
ICSF

CFB Mode SPE OA19177

���

ii SPE OA19177 - March, 2007

Contents

Chapter 1. Symmetric Key Decipher (CSNBSYD and CSNBSYD1) 1

Choosing Between CSNBSYD and CSNBSYD1 2

Format . 2

Parameters . 3

Usage Notes . 7

Related Information . 8

Chapter 2. Symmetric Key Encipher (CSNBSYE and CSNBSYE1) 9

Choosing between CSNBSYE and CSNBSYE1 10

Format . 10

Parameters . 11

Usage Notes . 15

Related Information . 16

© Copyright IBM Corp. 2007 iii

iv SPE OA19177 - March, 2007

Chapter 1. Symmetric Key Decipher (CSNBSYD and

CSNBSYD1)

Use the symmetric key decipher callable service to decipher data in an address

space or a data space using the cipher block chaining, electronic code book or

cipher feedback modes. ICSF supports the following processing rules to decipher

data. You choose the type of processing rule that the decipher callable service

should use for block chaining.

Processing Rule Purpose

ANSI X9.23 For cipher block chaining. The ciphertext must be

an exact multiple of 8 bytes, but the plaintext will be

1 to 8 bytes shorter than the ciphertext.

CBC For cipher block chaining. The ciphertext must be

an exact multiple of 8 bytes, and the plaintext will

have the same length.

CFB Performs cipher feedback encryption. The

ciphertext can be of any length. The plaintext will

have the same length as the ciphertext.

CUSP For cipher block chaining, but the ciphertext can be

of any length. The plaintext will be the same length

as the ciphertext.

ECB Performs electronic code book encryption. The text

length must be a multiple of the block size for the

specified algorithm.

IPS For cipher block chaining, but the ciphertext can be

of any length. The plaintext will be the same length

as the ciphertext.

The Advanced Encryption Standard (AES) and DES (Data Encryption Standard) are

supported. AES encryption uses a 128-, 192-, or 256-bit key. The CBC, ECB, and

CFB modes are supported. Due to export regulations, AES encryption may not be

available on your system.

This service supports electronic code book (ECB), cipher block chaining (CBC),

cipher feedback (CFB) modes. The CBC and CFB modes of operation use an initial

chaining vector (ICV) in their processing. During CBC mode processing, the ICV is

exclusive ORed with the first block of plaintext after the decryption step, and

thereafter, each block of ciphertext is exclusive ORed with the next block of

plaintext after decryption, and so on. For CFB mode processing, the ICV is first

encrypted, then exclusive ORed with the first block of ciphertext, and thereafter, the

block of exclusive ORed data is encrypted then exclusive ORed with the next block

of ciphertext, and so on.

Both Cipher block chaining and Cipher feedback mode also produce a resulting

chaining value called the output chaining vector (OCV). The application can pass

the OCV as the ICV in the next encipher call. This results in record chaining.

The electronic code book mode does not use the initial chaining vector.

The selection between single-DES decryption mode and triple-DES decryption

mode is controlled by the length of the key supplied in the key_identifier parameter.

© Copyright IBM Corp. 2007 1

|
|

||
|
|

|
|

|
|
|

|
|
|
|

|

If a single-length key is supplied, single-DES decryption is performed. If a

double-length or triple-length key is supplied, triple-DES decryption is performed.

The key may be specified as a clear key value or the key_identifier of a clear key

token or labelname in the CKDS.

The callable service Symmetric Key Decipher (without ALET) supports invocation in

AMODE(64). The callable service name for AMODE(64) invocation is CSNESYD.

Choosing Between CSNBSYD and CSNBSYD1

CSNBSYD and CSNBSYD1 provide identical functions. When choosing which

service to use, consider the following:

v CSNBSYD requires the ciphertext and plaintext to reside in the caller’s primary

address space. Also, a program using CSNBSYD adheres to the IBM Common

Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBSYD1 allows the ciphertext and plaintext to reside either in the caller’s

primary address space or in a data space. This can allow you to decipher more

data with one call. However, a program using CSNBSYD1 does not adhere to the

IBM Common Cryptographic Architecture: Cryptographic Application

Programming Interface, and may need to be modified before it can run with other

cryptographic products that follow this programming interface.

For CSNBSYD1, cipher_text_id and clear_text_id are access list entry token

(ALET) parameters of the data spaces containing the ciphertext and plaintext.

Format

 CALL CSNBSYD(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 cipher_text_length,

 cipher_text,

 clear_text_length,

 clear_text,

 optional_data_length,

 optional_data)

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

2 SPE OA19177 - March, 2007

CALL CSNBSYD1(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 cipher_text_length,

 cipher_text,

 clear_text_length,

 clear_text,

 optional_data_length,

 optional_data

 cipher_text_id

 clear_text_id)

Parameters

return_code

 Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,

ICSF and TSS Return and Reason Codes in z/OS Cryptographic Services ICSF

Application Programmer’s Guide lists the return codes.

reason_code

 Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to

the application program. Each return code has different reason codes assigned

to it that indicate specific processing problems. Appendix A, ICSF and TSS

Return and Reason Codes in z/OS Cryptographic Services ICSF Application

Programmer’s Guide lists the reason codes.

exit_data_length

 Direction: Ignored Type: Integer

Reserved field.

exit_data

 Direction: Ignored Type: String

Reserved field.

rule_array_count

 Direction: Input Type: Integer

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

Chapter 1. Symmetric Key Decipher (CSNBSYD and CSNBSYD1) 3

The number of keywords you supplied in the rule_array parameter. The value

may be 1, 2, 3 or 4.

rule_array

 Direction: Input Type: String

An array of 8-byte keywords providing the processing control information. The

keywords must be in contiguous storage, left-justified and padded on the right

with blanks.

 Table 1. Symmetric Key Decipher Rule Array Keywords

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)

algorithm is to be used. The block size is 16 bytes. The key

length may be 16, 24, or 32 bytes. The chain_data field must

be at least 32 bytes in length. The OCV is the first 16 bytes

in the chain_data. The supported processing rules for AES

are CBC, ECB, and CFB.

DES Specifies that the Data Encryption Standard (DES) algorithm

is to be used. The algorithm, DES or TDES, will be

determined from the length of the key supplied. The key

length may be 8, 16, or 24. The block size is 8 bytes. The

chain_data field must be at least 16 bytes in length. The

OCV is the first eight bytes in the chain_data. The

processing rules supported for DES are CBC, ECB, X9.23,

CUSP, IPS, and CFB.

Processing Rule (optional)

CBC Performs cipher block chaining. The text length must be a

multiple of the block size for the specified algorithm. CBC is

the default value.

CFB CFB mode (cipher feedback) that is compatible with IBM's

Encryption Facility product. Input text may be any length.

CUSP CBC mode (cipher block chaining) that is compatible with

IBM’s CUSP and PCF products. Input text may be any

length.

ECB Performs electronic code book encryption. The text length

must be a multiple of the block size for the specified

algorithm.

IPS CBC mode (cipher block chaining) that is compatible with

IBM’s IPS product. Input text may be any length.

X9.23 CBC mode (cipher block chaining) for 1 to 8 bytes of

padding dropped from the output clear text.

Key Rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key

value. KEY-CLR is the default value.

KEYIDENT This specifies that the key_identifier field will be an internal

clear token or the labelname of a key in the CKDS. Normal

CKDS labelname syntax is required. Valid with DES and

AES.

ICV Selection (optional)

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

4 SPE OA19177 - March, 2007

|

|

||
|

Table 1. Symmetric Key Decipher Rule Array Keywords (continued)

Keyword Meaning

INITIAL This specifies taking the initialization vector from the

initialization_vector parameter. INITIAL is the default value.

CONTINUE This specifies taking the initialization vector from the output

chaining vector contained in the work area to which the

chain_data parameter points. CONTINUE is valid for

processing rules CBC, CFB, IPS, and CUSP only.

key_length

 Direction: Input Type: Integer

The length of the key parameter. For clear keys, the length is in bytes and

includes only the value of the key. The maximum size is 256 bytes.

 For the KEYIDENT keyword, this parameter value must be 64.

key_identifier

 Direction: Input Type: String

For the KEY-CLR keyword, this specifies the cipher key. The parameter must be

left justified.

 For the KEYIDENT keyword, this specifies an internal clear token or the

labelname of a key in the CKDS. Normal CKDS labelname syntax is required.

KEYIDENT is valid with DES and AES.

key_parms_length

 Direction: Ignored Type: Integer

The length of the key_parms parameter. The maximum size is 256 bytes.

key_parms

 Direction: Ignored Type: String

This parameter contains key-related parameters specific to the encryption

algorithm.

block_size

 Direction: Input Type: Integer

This parameter contains the processing size of the text block in bytes. This

value will be algorithm specific. Be sure to specify the same block size as used

to encipher the text.

initialization_vector_length

 Direction: Input Type: Integer

The length of the initialization_vector parameter. The length should be equal to

the block length for the algorithm specified.

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

Chapter 1. Symmetric Key Decipher (CSNBSYD and CSNBSYD1) 5

|

initialization_vector

 Direction: Input Type: String

This initialization chaining value for CBC encryption. You must use the same

ICV that was used to encipher the data.

chain_data_length

 Direction: Input/Output Type: Integer

The length of the chain_data parameter. On output, the actual length of the

chaining vector will be stored in the parameter.

chain_data

 Direction: Input/Output Type: String

This field is used as a system work area for the chaining vector. Your

application program must not change the data in this string. The chaining vector

holds the output chaining vector from the caller.

 The direction is output if the ICV selection keyword is INITIAL.

 The mapping of the chain_data depends on the algorithm specified. For AES,

the chain_data field must be at least 32 bytes in length. The OCV is in the first

16 bytes in the chain_data. For DES, chain_data field must be at least 16 bytes

in length.

cipher_text_length

 Direction: Input Type: Integer

The length of the cipher text. A zero value in the clear_text_length parameter is

not valid. The length must be a multiple of the algorithm block size.

 Ciphertext may be any length with the CFB, CUSP, or IPS keywords.

cipher_text

 Direction: Input Type: String

The text to be deciphered.

clear_text_length

 Direction: Input/Output Type: Integer

On input, this parameter specifies the size of the storage pointed to by the

clear_text parameter. On output, this parameter has the actual length of the text

stored in the clear_text parameter.

 Input text may be any length with the CUSP keyword.

clear_text

 Direction: Output Type: String

The deciphered text the service returns.

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

6 SPE OA19177 - March, 2007

|

optional_data_length

 Direction: Ignored Type: Integer

The length of the optional_data parameter.

optional_data

 Direction: Ignored Type: String

Optional data required by a specified algorithm.

cipher_text_id

 Direction: Input Type: Integer

For CSNBSYD1 only, the ALET of the ciphertext to be deciphered.

clear_text_id

 Direction: Input Type: Integer

For CSNBSYD1 only, the ALET of the clear text supplied by the application.

Usage Notes

v No pre- or post-processing exits are enabled for this service.

v No SAF authorization check is made.

v The master keys need not be loaded to use this service.

v The AES algorithm is implemented in software. If available for ECB and CBC

mode on HCR7730 and above, hardware will be used.

If available for CFB mode on HCR7720 and above, hardware will be used.

v AES has the same availability restrictions as triple-DES.

v This service will fail if execution would cause destructive overlay of the

cipher_text field.

 Table 2. Symmetric Key Decipher required hardware

Server Required

cryptographic

hardware

Restrictions

IBM Eserver zSeries

800

IBM Eserver zSeries

900

Cryptographic

Coprocessor Feature

DES keyword is not supported.

IBM Eserver zSeries

990

IBM Eserver zSeries

890

CP Assist for

Cryptographic

Functions

IBM System z9 EC

and z9 BC

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

Chapter 1. Symmetric Key Decipher (CSNBSYD and CSNBSYD1) 7

|
|

|

Related Information

You cannot overlap the plaintext and ciphertext fields. For example:

pppppp

 cccccc is not supported.

cccccc

 pppppp is not supported.

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

Appendix F, Cryptographic Algorithms and Processes in z/OS Cryptographic

Services ICSF Application Programmer’s Guide discusses the cipher processing

rules.

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

8 SPE OA19177 - March, 2007

Chapter 2. Symmetric Key Encipher (CSNBSYE and

CSNBSYE1)

Use the symmetric key encipher callable service to encipher data in an address

space or a data space using the cipher block chaining, electronic code book, or

cipher feedback modes. ICSF supports the following processing rules to encipher

data. You choose the type of processing rule that the encipher callable service

should use for the block chaining.

Processing Rule Purpose

ANSI X9.23 For block chaining not necessarily in exact multiples

of 8 bytes. This process rule pads the plaintext so

that ciphertext produced is an exact multiple of 8

bytes.

CBC For block chaining in exact multiples of 8 bytes.

CFB Performs cipher feedback encryption. The plaintext

can be of any length. The ciphertext will have the

same length as the plaintext.

CUSP For block chaining not necessarily in exact multiples

of 8 bytes. The ciphertext will be the same length

as the plaintext.

ECB Performs electronic code book encryption. The text

length must be a multiple of the block size for the

specified algorithm.

IPS For block chaining not necessarily in exact multiples

of 8 bytes. The ciphertext will be the same length

as the plaintext.

The Advanced Encryption Standard (AES) and DES (Data Encryption Standard) are

supported. AES encryption uses a 128-, 192-, or 256-bit key. The CBC, CFB, and

ECB modes are supported. Due to export regulations, AES encryption may not be

available on your system.

This service supports electronic code book (ECB), cipher block chaining (CBC), and

cipher feedback (CFB) modes. The CBC and CFB modes of operation use an initial

chaining vector (ICV) in their processing. During CBC mode processing, the ICV is

exclusive ORed with the first block of plaintext before the encryption step, and

thereafter, the block of ciphertext just produced is exclusive ORed with the next

block of plaintext, and so on. This disguises any pattern that may exist in the

plaintext. For CFB mode processing, the ICV is first encrypted, then exclusive

ORed with the first block of plaintext, and thereafter, the block of exclusive ORed

data is encrypted then exclusive ORed with the next block of plaintext, and so on.

This disguises any pattern that may exist in the plaintext.

Both Cipher block chaining and Cipher Feedback mode also produce a resulting

chaining value called the output chaining vector (OCV). The application can pass

the OCV as the ICV in the next encipher call. This results in record chaining.

The electronic code book mode does not use the initial chaining vector.

The selection between single-DES decryption mode and triple-DES decryption

mode is controlled by the length of the key supplied in the key_identifier parameter.

© Copyright IBM Corp. 2007 9

|
|

||
|
|

|

|
|
|

|
|
|
|

|

If a single-length key is supplied, single-DES decryption is performed. If a

double-length or triple-length key is supplied, triple-DES decryption is performed.

The key may be specified as a clear key value or the key_identifier of a clear key

token or labelname in the CKDS.

The callable service Symmetric Key Decipher (without ALET) supports invocation in

AMODE(64). The callable service name for AMODE(64) invocation is CSNESYE.

Choosing between CSNBSYE and CSNBSYE1

CSNBSYE and CSNBSYE1 provide identical functions. When choosing which

service to use, consider the following:

v CSNBSYE requires the cleartext and ciphertext to reside in the caller’s primary

address space. Also, a program using CSNBSYE adheres to the IBM Common

Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBSYE1 allows the cleartext and ciphertext to reside either in the caller’s

primary address space or in a data space. This can allow you to encipher more

data with one call. However, a program using CSNBSYE1 does not adhere to the

IBM Common Cryptographic Architecture: Cryptographic Application

Programming Interface, and may need to be modified before it can run with other

cryptographic products that follow this programming interface.

For CSNBSYE1, clear_text_id and cipher_text_id are access list entry token

(ALET) parameters of the data spaces containing the cleartext and ciphertext.

Format

 CALL CSNBSYE(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 clear_text_length,

 clear_text,

 cipher_text_length,

 cipher_text,

 optional_data_length,

 optional_data)

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

10 SPE OA19177 - March, 2007

CALL CSNBSYE1(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 clear_text_length,

 clear_text,

 cipher_text_length,

 cipher_text,

 optional_data_length,

 optional_data

 clear_text_id

 cipher_text_id)

Parameters

return_code

 Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,

ICSF and TSS Return and Reason Codes in z/OS Cryptographic Services ICSF

Application Programmer’s Guide lists the return codes.

reason_code

 Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to

the application program. Each return code has different reason codes assigned

to it that indicate specific processing problems. Appendix A, ICSF and TSS

Return and Reason Codes in z/OS Cryptographic Services ICSF Application

Programmer’s Guide lists the reason codes.

exit_data_length

 Direction: Ignored Type: Integer

Reserved field.

exit_data

 Direction: Ignored Type: String

Reserved field.

rule_array_count

 Direction: Input Type: Integer

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

Chapter 2. Symmetric Key Encipher (CSNBSYE and CSNBSYE1) 11

The number of keywords you supplied in the rule_array parameter. The value

may be 1, 2, 3 or 4.

rule_array

 Direction: Input Type: String

An array of 8-byte keywords providing the processing control information. The

keywords must be in contiguous storage, left-justified and padded on the right

with blanks.

 Table 3. Symmetric Key Encipher Rule Array Keywords

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)

algorithm is to be used. On systems that contain a

Cryptographic Coprocessor Feature, AES is the only

algorithm that is supported. The block size is 16 bytes. The

key length may be 16, 24, or 32 bytes. The chain_data field

must be at least 32 bytes in length. The OCV is the first 16

bytes in the chain_data. The supported processing rules for

AES are CBC, ECB, and CFB.

DES Specifies that the Data Encryption Standard (DES) algorithm

is to be used. The algorithm, DES or TDES, will be

determined from the length of the key supplied. The key

length may be 8, 16, or 24. The block size is 8 bytes. The

chain_data field must be at least 16 bytes in length. The

OCV is the first eight bytes in the chain_data. The

processing rules supported for DES are CBC, ECB, X9.23,

CUSP, IPS, and CFB.

Processing Rule (optional)

CBC Performs cipher block chaining. The text length must be a

multiple of the block size for the specified algorithm. CBC is

the default value.

CFB CFB mode (cipher feedback) that is compatible with IBM's

Encryption Facility product. Input text may be any length.

CUSP CBC mode (cipher block chaining) that is compatible with

IBM’s CUSP and PCF products. Input text may be any

length.

ECB Performs electronic code book encryption. The text length

must be a multiple of the block size for the specified

algorithm.

IPS CBC mode (cipher block chaining) that is compatible with

IBM’s IPS product. Input text may be any length.

X9.23 CBC mode (cipher block chaining) for 1 to 8 bytes of

padding added according to ANSI X9.23. Input text may be

any length.

Key Rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key

value. KEY-CLR is the default.

KEYIDENT This specifies that the key_identifier field will be an internal

clear token or the labelname of a key in the CKDS. Normal

CKDS labelname syntax is required. Valid with DES and

AES.

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

12 SPE OA19177 - March, 2007

|

|

||
|

Table 3. Symmetric Key Encipher Rule Array Keywords (continued)

Keyword Meaning

ICV Selection (optional)

INITIAL This specifies taking the initialization vector from the

initialization_vector parameter. INITIAL is the default value.

CONTINUE This specifies taking the initialization vector from the output

chaining vector contained in the work area to which the

chain_data parameter points. CONTINUE is valid for

processing rules CBC, CFB, IPS, and CUSP only.

key_length

 Direction: Input Type: Integer

The length of the key parameter. For clear keys, the length is in bytes and

includes only the value of the key.

 For the KEYIDENT keyword, this parameter value must be 64.

key_identifier

 Direction: Input Type: String

For the KEY-CLR keyword, this specifies the cipher key. The parameter must be

left justified.

 For the KEYIDENT keyword, this specifies a internal clear token or the

labelname of a key in the CKDS. Normal CKDS labelname syntax is required.

KEYIDENT is valid with DES and AES.

key_parms_length

 Direction: Ignored Type: Integer

The length of the key_parms parameter.

key_parms

 Direction: Ignored Type: String

This parameter contains key-related parameters specific to the encryption

algorithm.

block_size

 Direction: Input Type: Integer

This parameter contains the processing size of the text block in bytes. This

value will be algorithm specific.

initialization_vector_length

 Direction: Input Type: Integer

The length of the initialization_vector parameter. The length should be equal to

the block length for the algorithm specified.

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

Chapter 2. Symmetric Key Encipher (CSNBSYE and CSNBSYE1) 13

|

initialization_vector

 Direction: Input Type: String

This initialization chaining value for CBC encryption. You must use the same

ICV to decipher the data.

chain_data_length

 Direction: Input/Output Type: Integer

The length of the chain_data parameter. On output, the actual length of the

chaining vector will be stored in the parameter.

chain_data

 Direction: Input/Output Type: String

This field is used as a system work area for the chaining vector. Your

application program must not change the data in this string. The chaining vector

holds the output chaining vector from the caller.

 The direction is output if the ICV selection keyword is INITIAL.

 The mapping of the chain_data depends on the algorithm specified. For AES,

the chain_data field must be at least 32 bytes in length. The OCV is in the first

16 bytes in the chain_data. For DES, the chain_data field must be at least 16

bytes in length.

clear_text_length

 Direction: Input Type: Integer

The length of the clear text. A zero value in the clear_text_length parameter is

not valid. The length must be a multiple of the algorithm block size.

 Input text may be any length with the CFB, CUSP, or IPS keywords.

clear_text

 Direction: Input Type: String

The text to be enciphered.

cipher_text_length

 Direction: Input/Output Type: Integer

On input, this parameter specifies the size of the storage pointed to by the

cipher_text parameter. On output, this parameter has the actual length of the

text stored in the buffer addressed by the cipher_text parameter.

cipher_text

 Direction: Output Type: String

The enciphered text the service returns.

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

14 SPE OA19177 - March, 2007

|

optional_data_length

 Direction: Ignored Type: Integer

The length of the optional_data parameter.

optional_data

 Direction: Ignored Type: String

Optional data required by a specified algorithm.

clear_text_id

 Direction: Input Type: Integer

For CSNBSYE1 only, the ALET of the clear text to be enciphered.

cipher_text_id

 Direction: Input Type: Integer

For CSNBSYE1 only, the ALET of the ciphertext that the application supplied.

Usage Notes

v No pre- or post-processing exits are enabled for this service.

v No SAF authorization check is made.

v The master keys need not be loaded to use this service.

v The AES algorithm is implemented in software. If available for ECB and CBC

mode on HCR7730 and above, hardware will be used.

If available for CFB mode on HCR7720 and above, hardware will be used.

v AES has the same availability restrictions as triple-DES.

v This service will fail if execution would cause destructive overlay of the clear_text

field.

 Table 4. Symmetric Key Encipher required hardware

Server Required

cryptographic

hardware

Restrictions

IBM Eserver zSeries

800

IBM Eserver zSeries

900

Cryptographic

Coprocessor Feature

DES keyword is not supported.

IBM Eserver zSeries

990

IBM Eserver zSeries

890

CP Assist for

Cryptographic

Functions

IBM System z9 EC

and z9 BC

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

Chapter 2. Symmetric Key Encipher (CSNBSYE and CSNBSYE1) 15

|
|

|

Related Information

You cannot overlap the plaintext and ciphertext fields. For example:

pppppp

 cccccc is not supported.

cccccc

 pppppp is not supported.

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

The method used to produce the OCV is the same with the CBC and X9.23

processing rules. However, that method is different from the method used by the

CUSP and IPS processing rules.

Appendix F, Cryptographic Algorithms and Processes in z/OS Cryptographic

Services ICSF Application Programmer’s Guide discusses the cipher processing

rules.

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

16 SPE OA19177 - March, 2007

	Contents
	Chapter 1. Symmetric Key Decipher (CSNBSYD and CSNBSYD1)
	Choosing Between CSNBSYD and CSNBSYD1
	Format
	Parameters
	Usage Notes
	Related Information

	Chapter 2. Symmetric Key Encipher (CSNBSYE and CSNBSYE1)
	Choosing between CSNBSYE and CSNBSYE1
	Format
	Parameters
	Usage Notes
	Related Information

