
Java TM Security on z/OS: An Introduction
(SHARE Session 1775)

Tom Benjamin
IBM z/OS Java Security Development
tbenjami@us.ibm.com

Java and JVM are Trade marks of Sun Microsystems



What is Java Security?

Java 2 framework - Set of common cross platform
programming API's administered by Sun

Java Security Extensions - Set of common API's to extend
Java 2 to add Security capabilities

Provides Java Applications easy access to complex
Security capabilities within Java framework

Java Security extensions being added to base Java 2
framework with SDK 1.4.0



z/OS Java SDK with
Security components

IBM Developer kit for OS/390, Java 2 Technology Edition at SDK
1.3.1

Available via SMP/E through Boulder
Web downloadable
http://www-1.ibm.com/servers/eserver/zseries/software/java/

Made available on z/OS (OS/390) - October 2001
Adds 5 new Security components in addition to JAAS and SAF
(RACF) interfaces shipped with SDK 1.3.0

Related Technical article
Java security on z/OS, an introduction

http://www-1.ibm.com/servers/esdd/articles/jsecurity.html



z/OS Java Security components

JAAS - JavaAuthentication andAuthorization Service

JCE - JavaCryptographic Extension

JCE4758- JavaCryptographic Extension using CCA
hardware cryptographic devices on z/OS

JSSE- JavaSecure SocketsExtension (SSL and TLS)

CertPath - Certificate (generation and path validation)

PKCS - Public Key Standards
SAF Interfaces



z/OS
Java Authentication and Authorization Service - JAAS

Sun's Java Authentication and Authorization Services (JAAS)
framework was released with JDK 1.3.0

Extends from Java 2 code source based Security model

IBM's z/OS implementation adds support for Principal (userid) based
security

Authentication of a SAF user
Java Authorization by code source and user
Based on grants in java.policy file

Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/jaas.html

Related Technical Article
All that JAAS: An overview of the Java authentication and authorization services

http://service2.boulder.ibm.com/devtools/news0300/artpag28.htm



z/OS
Java Authentication and Authorization Service

OS/390 Login - User authentication via SAF
User authentication via SAF
Active authentication - Regular password based authentication
Passive authentication - Form Java Principal construct from current z/OS
userid associated with the thread of execution
Authorization within Java doas loop

ThreadSubject.doas
Authorization within doas loop and
Change the identity of the underlying z/OS thread within doas loop

SAFPermission
Extend Java permission to use SAF Interfaces
New Java permission to allow Java applications to do authorization checks
with SAF for SAF protected resources



z/OS
Java Cryptography Extension - IBMJCE

Implements platform independent Cryptography API into Java 2
as a standard extension

Cryptography is performed via software
Replaces IBMJCA capabilities

Digital Signatures, Hashing, keystore
Extends to add more capabilities

Includes many algorithms for
Encryption/Decryption (Symmetric and Asymmetric
algorithms)
Key agreement, MAC

Code is common with other IBM platforms at SDK 1.3.1 level
Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/jce.html



z/OS
Java Cryptography Extension - IBMJCE

Digital Signatures via RSA and DSA
Hashing - SHA1, MD2, MD5
Keystore - Symmetric and Asymmetric keys protected
by 3DES
Symmetric Algorithms - DES, 3DES, PBE, Blowfish,
Mars, RC2, RC4

Ciphers - ECB, CBC, CFB, OFB, PCBC
Asymmetric Algorithms - RSA
Key Agreement - Diffie-Hellman
HMAC - MD5, SHA1



z/OS
Java Cryptography Extension - IBMJCE
A simple code example - DES

// generate the DES key
java.security.SecureRandom random =

java.security.SecureRandom.getInstance("IBMSecureRandom");
SecretKey key = null;
KeyGenerator desKeyGen;
try {

// take the first DES in the provider list java.security
desKeyGen = KeyGenerator.getInstance("DES");

} catch (Exception ex) {
System.out.println("Unexpected exception1: " + ex.getMessage());
return;

}
try {

desKeyGen.init(random);
key = desKeyGen.generateKey();

} catch (Exception ex) {
System.out.println("Unexpected exception2: " + ex.getMessage());
return;

}



z/OS
Java Cryptography Extension - IBMJCE
A simple code example DES cont.

// Create the Cipher and encrypt code here
try {

// take the first provider in the provider list with DES/CBC/PKCS5Padding
cp = Cipher.getInstance("DES/CBC/PKCS5Padding");
cp.init(Cipher.ENCRYPT_MODE, key);

cipherText1 = cp.update(byteDataToCipher);
cipherText2 = cp.doFinal();

} catch (Exception e) {
System.out.println("Exception hit ==> "+e);

}



z/OS
Java Cryptography Extension - IBMJCE

Related Technical articles
Java cryptography Part 1: Encryption and decryption

http://service2.boulder.ibm.com/devtools/news0100/artpage18.htm

Java Cryptography Part II: Key generation and management
http://service2.boulder.ibm.com/devtools/news0300/artpag20.htm

Java cryptography Part III: Implementing your own provider
http://service2.boulder.ibm.com/devtools/news0600/art19.htm

Java Cryptography Part IV: JCE export considerations
http://service2.boulder.ibm.com/devtools/news0900/art5.htm



z/OS
Java Cryptography Extension - IBMJCE4758

IBM Implementation of JCE Cryptography using CCA hardware
cryptographic devices
Replaces those JCE capabilities available via CCA hardware
No changes to the JCE API's

Software cryptography replaced by calls made to IBM's CCA
hardware inside the provider

Almost no changes to Java JCE Applications
key generation
java.security (properties file) provider order

Allows a JCE application to take advantage of hardware cryptography
without extensive knowledge of hardware cryptography
Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/jcecca.html



z/OS
Java Cryptography Extension - IBMJCE4758

Greatly enhances security
Cryptographic processing done via secure devices
Adds Protected keys (never available in the clear)
Adds Retained keys (stored on the hardware cryptographic device
and never available in the clear)

Greatly enhances performance
Digital Sign/Verify as much as 34 times faster than software

cryptography
Moves Cryptographic operations off the CPU and onto the
hardware cryptographic device
Faster throughput and a reduction in CPU usage



Sign and
Verification

Software
CLEAR
keys

Hardware
CLEAR
keys

Hardware
PKDS
keys

Hardware
RETAINED
keys

Algorithm
and hash
used

Trans
per
second

CPU
utilizatio
n

Trans
per
second

CPU
utilizati
on

Trans
per
second

CPU
utilizati
on

Trans
per
second

CPU
utilizati
on

RSA
MD2

67 97.82% 1,018 81.84% 1,033 83.35% 99 7.87%

RSA
MD5

68 97.20% 880 35.57% 790 33.95% 98 3.77%

RSA
SHA1

67 97.09% 907 41.26% 812 39.84% 98 4.02%

DSA
SHA1

123 90.59% ---N/A-- ---N/A---
-

361 12.69% ---N/A-- ----N/A----

z/OS
Java Cryptography Extension - IBMJCE4758

2064-116 (16 CPU's) with 2 CCF's, 16 IBM 4758-2 Cryptographic Coprocessor PCI cards
running z/OS V1R2, Java 1.3.1 (SDK 1.3.1 level (PTF UQ99325) IBMJCE (software cryptographic provider)
and IBMJCE4758 (Hardware cryptographic provider). The data size was 1024, with 50 threads of execution



Encryption Software
cryptography
IBMJCE

Hardware
cryptography
IBMJCE4758

Algorithm
and data
size

ETR
Trans per
second

CPU
Utilization

ITR Trans
Per second

ETR
Trans per
second

CPU
Utilization

ITR Trans
Per

second

DES 1KB 5,401 96.02% 5,625 5,186 26.95% 19,243

DES
100KB

89 95.31% 94 362 22.44% 1,613

DES 1mb 2 97.78% 9 64 15.26% 419

Triple DES
1KB

3,143 99.94% 3,145 5,159 29.62% 17,417

z/OS
Java Cryptography Extension - IBMJCE4758

2064-116 (16 CPU's) with 2 CCF's, 16 IBM 4758-2 Cryptographic Coprocessor PCI cards
running z/OS V1R2, Java 1.3.1 (SDK 1.3.1 level (PTF UQ99325) IBMJCE (software cryptographic provider)
and IBMJCE4758 (Hardware cryptographic provider). The data size was 1024, with 50 threads of execution



z/OS
Java Cryptography Extension - IBMJCE4758

Digital Signatures via RSA and DSA

Hashing - SHA1, MD2, MD5

Keystore - Symmetric and Asymmetric keys protected by 3DES

Symmetric Algorithms - DES, 3DES, PBE
Ciphers - ECB, CBC, CFB, OFB, PCBC

Asymmetric Algorithms - RSA

HMAC - MD5, SHA1



z/OS
Java Cryptography Extension - IBMJCE4758
A simple code example - DES

Nothing changes from the IBMJCE example

// generate the DES key
java.security.SecureRandom random =

java.security.SecureRandom.getInstance("IBMSecureRandom");
SecretKey key = null;
KeyGenerator desKeyGen;
try {

// take the first DES in the provider list java.security
desKeyGen = KeyGenerator.getInstance("DES");

} catch (Exception ex) {
System.out.println("Unexpected exception1: " + ex.getMessage());
return;

}
try {

desKeyGen.init(random);
key = desKeyGen.generateKey();

} catch (Exception ex) {
System.out.println("Unexpected exception2: " + ex.getMessage());
return;

}



z/OS
Java Cryptography Extension - IBMJCE4758
A simple code example DES cont.

Nothing changes from the IBMJCE example

// Create the Cipher and encrypt code here
try {

// take the first provider in the provider list with DES/CBC/PKCS5Padding
cp = Cipher.getInstance("DES/CBC/PKCS5Padding");
cp.init(Cipher.ENCRYPT_MODE, key);

cipherText1 = cp.update(byteDataToCipher);
cipherText2 = cp.doFinal();

} catch (Exception e) {
System.out.println("Exception hit ==> "+e);

}

Much better examples in the technical articles referenced later



z/OS
Java Cryptography Extension - IBMJCE4758

Related Technical articles
Java Cryptography Architecture using Hardware cryptography -- part 1, an
introduction

http://www-1.ibm.com/servers/esdd/articles/java_crypto.html

Java Cryptography Architecture using Hardware cryptography -- part 2,
details for z/OS

http://www-1.ibm.com/servers/esdd/articles/java_crypto2.html

Java Cryptography Extension using hardware cryptography -- part 3
http://www-1.ibm.com/servers/esdd/articles/java_crypto3.html

More coming at IBM eServer Developer Domain
http://www-1.ibm.com/servers/esdd/index.html



z/OS
Java Secure Sockets Extension - IBMJSSE

Implements SSL 3.0 and TLS 1.0 as Java2 standard extensions
100% pure Java Implementation

Provides Authentication, Integrity and Privacy at the transport level
privacy for browser to Web-Server e-business
any secure data exchange

Supports common security algorithms
RSA, DSA, DES, 3DES

Socket factories encapsulate socket creation, key and trust
management behavior for ease of use
Code is common with other IBM platforms at SDK 1.3.1 level

Allows for application portability
Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/jsse.html



z/OS
Java Secure Sockets Extension - IBMJSSE

Advantages of IBMJSSE
Supports a wide variety of SSL and TLS algorithm types
Easier Socket Creation via encapsulated factories
Ability to create application specific Trust Manager for
application requirements

IBMJSSE is the preferred SSL/TLS for Java Applications on z/OS
IBMJSSE is 100% pure Java and does not use System SSL
services
IBMJSSE should be used in place of System SSL for Java
Applications

No overhead converting to C based services (JNI)



z/OS
Java Secure Sockets Extension - IBMJSSE

Algorithms for key exchange and authentication
RSA, Diffie-Hellman, DSA

Algorithms for Data exchange
DES, 3DES, RC4, RC2

Hashing Algorithms
SHA, MD5



z/OS
Java Secure Sockets Extension - IBMJSSE

Cipher Suites supported
SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_WITH_NULL_MD5

SSL_RSA_WITH_NULL_SHA

SSL_DH_anon_WITH_RC4_128_MD5

SSL_DH_anon_WITH_DES_CBC_SHA

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

Also available for TLS



z/OS
Java Secure Sockets Extension - IBMJSSE
A simple code example - Client Side

// Makes an SSLSocketFactory - Use all defaults for handshake and privacy type
socketFactory = SSLSocketFactory.getDefault();

// Use socketFactory to create a socket
socket = socketFactory.createSocket(

InetAddress.getLocalHost(), port);

// get input and output stream from the socket for the client
dos = new DataOutputStream(socket.getOutputStream());
dis = new DataInputStream(socket.getInputStream());

// send some text
dos.writeUTF(text);

Much better examples in the technical articles referenced



z/OS
Java Secure Sockets Extension - IBMJSSE

Related Technical Articles
Exploiting SSL in Java

http://service2.boulder.ibm.com/devtools/news0800/art37.htm
Exploiting SSL in Java Security: A reprise

http://service2.boulder.ibm.com/devtools/news0900/art8.htm
Can I trust my Java Secure Sockets Extension provider?

http://www.developer.ibm.com/library/articles/programmer/trust.html



z/OS
Java Certification Path - CertPath

Set of classes and interfaces to create, build and validate
digital certification paths
Compliant with 8th version of the Internet draft for PKI
Certificate and CRL Profile (PKIX)
Support for LDAP and Collection CertStores
Usage - Designing secure applications that build or validate
certification paths
100% pure Java implementation

Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/certpath.html
Related Technical article

Certification paths Weaving a web of trust for e-business
http://www-106.ibm.com/developerworks/library/it-certpath/?dwzone=ibm



z/OS
Java Certification Path - CertPath

Based on the Java Cryptographic Service Provider
architecture
General CertPath capabilities:

CertificateFactory: X.509 CertPath type with PKCS7 and
PkiPath encodings
CertPathValidator: Validate the Certificate path via PKIX
algorithm
CertPathBuilder: Builds a certificate path via PKIX algorithm
CertStore: Certificate collections - LDAP and other certificate
stores



z/OS
Public Key Cryptographic Standards - IBMPKCS

PKCS - Set of de-facto standards widely used for Public Key
Cryptography
IBMPKCS - IBM's Set of Java classes that provide access / usage of
several of these standards

PKCS 1 - RSA Cryptography
PKCS 5 - Password-Based Encryption
PKCS7 - Cryptographic Message Syntax
PKCS8 - Private-Key Information Syntax
PKCS9 - Selected Attribute types
PKCS10 - Certificate Request Syntax
PKCS12 - Personal Information Exchange Syntax

S/MIME - Secure Multipurpose Mail Extensions

Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/cryptstan.html



z/OS
Public Key Cryptographic Standards - IBMPKCS

Provides Java applications the ability to use the PKCS standards
Also Makes the S/MIME standards available to Java applications

S/MIME capabilities require a cryptographic provider like
IBMJCE

IBMPKCS is also used by several of the earlier Java Security
components

IBMJCE
IBMJCE4758
CertPath

Good example of how the Java Security components build on each
other



z/OS
SAF Interfaces

Java static class methods provide an interface to the z/OS Security
Server using SAF (Secure Architecture Facility) and z/OS services to
provide basic authentication and authorization services.

PlatformSecurityServer class
IsActive(), resourceIsActive()

PlatformUser class
authenticate(), changePassword(), isUserInGroup()

PlatformAccessControl.checkPermission()
PlatformThread.getUserName()

Documentation available at
http://www-1.ibm.com/servers/eserver/zseries/software/java/security.html



z/OS Java SDK with
Security components - Summary

IBM Developer kit for OS/390, Java 2 Technology Edition at SDK
1.3.1

Adds 5 new Security components in addition to JAAS and SAF
interfaces shipped with SDK 1.3.0

IBMJCE - JavaCryptographic Extension

IBMJCE4758 - JavaCryptographic Extension using CCA
hardware cryptographic devices

IBMJSSE - JavaSecure SocketsExtension (SSL and TLS)

CertPath - Certificate (generation and validation)

IBMPKCS - Public Key Standards
Set of common API's to extend Java 2 Security capabilities
Provides Java Applications easy access to complex Security capabilities
within Java framework on z/OS



Quiz ???

JAAS, JCE, JCE4758, JSSE, SSL, TLS,
CertPath, PKCS, SAF, CCA, JCA, MAC,
RSA, DSA, SHA1, DES, 3DES, MD2,
MD5, PBE, Blowfish, Mars, RC2, RC4,
ECB, CBC, CFB, OFB, PCBC, HMAC,
ETR, ITR, PKIX, CRL, PKI, X.509,
S/MIME, RACF


