
XML Toolkit for z/OS

User’s Guide

SA22-7932-04

���

XML Toolkit for z/OS

User’s Guide

SA22-7932-04

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

49.

Fifth Edition, 2005

This edition applies to Version 1 Release 8 of XML Toolkit for z/OS (5655-J51) and to all subsequent releases and

modifications until otherwise indicated in new editions.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . v

Tables . vii

About this document . ix

Who should use this User’s Guide? ix

What is in the User’s Guide? ix

Summary of changes . xi

Chapter 1. Introduction . 1

Why XML? . 1

APIs . 1

DOM . 1

SAX . 3

DOM vs SAX . 5

XPath . 6

Validation . 6

How to access XML data . 7

How to access data sets . 7

Encoding issues . 8

Encoding and XML . 8

XML and z/OS . 9

Avoiding conversion . 10

XML Toolkit for z/OS . 11

Deprecated DOM support . 12

Toolkit packaging strategy . 12

Toolkit support for both z/OS UNIX System Services and MVS environments 12

Chapter 2. How to use Toolkit XPLINK support 15

Using Toolkit XPLINK support 15

Building an XPLINK application 15

Running an XPLINK application 16

Chapter 3. How to use the XML Parser, C++ Edition 17

Using the sample applications 18

Rule for running non-XPLINK samples 20

Rule for running XPLINK samples 20

z/OS UNIX Environment . 21

Building sample applications for the z/OS UNIX Environment 21

Using your sample applications on the z/OS UNIX Environment 23

MVS Environment . 24

Building sample applications for the MVS Environment 24

Using your sample applications on the MVS Environment 27

Multi-threading considerations 28

Using UNIX pthreads . 28

Using MVS multi-tasking . 28

Chapter 4. How to use the XSLT Processor, C++ Edition 29

Using the sample applications 30

Rule for running non-XPLINK samples 31

Rule for running XPLINK samples 31

z/OS UNIX Environment . 31

© Copyright IBM Corp. 2005 iii

Building sample applications for the z/OS UNIX Environment 31

Using your sample applications on the z/OS UNIX Environment 34

MVS Environment . 35

Building sample applications for the MVS Environment 35

Using your sample applications on the MVS Environment 38

Chapter 5. How to use the XML Toolkit command line utilities 41

How to use the XSLT Processor, C++ Edition command line utility 41

Chapter 6. Where to go for more information 45

Appendix. Accessibility . 47

Using assistive technologies . 47

Keyboard navigation of the user interface 47

z/OS information . 47

Notices . 49

Trademarks . 50

Index . 51

iv XML Toolkit for z/OS User’s Guide

Figures

1. DOM Parsing Model . 3

2. SAX Parsing Model . 5

© Copyright IBM Corp. 2005 v

vi XML Toolkit for z/OS User’s Guide

Tables

 1. DOM vs SAX . 5

 2. Expected Validation Results . 6

 3. Interfaces and Specifications for the Toolkit Parser 11

 4. Interfaces and Specifications for the Toolkit Processor 12

 5. z/OS UNIX vs. MVS . 12

 6. Product Files Required to Build Sample XML Applications for z/OS UNIX Environments 21

 7. Library Files Required to Run Sample XML Applications on z/OS UNIX 23

 8. Product Files Required to Build Sample XML Applications for MVS Environments 24

 9. Library Files Required to Run Sample XML Applications on MVS 27

10. Product Files Required to Build Sample XML Applications for z/OS UNIX Environments 32

11. Library Files Required to Run Sample XML Applications on z/OS UNIX 34

12. Product Files Required to Build Sample XML Applications for MVS Environments 35

13. Library Files Required to Run Sample XML Applications on MVS 38

14. Flags and Arguments for the Xalan Executable . 41

15. Flags and Arguments for the testXSLT Executable 42

© Copyright IBM Corp. 2005 vii

viii XML Toolkit for z/OS User’s Guide

About this document

This document provides information you need to use V1.8.0 of XML Toolkit for

z/OS™. It contains instructions on how to use the following components:

v XML Parser, C++™ Edition

v XSLT Processor, C++ Edition

Note: XML Parser, Java Edition and XSLT Processor, Java Edition are not

supported in Toolkit V1.8.0.

Information on how to use Toolkit V1.7.0 and Toolkit V1.6.0 is available from the

XML Toolkit for z/OS and OS/390 User’s Guide V1R7 and the XML Toolkit for z/OS

and OS/390 User’s Guide V1R6. Both documents can be downloaded from the

following Web site:

http://www-1.ibm.com/servers/eserver/zseries/software/xml/

Who should use this User’s Guide?

This document is for application programmers, system programmers, and end users

working on a z/OS system and using the Toolkit.

This document assumes that readers are familiar with the z/OS system and with the

information for z/OS and its accompanying products.

The Toolkit home page,

http://www.ibm.com/servers/eserver/zseries/software/xml/

offers information about the Toolkit releases, the Program Directory, and installation

instructions.

What is in the User’s Guide?

This document describes how to use the Toolkit XML Parser, C++ Edition and XSLT

Processor, C++ Edition. Using the document, you will:

v Receive an introduction to XML and the XML Toolkit.

– Read about XML and its implications in today’s world.

– Learn about the components of the XML Toolkit.

– Learn about the APIs that are implemented by the Toolkit.

– Read about the process of validation.

– Discover how to access data sets using XML.

v Understand how to use the XML Parser, C++ Edition in the XML Toolkit.

– Learn about the C++ XML parser.

– Review samples of how to use the C++ XML parser.

v Understand how to use the XSLT Processor, C++ Edition in the XML Toolkit.

– Learn about the C++ XSLT processor.

– Review samples of how to use the C++ XSLT processor.

v Find out where you can learn more about the XML Toolkit and all its

components.

© Copyright IBM Corp. 2005 ix

x XML Toolkit for z/OS User’s Guide

Summary of changes

Summary of Changes

for SA22-7932-04

XML Toolkit Version 1 Release 8

 This document contains information previously presented in XML Toolkit for z/OS

User’s Guide, SA22-7932-03, which supports XML Toolkit Version 1 Release 7.

New Information

v XPLINK support: Chapter 2, “How to use Toolkit XPLINK support,” on page 15

v Deprecated DOM support: “Deprecated DOM support” on page 12

v New information added to each ″How to use...″ chapter.

Changed Information

Deleted Information

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of Changes

for SA22-7932-03

XML Toolkit Version 1 Release 7

 This document contains information previously presented in XML Toolkit for z/OS

User’s Guide, SA22-7932-02, which supports XML Toolkit Version 1 Release 6.

New Information

v New information added to each ″How to use...″ chapter.

Changed Information

Deleted Information

v Removed ″How to use the XML Parser, Java Edition″ chapter.

v Removed ″How to use the XML Processor, Java Edition″ chapter.

v Removed ″How to use the XSLT Processor, Java Edition command line utility″

chapter.

Summary of Changes

for SA22-7932-02

XML Toolkit Version 1 Release 6

 This document contains information previously presented in XML Toolkit for z/OS

and OS/390® User’s Guide, SA22-7932-01, which supports XML Toolkit Version 1

Release 5.

New Information

v New information added to each ″How to use...″ chapter.

Changed Information

© Copyright IBM Corp. 2005 xi

v Changed information in the ″Introduction″ chapter.

v Restored the ″How to Use the XSLT Processor for z/OS, C++ Edition″ chapter.

v Changed the name of the chapter ″How to use the Lotus-XSL Java command

line utility″ to ″How to use the XML Toolkit command line utilities″.

Deleted Information

Summary of Changes

for SA22-7932-01

XML Toolkit Version 1 Release 5

 This document contains information previously presented in XML Toolkit for z/OS

and OS/390 User’s Guide, SA22-7932-00, which supports XML Toolkit Version 1

Release 4.

New Information

v Added ″How to use the Lotus-XSL Java command line utility″ chapter.

v Added ″Where to go for more information″ section.

v New information added to ″Introduction″ chapter.

v New information added to each ″How to use...″ chapter.

Changed Information

v Export statements changed in section ″ Building sample applications on the z/OS

UNIX® environment″ in Chapter 2.

Deleted Information

v Removed the ″How to Use the XSLT Processor for z/OS, C++ Edition″ chapter.

xii XML Toolkit for z/OS User’s Guide

Chapter 1. Introduction

Why XML?

XML allows you to tag data in a way that is similar to how you tag data when

creating an HTML file. XML incorporates many of the successful features of HTML,

but was also developed to address some of the limitations of HTML. XML tags may

be user-defined through a schema for later validation, which can either be a

Document Type Definition (DTD) or a document written in the XML Schema

language. In addition, namespaces can help ensure you have unique tags for your

XML document. The syntax of XML has more restrictions than HTML, but this

results in faster and cheaper browsing. The ability to create your own tagging

structure gives you the power to categorize and structure data for both ease of

retrieval and ease of display. XML is already being used for publishing, as well as

for data storage and retrieval, data interchange between heterogeneous platforms,

data transformations, and data displays. As it evolves and becomes more powerful,

XML may allow for single-source data retrieval and data display.

The benefits of using XML vary but, overall, marked-up data and the ability to read

and interpret that data provide the following benefits:

v With XML, applications can more easily read information from a variety of

platforms. The data is platform-independent, so now the sharing of data between

you and your customers can be simplified.

v Companies that work in the business-to-business (B2B) environment are

developing DTDs and schemas for their industry. The ability to parse

standardized XML documents gives business products an opportunity to be

exploited in the B2B environment.

v XML data can be read even if you do not have a detailed picture of how that data

is structured. Your clients will no longer need to go through complex processes to

update how to interpret data that you send to them because the DTD or schema

gives the ability to understand the information.

v Changing the content and structure of data is easier with XML. The data is

tagged so you can add and remove elements without impacting existing

elements. You will be able to change the data without having to change the

application.

However, despite all the benefits of using XML, there are some things to be aware

of. First of all, working with marked up data can be additional work when writing

applications because it physically requires more pieces to work together. Given the

benefits of using XML, this additional work up front can reduce the amount of work

needed to make a change in the future. Second, although it is a recommendation

developed by the World Wide Web Consortium (W3C), XML, along with its related

technologies and standards including Schema, XPath, and DOM/SAX APIs, are still

a developing technology.

APIs

DOM

The Document Object Model (DOM) specification is an object-based interface

developed by the World Wide Web Consortium (W3C) that builds an XML document

as a tree structure in memory. An application accesses the XML data through the

tree in memory, which is a replication of how the data is actually structured. The

DOM also allows you to dynamically traverse and update the XML document.

© Copyright IBM Corp. 2005 1

DOM uses a set of C/C++ APIs to interact with the XML data.

The DOM API is ideal when you want to manage XML data or access a complex

data structure repeatedly. The DOM API:

v Builds the data as a tree structure in memory.

v Parses an entire XML document at one time.

v Allows applications to make dynamic updates to the tree structure in memory.

v Allows applications to randomly access any item in the memory tree structure.

v Allows applications to generate an XML document by starting with an empty tree,

populating it with the desired data, and then serializing it as an XML character

document.

Using the DOM API preserves the structure of the document (and the relationship

between elements) and does the parsing up front so that you do not have to do the

parsing process over again each time you access a piece of data. If you choose to

validate your document, you can be assured that the syntax of the data is valid

when you are working with it. However, the DOM API requires additional memory to

be allocated and freed, initialized and read, translating to increased machine cycles.

In addition, the DOM API is, by nature, a four-step process:

1. The application invokes the parser, passing it an XML document.

2. The parser parses the entire document and builds a DOM tree structure in

memory.

3. Completion status is returned to the application.

4. The application utilizes DOM APIs to access and optionally modify data in the

DOM tree.

The following is a schematic of the DOM parsing model.

2 XML Toolkit for z/OS User’s Guide

For information on the Toolkit support for DOM APIs, see the Interfaces and

Specifications chart for Toolkit Parser on page 11.

SAX

The Simple API for XML (SAX) specification is an event-based interface developed

by members of the XML-DEV mailing list. It uses the parser to access XML data as

a series of events in a straight line, which means that the parser finds information in

the XML document without retaining state (or context) information.

When writing applications using the SAX specification, you will use a set of C/C++

APIs to interact with the XML data.

The SAX API can provide faster and less costly processing of XML data when you

do not need to access all of the data in an XML document. Part of the reason for

this performance benefit not seen in DOM arises from the fact that SAX places

more burden on the application than does DOM. Often, applications that might

Figure 1. DOM Parsing Model

Chapter 1. Introduction 3

naturally tend to be inclined to use DOM, instead use SAX and work around its

limitations, in order to take advantage of those performance benefits. The SAX API

does the following:

v Accesses data through a series of events, eliminating the need to build a tree

structure in memory.

v Assists the application in determining the most efficient way to build an internal

model.

v Allows you to access a small number of elements at one time rather than an

entire document.

The SAX API is best for applications that need access to a subset of the data and

do not need to understand its relationship to surrounding elements. SAX is also

ideal for information that is both generated by and readable by a machine.

However, SAX can only traverse the XML document in a single pass, which makes

it more expensive when you want to access data repeatedly from an XML

document. When it comes to saving needed information from the document or

keeping its own understanding of relationships between elements (if that is

important), SAX places more burden on the application than does DOM.

The SAX parsing model is a three-step process:

1. The application invokes the parser passing it an XML document. It also passes

in the addresses of event handlers for the various SAX events.

2. The parser parses the document, calling the application’s event handlers for

each token encountered in the XML document.

3. When the document is complete, control is returned to the application.

The following is a schematic of the SAX parsing model.

4 XML Toolkit for z/OS User’s Guide

For information on the Toolkit support for SAX APIs, see the Interfaces and

Specifications chart for Toolkit Parser on page 11.

DOM vs SAX

The DOM and SAX APIs can each parse documents efficiently given appropriate

conditions. The following table summarizes and compares the characteristics of the

DOM API with those of the SAX API:

 Table 1. DOM vs SAX

DOM SAX

Type of Interface Object based Event based

Object Model Created automatically Must be created by

application

Element Sequencing Preserved Can be preserved or not,

depending on the application

Figure 2. SAX Parsing Model

Chapter 1. Introduction 5

Table 1. DOM vs SAX (continued)

DOM SAX

Speed of Initial Data

Retrieval

Slower Faster

Stored Information Better for complex structures Better for simple structures

Validation Optional Optional

Ability to update XML

document

Yes (in memory) No

XPath

XPath is a language for addressing parts of an XML document, designed to be

used by XSLT and other XML-related technologies. It provides basic facilities for

manipulation of strings, numbers and booleans. XPath is also designed so that it

has a natural subset that can be used for matching (testing whether or not a node

matches a pattern). For information on the Toolkit support for XPath, see the

Interfaces and Specifications chart for Toolkit Processors on page 12.

Validation

A valid document is one that follows the XML syntax and also conforms to the rules

of an associated DTD or XML Schema. (A well-formed document is one that follows

the XML syntax.)

Validation is the process of comparing an XML document with a specified DTD or

XML Schema. It ensures that the document uses only those tags that have been

defined in the DTD or XML Schema as well as ensuring that it conforms to the

element rules specified in the DTD or XML Schema.

Validation of an XML document is expensive in terms of machine cycles. If the

document is received from a reliable source and the format of the document has

been predetermined, validation may not be necessary. However, using validation

ensures that only elements defined in the DTD or XML Schema are used and,

therefore, the structure of the XML document remains consistent.

If you do not want to validate the document each time you access data, you can, as

an example, code an application so that it may reject tags that it does not recognize

and takes an appropriate error path. If you do this, you may want to use validation

during testing and initial implementation of a new version of an application or

temporarily until the source of a document has been accredited.

The following table summarizes the expected results of validation:

 Table 2. Expected Validation Results

Validate Against a DTD or

XML Schema Do Not Validate

Document Is Valid Once validation is completed,

parsing continues.

Validation is ignored and

processing continues.

Document Is Not Valid Validation will result in an

error response that will help

you determine the error.

Parsing is discontinued.

Validation is ignored and

processing continues.

6 XML Toolkit for z/OS User’s Guide

How to access XML data

The XML parser (as well as the XSLT processor) was designed to utilize the

Uniform Resource Identifiers (URI) standard to access files. This standard is

described in RFC 2396 . Most APIs that need to access data support both absolute

URIs and relative URIs, aside from the following exception: The XSLT processor

output parameter only supports relative URIs.

How to access data sets

The URI design is based on a hierarchical file system naming scheme. Traditional

MVS data set naming schemes do not fit directly within this scheme so some

adaptation has been required in order to be able to access data sets from XML.

Fortunately, there is a precedent for accessing data sets when running a C++

program from UNIX and that is to prefix the data set name with ’//’. Here is an

example:

 //’USER1.SAMPLE.XML(PERSON1)’

 //SAMPLE.XML(PERSON1)

The ’//’ tells a C++ program running from the UNIX APIs to look for the name as a

data set rather than in an HFS. The single quotes tell it not to add on the user’s

default high level qualifier. In addition, if you are running from a batch or started

task environment, the data set can be accessed via DD statements in the JCL. The

following is an example:

 //DD:SAMPFILE(PERSON1)

Where the following DD is also defined in the JCL:

 //SAMPFILE DD DSN=USER1.SAMPLE.XML,DISP=SHR,

 // VOL=SER=BPXLK2,UNIT=3390

All the examples above will access the same member of the same data set.

Relative URIs

In the cases where relative URIs are allowed, these data set definitions can be

used instead of the traditional hierarchical file system parameters. Using this format,

there is no ’path’ distinction as in a hierarchical system. Here is an example

invocation of the SAXCount sample program passing a data set name:

 SAXCount ’//sample.xml(person1)’

The quotes are needed so that UNIX doesn’t see the parentheses as errors. MVS

also has a convention of adding a default high level qualifier if one is present. If you

don’t want to have the default high level qualifier added on, use single quotes

around the data set name and double quotes around the whole parameter:

 SAXCount "//’user1.sample.xml(person1)’"

When used in batch, JCL requires single quotes around the parameters, so you

must use a pair of single quotes:

 PARM=’/ //’’user1.sample.xml(person2)’’’

Chapter 1. Introduction 7

http://www.ietf.org/rfc/rfc2396.txt

You may have noticed that there is an extra ’/’ in the beginning of the parameters.

This is required by JCL to separate run-time options from the parameters.

Absolute URIs

Data sets can also be specified using absolute URIs. (Note: The XSLT Processor,

C++ Edition does not support absolute URIs). Since the convention for accessing

data sets is to start with a ’//’ and this convention is also used to distinguish the

absolute URIs with host names, you can only specify an absolute URI using the

host format. The host name itself is still optional. Here are some examples:

 SAXCount ’file:////sample.xml(person1)’

 SAXCount ’file://localhost//sample.xml(person1)’

 SAXCount "file:////’user1.sample.xml(person1)’"

 PARM=’/ file:////’’user1.sample.xml(person2)’’’

In addition, when using XML in a batch or started task environment, you can use

the //DD: format to access a data set that is defined via a DD statement. The

following is an example:

 SAXCount ’file:////dd:sampfile(person1)’

Considerations when using the Xalan C++ commands

Most interfaces that need to access data support both absolute URIs and relative

URIs. The following are some known exceptions:

v The Xalan command output parameter only supports relative URIs.

v The Xalan command input parameters (for the XML file and the XSL file) support

all URIs for UNIX files, but only absolute URIs for MVS data sets.

For more information on the Xalan command, see Chapter 5, “How to use the XML

Toolkit command line utilities,” on page 41. For more information on Xalan itself,

see “XML Toolkit for z/OS” on page 11.

DTDs, Schema and other embedded files

The conventions described above also apply to files which are referenced within

XML documents, such as DTDs. Here is an example xml DOCTYPE statement to

access a data set:

DOCTYPE personnel SYSTEM "file:////’USER1.SAMPLE.DTD(PERSON1)’"

Encoding issues

The promise of XML is that it is portable and works on all platforms. Making this

work effectively and efficiently requires program design that takes into account the

specific situation pertinent to a particular application (for example, where the

document originates, where it is likely to be processed, the performance

requirements, the throughput requirements, where the document is stored and how

it is likely to be accessed). Proper encoding of XML documents will require thought

and consideration at application design time.

The following information is intended to give application programmers guidance on

how to deal with encoding of XML documents on z/OS.

Encoding and XML

This section presents the encoding rules in a simple and straightforward manner as

background to the discussion of encoding of XML on z/OS. It is not intended to

reproduce the detail of the XML 1.0 specification or to cover every possible case.

8 XML Toolkit for z/OS User’s Guide

The XML standard defines encoding fairly rigorously. If the document is not in

UTF-8 or UTF-16, the encoding of the document must be specified via the

encoding= attributes on the processing instruction. Also, even though it is possible

for the encoding specified via the transport protocol to override the encoding

declaration, it is strongly advised that the actual encoding of the document match

the encoding specified on the encoding= attribute. Problems can occur if the

document is converted from one code page to another without the encoding=

attribute being changed. There are places where conversion takes place without the

knowledge of the application programmer. Examples of these include file transfer

using ftp (File Transfer Program) without the binary option and storing files in a

database using DRDA.

Whenever possible, avoid letting these types of conversions take place so that

mismatches do not occur. The XML parser for z/OS converts the document to

Unicode for processing and is capable of handling many different code pages. Also,

converting from one code page to another can cause loss of data if there are code

points in the original code page that are not present in the target code page.

Avoiding conversion prior to calling the parser results in the most efficient (from a

performance perspective) and least error-prone solution. Conversion is expensive

and if the document is converted before the parser is invoked, two conversions

actually occur - once from the original code page and once to Unicode within the

parser. Therefore, use the binary option on ftp and equivalent file transfer

mechanisms.

XML is intended to be a portable data format. The truly portable encoding is

Unicode. Therefore whenever possible, it is best to use Unicode as the encoding for

XML documents. However, not all platforms provide easy to use facilities for

handling Unicode. As a compromise, ASCII is another portable encoding that is

better supported via facilities. It is recommended that XML documents intended for

use on other platforms be encoded in US ASCII or UTF-8 or UTF-16. This also

provides performance benefits because the XML parser is optimized for these

encodings.

XML and z/OS

The current XML W3C recommendation (XML 1.0) specification defines CR

(Carriage Return), LF (Line Feed), and the combination CR-LF (Carriage Return

followed by Line Feed) as acceptable white space characters. These characters are

to be converted to LF by the XML parser. Unfortunately, the XML 1.0 specification

does not define NEL (New Line or Next Line) as acceptable.

This presents a problem on z/OS because the most common end-of-line character

on z/OS is NEL. The C ’\n’ string converts to NEL, and editors and file I/O routines

in the C runtime insert NEL to indicate end-of-line in byte oriented file systems like

the HFS (Hierarchical File System). Therefore, if the XML document is created

using C or C++ and the application programmer does not do any special

programming to avoid it, the line ending character will be NEL. This is not

recommended for XML documents because by nature, they are intended to be

portable. The NEL is common on z/OS but not on other platforms and therefore is

not portable.

Unfortunately, this means that the application programmer has to be aware of this

fact and program around it. There are two options available to programmers writing

code to create XML documents.

Chapter 1. Introduction 9

1. The simplest way to create portable XML documents is to use iconv() to convert

them to ASCII or Unicode before sending them out of the application program.

The runtime function iconv() will convert the NEL to LF in ASCII and the

problem is therefore avoided.

2. Another option is to define a literal for LF and use it instead of the string ’\n’ to

create line breaks. This approach works if the file will not be edited or otherwise

manipulated on z/OS (remember, most mainframe editors insert NEL

characters!). Also, if this file is edited on z/OS, the document will appear to be a

single line (since there aren’t any NEL characters in it) and therefore will not be

very readable.

Note: This is not an issue in the native MVS environment where file systems are

record oriented and typically do not require end of line characters.

If you need to edit or view the file on z/OS, it is best to convert it to ASCII and then

use viascii (available at z/OS Unix Tools) to edit it.

For the other case, where the program is processing a received XML document, the

situation is more complex. The fastest (and in some cases, the simplest) solution is

to not convert the file into EBCDIC. If the file is in ASCII or Unicode, then it will

have LF as the end-of-line indicator and there won’t be any problem with the line

ending. However, this is much more complex for a z/OS application program to deal

with. Depending on the specific situation (for example, development/test vs

production), conversion may or may not be required. However, the recommendation

to avoid conversion if at all possible, still holds, especially in a production

environment where the cost of conversion can be prohibitive. For development/test

situations, where the file may have to be viewed or edited for debugging purposes,

conversion may be the right answer. The parser converts all the data into Unicode

so converting the data to EBCDIC after parsing is required. At this point, only data

that is required needs to be converted, rather than the entire XML document. Note

that converting small strings may be less efficient than converting larger strings.

Also, handling Unicode or ASCII data in a z/OS program does require care in

programming and isn’t always simple. All these factors need to be considered in a

set of trade-offs when designing the application.

If the file is in EBCDIC and has been created or modified on a z/OS system, then

the line ending character is typically a NEL. The z/OS XML Parser, C++ Edition will

accept XML documents that have a NEL as a line termination character. Even

though these are non-compliant XML documents, the parser will normalize the

line-endings to LF. However, these documents are non-compliant and may not be

accepted by parsers on other platforms. In general, EBCDIC is not a portable

encoding so IBM does not recommend using EBCDIC for XML documents going

between platforms or on the Internet.

Note: XML 1.1 does support NEL

Avoiding conversion

Most transport protocols have mechanisms to avoid conversions. Here are some of

the more common products used for transport and the options to turn off conversion

(if they exist). Detailed descriptions of these options and their uses are in the

documentation associated with each product.

File Transfer Program (FTP)

The binary option prevents FTP from converting the file.

10 XML Toolkit for z/OS User’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1toy.html

MQSeries

Do not specify MQGMO_CONVERT option on the MQGET call.

DRDA It is not possible to turn off conversion except by using ’FOR BIT DATA’ but

this can have other side effects. The DB2 XML Extender has filters that

convert LF to NEL and vice versa to ensure that the document is correct.

XML Toolkit for z/OS

The XML Toolkit for z/OS (Toolkit) provides the base infrastructure to integrate

vertical/industry-specific data formats, structures, schemas, and metadata to ensure

industry compliance of data representation and content. Some of its key uses

include categorizing and tagging data for exchange in disparate environments, as

well as transforming ad hoc unstructured data to XML records, enabling you to

search, cross-reference, and share records.

The Toolkit includes the XML Parser, C++ Edition (XML Parser, Java Edition is not

supported in Toolkit V1.8.0). The XML Parser, C++ Edition is a port of IBM’s XML4C

parser. It is tested and packaged for use on z/OS. XML4C is based on open source

code from the Xerces Apache project of the Apache Software Foundation.

In addition to the parser, Toolkit V1.8.0 also includes the XSLT Processor, C++

Edition (the XSLT Processor, Java Edition is not included in this release of the

Toolkit). The XSLT Processor, C++ Edition is a port of IBM’s XSLT4C XSLT

processor (formerly known as LotusXSL-C++). It is tested and packaged for use on

z/OS. The processor is an implementation of the W3C recommendations for XSL

Transformations (XSLT) Version 1.0 and XML Path Language (XPath) Version 1.0.

XSLT4C is based on open source code from the Xalan Apache project of the

Apache Software Foundation. It allows users to transform XML documents into

other XML documents, HTML, or text, and run on multiple platforms.

The Toolkit includes z/OS world-class service and support.

For more information about the Toolkit product, visit the Toolkit Web site at:

http://www.ibm.com/servers/eserver/zseries/software/xml/

The following two tables presents a quick summary of the major features found in

the XML Toolkit for z/OS. Symbols in the tables have the following meaning:

v ″-″: feature absent;

v ″S″: completely supported;

v ″P″: subset;

v ″X″: experimental.

 Table 3. Interfaces and Specifications for the Toolkit Parser

Interfaces and Specifications C++ Edition parser

DOM 1.0 S

DOM 2.0 S

DOM 3.0 P,X

SAX 1.0 S

SAX 2.0 S

XML 1.0 S

XML 1.1 X

Chapter 1. Introduction 11

Table 3. Interfaces and Specifications for the Toolkit Parser (continued)

Interfaces and Specifications C++ Edition parser

XML Namespaces 1.0 S

XML Namespaces 1.1 X

XML Schema 1.0 S

 Table 4. Interfaces and Specifications for the Toolkit Processor

Interfaces and Specifications C++ Edition processor

XSL Transformations S

XPATH 1.0 S

Sample applications are provided with the Toolkit to help demonstrate its features.

The procedures required to set up and configure these sample applications for MVS

and z/OS UNIX environments are described in the chapters that follow.

Deprecated DOM support

The previously deprecated DOM code has been removed from the main XML

Toolkit Parser DLL to reduce the DLL’s footprint. If you want to use the deprecated

DOM code, you will need to include the new sidedeck for the deprecated DOM

code. The DLL and sidedeck names are listed in Table 6 on page 21 and Table 8 on

page 24.

Toolkit packaging strategy

The Toolkit V1.8.0 package contains three levels of the Toolkit: V1.8.0, V1.7.0, and

V1.6.0. This packaging strategy was developed to compensate for the lack of

upward compatibility between Toolkit releases. By making three levels of the Toolkit

available to customers (current level plus 2 back levels), support is available to

customers using a level of the Toolkit other than the current level. For example, if

Toolkit V1.8.0 is the current level, the Toolkit package will have included in it levels

V1.8.0, V1.7.0, and V1.6.0. A customer who may be installing a product that

requires Toolkit V1.7.0 can still obtain and install V1.7.0 (assuming they don’t

already have it) because it is included in the current V1.8.0 Toolkit package.

Toolkit support for both z/OS UNIX System Services and MVS

environments

The Toolkit supports applications running on both z/OS UNIX System Services and

MVS environments. To better understand how the Toolkit provides this support, you

need to recognize the differences between these two types of environments, and

the applications supported on them. The following table provides an introductory

comparison of these two environments:

 Table 5. z/OS UNIX vs. MVS

z/OS UNIX Environment MVS Environment

Parallel Processing Model pthreads tasks

JES Batch Processing posix enabled batch non-posix batch

File access HFS or data sets data sets only

Command environment UNIX shell or BPXBATCH TSO or batch

12 XML Toolkit for z/OS User’s Guide

For more information on how these environments compare, visit the following Web

page:

http://www.ibm.com/servers/eserver/zseries/zos/unix/release/ncomp2.html

Chapter 1. Introduction 13

http://www.ibm.com/servers/eserver/zseries/zos/unix/release/ncomp2.html

14 XML Toolkit for z/OS User’s Guide

Chapter 2. How to use Toolkit XPLINK support

Extra Performance Linkage (XPLINK) is a relatively new call linkage between

programs that have the potential for a significant performance increase when used

in an environment of frequent calls between small functions or subprograms. The

Object Oriented aspect of C++ causes much C++ code to fall into this category.

An XPLINK copy of the XML Parser, C++ Edition and the XSLT Processor, C++

Edition library files and sidedecks are provided for customers in addition to the

non-XPLINK versions. A listing of these files along with the build and run steps

required to use XPLINK are presented in the following chapters: Chapter 3, “How to

use the XML Parser, C++ Edition,” on page 17 and Chapter 4, “How to use the

XSLT Processor, C++ Edition,” on page 29.

Using Toolkit XPLINK support

Under certain circumstances, it may be appropriate to use the new XPLINK Toolkit

code. If you have an existing application that is pure XPLINK and you need to do

XML parsing, you should see a performance improvement if you were previously

using your XPLINK application with the non-XPLINK XML Parser, C++ Edition. This

is because when you use your XPLINK application with the non-XPLINK XML

Parser, C++ Edition, you incur a significant performance penalty each time you call

the XML Parser, C++ Edition. This performance penalty is a result of having to run

through additional code to convert the XPLINK stack structure and register

conventions to the format that the non-XPLINK XML Parser, C++ Edition expected.

When the XML Parser, C++ Edition finishes converting, there is additional overhead

(another performance penalty) restoring the XPLINK environment upon return. As a

result, you should see a significant benefit by calling an XPLINK XML Parser, C++

Edition from your XPLINK application, since you’ll be avoiding the performance

penalties of having to do the XPLINK to non-XPLINK, and then back XPLINK code

conversions.

If your application is non-XPLINK, then you should continue to use the non-XPLINK

XML Parser, C++ Edition. Calling the XPLINK XML Parser, C++ Edition from a

non-XPLINK application will most likely perform worse than if you continue to use

the non-XPLINK XML Parser, C++ Edition.

If you can convert your non-XPLINK application to be 100 percent XPLINK, then

you should see signficant benefit using the XPLINK XML Toolkit code.

For best results, you want all of the code you are calling to be built using XPLINK.

For example, you would not want to bind an XPLINK application with the XPLINK

XML Parser, C++ Edition main DLL (libxerces-c2_6_0.dll) and the non-XPLINK

deprecated DOM DLL (libxerces-depdom2_6_0.dll).

For more information on XPLINK, refer to the z/OS Language Environment

Programming Guide Chapter 3, ″Using Extra Performance Linkage (XPLINK).

Building an XPLINK application

In order to build an XPLINK application, you need to specify the XPLINK compiler

option (-Wc,XPLINK) during compilation. When link-editing your application, you must

use the DFSMS binder and specify the XPLINK binder option (-Wl,XPLINK). You

also need to include the XPLINK sidedeck on the bind step.

© Copyright IBM Corp. 2005 15

The samples provided in the Toolkit are pre-built non-XPLINK. If you want to build

an XPLINK version of them, you can set an environment variable that has been

added in support of XPLINK. The environment variable, once set, will apply the

correct compiler and binder options in the Makefile and the correct XPLINK

sidedeck will also be included. To build an XPLINK copy of the samples, do the

following:

export OS390_XPLINK=1

For the XSLT Processor, C++ Edition samples there is an extra step needed to

pickup the correct version of the Standard C++ library (see Chapter 4, “How to use

the XSLT Processor, C++ Edition,” on page 29 for more information).

Running an XPLINK application

If the initial program you call is compiled XPLINK, then Language Environment will

initialize the enclave as an XPLINK environment. If your initial program is

non-XPLINK, and you are calling an XPLINK program later on, then you need to

specify the XPLINK(ON) runtime option so that calls may be made between XPLINK

and non-XPLINK programs.

When you build the samples and use the OS390_XPLINK environment variable,

XPLINK(ON) runtime options never needs to be set.

16 XML Toolkit for z/OS User’s Guide

Chapter 3. How to use the XML Parser, C++ Edition

Samples have been provided to demonstrate the features of the XML Parser, C++

Edition. These samples use simple applications written on top of the SAX and DOM

API’s. See “Why XML?” on page 1 for more information on the APIs. The following

samples can be found in the samples directory:

SAXCount

counts the elements, attributes, spaces and characters in an XML file

SAX2Count

same as SAXCount, except uses SAX 2.0

SAXPrint

parses an XML file and prints it out

SAX2Print

same as SAXPrint, except uses SAX 2.0

DOMCount

counts the elements, attributes, spaces and characters in an XML file

DOMPrint

parses an XML file and prints it out

MemParse

parses XML in a memory buffer, outputting the number of elements and

attributes

Redirect

redirects the input stream for external entities

PParse

demonstrates progressive parsing

PSVIWriter

exposes the underlying PSVI of the parsed XML file

SCMPrint

parses an XSD file and prints information about the Schema Component

Model

StdInParse

demonstrates streaming XML data from standard input

EnumVal

shows how to enumerate the markup declarations in a DTD validator

SEnumVal

shows how to enumerate the markup declarations in a Schema validator

CreateDOMDocument

creates a DOM tree in memory from scratch

Rule: These samples are only examples of how to exploit the XML Parser, C++

Edition. You will need to modify your own applications accordingly.

Pre-built versions of the samples for the z/OS UNIX environment are included in the

Toolkit. These can be used to illustrate XML concepts, validate XML documents,

and validate DTDs and schemas during development. See “Using the sample

applications” on page 18 section for instructions on how to use these pre-built

© Copyright IBM Corp. 2005 17

versions. Also, source code is provided in the Toolkit for all of the samples to aid

developers in getting started with their applications.

Rule: The prebuilt samples shipped with the Toolkit are the non-XPLINK versions. If

you want to use the XPLINK versions of the samples, then you must build your own

copy of them.

The procedures for building and using your built samples differ depending on the

target environment. The procedures for building your samples are outlined in

sections “z/OS UNIX Environment” on page 21 and “Building sample applications

for the MVS Environment” on page 24. The procedures for using your built samples

are outlined in sections “Using your sample applications on the z/OS UNIX

Environment” on page 23 and “Using your sample applications on the MVS

Environment” on page 27

The XML Parser, C++ Edition component is installed in /usr/lpp/ixm/IBM/xml4c-
5_5 by default. It contains the following sub-directories:

/doc contains online APIs and design documentation

/include

used for building samples

/lib used for running the parser code

/bin used for the samples

In addition to the sub-directories, the Toolkit includes the following data sets:

hlq.SIXMLOD1

used for running the parser code in an MVS environment

hlq.SIXMEXP

used to build applications for an MVS environment

Using the sample applications

Note: The pre-built samples can be run in a z/OS UNIX command environment.

Before running the samples, you must ensure that several environment variables

are set properly. First, set up an environment variable to point to the location where

the XML Toolkit, C++ Parser component was installed:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_5

Then type in the following command statements:

 export LIBPATH=$XERCESCROOT/lib:$LIBPATH

 export PATH=$XERCESCROOT/bin:$PATH

You are now set to run the sample applications. For example, to run the DOMPrint

application from the $XERCESCROOT/bin directory, type the following command

statement:

 cd $XERCESCROOT/samples/data

 DOMPrint -v=always -wenc=IBM-1047-s390 -wfpp=on personal.xml

 (use "-v=auto" for personal-schema.xml)

18 XML Toolkit for z/OS User’s Guide

|

This sample application will then parse the personal.xml file, construct the DOM

tree, and invoke DOMWriter::writeNode() to serialize the resultant DOM tree back to

an XML stream. The following is a sample output from DOMPrint:

cd $XERCESCROOT/samples/data

DOMPrint -v=always -wenc=IBM-1047-s390 -wfpp=on personal.xml

<?xml version="1.0" encoding="IBM-1047-s390" standalone="no" ?>

<!DOCTYPE personnel SYSTEM "personal.dtd">

<personnel>

 <person id="Big.Boss">

 <name>

 <family>Boss<family></family>

 <given>Big<given></given>

 </name>

 <email>chief@foo.com<email></email>

 <link subordinates="one.worker two.worker three.worker four.worker five.worker"/>

 </person>

 <person id="one.worker">

 <name>

 <family>Worker<family></family>

 <given>One<given></given>

 </name>

 <email>one@foo.com<email></email>

 <link manager="Big.Boss"/>

 </person>

 <person id="two.worker">

 <name>

 <family>Worker<family></family>

 <given>Two<given></given>

 </name>

 <email>two@foo.com<email></email>

 <link manager="Big.Boss"/>

 </person>

 <person id="three.worker">

 <name>

 <family>Worker<family></family>

 <given>Three<given></given>

 </name>

 <email>three@foo.com<email></email>

 <link manager="Big.Boss"/>

 </person>

 <person id="four.worker">

 <name>

 <family>Worker<family></family>

 <given>Four<given></given>

 </name>

 <email>four@foo.com<email></email>

 <link manager="Big.Boss"/>

 </person>

Chapter 3. How to use the XML Parser, C++ Edition 19

<person id="five.worker">

 <name>

 <family>Worker<family></family>

 <given>Five<given></given>

 </name>

 <email>five@foo.com<email></email>

 <link manager="Big.Boss"/>

 </person>

</personnel>

Help for each of the samples can be displayed by using the -? parameter. For

example, to display help for the MemParse sample, type the following:

MemParse -?

This will display the following text:

Usage:

MemParse [options]

This program uses the SAX Parser to parse a memory buffer

containing XML statements, and reports the number of

elements and attributes found.

Options:

-v=xxx Validation scheme [always | never | auto*].

-n Enable namespace processing. Defaults to off.

-s Enable schema processing. Defaults to off.

-f Enable full schema constraint checking. Defaults to off.

-? Show this help.

* = Default if not provided explicitly.

Rule for running non-XPLINK samples

In order to run the non-XPLINK samples, the XML Parser, C++ Edition requires the

run-time library provided by Language Environment, SCEERUN, to be made

available in the program search order. The best way to do this is by adding

SCEERUN data set in the LNKLST. If you do not wish to add SCEERUN to the

LNKLST, access SCEERUN data set through STEPLIB.

Rule for running XPLINK samples

In order to run the XPLINK samples, the XML Parser, C++ Edition requires the

run-time libraries provided by Language Environment, SCEERUN and SCEERUN2,

to be made available in the program search order. The best way to do this is by

adding the SCEERUN and SCEERUN2 data sets into the LNKLST. If you do not

wish to add SCEERUN and SCEERUN2 to the LNKLST, access SCEERUN and

SCEERUN2 data sets through STEPLIB.

20 XML Toolkit for z/OS User’s Guide

z/OS UNIX Environment

Building sample applications for the z/OS UNIX Environment

Before being able to build the provided samples, the system environment must be

configured correctly. Doing so requires the use of the GNU make utility (gmake). To

download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install

file:

 pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was

created by the pax command). For additional information on using gmake, see the

IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online

at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html/

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XML Parser, C++ Edition on z/OS UNIX.

These files and their descriptions are displayed in the following table:

 Table 6. Product Files Required to Build Sample XML Applications for z/OS UNIX

Environments

Product file name Product file description

files in the include directory C++ header files contained in the include

directory. These are required in order to

compile application code.

non-XPLINK product files

libxerces-c2_6_0.x The definition side-deck contained in the lib

directory that describes the XML Parser, C++

Edition external functions and the variables.

This is required in order to bind application

code.

libxerces-depdom2_6_0.x The definition side-deck that describes the

previously deprecated DOM APIs; it is only

required if you are using these APIs.

XPLINK product files

libxerces-c2_6_0.xplink.x The definition side-deck contained in the lib

directory that describes the XML Parser, C++

Edition external functions and the variables.

This is required in order to use XPLINK to

bind application code.

libxerces-depdom2_6_0.xplink.x The definition side-deck that describes the

previously deprecated DOM APIs; it is only

required if you are using these APIs and

compiling with XPLINK.

Chapter 3. How to use the XML Parser, C++ Edition 21

Rules for invoking the XML Parser, C++ Edition in z/OS UNIX

Any application that is to invoke the XML Parser, C++ Edition parser under the z/OS

UNIX System Services environment must include libxerces-c2_6_0.x, (or

libxerces-c2_6_0.xplink.x if using XPLINK), when they bind. The binder uses the

definition side-deck to resolve references to functions and variables defined in

libxerces-c2_6_0.dll (libxerces-c2_6_0.xplink.dll if using XPLINK).

If you are using the deprecated DOM APIs, you need to include the

libxerces-depdom2_6_0.x sidedeck, or for XPLINK applications, the

libxerces-depdom2_6_0.xplink.x sidedeck.

 The next thing you need to do is set the XML4C root path. To set it correctly, issue

the following command statement:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_5

Now, you need to obtain access to a copy of the samples directory to which you

have write access. Unless you are a superuser, you normally will not have write

access to the samples subdirectory that was shipped with the product. In this case,

you will need to do the following:

1. Create a new directory that you have write access to, for example:

 cd $HOME

 mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,

as follows:

 export XERCESCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

 cp -r /usr/lpp/ixm/IBM/xml4c-5_5/samples $XERCESCOUT

Since the XERCESCOUT environment variable is set, that copy of the samples

subdirectory will be used. The binary files will be stored in a ″bin″ subdirectory.

After you have copied the samples directory, you need to set up environment

variables. This is done through the following sequence:

 unset _CXX_CXXSUFFIX

 export CXX=c++

 export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the

export CXXFLAGS statement.

The next statement is only required for building XPLINK samples:

export OS390_XPLINK=1

22 XML Toolkit for z/OS User’s Guide

Once the environment variables have been properly set, Makefiles must be created.

The directory in which you create the Makefiles depends on where you are building

the samples. If you have set the XERCESCOUT environment variable, type the

following:

 cd $XERCESCOUT/samples

 configure

Finally, to build the samples, type the following in the directory in which you created

the Makefiles:

 export _CXX_CXXSUFFIX=cpp

 export _CXX_CCMODE=1

 gmake

After issuing the gmake command, the build process is completed. The samples are

built into the $XERCESCOUT/bin directory. Proceed to the next section to see how to

run your newly built sample applications.

Using your sample applications on the z/OS UNIX Environment

Library files are required to run XML Parser, C++ Edition on z/OS UNIX. These files

can be found in the $XERCESCROOT/lib directory. The file names and their

descriptions are displayed in the following table:

 Table 7. Library Files Required to Run Sample XML Applications on z/OS UNIX

Library File Name Library File Description

non-XPLINK library files

libxerces-c2_6_0.dll XML Parser, C++ Edition library file

libxerces-depdom2_6_0.dll library file for the previously deprecated DOM

API

libicudata32.0.dll, libicudata_stub32.0.dll,

libicuuc32.0.dll, libicui18n32.0.dll

ICU library files

XPLINK library files

libxerces-c2_6_0.xplink.dll XML Parser, C++ Edition library file

libxerces-depdom2_6_0.xplink.dll library file for the previously deprecated DOM

API

libicudata32.0.xplink.dll,

libicudata_stub32.0.xplink.dll,

libicuuc32.0.xplink.dll, libicui18n32.0.xplink.dll

ICU library files

Before running the samples, you must ensure that several environment variables

are set properly. First, set up an environment variable to point to the location where

the XML Parser, C++ Edition component was installed:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_5

Then type in the following command statements:

 export LIBPATH=$XERCESCROOT/lib:$LIBPATH

Then set the PATH to locate the samples you have just built:

Chapter 3. How to use the XML Parser, C++ Edition 23

export PATH=$XERCESCOUT/bin:$PATH

You are now set to run your sample applications. For example, to run the

SAXCount application from the $XERCESCOUT/bin directory, type the following

command statement:

 SAXCount $XERCESCROOT/samples/data/personal.xml

This sample application will then count the number of elements, attributes, spaces

and characters in the XML file personal.xml .

MVS Environment

Building sample applications for the MVS Environment

Before being able to build the provided samples, the system environment must be

configured correctly. Doing so requires the use of the GNU make utility (gmake). To

download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install

file:

 pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was

created by the pax command). For additional information on using gmake, see the

IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online

at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XML Parser, C++ Edition on MVS. These files

and their descriptions are displayed in the following table:

 Table 8. Product Files Required to Build Sample XML Applications for MVS Environments

Product file name Product file description Data set name

files in the include directory C++ header files contained in

the include directory. These

are required in order to

compile application code.

non-XPLINK product files

IXM4C55X Definition side-deck that

describes the XML Parser,

C++ Edition functions and the

variables.

hlq.SIXMEXP

IXMDD55X Definition side-deck that

describes the previously

deprecated DOM APIs; it is

only required if you are using

these APIs.

hlq.SIXMEXP

XPLINK product files

24 XML Toolkit for z/OS User’s Guide

Table 8. Product Files Required to Build Sample XML Applications for MVS

Environments (continued)

Product file name Product file description Data set name

IXM4C5XX Definition side-deck that

describes the XML Parser,

C++ Edition functions and the

variables. This is required in

order to use XPLINK to bind

application code.

hlq.SIXMEXP

IXMDD5XX Definition side-deck that

describes the previously

deprecated DOM APIs; it is

only required if you are using

these APIs and XPLINK.

hlq.SIXMEXP

Rules for invoking the XML Parser, C++ Edition in native MVS

Any application that is to invoke the XML Parser, C++ Edition parser under the

native MVS environment must include either of the following definition side-decks

when they bind: IXM4C55X (for non-XPLINK applications) or IXM4C5XX (for

XPLINK applications). The binder uses the definition side-deck to resolve

references to functions and variables defined in the IXM4C55 or IXM4C5X. In

addition to the above, any applications that wish to use previously deprecated DOM

APIs must also include either of the following definition side-decks: IXMDD55X (for

non-XPLINK applications) or IXMDD5XX (for XPLINK applications). The binder uses

the definition side-deck to resolve references to functions and variables defined in

the IXMDD55 or IXMDD5X.

Rules for building samples in native MVS

To be able to run the sample applications, you must first allocate a data set to hold

the executables. The following is an example of a data set allocation:

 userid.SAMPLES.rel.LOAD, 175 tracks on 3390, Record format:U,

 Record Length: 0, Block size: 32760, ORG: PDSE,

 Directory blocks: 0

If you are only building the XML Parser, C++ Edition samples, you need to allocate

175 tracks. If you plan on later building the XSLT Processor, C++ Edition samples,

you need to allocate 200 tracks for those for a total of 375 tracks.

If you are building samples from multiple releases, you will need a unique PDSE for

each release, for example: SAMPLES.V170 .LOAD for samples from Toolkit V1.7.0

and SAMPLES.V180 .LOAD for samples from Toolkit V1.8.0.

 The next thing you need to do is set the XML4C root path. To set it correctly, issue

the following command statement:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_5

Now, you need to obtain access to a copy of the samples directory to which you

have write access. Unless you are a superuser, you normally will not have write

access to the samples subdirectory that was shipped with the product. In this case,

you will need to do the following:

1. Create a new directory that you have write access to, for example:

Chapter 3. How to use the XML Parser, C++ Edition 25

cd $HOME

 mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,

as follows:

 export XERCESCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

 cp -r /usr/lpp/ixm/IBM/xml4c-5_5/samples $XERCESCOUT

Since the XERCESCOUT environment variable is set, that copy of the samples

subdirectory will be used. The binary files are stored in the MVS data set pointed to

by the LOADMOD environment variable. If XERCESCOUT is not set, the copy of the

samples in the HFS that the product resides in will be used, and the binary files will

be stored there.

After you have copied the samples directory, you need to set up environment

variables. This is done through the following sequence:

 export LOADMOD=userid.SAMPLES.rel.LOAD

 export LOADEXP=hlq.SIXMEXP

 export OS390BATCH=1

 unset _CXX_CXXSUFFIX

 export CXX=c++

 export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the

export CXXFLAGS statement.

The next statement is only required if your building XPLINK samples:

export OS390_XPLINK=1

Once the environment variables have been properly set, Makefiles must be created.

Type the following:

 cd $XERCESCOUT/samples

 configure

.

You are now ready to build the samples. Type the following in the directory in which

you created the Makefiles:

 export _CXX_CXXSUFFIX=cpp

 export _CXX_XSUFFIX_HOST=SIXMEXP

 export _CXX_CCMODE=1

 gmake

After you have issued the gmake command, the build process is completed. The

built samples are placed into the userid.SAMPLES.rel.LOAD data set. Proceed to

the next section to see how to run your newly built sample applications.

26 XML Toolkit for z/OS User’s Guide

Using your sample applications on the MVS Environment

Library files are required to run XML Parser, C++ Edition on MVS. The following

table is a list of library files required, a short description of the files, and the data

set names of where these files are located.

 Table 9. Library Files Required to Run Sample XML Applications on MVS

Library file name Library file description Library data set name

non-XPLINK library files

IXM4C55 XML Parser, C++ Edition

library file

hlq.SIXMLOD1

IXMDD55 previously deprecated DOM

API library file

hlq.SIXMLOD1

IXMI32UC ICU library file (explicitly

loaded by IXM4C55)

hlq.SIXMLOD1

IXMI32DA ICU library file hlq.SIXMLOD1

IXMI32D1 ICU library file hlq.SIXMLOD1

IXMI32IN ICU library file hlq.SIXMLOD1

XPLINK library files

IXM4C5X XML Parser, C++ Edition

library file

hlq.SIXMLOD1

IXMDD5X previously deprecated DOM

API library file

hlq.SIXMLOD1

IXMI32XC ICU library file (explicitly

loaded by IXM4C5X)

hlq.SIXMLOD1

IXMI32XA ICU library file hlq.SIXMLOD1

IXMI32X1 ICU library file hlq.SIXMLOD1

IXMI32XN ICU library file hlq.SIXMLOD1

Before you run the samples, you must make sure that you have access to the

library, SIXMLOD1. You can ask your system programmer to install SIXMLOD1 in

LNKLST. If the SIXMLOD1 data set cannot be placed in LNKLST, you can STEPLIB

the data set for each application that requires it. You can invoke the samples from

TSO or a JCL job. For example, you can submit the following JCL to run

SAXCount.

//USERJOB JOB MSGLEVEL=(1,1),CLASS=A

//TEST EXEC PGM=SAXCOUNT,

//* HFS file input

// PARM=’//usr/lpp/ixm/IBM/xml4c-5_5/samples/data/personal.xml’

//*

//* DDNAME input

//* PARM=’///DD:XMLDATA(PERSONAL)’

//* PARM=’DD:XMLDATA(PERSONAL)’

//*

//* Data set input

//* PARM=’"//’’USERID.XML.DATA(PERSONAL)’’"’

//* PARM=’"//XML.DATA(PERSONAL)"’

//*

//STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR

Chapter 3. How to use the XML Parser, C++ Edition 27

// DD DSN=userid.SAMPLES.rel.LOAD,DISP=SHR

//*XMLDATA DD DSN=userid.XML.DATA,DISP=SHR

/*

Multi-threading considerations

The following are multi-threading considerations for the XML Parser, C++ Edition.

Using UNIX pthreads

Within a program, an instance of the parser may be used without restriction from a

single thread, or an instance of the parser can be accessed from multiple threads,

provided the application guarantees that only one thread has entered a method of

the parser at any one time.

When two or more parser instances exist in a process, the instances can be used

concurrently, without external synchronization. That is, in an application containing

two parsers and two threads, one parser can be running within the first thread

concurrently with the second parser running within the second thread.

Similar rules apply to XML4C DOM documents. Multiple document instances may

be concurrently accessed from different threads, but any given document instance

can only be accessed by one thread at a time.

DOMStrings allow multiple concurrent readers. All DOMString const methods are

thread safe, and can be concurrently entered by multiple threads. Non-const

DOMString methods, such as appendData(), are not thread safe and the application

must guarantee that no other methods (including const methods) are executed

concurrently with them.

The application also needs to guarantee that only one thread has entered either the

method XMLPlatformUtils::Initialize() or the method

XMLPlatformUtils::Terminate() at any one time.

Using MVS multi-tasking

Care must be taken when using the parser in a multi-tasking environment within a

single address space. Each task that wishes to use a parser must initialize its own

parser environment via a call to XMLPlatformUtils::Initialize(). It follows then

that each task must have its own parser instance and cannot share parser data

structures, such as DOMString.

28 XML Toolkit for z/OS User’s Guide

Chapter 4. How to use the XSLT Processor, C++ Edition

Samples have been provided to demonstrate the features of the XSLT Processor,

C++ Edition. These samples use simple applications written on top of the SAX,

DOM, and Xalan API’s. See “Why XML?” on page 1 for more information on the

APIs. The following samples can be found in the samples directory:

CompileStylesheet

use a compiled stylesheet to perform a series of transformations

DocumentBuilder

programmatically constructs an XML document, applies the foo.xsl

stylesheet to this document, and writes the output to foo.out

ExternalFunctions

implements, installs, and illustrates the usage of three extension functions

ParsedSourceWrappers

performs a transformation with input in the form of a pre-built XercesDOM

or XalanSourceTree

SerializeNodeSet

serializes the node set returned by the application of an XPath expression

to an XML document

SimpleTransform

uses the foo.xsl stylesheet to transform foo.xml, and writes the output to

foo.out

SimpleXPathAPI

uses the XPathEvaluator interface to evaluate an XPath expression from

the specified context node of an XML file and displays the nodeset returned

by the expression

SimpleXPathCAPI

uses the XPathEvaluator C interface to evaluate an XPath expression and

displays the string value returned by the expression

StreamTransform

processes character input streams containing a stylesheet and an XML

document, and writes the transformation output to a character output

stream

TraceListen

trace events during a transformation

TransformToXercesDOM

performs a simple transformation but puts the result in a Xerces

DOMDocument

UseStylesheetParam

set a stylesheet parameter that the stylesheet uses during the

transformation

XalanTransform

uses the XalanTransformer class and the associated C++ API to apply an

XSL stylesheet file to an XML document file and write the transformation

output to either an output file or to a stream

XalanTransformerCallback

returns transformation output in blocks to a callback function, which writes

the output to a file

© Copyright IBM Corp. 2005 29

XPathWrapper

use this sample to find out what a given XPath expression returns from a

given context node in an XML file

Rule: These samples are only examples of how to exploit the XSLT Processor,

C++ Edition. You will need to modify your own applications accordingly.

Pre-built versions of the samples for the z/OS UNIX environment are included in the

Toolkit. These can be used to illustrate XML concepts, validate XML documents,

and validate DTDs and schemas during development. See “Using the sample

applications” on page 30 section for instructions on how to use these pre-built

versions.

Rule: The prebuilt samples shipped with the Toolkit are the non-XPLINK versions. If

you want to use the XPLINK versions of these samples, you must build your own

copy of them.

The procedures for building and using your built samples differ depending on the

target environment. The procedures for building your samples are outlined in

sections “Building sample applications for the z/OS UNIX Environment” on page 31

and “Building sample applications for the MVS Environment” on page 35. The

procedures for using your built samples are outlined in sections “Using your sample

applications on the z/OS UNIX Environment” on page 34 and “Using your sample

applications on the MVS Environment” on page 38

The XSLT Processor, C++ Edition component is installed in

/usr/lpp/ixm/IBM/xslt4c-1_9 by default. It contains the following sub-directories:

/doc contains online APIs and design documentation

/include

used for building samples

/lib used for running the processor code

/bin used for the samples

In addition to the sub-directories, the Toolkit includes the following data sets:

hlq.SIXLMOD1

used for running the processor code in an MVS environment

hlq.SIXMEXP

used to build applications for an MVS environment

Using the sample applications

Set up an environment variable to point to the location where the XSLT Processor,

C++ Edition component was installed:

 export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_9

You also need to set up an environment variable to point to the location where the

XML Parser, C++ Edition component was installed. Here is how you do that:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_5

Next, type in the following command statements:

30 XML Toolkit for z/OS User’s Guide

export LIBPATH=$XALANCROOT/lib:$XERCESCROOT/lib:$LIBPATH

 export PATH=$XALANCROOT/bin:$PATH

You must now copy the sample files to a temporary directory. Here is how you do

that:

 mkdir $HOME/xslsamples

 cd $HOME/xslsamples

 cp $XALANCROOT/samples/SimpleTransform/foo.* .

You are now set to run the sample applications. For example, to run the

SimpleTransform application, in the $XALANCROOT/samples/SimpleTransform/

directory type the following:

 SimpleTransform

This sample application will then use the foo.xsl stylesheet to transform foo.xml,

and write the output to foo.out. The pre-built samples can be run in a z/OS UNIX

command environment.

Rule for running non-XPLINK samples

In order to run the non-XPLINK samples, the XSLT Processor, C++ Edition requires

the run-time library provided by Language Environment, SCEERUN, to be made

available in the program search order. The best way to do this is by adding

SCEERUN data set in the LNKLST. If you do not wish to add SCEERUN to the

LNKLST, access SCEERUN data set through STEPLIB.

Rule for running XPLINK samples

In order to run the XPLINK samples, the XSLT Processor, C++ Edition requires the

run-time libraries provided by Language Environment, SCEERUN and SCEERUN2,

to be made available in the program search order. The best way to do this is by

adding the SCEERUN and SCEERUN2 data sets into the LNKLST. If you do not

wish to add SCEERUN and SCEERUN2 to the LNKLST, access SCEERUN and

SCEERUN2 data sets through STEPLIB.

z/OS UNIX Environment

Building sample applications for the z/OS UNIX Environment

Next, the system environment must be configured correctly. Doing so requires the

use of the GNU make utility (gmake). To download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install

file:

 pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was

created by the pax command). For additional information on using gmake, see the

IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online

at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Chapter 4. How to use the XSLT Processor, C++ Edition 31

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XSLT Processor, C++ Edition on z/OS UNIX.

These files and their descriptions are displayed in the following table:

 Table 10. Product Files Required to Build Sample XML Applications for z/OS UNIX

Environments

Product file name Product file description

non-XPLINK product files

libxslt4c.1_9_0.x the definition side-deck that describes the

XSLT Processor, C++ Edition functions and

the variables

libxerces-c2_6_0.x The definition side-deck contained in the lib

directory that describes the XSLT Processor,

C++ Edition external functions and the

variables. This is required in order to bind

application code.

libxerces-depdom2_6_0.x The definition side-deck that describes the

previously deprecated DOM APIs; it is only

required if you are using these APIs.

XPLINK product files

libxslt4c.1_9_0.xplink.x The definition side-deck that describes the

XSLT Processor, C++ Edition functions and

the variables. This is required in order to use

XPLINK to bind application code.

libxerces-c2_6_0.xplink.x The definition side-deck contained in the lib

directory that describes the XSLT Processor,

C++ Edition external functions and the

variables. This is required in order to use

XPLINK to bind application code.

libxerces-depdom2_6_0.xplink.x The definition side-deck that describes the

previously deprecated DOM APIs; it is only

required if you are using these APIs and

XPLINK.

Rules for invoking the XSLT Processor, C++ Edition in z/OS UNIX

Any application that is to invoke the XSLT Processor, C++ Edition processor under

the z/OS UNIX System Services environment must include libxslt4c.1_9_0.x and

libxerces-c2_6_0.x, (or libxslt4c.1_9_0.xplink.x and libxerces-c2_6_0.xplink.x if using

XPLINK), when they bind. The binder uses the definition side-deck to resolve

references to functions and variables defined in libxslt4c.1_9_0.dll and

libxerces-c2_6_0.dll (libxslt4c.1_9_0.xplink.dll and libxerces-c2_6_0.xplink.dll if using

XPLINK).

If you are using the deprecated DOM APIs, you need to include the

libxerces-depdom2_6_0.x sidedeck, or for XPLINK applications, the

libxerces-depdom2_6_0.xplink.x sidedeck.

 Now set up an environment variable to point to the location where the XSLT

Processor, C++ Edition component was installed:

 export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_9

32 XML Toolkit for z/OS User’s Guide

You also need to set up an environment variable to point to the location where the

XML Parser, C++ Edition component was installed. Here is how you do that:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_5

Next, you need to obtain access to a copy of the samples directory to which you

have write access. Unless you are a superuser, you normally will not have write

access to the samples subdirectory that was shipped with the product. In this case,

you will need to do the following:

1. Create a new directory that you have write access to, for example:

 cd $HOME

 mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,

as follows:

 export XALANCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

 cp -r /usr/lpp/ixm/IBM/xslt4c-1_9/samples $XALANCOUT

Since the XALANCOUT environment variable is set, that copy of the samples

subdirectory will be used. The binary files will be stored in a ″bin″ subdirectory.

After you have copied the samples directory, you need to set up environment

variables. This is done through the following sequence:

 export CXX=c++

 export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the

export CXXFLAGS statement.

The next statement is only required for building XPLINK samples:

export OS390_XPLINK=1

Next, you need to set up some information for the non-XPLINK Standard C++

Library sidedeck. Here is how you do that:

Note: The below export statement is not required if using XPLINK; the contents of

the _CXX_PSYSIX variable are loaded by default when using XPLINK. Also,

if _CXX_PSYSIX was previously set and you are now building an XPLINK

version, unset the variable.

 export _CXX_PSYSIX=\

 "{_PLIB_PREFIX}.SCEELIB(C128N)":\

 "{_CLIB_PREFIX}.SCLBSID(IOC,IOSTREAM,COMPLEX,COLL)"

{_PLIB_PREFIX} and {_CLIB_PREFIX} are set to a default (for example, CEE and

CBC, respectively) during custom installation, or using user overrides.

Chapter 4. How to use the XSLT Processor, C++ Edition 33

Rule: All three segments of the above example must be entered on the same

command line.

Finally, to build the samples, type the following in the directory in which you created

the Makefiles:

 export _CXX_CXXSUFFIX=cpp

 export _CXX_CCMODE=1

 cd $XALANCOUT/samples

 gmake

After issuing the gmake command, the build process is completed. The samples are

built into the $XALANCOUT/bin directory.

Using your sample applications on the z/OS UNIX Environment

Library files are required to run XSLT Processor, C++ Edition on z/OS UNIX. These

files can be found in the $XALANCROOT/lib and $XERCESCROOT/lib directories.

The file names and their descriptions are displayed in the following table:

 Table 11. Library Files Required to Run Sample XML Applications on z/OS UNIX

Library File Name Library File Description

non-XPLINK library files

libxslt4c.1_9_0.dll,

libxslt4cMessages.1_9_0.dll

XSLT Processor, C++ Edition library files

libxerces-c2_6_0.dll XML Parser, C++ Edition library file

libxerces-depdom2_6_0.dll library file for the previously deprecated DOM

API

libicudata32.0.dll, libicudata_stub32.0.dll,

libicuuc32.0.dll, libicui18n32.0.dll

ICU library files

XPLINK library files

libxslt4c.1_9_0.xplink.dll,

libxslt4cMessages.1_9_0.xplink.dll

XSLT Processor, C++ Edition library files

libxerces-c2_6_0.xplink.dll XML Parser, C++ Edition library file

libxerces-depdom2_6_0.xplink.dll library file for the previously deprecated DOM

API

libicudata32.0.xplink.dll,

libicudata_stub32.0.xplink.dll,

libicuuc32.0.xplink.dll, libicui18n32.0.xplink.dll

ICU library files

Before running the samples, you must ensure that several environment variables

are set properly. First, set up an environment variable to point to the location where

the XSLT Processor, C++ Edition component was installed:

 export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_9

You also need to set up an environment variable to point to the location where the

XML Parser, C++ Edition component was installed. Here is how you do that:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_5

Then type in the following command statements:

34 XML Toolkit for z/OS User’s Guide

export LIBPATH=$XALANCROOT/lib:$XERCESCROOT/lib:$LIBPATH

 export ICU_DATA=$XERCESCROOT/lib

Then set the PATH to locate the samples you have just built:

 export PATH=$XALANCOUT/bin:$PATH

You are now set to run your sample applications. For example, to run the

SimpleTransform application from the $XALANCOUT/bin directory, type the

following command statement:

 cd $XALANCOUT/samples/SimpleTransform

 SimpleTransform

This sample application will then use the foo.xsl stylesheet to transform foo.xml,

and write the output to foo.out.

MVS Environment

Building sample applications for the MVS Environment

Before being able to build the provided samples, the system environment must be

configured correctly. Doing so requires the use of the GNU make utility (gmake). To

download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install

file:

 pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was

created by the pax command). For additional information on using gmake, see the

IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online

at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XSLT Processor, C++ Edition on MVS. These

files and their descriptions are displayed in the following table:

 Table 12. Product Files Required to Build Sample XML Applications for MVS Environments

Product file name Product file description Data set name

files in the include directory C++ header files contained in

the include directory. These

are required in order to

compile application code.

non-XPLINK product files

IXMLC19X Definition side-deck that

describes the XSLT

Processor, C++ Edition

functions and variables.

hlq.SIXMEXP

Chapter 4. How to use the XSLT Processor, C++ Edition 35

Table 12. Product Files Required to Build Sample XML Applications for MVS

Environments (continued)

Product file name Product file description Data set name

IXM4C55X Definition side-deck that

describes the XML Parser,

C++ Edition functions and the

variables.

hlq.SIXMEXP

IXMDD55X Definition side-deck that

describes the previously

deprecated DOM APIs; it is

only required if you are using

these APIs.

hlq.SIXMEXP

XPLINK product files

IXMLX19X Definition side-deck that

describes the XSLT

Processor, C++ Edition

functions and variables.This

is required in order to use

XPLINK to bind application

code.

hlq.SIXMEXP

IXM4C5XX XPLINK definition side-deck

that describes the XML

Parser, C++ Edition functions

and the variables. This is

required in order to use

XPLINK to bind application

code.

hlq.SIXMEXP

IXMDD5XX Definition side-deck that

describes the previously

deprecated DOM APIs; it is

only required if you are using

these APIs and XPLINK.

hlq.SIXMEXP

Rule: Any non-XPLINK application that is to invoke the XSLT Processor, C++

Edition parser under the native MVS environment must include the

IXMLC19X and IXM4C55X definition side-decks when they bind. The binder

uses the definition side-decks to resolve references to functions and

variables defined in the IXMLC19 and IXM4C55. Any XPLINK application that

is to invoke the XSLT Processor, C++ Edition parser under the native MVS

environment must include the IXMLX19X and IXM4C5XX definition

side-decks when they bind. The binder uses the definition side-decks to

resolve references to functions and variables defined in the IXMLX19 and

IXM4C5X.

To be able to run the sample applications, you must first allocate a data set to hold

the executables. If you have already allocated a data set for XML Parser, C++

Edition, skip this step. The following is an example of a data set allocation:

 userid.SAMPLES.rel.LOAD, 200 tracks on 3390, Record format:U,

 Record Length: 0, Block size: 32760, ORG: PDSE,

 Directory blocks: 0

36 XML Toolkit for z/OS User’s Guide

Rule: If you are building samples from multiple releases, you will need a unique

PDSE for each release, for example: SAMPLES.V170 .LOAD for samples

from Toolkit V1.7.0 and SAMPLES.V160 .LOAD for samples from Toolkit

V1.6.0.

Next, you must ensure that several environment variables are set properly. First, set

up an environment variable to point to the location where the XSLT Processor, C++

Edition component was installed:

 export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_9

You also need to set up an environment variable to point to the location where the

XML Parser, C++ Edition component was installed. Here is how you do that:

 export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_5

Then, you need to obtain access to a copy of the samples directory to which you

have write access. Unless you are a superuser, you normally will not have write

access to the samples subdirectory that was shipped with the product. In this case,

you will need to do the following:

1. Create a new directory that you have write access to, for example:

 cd $HOME

 mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,

as follows:

 export XALANCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

 cp -r /usr/lpp/ixm/IBM/xslt4c-1_9/samples $XALANCOUT

Since the XALANCOUT environment variable is set, that copy of the samples

subdirectory will be used. The binary files are stored in the MVS data set pointed to

by the LOADMOD environment variable.

After you have copied the samples directory, you need to set up environment

variables. This is done through the following sequence:

 export LOADMOD=userid.SAMPLES.rel.LOAD

 export LOADEXP=hlq.SIXMEXP

 export OS390BATCH=1

 export CXX=c++

 export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the

export CXXFLAGS statement.

The next statement is only required if you are building XPLINK samples:

export OS390_XPLINK=1

Chapter 4. How to use the XSLT Processor, C++ Edition 37

Next, you need to set up some information for the non-XPLINK Standard C++

Library sidedeck. Here is how you do that:

Note: The below export statement is not required if using XPLINK; the contents of

the _CXX_PSYSIX variable are loaded by default when using XPLINK. Also,

if _CXX_PSYSIX was previously set and you are now building an XPLINK

version, unset the variable.

 export _CXX_PSYSIX=\

 "{_PLIB_PREFIX}.SCEELIB(C128N)":\

 "{_CLIB_PREFIX}.SCLBSID(IOC,IOSTREAM,COMPLEX,COLL)"

where {_PLIB_PREFIX} and {_CLIB_PREFIX} are set to a default (for example,

CEE and CBC, respectively) during custom installation, or using user overrides.

Rule:: All three segments of the above example must be entered on the same

command line.
You are now ready to build the samples. The following sequence shows how to

build the samples:

 export _CXX_CXXSUFFIX=cpp

 export _CXX_XSUFFIX_HOST=SIXMEXP

 export _CXX_CCMODE=1

 gmake

After you have issued the gmake command, the build process is now completed.

The built samples are placed into the userid.SAMPLES.rel.LOAD data set.

Using your sample applications on the MVS Environment

Library files are required to run XSLT Processor, C++ Edition on MVS. The following

table is a list of library files required, a short description of the files, and the data

set names of where these files are located.

 Table 13. Library Files Required to Run Sample XML Applications on MVS

Library file name Library file description Library data set name

non-XPLINK library files

IXMLC19 XSLT Processor, C++ Edition

library file

hlq.SIXMLOD1

IXMMSG19 XSLT Processor, C++ Edition

message handling

hlq.SIXMLOD1

IXM4C55 XML Parser, C++ Edition

library file

hlq.SIXMLOD1

IXMDD55 previously deprecated DOM

API library file

hlq.SIXMLOD1

IXMI32UC ICU library file hlq.SIXMLOD1

IXMI32DA ICU library file hlq.SIXMLOD1

IXMI32D1 ICU library file hlq.SIXMLOD1

IXMI32IN ICU library file hlq.SIXMLOD1

XPLINK library files

IXMLX19 XSLT Processor, C++Edition

library file

hlq.SIXMLOD1

38 XML Toolkit for z/OS User’s Guide

Table 13. Library Files Required to Run Sample XML Applications on MVS (continued)

Library file name Library file description Library data set name

non-XPLINK library files

IXMMXG19 XSLT Processor, C++ Edition

message handling

hlq.SIXMLOD1

IXM4C5X XML Parser, C++ Edition

library file

hlq.SIXMLOD1

IXMDD5X previously deprecated DOM

API library file

hlq.SIXMLOD1

IXMI32XC ICU library file hlq.SIXMLOD1

IXMI32XA ICU library file hlq.SIXMLOD1

IXMI32X1 ICU library file hlq.SIXMLOD1

IXMI32XN ICU library file hlq.SIXMLOD1

Before you run the samples, you must make sure that you have access to the

library, SIXMLOD1. You can ask your system programmer to install SIXMLOD1 in

LNKLST. If the SIXMLOD1 data set cannot be placed in LNKLST, you can STEPLIB

the data set for each application that requires it. You can invoke the samples from

TSO or a JCL job. For example, you can submit the following JCL to run

TRACELSN.

//USERJOB JOB MSGLEVEL=(1,1),CLASS=A

//TEST1 EXEC PGM=TRACELSN,

//* HFS file input

// PARM=’/-tt’

//STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR

// DD DSN=userid.SAMPLES.rel.LOAD,DISP=SHR

Chapter 4. How to use the XSLT Processor, C++ Edition 39

40 XML Toolkit for z/OS User’s Guide

Chapter 5. How to use the XML Toolkit command line utilities

How to use the XSLT Processor, C++ Edition command line utility

To perform a transformation, you can call the XSLT Processor, C++ Edition from the

command line. Xalan is a simple executable providing a command-line interface for

performing XSLT transformations .The following describes how you can use Xalan

to perform transformations:

1. Set XALANCROOT to be /usr/lpp/ixm/IBM/xslt4c-1_9

2. Set XERCESCROOT to be /usr/lpp/ixm/IBM/xml4c-5_5

3. Set the PATH to include $XALANCROOT/bin

4. Set the LIBPATH to include $XALANCROOT/lib:$XERCESCROOT/lib

Then from the command line, type the following:

Xalan

or

Xalan -?

to show all the options. The following is an example of the Xalan command line:

Xalan -o foo.out

 $XALANCROOT/samples/SimpleTransform/foo.xml

 $XALANCROOT/samples/SimpleTransform/foo.xsl

Rule:: All three segments of the above example must be entered on the same

command line.
Here is a sample job for the Xalan command (IXMXAL19):

 //XALAN1 JOB REGION=0M,NOTIFY=&SYSUID

 //STEP1 EXEC PGM=IXMXAL19

 // PARM=’/-e ibm-1047-s390 -o DD:OUTFILE DD:INXML DD:INXSL’

 //STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR,

 //INXML DD DSN=USER1.FOO.XML,DISP=SHR

 //INXSL DD DSN=USER1.FOO.XSL,DISP=SHR

 //OUTFILE DD DSN=USER1.FOO.OUT,DISP=SHR

 //*

The following table lists the flags and arguments the Xalan executable can take (the

flags are case insensitive) :

 Table 14. Flags and Arguments for the Xalan Executable

-a (Use stylesheet processing instruction, not the stylesheet argument)

-e encoding (Force the specified encoding for the output)

-i integer (Indent the specified amount)

-m (Omit the META tag in HTML output)

-o filename (Write transformation result to this file (rather than to the console))

-p name expr (Set a stylesheet parameter with this expression)

-u name expr (Disable escaping of URLs in HTML output)

-v (Validate the XML source document)

© Copyright IBM Corp. 2005 41

Table 14. Flags and Arguments for the Xalan Executable (continued)

- (A dash as the ’source’ argument reads from stdin. A dash as the ’stylesheet’ argument

reads from stdin. (’-’ cannot be used for both arguments.))

-?(Show all options)

There is another XSLT Processor, C++ Edition command line utility available called

testXSLT. Like Xalan, this command line utility can perform transformations.

However, unlike Xalan, it has additional options which can be used to help debug

stylesheets during development. The following describes how you can use testXSLT

to perform transformations:

1. Set XALANCROOT to be /usr/lpp/ixm/IBM/xslt4c-1_9

2. Set XERCESCROOT to be /usr/lpp/ixm/IBM/xml4c-5_5

3. Set the PATH to include $XALANCROOT/bin

4. Set the LIBPATH to include $XALANCROOT/lib:$XERCESCROOT/lib

You can now call the testXSLT executable with the appropriate flags and arguments

or enter

testXSLT -h

to show all the options. The following command line, for example, includes the -IN,

-XSL, and-OUT flags with their accompanying arguments; the XML source

document, the XSL stylesheet, and the output file:

testXSLT -IN $XALANCROOT/samples/SimpleTransform/foo.xml

 -XSL $XALANCROOT/samples/SimpleTransform/foo.xsl

 -OUT foo.out

Rule:: All three segments of the above example must be entered on the same

command line.
Also, here is a sample job for the testXSLT command (IXMTST19):

 //TSTXSLT1 JOB REGION=0M,NOTIFY=&SYSUID

 //STEP1 EXEC PGM=IXMTST19

 // PARM=’/-IN FILE:////FOO.XML -XSL FILE:////FOO.XSL -OUT FOO.OUT’

 //STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR,

 //*

The following table lists the flags and arguments the testXSLT executable can take

(the flags are case insensitive) :

 Table 15. Flags and Arguments for the testXSLT Executable

-IN inputXMLURL

-XSL XSLTransformationURL

-OUT outputFileName

-H(Display list of command line options)

-? (Display list of command line options)

-V (Version info)

-QC (Quiet Pattern Conflicts Warnings)

-Q (Quiet Mode)

-INDENT (Number of spaces to indent each level in output tree — default is 0)

-VALIDATE (Validate the XSL and XML input — default is not to validate)

42 XML Toolkit for z/OS User’s Guide

Table 15. Flags and Arguments for the testXSLT Executable (continued)

-TT (Trace the templates as they are being called)

-TG (Trace each result tree generation event)

-TS (Trace each selection event)

-TTC (Trace the template children as they are being processed)

-XML (Use XML formatter and add XML header)

-NH (Don’t write XML header) *The -XML flag must be set before use

-HTML (Use HTML formatter)

-NOINDENT (turns off HTML indenting) *The -HTML flag must be set before use

-STRIPCDATA (Strip CDATA sections of their brackets, but do not escape) *The -XML or

-HTML flag must be set before use

-ESCAPECDATA (Strip CDATA sections of their brackets, and escape) *The -XML or

-HTML flag must be set before use

-TEXT (Use simple Text formatter)

-DOM (Test for well-formed output — format to DOM then to XML for output)

-XST (Format to Xalan source tree, then to XML for output)

-XD (Use Xerces DOM instead of Xalan source tree)

-DE (Disable built-in extension functions)

-EN (Specify the namespace URI for Xalan extension functions; the default is

http://xml.apache.org/xslt)

-PARAM name expression (Set a stylesheet parameter)

Chapter 5. How to use the XML Toolkit command line utilities 43

44 XML Toolkit for z/OS User’s Guide

Chapter 6. Where to go for more information

For more information on XML Toolkit for z/OS, visit the XML Toolkit Web site at:

http://www.ibm.com/servers/eserver/zseries/software/xml/

For additional information on the Apache XML project, visit the Apache Web site at:

http://xml.apache.org/

There are also two redbooks that you may find informative:

v Using XML on z/OS and OS/390 for Application Integration, which contains

information on how to integrate XML technology with business applications on

z/OS. This document can be accessed from the following link:

http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246285.html?Open

v XML on z/OS and OS/390: Introduction to a Service-Oriented Architecture, which

provides a general introduction to the XML Toolkit in the first half, followed by a

comprehensive introduction to services–oritented architecture (SOA) and Web

Services. This document can be accessed from the following link:

http://www.redbooks.ibm.com/redbooks/pdfs/sg246826.pdf

© Copyright IBM Corp. 2005 45

http://www.ibm.com/servers/eserver/zseries/software/xml/
http://xml.apache.org/
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246285.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246285.html?Open
http://www.redbooks.ibm.com/redbooks/pdfs/sg246826.pdf

46 XML Toolkit for z/OS User’s Guide

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2005 47

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

48 XML Toolkit for z/OS User’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, New York 10504-1785

 USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2–31 Roppongi 3–chrome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2005 49

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

 IBM Corporation

 Mail Station P300

 2455 South Road

 Poughkeepsie, NY 12601-5400

 USA

 Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Trademarks

The following terms used in this book are trademarks of the IBM Corporation in the

United States or other countries or both:

v IBM

v Language Environment

v MVS

v OS/390

v zSeries

v z/OS

UNIX is a registered trademark of The Open Group in the United States and other

countries.

The following terms may be trademarks or service marks of others:

Java Java and all Java-based trademarks are trademarks

of Sun Microsystems, Inc. in the United States,

other countries, or both.

UNIX UNIX is a registered trademark of The Open Group

in the United States and other countries.

Xerces The Apache Software Foundation

Xalan The Apache Software Foundation

50 XML Toolkit for z/OS User’s Guide

Index

A
accessibility 47

accessing data sets
how to 7

accessing XML data
how to 7

Apache project, Xerces 11

Apache Software Foundation 11

ASCII, encoding 9

avoiding conversion
DRDA 10

FTP 10

MQSeries 10

B
B2B 1

business-to-business 1

C
characteristics of

DOM API 5

SAX API 5

conversion, avoiding
DRDA 10

MQSeries 10

D
deprecated DOM support 12

disability 47

Document Object Model 1

Document Type Definition 1

DOM 1

DTD 1, 8

DTD, accessing 8

E
EBCDIC, encoding 10

encoding, general 8

encoding, XML 8

event-based interface 3

F
FTP

DRDA 10

MQSeries 10

H
HTML 1

I
iconv() 9

interface, event-based 3

K
keyboard 47

M
MVS environment, Toolkit support 12

N
namespaces 1

P
packaging strategy, Toolkit 12

parser, XML4C 11

parsing documents
using DOM 5

using SAX 5

processor, XSLT C++ 11

S
SAX 3

Schema, accessing 8

Schema, XML 1

schematic of the DOM parsing model 2

schematic of the SAX API 4

shortcut keys 47

Simple API for XML 3

specifying data sets using absolute URIs 8

specifying data sets using relative URIs 7

T
Toolkit 11

Toolkit packaging strategy 12

Toolkit parser, C++
multi-threading considerations 28

sample applications 17

using MVS multi-tasking 28

using UNIX pthreads 28

z/OS 17

building sample applications 24, 35

running sample applications 27, 38

z/OS UNIX 17

building sample applications 21, 31

Toolkit parser, interfaces and specifications chart 11

Toolkit processor, C++
sample applications 29

z/OS 29

z/OS UNIX 29

© Copyright IBM Corp. 2005 51

Toolkit processor, interfaces and specifications

chart 11

Toolkit support
MVS 12

z/OS UNIX System Services 12

U
Unicode, encoding 9

using the DOM API 2

V
validating XML documents

results 6

validation results 6

W
W3C 1

World Wide Web Consortium 1

writing applications using the SAX specification 3

X
Xerces Apache project 11

XML 1, 11

XML data, accessing 7

XML documents, validation 6

XML encoding 8

XML Parser, C++ Edition 11

XML Path Language 11

XML Schema 1

XML Toolkit for z/OS 11

XML4C parser 11

XPath 6, 11

XPLINK application, building 15

XPLINK application, running 16

XPLINK support 15

XPLINK support, using 15

XSL Transformations (XSLT) Version 1.0 11

XSLT Processor, C++ Edition 11

XSLT ProcessorS, C++ Edition 11

Z
z/OS 11

z/OS UNIX System Services, Toolkit support 12

52 XML Toolkit for z/OS User’s Guide

Readers’ Comments — We’d Like to Hear from You

XML Toolkit for z/OS

User’s Guide

 Publication No. SA22-7932-04

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SA22-7932-04

SA22-7932-04

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655–J51

Printed in USA

SA22-7932-04

	Contents
	Figures
	Tables
	About this document
	Who should use this User's Guide?
	What is in the User's Guide?

	Summary of changes
	Chapter 1. Introduction
	Why XML?
	APIs
	DOM
	SAX
	DOM vs SAX
	XPath

	Validation
	How to access XML data
	How to access data sets
	Relative URIs
	Absolute URIs
	Considerations when using the Xalan C++ commands
	DTDs, Schema and other embedded files

	Encoding issues
	Encoding and XML
	XML and z/OS
	Avoiding conversion

	XML Toolkit for z/OS
	Deprecated DOM support
	Toolkit packaging strategy
	Toolkit support for both z/OS UNIX System Services and MVS environments

	Chapter 2. How to use Toolkit XPLINK support
	Using Toolkit XPLINK support
	Building an XPLINK application
	Running an XPLINK application

	Chapter 3. How to use the XML Parser, C++ Edition
	Using the sample applications
	Rule for running non-XPLINK samples
	Rule for running XPLINK samples

	z/OS UNIX Environment
	Building sample applications for the z/OS UNIX Environment
	Rules for invoking the XML Parser, C++ Edition in z/OS UNIX

	Using your sample applications on the z/OS UNIX Environment

	MVS Environment
	Building sample applications for the MVS Environment
	Rules for invoking the XML Parser, C++ Edition in native MVS
	Rules for building samples in native MVS

	Using your sample applications on the MVS Environment

	Multi-threading considerations
	Using UNIX pthreads
	Using MVS multi-tasking

	Chapter 4. How to use the XSLT Processor, C++ Edition
	Using the sample applications
	Rule for running non-XPLINK samples
	Rule for running XPLINK samples

	z/OS UNIX Environment
	Building sample applications for the z/OS UNIX Environment
	Rules for invoking the XSLT Processor, C++ Edition in z/OS UNIX

	Using your sample applications on the z/OS UNIX Environment

	MVS Environment
	Building sample applications for the MVS Environment
	Using your sample applications on the MVS Environment

	Chapter 5. How to use the XML Toolkit command line utilities
	How to use the XSLT Processor, C++ Edition command line utility

	Chapter 6. Where to go for more information
	Appendix. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

