
Using Encryption and Compression on zFS Filesystems

Vivian W Morabito

morabito@us.ibm.com

1

Agenda

• Intro to Encryption & Compression

• zFS Encryption

• zFS Compression

• ICSF Considerations when using zFS Encryption

• zFS Encryption & Compression Performance Measurements

• (as time allows: Highlights of other zFS V2R3 new functionality)

2

INTRO: ENCRYPTION AND COMPRESSION

3

V2R3 Encryption & Compression Support for zFS

• New and Existing filesystems can be encrypted and / or compressed

• After a filesystem is fully encrypted or compressed, additional new entries will

automatically be encrypted or compressed

4

V2R3 Encryption & Compression Support for zFS…

• Encrypting or compressing an existing filesystem is a long-running

administrative command

• Application access is fully allowed to the filesystem during the operation.

• Progress may be monitored with FSINFO

• Console messages are output indicating encryption and compression activity

5

zFS V2R3: New long running admin commands…

• new configuration option long_cmd_threads

• long_cmd_threads=foreground, background

• Foreground threads: Handle overall long running operation(s)

• default=1, must be in range 1-3

• Background threads: Used by foreground thread to convert individual files

• default=24, must be in range 1-64

• Long running commands require an available foreground thread to be initiated.

6

zFS V2R3: New long running admin commands…

• Long running commands (encyrpt, compress, shrink, online salvage)

use background tasks on the zFS owning system to process every

object in the filesystem.

• Try not to use long running commands during periods of high

activity.

• Best to use them during “off shift” time periods.

7

Encryption / Compression

• zFS Encryption & Compression are both V2R3 ONLY

• Wait until you are fully on V2R3 on all systems (with no intent to go back)
before using zFS encryption and compression services!

8

Encryption / Compression…

• Consider pairing encryption with compression.

• If the compression is done first the amount of data to be encrypted is smaller which may
improve performance.

• You cannot encrypt or decrypt an aggregate that is partially compressed or partially
decompressed.

• You cannot compress or decompress an aggregate that is partially encrypted or
partially decrypted.

9

ENCRYPTION

10

zFS Encryption

• Utilizes DFSMS Encryption for VSAM datasets

• uses ICSF* to manage cryptographic keys

• zFS encrypts:

• file contents

• security information

• ACLs (Access Control Lists)

• symbolic link contents

* ICSF: z/OS Integrated Cryptographic Service Facility (ICSF)

11

zFS Encryption ...

• ICSF must be active

• Only V1.5 filesystems may be encrypted

• Filesystem must be mounted R/W

• New configuration option: EDC_BUFFER_POOL
• Specifies size of real storage reserved for encryption & compression I/O
• Default: 32 M for zFS PFS, setting may range from 1 M to 1 G

• edcfixed - IBM Recommended new option for user_cache_size parameter.
• Allows zFS to permanently fix the user cache file to eliminate data movement from/to

auxiliary buffer pool

•user_cache_size=64M,edcfixed

12

Encryption – Key Label

• Encryption requires a key label

• encryption key labels identify encryption keys to be used to encrypt selected
data sets.

• The specified key label and encryption key must exist in the ICSF key repository
(CKDS)

13

Encryption – Key Label …

• Once a key label is associated with a filesystem, it cannot be changed or
removed

• Even if filesystem has not yet been encrypted

• The assignment of a key label does not encrypt a filesystem… it makes it
eligible for encryption

14

Encryption – Key Label …

• Once a filesystem has a key label, it can never be owned by a member at a
level lower than V2R3.

• In a mixed release sysplex with V2R3, the catchup mounts on any V2R1 or
V2R2 members for a filesystem mounted RWSHARE with a key label will fail
(even if it is not encrypted), resulting in z/OS UNIX function shipping to down
level members

• A filesystem that has a key label can never be mounted on a sysplex that does
not have a V2R3 member.

• Do not assign key labels or encrypt zFS filesystems until you are fully at
V2R3 with no intention to go back!!

15

Creating a NEW encrypted filesystem

1. Define filesystem and Assign a key label

• Use the keylabel option of define to assign key label

• Use the dataclass option of define, selecting an SMS dataclass that has a keylabel

2. Format for encryption

Data will automatically be encrypted on write

16

New Encrypted filesystem: DEFINE

IDCAMS DEFINE CLUSTER (from JCL)

• Must use new ZFS keyword instead of LINEAR

• KEYLABEL(keylabel) keyword or

• DATACLASS(keydclass)

zfsadm define (from the shell)

• –keylabel keylabel or

• -dataclass keydclass

17

IDCAMS DEFINE CLUSTER example

//ZDEFKEY JOB ,'DEFINE WITH KEYLABEL',

// MSGCLASS=H,

// CLASS=A,

// TIME=(1440),MSGLEVEL=(1,1)

//DEFINE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//AMSDUMP DD SYSOUT=H

//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=POSIX1

//SYSIN DD *

DEFINE CLUSTER (NAME(POSIX.DEFKEY.EXAMPLE) -

VOLUMES(POSIX1) -

ZFS CYL(25 0) SHAREOPTIONS(3) -

KEYLABEL(Your_Key_label))

/*

18

zfsadm define example

zfsadm define -aggr POSIX.DEFKEYL –cyl 300 10 -keylabel Your_Key_label

zfsadm define -aggr POSIX.DEFKEYL –cyl 300 10 -dataclass Your_key_Dclass

19

New Encrypted filesystem: FORMAT

• New keyword(s) on format: (zfsadm format, IOEFSUTL format, IOEAGFMT)

• -encrypt | -noencrypt

• New zFS configuration variable introduced in V2R3 to set the installation default
for encryption:

• FORMAT_ENCRYPTION ON | OFF

• Specifying –encrypt or –noencrypt on format will override FORMAT_ENCRYPTION
setting

• If dataset does not have a key label -encrypt and FORMAT_ENCRYPTION will
have no effect

20

zfsadm format example

zfsadm format -aggr POSIX.DEFKEYL –encrypt

Must be a version 1.5 aggregate!

In V2R3 format_aggrversion default is 5, so I did not need to specify the version in this
example

21

IOEFSUTL format example

22

//ZFMTKEY JOB ,'FSUTL V5 KEYL',

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),NOTIFY=&SYSUID

//*

//UTLFMTK EXEC PGM=IOEFSUTL,REGION=0M,

// PARM=('format -aggregate POSIX.DEFKEY.EXAMPLE -encrypt')

//IOEFSPRM DD DSN=CFCIMGKA.PARMLIB(PARMFILE),DISP=SHR

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

IOEAGFMT format example

//ZFMTKEY JOB ,'AGFMT V5 KEYL',

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),NOTIFY=&SYSUID

//*

//AGFMTK EXEC PGM=IOEAGFMT,REGION=0M,

// PARM=('-aggregate POSIX.DEFKEY.EXAMPLE -encrypt')

//IOEFSPRM DD DSN=CFCIMGKA.PARMLIB(PARMFILE),DISP=SHR

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

23

Encrypting an EXISTING filesystem

Assign a key label and encrypt with zfsadm encrypt:

zfsadm encrypt –aggr POSIX.EXIST.FILESYS –keyl Your_Key_label

• The existing filesystem must be mounted in read/write mode

• The filesystem does not need to be SMS-managed or extended format.

• IMPORTANT: before an existing filesystem is encrypted for the first time, do a full backup of the
filesystem!

24

Encrypting an EXISTING filesystem....

• zfsadm encrypt is a long running administrative command

• There must be an available foreground long command thread in the long running
thread pool (if none available, command is failed and will need to be retried)

• long_cmd_threads=foreground, background

• Foreground threads: default=1, must be in range 1-3

• Background threads: default=24, must be in range 1-64

It is a one-time operation on an existing filesystem. Once a filesystem
is successfully encrypted, new data written into the filesystem will always be
encrypted

25

Querying encryption status

zfsadm fsinfo indicates filesystem status:

encrypted

in-progress

• % encrypted, or if it has been stopped

• timestamp when long running command was started & task ID

not encrypted

zfsadm fileinfo indicates if a file is encrypted or not

• For file size > 1G fileinfo will display encrypt progress

26

Use fsinfo to display encryption status

zfsadm fsinfo -aggr POSIX.MY.FILESYS

File System Name: POSIX.MY.FILESYS

*** owner information ***

Owner: DCEIMGKA Converttov5: OFF,n/a

.

.

.

Status: RW,RS,EN,NC

.

.

.

Legend: RW=Read-write, RS=Mounted RWSHARE, EN=Encrypted, NC=Not compressed

27

fsinfo shows progress for encryption in-progress

zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.BIGENC

File System Name: PLEX.DCEIMGNJ.BIGENC

*** owner information ***

..........

Status: RW,RS,EI,NC

...

...

Encrypt Progress: running, 23% complete started at Nov 21 14:54:40 2016 task 57F5E0

...

Legend: RW=Read-write, RS=Mounted RWSHARE, EI=Partially Encrypted

NC=Not compressed

28

fsinfo shows progress for stopped encryption

zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.BIGENC

File System Name: PLEX.DCEIMGNJ.BIGENC

*** owner information ***

..........

Status: RW,RS,EI,NC

...

...

Encrypt Progress: stopped, 23%

...

Legend: RW=Read-write, RS=Mounted RWSHARE, EI=Partially encrypted

NC=Not compressed

29

fileinfo: encryption status on a file

zfsadm fileinfo /ict/MtPt/dir_7/file1

path: /ict/MtPt/dir_7/file1

*** global data ***

fid 3313,1 anode 2380,4548

length 6 format INLINE

.

.

.

mtime Aug 4 20:49:55 2017 atime Aug 4 20:49:55 2017

ctime Aug 4 20:49:55 2017 create time Aug 4 20:49:55 2017

reftime none

encrypted not compressed

30

Encryption of an existing aggregate

• May be cancelled (stopped):

• Filesystem will remain partially encrypted

• Performance will be degraded for partially encrypted filesystem… don’t let
filesystem remain in this state!

• Encryption may be resumed (using zfsadm encrypt command)

31

Cancel an in-progress encryption:

zfsadm encrypt -aggregate PLEX.DCEIMGNJ.BIGENC -cancel

IOEZ00892I Aggregate PLEX.DCEIMGNJ.BIGENC encrypt or decrypt
successfully canceled.

Cancelling an encryption should be a rare event

32

To decrypt

zfsadm decrypt -aggr POSIX.MY.FILESYS

IOEZ00878I Aggregate POSIX.MY.FILESYS is successfully
decrypted.

REMEMBER!! Once a key label is associated with a filesystem it cannot be
changed or removed, and members at releases prior to V2R3 may not own a zFS
filesystem with a key label

33

Encrypt / Decrypt authorization requirements:

• Superuser Authorization Required:

• Logged in as a uid-0 user -or-

• Have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the
UNIXPRIV racf class.

• Batch formatting with encryption (IOEAGFMT / IOEFSUTL format) also requires
READ access to key label

34

ICSF CONSIDERATIONS WHEN USING ZFS ENCRYPTION

35

ICSF Considerations...

ICSF performs key management for encryption.

ICSF must be operational in order for a zFS filesystem which has been
assigned a key label to be mounted or opened.

zFS will wait for up to 5 minutes, issuing appropriate messages, if it
detects ICSF is not up and is needed.

36

ICSF Considerations...

If you have BPXPRMxx mounts of encrypted zFS
aggregates be sure that ICSF is started at IPL time and is
operational by the time USS and zFS are started.

Start ICSF in the IPL COMMAND member as early as
possible in the IPL process

S ICSF,SUB=MSTR allows you to start ICSF without JES
active.

37

ICSF Considerations...

The userid running the zFS started task must have READ access to
any CSFKEYS profiles for aggregates that are encrypted.

38

ICSF Considerations...

As an alternative to permitting the userid running the zFS started task to all of the
necessary security profiles, you can assign the userid running the zFS started
task

• the TRUSTED attribute -or-

• the OPERATIONS attribute

Note that if zFS is running in the OMVS address space, OMVS should be given
the same RACF characteristics as the zFS started task.

39

ICSF Considerations...

If ICSF is configured with CHECKAUTH(YES):

the userid running the zFS started task must also have at least READ
access to the CSFKRR2 CSFSERV profile.

40

COMPRESSION

41

zFS Compression

• Utilizes zEDC Authorized Services (introduced in z/OS v2r1)

• Compress the contents of a filesystem. (i.e., frees up space)

• Filesystem size remains the same.

42

zFS Compression

• zFS compresses file data only, not directories

• Compression is “advisory”

• If the compression of a file region does not reduce space
utilization, the file region is left in its uncompressed format.

• Always eligible for compression… if file changes and space will
be saved, the file is compressed

43

Compression…

• Any file larger than 8K can be compressed

• Average amount of disk space that is saved per file is approximately
65%

• Dependent on the type of data that is being compressed.

• zfsadm fileinfo - will indicate how many blocks were saved for
compression for a particular file.

44

zFS Compression

• Only V1.5 filesystems may be encrypted

• Filesystem must be mounted R/W

45

zFS Compression

• New configuration option: EDC_BUFFER_POOL
• Specifies size of real storage reserved for encryption & compression I/O

• Default: 32 M for zFS PFS, setting may range from 1 M to 1 G

• edcfixed - IBM Recommended new option for user_cache_size parameter.

• Allows zFS to permanently fix the user cache file to eliminate data movement from/to
auxiliary buffer pool

• If specified zFS will edcfix the user cache when compression is attempted, either
due to the mount of a compressed filesystem or zfsadm compress (I.e.,
compressng an existing filesystem)

user_cache_size=64M,edcfixed

46

Creating NEW compression eligible filesystems

1. Define filesystem as usual

2. Format for compression

• New zFS configuration variable FORMAT_COMPRESSION = ON | OFF

• May be overwritten by using –compress | -nocompress on all flavors of format

• Must be a V5 to be compression eligible

47

zfsadm format example

zfsadm format -aggr POSIX.NEWFYS.COMPRESS –compress

Must be a version 1.5 aggregate!

In V2R3 format_aggrversion default is 5, so I did not need to specify the version in this
example

48

IOEFSUTL format example

//ZDEFFMT JOB ,'DEFINE AND FORMAT',

// MSGCLASS=H,

// CLASS=A,
// TIME=(1440),MSGLEVEL=(1,1)

//*---

//* DEFINE FORMAT COMPRESSION ELIGIBLE
//*---

//DEFINE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H

//AMSDUMP DD SYSOUT=H

//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=POSIX1
//SYSIN DD *

DEFINE CLUSTER (NAME(POSIX.NEWFS.COMPRESS) -

VOLUMES(POSIX1) -
ZFS CYL(25 0) SHAREOPTIONS(3))

/*

//CREATE EXEC PGM=IOEFSUTL,REGION=0M,

// PARM=('format -aggregate POSIX.NEWFS.COMPRESS -compress')

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

49

Compressing EXISTING filesystems

50

zfsadm compress –aggr POSIX.EXIST.FILESYS

• The filesystem containing the data to be compressed must be mounted

read / write

• IMPORTANT: before an existing filesystem is compressed for the first

time, do a full backup of the filesystem!

Querying compression status

zfsadm fileinfo indicates if a file is

compressed and space savings

compression eligible

not compressed

zfsadm fsinfo indicates filesystem status:

compressed

in-progress

• % compressed, or if it has been stopped

• timestamp when long running command was started & task ID

not compressed

51

FILEINFO shows compression status of a file

This example show a file that had space savings due to
compression

zfsadm fileinfo –path testmtpt/file4

path: /home/suimgju/C81500/testmtpt/file4
*** global data ***
.
.
.
Mtime Jan 19 12:27:57 2017 atime Jan 19 12:27:57 2017
ctime Jan 19 12:27:57 2017 create time Jan 19 12:27:57 2017
reftime none
not encrypted compressed 24K saved

52

FILEINFO shows compression status of a file

This example show a file that had no space saving

zfsadm fileinfo /ict/MtPt/dir_23/large_file_23

path: /ict/MtPt/dir_23/large_file_23
*** global data ***
fid 1536,1 anode 6668,264
.
.
.
mtime Jul 8 12:35:04 2016 atime Jul 24 19:27:14 2017
ctime Jul 27 15:46:02 2017 create time Jul 27 15:46:02 2017
reftime none
not encrypted compress-eligible 0K saved

53

FSINFO shows compression status of filesystem

54

zfsadm fsinfo -aggr POSIX.MY.FILESYS
File System Name: POSIX.MY.FILESYS

*** owner information ***
Owner: DCEIMGKA Converttov5: OFF,n/a
.
.
.
Status: RW,RS,NE,CO
.
.
.

Legend: RW=Read-write, RS=Mounted RWSHARE, NE=Not encrypted,
CO=Compressed

FSINFO showing compression in-progress

zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.BIGENC

File System Name: PLEX.DCEIMGNJ.BIGENC

*** owner information ***

.

.

Status: RW,RS,NE,CI

.

.

Compress Progress: running, 48% started at Nov 21 16:34:40 2016 task 57F5E0

.

Legend: RW=Read-write, RS=Mounted RWSHARE, NE=Not encrypted

CI=Partially compressed

55

FSINFO showing compression stopped

zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.BIGENC

File System Name: PLEX.DCEIMGNJ.BIGENC

*** owner information ***

.

.

Status: RW,RS,NE,CI

.

.

Compress Progress: stopped, 48%

.

Legend: RW=Read-write, RS=Mounted RWSHARE, NE=Not encrypted

CI=Partially compressed

56

ZFS_VERIFY_COMPRESSION_HEALTH

• New health check added for V2R3 compression support

• Checks whether all user cache pages are registered with the zEDC Express service
(hardware feature) when there are compressed filesystems.

• For best performance, all systems accessing the compressed data should have
zEDC Express installed.

57

MODIFY ZFS,QUERY & zfsadm query

• Help to determine the overall compression effectiveness and allows monitoring
of the performance of the zEDC.

• Compress report is included with the ALL & LFS reports

• # of compression / decompression calls

• Avg call time

• KB Input : # of kilobytes sent to zEDC card for compression or decompression

• KB output: # of kilobytes received from zEDC card for compression or
decompression

KB input and output are rounded to 8K block byte counts

58

Decompression

zfsadm decompress –aggregate name [-cancel]

59

Compress / Decompress authorization
requirements:

• Superuser Authorization Required:

• Logged in as a uid-0 user -or-

• Have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the
UNIXPRIV racf class.

60

ZFS PERFORMANCE MEASUREMENTS

61

V2R3 Performance

• “Official” IBM Performance Measures

• Your mileage may vary

• Measurements were taken on a IBM z12 (model 2827) with 4 CPUs

62

zfsadm encrypt performance Measurements

63

zfsadm compress Performance Measurements

64

SHRINK

65

Shrink:

• Reduces the physical size of the file system.

• Releases a specified amount of free space from the VSAM linear data set

• Filesystem must be mounted read/write

• Long running command: FSINFO shows progress

66

Shrink:

zfsadm shrink –aggregate name {–size Kbytes [-noai] | -cancel}

[-trace file_name] [-level] [-help]

where kbytes: new total size of the shrunken filesystem

-noai means “no active increase”

“Active increase” is the default behavior for shrink

67

Shrink: Active Increase

Since applications can access the filesystem for most of the shrink processing,
there may be additional blocks to be allocated.

If this allocation causes more space to be needed in the aggregate that the new
total size specified in –size, zFS will actively increase the new total size.

The shrink command ends in error if the size is actively increased to the original
size of the file system.

If –noai (“no active increase”) is specified on the shrink call and an active
increase is needed, the shrink command ends in error.

68

Shrink Processing

• Moves blocks that are in the portion of the dataset to be released into the
portion that remains.

• Requires scanning each internal filesystem structure to determine if it owns any
blocks that need to be moved.

• The bulk of the time in a shrink operation occurs during this scan

• After block movement completes, the free space is released.

• Filesystem is quiesced briefly while free space is released

69

Shrink

• Use fsinfo output to estimate a reasonable –size for shrink

• zfsadm fsinfo will show:

• Aggregate size (K)

• Free size (8K blocks)

• 1K fragments

• Don’t make -size so small that aggregate will need to grow when regular activity
occurs!

• The difference between the new total size and the current size of the filesystem
cannot be larger than the free size

70

Shrink Example:

Based on zfsadm fsinfo results, reasonable shrink size is 500000 K bytes

71

zfsadm shrink -aggr ZFSAGGR.BIGZFS.SHRINK.EXAMPLE -size 500000

Shrink example (post shrink)

72

Shrink authorization requirements:

• UPDATE (or higher) authority to the VSAM LDS

• For a filesystem defined with guaranteed space, the ability to shrink will also be
controlled by the management class conditional partial release.

73

zfsadm chaggr

• New admin command which changes the attributes of a mounted aggregate

• aggrfull {threshold,increment | OFF}

• aggrgrow {ON|OFF}

• rwshare | norwshare

• Causes a samemode remount (if mounted read write)

• Prior to this support, to change these attributes the aggregate must be
unmounted and re-mounted.

74

aggrfull

• Specifies the threshold and increment for reporting aggregate utilization
messages to the operator.

• May be changed to:

threshold,increment or

OFF

75

aggrgrow

• Specifies whether aggregates can be dynamically extended when they become
full

• chaggr may set it ON or OFF

• Aggregate must have a secondary allocation specified (when created) and there
must be space on the volumes

76

RWSHARE and NORWSHARE

• Both are read / write mounts

• RWSHARE is “sysplex-aware”

• Filesystem is locally mounted on every member of the sysplex

• File requests are handled locally by zFS

• NORWSHARE is “sysplex-Unaware”

• File operations must be “function-shipped” to OMVS owning system

77

zfsadm chaggr

• Also will update the zFS mount parameters in the z/OS UNIX couple dataset,
preserving the changes made with chaggr if aggregate is remounted

• (note: all mount parameters are lost if an aggregate is unmounted)

78

Online Salvage

• Only run from a V2R3 system.

• A new long-running command which may be used by a systems programmer to
verify and / or repair a damaged filesystem, while the filesystem is still mounted.

• Damaged filesystems are extremely rare!

• Prior to V2R3 salvage was only available as a batch tool (IOEFSUTL or
IOEAGSLV), which required the filesystem be unmounted to run.

• This V2R3 addition will allow a filesystem to be repaired while still mounted in the
rare event this is necessary.

79

Online Salvage

• Use only when the aggregate cannot be unmounted for repairs.

• No writes are allowed to the aggregate while a salvage operation is running

• Verification portion (longest part) of salvage may be interrupted:

• Using the –cancel keyword

• Unmount immediate with the –force option

• During a shutdown

• Once repair has begun, salvage cannot be interrupted.

80

Online Salvage

• If a user wishes to “check” a file system for corruption and NOT block write
activity they could use a simple command like:

find . –name ‘*’ –print –exec grep –e “xxxx” {} \;

• Where “xxxx” is any string NOT found in any file.

• This would scan all directories and files and if you get no assertions you likely have
a good file system.

• Online salvage should only be used as a safety valve to verify and / or repair a
damaged file system that cannot be unmounted.

81

MISCELLANEOUS

82

Changes in defaults

format_aggrversion: changed from 4 to 5

change_aggrversion_on_mount: changed from OFF to ON

honor_syslist: obsolete in V2R3

zFS V2R3 always honors the USS automove options

83

New configuration options

• format_perms

• format_compression

• format_encryption

• edc_buffer_pool

• edc_fixed option added to user_cache_size

• smf_recording

• long_cmd_threads

84

Authorization changes

• Format authorization requirement has been changed to require UPDATE
authority to the VSAM data set

• To set owner, groupid, or permissions on format, also require

UID 0 or have READ authority to SUPERUSER.FILESYS.PFSCTL

85

Co-Existence APAR for z/OS V2R1 & V2R2

OA51692 is the coexistence APAR that must be applied to any
V2R1 and / or V2R2 members on a sysplex where V2R3 will be
present.

Make APAR OA51692 active on all systems through a rolling IPL

86

Miscellaneous changes

• zfsadm new option: -trace file_name

• Specifies the name of a where trace records from zfsadm call will be put

• z/OS Unix file

• An existing sequential dataset

• A member of an existing PDS or PDSE

• An option on ALL zfsadm commands

• zfsadm commands that query information:
• no longer need READ access to IOEFSPRM file (if used)

• Installations using parmlib (IOEPRMxx) never needed any special authorization

87

