

IBM
Program Directory for

IBM Language Environment VM

With US English and Japanese

National Language Support

Release 08.00

Program Number 5654-030

for Use with
VM/ESA Version 2 Release 3.0

Document Date: March 1998

GI10-4676-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

This program directory, dated March 1998, applies to IBM Language Environment VM Release 08.00 (Language Environment or
LE), Program Number 5654-030.

A form for reader's comments appears at the back of this publication. When you send information to IBM, you grant IBM a
nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1991, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Trademarks and Service Marks . ix

1.0 Introduction . 1
1.1 Overview of Language Environment . 2
1.2 Summary of Changes . 2

1.2.1 C Component . 2
1.2.2 CEL Component . 2

2.0 Program Materials . 3
2.1 Basic Machine-Readable Material . 3
2.2 Program Publications . 3

2.2.1 Displayable Softcopy Publications . 3
2.2.2 Basic Unlicensed Publications . 3
2.2.3 Optional Program Publications . 3

2.3 Microfiche Support . 4
2.4 Publications Useful During Installation . 4

3.0 Program Support . 5
3.1 Preventive Service Planning . 5
3.2 Statement of Support Procedures . 5

4.0 Program and Service Level Information . 7
4.1 Service Level Information for IBM Language Environment VM Release 08.00 7
4.2 Program Level Information for the PL/I Component of IBM Language Environment VM 7
4.3 Program Level Information for the C Component of IBM Language Environment VM 8
4.4 Program Level Information for the CEL Component of IBM Language Environment VM 8
4.5 Program Level Information for the COBOL Component of IBM Language Environment VM 9
4.6 Cumulative Service Tape . 9

5.0 Installation Requirements and Considerations . 10
5.1 Hardware Requirements . 10
5.2 Program Considerations . 10

5.2.1 Operating System Requirements . 10
5.2.2 Other Program Product Requirements . 10
5.2.3 Program Installation / Service Considerations . 10

5.3 DASD Storage and USER ID Requirements . 11

6.0 Installation Instructions . 14
6.1 Language Environment Installation and Customization Overview 14
6.2 Review the Language Environment Default Installation Environment 15
6.3 (Optional) Installing Kanji National Language . 15

 Copyright IBM Corp. 1991, 1998 iii

6.4 Place Language Environment Into Production . 16
6.4.1 Copy Language Environment Files Into Production . 17
6.4.2 Customizing Language Environment . 17
6.4.3 Redefining and Building Saved Segments for Language Environment 18
6.4.4 (Optional) Re-define Saved Segments Using VMSES/E . 18
6.4.5 Build the Language Environment Saved Segments . 23

7.0 Service Instructions . 26
7.1 VMSES/E Service Process Overview . 26
7.2 Servicing Language Environment . 27

7.2.1 Prepare to Receive Service . 27
7.2.2 Receive the Service . 29
7.2.3 Apply the Service . 29
7.2.4 Update the Build Status Table . 30
7.2.5 Build Serviced Objects . 32

7.3 Place the New Language Environment Service Into Production . 32
7.3.1 Rebuild the Saved Segments . 32
7.3.2 Copy the New Language Environment Serviced Files Into Production 33

8.0 Customizing Language Environment . 34
8.1 Updating Run-Time Options . 34
8.2 Updating User Exit Options . 35
8.3 Updating COBOL Component COBPACKs . 35
8.4 Updating COBOL Component Reusable Environment . 35

8.4.1 Modifying the Behavior of the COBOL Reusable Environment 36
8.5 C Component Locale Time Information . 36
8.6 Updating Saved Segments . 37
8.7 Installing in Saved Segments . 39

Appendix A. Applying a Recommended Service Upgrade (RSU) Tape For Language
Environment . 40

A.1 Apply Language Environment RSU . 41
A.1.1 Prepare Your System for Service Refresh . 41
A.1.2 Receive the Preapplied, Prebuilt Service . 43
A.1.3 Process Additional Service . 44
A.1.4 Build the New Service Level and Place Into Production . 46

A.2 Determine RSU Service Level . 46

Appendix B. Moving Language Environment to SFS Directories and Creating PPF Override . . 47
B.1 Setup SFS File Pool and Directories . 48
B.2 Copy Minidisk (or SFS) Files to SFS Directories . 49
B.3 Create Product Parameter File (PPF) Override . 50

Appendix C. Contents of COBPACKs (IGZCPAC/IGZCPCO) . 52
C.1 Contents of General COBPACK - IGZCPAC . 52
C.2 Contents of the Environment-Specific COBPACK (IGZCPCO) . 56

iv Language Environment Program Directory

Appendix D. Segment Build Lists (CEEBLSGA/CEEBLSGB) . 58
D.1 CEEBLSGB . 58
D.2 CEEBLSGA . 59

Appendix E. IBM Language Environment VM Run-time Options . 61
E.1 Quick Reference Table of Language Environment Run-Time Options 61
E.2 Language Run-Time Option Mapping . 65

E.2.1 COBOL Compatibility . 71
E.3 Language Environment Run-Time Options . 72

E.3.1 ABPERC . 72
E.3.1.1 Usage Notes . 73
E.3.1.2 For More Information . 74

E.3.2 ABTERMENC . 74
E.3.2.1 Usage Notes . 75
E.3.2.2 For More Information . 75

E.3.3 AIXBLD (COBOL Only) . 75
E.3.3.1 Usage Notes . 76
E.3.3.2 Performance Considerations . 76
E.3.3.3 For More Information . 76

E.3.4 ALL31 . 76
E.3.4.1 Usage Notes . 77
E.3.4.2 Performance Consideration . 78
E.3.4.3 For More Information . 78

E.3.5 ANYHEAP . 78
E.3.5.1 Usage Notes . 79
E.3.5.2 Performance Considerations . 79
E.3.5.3 For More Information . 79

E.3.6 AUTOTASK | NOAUTOTASK (Fortran Only) . 80
E.3.7 BELOWHEAP . 80

E.3.7.1 Usage Notes . 81
E.3.7.2 Performance Considerations . 81
E.3.7.3 For More Information . 81

E.3.8 CBLOPTS (COBOL Only) . 82
E.3.8.1 For More Information . 82

E.3.9 CBLPSHPOP (COBOL Only) . 83
E.3.9.1 Performance Consideration . 83
E.3.9.2 For More Information . 83

E.3.10 CBLQDA (COBOL Only) . 84
E.3.10.1 Usage Note . 84

E.3.11 CHECK (COBOL Only) . 84
E.3.11.1 Usage Note . 85
E.3.11.2 Performance Consideration . 85

E.3.12 COUNTRY . 85
E.3.12.1 Usage Notes . 86
E.3.12.2 For More Information . 86

E.3.13 DEBUG (COBOL Only) . 86

 Contents v

E.3.13.1 Usage Note . 87
E.3.13.2 Performance Consideration . 87
E.3.13.3 For More Information . 87

E.3.14 DEPTHCONDLMT . 87
E.3.14.1 Usage Notes . 88
E.3.14.2 For More Information . 89

E.3.15 ENVAR . 89
E.3.15.1 Usage Notes . 90
E.3.15.2 For More Information . 90

E.3.16 ERRCOUNT . 90
E.3.16.1 Usage Notes . 91
E.3.16.2 For More Information . 91

E.3.17 ERRUNIT (Fortran Only) . 91
E.3.18 FILEHIST (Fortran Only) . 92
E.3.19 HEAP . 93

E.3.19.1 Usage Notes . 94
E.3.19.2 Performance Considerations . 95
E.3.19.3 For More Information . 95

E.3.20 INQPCOPN (Fortran Only) . 95
E.3.21 INTERRUPT . 96

E.3.21.1 Usage Notes . 97
E.3.21.2 For More Information . 97

E.3.22 LIBSTACK . 97
E.3.22.1 Usage Notes . 98
E.3.22.2 Performance Considerations . 98
E.3.22.3 For More Information . 99

E.3.23 MSGFILE . 99
E.3.23.1 Usage Notes . 100
E.3.23.2 For More Information . 101

E.3.24 MSGQ . 102
E.3.24.1 Usage Notes . 102
E.3.24.2 For More Information . 102

E.3.25 NATLANG . 102
E.3.25.1 Usage Notes . 103
E.3.25.2 For More Information . 104

E.3.26 NONIPTSTACK | NONONIPTSTACK . 104
E.3.26.1 Usage Notes . 105
E.3.26.2 For More Information . 106

E.3.27 OCSTATUS (Fortran Only) . 106
E.3.28 PC (Fortran Only) . 107
E.3.29 PLITASKCOUNT (PL/I Only) . 107

E.3.29.1 Usage Notes . 108
E.3.30 POSIX . 108

E.3.30.1 Usage Notes . 109
E.3.30.2 For More Information . 109

E.3.31 PRTUNIT (Fortran Only) . 109

vi Language Environment Program Directory

E.3.32 PUNUNIT (Fortran Only) . 110
E.3.33 RDRUNIT (Fortran Only) . 110
E.3.34 RECPAD (Fortran Only) . 111

E.3.34.1 Usage Notes . 112
E.3.35 RPTOPTS . 112

E.3.35.1 Usage Note . 113
E.3.35.2 Performance Considerations . 113
E.3.35.3 For More Information . 115

E.3.36 RPTSTG . 115
E.3.36.1 Usage Notes . 116
E.3.36.2 Performance Considerations . 116
E.3.36.3 For More Information . 118

E.3.37 RTEREUS (COBOL Only) . 118
E.3.37.1 Usage Notes . 119
E.3.37.2 Performance Considerations . 119
E.3.37.3 For More Information . 120

E.3.38 SIMVRD (COBOL Only) . 120
E.3.38.1 Usage Notes . 120
E.3.38.2 For More Information . 120

E.3.39 STACK . 121
E.3.39.1 Usage Notes . 122
E.3.39.2 Performance Considerations . 123
E.3.39.3 For More Information . 123

E.3.40 STORAGE . 123
E.3.40.1 Usage Notes . 125
E.3.40.2 Performance Considerations . 126

E.3.41 TERMTHDACT . 126
E.3.41.1 Usage Notes . 128
E.3.41.2 For More Information . 128

E.3.42 TEST | NOTEST . 128
E.3.42.1 Usage Notes . 130
E.3.42.2 Performance Consideration . 131
E.3.42.3 For More Information . 131

E.3.43 THREADHEAP . 131
E.3.43.1 Usage Notes . 132

E.3.44 TRACE . 133
E.3.44.1 Usage Note . 134
E.3.44.2 For More Information . 134

E.3.45 TRAP . 134
E.3.45.1 Usage Notes . 135
E.3.45.2 For More Information . 137

E.3.46 UPSI (COBOL Only) . 137
E.3.46.1 Usage Note . 137
E.3.46.2 For More Information . 137

E.3.47 USRHDLR | NOUSRHDLR . 138
E.3.47.1 Usage Notes . 138

 Contents vii

E.3.47.2 For More Information . 139
E.3.48 VCTRSAVE . 139

E.3.48.1 Usage Note . 139
E.3.48.2 Performance Considerations . 139

E.3.49 XUFLOW . 140
E.3.49.1 Usage Notes . 141

Appendix F. Language Environment National Language Support Country Codes 142

Reader's Comments . 145

 Figures

1. Optional Material: Program Publications . 3
2. Optional Material: Program Publications - Other . 4
3. Publications Useful During Installation / Service on VM/ESA Version 2 4
4. PSP UPGRADE and SUBSET ID . 5
5. Component IDs . 5
6. DASD Storage Requirements for Target Minidisks . 13
7. Sample KANJI install console. 16
8. Segment Map panel example. 19
9. SCEE "Change Segment Definition" panel example. 20

10. SCEEX "Change Segment Definition" panel example. 21
11. Segment Map panel with SCEE/SCEEX Segments . 22
12. Sample Console output for SCEE Segment Load . 24
13. Sample Console output for SCEEX Segment Load . 24
14. Customization EXEC - Panel 1 . 34
15. Component Module Size . 39
16. Routines Eligible for Inclusion in General COBPACK (IGZCPAC) 52
17. Routines Eligible for Inclusion in the Environment-Specific COBPACK (IGZCPCO) 56
18. Contents of CEEBLSGB Build List . 58
19. Contents of CEEBLSGA Build List . 59
20. Run-Time Options Quick Reference . 61
21. C and Language Environment Options . 65
22. COBOL and Language Environment Options . 66
23. Fortran and Language Environment Options . 68
24. PL/I and Language Environment Options . 70
25. Effect of DEPTHCONDLMT(3) on Condition Handling . 88
26. Options Report Produced by Language Environment Run-Time Option RPTOPTS(ON) 114
27. Storage Report Produced by Language Environment Run-Time Option RPTSTG(ON) 117
28. TRAP Run-Time Option Settings . 134
29. Country Codes . 142

viii Language Environment Program Directory

 Notices

References in this document to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe on any of IBM's intellectual
property rights may be used instead of the IBM product, program, or service. Evaluation and verification
of operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the

IBM Director of Licensing
500 Columbus Avenue
Thornwood, NY 10594

Trademarks and Service Marks

The following terms, denoted by an asterisk (*), used in this document, are trademarks or service marks of
IBM Corporation in the United States or other countries:

IBM
Language Environment
Virtual Machine/Enterprise System Architecture (VM/ESA)
AD/Cycle
System Application Architecture (SAA)
CustomPac
FunctionPac
SystemPac
C/370
IBMLink (ServiceLink)
COBOL/370
Customer Information Control System (CICS)

 Copyright IBM Corp. 1991, 1998 ix

x Language Environment Program Directory

 1.0 Introduction

This program directory is intended for the system programmer responsible for program installation and
maintenance. It contains information concerning the material and procedures associated with the
installation of Language Environment. You should read all of this program directory before installing the
program and then keep it for future reference.

The program directory contains the following sections:

� 2.0, “Program Materials” on page 3 identifies the basic and optional program materials and
documentation for Language Environment.

� 3.0, “Program Support” on page 5 describes the IBM support available for Language Environment.

� 4.0, “Program and Service Level Information” on page 7 lists the APARs (program level) and PTFs
(service level) incorporated into Language Environment.

� 5.0, “Installation Requirements and Considerations” on page 10 identifies the resources and
considerations for installing and using Language Environment.

� 6.0, “Installation Instructions” on page 14 provides detailed installation instructions for Language
Environment.

� 7.0, “Service Instructions” on page 26 provides detailed servicing instructions for Language
Environment.

� 8.0, “Customizing Language Environment” on page 34 provides instructions on how to customize
Language Environment.

� Appendix A, “Applying a Recommended Service Upgrade (RSU) Tape For Language Environment” on
page 40 describes how to apply a Recommended Service Upgrade (RSU) to Language Environment.

� Appendix B, “Moving Language Environment to SFS Directories and Creating PPF Override” on
page 47 describes how to move Language Environment into SFS and how to create a Product
Parameter File (PPF) override.

� Appendix C, “Contents of COBPACKs (IGZCPAC/IGZCPCO)” on page 52 lists and describes routines
eligible for inclusion in COBPACKs.

� Appendix D, “Segment Build Lists (CEEBLSGA/CEEBLSGB)” on page 58 describes build lists for
Saved Segments for the full IBM Language Environment VM product.

� Appendix E, “IBM Language Environment VM Run-time Options” on page 61 describes Run-time
options for IBM Language Environment VM

� Appendix F, “Language Environment National Language Support Country Codes” on page 142
describes IBM Language Environment VM National Language Support Country Codes.

Before installing Language Environment, read 3.1, “Preventive Service Planning” on page 5. This section
tells you how to find any updates to the information and procedures in this program directory.

 Copyright IBM Corp. 1991, 1998 1

1.1 Overview of Language Environment

Language Environment provides a common set of services in a single run-time environment while
enhancing the run-time environment with additional support for emerging application development
technologies such as object-oriented, distributed client/server, and open standards.

1.2 Summary of Changes

This section lists the major changes that have been made to the Language Environment product since
Release 6.

 1.2.1 C Component
� Serviceability enhancements have been added to enhance problem isolation and program source

identification.

� Support is added for fetching without loading. This allows a routine to be fetched when previously
loaded with an alternative mechanism.

� ISO/ANSI MSE Support for wide character array handling. Wide character functions have been
enhanced to add wide character locate compare, copy, move and set functions. This allows
processing of arrays of wide characters.

� Support is added for the sharing of C memory files.

 1.2.2 CEL Component
� Serviceability enhancements have been added to enhance problem isolation and program source

identification. They are:

– Dump enhancements to assist with finding the problem more quickly, thus increasing productivity.
This enhancement adds the assembler module name and module service level to the dump, thus
reducing the time needed to identify a failing module.

– Selected messages enhanced to make the text of the message more meaningful.

– Specificity of ABEND codes have been improved.

� Storage utilization is improved to include dynamic allocation of control blocks first time they are used.

� One main program will load a second main program and then link to it. This prevents crossing a
request block boundary.

� Support is added for fetching without loading. This allows a routine to be fetched when previously
loaded with a alternative mechanism.

� Multiple compatibility pre-initialization environments allow multiple environments to be initialized.

2 Language Environment Program Directory

 2.0 Program Materials

An IBM program is identified by a program number. The program number for Language Environment is
5654-030.

The program announcement material describes the features supported by Language Environment. Ask
your IBM marketing representative for this information if you have not already received a copy.

The following sections identify the basic and optional program materials available with this program.

2.1 Basic Machine-Readable Material

IBM Language Environment VM is distributed pre-installed on the VM/ESA Version 2 Release 3.0 System
DDR. If necessary, see the VM/ESA Program Directory for more information about the distribution media
for VM/ESA Version 2 Release 3.0.

 2.2 Program Publications

2.2.1 Displayable Softcopy Publications

IBM Language Environment VM Release 8.0 publications are offered in displayable softcopy form on
CD-ROM. The files are shipped on CD-ROM in the IBM Online Library VM Collection (SK2T-2067).

These displayable manuals can be used with the BookManager(TM) READ licensed programs in any of
the supported environments. Terms and conditions for use of the machine-readable files are shipped with
the Online Product Library.

2.2.2 Basic Unlicensed Publications

There are no basic unlicensed publications for IBM Language Environment VM.

2.2.3 Optional Program Publications

Figure 1 identifies the optional unlicensed publications for IBM Language Environment VM. The first copy
of the following optional unlicensed program publications are available at no charge to licensers of the
basic material for VM/ESA Version 2 Release 3.0 by ordering the 7215 Feature Number. For additional
copies, contact your IBM representative.

Figure 1 (Page 1 of 2). Optional Material: Program Publications

Publication Title Form Number

OS/390 Language Environment for OS/390 & VM Programming Guide SC28-1939

 Copyright IBM Corp. 1991, 1998 3

You may order the following publications from your IBM representative, through the System Library
Subscription Service (SLSS) or by direct order.

 2.3 Microfiche Support

There is no microfiche for Language Environment.

2.4 Publications Useful During Installation

The publications listed in Figure 3 may be useful during the installation of Language Environment. To
order copies, contact your IBM representative.

Figure 1 (Page 2 of 2). Optional Material: Program Publications

Publication Title Form Number

OS/390 Language Environment for OS/390 & VM Debugging Guide and Run-Time Messages SC28-1942

OS/390 Language Environment for OS/390 & VM Writing Interlanguage
Communication Applications

SC28-1943

OS/390 Language Environment for OS/390 & VM Run-Time Migration Guide SC28-1944

OS/390 Language Environment for OS/390 & VM Concepts Guide GC28-1945

OS/390 Language Environment for OS/390 & VM Programming Reference SC28-1940

Figure 2. Optional Material: Program Publications - Other

Publication Title Form Number

OS/390 Language Environment for OS/390 & VM Vendor Interfaces (available in softcopy) LY28-1152

COBOL/370 and COBOL for MVS & VM Compiler and Run-Time
Migration Guide

GC26-4764

PLI for MVS & VM Compiler and Run-Time Migration Guide GC26-3118

Figure 3. Publications Useful During Installation / Service on VM/ESA Version 2

Publication Title Form Number

VMSES/E Introduction and Reference GC24-5837

VM/ESA Service Guide GC24-5838

VM/ESA CP Planning and Administration SC24-5750

VM/ESA CMS Command Reference SC24-5776

VM/ESA CMS File Pool Planning, Administration, and Operation SC24-5751

VM/ESA System Messages and Codes GC24-5841

VM/ESA: Installation Guide GC24-5836

4 Language Environment Program Directory

 3.0 Program Support

This section describes the IBM support available for Language Environment.

3.1 Preventive Service Planning
Before installing Language Environment, check with your IBM Support Center or use IBMLink
(ServiceLink) to see whether there is additional Preventive Service Planning (PSP) information. To obtain
this information, specify the following UPGRADE and SUBSET values as shown below.

Figure 4. PSP UPGRADE and SUBSET ID

UPGRADE SUBSET

VMLE180 See Figure 5 below

VMLE180 yynnRSU

VMLE180 RSU-BY-LVL

VMLE180 RSU-BY-APAR

VMLE180 RSU-BY-PTF

3.2 Statement of Support Procedures

Report any difficulties you have using this program to your IBM Support Center. If an APAR is required,
the Support Center will provide the address to which any needed documentation can be sent.

Figure 5 identifies the component ID (COMPID), Retain Release, and PSP SUBSET values for Language
Environment.

Figure 5 (Page 1 of 2). Component IDs

Retain

Component Name
PSP
SUBSETCOMPID Release

568819801 81N Language Environment Base VM/81N

568819801 81G Language Environment Base - Mixed Case English VM/81G

568819801 81J Language Environment Base - Japanese VM/81J

568819802 82N Language Environment COBOL - Base VM/82N

568819802 82G Language Environment COBOL - Mixed Case English VM/82G

568819802 82J Language Environment COBOL - Japanese VM/82J

568819803 83N Language Environment PL/I - Base VM/83N

568819803 83G Language Environment PL/I - Mixed Case English VM/83G

568819803 83J Language Environment PL/I - Japanese VM/83J

 Copyright IBM Corp. 1991, 1998 5

Figure 5 (Page 2 of 2). Component IDs

Retain

Component Name
PSP
SUBSETCOMPID Release

568819805 81N Language Environment "C" - Base VM/81N

568819805 85G Language Environment "C" - Mixed Case English VM/85G

568819805 85J Language Environment "C" - Japanese VM/85J

568819805 85C Language Environment "C" - Japanese Msgs VM/85C

6 Language Environment Program Directory

4.0 Program and Service Level Information

This section identifies the program and any relevant service levels of IBM Language Environment VM.
The program level refers to the APAR fixes incorporated into the program. The service level refers to the
PTFs shipped with this product. Information about the cumulative service tape is also provided.

4.1 Service Level Information for IBM Language Environment VM
Release 08.00

The following IBM Language Environment VM Release 08.00 PTFS, against the components of LE, were
applied to IBM Language Environment VM Release 08.00 as shipped on the VM/ESA Version 2 Release
3.0 System DDR. These PTFs constitute a service level of 9712.

UQ04381
UQ04618
UQ04621
UQ04803
UQ04810
UQ04821
UQ04825
UQ05021
UQ05023
UQ05029
UQ05049
UQ05070
UQ05078
UQ05083
UQ05165
UQ05167
UQ05231
UQ05325
UQ05575

UQ05817
UQ05829
UQ05939
UQ06197
UQ06206
UQ06210
UQ06364
UQ06618
UQ06776
UQ06788
UQ07047
UQ07052
UQ07148
UQ07158
UQ07162
UQ07430
UQ07550
UQ07732
UQ07733

UQ07746
UQ08169
UQ08182
UQ08186
UQ08337
UQ08342
UQ08354
UQ08360
UQ08362
UQ08375
UQ08393
UQ08426
UQ08427
UQ08505
UQ08512
UQ08537
UQ08565
UQ08569
UQ08659

UQ08689
UQ08729
UQ08786
UQ08893
UQ08965
UQ08969
UQ08979
UQ08989
UQ08993
UQ09038
UQ09048
UQ09114
UQ09121
UQ09128
UQ09130
UQ09192
UQ09247
UQ09261
UQ09270

UQ09273
UQ09282
UQ09325
UQ09350
UQ09499
UQ09553
UQ09554
UQ09555
UQ09868
UQ09970
UQ10033
UQ10054
UQ10069
UQ10072
UQ10074
UQ10093
UQ10103
UQ10108
UQ10257

UQ10412
UQ10424
UQ10457
UQ10460
UQ10509
UQ10591
UQ10605
UQ10730
UQ10749
UQ10787
UQ10806
UQ10807
UQ10926
UQ10953
UQ11052
UQ11384
UQ11408
UQ11435

4.2 Program Level Information for the PL/I Component of IBM
Language Environment VM

The following APAR fixes, for the “PL/I” component of IBM Language Environment VM, against the
previous release of IBM Language Environment VM have been incorporated into this release.

PN60271
PN74449

PN75689
PN77102

PN77143
PN81772

PN82912
PN85553

PN90392
PN92581

 Copyright IBM Corp. 1991, 1998 7

4.3 Program Level Information for the C Component of IBM Language
Environment VM

The following APAR fixes, for the “C” Component of IBM Language Environment VM, against the previous
release of IBM Language Environment VM have been incorporated into this release.

PN81203
PN81407
PN81817
PN81886
PN82174
PN82916
PN83962
PN84724
PN84815
PN84863
PN85058

PN85059
PN85540
PN85673
PN86526
PN86617
PN86790
PN86809
PN87803
PN87937
PN88212

PN88288
PN88340
PN88377
PN88538
PN89356
PN89381
PN90592
PN91224
PN91280
PN91285

PN91289
PN91290
PN91291
PN91292
PN91294
PN91299
PN91300
PN91306
PN91308
PN91365

PN91396
PN91400
PN91402
PN91405
PN91490
PN91812
PN92103
PN92303
PN92454
PN92852

PQ00166
PQ00167
PQ00324
PQ00532
PQ00702
PQ00719
PQ00805
PQ00928
PQ01167
PQ01724

4.4 Program Level Information for the CEL Component of IBM
Language Environment VM

The following APAR fixes, for the “CEL” Component of IBM Language Environment VM, against the
previous release of IBM Language Environment VM have been incorporated into this release.

PN68187
PN69119
PN70708
PN70395
PN71474
PN74747
PN75354
PN76475
PN76984
PN79307
PN80130
PN80958
PN81688
PN82010
PN82012

PN82144
PN82427
PN82508
PN82510
PN82806
PN83523
PN83525
PN83771
PN83993
PN84073
PN84209
PN84228
PN84382
PN84398
PN85053

PN85055
PN85056
PN85057
PN85078
PN85241
PN85304
PN85307
PN85371
PN85668
PN85845
PN85950
PN85976
PN86297
PN86614
PN86726

PN86850
PN86963
PN87524
PN87646
PN87874
PN88424
PN89393
PN89847
PN82933
PN84164
PN85668
PN88555
PN90478
PN90731

PN90765
PN91284
PN91301
PN91303
PN91305
PN91321
PN91337
PN91576
PN91606
PN92107
PN92349
PN92353
PN92493
PQ00168

PQ00172
PQ00414
PQ00588
PQ00623
PQ00696
PQ00707
PQ00770
PQ00794
PQ00813
PQ00874
PQ00996
PQ01591
PQ01597
PQ01884

8 Language Environment Program Directory

4.5 Program Level Information for the COBOL Component of IBM
Language Environment VM

The following APAR fixes, for the “COBOL” Component of IBM Language Environment VM, against the
previous release of IBM Language Environment VM have been incorporated into this release.

PN75790
PN77057
PN80318
PN80628
PN81799

PN82576
PN82795
PN83385
PN83619

PN84072
PN84844
PN87216
PN88745

PN89392
PN89517
PN90452
PN91347

PN91348
PN91763
PN92661
PN92858

PQ00331
PQ00336
PQ00372
PQ00380

4.6 Cumulative Service Tape

Cumulative service for this Language Environment is available through a periodic Recommended Service
Upgrade (RSU) tape.

See upgrade bucket VMLE180 subset yynnRSU (where yynn is the service level) for the latest RSU tape
available. For the list of PTF's included on the RSU tape, see the service memo from the tape or the PSP
subsets sorted by PTF, APAR, or RSU level (LVL).

The RSU can be ordered using the PTF number UQ99180 (APAR PQ12470).

 Program and Service Level Information 9

5.0 Installation Requirements and Considerations

The following sections identify the system requirements for installing and activating Language
Environment.

 5.1 Hardware Requirements

There are no special hardware requirements for Language Environment.

 5.2 Program Considerations

The following sections list the programming considerations for installing Language Environment and
activating its functions.

5.2.1 Operating System Requirements

IBM Language Environment VM 1.8.0 supports the following VM operating system:

� VM/ESA(R) Version 2 Release 3 Modification 0

5.2.2 Other Program Product Requirements

IBM Language Environment VM requires the following:

� High Level Assembler/MVS & VM & VSE Release 1 or above (5696-234)

5.2.3 Program Installation / Service Considerations

This section describes items that should be considered before you install or service Language
Environment.

� A LDRTBLS value of 24 is needed. The PROFILE EXEC for the installation user ID P688198H has
this in it.

� When installing into saved segments the 'virtual machine' storage should be at least 1 meg larger than
the segment into which you are installing. This size is calculated from the 'END' address of the saved
segment. The virtual machine storage is set to 64M for the installation user ID P688198H.

� VMSES/E is required to install and service this product.

� If multiple users install and maintain licensed products on your system, there might be a problem
getting the necessary access to MAINT's 51D disk. If you find that there is contention for write access
to the 51D disk, you can eliminate it by converting the Software Inventory from minidisk to Shared File
System (SFS). See the VMSES/E Introduction and Reference manual, section 'Changing the
Software Inventory to an SFS Directory', for information on how to make this change.

10  Copyright IBM Corp. 1991, 1998

� You can no longer install and service Language Environment using the MAINT user ID, but use the
new user ID “P688198H” which is the IBM suggested user ID name. You are free to change this to
any user ID name you wish, however, a PPF override must be created. Refer to B.3, “Create Product
Parameter File (PPF) Override” on page 50 and the VMSES/E Introduction and Reference manual for
information on creating a PPF override.

 CAUTION

If you plan to have C, COBOL or PL/I products such as C/370, COBOL/370*, VS COBOL II, OS/VS
COBOL or OS PL/I V1 or V2 on the same operating system, you should install the products on
separate minidisks to ensure that the library routines for each product maintain their integrity. The IBM
Language Environment VM library contains library routines having names identical to those of the other
C, COBOL or PL/I library routines.

While you run IBM Language Environment VM you should not have these other products accessed. If
you must use a disk that contains these other products while running IBM Language Environment VM
then access them AFTER you access IBM Language Environment VM.

5.3 DASD Storage and USER ID Requirements

Figure 6 on page 13 lists the User ID and minidisks that are used to install and service Language
Environment.

Important Installation Notes:

� The user ID(s) and minidisks shown in Figure 6 on page 13 are already defined when you install
VM/ESA 2.3.0 because Language Environment is pre-installed on the VM/ESA 2.3.0 System
DDRs.

� If you plan on customizing the “C” Run time options, the “191” disk size must have at least 20
cylinders on a 3390, or other DASD equivalent, of unused (free) space. This is due to the fact
that this option will cause a rebuild of the SCEERUN LOADLIB and the “A” disk is used as an
interim work disk while building the loadlib.

� P688198H is a default user ID and can be changed. If you choose to change the name of the
installation user ID you need to create an override of the Product Parameter File (PPF) to do this.
Refer to B.3, “Create Product Parameter File (PPF) Override” on page 50 and the VMSES/E
Introduction and Reference manual for information on creating a PPF override.

� If you choose to change any of the default minidisks or SFS directories then you will need to
create an override of the Product Parameter File (PPF) to do this. Refer to B.3, “Create Product
Parameter File (PPF) Override” on page 50 and the VMSES/E Introduction and Reference manual
for information on creating a PPF override.

� If you choose to move Language Environment from minidisk to Shared File System (SFS), if you
did not do it at initial VM/ESA 2.3.0 install time or if you want to change from the default SFS file

 Installation Requirements and Considerations 11

pool or directories, then you will need to follow the steps in Appendix B, “Moving Language
Environment to SFS Directories and Creating PPF Override” on page 47. These steps will have
you create the SFS directories, move the files to the SFS directories and create a PPF override.
You can also refer to the VMSES/E Introduction and Reference manual for more information on
creating a PPF override.

12 Language Environment Program Directory

Figure 6. DASD Storage Requirements for Target Minidisks

Minidisk
owner
(user ID)

Default
Address

Storage in
Cylinders FB-512

Blocks
SFS 4K
Blocks UsageDASD CYLS

P688198H 2B2 9345
3390
3380
3375
3350

80
65
80

125
100

96000

12000

Contains all base code shipped with
Language Environment

SFS Name:
VMSYS:P688198H.LE370.OBJECT

P688198H 2C2 9345
3390
3380
3375
3350

6
5
6

10
8

7200

900

Contains sample files and user local
modifications for Language Environment

SFS Name:
VMSYS:P688198H.LE370.LOCAL

P688198H 2D2 9345
3390
3380
3375
3350

50
42
50
84
50

60000

7500

Contains serviced files

SFS Name:
VMSYS:P688198H.LE370.DELTA

P688198H 2A6 9345
3390
3380
3375
3350

3
2
3
4
3

3600

450

Contains AUX files and version vector
table that represent your test level of
Language Environment
SFS Name:
VMSYS:P688198H.LE370.ALTAPPLY

P688198H 2A2 9345
3390
3380
3375
3350

3
2
3
4
3

3600

450

Contains AUX file and version vector
table that represent your production
level of Language Environment
SFS Name:
VMSYS:P688198H.LE370.PRODAPPLY

P688198H 29E 9345
3390
3380
3375
3350

54
45
54
85
68

64800

N/A

Test build disk. If this disk is to be
copied to MAINT's 19E disk, make sure
the 19E disk is large enough to hold
entire contents of 29E disk.

P688198H 191 9345
3390
3380
3375
3350

45
38
45
65
55

42000

5250

P688198H user ID's 191 minidisk
NOTE: See Section 5.3 “DASD
Storage and User ID Requirements”
if customizing “C” runtime options.

SFS Name:
VMSYS:P688198H.

Note: Cylinder values defined in this table are based on a 4k block size. FB-512 block and SFS values are
derived from the 3380 cylinder values in this table.

 Installation Requirements and Considerations 13

 6.0 Installation Instructions

This chapter describes the installation methods and the step-by-step procedures to complete the
installation and activation of Language Environment. Language Environment was pre-installed, using
VMSES/E, on the VM/ESA Version 2 Release 3.0 System DDRs. You still NEED TO finish the installation
and do customization as documented in this chapter.

The step-by-step procedures are in two column format. The steps to be performed are in bold large
numbers. Commands for these steps are on the left-hand side of the page in bold print. Any additional
information for a command is to the right of the command. For more information about the two column
format see 'Understanding Dialogs with the System' in the VM/ESA Installation Guide.

Each step of the installation instructions must be followed. Do not skip any step unless directed otherwise.

Throughout these instructions, the use of IBM-supplied default minidisk addresses and user IDs is
assumed. If you use different user IDs, minidisk addresses, or SFS directories to install Language
Environment, adapt these instructions as needed for your environment.

 Note!

The sample console output presented throughout these instructions was produced on a VM/ESA 2.3.0
system and assumes you are installing to minidisks using the default PPF and component names.

6.1 Language Environment Installation and Customization Overview

The following is a brief description of the main steps to complete the installation of Language Environment
using VMSES/E.

� Review Your Installation Environment

While resources have been allocated for Language Environment as part of the VM/ESA Version 2
Release 3.0 System DDR that you installed, this default environment should be reviewed and, if
necessary, modified for your installation.

� Optionally Install National Languages

The VMFBLD command is used to build the NLS message modules and SCEERUN LOADLIB.

� Placing the Language Environment Files into Production

Once the product files have been tailored and the operation of Language Environment is satisfactory,
the product files are copied from the test BUILD disk(s) to production BUILD.

� Customize Language Environment

Use the customization exec to customize runtime options, user exits, COBPACKs, locale time
information, saved segments, etc..

14  Copyright IBM Corp. 1991, 1998

� Rebuild the Language Environment Saved Segments

Uses VMFBLD to rebuild the SCEE and SCEEX segments.

For a complete description of all VMSES/E installation options refer to:

� VMSES/E Introduction and Reference

6.2 Review the Language Environment Default Installation
Environment
IBM Language Environment VM has been installed on the VM/ESA Version 2 Release 3.0 System DDRs
using VMSES/E. This means that several of the VMSES/E installation steps have been performed on
your behalf. Among these are the:

� addition of the Language Environment installation user ID, P688198H, entry to the VM/ESA 2.3.0 CP
system directory

� creation of the P688198H user ID PROFILE EXEC. This PROFILE EXEC contains the accesses to
the VMSES/E code disk, MAINT 5E5, and the VMSES/E Software Inventory disk, MAINT 51D. It also
sets the LDRTBLS to 24.

� allocation of the Language Environment minidisks

� loading of the Language Environment product files to the minidisks, using VMSES/E commands

� defined SCEE and SCEEX saved segments

� installation of the Language Environment initial RSU.

If you want to change any of the default Language Environment user IDs, minidisks or SFS directories you
should do so at this time. In order to do this you will need to create an override to the Product Parameter
File (PPF).

If you want to use SFS for Language Environment, because you did not choose it during initial VM/ESA
2.3.0 install, you will have to create your SFS directories, move the code to those directories and reflect
these new directories in your PPF override.

Refer to Appendix B, “Moving Language Environment to SFS Directories and Creating PPF Override” on
page 47 for instructions on moving Language Environment into SFS and creating a PPF override.

6.3 (Optional) Installing Kanji National Language
If you do not plan on using KANJI then skip this step.

Language Environment's KANJI NLS feature will be installed through VMSES/E support using the user ID,
P688198H and the following command:

 Installation Instructions 15

1 Install KANJI NLS help and message files.

VMFBLD PPF 5688198H LE370KANJI EDCBLHPJ (ALL SETUP

à ð
VMFBLD PPF 5688198H LE37ðKANJI EDCBLHPJ (ALL
VMFBLD276ðI VMFBLD processing started
VMFBLD1851I Reading build lists
VMFBLD2182I Identifying new build requirements
VMFBLD2182I No new build requirements identified
VMFBLD1851I (1 of 1) VMFBDCOM processing EDCBLHPJ EXEC
VMFBDC2219I Processing object CMOD.HELPCMS
VMFBDC2219I Processing object CPLINK.HELPCMS
VMFBDC2219I Processing object C37ðLIB.HELPCMS
VMFBDC2219I Processing object LINKLOAD.HELPCMS
VMFBDC2219I Processing object GENXLT.HELPCMS
VMFBDC2219I Processing object ICONV.HELPCMS
VMFBDC2219I Processing object EDCPMSGKE.MSGS
VMFBDC2219I Processing object EDCUME.TXTKANJI
VMFBLD1851I (1 of 1) VMFBDCOM completed with return code ð
VMFBLD218ðI There are ð build requirements remaining
VMFBLD276ðI VMFBLD processing completed successfully
Ready; T=114.45/115.74 11:ð1:21

á ñ

Figure 7. Sample KANJI install console.

If, in the future, you need to return back to Mixed-Case English help and messages
files simply rebuild the required language function messages by issuing the
following command:

VMFBLD PPF 5688198H LE37ð EDCBLHPE (ALL SETUP

Note: Selecting a Language Environment national language to be used, other than mixed-case English,
is discussed in section 6.4.2, “Customizing Language Environment” on page 17. When you get to that
section you can change the language that LE uses, if you need to.

6.4 Place Language Environment Into Production
In this step you will:

� Copy the Language Environment files to the production minidisk

� Customize Language Environment

� Rebuild the Language Environment saved segments.

16 Language Environment Program Directory

6.4.1 Copy Language Environment Files Into Production

 NOTE!

During initial install of VM/ESA 2.3.0 a Recommended Service Upgrade (RSU) was applied to
Language Environment. This means that you MUST place the new serviced Language Environment
files into production with this step.

1 Logon to MAINT if you plan to put Language Environment general use code
on the 'Y' disk (MAINT's 19E disk). Or logon to the owner of the disk that will
contain the 'production' level of the Language Environment code.

link P688198H 29e 29e rr
access 29e e
access 19e f
vmfcopy * * e = = f2 (prodid 5688198H%LE370 olddate replace

The VMFCOPY command will update the VMSES
PARTCAT file on the 19E disk.

6.4.2 Customizing Language Environment
See Chapter 8.0, “Customizing Language Environment” on page 34 for a full description on how to
customize Language Environment. After you have finished your customization you need to return back to
6.4.3, “Redefining and Building Saved Segments for Language Environment” on page 18 in order to
rebuild the Language Environment saved segments.

When installing IBM Language Environment VM you can choose the national language to be used for
things such as system and IBM Language Environment VM text, run-time messages, IBM Language
Environment VM reports, and output of such IBM Language Environment VM services as date and time
services. Mixed-Case English is the default for the run-time language option NATLANG. If you need a
language other than mixed-case English as the default for your system, you can change to uppercase
English or Japanese, depending on what national language support language you have installed, when
you customize Language Environment. See Appendix E, “IBM Language Environment VM Run-time
Options” on page 61 for a description of the NATLANG runtime option.

 NOTE!

Whether you did or did not do any customization you need to rebuild the saved segments.

 Installation Instructions 17

6.4.3 Redefining and Building Saved Segments for Language
Environment
The Language Environment segments, SCEE and SCEEX, were pre-defined and pre-built on the VM/ESA
2.3.0 System DDRs. They were defined using the segment mapping tool VMFSGMAP and built with
VMFBLD.

 NOTE!

During initial install of VM/ESA 2.3.0 a Recommended Service Upgrade (RSU) was applied to
Language Environment. This means that the segments MUST be rebuilt at this time. Optionally you
can re-define the segments before you rebuild them.

When you use Saved segments for IBM Language Environment VM remember that the order in loading is:

 1. Nucleus extension
 2. Saved segments
 3. Relocatable modules

4. OS simulation load

Notes:

1. The redefining and building of the Language Environment saved segments should be performed from
the installation user ID. If you move any segments that are currently defined on your system you must
ensure that they are rebuilt from the user ID that maintains them.

2. Care should be taken that Saved Segments from previous releases of Language Environment are not
accessed during installation. If they are, unpredictable results could occur.

For more information on using VMSES/E for saved segments, review the chapter, 'Using VMSES/E to
Define, Build, and Manage Saved Segments in the VM/ESA Planning and Administration manual.

6.4.4 (Optional) Re-define Saved Segments Using VMSES/E

 Note

If you do not need to re-define either Language Environment segment then continue with 6.4.5, “Build
the Language Environment Saved Segments” on page 23.

1 Logon to the installation user ID P688198H.

2 Establish write access to the VMSES/E and software inventory disks.

link maint 51D 51D mr
access 51D D

18 Language Environment Program Directory

3 Update Language Environment segment object definitions to the SEGBLIST
EXC00000 build list.

vmfsgmap segbld esasegs segblist This command displays a panel for making
segment updates. See Figure 8 for an example of
the Segment Map panel that will be displayed.

à ð
VMFSGMAP - Segment Map More: +

Lines 1 to nn of nn

Meg ðð8-MB ðð9-MB ððA-MB ððB-MB
St Name Typ ð123456789ABCDEFð123456789ABCDEFð123456789ABCDEFð123456789ABCDEF
 DOSBAM SPA 8...............9...............A...............====------------
 CMSBAM MEM 8...............9...............A...............RRRR............
 CMSDOS MEM 8...............9...............A...............R...............
 DOSINST DCS 8...............R---------------A...............B...............
 SCEE DCS 8...............RRRRRRRRRRRRRRRRA...............B...............

Meg ððC-MB ððD-MB ððE-MB ððF-MB
St Name Typ ð123456789ABCDEFð123456789ABCDEFð123456789ABCDEFð123456789ABCDEF
 HELPSEG DCS RRRRRRRRRRRRRRRRD...............E...............F...............
M CMS SYS C...............D...............E...............RRRRRRRRRRRRRRR>

================================= 16-MB Line ==================================

Meg ð1ð-MB ð11-MB ð12-MB ð13-MB
St Name Typ ð123456789ABCDEFð123456789ABCDEFð123456789ABCDEFð123456789ABCDEF
M CMS SYS >RRR
M GCS SYS RNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2...............3...............

 F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
 F7=Bkwd F8=Fwd F9=Retrieve F1ð=Add Obj F11=Del Obj F12=Cancel
====> _

á ñ
Figure 8. Segment Map panel example.

 Installation Instructions 19

4 Obtain the Current Language Environment Segment Definition

a Place cursor on the SCEE or SCEEX segment.

Note: You can only change one segment at a time, so if you need to
change both segments then you will have to repeat steps 4 and 5 for
each segment. The 'Change Segment Definition' panel is shown for
each segment but they do not come up at the same time.

b Hit the F4 Chg Obj key

.F4/ F4 will take you from the Segment Map panel to
the Change Segment Definition panel.

See Figure 9 to see the Change Segment
Definition panel that will be displayed for the SCEE
segment.

See Figure 10 on page 21 to see the Change
Segment Definition panel that will be displayed for
the SCEEX segment.

à ð
Change Segment Definition

Lines 1 to nn of nn

 OBJNAME....: SCEE
 DEFPARMS...: ð9ðð-ð9FF SR
 SPACE......:
 TYPE.......: PSEG
 OBJDESC....: SCEE SEGMENT BELOW 16 MEG
 OBJINFO....:
 GT_16MB....: NO
 DISKS......:
 SEGREQ.....:
 PRODID.....: 5688198H LE37ð
 BLDPARMS...: PPF(5688198H LE37ð CEEBLSGB)

 F1=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk MEM
F7=Bkwd F8=Fwd F9=Retrieve F1ð=Seginfo F11=Adj MEM F12=Cancel
====>

á ñ
Figure 9. SCEE "Change Segment Definition" panel example.

20 Language Environment Program Directory

à ð
Change Segment Definition

Lines 1 to nn of nn

 OBJNAME....: SCEEX
 DEFPARMS...: 1Aðð-1EFF SR
 SPACE......:
 TYPE.......: PSEG
 OBJDESC....: SCEEX SEGMENT ABOVE 16 MEG
 OBJINFO....:
 GT_16MB....: YES
 DISKS......:
 SEGREQ.....:
 PRODID.....: 5688198H LE37ð
 BLDPARMS...: PPF(5688198H LE37ð CEEBLSGA)

 F1=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk MEM
F7=Bkwd F8=Fwd F9=Retrieve F1ð=Seginfo F11=Adj MEM F12=Cancel
====>

á ñ
Figure 10. SCEEX "Change Segment Definition" panel example.

5 Update Segment Definition

a Change any of the information displayed on the Change Segment
Definition Panel.

Note: If you are using a different PPF name than the default then
you must change the BLDPARMS field to reflect your PPF name. If
you have changed to using SFS then you must update the
BLDPARMS field to reflect the SFS component name (default is
LE370SFS).

b To complete the change hit the F5 Map key.

.F5/ Confirm information shown on panel is correct and
press F5 to return to the Segment Map panel. See
Figure 11 on page 22 for the refreshed Segment
Map panel that will be displayed. Since this
example did not really change any information the
refreshed Segment Map panel shows the original
definitions.

 Installation Instructions 21

à ð
VMFSGMAP - Segment Map More: +

Lines 1 to nn of nn

 SCEE DCS 8...............RRRRRRRRRRRRRRRRA...............B...............
M DOSINST DCS 8...............R---------------A...............B...............

Meg ððC-MB ððD-MB ððE-MB ððF-MB
St Name Typ ð123456789ABCDEFð123456789ABCDEFð123456789ABCDEFð123456789ABCDEF
M CMS SYS C...............D...............E...............RRRRRRRRRRRRRRRR
M HELPINST DCS RRRRRRRRRRRRRRRRD...............E...............F...............

================================= 16-MB Line ==================================

Meg ð1ð-MB ð11-MB ð12-MB ð13-MB
St Name Typ ð123456789ABCDEFð123456789ABCDEFð123456789ABCDEFð123456789ABCDEF
M CMS SYS >RRR

Meg ð14-MB ð15-MB ð16-MB ð17-MB
St Name Typ ð123456789ABCDEFð123456789ABCDEFð123456789ABCDEFð123456789ABCDEF
M CMSVMLIB DCS 4...............5...............6...............RRRRRRRRRRRRRRRR

Meg ð18-MB ð19-MB ð1A-MB ð1B-MB
St Name Typ ð123456789ABCDEFð123456789ABCDEFð123456789ABCDEFð123456789ABCDEF
 SCEEX DCS 8...............9...............RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR>

Meg ð1C-MB ð1D-MB ð1E-MB ð1F-MB
St Name Typ ð123456789ABCDEFð123456789ABCDEFð123456789ABCDEFð123456789ABCDEF
 SCEEX DCS >RRRF...............
============================== End Segment Map ===============================

 F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
 F7=Bkwd F8=Fwd F9=Retrieve F1ð=Add Obj F11=Del Obj F12=Cancel
====>

á ñ
Figure 11. Segment Map panel with SCEE/SCEEX Segments

6 Save new information and exit from the Segment Map panel.

.F5/

Ready; T=nn.nn/nn.nn hh:mm:ss

F5 saves all changed information and exits the
map panel.

22 Language Environment Program Directory

6.4.5 Build the Language Environment Saved Segments
1 Prepare to build the segments.

a Logon to the installation user ID P688198H.

b Make sure that there are no outstanding build requirements for the
segments.

vmfbld ppf 5688198H {LE370|LE370SFS} (serviced setup

c IPL CMS to clear the virtual storage

ipl 190 clear parm nosprof instseg no

** DO NOT press ENTER at the VMREAD!**

IPL 190 to clear your virtual machine. This
command bypasses the execution of the system
profile (SYSPROF EXEC) and without loading the
installation saved segment (CMSINST).

access (noprof Bypass the execution of the PROFILE EXEC.

d Access the VMSES/E code

access 5E5 B

e Establish write access the Software Inventory Disk

link maint 51D 51D mr
access 51d D

f Reset Loader Tables back to 24

Set LDRTBLS 24

2 Issue VMFBLD command to build the Language Environment segments.

vmfbld ppf segbld esasegs segblist SCEE (all
vmfbld ppf segbld esasegs segblist SCEEX (all

 Installation Instructions 23

à ð
Ready; T=1.39/1.53 ð5:56:57
vmfbld ppf segbld esasegs segblist scee (all
VMFBLD276ðI VMFBLD processing started
VMFBLD1851I Reading build lists
VMFBLD2182I Identifying new build requirements
VMFBLD2182I New build requirements identified
VMFBLD1851I (1 of 1) VMFBDSEG processing SEGBLIST EXCððððð D, target is BUILD
 51D (D)
VMFBDS2115I Validating segment SCEE
VMFBDS2ðð2I A DEFSEG command will be issued for 1 segment(s).
VMFBDS2219I Processing object SCEE.SEGMENT
HCPNSS44ðI Saved segment SCEE was successfully saved in fileid 1129.
VMFBDS2ðð3W The SYSTEM SEGID D(51D) file has been changed and must be moved to

the S disk.
VMFBLD1851I (1 of 1) VMFBDSEG completed with return code 4
VMFBLD218ðI There are 1 build requirements remaining
VMFBLD276ðI VMFBLD processing completed with warnings
Ready(ðððð4); T=22.ð5/23.26 ð5:57:59

á ñ
Figure 12. Sample Console output for SCEE Segment Load

à ð
Ready; T=ð.ð1/ð.ð1 11:4ð:56
VMFBLD PPF SEGBLD ESASEGS SEGBLIST SCEEX (ALL
VMFBLD276ðI VMFBLD processing started
VMFBLD1851I Reading build lists
VMFBLD2182I Identifying new build requirements
VMFBLD2182I New build requirements identified
VMFBLD1851I (1 of 1) VMFBDSEG processing SEGBLIST EXCððððð D, target is BUILD
 51D (D)
VMFBDS2115I Validating segment SCEEX
VMFBDS2ðð2I A DEFSEG command will be issued for 1 segment(s).
VMFBDS2219I Processing object SCEEX.SEGMENT
HCPNSS44ðI Saved segment SCEEX was successfully saved in fileid 1577.
VMFBDS2ðð3W The SYSTEM SEGID D(51D) file has been changed and must be moved to

the S disk.
VMFBLD1851I (1 of 1) VMFBDSEG completed with return code 4
VMFBLD218ðI There are ð build requirements remaining
VMFBLD276ðI VMFBLD processing completed with warnings
Ready(ðððð4); T=22.62/24.5ð 11:42:15
vmfview build
Ready; T=ð.27/ð.29 11:44:4ð

á ñ
Figure 13. Sample Console output for SCEEX Segment Load

3 Use VMFVIEW to review the build message log ($VMFBLD $MSGLOG). If
necessary, correct any problems before going on.

vmfview build

24 Language Environment Program Directory

4 If you received the message:

VMFBDS2003W The SYSTEM SEGID D(51D) file has been changed and
must be moved to the S disk

then the SYSTEM SEGID must be copied over to
the S-disk in order to stay in sync with the system's
SEGID. Remember to re-SAVE CMS to avoid the
Shared S-STAT not available message.

Language Environment is now installed, customized and built on
your system.

 Installation Instructions 25

 7.0 Service Instructions

 RSU Alert

If applying a Language Environment RSU, go to the instructions in Appendix A, “Applying a
Recommended Service Upgrade (RSU) Tape For Language Environment” on page 40. You will return
to a step in this chapter as specified in the RSU appendix.

This section of the Program Directory contains the procedure to install CORrective service to Language
Environment. VMSES/E is used to install service for Language Environment.

To become more familiar with service using VMSES/E, you should read the introductory chapters in:

� VMSES/E Introduction and Reference

This manual also contains the command syntax for the VMSES/E commands listed in the procedure.

Note: Each step of the servicing instructions must be followed. Do not skip any step unless directed to.
All instructions showing accessing of disks assume the use of default minidisk addresses. If different
minidisk addresses are used, or if using a shared file system, change the instructions appropriately.

7.1 VMSES/E Service Process Overview

The following is a brief description of the main steps in servicing Language Environment using VMSES/E.

 � Merge Service

Use the VMFMRDSK command to clear the alternate apply disk before receiving new service. This
allows you to easily remove the new service if a serious problem is found.

 � Receive Service

The VMFREC command receives service from the delivery media and places it on the Delta disk.

 � Apply Service

The VMFAPPLY command updates the version vector table (VVT), which identifies the service level of
all the serviced parts. In addition, AUX files are generated from the VVT for parts that require them.

� Reapply Local Service (if applicable)

All local service must be entered into the software inventory to allow VMSES/E to track the changes
and build them into the system. Refer to Chapter 7 in the VM/ESA Service Guide for this procedure.

� Build New Levels

The build task generates the serviced level of an object and places the new object on a test BUILD
disk.

26  Copyright IBM Corp. 1991, 1998

� Place the New Service into Production

Once the service is satisfactorily tested it should be put into production by copying the new service to
the production disk, re-saving the Saved Segments or DCSS (Discontiguous Saved Segments), etc.

7.2 Servicing Language Environment

 RSU Alert

If applying a Language Environment RSU, go to the instructions in Appendix A, “Applying a
Recommended Service Upgrade (RSU) Tape For Language Environment” on page 40. You will return
to a step in this chapter as specified in RSU appendix.

7.2.1 Prepare to Receive Service

The ppfname used throughout these servicing instructions is 5688198H, which assumes you are using the
PPF supplied by IBM for Language Environment. If you have your own PPF override file for Language
Environment, you should use your file's ppfname instead of 5688198H. The ppfname you use should be
used throughout the rest of this procedure, unless otherwise stated differently.

1 Log onto Language Environment service user ID P688198H

2 Establish access to the software inventory disk.

Note: If the MAINT 51D minidisk was accessed R/O, you will need to have
the user that has it accessed R/W link it R/O. You then can issue the
following commands to obtain R/W access to it.

link maint 51D 51D mr
access 51D D

The 51D minidisk is where the VMSES/E Software
Inventory files and other product dependent files
reside.

3 Have the Language Environment CORrective service tape mounted and
attached to P688198H.

4 Establish the correct minidisk access order.

vmfsetup 5688198H {LE370|LE370SFS} 5688198H is the PPF that was shipped with the
product. If you have your own PPF override you
should substitute your PPF name for 5688198H.

Use LE370 if the product is installed on minidisk or
LE370SFS if the product is installed in SFS.

 Service Instructions 27

5 Receive the documentation. VMFREC, with the INFO option, loads the
documentation and displays a list of all the products on the tape.
 Electronic Service

If you are receiving service from ServiceLink (electronic service) see
Appendix A, 'Receiving Service for VMSES Envelopes', section "Receive
the Service" in the VM/ESA Service Guide. Then continue with step 7.

vmfrec info This command will load the service memo to the
191 disk.

6 Check the receive message log ($VMFREC $MSGLOG) for warning and error
messages.

vmfview receive Also make note of which products and components
have service on the tape. To do this, use the PF5
key to show all status messages which identify the
products on the tape.

7 Clear the alternate APPLY disk to ensure that you have a clean disk for new
service.

vmfmrdsk 5688198H {LE370 | LE370SFS} apply

Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

This command clears the alternate APPLY disk.

8 Review the merge message log ($VMFMRD $MSGLOG). If necessary,
correct any problems before going on. For information about handling
specific build messages, see VM/ESA: System Messages and Codes, or use
online HELP.

vmfview mrd

28 Language Environment Program Directory

7.2.2 Receive the Service
 Electronic Service

If you are receiving service from ServiceLink (electronic service) see Appendix A, 'Receiving
Service for VMSES Envelopes', in VM/ESA Service Guide. Then continue with 7.2.3 “Apply the
Service.”

1 Receive the service.

vmfrec ppf 5688198H {LE370|LE370SFS} Use LE370 for installing on minidisks or LE370SFS
for installing on Shared File System directories.

This command receives service from your service
tape. All new service is loaded to the alternate
DELTA disk.

2 Review the receive message log ($VMFREC $MSGLOG). If necessary,
correct any problems before going on. For information about handling
specific build messages, see VM/ESA: System Messages and Codes, or use
online HELP.

vmfview receive

7.2.3 Apply the Service
1 Apply the new service.

vmfapply ppf 5688198H {LE370|LE370SFS} Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

This command applies the service that you just
received. The version vector table (VVT) is
updated with all serviced parts and all necessary
AUX files are generated on the alternate apply
disk.

You must review the VMFAPPLY message log if
you receive a return code (RC) of a 4, as this may
indicate that you have local modifications that need
to be reworked.

 Service Instructions 29

2 Review the apply message log ($VMFAPP $MSGLOG). If necessary, correct
any problems before going on. For information about handling specific build
messages, see VM/ESA: System Messages and Codes, or use online HELP.

vmfview apply

 Note

If you get the message VMFAPP2120W then re-apply any local modifications before building the
new Language Environment. Refer to Chapter 7 in VM/ESA Service Guide. Follow the steps
that are applicable to your local modification.

The following substitutions need to be made:

� esalcl should be 5688198H

� esa should be 5688198H

� compname should be LE370 or LE370SFS (minidisk or SFS)

� appid should be 5688198H

� fm-local should be the fm of 2C2

� fm-applyalt should be the fm of 2A6

Keep in mind that, when you get to the "Rebuilding Objects" step in the Service Guide, you
should return to this program directory at 7.2.4, “Update the Build Status Table.”

7.2.4 Update the Build Status Table
1 Update the Build Status Table with serviced parts.

vmfbld ppf 5688198H {LE370|LE370SFS} (status

Use LE370 for installing on minidisks or LE370SFS
for installing on Shared File System directories.

This command updates the Build Status Table.

30 Language Environment Program Directory

 Note

If the $PPF files have been serviced you will get the following prompt:

VMFBLD2185R The following source product parameter files have been
 serviced:
VMFBLD2185R 5688198H $PPF
VMFBLD2185R When source product parameter files are serviced, all

product parameter files built from them must be recompiled
using VMFPPF before VMFBLD can be run.

VMFBLD2185R Enter zero (ð) to have the serviced source product
parameter files built to you A-disk and exit VMFBLD so
you can recompile your product parameter files with VMFPPF

VMFBLD2185R Enter one (1) to continue only if you have already
recompiled your product parameter files with VMFPPF

VMFBLD2188I Building 5688198H $PPF
on 191 (A) from level $PFnnnnn

0 Enter a 0 and complete the following steps
before you continue.

vmfppf 5688198H * Note: If you've created your own PPF
override, use your PPF name instead of
5688198H.

An '*' will rebuild all components in the
specified PPF.

copyfile 5688198H $PPF a = = d (olddate replace
erase 5688198H $PPF a

Note: Do not use your own PPF name in
place of 5688198H for the COPYFILE and
ERASE commands.

vmfbld ppf 5688198H {LE370 | LE370SFS} (status
1

Reissue VMFBLD to complete updating the
build status table. When you receive the
prompt that was previously displayed, enter a
1 to continue.

Use LE370 for installing on minidisks or
LE370SFS for installing on Shared File
System directories.

 Service Instructions 31

2 Use VMFVIEW to review the build status messages, and see what objects
need to be built.

vmfview build

7.2.5 Build Serviced Objects
1 Rebuild Language Environment serviced parts.

vmfbld ppf 5688198H {LE370|LE370SFS} (serviced

 Use LE370 for installing on minidisks or LE370SFS
for installing on Shared File System directories.

Note: If the warning message VMFLLB1966W
(with return code 4) is issued for objects ILBONBL,
ILBONTR, ILBOREC, ILBORNT, ILBOSND,
ILBOSNT or ILBOSSN it can be ignored .

2 Review the build message log ($VMFBLD $MSGLOG). If necessary, correct
any problems before going on. For information about handling specific build
messages, see VM/ESA: System Messages and Codes, or use online HELP.

vmfview build

7.3 Place the New Language Environment Service Into Production

7.3.1 Rebuild the Saved Segments
1 If installing IBM Language Environment VM on a system that uses VMSES/E

to save the shared segments, then depending on which saved segment you
have installed, issue the following command(s):

vmfbld ppf segbld esasegs segblist SCEE (serviced
vmfbld ppf segbld esasegs segblist SCEEX (serviced

32 Language Environment Program Directory

2 Review the build message log ($VMFBLD $MSGLOG). If necessary, correct
any problems before going on. For information about handling specific error
messages, see VM/ESA: System Messages and Codes, or use on-line HELP.

vmfview build

7.3.2 Copy the New Language Environment Serviced Files Into
Production

1 Logon to MAINT if you plan to put Language Environment general use code
on the 'Y' disk (MAINT's 19E disk). Or logon to the owner of the disk that will
contain the 'production' level of the Language Environment code.

link P688198H 29e 29e rr
access 29e e
access 19e f
vmfcopy * * e = = f2 (prodid 5688198H%LE370 olddate replace

The VMFCOPY command will update the VMSES
PARTCAT file on the 19E disk.

You have now finished servicing Language Environment.

 Service Instructions 33

8.0 Customizing Language Environment

Once the product has been installed, it can be customized using the 'C5688198' EXEC. This EXEC will
do the following:

1. Prompt you for the area you wish to customize:

� IBM Language Environment VM Runtime Options

� IBM Language Environment VM User Exit

 � COBOL COBPACKs

� 'C' Component Locale Time Information

� Saved Segments Components

� COBOL Reusable environment

2. Invoke an 'XEDIT' session for the specific customization component requested;

3. Re-assemble, if required, component customized;

4. Rebuild required modules using the specific VMSES/E part handler

à ð
IBM Language Environment for MVS & VM

Version 1 Release 8 Mod ð

1) Run Time Options
 2) User Exits

3) "C" Locale Time Information
 4) Saved Segments
 5) COBOL COBPACKs

6) COBOL Reusable Environment

Enter number of option you wish to change or
Enter 'END' or 'QUIT' to exit EXEC

á ñ

Figure 14. Customization EXEC - Panel 1

8.1 Updating Run-Time Options

IBM Language Environment VM run-time options are updated by invoking the customization EXEC which
puts you into an XEDIT session of CEEDOPT ASSEMBLE. After you update and file CEEDOPT, the
EXEC assembles it (using HASM) and if the assembly is successful, will then prompt you to see if you
want to rebuild the modules in which it is included. Modules which will be rebuilt are CEEBINIT,
CEEBPICI and CEEPIPI all of which are in Build List “CEEBLMOD.” See Appendix E, “IBM Language
Environment VM Run-time Options” on page 61 for a complete description of the run-time options.

34  Copyright IBM Corp. 1991, 1998

8.2 Updating User Exit Options

The assembler user exit is updated by invoking the customization EXEC which puts you into an XEDIT
session of CEEBXITB ASSEMBLE. After you update and file CEEBXITB, the EXEC assembles it (using
HASM) and if the assembly is successful, will then prompt you to see if you want to rebuild the component
in which it is included. Modules which will be rebuilt are CEEBINIT, CEEBPICI and CEEPIPI all of which
are in Build List “CEEBLMOD.”

8.3 Updating COBOL Component COBPACKs

COBPACKs are updated by the editing of file IGZBLPAC Exec using the C5688198 Customization EXEC.
After IGZBLPAC is updated and filed, the EXEC will rebuild the IGZCPAC and IGZCPCO MODULEs.

As this is the control file defining the structure of these two relocatable LOAD MODULEs, it is important
that it is updated very carefully. Updates to this file should be made by commenting out those “:PARTID.”
statements of the text files you do not wish to have in the COBPACKs. Do NOT delete any lines. For the
IGZCPCO COBPACK you must, at a minimum leave in the “:PARTID.IGZCPCO ” statement. For the
IGZCPAC COBPACK you must leave the “:PARTID.IGZCPAC” statement. If any lines other than the
“:PARTID.” are commented out, or if the IGZCPCO or IGZCPAC basic “:PARTID.” statements are
commented out, or the order of any of the lines has been changed, the update could fail with a control file
error.

The COBPACKs can also be tailored to run above the line during customization. This is accomplished by
commenting out all of the text files built with “RMODE 24” and the COBOL COBPACKS in the PSEG files.
Modules which will be rebuilt are IGZCPAC and IGZCPCO which are in Build List “IGZBLPAC.”

8.4 Updating COBOL Component Reusable Environment

COBOL's reusable environment behavior is updated by invoking the customization EXEC which puts you
into an XEDIT session of IGZERREO ASSEMBLE. After you update and file IGZERREO, the EXEC
assembles it (using HASM) and if the assembly is successful, will then prompt you to see if you want to
rebuild the component in which it is included. The module that will be rebuilt is CEEEV005 which is in
Build List "IGZBLMOD".

The COBOL reusable environment behavior can be modified to control how program checks are handled
that occur in a non-Language Environment conforming driver. The COBOL reusable environment is
established with the RTEREUS run-time option or a call to either ILBOSTP0 or IGZERRE INIT.

With the IBM supplied default setting for COBOL's reusable environment behavior (IGZERREO with
REUSENV=COMPAT), when a program check occurs while the reusable environment is dormant (i.e.
between a GOBACK from a top level COBOL program to the non-Language Environment conforming
assembler driver and the next call to a COBOL program), a S0Cx abend will occur. This behavior is
compatible with the VS COBOL II and OS/VS COBOL run-times, but it significantly impacts the

 Customizing Language Environment 35

performance when a COBOL/370 or COBOL for MVS & VM program is invoked repeatedly in a COBOL
reusable environment. The performance degradation is caused by Language Environment issuing an
ESPIE RESET when the reusable environment becomes dormant and then an ESPIE SET upon
reentering the reusable environment.

COBOL's reusable environment behavior can be modified (IGZERREO with REUSENV=OPT) so that all
program checks will be intercepted by Language Environment, even those that occur while the reusable
environment is dormant. In this case, a program check that occurs while the reusable environment is
dormant will result in a 4036 abend from Language Environment. However, since Language Environment
does not have to issue the ESPIE RESET and ESPIE SET between invocations of the COBOL program,
this can be faster than using REUSENV=COMPAT.

8.4.1 Modifying the Behavior of the COBOL Reusable Environment

Modify the IGZRREOP macro invocation, depending on the function that you want.

To run with VS COBOL II and OS/VS COBOL run-time compatibility mode (i.e., the user has control of
program checks that occur when the COBOL reusable environment is dormant, resulting in an additional
performance cost), use:

IGZRREOP REUSENV=COMPAT
To run with optimum performance (i.e., Language Environment intercepts all program checks that occur
when the COBOL reusable environment is dormant and converts them to a 4036 abend, resulting in
improved performance), use:

IGZRREOP REUSENV=OPT

8.5 C Component Locale Time Information

 Note

Due to the size and having to rebuild the SCEERUN LOADLIB for this option, your “A” disk, which VM
uses as an interim work disk during the rebuild, must have at least 20 cylinders on a 3390, or
equivalent, of unused (free) space.

C locale time information is used for options such as Time Zone name and Daylight Savings Time starting
dates.

Locale time is updated by editing a file named 'EDCLOCI'. The EXEC will put you into an XEDIT session
of EDCLOCI ASSEMBLE and after updates are completed it is filed and then assembled using HASM.
Once successfully assembled, the EXEC will rebuild the required components and the C locale time is
updated.

36 Language Environment Program Directory

8.6 Updating Saved Segments

After successfully installing IBM Language Environment VM, you can load certain routines into Saved
Segments on VM/ESA. Placing routines into Saved Segments reduces overall system storage
requirements by making the routines sharable and also, initiation/termination (init/term) time is reduced for
each application, since load time decreases.

Included with IBM Language Environment VM are two build lists, CEEBLSGA and CEEBLSGB, plus the
necessary LSEG files required to install specific routines of IBM Language Environment VM into
segments. By selecting option 5 in the Customization exec, these individual build lists can be tailored to
load only specific routines of the IBM Language Environment VM product (i.e commonly used COBOL,
PL/I, or C routines) into segments. Each build list contains comments that identify these routines and to
help tailor the segment install.

Customizing can be accomplished by either commenting or uncommenting the LOADFUNC component
statement(s) you wish to take action on or by adding a correct “LOADFUNC” statement into the build list.

A “*” inserted in the first column of any LOADFUNC statement will eliminate that component from being
included while deleting the “*” from the first column will include the component. In the example shown
below, the COBOL COBPACKs (IGZCPAC and IGCCPCO) which are normally installed below the line,
and thus included in the CEEBLSGB build list, will be eliminated from the saved segment environment.
\\\
\ IBM Language Environment for MVS & VM \
\ Version 1 Release 8 Modification ð \
\ \
\ Licensed Materials -- Property of IBM \
\ 5688-198 (C) Copyright IBM Corporation 1997 \
\ All Rights Reserved \
\\\
\ Buildlist CEEBLSGB for Saved Segment (Below line 16M Line) \
\\\
\
:FORMAT. 2
\
:OBJNAME. SCEE.SEGMENT
:BLDREQ. CEEBLMOD.CEEBINIT.MODULE
 CEEBLMOD.CEEBLIIA.MODULE
 CEEBLMOD.CEEPIPI.MODULE
 CEEBLMOD.CEEBPICI.MODULE
 EDCBLSP2
 IBMBLMOD.IBMRCOMP.MODULE
 IBMBLMOD.IBMRLIB1.MODULE
 IBMBLMOD.IBMRPTLA.MODULE
:GLOBAL. TXTLIB SCEESPC
:OPTIONS. LOADFUNC (LSEG CEEBINIT)

LOADFUNC (LSEG CEEBLIIA)
LOADFUNC (LSEG CEEPIPI)

 Customizing Language Environment 37

LOADFUNC (LSEG CEEBPICI)
LOADFUNC (LSEG IBMRLIB1)
LOADFUNC (LSEG IBMRCOMP)

\ LOADFUNC (LSEG IGZCPAC)
\ LOADFUNC (LSEG IGZCPCO)
:EOBJNAME.
\

By using this method, should you decide at a later date to reinstate these routines in the saved segments
simply remove the asterisk “*” and regenerate the segments. If you wish to include other routines into
saved segments simply add the correct “LOADFUNC” statement into the respective build list.

See Appendix D, “Segment Build Lists (CEEBLSGA/CEEBLSGB)” on page 58 for a full description of the
segment build lists.

For more information on the defining/loading of the Saved segments for IBM Language Environment VM,
see 6.4.3, “Redefining and Building Saved Segments for Language Environment” on page 18.

38 Language Environment Program Directory

8.7 Installing in Saved Segments

All IBM Language Environment VM routines that can be installed into saved segments are shown below
with their approximate sizes in hex bytes.

 SCEE (CEEBLSGB) SCEEX (CEEBLSGA)
 (Below Line) (Above Line)

 Mod Name Size Mod Name Size

\\ LE Components \\ \\ LE Components \\

 CEEBINIT A74ð CEECOPP BB68
 CEEBLIIA 1548 CEEPLPKA A87Fð
 CEEPIPI CF88 CEEQMATH 843A8
 CEEBPICI AD2ð CEEMUENð 289ð
 CEEMUEN2 2DB8

\\ COBOL Components \\ CEEMUEN3 742ð
 IGZCPAC 1AF18 CEEMUEN4 ð46ð
 IGZCPCO BA9ð CEEMUEN5 3598
 CEEMENUð 289ð

\\ PL/I Components \\ CEEMENU2 2DB8
 CEEMENU3 742ð
 IBMRLIB1 BDAð CEEMENU4 ð4ðð
 IBMRCOMP 3818 CEEMENU5 3598
 IBMRPTLA ððð8
 \\ PL/I Components \\

 CEEEVð1ð 343Að

\\ COBOL Components \\

 IIGZMSGT ðð88
 IGZINSH 27Aðð
 IGZCMGEN 4ðDð
 CEEEVðð5 33A8

\\ 'C' Components \\

 EDCNSSð1 16F84ð (CEEEVðð3 Module)
 EDCNSSð2 8E958 (EDCZ24 Module)
 EDCNSSð3 47DF8 (EDCNINSP Module)
 EDCZUMSG 6D7ð
 EDCZEMSG 6D7ð

\\ 'NLS' Components \\

 EDCZJMSG
 IGZCMGJA 4278
 CEEMJPNð 2848
 CEEMJPN2 2E7ð
 CEEMJPN3 76D8
 CEEMJPN4 ð3F8
 CEEMJPN5 3728

Figure 15. Component Module Size

 Customizing Language Environment 39

Appendix A. Applying a Recommended Service Upgrade
(RSU) Tape For Language Environment

The RSU Tape is structured to install all PTFs included on the tape plus the tape files containing the
preapplied service and prebuilt objects. All PTF-related files are loaded to the delta disk. The tape file
containing the preapplied service, i.e. containing the results of VMFAPPLY, is loaded to the alternate apply
disk and the contents of the tape files containing prebuilt objects are loaded to the appropriate build disks.

Points to consider about using the Product Service Upgrade procedure are:

� This process will not alter any of your tailored flat files in any way. Local modifiable files you may
have updated will have to be re-worked to include any new service to these files.

� Planning must be done (such as determining disk sizes, and determining what service, if any, on your
existing system is not contained on the RSU Tape) prior to actually loading the service from the RSU
Tape. These tasks will be discussed.

The following outline is an overview of what tasks need to be performed during the Preventive Service
procedure (PSU) using the RSU tape:

 � Prepare System

In this task, you will receive the documentation contained on the RSU Tape and determine the DASD
required to install the RSU Tape.

 � Merge Service

Use the VMFMRDSK command to clear the alternate apply disk before receiving the RSU Tape. This
allows you to easily remove the new service if a serious problem is found.

 � Receive Service

The VMFINS command receives service from the RSU Tape and places it on the Delta disk.

� Apply Additional Service

The VMFAPPLY command updates the version vector table (VVT), which identifies the service level of
all the serviced parts. In addition, AUX files are generated from the VVT for parts that require them.
These steps are used to reapply service that was not contained on the RSU tape that was already
installed for Language Environment.

� Reapplying Local Modifications (if applicable)

All local modifications must be entered into the software inventory to allow VMSES/E to track the
changes and build them into the system.

� Building New Levels

The build tasks generates the serviced level of an object and places the new object on a BUILD disk.

40  Copyright IBM Corp. 1991, 1998

� Placing the New Service into Production

Once the service is satisfactorily tested it should be put into production by copying the new service to
the production disk, re-saving the NSS (Named Saved System) or DCSS (Discontiguous Saved
Segments), etc.

A.1 Apply Language Environment RSU

A.1.1 Prepare Your System for Service Refresh

The ppfname used throughout these instructions is 5688198H, which assumes you are using the PPF
supplied by IBM for Language Environment. If you have your own PPF override file for Language
Environment you should use your file's ppfname instead of 5688198H. The ppfname you use should be
used throughout the rest of this procedure.

Electronic Service (envelope file)

If you have received the RSU as an envelope file, follow the procedures in the ServiceLink User's
Guide to retrieve and decompact the envelope file to your A-disk. This is currently done by using the
VMDPACK EXEC (which uses the DETERSE MODULE) supplied by ServiceLink. The file name of the
decompacted file will be of the format RPTFnnnn. The file type will be SERVLINK. You will need to
enter the file name on the VMFINS commands.

1 Read through the latest RSU information hard copy memo. This is a memo
that should have come with the RSU tape.

2 Logon to the IBM Language Environment VM service user ID P688198H

3 If the Software Inventory disk (51D) was accessed R/O (read only) then
establish write access to the Software Inventory disk.

Note: If the MAINT 51D minidisk was accessed R/O, you will need to have
the user who has it linked R/W link it as R/O. You then can issue the
following commands to obtain write access to it. Do not use mw mode.

link MAINT 51d 51d mr
access 51d d

The MAINT 51D disk is where the VMSES/E
system level software inventory files reside.

4 Mount the RSU tape on the tape drive as virtual device 181. You must use
181.

 Appendix A. Applying a Recommended Service Upgrade (RSU) Tape For Language Environment 41

5 Receive the documentation

Receive the documentation on the tape for the RSU Tape. This step will also
load the cumulative Apply Status Table (SRVAPPS) which identifies all
preapplied service contained on the tape. These files are loaded to the 51D
disk.

a If receiving the RSU from tape

vmfins install info (nomemo

b If receiving the RSU from an envelope file

vmfins install info (nomemo env rptf nnnn

6 Determine DASD sizes for disks to receive service

In order to receive the service from the RSU Tape, you need to have
adequate space available on the alternate APPLY and DELTA disks. The
required sizes are identified in the Language Environment documentation
(5688198H MEMO D) received in the previous step.

7 Setup the correct minidisk access order

vmfsetup 5688198H {LE370 | LE370SFS} Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

8 Merge the APPLY disks for Language Environment

Next, you must prepare your system to receive the service from the RSU
Tape. To do this, you must first clear the alternate apply disk for receipt of
the service from the RSU Tape.

Enter the VMFMRDSK command to merge the alternate apply disk to the
apply disk. This will clear the alternate apply disk.

vmfmrdsk 5688198H {LE370 | LE370SFS} apply Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

42 Language Environment Program Directory

9 Obtain additional information about the service on the RSU and how it will
affect your local modifications by invoking the VMFPSU command. This
command creates an output file, appid PSUPLAN , which you can review.
See VM/ESA Service Guide for an explanation of this file.

vmfpsu 5688198H {LE370 | LE370SFS} Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

This command produces an output file that
contains information about the service on the RSU
compared against the service and local
modifications on your system. The file name is
appid PSUPLAN , where appid is specified in the
PPF file.

A.1.2 Receive the Preapplied, Prebuilt Service
1 Refresh the Language Environment service disks by loading new service from

the RSU Tape

a If receiving the RSU from tape

vmfins install ppf 5688198H {LE370 | LE370SFS} (nomemo nolink

Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

b If receiving the RSU from an envelope file

vmfins install ppf 5688198H {LE370 | LE370SFS} (nomemo nolink env rptf nnnn

Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

 Appendix A. Applying a Recommended Service Upgrade (RSU) Tape For Language Environment 43

à ð
VMFINS2767I Reading VMFINS DEFAULTS B for additional options
VMFINS276ðI VMFINS processing started
VMFINS26ð1R Do you want to create an override for :PPF 5688198H

LE37ð :PRODID 5688198H%LE37ð?
Enter ð (No), 1 (Yes) or 2 (Exit)

ð
VMFINS26ð3I Processing product :PPF 5688198H LE37ð :PRODID
 5688198H%LE37ð
VMFREQ28ð5I Product :PPF 5688198H LE37ð :PRODID 5688198H%LE37ð

has passed requisite checking
VMFINT26ð3I Installing product :PPF 5688198H LE37ð :PRODID
 5688198H%LE37ð
VMFSET276ðI VMFSETUP processing started for 5688198H LE37ð
VMFUTL22ð5I Minidisk|Directory Assignments:

String Mode Stat Vdev Label/Directory
VMFUTL22ð5I LOCALSAM E R/W 2C2 SES2C2
VMFUTL22ð5I APPLY F R/W 2A6 SES2A6
VMFUTL22ð5I G R/W 2A2 SES2A2
VMFUTL22ð5I DELTA H R/W 2D2 SES2D2
VMFUTL22ð5I BUILDð I R/W 29E SES29E
VMFUTL22ð5I BASE1 J R/W 2B2 SES2B2
VMFUTL22ð5I -------- A R/W 191 USR191
VMFUTL22ð5I -------- B R/O 5E5 MNT5E5
VMFUTL22ð5I -------- D R/W 51D MNT51D
VMFUTL22ð5I -------- S R/O 19ð MNT19ð
VMFUTL22ð5I -------- Y/S R/O 19E MNT19E
VMFSET276ðI VMFSETUP processing completed successfully
VMFREC276ðI VMFREC processing started
VMFREC1852I Volume 1 of 1 of INS TAPE yynn...
VMFREC276ðI VMFREC processing completed successfully
VMFINT26ð3I Product Installed
VMFINS276ðI VMFINS processing completed successfully
Ready;

á ñ
2 Check the receive message log ($VMFREC $MSGLOG) for warning and error

messages. If necessary, correct any problems before going on. For
information about handling specific receive messages, see VM/ESA: System
Messages and Codes, or use online HELP.

vmfview install

A.1.3 Process Additional Service
1 Apply additional service

The VMFAPPLY command is used to reapply service that was not contained
on the refresh tape that was already installed for the component.

44 Language Environment Program Directory

Applying service with preapplied, prebuilt service will reapply any reach-ahead
service that may be on the system or indicate that there are no reach-ahead
PTFs to be applied.

vmfapply ppf 5688198H {LE370 | LE370SFS} .Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

Messages VMFAPP2122E and VMFAPP2109R will
be displayed only if you have reach-ahead service
that needs to be reapplied. If you receive these
messages, enter 1 in reply to VMFAPP2109R to
reapply the reach-ahead service (as shown in the
example below).

VMFAPP2122E The set of PTFs in the Apply Status Table (5688198H
SRVAPPS) on the 2A2 (G) disk is not a subset of the
PTFs in the highest Level Apply Status Table on the
2A6 (F) disk. This is an inconsistent state.

VMFAPP2109R VMFAPPLY will automatically correct the problem identified
by message 2122E by including the missing PTFs in the
current Apply List. Enter (1) to continue; (0) to quit.

1 Enter 1 for VMFAPPLY to reapply the reach-ahead
service.

2 Check the apply message log ($VMFAPP $MSGLOG) for warning and error
messages. If necessary, correct any problems before going on. For
information about handling specific apply messages, see VM/ESA: System
Messages and Codes, or use online HELP.

vmfview apply

3 If necessary, rework local modifications .

The output from the VMFPSU command (which was run in an earlier step),
appid PSUPLAN file, can be used to indicate what local service or mods are
affected by the RSU Tape. If a PTF is applied and it contains service to a
part for which you have a local modification, you will need to rework the local
modification. Refer to the VM/ESA Service Guide.

A PSU $SELECT file might have been created on the A-disk. This file has
in it the local modifications affected by service; whether they required rework
or just a rebuild. You need to append this file to the top of the 5688198H
$SELECT file on the alternate apply disk. This ensures that your local
modifications get rebuilt.

 Appendix A. Applying a Recommended Service Upgrade (RSU) Tape For Language Environment 45

A.1.4 Build the New Service Level and Place Into Production

To rebuild all objects that were affected by reach-ahead service that was reapplied, local modifications,
and saved segments continue with the instructions in 7.2.4, “Update the Build Status Table” on page 30.
This will also lead you into the steps to place Language Environment into production.

A.2 Determine RSU Service Level

The service contained on each RSU constitutes a new service level. Use this service level when ordering
corrective service. The service level is updated in the system inventory when the RSU is installed.

The following command is used to query the current service level of the system.

vmfsim query vm sysrecs tdata :ppf ppfname :stat The output from this command is similar to the
following console log. The last part of the status
line indicates the RSU service level: 9801

à ð
VMFSIP24ð8I RESULTS FOR

TDATA :PPF ppfname :STAT
:PPF ppfname compname
 :STAT RECEIVED.mm/dd/yy.hh:mm:ss.userid.RSU-98ð1

á ñ

46 Language Environment Program Directory

Appendix B. Moving Language Environment to SFS
Directories and Creating PPF Override

By default, IBM Language Environment VM is installed to minidisks, as part of the VM/ESA Version 2
Release 3.0 System DDR; unless you choose to move Language Environment to SFS during the initial
VM/ESA 2.3.0 install. However, you can move some of the Language Environment minidisks to SFS
directories. Refer to the figure Figure 6 on page 13 to see which minidisks can reside in SFS. You can
use either the default filel pool, VMSYS, or a file pool of your choice.

A summary of the steps that are needed to place Language Environment into SFS are:

� Allocate space in the user-defined file pool

� Provide the installation user ID, P688198H, access to the file pool

� Create the necessary Language Environment subdirectories

� Copy files from the minidisks to the new SFS subdirectories

� Create a PPF override, if not using the default file pool or subdirectory names.

Where to next

You need to do one of the following:

� If you want to place Language Environment into SFS directories using the defaults defined in
the 5688198H PPF file you need to continue with the instructions provided in the VM/ESA
Installation Guide, in the Appendix titled "Moving Components to SFS Directories".

� If you want to place Language Environment into your own user-defined file pool or SFS
directories , continue with the instructions in B.1, “Setup SFS File Pool and Directories” on
page 48.

� If you need to just create a PPF override , continue with the instructions in B.3, “Create Product
Parameter File (PPF) Override” on page 50.

After you have chosen one of the previous options and completed the steps required (whether in this
appendix or in the VM/ESA Installation Guide) you need to return to the section that pointed you to this
appendix and continue from there (if you were pointed to this appendix).

 Copyright IBM Corp. 1991, 1998 47

B.1 Setup SFS File Pool and Directories
Notes:

1. The steps that follow help you determine the Language Environment file pool space requirements, file
pool enrollment, and SFS directory definitions. If not all of these steps are required - for example, you
are changing only SFS directory or subdirectory names - adapt these instructions as needed for you
environment.

2. The steps that follow assume that a user-defined SFS file pool name is being used. If you will be
using the VM/ESA default VMSYS file pool name, substitute it in any place you see 'user-defined file
pool' or userfilepool.

3. For more information about planning for, generating and managing a file pool and server, see VM/ESA
File Pool Planning, Administration and Operation.

1 Determine the number of 4k blocks that are required for SFS directories by
adding up the 4K blocks required for each SFS directory you plan to use.

If you intend to use all of the default Language Environment SFS directories,
the 4K block requirements for each directory are summarized in Figure 6 on
page 13.

This information is used when enrolling the P688198H to the user-defined file
pool.

2 Enroll user P688198H in the user-defined file pool using the ENROLL USER
command:

ENROLL USER P688198H userfilepool: (BLOCKS blocks

where blocks is the number of 4k blocks that you calculated in the previous
step.

Note: This must be done from a user ID that is an administrator for the
user-defined file pool.

3 Determine if there are enough blocks available in the file pool to install
Language Environment. This information can be obtained from the QUERY
FILEPOOL STATUS command. Near the end of the output from this
command is a list of minidisks in the file pool and the number of blocks free.
If the number of blocks free is smaller than the total 4k blocks needed to
install Language Environment you need to add space to the file pool. See
VM/ESA SFS and CRR Planning, Administration, and Operation manual for
information on adding space to a file pool.

48 Language Environment Program Directory

4 Create the necessary subdirectories using the CREATE DIRECTORY
command.

A complete list of default Language Environment SFS directories is provided
in Figure 6 on page 13.

set filepool userfilepool:
create directory dirid

dirid is the name of the SFS directory you're
creating, such as the default names:

create directory userfilepool:P688198H.LE37ð
create directory userfilepool:P688198H.LE37ð.OBJECT
create directory userfilepool:P688198H.LE37ð.LOCAL
create directory userfilepool:P688198H.LE37ð.DELTA
create directory userfilepool:P688198H.LE37ð.ALTAPPLY
create directory userfilepool:P688198H.LE37ð.PRODAPPLY

If necessary, see VM/ESA CMS Command
Reference for more information about the CREATE
DIRECTORY command.

5 If you intend to use an SFS directory as the work space for the P688198H
used ID, include the following IPL control statement in the P688198H
directory entry:

IPL CMS PARM FILEPOOL VMSYS

This will cause CMS to automatically access P688198H's top directory as file
mode A.

B.2 Copy Minidisk (or SFS) Files to SFS Directories

1 Copy the files from the Language Environment minidisks (or from the VMSYS
file pool, if Language Environment is already installed there) to your new
user-defined SFS file pool and directories using the VMFCOPY command.

Note: Repeat the ACCESS and VMFCOPY commands, that follow, for each
disk or SFS directory you need to copy. Refer to Figure 6 on page 13 for
the default minidisk and SFS directory names for Language Environment.

access vdev e
access dirid f
vmfcopy * * e = = f (prodid 5688198H%LE370 olddate replace

 Appendix B. Moving Language Environment to SFS Directories and Creating PPF Override 49

Where

� vdev is the minidisk you are copying files from.
If you are copying from SFS then substitute in
the SFS directory name in place of vdev.

� dirid is the name of the (target) SFS directory
that you are copying files to.

� 5688198H%LE370 is the PRODID defined
within the 5688198H PPF file, for the minidisk
and SFS components of Language
Environment.

The VMFCOPY command will update the VMSES
PARTCAT file on the target directory.

B.3 Create Product Parameter File (PPF) Override
This section provides information to help you create a product parameter file (PPF) override. The example
used in this section is how to change the shared file system (SFS) file pool where Language Environment
files reside. Refer to the VMSES/E Introduction and Reference for more information on PPF overrides.

Note: Do not modify the product supplied 5688198H $PPF or 5688198H PPF files to change the VMSYS
file pool name or any other installation parameters. If the 5688198H $PPF file is serviced, the existing
$PPF file will be replaced, and any changes to that file will be lost. By creating your own $PPF override,
your updates will be preserved.

The following process describes changing the default file pool name, VMSYS to MYPOOL1:

1 Create a new $PPF override file or edit an existing override file.

xedit overname $PPF fm2 overname is the PPF override file name (such as
"myLE370") that you want to use.

fm is an appropriate file mode. If you create this
file yourself, specify a file mode of A.

If you modify an existing override file, specify a file
mode of A or D, based on where the file currently
resides (A being the file mode of a R/W 191
minidisk, or equivalent; D, that of the MAINT 51D
minidisk).

50 Language Environment Program Directory

2 Create (or modify as required) the Variable Declarations (:DCL.) section for
the LE370SFS override area so that it resembles the :DCL. section as
shown below.

:OVERLST. LE37ðSFS
\
\===\
:LE37ðSFS. LE37ð 5688198H
\===\
:DCL. UPDATE
 &191 DIR MYPOOL1:P688198H. \ A DISK
 &SAMPZ DIR MYPOOL1:P688198H.LE37ð.LOCAL \ SAMPLE/LOCAL FILES
 &DELTZ DIR MYPOOL1:P688198H.LE37ð.DELTA \ PRODUCT SERVICE
 &APPLY DIR MYPOOL1:P688198H.LE37ð.ALTAPPLY \ AUX/INVENTORY FILES
 &APPLZ DIR MYPOOL1:P688198H.LE37ð.PRODAPPLY \ PROD. APPLY DISK
&BLDðZ LINK P688198H 29E 29E MR \ TEST USABLE FORMS
 &BAS1Z DIR MYPOOL1:P688198H.LE37ð.OBJECT \ BASE DISK
 &LE3ID1 USER P688198H
:EDCL.
:END.
\===\
\

This override will replace the :DCL. section of the LE370SFS override area of the 5688198H $PPF
file.

3 If your $PPF override file was created at file mode A, copy it to file mode
D—the Software Inventory minidisk (MAINT 51D).

file
copyfile overname $PPF fm = = d (olddate

4 Compile your changes to create the usable overname PPF file.

vmfppf overname LE370SFS where overname is the file name of your $PPF
override file.

Now that the overname PPF file has been created, you should specify overname
instead of 5688198H as the PPF name to be used for any VMSES/E commands
that require a PPF name.

 Appendix B. Moving Language Environment to SFS Directories and Creating PPF Override 51

Appendix C. Contents of COBPACKs (IGZCPAC/IGZCPCO)

C.1 Contents of General COBPACK - IGZCPAC
Figure 16 lists routines you can include in the general IGZCPAC COBPACK and briefly describes each to
help you determine which to include in your tailored COBPACK.

Figure 16 (Page 1 of 4). Routines Eligible for Inclusion in General COBPACK (IGZCPAC)

Name

Description

OS/
CICS*

Link-
Edited
AMODE

Link-
Edited
RMODE

IGZCACP ACCEPT and STOP literal OS 31 ANY

IGZCACS Alternate collating sequence
comparison

Both 31 ANY

IGZCANE Alphanumeric editing Both 31 ANY

IGZCANF Format with figurative
constant

Both 31 ANY

IGZCBID Binary to internal decimal Both 31 ANY

IGZCBUG6 Used for debugging Both 31 24

IGZCCLS Class test Both 31 ANY

IGZCCTL4 Batch/interactive debug
control

Both 31 ANY

IGZCCVB Numeric conversion Both 31 ANY

IGZCDSP DISPLAY OS 31 ANY

IGZCFCC6 Linkage manager for COBOL
for MVS & VM (dynamic call
and cancel)

OS 31 24

IGZCFDP5 Formatted FDUMP Both 31 ANY

IGZCFDW TRUNC floating point to
binary conversion

Both 31 ANY

IGZCFPW Exponentiates double
precision floating-point
numbers

Both 31 ANY

IGZCGDR Segment refresh Both 31 ANY

IGZCHCM Condition management
events handler

Both 31 ANY

IGZCIDB Internal decimal to binary Both 31 ANY

52  Copyright IBM Corp. 1991, 1998

Figure 16 (Page 2 of 4). Routines Eligible for Inclusion in General COBPACK (IGZCPAC)

Name

Description

OS/
CICS*

Link-
Edited
AMODE

Link-
Edited
RMODE

IGZCINS INSPECT Both 31 ANY

IGZCIN1 INSPECT library Both 31 ANY

IGZCIN2 INSPECT library Both 31 ANY

IGZCIPS Initialization for internal
program setup

Both 31 ANY

IGZCIVL Comparison with figurative
constant

Both 31 ANY

IGZCKCL Kanji class test Both 31 ANY

IGZCLDL Load/delete subroutines Both 31 ANY

IGZCLDR1 Partition loader (COBLDR) Both 31 ANY

IGZCLLM2 Load list manager Both 31 ANY

IGZCLNC6 Linkage manager for OS/VS
COBOL, DEBUG, and
IGZBRDGE (dynamic call
and cancel)

Both 31 24

IGZCLNK6 Linkage manager for VS
COBOL II and COBOL/370
(dynamic call and cancel)

Both 31 24

IGZCMED Median function processor Both 31 ANY

IGZCMLT5 Message table Both 31 ANY

IGZCMSG Message process control
routine

Both 31 ANY

IGZCNMV NUMVAL/NUMVAL-C
function processor

Both 31 ANY

IGZCONV Conversion routine for
floating point

Both 31 ANY

IGZCPPL2 Linkage manager for
procedure-pointers

Both 31 24

IGZCPRC2 Program cleanup Both 31 ANY

IGZCPRS2 Program setup Both 31 ANY

IGZCRCL3 Run unit cleanup Both 31 ANY

IGZCREV Reverse function processor Both 31 ANY

IGZCRSU2 Run unit setup Both 31 ANY

IGZCSCH Binary search of table Both 31 ANY

 Appendix C. Contents of COBPACKs (IGZCPAC/IGZCPCO) 53

Figure 16 (Page 3 of 4). Routines Eligible for Inclusion in General COBPACK (IGZCPAC)

Name

Description

OS/
CICS*

Link-
Edited
AMODE

Link-
Edited
RMODE

IGZCSMV Move right-justified Both 31 ANY

IGZCSPA Printer spacing OS 31 ANY

IGZCSPC Call by content Both 31 ANY

IGZCSPM Space manager Both 31 ANY

IGZCSSN Separate sign numeric Both 31 ANY

IGZCSSR SSRANGE compile-time
option

Both 31 ANY

IGZCSTA Statistical routine function
processor

Both 31 ANY

IGZCSTG STRING Both 31 ANY

IGZCULE6 User I/O logic error handler OS 31 24

IGZCUPL Upper and lowercase
function

Both 31 ANY

IGZCUST UNSTRING Both 31 ANY

IGZCVDP5 Variable dump routine 1 Both 31 ANY

IGZCVIN VSAM initialization OS 31 ANY

IGZCVLD2 Verify loader Both 31 ANY

IGZCVMO Variable length move Both 31 ANY

IGZCXDI Double precision division Both 31 ANY

IGZCXFR6 I/O declarative transfer OS 31 24

IGZCXMU Double precision
multiplication

Both 31 ANY

IGZCXPR Decimal fixed-point
exponentiation

Both 31 ANY

IGZIBPC4 Build program control tables Both 31 ANY

IGZICAL4 Call intercept routine Both 31 ANY

54 Language Environment Program Directory

Figure 16 (Page 4 of 4). Routines Eligible for Inclusion in General COBPACK (IGZCPAC)

Name

Description

OS/
CICS*

Link-
Edited
AMODE

Link-
Edited
RMODE

IGZICUD4 Describe CU Both 31 ANY

Notes to Routines Eligible for inclusion in General COBPACK (IGZCPAC):

1 Highly recommended for a partially loaded COBPACK.

2 Highly recommended for inclusion in the general COBPACK, regardless of whether the location is above or below
the 16M address line.

3 Highly recommended for inclusion in the general COBPACK if it is located below the 16M address line.

4 If IGZCCTL is included in the COBPACK, you should also include modules IGZIBPC, IGZICAL, and IGZICUD.

5 If IGZCFDP is included in the COBPACK, you should also include modules IGZCMLT and IGZCVDP.

6 This routine is not included in the IBM supplied COBPACK IGZCPAC so that the COBPACK is RMODE(ANY)
and will be loaded above the 16M line.

 Appendix C. Contents of COBPACKs (IGZCPAC/IGZCPCO) 55

C.2 Contents of the Environment-Specific COBPACK (IGZCPCO)

Figure 17 lists routines you can include in the environment-specific COBPACK (IGZCPCO) and describes
each to help you determine which to include in your tailored COBPACK.

Figure 17 (Page 1 of 2). Routines Eligible for Inclusion in the Environment-Specific
COBPACK (IGZCPCO)

Name

Description

Link-
Edited
AMODE

Link-
Edited
RMODE

CEEARLU5 Anchor lookup 31 ANY

CEEBLLST5 Language list CSECT 31 ANY

CEEBPIRA5 Common initialization 31 ANY

CEEBTRM5 Common termination 31 ANY

IGZCSG5 COBOL signature 31 ANY

IGZCBET5 Common table CSECT 31 ANY

IGZECKP Checkpoint 31 ANY

IGZECMS4 CMS command handler 31 ANY

IGZEDMR6 Reusable environment deactivation 31 24

IGZEDTE Date, day, and time of day 31 ANY

IGZEINI2,3,6 Environment initialization 31 24

IGZEINP6 Accept input reader 31 24

IGZEMSG Object-time message writer 31 ANY

IGZENRT NORES termination 31 ANY

IGZEOPN6 OPENS SYSIN and SYSPUNCH in
the initial Program Thread (IPT)

31 24

IGZEOUT6 Display output writer 31 24

IGZEPTV Printer overflow 31 ANY

IGZEQBL6 QSAM initialization transmission
verbs, error exits

31 24

IGZEQOC6 QSAM OPEN/ CLOSE 31 24

IGZESCD6 SORT-CONTROL I/O handling
routine

31 24

IGZESMG6 Sort/Merge interface 31 24

IGZETCL1 Thread cleanup 31 ANY

IGZETRM6 Environment termination 31 24

IGZETSU1 Thread setup 31 ANY

56 Language Environment Program Directory

Figure 17 (Page 2 of 2). Routines Eligible for Inclusion in the Environment-Specific
COBPACK (IGZCPCO)

Name

Description

Link-
Edited
AMODE

Link-
Edited
RMODE

IGZEVAM6 VSAM-to-IDCAMS interface 31 24

IGZEVEX6 VSAM exit module for SYNAD and
LERAD

31 24

IGZEVIO VSAM input/output 31 ANY

IGZEVOC VSAM OPEN/CLOSE 31 ANY

IGZEVOP VSAM OPEN interface for variable
length records

31 ANY

IGZEVSV VSAM I/O for simulated relative
record data sets with variable length
records

31 ANY

Notes to Routines Eligible for Inclusion in the Environment-Specific
COBPACK(IGZCPCO):

1 Highly recommended for inclusion in a COBPACK, regardless of whether it is
located above or below the 16M address line.

2 Must exist outside the OS ESM COBPACK, even if it also exists in it.

3 Highly recommended for inclusion in a COBPACK if it is located below the 16M
address line.

4 IGZECMS is applicable under CMS only and must be available at link-time if the
load module is to run under CMS.

5 If IGZEINI is included in the COBPACK, the following routines must also be
included: CEEARLU, CEEBLLST, CEEBPIRA, CEEBTRM, and IGZCBET.

6 This routine is not included in the IBM supplied COBPACK IGZCPCO so that
the COBPACK is RMODE(ANY) and will be loaded above the 16M line.

 Appendix C. Contents of COBPACKs (IGZCPAC/IGZCPCO) 57

Appendix D. Segment Build Lists (CEEBLSGA/CEEBLSGB)

 D.1 CEEBLSGB

\\\
\ IBM Language Environment for MVS & VM \
\ Version 1 Release 8 Modification ð \
\ \
\ Licensed Materials -- Property of IBM \
\ 5688-198 (C) Copyright IBM Corporation 1997 \
\ All Rights Reserved \
\\\
\ Build List for 'SCEE PSEG' Saved Segment (Below line) \
\ "LE/37ð" Environment \
\\\
\
:FORMAT. 2
\
:OBJNAME. SCEE.SEGMENT
:BLDREQ. CEEBLMOD.CEEBINIT.MODULE
 CEEBLMOD.CEEBLIIA.MODULE
 CEEBLMOD.CEEPIPI.MODULE
 CEEBLMOD.CEEBPICI.MODULE
 EDCBLSP2
 IBMBLMOD.IBMRCOMP.MODULE
 IBMBLMOD.IBMRLIB1.MODULE
 IBMBLMOD.IBMRPTLA.MODULE
:GLOBAL. TXTLIB SCEESPC
:OPTIONS. LOADFUNC (LSEG CEEBINIT)

LOADFUNC (LSEG CEEBLIIA)
LOADFUNC (LSEG CEEPIPI)
LOADFUNC (LSEG CEEBPICI)
LOADFUNC (LSEG IBMRLIB1)
LOADFUNC (LSEG IBMRCOMP)
LOADFUNC (LSEG IGZCPAC)
LOADFUNC (LSEG IGZCPCO)

:EOBJNAME.
\

Figure 18. Contents of CEEBLSGB Build List

58  Copyright IBM Corp. 1991, 1998

 D.2 CEEBLSGA

\\
\ IBM Language Environment for MVS & VM \
\ Version 1 Release 8 Modification ð \
\ \
\ Licensed Materials -- Property of IBM \
\ 5688-198 (C) Copyright IBM Corporation 1997 \
\ All Rights Reserved \
\\
\ Build List for SCEEX PSEG (Above Line only) \
\\
\
:FORMAT. 2
\
:OBJNAME. SCEEX.SEGMENT
:BLDREQ. CEEBLMOD.CEECOPP.MODULE
 CEEBLMOD.CEEMUENð.MODULE
 CEEBLMOD.CEEMUEN2.MODULE
 CEEBLMOD.CEEMUEN3.MODULE
 CEEBLMOD.CEEMUEN4.MODULE
 CEEBLMOD.CEEMUEN5.MODULE
 CEEBLMOD.CEEPLPKA.MODULE
 CEEBLMOD.CEEQMATH.MODULE
 CEEBLNLS.CEEMENUð.MODULE
 CEEBLNLS.CEEMENU2.MODULE
 CEEBLNLS.CEEMENU3.MODULE
 CEEBLNLS.CEEMENU4.MODULE
 CEEBLNLS.CEEMENU5.MODULE
 CEEBLNLS.CEEMJPNð.MODULE
 CEEBLNLS.CEEMJPN2.MODULE
 CEEBLNLS.CEEMJPN3.MODULE
 CEEBLNLS.CEEMJPN4.MODULE
 CEEBLNLS.CEEMJPN5.MODULE
 IGZBLMOD.CEEEVðð5.MODULE
 IGZBLMOD.IGZINSH.MODULE
 IGZBLMOD.IIGZMSGT.MODULE
 IGZBLNLS.IGZCMGEN.MODULE
 IGZBLNLS.IGZCMGJA.MODULE
 IBMBLMOD.CEEEVð1ð.MODULE
 EDCBLMOD.CEEEVðð3.MODULE
 EDCBLMOD.EDCZ24.MODULE
 EDCBLMOD.EDCNINSP.MODULE

Figure 19 (Part 1 of 2). Contents of CEEBLSGA Build List

 Appendix D. Segment Build Lists (CEEBLSGA/CEEBLSGB) 59

:OPTIONS. LOADFUNC (LSEG CEECOPP)
LOADFUNC (LSEG CEEPLPKA)
LOADFUNC (LSEG CEEQMATH)
LOADFUNC (LSEG CEEMUENð)
LOADFUNC (LSEG CEEMUEN2)
LOADFUNC (LSEG CEEMUEN3)
LOADFUNC (LSEG CEEEVðð5)
LOADFUNC (LSEG IIGZMSGT)
LOADFUNC (LSEG IGZINSH)
LOADFUNC (LSEG CEEEVðð3)
LOADFUNC (LSEG EDCZ24)
LOADFUNC (LSEG EDCNINSP)
LOADFUNC (LSEG EDCZUMSG)
LOADFUNC (LSEG CEEEVð1ð)
LOADFUNC (LSEG CEEMENUð)
LOADFUNC (LSEG CEEMENU2)
LOADFUNC (LSEG CEEMENU3)
LOADFUNC (LSEG IGZCMGEN)
LOADFUNC (LSEG EDCZEMSG)
LOADFUNC (LSEG CEEMJPNð)
LOADFUNC (LSEG CEEMJPN2)
LOADFUNC (LSEG CEEMJPN3)
LOADFUNC (LSEG CEEMJPN4)
LOADFUNC (LSEG CEEMJPN5)
LOADFUNC (LSEG IGZCMGJA)
LOADFUNC (LSEG EDCZJMSG)

:EOBJNAME.
\

Figure 19 (Part 2 of 2). Contents of CEEBLSGA Build List

60 Language Environment Program Directory

Appendix E. IBM Language Environment VM Run-time
Options

This chapter includes descriptions of the Language Environment run-time options. Where noted, some of
the run-time options might be used only by a COBOL routine. A quick reference table is provided for
convenience. In addition, there is a table that maps Language Environment run-time options to HLL
run-time options to help you plan your customization.

The syntax described here is specific to the CEEDOPT form of the file used at installation time. All
suboptions must be specified and no abbreviations are permitted in CEEDOPT. IBM-supplied defaults are
indicated for planning information only.

E.1 Quick Reference Table of Language Environment Run-Time
Options

Figure 20 (Page 1 of 5). Run-Time Options Quick Reference

Run-Time Options Function Page

 ┌ ┐─NONE─── ┌ ┐─OVR────
55──ABPERC──=──(──(─ ──┴ ┴─abcode─ ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────5%

Percolates a specified abend. 72

 ┌ ┐─RETCODE─ ┌ ┐─OVR────
55──ABTERMENC──=──(──(─ ──┴ ┴─ABEND─── ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────5%

Sets the enclave termination
behavior for an enclave ending
with an unhandled condition of
severity 2 or greater.

74

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──AIXBLD──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────5%

Invokes the access method
services (AMS) for VSAM
indexed and relative data sets to
complete the file and index
definition procedures for COBOL
routines.

75

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──ALL31──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────5%

Indicates whether an application
does or does not run entirely in
AMODE(31).

76

 ┌ ┐─ANYWHERE─
55──ANYHEAP──=──(──(─ ─init_size──,──incr_size──,─ ──┼ ┼─ANY────── ─,─────────5
 └ ┘─BELOW────

 ┌ ┐─FREE─ ┌ ┐─OVR────
5─ ──┴ ┴─KEEP─ ─)──,─ ──┴ ┴─NONOVR─ ─)───5%

Controls allocation of library heap
storage not restricted to below
the 16M line.

78

 ┌ ┐─OVR────
 ┌ ┐─NOAUTOTASK──═──(─ ──┴ ┴─NONOVR─ ─)────────────────────────────────
 │ │┌ ┐─OVR────
55─ ──┴ ┴─NOAUTOTASK──═──(──(─ ─loadmod──,──numtasks──)──,─ ──┴ ┴─NONOVR─ ─)─ ──5%

Specifies whether Fortran
Multitasking Facility is to be used
by your program and the number
of tasks that are allowed to be
active.

80

 Copyright IBM Corp. 1991, 1998 61

Figure 20 (Page 2 of 5). Run-Time Options Quick Reference

Run-Time Options Function Page

 ┌ ┐─FREE─
55──BELOWHEAP──=──(──(─ ─init_size──,──incr_size──,─ ──┴ ┴─KEEP─ ─)──,────────5

 ┌ ┐─OVR────
5─ ──┴ ┴─NONOVR─ ─)───5%

Controls allocation of library heap
storage below the 16M line.

80

 ┌ ┐─ON── ┌ ┐─OVR────
55──CBLOPTS──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────5%

Specifies the format of the
argument string on application
invocation when the main
program is COBOL.

82

 ┌ ┐─ON── ┌ ┐─OVR────
55──CBLPSHPOP──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────5%

Controls whether CICS PUSH
HANDLE and CICS POP
HANDLE commands are issued
when a COBOL subprogram is
called.

83

 ┌ ┐─ON── ┌ ┐─OVR────
55──CBLQDA──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────5%

Controls COBOL QSAM dynamic
allocation.

84

 ┌ ┐─ON── ┌ ┐─OVR────
55──CHECK──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────5%

Indicates whether “checking
errors” within an application
should be detected.

84

 ┌ ┐─OVR────
55──COUNTRY──=──(──(─ ──country_code ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────5%

Specifies the default formats for
date, time, currency symbol,
decimal separator, and the
thousands separator based on a
country.

85

 ┌ ┐─ON── ┌ ┐─OVR────
55──DEBUG──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────5%

Activates the COBOL batch
debugging features specified by
the “debugging lines” or the USE
FOR DEBUGGING declarative.

86

 ┌ ┐─OVR────
55──DEPTHCONDLMT──=──(──(─ ──limit ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────5%

Limits the extent to which
conditions can be nested.

87

 ┌ ┐─,──────── ┌ ┐─OVR────
55──ENVAR──=──(──(─ ───6 ┴─ ──string─ ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────5%

Sets the initial values for the
environment variables specified
in string.

89

 ┌ ┐─OVR────
55──ERRCOUNT──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────5%

Specifies how many conditions of
severity 2, 3, and 4 can occur
per thread before an enclave
terminates abnormally.

90

 ┌ ┐─OVR────
55──ERRUNIT──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────5%

Identifies the unit number to
which run-time error information
is to be directed.

91

 ┌ ┐─ON── ┌ ┐─OVR────
55──FILEHIST──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────5%

FILEHIST specifies whether to
allow the file definition of a file
referred to by a ddname to be
changed during run time.

92

 ┌ ┐─ANYWHERE─
55──HEAP──=──(──(─ ─init_size──,──incr_size──,─ ──┼ ┼─ANY────── ─,────────────5
 └ ┘─BELOW────

 ┌ ┐─KEEP─ ┌ ┐─OVR────
5─ ──┴ ┴─FREE─ ─,─ ─initsz24──,──incrsz24──)──,─ ──┴ ┴─NONOVR─ ─)───────────────5%

Controls allocation of the heaps. 93

62 Language Environment Program Directory

Figure 20 (Page 3 of 5). Run-Time Options Quick Reference

Run-Time Options Function Page

 ┌ ┐─ON── ┌ ┐─OVR────
55──INQPCOPN──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────5%

INQPCOPN controls whether the
OPENED specifier on an
INQUIRE by unit statement can
be used to determine whether a
preconnected unit has had any
I/O statements directed to it.

95

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──INTERRUPT──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────5%

Causes attentions recognized by
the host operating system to be
recognized by Language
Environment.

96

 ┌ ┐─FREE─
55──LIBSTACK──=──(──(─ ──init_size ─,─ ──incr_size ─,─ ──┴ ┴─KEEP─ ─)──,─────────5

 ┌ ┐─OVR────
5─ ──┴ ┴─NONOVR─ ─)───5%

Controls the allocation of the
thread's library stack storage.

97

55──MSGFILE──=──(──(─ ──ddname ─,─ ──recfm ─,─ ──lrecl ─,─ ──blksize ─)──,────────5

 ┌ ┐─OVR────
5─ ──┴ ┴─NONOVR─ ─)───5%

Specifies the ddname of the
run-time diagnostics file.

99

 ┌ ┐─OVR────
55──MSGQ──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────5%

Specifies the number of ISI
blocks allocated on a per-thread
basis during execution.

102

 ┌ ┐─ENU─ ┌ ┐─OVR────
55──NATLANG──=──(──(─ ──┼ ┼─UEN─ ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────5%
 └ ┘─JPN─

Specifies the national language
to use for the run-time
environment.

102

 ┌ ┐─NONONIPTSTACK─
55─ ──┴ ┴─NONIPTSTACK─── ─=──(──(─ ──init_size ─,─ ──incr_size ─,────────────────5

┌ ┐─BELOW──── ┌ ┐─KEEP─ ┌ ┐─OVR────
5─ ──┼ ┼─ANYWHERE─ ─,─ ──┴ ┴─FREE─ ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────5%
 └ ┘─ANY──────

Controls stack allocation for each
thread, except the initial thread,
in a multithread environment.

104

 ┌ ┐─ON── ┌ ┐─OVR────
55──OCSTATUS──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────5%

Controls whether the OPEN and
CLOSE status specifiers are
verified.

106

 ┌ ┐─NOPCF─
55─ ──┴ ┴─PCF─── ───5%

Specifies that Fortran static
common blocks are not shared
among load modules.

107

 ┌ ┐─OVR────
55──PLITASKCOUNT──=──(──(─ ──tasks ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────5%

Controls the maximum number of
tasks active at one time while
you are running PL/I MTF
applications.

107

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──POSIX──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────5%

Specifies whether the enclave
can run with the POSIX
semantics.

108

 ┌ ┐─OVR────
55──PRTUNIT──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────5%

Identifies the unit number used
for PRINT and WRITE
statements that do not specify a
unit number.

109

 ┌ ┐─OVR────
55──PUNUNIT──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────5%

Identifies the unit number used
for PUNCH statements that do
not specify a unit number.

110

 Appendix E. IBM Language Environment VM Run-time Options 63

Figure 20 (Page 4 of 5). Run-Time Options Quick Reference

Run-Time Options Function Page

 ┌ ┐─OVR────
55──RDRUNIT──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────5%

Identifies the unit number used
for READ statements that do not
specify a unit number.

110

 ┌ ┐─OFF── ┌ ┐─OVR────
55─ ──RECPAD ─=──(──(─ ──┼ ┼─ON─── ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────5%
 ├ ┤─NONE─
 ├ ┤─ALL──
 └ ┘─VAR──

Specifies whether a formatted
input record is padded with
blanks.

111

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──RPTOPTS──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────5%

Specifies that a report of the
run-time options in use by the
application be generated.

112

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──RPTSTG──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────5%

Specifies that a report of the
storage used by the application
be generated at the end of
execution.

115

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──RTEREUS──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────5%

Initializes the run-time
environment to be reusable when
the first COBOL program is
invoked.

118

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──SIMVRD──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────5%

Specifies whether your COBOL
programs use a VSAM KSDS to
simulate variable length relative
organization data sets.

120

 ┌ ┐─BELOW────
55──STACK──=──(──(─ ──init_size ─,─ ──incr_size ─,─ ──┼ ┼─ANYWHERE─ ─,───────────5
 └ ┘─ANY──────

 ┌ ┐─KEEP─ ┌ ┐─OVR────
5─ ──┴ ┴─FREE─ ─)──,─ ──┴ ┴─NONOVR─ ─)───5%

Controls the allocation and
management of thread-level
heap storage.

121

55──STORAGE──=──(──(─ ──heap_alloc_value ─,─ ──heap_free_value ─,─────────────5

 ┌ ┐─OVR────
5─ ──dsa_alloc_value ─,─ ──reserve_size ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────5%

Controls the value of storage that
is allocated and freed.

123

 ┌ ┐─TRACE── ┌ ┐─OVR────
55──TERMTHDACT──=──(──(─ ──┼ ┼─QUIET── ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────5%
 ├ ┤─MSG────
 ├ ┤─DUMP───
 └ ┘─UADUMP─

Sets the level of information
produced due to an unhandled
error of severity 2 or greater.

126

 ┌ ┐─ANYWHERE─
55──THREADHEAP──=──(──(─ ──init_size ─,─ ──incr_size ─,─ ──┼ ┼─ANY────── ─,──────5
 └ ┘─BELOW────

 ┌ ┐─KEEP─ ┌ ┐─OVR────
5─ ──┴ ┴─FREE─ ─)──,─ ──┴ ┴─NONOVR─ ─)───5%

Controls the allocation and
management of thread-level
heap storage.

131

 ┌ ┐─NOTEST─ ┌ ┐─ALL───
55─ ──┴ ┴─TEST─── ─=──(──(─ ──┼ ┼─ERROR─ ─,─ ──┬ ┬─commands_file─ ─,───────────────5
 └ ┘─NONE── └ ┘─\─────────────

 ┌ ┐─PROMPT─── ┌ ┐─OVR────
5─ ──┼ ┼─NOPROMPT─ ─,─ ──┬ ┬─preference_file─ ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────5%
 ├ ┤─\──────── └ ┘─\───────────────
 ├ ┤─;────────
 └ ┘─command──

Specifies that a debug tool is to
be given control according to the
suboptions specified.

128

64 Language Environment Program Directory

Figure 20 (Page 5 of 5). Run-Time Options Quick Reference

Run-Time Options Function Page

┌ ┐─OFF─ ┌ ┐─DUMP─── ┌ ┐─LE=ð─
55──TRACE──=──(──(─ ──┴ ┴─ON── ─,─ ─table_size──,─ ──┴ ┴─NODUMP─ ─,─ ──┼ ┼─LE=1─ ───5
 ├ ┤─LE=2─
 └ ┘─LE=3─

 ┌ ┐─OVR────
5──)──,─ ──┴ ┴─NONOVR─ ─)───5%

Determines whether Language
Environment run-time library
tracing is active.

133

 ┌ ┐─ON── ┌ ┐─OVR────
55──TRAP──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────────5%

Specifies how Language
Environment routines handle
abends and program interrupts.

134

 ┌ ┐─OVR────
55──UPSI──=──(──(─ ──nnnnnnnn ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────5%

Sets the eight UPSI switches on
or off. Affects only COBOL
programs.

137

 ┌ ┐─NOUSRHDLR─ ┌ ┐─OVR────
55─ ──┴ ┴─USRHDLR─── ─=──(──(─ ──lmname ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────5%

USRHDLR registers a user
condition handler at stack frame
0.

138

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──VCTRSAVE──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────5%

Specifies whether any language
in an application uses the vector
facility when user-written
condition handlers are called.

139

 ┌ ┐─AUTO─ ┌ ┐─OVR────
55──XUFLOW──=──(──(─ ──┼ ┼─ON─── ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────5%
 └ ┘─OFF──

Specifies whether an exponent
underflow causes a program
interrupt.

140

E.2 Language Run-Time Option Mapping

Figure 21 (Page 1 of 2). C and Language Environment Options

C Option
Language Environment
Equivalent Notes

ISAINC STACK If you don't change the C/370 run-time option
ISAINC, you will receive a warning message
during execution.

ISASIZE STACK If you don't change the C/370 run-time option
ISASIZE, you will receive a warning message
during execution.

LANGUAGE NATLANG Mixed-case and uppercase U.S. English and
Japanese are supported. If you don't change the
C/370 run-time option LANGUAGE, you will
receive a warning message during execution.

 Appendix E. IBM Language Environment VM Run-time Options 65

Figure 21 (Page 2 of 2). C and Language Environment Options

C Option
Language Environment
Equivalent Notes

REPORT | NOREPORT RPTSTG(ON | OFF),
RPTOPT(ON | OFF)

RPTSTG(ON | OFF) and RPTOPT(ON | OFF)
provide behavior compatible with REPORT |
NOREPORT, and affects all languages in an
enclave. If you don't change the C/370 run-time
option REPORT|NOREPORT, you will receive a
warning message during execution.

SPIE | NOSPIE TRAP(ON | OFF) If SPIE | NOSPIE is specified in input, then
TRAP is set according to the option: TRAP(ON)
for SPIE, and TRAP(OFF) for NOSPIE. If both
SPIE | NOSPIE and STAE | NOSTAE are
specified together in input, then TRAP is set
according to both options: TRAP(OFF) when
both options are negative, and TRAP(ON)
otherwise. TRAP(ON) must be in effect for
applications to run successfully.

STAE | NOSTAE TRAP(ON | OFF) If STAE | NOSTAE is specified in input, then
TRAP is set according to the option: TRAP(ON)
for STAE, and TRAP(OFF) for NOSTAE. If both
SPIE | NOSPIE and STAE | NOSTAE are
specified together in input, then TRAP is set
according to both options: TRAP(OFF) when
both options are negative, and TRAP(ON)
otherwise. TRAP(ON) must be in effect for
applications to run successfully.

Figure 22 (Page 1 of 3). COBOL and Language Environment Options

COBOL Option
Language Environment
Equivalent Notes

AIXBLD | NOAIXBLD AIXBLD | NOAIXBLD Access Method Services (AMS) messages are
directed to the ddname specified in the Language
Environment run-time option MSGFILE when
running under MVS. Under CMS, the messages
are erased, which is the same behavior as VS
COBOL II. AIXBLD | NOAIXBLD is not
applicable under CICS.

DEBUG | NODEBUG DEBUG | NODEBUG DEBUG | NODEBUG provides behavior
compatible with VS COBOL II.

FLOW | NOFLOW FLOW | NOFLOW FLOW | NOFLOW provides behavior compatible
with VS COBOL II.

66 Language Environment Program Directory

Figure 22 (Page 2 of 3). COBOL and Language Environment Options

COBOL Option
Language Environment
Equivalent Notes

LANGUAGE NATLANG NATLANG replaces LANGUAGE, which is a VS
COBOL II installation option. You can select a
national language at run time or installation time
by using the NATLANG option.

LIBKEEP | NOLIBKEEP Not applicable LIBKEEP | NOLIBKEEP is not supported under
Language Environment. To obtain similar
performance function, use the Library Routine
Retention (LRR) feature described in Language
Environment for MVS & VM Programming Guide
and Language Environment for MVS & VM
Installation and Customization on MVS. The
LIBKEEP | NOLIBKEEP option is not applicable
under CICS.

MIXRES | NOMIXRES Not applicable MIXRES | NOMIXRES is not supported under
Language Environment. MIXRES applications
supported by Language Environment always
exhibit RES behavior. For more information, see
COBOL/370 and COBOL for MVS & VM
Compiler and Run-Time Migration Guide.
MIXRES|NOMIXRES is not applicable under
CICS.

RTEREUS | NORTEREUS RTEREUS | NORTEREUS RTEREUS | NORTEREUS provides similar
behavior to the VS COBOL II RTEREUS option,
but it will not work if you are using more than one
language. RTEREUS is not recommended.
RTEREUS | NORTEREUS is not applicable
under CICS.

SIMVRD | NOSIMVRD SIMVRD | NOSIMVRD SIMVRD | NOSIMVRD provides behavior
compatible with VS COBOL II.

SPOUT | NOSPOUT RPTOPTS(ON | OFF),
RPTSTG(ON | OFF)

Storage reports are directed to the ddname
specified in the Language Environment option
MSGFILE. For information about report formats
and tuning programs, see COBOL/370 and
COBOL for MVS & VM Compiler and Run-Time
Migration Guide.

SSRANGE | NOSSRANGE CHECK(ON | OFF) CHECK(ON | OFF) provides behavior compatible
with SSRANGE | NOSSRANGE.

STAE | NOSTAE TRAP(ON | OFF) If STAE | NOSTAE is specified in input, then
TRAP is set according to the option: TRAP(ON)
for STAE, and TRAP(OFF) for NOSTAE.
TRAP(ON) must be in effect for applications to
run successfully.

 Appendix E. IBM Language Environment VM Run-time Options 67

Figure 22 (Page 3 of 3). COBOL and Language Environment Options

COBOL Option
Language Environment
Equivalent Notes

UPSI UPSI UPSI provides behavior compatible with VS
COBOL II.

WSCLEAR | NOWSCLEAR STORAGE(00) For behavior similar to WSCLEAR |
NOWSCLEAR, use the Language Environment
STORAGE(00) option. For more information, see
the COBOL/370 and COBOL for MVS & VM
Compiler and Run-Time Migration Guide.

Figure 23 (Page 1 of 3). Fortran and Language Environment Options

Fortran Option
Language Environment
Equivalent Notes

ABSDUMP | NOABSDUMP TERMTHDACT TERMTHDACT(DUMP) replaces ABSDUMP to
produce a Language Environment dump at
termination.

TERMTHDACT with suboptions TRACE, QUIET,
or MSG replaces NOABSDUMP to avoid getting
a Language Environment dump at termination.

AUTOTASK | NOAUTOTASK AUTOTASK | NOAUTOTASK AUTOTASK | NOAUTOTASK provides behavior
compatible with VS FORTRAN Version 2.

CNVIOERR | NOCNVIOERR Not applicable There is no Language Environment equivalent for
CNVIOERR | NOCNVIOERR. Fortran semantics
will behave as if CNVIOERR is in effect.

DEBUG | NODEBUG Not applicable The Debug Tool does not support Fortran.

DEBUNIT Not applicable There is no Language Environment equivalent for
DEBUNIT. If specified, you will receive an
informational message during execution.

ECPACK | NOECPACK Not applicable There is no Language Environment equivalent for
ECPACK | NOECPACK. You cannot run
programs with Language Environment that use
access registers or that were compiled with the
EC or EMODE compiler options.

ERRUNIT ERRUNIT ERRUNIT provides behavior compatible with VS
FORTRAN Version 2.

FAIL ABTERMENC ABTERMENC replaces FAIL. ABTERMENC
must be specified to control whether a condition
of severity 2 or greater is terminated with a return
code or an abend.

68 Language Environment Program Directory

Figure 23 (Page 2 of 3). Fortran and Language Environment Options

Fortran Option
Language Environment
Equivalent Notes

FILEHIST | NOFILEHIST FILEHIST | NOFILEHIST FILEHIST | NOFILEHIST provides behavior
compatible with VS FORTRAN Version 2.

INQPCOPN | NOINQPCOPN INQPCOPN | NOINQPCOPN INQPCOPN | NOINQPCOPN provides behavior
compatible with VS FORTRAN Version 2.

IOINIT | NOIOINIT Not applicable There is no Language Environment equivalent for
IOINIT | NOIOINIT. The message file is opened
only when the first record is written to it. If no
allocation for the ddname has been made for the
message file, it is dynamically allocated to the
terminal (under TSO) or to SYSOUT=* (under
MVS batch).

OCSTATUS | NOOCSTATUS OCSTATUS |
NOOCSTATUS

OCSTATUS | NOOCSTATUS provides behavior
compatible with VS FORTRAN Version 2.

PARALLEL | NOPARALLEL Not applicable There is no Language Environment equivalent for
PARALLEL | NOPARALLEL. Parallel programs
cannot be run with Language Environment. If
specified, you will receive an informational
message during execution.

PRTUNIT PRTUNIT PRTUNIT provides behavior compatible with VS
FORTRAN Version 2.

PTRACE | NOPTRACE Not applicable There is no Language Environment equivalent for
PTRACE | NOPTRACE. Parallel programs
cannot be run with Language Environment. If
specified, you will receive an informational
message during execution.

PUNUNIT PUNUNIT PUNUNIT provides behavior compatible with VS
FORTRAN Version 2.

RDRUNIT RDRUNIT RDRUNIT provides behavior compatible with VS
FORTRAN Version 2.

RECPAD | NORECPAD |
RECPAD(VAR)

RECPAD(OFF | NONE |
VAR | ALL | ON)

NORECPAD automatically maps to
RECPAD(OFF). RECPAD(VAR) provides
behavior compatible with VS FORTRAN Version
2. RECPAD must be changed to RECPAD(ON).

SPIE | NOSPIE, STAE |
NOSTAE

TRAP(ON | OFF) If either SPIE or STAE is specified in input,
TRAP is set to TRAP(ON). If both NOSPIE and
NOSTAE are specified, TRAP is set to
TRAP(OFF). TRAP(ON) must be in effect for
applications to run successfully.

 Appendix E. IBM Language Environment VM Run-time Options 69

Figure 23 (Page 3 of 3). Fortran and Language Environment Options

Fortran Option
Language Environment
Equivalent Notes

XUFLOW |
NOXUFLOW

XUFLOW(ON | AUTO)
XUFLOW(OFF)

There is no automatic mapping of XUFLOW to
the Language Environment XUFLOW.

NOXUFLOW maps to the Language Environment
XUFLOW(OFF), which provides compatible
behavior.

Figure 24 (Page 1 of 2). PL/I and Language Environment Options

PL/I Option Language Environment
Equivalent

Notes

COUNT | NOCOUNT Not applicable There is no Language Environment equivalent for
COUNT | NOCOUNT. It is not processed but
produces an informational message.

FLOW | NOFLOW Not applicable There is no Language Environment equivalent for
FLOW | NOFLOW. Language Environment
honors this option only as a COBOL option.

ISAINC STACK, NONIPTSTACK, or
PLITASKCOUNT

ISAINC maps to three Language Environment
options, STACK, NONIPTSTACK, and
PLITASKCOUNT, which provide compatible
behavior.

ISASIZE STACK, NONIPTSTACK, or
PLITASKCOUNT

ISASIZE maps to three Language Environment
options, STACK, NONIPTSTACK, and
PLITASKCOUNT, which provide compatible
behavior.

LANGUAGE NATLANG Mixed-case and uppercase U.S. English and
Japanese are supported.

REPORT | NOREPORT RPTSTG(ON | OFF),
RPTOPTS(ON | OFF)

RPTSTG(ON | OFF) and RPTOPTS(ON | OFF)
provide behavior compatible with REPORT |
NOREPORT.

SPIE | NOSPIE TRAP(ON | OFF) If SPIE | NOSPIE is specified in input, then
TRAP is set according to the option: TRAP(ON)
for SPIE, and TRAP(OFF) for NOSPIE. If both
SPIE | NOSPIE and STAE | NOSTAE are
specified together in input, then TRAP is set
according to both options: TRAP(OFF) when
both options are negative, and TRAP(ON)
otherwise. TRAP(ON) must be in effect for
applications to run successfully.

70 Language Environment Program Directory

Figure 24 (Page 2 of 2). PL/I and Language Environment Options

PL/I Option Language Environment
Equivalent

Notes

STAE | NOSTAE TRAP(ON | OFF) If STAE | NOSTAE is specified in input, then
TRAP is set according to the option: TRAP(ON)
for STAE, and TRAP(OFF) for NOSTAE. If both
SPIE | NOSPIE and STAE | NOSTAE are
specified together in input, then TRAP is set
according to both options: TRAP(OFF) when
both options are negative, and TRAP(ON)
otherwise. TRAP(ON) must be in effect for
applications to run successfully.

TASKHEAP THREADHEAP THREADHEAP provides behavior compatible
with TASKHEAP.

 E.2.1 COBOL Compatibility

The current release of VS COBOL II supports an order of run-time options and program options that is the
reverse of that of Language Environment: program arguments precede run-time options in COBOL. To
ensure compatibility with COBOL, Language Environment provides the run-time option CBLOPTS, which
specifies whether run-time options or program arguments are first in the character parameter.

For example:

Under MVS:

 CBLOPTS=OFF:

//GO EXEC PGM=PROGRAM1,PARM='AIXBLD/'

 CBLOPTS=ON:

//GO EXEC PGM=PROGRAM1,PARM='/AIXBLD'

Under VM:

 CBLOPTS=OFF:

 LOAD
START \ AIXBLD/

 CBLOPTS=ON:

 Appendix E. IBM Language Environment VM Run-time Options 71

 ABPERC

LOAD
START \ /AIXBLD

E.3 Language Environment Run-Time Options

The run-time options that can be modified in the CEEDOPT CSECT are described here in detail in the
form specific to CEEDOPT.

IBM-supplied default keywords appear above the main path or options path in the syntax diagrams. In the
parameter list, IBM-supplied default choices are underlined. For a full description of the syntax of
Language Environment run-time options, see Language Environment for MVS & VM Programming
Reference.

Some of these run-time options descriptions refer to the severity of conditions. The values that can occur
as condition token severity codes, and their meanings, are listed here:

0 An informational message (or, if the entire token is zero, no information)

1 A warning message. Service completed, probably correctly.

2 An error message. Correction attempted. Service completed, perhaps incorrectly.

3 A severe error message. Service not completed.

4 A critical error message. Service not completed and condition signaled. A critical error is a
condition that jeopardizes the environment. If a critical error occurs during an Language
Environment callable service, it is always signaled to the condition manager instead of being
returned synchronously to the caller.

 E.3.1 ABPERC

ABPERC percolates an abend whose code you specify. TRAP(ON) must be in effect for ABPERC to have
an effect.

The ABPERC option is a debug tool that specifies the application can run with the TRAP run-time option
set to ON. This provides Language Environment semantics for everything except one abend, whose code
you specify.

When you run with ABPERC and encounter the specified abend:

� User condition handlers are not enabled.

� In OpenEdition MVS, POSIX signal handling semantics are not enabled for the abend.

� No storage report or run-time options report is generated.

72 Language Environment Program Directory

 ABPERC

� No Language Environment messages or Language Environment dump output is generated.

� The assembler user exit is not driven for enclave termination.

� The abnormal termination exit (if there is one) is not driven.

� Files opened by HLLs are not closed by Language Environment, so records might be lost.

� Resources acquired by Language Environment are not freed.

� The debug tool is not notified of the error.

You can also use the CEEBXITA assembler user exit to specify a list of abend codes for Language
Environment to percolate.

IBM-Supplied Default: ABPERC =((NONE),OVR)

 Syntax

 ┌ ┐─NONE─── ┌ ┐─OVR────
55──ABPERC──=──(──(─ ──┴ ┴─abcode─ ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────────────────5%

NONE
Specifies that all abends are handled according to Language Environment condition handling
semantics.

abcode
Specifies the code number of the abend to percolate.

abcode can be specified as:

Shhh A system abend code where hhh is the hex system abend code

Udddd A user abend code where dddd is a decimal user-issued abend code

Any 4-character string can also be used as an abcode.

You can identify only one abend code with this option. However, an abend U0000 is
interpreted in the same way as S000.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.1.1 Usage Notes

� Language Environment ignores ABPERC(0Cx). In this instance, no abend is percolated, and
Language Environment condition handling semantics are in effect.

� CICS consideration—ABPERC is ignored under CICS.

� OpenEdition consideration—ABPERC percolates an abend regardless of the thread in which it occurs.

 Appendix E. IBM Language Environment VM Run-time Options 73

 ABTERMENC

E.3.1.2 For More Information

� For more information about the assembler user exit (CEEBXITA), see Language Environment for MVS
& VM Programming Guide.

 E.3.2 ABTERMENC

ABTERMENC sets the enclave termination behavior for an enclave ending with an unhandled condition of
severity 2 or greater. TRAP(ON) must be in effect for ABTERMENC to have an effect.

IBM-Supplied Default: ABTERMENC =((RETCODE),OVR)

 Syntax

 ┌ ┐─RETCODE─ ┌ ┐─OVR────
55──ABTERMENC──=──(──(─ ──┴ ┴─ABEND─── ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────────────5%

RETCODE
Specifies that the enclave terminates with a normal return code and reason code.

However, the assembler user exit can modify this behavior as follows:

� If the assembler user exit does not set the CEEAUE_ABND flag to ON during enclave termination,
Language Environment returns to its caller with a return code and a reason code.

� If the assembler user exit sets the CEEAUE_ABND flag to ON during enclave termination,
Language Environment issues an abend to terminate the enclave. Language Environment sets
the abend and reason code for the abend to equal the values of assembler user exit parameters,
as follows:

– Abend code: Value of the CEEAUE_RETURN parameter of the assembler user exit. If the
assembler user exit does not modify the CEEAUE_RETURN value, Language Environment
sets an abend code that maps to the severity of the condition and to the user return code.

– Reason code: Value of the CEEAUE_REASON parameter of the assembler user exit.

ABEND
Specifies that Language Environment issues an abend to end the enclave regardless of the setting of
the CEEAUE_ABND flag by the assembler user exit. However, the setting of the CEEAUE_ABND
flag affects the abend processing, as follows:

When CEEAUE_ABND is set to OFF, the following occurs:

� Abend code: Language Environment sets an abend code value that depends on the type of
unhandled condition.

� Reason code: Language Environment sets a reason code value that depends on the type of
unhandled condition.

� Abend dump attribute: Language Environment does not request a system dump.

74 Language Environment Program Directory

 AIXBLD

� Abend task/step attribute (on MVS): An abend is issued to terminate the task.

When CEEAUE_ABND is set to ON, Language Environment uses values set by the assembler user
exit to determine abend processing:

� Abend code: Value of the CEEAUE_RETURN parameter of the assembler user exit.

� Reason code: Value of the CEEAUE_REASON parameter of the assembler user exit.

� Abend dump attribute: Language Environment requests a system dump only if the assembler user
exit sets CEEAUE_DUMP to ON. The system abend dump goes to the system abend ddname
with the filename you define in your JCL (for MVS) or in your FILEDEF (for VM). The filename is
the name defined in the DD card.

� Abend task/step attribute (on MVS): If the assembler user exit sets CEEAUE_STEPS to ON,
Language Environment issues an abend to terminate the step. Otherwise, Language Environment
issues an abend to terminate the task.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.2.1 Usage Notes

� COBOL considerations—ABEND is the recommended setting for COBOL customers who use MVS.
Your system administrator can change the default value of ABTERMENC to ABEND.

� CICS consideration—The default under CICS is ABTERMENC(ABEND,OVR).

E.3.2.2 For More Information

� For information about return code calculation CEEAUE_RETURN, CEEAUE_ABND, and assembler
user exit CEEBXTA processing, see Language Environment for MVS & VM Programming Guide.

� For more information about abend codes, see Language Environment for MVS & VM Programming
Guide.

� For a list of abend code values, see Language Environment for MVS & VM Programming Guide.

E.3.3 AIXBLD (COBOL Only)

AIXBLD invokes the access method services (AMS) for VSAM indexed and relative data sets (KSDS and
RRDS) to complete the file and index definition procedures for COBOL programs.

AIXBLD conforms to the ANSI 1985 COBOL standard.

IBM-Supplied Default: AIXBLD =((OFF),OVR)

 Appendix E. IBM Language Environment VM Run-time Options 75

 ALL31

 Syntax

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──AIXBLD──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────────5%

OFF
Does not invoke the access method services for VSAM indexed and relative data sets.

ON
Invokes the access method services for VSAM indexed and relative data sets. AIXBLD can be
abbreviated AIX.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.3.1 Usage Notes

� The only valid abbreviations for AIXBLD and NOAIXBLD are AIX and NOAIX, respectively.

� When specifying this option in CEEDOPT or CEEUOPT, use the syntax AIXBLD(ON) or
AIXBLD(OFF). Use AIXBLD and NOAIXBLD only on the command line.

� CICS consideration—This option is ignored under CICS.

� MVS consideration—If you also specify the MSGFILE run-time option, the access method services
messages are directed to the MSGFILE ddname or to the default SYSOUT.

 E.3.3.2 Performance Considerations

Running your program under AIXBLD requires more storage, which can degrade performance. Therefore,
use AIXBLD only during application development to build alternate indices. Use NOAIXBLD when you
have already defined your VSAM data sets.

E.3.3.3 For More Information

� See COBOL/370 Programming Guide or COBOL for MVS & VM Programming Guide for more details.

� See E.3.23, “MSGFILE” on page 99 for information about the MSGFILE run-time option.

 E.3.4 ALL31

ALL31 specifies whether an application can run entirely in AMODE 31 or whether the application has one
or more AMODE 24 routines.

This option does not implicitly alter storage, in particular storage managed by the STACK and HEAP
run-time options. However, you must be aware of your application's requirements for stack and heap
storage, because such storage can potentially be allocated above the line while running in AMODE 24.

76 Language Environment Program Directory

 ALL31

ALL31 should have the same setting for all enclaves in the process, because Language Environment does
not support the invocation of a nested enclave requiring ALL31(OFF) from an enclave running with
ALL31(ON).

In a multithread environment, Language Environment invokes all start routines, which are specified in a C
pthread_create() function call, in AMODE 31. However, for PL/I MTF applications, Language Environment
provides AMODE switching. Thus, the first routine of a task can be in AMODE 24.

IBM-Supplied Default: ALL31 =((OFF),OVR)

 Syntax

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──ALL31──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)──5%

OFF
Indicates that one or more routines of a Language Environment application are AMODE 24.

With ALL31(OFF) specified:

� AMODE switching across calls to Language Environment common run-time routines is performed.
For example, AMODE switching is performed on calls to Language Environment callable services.

� In COBOL, EXTERNAL data is allocated in storage below the 16M line.

If you use the default setting ALL31(OFF), you must also use the default setting STACK(,,BELOW).
AMODE 24 routines usually require stack storage below the 16M line.

ON
Indicates that no user routines of a Language Environment application are AMODE 24.

With ALL31(ON) specified:

� AMODE switching across calls to Language Environment common run-time routines is minimized.
For example, no AMODE switching is performed on calls to Language Environment callable
services.

� In COBOL, EXTERNAL data is allocated in unrestricted storage.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.4.1 Usage Notes

� CICS consideration—The default under CICS is ALL31=((ON,OVR).

� OpenEdition consideration—The ALL31 option applies to the enclave.

 Appendix E. IBM Language Environment VM Run-time Options 77

 ANYHEAP

 E.3.4.2 Performance Consideration

If your application consists entirely of AMODE 31 routines, it might run faster and use less below-the-line
storage with ALL31(ON) than with ALL31(OFF), since mode switching code is not required.

E.3.4.3 For More Information

� See E.3.39, “STACK” on page 121 for information about the STACK run-time option.

 E.3.5 ANYHEAP

ANYHEAP controls the allocation of library heap storage that is not restricted to a location below the 16M
line.

The ANYHEAP option is always in effect. If you do not specify ANYHEAP or if you specify ANYHEAP(0),
Language Environment allocates the value of 16K when a call is made to get heap storage.

IBM-Supplied Default: ANYHEAP =((16K,8K,ANYWHERE,FREE)OVR)

 Syntax

┌ ┐─ANYWHERE─ ┌ ┐─FREE─
55──ANYHEAP──=──(──(─ ─init_size──,──incr_size──,─ ──┼ ┼─ANY────── ─,─ ──┴ ┴─KEEP─ ─)──,────────5
 └ ┘─BELOW────

 ┌ ┐─OVR────
5─ ──┴ ┴─NONOVR─ ─)──5%

init_size
Determines the minimum initial size of the anywhere heap storage. This value can be specified as n,
nK, or nM bytes of storage. The actual amount of allocated storage is rounded up to the nearest
multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the anywhere heap area, and is
specified in n, nK, or nM bytes of storage. This value is rounded up to the nearest multiple of 8
bytes.

ANYWHERE|ANY
Specifies that heap storage can be allocated anywhere in storage. On systems that support bimodal
addressing, storage can be allocated either above or below the 16M line. If there is no storage
available above the line, storage is acquired below the line. On systems that do not support bimodal
addressing (for example, when VM/ESA* is initially loaded in 370 mode), this option is ignored and
heap storage is placed below 16M.

The only valid abbreviation for ANYWHERE is ANY.

78 Language Environment Program Directory

 ANYHEAP

BELOW
Specifies that heap storage must be allocated below the 16M line in storage that is accessible to
24-bit addressing.

FREE
Specifies that storage allocated to ANYHEAP increments is released when the last of the storage is
freed.

KEEP
Specifies that storage allocated to ANYHEAP increments is not released when the last of the storage
is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.5.1 Usage Notes

� CICS consideration—Under CICS, ANYHEAP assumes the defaults
ANYHEAP=((4K,4K,ANYWHERE,FREE),OVR). Both the initial size and the increment size are
rounded up to the nearest multiple of 8 bytes. The minimum is 4K. If you specify ANYHEAP or
ANYHEAP(0), Language Environment assumes the default value of 4K. The maximum initial and
increment size for ANYHEAP under CICS is 1 gigabyte (1024M).

� OpenEdition consideration—The ANYHEAP option applies to the enclave.

 E.3.5.2 Performance Considerations

The ANYHEAP option improves performance when you specify values that minimize the number of times
the operating system allocates storage. The RPTSTG run-time option generates a report of the storage
the application uses while running; you can use the report numbers to help determine what values to
specify.

E.3.5.3 For More Information

� See Language Environment for MVS & VM Programming Guide for more information about Language
Environment heap storage.

� See E.3.36, “RPTSTG” on page 115 for more information about the RPTSTG run-time option.

� For more information about heap storage tuning with storage report numbers, see Language
Environment for MVS & VM Programming Guide.

 Appendix E. IBM Language Environment VM Run-time Options 79

 BELOWHEAP

E.3.6 AUTOTASK | NOAUTOTASK (Fortran Only)

AUTOTASK specifies whether Fortran Multitasking Facility is to be used by your program and the number
of tasks that are allowed to be active.

IBM-Supplied Default: NOAUTOTASK =(OVR)

 Syntax

 ┌ ┐─OVR────
 ┌ ┐─NOAUTOTASK──═──(─ ──┴ ┴─NONOVR─ ─)────────────────────────────────
 │ │┌ ┐─OVR────
55─ ──┴ ┴─NOAUTOTASK──═──(──(─ ─loadmod──,──numtasks──)──,─ ──┴ ┴─NONOVR─ ─)─ ─────────────────5%

NOAUTOTASK
Disables the MTF and nullifies the effects of previous specifications of AUTOTASK parameters.

loadmod
The name of the load module that contains the concurrent subroutines that run in the subtasks created
by MTF.

numtasks
The number of subtasks created by MTF. This value can range from 1 through 99.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.7 BELOWHEAP

BELOWHEAP controls the allocation of library heap storage that must be located below the 16M line. The
heap controlled by BELOWHEAP is intended for items such as control blocks used for I/O.

The BELOWHEAP option is always in effect. If you do not specify BELOWHEAP or if you specify
BELOWHEAP(0), the value of 8K is allocated when a call is made to get heap storage.

IBM-Supplied Default: BELOWHEAP =((8K,4K,FREE),OVR)

 Syntax

 ┌ ┐─FREE─ ┌ ┐─OVR────
55──BELOWHEAP──=──(──(─ ─init_size──,──incr_size──,─ ──┴ ┴─KEEP─ ─)──,─ ──┴ ┴─NONOVR─ ─)───────5%

80 Language Environment Program Directory

 BELOWHEAP

init_size
Determines the minimum initial size of the below heap storage. This value can be specified as n, nK,
or nM bytes of storage. The actual amount of allocated storage is rounded up to the nearest multiple
of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the area below the 16M line, and is
specified in n, nK, or nM bytes of storage. This value is rounded up to the nearest multiple of 8
bytes.

FREE
Specifies that storage allocated to BELOWHEAP increments is released when the last of the storage
is freed.

KEEP
Specifies that storage allocated to BELOWHEAP increments is not released when the last of the
storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.7.1 Usage Notes

� CICS considerations—Under CICS, BELOWHEAP assumes the defaults
BELOWHEAP=((4K,4K,FREE),OVR).

Both the initial size and the increment size are rounded to the nearest multiple of 8 bytes. The
minimum is 4K. If you specify BELOWHEAP(0), both init_size and incr_size assume the IBM-supplied
default of 4K.

� OpenEdition consideration—The BELOWHEAP option applies to the enclave.

 E.3.7.2 Performance Considerations

BELOWHEAP improves performance when you specify values that minimize the number of times that the
operating system allocates storage. The RPTSTG run-time option generates a report of storage your
application uses while running. You can use its numbers to help determine what values to specify.

E.3.7.3 For More Information

� See Language Environment for MVS & VM Programming Guide for more information about Language
Environment heap storage.

� See E.3.36, “RPTSTG” on page 115 for more information about the RPTSTG run-time option.

� For more information about tuning your application with storage report numbers, see Language
Environment for MVS & VM Programming Guide.

 Appendix E. IBM Language Environment VM Run-time Options 81

 CBLOPTS

E.3.8 CBLOPTS (COBOL Only)

CBLOPTS specifies the format of the parameter string on application invocation when the main program is
COBOL. CBLOPTS determines whether run-time options or program arguments appear first in the
parameter string.

You can specify this option only in CEEUOPT or CEEDOPT at initialization.

When you specify the ON suboption of CBLOPTS in CEEUOPT or CEEDOPT, the run-time options and
program arguments specified in the JCL or on the command line are honored in the following order:

program arguments/run-time options

This order is the reverse of that normally honored by Language Environment.

CBLOPTS(ON) allows the existing COBOL format of the invocation character string to continue working
(user parameters followed by run-time options). CBLOPTS(ON) is valid only for applications whose main
program is COBOL.

IBM-Supplied Default: CBLOPTS =((ON),OVR)

 Syntax

 ┌ ┐─ON── ┌ ┐─OVR────
55──CBLOPTS──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────────────────────5%

ON
Specifies that program arguments appear first in the parameter string.

OFF
Specifies that run-time options appear first in the parameter string.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.8.1 For More Information

� For more information about CEEUOPT or CEEDOPT, see Language Environment for MVS & VM
Installation and Customization on MVS.

82 Language Environment Program Directory

 CBLPSHPOP

E.3.9 CBLPSHPOP (COBOL Only)

CBLPSHPOP controls whether CICS PUSH HANDLE and CICS POP HANDLE commands are issued
when a COBOL (VS COBOL II, COBOL/370, or COBOL for MVS & VM) subroutine is called.

Specify CBLPSHPOP(ON) to avoid compatibility problems when calling VS COBOL II, COBOL/370, or
COBOL for MVS & VM subroutines that contain CICS CONDITION, AID, or ABEND condition handling
commands.

You can set the CBLPSHPOP run-time option on a transaction by transaction basis using CEEUOPT.

IBM-Supplied Default: CBLPSHPOP =((ON),OVR)

 Syntax

 ┌ ┐─ON── ┌ ┐─OVR────
55──CBLPSHPOP──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────────────────5%

ON
Automatically issues the following when a COBOL subroutine is called:

� An EXEC CICS PUSH HANDLE command as part of the routine initialization.
� An EXEC CICS POP HANDLE command as part of the routine termination.

OFF
Does not issue CICS PUSH HANDLE and CICS POP HANDLE commands on a call to a COBOL
subroutine.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.9.1 Performance Consideration

If your application calls COBOL subroutines under CICS, performance is better with CBLPSHPOP(OFF)
than with CBLPSHPOP(ON).

E.3.9.2 For More Information

� For more information about CEEUOPT, see Language Environment for MVS & VM Programming
Guide.

 Appendix E. IBM Language Environment VM Run-time Options 83

 CHECK

E.3.10 CBLQDA (COBOL Only)

CBLQDA controls COBOL QSAM dynamic allocation on an OPEN statement.

CBLQDA does not affect dynamic storage allocation for the message file specified in MSGFILE or the
dump file.

IBM-Supplied Default: CBLQDA =((ON),OVR)

 Syntax

 ┌ ┐─ON── ┌ ┐─OVR────
55──CBLQDA──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────────5%

ON
Specifies that COBOL QSAM dynamic allocation is permitted. ON conforms to the 1985 COBOL
Standard.

OFF
Specifies that COBOL QSAM dynamic allocation is not permitted.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.10.1 Usage Note

� CICS consideration—This option is ignored under CICS.

� MVS consideration—You should use CBLQDA(OFF) under MVS, because this prevents a temporary
data set from being created in case there is a misspelling in your JCL. If you specify CBLQDA(ON)
and have a misspelling in your JCL, Language Environment creates a temporary file, writes to it, and
then MVS deletes it. You receive a return code of 0 but no output.

E.3.11 CHECK (COBOL Only)

CHECK flags checking errors within an application. In COBOL, index, subscript, and reference
modification ranges are checking errors. COBOL is the only language that uses the CHECK option.

IBM-Supplied Default: CHECK =((ON),OVR)

 Syntax

 ┌ ┐─ON── ┌ ┐─OVR────
55──CHECK──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)──5%

84 Language Environment Program Directory

 COUNTRY

ON
Specifies that run-time checking is performed.

OFF
Specifies that run-time checking is not performed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.11.1 Usage Note

� CHECK(ON) has no effect if NOSSRANGE was in effect at compile time.

 E.3.11.2 Performance Consideration

If your COBOL program was compiled with SSRANGE, and you are not testing or debugging an
application, performance improves when you specify CHECK(OFF).

 E.3.12 COUNTRY

COUNTRY sets the country code, which affects the date and time formats, the currency symbol, the
decimal separator, and the thousands separator, based on a specified country. COUNTRY does not
change the default settings for the language currency symbol, decimal point, thousands separator, and
date and time picture strings set by CEESETL or setlocale(). COUNTRY affects only the Language
Environment NLS services, not the Language Environment locale callable services.

You can set the country value using the run-time option COUNTRY or the callable service CEE3CTY.

The COUNTRY setting affects the format of the date and time in the reports generated by the RPTOPTS
and RPTSTG run-time options.

IBM-Supplied Default: COUNTRY =((US),OVR) with US signifying the United States.

 Syntax

 ┌ ┐─OVR────
55──COUNTRY──=──(──(─ ──country_code ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────────────5%

country_code
A 2-character code that indicates to Language Environment the country on which to base the default
settings.

OVR
Specifies that the option can be overridden.

 Appendix E. IBM Language Environment VM Run-time Options 85

 DEBUG

NONOVR
Specifies that the option cannot be overridden.

 E.3.12.1 Usage Notes

� If you specify a country_code that is not supported by Language Environment, Language Environment
accepts the value and issues an informational message. When you specify an unavailable country
code, you must provide a message template for that code.

CEEUOPT and CEEDOPT permit the specification of an unavailable country code, but give a return
code of 4 and a warning message.

� C/C++ consideration—Language Environment provides locales used in C and C++ to establish default
formats for the locale-sensitive functions and locale callable services, such as date and time
formatting, sorting, and currency symbols. To change the locale, you can use the setlocale() library
function or the CEESETL callable service.

The settings of CEESETL or setlocale() do not affect the setting of the COUNTRY run-time option.
COUNTRY affects only Language Environment NLS and date and time services. setlocale() and
CEESETL affect only C/C++ locale-sensitive functions and Language Environment locale callable
services.

To ensure that all settings are correct for your country, use COUNTRY and either CEESETL or
setlocale().

� OpenEdition consideration—The COUNTRY option sets the initial value for the enclave.

E.3.12.2 For More Information

� For more information about the CEE3CTY callable service, see Language Environment for MVS & VM
Programming Reference.

� See Appendix F, “Language Environment National Language Support Country Codes” on page 142
for a list of countries and their codes.

� For more information about the CEESETL callable service, see Language Environment for MVS & VM
Programming Reference.

� For more information on setlocale(), see AD/Cycle C/370 Programming Guide, C/MVS Programming
Guide, or C++/MVS Programming Guide.

E.3.13 DEBUG (COBOL Only)

DEBUG activates the COBOL batch debugging features specified by the USE FOR DEBUGGING
declarative.

IBM-Supplied Default: DEBUG =((ON),OVR)

86 Language Environment Program Directory

 DEPTHCONDLMT

 Syntax

 ┌ ┐─ON── ┌ ┐─OVR────
55──DEBUG──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)──5%

ON
Activates the COBOL batch debugging features.

You must have the WITH DEBUGGING MODE clause in the environment division of your application
in order to compile the debugging sections.

OFF
Suppresses the COBOL batch debugging features.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.13.1 Usage Note

� When specifying this option in CEEDOPT or CEEUOPT, use the syntax DEBUG(ON) or
DEBUG(OFF). Use DEBUG and NODEBUG only on the command line.

 E.3.13.2 Performance Consideration

Because DEBUG(ON) gives worse run-time performance than DEBUG(OFF), you should use it only during
application development or debugging.

E.3.13.3 For More Information

� See COBOL/370 Programming Guide or COBOL for MVS & VM Programming Guide for more details
on the USE FOR DEBUGGING declarative.

 E.3.14 DEPTHCONDLMT

DEPTHCONDLMT specifies the extent to which conditions can be nested. Figure 25 on page 88
illustrates the effect of DEPTHCONDLMT(3) on condition handling. The initial condition and two nested
conditions are handled in this example. The third nested condition is not handled.

 Appendix E. IBM Language Environment VM Run-time Options 87

 DEPTHCONDLMT

 Error
 (level 1)
 6
 User-written
condition handler ─5 Another

error (level 2)
 6
 User-written

condition handler ─5 Another
error (level 3)

 6
 User-written

condition handler ─5 Another
error (level 4)

 6
 Not handled

Figure 25. Effect of DEPTHCONDLMT(3) on Condition Handling

IBM-Supplied Default: DEPTHCONDLMT =((10),OVR)

 Syntax

 ┌ ┐─OVR────
55──DEPTHCONDLMT──=──(──(─ ──limit ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────5%

limit
An integer of 0 or greater value. It is the depth of condition handling allowed. An unlimited depth of
condition handling is allowed if you specify 0.

A 1 value specifies handling of the initial condition, but does not allow handling of nested conditions
that occur while handling a condition. With a 5 value, for example, the initial condition and four
nested conditions are processed, but there can be no further nesting of conditions.

If the number of nested conditions exceeds the limit, the application terminates with abend 4091 and
reason code 21 (X'15').

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.14.1 Usage Notes

� PL/I consideration—DEPTHCONDLMT(0) provides PL/I compatibility.

� PL/I MTF consideration—In a PL/I MTF application, DEPTHCONDLMT sets the limit for how many
nested synchronous conditions are allowed for a PL/I task. If the number of nested conditions
exceeds the limit, the application terminates abnormally.

� OpenEdition consideration—The DEPTHCONDLMT option sets the limit for how many nested

88 Language Environment Program Directory

 ENVAR

synchronous conditions are allowed for a thread. Asynchronous signals do not affect
DEPTHCONDLMT.

E.3.14.2 For More Information

� For more information on nested conditions, see Language Environment for MVS & VM Programming
Guide.

 E.3.15 ENVAR

ENVAR sets the initial values for the environment variables specified in string. With ENVAR, you can
pass into the application switches or tagged information that can then be accessed using the C functions
getenv, setenv, and clearenv.

When the run-time options are merged, ENVAR strings are appended in the order encountered during the
merge. Thus, the set of environment variables established by the end of run-time option processing
reflects all the various sources where environment variables are specified (rather than just the one source
with the highest precedence). However, if a setting for the same environment variable is specified in more
than one source, the last setting is used.

Environment variables in effect at the time of the system function are copied to the new environment. The
copied environment variables are treated the same as those found in the ENVAR run-time option on the
command level, with respect to the merge of the run-time options from their various sources.

When you have specified the RPTOPTS run-time option, you receive a list of the merged ENVAR run-time
options. The output for the ENVAR run-time options contains a separate entry for each source where
ENVAR was specified with the environment variables from that source.

IBM-Supplied Default: ENVAR =((''),OVR)

 Syntax

 ┌ ┐─,──────── ┌ ┐─OVR────
55──ENVAR──=──(──(─ ───6 ┴─ ──string─ ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────5%

string
Is of the form name=value, where name and value are sequences of characters that do not contain
null bytes or equal signs. The string name is an environment variable, and value is its value.

Blanks are significant in both the name= and the value characters.

You can enclose the string in either single or double quotation marks to distinguish it from other
strings. string cannot contain DBCS characters. It can have a maximum of 250 characters.

You can specify multiple environment variables, separating the name=value pairs with commas.
Quotation marks are required when specifying multiple variables.

 Appendix E. IBM Language Environment VM Run-time Options 89

 ERRCOUNT

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.15.1 Usage Notes

� The ENVAR option functions independently of the POSIX run-time option setting.

� C consideration—An application can access the environment variables using C function getenv or the
POSIX variable environ, which is defined as:

extern char \\environ;

Access through getenv is recommended, especially in a multithread environment.

HLLs can access the environment variables through standard C functions at enclave initialization and
throughout the application's run. Access remains until the HLL returns from enclave termination.
Environment variables that are propagated across the EXEC override those established by the ENVAR
option. getenv serializes access to the environment variables.

� C++ consideration—An application can access the environment variables using C function getenv

HLLs can access the environment variables through standard C functions at enclave initialization and
throughout the application's run.

� OpenEdition consideration—The environment variables apply to the enclave.

E.3.15.2 For More Information

� For more information about the RPTOPTS run-time option, see E.3.35, “RPTOPTS” on page 112.

 E.3.16 ERRCOUNT

ERRCOUNT specifies how many conditions of severity 2, 3, and 4 can occur per thread before the
enclave terminates abnormally. After the number specified in ERRCOUNT is reached, no further
Language Environment condition management, including CEEHDLR management, is honored.

IBM-Supplied Default: ERRCOUNT =((20),OVR)

 Syntax

 ┌ ┐─OVR────
55──ERRCOUNT──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────────────────────5%

number
The number of severity 2, 3, and 4 conditions per individual thread that can occur while this enclave is
running. If the number of conditions exceeds number, the thread and enclave terminate abnormally.

90 Language Environment Program Directory

 ERRUNIT

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.16.1 Usage Notes

� ERRCOUNT(0) means the number of conditions that can occur is unlimited. This setting can cause
an infinite loop or a runaway task.

� COBOL consideration—Language Environment counts severity 1 messages with the facility ID IGZ.
When the limit is reached, additional severity 1 messages are suppressed.

� PL/I consideration—Use the default setting of ERRCOUNT(0) if you are using PL/I.

� PL/I MTF consideration—In a PL/I MTF application, ERRCOUNT sets the threshold for the total
number severity 2, 3, and 4 synchronous conditions that can occur for each task. If the number of
conditions exceeds the threshold, the application terminates normally.

� OpenEdition consideration—Synchronous signals that are associated with a condition of severity 2, 3,
and 4 do not affect ERRCOUNT. Asynchronous signals do not affect ERRCOUNT.

� C++ consideration—The ERRCOUNT option sets the threshold for the total number of severity 2, 3,
and 4 synchronous conditions that can occur. Note that each thrown object is considered a severity 3
condition. However, this condition does not affect ERRCOUNT.

E.3.16.2 For More Information

� For more information about the CEEDHLR callable service, see Language Environment for MVS & VM
Programming Reference.

� For more information about the CEESGL callable service, see Language Environment for MVS & VM
Programming Reference.

� See Language Environment for MVS & VM Programming Guide for more information about the facility
ID part of messages.

E.3.17 ERRUNIT (Fortran Only)

ERRUNIT identifies the unit number to which run-time error information is to be directed.

IBM-Supplied Default: ERRUNIT =((6),OVR)

 Syntax

 ┌ ┐─OVR────
55──ERRUNIT──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────────5%

 Appendix E. IBM Language Environment VM Run-time Options 91

 FILEHIST

number
A valid unit number in the range 0-99. You can establish your own default number at installation time.
The Language Environment message file and the file connected to the Fortran error message unit are
the same.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.18 FILEHIST (Fortran Only)

FILEHIST specifies whether to allow the file definition of a file referred to by a ddname to be changed
during run time. This option is intended for use with applications called by Fortran that reallocate Fortran's
supplied DD names.

IBM-Supplied Default: FILEHIST =((ON),OVR)

 Syntax

 ┌ ┐─ON── ┌ ┐─OVR────
55──FILEHIST──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────────────────5%

ON
Causes the history of a file to be used in determining its existence. It checks to see whether:

� The file was ever internally opened (in which case it exists)
� The file was deleted by a CLOSE statement (in which case it does not exist).

OFF
Causes the history of a file to be disregarded in determining its existence.

If you specify FILEHIST(OFF), you should consider:

� If you change file definitions during run time, the file is treated as if it were being opened for
the first time. Before the file definition can be changed, the existing file must be closed.

� If you do not change file definitions during run time, you must use STATUS='NEW' to
re-open an empty file that has been closed with STATUS='KEEP', because the file does not
appear to exist to Fortran.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

92 Language Environment Program Directory

 HEAP

 E.3.19 HEAP

HEAP controls the allocation of the initial heap, controls allocation of additional heaps created with the
CEECRHP callable service, and specifies how that storage is managed.

Heaps are storage areas where you allocate memory for user-controlled dynamically allocated variables
such as:

� C variables allocated as a result of the malloc(), calloc(), and realloc() functions

� COBOL WORKING-STORAGE data items

� PL/I variables with the storage class CONTROLLED, or the storage class BASED

The HEAP option is always in effect. If you do not specify HEAP, Language Environment allocates the
default value of heap storage when a call is made to get heap storage.

Language Environment does not allocate heap storage until the first call to get heap storage is made.
You can get heap storage by using language constructs or by making a call to CEEGTST.

IBM-Supplied Default: HEAP =((32K,32K,ANYWHERE,KEEP,8K,4K),OVR)

 Syntax

┌ ┐─ANYWHERE─ ┌ ┐─KEEP─
55──HEAP──=──(──(─ ─init_size──,─ ─incr_size──,─ ──┼ ┼─ANY────── ─,─ ──┴ ┴─FREE─ ─,──initsz24────5
 └ ┘─BELOW────

 ┌ ┐─OVR────
5──,──incrsz24──)──,─ ──┴ ┴─NONOVR─ ─)───5%

init_size
Determines the minimum initial allocation of heap storage. Specify this value as n, nK, or nM bytes of
storage. The actual amount of allocated storage is rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the heap storage. Specify this value
as n, nK, or nM bytes of storage. The actual amount of allocated storage is rounded up to the
nearest multiple of 8 bytes.

ANYWHERE|ANY
Specifies that you can allocate heap storage anywhere in storage. On systems that support bimodal
addressing, you can allocate storage either above or below the 16M line. If there is no available
storage above the line, storage is acquired below the line. On systems that do not support bimodal
addressing (for example, when VM/ESA is initially loaded in 370 mode), Language Environment
ignores this option and places the heap storage below 16M.

The only valid abbreviation of ANYWHERE is ANY.

 Appendix E. IBM Language Environment VM Run-time Options 93

 HEAP

BELOW
Specifies that you must allocate heap storage below the 16M line in storage that is accessible to
24-bit addressing.

KEEP
Specifies that storage allocated to HEAP increments is not released when the last of the storage is
freed.

FREE
Specifies that storage allocated to HEAP increments is released when the last of the storage is freed.

initsz24
Determines the minimum initial size of the heap storage that is obtained below the 16M line for
applications running with ALL31(OFF) when these applications specify ANYWHERE in the HEAP
run-time option. Specify initsz24 as n, nK, or nM number of bytes. The amount of storage is rounded
up to the nearest multiple of 8 bytes.

initsz24 applies to the initial heap and other heaps created with the CEECRHP callable service that
are not allocated strictly below the 16M line.

incrsz24
Determines the minimum size of any subsequent increment to the heap area that is obtained below
the 16M line for applications running with ALL31(OFF) when these applications specify ANYWHERE
in the HEAP run-time option. Specify incrsz24 as n, nK, or nM number of bytes. The amount of
storage is rounded up to the nearest multiple of 8 bytes.

incrsz24 applies to the initial heap and other heaps created with the CEECRHP callable service that
are not allocated strictly below the 16M line.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.19.1 Usage Notes

� Applications running in AMODE 24 that request heap storage get the storage below the 16M line
regardless of the setting of ANYWHERE | BELOW.

� COBOL consideration—You can use the HEAP option to provide function similar to the VS COBOL II
space management tuning table.

� C/C++ consideration—If your C application runs below the 16M (AMODE 24) line, you must specify
HEAP(,,BELOW,,,) as an installation default for the HEAP run-time option, on the command line when
invoking the program, or at compile time as a #pragma runopts.

� PL/I consideration—The ANYWHERE | BELOW and KEEP | FREE suboptions are positional.
ANYWHERE | BELOW must be in the third position, and KEEP | FREE must be in the fourth position.
If you want to omit init_size and incr_size, you must specify: HEAP(,,ANY,KEEP).

94 Language Environment Program Directory

 INQPCOPN

For PL/I, the only case in which storage is allocated above the line is when all of the following
conditions exist:

– The user routine requesting the storage is running in 31-bit addressing mode.
– HEAP(,,ANY) is in effect.
– The main routine is AMODE 31.

In pre-Language Environment-conforming PL/I, the ANYWHERE | BELOW and KEEP | FREE
suboptions were not positional. They could be in any order respective to each other. If init_size
and/or incr_size was not specified, the suboptions could be in the first or second position as well.

� CICS consideration—If HEAP is not specified or if HEAP(0) is specified, Language Environment uses
the IBM-supplied default of HEAP=((4K,4K,ANYWHERE,KEEP,4K,4K),OVR). Both the initial HEAP
allocation and HEAP increments are rounded to the next higher multiple of 8 bytes (not 4K bytes).
The minimum is 4K bytes.

If HEAP(,,ANYWHERE) is in effect, the maximum size of a heap segment is 1 gigabyte (1024M).
These restrictions are subject to change from one release of CICS to another.

� PL/I MTF consideration—In a PL/I MTF application, HEAP specifies the heap storage allocation and
management for a PL/I main task.

� OpenEdition considerations—The HEAP option applies to the enclave.

Under OpenEdition, heap storage is managed at the thread level using pthread_key_create,
pthread_setspecific, and pthread_getspecific.

 E.3.19.2 Performance Considerations

To improve performance, use the storage report numbers generated by the RPTSTG run-time option as
an aid in setting the initial and increment size for HEAP.

E.3.19.3 For More Information

� See Language Environment for MVS & VM Programming Guide for more information about Language
Environment heap storage or about specifying run-time options at application invocation.

� For more information about the CEECRHP callable service, see Language Environment for MVS & VM
Programming Reference.

� For more information about the CEEGTST callable service, see Language Environment for MVS & VM
Programming Reference.

� See E.3.36, “RPTSTG” on page 115 for more information about the RPTSTG run-time option.

E.3.20 INQPCOPN (Fortran Only)

INQPCOPN controls whether the OPENED specifier on an INQUIRE by unit statement can be used to
determine whether a preconnected unit has had any I/O statements directed to it.

IBM-Supplied Default: INQPCOPN =((ON),OVR)

 Appendix E. IBM Language Environment VM Run-time Options 95

 INTERRUPT

 Syntax

 ┌ ┐─ON── ┌ ┐─OVR────
55──INQPCOPN──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────────────────5%

ON
Causes the running of an INQUIRE by unit statement to provide the value true in the variable or array
element given in the OPENED specifier if the unit is connected to a file. This includes the case of a
preconnected unit, which can be used in an I/O statement without running an OPEN statement, even if
no I/O statements have been run for that unit.

OFF
Causes the running of an INQUIRE by unit statement to provide the value false for the case of a
preconnected unit for which no I/O statements other than INQUIRE have been run.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.21 INTERRUPT

INTERRUPT causes attention interrupts recognized by the host system to be recognized by Language
Environment after the Language Environment environment has been initialized. The way you request an
attention interrupt varies from operating system to operating system. When you request the interrupt, you
can give control to your application or to a debug tool.

IBM-Supplied Default: INTERRUPT =((OFF),OVR)

 Syntax

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──INTERRUPT──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────────────────5%

OFF
Specifies that Language Environment does not recognize attention interrupts.

ON
Specifies that Language Environment recognizes attention interrupts. In addition, if you have
specified the TEST(ERROR) or TEST(ALL) run-time option, the interrupt causes the debug tool to
gain control.

OVR
Specifies that the option can be overridden.

96 Language Environment Program Directory

 LIBSTACK

NONOVR
Specifies that the option cannot be overridden.

 E.3.21.1 Usage Notes

� PL/I consideration—Language Environment supports the PL/I method of polling code. Note that the
PL/I routine must be compiled with the INTERRUPT compiler option in order for the INTERRUPT
run-time option to have an effect.

� PL/I MTF consideration—To receive the attention interrupt, the PL/I routine must be compiled with the
INTERRUPT compiler option, and the INTERRUPT run-time option must be in effect.

� CICS consideration—INTERRUPT is ignored under CICS.

� PL/I MTF consideration—The INTERRUPT option applies to the enclave. However, only one thread in
the enclave is affected for a particular attention interrupt.

� OpenEdition consideration—The INTERRUPT option applies to the enclave. However, only one
thread in the enclave is affected for a particular attention interrupt.

E.3.21.2 For More Information

� See E.3.42, “TEST | NOTEST” on page 128 for more information about the TEST run-time option.

� For more information about the POSIX run-time option, see E.3.30, “POSIX” on page 108.

 E.3.22 LIBSTACK

LIBSTACK controls the allocation of the thread's library stack storage. This stack is used by Language
Environment and HLL library routines that require save areas below the 16M line.

IBM-Supplied Default: LIBSTACK =((8K,4K,FREE),OVR)

 Syntax

 ┌ ┐─FREE─ ┌ ┐─OVR────
55──LIBSTACK──=──(──(─ ──init_size ─,─ ──incr_size ─,─ ──┴ ┴─KEEP─ ─)──,─ ──┴ ┴─NONOVR─ ─)────────5%

init_size
Determines the size of the initial library stack segment. The storage is contiguous.

Specify init_size as n, nK, or nM bytes of storage. init_size can be preceded by a minus sign. On
systems other than CICS, if you specify a negative number, all available storage minus the amount
specified is used for the initial stack segment.

In all supported systems except CICS, an init_size of 0 or −0 requests half of the largest block of
contiguous storage below the 16M line.

At initialization, Language Environment allocates the storage rounded up to the nearest multiple of 8
bytes.

 Appendix E. IBM Language Environment VM Run-time Options 97

 LIBSTACK

incr_size
Determines the minimum size of any subsequent increment to the library stack area. Specify this
value as n, nK, or nM bytes of storage. The actual amount of allocated storage is the larger of 2
values— incr_size or the requested size—rounded up to the nearest multiple of 8 bytes.

If you do not specify incr_size, Language Environment uses the IBM-supplied default setting of 4K. If
incr_size=0, Language Environment gets only the amount of storage needed at the time of the
request, rounded up to the nearest multiple of 8 bytes.

The requested size is the amount of storage a routine needs for a stack frame. For example, if the
requested size is 9000 bytes, incr_size is specified as 8K, and the initial stack segment is full, then
Language Environment gets a 9000 byte stack increment from the operating system to satisfy the
request. If the requested size is smaller than 8K, Language Environment gets an 8K stack increment
from the operating system.

FREE
Specifies that Language Environment releases storage allocated to LIBSTACK increments when the
last of the storage in the library stack is freed. The initial library stack segment is not released until
the enclave terminates.

KEEP
Specifies that Language Environment does not release storage allocated to LIBSTACK increments
when the last of the storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.22.1 Usage Notes

� CICS consideration—The initial and increment sizes for LIBSTACK are rounded to the next higher
multiple of 8 bytes. The minimum initial and increment size is 4K.

The IBM-supplied default setting for LIBSTACK under CICS is LIBSTACK=((4K,4K,FREE),OVR).

� OpenEdition consideration—The LIBSTACK option sets the library stack characteristics on each
thread.

The recommended setting for LIBSTACK under OpenEdition is LIBSTACK=((12K,12K,FREE),OVR).

 E.3.22.2 Performance Considerations

To improve performance, use the storage report numbers generated by the RPTSTG run-time option as
an aid in setting the initial and increment size for LIBSTACK.

98 Language Environment Program Directory

 MSGFILE

E.3.22.3 For More Information

� See E.3.36, “RPTSTG” on page 115 for more information about the RPTSTG run-time option.

� For more information about using the storage reports generated by the RPTSTG run-time option to
tune the stacks, see Language Environment for MVS & VM Programming Guide.

 E.3.23 MSGFILE

MSGFILE specifies the ddname of the file where all run-time diagnostics and reports generated by the
RPTOPTS and RPTSTG run-time options are written. MSGFILE also specifies the ddname for CEEMSG
and CEEMOUT callable services.

IBM-Supplied Default: MSGFILE =((SYSOUT,FBA,121,0),OVR)

 Syntax

 ┌ ┐─OVR────
55──MSGFILE──=──(──(─ ──ddname ─,─ ──recfm ─,─ ──lrecl ─,─ ──blksize ─)──,─ ──┴ ┴─NONOVR─ ─)───────5%

ddname
The ddname of the run-time diagnostics file.

recfm
The default record format (RECFM) value for the message file. recfm is used when this information is
not available either in a file definition or in the label of an existing file. The following values are
acceptable: F, FA, FB, FBA, FBS, FBSA, U, UA, V, VA, VB, and VBA.

lrecl
The default record length (LRECL) value for the message file. lrecl is used when this information is
not available either in a file definition or in the label of an existing file. lrecl is expressed as bytes of
storage.

The lrecl value (whether from MSGFILE or from another source) cannot exceed the blksize value,
whose maximum value is 32760. For variable-length record formats, the lrecl value is limited to the
blksize value minus 4.

blksize
The default block size (BLKSIZE) value for the message file. blksize is used when this information is
not available either in a file definition or in the label of an existing file. blksize is expressed as bytes
of storage.

blksize (whether from MSGFILE or from another source) cannot exceed 32760.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 Appendix E. IBM Language Environment VM Run-time Options 99

 MSGFILE

 E.3.23.1 Usage Notes

� CICS considerations—The MSGFILE option is ignored under CICS. Run-time output under CICS is
directed instead to a transient data queue named CESE.

� HLL compiler options, such as the COBOL OUTDD compiler option, can affect whether your run-time
output goes to MSGFILE ddname.

� Use commas to separate suboptions of the MSGFILE run-time option. If you do not specify a
suboption but do specify a subsequent one, you must still code the comma to indicate its omission.
However, trailing commas are not required.

If you do not specify any suboptions, either of the following is valid: MSGFILE or MSGFILE().

� If one of the suboptions of the MSGFILE run-time option is not present in any source, including
CEEDOPT, then an IBM-supplied default value is used. The default values for ddname, recfm, lrecl,
and blksize are SYSOUT, FBA, 121, and 0, respectively.

� If there is no block size in the MSGFILE run-time option, in a file definition, or in the label of an
existing file, block size is determined as follows:

– For a recfm value that specifies unblocked fixed-length format records (F or FA) or
undefined-format records (U or UA), the blksize value is the same as the lrecl value.

– For a recfm value that specifies unblocked variable-length format records (V or VA), the blksize
value is the lrecl value plus 4.

– For a DASD device on MVS and a recfm value that specifies blocked records (FB, FBA, FBS,
FBSA, VB, or VBA), the blksize value is left at 0 by Language Environment so that the system can
determine the optimum blksize value.

– For a terminal and a recfm value that specifies blocked fixed-length format records (FB, FBA,
FBS, or FBSA), the blksize value is the same as the lrecl value.

– For a terminal and a recfm value that specifies blocked variable-length format records (VB or
VBA), the blksize value is the lrecl value plus 4.

– For all other cases, blksize has a value which gives 100 records per block if the blksize value
wouldn't exceed 32760, otherwise, a value giving the largest number of records per block such
that the blksize value that doesn't exceed 32760.

Or, to put it another way:

- For a recfm value that specifies blocked fixed-length format records (FB, FBA, FBS, or FBSA),
the blksize value is lrecl × bfact where bfact is the largest integer not exceeding 100 such that
the blksize value does not exceed 32760.

- For a recfm value that specifies blocked variable-length format records (VB or VBA), the
blksize value is (lrecl × bfact) plus 4 where bfact is the largest integer not exceeding 100
such that the blksize value does not exceed 32760.

� Language Environment detects certain invalid values for the MSGFILE suboptions, namely an invalid
value for recfm and a value of lrecl or blksize that exceeds 32760. A message is printed, and any
incorrect values are ignored.

100 Language Environment Program Directory

 MSGFILE

� Invalid combinations of recfm, lrecl, and blksize values are not diagnosed by Language Environment
but can cause an error condition to be detected by the system on the first attempt to write to the
message file.

� Language Environment does not check the validity of the MSGFILE ddname. An invalid ddname
generates an error condition on the first attempt to issue a message.

� C/C++ consideration—C perror() messages and output directed to stderr go to the MSGFILE
destination.

� PL/I consideration—Run-time messages in PL/I routines are directed to the file specified by MSGFILE,
instead of to the PL/I SYSPRINT STREAM PRINT file.

User-specified output is still directed to the PL/I SYSPRINT STREAM PRINT file. To direct this output
to the Language Environment MSGFILE file, specify MSGFILE(SYSPRINT).

� OpenEdition MVS considerations—The MSGFILE option specifies the ddname of the diagnostic file for
the enclave. When multiple threads write to the message file, the output is interwoven by line. To
group lines of output, serialize MSGFILE access (by using a mutex, for example).

When OpenEdition MVS is available and the MSGFILE option specifies a ddname nominating a
POSIX file, Language Environment uses POSIX services to write the message file. A ddname
nominates a POSIX file using the keyword PATH=.

OpenEdition MVS must be available on the underlying operating system for the MSGFILE option to
write to a POSIX file. If the ddname nominates a POSIX file and OpenEdition is not present, then
Language Environment tries to dynamically allocate an MVS file to be used as the message file.

If the message file is allocated (whether POSIX or MVS), Language Environment directs the output to
this file. If the current message file is not allocated, and the application carries out a fork()/exec,
spawn(), or spawnp(), Language Environment checks whether File Descriptor 2 exists. If it does exist,
then Language Environment uses it; otherwise, Language Environment dynamically allocates the
message file to the POSIX file system and attempts to open the file SYSOUT in the current working
directory; or, if there is no current directory, then in the directory /tmp.

� OpenEdition for VM/ESA considerations—If your application is running under the OpenEdition shell or
any environment that has file descriptor 2 (FD2) open, MSGFILE output is directed to whatever FD2
points to. Under the shell, this is typically your terminal. If FD2 is closed when your application is
invoked (via spawn() or exec()), no message file is created.

E.3.23.2 For More Information

� For more information about the RPTOPTS and RPTSTG run-time options, see E.3.35, “RPTOPTS” on
page 112 and E.3.36, “RPTSTG” on page 115.

� For more information about the CEEMSG and CEEMOUT callable services, see Language
Environment for MVS & VM Programming Reference.

� For details on how HLL compiler options affect messages, see information on HLL I/O statements and
message handling in Language Environment for MVS & VM Programming Guide.

� For more information about perror() and stderr see C message output information in Language
Environment for MVS & VM Programming Guide.

 Appendix E. IBM Language Environment VM Run-time Options 101

 NATLANG

� For more information about the CESE transient data queue, see Language Environment for MVS &
VM Programming Guide.

 E.3.24 MSGQ

MSGQ specifies the number of ISI blocks that Language Environment allocates on a per thread basis for
use by the application. The ISI contains information for Language Environment to use when identifying
and reacting to conditions, providing access to q_data tokens, and assigning space for message inserts
used with user-created messages. When an ISI is needed and one is not available, Language
Environment uses the least recently used ISI. CEECMI allocates storage for the ISI, if necessary.

IBM-Supplied Default: MSGQ =((15),OVR)

 Syntax

 ┌ ┐─OVR────
55──MSGQ──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)──5%

number
An integer that specifies the number of ISIs to be maintained per thread within an enclave.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.24.1 Usage Notes

� PL/I MTF consideration—In a PL/I MTF application, MSGQ sets the number of message queues
allowed for each task.

E.3.24.2 For More Information

� For more information about the CEECMI callable service, see Language Environment for MVS & VM
Programming Reference.

� For more information about the ISI, see Language Environment for MVS & VM Programming Guide.

 E.3.25 NATLANG

NATLANG specifies the initial national language to be used for the run-time environment, including error
messages, month names, and day of the week names. Message translations are provided for Japanese
and for uppercase and mixed-case U.S. English. NATLANG also determines how the message facility
formats messages.

102 Language Environment Program Directory

 NATLANG

NATLANG affects only the Language Environment NLS and date and time services, not the Language
Environment locale callable services.

You can set the national language by using the NATLANG run-time option or the SET function of the
CEE3LNG callable service Language Environment maintains one current language at the enclave level.
The current language remains in effect until one of the above changes it. For example, if you specify JPN
in the NATLANG run-time option, but subsequently specify ENU using the CEE3LNG callable service,
ENU becomes the current national language.

Language Environment writes storage and options reports and dump output only in mixed-case U.S.
English.

IBM-Supplied Default: NATLANG =((ENU),OVR)

 Syntax

 ┌ ┐─ENU─ ┌ ┐─OVR────
55──NATLANG──=──(──(─ ──┼ ┼─UEN─ ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────────────────────5%
 └ ┘─JPN─

ENU
A 3-character ID specifying mixed-case U.S. English.

Message text consists of SBCS characters and includes both uppercase and lowercase letters.

UEN
A 3-character ID specifying uppercase U.S. English.

Message text consists of SBCS characters and includes only uppercase letters.

JPN
A 3-character ID specifying Japanese.

Message text can contain a mixture of SBCS and DBCS characters.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.25.1 Usage Notes

� If you specify a national language that is not available on your system, Language Environment uses
the IBM-supplied default ENU (mixed-case U.S. English).

CEEUOPT and CEEDOPT can specify an unknown national language code, but give a return code of
4 and a warning message.

� C/C++ consideration—Language Environment provides locales used in C and C++ to establish default
formats for the locale-sensitive functions and locale callable services, such as date and time

 Appendix E. IBM Language Environment VM Run-time Options 103

 NONIPTSTACK | NONONIPTSTACK

formatting, sorting, and currency symbols. To change the locale, you can use the setlocale() library
function or the CEESETL callable service.

The settings of CEESETL or setlocale() do not affect the setting of the NATLANG run-time option.
NATLANG affects only Language Environment NLS and date and time services. setlocale() and
CEESETL affect only C/C++ locale-sensitive functions and Language Environment locale callable
services.

To ensure that all settings are correct for your country, use NATLANG and either CEESETL or
setlocale().

� PL/I MTF consideration—NATLANG affects every task in the application. The SET function of
CEE3LNG is supported for the relinked OS PL/I or PL/I for MVS & VM MTF applications only.

� OpenEdition consideration—The NATLANG option specifies the initial value for the enclave.

E.3.25.2 For More Information

� For more information about the CEE3LNG callable service, see Language Environment for MVS & VM
Programming Reference.

� See E.3.24, “MSGQ” on page 102 for more information about the MSGQ run-time option.

� For more information on setlocale(), see AD/Cycle C/370 Programming Guide, C/MVS Programming
Guide, or C++/MVS Programming Guide.

E.3.26 NONIPTSTACK | NONONIPTSTACK

NONIPTSTACK controls stack allocation for each thread, except the initial thread, in a multithread
environment. If the thread attribute object does not provide an explicit stack size, then the allocation
values can be inherited from the STACK option or specified explicitly on the NONIPTSTACK option.
NONONIPTSTACK causes the values specified in the STACK option to be used.

In PL/I MTF applications, NONIPTSTACK specifies stack storage for every subtask. If you use the
IBM-supplied default NONONIPTSTACK, the STACK option specifies stack storage for both the main task
and subtasks.

IBM-Supplied Default: NONONIPTSTACK =((4K,4K,BELOW,KEEP),OVR)

 Syntax

┌ ┐─NONONIPTSTACK─ ┌ ┐─BELOW──── ┌ ┐─KEEP─
55─ ──┴ ┴─NONIPTSTACK─── ─=──(──(─ ──init_size ─,─ ──incr_size ─,─ ──┼ ┼─ANYWHERE─ ─,─ ──┴ ┴─FREE─ ───5
 └ ┘─ANY──────

 ┌ ┐─OVR────
5──)──,─ ──┴ ┴─NONOVR─ ─)──5%

NONONIPTSTACK
Indicates that the allocation options of the STACK option are used for thread stack allocation. Any
suboption specified with NONONIPTSTACK is ignored.

104 Language Environment Program Directory

 NONIPTSTACK | NONONIPTSTACK

NONIPTSTACK
Controls the stack allocation for each thread, except the initial thread, in a multithread environment.

init_size
The length of each noninitial thread initial stack storage area. This is an unsigned integer, n, nK, or
nM. The actual amount of allocated storage is rounded up to the nearest multiple of 8 bytes.

A value of zero (0) causes an allocation of 4K.

incr_size
The minimum amount by which the stack storage for any noninitial thread is incremented, and is
specified in n, nK, or nM. The actual amount of allocated storage is the larger of two values,
incr_size or the requested size, rounded up to the nearest multiple of 8 bytes.

If you specify incr_size as 0, only the amount of the storage needed at the time of the request
(rounded up to the nearest 8 bytes) is obtained.

BELOW
Specifies that the stack storage must be allocated below the 16M line. Applications running with
ALL31(OFF) must specify NONIPTSTACK(,,BELOW) to ensure that stack storage is addressable by
the application.

ANYWHERE|ANY
Specifies that the stack storage can be allocated anywhere in storage either above or below the 16M
line.

The only valid abbreviation of ANYWHERE is ANY.

KEEP
Specifies that storage allocated to NONIPTSTACK increments is not released when the last of the
storage in the thread stack increment is freed.

FREE
Specifies that storage allocated to NONIPTSTACK increments is released when the last of the
storage in the thread stack increment is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.26.1 Usage Notes

� All storage allocated to NONIPTSTACK segments is freed when the thread terminates.

� The initial stack segment of the thread is never released until the thread terminates, regardless of the
KEEP/FREE state.

� You can specify sub-options with NONONIPTSTACK, but they are ignored. If you override the
NONONIPTSTACK option with NONIPTSTACK and you omit suboptions, then the suboptions you

 Appendix E. IBM Language Environment VM Run-time Options 105

 OCSTATUS

specified with NONONIPTSTACK remain in effect. If you respecify NONONIPTSTACK with different
suboptions, they override the defaults.

� PL/I MTF consideration—NONIPTSTACK(4K, 4K, BELOW, KEEP) provides PL/I compatibility for stack
storage allocation and management for each subtask in the application.

� CICS consideration—This option is ignored under CICS.

E.3.26.2 For More Information

� For more information about the STACK run-time option, see E.3.39, “STACK” on page 121.

� For more information about the ALL31 run-time option, see E.3.4, “ALL31” on page 76.

E.3.27 OCSTATUS (Fortran Only)

OCSTATUS controls the verification of file existence and whether a file is actually deleted based on the
STATUS specifier on the OPEN and CLOSE statement, respectively.

IBM-Supplied Default: OCSTATUS =((ON),OVR)

 Syntax

 ┌ ┐─ON── ┌ ┐─OVR────
55──OCSTATUS──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────────────────5%

ON
Specifies that file existence is checked with each OPEN statement to verify that the status of the file is
consistent with STATUS='OLD' and STATUS='NEW'. It also specifies that file deletion occurs with
each CLOSE statement with STATUS='DELETE' for those devices which support file deletion.
Preconnected files are included in these verifications. OCSTATUS consistency checking applies to
DASD files, PDS members, VSAM files, MVS labeled tape files, and dummy files only. For dummy
files, the consistency checking occurs only if the file was previously opened successfully in the current
program.

In addition, when a preconnected file is disconnected by a CLOSE statement, an OPEN statement is
required to reconnect the file under OCSTATUS. Following the CLOSE statement, the INQUIRE
statement parameter OPENED indicates that the unit is disconnected.

OFF
Bypasses file existence checking with each OPEN statement and bypasses file deletion with each
CLOSE statement.

If STATUS='NEW', a new file is created; if STATUS='OLD', the existing file is connected.

If STATUS='UNKNOWN' or 'SCRATCH', and the file exists, it is connected; if the file does not
exist, a new file is created.

In addition, when a preconnected file is disconnected by a CLOSE statement, an OPEN statement is
not required to reestablish the connection under OCSTATUS(OFF). A sequential READ, WRITE,

106 Language Environment Program Directory

 PLITASKCOUNT

BACKSPACE, REWIND, or ENDFILE will reconnect the file to a unit. Before the file is reconnected,
the INQUIRE statement parameter OPENED will indicate that the unit is disconnected; after the
connection is reestablished, the INQUIRE statement parameter OPENED will indicate that the unit is
connected.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.28 PC (Fortran Only)

PC controls whether Fortran status common blocks are shared among load modules.

IBM-Supplied Default: PC =((OFF),OVR)

 Syntax

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──PC──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)───5%

OFF
Specifies that Fortran static common blocks with the same name but in different load modules all refer
to the same storage. PC(OFF) applies only to static common blocks referenced by compiled code
produced by any of the following compilers and that were not compiled with the PC compiler option:

� VS FORTRAN Version 2 Release 5
� VS FORTRAN Version 2 Release 6

ON Specifies that Fortran static common blocks with the same name but in different load modules do not
refer to the same storage.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.29 PLITASKCOUNT (PL/I Only)

PLITASKCOUNT controls the maximum number of tasks active at one time while you are running PL/I
MTF applications.

IBM-Supplied Default: PLITASKCOUNT =((20),OVR)

 Appendix E. IBM Language Environment VM Run-time Options 107

 POSIX

 Syntax

 ┌ ┐─OVR────
55──PLITASKCOUNT──=──(──(─ ──tasks ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────5%

tasks
A decimal integer that is the maximum number of tasks allowed in a PL/I MTF application at any one
time during execution. The total tasks include the main task and subtasks created directly or
indirectly from the main task.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.29.1 Usage Notes

� A value of zero (0) assumes the IBM-supplied default of 20.

� PL/I MTF consideration—If tasks or the IBM-supplied default of 20 exceeds the OpenEdition MVS
installation default of the maximum number of threads, Language Environment assumes the
OpenEdition MVS installation default.

� If a request to create a task would take the number of currently active tasks over the allowable limit,
condition IBM0566S is signalled and the task is not created.

 E.3.30 POSIX

POSIX specifies whether the enclave can run with the POSIX semantics.

POSIX is an application characteristic that is maintained at the enclave level. After you have established
the characteristic during enclave initialization, you cannot change it.

When you set POSIX to ON, you can use functions that are unique to POSIX, such as pthread_create().

One of the effects of POSIX(ON) is the enablement of POSIX signal handling semantics, which interact
closely with the Language Environment condition handling semantics.

ANSI C routines can access the OpenEdition MVS Hierarchical File System (HFS) on MVS independent of
the POSIX setting. They can also access the OpenEdition for VM/ESA Byte File System (BFS) on VM
independent of the POSIX setting. Where ambiguities exist between ANSI and POSIX semantics, the
POSIX run-time option setting indicates the POSIX semantics to follow.

If you set POSIX to ON and you run non-thread-safe languages such as COBOL, PL/I, and C++ in a
thread other than the initial thread, the behavior is undefined.

IBM-Supplied Default: POSIX =((OFF),OVR)

108 Language Environment Program Directory

 PRTUNIT

 Syntax

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──POSIX──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)──5%

OFF
Indicates that the application is not POSIX-enabled.

ON
Indicates that the application is POSIX-enabled.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.30.1 Usage Notes

� If you set POSIX to ON when OpenEdition is not active, the following events occur:

– The message file receives a warning, but the application continues to run.

– If you invoke a POSIX function that has an OpenEdition kernal dependency, it does not take
effect.

– If you invoke a POSIX function that has an OpenEdition kernal dependency and has no provision
for failure, for example, alarm, a severity 3 condition is raised.

� POSIX(ON) applies to MVS/ESA and VM/ESA, but explicitly excludes CICS. If you set POSIX to ON
while an application is running under CICS, you receive a warning message and the application
continues to run. You can specify POSIX(ON) for both DB2* and IMS applications.

� Within nested enclaves, only one enclave can have the POSIX option set to ON. All other nested
enclaves must have the POSIX option set to OFF.

E.3.30.2 For More Information

� For more information on POSIX functions that have an OpenEdition kernal dependency, see C/C++ for
MVS/ESA Library Reference.

� For more information about the INTERRUPT run-time option, see E.3.21, “INTERRUPT” on page 96.

E.3.31 PRTUNIT (Fortran Only)

PRTUNIT identifies the unit number used for PRINT and WRITE statements that do not specify a unit
number.

IBM-Supplied Default: PRTUNIT =((6),OVR)

 Appendix E. IBM Language Environment VM Run-time Options 109

 RDRUNIT

 Syntax

 ┌ ┐─OVR────
55──PRTUNIT──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────────5%

number
A valid unit number in the range 0-99. You can establish your own default number at installation time.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.32 PUNUNIT (Fortran Only)

PUNUNIT identifies the unit number used for PUNCH statements that do not specify a unit number.

IBM-Supplied Default: PUNUNIT =((7),OVR)

 Syntax

 ┌ ┐─OVR────
55──PUNUNIT──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────────5%

number
A valid unit number in the range 0-99. You can establish your own default number at installation time.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.33 RDRUNIT (Fortran Only)

RDRUNIT identifies the unit number used for READ statements that do not specify a unit number.

IBM-Supplied Default: RDRUNIT =((5),OVR)

 Syntax

 ┌ ┐─OVR────
55──RDRUNIT──=──(──(─ ──number ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────────5%

number
A valid unit number in the range 0-99. You can establish your own default number at installation time.

110 Language Environment Program Directory

 RECPAD

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.34 RECPAD (Fortran Only)

RECPAD specifies whether a formatted input record is padded with blanks.

IBM-Supplied Default: RECPAD =((OFF),OVR)

 Syntax

 ┌ ┐─OFF── ┌ ┐─OVR────
55─ ──RECPAD ─=──(──(─ ──┼ ┼─ON─── ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────────────────────5%
 ├ ┤─NONE─
 ├ ┤─ALL──
 └ ┘─VAR──

OFF|NONE
Specifies that no blank padding be applied when an input list and format specification requires more
data from an input record than the record contains. If more data is required, the error described by
condition FOR1002 is detected.

ON|ALL
Specifies that a formatted input record within an internal file, or a varying or undefined length record
(RECFM=U or V) external file, be padded with blanks when an input list and format specification
require more data from the record than the record contains. Blanks added for padding are interpreted
as though the input record actually contains blanks in those fields.

VAR
Applies blank padding to any of the following types of files:

� An external, non-VSAM file with a record format (the RECFM value) that allows the lengths of
records to differ within the file. Such record formats are variable(V), variable blocked (VB),
undefined (U), variable spanned (VS), and variable blocked spanned (VBS); this excludes fixed (F)
and fixed blocked (FB).

� An external, VSAM entry-sequenced data set (ESDS) or key-sequenced data set (KSDS).

� An internal file.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 Appendix E. IBM Language Environment VM Run-time Options 111

 RPTOPTS

 E.3.34.1 Usage Notes

� NORECPAD has the same effect as RECPAD(OFF) and RECPAD(NONE). RECPAD has the same
effect as RECPAD(ON) and RECPAD(ALL).

� The PAD specifier of the OPEN statement can be used to indicate padding for individual files.

 E.3.35 RPTOPTS

RPTOPTS generates, after an application has run, a report of the run-time options in effect while the
application was running. Language Environment writes options reports only in mixed-case U.S. English.

Language Environment directs the report to the ddname specified in the MSGFILE run-time option.

RPTOPTS does not generate the options report if Language Environment abends but does generate a
report in all other cases.

Figure 26 on page 114 shows the sample output when RPTOPTS is set to ON. RPTOPTS(ON) lists the
declared run-time options in alphabetical order. The report lists the option names and shows where each
option obtained its current setting. The report heading displayed at the top of the options report is set by
CEE3RPH. The date and time formats are affected by the country code set by the COUNTRY run-time
option or the CEE3CTY callable service.

The LAST WHERE SET column in the report shows the last place where the options were referenced,
even if no suboptions or subsets of the options were changed. “Default setting” in the report indicates that
you cannot specify the option in CEEDOPT or CEEUOPT. “Programmer default” includes any options
specified with C #pragma runopts, PL/I PLIXOPT, and CEEUOPT.

IBM-Supplied Default: RPTOPTS =((OFF),OVR)

 Syntax

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──RPTOPTS──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────────────────────5%

OFF
Does not generate a report of the run-time options in effect while the application was running.

ON
Generates a report of the run-time options in effect while the application was running.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

112 Language Environment Program Directory

 RPTOPTS

 E.3.35.1 Usage Note

� OpenEdition consideration—The RPTOPTS option reports run-time options for the enclave.

 E.3.35.2 Performance Considerations

This option increases the time it takes for the application to run. Therefore, use it only as an aid to
application development.

 Appendix E. IBM Language Environment VM Run-time Options 113

 RPTOPTS

Options Report for Enclave ABC ð8/ð7/95 1:12:2ð PM

LAST WHERE SET OPTION

Programmer default ABPERC(NONE)
Installation default ABTERMENC(RETCODE)
Installation default NOAIXBLD
Programmer default ALL31(OFF)
Assembler user exit ANYHEAP(32768,16384,ANYWHERE,FREE)
Installation default NOAUTOTASK
Assembler user exit BELOWHEAP(8192,8192,FREE)
Installation default CBLOPTS(ON)
Installation default CBLPSHPOP(ON)
Installation default CBLQDA(ON)
Installation default CHECK(ON)
Installation default COUNTRY(US)
Installation default DEBUG
Programmer default DEPTHCONDLMT(2ð)
Installation default ENVAR("")
Programmer default ERRCOUNT(7)
Installation default ERRUNIT(6)
Installation default FILEHIST
Default setting NOFLOW
Assembler user exit HEAP(32768,32768,ANYWHERE,KEEP,8192,4ð96)
Installation default INQPCOPN
Installation default INTERRUPT(OFF)
Invocation command LIBSTACK(8192,4ð96,FREE)
Installation default MSGFILE(SYSOUT,FBA,121,ð)
Installation default MSGQ(15)
Installation default NATLANG(ENU)
Invocation command NONONIPTSTACK(4ð96,4ð96,BELOW,KEEP)
Installation default OCSTATUS
Installation default NOPC
Installation default PLITASKCOUNT(2ð)
Installation default POSIX(OFF)
Installation default PRTUNIT(6)
Programmer default PUNUNIT(7)
Installation default RDRUNIT(5)
Installation default RECPAD(OFF)
Invocation command RPTOPTS(ON)
Installation default RPTSTG(OFF)
Installation default NORTEREUS
Installation default NOSIMVRD
Invocation command STACK(65536,65536,BELOW,KEEP)
Assembler user exit STORAGE(NONE,NONE,NONE,131ð72)
Programmer default TERMTHDACT(TRACE)
Installation default NOTEST(ALL,"\","PROMPT","INSPPREF")
Installation default THREADHEAP(4ð96,4ð96,ANYWHERE,KEEP)
Installation default TRACE(OFF,4ð96,DUMP,LE=ð)
Installation default TRAP(ON)
Installation default UPSI(ðððððððð)
Installation default NOUSRHDLR()
Installation default VCTRSAVE(OFF)
Programmer default XUFLOW(AUTO)

Figure 26. Options Report Produced by Language Environment Run-Time Option RPTOPTS(ON)

114 Language Environment Program Directory

 RPTSTG

E.3.35.3 For More Information

� See E.3.23, “MSGFILE” on page 99 for more information about the MSGFILE run-time option.

� For more information about the CEE3RPH callable service, see Language Environment for MVS & VM
Programming Reference.

� See E.3.12, “COUNTRY” on page 85 for more information about the COUNTRY run-time option.

� For more information about the CEE3CTY callable service, see Language Environment for MVS & VM
Programming Reference.

 E.3.36 RPTSTG

RPTSTG generates, after an application has run, a report of the storage the application used. The report
is directed to the ddname specified in the MSGFILE run-time option.

Figure 27 on page 117 shows a sample report created with the RPTSTG option set to ON.

The storage report heading is set by CEE3RPH. The date and time formats, in the RPTSTG generated
reports, are affected by the country code set by the COUNTRY run-time option or the CEE3CTY callable
service.

You can use the storage report information to adjust the ANYHEAP, BELOWHEAP, HEAP, LIBSTACK,
NONIPTSTACK, STACK, and THREADHEAP run-time options.

Language Environment writes storage reports only in mixed-case U.S. English.

IBM-Supplied Default: RPTSTG =((OFF),OVR)

 Syntax

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──RPTSTG──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────────5%

OFF
Does not generate a report of the storage used while the application was running.

ON
Generates a report of the storage used while the application was running.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 Appendix E. IBM Language Environment VM Run-time Options 115

 RPTSTG

 E.3.36.1 Usage Notes

� RPTSTG does not generate a storage report if your application terminates abnormally.

� The phrases “Number of segments allocated” and “Number of segments freed” represent the following:

– On VM/ESA, the number of CMSSTOR OBTAIN and CMSSTOR RELEASE requests, respectively.

– On CICS, the number of EXEC CICS GETMAIN and EXEC CICS FREEMAIN requests,
respectively.

� RPTSTG includes PL/I task-level information on stack and heap utilization.

� OpenEdition consideration—The RPTSTG option applies to storage utilization for the enclave,
including thread-level information on stack utilization, and stack storage used by multiple threads.

 E.3.36.2 Performance Considerations

This option increases the time it takes for an application to run. Therefore, use it only as an aid to
application development.

The storage report generated by RPTSTG(ON) shows the number of system-level get storage calls that
were required while the application was running. To improve performance, use the storage report
numbers generated by the RPTSTG option as an aid in setting the initial and increment size for STACK
and HEAP. This reduces the number of times that the Language Environment storage manager makes
requests to acquire storage. For example, you can use the storage report numbers to set appropriate
values in the HEAP and STACK init_size and incr_size fields for allocating storage.

116 Language Environment Program Directory

 RPTSTG

Storage Report for Enclave main ð8/ð7/95 12:59:59 PM

 STACK statistics:
 Initial size: 131ð72
 Increment size: 131ð72

Maximum used by all concurrent threads: 126ðð
Largest used by any thread: 126ðð
Number of segments allocated: 1
Number of segments freed: ð

 NONIPTSTACK statistics:
 Initial size: 32768
 Increment size: 32768

Maximum used by all concurrent threads: 6552
Largest used by any thread: 2232
Number of segments allocated: 4
Number of segments freed: ð

 LIBSTACK statistics:
 Initial size: 8192
 Increment size: 4ð96

Maximum used by all concurrent threads: 784
Largest used by any thread: 784
Number of segments allocated: 1
Number of segments freed: ð

 THREADHEAP statistics:
 Initial size: 4ð96
 Increment size: 4ð96

Maximum used by all concurrent threads: ð
Largest used by any thread: ð
Successful Get Heap requests: ð
Successful Free Heap requests: ð
Number of segments allocated: ð
Number of segments freed: ð

 HEAP statistics:
 Initial size: 32768
 Increment size: 32768

Total heap storage used (sugg. initial size): 2ð312
Successful Get Heap requests: 25
Successful Free Heap requests: 3
Number of segments allocated: 1
Number of segments freed: ð

 ANYHEAP statistics:
 Initial size: 16384
 Increment size: 8192

Total heap storage used (sugg. initial size): 1ð5256
Successful Get Heap requests: 412
Successful Free Heap requests: 391
Number of segments allocated: 2
Number of segments freed: ð

Figure 27 (Part 1 of 2). Storage Report Produced by Language Environment Run-Time Option RPTSTG(ON)

 Appendix E. IBM Language Environment VM Run-time Options 117

 RTEREUS

 BELOWHEAP statistics:
 Initial size: 8192
 Increment size: 4ð96

Total heap storage used (sugg. initial size): 24ð3ð4
Successful Get Heap requests: 41
Successful Free Heap requests: 32
Number of segments allocated: 5
Number of segments freed: 4

Additional Heap statistics:
Successful Create Heap requests: ð
Successful Discard Heap requests: ð
Total heap storage used: ð
Successful Get Heap requests: ð
Successful Free Heap requests: ð
Number of segments allocated: ð
Number of segments freed: ð

Largest number of threads concurrently active: 2
End of Storage Report

Figure 27 (Part 2 of 2). Storage Report Produced by Language Environment Run-Time Option RPTSTG(ON)

E.3.36.3 For More Information

� For more information about the MSGFILE run-time option, see E.3.23, “MSGFILE” on page 99.

� For more information about the CEE3RPH callable service, see Language Environment for MVS & VM
Programming Reference.

� See E.3.12, “COUNTRY” on page 85 for more information about the COUNTRY run-time option.

� For more information about the CEE3CTY callable service, see Language Environment for MVS & VM
Programming Reference.

� For more information about the ANYHEAP run-time option, see E.3.5, “ANYHEAP” on page 78.

� For more information about the BELOWHEAP run-time option, see E.3.7, “BELOWHEAP” on page 80.

� For more information about the HEAP run-time option, see E.3.19, “HEAP” on page 93.

� For more information about the LIBSTACK run-time option, see E.3.22, “LIBSTACK” on page 97.

� For more information about the STACK run-time option, see E.3.39, “STACK” on page 121.

� For more information about tuning your application with storage numbers, see Language Environment
for MVS & VM Programming Guide.

E.3.37 RTEREUS (COBOL Only)

RTEREUS implicitly initializes the run-time environment to be reusable when the main program for the
thread is a COBOL program. This option is valid only when used with CEEDOPT or CEEUOPT.

IBM-Supplied Default: RTEREUS =(OFF),(OVR)

118 Language Environment Program Directory

 RTEREUS

 Syntax

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──RTEREUS──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────────────────────5%

OFF
Does not initialize the run-time environment to be reusable when the first COBOL routine is invoked.

ON
Initializes the run-time environment to be reusable when the first COBOL routine is invoked.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.37.1 Usage Notes

� Avoid using RTEREUS(ON) as an installation default, because doing so can cause problems for other
HLLs such as C/C++ and PL/I.

� When you specify RTEREUS in CEEDOPT or CEEUOPT, the only accepted syntax is RTEREUS(ON)
or RTEREUS(OFF).

� The IGZERREO CSECT affects the handling of program checks in the non-Language Environment
conforming driver that repeately invokes COBOL programs.

� CICS consideration—This option is ignored under CICS.

� IMS consideration—RTEREUS is not recommended for use under IMS.

 E.3.37.2 Performance Considerations

You must change STOP RUN statements to GOBACK statements in order to gain the benefits of
RTEREUS. STOP RUN terminates the reusable environment. If you specify RTEREUS and use STOP
RUN, Language Environment recreates the reusable environment on the next invocation of COBOL.
Doing this repeatedly degrades performance, because a reusable environment takes longer to create than
does a normal environment.

The IGZERREO CSECT affects the performance of running with RTEREUS.

Language Environment also offers preinitialization support in addition to RTEREUS.

 Appendix E. IBM Language Environment VM Run-time Options 119

 SIMVRD

E.3.37.3 For More Information

� For more information about CEEUOPT or CEEDOPT, see Language Environment for MVS & VM
Installation and Customization on MVS.

� See Language Environment for MVS & VM Programming Guide for more information about
preinitialization.

� For more infomation about IFZERREO, see “Updating COBOL Component Reusable Environment”on
page 42.

E.3.38 SIMVRD (COBOL Only)

SIMVRD specifies whether your COBOL routines use a VSAM KSDS to simulate variable-length relative
organization data sets.

IBM-Supplied Default: SIMVRD =((OFF),OVR)

 Syntax

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──SIMVRD──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)───────────────────────────────────────5%

OFF
Do not use a VSAM KSDS to simulate variable-length relative organization.

ON
Use a VSAM KSDS to simulate variable-length relative organization.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.38.1 Usage Notes

� When you specify SIMVRD in CEEDOPT or CEEUOPT, the only accepted syntax is SIMVRD(ON) or
SIMVRD(OFF).

� CICS consideration—This option is ignored under CICS.

E.3.38.2 For More Information

� See COBOL/370 Programming Guide or COBOL for MVS & VM Programming Guide for more details.

� See Language Environment for MVS & VM Installation and Customization on MVS for more
information on CEEDOPT and CEEUOPT.

120 Language Environment Program Directory

 STACK

 E.3.39 STACK

STACK controls the allocation of the thread's stack storage. Typical items residing in the stack are C or
PL/I automatic variables, COBOL LOCAL-STORAGE data items, and work areas for COBOL library
routines.

Storage required for the common anchor area (CAA) and other control blocks is allocated separately from,
and prior to, the allocation of the initial stack segment and the initial heap.

IBM-Supplied Default: STACK =((128K,128K,BELOW,KEEP),OVR)

 Syntax

┌ ┐─BELOW──── ┌ ┐─KEEP─
55──STACK──=──(──(─ ──init_size ─,─ ──incr_size ─,─ ──┼ ┼─ANYWHERE─ ─,─ ──┴ ┴─FREE─ ─)──,──────────5
 └ ┘─ANY──────

 ┌ ┐─OVR────
5─ ──┴ ┴─NONOVR─ ─)──5%

init_size
Determines the size of the initial stack segment. The storage is contiguous. You specify the init_size
value as n, nK, or nM bytes of storage. The actual amount of allocated storage is rounded up to the
nearest multiple of 8 bytes.

init_size can be preceded by a minus sign. On systems other than CICS, if you specify a negative
number Language Environment uses all available storage minus the amount specified for the initial
stack segment.

A size of "0" or "−0" requests half of the largest block of contiguous storage in the region below the
16M line. Behavior under CICS is described in the Usage Notes for this run-time option.

incr_size
Determines the minimum size of any subsequent increment to the stack area. You can specify this
value as n, nK, or nM bytes of storage. The actual amount of allocated storage is the larger of two
values— incr_size or the requested size—rounded up to the nearest multiple of 8 bytes

If you specify incr_size as 0, only the amount of the storage needed at the time of the request,
rounded up to the nearest multiple of 8 bytes, is obtained.

The requested size is the amount of storage a routine needs for a stack frame. For example, if the
requested size is 9000 bytes, incr_size is specified as 8K, and the initial stack segment is full,
Language Environment gets a 9000 byte stack increment from the operating system to satisfy the
request. If the requested size is smaller than 8K, Language Environment gets an 8K stack increment
from the operating system.

BELOW
Specifies that the stack storage must be allocated below the 16M line, in storage that is accessible to
24-bit addressing.

 Appendix E. IBM Language Environment VM Run-time Options 121

 STACK

ANYWHERE|ANY
Specifies that stack storage can be allocated anywhere in storage. On systems that support bimodal
addressing, storage can be allocated either above or below the 16M line. If there is no storage
available above the line, Language Environment acquires storage below the line. On systems that do
not support bimodal addressing (for example, when VM/ESA is initial program loaded in 370 mode)
Language Environment ignores this option and places the stack storage below 16M.

The only valid abbreviation for ANYWHERE is ANY.

KEEP
Specifies that storage allocated to STACK increments is not released when the last of the storage in
the stack increment is freed.

FREE
Specifies that storage allocated to STACK increments is released when the last of the storage in the
stack is freed. The initial stack segment is never released until the enclave terminates.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.39.1 Usage Notes

� Applications running with ALL31(OFF) must specify STACK(,,BELOW) to ensure that stack storage is
addressable by the application.

� CICS consideration—The IBM-supplied default setting for STACK under CICS is
STACK=((4K,4K,ANYWHERE,KEEP),OVR). However, when you define your CICS transaction, if the
value of the TASKDATALOC suboption is set to or defaults to BELOW, it overrides the setting
STACK(,,ANYWHERE) and forces GETMAINs to obtain stack storage below the line.

The maximum initial and increment size for CICS above 16M is 1 gigabyte (1204M). This restriction is
subject to change from one release of CICS to another.

Both the initial size and the increment size are rounded up to the nearest multiple of 8 bytes. The
initial size and the increment size minimum is 4K.

If you do not specify STACK, Language Environment assumes the default value of 4K. Under CICS,
STACK(0), STACK (−0), and STACK (−n) are all interpreted as STACK(4K).

� PL/I consideration—PL/I automatic storage above the 16M line is supported under control of the
Language Environment STACK option. When the Language Environment stack is above, PL/I
temporaries (dummy arguments) and parameter lists (for reentrant/recursive blocks) also reside above.

The stack frame size for an individual block is constrained to 16M. Stack frame extensions are also
constrained to 16M. Therefore, the size of an automatic aggregate, temporary variable, or dummy
argument cannot exceed 16M. Violation of this constraint might have unpredictable results.

122 Language Environment Program Directory

 STORAGE

If an OS PL/I application does not contain any edited stream I/O and if it is running with AMODE 31,
you can relink it with Language Environment to use STACK(,,ANY). Doing so is particularly useful
under CICS to help relieve below-the-line storage constraints.

� PL/I MTF consideration—The STACK option allocates and manages stack storage for the PL/I main
task only. For information about stack storage management in the subtasks, see E.3.26,
“NONIPTSTACK | NONONIPTSTACK” on page 104.

� OpenEdition consideration—The STACK option specifies the characteristics of the user stack for the
initial thread. In particular, it gets the initial size of the user stack for the initial thread.

The characteristics that indicate incr_size, ANYWHERE, and KEEP | FREE apply to any thread
created using pthread_create. Language Environment gets the initial stack size from the threads
attribute object specified in the pthread_create function. The default size to be set in the thread's
attribute object is obtained from the STACK run-time option's initial size.

The recommended default setting for STACK under OpenEdition is
STACK=((12K,12K,ANYWHERE,KEEP),OVR).

 E.3.39.2 Performance Considerations

To improve performance, use the storage report numbers generated by the RPTSTG run-time option as
an aid in setting the initial and increment size for STACK.

E.3.39.3 For More Information

� See E.3.4, “ALL31” on page 76, for more information about the ALL31 run-time option.

� See E.3.36, “RPTSTG” on page 115, for more information about the RPTSTG run-time option.

� For more information about using the storage reports generated by the RPTSTG run-time option to
tune the stacks, see Language Environment for MVS & VM Programming Guide.

 E.3.40 STORAGE

STORAGE controls the initial content of storage when allocated and freed. It also controls the amount of
storage that is reserved for the out-of-storage condition. If you specify one of the parameters in the
STORAGE run-time option, all allocated storage processed by that parameter is initialized to the specified
value. Otherwise, it is left uninitialized.

You can use the STORAGE option to identify uninitialized application variables, or prevent the accidental
use of previously freed storage. STORAGE is also useful in data security. For example, storage
containing sensitive data can be cleared when it is freed.

IBM-Supplied Default: STORAGE =((NONE,NONE,NONE,8K),OVR)

 Appendix E. IBM Language Environment VM Run-time Options 123

 STORAGE

 Syntax

55──STORAGE──=──(──(─ ──heap_alloc_value ─,─ ──heap_free_value ─,─ ──dsa_alloc_value ─,────────5

 ┌ ┐─OVR────
5─ ──reserve_size ─)──,─ ──┴ ┴─NONOVR─ ─)──5%

heap_alloc_value
The initialized value of any heap storage allocated by the storage manager. You can specify
heap_alloc_value as:

� A single character enclosed in quotes. If you specify a single character, every byte of heap
storage allocated by the storage manager is initialized to that character's EBCDIC equivalent. For
example, if you specify 'a' as the heap_alloc_value, heap storage is initialized to X'818181...81'
or 'aaa...a'.

� Two hex digits without quotes. If you specify two hex digits, every byte of the allocated heap
storage is initialized to that value. For example, If you specify FE as the heap_alloc_value, heap
storage is initialized to X'FEFEFE...FE'. A heap_alloc_value of 00 initializes heap storage to
X'0000...00'.

� NONE. If you specify NONE, the allocated heap storage is not initialized.

heap_free_value
The value of any heap storage freed by the storage manager is overwritten. You can specify
heap_free_value as:

� A single character enclosed in quotes. For example, a heap_free_value of 'f' overwrites freed
heap storage to X'868686...86'; 'B' overwrites freed heap storage to X'C2'.

� Two hex digits without quotes. A heap_free_value of FE overwrites freed heap storage with
X'FEFEFE...FE'.

� NONE. If you specify NONE, the freed heap storage is not initialized.

dsa_alloc_value
The initialized value of stack frames from the Language Environment stack. A stack frame is
dynamically-acquired storage that is composed of a standard register save area and the area
available for automatic storage.

If specified, all Language Environment stack storage, including automatic variable storage, is
initialized to dsa_alloc_value. Stack frames allocated outside the Language Environment stack are
never initialized.

You can specify dsa_alloc_value as:

� A single character enclosed in quotes. If you specify a single character, any dynamically acquired
stack storage allocated by the storage manager is initialized to that character's EBCDIC
equivalent. For example, if you specify 'A' as the dsa_alloc_value, stack storage is initialized to
X'C1'. A dsa_alloc_value of 'F' initializes stack storage to X'C6', 'd' to X'84'.

124 Language Environment Program Directory

 STORAGE

� Two hex digits without quotes. If you specify two hex digits, any dynamically-acquired stack
storage is initialized to that value. For example, if you specify FE as the dsa_alloc_value, stack
storage is initialized to X'FE'. A dsa_alloc_value of 00 initializes stack storage to X'00', FF to
X'FF'.

� NONE. If you specify NONE, the stack storage is not initialized.

reserve_size
The amount of storage for the Language Environment storage manager to reserve in the event of an
out-of-storage condition. You can specify the reserve_size value as n, nK, or nM bytes of storage.
The amount of storage is rounded to the nearest multiple of 8 bytes.

If you specify reserve_size as 0, no reserve segment is allocated. If you do not specify a reserve
segment and your application runs out of storage, the application abends with a return code of 4088
and a reason code of 1004.

If you specify a reserve_size that is greater than 0 on a non-CICS system, Language Environment
does not immediately abend when your application runs out of storage. Instead, when the stack
overflows, Language Environment attempts to get another stack segment and add it to the stack.

If unsuccessful, Language Environment temporarily adds the reserve stack segment to the overflowing
stack, and signals the out-of-storage condition. This causes a user-written condition handler to gain
control and release storage. If the reserve stack segment overflows while this is happening,
Language Environment abends with a return code of 4088 and reason code of 1004.

To avoid such an overflow, increase the size of the reserve stack segment with the
STORAGE(,,,reserve_size) run-time option. The reserve stack segment is not freed until thread
termination.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.40.1 Usage Notes

� heap_alloc_value, heap_free_value, and dsa_alloc_value can all be enclosed in quotes. To initialize
heap storage to the EBCDIC equivalent of a single quote, double it within the string delimited by single
quotes or surround it with a pair of double quotes. Both of the following are correct ways to specify a
single quote:

 STORAGE('''')
 STORAGE("'")

Similarly, double quotes must be doubled within a string delimited by double quotes, or surrounded by
a pair of single quotes. The following are correct ways to specify a double quote:

 STORAGE("""")
 STORAGE('"')

� CICS consideration—The IBM-supplied default setting for STORAGE under CICS is
STORAGE=((NONE,NONE,NONE,0K),OVR).

 Appendix E. IBM Language Environment VM Run-time Options 125

 TERMTHDACT

The out-of-storage condition is not raised under CICS.

� OpenEdition consideration—A reserve stack of the size specified by the reserve_size suboption of
STORAGE is allocated for each thread.

 E.3.40.2 Performance Considerations

Using STORAGE to control initial values can increase program run time. If you specify a dsa_alloc_value,
performance is likely to be poor. Therefore, use the dsa_alloc_value option only for debugging, not to
initialize automatic variables or data structures.

Use STORAGE(NONE,NONE,NONE) when you are not debugging.

 E.3.41 TERMTHDACT

TERMTHDACT sets the level of information that is produced when Language Environment percolates a
condition of severity 2 or greater beyond the first routine's stack frame.

The Language Environment service CEE3DMP is called for the TRACE and DUMP suboptions of
TERMTHDACT.

The following CEE3DMP options are passed for TRACE:

NOENTRY CONDITION TRACEBACK THREAD(ALL) NOBLOCK NOSTORAGE NOVARIABLES
NOFILES STACKFRAME(ALL) PAGESIZE(60) FNAME(CEEDUMP)

The following options are passed for DUMP and UADUMP:

THREAD(ALL) NOENTRY TRACEBACK FILES VARIABLES BLOCK STORAGE STACKFRAME(ALL)
PAGESIZE(60) FNAME(CEEDUMP) CONDITION

If a message is printed, based upon the TERMTHDACT(MSG) run-time option, the message is for the
active condition immediately prior to the termination imminent step. In addition, if that active condition is a
promoted condition (was not the original condition), the original condition's message is printed.

If the TRACE run-time option is specified with the DUMP suboption, a dump containing the trace table, at
a minimum, is produced. The contents of the dump depend on the values set in the TERMTHDACT
run-time option.

Under abnormal termination, the following dump contents are generated:

� TERMTHDACT(TRACE)—generates a dump containing the trace table and the traceback

� TERMTHDACT(QUIET)—generates a dump containing the trace table only

� TERMTHDACT(MSG)—generates a dump containing the trace table only

� TERMTHDACT(DUMP)—generates a dump containing thread/enclave/process storage and control
blocks (the trace table is included as an enclave control block)

126 Language Environment Program Directory

 TERMTHDACT

� TERMTHDACT(UADUMP)—generates a system dump of the user address space.

Under normal termination, the following dump contents are generated:

� Independent of the TERMTHDACT setting, Language Environment generates a dump containing the
trace table only.

IBM-Supplied Default: TERMTHDACT =((TRACE),OVR)

 Syntax

 ┌ ┐─TRACE── ┌ ┐─OVR────
55──TERMTHDACT──=──(──(─ ──┼ ┼─QUIET── ─)──,─ ──┴ ┴─NONOVR─ ─)────────────────────────────────5%
 ├ ┤─MSG────
 ├ ┤─DUMP───
 └ ┘─UADUMP─

TRACE
Specifies that when a thread terminates due to an unhandled condition of severity 2 or greater,
Language Environment generates a message indicating the cause of the termination and a trace of
the active routines on the activation stack.

QUIET
Specifies that Language Environment does not generate a message when a thread terminates due to
an unhandled condition of severity 2 or greater.

MSG
Specifies that when a thread terminates due to an unhandled condition of severity 2 or greater,
Language Environment generates a message indicating the cause of the termination.

DUMP
Specifies that when a thread terminates due to an unhandled condition of severity 2 or greater,
Language Environment generates a message indicating the cause of the termination, a trace of the
active routines on the activation stack, and a Language Environment dump.

UADUMP
Specifies that when a thread terminates due to an unhandled condition of severity 2 or greater,
Language Environment generates a message indicating the cause of the termination, a trace of the
active routines on the activation stack, a Language Environment dump, and, if the appropriate DD
statement is specified in the GO step of your JCL, a system dump of the user address space.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 Appendix E. IBM Language Environment VM Run-time Options 127

 TEST | NOTEST

 E.3.41.1 Usage Notes

� PL/I considerations—After a normal return from a PL/I ERROR ON-unit or from a PL/I FINISH ON-unit,
Language Environment considers the condition unhandled. If a GOTO is not performed and the
resume cursor is not moved, the thread terminates. The TERMTHDACT setting guides the amount of
information that is produced. The message is not presented twice.

� PL/I MTF considerations—TERMTHDACT applies to a task when the task terminates abnormally due
to an unhandled condition of severity 2 or higher that is percolated beyond the initial routine's stack
frame. All active subtasks created from the incurring task also terminate abnormally, but the enclave
can continue to run.

� CICS consideration—All TERMTHDACT output is written to a transient data queue named CESE.

� OpenEdition consideration—The TERMTHDACT option applies when a thread terminates abnormally.
Abnormal termination of a single thread causes termination of the entire enclave. If an unhandled
condition of severity 2 or higher percolates beyond the first routine's stack frame, the enclave
terminates abnormally.

If an enclave terminates due to a POSIX default signal action, TERMTHDACT applies only to
conditions that result from program checks or abends.

E.3.41.2 For More Information

� See E.3.44, “TRACE” on page 133, for more information about the TRACE run-time option.

� For more information about the CEE3DMP service and its parameters, see Language Environment for
MVS & VM Programming Reference.

� See Language Environment for MVS & VM Programming Guide for more information about the
TERMTHDACT run-time option and condition message.

� For More Information about CESE, see Language Environment for MVS & VM Programming Guide.

E.3.42 TEST | NOTEST

TEST specifies the conditions under which a debug tool (such as the Debug Tool supplied with
CODE/370) assumes control when the user application is being initialized.

Parameters of the TEST and NOTEST run-time options are merged as one set of parameters.

IBM-Supplied Default: NOTEST =((ALL,*,PROMPT,INSPPREF),OVR)

128 Language Environment Program Directory

 TEST | NOTEST

 Syntax

 ┌ ┐─NOTEST─ ┌ ┐─ALL─── ┌ ┐─PROMPT───
55─ ──┴ ┴─TEST─── ─=──(──(─ ──┼ ┼─ERROR─ ─,─ ──┬ ┬─commands_file─ ─,─ ──┼ ┼─NOPROMPT─ ─,─────────────5
 └ ┘─NONE── └ ┘─\───────────── ├ ┤─\────────
 ├ ┤─;────────
 └ ┘─command──

 ┌ ┐─OVR────
5─ ──┬ ┬─preference_file─ ─)──,─ ──┴ ┴─NONOVR─ ─)───5%

 └ ┘─\───────────────

ALL
Specifies that any of the following causes the debug tool to gain control even without a defined AT
OCCURRENCE for a particular condition or AT TERMINATION:

� The ATTENTION function
� Any Language Environment condition of severity 1 or above

 � Application termination

ERROR
Specifies that only one of the following causes the debug tool to gain control without a defined AT
OCCURRENCE for a particular condition or AT TERMINATION:

� The ATTENTION function
� Any Language Environment-defined error condition of severity 2 or higher

 � Application termination

NONE
Specifies that no condition causes the debug tool to gain control without a defined AT OCCURRENCE
for a particular condition or AT TERMINATION.

commands_file
A valid ddname, data set name (MVS), or file name (CMS), specifying the primary commands file for
this run. If you do not specify this parameter all requests for commands go to the user terminal.

You can enclose commands_file in single or double quotes to distinguish it from the rest of the TEST |
NOTEST suboption list. It can have a maximum length of 80 characters. If the data set name
provided could be interpreted as a ddname, it must be preceded by a slash (/). The slash and data
set name must be enclosed in quotes.

A primary commands file is required when running in a batch environment.

* (asterisk—in place of commands_file)
Specifies that no commands_file is supplied. The terminal, if available, is used as the source of the
debug tool commands.

PROMPT
Specifies that the debug tool is invoked at Language Environment initialization.

 Appendix E. IBM Language Environment VM Run-time Options 129

 TEST | NOTEST

NOPROMPT
Specifies that the debug tool is not invoked at Language Environment initialization.

* (asterisk—in place of PROMPT/NOPROMPT)
Specifies that the debug tool is not invoked at Language Environment initialization; equivalent to
NOPROMPT.

; (semicolon—in place of PROMPT/NOPROMPT)
Specifies that the debug tool is invoked at Language Environment initialization; equivalent to
PROMPT.

command
A character string that specifies a valid debug tool command. The command list can be enclosed in
single or double quotes to distinguish it from the rest of the TEST parameter list; it cannot contain
DBCS characters. Quotes are needed whenever the command list contains embedded blanks,
commas, semicolons, or parentheses. The list can have a maximum of 250 characters.

preference_file
A valid ddname, data set name (MVS), or file name (CMS), specifying the preference file to be used.
A preference file is a type of commands file that you can use to specify settings for your debugging
environment. It is analogous to creating a profile for a text editor, or initializing an S/370 terminal
session.

You can enclose preference_file in single or double quotes to distinguish it from the rest of the TEST
parameter list. It can have a maximum of 80 characters.

If a specified data set name could be interpreted as a ddname, it must be preceded by a slash (/).
The slash and data set name must be enclosed in quotes.

The IBM-supplied default setting for preference_file is INSPPREF.

* (asterisk—in place of preference_file)
Specifies that no preference_file is supplied.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.42.1 Usage Notes

� You can specify parameters on the NOTEST option. If NOTEST is in effect when the application
gains control, it is interpreted as TEST(NONE,,*,). If Debug Tool is initialized using a CALL CEETEST
or equivalent, the initial test level, the initial commands_file, and the initial preference_file are taken
from the NOTEST run-time option setting.

� OpenEdition consideration—Language Environment honors the initial command string before the main
routine runs on the initial thread.

The test level (ALL, ERROR, NONE) applies to the enclave.

130 Language Environment Program Directory

 THREADHEAP

Language Environment honors the preference file when the debug tool is initialized, regardless of
which thread first requests the debug tool services.

 E.3.42.2 Performance Consideration

To improve performance, use this option only while debugging.

E.3.42.3 For More Information

� See Debug Tool Reference Guide for details and for examples of the TEST run-time option as it
relates to Debug Tool.

 E.3.43 THREADHEAP

THREADHEAP controls the allocation and management of thread-level heap storage. Separate heap
segments are allocated and freed for each thread based on the THREADHEAP specification.

For PL/I MTF applications, controlled and based variables declared in a subtask are allocated from heap
storage specified by THREADHEAP. Variables in the main task are allocated from heap storage specified
by HEAP.

Library use of heap storage in a substack is allocated from the enclave-level heap storage specified by the
ANYHEAP and BELOWHEAP options.

IBM-Supplied Default: THREADHEAP =((4K,4K,ANY,KEEP),OVR)

 Syntax

┌ ┐─ANYWHERE─ ┌ ┐─KEEP─
55──THREADHEAP──=──(──(─ ──init_size ─,─ ──incr_size ─,─ ──┼ ┼─ANY────── ─,─ ──┴ ┴─FREE─ ─)──,─────5
 └ ┘─BELOW────

 ┌ ┐─OVR────
5─ ──┴ ┴─NONOVR─ ─)──5%

init_size
The minimum initial size of thread heap storage, and is specified in n, nK, or nM. Storage is acquired
in multiples of 8 bytes.

A value of zero (0) causes an allocation of 4K.

incr_size
The minimum size of any subsequent increment to the noninitial heap storage is specified in n, nK, or
nM. The actual amount of allocated storage is the larger of two values, incr_size or the requested
size, rounded up to the nearest multiple of 8 bytes.

If you specify incr_size as 0, only the amount of the storage needed at the time of the request
(rounded up to the nearest 8 bytes) is obtained.

 Appendix E. IBM Language Environment VM Run-time Options 131

 THREADHEAP

ANYWHERE|ANY
Specifies that the heap storage can be allocated anywhere in storage. On systems that support
bimodal addressing, the storage can be allocated either above or below the 16M line. If there is no
available storage above the line, storage is acquired below the line.

The only valid abbreviation of ANYWHERE is ANY.

BELOW
Specifies that the heap storage must be allocated below the 16M line.

KEEP
Specifies that storage allocated to THREADHEAP increments is not released when the last of the
storage in the thread heap increment is freed.

FREE
Specifies that storage allocated to THREADHEAP increments is released when the last of the storage
in the thread heap increment is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.43.1 Usage Notes

� If the requesting routine is running in 24-bit addressing mode and THREADHEAP(,,ANY) is in effect,
THREADHEAP storage is allocated below the 16M line based upon the HEAP(,,,initsz24,incrsz24)
settings.

� PL/I MTF considerations—The thread-level heap is allocated only in applications that use the PL/I
MTF. For PL/I MTF applications, controlled and based variables specified in subatasks are located in
the thread-level heap.

If the main program is AMODE 24 and THREADHEAP(,,ANY) is in effect, heap storage is allocated
below the 16M line. The only case in which storage is allocated above the line is when all of the
following conditions exist:

– The user routine requesting the storage is running in 31-bit addressing mode.
– HEAP(,,ANY) is in effect.
– The main routine is AMODE 31.

� When running PL/I with POSIX(ON) in effect, THREADHEAP is used for allocating heap storage for
PL/I base variables declared in non-IPTs. Storage allocated to all THREADHEAP segments is freed
when the thread terminates.

� The initial thread heap segment is never released until the thread terminates.

� THREADHEAP has no effect on C/C++ applications.

� CICS consideration—This option is ignored under CICS.

132 Language Environment Program Directory

 TRACE

 E.3.44 TRACE

TRACE controls run-time library tracing activity, the size of the in-storage trace table, the type of trace
events to record, and it determines whether a dump containing, at a minimum, the trace table should be
unconditionally taken when the application terminates. When you specify TRACE(ON), user-requested
trace entries are intermixed with Language Environment trace entries in the trace table.

Under normal termination conditions, if TRACE is active and you specify DUMP, only the trace table is
written to the dump report, independent of the TERMTHDACT setting. Only one dump is taken for each
termination. Under abnormal termination conditions, the type of dump taken (if one is taken) depends on
the value of the TERMTHDACT run-time option and whether TRACE is active and the DUMP suboption is
specified.

IBM-Supplied Default: TRACE =((OFF,4K,DUMP,LE=0),OVR)

 Syntax

┌ ┐─OFF─ ┌ ┐─DUMP─── ┌ ┐─LE=ð─
55──TRACE──=──(──(─ ──┴ ┴─ON── ─,──table_size──,─ ──┴ ┴─NODUMP─ ─,─ ──┼ ┼─LE=1─ ─)──,─────────────5
 ├ ┤─LE=2─
 └ ┘─LE=3─

 ┌ ┐─OVR────
5─ ──┴ ┴─NONOVR─ ─)──5%

OFF
Indicates that the tracing facility is inactive.

ON
Indicates that the tracing facility is active.

table_size
Determines the size of the tracing table as specified in bytes (nK or nM). The upper limit is 16M.

DUMP
Requests that a Language Environment-formatted dump (containing the trace table) be taken at
program termination regardless of the setting of the TERMTHDACT run-time option.

NODUMP
Requests that a Language Environment-formatted dump not be taken at program termination.

LE=0
Specifies that no trace events be recorded.

LE=1
Specifies that entry to and exit from Language Environment member libraries be recorded (such as, in
the case of C, entry and exit of the printf() library function).

 Appendix E. IBM Language Environment VM Run-time Options 133

 TRAP

LE=2
Specifies that mutex init/destroy and locks/unlocks from Language Environment member libraries be
recorded.

LE=3
Activates both the entry/exit trace and the mutex trace.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.44.1 Usage Note

� PL/I MTF consideration—The TRACE(ON,,,LE=2) setting provides the following trace table entries for
PL/I MTF support:

– Trace entry 100 occurs when a task is created.

– Trace entry 101 occurs when a task that contains the tasking CALL statements is terminated.

– Trace entry 102 occurs when a task that does not contain the tasking CALL statements is
terminated.

� When running PL/I with POSIX(ON) in effect, no PL/I-specific trace information is provided.

E.3.44.2 For More Information

� For more information about the dump contents, see E.3.41, “TERMTHDACT” on page 126.

� For more information about using the tracing facility, see Language Environment for MVS & VM
Debugging Guide and Run-Time Messages.

 E.3.45 TRAP

TRAP specifies how Language Environment routines handle abends and program interrupts.

TRAP(ON) must be in effect in order for applications to run successfully.

TRAP(ON) must be in effect for the ABTERMENC run-time option to have effect.

This option is similar to the STAE | NOSTAE run-time option currently offered by COBOL, C, and PL/I, and
the SPIE | NOSPIE option offered by C and PL/I:

Figure 28 (Page 1 of 2). TRAP Run-Time Option Settings

If... then...

a single option is specified in input, TRAP is set according to that option, TRAP(OFF) for
NOSTAE or NOSPIE, TRAP(ON)for STAE or SPIE.

134 Language Environment Program Directory

 TRAP

CEESGL is unaffected by this option.

IBM-Supplied Default: TRAP =((ON),OVR)

 Syntax

 ┌ ┐─ON── ┌ ┐─OVR────
55──TRAP──=──(──(─ ──┴ ┴─OFF─ ─)──,─ ──┴ ┴─NONOVR─ ─)───5%

ON
Fully enables the Language Environment condition handler.

OFF
Prevents language condition handlers or handlers registered by CEEHDLR from being notified of
abends or program checks; prevents application of POSIX signal handling semantics for abends and
program checks.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.45.1 Usage Notes

� Use TRAP(OFF) only when you need to analyze a program exception before Language Environment
handles it.

� When you specify TRAP(OFF) in a non-CICS environment, neither ESPIE nor ESTAE is issued.
Language Environment does not handle conditions raised by program interrupts or abends initiated by
SVC 13 as Language Environment conditions, and does not print messages for such conditions.

Figure 28 (Page 2 of 2). TRAP Run-Time Option Settings

If... then...

both options are specified in input, TRAP is set ON, unless both options are negative, then
TRAP is set OFF.

STAE is specified in one #pragma runopts statement,
and NOSPIE in another,

the option in the last #pragma runopts determines the
setting of TRAP.

multiple instances of
STAE | NOSTAE are specified,

TRAP is set according to the last instance only. All
others are ignored.

multiple instances of
SPIE | NOSPIE are specified,

TRAP is set according to the last instance only. All
others are ignored.

an options string has TRAP(ON) or TRAP(OFF) together
with SPIE | NOSPIE, and/or STAE | NOSTAE,

the TRAP setting takes preference over all others.

 Appendix E. IBM Language Environment VM Run-time Options 135

 TRAP

� Running with TRAP(OFF) (for exception diagnosis purposes) can cause many side effects, because
Language Environment uses condition handling internally and requires TRAP(ON). When you run with
TRAP(OFF), you can get side effects even if you do not encounter a software-raised condition,
program check, or abend. If you do encounter a program check or an abend with TRAP(OFF) in
effect, the following side effects can occur:

– The ABTERMENC run-time option has no effect.

– The ABPERC run-time option has no effect.

– Resources acquired by Language Environment are not freed.

– Files opened by HLLs are not closed by Language Environment, so records might be lost.

– The abnormal termination exit is not driven for enclave termination.

– The assembler user exit is not driven for enclave termination.

– User condition handlers are not enabled.

– The debugger is not notified of the error.

– No storage report or run-time options report is generated.

– No Language Environment messages or Language Environment dump output is generated.

– In OpenEdition, POSIX signal handling semantics are not enabled for the abend.

The enclave terminates abnormally if such conditions are raised.

� TRAP(ON) must be in effect when you use the CEEBXITA assembler user exit for enclave initialization
to specify a list of abend codes that Language Environment percolates.

� C++ consideration—TRAP(ON) must be in effect in order for the C++/MVS try/throw/catch condition
handling mechanisms to work.

� When TRAP(ON) is in effect, and the abend code is in the CEEAUE_CODES list in CEEBXITA,
Language Environment percolates the abend. Normal Language Environment condition handling is
never invoked to handle these abends. This feature is useful when you do not want Language
Environment condition handling to intervene for certain abends or when you want to prevent invocation
of the abnormal termination exit for certain abends, such as when IMS issues a user ABEND code
777.

When TRAP(OFF) is specified and there is a program interrupt, the user exit for termination is not
driven.

� If your application uses extended-precision arithmetic and runs on a 370-mode machine, you must
specify TRAP(ON) and add the CMSLIB TXTLIB with the GLOBAL TXTLIB command.

� CICS consideration—When you specify TRAP(OFF) in a CICS environment, the standard CICS
system action occurs. Language Environment does not print messages for conditions raised by
program interruptions or transaction abends.

� OpenEdition consideration—The TRAP option applies to the entire enclave and all threads within.

136 Language Environment Program Directory

 UPSI

E.3.45.2 For More Information

� See E.3.2, “ABTERMENC” on page 74 for more information about the ABTERMENC run-time option.

� See Language Environment for MVS & VM Programming Reference for more information about the
CEESGL callable service.

� For more information about the CEEHDLR callable service, see Language Environment for MVS & VM
Programming Reference.

� See Language Environment for MVS & VM Programming Guide for more information about the
CEEBXITA assembler user exit.

E.3.46 UPSI (COBOL Only)

UPSI sets the eight UPSI switches on or off for applications that use COBOL programs.

IBM-Supplied Default: UPSI =((00000000),OVR)

 Syntax

 ┌ ┐─OVR────
55──UPSI──=──(──(─ ──nnnnnnnn ─)──,─ ──┴ ┴─NONOVR─ ─)──5%

nnnnnnnn
n represents one UPSI switch between 0 and 7, the leftmost n representing the first switch. Each n
can either be 0 (off) or 1 (on).

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.46.1 Usage Note

� When you specify this option in CEEDOPT or CEEUOPT, specify UPSI with a string of eight
binary-valued flags; for example, UPSI(00000000). Use UPSI, not followed by a string, only on the
command line.

E.3.46.2 For More Information

� For more information on how COBOL routines access the UPSI switches, see COBOL/370
Programming Guide or COBOL for MVS & VM Programming Guide.

 Appendix E. IBM Language Environment VM Run-time Options 137

 USRHDLR | NOUSRHDLR

E.3.47 USRHDLR | NOUSRHDLR

USRHDLR registers a user condition handler at stack frame 0, allowing you to register a user condition
handler without having to include a call to CEEHDLR in your application and then recompile the
application.

IBM-Supplied Default: NOUSRHDLR =((),OVR)

 Syntax

 ┌ ┐─NOUSRHDLR─ ┌ ┐─OVR────
55─ ──┴ ┴─USRHDLR─── ─=──(──(─ ──lmname ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────────────5%

NOUSRHDLR
Does not register a user condition handler without recompiling an application to include a call to
CEEHDLR.

USRHDLR
Registers a user condition handler without recompiling an application to include a call to CEEHDLR.

lmname
The name of a load module (or an alias name of a load module) that contains the user condition
handler that is to be registered at stack frame 0.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.47.1 Usage Notes

� The user condition handler specified by the USRHDLR run-time option must be in a separate load
module rather than be link-edited with the rest of the application.

� The user condition handler lmname is invoked for conditions that are still unhandled after being
presented to condition handlers for the main program.

� Restriction–If USRHDLR is in effect, you cannot resume execution in the program in which the
condition occurs. This includes calls in the condition handler to CEEMRCR and CEEMRCE.

� You can use a user condition handler registered with the USRHDLR run-time option to return any of
the result codes allowed for a user condition handler registered with the CEEHDLR callable service.

� A condition that is percolated or promoted by a user condition handler registered with the USRHDLR
run-time option is not presented to any other user condition handler.

� The loading of the user condition handler lmname occurs only when that user condition handler needs
to be invoked the first time.

138 Language Environment Program Directory

 VCTRSAVE

E.3.47.2 For More Information

� For information on registering a user condition handler, see the CEEHDLR callable service in
Language Environment for MVS & VM Programming Reference.

 E.3.48 VCTRSAVE

VCTRSAVE specifies whether any language in the application uses the vector facility when user-written
condition handlers are called.

IBM-Supplied Default: VCTRSAVE =((OFF),OVR)

 Syntax

 ┌ ┐─OFF─ ┌ ┐─OVR────
55──VCTRSAVE──=──(──(─ ──┴ ┴─ON── ─)──,─ ──┴ ┴─NONOVR─ ─)─────────────────────────────────────5%

OFF
No language in the application uses the vector facility when user-provided condition handlers are
called.

ON
A language in the application uses the vector facility when user-provided condition handlers are
called.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

 E.3.48.1 Usage Note

� OpenEdition consideration—The VCTRSAVE option applies to the entire enclave and all threads
within.

 E.3.48.2 Performance Considerations

When a condition handler plans to use the vector facility (that is, run any vector instructions), the entire
vector environment has to be saved on every condition and restored on return to the application code.
You can avoid this extra work by specifying VCTRSAVE(OFF) when you are not running an application
under vector hardware.

 Appendix E. IBM Language Environment VM Run-time Options 139

 XUFLOW

 E.3.49 XUFLOW

XUFLOW specifies whether an exponent underflow causes a program interrupt. An exponent underflow
occurs when a floating point number becomes too small to be represented.

The underflow setting is determined at enclave initialization and is updated when new languages are
introduced into the application (via fetch or dynamic call, for example). Otherwise, it does not vary while
the application is running.

Language Environment preserves the language semantics for C/C++ and COBOL regardless of the
XUFLOW setting. Language Environment preserves the language semantics for PL/I only when XUFLOW
is set to AUTO or ON. Language Environment does not preserve the language semantics for PL/I when
XUFLOW is set to OFF.

An exponent underflow caused by a C/C++ or COBOL routine does not cause a condition to be raised.

IBM-Supplied Default: XUFLOW =((AUTO),OVR)

 Syntax

 ┌ ┐─AUTO─ ┌ ┐─OVR────
55──XUFLOW──=──(──(─ ──┼ ┼─ON─── ─)──,─ ──┴ ┴─NONOVR─ ─)──────────────────────────────────────5%
 └ ┘─OFF──

AUTO
An exponent underflow causes or does not cause a program interrupt dynamically, based upon the
HLLs that make up the application. Enablement is determined without user intervention.

XUFLOW(AUTO) causes condition management to process underflows only in those applications
where the semantics of the application languages require it. Normally, XUFLOW(AUTO) provides the
best efficiency while meeting language semantics.

ON
An exponent underflow causes a program interrupt.

XUFLOW(ON) causes condition management to process underflows regardless of the mix of
languages; therefore, this setting might be less efficient in applications that consist of languages not
requiring underflows to be processed by condition management.

OFF
An exponent underflow does not cause a program interrupt; the hardware takes care of the underflow.

When you set XUFLOW to OFF, the hardware processes exponent underflows. This is more efficient
than condition handling to process the underflow.

OVR
Specifies that the option can be overridden.

140 Language Environment Program Directory

 XUFLOW

NONOVR
Specifies that the option cannot be overridden.

 E.3.49.1 Usage Notes

� PL/I consideration—When setting XUFLOW to OFF, be aware that the semantics of PL/I require the
underflow to be signaled.

� OpenEdition consideration—The XUFLOW option applies to the entire enclave and all threads within.

 Appendix E. IBM Language Environment VM Run-time Options 141

Appendix F. Language Environment National Language
Support Country Codes

The following table contains valid country identifiers along with their respective countries:

Figure 29 (Page 1 of 3). Country Codes

Code Country Code Country

AD Andorra AE United Arab Emirates

AF Afghanistan AG Antigua and Barbuda

AL Albania AN Netherlands Antilles

AO Angola AR Argentina

AT Austria AU Australia

BA Bosnia/ Herzegovina BB Barbados

BD Bangladesh BE Belgium

BF Burkina Faso (Upper Volta) BG Bulgaria

BH Bahrain BI Burundi

BJ Benin BM Bermuda

BN Brunei Darussalam BO Bolivia

BR Brazil BS Bahamas

BU Burma BW Botswana

CA Canada CF Central African Republic

CG Congo CH Switzerland

CI Ivory Coast CL Chile

CM Cameroon CN People's Republic of China

CO Colombia CR Costa Rica

CS Czechoslovakia CU Cuba

CY Cyprus CZ Czech Republic

DE Germany DK Denmark

DO Dominican Republic DZ Algeria

EC Ecuador EE Estonia

EG Egypt ES Spain

ET Ethiopia FI Finland

FR France GA Gabon

GB United Kingdom GH Ghana

GM Gambia GN Guinea

GR Greece GT Guatemala

GW Guinea-Bissau GY Guyana

142  Copyright IBM Corp. 1991, 1998

Figure 29 (Page 2 of 3). Country Codes

Code Country Code Country

HK Hong Kong HN Honduras

HR Croatia HT Haiti

HU Hungary ID Indonesia

IE Ireland IL Israel

IN India IQ Iraq

IR Iran IS Iceland

IT Italy JM Jamaica

JO Jordan JP Japan

KE Kenya KR Korea, Republic of

KW Kuwait KY Cayman Islands

LB Lebanon LC Saint Lucia

LI Liechtenstein LT Lithuania

LR Liberia LK Sri Lanka

LS Lesotho LU Luxembourg

LV Latvia LY Libya

MA Morocco MC Monaco

MG Madagascar MK Macedonia

ML Mali MO Macau

MR Mauritania MT Malta

MU Mauritius MW Malawi

MX Mexico MY Malaysia

MZ Mozambique NA Namibia

NC New Caledonia NG Nigeria

NE Niger NI Nicaragua

NL Netherlands NO Norway

NZ New Zealand OM Oman

PA Panama PE Peru

PG Papua New Guinea PH Philippines

PK Pakistan PL Poland

PR Puerto Rico PT Portugal

PY Paraguay QA Qatar

RO Romania RU Russian Federation

SA Saudi Arabia SC Seychelles

SD Sudan SE Sweden

SG Singapore SI Slovenia

 Appendix F. Language Environment National Language Support Country Codes 143

Figure 29 (Page 3 of 3). Country Codes

Code Country Code Country

SK Slovakia SL Sierra Leone

SN Senegal SO Somalia

SR Surinam SU Union of Soviet Socialist Republics

SV El Salvador SY Syria

SZ Swaziland TD Chad

TG Togo TH Thailand

TN Tunisia TR Turkey

TT Trinidad and Tobago TW Republic of China

TZ Tanzania UG Uganda

US United States UY Uruguay

VE Venezuela VU Vanuatu

WS Western Samoa YE Yemen

YU Yugoslavia ZA South Africa

ZM Zambia ZR Zaire

ZW Zimbabwe

144 Language Environment Program Directory

 Reader's Comments

IBM Language Environment VM Release 08.00

You may use this form to comment about this document, its organization, or subject matter with the understanding that
IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

For each of the topics below please indicate your satisfaction level by circling your choice from the rating scale. If a
statement does not apply, please circle N.

 RATING SCALE

 very very not
satisfied <=====================> dissatisfied applicable

1 2 3 4 5 N

 Satisfaction

Ease of product installation 1 2 3 4 5 N

Contents of program directory 1 2 3 4 5 N

Installation Verification Programs 1 2 3 4 5 N

Time to install the product 1 2 3 4 5 N

Readability and organization of program directory tasks 1 2 3 4 5 N

Necessity of all installation tasks 1 2 3 4 5 N

Accuracy of the definition of the installation tasks 1 2 3 4 5 N

Technical level of the installation tasks 1 2 3 4 5 N

Ease of getting the system into production after
installation

1 2 3 4 5 N

Did you order this product as an independent product or as part of a package?

 Independent
 Package

If this product was ordered as part of a package, what type of package was ordered?

 CustomPac*

 FunctionPac*
 SystemPac*

System Delivery Offering (SDO)

Other - Please specify type:

Is this the first time your organization has installed this product?

 Yes
 No

 Copyright IBM Corp. 1991, 1998 145

Were the people who did the installation experienced with the installation of VM products?

 Yes
 No

If yes, how many years? __

If you have any comments to make about your ratings above, or any other aspect of the product installation, please
list them below:

Please provide the following contact information:

Name and Job Title

 Organization

 Address

 Telephone

Thank you for your participation.

Please send the completed form to (or give to your IBM representative who will forward it to the IBM Language
Environment VM Development group):

IBM Corporation, Department J58
P.O. Box 49023
San Jose, California 95161-9023
USA

146 Language Environment Program Directory

IBM

Program Number: 5654-030

Printed in U.S.A.

GI1ð-4676-ðð

