-

SHARE

Javam Security on z/OS: An Introduction
(SHARE Session 1775)

Tom Benjamin
IBM z/OS Java Security Development
tbenjami@us.ibm.com

Java and JVM are Trade marks of Sun Microsystems

-

Y

SHARE

What Is Java Security?

= Java 2 framework - Set of common cross platform
programming API's administered by Sun

= Java Security Extensions - Set of common API's to extend
Java 2 to add Security capabillities

= Provides Java Applications easy access to complex
Security capabillities within Java framework

= Java Security extensions being added to base Java 2
framework with SDK 1.4.0

z/OS Java SDK with 3

Security components SHARE

= |BM Developer kit for OS/390, Java 2 Technology Edition at SDK
1.3.1

» Avallable via SMP/E through Boulder

» Web downloadable
http://www-1.ibm.com/servers/eserver/zseries/software/java/

= Made available on z/OS (OS/390) - October 2001

» Adds 5 new Security components in addition to JAAS and SAF
(RACF) interfaces shipped with SDK 1.3.0

= Related Technical article

» Java security on z/OS, an introduction
= http://www-1.ibm.com/servers/esdd/articles/jsecurity.html

-

Y

SHARE

z/OS Java Security components

= JAAS - JavaAuthentication andAuthorization Service
= JCE - JavaCryptographic Extension

= JCEA4758- JavaCryptographic Extension using CCA
hardware cryptographic devices on z/OS

= JSSE- JavaSecure Socket&xtension (SSL and TLS)

= CertPath - Certificate (generation and path validation)
= PKCS - Public Key Standards

= SAF Interfaces

-
z/0S)

Java Authentication and Authorization Service - JAAS SHARE

= Sun's Java Authentication and Authorization Services (JAAS)
framework was released with JDK 1.3.0

» Extends from Java 2 code source based Security model

= |BM's z/OS implementation adds support for Principal (userid) based
security

» Authentication of a SAF user
» Java Authorization by code source and user
» Based on grants in java.policy file

= Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/jaas.html

= Related Technical Article
» All that JAAS: An overview of the Java authentication and authorization services
= http://service2.boulder.ibm.com/devtools/news0300/artpagd®m

-
z/0S)

Java Authentication and Authorization Service SHARE

= 0OS/390 Login - User authentication via SAF
» User authentication via SAF
» Active authentication - Regular password based authentication

» Passive authentication - Form Java Principal construct from current z/OS
userid associated with the thread of execution

» Authorization within Java doas loop

= ThreadSubject.doas
» Authorization within doas loop and
» Change the identity of the underlying z/OS thread within doas loop

= SAFPermission
» Extend Java permission to use SAF Interfaces

» New Java permission to allow Java applications to do authorization checks
with SAF for SAF protected resources

-
z/0S)

Java Cryptography Extension - IBMJCE SHARE

= Implements platform independent Cryptography API into Java 2
as a standard extension

» Cryptography is performed via software
= Replaces IBMJCA capabilities

» Digital Signatures, Hashing, keystore

» Extends to add more capabilities
= |ncludes many algorithms for

» Encryption/Decryption (Symmetric and Asymmetric
algorithms)

» Key agreement, MAC
= Code is common with other IBM platforms at SDK 1.3.1 level

= Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/softwaredya/jce.html

-
z/0S)

Java Cryptography Extension - IBMJCE SHARE

= Digital Signatures via RSA and DSA
= Hashing - SHA1, MD2, MD5

= Keystore - Symmetric and Asymmetric keys protected
oy 3DES

= Symmetric Algorithms - DES, 3DES, PBE, Blowfish,
Mars, RC2, RC4

» Ciphers - ECB, CBC, CFB, OFB, PCBC
= Asymmetric Algorithms - RSA
= Key Agreement - Diffie-Hellman
= HMAC - MD5, SHA1

z/0S "1’“

Java Cryptography Extension - IBMJCE

A simple code example - DES ot it

/I generate the DES key

java.security.SecureRandom random =
java.security.SecureRandom.getinstance("IBMSecureRandom");

SecretKey key = null;
KeyGenerator desKeyGen;
try {
// take the first DES in the provider list java.security
desKeyGen = KeyGenerator.getinstance("DES");
} catch (Exception ex) {
System.out.printin("Unexpected exceptionl: " + ex.getMessage());
return;

}

try {
desKeyGen.init(random);

key = desKeyGen.generateKey();

} catch (Exception ex) {
System.out.printin("Unexpected exception2: " + ex.getMessage());
return;

}

z/0S 3
Java Cryptography Extension - IBMJCE

A simple code example DES cont. < irirdotcli i

/I Create the Cipher and encrypt code here

try {
/] take the first provider in the provider list with DES/CBC/PKCS5Padding

cp = Cipher.getinstance("DES/CBC/PKCS5Padding");
cp.init(Cipher. ENCRYPT_MODE, key);
cipherTextl = cp.update(byteDataToCipher);
cipherText2 = cp.doFinal();
} catch (Exception e) {
System.out.printin("Exception hit ==> "+e);

}

z/OS
Java Cryptography Extension - IBMJCE

= Related Technical articles

» Java cryptography Part 1. Encryption and decryption
— http://service2.boulder.ibom.com/devtools/news0100/artpagel8.htm
» Java Cryptography Part Il: Key generation and management
— http://service2.boulder.ibm.com/devtools/news0300/artpag20.htm
» Java cryptography Part Ill: Implementing your own provider
— http://service2.boulder.ibom.com/devtools/newd500/art19.htm

» Java Cryptography Part IV: JCE export considerations
— http://service2.boulder.ibm.com/devtools/newd00/art5.htm

SHARE

-
z/0S)

Java Cryptography Extension - IBMJCE4758 SHARE

= |BM Implementation of JCE Cryptography using CCA hardware
cryptographic devices

= Replaces those JCE capabilities available via CCA hardware
= No changes to the JCE APlI's

» Software cryptography replaced by calls made to IBM's CCA
hardware inside the provider

= Almost no changes to Java JCE Applications
» key generation
» java.security (properties file) provider order

= Allows a JCE application to take advantage of hardware cryptography
without extensive knowledge of hardware cryptography

= Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/javalgcca.html

-
z/0S)

Java Cryptography Extension - IBMJCE4758 SHARE

= Greatly enhances security
» Cryptographic processing done via secure devices
» Adds Protected keys (never available in the clear)

» Adds Retained keys (stored on the hardware cryptographic device
and never available in the clear)

= Greatly enhances performance

» Digital Sign/Verify as much as 34 times faster than software
cryptography

» Moves Cryptographic operations off the CPU and onto the
hardware cryptographic device

» Faster throughput and a reduction in CPU usage

-

z/OS
Java Cryptography Extension - IBMJCE4758 SHARE
Sign and Software Hardware Hardware Hardware
Verification | CLEAR CLEAR PKDS RETAINED
keys keys keys keys
Algorithm Trans CPU Trans CPU Trans CPU Trans CPU
32‘; dhaSh per utilizatio | per utilizati | per utilizati | per utilizati
second |[n second on second |[on second on
RSA 67| 97.82% 1,018 | 81.84% 1,033 | 83.35% 99 7.87%
MD2
RSA 68| 97.20% 880 | 35.57% 790 | 33.95% 98 3.77%
MD5
RSA 67| 97.09% 907 | 41.26% 812 | 39.84% 98 4.02%
SHA1
DSA 123 | 90.59% | ---N/A-- ---N/A--- 361 | 12.69% | ---N/A-- ----N/A----
SHA1 -

2064-116 (16 CPU's) with 2 CCF's, 16 IBM 4758-2 Cryptographic Coprocessor PCI cards

running z/OS V1R2, Java 1.3.1 (SDK 1.3.1 level (PTF UQ99325) IBMJCE (software cryptographic provider)
and IBMJCE4758 (Hardware cryptographic provider). The data size was 1024, with 50 threads of execution

-

z/OS) |
Java Cryptography Extension - IBMJCE4758 SHARE
Encryption Software Hardware

cryptography cryptography

IBMJCE IBMJCEA4758
Algorithm ETR CPU ITR Trans | ETR CPU ITR Trans
and data Trans per | Utilization | Per second | Trans per | Utilization Per
size second second second
DES 1KB 5,401 96.02% 5,625 5,186 26.95% 19,243
DES 89 95.31% 94 362 22.44% 1,613
100KB
DES 1mb 2 97.78% 9 64 15.26% 419
Triple DES 3,143 99.94% 3,145 5,159 29.62% 17,417
1KB

2064-116 (16 CPU's) with 2 CCF's, 16 IBM 4758-2 Cryptographic Coprocessor PCI cards
running z/OS V1R2, Java 1.3.1 (SDK 1.3.1 level (PTF UQ99325) IBMJCE (software cryptographic provider)
and IBMJCE4758 (Hardware cryptographic provider). The data size was 1024, with 50 threads of execution

-
z/0S)

Java Cryptography Extension - IBMJCE4758 SHARE
= Digital Signatures via RSA and DSA
= Hashing - SHA1, MD2, MD5
= Keystore - Symmetric and Asymmetric keys protected by 3DES

= Symmetric Algorithms - DES, 3DES, PBE
» Ciphers - ECB, CBC, CFB, OFB, PCBC

= Asymmetric Algorithms - RSA

= HMAC - MD5, SHA1

z/OS
Java Cryptography Extension - IBMJCE4758
A simple code example - DES

Nothing changes from the IBMJCE example

/I generate the DES key

java.security.SecureRandom random =
java.security.SecureRandom.getinstance("IBMSecureRandom");

SecretKey key = null;
KeyGenerator desKeyGen;
try {
// take the first DES in the provider list java.security
desKeyGen = KeyGenerator.getinstance("DES");
} catch (Exception ex) {
System.out.printin("Unexpected exceptionl: " + ex.getMessage());
return;

}

try {
desKeyGen.init(random);

key = desKeyGen.generateKey();

} catch (Exception ex) {
System.out.printin("Unexpected exception2: " + ex.getMessage());
return;

}

SHARE

z/OS
Java Cryptography Extension - IBMJCE4758
A simple code example DES cont.

Nothing changes from the IBMJCE example

/I Create the Cipher and encrypt code here

try {
/] take the first provider in the provider list with DES/CBC/PKCS5Padding

cp = Cipher.getinstance("DES/CBC/PKCS5Padding");
cp.init(Cipher. ENCRYPT_MODE, key);
cipherTextl = cp.update(byteDataToCipher);
cipherText2 = cp.doFinal();
} catch (Exception e) {
System.out.printin("Exception hit ==> "+e);

}

Much better examples in the technical articles referenced later

SHARE

-
z/0S)

Java Cryptography Extension - IBMJCE4758 SHARE

» Related Technical articles

» Java Cryptography Architecture using Hardware cryptography -- part 1, an
Introduction

= http://www-1.ibm.com/servers/esdd/articlesgva_crypto.html

» Java Cryptography Architecture using Hardware cryptography -- part 2,
details for z/OS

= http://www-1.ibm.com/servers/esdd/articlesgva_crypto2.htmi
» Java Cryptography Extension using hardware cryptography -- part 3
= http://www-1.ibm.com/servers/esdd/articlesva_crypto3.html

» More coming at IBM eServer Developer Domain
= http://www-1.ibm.com/servers/esdd/index.html

-
z/0S)

Java Secure Sockets Extension - IBMJSSE SHARE

= Implements SSL 3.0 and TLS 1.0 as JavaZ2 standard extensions
» 100% pure Java Implementation
= Provides Authentication, Integrity and Privacy at the transport level
» privacy for browser to Web-Server e-business
» any secure data exchange
= Supports common security algorithms
» RSA, DSA, DES, 3DES

= Socket factories encapsulate socket creation, key and trust
management behavior for ease of use

= Code is common with other IBM platforms at SDK 1.3.1 level
» Allows for application portability

= Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/jsse.html

-
z/0S)

Java Secure Sockets Extension - IBMJSSE SHARE

= Advantages of IBMJSSE
» Supports a wide variety of SSL and TLS algorithm types
» Easier Socket Creation via encapsulated factories

» Ability to create application specific Trust Manager for
application requirements

= |IBMJSSE is the preferred SSL/TLS for Java Applications on z/OS

» IBMJSSE is 100% pure Java and does not use System SSL
services

» IBMJSSE should be used in place of System SSL for Java
Applications

— No overhead converting to C based services (JNI)

-
z/0S)

Java Secure Sockets Extension - IBMJSSE SHARE

= Algorithms for key exchange and authentication
» RSA, Diffle-Hellman, DSA

= Algorithms for Data exchange
» DES, 3DES, RC4, RC2

= Hashing Algorithms
» SHA, MD5

-
z/0S)

Java Secure Sockets Extension - IBMJSSE SHARE

= Cipher Suites supported
»SSL_RSA WITH_RC4_128 MD5
»SSL_RSA WITH_RC4_128_SHA
»SSL_RSA WITH_DES_CBC_SHA
»SSL_RSA WITH_3DES_EDE_CBC_SHA
»SSL_DHE_RSA_WITH_DES_CBC_SHA
»SSL_DHE_RSA WITH_3DES_EDE_CBC_SHA
»SSL_DHE_DSS_WITH_DES_CBC_SHA
»SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
»SSL_RSA_EXPORT_WITH_RC4_40_MD5
»SSL_RSA EXPORT_WITH_DES40_CBC_SHA
»SSL_RSA EXPORT_WITH_RC2_CBC_40_MD5
»SSL_DHE_RSA EXPORT_WITH_DES40_CBC_SHA
»SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
»SSL_RSA WITH_NULL_MD5
»SSL_RSA WITH_NULL_SHA
»SSL_DH_anon_WITH_RC4_128 MD5
»SSL_DH_anon_WITH_DES_CBC_SHA
»SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
»SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

» SSL_DH_anon_EXPORT_WITH_DES40 CBC_SHA
= Also available for TLS

z/0S "1’“
Java Secure Sockets Extension - IBMJSSE

A simple code example - Client Side < irirdotcli i

/l Makes an SSLSocketFactory - Use all defaults for handshake and privacy type
socketFactory = SSLSocketFactory.getDefault();

I/l Use socketFactory to create a socket
socket = socketFactory.createSocket(
InetAddress.getlLocalHost(), port);

/I get input and output stream from the socket for the client
dos = new DataOutputStream(socket.getOutputStream());

dis = new DatalnputStream(socket.getinputStream());

/I send some text
dos.writeUTF(text);

Much better examples in the technical articles referenced

-
z/0S)

Java Secure Sockets Extension - IBMJSSE SHARE

= Related Technical Articles
» Exploiting SSL in Java
— http://service2.boulder.ibm.com/devtools/news0800/art37.htm
» Exploiting SSL in Java Security: A reprise
— http://service2.boulder.ibm.com/devtools/news0900/art8.htm
» Can | trust my Java Secure Sockets Extension provider?
— http://www.developer.ibm.com/library/articles/programmer/trust.htmi

-
z/0S)

Java Certification Path - CertPath SHARE

= Set of classes and interfaces to create, build and validate
digital certification paths

= Compliant with 8th version of the Internet draft for PKI
Certificate and CRL Profile (PKIX)

= Support for LDAP and Collection CertStores

= Usage - Designing secure applications that build or validate
certification paths

= 100% pure Java implementation

= Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/softwaredya/certpath.html

= Related Technical article
» Certification paths Weaving a web of trust for e-business
= http://www-106.ibm.com/developerworkglibrary/it-certpath/?dwzone=ibm

-
z/0S)

Java Certification Path - CertPath SHARE

= Based on the Java Cryptographic Service Provider
architecture

= General CertPath capabilities:

» CertificateFactory: X.509 CertPath type with PKCS7 and
PkiPath encodings

» CertPathValidator: Validate the Certificate path via PKIX
algorithm

» CertPathBuilder: Builds a certificate path via PKIX algorithm

» CertStore: Certificate collections - LDAP and other certificate
stores

-
z/0S)

Public Key Cryptographic Standards - IBMPKCS

SHARE

= PKCS - Set of de-facto standards widely used for Public Key
Cryptography
= |IBMPKCS - IBM's Set of Java classes that provide access / usage of
several of these standards
» PKCS 1 - RSA Cryptography
» PKCS 5 - Password-Based Encryption
» PKCS7 - Cryptographic Message Syntax
» PKCSS8 - Private-Key Information Syntax
» PKCSO9 - Selected Attribute types
» PKCS10 - Certificate Request Syntax
» PKCS12 - Personal Information Exchange Syntax

» S/MIME - Secure Multipurpose Mail Extensions

= Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/cryptstan.htmi

-
z/0S)

Public Key Cryptographic Standards - IBMPKCS

SHARE

= Provides Java applications the ability to use the PKCS standards
= Also Makes the S/IMIME standards available to Java applications

» S/MIME capabilities require a cryptographic provider like
IBMJCE

= |IBMPKCS is also used by several of the earlier Java Security
components

» IBMJCE
» IBMJCE4758
» CertPath

= Good example of how the Java Security components build on each
other

-
z/0S)

SAF Interfaces SHARE

= Java static class methods provide an interface to the z/OS Security
Server using SAF (Secure Architecture Facility) and z/OS services to
provide basic authentication and authorization services.

» PlatformSecurityServer class
— IsActive(), resourcelsActive()
» PlatformUser class
— authenticate(), changePassword(), isUserlnGroup()
» PlatformAccessControl.checkPermission()
» PlatformThread.getUserName()

= Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/security.htmi

-
z/OS Java SDK with) |

Security components - Summary SHARE

= |IBM Developer kit for OS/390, Java 2 Technology Edition at SDK
1.3.1

» Adds 5 new Security components in addition to JAAS and SAF
Interfaces shipped with SDK 1.3.0

— IBMJCE - JavaCryptographic Extension

— IBMJCEA4758 - JavaCryptographic Extension using CCA
hardware cryptographic devices

— IBMJSSE - JavaSecure Socket&xtension (SSL and TLS)
— CertPath - Certificate (generation and validation)

- IBMPKCS - Public Key Standards

» Set of common API's to extend Java 2 Security capabilities

» Provides Java Applications easy access to complex Security capabilities
within Java framework on z/OS

-

Y

SHARE

S]|z

JAAS, JCE, JCE4758, JSSE, SSL, TLS,
CertPath, PKCS, SAF, CCA, JCA, MAC,
RSA, DSA, SHA1, DES, 3DES, MD2,
MD5, PBE, Blowfish, Mars, RC2, RC4,
ECB, CBC, CFB, OFB, PCBC, HMAC,

ETR, ITR, PKIX, CRL, PKI, X.509,
S/MIME, RACF

