
OA66536 Publication Updates
DFSMSdfp CDA

03/18/2025

Sushma Sri B

This document describes the updates to the z/OS 3.1 publications as a result of the new function
support delivered via OA66536.

1 Overview
The OA66536 APAR delivers new support for existing CDA APIs GDKWRITE and GDKGET.
The GDKWRITE and GDKGET APIs are updated for the GDK_BUFFER_DATALOCATION,
GDK_PATH_DATALOCATION, GDK_EXIT_DATALOCATION source type to utilize the ability to
request zEDC or gzip compression and decompression.

Additionally, the GDKUTIL program is updated to support new keywords
COMPRESSION(<compression type>), COMPLEVEL(<compression level>), DECOMPRESS(<
compression type>).

1.1 User Actions

In order to start using the new support the user of CDA services, (either through the GDKUTIL
program, or an application that invokes the APIs), must take some actions.

1.1.1 Provider File Updates

The CDA sample provider files found in /usr/lpp/dfsms/gdk/samples/providers/ are updated to reflect
the enablement of new support. One way to find the updates is to compare your provider file with the
equivalent sample provider file. Another way is to take the sample provider file as-is, and update it
with the unique values for your cloud provider.

Following is a description of updates and their associated provider file sections.

 The GETOBJECT operation needs to be able to understand metadata tags. In the
GETOBJECT operation, a new responseResults array is added. A new entry is added that
specifies METAHEADER as the mechanism with a descriptor of "descriptor": "<metadata-
header-prefix>" . <metadata-header-prefix> is the appropriate prefix for metadata tags that
are returned by the cloud object storage provider. For example, the S3 metadata-header-
prefix is x-amz-meta-. For Microsoft Azure object storage, the metadata-header-prefix is x-
ms-meta- .

 The GETLARGEOBJECT operation also needs to be able to understand metadata tags when
performing the getSize action. In the GETLARGEOBJECT operation, a new JSON object is
added to the responseResults array in the “getsize” action, a new responseResults is added
in the “data” action. It specifies METAHEADER as the mechanism with a “descriptor” value of
"<meta-header-prefix>" . The value of <meta-header-prefix> is described in the above bullet.

1.1.2 New Keyword Exploitation

In order to use the new support, some updates to JCL or an application are required.

1.1.2.1 GDKUTIL invocations

 To compress the data from a UNIX file or data set during Upload, you should write JCL that
invokes PGM=GDKUTIL with a SYSIN that specifies UPLOAD COMPRESS(zEDC|gzip). This
will use zlib compression services to compress the data using the requested compression
algorithm. An optional keyword, COMPLEVEL(MAX|SPEED|DEFAULT|{1-9}), may be specified
to further tailor the compression appropriate to your needs.

 To download an object, and have the data decompressed, no additional changes are needed as
long as the object has the metadata tag that ends with “zos-compression”, and your provider file
has the METAHEADER updates for GETOBJECT and GETLARGEOBJECT. DFSMSdfp CDA
will recognize the metadata tag and decompress the data as it is received.

o If you know that the object has data compressed by the zEDC or gzip algorithm, but
either your provider file doesn’t have the METAHEADER description in the
GETOBJECT/GETLARGEOBJECT operations, or the object does not have the
metadata tag, you can specify the DECOMPRESS keyword to cause DFSMSdfp CDA to
perform the decompression. If you are not sure of the type of compression algorithm
used, you may specify DECOMPRESS(zlib) to request that the imbedded zlib headers
be used to figure out the algorithm to use. If the zlib headers do not exist in the object,
you can specify the algorithm type to use with DECOMPRESS(zEDC) or
DECOMPRESS(gzip).

o If you know that the object has compressed data, but do not want it to be decompressed,
you may specify DECOMPRESS(NONE) to download the object as-is without any
further processing.

1.1.2.2 Application usage

In order to use the new functionality from an application, new optional parameters are
required.

 The GDKWRITE API is updated to recognize new optional parameters.
o “compression” can be passed with a value of “zEDC” or “gzip” to request that the data

be compressed before sent to the cloud object storage.
o “compLevel” can be passed with a value of “SPEED”, “MAX”, “DEFAULT”, or a

number from 1 to 9. i.e. “3”
o “Get-Sent-Data-LengthE" can be passed with the value being a pointer to an 8-byte

number field where total number of bytes sent to the server will be saved.
 The GDKGET API is updated to recognize two new optional parameters.

o “decompress” can be passed with the value of “true”, “false”, or “attempt-inflate”.
o “compression” can be passed with the values of “zEDC”, “gzip”, “zlib”, or “NONE”

2 Publication Updates
2.1 z/OS MVS Programming: Callable Services for High

Level Languages

MVS Programming: Callable Services for High Level Languages

SA23-1377

Part 11. Cloud Data Access Services is updated as follows:

2.1.1 Chapter 26. Cloud Data Access(CDA) API basics

Chapter 26. Cloud Data Access (CDA) API basics – Elements of Cloud Data Access is updated to
add the following new bullets:

Compress an object before writing to cloud storage.

Decompress an object before downloading it to z/OS.

Chapter 30. Cloud Data Access callable services is updated as follows:

2.1.1.1 GDKGET — Retrieve a cloud object

The Optional Parameters table is updated to add the following rows:

compression Character String with one of the following options:

• zEDC – DFSMSdfp CDA will use the zEDC compression
algorithm to decompress the data from the object.

• gzip – DFSMSdfp CDA will use the gzip compression algorithm
to decompress the data from the object.

If this parameter is not passed, DFSMSdfp CDA will look for the
“zos-compression” metadata tag to know whether to decompress
data and which algorithm to use. If the object does not have the
“zos-compression” metadata tag and the “compression” optional
parameter wasn’t passed, DFSMSdfp CDA will not attempt to
decompress the data. (Note the “decompress” optional parm may
override this.) The GETOBJECT and GETLARGEOBJECT
operations must have a METAHEADER entry in the
responseResults array that describes the prefix for a metadata
header.

decompress Character String with one of the following options:

• “true” indicates that DFSMSdfp CDA will attempt to decompress
the data from the object. If the data is not compressed, the
operation is stopped with a return code 149
(GDK_DECOMPRESSION_FAILURE).

• “false” indicates that DFSMSdfp CDA will not attempt any
decompression, regardless of the existence of the “zos-
compression" metadata tag on the object.

• “attempt-inflate” indicates that DFSMSdfp CDA should attempt
decompression of the data. If an error occurs due to the data not
being compressed, processing will continue with the object data
being given to the caller as-is.

If this optional parameter is not passed, DFSMSdfp CDA will
examine the object’s HTTP headers for a “zos- compression"
metadata tag. If the object doesn’t have the zos-compression
metadata header or the responseResults array doesn’t contain a
METAHEADER description, then no decompression will be
performed

Return and reason codes

Return code Constant Name Explanation

145 GDK_ICONV_ERROR Conversion error, converting from
one code page to another code
page.

148 GDK_DECOMPRESSION_INIT_FAILURE An error occurred while initialising
the stream to perform
decompression.

149 GDK_DECOMPRESSION_FAILURE An error occurred while
decompressing the data.

151 GDK_NO_MEMORY_AVAILABLE Could not allocate memory for
decompressing the data.

152 GDK_INVALID_COMP_PARMS Invalid decompress or compression
parameter passed.

2.1.1.2 GDKWRITE – Send a cloud object

In the description of the optionalParmStructPtr, the Optional Parameters table is updated to add

the following rows:

compression character String with one of the following options:

• zEDC – DFSMSdfp CDA will use the zEDC compression
algorithm to compress the data sent to the object.

• gzip – DFSMSdfp CDA will use the gzip compression
algorithm to decompress the data sent to the object.

If the WRITEOBJECT and WRITELARGEOBJECT
operations in the provider file have a METAHEADER
description in the requestParameters, a metadata tag with
the suffix “zos-compression" and a value indicating the
type of compression used (zEDC or gzip) will be
associated with the object.

compLevel character String with one of the following options:

SPEED - perform fastest compression with minimal CPU
usage; lower compression ratio.

MAX – Maximizes compression ratio with more CPU

DEFAULT – Performs efficient compression, maintaining
speed.

{1-9} – A number indicating the compression level to be
used when initializing compression through the zlib APIs.

Get-Sent-Data-LengthE Address The address of an 8-byte number field where total number
of bytes sent to the server will be saved after successful
completion.

Return and Reason Codes

Return code Constant Name Explanation

145 GDK_ICONV_ERROR Conversion error, converting from one
code page to another code page.

148 GDK_COMPRESSION_INIT_FAILURE An error occurred while initialising the
stream to perform compression.

149 GDK_COMPRESSION_FAILURE An error occurred while compressing
the data.

151 GDK_NO_MEMORY_AVAILABLE Could not allocate memory for
compressing the data.

152 GDK_INVALID_COMP_PARMS Invalid compression or compLevel
parameter passed.

2.2 z/OS DFSMSdfp Utilities

SC23-6864-60

Chapter 2: GDKUTIL (Cloud Object Utility) Program, is updated. In the SYSIN Statement table, make
the following changes:

In the Keywords section, add the following rows in the appropriate place:

COMPRESSION(zEDC|gzip) When specified on the UPLOAD command, this
indicates that DFSMSdfp CDA should perform the
requested compression algorithm on the data sent to
the cloud object. If a METAHEADER description exists
in the requestParameters array for the WRITEOBJECT
and WRITELARGEOBJECT operations, then a
metadata tag for “zos-compression” with the value of
the requested algorithm.

 zEDC – Compress using the z Enterprise Data
Compression algorithm.

 gzip – Compress using the gzip compression
algorithm.

May be shortened to COMPRESS.

COMPLEVEL(MAX|SPEED|DEFAULT|{1-
9})

 MAX indicates that CDA should try to get the
most compression for data being sent. It can
result in extra CPU usage as the best
compression result is attempted.

 SPEED indicates that CDA should request the
compression performed be done as quickly as
possible, even if the compression ration is not
that good.

 DEFAULT indicates that the default
compression level should be used. It is a mid-
point between SPEED and MAX.

 1-9 – A number that indicates the specific
compression level to be given to the zlib
interface.

DECOMPRESS(zEDC|gzip|

zlib|NONE)

When specified on the DOWNLOAD command, this
indicates that DFSMSdfp CDA should decompress the
cloud object data using the requested algorithm,
regardless of the existence of the “zos-compression”
metadata tag.

 zEDC – Decompress using the zEDC
algorithm

 gzip – Decompress using the gzip algorithm
 zlib – Use the zlib headers imbedded in the

object data to determine the algorithm to use.
 NONE – Do not perform any decompression,

regardless of the existence of the zos-
compression metadata tag on the object.

If not specified, but the object has the “zos-
compression” metadata tag, DFSMSdfp CDA will
decompress the data according to the value of the
metadata tag.

New examples are added to the GDKUTIL Examples section as follows:

Example 12: Compress an object

In this example, the GDKUTIL utility is used to compress the object with the zEDC algorithm and
upload it to a cloud.

//CRBUCKET EXEC PGM=GDKUTIL,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
 UPLOAD COMPRESSION(ZEDC)
 PROVIDER(IBMCOS)
 LOG(DEBUG)
/*
//OBJNAME DD *
 /bucket-name/multi01/dir1/CavesofTerrorpg18970.txt
/*
//LOCNAME DD *
 /OA66536/books/CavesofTerrorpg18970.txt
/*

Example 13: Decompress and Download the object

In this example, the GDKUTIL utility is used to download an object. The user knows that the object
has data compressed with the zEDC algorithm, and the object does not need have the zos-
compression metadata tag attached to it.

//DOWNCOMP EXEC PGM=GDKUTIL,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
 DOWNLOAD PROVIDER(IBMCOS) DECOMPRESS(zEDC)
/*
//OBJNAME DD *
 /bucket-name/multi01/dir1/CavesofTerrorpg18970.txt
/*
//LOCNAME DD *
 /OA66536/downloads/CavesofTerrorpg18970.txt
/*

