Digital Certificates — From

Concept to Implementation

Vanguard Las Vegas, NV
Session FD3
June 23rd 2014

Wai Choi, CISSP
IBM Corporation
RACF/PKI Development & Design
Poughkeepsie, NY

e-mail: wchoi@us.ibm.com

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

«CICS™

- DB2*

«|IBM*

|IBM (logo)
+0S/390*
RACF

* Websphere*
«2/OS*

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Identrus is a trademark of Identrus, Inc
VeriSign is a trademark of VeriSign, Inc
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the 1/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Part 1 - Introduction to digital certificates
Symmetric vs. Asymmetric Encryption
What are digital certificates
Certificate types and contents

Part 2 - Overview of certificate utilities available
on z/0S

RACF RACDCERT
System SSL gskkyman
PKI Services

Part 3 - RACDCERT in depth
Start with some basics
Certificate Name Filtering
Host ID Mapping
Certificate / Key Sharing
Certificate renewal
Enhancements

Part 4 — Hot topics on certificates
An example to set up secure FTP
Build or Buy
Outage due to expired certificates

Part 5 - Introduction to PKI Services
Comparison with RACDCERT
Enhancements
A user experience

Part 6 - Hands on Lab on PKI Services

Submit and approve a certificate request for

A certificate with key pair generated by the browser — EX 1
A certificate with key pair generated by PKI Services — EX 2
A certificate with key pair generated on a z/OS server — EX 3

View the installed certificate from the IE broswer — EX 4
Revoke/Suspend a certificate — EX 5

Check the certificate status — EX 6

Certificate Revocation List (CRL)
Online Certificate Status Protocol (OCSP)

Customize PKI Services - EX 7

Configuration file — pkiserv.conf
Template file — pkiserv.tmpl

— —— — —

Part 1 — Introduction to Digital
Certificates

Same key used for both encryption and decryption
Provide data confidentiality
Fast, used for bulk encryption/decryption

Securely sharing and exchanging the key between both parties is a
major issue

Common algorithms: DES, Triple DES, AES

:\\;} Secret Key

Encryption Algorithm ‘
Encrypted Message
Original Message » 9

This is a plain text QWE@56!121!TQM

L Decryption Algorithm J

=

Same Secret Key

2 different keys - Public/private key pairs
A public key and a related private key are numerically associated with each other.

Provide data confidentiality, integrity and non repudiation

Data encrypted/signed using one of the keys may only be decrypted/verified using

the other key.

Very expensive computationally

Public key is freely distributed to others, private key is securely kept by the owner
Common algorithms: RSA, DSA, ECC

Original Message

Private Key

Encryption Algorithm

This is a plain text

| &

Decryption Algorithm

Encrypted Message

QWE@56!121!TQM

o

Public Key (related to the private key)

A fixed-length value generated from variable-length data
Unique:
the same input data always generates the same digest value
tiny change in data causes wide variation in digest value
Theoretically impossible to find two different data values that result in the same digest value
One-way: can’t reverse a digest value back into the original data
NOT based on a key
Play a part in data integrity and origin authentication
Common algorithms: SHA1, SHA256

| Hash Algorithm | 1
Digested Message
Original Message

| own you $1 0.000 4E284BA3E947053267545B507A476B4A6538BAE7
J

| Hash Algorithm | 1
Totally different digested Message
Similar Message

5BOEBF53D5A30220BF68E88CCC04A4ACA3E9470
| own you $10.000

L

I

]
1

il

1
|
1

Encryption (for confidentiality)

Encrypting a message:

Encrypt with Recipient’s

Public key
Sender: >

Decrypting a message:

Recipient: Decrypt with Recipient’s

Private key .

‘Encrypted text

I

L

]

Il

1
|
1

Signing (for integrity and non repudiation

Encrypt with
Sender’s

. Private key

Misg
. + @ Signature

Verifying a message:

N Decrypt With Sender’s
— Recipient: Public key to recover the

hash
‘i

Signhing a message:

Sender: Hash

I Message digest Hash

@ Signature .

Generally digital certificates provide identity to a
person or a server

Person - like an ID card

Server — like a business license

To establish an identity or credential to be used in
electronic transactions

It binds the public key to the identity to be used by
applications that are based on public key
protocols. (e.g. SSL/TLS)

Issued by a trusted third party called Certificate
Authority (CA) that can ensure validity

Packaging of the information is commonly
known as the x.509 digital certificate. X.509
defines the format and contents of a digital
certificate.

IETF RFC 5280

Digital certificates been in existence for over 20
years

Have evolved over time to not only bind basic
identity information to the public key but also
how public key can be used, additional identity
data, revocation etc.

What's inside a Certificate?

Certificate Info /
| __————1

Version 1, 2, 3

version
serial number

signature algorithm ID
issuer’s name

This is the hash/encrypt algorithm used in the
signature, eg. sha256RSA — Beware of MD5!!!

validity period

subject’s name
subject’s public key =

<

The certificate binds a public key to a subject

extensions

CA signs the above cert info by encrypting the
hash with its private key

Certificate Signature a

I

The private key is NOT in the certificate. It is kept
in a key store

You can NOT change ANY of the certificate information!

Extensions of a x.509 digital Certificate(1 of 2)

— Adds additional definitions to a certificate and its identity information
— 15+ currently defined

— Top 6 extensions of interest

* Authority Key Identifier
* Subject Key ldentifier

- Key Usage

* Subject Alternate Name
 BasicConstraints

- CRL Distribution Point

Authority Key Identifier — Unique identifier of the signer
Subject Key Identifier — Unique identifier of the subject

Key Usage — defines how the public key can used
Digital Signature
Key Encipherment
Key Agreement
Data Encipherment
Certificate Signing
CRL signing
Subject Alternate Name — additional identity information
Domain name
E-mail
URI
|IP address

Basic Constraints — Certificate Authority Certificate or not
CRL Distribution — Locating of Revoked certificate information

— —— — —

Example of a x.509 digital Certificate

Relationship between Certificate and
Certificate Store

Certificate must be placed in a certificate store before it can
be used by an application to perform identification or
validation

The application needs to retrieve the certificate and/or its
corresponding private key from the store

On z/OS, many components like Communication Server,
HTTP Server call System SSL APls to access the store

Certificate store = key ring = key file

Self sighed
Self-issued
Issuer and subject names identical
Signed by itself using associated private key

Signhed Certificate
Signed/issued by a trusted Certificate Authority Certificate using
its private key.

By signing the certificate, the CA certifies the validity of the
information. Can be a well-known commercial organization or
local/internal organization.

Secure Socket Layer (SSL) certificate

Install on a server that needs to be authenticated, to ensure secure
transactions between server and client

Code Signing certificate

Sign software to assure to the user that it comes from the publisher it
claims

Personal certificate

Identify an individual, enable secure email — to prove that the email
really comes from the sender and /or encrypt the email so that only the
receiver can read it

More (name it whatever you want)...
wireless certificate, smart card certificate...

Certificate Authority (CA) certificate

Used to sign other certificates
Root CA: the top
Intermediate CA: signed by root CA or other intermediate CA

Site certificate (in RACF)

The usage assigned to a certificate when it is connected
to a RACF key ring indicates its intended purpose

There may be a few certificate validation applications
which treat a certificate that is connected to a key ring
with usage site as a valid certificate authority certificate
to bypass the normal certificate verification tests during
SSL handshake, for example, an expired certificate can
be considered trusted

Having a SITE certificate in RACF does not benefit you
If the validation application does not make use of it

Certificate Chain Validation

Is the root CA in my key ring ?

|

Self signed:
Issuer=Subject

Root CA
| Issuer — CN=Root CA,0OU=Signers,0=IBM,C=US
| Subject -CN=Root CA,0OU=Signers,0=IBM,C=US

Signature

Intermediate CA
-| Issuer - CN=Root CA,0OU=Signers,0=IBM,C=US
| Subject — CN=Intermediate CA,OU=Signers,O=IBM,C=US

Signature

End Entity
— | Issuer — CN=Intermediate CA,OU=Signers,O=IBM,C=US
Subject -CN=Server Certificate,OU=z/0S,0=IBM,C=US

Signature

Finish

Start

H‘
Il

J

Key ring plays a role in SSL handshake

Client

-

Hello msg

1. Client sends a ‘hello’ msg to server
2. Server sends its certificate to client
3. Client validates the server’s certificate

4. Client encrypts a secret key with server’s public key and sends
it to server

5. Server decrypts the secret key with its private key

6. Server encrypts a ‘handshake OK’ msg with the secret key and
sends it to client

7. Client trusts server, business can be conducted

* Note the above steps illustrate server authentication. For
client authentication, server needs to validate client’s
certificate too.

_ Server

«

Secret key R

Certificate

>

Server Cert

-
«

OK msg

a

eg, RACF DB

v

Encrypted Transactions
with the secret key

eg, RACF DB

PVC - Parent Validates Child

Child<-Parent<-Grandparent<-Great Grandparent<-....
<-Great Great....<-Root Grandparent

Ensure the content of the whole certificate chain has not
been altered

Signature on the child verified by parent’s public key
Signature on the root verified by its own public key
Trusting the Root Grandparent

Putting the root in the key store is the indication of trusting
all its descendents

Remember the simple rule — PVC(2 of 3)

Server Authentication

CAX signed X
Hello Server!
CAX
Key store of Party 1 Key store of Party 2
Server Client

. Cert without associated private ke
. Cert with associated private key P y

Cert can be outside the ring

Remember the simple rule — PVC(3 of 3)

Client Authentication
CAX signed X ent ALTerteat

N e

Hello Server!

=—

')

4

CAY CAX
Key store of Party 1 Key store of Party 2
Server Client

. . Cert with associated private key greneee :
: : Cert can be outside the ring

Cert without associated private key

Simplify the set up

Client Authentication
CAXY signed X and Y

Hello Server!

)

Key store of Party 1 Key store of Party 2
Server Client

. Cert with associated private key Cert without associated private key

Similar set up in the Chain scenario

CAX1 signed CAX2 Server Authentication
CAX2 signed X

Hello Server!

CAX1
Key store of Party 1 Key store of Party 2
Server Client

Cert without associated private key

. Cert with associated private key

Cert can be outside the ring

Third Party CAs scenario

Server Authentication

CAX1 signed CAX2
CAX2 signed X
(from other system)

Hello Server!

CAX1
Key store of Party 1 Key store of Party 2
Server Client

Cert without associated private key

. Cert with associated private key

Cert can be outside the ring

— —— — —

Part 2 - Overview of certificate
utilities available on z/OS

Certificate Stores on z/OS

» gskkyman manages certificates stored in a key database file
» RACDCERT manages certificates stored in a RACF key ring.

GSKKYMAN RACDCERT

»gskkyman key database files
»Protected by the file system’s permission bits and password

»Upon creation, permission bits are 700 giving the issuer of
gskkyman read and write to the file only.

»Applications using these files need at least read to the file

"RACF Key Rings
*RACF key rings are protected by resource profiles.

=Users rings need read access to IRR.DIGTCERT.LISTRING or
<ring owner>.<ring name>.LST to be able to read the contents
of their key ring

*|[RR.DIGTCERT.LISTRING — Global control
=<ring owner>.<ring name>.LST — Granular control

»gskkyman is a Unix based utility shipped as part of the System SSL
product in the z/OS Cryptographic Services Element

»RACDCERT is a TSO command shipped as part of RACF

*Provide basic certificate functions
» Create/delete certificate store (HFS key database file / SAF key ring)

» Create certificate requests (to be signed by trusted Certificate
Authority)

» Import/Export certificates (with and without private keys)
» Create self-signed certificates

=Do not have all the functions of a real Certificate Authority

»PKI Services provides full certificate life cycle management
» Request, create, renew, revoke certificate

» Provide certificate status through Certificate Revocation List(CRL)
and Online Certificate Status Protocol (OCSP)

» Generation and administration of certificates via customizable web
pages

» Support Simple Certificate Enrollment Protocol (SCEP) for routers to
request certificates automatically

» Automatic notification or renewal of expiring certificates

How will the certificate be used?

Who will be the certificate authority?

What certificate store is to be used?

What is the size of the public/private keys?
What subject name to use?

Need additional identity information and
extensions?

Validity period of the certificate?

A certificate signing request (also CSR) is a message sent
from the certificate requestor to a certificate authority to obtain a
signed digital certificate

Contains identifying information and public key for the requestor

Corresponding private key is not included in the CSR, but is used
to digitally sign the request to ensure the request is actually
coming from the requestor

CSR may be accompanied by other credentials or proofs of
identity required by the certificate authority, and the certificate
authority may contact the requestor for further information.

If the request is successful, the certificate authority will send back
an identity certificate that has been digitally signed with the
private key of the certificate authority.

— —— — —

If you use gskkyman...

Database Menu

1 - Create new key database

2 - Open key database

3 - Change database password

4 - Change database record length

S - Delete database

6 - Create key parameter file

7 — Display certificate file (Binary or Base64 ASN.1 DER)

0 - Exit Program

Name of key database

Enter your option number: 1 y

Enter key database name (press ENTER to return to menu: /tmp/my.kdb
Enter database password (press ENTER to return to menu: password
Re-enter database password: password

Enter password expiration in days (press ENTER for no expiration): <enter>
Enter database record length (press ENTER to use 2500): <enter>

This will add a number of well-known trusted CA certificates to the key database.

Importing a signing Certificate
Authority Certificate(1 of 2)

Key Management Menu
Database: /tmp/my.kdb

1 - Manage keys and certificates

2 - Manage certificates

3 - Manage certificate requests

4 - Create new certificate request

5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate

8 - Import a certificate and a private key
9 - Show the default key

10 - Store database password

11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu): 7

Importing a signing Certificate
Authority Certificate(2 of 2)

File contains the CA
certificate

—

Enter import file name (press ENTER to return to menu): cacert.b64
Enter label (press ENTER to return to menu): CA Certificate

Certificate imported.

Key Management Menu
Database: /tmp/my.kdb

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests

5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate

7 - Import a certificate

8 - Import a certificate and a private key

9 - Show the default key

10 - Store database password

11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu): 4

Fill in the information about the
requestor (1of 2)

Certificate Key Algorithm
1 - Certificate with an RSA key
2 - Certificate with a DSA key
3 - Certificate with an ECC key
Select certificate key algorithm (press ENTER to return to menu): 1

RSA Key Size
1 - 1024-bit key
2 - 2048-bit key
3 - 4096-bit key
Select RSA key size (press ENTER to return to menu): 2

Signature Digest Type
1 - SHA-1
2 - SHA-224
3 - SHA-256
4 - SHA-384
S - SHA-512
Select digest type (press ENTER to return to menu): 2

H‘
Il
1l
Il

Fill in the information about

the req ueStor(2 of 2) File to cc;g;auigscf[ertificate

Enter request file name (press ENTER to return to menu): certreq.arm
Enter label (press ENTER to return to menu): Server Certificate
Enter subject name for certificate

Common name (required): Server Certificate

Organizational unit (optional): Production

Organization (required): IBM

City/Locality (optional): Endicott

State/Province (optional): New York

Country/Region (2 characters - required): US

Enter 1 to specify subject alternate names or 0 to continue: 1

Receiving a signed certificate request

Key Management Menu
Database: /tmp/my.kdb

1 - Manage keys and certificates
2 - Manage certificates

3 - Manage certificate requests

4 - Create new certificate request

6 - Create a self-signed certificate

7 - Import a certificate

8 - Import a certificate and a private key
9 - Show the default key

10 - Store database password

11 - Show database record length

File contains cert

0 - Exit program returned from CA

Enter option number (press ENTER to return to previous menu): 5 7
Enter certificate file name (press ENTER to return to menu): svrcert.arm

Marking a certificate as the default

Key and Certificate Menu
Label: Server Certificate

1 - Show certificate information
2 - Show key information

4 - Set certificate trust status

S - Copy certificate and key to another database
6 - Export certificate to a file

7 - Export certificate and key to a file

8 - Delete certificate and key

9 - Change label

10 - Create a signed certificate and key

11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to previous menu): 3

— —— — —

If you use RACDCERT...
(ISPF Panel or Command)

RACDCERT deals with 3 object types

RACDCERT functions(1 of 2)

O Certificate generation

>
>

RACDCERT GEN — generate key pair and certificate
RACDCERT GEN — generate a certificate request

1 Certificate installation

>

RACDCERT — install a certificate and public/private key

[Certificate administration

>

A\ YV V V V

Y

RACDCERT ADDRING — create a key ring

RACDCERT NECT — place a certificate in a key ring
RACDCERT REMOVE —remove a certificate from a key ring
RACDCERT LISTRING — display key ring information
RACDCERT DELRING — delete a key ring

RACDCERT — display certificate information from an installed
certificate

RACDCERT — change certificate installation information
RACDCERT — delete certificate and key pair
RACDCERT — display certificate information from a
dataset

RACDCERT — export a certificate

RACDCERT functions(2 of 2)

[Certificate administration...

Q

>

V V VY

Y VYV

RACDCERT MAP — create a certificate filter

RACDCERT ALTMAP — change the certificate filter
RACDCERT DELMAP — delete a certificate filter
RACDCERT LISTMAP — display certificate filter information

RACDCERT REKEY —renew certificate with new key pair
RACDCERT ROLLOVER —finalize the REKEY process

... more

RACF - Digital Certificate Key Ring Services
OPTION ===

For user.

Enter one of the following at the OPTION line:

Create a new key ring

Delete an existing key ring

List existing key ring(s)

Connect a digital certificate to a key ring
Remove a digital certificate from a key ring

RACF - Digital Certificate Services
OPTION ===

Select one of the fEllnuing:

. Generate a certificate and a public/private key pair.
. Create a certificate request.
. Write a certificate to a data set.
. Add. Alter., Delete. or List certificates or
check whether a digital certificate has been added to

the RACF database and associated with a user ID.

. Renew, Rekey. or Rollover a certificate.

Create a key ring Name of key ring
/

RACDCERT ID(FTPserver) ADDRING(MyRACFKeyRing)

Adding Certificate Authority(CA)
Certificate to a key ring

Dataset contains the CA
certificate

RACDCERT CERTAUTH ADD(‘userl.cacert’) TRUST
WITHLABEL(‘CA Certificate’)

RACDCERT ID(FTPServer) CONNECT (CERTAUTH LABEL(‘CA
Certificate’) RING(MyRACFKeyRing) USAGE(CERTAUTH))

RACDCERT ID(FTPServer) GENCERT SUBJECTSDN(CN(‘Server
Certificate’)OU(‘Production’)O(‘IBM’)L(‘Endicott’)SP(‘New
York’)C(‘US?))

SI1ZE(1024) WITHLABEL(‘Server Certificate’)

ALTNAME(DOMAIN(‘mycompany.com')) \

RACDCERT ID(FTPServer) GENREQ(LABEL(‘Server Certificate’))

DSN(‘userl.certreq’)
Dataset to contain
certificate request

Adding Certificate sighed by CA to a

key ring
RACDCERT ID(FTPServer) ADD(‘userl.svreert’) ——— Dataset contains cert
WITHLABEL(‘Server Certificate’) returned from CA

RACDCERT ID(FTPServer) CONNECT(ID(SUIMGTF)
LABEL(‘Server Certificate’) RING(MyRA CFKeyRing)
USAGE(PERSONAL) DEFAULT)

Listing a RACF Key Ring
RACDCERT ID(FTPServer) LISTING(MyRACFKeyRing)

Ring:
>MyRACFKeyRing<
Certificate Label Name Cert Owner USAGE DEFAULT
CA Certificate CERTAUTH CERTAUTH NO
Server Certificate ID(FTPServer) PERSONAL YES

Note: RACF key rings allow for a certificate’s private key to be
stored into ICSF’s (Integrated Cryptographic Service Facility)
PKDS (Public Key Dataset) for added security.

X.509 certificates can exist in many
different forms

Single certificate

PKCS #7 certificate package
Contains 1 or more certificates
PKCS #12 certificate package

A password encrypted package containing 1 or more
certificates and the private key associated with the end-
entity certificate.

Only package type that contains a private key

Can be in binary or Base64 encoded format

Converting binary data to displayable text
for easy cut and paste.

MIICPTCCAaagAwIBAQgI IR,;}:) S‘;:QANLVEWDQYJKOZ IThvcNAQEFBQAWNzZELMAkKGA; UE
BhMCVVMxDTALBgNVBAOTBFR1& QxGTAXBgNVBAMMEFR1I& Rfc2VsZ12zaWduZWQw
HhcNMDgwMTE MTMwN jOxWhcNMDKkwMTEZ2MTMwN JOxW 28 MQswCQYDVQQGEwWJVUZEN
MASGA; UEChMEVGVzdDEZMBcGA; UEAWWQVGVzdF 2 zZWxmX NpZ2%1ZDCBnzANBgkg
hkiGo# BAQEFAAOBJQAwWgYkKCgYEAOtKOvbHgLaceozMfMeVdg 97 £CIBVoR+dpzhwK
R2EH QcQYBGqu&gM wGSh YrmVyg® VxocriySbcxRuBayw pExL3 JIZ2myINmLp
bFIdPCnglK gvFK+; N+nrEnBKOylg NmxDIuQQfFsX ¢ DpoxwxzwXf+JbWDwirQR
NyLiTGMCAwWFAAaNSMFAWHQYDVR OBBYEFAwWDFLJOUCRa 2BVS jVyHewuOWEME G
A; UdIwQYMBaAFAWDFLJOUCRa 2BVS jVyHewuOWEMA ,GA; UADWEE wQEAwIE; DAN
BgkghkiGo®# BAQUFAAOBGQACYHsW; B EdE kozg wKNt; sCczWkQBrvVy ,RdrT ERgN
D20fkBJQuXiNwNz pF WPWEYGH MNwhP_,0JSVePnzElh WziZ2w}) zk rINSW p:@

RA RA
w; lzig JER 9 & & toPTAtEb fIzwjkLtctt® oF+IjunvELQoRsXRJIbbTMY EG

i
J W 4

----- END CERTIFICATE-----

Exporting Certificates through
gskkyman(1 of 2)

Key and Certificate Menu
Label: Server Certificate

1 - Show certificate information

2 - Show key information

3 - Set key as default

4 - Set certificate trust status

5 - Copy certificate and key to another database
6 - Export certificate to a file

7 - Export certificate and key to a file

8 - Delete certificate and key

9 - Change label

10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to previous menu):

Exporting Certificates through
gskkyman(2 of 2)

Option 6 — Public Certificate Information

Export File Format

1 - Binary ASN.1 DER
2 - Base64 ASN.1 DER
3 - Binary PKCS #7

4 - Base64 PKCS #7

Option 7 — Public Certificate Information and Private Key
Export File Format

1 - Binary PKCS #12 Version 1 (Few very old applications still use V1)
2 - Base64 PKCS #12 Version 1

3 - Binary PKCS #12 Version 3
4 - Base64 PKCS #12 Version 3

RACDCERT ID(userid) EXPORT
(LABEL('label-name'))
DSN(output-data-set-name)

FORMAT(CERTDER | CERTB64 | PKCS7DER | PKCS7B64 |
PKCS12DER | PKCS12B64)

PASSWORD('pkcs12-password')

Example - Export Server Certificate with its private key

RACDCERT ID(FTPServer) EXPORT
LABEL(‘Server Certificate’) DSN('USER1.SERVER.CERT’)
FORMAT(PKCS12DER) PASSWORD(‘passwd’)

Precaution needed for CERTAUTH certificate when you plan to preserve
the certificate and the private key by exporting them in a pkcs12
package

If the original CERTAUTH certificate got deleted and you re-add this
package, the field that used for recording serial numbers that it has
Issued is not reserved

For example, if this CA certificate has issued 100 certificates, the
next certificate to be issued should have serial number 101; but after
re-adding it, the certificate to be issued will have serial number 1,
which is already used — all the certificates issued by the same CA
should have a unique serial number!

Before deleting CERTAUTH certificate, find out the last
certificate’s serial number it issued

After re-adding, use r_datalib to bump up the serial number
field to the appropriate number

Digital certificates provide electronic identity
and public key information to be utilized through
public key protocols (ie. SSL/TLS)

Utilizing trusted CAs is key to ensure validity of
the digital certificate

Protect the private key!!!

Larger the public/private key pair size, greater
security, but more computation intense

When transferring certificates, use a format
acceptable to the receiving side.

When transferring certificates, be sensitive to
binary and text modes to ensure proper transfer

— —— — —

Part 3 - RACDCERT in depth

Relationship between entities and owner IDs

System
defined
ID

Relationship between Certificate and Key ring

O Certificate must be placed in a key ring before it can be used by
other middleware through R_datalib

O Three types of certificates in a ring that the middleware can utilize:

> Personal certificate (for identification)
= Under ordinary MVS ID or with USAGE PERSONAL
= |ts private key is also known to RACF
= Sent to the client when SSL is initiated

> Certificate Authority certificate (for validation)
= Under CERTAUTH ID or with USAGE CERTAUTH
= |ts private key is not known to RACF
» Used to authenticate the incoming certificate

> SITE certificate (for identification)
= Under SITE ID or with USAGE SITE
= Similar to personal certificate
= But its private key can be shared (usual way to share key before V1R9)

> SITE certificate (for validation)

= Under SITE ID or with USAGE SITE

= There may be a few certificate validation applications which treat a certificate that is
connected to a key ring with usage site as a valid certificate authority certificate to bypass
the normal certificate verification tests during SSL handshake, for example, an expired
certificate can be considered trusted

Certificate stored as a profile(1 of 2)

O A certificate profile in the DIGTCERT class is created for a
certificate added or created
» The profile name is of the form
<cert serial #>.<issuer’s distinguished name>
» Examples:
Command:

RACDCERT CERTAUTH GENCERT SUBJECTDN(OU(‘Master CA’) O(IBM’) C(US"))
WITHLABEL(‘MyCA’)

Profile created: 00.0U=Master¢CA.O=IBM.C=US
Command:

RACDCERT ID(testid) GENCERT SUBJECTDN(OU('Test Dept’) O(‘IBM) C(US"))
WITHLABEL(‘TestCert’) SIGNWITH(CERTAUTH LABEL(‘MyCA))

Profile created: 01.0U=Master¢CA.O=IBM.C=US
» Serial number of a self-signed certificate is 0
The subsequent serial numbers will be incremented in the order of 1
» The blanks in the distinguished name are substituted with ‘¢’ in the
profile (¢ is not a 7 bit ASCII character)

> If the Issuer’s name is long, instead of using the name directly to form
the profile name, a hash of the name will be used.

A\

Certificate stored as a profile (2 of 2)

O This profile represents the certificate. NOT a protection profile!

> The owner field in this profile indicates the issuer of the RACDCERT
command, NOT the certificate owner

» The certificate profile can NOT be managed through the resources
management commands, like RALTER, RDELETE...

» Managed through RACDCERT commands

d There are function specific profiles in the facility class for authority
checking

» Read, Update or Control on IRR.DIGTCERT.<function>
" Eg. IRR.DIGTCERT.GENCERT, IRR.DIGTCERT.ADD

GENREQ needs GENCERT

O RACDCERT GENCERT without specifying SIGNWITH generates a self-
signed certificate
» RACDCERT GENCERT SUBJECTSDN(CN(‘mycert’) OU(‘RACF)...)

O Need 2 RACDCERT commands to generate a request
» RACDCERT GENCERT (usually a self-signed one)

> This is a stepping stone to get the request, will be replaced once the certificate is
returned

»RACDCERT ID(ftpd) GENCERT SUBJECTSDN(CN(‘ftpcert’) OU(‘RACF)...)
WITHLABEL(‘ftpcert’)

> RACDCERT GENREQ <use the certificate label from GENCERT above >
»RACDCERT ID(ftpd) GENREQ(LABEL(‘ftpcert’)) DSN(‘user1.ftpreq’)

» Send the request to external CA for signing
» When the certificate is returned from the external CA, install it in RACF

RACDCERT ID(1 of 2)

O If no ID type is specified, the ID of the user issuing the command is used

» User1’s certificate is displayed if user1 issues the following command
* RACDCERT LIST (LABEL(‘certl’))

> User2’s certificate is displayed if user1 issues the following command

(assuming user1 has the authority to list other’s certificate)
= RACDCERT ID (user2) LIST (LABEL(‘cert2’))

RACDCERT ID (2 of 2)

O There is an exception in the CONNECT command which involves 2 entities,
ring and cert.

O Syntax: RACDCERT <ring owner id> CONNECT(<cert owner id> <cert
label>...)
O Which case has the exception?
» RACDCERT ID(Mary) CONNECT (ID(John) LABEL..)
= Ring owner: Mary, Cert owner: John
» RACDCERT ID (Mary) CONNECT (LABEL...) N

= Ring owner: Mary, Cert owner: Mary
> RACDCERT CONNECT (ID (John) LABEL..)

= Ring owner: Issuer of command, Cert owner: John
> RACDCERT CONNECT (LABEL...)

= Ring owner: Issuer of command, Cert owner: Issuer of command

When is the key pair generated?

v RACDCERT GENCERT with NO request input

» Examples:
»RACDCERT GENCERT SUBJECTSDN(CN(‘mycert’) OU(‘RACF’)...)

» RACDCERT GENCERT SUBJECTSDN(CN(‘mycert’) OU(‘RACF’)...) SIGNWITH (<some CA
certificate in RACF>)

» Generates:
» Key pairs — public key and private key
» Certificate

> Private key can be stored in RACF or ICSF
> Public key is put on the certificate

x RACDCERT GENCERT with the input of a request (RACF as the CA to sign
request from another system)

> Example:

» RRACDCERT GENCERT(<request from other source>) SIGNWITH(<some CA certificate in
RACF>

> Generates only
» Certificate
> Public key is put on the certificate

> Must specify the SIGNWITH keyword

Certificate Name Filtering
and Host ID Mapping

A certificate represents a RACF user

User can be identified to RACF through certificate
if his certificate is in the RACF DB
*One-to-one certificate to user ID association

If there are thousands of users, thousands of
certificates need to be installed...

More Sophisticated Certificate Support from

RACF (1 of 7)
RACF provides other types of certificate and ID

associations which require no user certificate to be
installed:
-Solution 1: Certificate Name Filtering

-Solution 2: HostldMapping

More Sophisticated Certificate Support from
RACF (2 of 7)

Certificate Name Filtering — RACDCERT MAP

o ok~ WD

Create a filter based on a set of rules (‘filters’) on the

subject’s or issuer’s distinguished names (or both)

OU=...0=...C=US CN=...0U=...0=...C=US

The owning ID of the filter should be PROTECTED and

RESTRICTED

Need to raclist DIGTNMAP class

Search sequence:
subject's-full-name.issuer's-full-name
OU=...0=...C=US.CN=...0U=...0=...C=US

subject's-partial-name.issuer's-full-name
O=...C=US.CN=...0U=...0=...C=US
subject's-full-name

OU=...0=...C=US

subject's-partial-name

O=...C=US

issuer's-full-name

CN=...0U=...0=...C=US
issuer's-partial-name

OU=...0=...C=US

More Sophisticated Certificate Support from
RACF (3 of 7)

« Can map one or more certificates to a filter => allow multiple
user to share the same ID

« Examples:
f Create a filter to associate ID VUSER to any user
presenting a certificate issued by VeriSign Class 1
Individual Subscriber

RACDCERT ID(VUSER) MAP IDNFILTER(‘'OU=VeriSign Class 1
Individual Subscriber.O=VeriSign, Inc.L=Internet’)..

f Create a filter to associate ID RACFGP to any user
presenting a certificate with subject’s distinguished
name OU=RACF.O=IBM

RACDCERT ID (RACFGP)MAP SDNFILTER (‘OU=RACF.O=IBM’)..

More Sophisticated Certificate Support from
RACF (4 of 7)

» Will cause losing some degree of granularity in access control.
As shown in the above examples, all the users are given the
authorizations of ID vuser, racfgp.

« Still retain full auditing accountability because subject’s and
issuer’s distinguished names in the certificate will be in the audit
record.

More Sophisticated Certificate Support from
RACF (5 of 7)

« Can also mapped to different IDs based on system and
application criteria, eg.
« The user of the certificate needs access to more than one
application, and each application requires a different user
ID.
« The same application might run on more than one system,
and each system requires a different user ID.
» The filter is not associated with an ID directly, but through a
profile in the DIGTCRIT class

More Sophisticated Certificate Support from
RACF (6 of 7)

- Example:

f Create a filter to associate to any user presenting a
certificate issued by VeriSign Class 1 Individual
Subscriber using ID1 if the certificate is passed through
application APP1; using ID2 if the application is APP2
RACDCERT MULTIID MAP IDNFILTER((* OU=VeriSign Class 1 Individual
Subscriber.O=VeriSign, Inc.L=Internet) CRITERIA(APPLID=&APPLID)...

Assuming these profiles also created:
RDEFINE DIGTCRIT APPLID=APP1 APPLDATA(ID1)
RDEFINE DIGTCRIT APPLID=APP2 APPLDATA(ID2)

- Certificate Name Filtering will be used only if the certificate
is not installed in RACF

More Sophisticated Certificate Support from
RACF (7 of 7)

= Host ID Mapping
* A client can present a certificate containing a HostildMapping
extension to the server

 This extension contains a subject id and a host name, eg.

« RACF will honor this extension if
= the issuing CA cert is marked HIGHTRUST
= the host hame in the extension matches a profile
IRR.HOST.<host nhame> in the SERVAUTH class
» The presenter of the cert has access to the above profile, eg.
IRR.HOST.
= The subject id, eg. will then be used to access the resource

- Host ID Mapping will be used only if the certificate is not installed in
RACF AND there is no certificate name filter

- RACDCERT can’t create this extension, PKI Services can

Renewal and Sharing
in RACDCERT

Two ways to renew a certificate(1 of 4)

Eventually a certificate will expire. To avoid complications,
you should renew it before it expires.

* Renew a certificate with the original key pair

> If the certificate is a self-signed certificate:

1. Create a new certificate request from the original certificate and
save the request in a dataset ‘request_dsn’:

RACDCERT CERTAUTH GENREQWN.ABELW&Original cert)
DSN &equest_dsn)

2. Create the new certifcate using the request in step 1:

RACDCERT CERTAUTH GENCERT kequest_dsn) SIGNWITHNERTAUTH
LABELNoriginal cert §)

> If the certificate is not a self-signhed certificate:
1. Same as step 1 above

2. Send the request to the original certificate CA

3. After you receive the new certificate and save it in a dataset
‘cert_dsn’, add it back under the same ID:
RACDCERT CERTAUTH ADD &gert_dsn)

Note: Don’'t delete the ‘original cert’!!!

Two ways to renew a certificate (2 of 4)

* Renew a certificate with a new key pair

The longer a key pair is used, the more likely it is to be
cracked. The key pair should be periodically changed. Two
RACDCERT functions are provided:

»>RACDCERT REKEY

-Make a self-signed copy of the original certificate with a new
public-private key pair

»RACDCERT ROLLOVER
-Finalize the REKEY operation

“*Private key of the old certificate is deleted so that it may
not be used again for signing or encryption

%+ Cert with usage PERSONAL.: all keyring occurrences of
the old certificate will be replaced with the new one

“*Cert with usage CERTAUTH or SITE: the new cert will be
added to all keyring occurrences of the old one

Two ways to renew a certificate (3 of 4)

- Renew a certificate with a new key pair...

» If the certificate is a self-sighed certificate:

1. Make a self copy of the original certificate:

RACDCERT CERTAUTH REKEY NABELNoriginal
cert f))WITHLABELW& original cert2)

2. Roll over the original certificate to the new one:

RACDCERT CERTAUTH ROLLOVER NABEL \original cert 1)
NEWLABEL & original cert2 j

Two ways to renew a certificate (4 of 4)

- Renew a certificate with a new key pair...
» If the certificate is not a self-sighed certificate:

1.

Make a self copy of the original certificate

RACDCERT IDWyid) REKEYNABELNoriginal cert §))
WITHLABELN original cert2)

Create a certificate request from the copied certificate in
step 1:

RACDCERT IDWyid) GENREQ&ABEL&Original
cert2) DSNW&equest_dsn)

Send the request to the original certificate CA

After you receive the new certificate and save it in a
dataset ‘cert_dsn’, add it back under the same ID:

RACDCERT IDWyid) ADDNsert_dsn)

Roll over the original certificate to the new one:

RACDCERT IDWyid) ROLLOVERWABELNoriginal
cert f) NEWLABELWoriginal cert2)

Share keyring, certificate, private key?

Share keyring ===>Share certificate===>Share private key

Sharing private key is not recommended, but in case you really
want to ...eg. Avoid buying a separate certificate for another
server or client, there is a way

Share just the certificate

* When the certificate is used for authentication, private key
IS not needed, real keyring is not needed

* In the case for client side SSL applications that don’t do
client authentication, for example, multiple FTP clients
talking to the same server

* All the certificates under a RACF user ID are considered
‘connected’ to a virtual key ring automatically

* Instead of specifying the real keyring name in the
configuration file, specify the virtual keyring(*AUTH*/*), eq:
In
KEYRING *AUTH*/* instead of,
KEYRING FTPID/ftpring

Share the certificate and its private key

* When the certificate is used for identification, private
key is needed

* Create a keyring under one ID, say SRV1

> RACDCERT IDWSRV;) ADDRINGNHARERING)

* Create a certificate under CERTAUTH or SITE, or a
personal |ID

> RACDCERT IDWRV;) GENCERT... WITHLABEL & Share Cert)

 Connect the cert to this ring
> RACDCERT IDWRV;) CONNECT N.ABEL W Share Cert)
RING @HARERING) USAGE WERSONAL) DEFAULT)

« Permit both IDs to access the ring, the cert and the
private key

> PERMIT SRV; .SHARERING.LST CLASS @RDATALIB) ACCESS WREAD)
ID RV,)
» PERMIT SRV; . SHARERING.LST CLASS ﬁ{DATALIB) ACCESS WPDATE)
ID NSRV2)
Note, The class RDATALIB must be RACLISTed

Recent enhancements

V1R12

Support Elliptic Cryptographic Curve (ECC) keys stored in RACF, in
addition to RSA and DSA keys

Support longer Distinguished Name beyond 246 characters (roll back to
R10 and R11)

Support adding and creating certificates with validity dates beyond year
2041(roll back to R10 and R11)

V1R13
Support secure Elliptic Cryptographic Curve (ECC) keys stored in ICSF

New enhancements

V2R1
RACDCERT and R_datalib are enhanced to support secure key in the
Token Key Data Set (TKDS), like the way stored in the Public Key
Data Set (PKDS (“Secure Key” means that sensitive key material is
always wrapped under a master key)

Report to the user the labels used for all the certificates in the chain for
RACDCERT

RACDCERT CHECKCERT and LISTCHAIN display information on the
certificates in the chain

Prevent the deletion of a certificate that has been used for generating
a request (GENREQ); but also grant clients an override mechanism to
delete it when needed

A new health check to find the certificates in the RACF database that
have expired or going to expire in a specified number of days (0-366)

RACF Database Unload Utility unload the issuer’s and subject’s
distinguished names of the certificate

Part 4 — Some hot topics on certificates

= Example
= Build or Buy
= (Qutage caused by expired certificate

Common exploiters of certificates on z/OS

Exploiter Connect the server cert to the ring, |Where/How to specify the RACF
ed. ‘MYRING’ key ring
FTP Server RACDCERT ID(FTPSVR) FTP.DATA file
CONNECT(LABEL(‘FTP Cert)
RING(MYRING) DEFAULT) KEYRING MYRING
Note1 or
AT-TLS policy
TN3270 Server RACDCERT ID(TNSVR) Telnet profile file

CONNECT(LABEL(‘TN Cert’) RING(MYRING)
DEFAULT)

Note1

KEYRING SAF MYRING
or
AT-TLS policy

IP Security (IPSEC)

RACDCERT ID(IPSEC)
CONNECT(LABEL(IPSEC Cert))
RING(MYRING) DEFAULT)

Iked.conf file
KEYRING MYRING

or

Note1
AT-TLS policy
HTTP Server RACDCERT ID(WEBSVR) httpd.conf file
CONNECT(LABEL(‘'WEB Cert) .
RING(MYRING) DEFAULT) Keyfile MYRING SAF
Note: must be connected as default
Websphere MQ RACDCERT ID(QM1) CONNECT(LABEL MQ command

(‘ibmWebSphereMQMQ1’) RING(MYRING))

Note: label of the cert must start with
ibmWebSphereMQ’

ALTER QMGR SSLKEYR (MYRING)

Note1: cert connected as default or use a specified label indicated in AT-TLS policy

FTP Server authentication

— Scenario

= My business partner runs a secure FTP server on Windows. |
need to send files from z/OS to it daily.

— Set up

—If the partner’s root CA certificate of the FTP server certificate
is already in your RACF database, eqg. It is one of the default
well-known CA certificates shipped with RACF

—Update your file with the CERTAUTH’s virtual key
rng:
KEYRING *AUTH*/*

—If the partner’s root CA certificate of the FTP server certificate
IS not already in your RACF database

—One more step — add it to the RACF database

RACDCERT CERTAUTH ADD('<dataset that contains the partner’'s CA cert>’)
WITHLABEL (‘<partner CA>")

FTP Client authentication(1 of 2)

— Scenario

= My partner's FTP server in Windows needs to authenticate my
server on z/OS before it accepts the files | send

— Set up

—Create a certificate for your FTP client certificate

—RACDCERT ID(FTPID) GENCERT... WITHLABEL(‘<mycert>’)
SIGNWITH(CERTAUTH LABEL(*<my CA cert>)

OR

—Create a request using GENREQ and send it to an external CA, after receiving it,
add it to RACF (See slide 65 — GENREQ)

—Create a key ring for the FTP client
—RACDCERT ID(FTPID) ADDRING(ftpring)

—Connect the client cert to the FTP client ring as the default cert
—~RACDCERT ID(FTPID) CONNECT(LABEL (‘mycert>") RING(ftpring) DEFAULT)

—Connect your CA cert (<my CA cert>) to the FTP client ring

FTP Client authentication(2 of 2)
—Add your partner’s CA cert to the RACF database

—Connect your partner’'s CA cert to FTP client ring
—Update your file with the client key ring:
KEYRING FTPID/ftpring

Planning, Planning, Planning(1 of 3)

— To set up a certificate for secure traffic the first time is not that
difficult

— The difficult part is the maintenance on its life cycle
— Certificate expiration causes system outage
— Things to consider:
—How many certificates are actively used in the system?
—Categorize them by
— certs locally created VS certs by external provider

— certs used to authenticate the incoming requests VS ceris to
identify your servers to the other parties

— What CA certs will you trust?

— Each server will have its own ring and own cert or
shared?

Planning, Planning, Planning(2 of 3)
—If you are a local CA which issues certs to the other systems

— who should be responsible to keep track of the expiry date?
‘you’ as the issuer or ‘they’ as the requestors?

—when to renew your CA cert?

—A 10 year validity CA cert should not issue 2 year
validity cert after the 8" year

Planning, Planning, Planning (3 of 3)

— How to keep track of the expiration dates of all the certificates in
the system?

—Spreadsheets?

—Utilities™?

—Automation for renew?

—Use certificate management vendor products?

Build or Buy? (1 of 2)

— Who will be validating your certificate?
—Global internet customers

—Easier to buy from a well known CA since it is already
installed in the browsers’ certificate store

Certificates ﬁ

Intended purpose: | <All = [L]

Intermediate Certification Authorities | Trusted Root Certification Authorities | Trusted Publl <[> |

Issued To Issued By Expiratio. .. [A]
'I.I'eriSign Class 2 Public Primary Certificatio... VeriSign Class 2 Public... 7/16/2036
'I.l'eriSign Class 3 Public Primary Certificatio... VeriSign Class 3 Public... 7/156/2035
.h‘erlSlgn Class 3 Public Primary Certificatio... VeriSign Class 3 Public... 7/16/2038
.h‘erlSlgn Class 4 Public Primary Certificatio... VeriSign Class 4 Public... 7/15/2038
.'I.I'EHSlgn Commerdal Software Publishers CA& VeriSign Commerdial 5... 12/31/1995
.'I.I'EI'ISIgl'l Commerdal Software Publishers CA VeriSign Commerdal 5... 1/7/2004
'I.l'eriSign Individual Software Publishers CA VeriSign Individual Sof... 12/31/1999 —
'l.l'eriSign Individual Software Publishers CA VeriSign Individual Sof... 172004 []

[£] 1l | [>]

[Impart... ” Export... H Remove

Certificate intended purposes

Server Authentication, Client Authentication, Secure Email, Code Signing, Time

Stampin,
=

Build or Buy? (2 of 2)

—Internal servers, employees

—Build your own since you can have the internal CA certs
distributed easily

—Business partners
—Either way

—If you already built a trust relationship with the partners,
there should be no problem for them to install your CA cert

— —— — —

Part 5 - Introduction to PKI Services

z/0OS PKI Services Overview

» Enable customers to run their own Certificate Authority to issue
certificates for internal or external use

= A component on z/OS since V1IR3, V2R1 will be available this
year
= Closely tied to RACF
= The CA cert must be installed in RACF’s key ring
= Authority checking goes through RACF’s callable serv