
© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Seriously? JSON parsing and REST API Calls

From Your Legacy z/OS Applications? Absolutely!

Steve Warren
IBM

email: swarren@us.ibm.com
: @StevieWarr2

mailto:swarren@us.ibm.com

2© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Agenda

2

• REST, JSON and HTTP

• Quick introduction to the toolkit

• z/OS HTTP/HTTPS protocol enabler details

• Overview

• Structure of an HTTP toolkit application

• HTTP Connection Details

• HTTP Request Details

• Problem determination

• z/OS JSON Parser details

• Where to go for more information

© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior written permission of IBM.

REST, JSON, and HTTP

3

4© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Web 1994 was the “get me a domain and a page” era.
Web 2000 was the “make my page(s) interactive and put people on it” era.
Web 2010 till now is the “get rid of pages and glue APIs and people together” era.
Robert Scoble (Author of tech blog Scobleizer)

“$7bn worth of items on eBay through APIs”
Mark Carges (Ebay CTO)

“The adoption of Amazon’s Web services is currently
driving more network activity then everything Amazon
does through their traditional web sites.”
Jeff Bar (Amazon evangelist) / Dion Hinchcliffe (Journalist)

Web APIs are the
new, fast-growing
business channel

Businesses
Are Evolving

stores (800) ###s web sites

Not having an API today is like not having a Web Site in the 90s

“$7bn worth of items on eBay through APIs”
Mark Carges (Ebay CTO)

The API which has easily 10 times more traffic then the website, has been really
very important to us.”
Biz Stone (Co-founder, Twitter)

“The adoption of Amazon’s Web services is currently driving more network
activity then everything Amazon does through their traditional web sites.”
Jeff Bar (Amazon evangelist) / Dion Hinchcliffe (Journalist)

Moving Beyond the Browser

4

5© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

The API Economy – It’s for real

“Today, application programming interfaces are the new must-have for business,

representing the future of customer and community engagement with far broader

implications than traditional Web-based business models.” Forbes 2012

“The API is actually the driving force behind most of the digital disruption in the consumer

space happening right now — cloud-based infrastructure, mobile apps, Facebook logins,

online shopping and viewing — it’s just that most laymen don’t realize it. Indeed, APIs are

surreptitiously increasing connectivity and enabling unprecedented services, disrupting the

way we interact with the world.” Nordic APIs 2015

“Today’s leading enterprises are transforming digitally, jumping head first into the API

economy. Transformations are being driven by connected devices and consumers’ thirst for

compelling brand experiences—all generating a vast and ever-growing amount of data.”

IBM 2016

6© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Growth in Publically Published Web APIs

6

1 299 593 865
1546

2418

5018

8226

10302

12534

14037
15223

0

2000

4000

6000

8000

10000

12000

14000

16000

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

Public WebAPIs Available

WebAPIs

Source: Programmable Web (some intermediate numbers extrapolated)

7© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

What are REST APIs?

7

• Web applications are a client/server programming model using a

request/response protocol.

• RESTful applications are web applications that follow a simple set of

architectural constraints such as:

• using standard HTTP methods

• stateless servers

• using URIs (URLs) strictly to identify the server resource being modified or

interrogated

• sending data back and forth in human-readable form

• REST APIs are defined by a server

• What URI should be interrogated

• Which HTTP service should be used against that URI

• The format of the data to be sent back and forth

8© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Client
JavaScript

XML /JSON
Store /
Persistence
layer

• With the increased popularity of Web APIs (literally thousands of
Web APIs) and the use of Mobile Devices

– User Interfaces usually have a JavaScript component

• JSON is the data structure for JavaScript

– JSON is integrated with JavaScript and Java and other languages
(through libraries)

– The JSON trend is developer driven and is reaching all tiers (UI, Middle
Tier, Data Tier)

Protocol
HTTP (REST)

JSON
Relational

Store

JSON
Middle Tier

Web API
JSON Sample
{"name" : “Adele",
"breed": "Poodle",
“dob": 2011-05-01}

Aspects of JSON:
No namespaces

No schemas

No mixed content support Mixed
content example: <p>hello
Adelehow are you</p>

JSON

JSON standardized as part of ECMAScript in December 1999

JSON has reached all tiers

JSON : The Exchange Notation For Mobile Devices

8

9© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

JSON Penetration: Web API Trend Towards JSON

• “As more and more Web and mobile applications utilize APIs to drive

their respective front ends, performance becomes an emerging concern.

XML, long used as a method for exchanging data, is giving way to JSON,

now considered the gold standard. ” - Programmable Web 2013

• “JSON's simplicity has made it a favored data exchange format” –

Mashery 2014

• “In general, JSON wins the battle on brevity which is why many web

applications are using JSON for RESTful data transfer.” – GCN 2014

10© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

JSON example

10

{

"firstName": "Steve",

"lastName": "Jones",

"age": 46,

"address": {

"streetAddress": "123 Anywhere Ave",

"city": "Poughkeepsie",

"state": "NY",

"postalCode": "12601",

"country": "USA"

},

"phone": [

{

"type": "mobile",

"number": "914 555 5555"

},

{

"type": "home",

"number": "845 555 1234"

}

]

}

Name – value pairs

• Name in quotes

• Value one of the

types below

Objects – { }

Arrays – []

Object entries

• Other objects or

arrays

• String – “ ”

• Numbers

• Boolean

• Null

11© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

30,000 foot view of REST / HTTP / JSON

11

Client

HTTP PUT

Server

/service/weather

(REST interface)

{“city”:“New York”,“units”:“F” }

{“low”:48,“high”:65 }

Request

Response

JSON

12© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

z/OS serving REST APIs

• z/OS platform has for years been labeled “the server of servers” and houses
much of the world’s most critical data.

• Enhancements to the z/OS Web serving space through the years have allowed
this mammoth workhorse and repository of data to be more easily accessible to
other systems.

• Options available to serve countless REST requests coming from just about
anywhere into the z/OS mainframe world.

• IBM HTTP Server powered by Apache

• WebSphere* Liberty

• WebSphere Classic

• z/OS Connect

© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Intro to the toolkit

13

14© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Introducing the z/OS Client Web Enablement Toolkit!

14

The z/OS client web enablement toolkit provides a set of lightweight application
programming interfaces (APIs) to enable traditional, native z/OS programs to
participate in modern web services applications.

■ Pieces of the toolkit:

■ A z/OS HTTP/HTTPS protocol enabler to externalize HTTP and HTTPS client functions in an
easy-to-use generic fashion for user’s in almost any z/OS environment

■ A z/OS JSON parser which parses JSON coming from any source, builds new JSON text, or adds
to existing JSON text.

■ The toolkit allows its two parts to be used independently or combined together.

■ Payload processing is separate from communication processing.

■ The interfaces are intuitive for people familiar with other HTTP enabling APIs or other
parsers

■ Easy for newbies

15© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

General programming toolkit environment

15

• Runs in just about any address space
• Code runs in user’s address space

• Supports both authorized and un-authorized
callers

• Easy API suite provided

• Multi-language support
• Include files supplied for C, COBOL, PL/I, Assembler

• Multi-language samples provided

16© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Recent toolkit announcement

16

• Customers asked numerous times…
• We listened!

• Introducing…a new…

• REXX API interface to the toolkit for both:
• the z/OS JSON parser
• the HTTP/HTTPS protocol enabler

• An easy to use interface

• APAR OA50659 will be delivered likely in the next few
weeks

© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior written permission of IBM.

z/OS HTTP/HTTPS

protocol enabler

details

17

18© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Usage & Invocation – z/OS HTTP Services

• Provides similar functionality to existing open-source

libcurl HTTP/HTTPS interface

• Interface is very similar

• Underlying code is z/OS-specific and not ported in any way

18

19© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP features supported by toolkit

• HTTPS connections

• HTTP cookies management

• Proxies

• URI redirection

• Basic client authentication

• Chunked encoding

• Interoperability with AT-TLS

• Coming soon via APAR OA50957

19

20© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Services execution environment

• Specific requirements for the HTTP portion of the toolkit:

• Supports task mode, non-cross-memory callers

• Execution key 1 thru 15 allowed

• OMVS segment required for address space using HTTP enabler

• Recovery recommended by caller

20

© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Structure of an

HTTP toolkit

application

21

22© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Connections / Requests

● The HTTP/HTTPS enabler portion of the toolkit

encompasses two major aspects of a web services

application:

– The connection to a server

– The request made to that server along with the response it returns

23© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Connections

● A connection is simply a socket (pipeline) between the application

and the server.

● Must be established first before a request can flow to the server.

● Many options available for connection including:

– SSL/TLS

– Local IP address specification

– IP Stack

– Timeout values

24© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Steps to create an HTTP Connection

● Initialize a connection (HWTHINIT)

– Obtain workarea storage for the connection

● Set one or more connection options (HWTHSET)

– One option at a time

● Make the actual connection (HWTHCONN)

– Creates the socket to the specified server

25© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Requests

● An HTTP request sent over an existing connection

– Targets a particular resource at the domain established by the connection

– An HTTP GET, PUT, POST or DELETE is specified as the request method

● Requests not tightly-coupled to a connection. The same request

can be sent over different connections

● Response callback routines (exits) can be set prior to the request

to all processing of the response headers and response body.

26© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Steps to create an HTTP Request

● Initialize a request (HWTHINIT)

– Obtain workarea storage for the request

● Set one or more request options (HWTHSET)

– One option at a time

● Send the request over a specified connection (HWTHRQST)

– Flows the HTTP REST API call over the connection (socket) and then receives

the response

27© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Summary of connections and requests

Client application Server

• HWTHINIT

(connection)

• HWTHSET…

• HWTHCONN

• HWTHINIT

(request)

• HWTHSET…

• HWTHRQST

TCP Socket (SSL or non-SSL)
T

o

o

l

k

i

t

Client response exit rtns

HTTP request

• HTTP

Server

request

processing

• HTTP

Server

response

processing

© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior written permission of IBM.

HTTP Connection

Details

28

29© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Where do I want to connect?

• REST API specification details the location where the request must target

• Here are some examples:
• Google® Maps Directions API specifies:

• https://maps.googleapis.com/maps/api/directions/outputFormat?paramaters

• Yelp® Search API specifies:

• http://api.yelp.com/v2/search?searchParms

• FAA Airport Service API specifies:

• http://services.faa.gov/airport/status/airportCode

29

https://maps.googleapis.com/maps/api/directions/outputFormat?paramaters
http://api.yelp.com/v2/search?searchParms
http://services.faa.gov/airport/status/airportCode

30© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Format of a URI (URL) in the world of HTTP

30

• A Uniform Resource Identifier (URI) is the way a REST API is represented. A
simplified syntax of a URI is:

• scheme://host[:port] [/]path[?query][#fragment]

|--| |--|

where and how to connect? what is the particular request?

Connection portion of URI Request portion of URI

• scheme – HTTP (unencrypted) or HTTPS (encrypted) (optional)

• host – hostname or IPv4 or IPv6 address (e.g. www.ibm.com)

• port – an optional destination port number (80 is default for HTTP scheme, 443 for HTTPS scheme)

• path – an optional hierarchical form of segments (like a file directory) which represents the resource to perform
the HTTP request method against

• query – an optional free-form query string to allow for the passing of parameters

• fragment – an optional identifier providing direction to a secondary resource

http://www.ibm.com/

31© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Setting Location of Connection

• HWTH_OPT_URI (required) – valid values are either a v4 or v6 IP address, or

hostname
• Examples:

• http://192.168.0.1

• http://[2001:1890:1112:1::20]

• http://www.example.com

• HTTP Scheme is optional

• HWTH_OPT_PORT (optional) – value specifying which remote port number to

connect to, instead of the one specified in the URL or the default HTTP or

HTTPS port.
• Default for HTTP is 80

• Default for HTTPS is 443

31

http://192.168.0.1/
http://[2001:1890:1112:1::20]/
http://www.example.com/

32© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Setting Source Location of Connection

• HWTH_OPT_IPSTACK – Optional value 1 to 8 character z/OS TCP/IP

stack to be used by the connection
• Procname of TCP/IP (useful when installation has more than one TCP/IP stack

running)

• HWTH_OPT_LOCALIPADDR – Optional outgoing local IP address

• HWTH_OPT_LOCALPORT – Optional outgoing local port

• Definitions also useful especially when security definitions are in place for

specifically defined addresses and ports
● Application limited by existing security profiles and definitions that are already in effect on

the system where the application resides.

– z/OS Communications Server NetAccess, in conjunction with security profiles defined using the SERVAUTH

class, can be used to control network access authority, TCP/IP stack access authority, port access authority,

and more.

32

33© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Services – Proxy Options

33

• HWTH_OPT_PROXY – set the HTTP proxy to user. Specified the exact

same as HWTH_OPT_URI above.

• HWTH_OPT_PROXYPORT – specify the proxy port to connect to.

Specified the exact same as HWTH_OPT_PORT above

34© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Setting other connection options

• HWTH_OPT_SNDTIMEOUTVAL – Sending timeout value

• HWTH_OPT_RCVTIMEOUTVAL – Receiving timeout value

• HWTH_OPT_HTTP_VERSION – which version of HTTP do you want to use over

this connection
• HTTP_VERSION_NONE

• HTTP_VERSION_1_0

• HTTP_VERSION_1_1

34

35© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Services – SSL Options
• SSL support options include:

• HWTH_OPT_USE_SSL – tells toolkit to attempt SSL negotiation explicitly

• HWTH_OPT_SSLVERSION – sets the SSL versions to be supported by this HTTP request. More

than one version may be selected. (e.g. TLS1.2, TLS1.1, TLS1.0, SSLv3)

• HWTH_OPT_SSLKEYTYPE – Specifies the manner the key will be supplied to this HTTPS

request. The following constants are provided:
• SSLKEYTYPE_KEYDBFILE – key store is specified key database file

• SSLKEYTYPE_KEYRINGNAME – key store is a security product managed keyring.

• HWTH_OPT_SSLKEY – Specifies the value of the key. The value specified depends on the value

set by SSLKEYTYPE.

• For SSLKEYTYPE_KEYDBFILE - represents path and name of the key database file name

• For SSLKEYTYPE_KEYRINGNAME – represents the SAF key ring name or PKCS#11 token

• HWTH_OPT_SSLKEYSTASHFILE – specifies the stash file of the key database file. Only valid if

SSLKEYTYPE_KEYDBFILE is specified. Ignored in all other cases.

• HWTH_OPT_SSLCLIENTAUTHLABEL – optional label that represents a client certificate if SSL

client authentication is requested by the server.

35

36© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Services – AT-TLS / Toolkit Interoperability Coming
• Application Transparent – TLS is basically stack-based TLS

• TLS process performed in TCP layer (via System SSL) without requiring any application

change (transparent)

• AT-TLS policy specifies which TCP traffic is to be TLS protected based on a variety of

criteria
• Local address, port

• Remote address, port

• z/OS userid, jobname

• Time, day, week, month

• The toolkit plans to provide AT-TLS interoperability support via APAR OA50957
• Toolkit will add new HWTH_OPT_USE_SSL modes to determine its behavior in

relationship to SSL
• One mode will allow the connection to be upgraded to SSL/TLS and to learn of the upgrade

and act accordingly (now knowing that AT-TLS has upgraded the connection)

• Another mode will tolerate an upgrade provided the upgraded connection meets given criteria

• Another mode will see if AT-TLS has upgraded the connection. If not, the application will

specify the necessary upgrades

36

Statements regarding IBM future direction and intent are subject to change or withdrawal, and represent goals and objectives only.

37© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Services – Redirect Options

37

• Redirect options include:

• HWTH_OPT_MAX_REDIRECTS – maximum number of redirects to follow for a given

request.

• HWTH_OPT_XDOMAIN_REDIRECTS – are cross-domain redirects allowed?

• HWT_OPT_REDIRECT_PROTOCOLS – do you allow the HTTP/HTTPS protocol to be

upgraded and/or downgraded on a redirect?

38© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Services – Cookie Options

• Cookie support options include:

• HWTH_OPT_COOKIETYPE – sets cookie handling type

• COOKIETYPE_NONE – cookie engine not activated

• COOKIETYPE_SESSION – cookie engine enabled – cookies automatically sent, but end when

connection ends

• COOKIETYPE_PERSIST - cookie engine enabled – cookies automatically sent, cookies saved to output

buffer when connection endsin

• HWTH_OPT_COOKIE_INPUT_BUFFER – specifies input cookie data store

• HWTH_OPT_COOKIE_OUTPUT_BUFFER – specifies output cookie location for a

cookietype of COOKIETYPE_PERSIST

38

39© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Example of initializing a connection

HandleType = HWTH_HANDLETYPE_CONNECTION

address hwthttp "hwthinit ",

"ReturnCode ",

"HandleType ",

“ConnectHandle ",

"DiagArea."

39

• A connection instance has been created.

• More than one connection can be initialized per address space (if the user has set his dubbing defaults to dub

process)

• But only one connection can be active at a time (Setup MVS Signals only allows one signal setup to be

allowed per process)

40© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Example of setting some connection options
/***/

/* Set URI for connection to the Federal Aviation Administration (FAA) */

/***/

ConnectionUri = 'http://services.faa.gov'

ReturnCode = -1

DiagArea. = ''

address hwthttp "hwthset ",

"ReturnCode ",

"ConnectHandle ",

"HWTH_OPT_URI ",

"ConnectionUri ",

"DiagArea."

/**/

/* Set HWTH_OPT_COOKIETYPE */

/* Enable the cookie engine for this connection. */

/* Any "eligible" stored cookies will be resent to the host on subsequent interactions automatically. */

/**/

ReturnCode = -1

DiagArea. = ''

address hwthttp "hwthset ",

"ReturnCode ",

"ConnectHandle ",

"HWTH_OPT_COOKIETYPE ",

"HWTH_COOKIETYPE_SESSION ",

"DiagArea."

40

• All the connection options can be set prior to the connect service

• Once the connect services is issued, most set option calls will have no effect until the connection is

disconnected and reconnected again.

41© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Example of finally connecting to the HTTP server

/**********************************/

/* Call the HWTHCONN toolkit api */

/**********************************/

ReturnCode = -1

DiagArea. = ''

address hwthttp "hwthconn ",

"ReturnCode ",

"ConnectHandle ",

"DiagArea."

41

• The connection stays persistent from a toolkit perspective

• Timed-out connections (sockets) will automatically be reconnected at the time of a request if necessary

• A disconnect, reset or terminate of the connection will disconnect the established connection

© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior written permission of IBM.

HTTP Request

Details

42

43© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

What resource and parameters do I want to invoke?

• REST API specification details the location where the request must target

• Here are some examples:
• Google® Maps Directions API specifies:

• https://maps.googleapis.com/maps/api/directions/outputFormat?paramaters

• Yelp® Search API specifies:

• http://api.yelp.com/v2/search?searchParms

• FAA Airport Service API specifies:

• http://services.faa.gov/airport/status/airportCode

43

https://maps.googleapis.com/maps/api/directions/outputFormat?paramaters
http://api.yelp.com/v2/search?searchParms
http://services.faa.gov/airport/status/airportCode

44© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Format of a URI (URL) in the world of HTTP

44

• A Uniform Resource Identifier (URI) is the way a REST API is represented. A
simplified syntax of a URI is:

• scheme://host[:port] [/]path[?query][#fragment]

|--| |--|

where and how to connect? what is the particular request?

Connection portion of URI Request portion of URI

• scheme – HTTP (unencrypted) or HTTPS (encrypted) (optional)

• host – hostname or IPv4 or IPv6 address (e.g. www.ibm.com)

• port – an optional destination port number (80 is default for HTTP scheme, 443 for HTTPS scheme)

• path – an optional hierarchical form of segments (like a file directory) which represents the resource to perform
the HTTP request method against

• query – an optional free-form query string to allow for the passing of parameters

• fragment – an optional identifier providing direction to a secondary resource

http://www.ibm.com/

45© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Setting request path, input parameters, method

● HWTH_OPT_URI (required) – The name or resource (URN path portion) of the
URI. The query and fragment portions of a URI may also be present.

– Examples:

● /systems/z/

● /over/here?name=abc#frag1

● HWTH_OPT_REQUEST (required) – which HTTP CRUD request
method does the request want to use

– HWTH_HTTP_REQUEST_GET

– HWTH_HTTP_REQUEST_PUT

– HWTH_HTTP_REQUEST_POST

– HWTH_HTTP_REQUEST_DELETE

45

46© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Headers

● HTTP header fields provide required information about the request or

response, or about the object sent in the message body.

● The toolkit does not require you to send any request headers or

process the response headers, if you don’t want to.

– However, some servers demand that certain headers are sent. If the default headers that the

toolkit sends are not sufficient for the server, then that header(s) will need to be sent

● Request headers are created by using the general purpose HWTHSLST service,

which creates a linked list of objects together. After all the headers have been

added, the HWTH_OPT_HTTPHEADERS option can be set, specifying the SLST

created.

47© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Request Headers

● Request headers are created by using the general purpose

HWTHSLST service, which creates a linked list of headers, one linked

list element added to the list per HWTHSLST call.

● After all the headers have been added, the

HWTH_OPT_HTTPHEADERS option can be set, specifying the SLST

created.

48© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Response Headers

● In non-REXX languages, each response header sent from the server

can be interrogated and/or processed by the response header

callback (exit) routine.

– Optionally set the HWTH_OPT_RESPONSEHDR_EXIT option to specify a 4-

byte address of the exit to receive control

– Optionally set the HWTH_OPT_RESPONSEHDR_USERDATA to pass a 4-

byte address to the exit as userdata.

49© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Response Headers

● In REXX, all the HTTP response headers are stored in a REXX stem

variable as specified by setting the optional

HWTH_OPT_RESPONSEHDR_USERDATA option.

● Upon return from the HWTHRQST (send request service), the

following information is returned regarding the response headers

received:

– the number of response headers received is stored in the .0 stem

– the name of each response header is stored in the stemname.x stem variable, where x is the

from 1 to the number of response headers received.

– the value for each response header is stored in the stemname.x.1 stem variable, where is x is

from 1 to the number of response headers received.

50© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Request Body

● The main data sent on a PUT or POST method to an HTTP REST

server is usually sent in the request body

● In non-REXX, the HWTH_OPT_REQUESTBODY option specifies a 4-

byte address of a buffer to be sent. The toolkit keeps a binding to the

specified address until the HWTHRQST service has completed.

● In REXX, a simple name of a variable is set for the

HWTH_OPT_REQUESTBODY option that sets the variable where the

response body is stored

51© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Response Body
● The main data returned from an HTTP REST server is usually sent as the

response body

● In non-REXX, the response body callback (exit) routine will be given control once

the entire response body has been received. The address of the callback routine

is set by specifying a 4–byte address for the

HWTH_OPT_RESPONSEBODY_EXIT option.

● An optional HWTH_OPT_RESPONSEBODY_USERDATA specifies a 4-byte value

for an input parameter to the exit.

● The body exit can process this data and return back to the toolkit when completed.

● In REXX, the optional HWTH_OPT_RESPONSEBODY_USERDATA option is set

to specify the name of a simple name of a variable where the response body is

stored

52© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

HTTP Services – Chunked encoding

■ Responses with chunked encoding present
• Toolkit supports the chunked encoding data transfer method (Transfer-

encoding: chunked).

• Automatically de-chunks data sent from the server using the chunked

encoding method.

• The response body exit does not need to handle the various chunks; rather, the data

is delivered to the exit already decoded.

• If the chunked data contains trailer headers, the header exit will be invoked (once for

each trailer header) prior to this routine receiving control.

• Note: The toolkit ignores chunk extensions

52

53© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Other HTTP request options

■ HTTP authorization options:

■ HWTH_OPT_HTTPAUTH – Do I want HTTP basic client authentication?

■ HWTH_OPT_USERNAME and HWTH_OPT_PASSWORD must be set if basic client authentication is

selected.

■ HTTP request body and response body translate functions

■ HWTH_OPT_TRANSLATE_REQBODY – translate request body from EBCDIC to ASCII automatically.

■ HWTH_OPT_TRANSLATE_RESPBODY – translate response body from ASCII to EBCDIC automatically.

53

54© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Example of initializing a request

HandleType = HWTH_HANDLETYPE_REQUEST

address hwthttp "hwthinit ",

"ReturnCode ",

"HandleType ",

“ReqHandle ",

"DiagArea."

54

• A request instance has been created.

• As many request instances as you would like can be created

• A request is married with a connection at the HWTHRQST API call

55© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Example of setting some request options
/**/

/* Set HTTP Request method. */

/* A GET request method is used to get data from the server. */

/**/

address hwthttp "hwthset ",

"ReturnCode ",

"ReqHandle ",

"HWTH_OPT_REQUESTMETHOD ",

"HWTH_HTTP_REQUEST_GET ",

"DiagArea."

***/

* Set the request URI */

* Set the URN URI that identifies a resource by name that is */

* the target of our request. */

***/

requestPath = '/airport/status/'||airportCode

address hwthttp "hwthset ",

"ReturnCode ",

"ReqHandle ",

"HWTH_OPT_URI ",

"requestPath ",

"DiagArea."

55

• All the request options can be set before issuing the HWTHRQST service

• Once the request is completed, the request options can be altered if desired before next send request service.

56© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Example of setting a request header

56

• After the first HWTH_SLST_NEW function, specify HWTH_SLIST_APPEND to add more headers to the

SLST if desired.

acceptJsonHeader = 'Accept:application/json'

/**

/* Create a brand new SList and specify the first header to be an *

/* "Accept" header that requests that the server return any response *

/* body text in JSON format. *

/**

address hwthttp "hwthslst ",

"ReturnCode ",

"ReqHandle ",

"HWTH_SLST_NEW ",

"SList ",

"acceptJsonHeader ",

"DiagArea.“

/***/

/* Set the request headers with the just-produced list */

/***/

address hwthttp "hwthset ",

"ReturnCode ",

"ReqHandle ",

"HWTH_OPT_HTTPHEADERS ",

"SList ",

"DiagArea."

57© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Example of setting more request options

57

• When the HWTHRQST service completes, the variable ResponseBody will have the response in EBCDIC.

/**/

/* Tell the toolkit to translate the body from ASCII to EBCDIC */

/**/

address hwthttp "hwthset ",

"ReturnCode ",

"ReqHandle ",

"HWTH_OPT_TRANSLATE_RESPBODY ",

"HWTH_XLATE_RESPBODY_A2E ",

"DiagArea."

/***/

/* Set the variable for receiving response body */

/***/

say 'Set HWTH_OPT_RESPONSEBODY_USERDATA for request'

address hwthttp "hwthset ",

"ReturnCode ",

"ReqHandle ",

"HWTH_OPT_RESPONSEBODY_USERDATA ",

"ResponseBody ",

"DiagArea."

58© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Example of finally issuing the REST API call

/***********************************/

/* Call the HWTHRQST toolkit api. */

/***********************************/

address hwthttp "hwthrqst ",

"ReturnCode ",

"ConnHandle ",

"ReqHandle ",

"HttpStatusCode ",

"HttpReasonCode ",

"DiagArea."

58

• When this API call completes, the request and response have also completed. The final status of the call is

returned in the HttpStatusCode (eg. 200) and HttpReasonCode (eg. “OK”)

• Consult the other REXX variables set in the request after this call completes for response headers and

response body (if-any).

• A reset or terminate of the request will wipe out any set values

59© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

• Return Code from service

• Specific return code can give explanation

• DiagArea

• Many times provides detailed explanation.

• Status values returned in callback routines

• Provides HTTP status values from server

• HWTH_VERBOSE set option

• Toolkit directs many trace-like messages to the standard output of the application. Useful

during debugging.

• Can be directed to standard output or to a preallocated MVS data set or zFS file thru use of

the HWTH_OPT_VERBOSE_OUTPUT option.

• SOCKAPI CTRACE option

• System SSL tracing

Problem determination – HTTP Enabler

59

60© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Example of turning on verbose tracing

60

• The DD name above must represent either:

• a pre-allocated traditional z/OS data set which is a physical sequential (DSORG=PS) with a record format

of unblocked variable (RECFM=V) or Undefined (RECFM=U) and expandable (non-zero primary and

secondary extents). The DD must also specify a DISP=OLD disposition.

• a zFS or HFS file.

• When a connect, sendRequest or disconnect are issued, detailed trace will be written to the data set specified

by the MYTRACE DD.

address hwthttp "hwthset ",

"ReturnCode ",

"ConnHandle ",

"HWTH_OPT_VERBOSE ",

"HWTH_VERBOSE_ON ",

"DiagArea."

traceDD = ‘MYTRACE’

/* Allocate the data set here */

address hwthttp "hwthset ",

"ReturnCode ",

"ConnectionHandle ",

"HWTH_OPT_VERBOSE_OUTPUT ",

"traceDD ",

"DiagArea."

61© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

z/OS Client Toolkit HTTP Language Support

61

Include files and sample programs provided in:

•C

•COBOL – sample delivered via APAR OA49002

•PL/I – sample delivered via APAR OA49002

•Assembler (Include file only)

•REXX – sample delivered via APAR OA50659

62© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Installation – z/OS HTTP Enabler Services

62

■ V2R2 – In the base

■ V2R1 – Install APAR recommended below and re-IPL

■ External message to know the toolkit is installed and ready to go:
–HWT001I message will appear in the syslog stating the toolkit is enabled

■ Recommended: Install new APAR OA50586 toolkit fixpack #2 to pick up

latest fixes

© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior written permission of IBM.

z/OS JSON Parser

details

63

64© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

z/OS JSON parser environment

64

• z/OS Client Toolkit execution environment:

• Supports both authorized and un-authorized callers

• Allow supervisor or problem state callers running in any PKM

• Supports task and SRB mode invokers

• Supports cross-memory mode invokers

• Recovery needed by caller

65© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Usage of the z/OS JSON parsing services

65

• How to use the services:

• Initialize a parse instance

• Returns a parser handle

• Parse some JSON Text

• Use traversal or search methods

• Quick access to various constructs in the JSON text

or to find a particular name

• Re-use the parse instance or terminate it

66© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

z/OS JSON parsing services - Traverse

66

• Traversal services include:

• Get JSON Type (HWTJGJST)

• Get Value (for string or numeric) (HWTGVAL)

• Get Numeric Value (HWTJGNUV)

• Get Boolean Value (HWTJBOV)

• Get Number of Entries (HWTJGNUE)

• Get Object Entry (HWTJGOEN)

• Get Array Entry (HWTJGAEN)

67© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

z/OS JSON parsing services - Search

67

• JSON search (HWTJSRCH):

• Allows a particular “name” to be quickly consulted within the entire JSON

text or within a particular object.

• The value handle returned references the value associated with the found

“name”

• Two search types:

• HWTJ_SEARCHTYPE_GLOBAL

• HWTJ_SEARCHTYPE_OBJECT

68© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

z/OS JSON parsing services - Create

68

• JSON creation services:

• Create JSON Entry (HWTJCREN)

• Serialize JSON Text (HWTJSERI)

• Allows the creation of new JSON text or the addition of entries to existing

JSON text.

• Provides option to merge multiple JSON text streams easily and to validate

that the insertion point is syntactically valid

• Allows JSON text to be traversed even after new text added

69© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

z/OS Client Toolkit JSON Language Support

69

Include files and sample programs provided in:

•C/C++

•COBOL

•PL/I

•Assembler (Include file only)

•REXX (coming soon)

70© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

JSON Parsing Example

70

hwtjinit(&return_code,

MAX_WORKAREA_SIZE,

parser_instance,

&diag_area);

if return_code != HWTJ_OK

return -1;

hwtjpars(&return_code,

parser_instance,

(char *)&jtext, /* JSON text string address(input) */

strlen(jtext), /* JSON text string length (input) */

&diag_area);

71© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

JSON Parsing Example (continued)

71

hwtjsrch(&return_code,

parser_instance,

HWTJ_SEARCHTYPE_OBJECT, /* limit the search scope */

(char *)&name, /* search string address */

strlen(name), /* search string length */

object_to_search, /* handle of object to search */

0, /* starting point of the search */

&value_handle, /* search result handle (output) */

&diag_area);

/* Check that the search found a result. */

if (return_code == HWTJ_OK) {

/* Get the object's type. */

hwtjgjst(&return_code,

parser_instance,

value_handle, /* handle to the value whose type to check (input) */

&entry_type, /* value type constant returned by hwtjgjst (output) */

&diag_area);

72© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Installation and Availability

72

• V2R2 – In the base

• V2R1 – Install latest toolkit APAR listed below and re-IPL

• External message to know the toolkit is installed and ready to go:
• HWT001I message will appear in the syslog stating the toolkit is enabled

• Recommended: Install new APAR OA50865 toolkit fixpack #2 to pick up

latest fixes

© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Where to go for more

z/OS Client Web

Enablement

Toolkit information

73

74© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

• z/OS 2.2 MVS Programming: Callable Services for High-Level

Languages

• Complete toolkit documentation

• z/OS 2.2 MVS System Messages, Volume 6 (GOS – IEA)
• Toolkit message documentation

• z/OS 2.2 MVS System Codes
• Toolkit abend ’04D’x documentation

Toolkit Reference Materials

74

75© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM. 75

• mainframeinsights.com

• Search for toolkit

76© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM. 76

• IBM Systems

Magazine (January /

February 2016)

• z/OS Client Web

Enablement Toolkit

Enhances Web

Application

Availability (pg 34 -36

in hardcopy edition)

77© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM. 77

• z/OS Hot Topics

magazine (August

2015)

• REST easy on z/OS

– Introducing the

z/OS Client Web

Enablement Toolkit

(pg. 26-27)

78© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Questions?

78

79© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Notices and Disclaimers

79

Copyright © 2016 by International Business Machines Corporation (IBM). No part of this document may be reproduced or transmitted in any form without written permission
from IBM.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating to products that have not yet been announced by IBM) has been reviewed for accuracy as of the date of initial
publication and could include unintentional technical or typographical errors. IBM shall have no responsibility to update this information. THIS DOCUMENT IS DISTRIBUTED
"AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IN NO EVENT SHALL IBM BE LIABLE FOR ANY DAMAGE ARISING FROM THE USE OF THIS
INFORMATION, INCLUDING BUT NOT LIMITED TO, LOSS OF DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT OR LOSS OF OPPORTUNITY. IBM products and
services are warranted according to the terms and conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts. In some cases, a product may not be new and may have been previously installed. Regardless, our
warranty terms apply.”

Any statements regarding IBM's future direction, intent or product plans are subject to change or withdrawal without notice.

Performance data contained herein was generally obtained in a controlled, isolated environments. Customer examples are presented as illustrations of how those customers
have used IBM products and the results they may have achieved. Actual performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in
which IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not necessarily reflect the views of IBM. All materials and
discussions are provided for informational purposes only, and are neither intended to, nor shall constitute legal or other guidance or advice to any individual participant or their
specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to obtain advice of competent legal counsel as to the identification and
interpretation of any relevant laws and regulatory requirements that may affect the customer’s business and any actions the customer may need to take to comply with such
laws. IBM does not provide legal advice or represent or warrant that its services or products will ensure that the customer is in compliance with any law

80© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior

written permission of IBM.

Notices and Disclaimers Con’t.

80

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not
tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. IBM does not warrant the quality of any third-party products, or the
ability of any such third-party products to interoperate with IBM’s products. IBM EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The provision of the information contained h erein is not intended to, and does not, grant any right or license under any IBM patents, copyrights, trademarks or other intellectual
property right.

IBM, the IBM logo, ibm.com, Aspera®, Bluemix, Blueworks Live, CICS, Clearcase, Cognos®, DOORS®, Emptoris®, Enterprise Document Management System™, FASP®,
FileNet®, Global Business Services ®, Global Technology Services ®, IBM ExperienceOne™, IBM SmartCloud®, IBM Social Business®, Information on Demand, ILOG,
Maximo®, MQIntegrator®, MQSeries®, Netcool®, OMEGAMON, OpenPower, PureAnalytics™, PureApplication®, pureCluster™, PureCoverage®, PureData®,
PureExperience®, PureFlex®, pureQuery®, pureScale®, PureSystems®, QRadar®, Rational®, Rhapsody®, Smarter Commerce®, SoDA, SPSS, Sterling Commerce®,
StoredIQ, Tealeaf®, Tivoli®, Trusteer®, Unica®, urban{code}®, Watson, WebSphere®, Worklight®, X-Force® and System z® Z/OS, are trademarks of International Business
Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at "Copyright and trademark information" at: www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

© Copyright IBM Corporation 2016. Materials may not be reproduced in whole or in part without the prior written permission of IBM.

Thank you!

81

