
z/OS

UNIX System Services

APAR OA12251

���

z/OS

UNIX System Services

APAR OA12251

���

ii z/OS UNIX System Services APAR OA12251

About this document

This document supports APAR OA12251 for z/OS® UNIX System Services. This

document is only available on the z/OS UNIX Web site at:

http://www.ibm.com/servers/eserver/zseries/zos/unix/release/apar.html

© Copyright IBM Corp. 1996, 2005 iii

http://www.ibm.com/servers/eserver/zseries/zos/unix/release/apar.html

iv z/OS UNIX System Services APAR OA12251

Contents

About this document . iii

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1

Release 4) . 1

Shared HFS in a sysplex . 1

Overview . 1

What does shared HFS mean? 1

How the end user views the HFS 2

Summary of new HFS data sets 3

Comparing file systems in single system pre-OS/390 UNIX V2R9 and OS/390

UNIX V2R9 or later environments 3

File systems in OS/390 UNIX V2R9 or later sysplex environments 7

Procedures for establishing shared HFS in a sysplex 7

Sysplex scenarios showing shared HFS capability 18

Keeping automount policies consistent on all systems in the sysplex 26

Moving file systems in a sysplex 27

Shared HFS implications during system failures and recovery 28

Locking files in the sysplex 29

Mounting file systems using NFS client mounts 30

Preparing file systems for shutdown 31

File system availability . 31

Tuning z/OS UNIX performance in a sysplex 33

DFS considerations . 33

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1

Release 6) . 35

Shared HFS in a sysplex . 35

Overview of using shared HFS in a sysplex 35

What does shared HFS mean? 35

How the end user views the HFS 36

Summary of new HFS data sets 36

Comparing file systems in single system pre-OS/390 UNIX V2R9 and OS/390

UNIX V2R9 or later environments 37

File systems in OS/390 UNIX V2R9 or later sysplex environments 40

Procedures for establishing shared HFS in a sysplex 41

Sysplex scenarios showing shared HFS capability 52

Automount policies . 62

Moving file systems in a sysplex 62

Shared HFS implications during system failures and recovery 63

Shared HFS implications during a planned shutdown of z/OS UNIX 66

File system initialization . 67

Locking files in the sysplex 68

Mounting file systems using symbolic links 69

Mounting file systems using NFS client mounts 70

File system availability . 70

Tuning z/OS UNIX performance in a sysplex 72

DFS considerations . 73

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1

Release 7) . 75

Sharing file systems in a sysplex 75

Overview of sharing file systems in a sysplex 75

What does shared file system mean? 75

© Copyright IBM Corp. 1996, 2005 v

How the end user views the shared file system 76

Summary of various file systems in a shared environment 77

Illustrating file systems in single system and sysplex environments 77

File systems in sysplex environments 79

Procedures for establishing a shared file system in a sysplex 80

Sysplex scenarios showing shared file system capability 92

Automount policies . 101

Moving file systems in a sysplex 101

Shared file system implications during system failures and recovery 103

Shared file system implications during a planned shutdown of z/OS UNIX 106

File system initialization . 107

Locking files in the sysplex 107

Mounting file systems using symbolic links 109

Mounting file systems using NFS client mounts 110

File system availability . 110

Tuning z/OS UNIX performance in a sysplex 112

DFS considerations . 113

Chapter 4. Changes for z/OS UNIX System Services Command Reference 115

chmount — Change the mount attributes of a file system 115

Format . 115

Description . 115

Options . 115

Example . 116

Usage Note . 116

Exit Values . 116

Related Information . 116

mount — Logically mount a file system 116

Format . 116

Description . 116

Options . 116

Examples . 118

Usage Notes . 118

Exit Values . 120

Related Information . 120

MOUNT — Logically mount a file system 120

Format . 120

Description . 120

Usage Notes . 124

Return Codes . 126

Examples . 126

Chapter 5. Changes for MVS System Commands 127

SETOMVS Command . 127

Syntax . 127

Parameters . 129

Chapter 6. Changes for MVS Initialization and Tuning Reference 141

BPXPRMxx (z/OS UNIX System Services parameters) 141

Syntax rules for BPXPRMxx 141

Syntax of BPXPRMxx . 143

Syntax example of BPXPRMxx 146

IBM-supplied default for BPXPRMxx 147

Statements and parameters for BPXPRMxx 147

Accessibility . 183

vi z/OS UNIX System Services APAR OA12251

Using assistive technologies 183

Keyboard navigation of the user interface 183

z/OS information . 183

Notices . 185

Programming Interface Information 186

Trademarks . 187

Contents vii

viii z/OS UNIX System Services APAR OA12251

Chapter 1. Changes for z/OS UNIX System Services Planning

(Version 1 Release 4)

Notice for APAR OA12251

Throughout the document, all descriptions of the AUTOMOVE function as it

relates to the behavior that occurs when an owning system becomes

unavailable (for instance, by shutting down, crashing, or leaving the sysplex)

should instead refer to the description below in “Customizing BPXPRMxx for

shared HFS” on page 13.

Shared HFS in a sysplex

Overview

This chapter describes shared HFS capability available as of OS/390® UNIX® V2R9

for those who participate in a multi-system sysplex. It assumes that you already

have a sysplex up. It defines what shared HFS is, introduces you to HFS data sets

that exist in a sysplex, and helps you establish that environment. The topics in this

chapter reflect the tasks you must do.

In this chapter

This chapter covers the following subtasks.

 Subtasks Associated procedure (see . . .)

Establishing the root data set “Steps in creating the sysplex root HFS data

set” on page 7

Establishing the HFS data set “Steps in creating the system-specific HFS

data sets” on page 8

Mounting the version HFS “Steps in mounting the version HFS” on page

9

Creating the OMVS couple data set “Steps in creating an OMVS couple data set

(CDS)” on page 11

Updating the COUPLExx data set “Steps in updating COUPLExx to define the

OMVS CDS to XCF” on page 13

Keeping the automount policy consistent on

all systems in the sysplex

“Steps in keeping your automount policy

consistent on all systems” on page 27

Although IBM® recommends that you exploit shared HFS support, you are not

required to. If you choose not to, you will continue to share HFS data sets as you

have before OS/390 UNIX V2R9. To see how your file system structure differs in

OS/390 UNIX V2R9 from V2R8, see “Comparing file systems in single system

pre-OS/390 UNIX V2R9 and OS/390 UNIX V2R9 or later environments” on page 3.

z/OS Parallel Sysplex Test Report describes how IBM’s integration test team

implemented shared HFS.

What does shared HFS mean?

Sysplex users can access data throughout the file hierarchy.

© Copyright IBM Corp. 1996, 2005 1

The best way to describe the benefit of this function is by comparing what was the

file system sharing capability prior to OS/390 UNIX V2R9 with the capability that

exists now. Consider a sysplex that consists of two systems, SY1 and SY2:

v Users logged onto SY1 can write to the directories on SY1. For users on SY1 to

make a change to file systems mounted on SY2’s /u directory, they would have

to log onto SY2.

v The system programmer who makes configuration changes for the sysplex needs

to change the entries in the /etc file systems for SY1 and SY2. To make the

changes for both systems, the system programmer must log onto each system.

With shared HFS, all file systems that are mounted by a system participating in

shared HFS are available to all participating systems. In other words, once a file

system is mounted by a participating system, that file system is accessible by any

other participating system. It is not possible to mount a file system so that it is

restricted to just one of those systems. Consider a OS/390 UNIX V2R9 sysplex that

consists of two systems, SY1 and SY2:

v A user logged onto any system can make changes to file systems mounted on

/u, and those changes are visible to all systems.

v The system programmer who manages maintenance for the sysplex can change

entries in both /etc file systems from either system.

In this chapter, the term participating group is used to identify those systems that

belong to the same SYSBPX XCF sysplex group and have followed the required

installation and migration activities to participate in shared HFS. To be in the

participating group, the system level must be at OS/390 UNIX V2R9 or later.

Systems earlier than OS/390 UNIX V2R9 can coexist in the sysplex with systems

using shared HFS support, but the earlier systems will only be able to share file

systems mounted on other systems in read-only mode, and not in read/write mode.

With shared HFS, there is greater availability of data in case of system outage.

There is also greater flexibility for data placement and the ability for a single

BPXPRMxx member to define all the file systems in the sysplex.

How the end user views the HFS

This chapter describes the kinds of file systems and data sets that support the

shared HFS capability in the sysplex. Figure 1 shows that, to the end users, the

logical view of the HFS does not change for OS/390 UNIX V2R9. From their point

of view, accessing files and directories in the system is just the same. That is true

for all end users, whether they are in a sysplex or not.

This logical view applies to the end user only. However, system programmers need

to know that the illustration of directories found in Figure 1 does not reflect the

SYSTEM dev tmp var etcusrbinu lib opt samples

lpp

booksrv tcpip
. . .

Figure 1. Logical view of shared HFS for the end user

2 z/OS UNIX System Services APAR OA12251

physical view of file systems. Starting in OS/390 UNIX V2R9, some of the

directories are actually symbolic links, as is described in the following information.

Summary of new HFS data sets

This chapter introduces HFS data sets and terms needed to use shared HFS.

Table 1 summarizes the HFS data sets that are needed in a sysplex that has

shared HFS. As you study the illustrations of file system configurations in this

chapter, you can refer back to this table.

 Table 1. HFS data sets that exist in a sysplex

Name Characteristics Purpose How Created

Sysplex root It contains directories

and symbolic links

that allow redirection

of directories. Only

one sysplex root HFS

is allowed for all

systems participating

in shared HFS.

The sysplex root is used

by the system to redirect

addressing to other

directories. It is very

small and is mounted

read-write. See

“Procedures for

establishing shared HFS

in a sysplex” on page

7for a more complete

description of the

sysplex root HFS.

The user runs the

BPXISYSR job.

System-specific

System specific

It contains data

specific to each

system, including the

/dev, /tmp, /var, and

/etc directories for

one system. There is

one system-specific

HFS data set for each

system participating in

the shared HFS

capability.

The system-specific

HFS data set is used by

the system to mount

system-specific data. It

contains the necessary

mount points for

system-specific data and

the symbolic links to

access sysplex-wide

data, and should be

mounted read-write. See

“Steps in creating the

system-specific HFS

data sets” on page 8 for

a complete description

of the system-specific

HFS.

The user runs the

BPXISYSS job on each

participating system.

Version

In a sysplex,

version HFS is

the new name

for the root

HFS.

It contains system

code and binaries,

including the /bin,

/usr, /lib, /opt, and

/samples directories.

IBM delivers only one

version root; you

might define more as

you add new system

levels and new

maintenance levels.

The version HFS has

the same purpose as

the root HFS in the

non-sysplex world. It

should be mounted

read-only. See “Steps in

mounting the version

HFS” on page 9 for a

complete description of

the version HFS.

IBM supplies this HFS

in the ServerPac.

CBPDO users create

the HFS by following

steps defined in the

Program Directory.

Comparing file systems in single system pre-OS/390 UNIX V2R9 and

OS/390 UNIX V2R9 or later environments

The illustrations in this section show you how the file system structures that existed

before OS/390 UNIX V2R9 compare with the structures in OS/390 UNIX V2R9 and

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 3

later. IBM’s recommendations for several releases prior to OS/390 UNIX V2R9 has

been that you separate the system setup parameters from the file system

parameters so that each system in the sysplex has two BPXPRMxx members: a

system limits member and a file system member. In the shared HFS environment,

that separation of system limit parameters from file system parameters is even

more important. In the shared HFS environment, each system will continue to have

a system limits BPXPMRxx member. As you will see in sections that follow, with

shared HFS, you might have a file system BPXPRMxx member for each

participating system or you might replace those individual file system BPXPRMxx

members with a single file system BPXPRMxx member for all participating systems.

File systems in single system pre-OS/390 UNIX V2R9

Environments

The following example shows what BPXPRMxx file system parameters would look

like in a single system environment (before OS/390 UNIX V2R9) with no regard to

sysplex.

 The root can be mounted either read-only or read-write.

Figure 3 on page 5 shows the recommended setup of the root HFS in a single

system environment.

BPXPRMxx

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

ROOT

FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNT

FILESYSTEM(’OMVS.ETC.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/etc’)

.

.

.

Figure 2. BPXPRMxx for a single system before OS/390 UNIX V2R9 or later environments

4 z/OS UNIX System Services APAR OA12251

The directories in the root HFS represent “first-level” directories created by IBM.

The /etc, /dev, /var, /tmp, and /u directories are used as mount points for other

HFS data sets.

File systems in single system OS/390 UNIX V2R9 or later

environments

Figure 4 on page 6 shows what BPXPRMxx file system parameters would look like

in an OS/390 UNIX V2R9 (or later) single system environment, and Figure 5 on

page 6 shows the corresponding single system image. SYSPLEX(NO) is specified

(or the default taken), and the mount mode is read-write.

Note: The root can be mounted either read-only or read-write.

Figure 3. Single system before OS/390 UNIX V2R9

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 5

BPXPRMxx

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

SYSPLEX(NO)

ROOT

FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNT

FILESYSTEM(’OMVS.DEV.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/dev’)

MOUNT

FILESYSTEM(’OMVS.TMP.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/tmp’)

MOUNT

FILESYSTEM(’OMVS.VAR.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/var’)

MOUNT

FILESYSTEM(’OMVS.ETC.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/etc’)

Figure 4. BPXPRMxx parmlib member for single system: OS/390 UNIX V2R9

/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

/dev
/tmp
/var
/etc

/dev
/tmp
/var
/etc

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples
/…
/u

/bin
/usr
/lib
/opt
/samples
/…
/u

/SYSTEM/

dev

tmp

var

etc

dev

tmp

var

etc
OMVS.VAR.HFS

OMVS.ROOT.HFS

OMVS.DEV.HFS

OMVS.TMP.HFS

OMVS.ETC.HFS

Figure 5. Single system: OS/390 UNIX V2R9

6 z/OS UNIX System Services APAR OA12251

The presence of symbolic links is transparent to the user. In the illustrations

used throughout this chapter, symbolic links are indicated with an arrow.

In Figure 5 on page 6, the root file system contains an additional directory,

/SYSTEM; existing directories, /etc, /dev, /tmp and /var are converted into symbolic

links. These changes, however, are transparent to the user who brings up a single

system environment.

Note: If the content of the symbolic link begins with $SYSNAME and SYSPLEX is

specified NO, then $SYSNAME is replaced with /SYSTEM when the symbolic link is

resolved.

File systems in OS/390 UNIX V2R9 or later sysplex environments

This section describes file systems in sysplex environments (OS/390 UNIX V2R9 or

later) and what you need to do to take advantage of shared HFS support, such as

creating specific HFS data sets (also see Table 1 on page 3) and the OMVS couple

data set, updating COUPLExx, and customizing BPXPRMxx.

You must not assume that with shared HFS, two systems can share a common

HFS data set for /etc, /tmp, /var, and /dev. This is not the case. Even with shared

HFS, each system must have specific HFS data sets for each of these file systems.

The file systems are then mounted under the system-specific HFS (see Figure 14

on page 23). With shared HFS support, one system can access system-specific file

systems on another system. (The existing security model remains the same.) For

example, while logged onto SY2, you can gain read-write access to SY1’s /tmp by

specifying /SY1/tmp/.

You should also be aware that when SYSPLEX(YES) is specified, each

FILESYSTYPE in use within the participating group must be defined for all systems

participating in shared HFS. The easiest way to accomplish this is to create a single

BPXPRMxx member that contains file system information for each system

participating in shared HFS. If you decide to define a BPXPRMxx member for each

system, the FILESYSTYPE statements must be identical on each system. To see

the differences between having one BPXPRMxx member for all participating

systems and having one member for each participating system, see the two

examples in “Scenario 2: Multiple systems in the sysplex – using the same release

level” on page 21.

In addition, facilities required for a particular file system must be initiated on all

systems in the participating group. For example, NFS requires TCP/IP; if you

specify a filesystype of NFS, you must also initialize TCP/IP when you initialize

NFS, even if there is no network connection.

Procedures for establishing shared HFS in a sysplex

Steps in creating the sysplex root HFS data set

The sysplex root is an HFS data set that is used as the sysplex-wide root. This

HFS data set must be mounted read-write and designated AUTOMOVE (see

“Customizing BPXPRMxx for shared HFS” on page 13 for a description of the

AUTOMOVE parameter in BPXPRMxx). Only one sysplex root is allowed for all

systems participating in shared HFS. The sysplex root is created by invoking the

BPXISYSR sample job in SYS1.SAMPLIB. After the job runs, the sysplex root file

system structure would look like Figure 6 on page 8:

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 7

No files or code reside in the sysplex root data set. It consists of directories and

symbolic links only, and it is a small data set.

The sysplex root provides access to all directories. Each system in a sysplex can

access directories through the symbolic links that are provided. Essentially, the

sysplex root provides redirection to the appropriate directories, and it should be kept

very stable; updates and changes to the sysplex root should be made as infrequent

as possible.

Steps in creating the system-specific HFS data sets

Directories in the system-specific HFS data set are used as mount points,

specifically for /etc, /var, /tmp, and /dev. To create the system-specific HFS, run

the BPXISYSS sample job in SYS1.SAMPLIB on each participating system (in other

words, you must run the sample job separately for each system that will participate

in shared HFS). After you invoke the job, the system-specific file system structure

would look like Figure 7 on page 9:

Sysplex root

/...

/bin
/usr
/lib
/opt
/samples
$VERSION
$SYSNAME
/dev
/tmp
/var
/etc

/u

/...

/bin
/usr
/lib
/opt
/samples
$VERSION
$SYSNAME
/dev
/tmp
/var
/etc

/u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

Figure 6. Sysplex root

8 z/OS UNIX System Services APAR OA12251

The system-specific HFS data set should be mounted read-write, and should be

designated NOAUTOMOVE (see “Customizing BPXPRMxx for shared HFS” on

page 13 for a description of the NOAUTOMOVE parameter in BPXPRMxx). /etc,

/var, /tmp, and /dev should also be mounted NOAUTOMOVE. In addition, IBM

recommends that the name of the system-specific data set contain the system

name as one of the qualifiers. This allows you to use the &SYSNAME symbolic

(defined in IEASYMxx) in BPXPRMxx.

Note: If you mount a system-specific file system on other than the correct

(system-specific) owner, either explicitly or due to AUTOMOVE=YES, loss of

function may occur. For example, if the system-specific file system mounted at /dev

for SY1 is moved to SY2 so that ownership is now SY2, the OMVS command on

SY1 will fail.

Steps in mounting the version HFS

The version HFS is the IBM-supplied root HFS data set. To avoid confusion with the

sysplex root HFS data set, “root HFS” has been renamed to “version HFS”.

Figure 8 on page 10 shows a version HFS.

System-specific file system

bin
usr
lib
opt
samples

dev
tmp
var
etc

bin
usr
lib
opt
samples

dev
tmp
var
etc

/bin
/usr
/lib
/opt
/samples

Figure 7. System HFS

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 9

Recommendations:

1. IBM recommends that you mount the version HFS read-only in a sysplex

environment, and that you designate it AUTOMOVE. The mount point for the

version HFS is dynamically created if the VERSION statement is used in

BPXPRMxx.

2. IBM does not recommend using &SYSNAME as one of the qualifiers for the

version HFS data set name. In “Sysplex scenarios showing shared HFS

capability” on page 18, REL9 and REL9A are used as qualifiers, which

correspond to the system release levels. However, you do not necessarily have

to use the same qualifiers. Other appropriate names are the name of the target

zone, &SYSR1, or another qualifier meaningful to the system programmer.

IBM supplies the version HFS in ServerPac. CBPDO users obtain the version HFS

by following directions in the Program Directory. There is one version HFS for each

set of systems participating in shared HFS and who are at the same release level

(that is, using the same SYSRES volume). In other words, each version HFS

denotes a different level of the system or a different service level. For example, if

you have 20 systems participating in shared HFS and 10 of those systems are at

OS/390 UNIX V2R9 and the other 10 are at z/OS UNIX V1R1, then you’ll have one

version HFS for the OS/390 V2R9 systems and one for the z/OS UNIX V1R1

systems. In essence, you will have as many version HFSes for the participating

systems as you have different levels running.

Before you mount your version HFS read-only, you may have some

element-specific actions. These are described in the table on post-installation

actions for mounting the root file system in read-only mode in the chapter on

managing the hierarchical file system.

Version file system
/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples
…
u

bin
usr
lib
opt
samples
…
u

SYSTEM/

Figure 8. Version HFS

10 z/OS UNIX System Services APAR OA12251

Using the automove system list

When mounting file systems in the sysplex, you can specify a prioritized automove

system list to indicate where the file system should or should not be moved to when

ownership of a file system changes due to any of the following:

v A soft shutdown request is issued.

v Dead system takeover occurs (when a system leaves the sysplex without a prior

soft shutdown).

v A PFS terminates on the owning system.

v A request to move ownership of the file system is issued.

There are different ways to specify the automove system list.

v On the MOUNT statement in BPXPRMxx, specify the AUTOMOVE keyword,

including the indicator and system list.

v For the TSO MOUNT command, specify the AUTOMOVE keyword, including the

indicator and system list.

v Use the MOUNT shell command.

v Use the ISHELL MOUNT interface.

v Specify the MNTE_SYSLIST variable for REXX.

v Specify the indicator and system list for the automove option in the chmount

shell command.

v Specify the indicator and system list for the automove option in the SETOMVS

operator command.

Steps in creating an OMVS couple data set (CDS)

The couple data set (CDS) contains the sysplex-wide mount table and information

about all participating systems, and all mounted file systems in the sysplex. To

allocate and format a CDS, customize and invoke the BPXISCDS sample job in

SYS1.SAMPLIB. The job will create two CDSs: one is the primary and the other is

a backup that is referred to as the alternate. In BPXISCDS, you also specify the

number of mount records that are supported by the CDS.

Use of the CDS functions in the following manner:

1. The first system that enters the sysplex with SYSPLEX(YES) initializes an

OMVS CDS. The CDS controls shared HFS mounts and will eventually contain

information about all systems participating in shared HFS.

This system processes its BPXPRMxx parmlib member, including all its ROOT

and MOUNT statement information. It is also the designated owner of the byte

range lock manager for the participating group. The MOUNT and ROOT

information are logged in the CDS so that other systems that eventually join the

participating group can read data about systems that are already using shared

HFS.

2. Subsequent systems joining the participating group will read what is already

logged in the CDS and will perform all mounts. Any new BPXPRMxx mounts are

processed and logged into the CDS. Systems already in the participating group

will then process the new mounts added to the CDS.

Following is the sample JCL with comments. The statements in bold contain the

values that you specify based on your environment.

//*

//STEP10 EXEC PGM=IXCL1DSU

//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 11

|
|
|

|

|
|

|

|

/* Begin definition for OMVS couple data set(1) */

 DEFINEDS SYSPLEX(PLEX1)

 /* Name of the sysplex in which the OMVS couple data set is to be used.*/

 DSN(SYS1.OMVS.CDS01) VOLSER(3390x1)

 /* The name and volume for the OMVS couple data set.

 The utility will allocate a new data set by the name specified on the

 volume specified.*/

 MAXSYSTEMS(8)

 /* Specifies the number of systems to be supported by the OMVS CDS.

 Default = 8 */

 NOCATALOG

 /* Default is not to CATALOG */

 DATA TYPE(BPXMCDS)

 /* The type of data in the data set being created for OMVS.

 BPXMCDS is the TYPE for OMVS. */

 ITEM NAME(MOUNTS) NUMBER(500)

 /* Specifies the number of MOUNTS that can be supported by OMVS.*/

 Default = 100

 Suggested minimum = 10

 Suggested maximum = 35000 */

 ITEM NAME(AMTRULES) NUMBER(50)

 /* Specifies the number of automount rules that can be supported by OMVS.*/

 Default = 50

 Minimum = 50

 Maximum = 1000 */

 ITEM NAME(DISTBRLM) NUMBER(1)

 /*Enable conversion to a distributed BRLM.

 1, distributed BRLM enabled,

 0, distributed BRLM is not enabled during next sysplex IPL

 Default = 0 */

 /* Begin definition for OMVS couple data set(2) */

 DEFINEDS SYSPLEX(PLEX1)

 /* Name of the sysplex in which the OMVS couple data set is to be used. */

 DSN(SYS1.OMVS.CDS02) VOLSER(3390x2)

 /* The name and volume for the OMVS couple data set. The utility will

 allocate a new data set by the namespecified on the volume specified. */

 MAXSYSTEMS(8)

 /* Specifies the number of systems to be supported by the OMVS CDS.

 Default = 8 */

 NOCATALOG

 /* Default is not to CATALOG */

 DATA TYPE(BPXMCDS)

 /* The type of data in the data set being created is for OMVS. BPXMCDS is the

 TYPE for OMVS. */

 ITEM NAME(MOUNTS) NUMBER(500)

 /* Specifies the number of MOUNTS that can be supported by OMVS.

 Default = 100

 Suggested minimum = 10

 Suggested maximum = 35000 */

 ITEM NAME(AMTRULES) NUMBER(50)

 /* Specifies the number of automount rules that can be supported by OMVS.

 Default = 50

 Minimum = 50

 Maximum = 1000 */

 ITEM NAME(DISTBRLM) NUMBER(1)

 /*Enables conversion to a distributed BRLM.

 1, distributed BRLM enabled,

 0, distributed BRLM is not enabled during next sysplex IPL

 Default = 0 */

Rule: Automount mounts must be included in the MOUNTS value. The number of

automount mounts is the expected number of concurrently mounted file systems

using the automount facility. For example, you may have specified 1000 file

systems to be automounted, but if you expect only 50 to be used concurrently, you

should factor these 50 into your MOUNTS value.

12 z/OS UNIX System Services APAR OA12251

For more information about setting up a sysplex on MVS™ and descriptions of XCF

and CDS, see z/OS MVS Setting Up a Sysplex.

The NUMBER(nnnn) specified for mounts and automount rules (a generic or

specific entry in an automount map file) is directly linked to function performance

and the size of the CDS. If maximum values are specified, the size of the CDS will

increase accordingly and the performance level for reading and updating it will

decline.

Conversely, if the NUMBER values are too small, the function (for example, the

number of mounts supported) would fail after the limit is reached. However, a new

CDS can be formatted and switched in with larger values specified in NUMBER. To

make the switch, issue the SETXCF COUPLE,PSWITCH command. For more

information on this command, see the section on couple data set considerations in

z/OS MVS Setting Up a Sysplex. The number of file systems required (factoring in

an additional number to account for extra mounts), determines your minimum and

maximum NUMBER value.

After the CDS is created, it must be identified to XCF for use by z/OS UNIX.

Steps in updating COUPLExx to define the OMVS CDS to XCF: Update the

active COUPLExx parmlib member to define a primary and alternate OMVS CDS to

XCF. The primary and alternate CDSs should be placed on separate volumes. (The

sample JCL in “Steps in creating an OMVS couple data set (CDS)” on page 11

shows the primary CDS on volume 3390x1 and the secondary CDS on 3390x2.)

Figure 9 shows the COUPLExx parmlib member; statements that define the CDS

are in bold.

 The MVS operator commands (DISPLAY XCF, SETXCF, DUMP, CONFIG, and

VARY) enable the operator to manage the z/OS UNIX CDS. For a complete

description of these commands, see z/OS MVS System Commands.

Customizing BPXPRMxx for shared HFS

HFS sharing enables you to use one BPXPRMxx member to define all the file

systems in the sysplex. This means that each participating system has its own

BPXPRMxx member to define system limits, but shares a common BPXPRMxx

member to define the file systems for the sysplex. This is done through the use of

/* For all systems in any combination, up to an eightway */

COUPLE INTERVAL(60) /* 1 minute */

 OPNOTIFY(60) /* 1 minute */

 SYSPLEX(PLEX1) /* SYSPLEX NAME*/

 PCOUPLE(SYS1.PCOUPLE,CPLPKP) /* COUPLE DS */

 ACOUPLE(SYS1.ACOUPLE,CPLPKA) /* ALTERNATE DS*/

 MAXMSG(750)

 RETRY(10)

DATA TYPE(CFRM)

 PCOUPLE(SYS1.PFUNCT.CTTEST,FDSPKP)

 ACOUPLE(SYS1.AFUNCT.CTTEST,FDSPKA)

DATA TYPE(BPXMCDS)

 PCOUPLE(SYS1.OMVS.CDS01,3390x1)

 ACOUPLE(SYS1.OMVS.CDS02,3390x2)

/* CTC DEFINITIONS: ALL SYSTEMS */

PATHOUT DEVICE(8E0)

PATHIN DEVICE(CEF)

Figure 9. COUPLExx parmlib member

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 13

system symbolics. Figure 12 on page 21 shows an example of this unified member.

You can also have multiple BPXPRMxx members defining the file systems for

individual systems in the sysplex. An example of this is Figure 13 on page 22.

The following parameters set up HFS sharing in a sysplex:

v SYSPLEX(YES) sets up HFS sharing for those who are in the SYSBPX XCF

group, the group that is participating in HFS data sharing. To participate in HFS

data sharing, the systems must be at the OS/390 V2R9 level or later. Those

system that specify SYSPLEX(YES) make up the participating group for the

sysplex.

If SYSPLEX(YES) is specified in the BPXPRMxx member, but the system is

initialized in XCF-local mode, either by specifying COUPLE SYSPLEX(LOCAL) in

the COUPLExx member or by specifying PLEXCFG=XCFLOCAL in the

IEASYSxx member, then the kernel will ignore the SYSPLEX(YES) value and

initialize with SYSPLEX(NO). This system will not participate in shared HFS

support after the initialization completes.

v VERSION('nnnn') allows multiple releases and service levels of the binaries to

coexist and participate in HFS sharing. nnnn is a qualifier to represent a level of

the version HFS. The most appropriate values for nnnn are the name of the

target zone, &SYSR1, or another qualifier that is meaningful to the system

programmer. A directory with the value nnnn specified on VERSION will be

dynamically created at system initialization under the sysplex root and will be

used as a mount point for the version HFS.

There is one version HFS for every instance of the VERSION parameter. More

information about version HFS appears in “Steps in mounting the version HFS”

on page 9.

v The SYSNAME(sysname) parameter on ROOT and MOUNT statements specifies

the particular system on which a mount should be performed. sysname is a 1–8

alphanumeric name of the system. This system will then become the owner of

the file system mounted. The owning system must be IPLed with

SYSPLEX(YES).

Recommendation: Specify SYSNAME(&SYSNAME.) or omit the SYSNAME

parameter. In this case, the system that processes the mount request mounts the

file system and becomes its owner.

The SYSNAME parameter is also used with SETOMVS when moving file

systems, as demonstrated in “Moving file systems in a sysplex” on page 27.

The AUTOMOVE|NOAUTOMOVE|UNMOUNT parameters on the ROOT and

MOUNT statements indicate what happens to the ownership of a file system in the

following situations:

v A shutdown process is issued (soft shutdown)

v Dead system takeover occurs (a system leaves the sysplex without a prior soft

shutdown)

v A PFS terminates on the owning system

v A request to move ownership of a file system is issued

The action taken is determined by the AUTOMOVE value and the

sysplex-awareness capability of the file system. AUTOMOVE is the default,

specifying that ownership of the file system is automatically moved to another

system.

The owner of a file system is the first system that processes the mount. This

system always accesses the file system locally; that is, the system does not access

the file system through a remote system. Other non-owning systems in the sysplex

14 z/OS UNIX System Services APAR OA12251

|
|
|

|

|
|

|

|

|
|
|
|

|
|
|

access the file system either locally or through the remote owning system,

depending on the PFS and the mount mode. If a PFS allows a file system to be

locally accessed on all systems in a sysplex for a particular mode, then the PFS is

sysplex-aware for that mode. If a PFS requires that a file system be accessed

through the remote-owning system from all other systems in a sysplex for a

particular mode, then the PFS is sysplex-unaware for that mode.

Even if a PFS is sysplex-aware for a particular mode, if a non-owning system does

not have DASD connectivity, the file system is accessed remotely through the

owning system. For example, HFS is sysplex-unaware for read-write mode,

because all non-owning systems must access read-write file systems through the

remote owning system. The non-owning systems are said to be sysplex clients.

However, HFS is sysplex-aware for read-only mode, which means that each system

can access read-only file systems locally, and does not need to contact the owning

system. AUTOMOVE is intended for sysplex-unaware file systems, where

non-owning systems access the file systems remotely, to allow you to specify what

will happen to the ownership of file systems when shutdown, PFS termination, dead

system takeover, or move file system occur.

TFS file systems do not participate in move operations regardless of the

AUTOMOVE setting. Automount-managed file systems are handled as AUTOMOVE

if the file system is used locally.

Restriction: An AUTOMOVE file system cannot be moved to a system where

OMVS has been shut down or where F BPXOINIT,SHTUDOWN=FILEOWNER has been

used.

Table 2 shows what happens during soft shutdown for various AUTOMOVE settings

for sysplex-aware and sysplex-unaware file systems. Soft shutdown is done by

issuing one of the following MODIFY commands:

F BPXOINIT,SHUTDOWN=FILESYS

F BPXOINIT,SHTUDOWN=FILEOWNER

F OMVS,SHUTDOWN

A leaf file system refers to a file system that does not contain any file systems that

are mounted on a directory within that file system. A subtree is the file system and

all file systems that are mounted beneath that file system.

 Table 2. Soft shutdown actions for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

Unmounts the file system. The unmount

will fail if the file system being unmounted

is not a leaf file system.

Unmounts the file system. The unmount

will fail if the file system being unmounted

is not a leaf file system.

AUTOMOVE

(no system list)

Move is attempted to any system. If the

move fails, the unmount is not attempted

and ownership does not change.

Move is attempted to any system.. If the

move fails, the unmount is not attempted

and ownership does not change.

AUTOMOVE with a system

list

The move uses the system list. If the file

system cannot be moved, then the

unmount is not attempted and ownership

does not change.

The move uses the system list. If the file

system cannot be moved, the unmount is

not attempted and ownership does not

change.

Note: Automount-managed file systems are unmounted by a soft shutdown

operation if the file system is not referenced by any other system in the

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 15

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

||

|||

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

sysplex. If it is referenced by another system or systems, ownership of the

file system is moved. If the move fails, an unmount is not attempted and

ownership does not change.

Table 3 shows what happens during dead system takeover for various AUTOMOVE

settings for sysplex-aware and sysplex-unaware file systems. Dead system takeover

is the action taken by systems in a sysplex when they attempt to take over

ownership of file systems that were previously owned by a system that has just left

the sysplex.

 Table 3. Dead system takeover for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE Takeover is attempted by all systems. The

file system becomes unowned if it cannot

be taken over by a new owning system.

Takeover is not attempted. The file

system becomes unowned.

UNMOUNT Takeover is attempted by all systems. The

subtree is unmounted if it cannot be

taken over by a new owning system.

Takeover is not attempted. The subtree is

unmounted.

AUTOMOVE

(no system list)

Takeover is attempted. The file system

becomes unowned if it cannot be taken

over by a new owning system.

Takeover is attempted. The file system

becomes unowned if it cannot be taken

over by a new owning system.

AUTOMOVE with a system

list

Takeover is attempted and the INCLUDE

or EXCLUDE system list is honored. If

the takeover does not happen, the

subtree is unmounted.

Takeover is attempted and the INCLUDE

or EXCLUDE system list is honored. If

the takeover does not happen, the

subtree is unmounted.

Note: There is no attempt to take over automount-managed file systems if the file

system is not referenced by any system that is eligible to attempt takeover.

Automount-managed, unowned file systems will be unmounted.

Table 4 shows what happens during PFS termination for various AUTOMOVE

settings for sysplex-aware and sysplex-unaware file systems.

 Table 4. PFS termination for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

The subtree is unmounted. The subtree is unmounted.

AUTOMOVE

(no system list)

Moves to any system. If the move fails,

the subtree is unmounted.

Moves to any system. If the move fails,

the subtree is unmounted.

AUTOMOVE with a system

list

The move uses the system list. If the

move fails, the subtree is unmounted.

The move uses the system list. If the

move fails, the subtree is unmounted.

Table 5 on page 17 shows what happens when a move file system is requested to

move a specific file system to any target system (wildcard is used). A move file

system request can be issued with a SETOMVS operator command or a chmount

shell command.

16 z/OS UNIX System Services APAR OA12251

|
|
|

|
|
|
|
|

||

|||

||
|
|

|
|

||
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

||

|||

|
|
|

||

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

Table 5. Move a specific file system to any system for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

or

AUTOMOVE

(no system list)

Move is attempted to all systems. Move is attempted to all systems.

AUTOMOVE with a system

list

Move is attempted using the system list. Move is attempted using the system list.

Table 6 shows what happens when a move file system is requested to do a

multi-file system move, moving all file systems from a system to a specific target

system. A move file system request can be issued with a SETOMVS operator

command or a chmount shell command.

 Table 6. Move all file systems from a system to a specific target system for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

Move is not attempted. Move is not attempted.

AUTOMOVE

(no system list)

Move is attempted to the target system. Move is attempted to the target system.

AUTOMOVE with a system

list

Move is attempted to the target system,

ignoring the system list.

Move is attempted to the target system,

ignoring the system list.

Rules:

v Define your version and sysplex root file systems as AUTOMOVE.

v Define your system-specific file systems as UNMOUNT.

v Do not define a file system as NOAUTOMOVE or UNMOUNT and a file system

underneath it as AUTOMOVE. If you do, the file system defined as AUTOMOVE

will not be recovered after a system failure until that failing system has been

restarted.

Guidelines:

1. To ensure that the root is always available, use the default, which is

AUTOMOVE.

2. For sysplex-unaware file systems that are mostly exported by the DFS™ or SMB

server to their remote clients, consider specifying NOAUTOMOVE on the

MOUNT statement. Then the file systems will not change ownership if the

system is suddenly recycled, and they will be available for automatic re-export

by DFS or SMB.

Specifying NOAUTOMOVE is suggested because a file system can only be

exported by the DFS or SMB server at the system that owns the file system. A

file system can only be exported by the DFS or SMB server at the system that

owns the file system. Once a file system has been exported by DFS, it cannot

be moved until it has been unexported by DFS. The same holds true of file

systems exported by SMB. When recovering from system outages, you need to

weigh sysplex availability against availability to the DFS or SMB clients. When

an owning system recycles and a file system exported by DFS or SMB has

been taken over by one of the other systems, DFS or SMB cannot automatically

re-export that file system. When an owning system is recycled and an exported

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 17

||

|||

|
|
|
|
|
|

||

|
|
||

|

|
|
|
|

||

|||

|
|
|

||

|
|
||

|
|
|
|
|
|
|

|

|

|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

file system has been taken over by one of the other systems, that file system

will not be automatically reexported. The file system will have to be moved from

its current owner back to the original system, the one that has just been

recycled, and then exported again.

For more information about VERSION, SYSPLEX, SYSNAME and

AUTOMOVE|NOAUTOMVE|UNMOUNT, see z/OS MVS Initialization and Tuning

Reference.

Sysplex scenarios showing shared HFS capability

Scenario 1: First system in the sysplex

Figure 10 and Figure 11 on page 20 shows a z/OS UNIX file system configuration

for shared HFS. Here, SYSPLEX(YES) and a value on VERSION are specified, and

a directory is dynamically created on which the version HFS data set is mounted.

This type of configuration requires a sysplex root and system-specific HFS.

BPXPRMxx for (SY1)

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

VERSION(’REL9’)

SYSPLEX(YES)

ROOT

FILESYSTEM (’OMVS.SYSPLEX.ROOT’) �1�

TYPE(HFS) MODE(RDWR)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’) �2�

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’)

MOUNT

FILESYSTEM(’OMVS.ROOT.HFS’) �3�

TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’) �4�

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’) �5�

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 10. BPXPRMxx parmlib setup — HFS sharing

18 z/OS UNIX System Services APAR OA12251

|
|
|
|

|
|
|

�1� This is the sysplex root HFS data set, and was created by running the

BPXISYSR job. AUTOMOVE is the default and therefore is not specified,

allowing another system to take ownership of this file system when the owning

system goes down.

 �2� This is the system-specific HFS data set, and was created by running the

BPXISYSS job. It must be mounted read-write. NOAUTOMOVE is specified

because this file system is system-specific and ownership of the file system

should not move to another system should the owning system go down. The

MOUNTPOINT statement /&SYSNAME. will resolve to /SY1 during parmlib

processing. This mount point is created dynamically at system initialization.

 �3� This is the old root HFS (version HFS).

Recommendation: It should be mounted read-only. Its mount point is created

dynamically and the name of the HFS is the value specified on the VERSION

statement in the BPXPRMxx member. AUTOMOVE is the default and therefore

is not specified, allowing another system to take ownership of this file system

when the owning system goes down.

 �4� This HFS contains the system-specific /dev information. NOAUTOMOVE is

specified because this file system is system-specific; ownership should not move

to another system should the owning system go down. The MOUNTPOINT

statement /&SYSNAME./dev will resolve to /SY1/dev during parmlib processing.

 �5� This HFS contains system-specific /tmp information. NOAUTOMOVE is

specified because this file system is system-specific; ownership should not move

to another system should the owning system go down. The MOUNTPOINT

statement /&SYSNAME./tmp will resolve to /SY1/tmp during parmlib

processing.

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 19

If the content of the symbolic link begins with $VERSION or $SYSNAME, the

symbolic link will resolve in the following manner:

v If you have specified SYSPLEX(YES) and the symbolic link for /dev has the

contents $SYSNAME/dev, the symbolic link resolves to /SY1/dev on system SY1

and /SY2/dev on system SY2.

v If you have specified SYSPLEX(YES) and the content of the symbolic link begins

with $VERSION, $VERSION resolves to the value nnnn specified on the

VERSION parameter. Thus, if VERSION in parmlib is set to REL9, then

$VERSION resolves to /REL9. For example, a symbolic link for /bin, which has

the contents $VERSION/bin, resolves to /REL9/bin on a system whose

$VERSION value is set to REL9.

In the above scenario, if ls –l /bin/ is issued, the user expects to see the contents

of /bin. However, because /bin is a symbolic link pointing to $VERSION/bin, the

symbolic link must be resolved first. $VERSION resolves to /REL9 which makes the

pathname /REL9/bin. The contents of /REL9/bin will now be displayed.

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

Sysplex root file system

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

REL9

/

OMVS.SYSPLEX.ROOT

OMVS.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

Not used in

a sysplex

environment

OMVS.SY1.SYSTEM.HFS

/

/

Figure 11. HFS sharing in a sysplex

20 z/OS UNIX System Services APAR OA12251

Scenario 2: Multiple systems in the sysplex – using the same

release level

Figure 14 on page 23 shows another SYSPLEX(YES) configuration. In this

configuration, however, two or more systems are sharing the same version HFS

(the same release level of code). Figure 12 shows a sample BPXPRMxx for the

entire sysplex (what IBM recommends) using &SYSNAME. as a symbolic name,

and Figure 13 on page 22 shows a configuration where each system in the sysplex

has its own BPXPRMxx. For our example, SY1 has its own BPXPRMxx and SY2

has its own BPXPRMxx.

One BPXPRMxx Member to Define File Systems for the Entire Sysplex

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

VERSION(’REL9’)

SYSPLEX(YES)

ROOT

FILESYSTEM (’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’)

MOUNT

FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 12. Sharing HFS data sets: one version HFS and one BPXPRMxx for the entire

sysplex

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 21

BPXPRMS1 (for SY1) BPXPRMS2 (for SY2)

FILESYSTYPE FILESYSTYPE

TYPE(HFS) TYPE(HFS)

ENTRYPOINT(GFUAINIT) ENTRYPOINT(GFUAINIT)

PARM(’ ’) PARM(’ ’)

VERSION(’REL9’) VERSION(’REL9’)

SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT

FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR) TYPE(HFS) MODE(RDWR)

MOUNT MOUNT

FILESYSTEM(’OMVS.SY1.SYSTEM.HFS’) FILESYSTEM(’OMVS.SY2.SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/SY1’) MOUNTPOINT(’/SY2’)

MOUNT FILESYSTEM(’OMVS.ROOT.HFS’) MOUNT FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(READ) TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT FILESYSTEM(’OMVS.SY1.DEV’) MOUNT FILESYSTEM(’OMVS.SY2.DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/SY1/dev’) MOUNTPOINT(’/SY2/dev’)

MOUNT FILESYSTEM(’OMVS.SY1.TMP’) MOUNT FILESYSTEM(’OMVS.SY2.TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/SY1/tmp’) MOUNTPOINT(’/SY2/tmp’)

.

.

.

Figure 13. Sharing HFS data sets: one version HFS and separate BPXPRMxx members for

each system in the sysplex

22 z/OS UNIX System Services APAR OA12251

In this scenario, where multiple systems in the sysplex are using the same version

HFS, if ls –l /bin/ is issued from either system, the user expects to see the contents

Sysplex root file system

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

REL9

/

OMVS.SYSPLEX.ROOT

OMVS.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin
/usr
/lib
/opt
/samples

/bin
/usr
/lib
/opt
/samples

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

OMVS.SY1.SYSTEM.HFS

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY2.DEV

OMVS.SY2.TMP

OMVS.SY2.VAR

OMVS.SY2.ETC

OMVS.SY2.SYSTEM.HFS

SY2

/

/

/

Not used in
a sysplex

environment

Figure 14. Sharing HFS data sets in a sysplex for Release 9: multiple systems in a sysplex using the same release

level

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 23

of /bin. However, because /bin is a symbolic link pointing to $VERSION/bin, the

symbolic link must be resolved first. $VERSION resolves to /REL9 which makes the

pathname /REL9/bin. The contents of this directory will be displayed.

Scenario 3: Multiple systems in a sysplex using different release

levels

If your participating group is in a sysplex that runs multiple levels of z/OS and/or

OS/390, your configuration might look like the one in Figure 16 on page 25. In that

configuration, each system is running a different level of z/OS and, therefore, has

different version HFS data sets; SY1 has the version HFS named

OMVS.SYSR9A.ROOT.HFS and SY2 has the version HFS named

OMVS.SYSR9.ROOT.HFS. Figure 15 shows two BPXPRMxx parmlib members that

define the file systems in this configuration. Figure 17 on page 26 shows a single

BPXPRMxx parmlib member that can be used to define this same configuration; it

uses &SYSR1. as the symbolic name for the two version HFS data sets.

BPXPRMxx (for SY1) BPXPRMxx (for SY2)

FILESYSTYPE FILESYSTYPE

TYPE(HFS) TYPE(HFS)

ENTRYPOINT(GFUAINIT) ENTRYPOINT(GFUAINIT)

PARM(’ ’) PARM(’ ’)

VERSION(’REL9A’) VERSION(’REL9’)

SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT

FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR) TYPE(HFS) MODE(RDWR)

MOUNT MOUNT

FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’) FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’) MOUNTPOINT(’/&SYSNAME.’)

MOUNT MOUNT

FILESYSTEM(’OMVS.SYSR9A.ROOT.HFS’) FILESYSTEM(’OMVS.SYSR9.ROOT.HFS’)

TYPE(HFS) MODE(READ) TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’) FILESYSTEM(’OMVS.&SYSNAME..DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’) MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’) FILESYSTEM(’OMVS.&SYSNAME..TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’) MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 15. BPXPRMxx parmlib setup for multiple systems sharing HFS data sets and using different release levels

24 z/OS UNIX System Services APAR OA12251

In this scenario, for example, if ls –l /bin/ is issued on SY1, the user expects to see

the contents of /bin. However, because /bin is a symbolic link pointing to

$VERSION/bin, the symbolic link must be resolved first. $VERSION resolves to

OMVS.SYSR9.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin
/usr
/lib
/opt
/samples

/bin
/usr
/lib
/opt
/samples

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

OMVS.SY1.SYSTEM.HFS

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY2.DEV

OMVS.SY2.TMP

OMVS.SY2.VAR

OMVS.SY2.ETC

OMVS.SY2.SYSTEM.HFS

Sysplex root file system

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

REL9A

/

OMVS.SYSPLEX.ROOT

SY2

REL9

OMVS.SYSR9A.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin
/usr
/lib
/opt
/samples

/bin
/usr
/lib
/opt
/samples

/

/

/

/

Not used in
a sysplex

environment

Not used in
a sysplex

environment

Figure 16. Sharing HFS data sets between multiple systems using different release levels

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 25

/SYSR9A on SY1, which makes the pathname /SYSR9A/bin. The contents of this

directory will now display. If ls –l /bin/ is issued on SY2, the contents of

/SYSR9/bin will display.

From SY2 you can display information on SY1 by fully qualifying the directory. For

example, to view SY1’s /bin directory, you issue ls –l /SY1/bin/.

In order to use one BPXPRMxx parmlib file system member, we have used another

system symbolic like &SYSR1. This system symbolic is used in the VERSION

parameter and also as a qualifier in the version HFS data set name.

Keeping automount policies consistent on all systems in the sysplex

Rule: You must keep the automount policies consistent across all the participating

systems in the sysplex. The automount facility will not manage any directory until it

can process the entire policy without encountering any errors.

One BPXPRMxx Member to define file systems for the entire sysplex

Using different releases

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

VERSION(’&SYSR1.’)

SYSPLEX(YES)

ROOT

FILESYSTEM (’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’)

MOUNT

FILESYSTEM(’OMVS.&SYSR1..ROOT.HFS’)

TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 17. One BPXPRMxx parmlib member for multiple systems sharing HFS data sets and

using different release levels

26 z/OS UNIX System Services APAR OA12251

Steps in keeping your automount policy consistent on all

systems

Before OS/390 UNIX V2R9, your automount policy most likely resided in the

/etc/auto.master and /etc/u.map files. For those using shared HFS, each

participating system has a separate /etc file system. In order for automount policy

to be consistent across participating systems, the same copy of the automount

policy must exist in every system’s /etc/auto.master and /etc/u.map files.

For example both SY1 and SY2 have the following files:

v /etc/auto.master

 /u /etc/u.map

v /etc/u.map

 name *

 type HFS

 filesystem OMVS.<uc_name>.HFS

 mode rdwr

 duration 60

 delay 60

When the automount daemon initializes on SY1, it will read its local

/etc/auto.master file to identify what directories to manage; in this case, it is /u.

Next, the automount daemon will use the policy specified in the local /etc/u.map file

to mount file systems with the specified naming convention under /u. The

automount daemon on SY2 will perform similar actions. Because all mounted file

systems are available to all participating systems in the sysplex, your automount

policy must be consistent. This is true for the file system name specified in

/etc/u.map and the values for other parameters in /etc/u.map and

/etc/auto.master.

Moving file systems in a sysplex

You may need to change ownership of the file system for recovery or re-IPLing.

Tips:

v To check for file systems that have already been mounted, use the df command

from the shell.

v The SETOMVS command used with the FILESYS, FILESYSTEM, mount point

and SYSNAME parameters can be used to move a file system in a sysplex, or

you can use the chmount command from the shell. However, do not move two

types of file systems:

– System-specific file systems

– File systems that are being exported by DFS. You have to unexport them from

DFS first and then move them

Examples:

1. To move ownership of the file system that contains /u/wjs to SY1:

chmount -d SY1 /u/wjs

2. To move ownership of the payroll file system from the current owner to SY2

using SETOMVS, issue:

SETOMVS FILESYS,FILESYSTEM=’POSIX.PAYROLL.HFS’,SYSNAME=SY2

or (assuming the mount point is over directory /PAYROLL)

SETOMVS FILESYS,mountpoint=’/PAYROLL’,SYSNAME=SY2

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 27

If you mount a system-specific file system on other than the correct

(system-specific) owner, either explicitly or due to AUTOMOVE=YES, loss of

function may occur. For example, if the system-specific file system mounted at /dev

for SY1 is moved to SY2 so that ownership is now SY2, the OMVS command on

SY1 will fail.

Also, opened FIFO files are automatically closed before the file system containing

the FIFO is moved. They are closed because the in-storage FIFO data on the old

system is not moved and is no longer accessible on new owning system.

Shared HFS implications during system failures and recovery

File system recovery in a shared HFS environment takes into consideration file

system specifications such as AUTOMOVE, NOAUTOMOVE, UNMOUNT, and

whether or not the file system is mounted read-only or read-write.

Generally, when an owning system fails, ownership over its automove-mounted file

system is moved to another system and the file is usable. However, if a file system

is mounted read-write and the owning system fails, then all file system operations

for files in that file system will fail. This happens because data integrity is lost when

the file system owner fails. All files should be closed (BPX1CLO) and reopened

(BPX1OPN) when the file system is recovered. (The BPX1CLO and BPX1OPN

callable services are discussed in z/OS UNIX System Services Programming:

Assembler Callable Services Reference.)

For file systems that are mounted read-only, specific I/O operations that were in

progress at the time the file system owner failed may need to be started again.

In some situations, even though a file system is mounted AUTOMOVE, ownership

of the file system may not be immediately moved to another system. This may

occur, for example, when a physical I/O path from another system to the volume

where the file system resides is not available. As a result, the file system becomes

unowned; if this happens, you will see message BPXF213E. This is true if the file

system is mounted either read-write or read-only. The file system still exists in the

file system hierarchy so that any dependent file systems that are owned by another

system are still usable. However, all file operations for the unowned file system will

fail until a new owner is established. The shared HFS support will continue to

attempt recovery of AUTOMOVE file systems on all systems in the sysplex that are

enabled for shared HFS. Should a subsequent recovery attempt succeed, the file

system transitions from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)

those files and reopen (BPX1OPN) them after the file system is recovered.

File systems that are mounted NOAUTOMOVE or UNMOUNT will become unowned

when the file system owner exits the sysplex. The file system will remain unowned

until the original owning system restarts or until the unowned file system is

unmounted. Because the file system still exists in the file system hierarchy, the file

system mount point is still in use.

An unowned file system is a mounted file system that does not have an owner. The

file system still exists in the file system hierarchy. As such, you can recover or

unmount an unowned file system.

28 z/OS UNIX System Services APAR OA12251

Locking files in the sysplex

You can lock all or part of a file that you are accessing for read-write purposes by

using the byte range lock manager (BRLM). As default, the lock manager is

initialized on only one system in the sysplex. The first system that enters the

sysplex initializes the BRLM and becomes the system that owns the manager. For

example, if SY1 is the first system in the sysplex, then SY1 owns the BRLM; all

lock requests are routed to SY1.

When a system failure occurs on the system owning the BRLM, all history of byte

range locks is lost. A new BRLM is established by one of the surviving systems in

the sysplex, and locking can begin once that recovery has completed. However, to

maintain locking integrity for files open on surviving systems after the system that

owns the BRLM goes down, z/OS UNIX prevents further locking or I/O on opened

files that were locked. In addition, the applications are signalled, just in case they

never issue locking requests or I/O. Running applications that did not issue locking

requests and did not have files open are not affected. After a failure where byte

range locks are lost, z/OS UNIX provides the following information to processes that

have used byte range locking:

v Access to open files for which byte range locks are held by any process will

result in an I/O error. The file must be closed and reopened before use can

continue.

v A signal is issued to any process which has made use of byte range locking. By

default, a SIGTERM signal is issued against every such process, and an EC6

abend with reason code 0D258038 will terminate the process. If you do not want

the process to be terminated, the process can use BPX1PCT (the physical file

system control callable service) to specify a different signal for z/OS UNIX to use

for notifying the process that the BRLM has failed. Any signal can be used for

this purpose, thus allowing the user or application the ability to catch or ignore

the signal and react accordingly.

The system completion code EC6 and its associated reason codes are described

in z/OS MVS System Codes. See z/OS UNIX System Services Programming:

Assembler Callable Services Reference for more information about BPX1PCT.

Using distributed BRLM

Centralized BRLM is set up as the default. You can choose to have distributed

BRLM initialized on every system in the sysplex. Each BRLM is responsible for

handling locking requests for files whose file systems are mounted locally in that

system. If you want distributed BRLM, you need to follow the steps in “Steps for

setting up distributed BRLM on every system in the sysplex” on page 30.

Recommendation: Use distributed BRLM if you have applications that lock files

that are mounted and owned locally. Examples are the inetd and cron daemons.

Distributed BRLM eliminates a single point of failure by having applications like

inetd, cron, and Domino® server send their lock requests to the local distributed

BRLM server instead of the remote central BRLM server.

Restrictions: After you set up distributed BRLM, the following restrictions apply:

v You cannot go back to centralized BRLM unless you restore the sysplex to the

state it was in before distributed BRLM was set up. This will require resetting the

couple data set, followed by a sysplex-wide IPL

v If any open file in the file system has been locked by BRLM, you cannot move

file systems by an external command such as SETOMVS FILESYS,

FILESYSTEM=,SYSNAME=. Before the move can succeed, the file must be closed.

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 29

v With distributed BRLM, certain cross-system deadlock scenarios may not be

detected. Locking applications must ensure that they do not cause deadlocks.

Steps for setting up distributed BRLM on every system in the sysplex:

 Before you begin: You must bring down any locking applications if you are

activating distributed BRLM in a running sysplex. If you do not, they will be exposed

to any locking and I/O errors for any files that they have open.

Perform the following steps to set up BRLM on every system in the sysplex.

1. Ensure that all systems in the sysplex support BRLM.

F BPXOINIT,FILESYS=DISPLAY,GLOBAL

In the resulting display, you can check the supported levels. You should see

v.p.m, with either m>5 or p>2, or v>1. If a system is not at these levels, you will

have to apply APAR OW52293, with these corresponding PTFs: R609

UW85157, R703 UW85155, and R705 UW85156. (R706 automatically includes

support equivalent to those PTFs.)

2. Update the BPXMCDS couple data set using the IXCL1DSU utility.

Tip: See “Steps in creating an OMVS couple data set (CDS)” on page 11 for an

example of the COUPLExx parmlib member. z/OS MVS Setting Up a Sysplex

discusses the BPXMCDS couple data set and the IXCL1DSU utility.

3. Switch the CDS into a running sysplex.

Example:

SETXCF COUPLE,PSWITCH,TYPE=BPXMCDS

4. Remove the central BRLM server from the sysplex. Bringing it down eliminates

all file locking history in the sysplex and allows the new distributed BRLM

servers to start with a clean locking history.

When you are done, you have set up distributed BRLM. The system owning the file

system will be the system that receives all locking requests for files in that file

system.

Mounting file systems using NFS client mounts

With the z/OS NFS server, the client has remote access to z/OS UNIX files from a

client workstation. Using the Network File System, the client can mount all or part of

the file system and make it appear as part of its local file system. From the

workstation, the client user can create, delete, read, write, and treat the

host-located files as part of the workstation’s own file system.

In a similar way, the z/OS NFS client gives users remote access to files on an NFS

server. Using NFS, the user can mount all or part of the remote file system and

make it appear as part of the local z/OS file hierarchy. From there, the user can

create, delete, read, write, and treat the remotely located files as part of the own file

system.

In a sysplex, the NFS Client-NFS Server relationship is as follows: the data that

becomes accessible is accessible from any place in the sysplex as long as at least

one of the systems has connectivity to the NFS server.

30 z/OS UNIX System Services APAR OA12251

Rule: Entries in the NFS Server Export Data Set can control which HFS directories

can be mounted by client users. When specifying path names in this data set, you

must specify fully qualified path names. That is, the use of symbolic links in this

data set are not supported.

Preparing file systems for shutdown

File systems on the system where the shutdown was issued are immediately

unmounted; data is synched to disk as a result.

For shared HFS, one of the following actions is done on the file systems that are

owned by the system where the command was issued.

v Unmount if automounted or if a file system was mounted on an automounted file

system.

v Move to another system if an AUTOMOVE(YES) was specified.

v Unmount for all other file systems.

File systems that are not owned by the system on which the shutdown was issued

are not affected.

The shutdown should be done prior to an IPL. It replaces BPXSTOP.

On the system that you are preparing to shut down, issue the following command:

F BPXOINIT,SHUTDOWN=FILESYS

File system availability

In the Shared HFS environment, file system availability and accessibility depends

on a number of important factors. These factors can vary depending on how a file

system is mounted and the capability of the file system to manage itself in a

sysplex environment. After you set up the Shared HFS environment for

cross-system communication (“Procedures for establishing shared HFS in a

sysplex” on page 7), it will be helpful to understand how file systems availability is

provided to your systems, and what kinds of actions can cause interruptions to that

availability.

Minimum setup required for file system availability

Rules:

v For DASD file systems, at least one system in the Shared HFS group needs to

have a physical I/O path to the volume where the file system resides and the

volume varied online. Without connectivity from at least one system, the file

system will not be available to any of the systems in the Shared HFS group.

Connectivity from one system can provide Shared HFS accessibility to the file

system for all other systems in the Shared HFS group.

v All systems need to have the physical file system (PFS) started. Accomplish this

by placing the appropriate FILESYSTYPE statement in the BPXPRMxx parmlib

member that is used in the configuration. Additionally, any necessary subsystems

required by the PFS must be started and configured, especially if this system is

to function as the file system owner. For example, the NFS Client PFS requires

that the TCP/IP subsystem be started and a network connection configured.

Read-write connections for non-sysplex aware file systems: Most physical file

systems (PFSes) allow only one connection for update at a time. Such file systems

are called non-sysplex aware for update. This is directly related to the mount mode

of the file system. With HFS for example, only one system can actually connect to

the file system with a mode of RDWR. That system is called the file system owner.

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 31

The other systems that want to participate in Shared HFS sharing for the HFS file

systems will also request a RDWR mount, but their access will be provided via

cross-system messaging with the file system owner which has already established

the read-write connection. These systems are called file system clients. When the

file system owner becomes unavailable (for example, through system shutdown), it

will be important for another system (one of the file system clients) to have the file

system volume varied online so that a new owner can be established. This helps

ensure maximum file system availability in the Shared HFS group.

Read-write connections for sysplex-aware file systems: Some PFSes can

handle multiple concurrent connections for update. They are capable of managing

the serialization of such requests. Such file systems are called sysplex aware for

update. Most network file systems have this capability. NFS Client is one such file

system type.

For a read-write mount to NFS Client, each system in the Shared HFS group will

make a direct connection to NFS. The first system to make such a connection is

still called the file system owner. All subsequent systems to make a direct

connection are considered non-owners, rather than clients. This type of multiple

direct connection for read-write access allows for maximum I/O performance by

eliminating the need to send requests to the file system owner.

However, sometimes a non-owning system cannot make a direct connection to the

PFS even after meeting the minimum requirements (for example, sometimes

requests to NFS Client time out before they are satisfied). That system might be

given a cross-system messaging connection, making it a client to the file system.

While this is not the optimal mount mode for this type of file system, it does allow

access to the file system.

Read-only connections for non-sysplex aware file systems: There may be

some PFSes that do not support multiple concurrent connections for read-only

access. These are called non-sysplex aware for readonly, and are handled the

same as the read-write connections for non-sysplex aware file systems.

Read-only connections for sysplex-aware file systems: PFSes that support

multiple concurrent connections for read-only access are called sysplex aware for

readonly. The HFS PFS falls into this category. Such file systems are handled the

same as the read-write connections for sysplex aware file systems. The read-only

connections are attempted locally for each system in the Shared HFS group, but if

the file system volume is not online to a system, then the system becomes a client

to the file system via cross-system messaging with the owner.

Situations that can interrupt availability

Some situations may cause interruptions to file system availability on one or more

systems. Following is a list of some of the most common causes. It is not meant to

be an exhaustive list.

v Loss of the file system owner. If the file system owner leaves the Shared HFS

group (through system failure, soft shutdown, VARY, XCF, OFFLINE, or some

other means), an attempt may be made to establish another file system owner if

requested by the AUTOMOVE specification of the mount. If a new file system

owner cannot be established, the file system will become unowned. It will be

unavailable until the original owner can reclaim it, or until another owner is

established through subsequent automated recovery actions performed by

Shared HFS.

v PFS termination. If a PFS terminates on one system, it can affect file system

availability on other systems.

32 z/OS UNIX System Services APAR OA12251

– Prior to V1R2, if a PFS terminates on one system, all file systems of that type

are unmounted across the sysplex.

– In V1R2 and later, if a PFS terminates on one system, any file systems of that

type that are owned by other systems are not affected. File systems of that

type are moved to new owners whenever possible if they are owned by the

system where the PFS is terminating and are automovable. These file

systems remain accessible to other systems. If they cannot be moved to new

owners, they are unmounted across the sysplex. It may not be possible to

move a file system due to a lack of connectivity from other systems, or if the

file system containing the mount point for the file system needed to be moved

but could not be.

v VARY volume,OFFLINE. When the volume for a file system is varied offline, it

will make that file system inaccessible to that system. However, if the volume is

online to other systems, it may still be accessible to those systems and to other

systems via cross-system messaging. This would be the case for sysplex-aware

file systems for read-write or read-only access. Unlike loss of the file system

owner, varying a file system volume offline will not result in any attempt by the

system to try to restore accessibility to systems on which it is lost.

Tuning z/OS UNIX performance in a sysplex

The intersystem communication required to provide the additional availability and

recoverability associated with z/OS UNIX shared HFS support, affects response

time and throughput on R/W file systems being shared in a sysplex.

For example, assume that a user on SY1 requests a read on a file system mounted

R/W and owned by SY2. Using shared HFS support, SY1 sends a message

requesting this read to SY2 via an XCF messaging function:

SY1 ===> (XCF messaging function) ===> SY2

After SY2 gets this message, it issues the read on behalf of SY1, and gathers the

data from the file. It then returns the data via the same route the request message

took:

SY2 ===> (XCF messaging function) ===> SY1

Thus, adding z/OS UNIX to a sysplex increases XCF message traffic. To control this

traffic, closely monitor the number and size of message buffers and the number of

message paths within the sysplex. It is likely that you will need to define additional

XCF paths and increase the number of XCF message buffers above the minimum

default. For more information on signaling services in a sysplex environment, see

z/OS MVS Setting Up a Sysplex.

You should also be aware that because of I/O operations to the CDS, every mount

request requires additional system overhead. Mount time increases as a function of

the number of mounts, the number of members in a sysplex, and the size of the

CDS. You will need to consider the effect on your recovery time if a large number of

mounts are required on any system participating in shared HFS.

DFS considerations

A file system can only be exported by the DFS server at the system that owns the

file system. Once a file system has been exported by DFS, it cannot be moved until

it has been unexported by DFS.

To recover from system outages, you need to weigh sysplex availability against

availability to the DFS and Server Message Block (SMB) clients. When an owning

Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4) 33

system recycles and a DFS-exported file system has been taken over by one of the

other systems, DFS will not be able to automatically reexport that file system. The

file system will have to be moved from its current owner back to the original DFS

system, the one that has just been recycled, and then reexported.

Recommendation: For file systems that are mostly for use by DFS clients, you

should consider specifying NOAUTOMOVE on the MOUNT statement. If you specify

NOAUTOMOVE, the file systems will not be taken over if the system is recycled,

and they will be available for automatic reexport by DFS.

34 z/OS UNIX System Services APAR OA12251

Chapter 2. Changes for z/OS UNIX System Services Planning

(Version 1 Release 6)

Notice for APAR OA12251

Throughout the document, all descriptions of the AUTOMOVE function as it

relates to the behavior that occurs when an owning system becomes

unavailable (for instance, by shutting down, crashing, or leaving the sysplex)

should instead refer to the description below in “Customizing BPXPRMxx for

shared HFS” on page 47.

Shared HFS in a sysplex

Overview of using shared HFS in a sysplex

This chapter describes shared HFS capability available as of OS/390 UNIX V2R9

for those who participate in a multi-system sysplex. It assumes that you already

have a sysplex up. It defines what shared HFS is, introduces you to HFS data sets

that exist in a sysplex, and helps you establish that environment. The topics in this

chapter reflect the tasks you must do.

Although it is suggested that you exploit shared HFS support, you are not required

to. If you choose not to, you will continue to share HFS data sets as you have

before OS/390 UNIX V2R9. To see how your file system structure differs in OS/390

UNIX V2R9 from V2R8, see “Comparing file systems in single system pre-OS/390

UNIX V2R9 and OS/390 UNIX V2R9 or later environments” on page 3.

z/OS Parallel Sysplex Test Report describes how IBM’s integration test team

implemented shared HFS.

If you require a high level of security in your z/OS system and do not want

superusers to have access to z/OS resources such as SYS1.PROCLIB, read the

following sections:

v Comparing UNIX security and z/OS UNIX security in the chapter about setting up

for daemons.

v Establishing the correct level of security for daemons in the chapter about setting

up for daemons.

What does shared HFS mean?

Sysplex users can access data throughout the file hierarchy.

The best way to describe the benefit of this function is by comparing what was the

file system sharing capability prior to OS/390 UNIX V2R9 with the capability that

exists now. Consider a sysplex that consists of two systems, SY1 and SY2:

v Users logged onto SY1 can write to the directories on SY1. For users on SY1 to

make a change to file systems mounted on SY2’s /u directory, they would have

to log onto SY2.

v The system programmer who makes configuration changes for the sysplex needs

to change the entries in the /etc file systems for SY1 and SY2. To make the

changes for both systems, the system programmer must log onto each system.

With shared HFS, all file systems that are mounted by a system participating in

shared HFS are available to all participating systems. In other words, once a file

system is mounted by a participating system, that file system is accessible by any

© Copyright IBM Corp. 1996, 2005 35

other participating system. It is not possible to mount a file system so that it is

restricted to just one of those systems. Consider a OS/390 UNIX V2R9 sysplex that

consists of two systems, SY1 and SY2:

v A user logged onto any system can make changes to file systems mounted on

/u, and those changes are visible to all systems.

v The system programmer who manages maintenance for the sysplex can change

entries in both /etc file systems from either system.

In this chapter, the term participating group is used to identify those systems that

belong to the same SYSBPX XCF sysplex group and have followed the required

installation and migration activities to participate in shared HFS. To be in the

participating group, the system level must be at OS/390 UNIX V2R9 or later.

Systems earlier than OS/390 UNIX V2R9 can coexist in the sysplex with systems

using shared HFS support, but the earlier systems will only be able to share file

systems mounted on other systems in read-only mode, and not in read/write mode.

With shared HFS, there is greater availability of data in case of system outage.

There is also greater flexibility for data placement and the ability for a single

BPXPRMxx member to define all the file systems in the sysplex.

To see an animated example of what shared HFS is, navigate to this URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/animations/ussanims.html

How the end user views the HFS

This chapter describes the kinds of file systems and data sets that support the

shared HFS capability in the sysplex. Figure 18 shows that, to the end users, the

logical view of the HFS does not change for OS/390 UNIX V2R9. From their point

of view, accessing files and directories in the system is just the same. That is true

for all end users, whether they are in a sysplex or not.

This logical view applies to the end user only. However, system programmers need

to know that the illustration of directories found in Figure 18 does not reflect the

physical view of file systems. Starting in OS/390 UNIX V2R9, some of the

directories are actually symbolic links, as is described in the following information.

Summary of new HFS data sets

This chapter introduces HFS data sets and terms needed to use shared HFS.

Table 7 on page 37 summarizes the HFS data sets that are needed in a sysplex

that has shared HFS. As you study the illustrations of file system configurations in

this chapter, you can refer back to this table.

SYSTEM dev tmp var etcusrbinu lib opt samples

lpp

booksrv tcpip
. . .

Figure 18. Logical view of shared HFS for the end user

36 z/OS UNIX System Services APAR OA12251

Table 7. HFS data sets that exist in a sysplex

Name Characteristics Purpose How Created

Sysplex root It contains directories

and symbolic links

that allow redirection

of directories. Only

one sysplex root HFS

is allowed for all

systems participating

in shared HFS.

The sysplex root is used

by the system to redirect

addressing to other

directories. It is very

small and is mounted

read-write. See

“Procedures for

establishing shared HFS

in a sysplex” on page

7for a more complete

description of the

sysplex root HFS.

The user runs the

BPXISYSR job.

System specific It contains data

specific to each

system, including the

/dev, /tmp, /var, and

/etc directories for

one system. There is

one system-specific

HFS data set for each

system participating in

the shared HFS

capability.

The system-specific

HFS data set is used by

the system to mount

system-specific data. It

contains the necessary

mount points for

system-specific data and

the symbolic links to

access sysplex-wide

data, and should be

mounted read-write. See

“Steps in creating the

system-specific HFS

data sets” on page 8 for

a complete description

of the system-specific

HFS.

The user runs the

BPXISYSS job on each

participating system.

Version

In a sysplex,

version HFS is

the new name

for the root

HFS.

It contains system

code and binaries,

including the /bin,

/usr, /lib, /opt, and

/samples directories.

IBM delivers only one

version root; you

might define more as

you add new system

levels and new

maintenance levels.

The version HFS has

the same purpose as

the root HFS in the

non-sysplex world. It

should be mounted

read-only. See “Steps in

mounting the version

HFS” on page 9 for a

complete description of

the version HFS.

IBM supplies this HFS

in the ServerPac.

CBPDO users create

the HFS by following

steps defined in the

Program Directory.

Comparing file systems in single system pre-OS/390 UNIX V2R9 and

OS/390 UNIX V2R9 or later environments

The illustrations in this section show you how the file system structures that existed

before OS/390 UNIX V2R9 compare with the structures in OS/390 UNIX V2R9 and

later. IBM’s suggestions for several releases prior to OS/390 UNIX V2R9 has been

that you separate the system setup parameters from the file system parameters so

that each system in the sysplex has two BPXPRMxx members: a system limits

member and a file system member. In the shared HFS environment, that separation

of system limit parameters from file system parameters is even more important. In

the shared HFS environment, each system will continue to have a system limits

BPXPMRxx member. As you will see in sections that follow, with shared HFS, you

might have a file system BPXPRMxx member for each participating system or you

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 37

might replace those individual file system BPXPRMxx members with a single file

system BPXPRMxx member for all participating systems.

File systems in single system pre-OS/390 UNIX V2R9

environments

The following example shows what BPXPRMxx file system parameters would look

like in a single system environment (before OS/390 UNIX V2R9) with no regard to

sysplex.

 The root can be mounted either read-only or read-write.

Figure 20 shows the suggested setup of the root HFS in a single system

environment.

BPXPRMxx

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

ROOT

FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNT

FILESYSTEM(’OMVS.ETC.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/etc’)

.

.

.

Figure 19. BPXPRMxx for a single system before OS/390 UNIX V2R9 or later environments

Figure 20. Single system before OS/390 UNIX V2R9

38 z/OS UNIX System Services APAR OA12251

The directories in the root HFS represent “first-level” directories created by IBM.

The /etc, /dev, /var, /tmp, and /u directories are used as mount points for other

HFS data sets.

File systems in single system OS/390 UNIX V2R9 or later

environments

Figure 21 shows what BPXPRMxx file system parameters would look like in an

OS/390 UNIX V2R9 (or later) single system environment, and Figure 22 on page 40

shows the corresponding single system image. SYSPLEX(NO) is specified (or the

default taken), and the mount mode is read-write.

The root can be mounted either read-only or read-write.

BPXPRMxx

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

SYSPLEX(NO)

ROOT

FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNT

FILESYSTEM(’OMVS.DEV.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/dev’)

MOUNT

FILESYSTEM(’OMVS.TMP.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/tmp’)

MOUNT

FILESYSTEM(’OMVS.VAR.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/var’)

MOUNT

FILESYSTEM(’OMVS.ETC.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/etc’)

Figure 21. BPXPRMxx parmlib member for single system: OS/390 UNIX V2R9

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 39

The presence of symbolic links is transparent to the user. In the illustrations

used throughout this chapter, symbolic links are indicated with an arrow.

In Figure 22, the root file system contains an additional directory, /SYSTEM; existing

directories, /etc, /dev, /tmp and /var are converted into symbolic links. These

changes, however, are transparent to the user who brings up a single system

environment.

If the content of the symbolic link begins with $SYSNAME and SYSPLEX is

specified NO, then $SYSNAME is replaced with /SYSTEM when the symbolic link is

resolved.

File systems in OS/390 UNIX V2R9 or later sysplex environments

This section describes file systems in sysplex environments (OS/390 UNIX V2R9 or

later) and what you need to do to take advantage of shared HFS support, such as

creating specific HFS data sets (also see Table 1 on page 3) and the OMVS couple

data set, updating COUPLExx, and customizing BPXPRMxx.

Do not assume that with shared HFS, two systems can share a common HFS data

set for /etc, /tmp, /var, and /dev. This is not the case. Even with shared HFS, each

system must have specific HFS data sets for each of these file systems. The file

systems are then mounted under the system-specific HFS (see Figure 14 on page

23). With shared HFS support, one system can access system-specific file systems

on another system. (The existing security model remains the same.) For example,

while logged onto SY2, you can gain read-write access to SY1’s /tmp by specifying

/SY1/tmp/.

You should also be aware that when SYSPLEX(YES) is specified, each

FILESYSTYPE in use within the participating group must be defined for all systems

participating in shared HFS. The easiest way to accomplish this is to create a single

/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

/dev
/tmp
/var
/etc

/dev
/tmp
/var
/etc

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples
/…
/u

/bin
/usr
/lib
/opt
/samples
/…
/u

/SYSTEM/

dev

tmp

var

etc

dev

tmp

var

etc
OMVS.VAR.HFS

OMVS.ROOT.HFS

OMVS.DEV.HFS

OMVS.TMP.HFS

OMVS.ETC.HFS

Figure 22. Single system: OS/390 UNIX V2R9

40 z/OS UNIX System Services APAR OA12251

BPXPRMxx member that contains file system information for each system

participating in shared HFS. If you decide to define a BPXPRMxx member for each

system, the FILESYSTYPE statements must be identical on each system. To see

the differences between having one BPXPRMxx member for all participating

systems and having one member for each participating system, see the two

examples in “Scenario 2: Multiple systems in the sysplex – using the same release

level” on page 21.

In addition, facilities required for a particular file system must be initiated on all

systems in the participating group. For example, NFS requires TCP/IP; if you

specify a filesystype of NFS, you must also initialize TCP/IP when you initialize

NFS, even if there is no network connection.

Procedures for establishing shared HFS in a sysplex

For an animated overview of establishing shared HFS in a sysplex, navigate to this

URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/animations/ussanims.html

Creating the sysplex root HFS data set

The sysplex root is an HFS data set that is used as the sysplex-wide root. This

HFS data set must be mounted read-write and designated AUTOMOVE. (See

“Customizing BPXPRMxx for shared HFS” on page 13 for a description of the

AUTOMOVE parameter in BPXPRMxx.). Only one sysplex root is allowed for all

systems participating in shared HFS. The sysplex root is created by invoking the

BPXISYSR sample job in SYS1.SAMPLIB. After the job runs, the sysplex root file

system structure would look like Figure 23:

To see an animated example of the procedures for establishing shared HFS in a

sysplex, navigate to this URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/animations/ussanims.html

Sysplex root

/...

/bin
/usr
/lib
/opt
/samples
$VERSION
$SYSNAME
/dev
/tmp
/var
/etc

/u

/...

/bin
/usr
/lib
/opt
/samples
$VERSION
$SYSNAME
/dev
/tmp
/var
/etc

/u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

Figure 23. Sysplex root

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 41

No files or code reside in the sysplex root data set. It consists of directories and

symbolic links only, and it is a small data set.

The sysplex root provides access to all directories. Each system in a sysplex can

access directories through the symbolic links that are provided. Essentially, the

sysplex root provides redirection to the appropriate directories, and it should be kept

very stable; updates and changes to the sysplex root should be made as infrequent

as possible.

Creating the system-specific HFS data sets

Directories in the system-specific HFS data set are used as mount points,

specifically for /etc, /var, /tmp, and /dev. To create the system-specific HFS, run

the BPXISYSS sample job in SYS1.SAMPLIB on each participating system (in other

words, you must run the sample job separately for each system that will participate

in shared HFS). After you invoke the job, the system-specific file system structure

would look like Figure 24:

 The system-specific HFS data set should be mounted read-write, and should be

designated AUTOMOVE(UNMOUNT). Also, /etc, /var, /tmp, and /dev should be

mounted AUTOMOVE(UNMOUNT).

Guideline: The name of the system-specific data set should contain the system

name as one of the qualifiers. This enables you to use the &SYSNAME symbolic

(defined in IEASYMxx) in BPXPRMxx.

If you mount a system-specific file system on other than the correct

(system-specific) owner, either explicitly or due to AUTOMOVE=YES, loss of

function may occur. For example, if the system-specific file system mounted at /dev

for SY1 is moved to SY2 so that ownership is now SY2, the OMVS command on

SY1 will fail.

Mounting the version HFS

The version HFS is the IBM-supplied root HFS data set. To avoid confusion with the

sysplex root HFS data set, “root HFS” has been renamed to “version HFS”.

Figure 25 on page 43 shows a version HFS.

System-specific file system

bin
usr
lib
opt
samples

dev
tmp
var
etc

bin
usr
lib
opt
samples

dev
tmp
var
etc

/bin
/usr
/lib
/opt
/samples

Figure 24. System HFS

42 z/OS UNIX System Services APAR OA12251

Guidelines:

1. Mount the version HFS read-only in a sysplex environment, and designate it

AUTOMOVE. The mount point for the version HFS is dynamically created if the

VERSION statement is used in BPXPRMxx.

2. Do not use &SYSNAME as one of the qualifiers for the version HFS data set

name. In “Sysplex scenarios showing shared HFS capability” on page 18, REL9

and REL9A are used as qualifiers, which correspond to the system release

levels. However, you do not necessarily have to use the same qualifiers. Other

appropriate names are the name of the target zone, &SYSR1, or another

qualifier meaningful to the system programmer.

IBM supplies the version HFS in ServerPac. CBPDO users obtain the version HFS

by following directions in the Program Directory. There is one version HFS for each

set of systems participating in shared HFS and who are at the same release level

(that is, using the same SYSRES volume). In other words, each version HFS

denotes a different level of the system or a different service level. For example, if

you have 20 systems participating in shared HFS and 10 of those systems are at

OS/390 UNIX V2R9 and the other 10 are at z/OS UNIX V1R1, then you’ll have one

version HFS for the OS/390 V2R9 systems and one for the z/OS UNIX V1R1

systems. In essence, you will have as many version HFSes for the participating

systems as you have different levels running.

Before you mount your version HFS read-only, you may have some

element-specific actions. These are described in the section on post-installation

actions for mounting the root file system in the chapter on managing the

hierarchical file system.

Version file system
/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples
…
u

bin
usr
lib
opt
samples
…
u

SYSTEM/

Figure 25. Version HFS

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 43

Using the automove system list

When mounting file systems in the sysplex, you can specify a prioritized automove

system list to indicate where the file system should or should not to moved to when

ownership of a file system changes due to any of the following:

v A soft shutdown request is issued.

v Dead system takeover occurs (when a system leaves the sysplex without a prior

soft shutdown).

v A PFS terminates on the owning system.

v A request to move ownership of the file system is issued.

There are different ways to specify the automove system list.

v On the MOUNT statement in BPXPRMxx, specify the AUTOMOVE keyword,

including the indicator and system list.

v For the TSO MOUNT command, specify the AUTOMOVE keyword, including the

indicator and system list.

v Use the mount shell command.

v Use the ISHELL MOUNT interface.

v Specify the MNTE_SYSLIST variable for REXX.

v Specify the indicator and system list for the automove option in the chmount

shell command.

v Specify the indicator and system list for the automove option in the SETOMVS

operator command.

Using wildcards: When you specify the automove system list, you can use

wildcards in certain situations.

Example: If you have a large number of systems in your sysplex, you can specify

only the systems that should have priority and use a wildcard to indicate the rest of

the systems.

AUTOMOVE INCLUDE(s1,S2,...*)

At first glance, AUTOMOVE INCLUDE (*) appears to work the same way as

AUTOMOVE(YES) because all of the systems will try to take over the file system.

However with AUTOM0VE INCLUDE (*), if none of the systems can take over the

file system, it will be unmounted. If AUTOMOVE(YES) is used, the file system will

become unowned.

Restrictions:

1. All systems must be at the V1R6 level or later. Otherwise, results will be

unpredictable.

2. You can use the wildcard support on all methods of mounts, including the

MOUNT statement in BPXPRMxx, the TSO MOUNT command, the mount shell

command, the ISHELL MOUNT interface, the MNTE_SYSLIST variable for

REXX, C program, and assembler program.

3. The wildcard is only allowed in an INCLUDE list. It is not allowed in an

EXCLUDE list.

4. The wildcard must be the last item (or the only item) in the system list.

Specifying the automount delay time: Rule: In a shared HFS environment, do

not use the default automount delay time of 0. Instead, specify a delay time of at

least 10.

44 z/OS UNIX System Services APAR OA12251

|
|
|

|

|
|

|

|

Creating a couple data set (CDS)

The couple data set (CDS) contains the sysplex-wide mount table and information

about all participating systems, and all mounted file systems in the sysplex. To

allocate and format a CDS, customize and invoke the BPXISCDS sample job in

SYS1.SAMPLIB. The job will create two CDSs: one is the primary and the other is

a backup that is referred to as the alternate. In BPXISCDS, you also specify the

number of mount records that are supported by the CDS.

Use of the CDS functions in the following manner:

1. The first system that enters the sysplex with SYSPLEX(YES) initializes an

OMVS CDS. The CDS controls shared HFS mounts and will eventually contain

information about all systems participating in shared HFS.

This system processes its BPXPRMxx parmlib member, including all its ROOT

and MOUNT statement information. It is also the designated owner of the byte

range lock manager for the participating group. The MOUNT and ROOT

information are logged in the CDS so that other systems that eventually join the

participating group can read data about systems that are already using shared

HFS.

2. Subsequent systems joining the participating group will read what is already

logged in the CDS and will perform all mounts. Any new BPXPRMxx mounts are

processed and logged into the CDS. Systems already in the participating group

will then process the new mounts added to the CDS.

Following is the sample JCL with comments. The statements in bold contain the

values that you specify based on your environment.

//*

//STEP10 EXEC PGM=IXCL1DSU

//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* Begin definition for OMVS couple data set(1) */

 DEFINEDS SYSPLEX(PLEX1)

 /* Name of the sysplex in which the OMVS couple data set is to be used.*/

 DSN(SYS1.OMVS.CDS01) VOLSER(3390x1)

 /* The name and volume for the OMVS couple data set.

 The utility will allocate a new data set by the name specified on the

 volume specified.*/

 MAXSYSTEMS(8)

 /* Specifies the number of systems to be supported by the OMVS CDS.

 Default = 8 */

 NOCATALOG

 /* Default is not to CATALOG */

 DATA TYPE(BPXMCDS)

 /* The type of data in the data set being created for OMVS.

 BPXMCDS is the TYPE for OMVS. */

 ITEM NAME(MOUNTS) NUMBER(500)

 /* Specifies the number of MOUNTS that can be supported by OMVS.*/

 Default = 100

 Suggested minimum = 10

 Suggested maximum = 35000 */

 ITEM NAME(AMTRULES) NUMBER(50)

 /* Specifies the number of automount rules that can be supported by OMVS.*/

 Default = 50

 Minimum = 50

 Maximum = 1000 */

 ITEM NAME(DISTBRLM) NUMBER(1)

 /*Enable conversion to a distributed BRLM. */

 1, distributed BRLM enabled,

 0, distributed BRLM is not enabled during next sysplex IPL

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 45

not allowed for V1R6

 Default = 1 */

 /* Begin definition for OMVS couple data set(2) */

 DEFINEDS SYSPLEX(PLEX1)

 /* Name of the sysplex in which the OMVS couple data set is to be used. */

 DSN(SYS1.OMVS.CDS02) VOLSER(3390x2)

 /* The name and volume for the OMVS couple data set. The utility will

 allocate a new data set by the namespecified on the volume specified. */

 MAXSYSTEMS(8)

 /* Specifies the number of systems to be supported by the OMVS CDS.

 Default = 8 */

 NOCATALOG

 /* Default is not to CATALOG */

 DATA TYPE(BPXMCDS)

 /* The type of data in the data set being created is for OMVS. BPXMCDS is the

 TYPE for OMVS. */

 ITEM NAME(MOUNTS) NUMBER(500)

 /* Specifies the number of MOUNTS that can be supported by OMVS.

 Default = 100

 Suggested minimum = 10

 Suggested maximum = 35000 */

 ITEM NAME(AMTRULES) NUMBER(50)

 /* Specifies the number of automount rules that can be supported by OMVS.

 Default = 50

 Minimum = 50

 Maximum = 1000 */

 ITEM NAME(DISTBRLM) NUMBER(1)

 /*Enables conversion to a distributed BRLM.

 1, distributed BRLM enabled,

 0, distributed BRLM is not enabled; cannot be specified any longer

 Default = 1 */

Rule: Automount mounts must be included in the MOUNTS value. The number of

automount mounts is the expected number of concurrently mounted file systems

using the automount facility. For example, you may have specified 1000 file

systems to be automounted, but if you expect only 50 to be used concurrently, you

should factor these 50 into your MOUNTS value.

For more information about setting up a sysplex on MVS, see z/OS MVS Setting Up

a Sysplex.

The NUMBER(nnnn) specified for mounts and automount rules (a generic or

specific entry in an automount map file) is directly linked to function performance

and the size of the CDS. If maximum values are specified, the size of the CDS will

increase accordingly and the performance level for reading and updating it will

decline.

Conversely, if the NUMBER values are too small, the function (for example, the

number of mounts supported) would fail after the limit is reached. However, a new

CDS can be formatted and switched in with larger values specified in NUMBER. To

make the switch, issue the SETXCF COUPLE,PSWITCH command. The number of

file systems required (factoring in an additional number to account for extra

mounts), determines your minimum and maximum NUMBER value.

After the CDS is created, it must be identified to XCF for use by z/OS UNIX.

Updating COUPLExx to define the OMVS CDS to XCF: Update the active

COUPLExx parmlib member to define a primary and alternate OMVS CDS to XCF.

The primary and alternate CDSs should be placed on separate volumes. (The

sample JCL in “Steps in creating an OMVS couple data set (CDS)” on page 11

shows the primary CDS on volume 3390x1 and the secondary CDS on 3390x2.)

46 z/OS UNIX System Services APAR OA12251

Figure 26 shows the COUPLExx parmlib member; statements that define the CDS

are in bold.

 The MVS operator commands (DISPLAY XCF, SETXCF, DUMP, CONFIG, and

VARY) enable the operator to manage the z/OS UNIX CDS.

Customizing BPXPRMxx for shared HFS

To see an animation that shows you the customization process, navigate to this

URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/animations/ussanims.html

HFS sharing enables you to use one BPXPRMxx member to define all the file

systems in the sysplex. This means that each participating system has its own

BPXPRMxx member to define system limits, but shares a common BPXPRMxx

member to define the file systems for the sysplex. This is done through the use of

system symbolics. Figure 12 on page 21 shows an example of this unified member.

You can also have multiple BPXPRMxx members defining the file systems for

individual systems in the sysplex. An example of this is Figure 13 on page 22.

The following parameters set up HFS sharing in a sysplex:

v SYSPLEX(YES) sets up HFS sharing for those who are in the SYSBPX XCF

group, the group that is participating in HFS data sharing. To participate in HFS

data sharing, the systems must be at the OS/390 V2R9 level or later. Those

system that specify SYSPLEX(YES) make up the participating group for the

sysplex.

If SYSPLEX(YES) is specified in the BPXPRMxx member, but the system is

initialized in XCF-local mode, either by specifying COUPLE SYSPLEX(LOCAL) in

the COUPLExx member or by specifying PLEXCFG=XCFLOCAL in the

IEASYSxx member, then the kernel will ignore the SYSPLEX(YES) value and

initialize with SYSPLEX(NO). This system will not participate in shared HFS

support after the initialization completes.

v VERSION('nnnn') allows multiple releases and service levels of the binaries to

coexist and participate in HFS sharing. nnnn is a qualifier to represent a level of

the version HFS. The most appropriate values for nnnn are the name of the

target zone, &SYSR1, or another qualifier meaningful to the system programmer.

/* For all systems in any combination, up to an eightway */

COUPLE INTERVAL(60) /* 1 minute */

 OPNOTIFY(60) /* 1 minute */

 SYSPLEX(PLEX1) /* SYSPLEX NAME*/

 PCOUPLE(SYS1.PCOUPLE,CPLPKP) /* COUPLE DS */

 ACOUPLE(SYS1.ACOUPLE,CPLPKA) /* ALTERNATE DS*/

 MAXMSG(750)

 RETRY(10)

DATA TYPE(CFRM)

 PCOUPLE(SYS1.PFUNCT.CTTEST,FDSPKP)

 ACOUPLE(SYS1.AFUNCT.CTTEST,FDSPKA)

DATA TYPE(BPXMCDS)

 PCOUPLE(SYS1.OMVS.CDS01,3390x1)

 ACOUPLE(SYS1.OMVS.CDS02,3390x2)

/* CTC DEFINITIONS: ALL SYSTEMS */

PATHOUT DEVICE(8E0)

PATHIN DEVICE(CEF)

Figure 26. COUPLExx parmlib member

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 47

A directory with the value nnnn specified on VERSION will be dynamically

created at system initialization under the sysplex root and will be used as a

mount point for the version HFS.

There is one version HFS for every instance of the VERSION parameter. More

information about version HFS appears in “Steps in mounting the version HFS”

on page 9.

v The SYSNAME(sysname) parameter on ROOT and MOUNT statements specifies

the particular system on which a mount should be performed. sysname is a 1–8

alphanumeric name of the system. This system will then become the owner of

the file system mounted. The owning system must be IPLed with

SYSPLEX(YES).

Tip: Specify SYSNAME(&SYSNAME.) or omit the SYSNAME parameter. In this

case, the system that processes the mount request mounts the file system and

becomes its owner.

The SYSNAME parameter is also used with SETOMVS when moving file

systems, as demonstrated in “Moving file systems in a sysplex” on page 27.

The AUTOMOVE|NOAUTOMOVE|UNMOUNT parameters on the ROOT and

MOUNT statements indicate what happens to the ownership of a file system in the

following situations:

v A shutdown process is issued (soft shutdown)

v Dead system takeover occurs (a system leaves the sysplex without a prior soft

shutdown)

v A PFS terminates on the owning system

v A request to move ownership of a file system is issued

AUTOMOVE is the default, specifying that ownership of the file system is

automatically moved to another system.

The action taken is determined by the AUTOMOVE value and the

sysplex-awareness capability of the file system.

The owner of a file system is the first system that processes the mount. This

system always accesses the file system locally; that is, the system does not access

the file system through a remote system. Other non-owning systems in the sysplex

access the file system either locally or through the remote owning system,

depending on the PFS and the mount mode. If a PFS allows a file system to be

locally accessed on all systems in a sysplex for a particular mode, then the PFS is

sysplex-aware for that mode. If a PFS requires that a file system be accessed

through the remote owning system from all other systems in a sysplex for a

particular mode, then the PFS is sysplex-unaware for that mode.

Even if a PFS is sysplex-aware for a particular mode, if a non-owning system does

not have DASD connectivity, the file system is accessed remotely through the

owning system. For example, HFS is sysplex-unaware for read-write mode,

because all non-owning systems must access read-write file systems through the

remote owning system. The non-owning systems are said to be sysplex clients.

However, HFS is sysplex-aware for read-only mode, which means that each system

can access read-only file systems locally, and do not need to contact the owning

system. AUTOMOVE is intended for sysplex-unaware file systems, where

non-owning systems access the file systems remotely, to allow you to specify what

will happen to the ownership of file systems owned when shutdown, PFS

termination, dead system takeover, or move file system occur. For sysplex-aware

file systems, since they tend to be accessed locally on each system, independent of

48 z/OS UNIX System Services APAR OA12251

|
|
|

|

|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

other systems, ownership is simply moved, and file system access continues as it

was, regardless of the value of AUTOMOVE.

TFS file systems do not participate in move operations, regardless of the

AUTOMOVE setting. Automount-managed file systems are handled as AUTOMOVE

if the file system is being used locally.

Restriction: An AUTOMOVE file system cannot be moved to a system where

OMVS has been shut down or where F BPXOINIT,SHUTDOWN=FILEOWNER has been

issued.

The following is the behavior for file systems that are mounted in a mode for which

the PFS is sysplex-aware:

1. MOUNT allows AUTOMOVE(YES) or AUTOMOVE(UNMOUNT). If

AUTOMOVE(NO) or a system list is specified, it is changed to

AUTOMOVE(YES) and a message, BPXF234I, is put in the hardcopy log. After

the MOUNT, an attempt to change AUTOMOVE to NO or specify a system list

using chmount is rejected.

2. A move of a file system that is AUTOMOVE(NO) or has a system list to a new

owner that is at V1R6 or later will change the file system to AUTOMOVE(YES) if

all systems in the sysplex are at least at V1R6 or later. Again, a message will

be put in the hardcopy log. This applies to any way that a file system can be

moved to a new owner, including chmount, PFS termination, soft shutdown,

and dead system recovery.

3. Remount does not change the AUTOMOVE setting, even if the new mount

mode is now sysplex-aware.

Restriction: For z/OS V1R6, AUTOMOVE(NO) or system list will only be permitted

for a sysplex-aware file system if the file system is mounted in a mixed-release

sysplex where one or more systems are at a release below V1R6.

Table 8 shows what happens during soft shutdown for various AUTOMOVE settings

for sysplex-aware and sysplex-unaware systems. A leaf file system refers to a file

system that does not contain any file systems that are mounted on a directory

within that file system. A subtree is the file system and all file systems that are

mounted beneath that file system. Soft shutdown is done by issuing one of the

following MODIFY commands:

F BPXOINIT,SHUTDOWN=FILESYS

F BPXOINIT,SHTUDOWN=FILEOWNER

F OMVS,SHUTDOWN

 Table 8. Soft shutdown actions for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

Unmounts the file system. The unmount

will fail if it is not a leaf file system.

Unmounts the file system. The unmount

will fail if it is not a leaf file system.

AUTOMOVE

(no system list)

Moves the file system to any system. If

the move fails, the unmount is not

attempted and ownership does not

change.

Moves the file system to any system. If

the move fails, the unmount is not

attempted and ownership does not

change.

AUTOMOVE with a system

list

Moves the file system to any system. The

system list is ignored. If the file system

cannot be moved, the unmount is not

attempted and ownership does not

change.

The move uses the system list. If the file

system cannot be moved, the unmount is

not attempted and ownership does not

change.

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 49

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

||

|||

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

Note: Automount-managed file systems are unmounted by a soft shutdown

operation if the file system is not referenced by any other system in the

sysplex. If it is referenced by another system or systems, ownership of the

file system is moved. If the move fails, an unmount is not attempted and

ownership does not change.

Table 9 shows what happens during dead system takeover for various AUTOMOVE

settings for sysplex-aware and sysplex-unaware file systems. Dead system takeover

is the action taken by systems in a sysplex when they attempt to take over

ownership of file systems that were previously owned by a system that has just left

the sysplex.

Note: Takeover is always attempted for file systems that are sysplex aware. Most

of these systems already have the file system locally mounted.

 Table 9. Dead system takeover for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE Takeover is attempted by all systems. The

file system becomes unowned if it cannot

be taken over by a new owning system.

Takeover is not attempted. The file

system becomes unowned.

UNMOUNT Takeover is attempted by all systems. The

subtree is unmounted if it cannot be

taken over by a new owning system.

Takeover is not attempted. The subtree is

unmounted.

AUTOMOVE

(no system list)

Takeover is attempted. The file system

becomes unowned if it cannot be taken

over by a new owning system.

Takeover is attempted. The file system

becomes unowned if it cannot be taken

over by a new owning system.

AUTOMOVE with a system

list

Takeover is attempted by all systems in

the sysplex. The system list is ignored.

The file system becomes unowned if it

cannot be taken over by a new owning

system.

Takeover is attempted and the INCLUDE

or EXCLUDE system list is honored. The

subtree is unmounted if the takeover

does not happen.

Note: There is no attempt to take over automount-managed file systems if the file

system is not referenced by any system that is eligible to attempt takeover.

Automount-managed, unowned file systems will be unmounted.

Table 10 shows what happens during PFS termination for various AUTOMOVE

settings for sysplex-aware and sysplex-unaware file systems.

 Table 10. PFS termination for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

Moves to any system. If the move fails,

the subtree is unmounted.

The subtree is unmounted.

AUTOMOVE

(no system list)

Moves to any system. If the move fails,

the subtree is unmounted.

Moves to any system. If the move fails,

the subtree is unmounted.

AUTOMOVE with a system

list

Moves to any system, ignoring the

system list. If the move fails, the subtree

is unmounted.

The move uses the system list. If the

move fails, the subtree is unmounted.

50 z/OS UNIX System Services APAR OA12251

|

|
|
|
|
|

|
|
|
|
|

|
|

||

|||

||
|
|

|
|

||
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|

||

|||

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|

Table 11 shows what happens when a move file system is requested to move a

specific file system to any target system (wildcard is used). A move file system

request can be issued with a SETOMVS operator command or a chmount shell

command.

 Table 11. Move a specific file system to any system to any system for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

or

AUTOMOVE

(no system list)

Move is attempted to all systems. Move is attempted to all systems.

AUTOMOVE with a system

list

Move is attempted to all systems,

ignoring the system list.

Move is attempted using the system list.

Table 12 shows what happens when a move file system is requested to do a

multi-file system move, moving all file systems from a system to a specific target

system. A move file system request can be issued with a SETOMVS operator

command or a chmount shell command.

 Table 12. Move all file systems from a system to a specific target system to any system for various AUTOMOVE

settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

Move is attempted to the target system. Move is not attempted.

AUTOMOVE

(no system list)

Move is attempted to the target system. Move is attempted to the target system.

AUTOMOVE with a system

list

Move is attempted to the target system,

ignoring the system list.

Move is attempted to the target system,

ignoring the system list.

Rules:

v Define your version and sysplex root file systems as AUTOMOVE.

v Define your system-specific file systems as UNMOUNT.

v Do not define a file system as NOAUTOMOVE or UNMOUNT and a file system

underneath it as AUTOMOVE. If you do, the file system defined as AUTOMOVE

will not be recovered after a system failure until that failing system has been

restarted.

Guidelines:

1. To ensure that the root is always available, use the default, which is

AUTOMOVE.

2. For sysplex-unaware file systems that are mostly exported by the DFS or SMB

server to their remote clients, consider specifying NOAUTOMOVE on the

MOUNT statement. Then the file systems will not change ownership if the

system is suddenly recycled, and they will be available for automatic re-export

by DFS or SMB.

Specifying NOAUTOMOVE is suggested because a file system can only be

exported by the DFS or SMB server at the system that owns the file system. A

file system can only be exported by the DFS or SMB server at the system that

owns the file system. Once a file system has been exported by DFS, it cannot

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 51

|
|
|
|

||

|||

|
|
|
|
|
|

||

|
|
|
|
|

|

|
|
|
|

||
|

|||

|
|
|

||

|
|
||

|
|
|
|
|
|
|

|

|

|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

be moved until it has been unexported by DFS. The same holds true of file

systems exported by SMB. When recovering from system outages, you need to

weigh sysplex availability against availability to the DFS or SMB clients. When

an owning system recycles and a file system exported by DFS or SMB has

been taken over by one of the other systems, DFS or SMB cannot automatically

re-export that file system. When an owning system is recycled and an exported

file system has been taken over by one of the other systems, that file system

will not be automatically reexported. The file system will have to be moved from

its current owner back to the original system, the one that has just been

recycled, and then exported again.

For more information about VERSION, SYSPLEX, SYSNAME and

AUTOMOVE|NOAUTOMVE|UNMOUNT, see z/OS MVS Initialization and Tuning

Reference.

Sysplex scenarios showing shared HFS capability

Scenario 1: First system in the sysplex

Figure 27 on page 53 and Figure 28 on page 54 shows a z/OS UNIX file system

configuration for shared HFS. Here, SYSPLEX(YES) and a value on VERSION are

specified, and a directory is dynamically created on which the version HFS data set

is mounted. This type of configuration requires a sysplex root and system-specific

HFS.

52 z/OS UNIX System Services APAR OA12251

|
|
|
|
|
|
|
|
|
|

|
|
|

�1� This is the sysplex root HFS data set, and was created by running the

BPXISYSR job. AUTOMOVE is the default and therefore is not specified,

allowing another system to take ownership of this file system when the owning

system goes down.

 �2� This is the system-specific HFS data set, and was created by running the

BPXISYSS job. It must be mounted read-write. NOAUTOMOVE is specified

because this file system is system-specific and ownership of the file system

should not move to another system should the owning system go down. The

MOUNTPOINT statement /&SYSNAME. will resolve to /SY1 during parmlib

processing. This mount point is created dynamically at system initialization.

 �3� This is the old root HFS (version HFS).

Guideline: It should be mounted read-only. Its mount point is created

dynamically and the name of the HFS is the value specified on the VERSION

statement in the BPXPRMxx member. AUTOMOVE is the default and therefore

is not specified, allowing another system to take ownership of this file system

when the owning system goes down.

 �4� This HFS contains the system-specific /dev information. NOAUTOMOVE is

specified because this file system is system-specific; ownership should not move

BPXPRMxx for (SY1)

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

VERSION(’REL9’)

SYSPLEX(YES)

ROOT

FILESYSTEM (’OMVS.SYSPLEX.ROOT’) �1�

TYPE(HFS) MODE(RDWR)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’) �2�

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’)

MOUNT

FILESYSTEM(’OMVS.ROOT.HFS’) �3�

TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’) �4�

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’) �5�

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 27. BPXPRMxx parmlib setup — HFS sharing

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 53

to another system should the owning system go down. The MOUNTPOINT

statement /&SYSNAME./dev will resolve to /SY1/dev during parmlib processing.

 �5� This HFS contains system-specific /tmp information. NOAUTOMOVE is

specified because this file system is system-specific; ownership should not move

to another system should the owning system go down. The MOUNTPOINT

statement /&SYSNAME./tmp will resolve to /SY1/tmp during parmlib

processing.

 If the content of the symbolic link begins with $VERSION or $SYSNAME, the

symbolic link will resolve in the following manner:

v If you have specified SYSPLEX(YES) and the symbolic link for /dev has the

contents $SYSNAME/dev, the symbolic link resolves to /SY1/dev on system SY1

and /SY2/dev on system SY2.

v If you have specified SYSPLEX(YES) and the content of the symbolic link begins

with $VERSION, $VERSION resolves to the value nnnn specified on the

VERSION parameter. Thus, if VERSION in parmlib is set to REL9, then

$VERSION resolves to /REL9. For example, a symbolic link for /bin, which has

the contents $VERSION/bin, resolves to /REL9/bin on a system whose

$VERSION value is set to REL9.

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

Sysplex root file system

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

REL9

/

OMVS.SYSPLEX.ROOT

OMVS.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

Not used in

a sysplex

environment

OMVS.SY1.SYSTEM.HFS

/

/

Figure 28. HFS sharing in a sysplex

54 z/OS UNIX System Services APAR OA12251

In the above scenario, if ls –l /bin/ is issued, the user expects to see the contents

of /bin. However, because /bin is a symbolic link pointing to $VERSION/bin, the

symbolic link must be resolved first. $VERSION resolves to /REL9 which makes the

path name /REL9/bin. The contents of /REL9/bin will now be displayed.

Scenario 2: Multiple systems in the sysplex using the same

release level

Figure 31 on page 58 shows another SYSPLEX(YES) configuration. In this

configuration, however, two or more systems are sharing the same version HFS

(the same release level of code). Figure 29 on page 56 shows a sample

BPXPRMxx for the entire sysplex (what IBM suggests) using &SYSNAME. as a

symbolic name, and Figure 13 on page 22 shows a configuration where each

system in the sysplex has its own BPXPRMxx. For our example, SY1 has its own

BPXPRMxx and SY2 has its own BPXPRMxx.

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 55

One BPXPRMxx Member to Define File Systems for the Entire Sysplex

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

VERSION(’REL9’)

SYSPLEX(YES)

ROOT

FILESYSTEM (’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR)

MOUNT FILESYSTEM(’OMVS.USER.HFS’)

MOUNTPOINT(’u’) AUTOMOVE

TYPE(HFS) MODE(RDWR)

MOUNT FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’)

MOUNT

FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 29. Sharing HFS data sets: one version HFS and one BPXPRMxx for the entire

sysplex

56 z/OS UNIX System Services APAR OA12251

BPXPRMS1 (for SY1) BPXPRMS2 (for SY2)

FILESYSTYPE FILESYSTYPE

TYPE(HFS) TYPE(HFS)

ENTRYPOINT(GFUAINIT) ENTRYPOINT(GFUAINIT)

PARM(’ ’) PARM(’ ’)

VERSION(’REL9’) VERSION(’REL9’)

SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT

FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR) TYPE(HFS) MODE(RDWR)

MOUNT MOUNT

FILESYSTEM(’OMVS.SY1.SYSTEM.HFS’) FILESYSTEM(’OMVS.SY2.SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/SY1’) MOUNTPOINT(’/SY2’)

MOUNT FILESYSTEM(’OMVS.ROOT.HFS’) MOUNT FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(READ) TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT FILESYSTEM(’OMVS.SY1.DEV’) MOUNT FILESYSTEM(’OMVS.SY2.DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/SY1/dev’) MOUNTPOINT(’/SY2/dev’)

MOUNT FILESYSTEM(’OMVS.SY1.TMP’) MOUNT FILESYSTEM(’OMVS.SY2.TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/SY1/tmp’) MOUNTPOINT(’/SY2/tmp’)

.

.

.

Figure 30. Sharing HFS data sets: one version HFS and separate BPXPRMxx members for

each system in the sysplex

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 57

In this scenario, where multiple systems in the sysplex are using the same version

HFS, if ls –l /bin/ is issued from either system, the user expects to see the contents

Sysplex root file system

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

REL9

/

OMVS.SYSPLEX.ROOT

OMVS.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin
/usr
/lib
/opt
/samples

/bin
/usr
/lib
/opt
/samples

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

OMVS.SY1.SYSTEM.HFS

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY2.DEV

OMVS.SY2.TMP

OMVS.SY2.VAR

OMVS.SY2.ETC

OMVS.SY2.SYSTEM.HFS

SY2

/

/

/

Not used in
a sysplex

environment

Figure 31. Sharing HFS data sets in a sysplex for OS/390 V2R9: multiple systems in a sysplex using the same release

level

58 z/OS UNIX System Services APAR OA12251

of /bin. However, because /bin is a symbolic link pointing to $VERSION/bin, the

symbolic link must be resolved first. $VERSION resolves to /REL9 which makes the

path name /REL9/bin. The contents of this directory will be displayed.

Scenario 3: Multiple systems in a sysplex using different release

levels

If your participating group is in a sysplex that runs multiple levels of z/OS and/or

OS/390, your configuration might look like the one in Figure 33 on page 60. In that

configuration, each system is running a different level of z/OS and, therefore, has

different version HFS data sets; SY1 has the version HFS named

OMVS.SYSR9A.ROOT.HFS and SY2 has the version HFS named

OMVS.SYSR9.ROOT.HFS. Figure 32 shows two BPXPRMxx parmlib members that

define the file systems in this configuration. Figure 34 on page 61 shows a single

BPXPRMxx parmlib member that can be used to define this same configuration; it

uses &SYSR1. as the symbolic name for the two version HFS data sets.

BPXPRMxx (for SY1) BPXPRMxx (for SY2)

FILESYSTYPE FILESYSTYPE

TYPE(HFS) TYPE(HFS)

ENTRYPOINT(GFUAINIT) ENTRYPOINT(GFUAINIT)

PARM(’ ’) PARM(’ ’)

VERSION(’REL9A’) VERSION(’REL9’)

SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT

FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR) TYPE(HFS) MODE(RDWR)

MOUNT MOUNT

FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’) FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’) MOUNTPOINT(’/&SYSNAME.’)

MOUNT MOUNT

FILESYSTEM(’OMVS.SYSR9A.ROOT.HFS’) FILESYSTEM(’OMVS.SYSR9.ROOT.HFS’)

TYPE(HFS) MODE(READ) TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’) FILESYSTEM(’OMVS.&SYSNAME..DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’) MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’) FILESYSTEM(’OMVS.&SYSNAME..TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’) MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 32. BPXPRMxx parmlib setup for multiple systems sharing HFS data sets and using different release levels

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 59

In this scenario, for example, if ls –l /bin/ is issued on SY1, the user expects to see

the contents of /bin. However, because /bin is a symbolic link pointing to

$VERSION/bin, the symbolic link must be resolved first. $VERSION resolves to

OMVS.SYSR9.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin
/usr
/lib
/opt
/samples

/bin
/usr
/lib
/opt
/samples

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

OMVS.SY1.SYSTEM.HFS

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY2.DEV

OMVS.SY2.TMP

OMVS.SY2.VAR

OMVS.SY2.ETC

OMVS.SY2.SYSTEM.HFS

Sysplex root file system

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

REL9A

/

OMVS.SYSPLEX.ROOT

SY2

REL9

OMVS.SYSR9A.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin
/usr
/lib
/opt
/samples

/bin
/usr
/lib
/opt
/samples

/

/

/

/

Not used in
a sysplex

environment

Not used in
a sysplex

environment

Figure 33. Sharing HFS data sets between multiple systems using different release levels

60 z/OS UNIX System Services APAR OA12251

/SYSR9A on SY1, which makes the path name /SYSR9A/bin. The contents of this

directory will now be displayed. If ls –l /bin/ is issued on SY2, the contents of

/SYSR9/bin will display.

From SY2 you can display information on SY1 by fully qualifying the directory.

Example: To view SY1’s /bin directory:

ls –l /SY1/bin/

In order to use one BPXPRMxx parmlib file system member, we have used another

system symbolic like &SYSR1. This system symbolic is used in the VERSION

parameter and also as a qualifier in the version HFS data set name.

One BPXPRMxx member to define file systems for the entire sysplex

Using different releases

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

VERSION(’&SYSR1.’)

SYSPLEX(YES)

ROOT

FILESYSTEM (’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR)

MOUNT FILESYSTEM(’OMVS.USER.HFS’)

MOUNTPOINT(’u’) AUTOMOVE

TYPE(HFS) MODE(RDWR)

MOUNTFILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’)

MOUNT

FILESYSTEM(’OMVS.&SYSR1..ROOT.HFS’)

TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 34. One BPXPRMxx parmlib member for multiple systems sharing HFS data sets and

using different release levels

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 61

Automount policies

Rule: You must keep the automount policies consistent across all the participating

systems in the sysplex. The automount facility will not manage any directory until it

can process the entire policy without encountering any errors.

Keeping your automount policy consistent on all systems

Before OS/390 UNIX V2R9, your automount policy most likely resided in the

/etc/auto.master and /etc/u.map files. For those using shared HFS, each

participating system has a separate /etc file system. In order for the automount

policy to be consistent across participating systems, the same copy of the

automount policy must exist in every system’s /etc/auto.master and /etc/u.map

files.

AUTOMOUNT is the preferred method of managing the /u directory. You do not

need a mount statement for /u in the BPXPRMxx parmlib member.

For example, both SY1 and SY2 have the following files:

v /etc/auto.master

 /u /etc/u.map

v /etc/u.map

 name *

 type HFS

 filesystem OMVS.<uc_name>.HFS

 mode rdwr

 duration 60

 delay 60

When the automount daemon initializes on SY1, it will read its local

/etc/auto.master file to identify what directories to manage; in this case, it is /u.

Next, the automount daemon will use the policy specified in the local /etc/u.map file

to mount file systems with the specified naming convention under /u. The

automount daemon on SY2 will perform similar actions. Because all mounted file

systems are available to all participating systems in the sysplex, your automount

policy must be consistent. This is true for the file system name specified in

/etc/u.map and the values for other parameters in /etc/u.map and

/etc/auto.master.

Moving file systems in a sysplex

You may need to change ownership of the file system for recovery or re-IPLing.

Tips:

v To check for file systems that have already been mounted, use the df command

from the shell.

v The SETOMVS command used with the FILESYS, FILESYSTEM, mount point

and SYSNAME parameters can be used to move a file system in a sysplex, or

you can use the chmount command from the shell. However, do not move two

types of file systems:

– System-specific file systems

– File systems that are being exported by DFS. You have to unexport them from

DFS first and then move them

Examples:

1. To move ownership of the file system that contains /u/wjs to SY1:

chmount -d SY1 /u/wjs

62 z/OS UNIX System Services APAR OA12251

2. To move ownership of the payroll file system from the current owner to SY2

using SETOMVS, issue:

SETOMVS FILESYS,FILESYSTEM=’POSIX.PAYROLL.HFS’,SYSNAME=SY2

or (assuming the mount point is over directory /PAYROLL)

SETOMVS FILESYS,mountpoint=’/PAYROLL’,SYSNAME=SY2

If you mount a system-specific file system on other than the correct

(system-specific) owner, either explicitly or due to AUTOMOVE=YES, loss of

function may occur. For example, if the system-specific file system mounted at /dev

for SY1 is moved to SY2 so that ownership is now SY2, the OMVS command on

SY1 will fail.

Also, opened FIFO files are automatically closed before the file system containing

the FIFO is moved. They are closed because the in-storage FIFO data on the old

system is not moved and is no longer accessible on new owning system.

Shared HFS implications during system failures and recovery

File system recovery in a shared HFS environment takes into consideration file

system specifications such as the sysplex awareness capability, the AUTOMOVE

value, and whether or not the file system is mounted read-only or read-write.

Takeover is always attempted for file systems that are sysplex-aware, regardless of

the AUTOMOVE value. Most systems in the sysplex already have the file system

locally mounted, so the ownership is simply moved and file system access

continues as it was. Table 9 on page 50 describes the recovery actions that occur

for each combination of settings.

Generally, when an owning system fails, ownership of a file system that is mounted

AUTOMOVE is moved to another system and the file system remains usable.

However, if a file system is mounted read-write and the owning system fails, then all

file system operations for files in that file system will fail. This happens because

data integrity is lost when the file system owner fails. All files should be closed

(BPX1CLO) and reopened (BPX1OPN) when the file system is recovered. The

BPX1CLO and BPX1OPN callable services are discussed in z/OS UNIX System

Services Programming: Assembler Callable Services Reference.

For file systems that are mounted read-only, specific I/O operations that were in

progress at the time the file system owner failed may need to be started again.

In some situations, even though a file system is mounted AUTOMOVE, ownership

of the file system may not be immediately moved to another system. This may

occur, for example, when a physical I/O path from another system to the volume

where the file system resides is not available. As a result, the file system becomes

unowned; if this happens, you will see message BPXF213E. This is true if the file

system is mounted either read-write or read-only. The file system still exists in the

file system hierarchy so that any dependent file systems that are owned by another

system are still usable. However, all file operations for the unowned file system will

fail until a new owner is established. The shared HFS support will continue to

attempt recovery of AUTOMOVE file systems on all systems in the sysplex that are

enabled for shared HFS. If a subsequent recovery attempt succeeds, the file

system transitions from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)

those files and reopen (BPX1OPN) them after the file system is recovered.

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 63

|
|
|

|
|
|
|
|

|
|

Sysplex-unaware file systems that are mounted NOAUTOMOVE will become

unowned when the file system owner exits the sysplex. The file system will remain

unowned until the original owning system restarts or until the unowned file system

is unmounted. Note that since the file system still exists in the file system hierarchy,

the file system mount point is still in use. File systems that are mounted below a

NOAUTOMOVE file system will not be accessible via path name when the

NOAUTOMOVE file system becomes available.

Do not mount AUTOMOVE file systems within NOAUTOMOVE file systems. When

a NOAUTOMOVE file system becomes unowned and there are AUTOMOVE file

systems mounted within it, those AUTOMOVE file systems will retain a level of

availability, but only for files that are already open. When the NOAUTOMOVE file

system becomes unowned, it will not be possible to perform path name lookup

through it to the file systems mounted within it, which will make those file systems

unavailable for new access. When ownership is restored to the unowned file

system, access to the file systems mounted within it is also restored.

Managing the movement of data

File systems can be managed so as to maximize their availability when systems

exit the participating group. You have more control over this when the outage is

planned, but there are steps you can take to help manage the placement of data in

the event of a system failure.

Recovery processing for the file systems that are owned by a failed system is

managed internally by all the systems in the participating group. If you want special

considerations for the placement of certain file systems, you can use the options

provided by the various mount services to specify the original owner and

subsequent owners for a particular file system.

“Customizing BPXPRMxx for shared HFS” on page 47 describes the behavior of the

various AUTOMOVE options.

Table 13 shows the AUTOMOVE options that you can use with the MOUNT

command to manage sysplex-unaware file systems. (Table 14 on page 65 covers

the AUTOMOVE options for sysplex-aware file systems.)

 Table 13. Automove options supported by the MOUNT command for sysplex-unaware file

systems

UNMOUNT Attempts will not be made to keep the file system active when the

current owner fails. The file system will be unmounted when the owner

is no longer active in the participating group, as well as all the file

systems mounted within it. It is suggested for use on parmlib mounts

for system-specific file systems, such as those that would be mounted

at /etc, /dev, /tmp and /var.

64 z/OS UNIX System Services APAR OA12251

|
|

|
|

|
|
|

|
|
|
|
|
|

Table 13. Automove options supported by the MOUNT command for sysplex-unaware file

systems (continued)

NOAUTOMOVE Attempts will not be made to keep the file system active when the

current owner fails. The file system will remain in the hierarchy for

possible recovery when the original owner reinitializes. Use this option

on mounts for system-specific file systems if you want to have

automatic recovery when the original owner rejoins the participating

group.

When the NOAUTOMOVE option is used, the file system becomes

unowned when the owning system exits the participating group. The

file system remains unowned until the last owning system restarts, or

until the file system is unmounted. Because the file system still exists

in the file system hierarchy, the file system mount point is still in use.

An unowned file system is a mounted file system that does not have

an owner. Because it still exists in the file system hierarchy, it can be

recovered or unmounted.

AUTOMOVE

(no system list)

Recovery of the file system is to be performed when the current owner

fails. This option is suggested for use on mounts of file systems that

are critical to operation across all the systems in the participating

group. AUTOMOVE is the default.

AUTOMOVE with

a system list

AUTOMOVE(EXCLUDE|INCLUDE,sysname1,sysname2,...,sysnameN)

specifies managed recovery of the file system if the current owner fails.

v Use the EXCLUDE list to prevent recovery of a file system from

transferring ownership to a particular system, or set of systems, in

the participating group. When the current owner fails, recovery of the

file system is performed to an owner outside the exclude list.

v Use the INCLUDE list to ensure that recovery of a file system will

transfer ownership only to a particular system or set of systems in

the participating group. Recovery of the file system is performed in

priority order only by the list of systems specified in the INCLUDE

list.

Restriction: Only use this option on mounts of file systems that are

critical to operation across a subset of systems in the participating

group, or when you do not want certain systems in the participating

group to have ownership of the file system.

If recovery processing fails to establish a new owner for the file

system, the file system is unmounted, along with all the file systems

mounted within it.

Table 14 shows the AUTOMOVE options that you can use with the MOUNT

command to manage sysplex-aware file systems.

 Table 14. Automove options supported by the MOUNT command for sysplex-aware file

systems

UNMOUNT Attempt will be made to keep the file system active when the current

owner fails. The file system and all file systems that are mounted

beneath it will be unmounted if the file system cannot be taken over by

a new owning system.

AUTOMOVE Recovery of the file system is to be performed when the current owner

fails. This option is suggested for use on mounts of file systems that

are critical to operation across all the systems in the participating

group. AUTOMOVE is the default.

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 65

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

||
|

||
|
|
|

||
|
|
|
|

Note: AUTOMOVE or UNMOUNT are the only options you can use for file systems

that are mounted in a mode for which they are capable of being directly

mounted to the PFS on all systems (sysplex-aware). If you specify any other

option on a MOUNT, it is ignored and you will see message BPXF234I.

Most of the z/OS UNIX interfaces that provide for mounting file systems (such as

TSO, shell, ISHELL, and BPX2MNT) support some form of the options described in

“Customizing BPXPRMxx for shared HFS” on page 47. See the associated

documentation for the exact syntax.

Guideline: To ensure that the root is always available, use the default, which is

AUTOMOVE.

For file systems that are mostly used by DFS or SMB clients, consider specifying

NOAUTOMOVE on the MOUNT statement. Then the file systems will not change

ownership if the system is suddenly recycled, and they will be available for

automatic re-export by DFS or SMB. Specifying NOAUTOMOVE is suggested

because a file system can only be exported by the DFS or SMB server at the

system that owns the file system. Once a file system has been exported by DFS or

SMB, it cannot be moved until it has been unexported from DFS or SMB. When

recovering from system outages, you need to weigh sysplex availability against

availability to the DFS or SMB clients. When an owning system recycles and a

DFS- or SMB-exported file system has been taken over by one of the other

systems, DFS or SMB cannot automatically re-export that file system. The file

system will have to be moved from its current owner back to the original DFS or

SMB system, the one that has just been recycled, and then exported again.

Shared HFS implications during a planned shutdown of z/OS UNIX

These sections contain the procedures to use when shutting down z/OS UNIX.

v Steps for shutting down z/OS UNIX using F OMVS,SHUTDOWN in the Managing

Operations chapter.

v Steps for shutting down z/OS UNIX usinG F BPXOINIT,SHUTDOWN=... in the

Managing Operations chapter.

It is important that you understand the system actions that result when you use

those procedures.

The current automove option dictates if and how the participating group recovers

file system ownership from an exited system. It has no effect on the manual

movement of the file system. However, when you are using the procedures for

shutting down z/OS UNIX to prepare for a planned system outage, the automove

option does apply. This can be explained with the following rationale:

v A system failure does not provide any means for manual intervention. The

automove option provides a set of rules for automatic recovery.

v A request to move a file system manually is a deliberate action on behalf of an

authorized user or administrator, and should override any rules for automatic

recovery.

v Using tools to prepare for a system outage is also a deliberate action on behalf

of an authorized user or administrator, but you are using these tools in an

environment that can be customized to allow for additional manual intervention.

You can synchronize data before the system outage, and then manage the

planned outage in the same way as the unplanned outage, by making use of the

automatic recovery rules that are supplied by the automove options. If you prefer

some other action, you can perform manual intervention to move specific file

system ownership before you use these methods for shutdown preparation.

66 z/OS UNIX System Services APAR OA12251

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

Use F OMVS,SHUTDOWN to shut down file systems. If this is not appropriate for

your installation, use the F BPXOINIT,SHUTDOWN=... procedure.

State of file systems after shutdown

File systems on the system where the shutdown was issued are immediately

unmounted. As a result, data is synched to disk. For shared HFS, one of the

following actions is done on the file systems that are owned by the system where

the command was issued.

v Unmount if automounted or if a file system was mounted on an automounted file

system.

v Move to another system if an AUTOMOVE(YES) was specified.

v Unmount for all other file systems.

File systems that are not owned by the system on which the shutdown was issued

are not affected.

File system initialization

When you are preparing to bring a system back into the participating group after it

has left, it is helpful to understand the coordination that occurs among the systems

that are already participating in the group. You might see delays in the availability of

the entering system because of activity occurring elsewhere in the sysplex.

Although it is possible to bring up multiple systems simultaneously, when they reach

the point of z/OS UNIX initialization, their processing is serialized so as to allow

only one system at a time to initialize z/OS UNIX.

Other examples of activities occurring on other active systems that can cause the

initializing system to experience delays are

v Unmounting a file system

v Changing ownership of a file system

v Recovering for systems that have left the participating group

Before it rejoins the participating group, a system processes all the file systems that

are listed in the current hierarchy of the participating group. It also attempts to

reclaim any unowned file systems that it previously owned when it was part of the

participating group. It does not attempt to reclaim those file systems that were

successfully moved or recovered to another system in the sysplex.

During initialization, any new MOUNT statements in the BPXPRMxx parmlib

member are processed, which makes those file systems available for use within the

participating group after they are successfully mounted.

While a system is initializing in a sysplex, critical file systems that are necessary for

initialization to complete successfully might become unavailable due to a system

outage. When a system is removed from the sysplex, there is a window of time

during which any file systems it owned will become inaccessible to other systems.

This window of time occurs while other systems are being notified of the system’s

exit from the sysplex and before they start the cleanup for that system.

Ideally, ownership of critical file systems will have been moved to other systems

before the system exits. If that has not happened, there will be a window of time

during which these critical file systems are unowned. If the initializing system

requires access to these critical file systems during this window, there will likely be

mount failures that prevent the initialization from completing successfully. To avoid

this situation, you must make sure that any system that is being removed from the

sysplex does not own any critical file systems.

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 67

Locking files in the sysplex

You can lock all or part of a file that you are accessing for read-write purposes by

using the byte range lock manager (BRLM).

With V1R6, the lock manager is initialized on every system in the sysplex. This is

known as distributed BRLM, and it is the only supported byte range locking method

when all systems are at the V1R6 level. Each BRLM is responsible for handling

locking requests for files whose file systems are mounted locally in that system.

Distributed BRLM was formerly an option on previous levels of z/OS, and central

BRLM was formerly the default.

When a system failure occurs, all byte range locks are lost for files in file systems

owned by that system. To maintain locking integrity for those locked files that are

still open on surviving systems, z/OS UNIX prevents further locking or I/O on those

files. In addition, the applications are signaled, in case they never issue locking

requests or I/O. Running applications that did not issue locking requests and did not

have files open are not affected.

After a failure where byte range locks are lost, z/OS UNIX provides the following

information to processes that have used byte range locking:

v Access to open files for which byte range locks are held by any process will

result in an I/O error. The file must be closed and reopened before use can

continue.

v A signal is issued to any process which has made use of byte range locking. By

default, a SIGTERM signal is issued against every such process, and an EC6

abend with reason code 0D258038 will terminate the process. If you do not want

the process to be terminated, the process can use BPX1PCT (the physical file

system control callable service) to specify a different signal for z/OS UNIX to use

for notifying the process that the BRLM has failed. Any signal can be used for

this purpose, thus allowing the user or application the ability to catch or ignore

the signal and react accordingly.

z/OS MVS System Codes describes the system completion code EC6 and its

associated reason codes. See z/OS UNIX System Services Programming:

Assembler Callable Services Reference for more information about BPX1PCT.

Using distributed BRLM

With V1R6, a file system can be moved while byte range locks are held for files in

the file system. When a file system changes owners, the corresponding locking

history changes BRLM servers at the same time. (This is not the case when a

system failure occurs, as was discussed in “Locking files in the sysplex” on page

29.) For this reason, distributed BRLM is now the only supported method when all

systems are at the V1R6 level.

If you are already running with a z/OS UNIX CDS indicating that distributed BRLM

is enabled, there is no change required to activate distributed BRLM for V1R6.

Likewise, if your sysplex only has systems at the V1R6 level, there is no change

required, because distributed BRLM is the default. V1R6 systems ignore the z/OS

UNIX CDS DISTBRLM setting.

However, if you migrate to V1R6 by running mixed levels in a sysplex, you should

enable distributed BRLM before IPLing the V1R6 system because a V1R6 system

may attempt to activate distributed BRLM when the central BRLM server leaves the

sysplex, regardless of the z/OS UNIX CDS setting. The inconsistency between

distributed BRLM being active and central BRLM being defined in the z/OS UNIX

CDS can cause an EC6-BadOmvsCds abend on downlevel systems. It is a

68 z/OS UNIX System Services APAR OA12251

notification-only abend indicating that the CDS should be updated. z/OS UNIX will

still operate normally, and distributed BRLM will be active in the sysplex.

Before bringing the first V1R6 system into the sysplex, enable distributed BRLM by

using the IXCL1DSU utility to update the BPXMCDS couple data set and then

activate it. Message BPXF235I is issued when the switch from central BRLM to

distributed BRLM occurs.

See “Creating a couple data set (CDS)” on page 45 for an example of the

COUPLExx parmlib member. For more information about the BPXMCDS couple

data set and the IXCL1DSU utility, see z/OS MVS Setting Up a Sysplex.With V1R6,

if you run your IXCL1DSU job to create a z/OS UNIX couple data set, distributed

BRLM is set up as a default.

Mounting file systems using symbolic links

You can mount different file systems at a logical mount point that resolves to a

different path name on different systems.

While $VERSION/ can be used to differentiate a path based on the version level of

a system and $SYSNAME/ can be used to differentiate on each system, you can

use special identifiers to mount file systems using symbolic links. These are

$SYSSYMR/template and $SYSSYMA/template.

Restrictions:

1. Like $VERSION/ and $SYSNAME/, the identifiers need to be at the beginning of

the link name.

2. Only the first occurrence of $SYSSYMR/ or $SYSSYMA/ in the link name will be

recognized as an identifier for which the remaining text requires substitutions.

Any other identifiers after the first one will remain as is in the resolved linkname.

3. Text must follow a $SYSSYMR/ or $SYSSYMA/ in order for it to be recognized

as a valid identifier with text containing symbols to be resolved.

4. Any system symbol in the symbolic link text that is recognized by the

ASASYMBM service will be resolved. However, only static system symbols

should be used in order to avoid unexpected results. These symbols are

assigned a value at initialization. For information about system symbols, see

z/OS MVS Initialization and Tuning Reference.

Tip: You can use D SYMBOLS to display the current settings of system symbols.

Examples

These examples assume that the standard MVS symbol &SYSR1. resolves to

OSV315 on SY1 and resolves to OSV315B on SY2.

1. If the symbolic link is /x/y/sym1, and the symbolic link contains

$SYSSYMR/&SYSR1./resdir, a path name lookup on /x/y/sym1 from SY1 will

resolve the symbolic link to OSV315/resdir. Because it is a relative path name

(the identifier was $SYSSYMR/), the resulting path name will be

/x/y/OSV315/resdir.

Example: On a mount, passing /x/y/sym1 as the input mount point path name,

the mount point would be: /x/y/OSV315/resdir on SY1.

v If the symbol &SYSR1. resolves to OSV315B on SY2, a lookup of the same

path name would result in a mount point of /x/y/OSV315B/resdir.

v On a v_readlink syscall, passing the VnToken for the symbolic link, the output

linkname would be OSV315/resdir on SY1 or OSV315B/resdir on SY2.

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 69

2. If the symbolic link is /x/y/sym1, and the symbolic link contains

$SYSSYMA/&SYSR1./resdir, a path name lookup on /x/y/sym1 from SY1 will

resolve the symbolic link to /OSV315/resdir. Because it is an absolute path

name (the identifier was $SYSSYMA/), the resulting path name will be

/OSV315/resdir.

Example: On a mount, passing /x/y/sym1 as the input mount point path name,

the mount point would be /OSV315/resdir on SY1.

v If the symbol &SYSR1. resolves to OSV315B on SY2, a lookup of the same

path name from SY2 would result in a mount point of /OSV315B/resdir.

v On a v_readlink syscall, passing the VnToken for the symbolic link, the output

linkname would be /OSV315/resdir on SY1 and /OSV315B/resdir on SY2.

Mounting file systems using NFS client mounts

With the z/OS NFS server, the client has remote access to z/OS UNIX files from a

client workstation. Using the Network File System, the client can mount all or part of

the file system and make it appear as part of its local file system. From the

workstation, the client user can create, delete, read, write, and treat the

host-located files as part of the workstation’s own file system.

In a similar way, the z/OS NFS client gives users remote access to files on an NFS

server. Using NFS, the user can mount all or part of the remote file system and

make it appear as part of the local z/OS file hierarchy. From there, the user can

create, delete, read, write, and treat the remotely located files as part of their own

file system.

In a sysplex, the NFS Client-NFS Server relationship is as follows: the data that

becomes accessible is accessible from any place in the sysplex as long as at least

one of the systems has connectivity to the NFS server.

Rule: Entries in the NFS Server Export Data Set can control which HFS directories

can be mounted by client users. When specifying path names in this data set, you

must specify fully qualified path names. That is, the use of symbolic links in this

data set are not supported.

File system availability

In the shared HFS environment, file system availability and accessibility depend on

a number of important factors. These factors can vary depending on how a file

system is mounted and the capability of the file system to manage itself in a

sysplex environment. After you set up the shared HFS environment for

cross-system communication (“Procedures for establishing shared HFS in a

sysplex” on page 41), it will be helpful to understand how file system availability is

provided to your systems, and what kinds of actions can cause interruptions to that

availability.

Minimum setup required for file system availability

Rules:

v For DASD file systems, at least one system in the shared HFS group needs to

have a physical I/O path to the volume where the file system resides and the

volume is varied online. Without connectivity from at least one system, the file

system will not be available to any of the systems in the shared HFS group.

Connectivity from one system can provide shared HFS accessibility to the file

system for all other systems in the shared HFS group.

v All systems need to have the physical file system (PFS) started. Accomplish this

by placing the appropriate FILESYSTYPE statement in the BPXPRMxx parmlib

70 z/OS UNIX System Services APAR OA12251

member that is used in the configuration. Additionally, any necessary subsystems

required by the PFS must be started and configured, especially if this system is

to function as the file system owner. For example, the NFS Client PFS requires

that the TCP/IP subsystem be started and a network connection configured.

Read-write connections for non-sysplex aware file systems: Most physical file

systems (PFSes) allow only one connection for update at a time. Such file systems

are called non-sysplex aware for update. This is directly related to the mount mode

of the file system. With HFS, for example, only one system can actually connect to

the file system with a mode of RDWR. That system is called the file system owner.

The other systems that want to participate in shared HFS sharing for the HFS file

systems will also request a RDWR mount, but their access will be provided via

cross-system messaging with the file system owner which has already established

the read-write connection. These systems are called file system clients. When the

file system owner becomes unavailable (for example, through system shutdown), it

will be important for another system (one of the file system clients) to have the file

system volume varied online so that a new owner can be established. This helps

ensure maximum file system availability in the shared HFS group.

Read-write connections for sysplex-aware file systems: Some PFSes can

handle multiple concurrent connections for update. They are capable of managing

the serialization of such requests. Such file systems are called sysplex aware for

update. Most network file systems have this capability. NFS Client is one such file

system type.

For a read-write mount to NFS Client, each system in the shared HFS group will

make a direct connection to NFS. The first system to make such a connection is

still called the file system owner. All subsequent systems to make a direct

connection are considered non-owners, rather than clients. This type of multiple

direct connection for read-write access allows for maximum I/O performance by

eliminating the need to send requests to the file system owner.

However, sometimes a non-owning system cannot make a direct connection to the

PFS even after meeting the minimum requirements (for example, sometimes

requests to NFS Client time out before they are satisfied). That system might be

given a cross-system messaging connection, making it a client to the file system.

While this is not the optimal mount mode for this type of file system, it does allow

access to the file system.

Read-only connections for non-sysplex aware file systems: There may be

some physical file systems that do not support multiple concurrent connections for

read-only access. These are called non-sysplex aware for readonly, and are

handled the same as the read-write connections for non-sysplex aware file systems.

Read-only connections for sysplex-aware file systems: Physical file systems

that support multiple concurrent connections for read-only access are called sysplex

aware for readonly. The HFS physical file system falls into this category. Such file

systems are handled the same as the read-write connections for sysplex aware file

systems. The read-only connections are attempted locally for each system in the

shared HFS group, but if the file system volume is not online to a system, then the

system becomes a client to the file system via cross-system messaging with the

owner.

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 71

Situations that can interrupt availability

Some situations may cause interruptions to file system availability on one or more

systems. Following is a list of some of the most common causes. It is not meant to

be an exhaustive list.

v Loss of the file system owner. If the file system owner leaves the shared HFS

group (through system failure, soft shutdown, VARY, XCF, OFFLINE, or some

other means), an attempt may be made to establish another file system owner if

requested by the AUTOMOVE specification of the mount. If a new file system

owner cannot be established, the file system will become unowned. It will be

unavailable until the original owner can reclaim it, or until another owner is

established through subsequent automated recovery actions performed by

shared HFS.

v PFS termination. If a PFS terminates on one system, it can affect file system

availability on other systems.

– Prior to V1R2, if a PFS terminates on one system, all file systems of that type

are unmounted across the sysplex.

– In V1R2 and later, if a PFS terminates on one system, any file systems of that

type that are owned by other systems are not affected. File systems of that

type are moved to new owners whenever possible if they are owned by the

system where the PFS is terminating and are automovable. These file

systems remain accessible to other systems. If they cannot be moved to new

owners, they are unmounted across the sysplex. It may not be possible to

move a file system due to a lack of connectivity from other systems, or if the

file system containing the mount point for the file system needed to be moved

but could not be.

v VARY volume,OFFLINE. When the volume for a file system is varied offline, it

will make that file system inaccessible to that system. However, if the volume is

online to other systems, it may still be accessible to those systems and to other

systems via cross-system messaging. This would be the case for sysplex-aware

file systems for read-write or read-only access. Unlike loss of the file system

owner, varying a file system volume offline will not result in any attempt by the

system to restore accessibility to systems on which it is lost.

Tuning z/OS UNIX performance in a sysplex

The intersystem communication required to provide the additional availability and

recoverability associated with z/OS UNIX shared HFS support, affects response

time and throughput on R/W file systems being shared in a sysplex.

For example, assume that a user on SY1 requests a read on a file system mounted

R/W and owned by SY2. Using shared HFS support, SY1 sends a message

requesting this read to SY2 via an XCF messaging function:

SY1 ===> (XCF messaging function) ===> SY2

After SY2 gets this message, it issues the read on behalf of SY1, and gathers the

data from the file. It then returns the data via the same route the request message

took:

SY2 ===> (XCF messaging function) ===> SY1

Thus, adding z/OS UNIX to a sysplex increases XCF message traffic. To control this

traffic, closely monitor the number and size of message buffers and the number of

message paths within the sysplex. It is likely that you will need to define additional

XCF paths and increase the number of XCF message buffers above the minimum

default. For more information about signaling services in a sysplex environment,

see z/OS MVS Setting Up a Sysplex.

72 z/OS UNIX System Services APAR OA12251

You should also be aware that because of I/O operations to the CDS, every mount

request requires additional system overhead. Mount time increases as a function of

the number of mounts, the number of members in a sysplex, and the size of the

CDS. You will need to consider the effect on your recovery time if a large number of

mounts are required on any system participating in shared HFS.

DFS considerations

A file system can only be exported by the DFS server at the system that owns the

file system. Once a file system has been exported by DFS, it cannot be moved until

it has been unexported by DFS.

To recover from system outages, you need to weigh sysplex availability against

availability to the DFS and Server Message Block (SMB) clients. When an owning

system recycles and a DFS-exported file system has been taken over by one of the

other systems, DFS will not be able to automatically reexport that file system. The

file system will have to be moved from its current owner back to the original DFS

system, the one that has just been recycled, and then reexported.

Tip: For file systems that are mostly for use by DFS clients, you should consider

specifying NOAUTOMOVE on the MOUNT statement. If you specify

NOAUTOMOVE, the file systems will not be taken over if the system is recycled,

and they will be available for automatic reexport by DFS.

Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6) 73

74 z/OS UNIX System Services APAR OA12251

Chapter 3. Changes for z/OS UNIX System Services Planning

(Version 1 Release 7)

Notice for APAR OA12251

Throughout the document, all descriptions of the AUTOMOVE function as it

relates to the behavior that occurs when an owning system becomes

unavailable (for instance, by shutting down, crashing, or leaving the sysplex)

should instead refer to the description below in “Customizing BPXPRMxx for a

shared file system” on page 87.

Sharing file systems in a sysplex

Overview of sharing file systems in a sysplex

Terminology changes

Starting in V1R7, the following terminology changes have been made:

v The term "shared HFS” has been renamed to “shared file system”.

v The term "root HFS” has been changed to "root file system”.

v The term "version HFS” has been changed to "version file system”.

 This chapter describes the shared file system capability in a multisystem sysplex

environment. It assumes that you already have completed the other setup activities

for a sysplex environment. This chapter defines the shared file system concept,

introduces the different file systems that exist in a sysplex, and helps you establish

that environment. The topics in this chapter reflect the tasks you must do.

Although it is suggested that you exploit shared file system support when running in

a sysplex environment, you are not required to do so. If you choose not to, you will

continue to share file systems as you have before. To see how the file system

structure has changed to support the shared file system environment, even when

running on a single system, see “Comparing file systems in single system

pre-OS/390 UNIX V2R9 and OS/390 UNIX V2R9 or later environments” on page 3.

z/OS Parallel Sysplex Test Report describes how IBM’s integration test team

implemented a shared file system.

Using IBM Health Checker for z/OS

You can install IBM Health Checker for z/OS to check the file system configuration.

What does shared file system mean?

By establishing the shared file system environment, sysplex users can access data

throughout the file hierarchy from any system in the sysplex.

The best way to describe the benefit of this function is by comparing what was the

file system sharing capability prior to the introduction of shared file system support

with the capability that exists now. Consider a sysplex that consists of two systems,

SY1 and SY2:

© Copyright IBM Corp. 1996, 2005 75

v Users logged onto SY1 can write to the directories on SY1. For users on SY1 to

make a change to file systems mounted on SY2’s /u directory, they would have

to log onto SY2.

v The system programmer who makes configuration changes for the sysplex needs

to change the entries in the /etc file systems for SY1 and SY2. To make the

changes for both systems, the system programmer must log onto each system.

With shared file system support, all file systems that are mounted by a system

participating in a shared file system are available to all participating systems. In

other words, once a file system is mounted by a participating system, that file

system is accessible by any other participating system. It is not possible to mount a

file system so that it is restricted to just one of those systems. Consider a sysplex

that consists of two systems, SY1 and SY2:

v A user logged onto any system can make changes to file systems mounted on

/u, and those changes are visible to all systems.

v The system programmer who manages maintenance for the sysplex can change

entries in both /etc file systems from either system.

In this chapter, the term participating group is used to identify those systems that

belong to the same SYSBPX XCF sysplex group and have followed the required

installation and migration activities to participate in a shared file system.

There is also greater availability of data in case of system outage, and a greater

flexibility for data placement and the ability for a single BPXPRMxx member to

define all the file systems in the sysplex.

To see an animated example of what a shared file system is, navigate to this URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/animations/ussanims.html

How the end user views the shared file system

This chapter describes the kinds of file systems and data sets that support the

shared file system capability in the sysplex. Figure 35 shows that, to the end users,

the logical view of the hierarchical file system does not change. From their point of

view, accessing files and directories in the system is just the same. That is true for

all end users, whether they are in a sysplex or not.

This logical view applies to the end user only. However, system programmers need

to know that the illustration of directories found in Figure 1 on page 2 does not

reflect the physical view of file systems. For example, some of the directories are

actually symbolic links, as is described in the following information.

SYSTEM dev tmp var etcusrbinu lib opt samples

lpp

booksrv tcpip
. . .

Figure 35. Logical view of a shared file system for the end user

76 z/OS UNIX System Services APAR OA12251

Summary of various file systems in a shared environment

This chapter introduces the various file systems and terms needed to use the

shared file system support. Table 15 summarizes the file systems that are needed

in a sysplex environment. As you study the illustrations of file system configurations

in this chapter, you can refer back to this table.

 Table 15. Various file systems that exist in a sysplex

Name Characteristics Purpose How created

Sysplex root It contains directories

and symbolic links

that allow redirection

of directories. Only

one sysplex root file

system is allowed for

all systems

participating in a

shared file system.

The sysplex root is used

by the system to redirect

addressing to other

directories. It is very

small and is mounted

read-write. See

“Procedures for

establishing shared HFS

in a sysplex” on page 7

for a more complete

description of the

sysplex root.

For the zFS file system,

the user runs the

BPXISYZR job.

For the HFS file system,

the user runs the

BPXISYSR job.

System specific It contains data

specific to each

system, including the

/dev, /tmp, /var, and

/etc directories for

one system. There is

one system-specific

file system for each

system participating in

a shared file system.

The system-specific file

system is used by the

system to mount

system-specific data. It

contains the necessary

mount points for

system-specific data and

the symbolic links to

access sysplex-wide

data, and should be

mounted read-write. See

“Steps in creating the

system-specific HFS

data sets” on page 8 for

a complete description

of the system-specific

file system.

For the zFS file system,

the user runs the

BPXISYSS job on each

participating system.

For the HFS file system,

the user runs the

BPXISYZS job on each

participating system.

Version

In a sysplex,

the version file

system is the

new name for

the root file

system.

It contains system

code and binaries,

including the /bin,

/usr, /lib, /opt, and

/samples directories.

IBM delivers only one

version root; you

might define more as

you add new system

levels and new

maintenance levels.

The version file system

has the same purpose

as the root file system in

the non-sysplex world. It

should be mounted

read-only. See “Steps in

mounting the version

HFS” on page 9 for a

complete description of

the version file system.

IBM supplies this file

system in the

ServerPac. CBPDO

users create the file

system by following

steps defined in the

Program Directory.

Illustrating file systems in single system and sysplex environments

The illustrations in this section show you how the file system structures have

changed since the introduction of the shared file system support. These illustrations

build upon IBM’s long-standing suggestions that you separate the system setup

parameters from the file system parameters so that each system in the sysplex has

two BPXPRMxx members: a system limits member and a file system member.

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 77

In the shared file system environment, that separation of system limit parameters

from file system parameters is even more important. Each system will continue to

have a system limits BPXPRxx member. As you will see in sections that follow, with

shared file system support, you can have a file system BPXPRMxx member for

each participating system or you can replace those individual file system

BPXPRMxx members with a single file system BPXPRMxx member for all

participating systems.

File systems in single system environments

Figure 36 shows what BPXPRMxx file system parameters would look like in a single

system environment, and Figure 37 on page 79 shows the corresponding single

system image. SYSPLEX(NO) is specified (or the default taken), and the mount

mode is read-write.

The root can be mounted either read-only or read-write.

BPXPRMxx

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

SYSPLEX(NO)

ROOT

FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNT

FILESYSTEM(’OMVS.DEV.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/dev’)

MOUNT

FILESYSTEM(’OMVS.TMP.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/tmp’)

MOUNT

FILESYSTEM(’OMVS.VAR.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/var’)

MOUNT

FILESYSTEM(’OMVS.ETC.HFS’)

TYPE(HFS) MODE(RDWR)

MOUNTPOINT(’/etc’)

Figure 36. BPXPRMxx parmlib member for single system

78 z/OS UNIX System Services APAR OA12251

The presence of symbolic links is transparent to the user. In the illustrations

used throughout this chapter, symbolic links are indicated with an arrow.

In Figure 5 on page 6, the root file system contains an additional directory,

/SYSTEM; existing directories, /etc, /dev, /tmp and /var are converted into symbolic

links. These changes, however, are transparent to the user who brings up a single

system environment.

If the content of the symbolic link begins with $SYSNAME and SYSPLEX is

specified NO, then $SYSNAME is replaced with /SYSTEM when the symbolic link is

resolved.

File systems in sysplex environments

This section describes file systems in sysplex environments and what you need to

do to take advantage of shared file system support, such as creating specific file

systems (also see Table 1 on page 3) and the OMVS couple data set, updating

COUPLExx, and customizing BPXPRMxx.

Do not assume that with shared file systems, two systems can share a common

HFS data set for /etc, /tmp, /var, and /dev. This is not the case. Even with shared

file systems, each system must have specific file systems for each of these mount

points. The file systems are then mounted under the system-specific file system

(see Figure 14 on page 23). With shared file system support, one system can

access system-specific file systems on another system. (The existing security model

remains the same.) For example, while logged onto SY2, you can gain read-write

access to SY1’s /tmp by specifying /SY1/tmp/.

You should also be aware that when SYSPLEX(YES) is specified, each

FILESYSTYPE in use within the participating group must be defined for all systems

participating in a shared file system. The easiest way to accomplish this is to create

/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

/dev
/tmp
/var
/etc

/dev
/tmp
/var
/etc

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples
/…
/u

/bin
/usr
/lib
/opt
/samples
/…
/u

/SYSTEM/

dev

tmp

var

etc

dev

tmp

var

etc
OMVS.VAR.HFS

OMVS.ROOT.HFS

OMVS.DEV.HFS

OMVS.TMP.HFS

OMVS.ETC.HFS

Figure 37. Single system illustration

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 79

a single BPXPRMxx member that contains file system information for each system

participating in a shared file system. If you decide to define a BPXPRMxx member

for each system, the FILESYSTYPE statements must be identical on each system.

To see the differences between having one BPXPRMxx member for all participating

systems and having one member for each participating system, see the two

examples in “Scenario 2: Multiple systems in the sysplex – using the same release

level” on page 21.

In addition, facilities required for a particular file system must be initiated on all

systems in the participating group. For example, NFS requires TCP/IP; if you

specify a FILESYSTYPE of NFS, you must also initialize TCP/IP when you initialize

NFS, even if there is no network connection.

Procedures for establishing a shared file system in a sysplex

For an animated overview of establishing a shared file system in a sysplex,

navigate to this URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/animations/ussanims.html

Creating the sysplex root file system

The sysplex root is a file system that is used as the sysplex-wide root. This file

system must be mounted read-write and designated AUTOMOVE. (See

“Customizing BPXPRMxx for shared HFS” on page 13 for a description of the

AUTOMOVE parameter in BPXPRMxx.). Only one sysplex root is allowed for all

systems participating in a shared file system.

There are two ways the sysplex root is created.

v For the zFS file system, it is created by invoking the BPXISYZR job in

SYS1.SAMPLIB.

v For the HFS file system, it is created by invoking the BPXISYSR sample job in

SYS1.SAMPLIB.

After the job runs, the sysplex root file system structure would look like Figure 38 on

page 81:

80 z/OS UNIX System Services APAR OA12251

To see an animated example of the procedures for establishing a shared file system

in a sysplex, navigate to this URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/animations/ussanims.html

No files or code reside in the sysplex root file system. It consists of directories and

symbolic links only, and hence the size of the data set representing the sysplex root

is very small.

The sysplex root provides access to all directories. Each system in a sysplex can

access directories through the symbolic links that are provided. Essentially, the

sysplex root provides redirection to the appropriate directories.

Creating the system-specific file system

Directories in the system-specific file system are used as mount points, specifically

for /etc, /var, /tmp, and /dev.

Rule: To create the system-specific file system, you need to run the appropriate

sample job in SYS1.SAMPLIB on each participating system. In other words, you

must run the sample job separately for each system that will participate in a file

system.

v For the zFS file system, run the BPXISYZS sample job in SYS1.SAMPLIB.

v For the HFS file system, run the BPXISYSS sample job in SYS1.SAMPLIB.

After you invoke the job, the system-specific file system structure would look like

Figure 39 on page 82:

Sysplex root

/...

/bin
/usr
/lib
/opt
/samples
$VERSION
$SYSNAME
/dev
/tmp
/var
/etc

/u

/...

/bin
/usr
/lib
/opt
/samples
$VERSION
$SYSNAME
/dev
/tmp
/var
/etc

/u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

Figure 38. Sysplex root

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 81

The system-specific file system should be mounted read-write, and should be

designated AUTOMOVE(UNMOUNT). Also, /etc, /var, /tmp, and /dev should be

mounted AUTOMOVE(UNMOUNT).

Guideline: The name of the system-specific data set should contain the system

name as one of the qualifiers. This enables you to use the &SYSNAME symbolic

(defined in IEASYMxx) in BPXPRMxx.

If you mount a system-specific file system on other than the correct

(system-specific) owner, either explicitly or due to AUTOMOVE=YES, loss of

function may occur. For example, if the system-specific file system mounted at /dev

for SY1 is moved to SY2 so that ownership is now SY2, the OMVS command on

SY1 will fail.

Mounting the version file system

The version file system is the IBM-supplied root file system. To avoid confusion with

the sysplex root file system, “root file system” has been renamed to “version file

system”.

Figure 40 on page 83 shows a version file system.

System-specific file system

bin
usr
lib
opt
samples

dev
tmp
var
etc

bin
usr
lib
opt
samples

dev
tmp
var
etc

/bin
/usr
/lib
/opt
/samples

Figure 39. System-specific file system

82 z/OS UNIX System Services APAR OA12251

Guidelines:

1. Mount the version file system read-only in a sysplex environment, and designate

it AUTOMOVE. The mount point for the version file system is dynamically

created if the VERSION statement is used in BPXPRMxx.

2. Do not use &SYSNAME as one of the qualifiers for the version file system data

set name. In “Sysplex scenarios showing shared HFS capability” on page 18,

REL9 and REL9A are used as qualifiers, which correspond to the system

release levels. However, you do not necessarily have to use the same qualifiers.

Other appropriate names are the name of the target zone, &SYSR1, or another

qualifier meaningful to the system programmer.

IBM supplies the version file system in ServerPac. CBPDO users obtain the version

file system by following directions in the Program Directory. There is one version file

system for each set of systems participating in a shared file system and who are at

the same release level (that is, using the same SYSRES volume). In other words,

each version file system denotes a different level of the system or a different

service level. For example, if you have 20 systems participating in a shared file

system, and 10 of those systems are at Release 9 and the other 10 are at Release

9A, then you’ll have one version file system for the Release 9 systems and one for

the Release 9A systems. In essence, you will have as many version file systems for

the participating systems as you have different levels running.

Before you mount your version HFS read-only, you may have some

element-specific actions. These are described in the section on post-installation

actions for mounting the root file system in the chapter on managing the

hierarchical file system.

Version file system
/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples
…
u

bin
usr
lib
opt
samples
…
u

SYSTEM/

Figure 40. Version file system

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 83

Using the automove system list

When mounting file systems in the sysplex, you can specify a prioritized automove

system list to indicate where the file system should or should not to moved to when

ownership of a file system changes due to any of the following:

v A soft shutdown request is issued.

v Dead system takeover occurs (when a system leaves the sysplex without a prior

soft shutdown).

v A PFS terminates on the owning system.

v A request to move ownership of the file system is issued.

There are different ways to specify the automove system list.

v On the MOUNT statement in BPXPRMxx, specify the AUTOMOVE keyword,

including the indicator and system list.

v For the TSO MOUNT command, specify the AUTOMOVE keyword, including the

indicator and system list.

v Use the mount shell command.

v Use the ISHELL MOUNT interface.

v Specify the MNTE_SYSLIST variable for REXX.

v Specify the indicator and system list for the automove option in the chmount

shell command.

v Specify the indicator and system list for the automove option in the SETOMVS

operator command.

Using wildcards: When you specify the automove system list, you can use

wildcards in certain situations.

Example: If you have a large number of systems in your sysplex, you can specify

only the systems that should have priority and use a wildcard to indicate the rest of

the systems.

AUTOMOVE INCLUDE(s1,S2,...*)

At first glance, AUTOMOVE INCLUDE (*) appears to work the same way as

AUTOMOVE(YES) because all of the systems will try to take over the file system.

However with AUTOM0VE INCLUDE (*), if none of the systems can take over the

file system, it will be unmounted. If AUTOMOVE(YES) is used, the file system will

become unowned.

Restrictions:

1. You can use the wildcard support on all methods of mounts, including the

MOUNT statement in BPXPRMxx, the TSO MOUNT command, the mount shell

command, the ISHELL MOUNT interface, the MNTE_SYSLIST variable for

REXX, C program, and assembler program.

2. The wildcard is only allowed in an INCLUDE list. It is not allowed in an

EXCLUDE list.

3. The wildcard must be the last item (or the only item) in the system list.

Specifying the automount delay time: Rule: In a shared file system, do not use

the default automount delay time of 0. Instead, specify a delay time of at least 10.

Creating a couple data set (CDS)

The couple data set (CDS) contains the sysplex-wide mount table and information

about all participating systems, and all mounted file systems in the sysplex. To

84 z/OS UNIX System Services APAR OA12251

|
|
|

|

|
|

|

|

allocate and format a CDS, customize and invoke the BPXISCDS sample job in

SYS1.SAMPLIB. The job will create two CDSs: one is the primary and the other is

a backup that is referred to as the alternate. In BPXISCDS, you also specify the

number of mount records that are supported by the CDS.

Use of the CDS functions in the following manner:

1. The first system that enters the sysplex with SYSPLEX(YES) initializes an

OMVS CDS. The CDS controls shared file system mounts and will eventually

contain information about all systems participating in shared file system.

This system processes its BPXPRMxx parmlib member, including all its ROOT

and MOUNT statement information. It is also the designated owner of the byte

range lock manager for the participating group. The MOUNT and ROOT

information are logged in the CDS so that other systems that eventually join the

participating group can read data about systems that are already using shared

file system.

2. Subsequent systems joining the participating group will read what is already

logged in the CDS and will perform all mounts. Any new BPXPRMxx mounts are

processed and logged into the CDS. Systems already in the participating group

will then process the new mounts added to the CDS.

Following is the sample JCL with comments. The statements in bold contain the

values that you specify based on your environment.

//*

//STEP10 EXEC PGM=IXCL1DSU

//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* Begin definition for OMVS couple data set(1) */

 DEFINEDS SYSPLEX(PLEX1)

 /* Name of the sysplex in which the OMVS couple data set is to be used.*/

 DSN(SYS1.OMVS.CDS01) VOLSER(3390x1)

 /* The name and volume for the OMVS couple data set.

 The utility will allocate a new data set by the name specified on the

 volume specified.*/

 MAXSYSTEMS(8)

 /* Specifies the number of systems to be supported by the OMVS CDS.

 Default = 8 */

 NOCATALOG

 /* Default is not to CATALOG */

 DATA TYPE(BPXMCDS)

 /* The type of data in the data set being created for OMVS.

 BPXMCDS is the TYPE for OMVS. */

 ITEM NAME(MOUNTS) NUMBER(500)

 /* Specifies the number of MOUNTS that can be supported by OMVS.*/

 Default = 100

 Suggested minimum = 10

 Suggested maximum = 35000 */

 ITEM NAME(AMTRULES) NUMBER(50)

 /* Specifies the number of automount rules that can be supported by OMVS.*/

 Default = 50

 Minimum = 50

 Maximum = 1000 */

 ITEM NAME(DISTBRLM) NUMBER(1)

 /*Enable conversion to a distributed BRLM. */

 1, distributed BRLM enabled,

 0, distributed BRLM is not enabled during next sysplex IPL

 not allowed for z/OS V1R6 or higher

 Default = 1 */

 /* Begin definition for OMVS couple data set(2) */

 DEFINEDS SYSPLEX(PLEX1)

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 85

/* Name of the sysplex in which the OMVS couple data set is to be used. */

 DSN(SYS1.OMVS.CDS02) VOLSER(3390x2)

 /* The name and volume for the OMVS couple data set. The utility will

 allocate a new data set by the namespecified on the volume specified. */

 MAXSYSTEMS(8)

 /* Specifies the number of systems to be supported by the OMVS CDS.

 Default = 8 */

 NOCATALOG

 /* Default is not to CATALOG */

 DATA TYPE(BPXMCDS)

 /* The type of data in the data set being created is for OMVS. BPXMCDS is the

 TYPE for OMVS. */

 ITEM NAME(MOUNTS) NUMBER(500)

 /* Specifies the number of MOUNTS that can be supported by OMVS.

 Default = 100

 Suggested minimum = 10

 Suggested maximum = 35000 */

 ITEM NAME(AMTRULES) NUMBER(50)

 /* Specifies the number of automount rules that can be supported by OMVS.

 Default = 50

 Minimum = 50

 Maximum = 1000 */

 ITEM NAME(DISTBRLM) NUMBER(1)

 /*Enables conversion to a distributed BRLM.

 1, distributed BRLM enabled,

 0, distributed BRLM is not enabled; cannot be specified any longer

 Default = 1 */

Rule: Automount mounts must be included in the MOUNTS value. The number of

automount mounts is the expected number of concurrently mounted file systems

using the automount facility. For example, you may have specified 1000 file

systems to be automounted, but if you expect only 50 to be used concurrently, you

should factor these 50 into your MOUNTS value.

For more information about setting up a sysplex on MVS, see z/OS MVS Setting Up

a Sysplex.

The NUMBER(nnnn) specified for mounts and automount rules (a generic or

specific entry in an automount map file) is directly linked to function performance

and the size of the CDS. If maximum values are specified, the size of the CDS will

increase accordingly and the performance level for reading and updating it will

decline.

Conversely, if the NUMBER values are too small, the function (for example, the

number of mounts supported) would fail after the limit is reached. However, a new

CDS can be formatted and switched in with larger values specified in NUMBER. To

make the switch, issue the SETXCF COUPLE,PSWITCH command. The number of

file systems required (factoring in an additional number to account for extra

mounts), determines your minimum and maximum NUMBER value.

After the CDS is created, it must be identified to XCF for use by z/OS UNIX.

Updating COUPLExx to define the OMVS CDS to XCF: Update the active

COUPLExx parmlib member to define a primary and alternate OMVS CDS to XCF.

The primary and alternate CDSs should be placed on separate volumes. (The

sample JCL in “Steps in creating an OMVS couple data set (CDS)” on page 11

shows the primary CDS on volume 3390x1 and the secondary CDS on 3390x2.)

Figure 41 on page 87 shows the COUPLExx parmlib member; statements that

define the CDS are in bold.

86 z/OS UNIX System Services APAR OA12251

The MVS operator commands (DISPLAY XCF, SETXCF, DUMP, CONFIG, and

VARY) enable the operator to manage the z/OS UNIX CDS.

Customizing BPXPRMxx for a shared file system

To see an animation that shows you the customization process, navigate to this

URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/animations/ussanims.html

You can use one BPXPRMxx member to define all the file systems in the sysplex.

Each participating system has its own BPXPRMxx member to define system limits,

but shares a common BPXPRMxx member to define the file systems for the

sysplex. This is done through the use of system symbolics. Figure 12 on page 21

shows an example of this unified member. You can also have multiple BPXPRMxx

members defining the file systems for individual systems in the sysplex. An example

of this is Figure 13 on page 22.

To set up a shared file system in a sysplex, use the following parameters:

v SYSPLEX(YES) sets up a shared file system for those who are in the SYSBPX

XCF group, the group that is participating in a shared file system. To participate,

the systems must be at the OS/390 V2R9 level or later. Those system that

specify SYSPLEX(YES) make up the participating group for the sysplex.

If SYSPLEX(YES) is specified in the BPXPRMxx member, but the system is

initialized in XCF-local mode, either by specifying COUPLE SYSPLEX(LOCAL) in

the COUPLExx member or by specifying PLEXCFG=XCFLOCAL in the

IEASYSxx member, then the kernel will ignore the SYSPLEX(YES) value and

initialize with SYSPLEX(NO). This system will not participate in a shared file

system support after the initialization completes.

v VERSION('nnnn') allows multiple releases and service levels of the binaries to

coexist and participate in a shared file system. nnnn is a qualifier to represent a

level of the version file system. The most appropriate values for nnnn are the

name of the target zone, &SYSR1, or another qualifier meaningful to the system

programmer. A directory with the value nnnn specified on VERSION will be

dynamically created at system initialization under the sysplex root and will be

used as a mount point for the version file system.

There is one version file system for every instance of the VERSION parameter.

More information about version file system appears in “Steps in mounting the

version HFS” on page 9.

/* For all systems in any combination, up to an eightway */

COUPLE INTERVAL(60) /* 1 minute */

 OPNOTIFY(60) /* 1 minute */

 SYSPLEX(PLEX1) /* SYSPLEX NAME*/

 PCOUPLE(SYS1.PCOUPLE,CPLPKP) /* COUPLE DS */

 ACOUPLE(SYS1.ACOUPLE,CPLPKA) /* ALTERNATE DS*/

 MAXMSG(750)

 RETRY(10)

DATA TYPE(CFRM)

 PCOUPLE(SYS1.PFUNCT.CTTEST,FDSPKP)

 ACOUPLE(SYS1.AFUNCT.CTTEST,FDSPKA)

DATA TYPE(BPXMCDS)

 PCOUPLE(SYS1.OMVS.CDS01,3390x1)

 ACOUPLE(SYS1.OMVS.CDS02,3390x2)

/* CTC DEFINITIONS: ALL SYSTEMS */

PATHOUT DEVICE(8E0)

PATHIN DEVICE(CEF)

Figure 41. COUPLExx parmlib member

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 87

v The SYSNAME(sysname) parameter on ROOT and MOUNT statements specifies

the particular system on which a mount should be performed. sysname is a

1-to-8 alphanumeric name of the system. This system will then become the

owner of the file system mounted. The owning system must be IPLed with

SYSPLEX(YES).

Tip: Specify SYSNAME(&SYSNAME.) or omit the SYSNAME parameter. In this

case, the system that processes the mount request mounts the file system and

becomes its owner.

The SYSNAME parameter is also used with SETOMVS when moving file

systems, as demonstrated in “Moving file systems in a sysplex” on page 27.

The AUTOMOVE|NOAUTOMOVE|UNMOUNT parameters on the ROOT and

MOUNT statements indicate what happens to the ownership of a file system in the

following situations:

v A shutdown process is issued (soft shutdown)

v Dead system takeover occurs (a system leaves the sysplex without a prior soft

shutdown)

v A PFS terminates on the owning system

v A request to move ownership of a file system is issued

The action taken is determined by the AUTOMOVE value and the

sysplex-awareness capability of the file system. AUTOMOVE is the default,

specifying that ownership of the file system is automatically moved to another

system.

The owner of a file system is the first system that processes the mount. This

system always accesses the file system locally; that is, the system does not access

the file system through a remote system. Other non-owning systems in the sysplex

access the file system either locally or through the remote owning system,

depending on the PFS and the mount mode. If a PFS allows a file system to be

locally accessed on all systems in a sysplex for a particular mode, then the PFS is

sysplex-aware for that mode. If a PFS requires that a file system be accessed

through the remote owning system from all other systems in a sysplex for a

particular mode, then the PFS is sysplex-unaware for that mode.

Even if a PFS is sysplex-aware for a particular mode, if a non-owning system does

not have DASD connectivity, the file system is accessed remotely through the

owning system. For example, HFS is sysplex-unaware for read-write mode,

because all non-owning systems must access read-write file systems through the

remote owning system. The non-owning systems are said to be sysplex clients.

However, HFS is sysplex-aware for read-only mode, which means that each system

can access read-only file systems locally, and do not need to contact the owning

system. AUTOMOVE is intended for sysplex-unaware file systems, where

non-owning systems access the file systems remotely, to allow specification as to

what will happen to the ownership of file systems owned by a system that is leaving

the sysplex. For sysplex-aware file systems, since they tend to be accessed locally

on each system, independent of other systems, ownership is simply moved and file

system access continues as it was, regardless of the value of AUTOMOVE.

TFS file systems do not participate in move operations regardless of the

AUTOMOVE setting. Automount-managed file systems are handled as AUTOMOVE

if the file system is used locally.

88 z/OS UNIX System Services APAR OA12251

|
|
|

|

|
|

|

|

|
|
|
|

|
|
|

Restriction: An AUTOMOVE file system cannot be moved to a system where

OMVS has been shut down or where F BPXOINIT,SHUTDOWN=FILEOWNER has been

issued.

Following is the behavior for file systems that are mounted in a mode for which the

PFS is sysplex-aware:

1. MOUNT allows AUTOMOVE(YES) or AUTOMOVE(UNMOUNT). If

AUTOMOVE(NO) or a system list is specified, it will be changed to

AUTOMOVE(YES) and a message, BPXF234I, put in the hardcopy log. After

the MOUNT, an attempt to change AUTOMOVE to NO or specify a system list

using chmount is rejected.

2. A move of a file system that is AUTOMOVE(NO) or has a system list to a new

owner that is at V1R6 or later will change the file system to AUTOMOVE(YES) if

all systems in the sysplex are at least at V1R6 or later. Again, a message will

be put in the hardcopy log. This applies to any way that a file system can be

moved to a new owner, including chmount, PFS termination, soft shutdown, and

dead system recovery.

3. Remount does not change the AUTOMOVE setting, even if the new mount

mode is now sysplex-aware.

Note: For z/OS R7, AUTOMOVE(NO) or a system list is permitted for a

sysplex-aware file system only if the file system is mounted in a

mixed-release sysplex where one or more systems are at a release below

V1R6.

Table 16 shows what happens during soft shutdown for various AUTOMOVE

settings for sysplex-aware and sysplex-unaware file systems. Soft shutdown is done

by issuing one of the following MODIFY commands:

F BPXOINIT,SHUTDOWN=FILESYS

F BPXOINIT,SHTUDOWN=FILEOWNER

F OMVS,SHUTDOWN

A leaf file system refers to a file system that does not contain any file systems that

are mounted on a directory within that file system. A subtree is the file system and

all file systems that are mounted beneath that file system.

 Table 16. Soft shutdown actions for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

Unmounts the file system. The unmount

will fail if it is not a leaf file system.

Unmounts the file system. The unmount

will fail if it is not a leaf file system.

AUTOMOVE

(no system list)

Moves the file system to any system. If

the move fails, the unmount is not

attempted and ownership does not

change.

Moves the file system to any system. If

the move fails, the unmount is not

attempted and ownership does not

change.

AUTOMOVE with a system

list

Moves the file system to any system. If

the file system cannot be moved, the

unmount is not attempted and ownership

does not change.

The move uses the system list. If the file

system cannot be moved, the unmount is

not attempted and ownership does not

change.

Note: Automount-managed file systems are unmounted by a soft shutdown

operation if the file system is not referenced by any other system in the

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 89

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

||

|||

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

sysplex. If it is referenced by another system or systems, ownership of the

file system is moved. If the move fails, an unmount is not attempted and

ownership does not change.

Table 17 shows what happens during dead system takeover for various

AUTOMOVE settings for sysplex-aware and sysplex-unaware file systems. Dead

system takeover is the action taken by systems in a sysplex when they attempt to

take over ownership of file systems that were previously owned by a system that

has just left the sysplex.

Note: Takeover is always attempted for file systems that are sysplex aware. Most

of these systems already have the file system locally mounted.

 Table 17. Dead system takeover for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE Takeover is attempted by all systems. The

file system becomes unowned if it cannot

be taken over by a new owning system.

Takeover is not attempted. The file

system becomes unowned.

UNMOUNT Takeover is attempted by all systems. The

subtree is unmounted if it cannot be

taken over by a new owning system.

Takeover is not attempted. The subtree is

unmounted.

AUTOMOVE

(no system list)

Takeover is attempted. The file system

becomes unowned if it cannot be taken

over by a new owning system.

Takeover is attempted. The file system

becomes unowned if it cannot be taken

over by a new owning system.

AUTOMOVE with a system

list

Takeover is attempted by all systems in

the sysplex. The system list is ignored.

The file system becomes unowned if it

cannot be taken over by a new owning

system.

Takeover is attempted and the INCLUDE

or EXCLUDE system list is honored. If

the takeover does not happen, the file

system mounted under this file are

unmounted.

Note: There is no attempt to take over automount-managed file systems if the file

system is not referenced by any system that is eligible to attempt takeover.

Automount-managed, unowned file systems will be unmounted.

Table 18 shows what happens during PFS termination for various AUTOMOVE

settings for sysplex-aware and sysplex-unaware file systems.

 Table 18. PFS termination for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

Moves to any system. If the move fails,

the subtree is unmounted.

The subtree is unmounted.

AUTOMOVE

(no system list)

Moves to any system. If the move fails,

the subtree is unmounted.

Moves to any system. If the move fails,

the subtree is unmounted.

AUTOMOVE with a system

list

Moves to any system, ignoring the

system list. If the move fails, the subtree

is unmounted.

The move uses the system list. If the

move fails, the subtree is unmounted.

Table 19 on page 91 shows what happens when a move file system is requested to

move a specific file system to any target system (wildcard is used). A move file

system request can be issued with a SETOMVS operator command or a chmount

shell command.

90 z/OS UNIX System Services APAR OA12251

|
|
|

|
|
|
|
|

|
|

||

|||

||
|
|

|
|

||
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

||

|||

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

Table 19. Move all file systems from a system to any system for various AUTOMOVE settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

or

AUTOMOVE

(no system list)

Move is attempted to all systems. Move is attempted to all systems.

AUTOMOVE with a system

list

Move is attempted to all systems,

ignoring the system list.

Move is attempted using the system list.

Table 20 shows what happens when a move file system is requested to do a

multi-file system move, moving all file systems from a system to a specific target

system. A move file system request can be issued with a SETOMVS operator

command or a chmount shell command.

 Table 20. Move all file systems from a system to a specific target system to any system for various AUTOMOVE

settings

What happens if . . . For sysplex-aware file systems For sysplex-unaware file systems

NOAUTOMOVE

or

UNMOUNT

Move is attempted to the target system. Move is not attempted.

AUTOMOVE

(no system list)

Move is attempted to the target system. Move is attempted to the target system.

AUTOMOVE with a system

list

Move is attempted to the target system,

ignoring the system list.

Move is attempted to the target system,

ignoring the system list.

Rules:

v Define your version and sysplex root file systems as AUTOMOVE.

v Define your system-specific file systems as UNMOUNT.

v Do not define a file system as NOAUTOMOVE or UNMOUNT and a file system

under it as AUTOMOVE; otherwise, the file system defined as AUTOMOVE will

not be recovered after a system failure until that failing system has been

restarted.

Guidelines:

1. To ensure that the root is always available, use the default, which is

AUTOMOVE.

2. For sysplex-unaware file systems that are mostly exported by the DFS or SMB

server to their remote clients, consider specifying NOAUTOMOVE on the

MOUNT statement. Then the file systems will not change ownership if the

system is suddenly recycled, and they will be available for automatic re-export

by DFS or SMB.

Tip: Consider specifying NOAUTOMOVE because a file system can only be

exported by the DFS or SMB server at the system that owns the file system. A

file system can only be exported by the DFS or SMB server at the system that

owns the file system. Once a file system has been exported by DFS, it cannot

be moved until it has been unexported by DFS. The same holds true of file

systems exported by SMB. When recovering from system outages, you need to

weigh sysplex availability against availability to the DFS or SMB clients. When

an owning system recycles and a file system exported by DFS or SMB has

been taken over by one of the other systems, DFS or SMB cannot automatically

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 91

||

|||

|
|
|
|
|
|

||

|
|
|
|
|

|

|
|
|
|

||
|

|||

|
|
|

||

|
|
||

|
|
|
|
|
|
|

|

|

|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

re-export that file system. When an owning system is recycled and an exported

file system has been taken over by one of the other systems, that file system

will not be automatically reexported. The file system will have to be moved from

its current owner back to the original system, the one that has just been

recycled, and then exported again.

For more information about VERSION, SYSPLEX, SYSNAME and

AUTOMOVE|NOAUTOMVE|UNMOUNT, see z/OS MVS Initialization and Tuning

Reference.

Sysplex scenarios showing shared file system capability

Scenario 1: First system in the sysplex

Figure 42 and Figure 43 on page 94 show a z/OS UNIX file system configuration for

a shared file system. Here, SYSPLEX(YES) and a value on VERSION are

specified, and a directory is dynamically created on which the version file system

data set is mounted. This type of configuration requires a sysplex root and

system-specific file system.

BPXPRMxx for (SY1)

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

VERSION(’REL9’)

SYSPLEX(YES)

ROOT

FILESYSTEM (’OMVS.SYSPLEX.ROOT’) �1�

TYPE(HFS) MODE(RDWR)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’) �2�

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’)

MOUNT

FILESYSTEM(’OMVS.ROOT.HFS’) �3�

TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’) �4�

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’) �5�

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 42. BPXPRMxx setup — sharing file systems

92 z/OS UNIX System Services APAR OA12251

|
|
|
|
|

|
|
|

�1� This is the sysplex root file system, and was created by running the

BPXISYSR job. To create a sysplex root file system that is a zFS, run the

sample job BPXISYZR. AUTOMOVE is the default and therefore is not specified,

allowing another system to take ownership of this file system when the owning

system goes down.

 �2� This is the system-specific file system, and was created by running the

BPXISYSS job. To create a system-specific file system that is a zFS, run the

sample job BPXISYZS. It must be mounted read-write. NOAUTOMOVE is

specified because this file system is system-specific and ownership of the file

system should not move to another system should the owning system go down.

The MOUNTPOINT statement /&SYSNAME. will resolve to /SY1 during parmlib

processing. This mount point is created dynamically at system initialization.

 �3� This is the old root file system (version file system).

Guideline: It should be mounted read-only. Its mount point is created

dynamically and the name of the file system is the value specified on the

VERSION statement in the BPXPRMxx member. AUTOMOVE is the default and

therefore is not specified, allowing another system to take ownership of this file

system when the owning system goes down.

 �4� This file system contains the system-specific /dev information.

NOAUTOMOVE is specified because this file system is system-specific;

ownership should not move to another system should the owning system go

down. The MOUNTPOINT statement /&SYSNAME./dev will resolve to /SY1/dev

during parmlib processing.

 �5� This file system contains system-specific /tmp information. NOAUTOMOVE

is specified because this file system is system-specific; ownership should not

move to another system should the owning system go down. The

MOUNTPOINT statement /&SYSNAME./tmp will resolve to /SY1/tmp during

parmlib processing.

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 93

If the content of the symbolic link begins with $VERSION or $SYSNAME, the

symbolic link will resolve in the following manner:

v If you have specified SYSPLEX(YES) and the symbolic link for /dev has the

contents $SYSNAME/dev, the symbolic link resolves to /SY1/dev on system SY1

and /SY2/dev on system SY2.

v If you have specified SYSPLEX(YES) and the content of the symbolic link begins

with $VERSION, $VERSION resolves to the value nnnn specified on the

VERSION parameter. Thus, if VERSION in parmlib is set to REL9, then

$VERSION resolves to /REL9. For example, a symbolic link for /bin, which has

the contents $VERSION/bin, resolves to /REL9/bin on a system whose

$VERSION value is set to REL9.

In the above scenario, if ls –l /bin/ is issued, the user expects to see the contents

of /bin. However, because /bin is a symbolic link pointing to $VERSION/bin, the

symbolic link must be resolved first. $VERSION resolves to /REL9 which makes the

path name /REL9/bin. The contents of /REL9/bin will now be displayed.

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

Sysplex root file system

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

REL9

/

OMVS.SYSPLEX.ROOT

OMVS.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

Not used in

a sysplex

environment

OMVS.SY1.SYSTEM.HFS

/

/

Figure 43. Shared file systems in a sysplex

94 z/OS UNIX System Services APAR OA12251

Scenario 2: Multiple systems in the sysplex using the same

release level

Figure 46 on page 97 shows another SYSPLEX(YES) configuration. In this

configuration, however, two or more systems are sharing the same version file

system (the same release level of code). Figure 44 shows a sample BPXPRMxx for

the entire sysplex (what IBM suggests) using &SYSNAME. as a symbolic name,

and Figure 45 on page 96 shows a configuration where each system in the sysplex

has its own BPXPRMxx. For our example, SY1 has its own BPXPRMxx and SY2

has its own BPXPRMxx.

One BPXPRMxx member to define file systems for the entire sysplex

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

VERSION(’REL9’)

SYSPLEX(YES)

ROOT

FILESYSTEM (’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR)

MOUNT FILESYSTEM(’OMVS.USER.HFS’)

MOUNTPOINT(’u’) AUTOMOVE

TYPE(HFS) MODE(RDWR)

MOUNT FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’)

MOUNT

FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 44. Sharing file systems: one version file system and one BPXPRMxx for the entire

sysplex

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 95

BPXPRMS1 (for SY1) BPXPRMS2 (for SY2)

FILESYSTYPE FILESYSTYPE

TYPE(HFS) TYPE(HFS)

ENTRYPOINT(GFUAINIT) ENTRYPOINT(GFUAINIT)

PARM(’ ’) PARM(’ ’)

VERSION(’REL9’) VERSION(’REL9’)

SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT

FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR) TYPE(HFS) MODE(RDWR)

MOUNT MOUNT

FILESYSTEM(’OMVS.SY1.SYSTEM.HFS’) FILESYSTEM(’OMVS.SY2.SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/SY1’) MOUNTPOINT(’/SY2’)

MOUNT FILESYSTEM(’OMVS.ROOT.HFS’) MOUNT FILESYSTEM(’OMVS.ROOT.HFS’)

TYPE(HFS) MODE(READ) TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT FILESYSTEM(’OMVS.SY1.DEV’) MOUNT FILESYSTEM(’OMVS.SY2.DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/SY1/dev’) MOUNTPOINT(’/SY2/dev’)

MOUNT FILESYSTEM(’OMVS.SY1.TMP’) MOUNT FILESYSTEM(’OMVS.SY2.TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/SY1/tmp’) MOUNTPOINT(’/SY2/tmp’)

.

.

.

Figure 45. Sharing file systems: one version file system and separate BPXPRMxx members

for each system in the sysplex

96 z/OS UNIX System Services APAR OA12251

In this scenario, where multiple systems in the sysplex are using the same version

file system, if ls –l /bin/ is issued from either system, the user expects to see the

contents of /bin. However, because /bin is a symbolic link pointing to

Sysplex root file system

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

REL9

/

OMVS.SYSPLEX.ROOT

OMVS.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin
/usr
/lib
/opt
/samples

/bin
/usr
/lib
/opt
/samples

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

OMVS.SY1.SYSTEM.HFS

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY2.DEV

OMVS.SY2.TMP

OMVS.SY2.VAR

OMVS.SY2.ETC

OMVS.SY2.SYSTEM.HFS

SY2

/

/

/

Not used in
a sysplex

environment

Figure 46. Sharing file systems in a sysplex: multiple systems in a sysplex using the same release level

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 97

$VERSION/bin, the symbolic link must be resolved first. $VERSION resolves to

/REL9 which makes the path name /REL9/bin. The contents of this directory will be

displayed.

Scenario 3: Multiple systems in a sysplex using different release

levels

If your participating group is in a sysplex that runs multiple levels of z/OS, your

configuration might look like the one in Figure 48 on page 99. In that configuration,

each system is running a different level of z/OS and, therefore, has different version

file system data sets; SY1 has the version file system named

OMVS.SYSR9A.ROOT.HFS and SY2 has the version file system named

OMVS.SYSR9.ROOT.HFS. Figure 47 shows two BPXPRMxx parmlib members that

define the file systems in this configuration. Figure 49 on page 100 shows a single

BPXPRMxx parmlib member that can be used to define this same configuration; it

uses &SYSR1. as the symbolic name for the two version file system data sets.

BPXPRMxx (for SY1) BPXPRMxx (for SY2)

FILESYSTYPE FILESYSTYPE

TYPE(HFS) TYPE(HFS)

ENTRYPOINT(GFUAINIT) ENTRYPOINT(GFUAINIT)

PARM(’ ’) PARM(’ ’)

VERSION(’REL9A’) VERSION(’REL9’)

SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT

FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR) TYPE(HFS) MODE(RDWR)

MOUNT MOUNT

FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’) FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’) MOUNTPOINT(’/&SYSNAME.’)

MOUNT MOUNT

FILESYSTEM(’OMVS.SYSR9A.ROOT.HFS’) FILESYSTEM(’OMVS.SYSR9.ROOT.HFS’)

TYPE(HFS) MODE(READ) TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’) FILESYSTEM(’OMVS.&SYSNAME..DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’) MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’) FILESYSTEM(’OMVS.&SYSNAME..TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’) MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 47. BPXPRMxx setup for multiple systems sharing file systems and using different release levels

98 z/OS UNIX System Services APAR OA12251

In this scenario, for example, if ls –l /bin/ is issued on SY1, the user expects to see

the contents of /bin. However, because /bin is a symbolic link pointing to

$VERSION/bin, the symbolic link must be resolved first. $VERSION resolves to

OMVS.SYSR9.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin
/usr
/lib
/opt
/samples

/bin
/usr
/lib
/opt
/samples

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

OMVS.SY1.SYSTEM.HFS

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin
/usr
/lib
/opt
/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY2.DEV

OMVS.SY2.TMP

OMVS.SY2.VAR

OMVS.SY2.ETC

OMVS.SY2.SYSTEM.HFS

Sysplex root file system

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

REL9A

/

OMVS.SYSPLEX.ROOT

SY2

REL9

OMVS.SYSR9A.ROOT.HFS

Version file system

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin
/usr
/lib
/opt
/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin
/usr
/lib
/opt
/samples

/bin
/usr
/lib
/opt
/samples

/

/

/

/

Not used in
a sysplex

environment

Not used in
a sysplex

environment

Figure 48. Sharing file systems between multiple systems using different release levels

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 99

/SYSR9A on SY1, which makes the path name /SYSR9A/bin. The contents of this

directory will now be displayed. If ls –l /bin/ is issued on SY2, the contents of

/SYSR9/bin will display.

From SY2 you can display information on SY1 by fully qualifying the directory.

Example: To view SY1’s /bin directory:

ls –l /SY1/bin/

In order to use one BPXPRMxx parmlib file system member, we have used another

system symbolic like &SYSR1. This system symbolic is used in the VERSION

parameter and also as a qualifier in the version file system data set name.

One BPXPRMxx member to define file systems for the entire sysplex

Using different releases

FILESYSTYPE

TYPE(HFS)

ENTRYPOINT(GFUAINIT)

PARM(’ ’)

VERSION(’&SYSR1.’)

SYSPLEX(YES)

ROOT

FILESYSTEM (’OMVS.SYSPLEX.ROOT’)

TYPE(HFS) MODE(RDWR)

MOUNT FILESYSTEM(’OMVS.USER.HFS’)

MOUNTPOINT(’u’) AUTOMOVE

TYPE(HFS) MODE(RDWR)

MOUNTFILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME.’)

MOUNT

FILESYSTEM(’OMVS.&SYSR1..ROOT.HFS’)

TYPE(HFS) MODE(READ)

MOUNTPOINT(’/$VERSION’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..DEV’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT

FILESYSTEM(’OMVS.&SYSNAME..TMP’)

TYPE(HFS) MODE(RDWR) NOAUTOMOVE

MOUNTPOINT(’/&SYSNAME./tmp’)

.

.

.

Figure 49. One BPXPRMxx parmlib member for multiple systems sharing file systems and

using different release levels

100 z/OS UNIX System Services APAR OA12251

Automount policies

Rule: You must keep the automount policies consistent across all the participating

systems in the sysplex. The automount facility will not manage any directory until it

can process the entire policy without encountering any errors.

Keeping your automount policy consistent on all systems

Your automount policy most likely resided in the /etc/auto.master and /etc/u.map

files. For those using shared file systems, each participating system has a separate

/etc file system. In order for the automount policy to be consistent across

participating systems, the same copy of the automount policy must exist in every

system’s /etc/auto.master and /etc/u.map files.

AUTOMOUNT is the preferred method of managing the /u directory. You do not

need a mount statement for /u in the BPXPRMxx parmlib member.

For example, both SY1 and SY2 have the following files:

v /etc/auto.master

 /u /etc/u.map

v /etc/u.map

 name *

 type HFS

 filesystem OMVS.<uc_name>.HFS

 mode rdwr

 duration 60

 delay 60

When the automount daemon initializes on SY1, it will read its local

/etc/auto.master file to identify what directories to manage; in this case, it is /u.

Next, the automount daemon will use the policy specified in the local /etc/u.map file

to mount file systems with the specified naming convention under /u. The

automount daemon on SY2 will perform similar actions. Because all mounted file

systems are available to all participating systems in the sysplex, your automount

policy must be consistent. This is true for the file system name specified in

/etc/u.map and the values for other parameters in /etc/u.map and

/etc/auto.master.

Moving file systems in a sysplex

You may need to change ownership of the file system for recovery or re-IPLing.

Tips:

v To check for file systems that have already been mounted, use the df command

from the shell.

v The SETOMVS command used with the FILESYS, FILESYSTEM, mount point

and SYSNAME parameters can be used to move a file system in a sysplex, or

you can use the chmount command from the shell.

Restriction: Do not move two types of file systems:

– System-specific file systems

– File systems that are being exported by DFS. You have to unexport them from

DFS first and then move them

Examples:

1. To move ownership of the file system that contains /u/wjs to SY1:

chmount -d SY1 /u/wjs

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 101

2. To move ownership of the payroll file system from the current owner to SY2

using SETOMVS, issue:

SETOMVS FILESYS,FILESYSTEM=’POSIX.PAYROLL.HFS’,SYSNAME=SY2

or (assuming the mount point is over directory /PAYROLL)

SETOMVS FILESYS,mountpoint=’/PAYROLL’,SYSNAME=SY2

If you mount a system-specific file system on other than the correct

(system-specific) owner, either explicitly or due to AUTOMOVE=YES, loss of

function may occur. For example, if the system-specific file system mounted at /dev

for SY1 is moved to SY2 so that ownership is now SY2, the OMVS command on

SY1 will fail.

Also, opened FIFO files are automatically closed before the file system containing

the FIFO is moved. They are closed because the in-storage FIFO data on the old

system is not moved and is no longer accessible on new owning system.

Moving file systems to a back-level system

If you move a file system to a back-level system, existing NFS client connections to

the files in that file system may be broken if Share Reservations are used. With

Share Reservations, remote NFS clients can open files on z/OS in such a way that

no one else can open that file until the first program finishes and closes the file. For

more information about Share Reservations, see the BPX1VOP callable service in

z/OS UNIX System Services File System Interface Reference.

Restrictions:

v A file system cannot be moved to a back-level system while there are active

Share Reservations on any file in the file system. You will have to move the file

system to a sysplex member at the z/OS V1R7 release level or later.

Alternatively, you can stop the applications at the NFS clients who have put

reservations on the files, or wait for them to finish.

v Share Reservations that attempt to deny reading or writing for files in a read-only

file system are accepted but will not be enforced.

v File systems cannot be remounted from read-write to read-only or from read-only

to read-write while there are Share Reservations established on any file in that

file system.

If an NFS client is going to open a file that has Share Reservations set:

v That file must be owned by a system at the z/OS V1R7 level or higher before it

can be opened.

v If the file is owned by a remote system that supports Share Reservations, they

will be enforced at the owner for all opens within the sysplex.

v If the file is owned by a remote system at a lower level, the client’s open will fail.

The reason code of the failure will indicate that the file system has to be moved

to a sysplex member that is at the z/OS V1R7 release or later.

If the system goes down and there are Share Reservations on a file owned by a

remote system:

1. If the file system is taken over by another z/OS V1R7 or later system, the

reservations are reestablished at the new owner and enforced there.

2. If the file system is taken over by an owner that does not support Share

Reservations, the NFS client’s open is invalidated and subsequent operations

from that client for this open are rejected. If you move the file system to a

sysplex member that supports Share Reservations, the file can be reopened as

102 z/OS UNIX System Services APAR OA12251

it was before. You can use the AUTOMOVE parameter of the MOUNT command

to restrict these takeovers to the systems that do support Share Reservations.

Shared file system implications during system failures and recovery

File system recovery in a shared file system environment takes into consideration

file system specifications such as the sysplex awareness capability, the

AUTOMOVE value, and whether or not the file system is mounted read-only or

read-write.

Takeover is always attempted for file systems that are sysplex-aware, regardless of

the AUTOMOVE value. Most systems in the sysplex already have the file system

locally mounted, so the ownership is simply moved and file system access

continues as it was. Table 17 on page 90 describes the recovery actions that occur

for each combination of settings.

Generally, when an owning system fails, ownership of a file system that is mounted

AUTOMOVE is moved to another system and the file system remains usable.

However, if a file system is mounted read-write and the owning system fails, then all

file system operations for files in that file system will fail. This happens because

data integrity is lost when the file system owner fails. All files should be closed

(BPX1CLO) and reopened (BPX1OPN) when the file system is recovered. The

BPX1CLO and BPX1OPN callable services are discussed in z/OS UNIX System

Services Programming: Assembler Callable Services Reference.

For file systems that are mounted read-only, specific I/O operations that were in

progress at the time the file system owner failed may need to be started again.

In some situations, even though a file system is mounted AUTOMOVE, ownership

of the file system may not be immediately moved to another system. This may

occur, for example, when a physical I/O path from another system to the volume

where the file system resides is not available. As a result, the file system becomes

unowned; if this happens, you will see message BPXF213E. This is true if the file

system is mounted either read-write or read-only. The file system still exists in the

file system hierarchy so that any dependent file systems that are owned by another

system are still usable. However, all file operations for the unowned file system will

fail until a new owner is established. The shared file system support will continue to

attempt recovery of AUTOMOVE file systems on all systems in the sysplex that are

enabled for shared file system. If a subsequent recovery attempt succeeds, the file

system transitions from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)

those files and reopen (BPX1OPN) them after the file system is recovered.

Sysplex-unaware file systems that are mounted NOAUTOMOVE will become

unowned when the file system owner exits the sysplex. The file system will remain

unowned until the original owning system restarts or until the unowned file system

is unmounted. Note that since the file system still exists in the file system hierarchy,

the file system mount point is still in use. File systems that are mounted below a

NOAUTOMOVE file system will not be accessible via path name when the

NOAUTOMOVE file system becomes available.

Do not mount AUTOMOVE file systems within NOAUTOMOVE file systems. When

a NOAUTOMOVE file system becomes unowned and there are AUTOMOVE file

systems mounted within it, those AUTOMOVE file systems will retain a level of

availability, but only for files that are already open. When the NOAUTOMOVE file

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 103

|
|
|
|

|
|
|
|
|

|
|

|
|

system becomes unowned, it will not be possible to perform path name lookup

through it to the file systems mounted within it, which will make those file systems

unavailable for new access. When ownership is restored to the unowned file

system, access to the file systems mounted within it is also restored.

Managing the movement of data

File systems can be managed so as to maximize their availability when systems

exit the participating group. You have more control over this when the outage is

planned, but there are steps you can take to help manage the placement of data in

the event of a system failure.

Recovery processing for the file systems that are owned by a failed system is

managed internally by all the systems in the participating group. If you want special

considerations for the placement of certain file systems, you can use the options

provided by the various mount services to specify the original owner and

subsequent owners for a particular file system.

“Customizing BPXPRMxx for a shared file system” on page 87 describes the

behavior of the various AUTOMOVE options.

Table 21 shows the AUTOMOVE options that you can use with the MOUNT

command to manage sysplex-unaware file systems. (Table 22 on page 105 covers

the AUTOMOVE options for sysplex-aware file systems.)

 Table 21. Automove options supported by the MOUNT command for sysplex-unaware file

systems

UNMOUNT Attempts will not be made to keep the file system active when the

current owner fails. The file system will be unmounted when the owner

is no longer active in the participating group, as well as all the file

systems mounted within it. It is suggested for use on parmlib mounts

for system-specific file systems, such as those that would be mounted

at /etc, /dev, /tmp and /var.

NOAUTOMOVE Attempts will not be made to keep the file system active when the

current owner fails. The file system will remain in the hierarchy for

possible recovery when the original owner reinitializes. Use this option

on mounts for system-specific file systems if you want to have

automatic recovery when the original owner rejoins the participating

group.

When the NOAUTOMOVE option is used, the file system becomes

unowned when the owning system exits the participating group. The

file system remains unowned until the last owning system restarts, or

until the file system is unmounted. Because the file system still exists

in the file system hierarchy, the file system mount point is still in use.

An unowned file system is a mounted file system that does not have

an owner. Because it still exists in the file system hierarchy, it can be

recovered or unmounted.

AUTOMOVE

(no system list)

Recovery of the file system is to be performed when the current owner

fails. This option is suggested for use on mounts of file systems that

are critical to operation across all the systems in the participating

group. AUTOMOVE is the default.

104 z/OS UNIX System Services APAR OA12251

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

Table 21. Automove options supported by the MOUNT command for sysplex-unaware file

systems (continued)

AUTOMOVE with

a system list

AUTOMOVE(EXCLUDE|INCLUDE,sysname1,sysname2,...sysnameN)

specifies managed recovery of the file system if the current owner fails.

v Use the EXCLUDE list to prevent recovery of a file system from

transferring ownership to a particular system, or set of systems, in

the participating group. When the current owner fails, recovery of the

file system is performed to an owner outside the exclude list.

v Use the INCLUDE list to ensure that recovery of a file system will

transfer ownership only to a particular system or set of systems in

the participating group. Recovery of the file system is performed in

priority order only by the list of systems specified in the INCLUDE

list.

Restriction: Only use this option on mounts of file systems that are

critical to operation across a subset of systems in the participating

group, or when you do not want certain systems in the participating

group to have ownership of the file system.

If recovery processing fails to establish a new owner for the file

system, the file system is unmounted, along with all the file systems

mounted within it.

Table 22 shows the AUTOMOVE options that you can use with the MOUNT

command to manage sysplex-aware file systems.

 Table 22. Automove options supported by the MOUNT command for sysplex-aware file

systems

UNMOUNT Attempt will be made to keep the file system active when the current

owner fails. The file system and all file systems that are mounted

beneath it will be unmounted if the file system cannot be taken over by

a new owning system.

AUTOMOVE Recovery of the file system is to be performed when the current owner

fails. This option is suggested for use on mounts of file systems that

are critical to operation across all the systems in the participating

group. AUTOMOVE is the default.

Note: AUTOMOVE or UNMOUNT are the only options you can use for file systems

that are mounted in a mode for which they are capable of being directly

mounted to the PFS on all systems (sysplex-aware). If you specify any other

option on a MOUNT, it is ignored and you will see message BPXF234I.

Most of the z/OS UNIX interfaces that provide for mounting file systems (such as

TSO, shell, ISHELL, and BPX2MNT) support some form of the options described in

“Customizing BPXPRMxx for a shared file system” on page 87. See the associated

documentation for the exact syntax.

Guideline: To ensure that the root is always available, use the default, which is

AUTOMOVE.

For file systems that are mostly used by DFS or SMB clients, consider specifying

NOAUTOMOVE on the MOUNT statement. Then the file systems will not change

ownership if the system is suddenly recycled, and they will be available for

automatic re-export by DFS or SMB. Specifying NOAUTOMOVE is suggested

because a file system can only be exported by the DFS or SMB server at the

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 105

|
|

|
|
|
|

|
|
|
|

|
|

||
|

||
|
|
|

||
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

system that owns the file system. Once a file system has been exported by DFS or

SMB, it cannot be moved until it has been unexported from DFS or SMB. When

recovering from system outages, you need to weigh sysplex availability against

availability to the DFS or SMB clients. When an owning system recycles and a

DFS- or SMB-exported file system has been taken over by one of the other

systems, DFS or SMB cannot automatically re-export that file system. The file

system will have to be moved from its current owner back to the original DFS or

SMB system, the one that has just been recycled, and then exported again.

Shared file system implications during a planned shutdown of z/OS

UNIX

These sections contain the procedures to use when shutting down z/OS UNIX.

v Steps for shutting down z/OS UNIX using F OMVS,SHUTDOWN in the Managing

Operations chapter.

v Steps for shutting down z/OS UNIX usinG F BPXOINIT,SHUTDOWN=... in the

Managing Operations chapter.

It is important that you understand the system actions that result when you use

those procedures.

The current automove option dictates if and how the participating group recovers

file system ownership from an exited system. It has no effect on the manual

movement of the file system. However, when you are using the procedures for

shutting down z/OS UNIX to prepare for a planned system outage, the automove

option does apply. This can be explained with the following rationale:

v A system failure does not provide any means for manual intervention. The

automove option provides a set of rules for automatic recovery.

v A request to move a file system manually is a deliberate action on behalf of an

authorized user or administrator, and should override any rules for automatic

recovery.

v Using tools to prepare for a system outage is also a deliberate action on behalf

of an authorized user or administrator, but you are using these tools in an

environment that can be customized to allow for additional manual intervention.

You can synchronize data before the system outage, and then manage the

planned outage in the same way as the unplanned outage, by making use of the

automatic recovery rules that are supplied by the automove options. If you prefer

some other action, you can perform manual intervention to move specific file

system ownership before you use these methods for shutdown preparation.

Use F OMVS,SHUTDOWN to shut down file systems. If this is not appropriate for

your installation, use the F BPXOINIT,SHUTDOWN=... procedure.

State of file systems after shutdown

File systems on the system where the shutdown was issued are immediately

unmounted. As a result, data is synched to disk. For shared file systems, one of the

following actions is done on the file systems that are owned by the system where

the command was issued.

v Unmount if automounted or if a file system was mounted on an automounted file

system.

v Move to another system if an AUTOMOVE(YES) was specified.

v Unmount for all other file systems.

File systems that are not owned by the system on which the shutdown was issued

are not affected.

106 z/OS UNIX System Services APAR OA12251

|
|
|
|
|
|
|
|

File system initialization

When you are preparing to bring a system back into the participating group after it

has left, it is helpful to understand the coordination that occurs among the systems

that are already participating in the group. You might see delays in the availability of

the entering system because of activity occurring elsewhere in the sysplex.

Although it is possible to bring up multiple systems simultaneously, when they reach

the point of z/OS UNIX initialization, their processing is serialized so as to allow

only one system at a time to initialize z/OS UNIX.

Other examples of activities occurring on other active systems that can cause the

initializing system to experience delays are

v Unmounting a file system

v Changing ownership of a file system

v Recovering for systems that have left the participating group

Before it rejoins the participating group, a system processes all the file systems that

are listed in the current hierarchy of the participating group. It also attempts to

reclaim any unowned file systems that it previously owned when it was part of the

participating group. It does not attempt to reclaim those file systems that were

successfully moved or recovered to another system in the sysplex.

During initialization, any new MOUNT statements in the BPXPRMxx parmlib

member are processed, which makes those file systems available for use within the

participating group after they are successfully mounted.

While a system is initializing in a sysplex, critical file systems that are necessary for

initialization to complete successfully might become unavailable due to a system

outage. When a system is removed from the sysplex, there is a window of time

during which any file systems it owned will become inaccessible to other systems.

This window of time occurs while other systems are being notified of the system’s

exit from the sysplex and before they start the cleanup for that system.

Ideally, ownership of critical file systems will have been moved to other systems

before the system exits. If that has not happened, there will be a window of time

during which these critical file systems are unowned. If the initializing system

requires access to these critical file systems during this window, there will likely be

mount failures that prevent the initialization from completing successfully. To avoid

this situation, you must make sure that any system that is being removed from the

sysplex does not own any critical file systems.

Locking files in the sysplex

You can lock all or part of a file that you are accessing for read-write purposes by

using the byte range lock manager (BRLM).

With z/OS V1R6, the lock manager is initialized on every system in the sysplex.

This is known as distributed BRLM, and it is the only supported byte range locking

method when all systems are at the V1R6 level. Each BRLM is responsible for

handling locking requests for files whose file systems are mounted locally in that

system. Distributed BRLM was formerly an option on previous levels of z/OS, and

central BRLM was formerly the default.

When a system failure occurs, all byte range locks are lost for files in file systems

owned by that system. To maintain locking integrity for those locked files that are

still open on surviving systems, z/OS UNIX prevents further locking or I/O on those

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 107

files. In addition, the applications are signaled, in case they never issue locking

requests or I/O. Running applications that did not issue locking requests and did not

have files open are not affected.

After a failure where byte range locks are lost, z/OS UNIX provides the following

information to processes that have used byte range locking:

v Access to open files for which byte range locks are held by any process will

result in an I/O error. The file must be closed and reopened before use can

continue.

v A signal is issued to any process which has made use of byte range locking. By

default, a SIGTERM signal is issued against every such process, and an EC6

abend with reason code 0D258038 will terminate the process. If you do not want

the process to be terminated, the process can use BPX1PCT (the physical file

system control callable service) to specify a different signal for z/OS UNIX to use

for notifying the process that the BRLM has failed. Any signal can be used for

this purpose, thus allowing the user or application the ability to catch or ignore

the signal and react accordingly.

z/OS MVS System Codes describes the system completion code EC6 and its

associated reason codes. See z/OS UNIX System Services Programming:

Assembler Callable Services Reference for more information about BPX1PCT.

Using distributed BRLM

With z/OS V1R6, a file system can be moved while byte range locks are held for

files in the file system. When a file system changes owners, the corresponding

locking history changes BRLM servers at the same time. (This is not the case when

a system failure occurs, as was discussed in “Locking files in the sysplex” on page

29.) For this reason, distributed BRLM is now the only supported method when all

systems are at the z/OS V1R6 level.

If you are already running with a z/OS UNIX CDS indicating that distributed BRLM

is enabled, there is no change required to activate distributed BRLM for z/OS V1R6.

Likewise, if your sysplex only has systems at the z/OS V1R6 level, there is no

change required, because distributed BRLM is the default. z/OS V1R6 systems

ignore the z/OS UNIX CDS DISTBRLM setting.

However, if you migrate to z/OS V1R6 by running mixed levels in a sysplex, you

should enable distributed BRLM before IPLing the z/OS V1R6 system because a

z/OS V1R6 system may attempt to activate distributed BRLM when the central

BRLM server leaves the sysplex, regardless of the z/OS UNIX CDS setting. The

inconsistency between distributed BRLM being active and central BRLM being

defined in the z/OS UNIX CDS can cause an EC6-BadOmvsCds abend on

downlevel systems. It is a notification-only abend indicating that the CDS should be

updated. z/OS UNIX will still operate normally, and distributed BRLM will be active

in the sysplex.

Before bringing the first z/OS V1R6 system into the sysplex, enable distributed

BRLM by using the IXCL1DSU utility to update the BPXMCDS couple data set and

then activate it. Message BPXF235I is issued when the switch from central BRLM

to distributed BRLM occurs.

See “Creating a couple data set (CDS)” on page 84 for an example of the

COUPLExx parmlib member. For more information about the BPXMCDS couple

data set and the IXCL1DSU utility, see z/OS MVS Setting Up a Sysplex.With V1R6,

if you run your IXCL1DSU job to create a z/OS UNIX couple data set, distributed

BRLM is set up as a default.

108 z/OS UNIX System Services APAR OA12251

Requirement: Remove the central BRLM server from the sysplex via an IPL or

OMVS shutdown (F OMVS,SHUTDOWN). This eliminates all file locking history in

the sysplex and allows the new distributed BRLM servers to start with a clean

locking history.

Mounting file systems using symbolic links

You can mount different file systems at a logical mount point that resolves to a

different path name on different systems.

While $VERSION/ can be used to differentiate a path based on the version level of

a system and $SYSNAME/ can be used to differentiate on each system, you can

use special identifiers to mount file systems using symbolic links. These are

$SYSSYMR/template and $SYSSYMA/template.

Restrictions:

1. Like $VERSION/ and $SYSNAME/, the identifiers need to be at the beginning of

the link name.

2. Only the first occurrence of $SYSSYMR/ or $SYSSYMA/ in the link name will be

recognized as an identifier for which the remaining text requires substitutions.

Any other identifiers after the first one will remain as is in the resolved linkname.

3. Text must follow a $SYSSYMR/ or $SYSSYMA/ in order for it to be recognized

as a valid identifier with text containing symbols to be resolved.

4. Any system symbol in the symbolic link text that is recognized by the

ASASYMBM service will be resolved. However, only static system symbols

should be used in order to avoid unexpected results. These symbols are

assigned a value at initialization. For information about system symbols, see

z/OS MVS Initialization and Tuning Reference.

Tip: You can use D SYMBOLS to display the current settings of system symbols.

Examples

These examples assume that the standard MVS symbol &SYSR1. resolves to

OSV315 on SY1 and resolves to OSV315B on SY2.

1. If the symbolic link is /x/y/sym1, and the symbolic link contains

$SYSSYMR/&SYSR1./resdir, a path name lookup on /x/y/sym1 from SY1 will

resolve the symbolic link to OSV315/resdir. Because it is a relative path name

(the identifier was $SYSSYMR/), the resulting path name will be

/x/y/OSV315/resdir.

Example: On a mount, passing /x/y/sym1 as the input mount point path name,

the mount point would be: /x/y/OSV315/resdir on SY1.

v If the symbol &SYSR1. resolves to OSV315B on SY2, a lookup of the same

path name would result in a mount point of /x/y/OSV315B/resdir.

v On a v_readlink syscall, passing the VnToken for the symbolic link, the output

linkname would be OSV315/resdir on SY1 or OSV315B/resdir on SY2.

2. If the symbolic link is /x/y/sym1, and the symbolic link contains

$SYSSYMA/&SYSR1./resdir, a path name lookup on /x/y/sym1 from SY1 will

resolve the symbolic link to /OSV315/resdir. Because it is an absolute path

name (the identifier was $SYSSYMA/), the resulting path name will be

/OSV315/resdir.

Example: On a mount, passing /x/y/sym1 as the input mount point path name,

the mount point would be /OSV315/resdir on SY1.

v If the symbol &SYSR1. resolves to OSV315B on SY2, a lookup of the same

path name from SY2 would result in a mount point of /OSV315B/resdir.

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 109

v On a v_readlink syscall, passing the VnToken for the symbolic link, the output

linkname would be /OSV315/resdir on SY1 and /OSV315B/resdir on SY2.

Mounting file systems using NFS client mounts

With the z/OS NFS server, the client has remote access to z/OS UNIX files from a

client workstation. Using the Network File System, the client can mount all or part of

the file system and make it appear as part of its local file system. From the

workstation, the client user can create, delete, read, write, and treat the

host-located files as part of the workstation’s own file system.

In a similar way, the z/OS NFS client gives users remote access to files on an NFS

server. Using NFS, the user can mount all or part of the remote file system and

make it appear as part of the local z/OS file hierarchy. From there, the user can

create, delete, read, write, and treat the remotely located files as part of their own

file system.

In a sysplex, the NFS Client-NFS Server relationship is as follows: the data that

becomes accessible is accessible from any place in the sysplex as long as at least

one of the systems has connectivity to the NFS server.

Rule: Entries in the NFS Server Export Data Set can control which UNIX directories

can be mounted by client users. When specifying path names in this data set, you

must specify fully qualified path names. That is, the use of symbolic links in this

data set are not supported.

File system availability

In the shared file system environment, file system availability and accessibility

depend on a number of important factors. These factors can vary depending on

how a file system is mounted and the capability of the file system to manage itself

in a sysplex environment. After you set up the shared file system environment for

cross-system communication (“Procedures for establishing shared HFS in a

sysplex” on page 7), it will be helpful to understand how file system availability is

provided to your systems, and what kinds of actions can cause interruptions to that

availability.

Minimum setup required for file system availability

Rules:

v For DASD file systems, at least one system in the shared file system group

needs to have a physical I/O path to the volume where the file system resides

and the volume is varied online. Without connectivity from at least one system,

the file system will not be available to any of the systems in the shared file

system group. Connectivity from one system can provide shared file system

accessibility to the file system for all other systems in the shared file system

group.

v All systems need to have the physical file system (PFS) started. Accomplish this

by placing the appropriate FILESYSTYPE statement in the BPXPRMxx parmlib

member that is used in the configuration. Additionally, any necessary subsystems

required by the PFS must be started and configured, especially if this system is

to function as the file system owner. For example, the NFS Client PFS requires

that the TCP/IP subsystem be started and a network connection configured.

Read-write connections for non-sysplex aware file systems: Most physical file

systems (PFSes) allow only one connection for update at a time. Such file systems

are called non-sysplex aware for update. This is directly related to the mount mode

110 z/OS UNIX System Services APAR OA12251

of the file system. With HFS, for example, only one system can actually connect to

the file system with a mode of RDWR. That system is called the file system owner.

The other systems that want to participate in shared file systems will also request a

RDWR mount, but their access will be provided via cross-system messaging with

the file system owner which has already established the read-write connection.

These systems are called file system clients. When the file system owner becomes

unavailable (for example, through system shutdown), it will be important for another

system (one of the file system clients) to have the file system volume varied online

so that a new owner can be established. This helps ensure maximum file system

availability in the shared file system group.

Read-write connections for sysplex-aware file systems: Some PFSes can

handle multiple concurrent connections for update. They are capable of managing

the serialization of such requests. Such file systems are called sysplex aware for

update. Most network file systems have this capability. NFS Client is one such file

system type.

For a read-write mount to NFS Client, each system in the shared file system group

will make a direct connection to NFS. The first system to make such a connection is

still called the file system owner. All subsequent systems to make a direct

connection are considered non-owners, rather than clients. This type of multiple

direct connection for read-write access allows for maximum I/O performance by

eliminating the need to send requests to the file system owner.

However, sometimes a non-owning system cannot make a direct connection to the

PFS even after meeting the minimum requirements (for example, sometimes

requests to NFS Client time out before they are satisfied). That system might be

given a cross-system messaging connection, making it a client to the file system.

While this is not the optimal mount mode for this type of file system, it does allow

access to the file system.

Read-only connections for non-sysplex aware file systems: There may be

some physical file systems that do not support multiple concurrent connections for

read-only access. These are called non-sysplex aware for readonly, and are

handled the same as the read-write connections for non-sysplex aware file systems.

Read-only connections for sysplex-aware file systems: Physical file systems

that support multiple concurrent connections for read-only access are called sysplex

aware for readonly. The HFS physical file system falls into this category. Such file

systems are handled the same as the read-write connections for sysplex aware file

systems. The read-only connections are attempted locally for each system in the

shared file system group, but if the file system volume is not online to a system,

then the system becomes a client to the file system via cross-system messaging

with the owner.

Situations that can interrupt availability

Some situations may cause interruptions to file system availability on one or more

systems. Following is a list of some of the most common causes. It is not meant to

be an exhaustive list.

v Loss of the file system owner. If the file system owner leaves the shared file

system group (through system failure, soft shutdown, VARY, XCF, OFFLINE, or

some other means), an attempt may be made to establish another file system

owner if requested by the AUTOMOVE specification of the mount. If a new file

system owner cannot be established, the file system will become unowned. It will

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 111

be unavailable until the original owner can reclaim it, or until another owner is

established through subsequent automated recovery actions performed by

shared file system.

v PFS termination. If a PFS terminates on one system, it can affect file system

availability on other systems.

– Prior to z/OS V1R2, if a PFS terminates on one system, all file systems of

that type are unmounted across the sysplex.

– In z/OS V1R2 and later, if a PFS terminates on one system, any file systems

of that type that are owned by other systems are not affected. File systems of

that type are moved to new owners whenever possible if they are owned by

the system where the PFS is terminating and are automovable. These file

systems remain accessible to other systems. If they cannot be moved to new

owners, they are unmounted across the sysplex. It may not be possible to

move a file system due to a lack of connectivity from other systems, or if the

file system containing the mount point for the file system needed to be moved

but could not be.

v VARY volume,OFFLINE. When the volume for a file system is varied offline, it

will make that file system inaccessible to that system. However, if the volume is

online to other systems, it may still be accessible to those systems and to other

systems via cross-system messaging. This would be the case for sysplex-aware

file systems for read-write or read-only access. Unlike loss of the file system

owner, varying a file system volume offline will not result in any attempt by the

system to restore accessibility to systems on which it is lost.

Tuning z/OS UNIX performance in a sysplex

The intersystem communication required to provide the additional availability and

recoverability associated with z/OS UNIX shared file system support, affects

response time and throughput on R/W file systems being shared in a sysplex.

For example, assume that a user on SY1 requests a read on a file system mounted

R/W and owned by SY2. Using shared file system support, SY1 sends a message

requesting this read to SY2 via an XCF messaging function:

SY1 ===> (XCF messaging function) ===> SY2

After SY2 gets this message, it issues the read on behalf of SY1, and gathers the

data from the file. It then returns the data via the same route the request message

took:

SY2 ===> (XCF messaging function) ===> SY1

Thus, adding z/OS UNIX to a sysplex increases XCF message traffic. To control this

traffic, closely monitor the number and size of message buffers and the number of

message paths within the sysplex. It is likely that you will need to define additional

XCF paths and increase the number of XCF message buffers above the minimum

default. For more information about signaling services in a sysplex environment,

see z/OS MVS Setting Up a Sysplex.

You should also be aware that because of I/O operations to the CDS, every mount

request requires additional system overhead. Mount time increases as a function of

the number of mounts, the number of members in a sysplex, and the size of the

CDS. You will need to consider the effect on your recovery time if a large number of

mounts are required on any system participating in a shared file system.

112 z/OS UNIX System Services APAR OA12251

DFS considerations

A file system can only be exported by the DFS server at the system that owns the

file system. Once a file system has been exported by DFS, it cannot be moved until

it has been unexported by DFS.

To recover from system outages, you need to weigh sysplex availability against

availability to the DFS and Server Message Block (SMB) clients. When an owning

system recycles and a DFS-exported file system has been taken over by one of the

other systems, DFS will not be able to automatically reexport that file system. The

file system will have to be moved from its current owner back to the original DFS

system, the one that has just been recycled, and then reexported.

Tip: For file systems that are mostly for use by DFS clients, you should consider

specifying NOAUTOMOVE on the MOUNT statement. If you specify

NOAUTOMOVE, the file systems will not be taken over if the system is recycled,

and they will be available for automatic reexport by DFS.

Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7) 113

114 z/OS UNIX System Services APAR OA12251

Chapter 4. Changes for z/OS UNIX System Services Command

Reference

chmount — Change the mount attributes of a file system

Format

chmount [–DRrw] [-dsysname] [–d destsys] [–a

yes|no|unmount|include,sysname1,...,sysnameN|exclude,sysname1,...,sysnameN]

pathname...

Description

The chmount shell command, located in /usr/sbin, changes the mount attributes of

a specified file system.

Rule: A chmount user must have UID(0) or at least have READ access to the

SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

Options

–a

yes|no|unmount|include,sysname1,...,sysnameN|exclude,sysname1,...,sysnameN

The –a option specifies the AUTOMOVE attribute of the file system in a

sysplex environment where systems are exploiting the shared file system

capability.

 –a yes allows the system to automatically move logical ownership for

the file system as needed. This is the default.

 –a no prevents ownership movement in some situations.

 –a umount unmounts the file system in some situations.

 –a include,sysname1,...,sysnameN specifies a list of systems, in priority

order, to which the file system's ownership can be moved. include can

be abbreviated to i.

 –a exclude,sysname1,...,sysnameN specifies a list of systems, in

priority order, to which the file system's ownership cannot be moved.

exclude can be abbreviated to e.

See z/OS UNIX System Services Planning for details about the behavior of

the AUTOMOVE options.

–D Reassigns logical ownership of a file system to any available file system

participating in shared file system.

–d destsys

To designate a specific reassignment, use –d destsys, where destsys

becomes the logical owner of a file system in a shared file system

environment.

–R Changes the attributes of a specified file system and all file systems

mounted below it in the file system hierarchy.

–r Switches the specified file system to read-only mode.

–w Switches the specified file system to read-write mode.

pathname... specifies the pathnames to use for locating the file systems that need

attributes changed.

© Copyright IBM Corp. 1996, 2005 115

|
|
|

|
|
|
|
|

|
|

|

|

|
|
|

|
|
|

|
|

Example

To move ownership of the file system that contains /u/wjs to SY1:

chmount -d SY1 /u/wjs

Usage Note

The pathname for chmount/unmount is a node so symlinks can not be followed

unless a trailing slash is added to the symbolic link name. For example, if /etc has

been converted into a symbolic link, /etc -> $SYSNAME/etc, issuing chmount -w

/etc (without the trailing slash) will result in trying to chmount -w /etc ->

$SYSNAME/etc. This may result in RACF® errors depending on the security access

for the symlinked file. However, adding the trailing slash, by specifying chmount -w

/etc/ the symlink will be followed and RACF will determine the access from the

symlinked file.

Exit Values

0 Successful completion

Related Information

mount, unmount

mount — Logically mount a file system

Format

mount [–t fstype] [–rv] [–a yes|include,sysname1,...,sysnameN

|exclude,sysname1,...,sysnameN |no|unmount] [–o fsoptions] [–d destsys] [–s

nosecurity|nosetuid] –f fsname pathname[-wn]

mount –q [–d destsys][–v] pathname

File Tag Specific Option:

mount [–c ccsid,text|notext]

Description

The mount shell command, located in /usr/sbin, is used to mount a file system or

list all mounts over a file system.

Note: A mount user must have UID(0) or at least have READ access to the

SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

Options

–a yes|include,sysname1,...,sysnameN |exclude,sysname1,...,sysnameN

|no|unmount

The –a option specifies the AUTOMOVE attribute of the file system in a

sysplex environment where systems are exploiting the shared file system

capability.

 –a yes allows the system to automatically move logical ownership for

the file system as needed. This is the default.

chmount

116 z/OS UNIX System Services APAR OA12251

|
|
|

|
|
|
|
|

|
|

–a include,sysname1,...,sysnameN specifies a list of systems, in priority

order, to which the file system's ownership can be moved. include can

be abbreviated to i.

 –a exclude,sysname1,...,sysnameN specifies a list of systems, in

priority order, to which the file system's ownership cannot be moved.

exclude can be abbreviated to e.

 –a no prevents ownership movement in some situations.

 –a umount unmounts the file system in some situations.

See z/OS UNIX System Services Planning for details about the behavior of

the AUTOMOVE options.

–d destsys

Specifies the name of the system in a shared file system environment that

will be the logical owner of the mount. Note, if –q is specified, the mount

–q output will only list mounts that are owned by destsys.

–f fsname

Names the file system to be mounted. All file system names must be

unique. File system names are case sensitive. However, if the file system

type is HFS, fsname will be translated to uppercase. The file system name

has a maximum length of 44 characters, any additional characters will be

truncated. Options –q and –f are mutually exclusive, but one must be

specified.

-wn Specifies the amount of time the mount will wait in seconds for async

mounts to complete. If n is specified as a 0 the wait will be indefinite. This

option flag is tolerated on any form of the mount command and is ignored if

not appropriate (no wait needs to be done).

–o fsoptions

Specifies an option string to be passed to the file system type. NFS, for

example, uses this to identify the remote server and the object on that

server. The format and content are specified by the physical file system that

is to perform the logical mount. You can specify lowercase or uppercase

characters. Enclose the string in single quotes.

–q Prints a list of pathnames for the mountpoints of file systems mounted over

a another file system, including that system. Options –q and –f are mutually

exclusive, but one must be specified. If –v is not specified, only pathnames

for mountpoints are printed. Note that the output of mount –q can be used

by the unmount utility as input. See “Examples” on page 118.

–r Specifies mounting a file system read-only.

–s nosecurity|nosetuid

Specifies that a file system is unsecured. Setuid, setgid, APF and program

controlled attributes are ignored when you use nosetuid. To additionally

disable authorization checking, use nosecurity. Minimum unique

abbreviations can be used for the option arguments.

Note: When an HFS is mounted with the NOSECURITY option enabled,

any new files or directories that are created will be assigned an

owner of UID 0, no matter what UID issued the request.

–t fstype

Identifies the file system type. fstype may be entered in mixed case but will

be treated as upper case. If this option is not specified, the default is –t

HFS.

mount

Chapter 4. Changes for z/OS UNIX System Services Command Reference 117

|
|
|

|
|
|

|

|

|
|

–v Verbose output. Includes additional information, if available, on output. If –v

is specified on the mount command and the mount fails, the file system

name that had the mount failure will be included in the failure information.

pathname specifies the pathname for the mountpoint.

File Tag Specific Option

–c ccsid,text|notext

Specifies the file tag that will be implicitely set for untagged files in

the mounted file system.

ccsid Identifies the coded character set identifier to be

implicitly set for the untagged file. ccsid is specified

as a decimal value from 0 to 65535. However,

when text is specified, the value must be between 0

and 65535. Other than this, the value is not

checked as being valid and the corresponding code

page is not checked as being installed.

 For more information on file tagging, see z/OS

UNIX System Services Planning.

text Specifies that each untagged file is implicitly

marked as containing pure text data that can be

converted.

notext Specifies that none of the untagged files in the file

system are automatically converted during file

reading and writing.

Examples

1. The output of mount –q can be used for the input of unmount. For example:

mount -q /ict/hfsfir

can be used as input:

unmount $(mount -q /ict/hfsdir)

2. To mount an HFS file system over /u/wjs with a sync interval of 120 seconds:

mount -f omvs.hfs.user.wjs -o ’SYNC(120)’ /u/wjs

3. To display a list of pathnames for all mountpoints under /u:

mount -q /u

Usage Notes®

1. Systems exploiting shared file system will have I/O to an OMVS couple data

set. Because of these I/O operations to the CDS, each mount request requires

additional system overhead. You will need to consider the affect that this will

have on your recovery time if a large number of mounts are required on any

system participating in shared file system.

2. The –a unmount is not available to automounted file systems.

3. The –a no specification will only be accepted on z/OS V1R3 systems and later.

File System Recovery and mount

File system recovery in a shared file system environment takes into consideration

file system specifications such as –a yes|no|unmount and whether or not the file

system is mounted read-only or read/write.

mount

118 z/OS UNIX System Services APAR OA12251

Generally, when an owning system fails, ownership over its –a yes mounted file

system is moved to another system and the file is usable. However, if a file system

is mounted read/write and the owning system fails, then all file system operations

for files in that file system will fail. This is because data integrity is lost when the file

system owner fails. All files should be closed (BPX1CLO) and reopened

(BPX1OPN) when the file system is recovered. (The BPX1CLO and BPX1OPN

callable services are discussed in z/OS UNIX System Services Programming:

Assembler Callable Services Reference.)

For file systems that are mounted read-only, specific I/O operations that were in

progress at the time the file system owner failed may need to be submitted again.

Otherwise, the file system is usable.

In some situations, even though a file system is mounted with the –a yes option,

ownership of the file system may not be immediately moved to another system.

This may occur, for example, when a physical I/O path from another system to the

volume where the file system resides is not available. As a result, the file system

becomes ″unowned″ (the system will issue message BPXF213E when this occurs).

This is true if the file system is mounted either read/write or read-only. The file

system still exists in the file system hierarchy so that any dependent file systems

that are owned by another system are still usable.

However, all file operations for the unowned file system will fail until a new owner is

established. The shared file system support will continue to attempt recovery of –a

yes mounted file systems on all systems in the sysplex that are enabled for shared

file system. Should a subsequent recovery attempt succeed, the file system

transitions from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)

those files and re-open (BPX1OPN) them after the file system is recovered.

File systems that are mounted with the –a no option will become unowned when

the file system owner exits the sysplex. The file system will remain unowned until

the original owning system restarts or until the unowned file system is unmounted.

Note that since the file system still exists in the file system hierarchy, the file system

mount point is still in use.

An unowned file system is a mounted file system that does not have an owner. The

file system still exists in the file system hierarchy. As such, you can recover or

unmount an unowned file system.

File systems associated with a ’never move’ PFS will be unmounted during dead

system recovery. For example, TFS is a ’never move’ PFS and will be unmounted,

as well as any file systems mounted on it, when the owning system leaves the

sysplex.

As stated in “Usage Notes®” on page 118, –a unmount is not available to

automounted file systems. However, during dead system recovery processing for an

automounted file system (whose owner is the dead system), the file system will be

unmounted if it is not being referenced by any other system in the sysplex.

For more information on mounts and the AUTOMOVE and NOAUTOMOVE

parameters, see “mount — Logically mount a file system” on page 116.

mount

Chapter 4. Changes for z/OS UNIX System Services Command Reference 119

Exit Values

0 Successful completion

Related Information

chmount, unmount

MOUNT — Logically mount a file system

Format

MOUNT FILESYSTEM(file_system_name)

 MOUNTPOINT(pathname)

 TYPE(file_system_type)

 MODE(RDWR|READ)

 PARM(parameter_string)

 TAG(NOTEXT|TEXT,ccsid)

 SETUID|NOSETUID

 WAIT|NOWAIT

 SECURITY|NOSECURITY

 SYSNAME (sysname)

 AUTOMOVE|AUTOMOVE(indicator,sysname1,sysname2,...,sysnameN)|

 NOAUTOMOVE|UNMOUNT

Above, indicator is either INCLUDE or EXCLUDE, which can also be abbreviated as

I or E.

Description

For hierarchical file systems, you can use the MOUNT command to logically mount,

or add, a mountable file system to the file system hierarchy. You can unmount any

mounted file system using the UNMOUNT command.

Note: A mount user must have UID (0) or at least have READ access to the

BPX.SUPERUSER FACILITY class.

filesystem(file_system_name)

Specifies the name of the file system to be added to the file system hierarchy.

file_system_name

For the hierarchical file system (HFS), this is the fully qualified name of the

MVS HFS data set that contains the file system. It cannot be a partitioned

data set member.

 The file system name specified must be unique among previously mounted

file systems. The file system name supplied is changed to all uppercase

characters. You can enclose it in single quotes, but they are not required.

 If file system('''file_system_name''') is specified, the file system name will

not be translated to uppercase.

MOUNTPOINT(pathname)

Specifies the pathname of the mount point directory, the place within the file

hierarchy where the file system is to be mounted. This operand is required.

pathname

Specifies the mount point pathname. The pathname must be enclosed in

single quotes. The name can be a relative pathname or an absolute

pathname. A relative pathname is relative to the working directory of the

TSO/E session (usually the HOME directory). Therefore, you should usually

mount

120 z/OS UNIX System Services APAR OA12251

|
|

specify an absolute pathname. It can be up to 1023 characters long.

Pathnames are case-sensitive, so enter the pathname exactly as it is to

appear.

 Rules:

1. The mount point must be a directory. Any files in that directory are

inaccessible while the file system is mounted.

2. Only one file system can be mounted to a mount point at any time.

TYPE(file_system_type)

Specifies the type of file system that will perform the logical mount request. The

system converts the TYPE operand value to uppercase letters. This operand is

required.

file_system_type

This name must match the TYPE operand of the FILESYSTYPE statement

that activates this physical file system in the BPXPRMxx parmlib member.

The file_system_type value can be up to 8 characters long.

MODE(RDWR|READ)

Specifies the type of access the file system is to be opened for.

RDWR

Specifies that the file system is to be mounted for read and write access.

RDWR is the default if MODE is omitted.

READ

Specifies that the file system is to be mounted for read-only access.

 The HFS allows a file system that is mounted using the MODE(READ)

option to be shared as read-only with other systems that share the same

DASD.

PARM(parameter_string)

Specifies a parameter string to be passed to the file system type. The format

and content are specified by the physical file system that is to perform the

logical mount. You can specify lowercase or uppercase characters. Enclose the

string in single quotes.

 parameter_string

Specifies a parameter string value that can be up to 1024 characters long.

The parameter string must be enclosed in single quotes; it is case-sensitive.

 For an HFS file system, the following can be specified:

PARM(’SYNC(t),NOWRITEPROTECT’)

SYNC(t)

t is a numeric value that specifies the number of seconds that should

be used to override the sync interval default for this file system during a

specific mount. If SYNC is not specified at mount time, then the sync

interval default value will be used (a value of 60 seconds). The same

rules apply to the argument to the SYNC keyword at mount time as

apply to the argument of the SYNCDEFAULT keyword at HFS

initialization time. For more information on the SYNCDEFAULT

keyword, see z/OS UNIX System Services Planning.

NOWRITEPROTECT

The HFS has a Write Protection mechanism that adds some overhead

to HFS processing. This overhead can be avoided by turning off the

write protection by specifying NOWRITEPROTECT in the PARM field of

the MOUNT command.

MOUNT

Chapter 4. Changes for z/OS UNIX System Services Command Reference 121

NOSPARSE | NOSPARSE(DUMP)

Will cause HFS to create a dump when it either attempts to read

metadata from disk for a file and detects that the subject file is sparse

or if an application attempts to write to a page beyond the end of the

file causing the file to become sparse. Only one dump will be created

for each of the possible reason codes while a file system is mounted.

NOSPARSE(LOGREC)

Will cause HFS to write a LOGREC record instead of creating a dump

for the same conditions as for the Dump case.

TAG(NOTEXT|TEXT,ccsid)

Specifies whether the file tags for untagged files in the mounted file system are

implicitly set. File tagging controls the ability to convert a file’s data during file

reading and writing. Implicit, in this case, means that the tag is not permanently

stored with the file. Rather, the tag is associated with the file during reading or

writing, or when stat() type functions are issued. Either TEXT or NOTEXT, and

ccsid must be specified when TAG is specified.

Note: When the file system is unmounted, the tags are lost.

NOTEXT

Specifies that none of the untagged files in the file system are automatically

converted during file reading and writing.

TEXT

Specifies that each untagged file is implicitly marked as containing pure text

data that can be converted.

ccsid

Identifies the coded character set identifier to be implicitly set for the

untagged file. ccsid is specified as a decimal value from 0 to 65535.

However, when TEXT is specified, the value must be between 0 and 65535.

Other than this, the value is not checked as being valid and the

corresponding code page is not checked as being installed.

SETUID|NOSETUID

Specifies whether the SETUID and SETGID mode bits on executables in this

file system are respected. Also determines whether the APF extended attribute

or the Program Control extended attribute is honored.

SETUID

Specifies that the SETUID and SETGID mode bits be respected when a

program in this file system is run. SETUID is the default.

NOSETUID

Specifies that the SETUID and SETGID mode bits not be respected when a

program in this file system is run. The program runs as though the SETUID

and SETGID mode bits were not set. Also, if you specify the NOSETUID

option on MOUNT, the APF extended attribute and the Program Control

extended attribute are not honored.

WAIT|NOWAIT

Specifies whether to wait for an asynchronous mount to complete before

returning.

WAIT

Specifies that MOUNT is to wait for the mount to complete before returning.

WAIT is the default.

MOUNT

122 z/OS UNIX System Services APAR OA12251

NOWAIT

Specifies that if the file system cannot be mounted immediately (for

example, a network mount must be done), then the command will return

with a return code indicating that an asynchronous mount is in progress.

SECURITY|NOSECURITY

Specifies whether security checks are to be enforced for files in this file system.

Note: When an HFS is mounted with the NOSECURITY option enabled, any

new files or directories that are created will be assigned an owner of UID

0, no matter what UID issued the request.

SECURITY

Specifies that normal security checking will be done. SECURITY is the

default.

NOSECURITY

Specifies that security checking will not be enforced for files in this file

system. A user may access or change any file or directory in any way.

 Security auditing will still be performed if the installation is auditing

successes.

 The SETUID, SETGID, APF, and Program Control attributes may be turned

on in files in this file system, but they will not be honored while it is

mounted with NOSECURITY.

SYSNAME (sysname)

For systems participating in shared file system, SYSNAME specifies the

particular system on which a mount should be performed. This system will then

become the owner of the file system mounted. This system must be IPLed with

SYSPLEX(YES). IBM recommends that you specify SYSNAME(&SYSNAME.)

or omit the SYSNAME parameter. In this case, the system that processes the

mount request mounts the file system and becomes its owner.

sysname

sysname is a 1–8 alphanumeric name of a system participating in shared

file system.

AUTOMOVE | AUTOMOVE(indicator,sysname1,...,sysnameN) | NOAUTOMOVE |

UNMOUNT

These parameters only apply in a sysplex where systems are exploiting the

shared file system capability. They specify what is to happen to the ownership

of a file system when a shutdown, PFS termination, dead system takeover, or

file system move occurs. The default setting is AUTOMOVE, where the file

system will be randomly moved to another system (no system list used).

 indicator is either INCLUDE or EXCLUDE, which can also be abbreviated as I

or E.

AUTOMOVE

AUTOMOVE indicates that ownership of the file system can be

automatically moved to another system participating in shared file system.

AUTOMOVE is the default.

AUTOMOVE(INCLUDE,sysname1,sysname2,...,sysnameN) or

AUTOMOVE(I,sysname1,sysname2,...,sysnameN)

The INCLUDE indicator with a system list provides an ordered list of

systems to which the file system's ownership could be moved. sysnameN

may be a system name or an asterisk (*). The asterisk acts as a wildcard to

MOUNT

Chapter 4. Changes for z/OS UNIX System Services Command Reference 123

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

allow ownership to move to any other participating system and is only

permitted in place of a system name as the last entry of a system list.

Note: Use of the asterisk is not supported prior to z/OS Version 1 Release

6.

AUTOMOVE(EXCLUDE,sysname1,sysname2,...,sysnameN) or

AUTOMOVE(E,sysname1,sysname2,...,sysnameN)

The EXCLUDE indicator with a system list provides a list of systems to

which the file system's ownership should not be moved.

NOAUTOMOVE

NOAUTOMOVE prevents movement of file system's ownership in some

situations.

UNMOUNT

UNMOUNT allows the file system to be unmounted in some situations.

 Guidelines:

1. You should define your version and sysplex root file systems as

AUTOMOVE, and define your system-specific file systems as UNMOUNT.

2. Do not define a file system as NOAUTOMOVE or UNMOUNT and a file

system underneath it as AUTOMOVE; in this case, the file system defined

as AUTOMOVE will not be recovered after a system failure until the failing

system is restarted.

For more information about shared file systems and the associated version and

sysplex root file systems, as well as details about the behavior of the

AUTOMOVE options, see z/OS UNIX System Services Planning.

Usage Notes

1. The directory /samples contain sample MOUNT commands (called mountx).

2. When the mount is done asynchronously (NOWAIT was specified and return

code 4 was returned), you can determine if the mount has completed with one

of the following:

v The df shell command

v The DISPLAY OMVS,F operator command (see z/OS MVS System

Commands)

v The MOUNT table option on the File Systems pulldown in the ISPF Shell

(accessed by the ISHELL command)

3. In order to mount a file system as the system root file system, the caller must

be a superuser. Also, a file system can only be mounted as the system root file

system if the root file system was previously unmounted.

4. If you have previously unmounted the root file system, a ’dummy file system’ or

SYSROOT will be displayed as the current root file system. During the time

when SYSROOT is displayed as the root, any operation that requires a valid file

system will fail. When you subsequently mount a new root file system on

mountpoint /, that new file system will replace SYSROOT. When a new root file

system has been mounted, you should terminate any current dubbed users or

issue a chdir using a full pathname to the appropriate directory. This way, the

users can access the new root file system. Otherwise, an error will occur when

a request is made requiring a valid file system.

5. Systems exploiting shared file system will have I/O to an OMVS couple data

set. Because of these I/O operations to the CDS, each mount request requires

additional system overhead. You will need to consider the affect that this will

MOUNT

124 z/OS UNIX System Services APAR OA12251

|
|

|
|

|
|

|
|

|

|

|
|

|
|
|
|

|
|
|

have on your recovery time if a large number of mounts are required on any

system participating in shared file system.

6. The TAG parameter is intended for file systems that don’t support storing the file

tag, such as NFS remote file systems.

7. Do not use the TAG parameter simultaneously with the NFS Client Xlate option.

If you do, the mount will fail.

8. The UNMOUNT keyword is not available to automounted file systems.

9. The UNMOUNT specification will only be accepted on z/OS V1R3 systems and

later.

File System Recovery and TSO MOUNT

File system recovery in a shared file system environment takes into consideration

file system specifications such as AUTOMOVE | NOAUTOMOVE | UNMOUNT, and

whether or not the file system is mounted read-only or read/write.

Generally, when an owning system fails, ownership over its AUTOMOVE mounted

file system(s) is moved to another system and the file is usable. However, if a file

system is mounted read/write and the owning system fails, then all file system

operations for files in that file system will fail. This is because data integrity is lost

when the file system owner fails. All files should be closed (BPX1CLO) and

re-opened (BPX1OPN) when the file system is recovered. (The BPX1CLO and

BPX1OPN callable services are discussed in z/OS UNIX System Services

Programming: Assembler Callable Services Reference.)

For file systems that are mounted read-only, specific I/O operations that were in

progress at the time the file system owner failed may need to be re-attempted.

Otherwise, the file system is usable.

In some situations, even though a file system is mounted AUTOMOVE, ownership

of the file system may not be immediately moved to another system. This may

occur, for example, when a physical I/O path from another system to the volume

where the file system resides is not available. As a result, the file system becomes

unowned (the system will issue message BPXF213E when this occurs). This is true

if the file system is mounted either read/write or read-only. The file system still

exists in the file system hierarchy so that any dependent file systems that are

owned by another system are still usable.

However, all file operations for the unowned file system will fail until a new owner is

established. The shared file system support will continue to attempt recovery of

AUTOMOVE file systems on all systems in the sysplex that are enabled for shared

file system. Should a subsequent recovery attempt succeed, the file system

transitions from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)

those files and re-open (BPX1OPN) them after the file system is recovered.

File systems that are mounted NOAUTOMOVE will become unowned when the file

system owner exits the sysplex. The file system will remain unowned until the

original owning system restarts or until the unowned file system is unmounted. Note

that since the file system still exists in the file system hierarchy, the file system

mount point is still in use.

An unowned file system is a mounted file system that does not have an owner. The

file system still exists in the file system hierarchy. As such, you can recover or

unmount an unowned file system.

MOUNT

Chapter 4. Changes for z/OS UNIX System Services Command Reference 125

File systems associated with a ’never move’ PFS will be unmounted during dead

system recovery. For example, TFS is a ’never move’ PFS and will be unmounted,

as well as any file systems mounted on it, when the owning system leaves the

sysplex.

As stated in “Usage Notes” on page 124, the UNMOUNT keyword is not available

to automounted file systems. However, during dead system recovery processing for

an automounted file system (whose owner is the dead system), the file system will

be unmounted if it is not being referenced by any other system in the sysplex.

Return Codes

0 Processing successful.

4 Processing incomplete. An asynchronous mount is in progress.

12 Processing unsuccessful. An error message has been issued.

Examples

1. To mount the HFS data set HFS.WORKDS on the directory /u/openuser, enter:

MOUNT filesystem(’HFS.WORKDS’) MOUNTPOINT(’/u/openuser’) TYPE(HFS)

2. The following example mounts the HFS directory /u/shared_data, which resides

on the remote host named mvshost1, onto the local directory /u/jones/mnt.

The command may return before the mount is complete, allowing the mount to

be processed in parallel with other work. The SETUID and SETGID bits are

honored on any executable programs:

MOUNT filesystem(’MVSHOST1.SHARE.DATA’) MOUNTPOINT(’/u/jones/mnt’)

 TYPE(NFSC) PARM(’mvshost1:/hfs/u/shared_data’) NOWAIT SETUID

3. Examples for using the TAG parameter are:

TAG(TEXT,819) identifies text files containing ASCII

(ISO-8859-1) data.

TAG(TEXT,1047) identifies text files containing EBCDIC

(ISO-1047) data.

TAG(NOTEXT,65535) tags files as containing binary or unknown

data.

TAG(NOTEXT,0) is the equivalent of not specifying the TAG

parameter at all.

TAG(NOTEXT,273) tags files with the German code set (ISO-273),

but is ineligible for automatic conversion.

MOUNT

126 z/OS UNIX System Services APAR OA12251

Chapter 5. Changes for MVS System Commands

SETOMVS Command

Use the SETOMVS command to change dynamically the options that z/OS UNIX

System Services currently is using. These options are originally set in the

BPXPRMxx parmlib member during initial program load (IPL). For more information

on the BPXPRMxx parmlib member, see z/OS UNIX System Services Planning.

Changes to all of the system-wide limits take effect immediately. When a process

limit is updated, all processes that are using the system-wide process limit have

their limits updated. All process limit changes take effect immediately except those

processes with a user-defined process limit (defined in the OMVS segment or set

with a SETOMVS PID= command). Exceptions are MAXASSIZE and

MAXCPUTIME, which are not changed for active processes.

Note: If a process-level limit is lowered with the SETOMVS command, some

processes may immediately hit 100% usage. Depending on the process limit

specified and what the process is doing, this could cause some processes to

fail.

Syntax

The complete syntax for the SETOMVS command is:

© Copyright IBM Corp. 1996, 2005 127

SETOMVS SETOMVS EXTENSIONS (sysplex exclusive)

SETOMVS [AUTHPGMLIST=’authprogramlist’|NONE]

 [,FORKCOPY=(COPY|COW)]

 [,IPCSEMNIDS=ipcsemnids]

 [,IPCSEMNOPS=ipcsemnops]

 [,IPCSEMNSEMS=ipcsemnsems]

 [,IPCMSGQBYTES=ipcmsgqbytes]

 [,IPCMSGNIDS=ipcmsgnids]

 [,IPCSHMMPAGES=ipcshmmpages]

 [,IPCSHMNIDS=ipcshmnids]

 [,IPCSHMNSEGS=ipcshmnsegs]

 [,IPCSHMSPAGES=ipcshmspages]

 [,IPCMSGQMNUM=ipcmsgqmnum]

 [,LIMMSG=[NONE|SYSTEM|ALL]]

 [,MAXASSIZE=maxassize]

 [,MAXCORESIZE=maxcoresize]

 [,MAXCPUTIME=maxcputime]

 [,MAXFILEPROC=maxfileproc]

 [,MAXFILESIZE=(maxfilesize|NOLIMIT)]

 [,MAXMMAPAREA=maxmmaparea]

 [,MAXPROCSYS=maxprocsys]

 [,MAXPROCUSER=maxprocuser]

 [,MAXPTYS=maxptys]

 [,MAXSHAREPAGES=maxsharepages]

 [,MAXTHREADS=maxthreads]

 [,MAXTHREADTASKS=maxthreadtasks]

 [,MAXUIDS=maxuids]

 [,PID=pid,processlimitname=newvalue]

 [,PRIORITYGOAL=(n) | NONE]

 [,RESET=(xx)]

 [,STEPLIBLIST=’stepliblist’]

 [,SUPERUSER=superuser]

 [,SYNTAXCHECK=(xx)]

 [,TTYGROUP=ttygroup]

 [,USERIDALIASTABLE=’useridaliastable’]

 [,VERSION=’string’]

SETOMVS FILESYS

 ,FILESYSTEM=filesystem

 ,AUTOMOVE=YES|NO|UNMOUNT|

 indicator(sysname1

 ,sysname2,...,sysnameN) or

SETOMVS FILESYS

 ,FILESYSTEM=filesystem

 ,SYSNAME=sysname|* or

SETOMVS FILESYS

 ,MOUNTPOINT=mountpoint

 ,AUTOMOVE=YES|NO|UNMOUNT|

 indicator(sysname1

 ,sysname2,...,sysnameN) or

SETOMVS FILESYS

 ,MOUNTPOINT=mountpoint

 ,AUTOMOVE=YES|NO|UNMOUNT|

 indicator(sysname1

 ,sysname2,...,sysnameN) or

SETOMVS FILESYS

 ,MOUNTPOINT=mountpoint

 ,SYSNAME=sysname|* or

SETOMVS FILESYS

 ,FROMSYS=sysname

 ,SYSNAME=sysname|*

Notes:

1. FILESYSTEM, FROMSYS, and MOUNTPOINT

are mutually exclusive parameters. When you

specify FILESYS, you must supply one of these

three parameters.

2. SETOMVS RESET=(xx) has been changed to

allow SETOMVS RESET=xx as well as

SETOMVS RESET=(xx). The parentheses are

now optional.

Rather than defining parameter limit values in their full decimal or hexadecimal

form, you can use the following 1–character multiplier (denomination values) suffix

to specify them. The system also uses this value in displays when it returns

responses to respective D OMVS commands.

Notes:

1. Only those SETOMVS parameters that support this ″C″ suffix specifically note

that support and refer to Table 25 on page 143.

2. Values that contain a multiplier are limited to 8 digits (nnnnnnnnC) and those

values are limited to X'00FF FFFF' (16 777 215 decimal). Limits that support

values above the bar have a range of 1M-16383P. However, do not exceed a

parameter-specific maximum value.

3. Values that do not contain a multiplier are limited to X'7FFF FFFF'

(2 147 483 647 decimal).

 Table 23. 1–Character Parameter Limit Multipliers

Denomination Value

1–Character

Abbreviation

Bytes

null n/a 1

Kilo K 1,024

Mega M 1,048,576

SETOMVS Command

128 z/OS UNIX System Services APAR OA12251

Table 23. 1–Character Parameter Limit Multipliers (continued)

Giga G 1,073,741,824

Tera T 1,099,511,627,776

Peta P 1,125,899,906,842,624

Parameters

AUTOMOVE =YES|NO|UNMOUNT|indicator(sysname1,sysname2,...,sysnameN),

FILESYS=filesys, FILESYSTEM=filesystem, FROMSYS=sysname,

MOUNTPOINT=mountpoint, SYSNAME=sysname|*, and VERSION=’nnnn’ are

parameters that are used in a sysplex environment where systems are exploiting

shared file system. For more information on sharing file systems in a sysplex and

the behavior of the AUTOMOVE options, see z/OS UNIX System Services

Planning.

The parameters are:

AUTOMOVE=YES|NO|UNMOUNT|indicator(sysname1,sysname2,...,sysnameN)

AUTOMOVE only applies in a sysplex where systems are participating in

shared file system. These parameters indicate what happens to the ownership

of the file system when a shutdown, PFS termination, dead system takeover, or

file system move occurs.

 AUTOMOVE=YES allows the system to automatically move logical ownership of

the file system as needed. AUTOMOVE=YES is the default; you can specify it

as AUTOMOVE.

 AUTOMOVE=NO prevents ownership movement in some situations.

 AUTOMOVE=UNMOUNT unmounts the file system in some situations.

 AUTOMOVE=indicator(sysname1,sysname2,...,sysnameN) specifies a list of

systems to which the file system's ownership should or should not be moved

when ownership of the file system changes.

v If indicator is specified as INCLUDE (or I), the system list must provide a

comma-delimited, priority-ordered list of systems to which ownership of the

file system can be moved. For example, AUTOMOVE=INCLUDE(SYS1,

SYS4, SYS9). You can specify an asterisk (*) for the last (or only) system

name to indicate any active system. For example,

AUTOMOVE=INCLUDE(SYS1, SYS4, *).

Note: Do not use an asterisk in a mixed sysplex environment where any

system is not at z/OS Version 1 Release 6 or later, as doing so will

produce unpredictable results. The asterisk is not supported prior to

z/OS Version 1 Release 6.

v If indicator is specified as EXCLUDE (or E), the system list must provide a

comma-delimited list of systems to which the file system must not be moved.

For example, AUTOMOVE=EXCLUDE(SYS3, SYS5, SYS7).

Restriction: The AUTOMOVE parameter is not permitted when using

SETOMVS to move a file system.

 Guideline: To ensure that the root file system is always available, use the

default AUTOMOVE value (AUTOMOVE=YES).

SETOMVS Command

Chapter 5. Changes for MVS System Commands 129

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

For more information about the behavior of the AUTOMOVE option, see z/OS

UNIX System Services Planning.

FILESYS=filesys

In a sysplex environment, this parameter alerts the parser that commands that

change mount attributes are to follow.

 For examples on the use of this parameter when making move or change

requests, see z/OS UNIX System Services Planning.

FILESYSTEM=filesystem

In a sysplex environment, FILESYSTEM is the 44 character alphanumeric

field that denotes the name of the filesystem to be changed or moved. This

filesystem name must be in the following form: ’OMVS.USER.JOE’.

Note: The filesystem name must be in quotes, and mixed-case filesystem

names are supported.
FILESYSTEM, MOUNTPOINT, and FROMSYS are mutually exclusive

parameters.

 For examples on the use of this parameter when making move or change

requests, see z/OS UNIX System Services Planning.

FROMSYS=sysname

In a sysplex environment, this parameter indicates the system where all the

filesystems will be moved from. The filesystems will be moved to the

system identified by the sysname keyword. FILESYSTEM, MOUNTPOINT,

and FROMSYS are mutually exclusive parameters.

MOUNTPOINT=mountpoint

In a sysplex environment, MOUNTPOINT is the mountpoint specification.

For example:

’/usr/d1’

It is case sensitive. This is the mountpoint where the filesystem is mounted.

If specified, the filesystem associated with this mountpoint will be moved or

changed. FILESYSTEM, MOUNTPOINT, and FROMSYS are mutually

exclusive parameters.

 For examples on the use of this parameter when making move or change

requests, see z/OS UNIX System Services Planning.

AUTHPGMLIST=’authprogramlist’|NONE

Points to an hfs file containing a list of pathnames, MVS program names, or

both that allow an additional level of authorization for program-controlled or for

apf-authorized programs. See z/OS UNIX System Services Planning for

information on constructing this file. The default is NONE.

FORKCOPY = COPY | COW

Specifies how user storage is copied from the parent process to the child

process during a fork() system call.

 If you specify FORKCOPY=COW, all fork() calls are processed in copy-on-write

(COW) mode if the suppression-on-protection hardware feature is available.

Before the storage is modified, both the parent and child processes refer to the

same view of the data. The parent storage is copied to the child as soon as

storage is modified, either by the parent or the child.

 Using copy-on-write causes the system to use the extended system queue area

(ESQA) to manage page sharing.

SETOMVS Command

130 z/OS UNIX System Services APAR OA12251

|
|

If you specify FORKCOPY=COPY, fork() immediately copies the parent storage

to the child, regardless of whether the suppression-on-protection feature is

available. Use this option to avoid any additional ESQA use in support of fork().

 Follow these guidelines:

v If the run-time library is in the link pack area, specify FORKCOPY=COPY.

v If the run-time library is not in the link pack area, specify FORKCOPY=COW.

 If you do not specify FORKCOPY, the default is FORKCOPY=COW.

IPCSEMNIDS = ipcsemnids

Specifies the maximum number of unique semaphore sets in the system. The

range is from 1 to 20 000. The default is 500.

IPCSEMNOPS = ipcsemnops

Specifies the maximum number of operations for each semaphore operation

call. The range is from 0 to 32 767. The default is 25. This is a system-wide

limit.

IPCSEMNSEMS = ipcsemnsems

Specifies the maximum number of semaphores for each semaphore set. The

range is from 0 to 32 767. The default is 25.

IPCMSGQBYTES = ipcmsgqbytes

Specifies the maximum number of bytes in a single message queue. The range

is from 0 to 1 048 576. The default is 262 144.

IPCMSGNIDS = ipcmsgnids

Specifies the maximum number of unique message queues in the system. The

range is from 1 to 20 000. The default is 500.

IPCSHMMPAGES = ipcshmmpages

Specifies the maximum number of pages for a shared memory segment. The

range is from 1 to 4P. The default is 25600.

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 128, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

IPCSHMNIDS = ipcshmnids

Specifies the maximum number of unique shared memory segments in the

system. The range is from 1 to 20 000. The default is 500.

IPCSHMNSEGS = ipcshmnsegs

Specifies the maximum number of shared memory segments attached for each

address space. The range is from 0 to 1 000. The default is 10.

IPCSHMSPAGES = ipcshmspages

Specifies the maximum number of pages for shared memory segments in the

system. The range is from 0 to 2 621 440. The default is 262 144.

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 128, but must not exceed the parameter-specific upper

limit.

SETOMVS Command

Chapter 5. Changes for MVS System Commands 131

MVS retains the denomination value and uses it within a subsequent D

OMVS command

IPCMSGQMNUM = ipcmsqgmnum

Specifies the maximum number of messages for each message queue in the

system. The range is from 0 to 20 000. The default is 10 000.

LIMMSG=(NONE|SYSTEM|ALL)

Specifies how console messages that indicate when system parmlib limits are

reaching critical levels are to be displayed:

NONE No console messages are to be displayed when any of the parmlib

limits have been reached.

SYSTEM

Console messages are to be displayed for all processes that reach

system limits. In addition, messages are to be displayed for each

process limit of a process if:

v The process limit or limits are defined in the OMVS segment of the

owning User ID

v The process limit or limits have been changed with a SETOMVS

PID=pid,process_limit

ALL Console messages are to be displayed for the system limits and for the

process limits, regardless of which process reaches a process limit.

Default: NONE

MAXASSIZE = maxassize

Specifies the RLIMIT_AS hard limit resource value that processes receive when

they are dubbed a process. RLIMIT_AS indicates the address space region

size. The soft limit is obtained from MVS. If the soft limit value from MVS is

greater than the MAXASSIZE value, the hard limit is set to the soft limit.

 This value is also used when processes are initiated by a daemon process

using an exec after setuid(). In this case, both the RLIMIT_AS hard and soft

limit values are set to the MAXASSIZE value.

 Refer to the description of setrlimit() in z/OS UNIX System Services

Programming: Assembler Callable Services Reference for more information

about RLIMIT_AS.

 The range is from 10 485 760 (10MB) to 2 147 483 647 ; the default is

41 943 040 (40MB).

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 128, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

MAXCORESIZE = maxcoresize

Specifies the RLIMIT_CORE soft and hard limit resource values that processes

receive when they are dubbed a process. RLIMIT_CORE indicates the

maximum core dump file size (in bytes) that a process can create. Also, it

specifies the limit when they are initiated by a daemon proces using an exec

after setuid().

SETOMVS Command

132 z/OS UNIX System Services APAR OA12251

Refer to the description of setrlimit() in z/OS UNIX System Services

Programming: Assembler Callable Services Reference for more information

about RLIMIT_CORE.

 The range is from 0 to 2 147 483 647; the default is 4 194 304 (4MB).

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 128, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

MAXCPUTIME = maxcputime

Specifies the RLIMIT_CPU hard limit resource values that processes receive

when they are dubbed a process. RLIMIT_CPU indicates the CPU time that a

process is allowed to use, in seconds. The soft limit is obtained from MVS. If

the soft limit value from MVS is greater than the MAXCPUTIME value, the hard

limit is set to the soft limit. This value is also used when processes are initated

by a daemon process using an exec after setuid(). In this case, both the

RLIMIT_CPU hard and soft limit values are set to the MAXCPUTIME value.

 Refer to the description of setrlimit() in z/OS UNIX System Services

Programming: Assembler Callable Services Reference for more information

about RLIMIT_CPU.

 The range is from 7 to 2 147 483 647. The default is 1 000.

 Specifying a value of 2 147 483 647 indicates unlimited CPU time.

MAXFILEPROC = maxfileproc

Specifies the maximum number of files that a single user is allowed to have

concurrently active or allocated. The range is 3 to 131 071.

MAXFILESIZE = (maxfilesize | NOLIMIT)

Specifies the RLIMIT_FSIZE soft and hard limit resource values that processes

receive when they are dubbed a process. RLIMIT_FSIZE indicates the

maximum file size (in 4KB increments) that a process can create. Also, it

specifies the limit when they are initiated by a daemon process using an exec

after setuid().

 The range is from 0 to 524 228. If you specify 0, no files will be created by the

process. Omitting this statement or specifying NOLIMIT indicates an unlimited

file size.

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 128, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

MAXMMAPAREA = maxmmaparea

Specifies the maximum amount of data space storage (in pages) that can be

allocated for memory mappings of HFS files. Storage is not allocated until

memory mappings are active.

 The range is from 1 to 16 777 216. The default is 4 096.

SETOMVS Command

Chapter 5. Changes for MVS System Commands 133

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 128, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

MAXPROCSYS = maxprocsys

Specifies the maximum number of processes that z/OS UNIX System Services

will allow to be active at the same time. The range is 5 to 32 767; the default

and the value in BPXPRMXX is 200.

MAXPROCUSER = maxprocuser

Specifies the maximum number of processes that a single OMVS user ID (UID)

is allowed to have active at the same time, regardless of how the process

became a UNIX System Services process. The range is 3 to 32 767;

MAXPTYS = maxptys

Specifies the maximum number of pseudo-TTY (pseudoterminal) sessions that

can be active at the same time. The range is 1 to 10 000; the default and the

value in BPXPRMXX is 256.

 MAXPTYS lets you manage the number of interactive shell sessions. When you

specify this value, each interactive session requires one pseudo-TTY pair. You

should avoid specifying an arbitrarily high value for MAXPTYS. However,

because each interactive user may have more than one session, we

recommend that you allow 4 pseudo-TTY pairs for each user (MAXUIDS * 4).

The MAXPTYS value influences the number of pseudo-TTY pairs that can be

defined in the file system.

MAXSHAREPAGES = maxsharepages

Specifies the maximum number of shared storage pages that can be

concurrently in use by UNIX System Services functions. This can be used to

control the amount of ESQA consumed, since the shared storage pages cause

the consumption of ESQA storage.

 The range is from 0 to 32 768 000. The default is 131 072 pages.

Notes:

1. You can set a denomination (or multiplier) value when defining the

MAXSHAREPAGES value. The suffix, ″C″ can have a 1-character value as

presented in Table 25 on page 128, but must not exceed the

parameter-specific upper limit. MVS retains the denomination value and

uses it within a subsequent D OMVS command

2. Use care when you adjust MAXSHAREPAGES on an active system.

Dynamically decreasing the number of pages available to EQSA while there

is a workload can cause errors, because the EQSA limit can be suddenly

reached when the MAXSHAREPAGES limit is no longer as large. As a

result, shared programs are not able to be loaded, and new forks are not

able to be created. This situation can exist until the workload adjusts to the

new lower limit.

MAXTHREADS = maxthreads

Specifies the maximum number of pthread_created threads, including those

running, queued, and exited but not detached, that a single process can have

currently active. Specifying a value of 0 prevents applications from using

pthread_create. The range is 0 to 100 000; the default and the value in

BPXPRMXX is 200.

SETOMVS Command

134 z/OS UNIX System Services APAR OA12251

MAXTHREADTASKS = maxthreadtasks

Specifies the maximum number of MVS tasks created with pthread_create

(BPX1PTC) that a single user may have concurrently active in a process. The

range is 1 to 32 768; the default and the value in BPXPRMXX is 50.

 MAXTHREADTASKS lets you limit the amount of system resources available to

a single user process.

v The minimum value of 1 prevents a process from performing any

pthread_creates.

v A high MAXTHREADTASKS value may affect storage and performance.

Each task requires additional storage for:

– The control blocks built by the z/OS UNIX kernel

– The control blocks and data areas required by the runtime library

– System control blocks such as the TCB and RB

 Individual processes can alter these limits dynamically.

MAXUIDS = maxuids

Specifies the maximum number of unique OMVS user IDs (UIDs) that can use

UNIX System Services at the same time. The UIDs are for interactive users or

for programs that requested UNIX System Services. The range is 1 to 32 767;

the default and the value in BPXPRMXX is 200.

 MAXUIDS lets you limit the number of active UIDs. Select a MAXUIDS by

considering:

v Each UNIX System Services user is likely to run with 3 or more concurrent

processes. Therefore, UNIX System Services users require more system

resources than typical TSO/E users.

v If the MAXUIDS value is too high relative to the MAXPROCSYS value, too

many users can invoke the shell. All users may be affected, because forks

may begin to fail.

For example, if your installation can support 400® concurrent processes —

MAXPROCSYS(400) — and each UID needs an average of 4 processes,

then the system can support 100 users. For this operating system, specify

MAXUIDS(100).

 In assigning a value to MAXUIDS, consider if the security administrator

assigned the same OMVS UID to more than one TSO/E user ID.

MEMLIMIT = maxmemlimit

Specifies the maximum amount (maxmemlimit) of allocated, non-shared,

1–megabyte storage segments above the bar allowed for the address space.

Both the hard and soft RLMIT_MEMLIMIT values are set to this value, and the

address space memlimit is modified to reflect his value.

Note: You can set a denomination (or multiplier) value when defining this value

(nnnnnnnnC), where nnnnnnnn ranges from 1M — 16383P (noting

values are rounded up) and C can have a 1–character value as

presented in Table 25 on page 128. Also, be aware that SMF set

override limits to the values you set here.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

PID=pid,processlimitname=value

Dynamically changes a process-level limit for the process represented by pid.

SETOMVS Command

Chapter 5. Changes for MVS System Commands 135

PRIORITYGOAL = (n) | NONE

Specify from 1 to 40 service classes. These classes can be from 1 to 8

characters. If you do not specify this statement, or if you specify NONE, no

array is created for it. All service classes specified on the PRIORITYGOAL

option must also be specified in your workload manager service policy.

 Generally, we do not recommend that you set PRIORITYGOAL.

RESET = (xx)

Specifies the parmlib member containing parameters to apply immediately to

the running z/OS UNIX System Services environment. The variable specifies

the character suffix of the BPXPRMxx member to use to change the

environment. It can be any properly constructed BPXPRMxx member. This

parameter accepts only the single keyword and parmfile specification. It does

not accept additional keywords separated by commas.

 The SETOMVS RESET command is similar to the SET™ OMVS command. The

following table shows the acceptable parameters for each.

Notes:

1. SETOMVS RESET accepts only a single parameter; SET OMVS accepts

more than one parameter.

2. SETOMVS RESET=(xx) has been changed to allow SETOMVS RESET=xx

as well as SETOMVS RESET=(xx). The parentheses are now optional.

3. SETOMVS RESET=(xx) redefines a PFS; it does not start it. Do not use

SETOMVS RESET=(xx) unless absolutely necessary.

 For more detailed information about the RESET parameter see z/OS UNIX

System Services Planning.

 Table 24. Acceptable Parameter Statements and Their Applicability

Parameter Statement SET OMVS= (xx, yy, ...) SETOMVS RESET= (xx)

AUTOMOVE No No

CTRACE No No

FILESYS No No

FILESYSTEM No No

FILESYSTYPE Yes Yes

FORKCOPY Yes Yes

FROMSYS No No

IPCMSGNIDS Yes Yes

IPCMSGQBYTES Yes Yes

IPCMSGQMNUM Yes Yes

IPCSEMNIDS Yes Yes

IPCSEMNOPS Yes Yes

IPCSEMNSEMS Yes Yes

IPCSHMMPAGES Yes Yes

IPCSHMNIDS Yes Yes

IPCSHMNSEGS Yes Yes

IPCSHMSPAGES Yes Yes

MAXASSIZE Yes Yes

MAXCORESIZE Yes Yes

SETOMVS Command

136 z/OS UNIX System Services APAR OA12251

Table 24. Acceptable Parameter Statements and Their Applicability (continued)

Parameter Statement SET OMVS= (xx, yy, ...) SETOMVS RESET= (xx)

MAXCPUTIME Yes Yes

MAXFILEPROC Yes Yes

MAXFILESIZE Yes Yes

MAXMMAPAREA Yes Yes

MAXPROCSYS Yes Yes

MAXPROCUSER Yes Yes

MAXPTYS Yes Yes

MAXSHAREPAGES Yes Yes

MAXTHREADS Yes Yes

MAXTHREADTASKS Yes Yes

MAXUIDS Yes Yes

MEMLIMIT Yes Yes

MOUNT Yes Yes

MOUNTPOINT No No

NETWORK Yes Yes

PRIORITYGOAL Yes Yes

PRIORITYPG Yes Yes

ROOT Yes Yes

RUNOPTS No No

STARTUP_EXEC No No

STARTUP_PROC No No

STEPLIBLIST Yes Yes

SUBFILESYSTYPE Yes Yes

SUPERUSER Yes Yes

SYSCALL_COUNTS Yes Yes

SYSNAME No No

SYSPLEX No No

TTYGROUP Yes Yes

USERIDALIASTABLE Yes Yes

VERSION Yes Yes

STEPLIBLIST = 'stepliblist'

Specifies the path name of a hierarchical file system (HFS) file. This file is

intended to contain a list of data sets that are sanctioned by the installation for

use as step libraries during the running of set-user-ID and set-group-ID

executable programs.

SUPERUSER = superuser

This statement specifies a superuser name. You can specify a 1-to-8-character

name that conforms to restrictions for an OS/390 user ID. The user ID specified

on SUPERUSER must be defined to the security product and should have a

UID of 0 assigned to it. The user ID specified with setuid() is used when a

daemon switches to an unknown identity with a UID of 0.

SETOMVS Command

Chapter 5. Changes for MVS System Commands 137

The default is SUPERUSER(BPXROOT).

SYNTAXCHECK=(xx)

Specifies that the operator wishes to check the syntax of the designated parmlib

member. For example, to check the syntax of BPXPRMZ1 the operator enters:

SETOMVS SYNTAXCHECK=(Z1)

The system returns a message indicating either that the syntax is correct or that

syntax errors were found and written into the hard copy log. This command

parses the parmlib member in the same manner, and with the same messages

as during IPL.

Note: SYNTAXCHECK checks syntax as well as the existence of HFS and

zFS data sets specified in the catalog. Mount points are not verified.

SYSCALL_COUNTS = (YES | NO)

Specifies whether to accumulate syscall counts so that the RMF™ data gatherer

can record this information. The default is NO.

 If you specify YES, the path length for the most frequently used kernel system

calls increases by more than 150 instructions.

SYSNAME=sysname|*

sysname is the 1-8 alphanumeric name of a system participating in shared file

system. This system must be IPLed with SYSPLEX(YES). sysname specifies

the particular system on which a mount should be performed. This system will

then become the owner of the file system mounted. If *(asterisk) is specified, it

represents any other randomly selected system taking part in shared file

system. The asterisk specification is not available with the FROMSYS

parameter.

 For examples of the use of this parameter when making move or change

requests, see ″shared file system in a Sysplex″ in z/OS UNIX System Services

Planning.

TTYGROUP = ttygroup

This specifies a 1-to-8-character name that must conform to the restrictions for

an OS/390 group name. Slave pseudoterminals (ptys) and OCS rtys are given

this group name when they are first opened. This group name should be

defined to the security product and have a unique GID. No users should be

connected to this group.

 The name is used by certain setgid() programs, such as talk and write, when

attempting to write to another user’s pty or rty.

 The default is TTYGROUP(TTY).

USERIDALIASTABLE = 'useridaliastable'

Enables installations to associate alias names with MVS user IDs and group

names. If specified, the alias names are used in z/OS UNIX System Services

processing for the user IDs and group names listed in the table.

 Specifying USERIDALIASTABLE causes performance to degrade slightly. The

more names that you define, the greater the performance degradation.

Installations are encouraged to continue using uppercase-only user IDs and

group names.

 The USERIDALIASTABLE statement specifies the pathname of a hierarchical

file system (HFS) file. This file is intended to contain a list of MVS user IDs and

group names with their associated alias names.

SETOMVS Command

138 z/OS UNIX System Services APAR OA12251

VERSION = 'nnnn'

The VERSION statement applies only to systems that are exploiting shared file

systems. VERSION allows multiple releases and service levels of the binaries

to coexist and participate in shared file systems. A directory with the value nnnn

specified on VERSION is dynamically created at system initialization under the

sysplex root that is used as a mount point for the version file system. This

directory, however, is only dynamically created if the root file system for the

sysplex is mounted read/write.

Note: nnnn is a case-sensitive character string no greater than 8 characters in

length. It indicates a specific instance of the version HFS. The most

appropriate values for nnnn are the name of the target zone, &SYSR1,

or another qualifier meaningful to the system programmer. For example,

if the system is at V2R9, you can specify REL9 for VERSION.

When SYSPLEX(YES) is specified, you must also specify the VERSION

parameter.

The VERSION value is substituted in the content of symbolic links that contain

$VERSION. For scenarios describing the use of the version HFS, see ″shared

file system in a Sysplex″ in z/OS UNIX System Services Planning.

 When testing or changing to a new Maintenance Level (PTF), you can change

the VERSION value dynamically by using the SETOMVS command:

SETOMVS VERSION=’string’

You can also change the settings of this parameter via SET OMVS=(xx) and

SETOMVS RESET=(xx) parmlib specifications.

Note: We do not recommend changing version dynamically if you have any

users logged on or running applications; replacing the system files for

these users may be disruptive.

SETOMVS Command

Chapter 5. Changes for MVS System Commands 139

SETOMVS Command

140 z/OS UNIX System Services APAR OA12251

Chapter 6. Changes for MVS Initialization and Tuning

Reference

BPXPRMxx (z/OS UNIX System Services parameters)

BPXPRMxx contains the parameters that control the z/OS UNIX System Services

(z/OS UNIX) environment and the file systems. IBM suggests that you have two

BPXPRMxx parmlib members, one defining the values to be used for system setup

and the other defining the file systems. This makes it easier to migrate from one

release to another, especially when using the ServerPac method of installation.

To specify which BPXPRMxx parmlib member to start with, the operator can include

OMVS=xx in the reply to the IPL message or OMVS=xx in the IEASYSxx parmlib

member. The two alphanumeric characters, represented by xx, are appended to

BPXPRM to form the name of the BPXPRMxx parmlib member.

If OMVS=xx is not specified in the reply to the IPL message or is not in the

IEASYSxx member, or if OMVS=DEFAULT is specified, defaults are used for each

parameter and the kernel services are started in minimum mode. For more

information about running in minimum mode and full function mode, see z/OS UNIX

System Services Planning. If the operator specifies OMVS=xx in the IPL reply to the

message, it overrides the OMVS=xx specified in IEASYSxx.

Note: The START OMVS,OMVS=xx command is not valid when issued from the

command console. OMVS=xx is not valid in parmlib COMMNDxx.

You can use multiple parmlib members to start OMVS. This is shown by the

following reply to the IPL message:

R 0,CLPA,SYSP=R3,LNK=(R3,R2,L),OMVS=(AA,BB,CC)

The parmlib member BPXPRMCC would be processed first, followed by and

overridden by BPXPRMBB, followed by and overridden by BPXPRMAA. This

means that any parameter in BPXPRMAA has precedence over the same

parameter in BPXPRMBB and BPXPRMCC.

For example, if you specify MAXFILESIZE in all three parmlib members, the value

MAXFILESIZE in BPXPRMAA will be the value used to start kernel services.

You can also specify multiple BPXPRMxx parmlib members using the OMVS

keyword in IEASYSxx. For example:

OMVS=(AA,BB,CC)

If MOUNT statements are specified in each parmlib member, the files are mounted

in the following order: BPXPRMAA, BPXPRMBB, and BPXPRMCC.

To modify BPXPRMxx parmlib settings without re-IPLing, you can use the

SETOMVS operator command, or you can dynamically change the BPXPRMxx

parmlib members that are in effect by using the the SET OMVS operator command.

See “Dynamically Changing the BPXPRMxx Values” in z/OS UNIX System Services

Planning for more information. See z/OS MVS System Commands for more

information about the SETOMVS and SET OMVS commands.

Syntax rules for BPXPRMxx

When customizing BPXPRMxx, the following rules apply:

© Copyright IBM Corp. 1996, 2005 141

v Statements that contain limiting keywords (like MAXUIDS, which limits the

number of concurrent z/OS UNIX users), should not be duplicated in the same

BPXPRMxx member. You can have duplicates of limiting keywords across

BPXPRMxx members, but only the last occurrence is used. Resource defining

keywords (like MOUNT, which specifies a file system that z/OS UNIX is to

logically mount onto the root file system or another file system) are cumulative.

Resource defining keywords can be duplicated in the same BPXPRMxx member.

Each time you specify a resource defining keyword, its value is added to the

previous values.

v If a statement that has a default is omitted, the default is used.

v Use columns 1 through 71 for data; columns 72 through 80 are ignored.

v Enter one or more statements on a line, or use several lines for one statement.

v Use blanks as delimiters. Multiple blanks are interpreted as a single blank.

Blanks are allowed between parameters and values; for example,

MAXPROCSYS(500) and MAXPROCSYS (500) are allowed and have the same

meaning.

v Comments may appear in columns 1-71 and must begin with “/*“ and end with

“*/“.

v Enter values in uppercase, lowercase, or mixed case. The system converts the

input to uppercase, except for values enclosed in single quotes, which are

processed without changing the case.

v Values that require single quotes and that are the only ones allowed to be in

single quotes are:

– STEPLIBLIST

– USERIDALIASTABLE

– FILESYSTEM in the ROOT and MOUNT statements

– MOUNTPOINT in the MOUNT statement

– PARM in the FILESYSTYPE, ROOT, MOUNT, and SUBFILESYSTYPE

statements

– RUNOPTS

– VERSION

– AUTHPGMLIST

v Enclose values in single quotes, using the following rules:

– Two single quotes next to each other on the same line are considered as a

single quote. For example, John’’s file is considered to be John’s file.

One quote in column 71 and another in column 1 of the next line are not

considered as a single quote. This input is treated as two strings or an error.

– Because some values can be up to 1023 characters, a value can require

multiple lines. Place one quote at the beginning of the value, stop the value in

column 72 of each line, continue the value in column 1 of the next line, and

complete the value with one quote. For example:

column column

1 71

| |

 MOUNT FILESYSTEM(’HFS.WORKDS’) MOUNTPOINT(’/u/john/namedir1/namedir2

/namedir3/namedir4’) TYPE(HFS) MODE(RDWR)

Rather than defining parameter limit values in their full decimal or hexadecimal

form, you can use the following 1–character multiplier (denomination values) suffix

when specifying them. This value will also be used in displays when the system

returns responses to respective D OMVS commands.

Notes:

1. Only those SETOMVS parameters that support this ″C″ suffix specifically note

that support and refer to Table 25 on page 128.

BPXPRMxx

142 z/OS UNIX System Services APAR OA12251

2. Values that contain a multiplier are limited to 8 digits (nnnnnnnnC) and those

values are limited to X'00FF FFFF' (16 777 215 decimal).

3. Values that do not contain a multiplier are limited to X'7FFF FFFF'

(2 147 483 647 decimal).

 Table 25. 1–Character Parameter Limit Multipliers

Denomination Value

1–Character

Abbreviation

Bytes

null n/a 1

Kilo K 1,024

Mega M 1,048,576

Giga G 1,073,741,824

Tera T 1,099,511,627,776

Peta P 1,125,899,906,842,624

Syntax of BPXPRMxx

 {AUTOCVT(ON|OFF)}

 {MAXPROCSYS(nnnnn)}

 {MAXPROCUSER(nnnnn)}

 {MAXUIDS(nnnnn)}

 {MAXFILEPROC(nnnnnn)}

 {MAXTHREADTASKS(nnnnn)}

 {MAXTHREADS(nnnnnn)}

 {MAXPTYS(nnnnn)}

 {MAXFILESIZE(nnnnn|NOLIMIT)}

 {MAXCORESIZE(nnnnn)}

 {MAXASSIZE(nnnnn)}

 {MAXCPUTIME(nnnnn)}

 {MAXMMAPAREA(nnnnn)}

 {MAXSHAREPAGES(nnnnn)}

 {RESOLVER_PROC(nnnnn|DEFAULT|NONE)}

 {SHRLIBRGNSIZE(nnnnn)}

 {SHRLIBMAXPAGES(nnnnn)}

 {PRIORITYGOAL(service_class_name1,...service_class_name40|NONE)}

 {IPCMSGNIDS(nnnnn)}

 {IPCMSGQBYTES(nnnnn)}

 {IPCMSGQMNUM(nnnnn)}

 {IPCSEMNIDS(nnnnn)}

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 143

{IPCSEMNOPS(nnnnn)}

 {IPCSEMNSEMS(nnnnn)}

 {IPCSHMMPAGES(nnnnn)}

 {IPCSHMNIDS(nnnnn)}

 {IPCSHMNSEGS(nnnnn)}

 {IPCSHMSPAGES(nnnnn)}

 {FORKCOPY(COW|COPY)}

 {SUPERUSER(user_name)}

 {TTYGROUP(group_name)}

 {CTRACE(parmlib_member_name)}

 {STEPLIBLIST(’/etc/steplib’)}

 {USERIDALIASTABLE(’/etc/tablename’)}

 {SERV _LPALIB(’dsname’, ’volser’)}

 {SERV _LINKLIB(’dsname’, ’volser’)}

 {FILESYSTYPE TYPE(type_name)

 ENTRYPOINT(entry_name)

 PARM(’parm’)}

 ASNAME(proc_name,’start_parms’)

 {SYSPLEX(YES|NO)}

 {VERSION(’nnnn’)}

 {ROOT FILESYSTEM(’fsname’) or DDNAME(ddname)

 TYPE(type_name)

 MODE(access)

 PARM(’parameter’)

 SETUID|NOSETUID

 SYSNAME(sysname)

 TAG(NOTEXT|TEXT,ccsid)}

 AUTOMOVE|NOAUTOMOVE}

 MKDIR(’pathname’)

 {MOUNT FILESYSTEM(’fsname’) or DDNAME(ddname)

 TYPE(type_name)

 MOUNTPOINT(’pathname’)

 MODE(access)

 PARM(’parameter’)

 SETUID|NOSETUID

 SECURITY|NOSECURITY

 SYSNAME(sysname)

 TAG(NOTEXT|TEXT,ccsid)}

 AUTOMOVE[(INCLUDE,sysname1,sysname2,...,[sysnameN|*])

 |(EXCLUDE,sysname1,sysname2,...,sysnameN)]

 |NOAUTOMOVE|UNMOUNT

}

 MKDIR(’pathname’)

 {NETWORK DOMAINNAME(sockets_domain_name)

 DOMAINNUMBER(sockets_domain_number)

 MAXSOCKETS(nnnnn)

 TYPE(type_name)

 INADDRANYPORT(starting_port_number)

 INADDRANYCOUNT(number_of_ports_to_reserve)}

BPXPRMxx

144 z/OS UNIX System Services APAR OA12251

|
|
|

{SUBFILESYSTYPE NAME(transport_name)

 TYPE(type_name)

 ENTRYPOINT(entry_name)

 PARM(’parameter’)

 DEFAULT}

 {STARTUP_PROC(procname)}

 {STARTUP_EXEC(’dsname(membername)’,class)}

 {RUNOPTS(’string’)}

 {SYSCALL_COUNTS(YES|NO)}

 {MAXQUEUEDSIGS(nnnnnn)}

 {LIMMSG(NONE|SYSTEM|ALL)}

 {AUTHPGMLIST(’/etc/authfile’)|NONE}

 {SWA(ABOVE|BELOW)}

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 145

Syntax example of BPXPRMxx

AUTOCVT(OFF)

MAXPROCSYS(400)

MAXPROCUSER(16)

MAXUIDS(200)

MAXFILEPROC(20)

MAXTHREADTASKS(100)

MAXTHREADS(500)

MAXPTYS(100)

MAXFILESIZE(1000)

/*--- or --- MAXFILESIZE(300M) -----*/

MAXCORESIZE(4194304)

/*--- or --- MAXCORESIZE(1K) -------*/

MAXASSIZE(41943040)

/*--- or --- MAXASSIZE(10M) --------*/

MAXCPUTIME(1000)

MAXMMAPAREA(4096)

/*--- or --- MAXMMAPAREA(16M) ------*/

 MAXSHAREPAGES(32768)

/*--- or --- MAXSHAREPAGES(10K) ----*/

PRIORITYGOAL(CICS4,CICS4,CICS4,CICS3,CICS2,CICS1,TSO2,TSO1,BAT3,BAT2)

IPCMSGNIDS(500)

IPCMSGQBYTES(262144)

IPCMSGQMNUM(100000)

IPCSEMNIDS(500)

IPCSEMNOPS(25)

IPCSEMNSEMS(25)

IPCSHMMPAGES(256)

/*--- or --- IPCSHMMPAGES(55M) -----*/

IPCSHMNIDS(500)

IPCSHMNSEGS(10)

IPCSHMSPAGES(262144)

/*--- or --- IPCSHMSPAGES(300K) ----*/

FORKCOPY(COW)

SUPERUSER(BPXROOT)

TTYGROUP(TTY)

CTRACE(CTCBPX23)

STEBLIBLIST(’/etc/steplib’)

USERIDALIASTABLE(’/etc/tablename’)

SYSPLEX(YES)

 VERSION(’REL9’)

 FILESYSTYPE TYPE(HFS)

 ENTRYPOINT(GFUAINIT)

 PARM(’SYNCDEFAULT(0) FIXED(2) VIRTUAL(128)’)

ROOT FILESYSTEM(’OMVS.ROOT’)

 TYPE(HFS)

 MODE(RDWR)

 SYSNAME(SY1)

 TAG(NOTEXT,0)

 AUTOMOVE

MOUNT FILESYSTEM(’OMVS.USER.JONES’)

 TYPE(HFS)

 MOUNTPOINT(’/u/jones’)

 MODE(RDWR)

 SYSNAME(SY1)

 TAG(TEXT,1047)

 AUTOMOVE(INCLUDE,SYS1,SYS2,*)

BPXPRMxx

146 z/OS UNIX System Services APAR OA12251

IBM-supplied default for BPXPRMxx

There is no default BPXPRMxx parmlib member. A sample parmlib member

BPXPRMXX is provided in SYS1.SAMPLIB.

Statements and parameters for BPXPRMxx

For guidance information about selecting values for the statements, see the chapter

on customizing z/OS UNIX in z/OS UNIX System Services Planning.

AUTOCVT(ON|OFF)

Activates and deactivates automatic conversion of I/O data using coded

character sets for the program and its associated files.

 The coded character set identifiers (CCSIDs) are specified by the program or by

setting the appropriate environment variables at run time. The system

AUTOCVT indicator can be overridden by individual programs at a thread level;

AUTOCVT is a controlling switch only for existing programs that do not explicitly

establish their own conversion environment.

 Default: OFF

 You can use the SETOMVS or SET OMVS commands to change the value of

AUTOCVT between ON and OFF. Changing this conversion mode does not

affect conversion of opened files for which I/O has already started.

 When AUTOCVT(ON) is set, every read and write operation for a file must be

checked to see if conversion is necessary. Thus, there is a performance penalty

involved, even if no conversion occurs. It is, therefore, preferable to keep

AUTOCVT(OFF) and have each program enabled, if possible, for conversion.

To do this, set the compile or run time environment variables that control

conversion or by issuing fcntl().

Note: If you are using SYSPLEX(YES) and mixed releases of z/OS UNIX, you

can IPL specifying OMVS=(delta,common) for each unique release,

where ″delta″ identifies the member containing the new keywords for that

release, and ″common″ identifies the common keywords for all releases.

FILESYSTYPE TYPE(INET)

 ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)

 DOMAINNUMBER(2)

 MAXSOCKETS(64000)

 TYPE(INET)

STARTUP_PROC(OMVS)

STARTUP_EXEC(’OMVS.ROOT(REXX01)’,A)

RUNOPTS(’RTLS(ON) LIBRARY(SYSCEE) VERSION(OS24)’)

SYSCALL_COUNTS(YES)

MAXQUEUEDSIGS(1000)

RESOLVER_PROC(DEFAULT)

AUTHPGMLIST(’/etc/authfile’)

SWA(ABOVE)

Notes:

1. This is an example only; the values presented here are not optimal nor recommended values for your

installation.

2. The bold comments present alternate specifications of those parameters that support the use of

multipliers. Refer to Table 25 on page 143 for information concerning the use of multipliers.

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 147

Automatic conversion can also be controlled individually by a program with one

of the following flags in the thread Thli control block (BPXYTHLI):

ThliCvtOn - Activates automatic conversion for this thread.

ThliCvtOff - Deactivates automatic conversion for this thread.

Both bits must not be on at the same time.

 Automatic conversion is accomplished between programs and files that are

tagged with different CCSIDs when a conversion table exists for that CCSID

pair in the system. CCSID values are defined in Character Data Representation

Architecture.

MAXPROCSYS(nnnnn)

Specifies the maximum number of processes that the system allows.

 Value Range: nnnnn is a decimal value from 5 to 32767.

 Default: 200

 You can use the SETOMVS or SET OMVS command to dynamically increase

or decrease the value of MAXPROCSYS. To make a permanent change, edit

the BPXPRMxx member that will be used for IPLs.

 If you are using SETOMVS or SET OMVS to change the value, the new value

must be within a certain range, or you will get an error message. The range that

you can use has a minimum value of 5; the maximum value is based on the

following calculation:

MIN(32767,MAX(4096,3*initial value))

The initial value is the MAXPROCSYS value that was specified during

BPXPRMxx initialization. You cannot use a value less than 5. If you want to use

a value greater than the current maximum (as calculated by the formula) but

lower than the initial maximum (32767), you will have to change the value in

BPXPRMxx and re-IPL. For an example of how to calculate the maximum value

in the range, see “Dynamically Changing Certain BPXPRMxx Parameter

Values” in z/OS UNIX System Services Planning.

 For planning information, see MAXPROCSYS in z/OS UNIX System Services

Planning.

MAXPROCUSER(nnnnn)

Specifies the maximum number of processes that a single z/OS UNIX user ID

can have concurrently active, regardless of how the processes were created.

MAXPROCUSER is the same as the CHILD_MAX variable in the POSIX

standard.

 A value of 25 is required for FIPS 151-2 compliance and a value of 16 is

required for POSIX.1 (ISO/IEC 9945-1:1990[E] IEEE Std 1003.1-1990) standard

compliance.

 The number of processes is tracked by user ID (UID). When a user attempts to

create a new process, the limit value for the user (defined by either the user

profile or the default OPTN value) is compared to the value maintained for the

user’s UID. If the user maximum is larger than the current process count for the

UID, the user can create another process. If not, the user is not allowed to

create a new process. For example, if user “A”, with a user-defined limit of 10,

tries to create a process and the UID limit is already 12, user “A” is not allowed

to create the new process. Since only 12 processes are currently created, user

“B”, with a user-defined limit of 20, is allowed to create a new process.

BPXPRMxx

148 z/OS UNIX System Services APAR OA12251

Use the SETOMVS or SET OMVS command to dynamically increase or

decrease the MAXPROCUSER values. To make a permanent change, edit the

BPXPRMxx member that will be used for IPLs.

 There are certain cases when a new process can be created with a UID that

has already reached the MAXPROCUSER number of processes. Super users

(with UID=0) are not limited by MAXPROCUSER. Additionally, if an undubbed

address space is dubbed because of a request to use a kernel resource and is

dubbed with the default OMVS segment, it will not be limited by the

MAXPROCUSER limit either.

 For planning information, see MAXPROCUSER in z/OS UNIX System Services

Planning.

 Value Range: nnnnn is a decimal value from 3 to 32767.

 Default: 25

MAXUIDS(nnnnn)

Specifies the maximum number of z/OS UNIX user IDs (UIDs) that can operate

concurrently.

 Value Range: nnnnn is a decimal value from 1 to 32767.

 Default: 200

 Use the SETOMVS or SET OMVS command to dynamically increase or

decrease the value of MAXUIDS. To make a permanent change, edit the

BPXPRMxx member that will be used for IPLs.

 For planning information, see MAXUIDS in z/OS UNIX System Services

Planning.

MAXFILEPROC(nnnnnn)

Specifies the maximum number of descriptors for files, sockets, directories, and

any other file system objects that a single process can have concurrently active

or allocated. MAXFILEPROC is the same as the OPEN_MAX variable in the

POSIX standard.

 Value Range: nnnnnn is a decimal value from 3 to 131072.

 Default: 2000

 Use the SETOMVS or SET OMVS command to dynamically increase or

decrease the value of MAXFILEPROC. To make a permanent change, edit the

BPXPRMxx member that will be used for IPLs.

 For planning information, see MAXFILEPROC in z/OS UNIX System Services

Planning.

MAXTHREADTASKS(nnnnn)

Specifies the maximum number of MVS tasks that a single process can have

concurrently active for pthread_created threads.

 Value Range: nnnnn is a decimal value from 0 to 32768.

 Default: 1000

 You can change the value of MAXTHREADTASKS dynamically using the

SETOMVS or SET OMVS command. To make a permanent change, edit the

BPXPRMxx member that will be used for IPLs.

 For planning information, see MAXTHREADTASKS in z/OS UNIX System

Services Planning.

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 149

MAXTHREADS(nnnnnn)

Specifies the maximum number of pthread_created threads, including running,

queued, and exited but undetached, that a single process can have

concurrently active. Specifying a value of 0 prevents applications from using

pthread_create.

 Value Range: nnnnnn is a decimal value from 0 to 100000.

 Default: 200

 You can change the value of MAXTHREADS dynamically using the SETOMVS

or SET OMVS command. To make a permanent change, edit the BPXPRMxx

member that will be used for IPLs.

 For planning information, see MAXTHREADS in z/OS UNIX System Services

Planning.

MAXPTYS(nnnnn)

Specifies the maximum number of pseudoterminals (pseudo-TTYs or PTYs) for

the system.

 Value Range: nnnnn is a decimal value from 1 to 10000.

 Default: 800

 You can use the SETOMVS or SET OMVS command to dynamically increase

the value of MAXPTYS. To make a permanent change, edit the BPXPRMxx

member that will be used for IPLs.

 If you are using SETOMVS or SET OMVS to change the value, the new value

must be within a certain range. If it is outside the range, you will get an error

message. To use a value that is outside this range, you must change the

MAXPTYS specification in BPXPRMxx and re-IPL. The range’s minimum value

is 1 and the maximum is based on the following calculation:

MIN(10000,MAX(256,2*initial value)

The initial value is the MAXPTYS value that was specified during BPXPRMxx

initialization. For an example of how to calculate the maximum value in the

range, see “Dynamically Changing Certain BPXPRMxx Parameter Values“ in

z/OS UNIX System Services Planning.

 For planning information, see MAXPTYS in z/OS UNIX System Services

Planning.

MAXFILESIZE(nnnnn|NOLIMIT)

Specifies the RLIMIT_FSIZE soft and hard resource values that a process

receives when it is identified as a process. RLIMIT_FSIZE indicates the

maximum file size (in 4KB increments) that a process can create. It also

specifies the limit when they are initiated by a daemon process using an exec()

after a setuid(). For more information about RLIMIT_FSIZE, see the description

of setrlimit() in z/OS UNIX System Services Programming: Assembler Callable

Services Reference.

 Value Range: nnnnn is a decimal value from 0 to 2147483647, which indicates

an unlimited file size. If MAXFILESIZE is not specified or

MAXFILESIZE(NOLIMIT) is specified, there will be no limit to the size of files

created, except for the architectural limit of the system.

BPXPRMxx

150 z/OS UNIX System Services APAR OA12251

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 143, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

 If you specify 0, the process does not create any files. Omitting this statement

indicates an unlimited file size.

 Default: 1000

 Use the SETOMVS or SET OMVS command to dynamically increase or

decrease the value of MAXFILESIZE. To make a permanent change, edit the

BPXPRMxx member that will be used in IPLs.

MAXCORESIZE(nnnnn)

Specifies the RLIMIT_CORE soft and hard resource values that a process

receives when it is identified as a process. RLIMIT_CORE indicates the

maximum core dump file size (in bytes) that a process can create. It also

specifies the limit when they are initiated by a daemon process using an exec()

after a setuid(). For more information about RLIMIT_CORE, see the description

of setrlimit() in z/OS UNIX System Services Programming: Assembler Callable

Services Reference.

 Value Range: nnnnn is a decimal value from 0 to 2147483647 (2 gigabytes).

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 143, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

 Default: 4194304 (4 megabytes) Specifying a value of 2147483647 (2

gigabytes) indicates an unlimited core file size.

 Use the SETOMVS or SET OMVS command to dynamically increase or

decrease the value of MAXCORESIZE. To make a permanent change, edit the

BPXPRMxx member that will be used for IPLs.

MAXASSIZE(nnnnn)

Specifies the RLIMIT_AS resource values that a process receives when it is

identified as a process. RLIMIT_AS indicates the address space region size.

For more information about RLIMIT_AS, refer to the description of setrlimit in

z/OS UNIX System Services Programming: Assembler Callable Services

Reference.

 The soft limit is obtained from MVS; if it is greater than the MAXASSIZE value,

the soft limit is set to the hard limit. This value is also used when processes are

initiated by a daemon process using an exec() after setuid(). In this case, both

the RLIMIT_ AS hard and soft limit values are set to the MAXASSIZE specified

value.

 When processes are initiated by a daemon process using an exec() after

setuid(), this value is used. Therefore, MAXASSIZE will be the region size for

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 151

all processes created via rlogin or telnet. In this case, both the RLIMIT_AS hard

and soft limit values are set to the MAXASSIZE value.

 A superuser can override this value by specifying a new region size in the

spawn inheritance structure on __spawn(). Or you can change the value of

MAXASSIZE dynamically by using the SETOMVS or SET OMVS command.This

change only affects the new processes created after the change was made.

Note: The IEFUSI user exit can modify the region size of an address space.

Users are strongly discouraged from altering the region size of address

spaces in the OMVS subsystem category.

Value Range: nnnnn is a decimal value from 10485760 (10 megabytes) to

2147483647 (2 Gigabytes).

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 143, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command.

 Default: 209715200

 Use the SETOMVS or SET OMVS command to dynamically increase or

decrease the value of MAXASSIZE. To make a permanent change, edit the

BPXPRMxx member that will be used for IPLs.

 For planning information, see MAXASSIZE in z/OS UNIX System Services

Planning.

MAXCPUTIME(nnnnn)

Specifies the RLIMIT_CPU resource values that a process receives when it is

identified as a process. RLIMIT_CPU indicates the CPU time, in seconds, that a

process can use. For more information about RLIMIT_CPU, refer to the

description of setrlimit() in z/OS UNIX System Services Programming:

Assembler Callable Services Reference.

 If the soft limit value from MVS is greater than the MAXCPUTIME value, the

soft limit is set to the hard limit. This value is also used when processes are

initiated by a daemon process using an exec() after setuid(). In this case, both

the RLIMIT_CPU hard and soft limit values are set to the MAXCPUTIME value.

 A superuser can override this value by specifying a new time limit in the spawn

inheritance structure on __spawn().

 For processes running in or forked from TSO or BATCH, the MAXCPUTIME

value has no effect. The TIME limit is inherited from the parent. If a TIME

parameter is specified on the JCL for the started task, then that value is used. If

not, then the TIME value is taken from the JES default TIME value.

 For processes created by the rlogind command or other daemons,

MAXCPUTIME is the time limit for the address space.

 Specifying a MAXCPUTIME or CPUTIMEMAX of 86400 seconds disables the

JWT timeout the same way that JCL TIME=1440 does.

 Value Range: nnnnn is a decimal value from 7 to 2147483647 seconds.

 Default: 1000

BPXPRMxx

152 z/OS UNIX System Services APAR OA12251

Use the SETOMVS or SET OMVS command to dynamically increase the value

of MAXCPUTIME. To make a permanent change, edit the BPXPRMxx member

that will be used for IPLs.

 For planning information, see MAXCPUTIME in z/OS UNIX System Services

Planning.

MAXMMAPAREA(nnnnn)

Specifies the maximum amount of data space storage space (in pages) that can

be allocated for memory mappings of HFS files. Storage is not allocated until

the memory mapping is active.

 Using memory map services causes a large amount of system memory to be

consumed. For each page (4KB) that is memory-mapped, 96 bytes of ESQA

are consumed when a file is not shared with any other users. When a file is

shared by multiple users, each user after the first causes 32 bytes of ESQA to

be consumed for each shared page. Assuming that the default of 40960 pages

is taken, and assuming that no sharing is done by mmap() users, a maximum

of 384KB of ESQA could be consumed. The ESQA storage is consumed when

the mmap() function is invoked rather than when the page is accessed by the

memory mapping application program.

 If you have applications using the __MAP_MEGA option, you can map very

large files without the system overhead in ESQA. For more information, see

“Extended System Queue Area (ESQA)” in z/OS UNIX System Services

Planning.

 Value Range: nnnnn is a decimal value from 1 to 16777216.

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 143, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

 Default: 40960

 You can change the value of MAXMMAPAREA dynamically using the

SETOMVS or SET OMVS command. To make a permanent change, edit the

BPXPRMxx member that will be used for IPLs.

 For planning information, see MAXMMAPAREA in z/OS UNIX System Services

Planning.

MAXSHAREPAGES(nnnnn)

Specifies the maximum amount of shared system storage pages that can be

used by z/OS UNIX functions. The purpose of MAXSHAREPAGES is to limit the

amount of ESQA storage necessary to maintain the shared pages. For a

detailed description of how MAXSHAREPAGES affects ESQA usage, please

refer to z/OS UNIX System Services Planning.

 The usage of shared pages is helpful but not critical to the loading of user

shared library modules, ptrace and fork; it serves to increase performance but

does not affect functionality. As the amount of shared pages being used

reaches certain limits, less functions are allowed to continue using them. User

shared library loads, ptrace and fork stop using shared pages when the limit

reaches 60% (the only time shared storage is used by the fork service is when

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 153

FORKCOPY(COW) is specified), mmap stops at 80%, and shmat, the most

critical function, uses shared pages until their total capacity has been reached.

If while running a 64–bit program, you allocate shared memory segments above

the bar by using the shmget() service, the shared page limit is not affected.

 Because each page of shared storage requires the associated consumption of

extended system queue area (ESQA) storage, limiting the shared storage

usage provides a way to limit the ESQA usage by z/OS UNIX users. If you use

the __IPC_MEGA or __MAP_MEGA options, then the shared pages limits are

not affected because MEGA does not affect the system ESQA overhead.

Note: You should evaluate adjusting MAXSHAREPAGES on an active system.

Dynamically decreasing the number of pages available to ESQA for

active work can cause errors. This is due to the fact that for those jobs,

the ESQA limit may now be reached or exceeded. It is possible that

shared programs will not be able to be loaded and fork() may not

succeed. This situation will exist until the workload adjusts to the new

lower limit.

Value Range: nnnnn is a decimal value from 0 to 32768000 specifying a

number of 4K pages.

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 143, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

 Default: 131072

 Use the SETOMVS or SET OMVS command to dynamically increase or

decrease the MAXSHAREPAGES value. To make a permanent change, edit the

BPXPRMxx member that will be used for IPLs.

SHRLIBRGNSIZE(nnnnn)

Specifies the maximum size of the shared library region for address spaces that

load system shared library modules. For these address spaces, the size

specified is allocated from high private storage and is used for the loading of

system shared library modules. This storage is not allocated in an address

space until it loads a system shared library module. This parameter applies to

modules loaded from system shared libraries, which allocate storage on

megabyte boundaries. Therefore, this storage does not count against the

MAXSHAREPAGES limit, and does not consume ESQA.

 Value Range: nnnnn is a decimal value between 16777215 (16 megabytes)

and 1610612735 (1.5 gigabytes).

 Default: 67108863

 Use the SETOMVS or SET OMVS command to dynamically increase or

decrease the SHRLIBRGNSIZE value. To make a permanent change, edit the

BPXPRMxx member that will be used for IPLs.

SHRLIBMAXPAGES(nnnnn)

This parameter is intended to control the maximum number of pages that can

be allocated in the system to contain user shared library modules. This value, in

conjunction with MAXSHAREPAGES, can be used to control the amount of

BPXPRMxx

154 z/OS UNIX System Services APAR OA12251

ESQA consumed by user shared library modules. Please refer to z/OS UNIX

System Services Planning for additional details.

 Value Range: nnnnn is a decimal value between 1 and 16777215 specifying a

number of 4K pages.

 Default: 4096

 Use the SETOMVS or SET OMVS command to dynamically increase or

decrease the SHRLIBMAXPAGES value. To make a permanent change, edit

the BPXPRMXX member that will be used for IPLs.

PRIORITYGOAL(service_class_name1,...service_class_name40)

Specifies a list of 1 to 40 service class names of 8 characters or less separated

by commas, which are used in association with the setpriority, nice and

chpriority callable services when the system is running in goal mode. These

functions allow a program to alter the priority of one or more processes.

 Generally, it is recommended that you not set PRIORITYGOAL unless the

nice(), setpriority() or chpriority() values must be enabled.

 If the list has less than 40 entries, the system propagates the last service class

specified into the remaining unspecified entries in the table. For example:

 PRIORITYGOAL(CICS4,CICS4,CICS4,CICS3,CICS2,CICS1,TSO2,TSO1,BAT3,BAT2)

If you do not specify this statement, arrays are not created for it. All service

classes specified on the PRIORITYGOAL statement must also be specified in

your workload manager service policy.

 PRIORITYGOAL(NONE) means that there are no values. If you do not specify

PRIORITYGOAL, that means that there are no values.

 If you do not want to allow users to increase the priority but still want to enable

the nice() and setpriority() functions, define a range of service classes with

priority increments on a base that is normal for the users. Using these functions

lets the user order the priority of processes, but will not let a user improve

performance over that of other users.

 Value Range: service_class_name is a 1 to 8 character value.

 Default: None

 You can dynamically change the values of PRIORITYGOAL by using the

SETOMVS or SET OMVS command. To make a permanent change, edit the

BPXPRMxx member that will be used for IPLs.

IPCMSGNIDS(nnnnn)

Specifies the maximum number of unique system-wide message queues.

 Value Range: nnnnn is a decimal value from 1 to 20000.

 Default: 500

 You can change the value of IPCMSGNIDS dynamically using the SETOMVS or

SET OMVS command. The new minimum is the current value. The new

maximum is calculated as follows:

MIN(initial maximum,MAX(4096,3*initial value))

You can increase but not decrease the value, as described in z/OS UNIX

System Services Planning.

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 155

IPCMSGQBYTES(nnnnn)

Specifies the maximum number of bytes in a single message queue.

 Value Range: nnnnn is a decimal value from 0 to 2147483647.

Note: The high end of this range is not obtainable due to storage constraints.

The actual maximum range varies due to storage allocation and system

usage.

 Default: 262144

 You can change the value of IPCMSGQBYTES dynamically using the

SETOMVS or SET OMVS command.

IPCMSGQMNUM(nnnnn)

Specifies the maximum number of system-wide messages for each queue.

 Value Range: nnnnn is a decimal value from 0 to 2147483647.

Note: The high end of this range is not obtainable due to storage constraints.

The actual maximum range varies due to storage allocation and system

usage.

 Default: 10000

 You can change the value of IPCMSGQMNUM dynamically using the

SETOMVS or SET OMVS command.

IPCSEMNIDS(nnnnn)

Specifies the maximum number of unique system-wide semaphore sets.

 Value Range: nnnnn is a decimal value from 1 to 20000.

 Default: 500

 You can change the value of IPCSEMNIDS dynamically using the SETOMVS or

SET OMVS command, as described in z/OS UNIX System Services Planning.

IPCSEMNOPS(nnnnn)

Specifies the maximum number of operations for each semop call.

 Value Range: nnnnn is a decimal value from 0 to 32767.

 Default: 25

 You can change the value of IPCSEMNOPS dynamically using the SETOMVS

or SET OMVS command.

IPCSEMNSEMS(nnnnn)

Specifies the maximum number of semaphores for each semaphore set.

 Value Range: nnnnn is a decimal value from 0 to 32767.

 Default: 1000

 You can change the value of IPCSEMNSEMS dynamically using the SETOMVS

or SET OMVS command.

IPCSHMMPAGES(nnnnn)

Specifies the maximum number of pages for shared memory segments.

 Value Range: nnnnn is a decimal value from 1 to 4 petabytes (that is, 4 *

1 125 899 906 842 624).

BPXPRMxx

156 z/OS UNIX System Services APAR OA12251

Note: If you obtain memory segments below the 2–gigabyte address range

then a realistic maximum is about 1.5 gigabytes; the actual maximum

range varies due to storage allocation and system usage. If you obtain

memory segments above the 2–gigabyte address range, the maximum is

dependent on the IEASYS HVSHARE parameter which specifies the size

of the high virtual shared area.

 Default: 25600

 You can change the value of IPCSHMMPAGES dynamically using the

SETOMVS or SET OMVS command.

IPCSHMNIDS(nnnnn)

Specifies the maximum number of unique system-wide shared memory

segments.

 Value Range: nnnnn is a decimal value from 1 to 20000.

 Default: 500

 You can change the value of IPCSHMNIDS dynamically using the SETOMVS or

SET OMVS command. The new minimum is the same as the current value. The

new maximum is calculated as follows:

MIN(initial maximum,MAX(4096,3*initial value))

You can increase but not decrease the value, as described in z/OS UNIX

System Services Planning.

IPCSHMNSEGS(nnnnn)

Specifies the maximum number of attached shared memory segments for each

address space.

 Value Range: nnnnn is a decimal value from 0 to 1000.

 Default: 10

 You can change the value of IPCSHMNSEGS dynamically using the SETOMVS

or SET OMVS command.

IPCSHMSPAGES(nnnnn)

Specifies the maximum number of system-wide shared pages created by calls

to the fork and 31–bitshmat functions.

 You can increase, but not decrease, the value, as described in z/OS UNIX

System Services Planning. Shared memory segments obtained above the

2–gigabyte range in 64–bit programs do not affect this limit.

 Value Range: nnnnn is a decimal value from 0 to 2621440.

Note: You can set a denomination (or multiplier) value when defining this

value. The suffix, ″C″ can have a 1–character value as presented in

Table 25 on page 143, but must not exceed the parameter-specific upper

limit.

MVS retains the denomination value and uses it within a subsequent D

OMVS command

 Default: 262144

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 157

You can change the value of IPCSHMSPAGES dynamically using the

SETOMVS or SET OMVS command. The new minimum is the same as the

current value. The new maximum is calculated as follows:

MIN(initial maximum,MAX(4096,3*initial value))

You can increase but not decrease the value, as described in z/OS UNIX

System Services Planning.

 Because each page of shared storage requires the associated consumption of

extended system queue area (ESQA) storage, limiting the shared storage

usage provides a way to limit the ESQA usage by z/OS UNIX users. If you use

the __IPC_MEGA or __MAP_MEGA options, then the shared pages limits are

not affected because MEGA does not affect the system ESQA overhead.

FORKCOPY(COW|COPY)

Specifies how user storage is to be copied from the parent process to the child

process during a fork() system call.

 FORKCOPY(COW) specifies that all fork() calls are processed with the

copy-on-write mode if the suppression-on-protection (SOP) hardware feature is

available. Before the storage is modified, both the parent and child process

refer to the same view of the data. The parent storage is copied to the child

only if either the parent or the child modifies the storage. FORKCOPY(COW)

causes the system to use the ESQA to manage page sharing.

 FORKCOPY(COPY) specifies that fork() immediately copies the parent storage

to the child, whether the SOP is available or not. Use this option to avoid any

additional ESQA use in support of fork.

 Follow these guidelines:

v If the run-time library is in the link pack area, specify FORKCOPY(COPY).

v If the run-time library is not in the link pack area, specify FORKCOPY(COW).

Default: COW

 You can change the value of FORKCOPY dynamically using the SETOMVS or

SET OMVS command. To make a permanent change, edit the BPXPRMxx

member used for IPLs.

SUPERUSER(user_name)

Superuser name, which must conform to the restrictions for the z/OS user ID.

The user name must also be defined to RACF (or another security product) and

must have a z/OS UNIX user ID (UID) of 0. For example, in RACF, specify

OMVS(UID(0)) on the ADDUSER command.

 When a daemon issues a setuid() to set a UID to 0 and the user ID is not

known, setuid() uses the user ID from the SUPERUSER statement.

 Never permit the userid BPXROOT to the BPX.DAEMON profile (described in

“Setting Up the BPX.* FACILITY Class Profiles“ in z/OS UNIX System Services

Planning). This warning applies even if you use a name other than BPXROOT.

 Value Range: user_name is a 1 to 8 character value.

 Default: BPXROOT

 Use the SETOMVS or SET OMVS command to dynamically change the value

of SUPERUSER. To make a permanent change, edit the BPXPRMxx member

that is used for IPLs.

BPXPRMxx

158 z/OS UNIX System Services APAR OA12251

TTYGROUP(group_name)

Specifies the z/OS group name given to slave pseudoterminals (PTYs) and

OCS remote terminals (RTYs). This group name should be defined to the

security product and must have a unique group ID (GID). No users should be

connected to this group.

 The group_name is used by certain setgid() programs, such as talk and write,

when writing to another user’s PTY or RTY.

 Value Range: group_name is a 1 to 8 character value.

 Default: TTY

 You can change the value of TTYGROUP dynamically using the SETOMVS or

SET OMVS command. To make a permanent change, edit the BPXPRMxx

member that will be used for future IPLs.

CTRACE(parmlib_member_name)

Specifies the parmlib member that contains the initial tracing options to be used

for the z/OS UNIX component. Use this statement to provide tracing while the

kernel is starting and to avoid having to issue a TRACE operator command to

set tracing options.

 Default: CTIBPX00

STEPLIBLIST(’/etc/steplib’)

Specifies the pathname of a hierarchical file system (HFS) file. This file is

intended to contain a list of MVS data sets that are sanctioned by the

installation for use as step libraries for programs that have the set-user-ID and

set-group-ID bit set.

 Use the SETOMVS or SET OMVS command to dynamically change the value

of STEPLIBLIST. To make a permanent change, edit the BPXPRMxx member

that will be used for IPLs.

 For additional information, see STEPLIBLIST in z/OS UNIX System Services

Planning.

USERIDALIASTABLE(’/etc/tablename’)

Specifies the pathname of a hierarchical file system (HFS) file. This file is

intended to contain a list of z/OS user IDs and group names with their

corresponding alias names. The alias names can contain any characters in the

portable filename character set.

 You can change USERIDALIASTABLE dynamically using the SETOMVS or SET

OMVS command. To make a permanent change, edit the BPXPRMxx member

that will be used for IPLs.

 Once a user is logged into the system, changing the user ID or group name

alias table does not change the alias name immediately. If a change needs to

be activated sooner, you can use the SETOMVS or SET OMVS command to

change the table more quickly.

 For planning information, see USERIDALIASTABLE in z/OS UNIX System

Services Planning.

SERV_LPALIB(’dsname’, ’volser’)

Specifies the target service library where the UNIX System Services modules

that are normally built into LPA are located. The load library specified must be

an APF Authorized Library or the F OMVS,ACTIVATE=SERVICE command fails

when referencing the library.

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 159

Value Range: dsname is a 1-to-44 character value representing a valid MVS

load library data set name. The alphabetic characters in the load library name

must be uppercase. volser is a 1-to-6 character value representing a valid

volume serial number for the volume that contains the specified MVS load

library. The alphabetic characters in the volume serial number must be

uppercase.

 You can change the value of SERV_LPALIB dynamically using the SETOMVS

or SET OMVS command. To make a permanent change, edit the BPXPRMxx

member that will be used for future IPLs.

SERV_LINKLIB(’dsname’, ’volser’)

Specifies the target service library where the UNIX System Services modules

that are normally loaded from SYS1.LINKLIB into the private area of the OMVS

address space are located. The load library specified must be an APF

Authorized Library of the F OMVS,ACTIVATE=SERVICE command fails when

referencing the library.

 Value Range: dsname is a 1-to-44 character value representing a valid MVS

load library data set name. The alphabetic characters in the load library name

must be uppercase. volser is a 1-to-6 character value representing a valid

volume serial number for the volume that contains the specified MVS load

library. The alphabetic characters in the volume serial number must be

uppercase.

 You can change the value of SERV_LINKLIB dynamically using the SETOMVS

or SET OMVS command. To make a permanent change, edit the BPXPRMxx

member that will be used for future IPLs.

FILESYSTYPE TYPE(type_name) ENTRYPOINT(entry_name) PARM(’parm’)

ASNAME(proc_name[,’start_parms’])

Specifies the type of file system that is to be started. BPXPRMxx can contain

more than one FILESYSTYPE statement.

 When SYSPLEX(YES) is specified, each FILESYSTYPE in use within the

participating shared file system group must be defined for all systems

participating in shared file system. The easiest way to accomplish this is by

having a single BPXPRMxx member that contains file system information for

each system participating in shared file system. If you decide to define a

BPXPRMxx for each system, the FILESYSTYPE statements must be identical

on each system. For more information on shared file system, see z/OS UNIX

System Services Planning.

 Note that any facilities required for a particular FILESYSTYPE must be initiated

on all systems participating in shared file system. For example, NFS requires

TCP/IP, so if you specify an NFS FILESYSTYPE, you must also initialize

TCP/IP on NFS initialization.

 The SETOMVS RESET command can be used to dynamically specify new

FILESYSTYPE statements. To make a permanent change, edit the BPXPRMxx

member used for IPLs. For more information, see “Dynamically Adding

FILESYSTYPE Statements in BPXPRMxx” in z/OS UNIX System Services

Planning.

 The parameters are:

TYPE(type_name)

Specifies the name of the file system type that is to control the file system.

 In the FILESYSTYPE statement, specify a name for the TYPE file system.

For example, you could use the following, or assign your own names:

BPXPRMxx

160 z/OS UNIX System Services APAR OA12251

v ZFS for a zSeries® file system (ZFS)

v HFS for a hierarchical file system (HFS)

v TFS for a temporary file system (TFS)

v UDS for z/OS UNIX domain (AF_UNIX) sockets

v INET for network (AF_INET and AF_INET6) sockets

v CINET for common INET (AF_INET and AF_INET6) sockets

v AUTOMNT for an automounted file system

v DFSC for accessing global namespace.

v NFS for accessing remote files.

For planning information, see FILESYSTYPE in z/OS UNIX System

Services Planning.

 TYPE is a required parameter. The name is 1 to 8 characters; the system

converts the name to uppercase.

ENTRYPOINT(entry_name)

Specifies the name of the load module containing the entry point into the

file system type.

 ENTRYPOINT is a required parameter. The name is 1 to 8 characters; the

system converts the name to uppercase. Refer to the documentation for the

specific physical file system for valid entry point names.

PARM(’parm’)

Provides a parameter to be passed directly to the file system type. The

parameter format and content are specified by the file system type.

 PARM is an optional parameter. The parameter is up to 500 characters

long; the characters can be in uppercase, lowercase, or both. The

parameter must be enclosed in single quotes.

 If the physical file system specified does not expect a PARM operand, it

ignores all PARM operands.

 SYNCDEFAULT(t), VIRTUAL(max), FIXED(min) and

FSFULL(threshold,increment) are valid only when ENTRYPOINT is

GFUAINIT.

Note: If a syntax error is found in any of these four parameters

(SYNCDEFAULT, VIRTUAL, FIXED, or FSFULL), an error message

is issued and all four parameters are set to the default values.

 SYNCDEFAULT(t)

 t specifies the number of seconds used as a default for the sync

daemon interval. When the sync daemon is active, the meta data for

a file system is hardened. Setting t to 0 indicates that the file system

should harden meta data synchronously with syscall requests.

 Sync interval values are rounded up to the next 30-second value.

For example, specifying 31 seconds results in a sync interval of 60

seconds.

 The maximum value that can be specified for t is 65534. Values

between 65534 and 99999 are rejected.

 A value of 99999 specifies that no sync daemon intervals are

specified, and thus, the meta data is not hardened.

 Default: 60 seconds

 VIRTUAL(max)

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 161

max specifies the maximum amount of virtual storage (in megabytes)

that HFS data and meta data buffers should use.

 If you do not set a value for max, the system assigns a default value

that is equal to half the amount of real storage available to the

system at HFS initialization. See z/OS UNIX System Services

Planning for more information about the VIRTUAL(max) parameter.

 FIXED(min)

 min specifies the amount of virtual storage (in megabytes) that is

fixed at HFS initialization time and remains fixed even if HFS activity

drops to zero. min must be less than or equal to VIRTUAL(max).

 min cannot exceed 50% of real storage available to the system. If

the allowed amount of storage is exceeded, an informational

message is issued and min is set to 50% of real storage. The

minimum limit can be changed dynamically by invoking the

confighfs shell command. See z/OS UNIX System Services

Command Reference for more information about the confighfs shell

command.

 Default: 0

 FSFULL(threshold,increment)

 threshold specifies the percentage of the HFS capacity at which an

operator message is generated. The default is 100%.

 increment specifies the percentage of change above the HFS

capacity at which an operator messages is generated. Messages are

generated by either an increase or decrease greater than increment.

The default is 5%.

You can specify threshold and increment values for all HFS file

systems. The values can also be set on the MOUNT command for a

specific file system. Parameters on the MOUNT command override

parmlib values. If no values are specified in either place, no

threshold checking is done. If a threshold value is specified but no

increment is given, the increment defaults to 5%. The increment

value applies both to upgrading the message when the file system

continues to fill and to removing the message when more space

becomes available due to either deleting files, or to extending the file

system. The values are in terms of percent full. The values applied

to a file system can be changed only when the file system is

mounted.

ASNAME(proc_name[,’start_parms’])

proc_name specifies the name of a procedure in SYS1.PROCLIB that is to

be used to start the address space that is initialized by the physical file

system (PFS). Specify ASNAME for any PFS that does not run in the kernel

address space. The name you specify is also used for the name of the

address space.

 start_parms is an optional quoted string that is to be appended to the

proc_name when the address space is started. The string may be up to 100

characters long. The start_parms are not validated; they are just passed to

the system when the address space is started with an internal command.

Refer to the START command in z/OS MVS System Commands or the

ASCRE macro in z/OS MVS Programming: Authorized Assembler Services

Reference ALE-DYN.

BPXPRMxx

162 z/OS UNIX System Services APAR OA12251

By default the address space started with ASNAME is started under JES,

but this may be changed by including the additional start_parms

‘SUB=MSTR’.

 ASNAME is an optional parameter. proc_name is 1 to 8 characters; the

system converts the name to uppercase. If you do not specify ASNAME, or

specify proc_name as the name of the kernel address space, the PFS is

initialized in the kernel address space.

 Refer to the documentation for the specific physical file system for valid

ASNAME operands.

SYSPLEX(YES|NO)

For z/OS UNIX, the SYSPLEX statement specifies whether a system should

join the SYSBPX XCF group to share HFS resources across the sysplex. If

SYSPLEX(YES) is specified, the system participates in shared file system. If

SYSPLEX(NO) is specified, the system does not participate in shared file

system. If the SYSPLEX statement is not provided, the default is

SYSPLEX(NO). Also, to participate in shared file system, the systems must be

at R9 level or later.

 For more information on shared file system, see z/OS UNIX System Services

Planning. IBM suggests that you review this chapter before using any shared

file system specific parameters: SYSPLEX(YES|NO), VERSION,

AUTOMOVE|NOAUTOMOVE and SYSNAME.

Note: You cannot adjust the SYSPLEX field dynamically. There is no

SETOMVS, SET OMVS, or SETOMVS RESET=(xx) capability. To

change the value of SYSPLEX, you must re-IPL the system.

Default: NO

VERSION(’nnnn’)

The VERSION statement applies only to systems that are exploiting shared file

systems. VERSION allows multiple releases and service levels of the binaries

to coexist and participate in shared file system. A directory with the value nnnn

specified on VERSION is dynamically created at system initialization under the

sysplex root that is used as a mount point for the version file system. This

directory, however, is only dynamically created if the sysplex root HFS is

mounted read/write.

Note: nnnn is a case-sensitive character string no greater than 8 characters in

length. It indicates a specific instance of the version file system. The

most appropriate values for nnnn are the name of the target zone,

&SYSR1, or another qualifier meaningful to the system programmer. For

example, if the system is at V2R9, you can specify REL9 for VERSION.
When SYSPLEX(YES) is specified, you must also specify the VERSION

parameter.

The VERSION value is substituted in the content of symbolic links that contain

$VERSION. For scenarios describing the use of the version HFS, see z/OS

UNIX System Services Planning.

 When testing or changing to a new Maintenance Level (PTF), the VERSION

value can be changed dynamically by using the SETOMVS command:

SETOMVS VERSION=’string’

You can also change the settings of this parameter via SET OMVS=(xx) and

SETOMVS RESET=(xx) parmlib specifications.

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 163

Note: We do not recommend changing VERSION dynamically if you have any

users logged on or running applications; replacing the system files for

these users may be disruptive.

ROOT FILESYSTEM(’fsname’) DDNAME(ddname) TYPE(type_name)

MODE(access) PARM(’parameter’) SETUID|NOSETUID

AUTOMOVE|NOAUTOMOVE SYSNAME(sysname) TAG(NOTEXT|TEXT,ccsid)

MKDIR(’pathname’)

Specifies a file system that z/OS UNIX is to logically mount as the root file

system.

Note: The ROOT statement is optional. If not specified, a TFS file system is

mounted as the root.

To change the value of the ROOT statement without having to re-IPL, you can

use the TSO/E MOUNT and UNMOUNT commands.

 The root file system can be unmounted using the TSO/E UNMOUNT command

or ISHELL. Ensure that you specify the IMMEDIATE option.

 The parameters are:

FILESYSTEM(’fsname’)

The name of the root file system. The name must be unique in the system.

 Either FILESYSTEM or DDNAME is required; do not specify both. The

name is 1 to 44 characters; the characters can be in uppercase, lowercase,

or both. The name must be enclosed in single quotes. An HFS data set

name must conform to the rules of MVS data set names.

DDNAME(ddname)

The ddname on the JCL DD statement that defines the root file system. To

use the DDNAME parameter, a DD statement for the HFS data set

containing the root file system should be placed in the z/OS UNIX

cataloged procedure.

 Either FILESYSTEM or DDNAME is required; do not specify both. The

ddname is 1 to 8 characters; the system converts the ddname to

uppercase.

TYPE(type_name)

Specifies the name of a file system type identified in a FILESYSTYPE

statement. The TYPE(type_name) parameter must be the same as the

TYPE(type_name) parameter on a FILESYSTYPE statement.

 TYPE is a required parameter. The name is 1 to 8 characters; the system

converts the name to uppercase.

MODE(access)

Specifies access to the root file system by all users:

v READ: Users can only read the root file system.

v RDWR: Users can read and write in the root file system.

Default: RDWR

PARM(’parameter’)

Provides a parameter to be passed directly to the file system type. The

parameter format and content are specified by the file system type.

 PARM is an optional parameter. The parameter is up to 500 characters

long; the characters can be in uppercase, lowercase, or both. The

parameter must be enclosed in single quotes.

BPXPRMxx

164 z/OS UNIX System Services APAR OA12251

If the physical file system specified does not expect a PARM operand, it

ignores all PARM operands. Refer to the documentation for the specific

physical file system for valid entry point names.

 SYNC(t), NOWRITEPROTECT, NOSPARSE, FSFULL, and

SYNCRESERVE are valid only when ENTRYPOINT is GFUAINIT.

Note: If a syntax error is found in any of these parameters (SYNC(t),

NOWRITEPROTECT, NOSPARSE, FSFULL, and SYNCRESERVE),

an error message is issued and all five parameters are set to the

default values.

 SYNC(t)

 t specifies the number of seconds used as a default for the sync

daemon interval. When the sync daemon is active, the meta data for

a file system is hardened. Setting t to 0 indicates that the file system

should harden meta data synchronously with syscall requests.

 Sync interval values are rounded up to the next 30-second value.

For example, specifying 31 seconds results in a sync interval of 60

seconds.

 The maximum value that can be specified for t is 65535. Values

between 65535 and 99999 are rejected.

 A value of 99999 specifies that no sync daemon intervals are

specified, and thus, the meta data is not hardened.

 Default: 60 seconds

 NOWRITEPROTECT

– This keyword overrides the WRITEPROTECT function. When

NOWRITEPROTECT is specified, the file system is not protected

from being read/write mounted by multiple systems simultaneously.

Read/write mounting by multiple systems corrupts the file system.

Extreme care should be taken when specifying this keyword. It

should only be used when there is no possibility of the file system

being mounted by multiple systems.

Use of the NOWRITEPROTECT keyword avoids an additional file

system read operation that is required at Sync time to support the

WRITEPROTECT function.

– Default: WRITEPROTECT

 NOSPARSE(DUMP|LOGREC)

– When NOSPARSE is specified on the MOUNT statement, HFS will

not allow any files in that file system to be sparse. A file becomes

sparse when all of the data cannot be written. For example, suppose

we are only able to write the first 10,000 bytes of a file, and then the

system has to lseek out to offset 50,000 and resume writing from

there. The file is considered sparse because bytes 10,000-50,000

were never written to the file. If the user attempts to read bytes

10,000 to 50,000, binary 0’s will be returned as the value.

NOSPARSE handles this by causing the HFS to create a dump or a

LOGREC record when either of the following situations occur:

- HFS attempts to read metadata from disk for a file and detects

that the subject file is sparse, or

- an application attempts to write to a page beyond the end of the

file, causing the file to become sparse.

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 165

– DUMP will cause HFS to create a dump. Only one dump will be

created for each of the possible reason codes while a file system is

mounted. DUMP is the default if you specify NOSPARSE without the

DUMP or LOGREC keywords.

– LOGREC will cause HFS to write a LOGREC record instead of

creating a dump.

– Default: DUMP

 FSFULL(threshold,increment)

 threshold specifies the percentage of the HFS capacity at which an

operator message is generated. The default is 100%.

 increment specifies the percentage of change above the HFS

capacity at which an operator messages is generated. Messages are

generated by either an increase or decrease greater than increment.

The default is 5%.

You can specify threshold and increment values for all HFS file

systems. The values can also be set on the MOUNT command for a

specific file system. Parameters on the MOUNT command override

parmlib values. If no values are specified in either place, no

threshold checking is done. If a threshold value is specified but no

increment is given, the increment defaults to 5%. The increment

value applies both to upgrading the message when the file system

continues to fill and to removing the message when more space

becomes available due to either deleting files, or to extending the file

system. The values are in terms of percent full. The values applied

to a file system can be changed only when the file system is

mounted.

 SYNCRESERVE(nn)

– This keyword controls the number of pages HFS should reserve for

sync processing of the file system metadata.nn represents the

percentage of the file system space which is to be reserved for the

sync shadow write mechanism. nn is a decimal number between 1

and 50. There is no reason to ever reserve more than 50% of the file

system space, because the reserved space must always be less than

the actual index size and the index size plus the reserved space

cannot be greater than the file system space.

– When this parm is specified on the MOUNT statement, it will

override the HFS internal reserved page estimation algorithm.

Therefore, this parameter should only be used if it is found that the

internal algorithm is not providing the desired results.

SETUID|NOSETUID

SETUID specifies that the setuid() and setgid() mode bit on an executable

file will be supported.

 NOSETUID specifies that the setuid() and setgid() mode bit on an

executable file will not be supported. The UID or GID will not be changed

when the program is executed and the APF and Program Control extended

attributes are not honored. The entire HFS is uncontrolled.

 Default: SETUID

AUTOMOVE|NOAUTOMOVE

The AUTOMOVE|NOAUTOMOVE parameters apply only in a sysplex where

systems are participating in shared file system. The parameters indicate

what happens to the ownership of the file system when a shutdown, PFS

termination, dead system takeover, or file system move occurs.

BPXPRMxx

166 z/OS UNIX System Services APAR OA12251

|
|
|

AUTOMOVE indicates that ownership of the file system automatically

changes to another system participating in shared file system.

NOAUTOMOVE indicates that ownership of the file system is not moved if

the owning system goes down; as a result, the file system becomes

inaccessible.

Note: When specifying NOAUTOMOVE, though the file system becomes

inaccessible when the owning system goes down, it still exists in the

file system hierarchy. The file system will remain unowned until the

original owing system re-IPLs.

IBM suggests that you use AUTOMOVE for the sysplex root file system and

the version file system. For file systems that are associated with a single

system, specify UNMOUNT; this includes /etc, /tmp, /var, /dev, and other

system-specific file systems. For descriptions of the sysplex root,

system-specific, and version file systems, see “Shared file system in a

Sysplex” in z/OS UNIX System Services Planning.

 Default: AUTOMOVE

SYSNAME(sysname)

For a description, see SYSNAME on the MOUNT statement. To ensure that

the root is always available, use the default.

 Default: The name of the system that the command is processed on.

TAG (NOTEXT|TEXT,ccsid)

Specifies whether implicit file tags are assigned to untagged files in the

mounted file system. File tagging controls whether a file’s data can be

converted during file reading and writing. “Implicit” in this case means that

the tag is not permanently stored with the file. Instead, the tag is associated

with the file during reading and writing, or when stat() type functions are

issued. Either TEXT, or NOTEXT, and ccsid must be specified when TAG is

specified.

 NOTEXT specifies that none of the files in the file system are automatically

converted during file reading and writing.

 TEXT specifies that each untagged file is implicitly marked as containing

pure text data that can be converted.

 ccsid names the coded character set identifier to be implicitly set for the

untagged file. ccsid is specified as a decimal value from 0 to 65536.

However, when TEXT is specified, the values of 0 and 65536 are illegal

because those values imply no conversion. Other than this, the value is not

checked as being valid and the corresponding code page is not checked as

being installed.

 For example:

v TAG(TEXT,819) identifies text files containing ASCII (ISO-8859–1) data.

v TAG(TEXT,1047) identifies text files containing EBCDIC ((ISO-1047)

data.

v TAG(NOTEXT,65536) tags files as containing binary or unknown data.

v TAG(NOTEXT,0) is the equivalent of not specifying the TAG parameter.

v TAG(NOTEXT,273) tags file with the German code set (ISO-273), but is

ineligible for automatic conversion.

Default: NOTEXT

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 167

|
|
|
|
|
|

MKDIR(’pathname’)

Specifies the name of a directory that the system will create dynamically

after the file system has been successfully mounted. This allows the system

to create mountpoints that can be referenced by subsequent MOUNT

statements. MKDIR is an optional keyword.

 You can specify more than one MKDIR keyword on each ROOT statement.

The directories will be created in the order they are listed.

 You must specify a relative path name; the path name cannot start with a

slash (/). Enclose the path name in single quotes.

 The path name is relative to the file system mount point specified on the

MOUNTPOINT keyword.

 The path name can contain intermediate directories, but these intermediate

directories must already exist in the file system hierarchy. If these

intermediate directories do not exist, you can use additional MKDIR

keywords to create the necessary intermediate directories.

 The directory to be created must reside in a file system that is has been

mounted as RDWR. The permission bits for the created directory will be

755. The UID and GID will be inherited from this directory’s parent. These

attributes will be overlaid when this directory is used as a mount point.

 We recommend that you do not use the MKDIR keyword for file systems

that mount asynchronously, such as the NFS file system. When a file

system will be mounted asynchronously, message BPXF025I is issued to

the system log. Similarly, do not use MKDIR with the SYSNAME keyword,

when SYSNAME identifies a remote system to perform the mount. The

results are unpredictable.

 A failure to create a directory does not cause a failure of the mount. A

message is written to the system log when a problem occurs during the

creation of the directory. If the directory already exists, no message is

written.

Note: MKDIR will only work on systems that are at z/OS Version 1 Release

5 level or higher. If you are using MKDIR in a sysplex that is sharing

a common BPXPRMxx member, make sure that all systems are at

least at the z/OS V1R5 level.

MOUNT FILESYSTEM(’fsname’) DDNAME(ddname) TYPE(type_name)

MOUNTPOINT(’pathname’) MODE(access) PARM(’parameter’)

TAG(NOTEXT|TEXT,ccsid) SETUID|NOSETUID SECURITY|NOSECURITY

AUTOMOVE[(INCLUDE,sysname1,sysname2,...,[sysnamen|*])

|(EXCLUDE,sysname1,sysname2,...,sysnamen)]

|NOAUTOMOVE|UNMOUNT

SYSNAME(sysname) MKDIR(’pathname’)

Specifies a file system that z/OS UNIX is to logically mount onto the root file

system or another file system.

 Mount statements are processed in the sequence in which they appear. If they

are cascading, the system will mount the first file system first. Make sure that a

mount point exists before the file system is mounted. If you mount a file system

over an existing directory containing files, you will cover up the existing files.

 If a MOUNT statement uses a DDNAME parameter to identify the HFS data set,

allocate that HFS data set in the OMVS cataloged procedure. See the section

BPXPRMxx

168 z/OS UNIX System Services APAR OA12251

|
|
|
|
|

on customizing the OMVS cataloged procedure to run the kernel initialization

program in the “Customizing z/OS UNIX” chapter in z/OS UNIX System

Services Planning.

 The MOUNT statement is optional; the BPXPRMxx member can contain one or

more MOUNT statements.

 The MOUNT parameters are:

FILESYSTEM(’fsname’)

The name of the file system. The name must be unique in the system.

 Either FILESYSTEM or DDNAME is required; do not specify both. The

name is 1 to 44 characters; the characters can be in uppercase, lowercase,

or both. The name must be enclosed in single quotes. An HFS data set

name must conform to the rules of MVS data set names.

DDNAME(ddname)

The ddname on the JCL DD statement that defines the file system. To use

the DDNAME parameter, a DD statement for the HFS data set containing

the mountable file system should be placed in the OMVS cataloged

procedure.

 Either FILESYSTEM or DDNAME is required; do not specify both. The

name is 1 to 8 characters; the system converts the ddname to uppercase.

TYPE(type_name)

Specifies the name of a file system type identified in a FILESYSTYPE

statement. The TYPE(type_name) parameter must be the same as the

TYPE(type_name) parameter on a FILESYSTYPE statement.

 TYPE is a required parameter. The name is 1 to 8 characters; the system

converts the name to uppercase.

MOUNTPOINT(’pathname’)

Specifies the pathname, or a symlink that resolves to the pathname of the

directory onto which the file system is to be mounted.

 Mount point restrictions are:

v The mount point must be a directory.

v Any files in the directory are not accessible while the file system is

mounted.

v Only one mount can be active at any time for a mount point.

v A file system can be mounted at only one directory at any time.

MOUNTPOINT is required. The pathname is up to 1023 characters long;

the characters can be in uppercase, lowercase, or both. The pathname

must be enclosed in single quotes.

MODE(access)

Specifies access to the mounted file system by all users:

v READ: Users can only read the file system being mounted.

v RDWR: Users can read and write in the file system being mounted.

Default: RDWR

TAG (NOTEXT|TEXT,ccsid)

Specifies whether implicit file tags are assigned to untagged files in the

mounted file system. File tagging controls whether a file’s data can be

converted during file reading and writing. ″Implicit″ in this case means that

the tag is not permanently stored with the file. Instead, the tag is associated

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 169

with the file during reading and writing, or when stat() type functions are

issued. Either TEXT, or NOTEXT, and ccsid must be specified when TAG is

specified.

 NOTEXT specifies that none of the files in the file system are automatically

converted during file reading and writing.

 TEXT specifies that each untagged file is implicitly marked as containing

pure text data that can be converted.

 ccsid names the coded character set identifier to be implicitly set for the

untagged file. ccsid is specified as a decimal value from 0 to 65536.

However, when TEXT is specified, the values of 0 and 65536 are illegal

because those values imply no conversion. Other than this, the value is not

checked as being valid and the corresponding code page is not checked as

being installed.

 For example:

v TAG(TEXT,819) identifies text files containing ASCII (ISO-8859–1) data.

v TAG(TEXT,1047) identifies text files containing EBCDIC ((ISO-1047)

data.

v TAG(NOTEXT,65536) tags files as containing binary or unknown data.

v TAG(NOTEXT,0) is the equivalent of not specifying the TAG parameter.

v TAG(NOTEXT,273) tags file with the German code set (ISO-273), but is

ineligible for automatic conversion.

Default: NOTEXT

PARM(’parameter’)

Provides a parameter to be passed directly to the file system type. The

parameter format and content are specified by the file system type.

 PARM is an optional parameter. The parameter is up to 500 characters

long; the characters can be in uppercase, lowercase, or both. The

parameter must be enclosed in single quotes.

 If the physical file system specified does not expect a PARM operand, it

ignores all PARM operands. Refer to the documentation for the specific

physical file system for valid entry point names.

 SYNC(t), NOWRITEPROTECT, NOSPARSE, FSFULL, and

SYNCRESERVE are valid only when ENTRYPOINT is GFUAINIT.

Note: If a syntax error is found in any of these parameters (SYNC(t),

NOWRITEPROTECT, NOSPARSE, FSFULL, and SYNCRESERVE),

an error message is issued and all five parameters are set to the

default values.

 SYNC(t)

 t specifies the number of seconds used as a default for the sync

daemon interval. When the sync daemon is active, the meta data for

a file system is hardened. Setting t to 0 indicates that the file system

should harden meta data synchronously with syscall requests.

 Sync interval values are rounded up to the next 30-second value.

For example, specifying 31 seconds results in a sync interval of 60

seconds.

 The maximum value that can be specified for t is 65535. Values

between 65535 and 99999 are rejected.

BPXPRMxx

170 z/OS UNIX System Services APAR OA12251

A value of 99999 specifies that no sync daemon intervals are

specified, and thus, the meta data is not hardened.

 Default: 60 seconds

 NOWRITEPROTECT

– This keyword overrides the WRITEPROTECT function. When

NOWRITEPROTECT is specified, the file system is not protected

from being read/write mounted by multiple systems simultaneously.

Read/write mounting by multiple systems corrupts the file system.

Extreme care should be taken when specifying this keyword. It

should only be used when there is no possibility of the file system

being mounted by multiple systems.

Use of the NOWRITEPROTECT keyword avoids an additional file

system read operation that is required at Sync time to support the

WRITEPROTECT function.

– Default: WRITEPROTECT

 NOSPARSE(DUMP|LOGREC)

– When NOSPARSE is specified on the MOUNT statement, HFS will

not allow any files in that file system to be sparse. A file becomes

sparse when all of the data cannot be written. For example, suppose

we are only able to write the first 10,000 bytes of a file, and then the

system has to lseek out to offset 50,000 and resume writing from

there. The file is considered sparse because bytes 10,000-50,000

were never written to the file. If the user attempts to read bytes

10,000 to 50,000, binary 0’s will be returned as the value.

NOSPARSE handles this by causing the HFS to create a dump or a

LOGREC record when either of the following situations occur:

- HFS attempts to read metadata from disk for a file and detects

that the subject file is sparse, or

- an application attempts to write to a page beyond the end of the

file, causing the file to become sparse.

– DUMP will cause HFS to create a dump. Only one dump will be

created for each of the possible reason codes while a file system is

mounted. DUMP is the default if you specify NOSPARSE without the

DUMP or LOGREC keywords.

– LOGREC will cause HFS to write a LOGREC record instead of

creating a dump.

– Default: DUMP

 FSFULL(threshold,increment)

 threshold specifies the percentage of the HFS capacity at which an

operator message is generated. The default is 100%.

 increment specifies the percentage of change above the HFS

capacity at which an operator messages is generated. Messages are

generated by either an increase or decrease greater than increment.

The default is 5%.

You can specify threshold and increment values for all HFS file

systems. The values can also be set on the MOUNT command for a

specific file system. Parameters on the MOUNT command override

parmlib values. If no values are specified in either place, no

threshold checking is done. If a threshold value is specified but no

increment is given, the increment defaults to 5%. The increment

value applies both to upgrading the message when the file system

continues to fill and to removing the message when more space

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 171

becomes available due to either deleting files, or to extending the file

system. The values are in terms of percent full. The values applied

to a file system can be changed only when the file system is

mounted.

 SYNCRESERVE(nn)

– This keyword controls the number of pages HFS should reserve for

sync processing of the file system metadata.nn represents the

percentage of the file system space which is to be reserved for the

sync shadow write mechanism. nn is a decimal number between 1

and 50. There is no reason to ever reserve more than 50% of the file

system space, because the reserved space must always be less than

the actual index size and the index size plus the reserved space

cannot be greater than the file system space.

– When this parm is specified on the MOUNT statement, it will

override the HFS internal reserved page estimation algorithm.

Therefore, this parameter should only be used if it is found that the

internal algorithm is not providing the desired results.

SETUID|NOSETUID

SETUID specifies that the setuid() and setgid() mode bit on an executable

file will be supported.

 NOSETUID specifies that the setuid() and setgid() mode bit on an

executable file will not be supported. The UID or GID will not be changed

when the program is executed and the APF and Program Control extended

attributes are not honored. The entire HFS is uncontrolled.

 Default: SETUID

SECURITY|NOSECURITY

SECURITY specifies that security checks should be performed.

 NOSECURITY specifies that security checks should not be performed.

 Default: SECURITY

AUTOMOVE[(INCLUDE,sysname1,sysname2,...,[sysnameN|*])

|(EXCLUDE,sysname1,sysname2,...,sysnameN)]

| NOAUTOMOVE | UNMOUNT

The AUTOMOVE, NOAUTOMOVE and UNMOUNT parameters apply only

in a sysplex where systems are participating in shared file system. The

parameters indicate what happens to the ownership of the file system when

a shutdown, PFS termination, dead system takeover, or file system move

occurs.

 AUTOMOVE indicates that ownership of the file system automatically

changes to another system participating in shared file system. You can

specify AUTOMOVE on its own to allow the system to randomly select a

new owner for the file system. You can direct the system how to choose a

new owner for the file system by using the indicators INCLUDE (I) or

EXCLUDE (E).

 Specify INCLUDE with a system list to provide a prioritized list of systems

to which the file system can be moved should the owning system go down.

For example, AUTOMOVE(INCLUDE,SYS1,SYS4,SYS9) tells the system

that the file system can be moved to SYS1, SYS4, or SYS9, in that order,

or AUTOMOVE(INCLUDE,SYS1,SYS4,*) tells the system that the file

system can be moved to SYS1 or SYS4, in that order, then to any other

BPXPRMxx

172 z/OS UNIX System Services APAR OA12251

|
|
|

|
|
|
|

|
|
|
|
|
|

available system. This selection is not totally random; rather, MVS attempts

to move the file system to a new server system in which the file system is

actively in use.

Notes:

1. If specified, the asterisk must be listed last or listed as the only system

name in the INCLUDE system list. The asterisk is not supported prior to

z/OS Version 1 Release 6.

2. Be certain all systems in the sysplex are at z/OS Version 1 Release 6

or higher. Specifying AUTOMOVE with an asterisk in the INCLUDE

system list in a mixed (down-level) environment will produce

unpredictable results.

Specify EXCLUDE with a system list to provide a list of systems to which

the file system cannot be moved. For example,

AUTOMOVE(EXCLUDE,SYS3,SYS5,SYS7) tells the system that the file

system can be moved to any system except SYS3, SYS5, and SYS7. If the

file system cannot be moved as you have directed in the system list, the file

system will be unmounted when the owning system goes down.

 NOAUTOMOVE indicates that ownership of the file system is not moved in

some situations; as a result, the file system becomes inaccessible.

Note: When specifying NOAUTOMOVE, although the file system becomes

inaccessible when the owning system unexpectedly goes down, it

still exists in the file system hierarchy. The file system will remain

unowned until the original owning system re-IPLs. Changing the

AUTOMOVE value in BPXPRMxx of an unowned file system before

re-IPLing will not change the AUTOMOVE value of this file system

since it is already mounted. To change the AUTOMOVE value, the

file system must be unmounted before the IPL.

 UNMOUNT indicates that the file system should be unmounted in some

situations.

 See z/OS UNIX System Services Planning for more information about the

behavior of the AUTOMOVE options.

 Guidelines:

1. Use AUTOMOVE for the version file system and the sysplex root file

system.

2. For file systems that are associated with a single system, specify

UNMOUNT; this includes /etc, /tmp, /var, /dev, and the system-specific

file system. For descriptions of the sysplex root, system-specific, and

version file systems, see the chapter on sharing file systems in a

sysplex in z/OS UNIX System Services Planning.

3. For sysplex-unaware file systems that are mostly exported by the DFS

or SMB server to their remote clients, consider specifying

NOAUTOMOVE on the MOUNT statement. By doing so, the file

systems will not change ownership if the system is suddenly recycled

and they will be available for automatic re-export by DFS or SMB.

Tip: Consider specifying NOAUTOMOVE because a file system can

only be exported by the DFS or SMB server at the system that owns

the file system. A file system can only be exported by the DFS or SMB

server at the system that owns the file system. Once a file system has

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 173

|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

been exported by DFS, it cannot be moved until it has been unexported

by DFS. The same holds true of file systems exported by SMB. When

recovering from system outages, you need to weigh sysplex availability

against availability to the DFS or SMB clients. When an owning system

recycles and a file system exported by DFS or SMB has been taken

over by one of the other systems, DFS or SMB cannot automatically

re-export that file system. When an owning system is recycled and an

exported file system has been taken over by one of the other systems,

that file system will not be automatically reexported. The file system will

have to be moved from its current owner back to the original system,

the one that has just been recycled, and then exported again.

Default: AUTOMOVE

SYSNAME(sysname)

For systems participating in shared file system, SYSNAME specifies the

particular system on which a mount should be performed. This system will

then become the owner of the file system mounted. This system must be

IPLed with SYSPLEX(YES).

 Default: The name of the system, if IPLed with SYSPLEX(YES), that the

mount is processed on.

Note: In OS/390 R9 and later, to ensure that the root is always available,

use the defaults for SYSNAME and AUTOMOVE.

MKDIR(’pathname’)

Specifies the name of a directory that the system will create dynamically

after the file system has been successfully mounted. This allows the system

to create mountpoints that can be referenced by subsequent MOUNT

statements. MKDIR is an optional keyword.

 You can specify more than one MKDIR keyword on each ROOT statement.

The directories will be created in the order they are listed.

 You must specify a relative path name; the path name cannot start with a

slash (/). Enclose the path name in single quotes.

 The path name is relative to the file system mount point specified on the

MOUNTPOINT keyword.

 The path name can contain intermediate directories, but these intermediate

directories must already exist in the file system hierarchy. If these

intermediate directories do not exist, you can use additional MKDIR

keywords to create the necessary intermediate directories.

 The directory to be created must reside in a file system that has been

mounted as RDWR. The permission bits for the created directory will be

755. The UID and GID will be inherited from this directory’s parent. These

attributes will be overlaid when this directory is used as a mount point.

 We recommend that you do not use the MKDIR keyword for file systems

that mount asynchronously, such as the NFS file system. When a file

system will be mounted asynchronously, message BPXF025I is issued to

the system log. Similarly, do not use MKDIR with the SYSNAME keyword,

when SYSNAME identifies a remote system to perform the mount. The

results are unpredictable.

BPXPRMxx

174 z/OS UNIX System Services APAR OA12251

|
|
|
|
|
|
|
|
|
|
|

A failure to create a directory does not cause a failure of the mount. A

message is written to the system log when a problem occurs during the

creation of the directory. If the directory already exists, no message is

written.

Note: MKDIR will only work on systems that are at z/OS Version 1 Release

5 level or higher. If you are using MKDIR in a sysplex that is sharing

a common BPXPRMxx member, make sure that all systems are at

least at the z/OS V1R5 level.

 For additional information, see MOUNT in z/OS UNIX System Services

Planning.

NETWORK DOMAINNAME(sockets_domain_name)

DOMAINNUMBER(sockets_domain_number) MAXSOCKETS(number)

TYPE(type_name) INADDRANYPORT(starting_port_number)

INADDRANYCOUNT(number_of_ports_to_reserve)

Specifies that a socket physical file system domain should be readied for use.

The TYPE in this statement matches the TYPE on the previous FILESYSTYPE

statement.

 Use the SETOMVS RESET command to dynamically change the MAXSOCKET

value or add a new NETWORK. To make a permanent change, edit the

BPXPRMxx member used for IPLs. For more information, see “Dynamically

Adding FILESYSTYPE Statements in BPXPRMxx“ in z/OS UNIX System

Services Planning.

 Provide a NETWORK statement for each socket file system domain to be

initialized.

v For AF_UNIX file systems, always include a FILESYSTYPE statement

specifying ENTRYPOINT(BPXTUINT) and a NETWORK statement with a

matching TYPE, usually TYPE(UDS), on both.

v For TCP/IP sockets, always include a FILESYSTYPE statement specifying

ENTRYPOINT(EZBPFINI) and a NETWORK statement with a matching

TYPE, usually TYPE(INET), on both.

v To activate an Internet Protocol Version 6 (IPv6) socket on a system, you

must configure both the AF_INET domain and the AF_INET6 domain. You

cannot code a NETWORK statement for domain name AF_INET6 without

coding a NETWORK statement for domain name AF_INET.

v For CINET sockets, include a FILESYSTYPE statement with ENTRYPOINT

(BPXTCINT) and a NETWORK statement with a matching TYPE, usually

TYPE(CINET), that specifies INADDRANYPORT and INADDRANYCOUNT.

See “Specifying INADDRANYPORT and INADDRANYCOUNT“ in z/OS UNIX

System Services Planning for more information.

DOMAINNAME(sockets_domain_name)

The 1 to 16 character name by which this socket file system domain is to

be known.

DOMAINNUMBER(sockets_domain_number)

A number that matches the value defined for this domain name. The

currently supported values for this field are:

1 AF_UNIX

2 AF_INET

19 AF_INET6

The following table shows some supported domain names, domain

numbers, and their associated entry point names. See the documentation

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 175

for the physical file system you are using to get the correct entry point

name.

 Table 26. Supported Domains

Domain name Domain number Entry point

AF_UNIX 1 BPXTUINT

AF_INET 2 EZBPFINI, BPXTCINT

AF_INET6 19 EZBPFINI, BPXTCINT

MAXSOCKETS(nnnnn)

Specifies the maximum number of sockets supported by this file system for

this address family. You can specify a value from 0 to 16777215. This is an

optional parameter. The maximum value that this field can have is defined

by each domain. If a value larger than the maximum is specified, an

informational message is issued and the value used is the maximum. If this

parameter is omitted, a default value of 100 is used.

Note: Ensure that this number is large enough for socket connections for

all applications using your z/OS UNIX environment. This upper limit

is set when the NETWORK statement is processed during IPL. It can

only be changed if the NETWORK statement is changed using the

SETOMVS RESET command.

When activating IPv6 on a system, you can specify separate

MAXSOCKETS values for domains AF_INET and AF_INET6. If you do not

specify a MAXSOCKETS value for the AF_INET6 domain, the default will

be the MAXSOCKETS value specified or defaulted to for the AF_INET

domain.

 If you are using AnyNet® sockets over SNA or AF_UNIX, a high

MAXSOCKETS value may use too many resources. You should use a low

value instead.

TYPE(type_name)

Specifies the name of a file system type identified in a FILESYSTYPE

statement. The TYPE(type_name) must be the same as the

TYPE(type_name) parameter on a FILESYSTYPE statement.

 TYPE is a required parameter. The name is 1 to 8 characters; the system

converts the name to uppercase.

INADDRANYPORT(starting_port_number)

Specifies the starting port number for the range of port numbers that the

system reserves for use with PORT 0, INADDR_ANY binds. This value is

only needed for CINET.

 Value Range: starting_port_number is a decimal value from 1024 to 65534.

Ports 1 — 1023 are well-known ports that cannot be reserved for use with

PORT 0, INADDR_ANY binds.

 Default: If neither INADDRANYPORT or INADDRANYCOUNT is specified,

the default for INADDRANYPORT is 63000. Otherwise, no ports are

reserved (0).

Note: If you do not want to support INADDRANY with CINET, you should

specify INADDRANYPORT(xx), where xx is a valid value, without

specifying INADDRANYCOUNT.

BPXPRMxx

176 z/OS UNIX System Services APAR OA12251

Note: When activating IPv6 on a system, the INADDRANYPORT is shared

across domains. The INADDRANYPORT value is taken from the

NETWORK statement for the AF_INET domain. Any

INADDRANYPORT value specified for the AF_INET6 domain is

ignored.

INADDRANYCOUNT(number_of_ports_to_reserve)

Specifies the number of ports that the system reserves, starting with the

port number specified in the INADDRANYPORT parameter. This value is

only needed for CINET.

 Value Range: number_of_ports_to_reserve is a decimal value from 1 to

4000.

 Default: If neither INADDRANYPORT or INADDRANYCOUNT is specified,

the default for INADDRANYCOUNT is 1000. Otherwise, no ports are

reserved (0).

RESOLVER_PROC(procname|DEFAULT|NONE)

Specifies how the resolver address space is processed during z/OS UNIX

initialization. The resolver is used by TCP/IP applications for name-to-address

or address-to-name resolution. In order to create a resolver address space, a

system must be configured with an AF_INET or AF_INET6 domain.

 procname is the name of the address space for the resolver and the procedure

member name in the appropriate proclib. procname is one to eight characters

long. The procedure must reside in a data set that is specified by the

MSTJCLxx parmlib member’s IEFPDSI DD card specification.

 DEFAULT causes an address space named RESOLVER to start, using the

system default procedure of IEESYSAS. The address space is started with

SUB=MSTR so that it will run under the MASTER address space instead of the

JES address space.

 NONE specifies that no address space is to be started. If you are using z/OS

Communications Server IP the resolver must be started before TCP/IP can be

started. TCP/IP will not initialize until the resolver address space is started.

SUBFILESYSTYPE NAME(transport_name) TYPE(type_name)

ENTRYPOINT(entry_name) PARM(’parameter’) DEFAULT

Specifies an AF_INET or AF_INET6 physical file system that is to run

underneath the CINET socket file system. The TYPE() value is usually CINET

and matches the TYPE operand on a previous FILESYSTYPE and NETWORK

statement. In the case of TCP/IP, the NAME() value is the procname. The

system attaches the EZBPFINI load module during initialization, and this file

system should be used as the default INET physical file system.

 The SUBFILESYSTYPE statement is associated with its corresponding

FILESYSTYPE and NETWORK statements by matching the value specified in

the TYPE operand.

 The value specified on all of the TYPE operands must match, but can be any 1-

to 8-character value. The value specified on the NAME parameter on the

SUBFILESYSTYPE statement is the name to be used by the physical file

system when it is initialized. The first character of the NAME parameter must be

non-numeric.

 For SecureWay® Communications Server, the SUBFILESYSTYPE statement

must match the TCPIPJOBNAME of that stack. See “Customizing the File

System Statements on the BPXPRMxx Member“ in z/OS UNIX System Services

Planning for more details.

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 177

New SUBFILESYSTYPE statements can be added dynamically. However, you

cannot dynamically change (or delete) a value. For more information, see

“Dynamically Adding FILESYSTYPE Statements in BPXPRMxx“ in z/OS UNIX

System Services Planning.

 The parameters are:

NAME(transport_name)

Specifies the name that identifies this file system to the CINET physical file

system.

 NAME is a required parameter. The name is 1 to 8 characters with the first

character non-numeric; the system converts the name to uppercase. The

value specified by the NAME parameter on the SUBFILESYSTYPE

statement is the name that the physical file system uses to identify itself

when it is initialized. For example, for TCP/IP, this is the starting procedure

name.

TYPE(type_name)

Specifies the name of the CINET file system type identified in a

FILESYSTYPE statement. The TYPE(type_name) parameter must be the

same name that was used for the TYPE(type_name) parameter on the

FILESYSTYPE statement for the CINET physical file system.

 TYPE is a required parameter. The name is 1 to 8 characters; the system

converts the name to uppercase.

ENTRYPOINT(entry_name)

Specifies the name of the load module containing the entry point into the

file system type.

 ENTRYPOINT is a required parameter. The name is 1 to 8 characters; the

system converts the name to uppercase.

PARM(’parameter’)

Provides a parameter to be passed to the transport driver. The parameter

format and content are specified by the file system receiving the data.

 PARM is an optional parameter. The parameter is up to 500 characters

long; the characters can be in uppercase, lowercase, or both. If the

characters are not all in uppercase, the parameter must be enclosed in

single quotes.

 If the physical file system specified does not expect a PARM operand, it

ignores all PARM operands. Refer to the documentation for the specific

physical file system for valid entry point names.

DEFAULT

Identifies this file system as the default CINET file system.

 DEFAULT is an optional parameter. If it is not specified, the file system

specified in the first SUBFILESYSTYPE statement found in the parmlib

member is designated as the default. See “Setting Up for CINET AF_INET

Sockets” in z/OS UNIX System Services Planning for more information

about the use of the DEFAULT parameter.

 For additional information, see SUBFILESYSTYPE in z/OS UNIX System

Services Planning.

STARTUP_PROC

This statement specifies a 1-to-8-character name of a started JCL procedure

BPXPRMxx

178 z/OS UNIX System Services APAR OA12251

that initializes the kernel. The name specified in this statement must exist on

the system before IPL or errors will occur.

 Using a started procedure other than OMVS is strongly discouraged. If you

want to change the value of STARTUP_PROC, you will have to edit the

BPXPRMxx member and then re-IPL. You cannot use the SET OMVS or

SETOMVS command to change the value.

 If you decide to use a started procedure other than OMVS:

v The replacement started procedure must also be a single jobstep procedure

that invokes the BPXINIT program (EXEC PGM=BPXINIT). If it invokes any

other program, the OMVS initialization will fail.

v Change the procedure name in the RACF started procedures table or the

definitions in the STARTED Class. See “Preparing the RACF Security

Program“ in z/OS UNIX System Services Planning.

Note: Renaming OMVS to some other value may affect the setup of other

products such as TCP/IP.

Default: STARTUP_PROC(OMVS).

STARTUP_EXEC

STARTUP_EXEC names a REXX exec that does application environment

initialization for z/OS UNIX. This statement is optional; if it is specified, the

BPXOINIT process will not run /etc/init. The startup exec is typically used by an

installation that does not have an HFS, but is using a TFS for a file system. It

can be used to populate the TFS with any directories and files that are needed.

It is specified as:

STARTUP_EXEC(’Dsname(Memname)’,SysoutClass)

where:

v Dsname is a 1-to-44-character valid data set name.

v Memname is a 1-to-8-character valid REXX exec member.

v SysoutClass is 1 character and is alphanumeric and specifies the sysout

class that the REXX exec will run under. Specifying SysoutClass is optional.

If you want to change the value of STARTUP_EXEC, you will have to edit the

BPXPRMxx member and then reIPL. You cannot use the SET OMVS or

SETOMVS command to change the value.

 Default: There is no default value for STARTUP_EXEC.

RUNOPTS(’string’)

Specifies the _CEE_RUNOPTS environment variable used when z/OS UNIX

initialization invokes /etc/init or /usr/sbin/init. z/OS UNIX passes the

_CEE_RUNOPTS value and all programs invoked from /etc/rc to the shell.

 If you want to change the value of RUNOPTS, you will have to edit the

BPXPRMxx member and then re-IPL. You cannot use the SET OMVS or

SETOMVS command to change the value. After the value is specified in

BPXPRMxx, you can use one of the following methods to change this string:

v The system is re-IPLed with a new BPXPRMxx RUNOPTS string.

v The user or installation sets _CEE_RUNOPTS in /etc/rc or /etc/init.config.

v A program or shell script sets _CEE_RUNOPTS.

If you do not specify a value for RUNOPTS, the RUNOPTS string or

_CEE_RUNOPTS environment variable is not provided.

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 179

The TSO/E OMVS command uses the specified options as the Language

Environment® run-time options, by default.

 The setting of RUNOPTS has no effect on BPXBATCH jobs.

 Use the RUNOPTS parameter only when using RTLS. Before using RTLS, you

must set up FACILITY profiles as documented in the CSVRTLxx description.

 Specifying the RUNOPTS parameter causes the kernel to set the

_CEE_RUNOPTS environment variable when starting /etc/init, or when the

TSO/E OMVS command is entered. This environment variable is normally

propagated to subsequent processes (such as /etc/init to /bin/sh to /etc/rc to

/bin/inetd to /bin/rlogind to /bin/sh for shell users).

 To do this, you must make sure that any other steps in the flow (such as export

statements in /etc/rc) do not overwrite the value of _CEE_RUNOPTS. If

additional run-time options are needed, they should be concatenated to the old

value of _CEE_RUNOPTS.

 Value Range: From 1 to 250 characters.

 Default: No RUNOPTS string or _CEE_RUNOPTS environment variable is

provided.

 Restrictions:

v The string must be enclosed in parentheses and quotes (’’).

v An empty string (’ ’) is not valid.

v Although all characters are allowed, nulls, slashes (/), unbalanced SO/SI, and

unbalanced parentheses and quotes cause unpredictable problems in areas

such as the TSO/E OMVS command.

For more information on specifying RUNOPTS strings, see “Customizing the

BPXPRMxx Parmlib Member“ in z/OS UNIX System Services Planning.

SYSCALL_COUNTS(YES/NO)

Specifies that syscall counts are to be accumulated in internal kernel data areas

so that the RMF data gatherer can record the information.

 If you specify YES, the path length for the most frequently used z/OS UNIX

system calls is increased by more than 150 instructions. This setting will also

cause the reporting of CPU time for z/OS UNIX to be more accurate. This will

be reflected in the output from the BPX1TIM, BPX1GPS, BPX1GTH, and

BPX1RMG services and from BPXESMF.

 Default: NO

 Use the SETOMVS or SET OMVS command to dynamically change the value

of SYSCALL_COUNT. To make a permanent change, edit the BPXPRMxx

member used for IPLs.

MAXQUEUEDSIGS(nnnnnn)

Specifies the maximum number of signals that z/OS UNIX allows to be

concurrently queued within a single process.

 Value Range: nnnnnn is a decimal value from 1 to 100000.

 Default: 1000

BPXPRMxx

180 z/OS UNIX System Services APAR OA12251

You can change the value of MAXQUEUEDSIGS dynamically using the

SETOMVS or SET OMVS command. To make a permanent change, edit the

BPXPRMxx member that will be used for future IPLs.

LIMMSG(NONE|SYSTEM|ALL)

Specifies how console messages that indicate when parmlib limits are reaching

critical levels are to be displayed:

NONE No console messages are to be displayed when any of the parmlib

limits have been reached.

SYSTEM

Console messages are to be displayed for all processes that reach

system limits. In addition, messages are to be displayed for each

process limit of a process if:

v The process limit or limits are defined in the OMVS segment of the

owning User ID

v The process limit or limits have been changed with a SETOMVS

PID=pid,process_limit

ALL Console messages are to be displayed for the system limits and for the

process limits, regardless of which process reaches a process limit.

Default: NONE

AUTHPGMLIST(’/etc/authfile’)|NONE

Specifies the pathname of a hierarchical file system (HFS) file that contains the

lists of APF-authorized pathnames and program names. If you do not specify a

value for AUTHPGMLIST, or if you specify NONE, invocations of

APF-authorized and program controlled programs will not be checked against a

list of authorized programs or authorized pathnames. If you specify a pathname

for AUTHPGMLIST parameter, the system checks this list during hfsload, exec

and spawn processing. If the target program of an exec or spawn has an

authorization code of 1 (AC=1), then that program name must appear in the

authorized program list.

 Use the SETOMVS or SET OMVS command to dynamically change the value

of AUTHPGMLIST. To make a permanent change, edit the BPXPRMxx member

that will be used for IPLs.

 For additional information, see z/OS UNIX System Services Planning.

SWA(ABOVE/BELOW)

Specifies whether SWA control blocks should be allocated above or below the

16 megabyte line.

ABOVE

All SWA control blocks are to be allocated above the 16 megabyte line.

BELOW

All SWA control blocks are to be allocated below the 16 megabyte line.

Default: BELOW

BPXPRMxx

Chapter 6. Changes for MVS Initialization and Tuning Reference 181

BPXPRMxx

182 z/OS UNIX System Services APAR OA12251

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1996, 2005 183

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

184 z/OS UNIX System Services APAR OA12251

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the products and/or the programs described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2005 185

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This book is intended to help the customer plan for, customize, operate, manage,

and maintain a z/OS system with z/OS UNIX System Services (z/OS UNIX).

This book primarily documents intended Programming Interfaces that allow the

customer to write programs that use z/OS UNIX.

This book also documents information that is NOT intended to be used as

Programming Interfaces of z/OS UNIX. This information is identified where it occurs,

either by an introductory statement to a chapter or section or by the following

marking:

NOT Programming Interface information

End of NOT Programming Interface information

186 z/OS UNIX System Services APAR OA12251

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 AnyNet

 DFS

 Domino

 IBM

 Language Environment

 MVS

 Notes

 OS/390

 RACF

 RMF

 SecureWay

 z/OS

 zSeries

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 187

188 z/OS UNIX System Services APAR OA12251

����

Program Number: 5694-A01, 5655-G52

Printed in USA

	About this document
	Contents
	Chapter 1. Changes for z/OS UNIX System Services Planning (Version 1 Release 4)
	Shared HFS in a sysplex
	Overview
	In this chapter

	What does shared HFS mean?
	How the end user views the HFS
	Summary of new HFS data sets
	Comparing file systems in single system pre-OS/390 UNIX V2R9 and OS/390 UNIX V2R9 or later environments
	File systems in single system pre-OS/390 UNIX V2R9 Environments
	File systems in single system OS/390 UNIX V2R9 or later environments

	File systems in OS/390 UNIX V2R9 or later sysplex environments
	Procedures for establishing shared HFS in a sysplex
	Steps in creating the sysplex root HFS data set
	Steps in creating the system-specific HFS data sets
	Steps in mounting the version HFS
	Using the automove system list
	Steps in creating an OMVS couple data set (CDS)
	Customizing BPXPRMxx for shared HFS

	Sysplex scenarios showing shared HFS capability
	Scenario 1: First system in the sysplex
	Scenario 2: Multiple systems in the sysplex – using the same release level
	Scenario 3: Multiple systems in a sysplex using different release levels

	Keeping automount policies consistent on all systems in the sysplex
	Steps in keeping your automount policy consistent on all systems

	Moving file systems in a sysplex
	Shared HFS implications during system failures and recovery
	Locking files in the sysplex
	Using distributed BRLM

	Mounting file systems using NFS client mounts
	Preparing file systems for shutdown
	File system availability
	Minimum setup required for file system availability
	Situations that can interrupt availability

	Tuning z/OS UNIX performance in a sysplex
	DFS considerations

	Chapter 2. Changes for z/OS UNIX System Services Planning (Version 1 Release 6)
	Shared HFS in a sysplex
	Overview of using shared HFS in a sysplex
	What does shared HFS mean?
	How the end user views the HFS
	Summary of new HFS data sets
	Comparing file systems in single system pre-OS/390 UNIX V2R9 and OS/390 UNIX V2R9 or later environments
	File systems in single system pre-OS/390 UNIX V2R9 environments
	File systems in single system OS/390 UNIX V2R9 or later environments

	File systems in OS/390 UNIX V2R9 or later sysplex environments
	Procedures for establishing shared HFS in a sysplex
	Creating the sysplex root HFS data set
	Creating the system-specific HFS data sets
	Mounting the version HFS
	Using the automove system list
	Creating a couple data set (CDS)
	Customizing BPXPRMxx for shared HFS

	Sysplex scenarios showing shared HFS capability
	Scenario 1: First system in the sysplex
	Scenario 2: Multiple systems in the sysplex using the same release level
	Scenario 3: Multiple systems in a sysplex using different release levels

	Automount policies
	Keeping your automount policy consistent on all systems

	Moving file systems in a sysplex
	Shared HFS implications during system failures and recovery
	Managing the movement of data

	Shared HFS implications during a planned shutdown of z/OS UNIX
	State of file systems after shutdown

	File system initialization
	Locking files in the sysplex
	Using distributed BRLM

	Mounting file systems using symbolic links
	Examples

	Mounting file systems using NFS client mounts
	File system availability
	Minimum setup required for file system availability
	Situations that can interrupt availability

	Tuning z/OS UNIX performance in a sysplex
	DFS considerations

	Chapter 3. Changes for z/OS UNIX System Services Planning (Version 1 Release 7)
	Sharing file systems in a sysplex
	Overview of sharing file systems in a sysplex
	Using IBM Health Checker for z/OS

	What does shared file system mean?
	How the end user views the shared file system
	Summary of various file systems in a shared environment
	Illustrating file systems in single system and sysplex environments
	File systems in single system environments

	File systems in sysplex environments
	Procedures for establishing a shared file system in a sysplex
	Creating the sysplex root file system
	Creating the system-specific file system
	Mounting the version file system
	Using the automove system list
	Creating a couple data set (CDS)
	Customizing BPXPRMxx for a shared file system

	Sysplex scenarios showing shared file system capability
	Scenario 1: First system in the sysplex
	Scenario 2: Multiple systems in the sysplex using the same release level
	Scenario 3: Multiple systems in a sysplex using different release levels

	Automount policies
	Keeping your automount policy consistent on all systems

	Moving file systems in a sysplex
	Moving file systems to a back-level system

	Shared file system implications during system failures and recovery
	Managing the movement of data

	Shared file system implications during a planned shutdown of z/OS UNIX
	State of file systems after shutdown

	File system initialization
	Locking files in the sysplex
	Using distributed BRLM

	Mounting file systems using symbolic links
	Examples

	Mounting file systems using NFS client mounts
	File system availability
	Minimum setup required for file system availability
	Situations that can interrupt availability

	Tuning z/OS UNIX performance in a sysplex
	DFS considerations

	Chapter 4. Changes for z/OS UNIX System Services Command Reference
	chmount — Change the mount attributes of a file system
	Format
	Description
	Options
	Example
	Usage Note
	Exit Values
	Related Information

	mount — Logically mount a file system
	Format
	Description
	Options
	File Tag Specific Option

	Examples
	Usage Notes®
	File System Recovery and mount

	Exit Values
	Related Information

	MOUNT — Logically mount a file system
	Format
	Description
	Usage Notes
	File System Recovery and TSO MOUNT

	Return Codes
	Examples

	Chapter 5. Changes for MVS System Commands
	SETOMVS Command
	Syntax
	Parameters

	Chapter 6. Changes for MVS Initialization and Tuning Reference
	BPXPRMxx (z/OS UNIX System Services parameters)
	Syntax rules for BPXPRMxx
	Syntax of BPXPRMxx
	Syntax example of BPXPRMxx
	IBM-supplied default for BPXPRMxx
	Statements and parameters for BPXPRMxx

	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks

