
WebSphere MQ Security

Morag Hughson – hughson@uk.ibm.com

N

O

T

E

S

WebSphere MQ Security - Notes

When you start thinking about security, you need to decide exactly what it is you
want to achieve, determine what your objectives are.
We will start with a look at some possible objectives you may have and introduce
the terminology used to describe each of these, and exactly what these terms
mean. These terms will be used throughout the remainder of the presentation.

– Objectives - What are you trying to achieve?

– Terminology - What do we mean by these?

Then we will take a closer look at WebSphere MQ messages and what attributes
in a message are relevant to the security of them.

Finally, we will look at the security features available in the WebSphere MQ
product.

Objectives and Terminology

Ensure each user is uniquely identified
Identification:- Being able to uniquely identify a user of a system or an application that is
running in the system.

Prove that a user is who they say they are
Authentication:- Being able to prove that a user or application is genuinely who that person
or what that application claims to be.

Limit Access to authorised users only
Access Control:- Protects critical resources in a system by limiting access only to authorised
users and their applications. It prevents unauthorised use of a resource or the use of a
resource in an unauthorised manner.

Track who does what to what and when
Auditing:- Tracking who has done what to what and when.

Objectives and Terminology

Protect your sensitive data from unauthorised viewing
Confidentiality:- Protects sensitive information from unauthorised disclosure.

Check unauthorised changes have not been made to data
Data Integrity:- Detects whether there has been unauthorsied modification of data. There
are two ways in which this can occur, accidentally, through hardware or transmission errors,
or by deliberate attack.

Ensure a message really is associated with whom it claims
'Non-Repudiation':- The goal is usually to prove that a particular message is associated with
a particular individual.

Identification
O/S User IDs
Context
Link-level considerations (later)

Authentication
O/S Logon
MQCONNX
Link-level considerations (later)

Access Control
Link-level considerations (later)

Auditing

Confidentiality
Application Level Security
Link-level considerations (later)

Data Integrity
Application Level Security
Link-level considerations (later)

Non-Repudiation
Application Level Security

WebSphere MQ Security

N

O

T

E

S

WebSphere MQ Security - Notes

We're going to look at what security features are available to you, when you use
WebSphere MQ, under each of these sections.
Identification
When an MQ application connects to the queue manager the O/S is interrogated
to discover the user ID that it is running under. This is used as the identity. We
can see this user ID in the context information of a message which we’ll look at on
the next page. Later in the presentation we’ll also see that with appropriate
access granted to a user, context information can be specified by the application
instead of being generated from the O/S.
Authentication
A locally bound MQ application is running against MQ under an user ID that the
O/S has provided and which has been logged onto prior to running the
application. There is also a feature on MQCONNX for authentication purposes
that we will look at on a later foil.

Message descriptor (MQMD)

Control information

Identity
Context

Origin
Context

What is Context information?

Identity Context
UserIdentifier

AccountingToken

ApplIdentityData

Origin Context
PutApplType

PutApplName

PutDate

PutTime

ApplOriginData

N

O

T

E

S

Origin Context Information - Notes

Origin Context information usually relates to the most recent application that put the
message on the queue where it is currently stored. There are exceptions to this, for example
the Message Channel Agent, who leaves these fields as they were when received. Origin
Context is made up of the following fields :-
PutApplType: The type of application that put the message, for example CICS, IMS, AIX...
PutApplName: The name of the application that put the message. The value of this field
depends on the PutApplType and if set by the queue manager it is determined by the
environment.
PutDate: The date on which the message was put on the queue. When generated by the
queue manager the format is YYYYMMDD

– YYYY - year (four numeric digits); MM - month (01 through 12); DD - day of month (01 through 31)

PutTime: The time at which the message was put on the queue. When generated by the
queue manager the format is HHMMSSTH

– HH - hours (01 through 23); MM - minutes (01 through 59); SS - seconds (01 through 59)

– T - tenths of seconds (0 through 9); H - hundredths of seconds (0 through 9)

ApplOriginData: Any other information the application may want to add. For example
suitably authorised applications may state whether the identity context information is to be
trusted.
Origin context information is usually supplied by the queue manager and Greenwich Mean
Time(GMT) is used for the put time and date

N

O

T

E

S

Identity Context Information - Notes

Identity Context information usually relates to the application that first put the
message on the queue and is made up of the following fields :-
UserIdentifier: A 1 -12 character field contains the User Identifier of the application
that put the message on the queue. For userids longer than 12 characters the first
12 characters are used. The queue manager fills this in with a name that identifies
the user. The way that it does this depends upon the environment in which the
application is running. Once the message has been received this can be used in
the Alternate Userid field of the object descriptor parameter of the subsequent
MQOPEN call.
AccountingToken: Allows work done as a result of the message to be charged
correctly, how the queue manager fills this in depends upon the environment.
When a message is created under WebSphere MQ for windows a Windows
System Security Identifier (SID) is stored in the Accounting token and can be
used to supplement the user identifier when establishing credentials.
ApplIdentityData : This field is for use by the application to store any information it
wants. When it is generated by the queue manager it is left entirely blank.
Suitably authorised applications can set these fields if they need to.
Applications that pass messages on from one queue manager to another should
pass on the identity context information so the receiving applications know the
identity of the originator of the message.

Authentication - MQCONNX

MQCSP structure
Connection Security Parameters
User ID and password

MQCNO structure
Connection Options

Passed to OAM
Distributed Queue Manager only

Also passed to Security Exit
Both z/OS and Distributed

MQCNO cno = {MQCNO_DEFAULT};

cno.Version = MQCNO_VERSION_5;

cno.SecurityParmsPtr = &csp;

MQCONNX(QMName,
&cno,
&hConn,
&CompCode,
&Reason);

MQCSP csp = {MQCSP_DEFAULT};

csp.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD;
csp.CSPUserIdPtr = “hughson”;
csp.CSPUserIdLength = 7;
csp.CSPPasswordPtr = “12345”;
csp.CSPPasswordLength = 5;

N

O

T

E

S

Authentication - MQCONNX - Notes

On MQCONNX an application can provide a user ID and password (in the
Connection Security Parameters (MQCSP) structure in the MQCNO), which are
passed to a user written plug-point in the OAM on distributed to be checked.
If the application is running client bound, this user ID and password are also
passed to the client side and server side security exits for processing and can be
used for setting the MCAUser attribute of a channel instance – more on channels
later.
If the queue manager is z/OS, there is no OAM plug-point, and the security exit
can be used to call RACF (for example) to check the user ID and password. A
sample security exit is provided (CSQ4BCX3) to illustrate how to do this.

Distributed z/OS

Transmission
Queue

Application
Queues

Queue
Manager

Queue
Manager

Message
channel

MCAMCA

Application

Application

CF

DB2

installable
services

External
Security

Managers

Access Control Mechanisms

Two equivalent mechanisms To secure the following tasks
Administer WebSphere MQ
Work with WebSphere MQ objects

OAM SAF

N

O

T

E

S

Access Control Mechanisms - Notes

All advanced level Queue Managers provide access control facilities to control which users
have access to which MQ resources. Note, however, that none of the Queue Managers has
an access control component; all Queue Managers make use of an associated security
manager to provide access control services.
MQ for z/OS uses the z/OS standard System Authorisation Facility (SAF) interface to an
external security manager (ESM). This means that MQ for z/OS can operate with any
security manager which conforms to the SAF interface. Examples of such (conforming)
security managers are RACF, Top Secret and ACF2.
The distributed Queue Managers use the Installable Services component of MQ - using the
Authorisation Service - to provide access control for MQ resources. MQ supplies an Object
Authority Manager (OAM) as an authorisation service which conforms to the Installable
Services interface.
The OAM provides a full set of access control facilities for MQ including both the access
control checking and commands to set, change and inquire on MQ access control
information. The OAM, like all Installable Services components, is replaceable by any
component - user or vendor supplied - that conforms to the Authorisation Service interface.
The set of facilities provided for by the different platforms, although similar provide different
levels of granular control of resources and capabilities.
The next few foils will detail the various commands on the different platforms.

Access the queue manager datasets on
z/OS

Secure access to MQ Commands
use setmqaut (UNIX & Windows)
GRTMQMAUTH (i5/OS)
Authorities Wizards in MQ Explorer
use ESM (z/OS) profiles to secure

switches

Command Security - controls who is
allowed to issue an MQSC command

Command Resource security - protects
WebSphere MQ resources

Role Based Authorities Wizard (MO05)

Access Control - Administering WebSphere
MQ

Control Commands
e.g. setmqaut (UNIX & Windows),
GRTMQMAUTH (i5/OS)

e.g. runmqsc (UNIX & Windows),
STRMQMMQSC (i5/OS)

use mqm group and OS Facilities to secure

Issue MQ Commands using
runmqsc or STRMQMMQSC

WebSphere MQ Explorer

Ops and Control panels on z/OS

WebSphere MQ CSQUTIL Utility program
on z/OS

N

O

T

E

S

Administering WebSphere MQ - Notes

WebSphere MQ Administrators need authority to do these various tasks. On UNIX and
Windows, Administrators must be a member of mqm group, and on i5/OS a member of
QMQMADM group (or have *ALLOBJ authority). Members of these groups have access to
all WebSphere MQ resources on the system, and qmgrs running on the system.
There are several MQ commands available - both for controlling the Queue Manager (such
as CRTMQM, STRMQM) and for configuration of the Queue Manager (such as
SETMQAUT). Either (or both) the operating system or WebSphere MQ facilities may be
used to control which users may access these commands. Base operating system facilities
may be used to control access to libraries which contain the commands. Such facilities are
outside of the scope of WebSphere MQ. Alternatively, WebSphere MQ provides access
control facilities to restrict access. For the supremely cautious, placing of the WebSphere
MQ commands onto diskette will certainly restrict access to diskette holders only !!
setmqaut (UNIX & Windows) or GRTMQMAUTH (i5/OS) are used to grant authorities to
other users to access WebSphere MQ resources. Commands can be issued in a number of
ways. The control command runmqsc (UNIX & Windows) or STRMQMMQSC (i5/OS) can
be secured, but also the user must have authority to issue the WebSphere MQ command
and authority to access the WebSphere MQ Object. i5/OS also has Group 2 commands
(e.g. CRTMQMQ to create a queue, or CHGMQMPROC to change a process) where in
addition to the above you need i5/OS authority to use the command. This is granted using
the GRTOBJAUT command.
Commands can be issued from a remote machine, so controlling the runmqsc control
command is clearly not enough. Your WebSphere MQ Commands and Objects must also
be controlled.

N

O

T

E

S

Administering .. on z/OS - Notes

WebSphere MQ on z/OS uses the ESM to maintain the security control for access to
commands and objects. This is the equivalent to the setmqaut / CRTMQMAUTH commands
we've just seen on the previous foils.
Security overall, and the different types of security checking, for example, connection
security or queue security, are controlled by a set of switches. These switches are RACF
profiles that have a special meaning to WebSphere MQ. For example, the existence of a
profile called hlq.NO.CONNECT.CHECKS tells WebSphere MQ not to do any connection
security checking. If it does not exist then WebSphere MQ will do connection security
checking.
In addition to the security set up for command and resource checking, the other
considerations are the security of the various data sets. Base O/S facilities are used to
control access to these. Some points to note are:

– You should control who has access to the started task procedures for the Queue Manager and Channel Initiator.

– Commands can be issued in the CSQINP1 and CSQINP2 data sets. There are no security checks done on these
commands because they happen before the security manager has started on the queue manager. Therefore these
data sets must be secured to ensure no unauthorised commands can be added to them.

– Commands issued from the Ops and Control panels, or via CSQUTIL, do have security checking done on the user ID
running them. You may also want to control who has access to use them overall though.

– In order to set up Queue Sharing Groups, the queue manager requires access to Coupling Facility and DB2 data sets.
Also think about access for Qmgrs that will use DB2 and IMS.

Queue Managers

Working with WebSphere MQ objects
Using MQOPEN (or MQSUB)

Namelists (see notes for reference)

Processes (see notes for reference)

Queues

Topics

Alternate Userid
(see notes for reference)

Message Context

Access Control - API Security

N

O

T

E

S

Access Control - API Security - Notes

We have looked at the various different platform specific ways to control which
users have access to which objects. We are now going to look at exactly what can
be secured using these different mechanisms as we discuss API Security.
Access to MQ applications may be controlled by restricting access to the link
libraries (used when link-editing MQ applications) and then by restricting access
to the compiled and linked executable. Both of these controls are base operating
system facilities and are outside the scope of MQ. Again, for the supremely
cautious, placing of the MQ link libraries onto diskette will certainly restrict access
to diskette holders only !!
MQ provides access control facilities to control which users may run applications
which issue MQCONN API calls. This will control which users may access the
running Queue Manager, even though they may have access to the application
libraries.
Once a program is connected to the queue manager, it is very likely that MQ
resources will be used. The queue manager will control which users have access
to which resources and in which way. Note that all (well, most) access control
checks are made when a resource is opened. There are no resource checks
made at GET and PUT time.

API Security

Queue Managers
When an application connects to a Queue manager using an MQCONN or MQCONNX

Working with WebSphere MQ objects
Namelists

When an application opens a Namelist using an MQOPEN
Processes

When an application opens a Process using an MQOPEN

N

O

T

E

S

Checks are carried out for the following API calls.
MQCONN, MQCONNX

When an application tries to connect to a Queue manager using either MQCONN or
MQCONNX, the Queue manager asks the operating system for a userid associated with the
application and then checks to see if that application is authorised to connect to the Queue
manager.

MQOPEN
When an application tries to access a WebSphere MQ resource checks will be performed to
see whether the userid(s) associated with that application have the correct authority to do
what they are requesting. For Namelists and Processes these checks are carried out when
an MQOPEN is issued.

API Security for Queues (next page)
MQOPEN, MQPUT1, MQCLOSE

When an application tries to access a WebSphere MQ resource checks will be performed to
see whether the userid(s) associated with that application have the correct authority to do
what they are requesting. These checks are usually carried out when an MQOPEN or
MQPUT1 is issued.

MQOPEN
when opening an ALIASQ that resolves to a topic two checks will be performed, one against
the aliasq name and one against the topic it resolves to. (this is different to aliasq-> queue
resolution)

API Security - Notes

Updated
V7

API Security - Queues

Working with WebSphere MQ objects - Queues
When an application opens a Queue using an MQOPEN or MQPUT1.
Alias queues that resolve to a topic
Dynamic queues can involve more than one check on creation

Model queue

Dynamic queue
When an application close deletes a permanent dynamic queue using an MQCLOSE
When an MQSUB or DEFINE SUB specifies a destination queue for publications
Named resource that is checked
Fully qualified Remote queues

Check on XMITQ associated with non-local queue

ToQmgrName

SYSTEM.CLUSTER.TRANSMIT.QUEUE

N

O

T

E

S

MQSUB or DEFINE SUB command
When an application performs an MQSUB or a DEFINE SUB command supplying a
destination queue for the publications to be sent to a check is carried out to ensure the
subscriber has authority to PUT messages on that queue.

MQCLOSE
A check can also be performed when an MQCLOSE, with the DELETE option, is issued for
a permanent dynamic queue.
MQ checks to see if a user is permitted to access a particular resource, it is the name
specified in the MQ API call which is used for the check. For the case of an Alias or Remote
queue definition, it is still the name of the queue specified in the MQ API call and not the
resolved-to name. Thus, a user needs access to the first named resource and not the
resolved-to resource.
For dynamic queues, there may be instances where MQ will generate the name from the
model queue. In this case it is recommended that generic named profiles are used for
access control.
If your application is opening queues using the fully-qualified technique (where the qmgr
name is also specified), then the application requires access to the transmission queue
which will be used to send messages to that remote queue manager if you are using a
distributed platform; a profile naming the 'ToQmgr' (instead of the transmission queue) if you
are using z/OS; the SYSTEM.CLUSTER.TRANSMIT.QUEUE if you are using clustering
This is particularly relevant for the ReplyToQueue/ReplyToQMgr which may be being used
for sending responses from a server application.

API Security - Queues - Notes

Topic Security

When an application Subscribes or
Publishes to a Topic using

MQSUB
MQOPEN / MQPUT1

When an application removes a
subscription using

MQCLOSE - with option
MQCO_REMOVE_SUB

Authority check on topic objects
“Walk up the tree”
May be more than one check

Authority check on destination queue
When not using MQSO_MANAGED
Check is for PUT to that queue

FRUIT

Price

Fruit

Apples Oranges

SYSTEM.BASE.TOPIC

MQSUB
‘Price/Fruit/Apples’
Using Q1
MQGET (Q1)

Q1

New for
V7

N

O

T

E

S

MQSUB
A security is performed during MQSUB processing to see whether the application making the request has
the required access to that topic.
An additional authorisation check is done for an MQSUB call when the application wishes to use a
specific destination queue (i.e. is not using the MQSO_MANAGED option). In this case we also check
that this user ID has authority to PUT to that destination queue.

MQOPEN, MQPUT1
if an application is making a publication to a topic using an MQOPEN or MQPUT1 request a security
check is performed to see whether that application has the required access to that topic.
If an application is making a publication to a topic via an alias queue that resolves to a topic then two
checks will take place, one to ensure that the application has access to the alias queue and then one to
ensure that the application has the required access to the topic. This is additional processing to that
when the alias queue points to another queue and is done to ensure that no matter how the topic tree is
accessed, the same security is applied to it.

MQCLOSE
A check can also be performed when an MQCLOSE is performed for a subscription using the remove sub
option.

In our example we have called MQSUB at the point in the topic tree, “Price/Fruit/Apples”. There is no
topic object at this point in the topic tree, so to find the profile we need to check authorities against we
walk up the topic tree to find a node which does have a topic object. The next point is “Price/Fruit”. This
does have a topic object, FRUIT, so we will check that this user ID has subscribe authority on the profile
for the FRUIT topic. If that user ID does have authority, our search stops there. If it does not, we carry on
searching up the topic tree and will check the SYSTEM.BASE.TOPIC to see if this user ID has subscribe
authority there. This means that the structure of your topic tree and the administration of it requires careful
thought.

API Security - Topics - Notes

API Security - Alternate Userid

Alternate Userid

When an application wants to open/put a
message to a queue or topic using an
Alternate user ID, the check is carried out on
the MQOPEN or MQPUT1

If Frederick is allowed to use an alternate user
ID of “FRED”, then the check on the resource
being MQOPENed will be done using “FRED”

Logged-on UserId(Frederick)

OpnOpts = MQOO_OUTPUT
| MQOO_ALTERNATE_USER_AUTHORITY
| MQOO_FAIL_IF_QUIESCING;

strncpy(ObjDesc.AlternateUser,
“FRED”,
MQ_USER_ID_LENGTH);

MQOPEN(hConn,
&ObjDesc,
OpnOpts,
&hObj,
&CompCode,
&Reason);

N

O

T

E

S

API Security - Alternate Userid - Notes

On MQOPEN an application can provide an alternate user ID (in the
AlternateUserId field in the MQOD) by using open option
MQOO_ALTERNATE_USER_AUTHORITY, for checks to be carried out on
instead of the user ID running the application. The user ID requesting use of the
AlternateUserId needs authority to be able to do so.
On z/OS only, if the Queue Manager generated the context information (rather
than it being specifically set by the application - as we will discuss next), the given
Alternate User ID passed on the MQOPEN is placed in the UserIdentifier field in
the MQMD on the MQPUT.

API Security - Alternate Userid

Alternate Userid

When an application wants to subscribe to a
topic using an Alternate user ID, the check is
carried out on the MQSUB

If Alexandra is allowed to use an alternate
user ID of “ALEX”, then the check on the topic
being subscribed to will be done using “ALEX”

DEFINE SUB has a parameter SUBUSER

Logged-on UserId(Alexandra)

SubDesc.Options = MQSO_CREATE
| MQSO_ALTERNATE_USER_AUTHORITY
| MQSO_FAIL_IF_QUIESCING;

strncpy(SubDesc.AlternateUser,
“ALEX”,
MQ_USER_ID_LENGTH);

MQSUB(hConn,
&SubDesc,
&hObj,
&hSub,
&CompCode,
&Reason);

New for
V7

N

O

T

E

S

API Security - Alternate Userid - Notes

On MQSUB an application can provide an alternate user ID (in the
AlternateUserId field in the MQSD) by using the sub option
MQSO_ALTERNATE_USER_AUTHORITY.
The user ID requesting use of the AlternateUserId needs authority to be able to
do so.
If you specify MQSO_ALTERNATE_USER_AUTHORITY, the alternate userid is
the one used for the authorization check for the subscription and for output to the
destination queue (specified in the Hobj parameter of the MQSUB call), in place of
the user identifier that the application is currently running under.
If successful, the user identifier specified in this field is recorded as the
subscription owning user identifier in place of the user identifier that the
application is currently running under.
If defining a subscription using a DEFINE SUB command there is a parameter
SUBUSER that performs a similar function. It becomes the owning userid in the
subscription and is used in the check against the destination queue.

Message descriptor (MQMD)

Control information

Identity
Context

Origin
Context

Identity Context
UserIdentifier

AccountingToken

ApplIdentityData

Origin Context
PutApplType

PutApplName

PutDate

PutTime

ApplOriginData

Set Identity Context
MQOPEN –
MQOO_SET_IDENTITY_CONTEXT
MQPUT –
MQPMO_SET_IDENTITY_CONTEXT

Set All Context
MQOPEN – MQOO_SET_ALL_CONTEXT
MQPUT – MQPMO_SET_ALL_CONTEXT

Set Publication message Identity Context
MQSUB – MQSO_SET_IDENTITY_CONTEXT

Save Context
MQOPEN – MQOO_SAVE_ALL_CONTEXT
Save it from MQGET of a message

Pass Identity Context
MQOPEN –
MQOO_PASS_IDENTITY_CONTEXT
MQPUT –
MQPMO_PASS_IDENTITY_CONTEXT

Pass All Context
MQOPEN – MQOO_PASS_ALL_CONTEXT
MQPUT – MQPMO_PASS_ALL_CONTEXT

Message Context
When an application wishes to 'do something' with the message context, the check is carried out on the
MQOPEN or MQPUT1, or MQSUB

API Security - Context Information

N

O

T

E

S

API Security - Context Information - Notes

Context information is controlled by the MQOO and MQPMO options used on
MQOPEN, MQPUT1 and MQPUT call. If you have not specified anything in the
options field the queue manager may overwrite any existing information held there
with context information it has generated for your message. This is the same as
specifying MQPMO_DEFAULT_CONTEXT.
You may want default context when creating a new message or you may want to
set the context yourself, but may not necessarily want default context when you
are passing on a message. In this case you may wish to pass on the context
information
Whatever you plan to do with context information you need to have opened the
queue with the correct authority in order to do so.

MQCONN
MQOPEN (Q1)
MQOO_SET_IDENTITY_CONTEXT

MQPUT
MQPMO_SET_IDENTITY_CONTEXT

MQOPEN (Q2)
MQOO_SET_ALL_CONTEXT

MQPUT
MQPMO_SET_ALL_CONTEXT

Q1

Q2

MQ Application

I O

I O

API Security – Setting Context

N

O

T

E

S

MQOPEN and MQPUT options
If you want to be able to set the identity context of a message and let the queue
manager set the origin context of a message then the two options you need are:

– MQOO_SET_IDENTITY_CONTEXT on the MQOPEN of the queue and

– MQPMO_SET_IDENTITY_CONTEXT on the MQPUT of the message to the queue

If you want to be able to set both the identity and the origin context of the
message, the options you need are:

– MQOO_SET_ALL_CONTEXT on the MQOPEN of the queue and

– MQPMO_SET_ALL_CONTEXT on the MQPUT of the message to the queue

Appropriate authority is required to be able to do any of these.

API Security - Setting Context - Notes

MQCONN
MQSUB
MQSO_SET_IDENTITY_CONTEXT

Destination Q

PubAccountingToken
PubApplIdentityData
from MQSD

MQMD
AccountingToken
ApplIdentityDataMQCONN

MQPUT1

MQ Application

MQ Application

API Security - Setting Context - MQSUB

N

O

T

E

S

MQSUB
If you want to be able to set the identity context associated with a subscription
then the option need is:

– MQSO_SET_IDENTITY_CONTEXT on the MQSUB of a topic

Appropriate authority is required in order to do this.

This will result in a the related context information held in the subscription being
put into the message that is published to that subscription and placed on its
destination queue

If an MQSUB has been carried out without this option then the subscription will
hold default context information and this is passed onto the publication message
for this subscription.

API Security - Setting Context - Notes

MQCONN
MQOPEN (Q1)
MQOO_SAVE_ALL_CONTEXT

MQGET

MQOPEN (Q2)
MQOO_PASS_IDENTITY_CONTEXT

MQPUT
MQPMO_PASS_IDENTITY_CONTEXT

MQOPEN (Q3)
MQOO_PASS_ALL_CONTEXT

MQPUT
MQPMO_PASS_ALL_CONTEXT

MQ Application

I O

I O

Q1

Q2

Q3

MQPMO
Context
field

Object Handle

API Security - Passing Context

N

O

T

E

S

MQOPEN and MQPUT options
If you want to be able to pass the identity context of a message then the options
you need are, on the MQOPEN of the queue for which you are going to do the
destructive MQGET (pass context cannot be used with browse):

– MQOO_SAVE_ALL_CONTEXT

For the queue you are opening to put the message, the options you need are:
– MQOO_PASS_IDENTITY_CONTEXT or

– MQOO_PASS_ALL_CONTEXT

depending upon whether you are passing just the identity context or all the
context.
For the put of the message you need to put the object handle of the message you
retrieved using the MQGET into the MQPMO context field for the message you
are going to put, and you also need on the options for the MQPUT of the
message to the queue, either:

– MQPMO_PASS_IDENTITY_CONTEXT or

– MQPMO_PASS_ALL_CONTEXT

Appropriate authority is required to be able to do any of these.

API Security - Passing Context - Notes

Context - Security Checking

User Identifier
Originating userid
Alternate Userid

Accounting Token
Windows SID

Report messages
Expiry
COD
Use UserIdentifier

Message descriptor (MQMD)

Control information

Identity
Context

Identity Context
UserIdentifier
AccountingToken
ApplIdentityData

N

O

T

E

S

Context - Security Checking - Notes

We will now take a brief look at what context information can be used for security
checking.
The User Identifier field in the MQMD either contains the Originating user ID if no
context changes (as described in the previous foils) have been made, or it
contains an Alternate user ID which was filled in by a set context, for example.
The Accounting Token field in the MQMD can contain the Windows Security
Identifier (SID) to uniquely identify the user Identifier.
When generating some report messages (expiry and COD) the user ID of the
putting application of the original message cannot be used because it is no longer
available (it can be used for COA because that report message is still within the
applications UOW). In these cases, the user ID in the context information for the
original message is used instead.

z/OS Platform

Standard External Security Manager
(ESM) facilities, to record

changes to security profiles and access to them
failed accesses to resources controlled by
those profiles
successful accesses to resources controlled by
those profiles

Reslevel audit records
RACROUTE REQUEST=AUDIT

Controlled via
ZPARM: RESAUDIT(YES|NO)

IMS Bridge audit records
RACROUTE REQUEST=AUDIT

Distributed Platforms

MQRC_NOT_AUTHORIZED events
written to SYSTEM.ADMIN.QMGR.EVENT
queue

Type 1: MQCONN

Type 2: MQOPEN/MQPUT1
MQPUT1 ==> MQOPEN

Type 3: MQCLOSE
For deletion of dynamic queues

Type 4: Commands
WebSphere MQ PCF commands

Type 5: MQSUB
subscribe check failed

Type 6: MQSUB
destination queue check failed

Auditing

N

O

T

E

S

z/OS Platform
When using the WebSphere MQ for z/OS
queue manager, you can use the standard
External Security Manager (ESM) facilities
to create an audit trail for any changes
made to your security set up.
This can be set up to do any / all of the list
shown depending on the ESM.
In addition to the standard ESM facilities,
there are two other types of audit records
written. Due to the different way the
enquiry is made to RACF, normal RACF
audit records are not written so MQ
requests a general audit record is written
for these two types.
Whether these RACF audit records are
written for RESLEVEL security checks is
controlled by ZPARM
RESAUDIT(YES|NO).
These RACF audit records for the IMS
bridge cannot be turned off.

Distributed Platforms
On the non z/OS platforms, an audit trail of
access failures is kept by means of event
messages which are written to the
SYSTEM.ADMIN.QMGR.EVENT queue.
There are several different types of
MQRC_NOT_AUTHORIZED events
showing specifically what kind of access
was attempted. Each of these types has a
different reason qualifier recorded in the
event message.

– MQRQ_CONN_NOT_AUTHORIZED

– MQRQ_OPEN_NOT_AUTHORIZED

– MQRQ_CLOSE_NOT_AUTHORIZED

– MQRQ_CMD_NOT_AUTHORIZED

– MQRQ_SUB_NOT_AUTHORIZED

– MQRQ_SUB_DEST_NOT_AUTHORIZED

and, where applicable, there is information
in each event message to show the user
ID and application that made the failed
access attempt.

Auditing - Notes

Control information

Message descriptor (MQMD) Application data

Name
from

Account #
Amount

requested

to
Account #

What is a message?

Contains things like
Type of message

Identifier for message

Context information

Contains your data
Anything you want to send

N

O

T

E

S

What is a message? - Notes

A message in WebSphere MQ is merely a sequence of bytes in a buffer of a
given length. The current products support up to 100MB in a single message
although the vast majority of messages are in the order of a few thousand bytes.
Messages have various attributes associated with them, which are contained in
the header called the Message Descriptor (MQMD), such as their format and their
identifier. This header also contains information detailing where and who the
message came from. This information is known as the context information and we
will look at it in more detail later.
The Application data follows the Message Descriptor header. This is your
information that you want to pass in a message - this could be information that

– Is not private or confidential , and that you don't really care if anyone sees it, for example an update to
a public notice board for train arrival times, so you might want to control access to it but not
necessarily want to do anything else with it.

– Is very private and confidential, and you do want to protect it, so you might want to control access to it
and also want to protect it whilst in transit and when stored.

Transmission
Queue

Application
Queues

Queue
Manager

Queue
Manager

Security
services

Security
services

Security
services

Security
services

ApplicationApplication

NodeNode

Message
channel

MCAMC
A

Comms
stack

Comms
stack

Application
Level

Application Level Security

N

O

T

E

S

Application Level Security - Notes

Application level security (also known as end-to-end security or message level
security) fits into the picture at the interface between the application and the
queue manager. One example of a service provided by application level security
is queue level encryption.
The application is unaware of the service and so the application programmer
need not worry about coding it into his application, however, before the message
is even placed on the queue it can be encrypted, thus ensuring that it's contents
are never exposed. The message is encrypted while is resides on the queue,
while it is transported across the network - the channels are unaware that the
content is encrypted since they are content agnostic anyway - and is still
encrypted when it is placed on the target queue. At the point where the receiving
application gets the message off the queue the application level security service
decrypts the data and presents it to the application.
Application level security facilities such as message level encryption for
confidentiality purposes can be achieved with the WebSphere MQ Extended
Security Edition (ESE), with API wrappers, or with an API Exit. API Exits allow
various vendors to provide different offerings with these facilities.

Transmission
Queue

Application
Queues

Queue
Manager

Queue
Manager

Security
services

Security
services

Security
services

Security
services

ApplicationApplication

NodeNode

Message
channel

MCAMC
A

Comms
stack

Comms
stack

Link Level

WebSphere MQ Security - Link Level Security

N

O

T

E

S

Link Level Security – Notes

This diagram illustrates what we mean by Link Level security. We have security
facilities which operate on the data which flows over the wire (i.e. the link). The
services have no effect on messages when they are at rest on queues in between
the links, and if there are multiple hops through various queue managers before
the message reaches its final destination, then these security services will be
applied multiple times, once on each link.

Identification
Message context
Security Exits

Authentication
Secure Sockets Layer (SSL)
Security Exits

Access Control
Put Authority

MCA User

Message Userid

Firewalls
Port numbers

Internet passthru (SPac MS81)

Confidentiality
Secure Sockets Layer (SSL)
Exits

Data Integrity
Secure Sockets Layer (SSL)

WebSphere MQ Security - Link Level Security

N

O

T

E

S

Identification
When an MQ application connects remotely to a queue manager it can assert an identity
across the network connection to the queue manager. This identity could be anything and
so should not be trusted without some form of queue manager side authentication.
Messages that flow from a remote queue manager already contain identity context inside
the message. Later we will see how this identity can be chosen as the identity for access
control.

Authentication
Authentication is the way in which a channel ensures that the other end of the channel is
who they say they are. In WebSphere MQ V5.3, channels can make use of SSL to
authenticate a digital certificate sent by the partner. Another method employed by Channels
is to use security exits to perform this function.
Once a remote partner has been authenticated, a security exit can also set the identity that
this channel will use for all access control checks.

Confidentiality
In an ideal environment all channels would be running inside the enterprise with good
physical security. However, often there will be cross enterprise channels or channels
running on networks where physical security can not be guaranteed. In those cases it is
worth considering adding some level of encryption to the data flow. This can either be done
in channel exits or by using SSL on the channels.

Link Level Security - Notes

ChannelQM1 QM2

MCA MCA
Security Exchange

Transmission
Queue

Application
Queue

Security
Exit

Security
Exit

Link Level .. Identification and Authentication

Security Exits - Channel 'Gate Keeper'
Indefinite exchange of data between exits
No defined format
No communications knowledge required
Can end channel
Can set MCAUSER

N

O

T

E

S

Link Level .. Identification and Authentication -
Notes

One of the problems with authentication is that the industry can not decide how it should be
done. Different environments suit different strategies and require different levels of security.
The most common approaches seem to be third party authenticators such as Kerberos, SSL
and Public/Private key encryption. WebSphere MQ decided that the most flexible approach
was to make authentication a plug in service. That way each channel could have exactly the
level of authentication it needed.
Authentication can now be done without the use of a security exit, by using SSL and digital
certificates. This is built into channels in WebSphere MQ V5.3 and is the subject of a
separate presentation.
Security exits are the first channel exits to gain control of the conversation. They can
exchange free format data with their remote partner, exchanging passwords, public keys etc
to authenticate the remote partners request.
No knowledge of communications is required. The exit merely passes a buffer of data back
to the MCA who then transmits it to the partner machine. The data is received by the other
MCA and then passed to the other security exit.
If the security exit agrees with the authentication then it can change the default userid used
for access control, known as the MCAUserid.
A number of security exits are shipped as samples with the product. There are also some
available for download from the supportpac web site.
A number of third party products are also available.

Hi from
Alice

Alice BobHi from Bob
+ Bob's Cert

+ Cert Request

It's Bob ! Secret Key
+ Alice's Cert

It's Alice !
Private messages using

Secret Key

SSL Handshake

B
Public

Bob's Digital
Certificate

CA Sig

CA

Public

CA

Public

Alice's Digital
Certificate

CA Sig

1

6

5

2

3

4

N

O

T

E

S

1. The 'Client Hello'
– Alice sends Bob some random text, she also sends what CipherSpecs and compression methods

she can use. Alice is considered the client since she started the handshake.

2. The 'Server Hello'
– Bob sends Alice some random text and chooses the CipherSpec be used, from Alice's list. He will

also send over his certicate - the Server Certificate and may optionally request that Alice sends him
her certificate - the Client Certificate Request.

3. Verify Server Certificate
– Alice will verify Bob's certificate is valid by checking this digital signature made by the CA (see next

foil for more details).

4. Client Key Exchange
– Alice builds the Secret Key and sends it to Bob to use in a message encrypted with Bob's Public

Key. This means that only Alice who invented the Secret Key and Bob who can decrypt the message
containing it, know the Secret Key. Alice also sends her certificate (since Bob requested it).

5. Verify Client Certificate
– Bob will verify Alice's certificate is valid by checking this digital signature made by the CA

6. This is now a 'secure line'
– Bob and Alice can now send Information using agreed Secret Key which is a randomly generated 1-

time key just used for this session.

SSL Handshake

Trusting a Digital Certificate

Digital Certificate = Plaintext
Can be subject to tampering
Signed by CA at creation

CA's Digital Signature
Allows tampering to be detected

Alice's Digital
Certificate

CA Sig =

If hashes don’t
match:
Certificate has

been tampered
with

If hashes don’t
match:
Certificate has

been tampered
with

CA Sig
h

Hash

Function
h

CA Signed

CA Signed

h
CA Signed

CA Signed
h

!h
Hash

Function

N

O

T

E

S

Trusting a Digital Certificate - Notes

Digital signatures combine the use of the one-way hash function and
public/private key encryption.
The message is hashed to provide a number, the hash number or message
digest. This hash number is encrypted using the sender's private key to create the
digital signature. The recipient of the message can also hash the message to get
a hash number, and can decrypt the digital signature using the sender's public
key, to get her hash number. If these numbers match then the message did come
from the sender and also we know it hasn't been changed since it was signed.
A digital certificate can simply be thought of as a piece of plaintext that could be
subject to tampering. After all it is just a file on your computer. How can we detect
if someone has tampered with the certificate we are going to use. This is where
the CA signature comes into effect. The same technique described above is used
to determine whether a digital certificate has been tampered with.
The CA calculate the hash value of the plaintext (our certificate) and then signs
that hash value with the CA private key to generate a CA digital signature. To
check that the certificate is valid, the CA's digital signature can be decrypted
using the CA public key (well known CA public keys are installed in many of the
security products that use SSL) to check that the hash values match.

SSLCIPH(RC4_MD5_US)
SSLRKEYC(999 999 999)
SSLPEER('O=IBM')
SSLCAUTH(REQUIRED)

SSLKEYR(QM1KEYRING)

SSLCRLNL(LDAPNL)

Using SSL with WebSphere MQ

Get your certificates
for Authentication

Digital Certificates

Asymmetric Keys

Put your certificates in a place that MQ
can use

Decide if your business
needs revocation status
checking

Configure your channels
to use SSL for Confidentiality

Symmetric Key
Cryptography

… and Data Integrity
Hash Function

WebSphere MQ SSL Wizard (MO04)

Plaintext

h
Hash

Function

Alice's Digital
Certificate

CA Sig

A
Private

A
Public

Revoked
Alice

N

O

T

E

S

Link Level .. SSL - Notes

The three main issues that SSL addresses are Confidentiality, Data Integrity and
Authentication. The techniques that it uses to address these issues are

– For Confidentiality, we have symmetric key cryptography with the capability to periodically reset the
secret key;

– For Data Integrity we have the hash function; and

– For Authentication we have digital certificates, asymmetric keys and certificate revocation lists.

WebSphere MQ makes use of these techniques to address these security issues.
One can specify which symmetric key cryptography algorithm and which hash
function to use by providing WebSphere MQ with a SSLCipherSpec (SSLCIPH on
a channel). The secret key can be periodically reset by setting an appropriate
number of bytes in SSLKeyResetCount (SSLRKEYC on the queue manager).
Digital Certificates and Public Keys are found in a key repository which can be
specified to WebSphere MQ (SSLKEYR on the queue manager). We can also
check that we are talking to the partner we expect to be talking to (SSLPEER on a
channel) and can choose to authenticate both ends of the connection or only the
SSL Server end of the connection (SSLCAUTH on a channel). Also we can make
use of certificate revocation lists (SSLCRLNL on the queue manager).

Link Level .. Access Control

Put Authority (PUTAUT) receiver channel attribute
Default - use the channels MCAUser
OnlyMCA - z/OS equivalent
Context - use the userid in the message
ALTMCA - z/OS equivalent

MCAUser
Effective userid this channel should run under

Normal MQ access control

Failed puts put to Dead Letter Queue

N

O

T

E

S

Link Level .. Access Control - Notes

Once the security exits have authenticated with the partner, i.e. determined that the partner
really is who they say they are, we then have the issue of access control. Essentially the
user needs to choose between treating all messages from a remote Queue Manager as the
same level of authority or setting access rights on a per message basis.
This is controlled by the PUTAUT (put authority) attribute of a receiver type channel.
On Distributed platforms it essentially has two values

– Context - this tells the channel to take the userid from the Message and use that userid to perform the access control
check

– Default - this tells the channel to perform the access rights for all messages using a single userid for the channel for all
messages. This userid is in the MCAUser attribute. This field can either be entered at channel definition time or can be
filled in by a security exit at authentication time.

On z/OS, more than one userid can be checked for access, and the PUTAUT attribute has
more values. Default, Context, OnlyMCA and ALTMCA, The z/OS equivalents of the
descriptions given above are ALTMCA and ONLYMCA respectively. Context and Default
have slightly different meanings on z/OS and all the definitions can be found in the Security
chapter of WebSphere MQ for z/OS System Setup Guide.
When using CONTEXT or ALTMCA the userid of the message is used to determine access
control. This means that userids may need to cross platform boundaries. In some cases this
is neither practical or desirable. It may be appropriate to change the userid in the message
to one suitable for use on the target system. The channel message exit is a suitable place to
perform this transformation.

ChannelQM1 QM2

MCA MCA

Transmission
Queue

Application
Queue

Dead Letter
Queue

Dead Letter Queue

Security Failures
Messages placed on Dead Letter Queue

Access Control on DLQ

Be careful with Dead Letter Handler

N

O

T

E

S

Dead Letter Queue - Notes

Note that security failures will result in an attempt to put to the Dead Letter
Queue. If the user is also not authorised to put to the Dead Letter Queue then for
a recoverable message the channel will come down. It is therefore generally a
good idea not to make the Dead Letter Queue access control too restrictive.
Be careful with the process used by the Dead Letter Queue Handler. Make sure it
doesn't simply re-PUT messages that failed with a security error back to the
queue they were destined for. The user ID running the Dead Letter Queue
Handler will probably have higher authority and so you may find that security is
being bypassed by messages going via the Dead Letter Queue. Ensure security
failures are processes correctly by the Dead Letter Queue Handler or even are
placed on a separate queue to be dealt with by another process.

QMgr

LISTENER
Port = xxxx

QMgr

CHANNEL

MQI Client

Firewalls

Requires target port configuration
Configurable for the TCP Listener

Requires source port configuration
Configurable for MQI Client
Configurable for Channel Definition
DEFINE CHL(TO.NTC1) LOCLADDR((1000,2000))

N

O

T

E

S

Firewalls - Notes

To aid with the security of their installation many people install firewalls between
machines which have access to machines outside the enterprise. Different firewall
products implement slightly different levels of checking. Some tend to be packet
based whereas others are just connection/socket based. One common factor
though is the ability to open a hole in the firewall given a pair of network
addresses and a pair of port numbers.
Inside the CONNAME field of the sender channel attribute you can specify the
port number of the remote partner machine (by default 1414) and in the
LOCLADDR field you can specify your own local port number. By default this is
chosen by the TCP/IP stack itself. However, if you're using a firewall product you
probably want to control the local port number that is chosen.
The LOCLADDR field is supported in WebSphere MQ V5.3 and later.

ChannelQM1 QM2

MCA MCA

Transmission
Queue

Application
Queue

Message
Exit

Encryption

Message
Exit

Decryption

Link Level .. Confidentiality

Encryption at Channel Level
SSL
Message Exits
Messages in the clear on the Queues
Applications unaware

N

O

T

E

S

Encrypting data is an expensive operation and is generally only employed where
necessary. Often only certain key elements of a message might be encrypted with
most of it still in the clear.

Channel Level Encryption
Often an enterprises physical security is good enough so that only data on the
network is at significant risk of being tampered with. In these cases adding
encryption/decryption to the channel operation may be the ideal solution. This can
be done in the Channel Message Exits, in the Send/Recieve Exits, or in
WebSphere MQ V5.3, it can be done using SSL. SSL is the subject of a separate
presentation.
Encryption algorithms are readily available and easy to incorporate into MQ
wrappers and/or Channel Exits. However, if writing a local solution is not to your
liking both techniques are well supported by third party security products.

Link Level .. Confidentiality - Notes

