating in FIPS mode, export restricted ciphers cannot be selected.

* Diffie-Hellman certificates that are used in fixed Diffie-Hellman key exchange
must allow key agreement.

* Other RSA certificates must allow key encipherment.

e ECDSA certificates that are used in fixed ECDH key exchange must allow key
agreement.

* ECDSA certificates that are used in ephemeral ECDH key exchange must allow
digital signature.

* RSA certificates that are used in ephemeral ECDH key exchange must allow
digital signature.

* DSA certificates using ephemeral Diffie-Hellman key exchange must allow
digital signature.

System SSL does not accept VeriSign Global Server ID certificates. When specified,
System SSL uses these certificates as any other certificate when determining the
encryption cipher to be used for the SSL session.

When using TLS V1.2 as the SSL session protocol, the client may pass to the server
a list of signature algorithm pairs as part of the TLS handshake. The key algorithm
and signature algorithm of the server certificate must be present in this list of
signature algorithm pairs. In addition, any peer certificates in the server certificate
chain must also be signed using a signature algorithm present in the list.

The signature algorithm pair list under the TLS V1.2 protocol may allow some TLS
ciphers to operate using certificates that were previously incompatible with the
cipher specification. In previous versions of TLS, these ciphers (primarily ciphers
that use a fixed Diffie-Hellman or fixed ECDH key exchange) required the server
certificate to be signed with a specific signature key algorithm. Under TLS V1.2,
the signature algorithm pairs list allows the cipher to be used if the signature
algorithm is specified in the list.

Client certificate

The SSL server always provides its certificate to the SSL client as part of the
handshake. The client always performs server authentication using the certificate
that is provided by the server. Depending upon the server handshake type, the
server may ask the client to provide its certificate. The key label that is stored in
the connection is used to retrieve the certificate from the key database, PKCS #12
file, key ring, or token. The default key is used if no label is set. The key record
must contain both an X.509 certificate and a private key.

The client certificate can use either RSA, Digital Signature Standard algorithm

(DSA), ECDSA, or Diffie-Hellman as the public/private key algorithm. The type of
client certificate that can be used depends on the key exchange method being used
for the session cipher that is selected by the server, as detailed in the following list.

* RSA key exchange - RSA or DSA

* fixed Diffie-Hellman key exchange - RSA, DSA, or Diffie-Hellman
¢ ephemeral Diffie-Hellman key exchange - RSA or DSA

¢ fixed ECDH key exchange - RSA, DSA, or ECDSA

* ephemeral ECDH key exchange - RSA, DSA, or ECDSA

Chapter 5. Updates to Chapter 7: API reference 49

gsk_secure_socket_init()

Client certificates that are used in a fixed Diffie-Hellman or fixed ECDH key
exchange where the client certificate is used to send the client's public key to the
server must support key agreement. This means the certificate key usage extension
(if any) must allow key agreement.

In all other cases the client certificate must support digital signatures. This means
the certificate key usage extension (if any) must allow digital signature.

When using TLS V1.2 as the SSL session protocol, the server may pass to the client
a list of signature algorithm pairs as part of the TLS handshake. The key algorithm
and signature algorithm of the client certificate must be present in this list of
signature algorithm pairs. In addition, any peer certificates in the client certificate
chain must also be signed using a signature algorithm present in the list.

50 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_initialize()

gsk_initialize()

Initializes the System SSL runtime environment.

Format
#include <gskss1.h>

gsk_status gsk_initialize(
gsk_init_data = init_data)

Parameters

init_data
Specifies the data used to initialize the SSL runtime environment.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
is one of the return codes that are listed in the gskssl.h include file. These are
some possible errors:

[GSK_ERR_INIT_PARM_NOT_VALID]
An initialization parameter is not valid.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_CRYPTO]
Cryptographic error detected.

[GSK_ERROR_LDAP]
Unable to initialize the LDAP client.

[GSK_ERROR_MULTIPLE_LABEL]
Multiple certificates exist for label.

[GSK_ERROR_MULTIPLE_DEFAULT]
Multiple keys are marked as the default.

[GSK_ERROR_PERMISSION_DENIED]
Not authorized to access the key database, PKCS #12 file, key ring or
token.

[GSK_INIT_SEC_TYPE_NOT_VALID]
The security type is not valid.

[GSK_INIT_V2 TIMEOUT _NOT_VALID]
The SSL V2 timeout is not valid.

[GSK_INIT_V3_TIMEOUT _NOT_VALID]
The SSL V3 timeout is not valid.

[GSK_KEYFILE_BAD_FORMAT]
Key database, PKCS #12 file, or key ring format is not valid.

[GSK_KEYFILE_BAD_PASSWORD]
Key database or PKCS #12 file password is not correct.

[GSK_KEYFILE_IO_ERROR]
Unable to read the key database, PKCS #12 file, key ring or token.

[GSK_KEYFILE_NO_CERTIFICATES]
The key database, PKCS #12 file, key ring or token does not contain any
certificates.

Chapter 5. Updates to Chapter 7: API reference 51

gsk_initialize()

[GSK_KEYFILE_OPEN_FAILED]
Unable to open the key database, PKCS #12 file, key ring or token.

[GSK_KEYFILE_PW_EXPIRED]
Key database password is expired.

Usage

The gsk_initialize() routine initializes the System SSL runtime environment for the
current process. The gsk_uninitialize() routine should be called to release the SSL
environment when it is no longer needed. Multiple calls to gsk_initialize() causes
the existing environment to be released before creating the new environment.

Environment variables are processed along with the gsk_initialize data structures.
Information passed in the key database, key ring or token is read as part of the
environment initialization. Upon successful completion of gsk_initialize(), the
application is ready to begin creating and using secure socket connections.

The gsk_init_data structure contains these fields:

sec_types
Specifies one of these null-terminated character strings:

s "SSLV2" or "SSL20" to use the SSL V2 protocol

e "SSLV3" or "SSL30" to use the SSL V3 protocol

¢ "TLSV1" or "TLS10" to use the TLS V1.0 protocol

e "SSLV2_OFF" to allow either TLS V1.0 or SSL V3 to be used

* "ALL" to use any supported protocol (SSL V2, SSL V3, and TLS V1.0).

When "SSLV2_OFF" is specified the SSL client/server attempts first to use
the TLS V1.0 protocol, before falling back to the most secure protocol
supported by its SSL partner, excluding the SSL V2 protocol.

When "ALL" is specified for an SSL client, the client attempts first to use
the TLS V1.0 protocol and falls back to the most secure protocol that the
server supports, excluding the SSL V2 protocol (the client must explicitly
request the SSL V2 protocol if it wants to use this protocol).

When "ALL" is specified for an SSL server, the server accepts any of the
supported protocols.

When running in FIPS mode, the minimum requirement is TLS V1.0
protocol. If only the SSL V2 or the SSL V3 protocol is enabled, then a FIPS
mode SSL connection is not possible.

keyring
Specifies the name of the key database, PKCS #12 file, SAF key ring, or
z/0S PKCS #11 token as a null-terminated character string. When both the
password and stash file name are NULL, a SAF key ring or PKCS #11
token is used.

The SAF key ring name is specified as "userid/keyring". The current user
ID is used if the user ID is omitted. The user must have READ access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by the user. The user must have UPDATE access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by another user.

Note: Certificate private keys are not available when using a SAF key ring
owned by another user, except for SITE certificates where CONTROL

52 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_initialize()

authority is given to IRR.DIGTCERT.GENCERT in the FACILITY class or
for user certificates where READ or UPDATE authority is given to
ringOwner.ringName.LST resource in the RDATALIB class.

The z/0OS PKCS #11 token name is specified as *TOKEN*/token-name.
TOKEN indicates that the specified key ring is actually a token name.
The application user ID must have READ access to resource

USER .token-name in the CRYPTOZ class in order for the certificate and
their private keys, if present, to be read.

keyring_pw
Specifies the password for the key database or PKCS #12 file as a
null-terminated character string. Specify NULL to indicate that no
password is provided.

keyring_stash
Specifies the name of the password stash file as a null-terminated character
string. Specify NULL to indicate no stash file is provided. The password
stash file is used if the keyring pw value is NULL.

V2 _session_timeout
Specifies the SSL V2 session cache timeout value in seconds. The valid
range is 0 to 100. A short SSL handshake is performed when a cached
session exists since the session parameters have already been negotiated
between the client and the server.

V3_session_timeout
Specifies the SSL V3 session cache timeout value in seconds. The valid
range is 0 to 86400. A short SSL handshake is performed when a cached
session exists since the session parameters have already been negotiated
between the client and the server.

LDAP_server
Specifies one or more blank-separated LDAP server host names as a
null-terminated character string. Each host name can contain an optional
port number separated from the host name by a colon. The LDAP server is
used for certificate validation . The LDAP server is used only when
LDAP_CA_roots is set to GSK_CA_ROOTS_LOCAL_AND_X500 and
auth_type is not set to GSK_CLIENT_AUTH_LOCAL or
GSK_CLIENT_AUTH_PASSTHRU.

LDAP_port
Specifies the LDAP server port. The default LDAP port will be used if 0 is
specified.

LDAP_ user
Specifies the distinguished name to use when connecting to the LDAP
server and is a null-terminated character string. An anonymous bind is
done if NULL is specified for this field.

LDAP_password
Specifies the password to use when connecting to the LDAP server and is
a null-terminated character string. This field is ignored if NULL is specified
for LDAP_user.

LDAP_CA_roots
Specifies the location of CA certificates and certificate revocation lists used
to validate certificates. When GSK_CA_ROOTS_LOCAL_ONLY is specified,
the CA certificates and certificate revocation lists are obtained from the
local database. When GSK_CA_ROOTS_LOCAL_AND_X500 is specified,
the CA certificates and certificate revocation lists are obtained from the

Chapter 5. Updates to Chapter 7: API reference 53

gsk_initialize()

LDAP server if they are not found in the local database. Even when an
LDAP server is used, root CA certificates must be found in the local
database since the LDAP server is not a trusted data source.

auth_type

Specifies the client authentication type. This field is ignored unless
LDAP_CA _roots is set to GSK_CA_ROOTS_LOCAL_AND_X500. The client
certificate is not validated when GSK_CLIENT_AUTH_PASSTHRU is
specified. The client certificate is validated using just the local database
when GSK_CLIENT_AUTH_LOCAL is specified. CA certificates and
certificate revocation lists not found in the local database are obtained from
the LDAP server when GSK_CLIENT _AUTH_STRONG or
GSK_CLIENT_AUTH_STRONG_OVER_SSL is specified (the local database
must still contain the root CA certificates). There is no difference between
GSK_CLIENT_AUTH_STRONG and
GSK_CLIENT_AUTH_STRONG_OVER_SSL.

gsk_initialize() Supported environment variables:

Environment variables are processed along with the information passed in the
gsk_init_data structure during environment initialization. Also, during
environment initialization, the key database, PKCS #12 file, key ring, or token is

The gsk_initialize() routine supports these environment variables:

GSK_EXTENDED_RENEGOTIATION_INDICATOR

Specifies the level of enforcement of renegotiation indication as specified
by RFC 5746 during the initial handshake.

Specify "OPTIONAL" to not require the renegotiation indicator during
initial handshake. This is the default.

Specify "CLIENT" to allow the client initial handshake to proceed only if
the server indicates support for RFC 5746 Renegotiation.

Specify "SERVER" to allow the server initial handshake to proceed only if
the client indicates support for RFC 5746 Renegotiation.

Specify "BOTH" to allow the server and client initial handshakes to
proceed only if partner indicates support for RFC 5746 Renegotiation.

GSK_RENEGOTIATION

Specifies the type of session renegotiation that is allowed for an SSL
environment.

Specify "NONE" to disable SSL V3 and TLS handshake renegotiation as a
server and allow RFC 5746 renegotiation. This is the default.

Specify "DISABLED" to disable SSL V3 and TLS handshake renegotiation
as a server and also disable RFC 5746 renegotiation.

Specify "ALL" to allow SSL V3 and TLS handshake renegotiation as a
server while also allowing RFC 5746 renegotiation.

Specify "ABBREVIATED" to allow SSL V3 and TLS abbreviated handshake
renegotiation as a server for resuming the current session only, while
disabling SSL V3 and TLS full handshake renegotiation as a server. With
this value specified, the System SSL session ID cache is not checked when
resuming the current session. RFC 5746 renegotiation is allowed.

54 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_initialize()

GSK_RENEGOTIATION_PEER_CERT_CHECK

Specifies if the peer certificate is allowed to change during renegotiation.

Specify "OFF" or "0" to not perform an identity check against the peer's
certificate during renegotiation. This allows the peer certificate to change
during renegotiation. This is the default.

Specify "ON" or "1" to perform a comparison against the peer's certificate
to ensure that certificate does not change during renegotiation.

GSKV2CACHESIZE

Specifies the number of entries in the SSL V2 session cache with a range of
0 to 32000. The value that is specified by the GSK_V2_SIDCACHE_SIZE
environment variable is used if the GSKV2CACHESIZE variable is not
defined. The default value is 256 if neither environment variable is defined.

GSKV3CACHESIZE

Specifies the number of entries in the SSL V3 session cache with a range of
0 to 64000. The value that is specified by the GSK_V3_SIDCACHE_SIZE
environment variable is used if the GSKV3CACHESIZE variable is not
defined. The default value is 512 if neither environment variable is defined.

The SSL V3 session cache is used for both the SSL V3 and TLS V1.0

protocols.

The environment variables that are overridden with information passed in the
gsk_init_data structure are:

GSK_KEYRING_FILE
GSK_KEYRING_PW
GSK_KEYRING_STASH
GSK_LDAP_SERVER
GSK_LDAP_PASSWORD
GSK_LDAP_PORT
GSK_LDAP_USER
GSK_PROTOCOL_SSLV2
GSK_PROTOCOL_SSLV3
GSK_PROTOCOL_TLSV1
GSK_V2_SESSION_TIMEOUT
GSK_V3_SESSION_TIMEOUT

Chapter 5. Updates to Chapter 7: API reference

55

gsk_secure_soc_init()

gsk_secure_soc_init()

Initializes a secure socket connection.

Format
#include <gskssl.h>

gsk_soc_data * gsk_secure_soc_init(
gsk_soc_init_data * init_data)

Parameters

init_data
Specifies the socket connection initialization data.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
is one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ERR_INIT_PARM_NOT_VALID]
A connection initialization parameter is not valid.

[GSK_ERROR_BAD_CERT]
A certificate is not valid.

[GSK_ERROR_BAD_DATE]
A certificate is not valid yet or is expired.

[GSK_ERROR_BAD_MAC]
Message verification failed.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_BAD_MESSAGE]
Incorrectly-formatted message received from peer application.

[GSK_ERROR_BAD_PEER]
Peer application has violated the SSL protocol.

[GSK_ERROR_BAD_STATE]
The SSL environment has not been initialized.

[GSK_ERROR_CRYPTO]
Cryptographic error detected.

[GSK_ERROR_INCOMPATIBLE_KEY]
The certificate key is not compatible with the negotiated cipher suite.

[GSK_ERROR_IO]
I/O error communicating with peer application.

[GSK_ERROR_LDAP]
An LDAP error is detected.

[GSK_ERROR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[GSK_ERROR_NO_CIPHERS]
No cipher specifications.

56 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_secure_soc_init()

[GSK_ERROR_NO_PRIVATE_KEY]
Certificate does not contain a private key or the private key is unusable.

[GSK_ERROR_RNG]
Error encountered when generating random bytes.

[GSK_ERROR_SELF_SIGNED]
A self-signed certificate cannot be validated.

[GSK_ERROR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_ERROR_UNKNOWN_CA]
A certification authority certificate is missing.

[GSK_ERROR_UNSUPPORTED_CERTIFICATE_TYPE]
The certificate type is not supported by System SSL.

[GSK_ERROR_VALIDATION]
Certificate validation error.

[GSK_KEYFILE_BAD_DNAME]
The specified key is not found in the key database or the key is not
trusted.

[GSK_KEYFILE_BAD_LABEL]
The DName field of the gsk_soc_init_data structure is an empty string. If
the default key is to be used, the DName field must be NULL.

[GSK_KEYFILE_DUPLICATE_NAME]
The key database contains multiple certificates with the same subject name
as the distinguished name specified in the connection initialization data.

[GSK_SOC_BAD_V2_CIPHER]
SSL V2 cipher is not valid.

[GSK_SOC_BAD_V3_CIPHER]
SSL/TLS V3 cipher is not valid.

[GSK_SOC_NO_READ_FUNCTION]
No read function is specified in the connection initialization data.

[GSK_SOC_NO_WRITE_FUNCTION]
No write function is specified in the connection initialization data.

Usage

The gsk_secure_soc_init() routine initializes a secure socket connection. The
gsk_initialize() routine must be called before any secure socket connections can be
initialized. After the connection has been initialized, it can be used for secure data
transmission using the gsk_secure_soc_read() and gsk_secure_soc_write() routines.
The gsk_secure_soc_close() routine should be called to close the connection when
it is no longer needed. The gsk_secure_soc_close() routine should not be called if
an error is returned by the gsk_secure_soc_init() routine.

Before calling the gsk_secure_soc_init() routine, the application must create a
connected socket. For a client, this means calling the socket() and connect()
routines. For a server, this means calling the socket(), listen(), and accept()
routines. However, SSL does not require the use of TCP/IP for the communications
layer. The socket descriptor can be any integer value that is meaningful to the
application. The application must provide its own socket routines if it is not using
TCP/1P.

Chapter 5. Updates to Chapter 7: API reference 57

gsk_secure_soc_init()

An SSL handshake is performed as part of the processing of the
gsk_secure_soc_init() routine. This establishes the server identity and optionally
the client identity. It also negotiates the cryptographic parameters to be used for
the connection.

The server certificate can use either RSA or DSA as the public/private key
algorithm. In FIPS mode, the RSA or DSA key size must be at least 1024 bits. An
RSA certificate can be used with an RSA, fixed Diffie-Hellman, or ephemeral
Diffie-Hellman key exchange. A DSA certificate can be used with either a fixed or
ephemeral Diffie-Hellman key exchange. In FIPS mode, the Diffie-Hellman key size
must be at least 2048 bits. If the servers certificate contains a key usage extension
during the SSL handshake, it must allow key usage as follows:

* RSA certificates using export restricted ciphers (40-bit RC4 encryption and 40-bit
RC2 encryption) with a public key size greater than 512 bits must allow digital
signature. If operating in FIPS mode, export restricted ciphers cannot be selected.

* RSA or DSA certificates using fixed Diffie-Hellman key exchange must allow key
agreement.
* Other RSA certificates must allow key encipherment.

* DSA certificates using ephemeral Diffie-Hellman key exchange must allow
digital signature.

System SSL does not accept Verisign Global Server ID certificates. When specified,
System SSL uses these certificates as any other certificate when determining the
encryption cipher to be used for the SSL session.

The client certificate must support digital signatures. This means the certificate key
usage extension (if any) must allow digital signature. The key algorithm can be
either the RSA encryption algorithm or the Digital Signature Standard algorithm
(DSA).

The SSL server always provides its certificate to the SSL client as part of the
handshake. Depending upon the server handshake type, the server may ask the
client to provide its certificate. The key label that is stored in the connection is
used to retrieve the certificate from the key database, PKCS #12 file, key ring, or
token. The default key will be used if no label is set. The key record must contain
both an X.509 certificate and a private key.

These SSL V2 cipher specifications are supported in non-FIPS mode only:

* "1" = 128-bit RC4 encryption with MD5 message authentication (128-bit secret
key)

* "2" = 128-bit RC4 export encryption with MD5 message authentication (40-bit
secret key)

e "3" = 128-bit RC2 encryption with MD5 message authentication (128-bit secret
key)

e "4" = 128-bit RC2 export encryption with MD5 message authentication (40-bit
secret key)

e "6" = 56-bit DES encryption with MD5 message authentication (56-bit secret key)

* "7" = 168-bit Triple DES encryption with MD5 message authentication (168-bit
secret key)

These SSL V3 cipher specifications are supported in non-FIPS mode only:
* "00" = No encryption or message authentication and RSA key exchange
e "01" = No encryption with MD5 message authentication and RSA key exchange

58 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_secure_soc_init()

¢ "02" = No encryption with SHA-1 message authentication and RSA key exchange

* "03" = 40-bit RC4 encryption with MD5 message authentication and RSA key
exchange

> "04" = 128-bit RC4 encryption with MD5 message authentication and RSA key
exchange

e "05" = 128-bit RC4 encryption with SHA-1 message authentication and RSA key
exchange

e "06" = 40-bit RC2 encryption with MD5 message authentication and RSA key
exchange

* "09" = 56-bit DES encryption with SHA-1 message authentication and RSA key
exchange

e "0C" = 56-bit DES encryption with SHA-1 message authentication and fixed
Diffie-Hellman key exchange signed with a DSA certificate

* "OF" = 56-bit DES encryption with SHA-1 message authentication and fixed
Diffie-Hellman key exchange signed with an RSA certificate

¢ "12" = 56-bit DES encryption with SHA-1 message authentication and ephemeral
Diffie-Hellman key exchange signed with a DSA certificate

* "15" = 56-bit DES encryption with SHA-1 message authentication and ephemeral
Diffie-Hellman key exchange signed with an RSA certificate

These SSL V3 cipher specifications are supported in FIPS mode and non-FIPS
mode:

* "0A" = 168-bit Triple DES encryption with SHA-1 message authentication and
RSA key exchange

* "0D" = 168-bit Triple DES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with a DSA certificate

* "10" = 168-bit Triple DES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with an RSA certificate

e "13" = 168-bit Triple DES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSA certificate

* "16" = 168-bit Triple DES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate

* "2F" = 128-bit AES encryption with SHA-1 message authentication and RSA key
exchange

e "30" = 128-bit AES encryption with SHA-1 message authentication and fixed
Diffie-Hellman key exchange signed with a DSA certificate

e "31" = 128-bit AES encryption with SHA-1 message authentication and fixed
Diffie-Hellman key exchange signed with an RSA certificate

+ "32" = 128-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSA certificate

e "33" = 128-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate

e "35" = 256-bit AES encryption with SHA-1 message authentication and RSA key
exchange

e "36" = 256-bit AES encryption with SHA-1 message authentication and fixed
Diffie-Hellman key exchange signed with a DSA certificate

+ "37" = 256-bit AES encryption with SHA-1 message authentication and fixed
Diffie-Hellman key exchange signed with an RSA certificate

e "38" = 256-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSA certificate

Chapter 5. Updates to Chapter 7: API reference 59

gsk_secure_soc_init()

e "39" = 256-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate

The client sends a list of ciphers it supports during the SSL handshake. The server
application uses this list, and the defined ciphers supported by the server, to
determine the cipher to be used during the SSL handshake. This selection is done
by looking through the servers cipher list for a match in the clients list. The first
matching cipher is used.

Environment variables are processed along with the information passed in the
gsk_init_data structure during environment initialization. Also during environment
initialization, the key database, PKCS #12 file, key ring or token is read.

The environment variables that are overridden by non-NULL values in the
gsk_soc_init_data structure are:

* GSK_KEY_LABEL
* GSK_V2_CIPHER_SPECS
* GSK_V3_CIPHER_SPECS

The gsk_soc_init_data structure contains these fields:

fd Specifies the socket descriptor for the secure connection. The socket must
remain open until after the gsk_secure_soc_close() routine has been called
to close the secure connection.

hs_type
Specifies the intended handshake type as follows:

GSK_AS_CLIENT
Performs a client SSL handshake

GSK_AS_CLIENT_NO_AUTH
Performs a client SSL handshake but do not provide a client
certificate to the SSL server

GSK_AS_SERVER
Performs a server SSL handshake

GSK_AS_SERVER_WITH_CLIENT AUTH
Performs a server SSL handshake with client authentication

DName
Specifies either the distinguished name or the key label of the local
certificate. Specify NULL to use the default key for the key database, key
ring or token.

sec_type
Returns the selected security protocol as "SSLV2", "SSLV3", or "TLSV1".
This is a static string and must not be modified or freed by the application.

cipher_specs
Specifies the SSL V2 cipher specifications as a null-terminated string
consisting of 1 or more 1-character values. Specify NULL to use the default
cipher specifications ("713642" if Security Level 3 FMID encryption is
enabled and "642" otherwise). Valid cipher specifications that are not
supported because of the installed cryptographic level will be skipped
when the connection is initialized. The SSL V2 protocol can only be used
when executing in non-FIPS mode.

60 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

gsk_secure_soc_init()

v3cipher_specs

skread

skwrite

Specifies the SSL V3 cipher specifications as a null-terminated string
consisting of 1 or more 2-character values. Specify NULL to use the default
cipher specifications
("050435363738392F303132330A1613100D0915120F0C0306020100" if Security
Level 3 FMID is installed and in non-FIPS mode,
"35363738392F303132330A1613100D" if Security Level 3 FMID is installed
and in FIPS mode, and "0915120F0C0306020100" otherwise). The SSL V3
cipher specifications are used for both the SSL V3 and TLS V1.0 protocols.
Valid cipher specifications that are not supported because of the installed
cryptographic level are skipped when the connection is initialized. The SSL
V3 protocol can only be used when executing in non-FIPS mode.

Specifies the address of the read routine used during the SSL handshake.
See [“gsk_attribute_set_callback()” on page 21 for additional information
about the I/0O callback routines.

Specifies the address of the write routine used during the SSL handshake.
See [“gsk_attribute_set_callback()” on page 21| for additional information
about the I/0O callback routines.

cipherSelected

Returns the selected cipher for the SSL V2 protocol as a 3-byte binary

value:

¢ 0x010080 - 128-bit RC4 encryption with MD5 message authentication

¢ 0x020080 = 128-bit RC4 export encryption with MD5 message
authentication

* 0x030080 = 128-bit RC2 encryption with MD5 message authentication

¢ 0x040080 = 128-bit RC2 export encryption with MD5 message
authentication

* 0x060040 = 56-bit DES encryption with MD5 message authentication

* 0x0700c0 = 168-bit Triple DES encryption with MD5 message
authentication

v3cipherSelected

Returns the selected cipher for the SSL V3 or TLS V1.0 protocol as a 2-byte
character value with no string delimiter:

¢ "00" = No encryption or message authentication

¢ "01" = No encryption with MD5 message authentication and RSA key
exchange

¢ "02" = No encryption with SHA-1 message authentication and RSA key
exchange

¢ "03" = 40-bit RC4 encryption with MD5 message authentication and RSA
key exchange

s "04" = 128-bit RC4 encryption with MD5 message authentication and
RSA key exchange

¢ "05" = 128-bit RC4 encryption with SHA-1 message authentication and
RSA key exchange

¢ "06" = 40-bit RC2 encryption with MD5 message authentication and RSA
key exchange

* "09" = 56-bit DES encryption with SHA-1 message authentication and
RSA key exchange

* "0A" = 168-bit Triple DES encryption with SHA-1 message authentication
and RSA key exchange

Chapter 5. Updates to Chapter 7: API reference 61

gsk_secure_soc_init()

"0C" = 56-bit DES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with a DSS certificate

"0D" = 168-bit Triple DES encryption with SHA-1 message authentication
and fixed Diffie-Hellman key exchange signed with a DSS certificate
"0F" = 56-bit DES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with an RSA certificate

"10" = 168-bit Triple DES encryption with SHA-1 message authentication
and fixed Diffie-Hellman key exchange signed with an RSA certificate
"12" = 56-bit DES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSS certificate
"13" = 168-bit Triple DES encryption with SHA-1 message authentication
and ephemeral Diffie-Hellman key exchange signed with a DSS
certificate

"15" = 56-bit DES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate
"16" = 168-bit Triple DES encryption with SHA-1 message authentication
and ephemeral Diffie-Hellman key exchange signed with an RSA
certificate

"2F" = 128-bit AES encryption with SHA-1 message authentication and
RSA key exchange

"30" = 128-bit AES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with a DSS certificate

"31" = 128-bit AES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with an RSA certificate

"32" = 128-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSS certificate
"33" = 128-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate
"35" = 256-bit AES encryption with SHA-1 message authentication and
RSA key exchange

"36" = 256-bit AES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with a DSS certificate

"37" = 256-bit AES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with an RSA certificate

"38" = 256-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSS certificate

"39" = 256-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate

failureReasonCode

cert_info
Returns peer certificate information. The application must not modify or
free this information.

gsk_data
This field is ignored. The key database information is set when
gsk_initialize() is called.

Returns the gsk_secure_soc_init() error code.

62 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

Chapter 6. Updates to Chapter 10: Certificate/Key
management

This topic discusses the use of the z/OS shell-based gskkyman utility to manage
private keys, certificates, and tokens.

Introduction

SSL connections use public/private key mechanisms for authenticating each side of
the SSL session and agreeing on bulk encryption keys to be used for the SSL
session. To use public/private key mechanisms (termed PKI), public/private key
pairs must be generated. In addition, X.509 certificates (which contain public keys)
might need to be created, or certificates must be requested, received, and managed.

System SSL supports three methods for managing PKI private keys and certificates:

* A z/0OS shell-based program called gskkyman. gskkyman creates, completes,
and manages either a z/OS file or z/OS PKCS #11 token that contains PKI
private keys, certificate requests, and certificates. The z/OS file is called a key
database and, by convention, has a file extension of .kdb.

* The z/0S Security Server (RACF®) RACDCERT command. RACDCERT installs
and maintains PKI private keys and certificates in RACE. See z/OS Security Server
RACF Command Language Reference for details about the RACDCERT command.
RACF supports multiple PKI private keys and certificates to be managed as a
group. These groups are called key rings or z/OS PKCS #11 tokens.

* PKCS #12 standard files created according to PKCS #12 V3.0. These files must be
created as binary format files whose fully qualified file name does not exceed
251 characters in length and does not end with .kdb, .rdb, or .sth.

System SSL supports PKCS #12 certificate and private key objects types. Any
other object types within the file are ignored. All certificates within the files are
treated as trusted certificates and no certificate can be identified as a default
certificate.

The PKCS #12 file is protected by a password and the integrity of the file is
ensured by a SHA-1 message authentication value.

Because PKCS #12 files do not have labels as certificates in key database files
(SAF key rings or PKCS #11 tokens can have labels as certificates in key
database files), when the certificates are read into storage, they are assigned a
label using either the PKCS #12 friendly name, if one exists, or the certificate's
subject distinguished name. When the friendly name or the subject distinguished
name value is greater than 127 characters, only the first 127 characters are used.
If multiple certificates have the same friendly name value, the first encountered
certificate is read into storage. Any other certificate with that friendly name is
ignored. If a certificate is encountered that does not contain a friendly name and
the subject distinguished name is empty, the processing of the PKCS #12 fails. As
with key database files, SAF key rings and PKCS #11 tokens, the label is case
sensitive.

* RACEF key rings or z/OS PKCS #11 tokens are the preferred method for
managing PKI private keys and certificates for System SSL.

The System SSL application uses the GSK_KEYRING_FILE parameter of the
gsk_attribute_set_buffer() API or the GSK_KEYRING_FILE environment variable
to specify the locations of the PKI private keys and certificates to System SSL. If

© Copyright IBM Corp. 2014 63

you are using a z/OS key database or a PKCS #12 file, the name is passed in this
parameter. If you are using a RACF key ring or z/OS PKCS #11 token, the name of
the key ring or token is passed in this parameter.

gskkyman command line mode syntax

This topic describes the format and options of the gskkyman command.

gskkyman

The gskkyman utility is used for key database management, z/OS PKCS #11 token
management, and to display the certificates within a PKCS #12 file.

Format

gskkyman

gskkyman -dc -k filename -1 label
gskkyman -dc -t token-name -1 label
gskkyman -dc -pl2 filename -1 label
gskkyman -dcv -k filename -1 label
gskkyman -dcv -t token-name -1 label
gskkyman -dcv -pl2 filename -1 label
gskkyman -dk -k filename

gskkyman -e -k filename -1 label -p filename
gskkyman -e -t token-name -1 label -p filename

gskkyman -g -x days -cr filename -ct filename -k filename -1 label -kt keytype -ca -ic
gskkyman -g -x days -cr filename -ct filename -t token-name -1 label -kt keytype -ca -ic

gskkyman -h

gskkyman -i -k filename -1 label -p filename
gskkyman -i -t token-name -1 label -p filename

gskkyman -s -k filename

Parameters

function
The function to be performed. It must follow the command name. The
acceptable values are:

-dc
Display certificate details

-dcv
Display certificate verbose details

-dk
Display key database expiration and record length

-e Export a certificate and its associated private key
-g Sign a certificate for a certificate request

-h Display the command syntax

-i Import a certificate and its associated private key

-s Store the database password in the stash file

64 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

option

The parameters necessary to accomplish the function. If the option provides a
value, then the value must follow the option:

The acceptable values are:

-ca
A certification authority certificate is generated if -ca is specified. An end
user certificate is generated if -ca is not specified.

-cr
Specifies the name of the certificate request file. You are prompted for the
file name if this option is not specified.

-ct
Specifies the name of the output generated signed certificate file. You are
prompted for the file name if this option is not specified. You may specify
any name. If you specify an existing file name, the file is overwritten.

-ic
The certification chain certificates are included in the certificate file if -ic is

specified. Otherwise, just the signed certificate is included in the certificate
file.

-k Specifies the name of the key database. This option is mutually exclusive
with the -t option and the -p12 option. You are prompted for the key
database file name if either this option or the -t option or the -p12 option is
specified. The length of the fully qualified file name cannot exceed 251
characters. If the file name does not end with an extension of 1-3
characters, the length of the fully qualified file name cannot exceed 247
characters. Finally, the key database name cannot end with .rdb or .sth.

-kt
Specifies the key type of the certificate to be created. This option is valid
when signing an end user certificate or certificate request containing an
ECC public key and affects the settings of the keyUsage extension of the
certificate created. Valid key type options are ecgen, ecdsa and ecdh. ecgen
creates a certificate with digitalSignature, nonRepudiation and
keyAgreement set, ecdsa creates a certificate with digitalSignature and
nonRepudiation set, and ecdh creates a certificate with keyAgreement set.
If the -kt option is not specified for an end user ECC certificate or
certificate request, the default option is ecgen. For other certificate types
the -kt option is ignored.

-1 Specifies the certificate label. The label must be enclosed in double
quotation marks if it contains one or more spaces. If the certificate is being
used to sign a certificate request (sign function), the certificate must be a
CA. The label for the default key is used if this option is not specified
(export or sign function) or you are prompted for the label (import
function). If more than one certificate with the specified label exists (can
occur for tokens), the user is prompted to either cancel or choose the
required certificate from a list that summarizes significant fields in the
certificate.

-p Specifies the name of the PKCS #12 file. You are prompted for the file
name if this option is not specified.

-pl2
Specifies the name of the PKCS #12 file containing the certificates to be

displayed. This option is mutually exclusive with the -k option and the -t
option. The length of the fully qualified file name cannot exceed 251

Chapter 6. Updates to Chapter 10: Certificate/Key management 65

characters. If the file name does not end with an extension of 1-3
characters, the length of the fully qualified file name cannot exceed 247
characters. Lastly, the PKCS #12 file cannot end with .kdb, .rdb or .sth.

-t Specifies the name of the token to be managed. This option is mutually
exclusive with the -k option and the -p12 option. The name must consist of
characters that are alphanumeric, national (@ x5B, # x7B, $ x7C) or period
(.x4B). The first character must be alphabetic or national. Lowercase letters
are allowed, but are folded to uppercase.

-x Specifies the number of days until the signed certificate expires and must
be between 1 and 9999 days. The certificate expires in 365 days if this
option is not specified.

Results

If gskkyman is specified with no arguments the interactive menu-driven interface
is used.

Usage

The gskkyman utility is used to manage a token, a key database and its associated
request database, or to list the contents of a PKCS #12 file. Interactive menus are
displayed if no command options are specified. Otherwise, the requested
token/database/PKCS #12 file function is performed and the gskkyman utility
exits.

Note: The ability to display the contents of a PKCS #12 file is not supported
through the interactive menu-driven interface.

If the command specifies the -t (token name) option, then the requested function is
performed for the identified token.

If the command specifies the -p12 (PKCS #12 file) option on the display functions
-dc or -dev, if -1 option is used, the certificate with matching label is displayed. If -1
option is not used, all certificates within the file are displayed.

If the command does not specify the -t or the -p12 option, then it is assumed that
the function is to be performed for a key database. If the -k option, the -t option,
and the -p12 option are not supplied, the user is prompted for a key database file
name.

If any combination of -k, -t, and -p12 is specified, the command is rejected and an
error message is displayed.

For commands applied to a key database:

The key database contains certificates and private keys and normally has a file
name extension of 'kdb'. The request database contains requests for new
certificates and always has a file name extension of '.rdb'. The database stash file
contains the masked database password and always has a file name extension of
"sth'. Access to these files should be restricted to the database owner.

A certificate or request database consists of fixed-length records. The record length
is specified when the database is created and must be large enough to contain the

66 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

largest certificate entry. A record length of 5000 should be sufficient for most
applications. The record length can be increased if necessary after the database is
created.

A temporary database file is created when a database is updated during gskkyman
processing. The temporary database file is created using the same name as the
database file with ".new" appended to the name. The database file is then rewritten
and the temporary database file is deleted upon successful completion of the
rewrite operation. The temporary database file is not deleted if an error occurs
while rewriting the database file. If this happens, you can replace the database file
with the temporary database file to recover from the error. If an error does occur
and you do not rename or delete the temporary file, you receive an error on the
next database update operation indicating the backup file exists.

If all certificates in a key database are displayed with the -dc or -dcv command,
then all certificates with private keys are outputted, followed by all certificates
without private keys. When displaying all certificates in a token, the certificates are
displayed in the order that is returned from the token so that certificates with
private keys might be interspersed with certificates without private keys.

Chapter 6. Updates to Chapter 10: Certificate/Key management 67

68 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

Chapter 7. Updates to Chapter 13: Messages and codes

This topic lists the messages and codes issued by System SSL.

SSL function return codes

6 Key label is not found.

Explanation: The requested key label is not found in the key database, PKCS #12 file, SAF key ring, or z/OS PKCS
#11 token. When using a PKCS #12 file, this error can also occur when the file is being processed during the
establishment of the SSL/TLS environment when a certificate is encountered where there is no friendly name PKCS
#12 attribute and the certificate's subject distinguished name is empty.

User response: Specify a label that exists in the key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11 token.
If encountered when establishing a SSL/TLS environment using a PKCS #12 file, verify any certificate that has no
subject distinguished name is assigned a PKCS #12 friendly name attribute.

7 No certificates available.

Explanation: The key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11 token does not contain any
certificates, or the SSL client application does not have a certificate available when authentication is requested by the
server.

User response: Check for available certificates and add the user certificate and any necessary certification authority
certificates to the key database, SAF key ring, or z/OS PKCS #11 token if necessary. If using a PKCS #12 file, ensure
that the file contains the necessary certificates. If using RACF key rings and the DIGTCERT and DIGTRING classes
are RACLIST'ed, issue the SETROPTS RACLIST (DIGTCERT, DIGTRING) REFRESH command to refresh the profiles
to ensure that the latest changes are available. Specify a certificate for the client application to use.

8 Certificate validation error.

Explanation: An error is detected while validating a certificate. This error can occur if a root CA certificate is not
found in the key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11 token or if the certificate is not marked as
a trusted certificate or if the certificate requires an algorithm or key size that is non-FIPS while executing in FIPS
mode.

User response: Verify that the root CA certificate is in the key database, PKCS #12 file, SAF key ring, or z/OS PKCS
#11 token and is marked as trusted. Check all certificates in the certification chain and verify that they are trusted
and are not expired. If the error occurred while executing in FIPS mode, check that only FIPS algorithms and key
sizes are used by the certificate. If using RACF key rings and the DIGTCERT and DIGTRING classes are
RACLIST'ed, issue the SETROPTS RACLIST (DIGTCERT, DIGTRING) REFRESH command to refresh the profiles to
ensure that the latest changes are available. Collect a System SSL trace that contains the error and then contact your
service representative if the problem persists.

102 Error detected while reading certificate database

Explanation: An error is detected while reading the key database, the PKCS #12 file, or retrieving entries from the
SAF key ring or z/OS PKCS #11 token.

User response: If the problem persists, collect a System SSL trace containing the error and then contact your service
representative.

202 Error detected while opening the certificate database.

Explanation: An error is detected while opening the key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11
token. This error can occur if no name is supplied or the database, PKCS #12 file, key ring, or token does not exist.
When using a PKCS #12 file, the file name cannot end with .kdb, .rdb or .sth.

© Copyright IBM Corp. 2014 69

407 « 2

User response: Verify that the key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11 token exists and is
accessible by the application. This value is case-sensitive. Ensure that the case is preserved with your request. Collect
a System SSL trace containing the error and then contact your service representative if the error persists.

407 Key label does not exist.

Explanation: The supplied label or the default key is not found in the key database or the certificate is not trusted
or the certificate uses algorithms or key sizes that are non-FIPS while executing in FIPS mode. If using a PKCS #12
file as the certificate database, the label is either the certificate's friendly name or the subject's distinguished name.

User response: Supply a valid label or define a default key in the key database or specify a label for a certificate
that uses FIPS algorithms or key sizes if executing in FIPS mode. If using a PKCS #12 file, use the gskkyman
command line option -dc or -dcv to display the contents of the PKCS #12 file. The friendly name or subject
distinguished name values is displayed in the label field.

417 Self-signed certificate cannot be validated.

Explanation: A self-signed certificate cannot be validated because it is not in the key database, PKCS #12 file, SAF
key ring, or z/OS PKCS #11 token.

User response: Add the self-signed certificate to the key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11
token. If using RACF key rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the SETROPTS
RACLIST (DIGTCERT, DIGTRING) REFRESH command to refresh the profiles to ensure that the latest changes are
available.

442 Multiple certificates exist for label.

Explanation: Access of certificate/key from label could not be resolved because multiple certificates/keys exist with
the label.

User response: Correct certificate/key store so that label specifies a unique record.

If using a PKCS #12 file, use the gskkyman command line option -dc or -dcv to display the contents of the PKCS #12
file. The friendly name or subject distinguished name value is displayed as the label. Ensure the specified label is
unique in the PKCS #12 file.

490 PKCS #12 file content not valid

Explanation: When processing the PKCS #12 file, a format error was detected. This can occur if the file is not
properly ASN.1 encoded, been modified if transferred, or the PKCS #12 file is not a Version 3 binary file. PKCS #12
Version 1 files and files in Base64 format are not supported.

User response: If the current file is either a PKCS #12 Version 1 file or a Base64 encoded file, it must be replaced
with a PKCS #12 Version 3 file. If transferring the file, be sure to transfer the file in binary format. Correct the PKCS
#12 file or obtain a new PKCS #12 file. If the problem persists, collect a System SSL Trace containing the error and
then contact your service representative.

Deprecated SSL function return codes

1 Error detected while reading certificate database

Explanation: An error is detected while reading the key database, the PKCS #12 file, or retrieving entries from the
SAF key ring or z/OS PKCS #11 token.

User response: Collect a System SSL trace containing the error and then contact your service representative.

2 Error detected while opening the certificate database.

Explanation: An error is detected while opening the key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11
token. This error can occur if no name is supplied or the database, key ring, or token does not exist. When using a
PKCS #12 file, the file name cannot end with .kdb, .rdb or .sth.

User response: Verify that the key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11 token exists and is

70 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

9 ¢ -56

accessible by the application. This value is case-sensitive. Ensure that the case is preserved with your request. Collect
a System SSL trace containing the error and then contact your service representative if the error persists.

9 Key label does not exist.

Explanation: The supplied label or the default key is not found in the key database or the certificate is not trusted.
If using a PKCS #12 file as the certificate database, the label is either the certificate's friendly name or the subject's
distinguished name. A default key does not exist in a PKCS #12 file.

User response: Supply a valid label or define a default key in the key database. If using a PKCS #12 file, use the
gskkyman command line option -dc or -dcv to display the contents of the PKCS #12 file. The friendly name or
subject distinguished name values is displayed in the label field.

12 Key label is not found.

Explanation: The requested key label is not found in the key database, PKCS #12 file, SAF key ring, or z/OS PKCS
#11 token. When using a PKCS #12 file, this error can also occur when the file is being processed during the
establishment of the SSL/TLS environment when a certificate is encountered where there is no friendly name PKCS
#12 attribute and the certificate's subject distinguished name is empty.

User response: Specify a label that exists in the key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11 token.
If encountered when establishing a SSL/TLS environment using a PKCS #12 file, verify any certificate that has no
subject distinguished name is assigned a PKCS #12 friendly name attribute.

-18 Self-signed certificate cannot be validated.

Explanation: A self-signed certificate cannot be validated because it is not in the key database, PKCS #12 file, SAF
key ring, or z/OS PKCS #11 token.

User response: Add the self-signed certificate to the key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11
token. If using RACF key rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the SETROPTS
RACLIST (DIGTCERT, DIGTRING) REFRESH command to refresh the profiles to ensure that the latest changes are
available.

-35 Certificate validation error.

Explanation: An error is detected while validating a certificate. This error can occur if a root CA certificate is not
found in the key database, PKCS #12 file, SAF key ring, or z/OS PKCS #11 token or if the certificate is not marked as
a trusted certificate or if the certificate requires an algorithm or key size that is non-FIPS while executing in FIPS
mode.

User response: Verify that the root CA certificate is in the key database, PKCS #12 file, SAF key ring, or z/OS PKCS
#11 token and is marked as trusted. Check all certificates in the certification chain and verify that they are trusted
and are not expired. Collect a System SSL trace containing the error and then contact your service representative if
the problem persists. If using RACF key rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the
SETROPTS RACLIST (DIGTCERT, DIGTRING) REFRESH command to refresh the profiles to ensure that the latest
changes are available.

-56 Multiple certificates exist for label.

Explanation: Access of certificate/key from label could not be resolved because multiple certificates/keys exist with
the label.

User response: Correct certificate/key store so that label specifies a unique record.

If using a PKCS #12 file, use the gskkyman command line option -dc or -dcv to display the contents of the PKCS #12
file. The friendly name or subject distinguished name value is displayed as the label. Ensure that the specified label is
unique in the PKCS #12 file.

Chapter 7. Updates to Chapter 13: Messages and codes 71

-124 » 033530AC

-124 PKCS #12 file content not valid

Explanation: When processing the PKCS #12 file, a format error was detected. This can occur if the file is not
properly ASN.1 encoded, been modified if transferred, or the PKCS #12 file is not a Version 3 binary file. PKCS #12
Version 1 files and files in Base64 format are not supported.

User response: If the current file is either a PKCS #12 Version 1 file or a Base64 encoded file, it must be replaced
with a PKCS #12 Version 3 file. If transferring the file, be sure to transfer the file in binary format. Correct the PKCS
#12 file or obtain a new PKCS #12 file. If the problem persists, collect a System SSL Trace containing the error and
then contact your service representative.

CMS status codes

033530AB PKCS #12 input certificate has no subject DN or friendly name

Explanation: When reading the certificates of the specified PKCS #12 file, a certificate was encountered that had no
subject distinguished name or PKCS #12 friendly name.

User response: Verify that all certificates within the provided PKCS #12 file have either a subject distinguished
name or a friendly name attribute. The friendly name attribute or the subject distinguished name is used to create the
certificate's label.

033530AC PKCS #12 file name may not end with .kdb, .rdb or .sth
Explanation: A PKCS #12 file name cannot end with .kdb, .rdb or .sth.

User response: Verify that the PKCS #12 file name does not end with .kdb, .rdb or .sth. If it does, it needs to be
renamed.

72 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

Chapter 8. Updates to Appendix A: Environment variables

This topic discusses the use of the z/OS shell-based gskkyman utility to manage
private keys, certificates, and tokens.

Environment variables

These tables contain all the environment variables used by the system application

and read during the startup of the application.

Table 1. SSL-Specific environment variables

Environment variables

Usage

Valid values

GSK_KEYRING_FILE

Specifies the name of the key
database file, PKCS #12 file, SAF key
ring, or z/OS PKCS #11 token. A key
database or PKCS #12 file is used if
the GSK_KEYRING_PW environment
variable is also specified. A key
database file is used if
GSK_KEYRING_STASH environment
variable is also specified. Otherwise,
a SAF key ring or z/OS PKCS #11
token is used.

Note that certificate private keys are
not available when using a SAF key
ring owned by another user.

The user must have READ access to
resource USER.tokenname in the
CRYPTOZ class.

The SAF key ring name is specified as
"userid /keyring". The current user ID is
used if the user ID is omitted.

The z/0S PKCS #11 token name is specified
as "*TOKEN*/token-name".

If no certificate source is specified, defaults
to NULL.

GSK_KEYRING_PW

Specifies the password for the key
database or PKCS #12 file.

NULL or value consisting of up to 128
characters.

The default value is NULL

© Copyright IBM Corp. 2014

73

74 DPKCS#12 Certificate Store Support - APAR OA45216 (VIR13)

Printed in USA

	Contents
	Chapter 1. Overview
	Chapter 2. Updates to Chapter 2: How System SSL works for secure socket communication
	System SSL application overview

	Chapter 3. Updates to Chapter 4: System SSL and FIPS 140-2
	Certificate stores
	SAF key rings and PKCS #11 tokens
	Key database files

	PKCS #12 files

	Chapter 4. Updates to Chapter 5: Writing and building a z/OS System SSL application
	Writing and building a z/OS System SSL application
	Create an SSL environment
	Building a z/OS System SSL application
	Running a z/OS System SSL application

	Chapter 5. Updates to Chapter 7: API reference
	gsk_attribute_get_buffer()
	gsk_attribute_set_buffer()
	gsk_attribute_set_callback()
	gsk_attribute_set_enum()
	gsk_attribute_set_tls_extension()
	gsk_environment_init()
	gsk_environment_open()
	gsk_get_update()
	gsk_secure_socket_init()
	gsk_initialize()
	gsk_secure_soc_init()

	Chapter 6. Updates to Chapter 10: Certificate/Key management
	Introduction
	gskkyman command line mode syntax
	gskkyman

	Chapter 7. Updates to Chapter 13: Messages and codes
	SSL function return codes
	Deprecated SSL function return codes
	CMS status codes

	Chapter 8. Updates to Appendix A: Environment variables
	Environment variables

