
When’s a program check not just a program check?  When it’s an exploitable security vulnerability. 

An ABEND0C4 is one of the most common types of program checks encountered on z/OS, which covers a 
range of program interrupt codes or PIC codes including 4, 16, 17, 56, 57, 58, and 59.  An ABEND0E0 is a 
related type of program check for cross memory scenarios including PIC codes 40, 41, 42, 43, 44, and 45. 
An ABEND0C4 can occur for references to either instrucƟons or data.  When it occurs for a reference to 
an instrucƟon is it a sign of a bad branch, which can also be indicated by ABEND0C1, or ABEND0C6 on an 
odd address, which are PIC codes 1 and 6 respecƟvely.  What all these program checks have in common 
is that they are the only fiŌeen PIC codes that are oŌen indicators of a potenƟal security vulnerability.  In 
hex this is ‘01’x, ‘04’x, ‘06’x, ‘10’x, ‘11’x, ’28’x, ‘29’x, ‘2A’x, ‘2B’x, ‘2C’x, ‘2D’x, ‘38’x, ‘39’x, ‘3A’x, and ‘3B’x. 

Background  

Are all program checks signs of a security vulnerability?  No, definitely not.  If a program check occurs 
during execuƟon of an unauthorized program, it is almost never an indicaƟon of a security vulnerability.  
There are always excepƟons to the rule, for example if an unauthorized program is performing a network 
communicaƟons funcƟon, the boundary between one server and another can be almost as significant as 
the boundary between authorized and unauthorized code, which is why generally speaking only 
authorized programs should be entrusted with communicaƟons capabiliƟes between servers.  
Regardless, program checks in unauthorized programs are usually not security vulnerabiliƟes. 

Does that mean all program checks in authorized programs are security vulnerabiliƟes?  No, it does not 
mean that either, although we are geƫng closer to the truth now.  There are some cases where program 
checks in authorized programs might not be exploitable.  For example, if an authorized program gets an 
ABEND0C4 reading from control blocks without serializaƟon but there is no way for anyone to observe 
the result and it is not wriƩen to a log file or report, it is sƟll a design flaw but not a security vulnerability.  
For a program check to reveal a security vulnerability, the problem that it shows needs to be exploitable. 

How can we tell if a program check found in authorized code is exploitable?  It’s usually helpful to ask the 
quesƟon, what if it didn’t abend?  If the problem is of the type where it will always just fail reliably with a 
program check, it is not exploitable and is not a security vulnerability.  It should be fixed but is just a bug.  
On the other hand, if there is any chance it might not abend, then it could indeed usually be exploited.  
Let’s consider the different types of program checks, and the security vulnerabiliƟes they could reveal.  
In each case, there are slightly different things to look for to determine if the problem is exploitable. 

Fetch violaƟons 

ABEND0C4 and ABEND0E0 can both be indicators of a fetch violaƟon.  The difference between a fetch 
and store violaƟon can be determine by examining the translaƟon excepƟon address for an ABEND0C4 
or the translaƟon excepƟon access register number for an ABEND0E0 combined with evaluaƟng the 
operands used in the instrucƟon to determine which operand failed.  The translaƟon excepƟon address 
when applicable contains two bits to indicate if it was a store or fetch violaƟon.  The ‘00000800’x bit 
indicates a fetch violaƟon, while the ‘00000400’x bit indicates a store violaƟon.  If both occur at once the 
system usually chooses one of the two failures, somewhat at random.  See the z/Architecture Principles 
of OperaƟon for more details.  For a descripƟon of the SDWATRAN and SDWATEAR fields see the MVS 
Data Areas or this link: hƩps://www.ibm.com/docs/en/zos/3.1.0?topic=us-important-fields-in-sdwa 

 



How can a fetch violaƟon be a security vulnerability?  The first thing to check is what storage key was 
used for the fetch access.  For an ABEND0C4 it is usually not a security vulnerability if user key was used.  
For an ABEND0E0 the key might not maƩer if the address space or data space referenced is the problem.  
Regardless, if the data being fetched requires a level of authorizaƟon to access it and we program check 
trying to access it, the next quesƟon to ask is what was the task structure at the Ɵme?  If the task was 
unauthorized with JSCBAUTH off, or a user TCB key in TCBPKF, then the authority to reference the system 
key storage or restricted address space was likely due to running under a PC or SVC.  This is a problem 
because an unauthorized user can interrupt their task with a sƟmer exit, in the middle of a PC or SVC, 
allowing them to view the results of the faulty instrucƟon in the RB status informaƟon.  However, for 
authorized tasks or SRBs that is not a problem, they can’t be interrupted, so it’s likely not exploitable.  
There are other reasons a task might be uninterruptable as well, like TCB status bits or the local lock.  

What kind of informaƟon could someone gain from the RB, either from a sƟmer exit or a parallel task?  
InstrucƟons that fetch data oŌen load it into a register or copy it into a non-fetch protected area.  That 
means the user could see it in the register save area in the RB or determine where to look in non-fetch 
protected storage based on the pointer values in registers in the RB.  What about a compare or test 
instrucƟon like a TM or a CLC?  Those instrucƟons set a condiƟon code based on the contents of the data 
being compared, which can be observed in the condiƟon code in the RBOPSW.  It might not reveal the 
exact value of the system key or restricted data, unless it shows a match, but it can show valuable 
informaƟon about it.  For example, if I can find out the first character of your password is less than “b” 
then I know your password most likely starts with the leƩer “a”.  Bit by bit or byte by byte vulnerabiliƟes 
like this can be sƟtched together to reveal informaƟon about a target address by a skilled malicious user. 

First, we check the key, then we check the task structure, and if the data could be revealed to a user who 
should not be able to gain that informaƟon, we know we have a potenƟal security vulnerability.  Why do 
I say potenƟal vulnerability?  There are sƟll some corner cases to consider.  One case that we should talk 
about is program check by design, where a program accesses an address like ‘7FFFF000’x to purposefully 
cause a program check.  This is uncommon, but it could be used to avoid the hassle of following standard 
RAS procedures with a return code, reason code, or ABEND with a component specific error explanaƟon.  
Another case could involve shared memory objects, where access to the memory object can be added or 
removed so a program check could indicate a lack of access, and poor RAS design, but not be exploitable.  
There could also be a bug where a key 0 control block is read in key 5 consistently in a specific code path, 
which should not be exploitable because it will always fail in this scenario so it’s a bug not a vulnerability.  

Store violaƟons 

ABEND0C4 and ABEND0E0 could also be indicators of a store violaƟon.  The means of differenƟaƟng 
between a fetch violaƟon and store violaƟon are described above under the fetch violaƟons secƟon.  
Once you determine it is a store violaƟon, the next thing to check is the key for an ABEND0C4 and the 
target address space for a ABEND0E0.  If the store is to an area that unauthorized users should not be 
able to access, a store violaƟon can indicate a store protecƟon bypass, even if it occurs under an SRB or 
an authorized task with JSCBAUTH on or a system TCB key in TCBPKF.  While authorized tasks or SRBs can 
not be influenced or observed directly by unauthorized users, they can overwrite storage in ways that 
can be taken advantage of by any unauthorized users.  Store violaƟons by authorized programs, either in 
system key or to a restricted address space or data space, are usually exploitable security vulnerabiliƟes. 



How could someone take advantage of a store violaƟon by an authorized task?  Imagine the program is 
wriƟng ‘00000000’x to address ‘10000000’x in system key.  This could be overwriƟng part of a criƟcal 
system program, and short circuit security controls, which might allow users to compromise z/OS.  
AlternaƟvely, wriƟng to address ‘40404040’x in private storage could be taken advantage of even in a 
started task if a user is able to invoke system services provided by the started task enough Ɵmes to cause 
address ‘40404040’x to be used by a parƟcular service, or contain a parƟcular control block, like an ACEE.  
While it would not be easy to take advantage of it, a store bypass by an authorized program is a problem. 

The problem is worse if the store violaƟon is not for an authorized task.  The most common example is 
when a user calls an SVC or PC and the authorized service overwrites storage based on the user input, 
either at an address specified by the user or at a length or an offset influenced by the user parameters.  
In this scenario, the unauthorized user program, running in problem program state key eight, could sƟll 
update system key storage by passing the right parameters to the SVC or PC and causing it to update it.  
Even if the user can not influence the address being wriƩen to it is sƟll a severe problem, especially if 
they can cause it to occur.  A user who observed the problem could manipulate the system to try to take 
advantage of it, or a lucky user could be the beneficiary of a storage overlay that causes some mayhem. 

Store violaƟons in system key are almost always a security vulnerability.  Yet there are sƟll some corner 
cases to consider, like failure by design, where a program writes to address zero to purposefully cause a 
program check.  This is not common but could be used as avoid the need for following standard RAS 
procedures with a return code, reason code, or ABEND with a detailed component specific explanaƟon.  
Another case could involve shared memory objects, where access to the memory object can be added or 
removed so a program check could show a lack of access, and a poor RAS design, but not be exploitable.  
There could also be a bug where a key 7 buffer is updated using key 1 consistently in a certain code path, 
which should not be exploitable because it will always fail in this scenario so it’s a bug not a vulnerability. 

Wild branches 

An ABEND0C4 could also be an indicator of a wild branch, as could an ABEND0C1 or ABEND0C6.  An 
ABEND0E0 can usually not indicate a wild branch because an ALET is not used for an instrucƟon fetch.  
The key for an ABEND0C4 is determining if the failure was on the instrucƟon fetch or not.  This can 
usually be found by checking if the translaƟon excepƟon address matches the failing PSW.  If it matches 
this is a clear indicaƟon the processor tried to retrieve the instrucƟon data but could not, which means it 
was accessing instrucƟon data it was not intended to access.  Branching to an unintended or unexpected 
locaƟon is also known as a wild branch.  An ABEND0C1 is another strong indicator of a wild branch.  It 
indicates an invalid opcode was specified.  Again, a clear sign of a branch to an unintended locaƟon.  An 
ABEND0C6 can also indicate a wild branch.  Although an ABEND0C6 can occur for many reasons, one of 
those reasons is a branch to an odd address.  Valid instrucƟons can only begin on even addresses, so a 
branch to an odd address means the processer is branching to an unintended or unexpected locaƟon. 

What is so dangerous about branching to an unintended address?  First let’s check the execuƟon state.  
Problem program, user key, unauthorized programs do not pose a risk to system integrity if they branch 
to an unintended address because they are not in an authorized state.  However, if a program is running 
in supervisor state, system key, authorized with JSCBAUTH, or even with a PKM key mask, if it branches 
to an unintended or user specified program that code will also execute in the same authorized state.  For 
more on PKM masks see: hƩps://www.ibm.com/docs/en/zos/3.1.0?topic=rouƟnes-psw-key-mask-pkm 



One way this could be taken advantage of is if an unauthorized caller of an SVC or PC can specify a 
parameter and the service will branch to it an authorized state.  This is also known as an authorizaƟon 
SVC or authorizaƟon PC and is a well-known exploit for bypassing system integrity to elevate privileges.  
SVC or PC rouƟnes that allow this, either by design or by accident, introduce a significant security hole 
and should be disabled and removed from any z/OS system where they are found.  Another way that a 
wild branch in an authorized state could be taken advantage of, even if it is not going to a caller specified 
address, is by observing the address it is branching to and manipulaƟng the environment so data or even 
a program of interest is found at that locaƟon the next Ɵme that it occurs.  For example, if a started task 
branches to address ‘FFF000’x by mistake, a user could call system services to get data at that locaƟon, 
such as an enqueue name or data buffer that contains instrucƟons they want to execute in a system key, 
and if that started task branches to it in system key, they just succeeded, potenƟally compromising z/OS. 

No maƩer whether it is under an authorized or unauthorized task, any Ɵme a branch to an unintended 
address occurs in an authorized state there is a risk that unintended instrucƟons could be executed in an 
authorized state.  Even if a user can not influence how that occurs, if an overlay results, it might lead to 
other problems that a user could take advantage of such as zeroing a pointer to a control block or seƫng 
random bits that happen to be in an ACEE control block.  The main reason that a branch in an authorized 
state might not be exploitable is if it will fail reliably every Ɵme, similarly to any store or fetch violaƟons.  
If a program branches to address zero for example, address zero should always contain an opcode of zero 
and fail with an ABEND0C1 so there should be no way to take advantage of this.  The same might be true 
of other addresses that contain predictable data.  In some cases, a program could intenƟonally branch to 
an address containing an invalid opcode using it to indicate an error.  In other cases, the storage could be 
inaccessible due to a bug, for example a program accidentally marked fetch protected or not executable. 

Conclusion 

In summary, there are a wide variety of reasons an ABEND0C1, ABEND0C4, ABEND0C6, or ABEND0E0 
from an authorized program, with any type of an authorizaƟon, could indicate a security vulnerability.  
Understanding the reason why oŌen boils down to understanding what the ramificaƟons would be when 
it does not abend if there are circumstances when it would not abend.  If it did not abend, storage that 
should not be referenced could be read, overwriƩen, or branched to in an authorized state.  This could 
bypass fetch protecƟon, store protecƟon, or escalate privileges, all serious violaƟons of system integrity.  
Whether or not a user can directly influence the storage address where this occurs, the quesƟon to ask is 
if a malicious user could sƟll take advantage of it.  Whether the difficulty level is high or low, if there is a 
risk it could be exploited then it is a valid security vulnerability, and the problem should be addressed. 


