
z/OS

APAR OA26109 (RACF) and APAR
OA26110 (SAF)
RACF support for z/OS Program Signature
and Verification

���

z/OS

APAR OA26109 (RACF) and APAR
OA26110 (SAF)
RACF support for z/OS Program Signature
and Verification

���

ii RACF support for z/OS Program Signature and Verification

Contents

General information . v

Part 1. Overview . 1

Chapter 1. Overview . 3

Chapter 2. Software . 5

Part 2. Information updates . 7

Chapter 3. Security administrator considerations 9
Overview of program signing and verification 9

Terms to know . 10
Related information . 10
Task roadmap for program signing and signature verification 10

Enabling a user to sign a program. 10
Overview of enabling a user to sign a program 11
Steps for enabling a user to sign a program using RACF code-signing

certificates. 13
Steps for enabling a user to sign a program using external code-signing

certificates. 15
Enabling RACF to verify signed programs 17

Overview of enabling RACF to verify signed programs 17
Steps for discovering if signed programs currently execute on your systems

(optional) . 21
Steps for preparing RACF to verify signed programs (one-time setup). . . . 23
Steps for verifying a signed program 24

Field-level access checking for the new SIGVER segment 26
Updated sample for using the RACF database unload utility (IRRDBU00) with

DB2 . 27
New supplied certificate from IBM 27

Chapter 4. Command considerations 29
RALTER (Alter general resource profile) 30

Syntax . 30
Parameters . 30
Example . 33

RDEFINE (Define general resource profile) 34
Syntax . 34
Parameters . 34
Example . 36

RLIST (List general resource profile) 37
Syntax . 37
Parameters . 37
Example . 37

Chapter 5. System programmer considerations 39
Program signing and signature verification 39
VLF considerations for program signature verification 39

Dependencies . 39
Initializing RACF verification of signed programs (IRRVERLD) 39

IRRVERLD return codes . 40

© Copyright IBM Corp. 1994, 2009 iii

RACF virtual storage requirements 40

Chapter 6. Messages considerations 41

Chapter 7. Diagnosis considerations 47
Variable data recorded by RACF Callable Services 47

Chapter 8. Data area considerations 53
COMP: Common SAF/RACF Parameter List for z/OS UNIX System Services 53

Constants . 54
COMY: 64-BIT enabled SAF callable services 54

Cross Reference . 55
FC: z/OS UNIX System Services Security Function Code Table 55

Constants . 55
Cross Reference . 55

Chapter 9. Callable services considerations 57
R_datalib (IRRSDL00 or IRRSDL64): OCSF data library. 57
R_admin reference information 58
R_PgmSignVer (IRRSPS00): Program Sign and Verify 59

Function . 59
Requirements . 60
Linkage conventions . 60
RACF authorization . 60
Format . 60
Parameters . 61
Return and reason codes . 67
Usage notes . 72
Related services . 75

Chapter 10. Macros and interface considerations 77
Updates to the table of event codes and event code qualifiers 77
Table of extended-length relocate section variable data 77
Event codes . 77
Updates to record extensions 78

The R_PgmSignVer record extension 78
Updates to database unload . 79
General Resource SIGVER data record (05F0) 81
Updates to the RACF database templates 81
Updates to event code qualifier descriptions 81
Event 86(56): R_PgmSignVer 81

Trademarks . 83

iv RACF support for z/OS Program Signature and Verification

General information

This information applies to APAR OA26109 for RACF and APAR OA26110 for SAF.

© Copyright IBM Corp. 1994, 2009 v

vi RACF support for z/OS Program Signature and Verification

Part 1. Overview

© Copyright IBM Corp. 1994, 2009 1

2 RACF support for z/OS Program Signature and Verification

Chapter 1. Overview

This document details the RACF support to enable program signing and verification.
Beginning with z/OS Version 1 Release 10, you can use RACF to enable and
control the digital signing and verification of programs. At your option, RACF can
enforce that a program be digitally signed and verified before being loaded for
execution on your z/OS system. In addition, you can authorize selected users to
digitally sign programs that are bound at your installation.

The information within this document has been compiled from the separate manuals
which make up the RACF library.

© Copyright IBM Corp. 1994, 2009 3

4 RACF support for z/OS Program Signature and Verification

Chapter 2. Software

RACF support for program signature and verification in z/OS V1R10 requires APAR
OA26109 (RACF) and APAR OA26110 (SAF). Additionally it requires OA26505
(Binder) and OA24692 (Loader).

© Copyright IBM Corp. 1994, 2009 5

6 RACF support for z/OS Program Signature and Verification

Part 2. Information updates

The chapters in this part supplement the following books:

Table 1. z/OS Security Server publication updates

Chapter Supplements...

Chapter 3, “Security administrator
considerations,” on page 9

z/OS Security Server RACF Security
Administrator’s Guide

Chapter 4, “Command considerations,” on
page 29

z/OS Security Server RACF Command
Language Reference

Chapter 5, “System programmer
considerations,” on page 39

z/OS Security Server RACF System
Programmer's Guide

Chapter 6, “Messages considerations,” on
page 41

z/OS Security Server RACF Messages and
Codes

Chapter 7, “Diagnosis considerations,” on
page 47

z/OS Security Server RACF Diagnosis

Chapter 8, “Data area considerations,” on
page 53

z/OS Security Server RACF Data Areas

Chapter 9, “Callable services considerations,”
on page 57

z/OS Security Server RACF Callable Services

Chapter 10, “Macros and interface
considerations,” on page 77

z/OS Security Server RACF Macros and
Interfaces

© Copyright IBM Corp. 1994, 2009 7

8 RACF support for z/OS Program Signature and Verification

Chapter 3. Security administrator considerations

Overview of program signing and verification 9
Terms to know . 10
Related information . 10
Task roadmap for program signing and signature verification 10

Enabling a user to sign a program. 10
Overview of enabling a user to sign a program 11

Certificate objects required for program signing 11
Details about defining IRR.PROGRAM.SIGNING profiles 12
Task roadmap for enabling a user to sign a program 13

Steps for enabling a user to sign a program using RACF code-signing
certificates. 13

Steps for enabling a user to sign a program using external code-signing
certificates. 15

Enabling RACF to verify signed programs 17
Overview of enabling RACF to verify signed programs 17

Initializing RACF program signature verification 17
Certificate objects required for verifying signed programs 18
Details about defining the IRR.PROGRAM.SIGNATURE.VERIFICATION

profile . 18
Customizing the SIGVER segment of PROGRAM profiles 19
Delegating the authority for specifying signature verification options . . . 19
Discovering if signed programs currently execute on your systems 20
Task roadmap for enabling RACF to verify signed programs 21

Steps for discovering if signed programs currently execute on your systems
(optional) . 21

Steps for preparing RACF to verify signed programs (one-time setup). . . . 23
Steps for verifying a signed program 24

Field-level access checking for the new SIGVER segment 26
Updated sample for using the RACF database unload utility (IRRDBU00) with

DB2 . 27
New supplied certificate from IBM 27

This topic provides information for security administrators about enabling users to
digitally sign programs and enabling RACF to verify signed programs. This
information supplements z/OS Security Server RACF Security Administrator’s
Guide.

Overview of program signing and verification
You can use RACF® to enable and control the digital signature and verification of
programs. At your option, RACF can enforce that a program be digitally signed and
verified before being loaded for execution on your z/OS® system. In addition, you
can authorize selected users to digitally sign programs that are bound at your
installation.

If your installation develops programs, you might choose to enable users to digitally
sign the programs you develop. By signing your programs, your customers or users
can ensure that they are executing only valid, unchanged versions of the programs
they obtain from you. This might be of interest if you are a software vendor.

Guideline: Before you begin enforcing program signing and verification, carefully
plan and test procedures to enable your installation to recover from a detected

© Copyright IBM Corp. 1994, 2009 9

signature failure. Depending on how you customize the signature verification
options for a signed program, an improperly signed module might fail to load. If the
module is part of a critical business application, ensure that you have a tested
recovery procedure in place to minimize the business impact.

RACF supports program signing and verification only for program objects, which are
modules stored as members of a partitioned data set extended (PDSE) library.

Restriction: Program signing and verification are not supported for the following
program modules:

v Program objects that are stored in z/OS UNIX® files

v Load modules that are stored as members of a partitioned data set (PDS) library

Terms to know
In this topic, the following terms are synonymously used to refer to a program
module stored as a PDSE member:
v program object
v program module
v program
v module

Related information
For programming information about using the SIGN binder option to sign program
modules, see z/OS MVS Program Management: User’s Guide and Reference.

Task roadmap for program signing and signature verification
The following table shows the subtasks and associated instructions for enabling a
user to digitally sign a program, and enabling RACF to verify a signed program.

Subtask Associated instructions (see ...)

Enable a user to sign a program using
code-signing certificates that you create using
RACF.

“Steps for enabling a user to sign a program
using RACF code-signing certificates” on
page 13.

Enable a user to sign a program using
code-signing certificates that you obtain from
an external certificate authority (CA).

“Steps for enabling a user to sign a program
using external code-signing certificates” on
page 15.

Optionally, audit your installation's signed
programs.

“Steps for discovering if signed programs
currently execute on your systems (optional)”
on page 21.

Prepare RACF to verify signed programs.
(This is a one-time setup.)

“Steps for preparing RACF to verify signed
programs (one-time setup)” on page 23.

Verify a signed program. “Steps for verifying a signed program” on
page 24.

Enabling a user to sign a program
This topic contains the following subtopics:

v “Overview of enabling a user to sign a program” on page 11

v “Steps for enabling a user to sign a program using RACF code-signing
certificates” on page 13

v “Steps for enabling a user to sign a program using external code-signing
certificates” on page 15

10 RACF support for z/OS Program Signature and Verification

Overview of enabling a user to sign a program
An authorized user, or program builder, can sign a program object using the SIGN
binder option at the time the program object is bound. Once signed, the program
object contains signature information that can be verified at load time.

This overview contains the following topics:

v “Certificate objects required for program signing”

v “Details about defining IRR.PROGRAM.SIGNING profiles” on page 12

v “Task roadmap for enabling a user to sign a program” on page 13

Certificate objects required for program signing
To enable a user to sign a program, you must add certificate objects that meet the
following requirements. These certificate objects are added to RACF when you
perform the steps in “Task roadmap for enabling a user to sign a program” on page
13.

Requirements:

v Each user must have access to a key ring, called a program-signing key ring,
that contains all of the following certificate objects:

– An RSA private key to apply the digital signature.

– The X.509 certificate, called a code-signing certificate, that corresponds to the
RSA private key.

– Each certificate-authority (CA) certificate (up to and including the root CA
certificate) in the certificate chain of the code-signing certificate.

Restrictions:

- No more than ten certificates are supported in the certificate chain of the
code-signing certificate.

- Do not use a PKCS #11 token as a substitute for the program-signing key
ring.

v The code-signing certificate and each CA certificate in the chain must be signed
using one of the following signature algorithms:

– sha256WithRSAEncryption

– sha1WithRSAEncryption

v The code-signing certificate must have code-signing capability in one of the
following ways:

– Either the certificate has no KeyUsage extension, or the certificate has a
KeyUsage extension with at least the digitalSignature and nonRepudiation
indicators enabled.

v Each CA certificate in the chain must have certificate-signing capability in both of
the following ways:

– Either the certificate has no BasicConstraints extension, or the certificate has
a BasicConstraints extension with the cA indicator enabled.

– Either the certificate has no KeyUsage extension, or the certificate has a
KeyUsage extension with at least the keyCertSign indicator enabled.

For examples of using RACDCERT GENCERT command to create certificates that
meet these requirements, see “Steps for enabling a user to sign a program using
RACF code-signing certificates” on page 13. Otherwise, contact your external
certificate authority (CA) and see “Steps for enabling a user to sign a program using
external code-signing certificates” on page 15.

Chapter 3. Security administrator considerations 11

For details about using the RACDCERT GENCERT command, see z/OS Security
Server RACF Command Language Reference.

Details about defining IRR.PROGRAM.SIGNING profiles
When you perform the subtasks in “Task roadmap for enabling a user to sign a
program” on page 13, you define APPLDATA information in one or more discrete
profiles in the FACILITY class to specify the following:

v The name of the program-signing key ring that contains all certificate objects
required for each user who is an authorized program signer.

v The hash algorithm (or message digestion algorithm) that will be used to sign the
program.

Format of the profile name: The format of the IRR.PROGRAM.SIGNING profile
name is based on how you choose to assign program-signing key rings to users
who are authorized program signers.

The first three qualifiers of profile name must be IRR.PROGRAM.SIGNING. The
rest of the profile name reflects the available options for assigning key rings to
signers.

You can optionally append one or two additional qualifiers to the profile name, as
shown in the following list. RACF checks the profiles in the order listed, and uses
the first profile found that matches as follows:

1. IRR.PROGRAM.SIGNING.group.userid

This profile assigns the key ring based on the signer's current-connect group
and user ID.

2. IRR.PROGRAM.SIGNING.userid

This profile assigns the key ring based on the signer's user ID.

3. IRR.PROGRAM.SIGNING.group

This profile assigns the key ring based on the signer's current-connect group.

4. IRR.PROGRAM.SIGNING

This profile assigns the same key ring to all authorized signers.

Rule: No generic characters are allowed in the name of a
IRR.PROGRAM.SIGNING profile.

Format of the APPLDATA value: The format of the APPLDATA value in the
IRR.PROGRAM.SIGNING profiles is as follows:

[hash-algorithm][owning-userid]/key-ring-name

The variables of the APPLDATA value are defined as follows:

hash-algorithm
Specifies the message digestion algorithm to be used for program signing.
The default value is SHA256. No other values are supported.

owning-userid
Specifies the user ID that owns the program-signing key ring. If you omit
this value, RACF uses the key ring of the authorized program signer.

/key-ring-name
Specifies the fully qualified name of the program-signing key ring. This
value must be preceded by the forward slash (/).

12 RACF support for z/OS Program Signature and Verification

Examples:
RDEFINE FACILITY IRR.PROGRAM.SIGNING.BUILD.RAMOS

APPLDATA('BUILDID/BUILD.CODE.SIGNING.KEYRING')
RDEFINE FACILITY IRR.PROGRAM.SIGNING.RAMOS

APPLDATA('SHA256 RAMOS/RAMOS.CODE.SIGNING.KEYRING')
RDEFINE FACILITY IRR.PROGRAM.SIGNING.PROD

APPLDATA('/PROD.CODE.SIGNING.KEYRING')
RDEFINE FACILITY IRR.PROGRAM.SIGNING

APPLDATA('RACFADM/CODE.SIGNING.KEYRING')

Rules:

v The only space character allowed in the APPLDATA value is the single space
following the hash-algorithm value. If hash-algorithm is omitted, no space is
allowed in the APPLDATA value.

v No extraneous characters are allowed in the APPLDATA value.

RACF does not check the format of the APPLDATA value when you define a
IRR.PROGRAM.SIGNING profile. RACF checks the format when a user signs a
program and RACF finds a matching IRR.PROGRAM.SIGNING profile.

Task roadmap for enabling a user to sign a program
The following table shows the subtasks and associated instructions for enabling a
user to digitally sign a program. Perform one of the following subtasks for each user
you want to enable to digitally sign a program. Base your choice of subtask on how
you acquire your code-signing certificates.

Subtask Associated instructions (see ...)

Enable a user to sign a program using
code-signing certificates that you create using
RACF.

“Steps for enabling a user to sign a program
using RACF code-signing certificates.”

Enable a user to sign a program using
code-signing certificates that you obtain from
an external certificate authority (CA).

“Steps for enabling a user to sign a program
using external code-signing certificates” on
page 15.

Steps for enabling a user to sign a program using RACF code-signing
certificates

Before you begin:

v Determine your IRR.PROGRAM.SIGNING profile structure for assigning
program-signing key rings to users who are authorized program signers.

The following steps are based on defining the IRR.PROGRAM.SIGNING.userid
profile. Therefore, the following examples define a program-signing key ring for
each authorized program signer. For details about other options, see “Details
about defining IRR.PROGRAM.SIGNING profiles” on page 12.

Guideline: If you opt instead to define the IRR.PROGRAM.SIGNING profile to
assign the same key ring to all authorized signers, you might use a profile in the
RDATALIB class instead of the FACILITY class to authorize users to access the
program-signing ring. A profile in the RDATALIB class allows you to authorize
users to a specific key ring. For details, see “RACF Authorization” for R_datalib
(IRRSDL00 or IRRSDL64) in z/OS Security Server RACF Callable Services.

v If you specify the PCICC option (in Step 1 on page 14) to store the private key in
ICSF, and the CSFSERV and CSFKEYS classes are active, you might need
additional authority in those classes. For information about these resources, see
z/OS Cryptographic Services ICSF Administrator’s Guide.

Chapter 3. Security administrator considerations 13

Perform the following steps to enable a user to digitally sign a program using
code-signing certificates that you create using RACF.

1. If not already created, create a certificate-authority (CA) certificate that you can
use to issue code-signing certificates for users who need to sign programs.

Guideline: For added security, specify the PCICC option to generate and store
the private key in ICSF, if available.

Example:
RACDCERT CERTAUTH GENCERT

SUBJECTSDN(OU('MyCompany Code Signing CA') O('MyCompany') C('US'))
SIZE(2048) PCICC WITHLABEL('MyCompany Code Signing CA')

2. For each user, create a code-signing certificate signed by the CA certificate you
created in Step 1.

Rule: Do not specify the PCICC or ICSF option. The private key of the
code-signing certificate must reside in RACF.

Example:
RACDCERT ID(RAMOS) GENCERT

SUBJECTSDN(CN('Ramos Code Signing Cert') O('MyCompany') C('US'))
SIZE(1024) WITHLABEL('Ramos Code Signing Cert')
SIGNWITH(CERTAUTH LABEL('MyCompany Code Signing CA'))
KEYUSAGE(HANDSHAKE DOCSIGN)

3. For each user, create a program-signing key ring to hold the certificates you
created in Steps 1 and 2.

Rule: Specify only uppercase characters in the key ring name. This is because
you must specify the ring name in the APPLDATA field of the FACILITY profile
you create in Step 5.

Example:
RACDCERT ID(RAMOS) ADDRING(RAMOS.CODE.SIGNING.KEYRING)

4. Add both of the certificates you created in Steps 1 and 2 to the key ring you
created in Step 3.

Rule: The code-signing certificate must be the default certificate in the ring.

Example:
RACDCERT ID(RAMOS) CONNECT(CERTAUTH LABEL('MyCompany Code Signing CA')

RING(RAMOS.CODE.SIGNING.KEYRING))
RACDCERT ID(RAMOS) CONNECT(ID(RAMOS) LABEL('Ramos Code Signing Cert') DEFAULT

RING(RAMOS.CODE.SIGNING.KEYRING))

5. For each user, create a FACILITY class profile that specifies the hash algorithm
and the name of the key ring to be used whenever the user digitally signs a
program module.

Example:
RDEFINE FACILITY IRR.PROGRAM.SIGNING.RAMOS

APPLDATA('SHA256 RAMOS/RAMOS.CODE.SIGNING.KEYRING')

6. Permit each user to access his own key rings, if not already authorized.

Example:
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(RAMOS) ACCESS(READ)

14 RACF support for z/OS Program Signature and Verification

7. Activate your profile changes in the FACILITY class, as follows.

v If the FACILITY class is not already active, activate and RACLIST the
FACILITY class.

Example:
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)

v If the FACILITY class is already active and RACLISTed, refresh the
FACILITY class.

Example:
SETROPTS RACLIST(FACILITY) REFRESH

You have now enabled a user to digitally sign a program using code-signing
certificates that you created using RACF.

Steps for enabling a user to sign a program using external
code-signing certificates

Before you begin:

v Obtain or locate the root certificate-authority (CA) certificate of an external CA
and store it in a cataloged, variable-byte (VB) MVS data set.

v Determine your IRR.PROGRAM.SIGNING profile structure for assigning
program-signing key rings to users who are authorized program signers.

The following steps are based on defining the IRR.PROGRAM.SIGNING.userid
profile. Therefore, the following examples define a program-signing key ring for
each authorized program signer. For details about other options, see “Details
about defining IRR.PROGRAM.SIGNING profiles” on page 12.

Guideline: If you opt instead to define the IRR.PROGRAM.SIGNING profile to
assign the same key ring to all authorized signers, you might use a profile in the
RDATALIB class instead of the FACILITY class to authorize users to access the
program-signing ring. A profile in the RDATALIB class allows you to authorize
users to a specific key ring. For details, see “RACF Authorization” for R_datalib
(IRRSDL00 or IRRSDL64) in z/OS Security Server RACF Callable Services.

Perform the following steps to enable a user to digitally sign a program using
code-signing certificates that you obtain from an external certificate-authority (CA).

1. If not already done, add the root CA certificate of the external CA to RACF,
specifying the name of the data set where it is stored.

Example:
RACDCERT CERTAUTH ADD(CA.CERT.DSN) WITHLABEL('MyCompany Code Signing CA')

2. For each user, obtain a code-signing certificate from the external CA and add it
to RACF. To do so, perform the following sub-steps.

a. Create a self-signed code-signing certificate (as a placeholder) that will be
signed by the external CA.

Rule: Do not specify the PCICC or ICSF option. The private key of the
code-signing certificate must reside in RACF.

Example:

Chapter 3. Security administrator considerations 15

RACDCERT ID(RAMOS) GENCERT
SUBJECTSDN(CN('Ramos Code Signing Cert') O('MyCompany') C('US'))
SIZE(1024) WITHLABEL('Ramos Code Signing Cert')
KEYUSAGE(HANDSHAKE DOCSIGN)

b. Create a PKCS #10 certificate request based on the placeholder certificate
you created in Step 2a, specifying the name of the MVS data set where the
certificate request will be stored.

Example:
RACDCERT ID(RAMOS) GENREQ(LABEL('Ramos Code Signing Cert'))

DSN(RAMOS.CERT.REQUEST.DSN)

c. Send the MVS data set (for example, RAMOS.CERT.REQUEST.DSN) containing
the stored certificate request to the external CA.

d. Receive the signed certificate returned by the external CA and store it in a
cataloged, variable-byte (VB) MVS data set (for example, RAMOS.CERT.DSN).

e. Add the new signed certificate to RACF, replacing the placeholder
certificate you created in Step 2a.

Example:
RACDCERT ID(RAMOS) ADD(RAMOS.CERT.DSN) WITHLABEL('Ramos Code Signing Cert')

3. For each user, create a program-signing key ring to hold the external
certificates you added in Steps 1 and 2.

Rule: Specify only uppercase characters in the key ring name. This is because
you must specify the ring name in the APPLDATA field of the FACILITY profile
you create in Step 5.

Example:
RACDCERT ID(RAMOS) ADDRING(RAMOS.CODE.SIGNING.KEYRING)

4. Connect both of the certificates you added in Steps 1 and 2 to the key ring you
created in Step 3.

Rule: The code-signing certificate must be the default certificate in the ring.

Example:
RACDCERT ID(RAMOS) CONNECT(CERTAUTH LABEL('MyCompany Code Signing CA')

RING(RAMOS.CODE.SIGNING.KEYRING))
RACDCERT ID(RAMOS) CONNECT(ID(RAMOS) LABEL('Ramos Code Signing Cert') DEFAULT

RING(RAMOS.CODE.SIGNING.KEYRING))

5. For each user, create a FACILITY class profile that specifies the hash algorithm
and the name of the key ring to be used whenever the user digitally signs a
program module.

Example:
RDEFINE FACILITY IRR.PROGRAM.SIGNING.RAMOS

APPLDATA('SHA256 RAMOS/RAMOS.CODE.SIGNING.KEYRING')

6. Permit each user to access his own key rings, if not already authorized.

Example:
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(RAMOS) ACCESS(READ)

7. Activate your profile changes in the FACILITY class, as follows.

16 RACF support for z/OS Program Signature and Verification

v If the FACILITY class is not already active, activate and RACLIST the
FACILITY class.

Example:
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)

v If the FACILITY class is already active and RACLISTed, refresh the
FACILITY class.

Example:
SETROPTS RACLIST(FACILITY) REFRESH

You have now enabled a user to digitally sign a program using code-signing
certificates that you obtained from an external certificate-authority (CA).

Enabling RACF to verify signed programs
This topic contains the following subtopics:

v “Overview of enabling RACF to verify signed programs”

v “Steps for discovering if signed programs currently execute on your systems
(optional)” on page 21

v “Steps for preparing RACF to verify signed programs (one-time setup)” on page
23

v “Steps for verifying a signed program” on page 24

Overview of enabling RACF to verify signed programs
You can enable RACF to verify signed programs by performing some (one-time)
setup steps and then specifying the programs you want RACF to verify. Once
RACF verifies the authority of a user to execute a controlled program, RACF
(optionally) performs signature verification at the time the program object is loaded
for execution.

This overview contains the following topics:

v “Initializing RACF program signature verification”

v “Certificate objects required for verifying signed programs” on page 18

v “Details about defining the IRR.PROGRAM.SIGNATURE.VERIFICATION profile”
on page 18

v “Customizing the SIGVER segment of PROGRAM profiles” on page 19

v “Delegating the authority for specifying signature verification options” on page 19

v “Discovering if signed programs currently execute on your systems” on page 20

v “Task roadmap for enabling RACF to verify signed programs” on page 21

Initializing RACF program signature verification
When you perform “Steps for preparing RACF to verify signed programs (one-time
setup)” on page 23, you initialize program signature verification. These steps
include preparing several certificate objects and general resource profiles, defining
the program verification module (IRRPVERS) as a signed program that must be
verified when it is loaded, and finally loading and successfully verifying the
signature of the IRRPVERS module for the first time.

Chapter 3. Security administrator considerations 17

To verify IRRPVERS, RACF uses the IBM® root CA certificate labeled STG Code
Signing CA that is supplied with RACF. For a listing of the output from the
RACDCERT LIST command for this certificate, see “New supplied certificate from
IBM” on page 27.

Certificate objects required for verifying signed programs
To enable RACF to verify signed programs, you must add certificate objects that
meet the following requirements. These certificate objects are added to RACF when
you perform the steps in “Task roadmap for enabling RACF to verify signed
programs” on page 21.

Requirements:

v You must add the TRUST attribute to the code-signing certificate-authority (CA)
certificate that is supplied with RACF, so that RACF can use it.

v You must add a key ring, called the signature-verification key ring, and connect
the RACF code-signing CA certificate and a root CA certificate for each trusted
program signer. (For a program signed by a user in your installation, this root CA
certificate is the CA certificate you added to the user's code-signing key ring in
“Enabling a user to sign a program” on page 10.)

Your installation can have only one signature-verification ring. This single ring
represents your installation's trust policy for trusted program signers, and must
contain the RACF code-signing CA certificate and all root CA certificates required
to verify all the signed programs that you want RACF to verify.

Restriction: Do not use a PKCS #11 token as a substitute for the
signature-verification key ring.

v Each root CA certificate must be signed using one of the following signature
algorithms:

– sha256WithRSAEncryption

– sha1WithRSAEncryption

v Each root CA certificate must have certificate-signing capability in both of the
following ways:

– Either the certificate has no BasicConstraints extension, or the certificate has
a BasicConstraints extension with the cA indicator enabled.

– Either the certificate has no KeyUsage extension, or the certificate has a
KeyUsage extension with at least the keyCertSign indicator enabled.

Details about defining the
IRR.PROGRAM.SIGNATURE.VERIFICATION profile
When you perform the subtasks in “Task roadmap for enabling RACF to verify
signed programs” on page 21, you define APPLDATA information in a discrete
profile called IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class to
specify the following:

v The name of the signature-verification key ring that contains all certificate objects
required to verify each signed program.

Rule: No generic characters are allowed in the name of the
IRR.PROGRAM.SIGNATURE.VERIFICATION profile.

Format of the APPLDATA value: The format of the APPLDATA value in the
IRR.PROGRAM.SIGNATURE.VERIFICATION profile is as follows:

owning-userid/key-ring-name

18 RACF support for z/OS Program Signature and Verification

The variables of the APPLDATA value are defined as follows:

owning-userid
Specifies the user ID that owns the signature-verification key ring.

/key-ring-name
Specifies the fully qualified name of the signature-verification key ring. This
value must be preceded by the forward slash (/).

Example:
RDEFINE FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION

APPLDATA('RACFADM/CODE.SIGNATURE.VERIFICATION.KEYRING')

Rule: No spaces or extraneous characters are allowed in the APPLDATA value.

RACF does not check the format of the APPLDATA value when you define a
IRR.PROGRAM.SIGNATURE.VERIFICATION profile. RACF typically checks the
format when it verifies the signature of a signed program.

Customizing the SIGVER segment of PROGRAM profiles
The SIGVER segment of a profile in the PROGRAM class contains the signature
verification options that apply to one or more programs that are protected by the
profile. Customize the fields of the SIGVER segment using the SIGVER operand of
the RALTER or RDEFINE command.

When you customize the SIGVER segment of a PROGRAM profile, you can specify
options for the following suboperands of the SIGVER operand:

SIGREQUIRED Specifies whether the program must be digitally
signed.

FAILLOAD Specifies the conditions under which the program
should fail to load in the event of a signature
verification failure.

SIGAUDIT Specifies which signature verification events are
logged.

For details about customizing the SIGVER segment using the RALTER and
RDEFINE commands, see z/OS Security Server RACF Command Language
Reference.

For examples of customizing the SIGVER segment, see “Steps for verifying a
signed program” on page 24.

If you want to delegate authority for customizing the SIGVER segment to auditors
or other users who do not have the SPECIAL attribute, see “Delegating the
authority for specifying signature verification options.”

Delegating the authority for specifying signature verification
options
If you want to delegate the authority for specifying signature verification options to
users who do not have the SPECIAL attribute, you must use field-level access
checking to authorize UPDATE access to the appropriate fields in the SIGVER
segment of PROGRAM class profiles.

Users with the AUDITOR attribute cannot specify auditing options for signature
verification unless you authorize them with UPDATE access to the SIGAUDIT field.

Chapter 3. Security administrator considerations 19

The following example authorizes a group called SIGNGRP to specify all signature
verification options, and authorizes a second group called AUDGRP to control only
the auditing options for signature verification.

Example:
SETROPTS CLASSACT(FIELD) RACLIST(FIELD)

RDEFINE FIELD PROGRAM.SIGVER.* UACC(NONE)
PERMIT PROGRAM.SIGVER.* CLASS(FIELD) ID(SIGNGRP) ACCESS(UPDATE)

RDEFINE FIELD PROGRAM.SIGVER.SIGAUDIT UACC(NONE)
PERMIT PROGRAM.SIGVER.SIGAUDIT CLASS(FIELD) ID(SIGNGRP AUDGRP) ACCESS(UPDATE)

SETROPTS RACLIST(FIELD) REFRESH

For a complete list of the resource name qualifiers that control each field of the
SIGVER segment, see “Field-level access checking for the new SIGVER segment”
on page 26.

Discovering if signed programs currently execute on your
systems
You can optionally enable SMF logging of signature verification events by
performing “Steps for discovering if signed programs currently execute on your
systems (optional)” on page 21. By doing so, you can later examine the SMF
records using the SMF data unload utility (IRRADU00) to discover if any of your
controlled programs are digitally signed and if so, by whom. Once you identify a
signer, obtain the signer's root CA in preparation for completing “Steps for verifying
a signed program” on page 24.

For information about using the SMF data unload utility (IRRADU00), see z/OS
Security Server RACF Auditor’s Guide.

To enable SMF logging for this purpose, modify one or more PROGRAM profiles to
specify the following signature verification options. Using these specific options
ensures that no load failures occur due to signature verification failures.

SIGREQUIRED(NO)
Specifies that no digital signatures are required.

FAILLOAD(NEVER)
Specifies that no program load should fail due to a signature verification
failure.

SIGAUDIT(ALL)
Specifies that all signature verification events will be logged, regardless of
success or failure.

Once you perform “Steps for discovering if signed programs currently execute on
your systems (optional)” on page 21, if any controlled program is digitally signed,
RACF will attempt to verify the signature upon load. Each signature verification will
result in a failure until you complete “Steps for preparing RACF to verify signed
programs (one-time setup)” on page 23 and “Steps for verifying a signed program”
on page 24. Each signature verification failure will be logged to SMF and related
error messages will be issued to the console.

Sample error messages:

20 RACF support for z/OS Program Signature and Verification

ICH441I Program signature error 0x00/0x00000074 for program PROGXYZ
in library LXYZR11.LIBRARY. Load processing continues.

ICH450I The RACF program verification module is not loaded.
Program signature verification is not available.

Task roadmap for enabling RACF to verify signed programs
The following table shows the subtasks and associated instructions for enabling
RACF to verify signed programs.

Subtask Associated instructions (see ...)

Optionally discover if signed programs
currently execute on your systems.

“Steps for discovering if signed programs
currently execute on your systems (optional).”

Prepare RACF to verify signed programs.
(This is a one-time setup.)

“Steps for preparing RACF to verify signed
programs (one-time setup)” on page 23.

Verify a signed program. “Steps for verifying a signed program” on
page 24.

Steps for discovering if signed programs currently execute on your
systems (optional)

Before you begin:

v For background information about these steps, see “Discovering if signed
programs currently execute on your systems” on page 20.

v Important: When specifying SIGVER options for a generic program profile (such
as the ** profile) for the purpose of discovering signed programs, observe the
following guidelines. They are based on the assumption that while you are
beginning to evaluate program verification, you have not yet planned for the
impact it might have on your installation.

Guidelines:

– Set the SIGVER options as shown in the examples in these steps.

– Avoid specifying SIGREQUIRED(YES) for a generic program profile because
it might cause excessive logging and failure messages to the console, based
on the SIGAUDIT setting.

– Avoid specifying FAILLOAD(BADSIGONLY) or FAILLOAD(ANYBAD) for a
generic program profile because it might fail critical programs and cause
system failure.

v You might need assistance from your system programmer to complete Step 4 on
page 22.

Optionally, perform the following steps to enable RACF to perform and log signature
verification events for one or more controlled programs, without causing any
program loads to fail due to signature verification failures.

1. Modify one or more PROGRAM class profiles that protect controlled programs
to enable signature verification and logging without causing any program load
to fail due to a signature verification failure.

Example 1:
RALTER PROGRAM MYPROG14

SIGVER(SIGREQUIRED(NO) FAILLOAD(NEVER) SIGAUDIT(ALL))

Important: When a controlled program has an alias (an alternate name that
can be used to execute it), define both the real name and the alias name. This

Chapter 3. Security administrator considerations 21

might require additional PROGRAM profiles. For an example, see “Protecting
programs” in z/OS Security Server RACF Security Administrator’s Guide.

If your installation already defined a PROGRAM class profile called ** to
control all programs residing in controlled program libraries, you might want to
enable signature verification logging for all of these programs by modifying this
profile.

Example 2:
RALTER PROGRAM **

SIGVER(SIGREQUIRED(NO) FAILLOAD(NEVER) SIGAUDIT(ALL))

Important: For important guidelines about modifying a generic program profile,
such as the ** profile shown in Example 2, see “Before you begin”.

2. Activate your profile changes in the PROGRAM class, as follows.

v If the PROGRAM class is not already active, activate the PROGRAM class.

Example:
SETROPTS WHEN(PROGRAM)

v If the PROGRAM class is already active, refresh the PROGRAM class.

Example:
SETROPTS WHEN(PROGRAM) REFRESH

3. Display the SIGVER segment information for the profiles you modified in Step 1
and review your options.

Example:
RLIST PROGRAM ** SIGVER NORACF

Your results will be similar to the following:

Results:
PROGRAM **

SIGVER INFORMATION

SIGREQUIRED=NO
FAILLOAD=NEVER
SIGAUDIT=ALL

4. (Optional) Ensure that your system programmer enables caching for program
signature verification using the virtual lookaside facility (VLF) and restarts VLF.
This avoids increasing load times for signed programs. For programming
information, see “VLF considerations for program signature verification” on
page 39.

You have now enabled RACF to log signature verification events for one or more
controlled programs, without causing any program loads to fail due to signature
verification failures.

Now, each time a signed program loads, RACF logs a signature verification failure
to SMF and issues a failure message to the console. These failures continue until
you complete “Steps for preparing RACF to verify signed programs (one-time
setup)” on page 23 and “Steps for verifying a signed program” on page 24.

22 RACF support for z/OS Program Signature and Verification

After an appropriate time interval during which these programs are loaded, examine
the output of the SMF unload utility (IRRADU00) to discover if any controlled
programs are digitally signed and if so, by whom. Once you identify the signer,
obtain the signer's root CA in preparation for completing “Steps for verifying a
signed program” on page 24.

When your analysis is complete, proceed to “Steps for preparing RACF to verify
signed programs (one-time setup).”

Steps for preparing RACF to verify signed programs (one-time setup)
By performing these steps, you prepare RACF to verify signatures. However, RACF
does not begin verifying the signatures of your programs until you complete “Steps
for verifying a signed program” on page 24.

Before you begin: You will need assistance from your system programmer to
complete Step 8.

Perform the following steps to prepare RACF to verify signed programs. Complete
these steps one time only.

1. Create a key ring for your installation to use for signature verification. Specify
the ring name of your choice.

Example:
RACDCERT ID(RACFADM) ADDRING(CODE.SIGNATURE.VERIFICATION.KEYRING)

Rule: Specify only uppercase characters in the key ring name. This is because
you must specify the ring name in the APPLDATA field of the FACILITY profile
you create in Step 4.

Guideline: Do not skip this step so that you can use the virtual CERTAUTH
key ring. For best performance, define your signature verification ring by
issuing a RACDCERT ADDRING command.

2. Add the TRUST attribute to the code-signing CA certificate that is supplied with
RACF.

Example:
RACDCERT CERTAUTH ALTER(LABEL('STG Code Signing CA')) TRUST

3. Add the code-signing CA certificate that is supplied with RACF to the key ring
you created in Step 1.

Example:
RACDCERT ID(RACFADM) CONNECT(CERTAUTH LABEL('STG Code Signing CA')

RING(CODE.SIGNATURE.VERIFICATION.KEYRING))

4. Create a FACILITY class profile that specifies the name of the key ring you
created in Step 1.

Example:
RDEFINE FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION

APPLDATA('RACFADM/CODE.SIGNATURE.VERIFICATION.KEYRING')

5. Activate your profile changes in the FACILITY class, as follows.

Chapter 3. Security administrator considerations 23

v If the FACILITY class is not already active, activate and RACLIST the
FACILITY class.

Example:
SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)

v If the FACILITY class is already active and RACLISTed, refresh the
FACILITY class.

Example:
SETROPTS RACLIST(FACILITY) REFRESH

6. Create a PROGRAM class profile that protects the program verification module
called IRRPVERS and specifies its signature verification options.

Examples:
RDEFINE PROGRAM IRRPVERS ADDMEM('SYS1.SIEALNKE'//NOPADCHK) UACC(READ)

SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

7. Activate your profile changes in the PROGRAM class, as follows.

v If the PROGRAM class is not already active, activate the PROGRAM class.

Example:
SETROPTS WHEN(PROGRAM)

v If the PROGRAM class is already active, refresh the PROGRAM class.

Example:
SETROPTS WHEN(PROGRAM) REFRESH

8. Contact your system programmer to complete this step.

a. Notify your system programmer to initialize program signature verification
by running the IRRVERLD program. The IRRVERLD program loads and
verifies the program verification module (IRRPVERS) and must be run on
all systems in a sysplex. For programming information, see “Initializing
RACF verification of signed programs (IRRVERLD)” on page 39.

b. Check with your system programmer to ensure that IRRVERLD
successfully completed. If it did not, work with your system programmer to
resolve error messages and then rerun.

c. (Optional) Ensure that your system programmer enables caching for
program signature verification using the virtual lookaside facility (VLF) and
restarts VLF. This avoids increasing load times for signed programs. For
programming information, see “VLF considerations for program signature
verification” on page 39.

When the IRRVERLD program successfully executes, you have completed the
one-time setup to prepare RACF to verify signed programs. To begin verifying one
of your own signed programs, proceed to “Steps for verifying a signed program.”

Steps for verifying a signed program
Before you begin:

v Do not perform these steps until you complete “Steps for preparing RACF to
verify signed programs (one-time setup)” on page 23.

v For each signed program that you want RACF to verify, obtain or locate the root
certificate-authority (CA) certificate of each code signer.

24 RACF support for z/OS Program Signature and Verification

– If the program was acquired from a software vendor, review the software
documentation for information about obtaining the vendor's root CA certificate
and adding it to RACF. Once you obtain the root CA certificate, store it in a
cataloged, variable-byte (VB) MVS data set.

– If the program was signed by your installation (in Step 1 of “Steps for enabling
a user to sign a program using RACF code-signing certificates” on page 13)
or signed by an external CA (in Step 1 of “Steps for enabling a user to sign a
program using external code-signing certificates” on page 15), locate the label
name of root CA certificate in the RACF database.

To list all CA certificates in the RACF database, issue the RACDCERT LIST
CERTAUTH command.

Perform the following steps for each signed program you want RACF to verify.

1. Add the root CA certificate of the code signer to RACF as a trusted CA.

Skip this step if you created the root CA of the code signer (in Step 1 of “Steps
for enabling a user to sign a program using RACF code-signing certificates” on
page 13), or if you obtained the root CA of the code signer from an external CA
and added it to RACF (in Step 1 of “Steps for enabling a user to sign a
program using external code-signing certificates” on page 15).

a. If you obtained the root CA certificate of the code signer from a software
vendor, add it to RACF, specifying the name of the data set where it is
stored.

Example:
RACDCERT CERTAUTH ADD(VENDOR.CA.CERT.DSN)

WITHLABEL('Vendor Code Signing CA')
TRUST

b. If the vendor's root CA certificate is already added to RACF, add the
TRUST attribute if it is not already trusted.

Example:
RACDCERT CERTAUTH ALTER(LABEL('Vendor Code Signing CA')) TRUST

2. Add the root CA certificate to the key ring that your installation uses for
signature verification. This is the ring you created in Step 1 of “Steps for
preparing RACF to verify signed programs (one-time setup)” on page 23.

Examples:
RACDCERT ID(RACFADM) CONNECT(CERTAUTH LABEL('Vendor Code Signing CA')

RING(CODE.SIGNATURE.VERIFICATION.KEYRING))

-or-

RACDCERT ID(RACFADM) CONNECT(CERTAUTH LABEL('MyCompany Code Signing CA')
RING(CODE.SIGNATURE.VERIFICATION.KEYRING))

3. Create or modify the PROGRAM class profile that protects the signed program
and specify the signature verification options.

Important: If the program you want to verify is already protected by a generic
program profile, such as the ** profile, create a new program profile to protect
program. Do not specify the SIGVER options shown in the following examples
for the ** profile because this might fail critical programs and lead to system
failure. If several similarly named programs must be verified using the same

Chapter 3. Security administrator considerations 25

SIGVER options, you might choose to create a generic profile such as ABC*. If
you do, ensure that no other programs are unintentionally verified based on
their similar program names.

The following examples specify that the load of program MYPROG14 should
fail if the signature cannot be verified for any reason and that only failures
should be logged.

Examples:
RDEFINE PROGRAM MYPROG14 ADDMEM('SYS1.TEST.LOADDLL'//NOPADCHK) UACC(READ)

SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

-or-

RALTER PROGRAM MYPROG14
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

Important: When a controlled program has an alias (an alternate name that
can be used to execute it), define both the real name and the alias name. This
might require additional PROGRAM profiles. For an example, see “Protecting
programs” in z/OS Security Server RACF Security Administrator’s Guide.

If you want to delegate authority to perform this step to a user who does not
have the SPECIAL attribute, see “Delegating the authority for specifying
signature verification options” on page 19.

4. Activate your profile changes in the PROGRAM class.

Example:
SETROPTS WHEN(PROGRAM) REFRESH

You have now enabled RACF to verify a signed program. If you specified the
signature verification options shown in the example in Step 3 on page 25, the
program will fail to load if RACF cannot verify the signature for any reason. If the
program is part of a critical business application, be prepared to invoke a recovery
procedure to minimize the business impact.

Field-level access checking for the new SIGVER segment
You can use RACF to control which users can access data in RACF profiles at the
field level through field-level access checking. To do this, you create profiles in the
FIELD class and permit users to the profiles.

You need not use field-level access checking to authorize READ access for users
with the AUDITOR attribute. Users with the AUDITOR attribute are authorized to list
all fields for all segments, other than the base segment, of any RACF profile.

To control fields in the SIGVER segment of general resource profiles in the
PROGRAM class, define profiles in the FIELD class using profile names that
following the form:
PROGRAM.SIGVER.field-name

where field-name specifies the name of the segment field that corresponds to the
command operand controlling that field, as listed in the following table:

To control the use of this SIGVER
operand:

Use this field name in the FIELD profile
name:

SIGREQUIRED SIGREQD

26 RACF support for z/OS Program Signature and Verification

To control the use of this SIGVER
operand:

Use this field name in the FIELD profile
name:

FAILLOAD FAILLOAD

SIGAUDIT SIGAUDIT (See Note.)

Note: The SIGAUDIT field controls the audit policy related to digital signature
verification of programs. Users with the AUDITOR attribute can list the
SIGAUDIT field but they cannot not update it unless they have UPDATE
authority through field-level access checking.

Updated sample for using the RACF database unload utility
(IRRDBU00) with DB2

You can use the DB2® load utility or its equivalent to process the records produced
by the database unload utility. Member RACDBULD of SYS1.SAMPLIB contains
sample control statements for the DB2 load utility that map the output from
IRRDBU00 and create a DB2 table for each IRRDBU00 record type.

Member RACDBULD is updated to create the following DB2 table in support of the
following new IRRDBU00 record type:

Record type Record name DB2 table name

05F0 General Resource SIGVER Data GENR_GRSIG_DATA

New supplied certificate from IBM
This topic contains a complete listing for the new certificate-authority (CA) certificate
supplied with the applicable PTF for APAR OA26109.

For general information about supplied certificates, see “Supplied digital certificates”
in z/OS Security Server RACF Security Administrator’s Guide.

The following listing was created using the RACDCERT LIST command, which is
the preferred method for listing certificate information.

IBM STG Code-Signing Certificate Authority
Label: STG Code Signing CA
Certificate ID: 2QiJmZmDhZmjgeLjx0DDloSFQOKJh5WJlYdAw8FA
Status: NOTRUST
Start Date: 2008/07/01 00:00:00
End Date: 2028/06/30 23:59:59
Serial Number:

>00<
Issuer's Name:

>CN=STG Code Signing CA.OU=IBM Code Signing.O=IBM Corporation.C=US<
Subject's Name:

>CN=STG Code Signing CA.OU=IBM Code Signing.O=IBM Corporation.C=US<
Key Usage: CERTSIGN
Private Key Type: None
Ring Associations:
*** No rings associated ***

Note: Start and end times are listed in Greenwich Mean Time (GMT).

Chapter 3. Security administrator considerations 27

28 RACF support for z/OS Program Signature and Verification

Chapter 4. Command considerations

The following commands are updated to support program signing and verification:

v “RALTER (Alter general resource profile)” on page 30

v “RDEFINE (Define general resource profile)” on page 34

v “RLIST (List general resource profile)” on page 37

© Copyright IBM Corp. 1994, 2009 29

RALTER (Alter general resource profile)
The following updates to the syntax and parameter descriptions of this command
are made to support program signing and verification.

Syntax

[subsystem-prefix]{RALTER | RALT}

[SIGVER(
[SIGREQUIRED(YES | NO) | NOSIGREQUIRED]
[FAILLOAD(ANYBAD | BADSIGONLY | NEVER) | NOFAILLOAD]
[SIGAUDIT(ALL | SUCCESS | ANYBAD | BADSIGONLY | NONE)
| NOSIGAUDIT]

)
| NOSIGVER]

Parameters
SIGVER | NOSIGVER

SIGVER
Specifies the options for verifying the signatures of programs that are
protected by this general resource profile.

Rule: Specify SIGVER only for profiles in the PROGRAM class. Any
options specified with the SIGVER operand are ignored for profiles in a
class other than the PROGRAM class.

Restriction: Digital signature verification is supported only for program
objects that are stored as members of a partitioned data set extended
(PDSE) library. Digital signature verification is not supported for programs
that are stored as members of a partitioned data set (PDS) library.

Any options specified with the SIGVER operand are ignored for
unsupported programs.

Note: Regardless of the SIGREQUIRED setting, specifying
FAILLOAD(NEVER) and SIGAUDIT(NONE) is equivalent to having no
SIGVER segment.

For detailed information, see Chapter 3, “Security administrator
considerations,” on page 9.

SIGREQUIRED | NOSIGREQUIRED

SIGREQUIRED
Specifies whether programs that are protected by this profile must
be digitally signed.

YES
Specifies that programs must be digitally signed.

When you specify SIGREQUIRED(YES), the following conditions
apply to any program that is protected by this general resource
profile:

v If the program has a digital signature:

– Signature verification processing occurs.

– The program continues to load according to the FAILLOAD
setting.

30 RACF support for z/OS Program Signature and Verification

– Logging occurs according to the SIGAUDIT setting.

v If the program has no digital signature:

– Signature verification processing occurs, resulting in a
signature verification failure.

– The program continues to load according to the FAILLOAD
setting.

– Logging occurs according to the SIGAUDIT setting.

NO
Specifies that programs need not be digitally signed.

When you specify SIGREQUIRED(NO), the following conditions
apply to any program that is protected by this general resource
profile:

v If the program has a digital signature:

– Signature verification processing occurs.

– The program continues to load according to the FAILLOAD
setting.

– Logging occurs according to the SIGAUDIT options.

v If the program has no digital signature:

– No signature verification occurs.

– The program continues to load. The FAILLOAD setting is
ignored.

– No logging occurs. The SIGAUDIT setting is ignored.

NOSIGREQUIRED
Resets the SIGREQUIRED value to NO.

FAILLOAD | NOFAILLOAD

FAILLOAD
Specifies the conditions under which the program fails to load in the
event that a signature verification failure occurs.

ANYBAD
Specifies that the program fails to load when a signature
verification failure occurs, regardless of the cause. Such failures
include those resulting from an incorrect signature, or an error
establishing the trust of the signer. This setting includes failures
related to administrative errors, such as a missing or incorrectly
defined key ring.

The ANYBAD setting includes the failures covered by the
BADSIGONLY setting, and also includes errors establishing the
trust of the signer.

BADSIGONLY
Specifies that the program fails to load only when the signature
verification failure is caused by an incorrect digital signature.
Such failures include only those resulting from a signature that
fails verification or a signature structure that is missing or
improperly formatted.

In contrast to ANYBAD, the BADSIGONLY setting does not
cause a program to fail to load when the program has a valid
signature originating from an untrusted signer.

Chapter 4. Command considerations 31

NEVER
Specifies that the program never fails to load when a signature
verification failure is detected.

NOFAILLOAD
Resets the FAILLOAD value to NEVER.

SIGAUDIT | NOSIGAUDIT

SIGAUDIT
Specifies which signature verification events are logged. Messages
are issued to the console only for signature verification failures that
are logged.

ALL
Logs all signature verifications, whether successful or not.

SUCCESS
Logs only signature verification successes. In other words, the
digital signature is valid and the root CA certificate is trusted.

ANYBAD
Logs all signature verification failures, regardless of the cause of
the failure. Such failures include those resulting from an
incorrect signature, or an error establishing the trust of the
signer. This setting includes failures related to administrative
errors, such as a missing or incorrectly defined key ring.

The ANYBAD setting logs the failures covered by the
BADSIGONLY setting, and also logs errors encountered when
establishing the trust of the signer.

BADSIGONLY
Logs only signature verification failures caused by an incorrect
digital signature. Such failures include only those resulting from
a signature that fails verification or a signature structure that is
missing or improperly formatted.

In contrast to ANYBAD, the BADSIGONLY setting does not log a
signature verification failure when the program has a valid
signature originating from an untrusted signer.

NONE
Logs no digital signature verification events.

NOSIGAUDIT
Resets the SIGAUDIT value to NONE.

NOSIGVER
Deletes the SIGVER segment.

32 RACF support for z/OS Program Signature and Verification

Example

Operation User SECADM wants to update the signature verification options for a
controlled program called MYPROG14 program to specify that it must now be
digitally signed before it can be loaded, that the program should fail to load if
its digital signature cannot be verified for any reason, and that logging of
signature verification events should occur for only failures.

Known The user has the SPECIAL attribute. The MYPROG14 program is a program
object that resides in a partitioned data set extended (PDSE) library.

Command RALTER PROGRAM MYPROG14
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

Defaults None.

Chapter 4. Command considerations 33

RDEFINE (Define general resource profile)
The following updates to the syntax and parameter descriptions of this command
are made to support program signing and verification.

Syntax

[subsystem-prefix]{RDEFINE | RDEF}

[SIGVER(
[SIGREQUIRED(YES | NO)]
[FAILLOAD(ANYBAD | BADSIGONLY | NEVER)]
[SIGAUDIT(ALL | SUCCESS | ANYBAD | BADSIGONLY | NONE)]
)]

Parameters
SIGVER

Specifies the options for verifying the signatures of programs that are protected
by this general resource profile.

Rule: Specify SIGVER only for profiles in the PROGRAM class. Any options
specified with the SIGVER operand are ignored for profiles in a class other than
the PROGRAM class.

Restriction: Digital signature verification is supported only for program objects
that are stored as members of a partitioned data set extended (PDSE) library.
Digital signature verification is not supported for programs that are stored as
members of a partitioned data set (PDS) library.

Any options specified with the SIGVER operand are ignored for unsupported
programs.

Note: Regardless of the SIGREQUIRED setting, specifying FAILLOAD(NEVER)
and SIGAUDIT(NONE) is equivalent to having no SIGVER segment.

For detailed information, see Chapter 3, “Security administrator considerations,”
on page 9.

SIGREQUIRED
Specifies whether programs that are protected by this profile must be
digitally signed.

YES
Specifies that programs must be digitally signed.

When you specify SIGREQUIRED(YES), the following conditions apply
to any program that is protected by this general resource profile:

v If the program has a digital signature:

– Signature verification processing occurs.

– The program continues to load according to the FAILLOAD setting.

– Logging occurs according to the SIGAUDIT setting.

v If the program has no digital signature:

– Signature verification processing occurs, resulting in a signature
verification failure.

– The program continues to load according to the FAILLOAD setting.

– Logging occurs according to the SIGAUDIT setting.

34 RACF support for z/OS Program Signature and Verification

NO
Specifies that programs need not be digitally signed.

When you specify SIGREQUIRED(NO), the following conditions apply to
any program that is protected by this general resource profile:

v If the program has a digital signature:

– Signature verification processing occurs.

– The program continues to load according to the FAILLOAD setting.

– Logging occurs according to the SIGAUDIT options.

v If the program has no digital signature:

– No signature verification occurs.

– The program continues to load. The FAILLOAD setting is ignored.

– No logging occurs. The SIGAUDIT setting is ignored.

If SIGREQUIRED is not specified, SIGREQUIRED(NO) is the default
value.

FAILLOAD
Specifies the conditions under which the program fails to load in the event
that a signature verification failure occurs.

ANYBAD
Specifies that the program fails to load when a signature verification
failure occurs, regardless of the cause. Such failures include those
resulting from an incorrect signature, or an error establishing the trust of
the signer. This setting includes failures related to administrative errors,
such as a missing or incorrectly defined key ring.

The ANYBAD setting includes the failures covered by the BADSIGONLY
setting, and also includes errors establishing the trust of the signer.

BADSIGONLY
Specifies that the program fails to load only when the signature
verification failure is caused by an incorrect digital signature. Such
failures include only those resulting from a signature that fails verification
or a signature structure that is missing or improperly formatted.

In contrast to ANYBAD, the BADSIGONLY setting does not cause a
program to fail to load when the program has a valid signature
originating from an untrusted signer.

NEVER
Specifies that the program never fails to load when a signature
verification failure is detected.

If FAILLOAD is not specified, FAILLOAD(NEVER) is the default value.

SIGAUDIT
Specifies which signature verification events are logged. Messages are
issued to the console only for signature verification failures that are logged.

ALL
Logs all signature verifications, whether successful or not.

SUCCESS
Logs only signature verification successes. In other words, the digital
signature is valid and the root CA certificate is trusted.

ANYBAD
Logs all signature verification failures, regardless of the cause of the

Chapter 4. Command considerations 35

failure. Such failures include those resulting from an incorrect signature,
or an error establishing the trust of the signer. This setting includes
failures related to administrative errors, such as a missing or incorrectly
defined key ring.

The ANYBAD setting logs the failures covered by the BADSIGONLY
setting, and also logs errors encountered when establishing the trust of
the signer.

BADSIGONLY
Logs only signature verification failures caused by an incorrect digital
signature. Such failures include only those resulting from a signature that
fails verification or a signature structure that is missing or improperly
formatted.

In contrast to ANYBAD, the BADSIGONLY setting does not log a
signature verification failure when the program has a valid signature
originating from an untrusted signer.

NONE
Logs no digital signature verification events.

If SIGAUDIT is not specified, SIGAUDIT(NONE) is the default value.

Example

Operation User SECADM wants to control the XYZLIB64 program and specify that it must
be digitally signed before it can be loaded, that the program should fail to load
if its digital signature cannot be verified for any reason, and that logging of
signature verification events should occur for only failures. The XYZLIB64
program does not require program-accessed data set checking.

Known The user has the SPECIAL attribute. The XYZLIB64 program is a program
object that resides in a partitioned data set extended (PDSE) library named
SYS1.XYZ.LOADDLL.

Command RDEFINE PROGRAM XYZLIB64 UACC(READ)
ADDMEM('SYS1.XYZ.LOADDLL'//NOPADCHK)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

Defaults AUDIT(FAILURES(READ)) OWNER(SECADM) LEVEL(0)

36 RACF support for z/OS Program Signature and Verification

RLIST (List general resource profile)
The following updates to the syntax and parameter descriptions of this command
are made to support program signing and verification.

Syntax

[subsystem-prefix]{RLIST | RL}

[SIGVER]

Parameters
SIGVER

Specifies that the contents of the SIGVER segment are to be listed for profiles
in the PROGRAM class.

Example

Operation The security administrator wants to list the settings related to digital signature
verification for the program called XYZLIB64.

Known The security administrator has the SPECIAL attribute.
Command RLIST PROGRAM XYZLIB64 SIGVER NORACF

Defaults None.
Output See Figure 1.

RLIST PROGRAM XYZLIB64 SIGVER NORACF
CLASS NAME
----- ----
PROGRAM XYZLIB64

SIGVER INFORMATION

SIGREQUIRED = YES
FAILLOAD = ANYBAD
SIGAUDIT = ANYBAD

Figure 1. Output for RLIST of the SIGVER segment

Chapter 4. Command considerations 37

38 RACF support for z/OS Program Signature and Verification

Chapter 5. System programmer considerations

Program signing and signature verification
RACF supports signing and verification of program objects. This means that IBM or
a vendor can ship program objects containing a digital signature (as well as the
digital certificate chain for the user who performed the program bind). An installation
can then choose to verify the integrity of these program objects (for example, the
System SSL modules) when they are loaded into virtual storage.

Installations that choose to exploit signature verification will experience some
performance overhead when the signature of a signed program object is verified
before being loaded into memory. However, most of this overhead is from validating
the certificate chain that was used during the signing process and can be lessened
using the virtual lookaside facility (VLF) to cache certificates after they are
validated. Most of the overhead from validating a certificate chain is then incurred
only once, the first time a program object from a particular signer is loaded.
Subsequent calls to load any program object from the same signer will be able to
avoid the performance overhead.

For information about enabling VLF caching, see “VLF considerations for program
signature verification.” For information about initializing program signature
verification, see “Initializing RACF verification of signed programs (IRRVERLD).” For
implementation details, see ″Enabling RACF to verify signed programs″ in z/OS
Security Server RACF Security Administrator’s Guide

VLF considerations for program signature verification
RACF can use VLF to cache signature verification data in order to improve the
performance of signature verification of signed program objects. This in turn can
improve the load time of signed program objects. This is a consideration only for
installations that choose to exploit signature verification.

For background information, see “Program signing and signature verification.” For
implementation details, see ″Enabling RACF to verify signed programs″ in z/OS
Security Server RACF Security Administrator’s Guide

Dependencies
In order for this function to be available, VLF must be active and the active
COFVLFxx member of SYS1.PARMLIB must include statements defining the VLF
classes used for signature verification data. Update the COFVLFxx member of
SYS1.PARMLIB as follows:
CLASS NAME(IRRSPS0) /* Signature Verification Data in Memory */
EMAJ(PERFCACHE) /* Major name = PERFCACHE */

Initializing RACF verification of signed programs (IRRVERLD)
The IRRVERLD program initializes RACF verification of signed programs by loading
and verifying the RACF program verification module (IRRPVERS). IRRPVERS is a
signed program that performs verification of signed programs, and must be loaded
and verified before RACF is able to verify other signed programs. Before you run
IRRVERLD, the security administrator must configure RACF to verify signed
programs, and must define IRRPVERS as a signed program that must be verified
when it is loaded. See ″Enabling RACF to verify signed programs″ in z/OS Security

© Copyright IBM Corp. 1994, 2009 39

Server RACF Security Administrator’s Guide for more information about
implementing program signature verification.

Important:: Run the IRRVERLD program on each system in a sysplex.

IRRVERLD has no parameters and is run using JCL. For example:
//IRRVERLD JOB
//IRRVERLD EXEC PGM=IRRVERLD

If IRRVERLD does not successfully complete, work with your RACF security
administrator to resolve error messages and rerun IRRVERLD. After IRRVERLD
successfully completes, the IRRPVERS module is active and RACF is enabled to
verify signed programs. The IRRPVERS module remains active until the next IPL.
At IPL time, RACF initialization automatically reloads and verifies IRRPVERS unless
the RACF configuration for program signing is disabled between IPLs. You can
rerun IRRVERLD at any time to check the status of the IRRPVERS module.

IRRVERLD return codes
The IRRVERLD program sets the following return codes:

Hex (Decimal) Meaning
0 (0) IRRVERLD completed successfully. The IRRPVERS

module was loaded and verified. RACF program
verification is active.

4 (4) The IRRPVERS module was previously loaded and
verified. RACF program verification is already active.

8 (8) An error occurred during the load and verification of
IRRPVERS. RACF program verification is not active.

10 (16) A severe error occurred.

RACF virtual storage requirements
The following row has been added to the RACF estimated storage usage table:

Storage subpool Usage How to estimate size

ECSA RACF program verification module
(IRRPVERS)

500 000

IRRVERLD program

40 RACF support for z/OS Program Signature and Verification

Chapter 6. Messages considerations

ICH440I Program signature error
retcode/rsncode for program
program-name in library library-name.
The program was not loaded.

Explanation: RACF detected an error with the
cryptographic signature of the identified program.

A subsequent message is issued that provides more
information about this error.

Note: This message is only issued if the audit
specifications, in the SIGVER segment of the
PROGRAM profile, result in the condition being
audited.

System action: The load fails.

RACF Security Administrator Response:

Refer to the subsequent message for more information.
Additional information is provided in the return and
reason code displayed in the message. These codes
are from the VERFINAL function of the R_PgmSignVer
(IRRSPS00) callable service and descriptions for these
codes can be found in z/OS Security Server RACF
Callable Services. A reason code greater than or equal
to 100 might indicate a setup problem with the
verification key ring, which can be fixed by the security
administrator. Other reason codes must be reported to
the provider of the failing module.

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH441I Program signature error
retcode/rsncode for program
program-name in library library-name.
Load processing continues.

Explanation: RACF detected an error with the
cryptographic signature of the identified program. The
FAILLOAD setting in the SIGVER segment of the
PROGRAM class profile allows the load to continue.

A subsequent message is issued that provides more
information about this error.

Note: This message is only issued if the audit
specifications, in the SIGVER segment of the
PROGRAM profile, result in the condition being
audited.

System action: Load processing continues.

RACF Security Administrator Response:

Refer to the subsequent message for more information.
Additional information is provided in the return and
reason code displayed in the message. These codes
are from the VERFINAL function of the R_PgmSignVer
(IRRSPS00) callable service and descriptions for these

codes can be found in z/OS Security Server RACF
Callable Services. A reason code greater than or equal
to 100 might indicate a setup problem with the
verification key ring, which can be fixed by the security
administrator. Other reason codes must be reported to
the provider of the failing module.

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH442I The digital signature appears to be
valid but the root signer is not trusted.

Explanation: The digital signature in the program is
correct, but the root CA certificate of the certificate chain
contained with the signature has not been designated
as trusted, or the setup configuration is preventing
RACF from being able to determine the trusted status.
This message can result from the any of the following
conditions:

v The IRR.PROGRAM.SIGNATURE.VERIFICATION
profile is not defined in the FACILITY class.

v The APPLDATA field of the
IRR.PROGRAM.SIGNATURE.VERIFICATION profile
is missing or incorrect. (The APPLDATA is used to
identify the key ring that contains the trusted root
certificates.)

v The APPLDATA identifies a key ring that does not
exist.

v The root CA certificate of the certificate chain
contained with the signature has not been added to
the specified key ring, or has been added with the
NOTRUST flag.

v The root CA certificate in the certificate chain
contained with the signature has the NOTRUST flag
on.

Notes:

1. The program name is identified in message ICH440I
or ICH441I. One of these messages precedes this
message.

2. This message is only issued if the audit
specifications, in the SIGVER segment of the
PROGRAM profile, result in the specific condition
being audited.

3. There might also be diagnostic information in a
LOGREC record.

System action: If message ICH441I precedes this
message, the program load continues. If message
ICH440I precedes this message, the load fails.

RACF Security Administrator Response:

If you trust the certificate chain associated with the
signed program, you must place the root CA certificate
into the appropriate key ring.

© Copyright IBM Corp. 1994, 2009 41

You can temporarily bypass this error in any of the
following ways:

v If you have specified FAILLOAD(ANYBAD) in the
SIGVER segment of the RACF PROGRAM class
profile that protects this program, then specify
FAILLOAD(BADSIGONLY). This change enables the
program to continue.

v Specify SIGAUDIT(BADSIGONLY) or NOSIGAUDIT
to stop this message being issued for this program
again.

v Remove the SIGVER segment from the PROGRAM
class profile.

v Delete the PROGRAM class profile if it is not being
used to restrict or audit access to the program.

Note: The current security policy has flagged this
condition as an error. Bypassing the error
prevents this message from being issued when
the program is loaded, but reduces system
security and does not resolve the problem. Once
you have added the root CA certificate into the
verification key ring, revisit your FAILLOAD and
SIGAUDIT settings.

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH443I The digital signature is not valid.

Explanation: The digital signature in the program
does not match the hash of the program computed by
RACF. This message indicates that the program has
been either modified since it was created, or that it was
not properly signed.

Notes:

1. The program name is identified in message ICH440I
or ICH441I. One of these messages precedes this
message.

2. This message is only issued if the audit
specifications, in the SIGVER segment of the
PROGRAM profile, result in the specific condition
being audited.

3. There might also be diagnostic information in a
LOGREC record.

System action: If message ICH441I precedes this
message, the program load continues. If message
ICH440I precedes this message, the load fails.

RACF Security Administrator Response:

Save the current program, and then replace the
program with a copy from the installation media. If
replacing the program with a copy from the installation
media does not resolve the problem, replace the
program with a copy from program provider.

You can temporarily bypass this error in any of the
following ways:

v If the load fails, change the SIGVER segment of the
RACF PROGRAM class profile that protects this
program to specify FAILLOAD(NEVER). This change
enables the program to continue.

v Specify SIGAUDIT(NONE) or NOSIGAUDIT to stop
this message being issued for this program again.

v Remove the SIGVER segment from the PROGRAM
class profile.

v Delete the PROGRAM class profile if it is not being
used to restrict or audit access to the program.

Note: The current security policy has flagged this
condition as an error. Bypassing the error
prevents this message from being issued when
the program is loaded, but reduces system
security and does not resolve the problem. Once
you have resolved the problem, revisit your
FAILLOAD and SIGAUDIT settings.

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH444I The program contains an incorrect
certificate chain. Reason code
X’rsncode’.

Explanation: When a program is signed during the
bind process, the program object contains a digital
signature and the digital certificate chain for the user
who performed the program bind. This message
indicates that the digital certificate chain is incorrect.

The reason code in this message indicates the reason
for the failure. This reason code originates from the
R_PgmSignVer callable service (IRRSPS00), which is
called to verify the signature and certificate chain when
the program is loaded. In z/OS Security Server RACF
Callable Services, there is a specific set of return and
reason codes documented for function code X’0007’
(VERFINAL). The relevant reason codes are
documented under SAF return code 8 and RACF return
code 16.

Notes:

1. The program name is identified in message ICH440I
or ICH441I. One of these messages precedes this
message.

2. This message is only issued if the audit
specifications, in the SIGVER segment of the
PROGRAM profile, result in the specific condition
being audited.

3. There might also be diagnostic information in a
LOGREC record.

System action: If message ICH441I precedes this
message, the program load continues. If message
ICH440I precedes this message, the load fails.

RACF Security Administrator Response:

Inform the provider of the program with the information
in this message. Either the program was not built

ICH443I • ICH444I

42 RACF support for z/OS Program Signature and Verification

correctly, or it has been modified. A new copy of the
module with the correct signature and certificate chain is
required.

You can temporarily bypass this error in any of the
following ways:

v If the load fails, change the SIGVER segment of the
RACF PROGRAM class profile that protects this
program to specify FAILLOAD(NEVER). This change
enables the program to continue.

v Specify SIGAUDIT(NONE) or NOSIGAUDIT to stop
this message being issued for this program again.

v Remove the SIGVER segment from the PROGRAM
class profile.

v Delete the PROGRAM class profile if it is not being
used to restrict or audit access to the program.

Note: The current security policy has flagged this
condition as an error. Bypassing the error
prevents this message from being issued when
the program is loaded, but reduces system
security and does not resolve the problem. Once
you have resolved the problem, revisit your
FAILLOAD and SIGAUDIT settings.

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH445I A digital signature is required but the
program is not signed.

Explanation: The SIGVER segment of the RACF
PROGRAM class profile protecting this program
specifies SIGREQUIRED(YES). This indicates that this
program requires a signature, but the program is not
digitally signed.

Notes:

1. The program name is identified in message ICH440I
or ICH441I. One of these messages precedes this
message.

2. This message is issued only if the audit
specifications, in the SIGVER segment of the
PROGRAM profile, result in the specific condition
being audited.

System action: If an ICH441I message precedes this
message, then the program load continues. If an
ICH440I message precedes this message, the load
fails.

RACF Security Administrator Response:

Contact the provider of the program and request a
digitally signed version of this program.

You can temporarily bypass this error in any of the
following ways:

v If the load fails, change the SIGVER segment of the
RACF PROGRAM class profile that protects this
program to specify SIGREQUIRED(NO). This change
enables the program to continue.

v Specify SIGAUDIT(NONE) or NOSIGAUDIT to stop
this message being issued for this program again.

v Remove the SIGVER segment from the PROGRAM
class profile.

v Delete the PROGRAM class profile if it is not being
used to restrict or audit access to the program.

Note: The current security policy has flagged this
condition as an error. Bypassing the error
prevents this message from being issued when
the program is loaded, but reduces system
security and does not resolve the problem. Once
you have resolved the problem, revisit your
FAILLOAD and SIGAUDIT settings.

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH446I The digital signature has been
removed from the program.

Explanation: The PSDE directory indicates that the
program member is digitally signed, but the program
does not contain a digital signature. This message
indicates that the program has been modified since it
was created.

Notes:

1. The program name is identified in the ICH440I
message, which precedes this one.

2. This message is issued only if the audit
specifications in the SIGVER segment of the
PROGRAM profile result in the specific condition
being audited.

System action: The load fails.

RACF Security Administrator Response:

Save the current program, and then replace the
program with a copy from the installation media. If
replacing the program with a copy from the installation
media does not resolve the problem, replace the
program with a copy from program provider.

You can temporarily bypass this error in any of the
following ways:

v Remove the SIGVER segment from the PROGRAM
class profile.

v Delete the PROGRAM class profile if it is not being
used to restrict or audit access to the program.

Note: The current security policy has flagged this
condition as an error. Bypassing the error allows
the load to continue and prevents this message
from being issued when the program is loaded,
but reduces system security and does not
resolve the problem. Once you have resolved the
problem, revisit your SIGVER segment settings.

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH445I • ICH446I

Chapter 6. Messages considerations 43

ICH447I RACF was unable to load and verify
the program verification module.

Explanation: An error occurred while RACF was
attempting to load and verify the program verification
module (IRRPVERS).

System action: No program signatures are verified
until the error is resolved and the program verification
module is loaded.

RACF Security Administrator Response:

This message might have the following preceding
messages:

v Either ICH451I, or

v Three of the following messages:

1. ICH440I

2. ICH442I, ICH443I, ICH444I, ICH445I, or ICH446I

3. ICH451I

See these message descriptions and resolve the
problem. After the problem is resolved, notify your
system programmer to run the IRRVERLD program to
load the program verification module (IRRPVERS).

If this message is not preceded by three other
messages, there might be a problem in the PROGRAM
class profile covering resource IRRPVERS. Ensure that
this profile is correctly defined, and that the data set
name in the member list points to the data set that
contains the program verification module (IRRPVERS).
You must also ensure that the SIGVER segment of this
profile is defined, and does not contains the following
values:

v FAILLOAD(NEVER)

v SIGAUDIT(NONE)

v SIGREQUIRED(NO)

If the IRRPVERS profile in the PROGRAM class is
correctly defined, ensure that the SETR
WHEN(PROGRAM) option is set and refreshed.

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH448I RACF program signature verification
module is loaded. Program signature
verification is available on this system.

Explanation: The RACF initialization process or the
IRRVERLD program has loaded and verified the
program verification module (IRRPVERS). Program
signature verification is available on this system.

System action: Subsequent program verification
operations complete normally.

RACF Security Administrator Response:

None

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH449I RACF program signature verification is
already loaded.

Explanation: The IRRVERLD program detected that
the program verification module (IRRPVERS) has
already been loaded and verified.

System action: The IRRVERLD program ends with
return code 4. No changes are made to the system.

RACF Security Administrator Response:

None

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH450I The RACF program verification module
is not loaded. Program signature
verification is not available.

Explanation: An attempt was made to load a signed
program that is covered by a profile in the PROGRAM
class. The profile indicates that the signature is to be
verified. However, the program verification module
(IRRPVERS) has not been loaded. Program verification
is only available when the program verification module
(IRRPVERS) has been loaded.

Note: The program name is identified in message
ICH440I or ICH441I. One of these messages
precedes this message.

System action: Depending on the program
configuration options set in the SIGVER segment of the
PROGRAM profile, the attempt to load the program
either succeeds or fails.

RACF Security Administrator Response:

Notify your system programmer to run the IRRVERLD
program to load and verify the program verification
module (IRRPVERS).

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH451I RACF encountered an error while
attempting to load the program
verification module. Operation code =
Xaa Return code Xbbbb and Reason
code Xcccc. Supplemental diagnostic
code 1 = X'dddddddd'. Supplemental
diagnostic code 2 = X'eeeeeeee'.
Supplemental diagnostic code 3 =
X'ffffffff'. Supplemental diagnostic code
4 = X'gggggggg'. Supplemental
diagnostic code 5 = X'hhhhhhhh'.

Explanation: A system service failed while RACF
attempted to load the program verification module

ICH447I • ICH451I

44 RACF support for z/OS Program Signature and Verification

(IRRPVERS). The failing system service, return code,
and reason code, are defined in the following table:

Operation
code
(X’aa’)

Failing system
service

Return
code

Reason
code

X’01’ IEANTCR X’bbbb’ X’cccc’

X’02’ IEANTRT X’bbbb’ X’cccc’

X’03’ CSVDYLPA
REQUEST=ADD

X’bbbb’ X’cccc’

X’04’ BLDL X’bbbb’ X’cccc’

X’05’ STORAGE
OBTAIN

X’bbbb’ X’cccc’

X’06’ LOAD X’bbbb’ X’cccc’

Note: The return code and reason code from the
failing service are included in this message.

If the operation code is X’03’, the supplemental
diagnostic codes have values. You can use the
supplemental diagnostic values in the following table to
determine the problem:

Supplemental
Diagnostic
Code Value

1 LpmeaOutputFlags

2 LpmeaRetcode

3 LpmeaRsncode

4 LpmeaAbendCode

5 LpmeaAbendRsnCode

See the CSVDYLPA ADD service in z/OS MVS
Programming: Authorized Assembler Services
Reference ALE-DYN for more information about the
supplemental diagnostic codes.

If the operation code is not X’03’, the supplemental
codes have no meaning.

System action: No program signatures are verified
until the error is resolved and the program verification
module is loaded. Depending on the signature
verification options set in the SIGVER segment of the
PROGRAM profile, the attempt to load the program
might fail.

RACF Security Administrator Response:

Determine the reason for the system service failure
using the return codes and resolve the problem. After
the problem is resolved, notify your system programmer
to run the IRRVERLD program to load the program
verification module (IRRPVERS).

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH452I The RACF program verification module
self-test failed. Program signature
verification is not available.

Explanation: The program verification module
(IRRPVERS) encountered an error while performing a
self test during an attempt to initialize.

System action: No program signatures are verified
until the error is resolved and the program verification
module is loaded. A record is added to LOGREC with
additional diagnostic information.

RACF Security Administrator Response:

Contact IBM support.

Destination: Descriptor code is 6. Routing codes are
9 and 11.

ICH452I

Chapter 6. Messages considerations 45

46 RACF support for z/OS Program Signature and Verification

Chapter 7. Diagnosis considerations

This information supplements z/OS Security Server RACF Diagnosis Guide.

The following callable service is added:

Table 2. Callable services type numbers

CALLABLE SERVICE Service Number or TYPE
(HEX)

Service Number or TYPE
(DECIMAL)

IRRSPS00 35 53

Variable error data is recorded by the following callable service:

Variable data recorded by RACF Callable Services
R_PgmSignVer (CSECT IRRSPS00)

v Error with range

– Service name: IRRRPS00

– Variable data: Too many ranges

– Primary symptom string return code: Index of invalid range

– Secondary symptom string reason code: 0

v Error with end address

– Service name: IRRRPS00

– Variable data: End Address before start
Start: 0Xaaaaaaaa aaaaaaaa
End: 0Xbbbbbbbb bbbbbbbb"

- Aaaaaaa aaaaaaaa=start address

- Bbbbbbbb bbbbbbbb = end address

– Primary symptom string return code: Index of invalid range

– Secondary symptom string reason code: 0

v Extract error

– Service name: SIGINIT

– Variable data: Extract error:
0xaaaaaaaa
0xbbbbbbbb
0xcccccccc

- Aaaaaaaa=SAFRC

- Bbbbbbb=RACFRC

- Cccccccc=RACFRSN

Primary symptom string return code: RACROUTE return code

Secondary symptom string reason code: RACROUTE reason code

v Error with APPLDATA algorithm

– Service name: SIGINIT

– Variable data: APPLDATA invalid algorithm: alg

- Alg=What was specified in appldata

– Primary symptom string return code: 0

– Secondary symptom string reason code: 0

© Copyright IBM Corp. 1994, 2009 47

v Error locating APPLDATA in profile

– Service name: SIGINIT

– Variable data: APPLDATA not found in profile

– Primary symptom string return code: 0

– Secondary symptom string reason code: 0

v APPLDATA error with leading/trailing blanks

– Service name: SIGINIT

– Variable data: APPLDATA: Leading/Trailing blank encountered

– Primary symptom string return code: Variable ‘I’ – Index of first blank in
appldata

– Secondary symptom string reason code: 0

v Error with APPLDATA algorithm name

– Service name: SIGINIT

– Variable data: APPLDATA: algorithm name too long

– Primary symptom string return code: Variable ‘I’ – Index of first blank in
appldata

– Secondary symptom string reason code: 0

v RING error, ID too long

– Service name: SIGINIT

– Variable data: RING: / not found or ID too long

– Primary symptom string return code: Variable ‘I’, index of ‘/’

– Secondary symptom string reason code: Variable ‘j’ Index of ‘ ‘

v RING error, name too long

– Service name: SIGINIT

– Variable data: RING: Name too long or not specified

– Primary symptom string return code: Variable ‘I’, index of ‘/’

– Secondary symptom string reason code: Variable ‘j’ Index of ‘ ‘

v Key error in default certificate

– Service name: SIGINIT

– Variable data: No Private Key in default certificate

– Primary symptom string return code: Number of certificates in ring

– Secondary symptom string reason code: Index of default certificate in ring

v Error with key analysis

– Service name: SIGINIT

– Variable data: Key analysis error

– Primary symptom string return code: RC from analysisKey() routine

– Secondary symptom string reason code: 0

v Error with number of certificates in ring

– Service name: SIGINIT

– Variable data: Too many certificates in ring

– Primary symptom string return code: Number of certificates in ring

– Secondary symptom string reason code: 0

v Error with ring default certificate

– Service name: SIGINIT

– Variable data: No default certificate found in ring

48 RACF support for z/OS Program Signature and Verification

– Primary symptom string return code: 0

– Secondary symptom string reason code: 0

v Error with certificate ordering

– Service name: SIGINIT

– Variable data: Certificate ordering error

– Primary symptom string return code: RC from OrderPKCS7CA

– Secondary symptom string reason code: 0

v Error with trust chain length

– Service name: SIGINIT

– Variable data: Trust chain too long

– Primary symptom string return code: Number of items in trust chain

– Secondary symptom string reason code: 0

v Error with R_datalib

– Service name: SIGINIT

– Variable data: R_datalib error:
Function Code X,
RC=0Xaaaaaaaa 0Xbbbbbbbb 0Xcccccccc

– Primary symptom string return code: R_datalib Function code

– Secondary symptom string reason code: R_datalib SAFRC

v Digest failure error

– Service name: IRRRPS21

– Variable data: Digest failure

– Primary symptom string return code: 0

– Secondary symptom string reason code: 0

v Digest failure 2 error

– Service name: IRRRPS21

– Variable data: Digest failure 2

– Primary symptom string return code: 0

– Secondary symptom string reason code: 0

v Number of ranges error

– Service name: IRRRPS21

– Variable data: Too many ranges

– Primary symptom string return code: # specified ranges

– Secondary symptom string reason code: 0

v Error with end address

– Service name: IRRRPS21

– Variable data: End address before start:
Start: 0Xaaaaaaaa aaaaaaaa
End: 0Xbbbbbbbb bbbbbbbb"

- Aaaaaaa aaaaaaaa=start address

- Bbbbbbbb bbbbbbbb = end address

– Primary symptom string return code: Failing range index

– Secondary symptom string reason code: 0

v Context error

– Service name: IRRRPS21

– Variable data: New context

Chapter 7. Diagnosis considerations 49

– Primary symptom string return code: CLiC rc

– Secondary symptom string reason code: 0

v New digest error

– Service name: IRRRPS21

– Variable data: New digest

– Primary symptom string return code: CLiC rc

– Secondary symptom string reason code: 0

v Digest update error

– Service name: IRRRPS21

– Variable data: Digest update

– Primary symptom string return code: CLiC rc

– Secondary symptom string reason code: 0

v Digest update 2 error

– Service name: IRRRPS21

– Variable data: Digest update 2

– Primary symptom string return code: CLiC rc

– Secondary symptom string reason code: 0

v New context error

– Service name: IRRRPS31

– Variable data: New context

– Primary symptom string return code: CLiC rc

– Secondary symptom string reason code: 0

v Pk service error

– Service name: IRRRPS31

– Variable data: Pk service

– Primary symptom string return code: CLiC rc

– Secondary symptom string reason code: 0

v Rsa sign error

– Service name: IRRRPS31

– Variable data: Rsa sign

– Primary symptom string return code: CLiC rc

– Secondary symptom string reason code: 0

v Rsa verify error

– Service name: IRRRPS31

– Variable data: Rsa verify

– Primary symptom string return code: CLiC rc

– Secondary symptom string reason code: 0

v Decode failure 1 error

– Service name: IRRRPS51

– Variable data: Decode Failure 1

– Primary symptom string return code: RC from decodeSimple()

– Secondary symptom string reason code: 0

v Decode failure 2 error

– Service name: IRRRPS51

– Variable data: Decode Failure 2

50 RACF support for z/OS Program Signature and Verification

aaaaaaaa bbbbbbbb cccccccc dddddddd
eeeeeeee ffffffff gggggggg hhhhhhhh iiiiiiiiI

– Primary symptom string return code: 0

– Secondary symptom string reason code: 0

v Decode failure 3 error

– Service name: IRRRPS51

– Variable data: Decode Failure 3 (hex data)

– Primary symptom string return code: 0

– Secondary symptom string reason code: 0

v Decode failure 4 error

– Service name: IRRRPS51

– Variable data: Decode failure 4

– Primary symptom string return code: RC from DecodeSimple

– Secondary symptom string reason code: 0

v Decode failure 5 error

– Service name: IRRRPS51

– Variable data: Decode failure 5

– Primary symptom string return code: Rc from analysiskey()

– Secondary symptom string reason code: 0

v Decode failure 6 error

– Service name: IRRRPS51

– Variable data: Decode failure 6

– Primary symptom string return code: Value of variable seqCount should
be 5

– Secondary symptom string reason code: 0

v Error with signature algorithm

– Service name: VERFINAL

– Variable data: Unsupported signature algorithm

– Primary symptom string return code: Value of CxSignAlg

– Secondary symptom string reason code: 0

v APPLDATA format error

– Service name: VERFINAL

– Variable data: Appldata format error:
aaaaa

– Primary symptom string return code: Variable BlankPos: Index of ‘ ‘ in
Appldata

– Secondary symptom string reason code: Variable DelimPos: index of ‘/’ in
ApplData

v Extract error

– Service name: VERFINAL

– Variable data: Extract Error:
0xaaaaaaaa
0xbbbbbbbb
0xcccccccc

- Aaaaaaa=safrc

- Bbbbbbbb=racfrc

- Cccccccc=racfrsn

Chapter 7. Diagnosis considerations 51

– Primary symptom string return code: RACROUTE

– Secondary symptom string reason code: RACROUTE

v Decode X509 error

– Service name: VERFINAL

– Variable data: Decode X509 error

– Primary symptom string return code: Rc from Decode X509

– Secondary symptom string reason code: Certificate number (I loop index)

v SetCertificate error

– Service name: VERFINAL

– Variable data: SetCertificate Error

– Primary symptom string return code: Rc From

– Secondary symptom string reason code: Certificate number

v R_datalib error

– Service name: VERFINAL

– Variable data: R_datalib error:
Function code aaaaaaaa,
RC=0xbbbbbbbb 0xcccccccc 0xdddddddd

- Aaaaaaaa=r_datalib func code

- Bbbbbbbb=saf RC from r_datalib

- Cccccccc=RACFRC from r_datalib

- Dddddddd=RACFRsn from r_datalib

– Primary symptom string return code: R_datalib function code

– Secondary symptom string reason code: R_datalib RC

52 RACF support for z/OS Program Signature and Verification

Chapter 8. Data area considerations

This information supplements z/OS Security Server RACF Data Areas.

Information for the following data areas is updated to support program signing and
verification:

COMP: Common SAF/RACF Parameter List for z/OS UNIX System
Services

Common name:
Common SAF/RACF parameter list for z/OS UNIX System Services security
functions

Macro ID:
IRRPCOMP

DSECT Name:
COMP, IUSP, CSID, EXID, GETG, CHKP, GMAP, CKPO, QRYS, CMOD,
CLID, CAUD, COWN, UMSK, KACC, QRYF, KFOW, MKRT, PTRC, MFSP,
RAUD, GUGP, FORK, MISP, IACC, IOWN, CKO2, GETE, DKEY, DINF,
DRUR, DAUT, GINF, RAUX, INTA, ADMN, UMAP, CDDL, KERB, TKTS,
PKIS, CACH, PRXY, RACL, PGSN, WPRV, SECL

Size:

Section Size
PRXY 44 bytes
RACL 40 bytes
PGSN 12 bytes
WPRV 12 bytes
SECL 24 bytes

Offsets

Len Name DescriptionDec Hex Type

0 (0) STRUCTURE 12 PGSN

0 (0) ADDRESS 4 PGSN_NUM_PARMS@ Address of a fullword
containing the total
number of parameters
included in COMP and
PGSN.

4 (4) ADDRESS 4 PGSN_FUNC@ Address of 2-byte
function code.
Constants for the
function codes are
supplied below.

© Copyright IBM Corp. 1994, 2009 53

Offsets

Len Name DescriptionDec Hex Type

8 (8) ADDRESS 4 PGSN_FUNC_PARML@ Address of the function
specific parameter list
corresponding to the
function code. See
z/OS Security Server
RACF Callable Services
for function specific
parameter lists for
callable service
R_PgmSignVer.

Constants
PGSN Function code constants:

Len Type Value Name Description

4 DECIMAL 1 PGSN_FC_SIGINIT Initialize program signing

4 DECIMAL 2 PGSN_FC_SIGUPDATE Sign intermediate program
data

4 DECIMAL 3 PGSN_FC_SIGFINAL Finalize program signature

4 DECIMAL 4 PGSN_FC_SIGCLEAN Terminate signature operation

4 DECIMAL 5 PGSN_FC_VERINIT Initialize signature verification

4 DECIMAL 6 PGSN_FC_VERUPDATE Digest intermediate program
data

4 DECIMAL 7 PGSN_FC_VERFINAL Perform final verification

4 DECIMAL 8 PGSN_FC_VERCLEAN Terminate verification
operation

4 DECIMAL 9 PGSN_FC_VERINTER Interrogate directive Seefor
function specific parameter
lists for callable service
R_PgmSignVer.

COMY: 64-BIT enabled SAF callable services
Macro ID:

IRRPCOMY

DSECT Name:
COMY, RAUX, PGSN

Size:

Section Size
COMY 48 bytes
PGSN 24 bytes
RAUX 144 bytes

Offsets

Len Name DescriptionDec Hex Type

0 (0) STRUCTURE 24 PGSN64

COMP

54 RACF support for z/OS Program Signature and Verification

Offsets

Len Name DescriptionDec Hex Type

0 (0) ADDRESS 8 PGSN64_NUM_PARMS@ Address of a fullword
containing the total
number of parameters
included in COMP and
PGSN.

4 (4) ADDRESS 8 PGSN64_FUNC@ Address of a 2-byte
function code. See
data area COMP for
the function code
constants.

8 (8) ADDRESS 8 PGSN645_FUNC_PARML@ Address of the function
specific parameter list
corresponding to the
function code. See
z/OS Security Server
RACF Callable
Services for function
specific parameter lists
for callable service
R_PgmSignVer.

Cross Reference

Name
Hex
Offset

Hex
Value

PGSN64 0

PGSN64_NUM_PARMS@ 0

PGSN64_FUNC@ 8

PGSN645_FUNC_PARML@ 10

FC: z/OS UNIX System Services Security Function Code Table

Constants

Len Type Value Name Description

1 DECIMAL 53 IRRSPS00# Function code 53 -
R_PgmSignVer

Cross Reference

Name
Hex
Offset

Hex
Value Level

IRRSPS00# 0 35 2

COMY

Chapter 8. Data area considerations 55

FC

56 RACF support for z/OS Program Signature and Verification

Chapter 9. Callable services considerations

For the program signing and verification enhancement, a new callable service,
R_PgmSignVer, is introduced. Callable service R_datalib is also updated with new
attribute flag CDDL(X)_ATT_SKIPAUTH for bypassing authorization checks. In
addition, R_admin reference information is updated to describe the SIGVER
segment fields.

R_datalib (IRRSDL00 or IRRSDL64): OCSF data library
R_datalib is updated with new attribute flag CDDL(X)_ATT_SKIPAUTH for
bypassing authorization checks. The Attributes parameter is updated as follows:

Attributes
The name of a 4-byte area containing bit settings that direct the function to be
performed. The bit settings are mapped as follows:

v The DataGetFirst (X’01’) and DataGetNext (X’02’) functions

X’80000000’ - CDDL(X)_ATT_ALL_KEYTYPES flag. This flag directs
R_datalib to differentiate between PCICC key types and ICSF key types,
DSA key types and PKCS #1 key types when returning the Function Specific
Parameter List field Private_key_type. When this flag is off, R_datalib will
handle the PCICC key type as an ICSF key type and return the value
X’00000002’. It will also handle the DSA key type as a PKCS #1 key type
and return the value X’00000001’.

X’20000000’ - CDDL(X)_ATT_SKIPAUTH flag. This flag directs R_datalib to
bypass authorization checks to RACF key rings for a supervisor state or
system key caller. This does not bypass the authorization required in order to
retrieve private key information, nor does this bypass authorization checks for
PKCS #11 tokens. This flag is ignored for problem state callers.

All other bit positions are reserved and must be set to zero to ensure
compatibility with future enhancements.

v The CheckStatus (X'04') function

X’20000000’ - CDDL(X)_ATT_SKIPAUTH flag. This flag directs R_datalib to
bypass authorization checks to RACF key rings for a supervisor state or
system key caller. This does not bypass the authorization required in order to
retrieve private key information, nor does this bypass authorization checks for
PKCS #11 tokens. This flag is ignored for problem state callers.

All other bit positions are reserved and must be set to zero to ensure
compatibility with future enhancements.

v The GetUpdateCode (X'05) function

X’20000000’ - CDDL(X)_ATT_SKIPAUTH flag. This flag directs R_datalib to
bypass authorization checks to RACF key rings for a supervisor state or
system key caller. This does not bypass the authorization required in order to
retrieve private key information, nor does this bypass authorization checks for
PKCS #11 tokens. This flag is ignored for problem state callers.

All other bit positions are reserved and must be set to zero to ensure
compatibility with future enhancements.

v The NewRing (X’07’) function

X'80000000' - CDDL(X)_ATT_REUSE_RING flag. This flag directs R_datalib
to reuse the existing key ring and remove all the certificates from it. When
this flag is off, it indicates the creation of a new key ring.

© Copyright IBM Corp. 1994, 2009 57

All other bit positions are reserved and must be set to zero to ensure
compatibility with future enhancements.

v The DataPut (X’08’) function

X'80000000' - CDDL(X)_ATT_TRUST flag. This flag is used to add
certificates, with the TRUST status. When this flag is off, RACF will
determine the status based on the following factors in the same way that the
RACDCERT ADD command behaves:

– Whether the issuer of the certificate is trusted

– Whether the signature of the certificate can be verified

– Whether the certificate has expired

– Whether the validity date range of the certificate is within that of its issuer

All other bit positions are reserved and must be set to zero to ensure
compatibility with future enhancements. If the certificate already exists,
turning on this attribute will change its status from NOTRUST to TRUST
when connecting it to the key ring. However, if the status is already
HIGHTRUST, it will remain unchanged.

X'40000000' - CDDL(X)_ATT_HIGHTRUST flag. This flag is used to add or
change certificates with the HIGHTRUST status if the certificate to be added
or changed is under CERTAUTH; otherwise this value will be treated as
CDDL(X)_ATT_TRUST, that is, add or change certificates with the TRUST
status.

All other bit positions are reserved and must be set to zero to ensure
compatibility with future enhancements.

v The DataRemove (X’09’) function

X'80000000’ - CDDL(X)_ATT_DEL_CERT_TOO flag. This flag is used to
indicate the deletion of the certificate from the RACF database after being
removed from the ring, if the certificate is not connected to any other rings.
When this flag is off, it indicates the removal of the certificate from the key
ring only. When this attribute is specified and the DIGTCERT class is
RACLISTed, a successful DataRemove returns 4 4 12 instead of 0 0 0 to
indicate that a DataRefresh call is needed.

All other bit positions are reserved and must be set to zero to ensure
compatibility with future enhancements.

v All other functions

All bit positions are reserved and must be set to zero to ensure compatibility
with future enhancements.

R_admin reference information
The following general resource administration table is added to define SIGVER
segment field names and their usage. All field names relate directly to the
RDEFINE, RALTER, and RLIST keywords. Although the fields are alphabetized in
the following table, there is no defined order in which the fields are returned when
using the extract functions. See z/OS Security Server RACF Command Language
Reference for questions pertaining to field usage and data. Note that within the
command image generated internally, RACF truncates long keywords to 12
characters.

58 RACF support for z/OS Program Signature and Verification

Table 3. SIGVER segment fields

Field name Flag byte
value

RDEFINE/RALTER keyword reference
(R_admin keyword table has a 12
character limit)

Allowed
on add
requests

Allowed on
alter requests

Returned
on extract
requests

FAILLOAD 'Y' SIGVER(FAILLOAD(xx)) Yes Yes Yes

'N' SIGVER(NOFAILLOAD) No Yes

SIGAUDIT 'Y' SIGVER(SIGAUDIT(xx)) Yes Yes Yes

'N' SIGVER(NOSIGAUDIT) No Yes

SIGREQD
(boolean)

'Y' SIGVER(SIGREQUIRED(YES)) Yes Yes Yes

'N' SIGVER(SIGREQUIRED(NO)) Yes Yes

R_PgmSignVer (IRRSPS00): Program Sign and Verify

Function
The R_PgmSignVer service provides the functions required to apply a digital
signature to a z/OS program object, and the functions required to verify such a
signature. The signing services are intended for use by the z/OS program binder.
The verification services are intended for use by the z/OS loader.

The signing services consist of the following functions:

1. Initialize signing – Allocates and initializes a work area to perform message
digestion (hash) against the program’s data, and reads the digital certificates
from the program signing key ring.

2. Digest intermediate program data – Hashes a portion of the program’s data for
signing.

3. Generate signature – Hashes the final portion of the program’s data, if provided,
and generates the digital signature by encrypting the calculated hash using the
private key from the default certificate in the key ring. Any resources obtained
by the initialize signing function are freed before returning.

4. Cleanup – Frees resources obtained by the initialize signing function. To be
called in the event that signature generation will not be completed by the
generate signature function (for example, for recovery cleanup).

The verification services consist of the following functions:

1. Initialize signature-verification – Allocates and initializes a work area to perform
message digestion (hash) against the program’s data, and hashes any initial
program data that is supplied.

2. Digest intermediate program data – Hashes a portion of the program’s data for
verification.

3. Final verification – Hashes the final portion of the program’s data, if provided.
The signature provided with the program is then decrypted with the public key
from the end-entity certificate that accompanies the signature, and the two hash
values are compared to verify the signature. Any resources obtained by the
initialize signature-verification function are freed before returning.

4. Cleanup – Frees resources obtained by the initialize signature-verification
function. To be called in the event that signature-verification will not be
completed by calling the final verification function (for example, for recovery
cleanup)

Chapter 9. Callable services considerations 59

5. Interrogate directive – Generate appropriate return code and perform auditing
according to security settings when a program signature cannot be verified.

Requirements

Authorization: Any PSW key in supervisor or problem state.
Note: In the following documentation, a
caller that is in either supervisor state or a
system key is referred to as “authorized”.
Otherwise, the caller is referred to as
“unauthorized”.

Dispatchable unit mode: Task of user
Cross memory mode: PASN = HASN
AMODE: 31 or 64
RMODE: Any
ASC mode: Primary mode
Recovery mode: ESTAE. Caller cannot have a FRR active.
Serialization: Enabled for interrupts
Locks: No locks held
Control parameters: The parameter list and the work area must be

in the primary address space. The words
containing the ALETs must be in the primary
address space. The Num_parms parameter
must be in the primary address space.

Linkage conventions
Callers in 31-bit addressing mode should link-edit the IRRSPS00 stub module with
their code, and use the IRRPCOMP mapping macro. Callers in 64-bit addressing
mode should link-edit the IRRSPS64 stub module with their code, and use the
IRRPCOMY mapping macro.

RACF authorization
For unauthorized callers of the program signing services, the caller must have
sufficient authority to use the key ring specified in the parameter list (or if not
specified, then as defined in the appropriate profile in the FACILITY class) and the
private key contained within it as determined by the R_datalib callable service and
ICSF.

For the signature-verification services, there are no authorization requirements,
regardless of the caller’s state.

Format

CALL IRRSPS00 (Work_area,
ALET, SAF_return_code,
ALET, RACF_return_code,
ALET, RACF_reason_code,
Num_parms,
Function_code,
Function_parmlist
)

R_PgmSignVer

60 RACF support for z/OS Program Signature and Verification

Parameters
Work_area

The name of a 1024-byte work area for SAF. The work area must be in the
primary address space.

ALET
The name of a word containing the ALET for the following parameter. Each
parameter must have an ALET specified. Each ALET must be 0 for this service.
The words containing the ALETs must be in the primary address space.

SAF_Return_Code
The name of a fullword in which the SAF router returns the SAF return code.

RACF_Return_Code
The name of a fullword in which the service routine stores the return code.

RACF_Reason_Code
The name of a fullword in which the service routine stores the reason code.

Num_parms
Specifies the name of a fullword that contains the total number of parameters in
the parameter list. The contents of this field must be set to binary ten.

Function_code
The name of a 2-byte area containing the Function code. The function code has
one of the following values:

X’0001’
Initialize signing. (Function name SIGINIT.) This function must be called
before calling any of the other signing functions.

X’0002’
Digest intermediate program data for signature generation. (Function
name SIGUPDAT.) This function is optional. It should be called only if
all the program’s data cannot be processed on one call to generate
signature. It may be called multiple times before calling generate
signature.

X’0003’
Generate signature. (Function name SIGFINAL.) This function finalizes
the signature generation and returns the result. It also frees any work
area storage that may have been allocated.

X’0004’
Terminates the signing operation and frees resources allocated by
SIGINIT. (Function name SIGCLEAN.) This function should be called
only if signature generation is not to be finalized with a call to
SIGFINAL. Note that all R_PgmSignVer functions will perform this
cleanup if they return an error to the caller. The caller needs to call the
cleanup function only if it is terminating for its own reason.

X’0005’
Initialize signature-verification and optionally digest initial program data.
(Function name VERINIT.) This function must be called before calling
any of the other verification functions except VERINTER (interrogate
directive).

X’0006’
Digest intermediate program data for signature-verification. (Function
name VERUPDAT.) This function is optional. It should be called only if

R_PgmSignVer

Chapter 9. Callable services considerations 61

all the program’s data cannot be processed on the VERINIT and
VERFINAL calls. It may be called multiple times before performing final
verification.

X’0007’
Perform final verification. (Function name VERFINAL.) This function
finalizes the signature-verification and returns the result. It also audits
the event and frees any work area storage that may have been
allocated. If all the program data can be specified in a single call, then
VERFINAL can be called without first calling VERINIT. See Table 10 on
page 65 for more information.

X’0008’
Terminates the signing operation and frees resources allocated by
VERINIT. (Function name VERCLEAN.) This function should be called
only if signature generation is not to be finalized with a call to
VERFINAL. Note that all R_PgmSignVer functions will perform this
cleanup if they return an error to the caller. The caller only needs to call
the cleanup function if it is terminating for its own reason.

X’0009’
Interrogate directive. (Function name VERINTER.) This function
examines the directive (supplied within the ICHSFENT in the
function-specific parameter list) to determine the appropriate action.
This would be used for the cases where VERFINAL will not be called.
For example, when digital signature processing is required but the
module does not have a digital signature. This function is not available
to unauthorized callers.

Function_parmlist
Specifies the name of the function code specific parameter list area for the
Function_code specified.

All address fields are 8-byte addresses. When referring to 31-bit storage
addresses, the caller must make sure that the high-order word of the address
field is set to binary zeros.

Table 4. Function_parmlist for SIGINIT

Field Attributes Usage Description

PGSN_SI_PLIST Structure In Function-specific parameter list for signing
initialization.

PGSN_SI_EYE 8 characters In Eyecatcher, 8 characters. Actual value must be
set by invoker: ’SIGINIT ’.

PGSN_SI_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

PGSN_SI_PGM_NAME_LEN 4 byte numeric In Length of the name of the program being signed.
The length must not exceed 8 characters.

PGSN_SI_PGM_NAME@ Address of In Address of the name of the program being
signed.
Note: This parameter is used to derive the
name/token that is used for subsequent calls. As
such, it does not necessarily need to be the
program name, but must be a unique value
which does not result in a name collision with
other signing operations.

R_PgmSignVer

62 RACF support for z/OS Program Signature and Verification

Table 4. Function_parmlist for SIGINIT (continued)

Field Attributes Usage Description

PGSN_SI_KEYRING_NAME@ Address of In Address of the name of the SAF key ring that
contains the certificates to be used for signing.
The address is meaningful only if
PGSN_SI_KEYRING_LEN is a non-zero value.

The name that this address points to has the
following syntax:

owning-userid/ring-name

The owning-userid (but not the slash) may be
omitted if the key ring is owned by the user ID
associated with the calling application.

PGSN_SI_KEYRING_LEN 4 byte numeric In Length of the name of the SAF key ring that
contains the certificates to be used for signing.
Set this field to binary zero to have the security
manager determine the key ring to use.

PGSN_SI_SIGINFO_LEN 4 byte numeric Out Length of the ZOSSignatureInfo structure which
will be returned as part of the signature area
structure in the SIGFINAL call.

PGSN_SI_DIGEST_ALG 1 byte numeric In Numeric value indicating what message digest
algorithm to use for the signing. Set this field to
binary zero to have the security manager
determine the algorithm to use. A value of 1
indicates that SHA256 is to be used.

Table 5. Function_parmlist for SIGUPDAT

Field Attributes Usage Description

PGSN_SU_PLIST Structure In Function-specific parameter list for intermediate
signing.

PGSN_SU_EYE 8 characters In Eyecatcher, 8 characters. Actual value must be
set by invoker: ’SIGUPDAT’.

PGSN_SU_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

PGSN_SU_PGM_NAME_LEN 4 byte numeric In Length of the name of the program being signed.
The length must not exceed 8 characters.

PGSN_SU_PGM_NAME@ Address of In Address of the name of the program being
signed. Must be the same as the value supplied
on the SIGINIT call.

PGSN_SU_PGM_DATA@ Address of In Address of a structure specifying the
intermediate range(s) of data to sign. The
structure is mapped by PGSN_DATA_RANGE.
See usage note 7 in “Usage notes for program
verification” on page 74 for the format of this
structure.

Table 6. Function_parmlist for SIGFINAL

Field Attributes Usage Description

PGSN_SF_PLIST Structure In Function-specific parameter list for final signing.

PGSN_SF_EYE 8 characters In Eyecatcher, 8 characters. Actual value must be
set by invoker: ’SIGFINAL’.

PGSN_SF_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

PGSN_SF_PGM_NAME_LEN 4 byte numeric In Length of the name of the program being signed.
The length must not exceed 8 characters.

R_PgmSignVer

Chapter 9. Callable services considerations 63

Table 6. Function_parmlist for SIGFINAL (continued)

Field Attributes Usage Description

PGSN_SF_PGM_NAME@ Address of In Address of the name of the program being
signed. Must be the same as the value supplied
on the SIGINIT call.

PGSN_SF_PGM_DATA@ Address of In Address of a structure specifying the final
range(s) of data to sign. The structure is mapped
by PGSN_DATA_RANGE. See usage note 7 in
“Usage notes for program verification” on page
74 for the format of this structure.

PGSN_SF_SIG_AREA@ Address of Out Address of the allocated signature area structure.
See usage note 6 in “Usage notes for program
signing” on page 72 for the format of the area.

PGSN_SF_SUBPOOL 1 byte numeric In Subpool to be used for allocation of the signature
data structure. For unauthorized callers, this
must be a value in the range 1 – 127.

Table 7. Function_parmlist for SIGCLEAN

Field Attributes Usage Description

PGSN_SC_PLIST Structure In Function-specific parameter list for signing
cleanup.

PGSN_SC_EYE 8 characters In Eyecatcher, 8 characters. Actual value must be
set by invoker: ’SIGCLEAN’.

PGSN_SC_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

PGSN_SC_PGM_NAME_LEN 4 byte numeric In Length of the name of the program being signed.
The length must not exceed 8 characters.

PGSN_SC_PGM_NAME@ Address of In Address of the name of the program being
signed. Must be the same as the value supplied
on the SIGINIT call.

Table 8. Function_parmlist for VERINIT

Field Attributes Usage Description

PGSN_VI_PLIST Structure In Function-specific parameter list for verification
initialization.

PGSN_VI_EYE 8 characters In Eyecatcher, 8 characters. Actual value must be
set by invoker: ’VERINIT ’.

PGSN_VI_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

PGSN_VI_PGM_NAME_LEN 4 byte numeric In For unauthorized callers, length of the name of
the program being verified. The length must not
exceed 8 characters. Ignored for authorized
callers.

PGSN_VI_PGM_NAME@ Address of In For unauthorized callers, address of the name of
the program being verified. Ignored for authorized
callers.

PGSN_VI_CONTEXT@ Address of Out For authorized callers, address of the allocated
verify context that the caller should pass in to
subsequent verification calls. Ignored for
unauthorized callers.

PGSN_VI_PGM_DATA@ Address of In Address of a structure specifying the initial
range(s) of data to verify. The structure is
mapped by PGSN_DATA_RANGE. See usage
note 7 in “Usage notes for program verification”
on page 74 for the format of this structure.

R_PgmSignVer

64 RACF support for z/OS Program Signature and Verification

Table 8. Function_parmlist for VERINIT (continued)

Field Attributes Usage Description

PGSN_VI_SIGINFO@ Address of In Address of the ZOSSignatureInfo structure
extracted from the program object being verified.

PGSN_VI_SIGINFO_LEN 4 byte numeric In Length of the ZOSSignatureInfo structure
extracted from the program object being verified.

PGSN_VI_DIGEST_ALG 1 byte numeric In Numeric value indicating what message digest
algorithm to use for the verification. A value of 0
means the value contained in the
ZOSSignatureInfo structure should be used. This
is the only supported value.

Table 9. Function_parmlist for VERUPDAT

Field Attributes Usage Description

PGSN_VU_PLIST Structure In Function-specific parameter list for intermediate
verification.

PGSN_VU_EYE 8 characters In Eyecatcher, 8 characters. Actual value must be
set by invoker: ’VERUPDAT’.

PGSN_VU_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

PGSN_VU_PGM_NAME_LEN 4 byte numeric In For unauthorized callers, length of the name of
the program being verified. The length must not
exceed 8 characters. Ignored for authorized
callers.

PGSN_VU_PGM_NAME@ Address of In For unauthorized callers, address of the name of
the program being verified. Must be the same as
the value supplied on the VERINIT call. Ignored
for authorized callers.

PGSN_VU_CONTEXT@ Address of In For authorized callers, address of the verify
context area allocated on the VERINIT call.
Ignored for unauthorized callers.

PGSN_VU_PGM_DATA@ Address of In Address of a structure specifying the intermediate
range(s) of data to verify. The structure is
mapped by PGSN_DATA_RANGE. See usage
note 7 in “Usage notes for program verification”
on page 74 for the format of this structure.

Table 10. Function_parmlist for VERFINAL

Field Attributes Usage Description

PGSN_VF_PLIST Structure In Function-specific parameter list for final
verification.

PGSN_VF_EYE 8 characters In Eyecatcher, 8 characters. Actual value must be
set by invoker: ’VERFINAL’.

PGSN_VF_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

PGSN_VF_PGM_NAME_LEN 4 byte numeric In For unauthorized callers, length of the name of
the program being verified. The length must not
exceed 8 characters. Ignored for authorized
callers.

If the length is zero, it is assumed that no
VERINIT call was made, and the signature is
generated based on the data supplied in this call,
using the default digest algorithm.

R_PgmSignVer

Chapter 9. Callable services considerations 65

Table 10. Function_parmlist for VERFINAL (continued)

Field Attributes Usage Description

PGSN_VF_PGM_NAME@ Address of In For unauthorized callers, address of the name of
the program being verified. Must be the same as
the value supplied on the VERINIT call. Ignored
for authorized callers.

PGSN_VF_CONTEXT@ Address of In For authorized callers, address of the verify
context area allocated on the VERINIT call.
Ignored for unauthorized callers. If the address is
zero, it is assumed that no VERINIT call was
made, and the signature is generated based on
the data supplied in this call, using the default
digest algorithm.

PGSN_VF_PGM_DATA@ Address of In Address of a structure specifying the final
range(s) of data to verify. The structure is mapped
by PGSN_DATA_RANGE. See usage note 7 in
“Usage notes for program verification” on page 74
for the format of this structure.

PGSN_VF_LOGSTRING@ Address of In Address of an area that consists of a 1 byte
length field followed by character data (up to 255
bytes) to be included in any audit records that are
created. If the address or the length byte is 0, this
parameter is ignored.

PGSN_VF_ICHSFENT@ Address of In For authorized callers, address of the FASTAUTH
entity parameter mapping containing the directive
(previously retrieved from RACF by Contents
Supervision). This parameter is optional. See
usage notes 6 and 16 in “Usage notes for
program verification” on page 74. Ignored for
unauthorized callers.

PGSN_VF_SIGINFO@ Address of In Address of the ZOSSignatureInfo structure
extracted from the program object being verified.
This field is required if VERFINAL is the only call
being made. It is ignored if it was already passed
to VERINIT.

PGSN_VF_SIGINFO_LEN 4 byte numeric In Length of the ZOSSignatureInfo structure
extracted from the program object being verified.
This field is required if VERFINAL is the only call
being made. It is ignored if it was already passed
to VERINIT.

Table 11. Function_parmlist for VERCLEAN

Field Attributes Usage Description

PGSN_VC_PLIST Structure In Function-specific parameter list for verification
cleanup.

PGSN_VC_EYE 8 characters In Eyecatcher, 8 characters. Actual value must be
set by invoker: ’VERCLEAN’.

PGSN_VC_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

PGSN_VC_PGM_NAME_LEN 4 byte numeric In For unauthorized callers, length of the name of
the program being verified. The length must not
exceed 8 characters. Ignored for authorized
callers.

PGSN_VC_PGM_NAME@ Address of In For unauthorized callers, address of the name of
the program being verified. Must be the same as
the value supplied on the VERINIT call. Ignored
for authorized callers.

R_PgmSignVer

66 RACF support for z/OS Program Signature and Verification

Table 11. Function_parmlist for VERCLEAN (continued)

Field Attributes Usage Description

PGSN_VC_CONTEXT@ Address of In For authorized callers, address of the verify
context area allocated on the VERINIT call.
Ignored for unauthorized callers.

Table 12. Function_parmlist for VERINTER

Field Attributes Usage Description

PGSN_ID_PLIST Structure In Function-specific parameter list for interrogating
the directive.

PGSN_ID_EYE 8 characters In Eyecatcher, 8 characters. Actual value must be
set by invoker: ’VERINTER’.

PGSN_ID_VERS 4 byte numeric In The version number for this function-specific
parameter list. The contents of this field must be
set to binary zero.

* 4 characters In Reserved

PGSN_ID_ ICHSFENT@ Address of In For authorized callers, address of the FASTAUTH
entity parameter mapping (previously retrieved
from RACF by Contents Supervision). Ignored for
unauthorized callers.

PGSN_ID_LOGSTRING@ Address of In Address of an area that consists of a 1 byte
length field followed by character data (up to 255
bytes) to be included in any audit records that are
created. If the address or the length byte is 0, this
parameter is ignored.

PGSN_ID_EVENT 1 byte numeric In Constant indicating what sigver event was
detected:

v x’01’ – Digital signature processing is required
but the module does not have a digital
signature.

v x’02’ – Digital signature processing is required.
The PDSE directory entry for the module
indicates it’s signed but the digital signature is
missing.

Return and reason codes
R_PgmSignVer may return the following values in the return and reason code
parameters:

Table 13. Return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

0 0 0 Successful completion

4 0 0 RACF not installed

8 8 4 An internal error has occurred during RACF processing
of the requested function.

8 8 8 Unable to establish a recovery environment.

8 8 12 Function not available for unauthorized callers.

8 100 xx A parameter list error has been detected. The RACF
reason code identifies the parameter in error. The
reason code is the offset of the parameter in error,
relative to the start of COMP or COMY.

R_PgmSignVer

Chapter 9. Callable services considerations 67

Table 13. Return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

8 104 yy A function-specific parameter list (pointed to by the
Function_parmlist parameter) error has been detected.
The RACF reason code identifies the field in error. The
reason code is the offset of the field in error, relative to
the start of the function-specific parameter list. When
the field is an address, the error may pertain to the
address itself, or to something to which it points.

In addition to the above, R_PgmSignVer may return function specific return and
reason codes:

Table 14. SIGINIT specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Signature operation is already in progress for the
specified program name.

8 8 104 Security Manager is unable to determine the key ring to
use.

8 8 108 Syntax error in supplied key ring name, or in the key
ring name contained within the APPLDATA of the RACF
FACILITY class profile.

8 8 112 Key ring does not exist or does not contain a default
certificate.

8 8 116 Caller not authorized to use R_datalib to access the key
ring.

8 8 120 Certificate chain in the key ring is incomplete.

8 8 124 Certificate chain contains more than 10 certificates, or
key ring contains more than 50 certificates. (Some of
these might not constitute part of the trust chain.
However, you should not connect any certificates that
do not.)

8 8 128 CA certificate in the key ring does not have certificate
signing capability. (KeyUsage extension present but
keyCertSign flag is off or BasicConstraints extension is
present but cA flag is off.)

8 8 132 Default certificate in key ring does not have a private
key.

8 8 136 Default certificate in key ring does not have code
signing capability. (KeyUsage extension present but
digitalSignature or nonRepudiation flag is off.)

8 8 140 The certificate signature algorithm of one or more
certificates in the key ring is not supported.

8 8 144 The key type of one or more certificates in the key ring
is not supported. This reason code will also be issued if
the private key of the signing certificate is stored in
ICSF.

8 8 148 The specified message digest algorithm not supported.

8 8 152 CA or signing certificate is expired or not yet active.

R_PgmSignVer

68 RACF support for z/OS Program Signature and Verification

Table 14. SIGINIT specific return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

8 12 xx Unexpected error returned from R_datalib. RACF
reason code is the DataGetFirst/DataGetNext reason
code returned by R_datalib.

8 16 xx Unexpected error returned from IEANTCR. RACF
reason code is the return code returned by IEANTCR.

8 20 0x00xxyyyy An unexpected error is returned from ICSF. The
hexadecimal reason code value is formatted as follows:

xx ICSF return code.

yyyy ICSF reason code.

Table 15. SIGUPDAT specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Signature operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF reason
code is the return code returned by IEANTRT.

8 2nn xx Unexpected error from the cryptographic module. The
return code is 200+nn where nn identifies the function
being performed. The reason code is the return code
from the cryptographic module. This information should
be reported to IBM service.

Table 16. SIGFINAL specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Signature operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF reason
code is the return code returned by IEANTRT.

8 16 xx Unexpected error returned from IEANTDL. RACF
reason code is the return code returned by IEANTDL.

8 2nn xx Unexpected error from the cryptographic module. The
return code is 200+nn where nn identifies the function
being performed. The reason code is the return code
from the cryptographic module. This information should
be reported to IBM service.

Table 17. SIGCLEAN specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Signature operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF reason
code is the return code returned by IEANTRT.

8 16 xx Unexpected error returned from IEANTDL. RACF
reason code is the return code returned by IEANTDL.

R_PgmSignVer

Chapter 9. Callable services considerations 69

Table 18. VERINIT specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Verification operation is already in progress for the
specified program name.

8 12 xx Unexpected error returned from IEANTCR. RACF
reason code is the return code returned by IEANTCR.

8 16 116 The program verification module (IRRPVERS) is not
loaded. See z/OS Security Server RACF Security
Administrator’s Guide and z/OS Security Server RACF
System Programmer’s Guide for information about
configuring and loading the verification module with the
IRRVERLD program.

8 2nn xx Unexpected error from the cryptographic module. The
return code is 200+nn where nn identifies the function
being performed. The reason code is the return code
from the cryptographic module. This information should
be reported to IBM service.

Table 19. VERUPDAT specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Verification operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF reason
code is the return code returned by IEANTRT.

8 16 116 The program verification module (IRRPVERS) is not
loaded. See z/OS Security Server RACF Security
Administrator’s Guide and z/OS Security Server RACF
System Programmer’s Guide for information about
configuring and loading the verification module with the
IRRVERLD program.

8 2nn xx Unexpected error from the cryptographic module. The
return code is 200+nn where nn identifies the function
being performed. The reason code is the return code
from the cryptographic module. This information should
be reported to IBM service.

Table 20. VERFINAL specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

0 0 See reason codes
below for SAF
return code 8,
RACF return code
16

Signature failed verification. Continue the load.

8 8 100 Verification operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF reason
code is the return code returned by IEANTRT.

8 16 See below Signature failed verification. Fail the load.

R_PgmSignVer

70 RACF support for z/OS Program Signature and Verification

Table 20. VERFINAL specific return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

The following group of reason codes are considered problems with the program signature (the zOSSignatureInfo
structure). These would cause the load to fail when FAILLOAD(BADSIGONLY) or FAILLOAD(ANYBAD) is in effect.

4 The ZOSSignatureInfo structure is missing or not
correct.

8 Signature algorithm in ZOSSignatureInfo is not
supported.

12 Signer certificate is revoked. The certificate status is
NOTRUST.

16 Certificate chain is incomplete.

20 One or more CA certificates do not have certificate
signing capability. (KeyUsage extension present but
keyCertSign flag is off or BasicConstraints extension is
present but cA flag is off.)

24 End-entity certificate does not have code signing
capability. (KeyUsage extension present but
digitalSignature or nonRepudiation flag is off.)

28 The certificate signature algorithm of one or more
certificates is not supported.

32 The type or size of key found in one or more certificates
is not supported.

36 CA or signing certificate was expired or not yet active at
the time the module was signed.

40 Digital signature not valid.

44 Unsupported certificate format.

The following group of reason codes are the additional conditions that would cause the load to fail due to signature
processing, but do not represent a bad signature. These would cause the load to fail when FAILLOAD(ANYBAD) is in
effect, but not FAILLOAD(BADSIGONLY).

100 The program appears to be correctly signed but one of
the following conditions exists:

v The root CA certificate in the zOSSignatureInfo
structure of the program object is not connected to
the signature-verification key ring.

v The root CA certificate is marked NOTRUST.

104 The FACILITY class profile,
IRR.PROGRAM.SIGNATURE.VERIFICATION, is
missing.

108 The APPLDATA information in the FACILITY class
profile, IRR.PROGRAM.SIGNATURE.VERIFICATION, is
missing or not correct.

112 The signature-verification key ring is missing.

116 The program verification module (IRRPVERS) is not
loaded. See z/OS Security Server RACF Security
Administrator’s Guide and z/OS Security Server RACF
System Programmer’s Guide for information about
configuring and loading the verification module with the
IRRVERLD program.

R_PgmSignVer

Chapter 9. Callable services considerations 71

Table 20. VERFINAL specific return and reason codes (continued)

SAF return code
RACF return
code

RACF reason
code Explanation

120 An error occurred while performing a cryptographic self
test on the IRRPVERS module during initialization.
Contact IBM support.

8 2nn xx Unexpected error from the cryptographic module. The
return code is 200+nn where nn identifies the function
being performed. The reason code is the return code
from the cryptographic module. This information should
be reported to IBM service.

Table 21. VERCLEAN specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

8 8 100 Verification operation has not been initialized for the
specified program name.

8 12 xx Unexpected error returned from IEANTRT. RACF reason
code is the return code returned by IEANTRT.

8 16 xx Unexpected error returned from IEANTDL. RACF
reason code is the return code returned by IEANTDL.

Table 22. VERINTER specific return and reason codes

SAF return code
RACF return
code

RACF reason
code Explanation

0 0 0 Continue the load.

8 8 0 Fail the load.

Usage notes

Usage notes for program signing
1. This service tracks the resources used for signing using a task related

name/token pair. The 16–byte token name has the following format:
IRRPSIGNprogram-name

Where program-name is one of the parameters provided by the caller.
Consequently, for any given series of SIGINIT, SIGUPDAT, SIGFINAL, and
SIGCLEAN calls used to sign a single program object, the program name
value must be the same.

2. Calls to this service using different program name values are considered
independent operations.

3. For a given program name, SIGINIT must be called prior to calling any of
SIGUPDAT, SIGFINAL, or SIGCLEAN.

4. For a given program name, SIGINIT cannot be called a second time without
terminating the first SIGINIT with a call to SIGFINAL or SIGCLEAN.

5. For a given program name, it is the caller’s responsibility to call the SIGCLEAN
function in the event that signature generation will not be completed by calling
SIGFINAL. Note that all R_PgmSignVer functions will perform this cleanup if
they return an error to the caller. The caller only needs to call the cleanup
function if it is terminating for its own reason.

R_PgmSignVer

72 RACF support for z/OS Program Signature and Verification

6. The signature area allocated and returned to the caller in the
PGSN_SF_SIG_AREA@ parameter by SIGFINAL has the following format:

Table 23. PGSN_SF_SIG_AREA@ signature area format

Offset Length Description

0 4 Eyecatcher, “PSSD”.

4 4 Length of entire area, including the eyecatcher.

8 1 Subpool used to obtain the area storage.

9 3 Reserved.

12 4 Length of z/OS signature info area.

16 * ZOSSignatureInfo structure to be included in the
signed program object. See the next usage note for
the format.

7. The ZOSSignatureInfo structure returned in the signature area is the signature
data that is to be placed in the signed program object. It is DER encoded
according to the following ASN.1 definition:
ZOSSignatureInfo ::= SEQUENCE {

signDetails SignatureDetails
certs SET OF Certificate -- In reverse hierarchy order, EE to root
signature BIT STRING -- PKCS #1 format - Encrypted DigestInfo

}

SignatureDetails ::= SEQUENCE { -- DER encoding included in data signed
version INTEGER(0)
signatureAlg AlgorithmIdentifier -- From PKCS #1
signatureTime OCTET STRING(12) -- TIME DEC,ZONE=UTC,DATETYPE=YYYYMMDD

-- format (EBCDIC)
}

8. The only supported algorithm for the signatureAlg field is
sha256WithRSAEncryption with NULL parameters.

9. It is the caller’s responsibility to free the signature area when it is no longer
needed.

10. The only supported message digest algorithm is SHA256.

11. The only supported certificate key type is RSA. The maximum RSA key size is
4096 bits.

12. The supported certificate signature algorithms are:

v sha256WithRSAEncryption

v sha1WithRSAEncryption

13. All numeric parameters are treated as unsigned.

14. All length parameters must be non-zero unless otherwise indicated.

15. On SIGINIT, if the key ring to use is not specified, the security manager
determines the key ring based on security settings. See the z/OS Security
Server RACF Security Administrator’s Guide for information on these security
settings and on how to populate the key ring. There can be no more than 10
certificates within the trust chain, starting with the code signer and ending with
the self-signed Certificate Authority certificate.

16. If no program data is ever passed in by the caller, a digital signature is
generated solely for the SignatureDetails structure documented above.

R_PgmSignVer

Chapter 9. Callable services considerations 73

Usage notes for program verification
1. For unauthorized callers, this service tracks the resources used for verification

in a ‘context’ using a task related name/token pair. The 16–byte token name
has the following format:
IRRPVERFprogram-name

Where program-name is one of the parameters provided by the caller.
Consequently, for any given series of VERINIT, VERUPDAT, VERFINAL, and
VERCLEAN calls used to verify the signature of a single program object, the
program name must be the same.

2. Calls to this service using different program names are considered
independent operations.

3. For a given program name, VERINIT must be called prior to calling any of
VERUPDAT, VERFINAL (with the exception documented in the descriptions of
the PGSN_VF_CONTEXT@ and PGSN_VF_PGM_NAME_LEN fields in the
VERFINAL parameter list), or VERCLEAN.

4. For a given program name, VERINIT cannot be called a second time without
terminating the first VERINIT with a call to VERFINAL or VERCLEAN.

5. For a given program name, it is the caller’s responsibility to call the
VERCLEAN function in the event that signature generation will not be
completed by calling VERFINAL. Note that all R_PgmSignVer functions will
perform this cleanup if they return an error to the caller. The caller only needs
to call the cleanup function if it is terminating for its own reason.

6. If auditing is required, it is performed in the VERFINAL (or VERINTER) call.
Auditing is only performed when the ICHSFENT is provided by an authorized
caller, subject to the audit settings from the directive within and the outcome of
the VERFINAL service.

7. Some signature generation and all verification functions allow, via a pointer in
the function-specific parameter list, the specification of an array of ranges of
data to be hashed. This is optional. If the address is 0, no data will be hashed.
The ranges are defined using the structure mapped by PGSN_DATA_RANGE
in the IRRPCOMP mapping macro. This structure must exist in storage within
the primary address space. The structure consists of an ALET followed by a
fullword specifying the number of ranges which follow (if the number of ranges
is 0, no data will be hashed). This is followed by an array of pointer pairs.
Each pointer is an 8-byte pointer. AMODE(31) callers must set the high order
full word of the pointer fields to 0. The first pointer is the address of the first
byte of the range, and the second pointer is the address of the last byte of the
range (they can be the same, for a length of 1). The maximum number of
ranges which can be specified per call is defined in the
PGSN_DATA_NUM_RANGES_MAX constant.

Field Attributes Description

PGSN_DATA_RANGE Structure Ranges of data to verify.

PGSN_DATA_ALET 4 byte numeric The ALET for the address space containing the
data.

PGSN_DATA_NUM_RANGES 4 byte numeric The number of data ranges in the following
array, not to exceed
PGSN_DATA_NUM_RANGES_MAX.

PGSN64_DATA_RANGE_LIST Array Repeating array of the following data items.

PGSN_DATA_START@ Address of Address of the first byte in the range.

PGSN_DATA_END@ Address of Address of the last byte in the range.

R_PgmSignVer

74 RACF support for z/OS Program Signature and Verification

8. The default message digest algorithm is SHA256. This is the only supported
message digest algorithm.

9. The ZOSSignatureInfo structure is DER encoded. It has the following ASN.1
definition:
ZOSSignatureInfo ::= SEQUENCE {

signDetails SignatureDetails
certs SET OF Certificate -- In reverse hierarchy order, EE to root
signature BIT STRING -- PKCS #1 format - Encrypted DigestInfo

}

SignatureDetails ::= SEQUENCE { -- DER encoding included in data signed
version INTEGER(0)
signatureAlg AlgorithmIdentifier -- From PKCS #1
signatureTime OCTET STRING(12) -- TIME DEC,ZONE=UTC,DATETYPE=YYYYMMDD

-- format (EBCDIC)
}

10. The only supported algorithm for the signatureAlg field is
sha256WithRSAEncryption with NULL parameters.

11. The only supported certificate key type is RSA. The maximum RSA key size is
4096 bits.

12. The supported certificate signature algorithms are:

v sha256WithRSAEncryption

v sha1WithRSAEncryption

13. All numeric parameters are treated as unsigned.

14. All length parameters must be non-zero unless otherwise indicated.

15. The program signature-verification key ring is specified using the APPLDATA
field of FACILITY class profile IRR.PROGRAM.SIGNATURE.VERIFICATION.
See z/OS Security Server RACF Security Administrator’s Guide for more
information about creating profiles.

16. If there is no ICHSFENT, and thus no directive, supplied by the caller, the
verification occurs on the signature, but there is no check for the root CA
certificate being trusted, and no auditing performed.

Related services
None.

R_PgmSignVer

Chapter 9. Callable services considerations 75

R_PgmSignVer

76 RACF support for z/OS Program Signature and Verification

Chapter 10. Macros and interface considerations

A new event code, 86(56): R_PgmSignVer, has been added:

Updates to the table of event codes and event code qualifiers

EVENT
dec(hex) Command

Code qualifier
dec(hex) Description

Relocate type sections
(possible
SMF80DTP/SMF80DA2
values)

86(56) R_PgmSignVer 0(0) Successful signature
verification

1, 15, 46, 49, 53, 66, 331, 332,
386, 392, 393, 394, 395, 409,
410, 411, 412, 413, 4141(1) Signature appears valid but

root CA certificate not trusted

2(2) Module signature failed
verification

3(3) Module certificate chain
incorrect

4(4) Signature required but module
not signed

5(5) Signature required but
signature has been removed

6(6) Program verification module
not loaded. Program
verification was not available
when attempt was made to
load this program.

7(7) The Algorithmic self test failed
while verifying the program
verification module.

Table of extended-length relocate section variable data

Data type
(SMF80TP2)
dec(hex)

Data length
(SMF80DL2) Format Audited by event code Description (SMF80DA2)

409(199) 1-255 EBCDIC 86 Root signing certificate subject’s distinguished
name

410(19A) 1-255 EBCDIC 86 Program signer (End Entity) certificate subject’s
distinguished name

411(19B) 1 Binary 86 R_PgmSignVer flags byte

Bit Meaning
0 1 = Module allowed to be loaded

412(19C) 8 EBCDIC 86 Time module was signed

413(19D) 10 EBCDIC 86 Date module was signed

414(19E) 10 EBCDIC 86 Date when module certificate chain expires

Event codes

Event code
name Col ID

Event
code Description Where described

R_PgmSignVer PGMV 86 Signature verification “The R_PgmSignVer record extension” on
page 78

© Copyright IBM Corp. 1994, 2009 77

Updates to record extensions
The R_PgmSignVer record extension has been added.

The R_PgmSignVer record extension
Table 24. Format of the R_PgmSignVer record extension (event code 86)

Field name Type Length

Position

CommentsStart End

PGMV_RES_NAME Char 255 282 536 Name of program being verified.

PGMV_VOL Char 6 538 543 Volume containing the program.

PGMV_LOGSTRING Char 255 545 799 Logstring parameter.

PGMV_USER_NAME Char 20 801 820 The name associated with the user ID.

PGMV_UTK_ENCR Yes/No 4 822 825 Is the UTOKEN associated with this user
encrypted?

PGMV_UTK_PRE19 Yes/No 4 827 830 Is this a pre-1.9 token?

PGMV_UTK_VERPROF Yes/No 4 832 835 Is the VERIFYX propagation flag set?

PGMV_UTK_NJEUNUSR Yes/No 4 837 840 Is this the NJE undefined user?

PGMV_UTK_LOGUSR Yes/No 4 842 845 Is UAUDIT specified for this user?

PGMV_UTK_SPECIAL Yes/No 4 847 850 Is this a SPECIAL user?

PGMV_UTK_DEFAULT Yes/No 4 852 855 Is this a default token?

PGMV_UTK_UNKNUSR Yes/No 4 857 860 Is this an undefined user?

PGMV_UTK_ERROR Yes/No 4 862 865 Is this user token in error?

PGMV_UTK_TRUSTED Yes/No 4 867 870 Is this user a part of the TCB?

PGMV_UTK_SESSTYPE Char 8 872 879 The session type of this session.

PGMV_UTK_SURROGAT Yes/No 4 881 884 Is this a surrogate user?

PGMV_UTK_REMOTE Yes/No 4 886 889 Is this a remote job?

PGMV_UTK_PRIV Yes/No 4 891 894 Is this a privileged user ID?

PGMV_UTK_SECL Char 8 896 903 The security label of the user.

PGMV_UTK_EXECNODE Char 8 905 912 The execution node of the work.

PGMV_UTK_SUSER_ID Char 8 914 921 The submitting user ID.

PGMV_UTK_SNODE Char 8 923 930 The submitting node.

PGMV_UTK_SGRP_ID Char 8 932 939 The submitting group name.

PGMV_UTK_SPOE Char 8 941 948 The port of entry.

PGMV_UTK_SPCLASS Char 8 950 957 Class of the POE.

PGMV_UTK_USER_ID Char 8 959 966 User ID associated with the record.

PGMV_UTK_GRP_ID Char 8 968 975 Group name associated with the record.

PGMV_UTK_DFT_GRP Yes/No 4 977 980 Is a default group assigned?

PGMV_UTK_DFT_SECL Yes/No 4 982 985 Is a default security label assigned?

PGMV_PDS_DSN Char 44 987 1030 Partitioned data set name containing the program.

PGMV_UTK_NETW Char 8 1032 1039 The port of entry network name.

PGMV_X500_SUBJECT Char 255 1041 1295 Subject's name associated with this event.

PGMV_X500_ISSUER Char 255 1297 1551 Issuer's name associated with this event.

PGMV_SERV_POENAME Char 64 1553 1616 SERVAUTH resource or profile name.

PGMV_CTX_USER Char 510 1618 2127 Authenticated user name.

PGMV_CTX_REG Char 255 2129 2383 Authenticated user registry name.

PGMV_CTX_HOST Char 128 2385 2512 Authenticated user host name.

78 RACF support for z/OS Program Signature and Verification

Table 24. Format of the R_PgmSignVer record extension (event code 86) (continued)

Field name Type Length

Position

CommentsStart End

PGMV_CTX_MECH Char 16 2514 2529 Authenticated user authentication mechanism
object identifier (OID).

PGMV_ROOT_DN Char 255 2531 2785 Root signing certificate subject's distinguished
name.

PGMV_SIGNER_DN Char 255 2787 3041 Program signing certificate subject's distinguished
name.

PGMV_MOD_LOADED Yes/No 4 3043 3046 Module loaded?

PGMV_SIGN_TIME Time 8 3048 3055 Time module was signed.

PGMV_SIGN_DATE Date 10 3057 3066 Date module was signed.

PGMV_EXPIR_DATE Date 10 3068 3077 Date at which module signature certificate chain
will expire.

PGMV_IDID_USER Char 985 3079 4063 Authenticated distributed user name.

PGMV_IDID_REG Char 1021 4065 5085 Authenticated distributed user registry name.

Table 25. Event qualifiers for R_PgmSignVer callable service records

Event qualifier

Event
Qualifier
Number Event description

SUCCESS 00 Successful signature verification.

NOTRUST 01 Signature appears valid but root CA certificate not trusted.

INVALSIG 02 Module signature failed verification.

INCORCHN 03 Module certificate chain incorrect.

NOTSIGND 04 Signature required but module not signed.

SIGREMOV 05 Signature required but signature has been removed.

VERNOTLD 06 Program verification module not loaded. Program verification
was not available when attempt was made to load this
program.

SLFTSTFL 07 Algorithmic self test failed.

Updates to database unload
The SIGVER segment of the GENERAL template has been added:

Record Type Record Name
05F0 General Resource SIGVER Data

Updates to the General resource records table:
Record Name Record Type Record Prefix
General Resource SIGVER Data 05F0 GRSIG

Updates to the Relationship among the General Resource Record Types figure:

Chapter 10. Macros and interface considerations 79

General Resource Installation Data
General Resource Conditional Access
General Resource Filter Data

General Resource Session Data
General Resource Session Entries
General Resource DLF Data
General Resource DLF Job Names
General Resource Started Task Data
General Resource SystemView Data
General Resource Certificate Data
General Resource Certificate References
General Resource Key Ring Data
General Resource TME Data
General Resource TME Child
General Resource TME Resource
General Resource TME Group
General Resource TME Role
General Resource KERB Data
General Resource PROXY Data
General Resource EIM Data
General Resource Alias Data
General Resource CDTINFO Data
General Resource ICTX Data

General Resource Distributed Identity Mapping Data

General Resource CFDEF Data
General Resource SIGVER Data
General Resource ICSF
General Resource ICSF Key Label
General Resource ICSF Certificate Identifier

(record type 0506)
(record type 0507)
(record type 0508)
(record type 0509)
(record type 0510)
(record type 0511)
(record type 0520)
(record type 0521)
(record type 0540)
(record type 0550)
(record type 0560)
(record type 0561)
(record type 0562)
(record type 0570)
(record type 0571)
(record type 0572)
(record type 0573)
(record type 0574)
(record type 0580)
(record type 0590)
(record type 05A0)
(record type 05B0)
(record type 05C0)
(record type 05D0)
(record type 05E0)
(record type 05F0)
(record type 05G0)
(record type 05G1)
(record type 05G2)

General Resource Basic Data (record type 0500)

General ResourceTapeVolume Data (record type 0501)

NAME/CLASS_NAME OWNER_ID NOTIFY_ID SECLEVEL SECLABEL

To GRBD_NAME in General Basic Data
To GRMEM_SECLEVEL in General Resource Members
To USBD_NAME in User Basic Data
To UPBD_NAME in User Basic Data

To GRMEM_CATEGORY in General Resource Members

NAME/CLASS_NAME INTERN_VOLS

General Resource Categories (record type 0502)

NAME/CLASS_NAME CATEGORY

General Resource Members (record type 0503)

NAME/CLASS_NAME MEMBER VOL_NAME SECLEVEL CATEGORY

General ResourceVolumes (record type 0504)

NAME/CLASS_NAME VOL_NAME

General Resource Access (record type 0505)

NAME/CLASS_NAME AUTH_ID

IDGeneral Resource Conditional Access (record type 0507)

NAME/CLASS_NAME AUTH_ID

To GPBD_NAME in Group Basic Data

To USBD_NAME in User Basic Data
GPBD_NAME in Group Basic Data

NAME/CLASS_NAME

Updates to the General resource record formats:

80 RACF support for z/OS Program Signature and Verification

v General Resource SIGVER Data Record

General Resource SIGVER data record (05F0)
The General Resource SIGVER Data record (05F0) defines the settings that control
program signature verification. There is one record per general resource profile that
contains a SIGVER segment.

Table 26. General Resource SIGVER Data Record

Field Name Type

Position

CommentsStart End

GRSIG_RECORD_TYPE Int 1 4 Record type of the general resource SIGVER data record
(05F0).

GRSIG_NAME Char 6 251 General resource name as taken from the profile name.

GRSIG_CLASS_NAME Char 253 260 Name of the class to which the general resource profile
belongs.

GRSIG_SIGREQUIRED Yes/No 262 265 Signature required.

GRSIG_FAILLOAD Char 267 276 Condition for which load should fail. Valid values are
NEVER, BADSIGONLY, and ANYBAD.

GRSIG_AUDIT Char 278 287 Condition for which RACF should audit. Valid values are
NONE, ALL, SUCCESS, BADSIGONLY, and ANYBAD.

Updates to the RACF database templates

Template Field being described
Field name
(character
data) Field ID Flag 1 Flag 2

Field length
decimal

Default
value Type

The following is the SIGVER segment of the GENERAL template.
SIGVER 001 00 00 0 0 Start of segment fields
SIGREQD 002 00 00 1 0 Bin Module must have a signature:

Value Meaning
X'80' Yes
X'00' No

FAILLOAD 003 00 00 1 0 Bin Loader failure conditions:

Value Meaning
X'80' Bad signature only
X'40' Any failing signature

condition
X'00' Never

SIGAUDIT 004 00 00 1 0 Bin RACF audit conditions:

Value Meaning
X'80' Bad signature only
X'40' Any failing signature

condition
X'20' Success
X'01' All
X'00' None

Updates to event code qualifier descriptions

Event 86(56): R_PgmSignVer
86(56) R_PgmSignVer

Chapter 10. Macros and interface considerations 81

0 Successful signature verification

1 Signature appears valid but root CA certificate not trusted

2 Module signature failed verification

3 Module certificate chain incorrect

4 Signature required but module not signed

5 Signature required but signature has been removed

6 Program verification module not loaded. Program
verification was not available when attempt was made to
load this program.

7 The Algorithmic self test failed while verifying the program
verification module.

82 RACF support for z/OS Program Signature and Verification

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

DB2
IBM
MVS
RACF
UNIX
z/OS
zSeries

UNIX and X/OPEN are registered trademarks of The Open Group in the United
States and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 1994, 2009 83

84 RACF support for z/OS Program Signature and Verification

����

Program Number:

Printed in USA

	Contents
	General information
	Part 1. Overview
	Chapter 1. Overview
	Chapter 2. Software
	Part 2. Information updates
	Chapter 3. Security administrator considerations
	Overview of program signing and verification
	Terms to know
	Related information
	Task roadmap for program signing and signature verification

	Enabling a user to sign a program
	Overview of enabling a user to sign a program
	Certificate objects required for program signing
	Details about defining IRR.PROGRAM.SIGNING profiles
	Task roadmap for enabling a user to sign a program

	Steps for enabling a user to sign a program using RACF code-signing certificates
	Steps for enabling a user to sign a program using external code-signing certificates

	Enabling RACF to verify signed programs
	Overview of enabling RACF to verify signed programs
	Initializing RACF program signature verification
	Certificate objects required for verifying signed programs
	Details about defining the IRR.PROGRAM.SIGNATURE.VERIFICATION profile
	Customizing the SIGVER segment of PROGRAM profiles
	Delegating the authority for specifying signature verification options
	Discovering if signed programs currently execute on your systems
	Task roadmap for enabling RACF to verify signed programs

	Steps for discovering if signed programs currently execute on your systems (optional)
	Steps for preparing RACF to verify signed programs (one-time setup)
	Steps for verifying a signed program

	Field-level access checking for the new SIGVER segment
	Updated sample for using the RACF database unload utility (IRRDBU00) with DB2
	New supplied certificate from IBM

	Chapter 4. Command considerations
	RALTER (Alter general resource profile)
	Syntax
	Parameters
	Example

	RDEFINE (Define general resource profile)
	Syntax
	Parameters
	Example

	RLIST (List general resource profile)
	Syntax
	Parameters
	Example

	Chapter 5. System programmer considerations
	Program signing and signature verification
	VLF considerations for program signature verification
	Dependencies

	Initializing RACF verification of signed programs (IRRVERLD)
	IRRVERLD return codes

	RACF virtual storage requirements

	Chapter 6. Messages considerations
	Chapter 7. Diagnosis considerations
	Variable data recorded by RACF Callable Services

	Chapter 8. Data area considerations
	COMP: Common SAF/RACF Parameter List for z/OS UNIX System Services
	Constants

	COMY: 64-BIT enabled SAF callable services
	Cross Reference

	FC: z/OS UNIX System Services Security Function Code Table
	Constants
	Cross Reference

	Chapter 9. Callable services considerations
	R_datalib (IRRSDL00 or IRRSDL64): OCSF data library
	R_admin reference information
	R_PgmSignVer (IRRSPS00): Program Sign and Verify
	Function
	Requirements
	Linkage conventions
	RACF authorization
	Format
	Parameters
	Return and reason codes
	Usage notes
	Usage notes for program signing
	Usage notes for program verification

	Related services

	Chapter 10. Macros and interface considerations
	Updates to the table of event codes and event code qualifiers
	Table of extended-length relocate section variable data
	Event codes
	Updates to record extensions
	The R_PgmSignVer record extension

	Updates to database unload
	General Resource SIGVER data record (05F0)
	Updates to the RACF database templates
	Updates to event code qualifier descriptions
	Event 86(56): R_PgmSignVer

	Trademarks

