IBM" Cand C**
Maintenance and Test Toolsuite

User’'s Manual

Release 1.0

The Toolsuite Incorporates xSuds® technology from Bellcore

User’'s Manual Release 1.0

First Edition (February 1998)

This edition applies to Version 1 of IBM C and*QViaintenance and Test Toolsuite for
AIX, Solaris, Windows 95 and Windows NT and to all subsequent versions and releases
until otherwise indicated in new editions.

Click on comments@vnet.ibm.com if you want to send us comments regarding this
document.

Notes to U.S. Government Users--Documentation related to restricted rights--Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract
with IBM Corp.

Copyrighp Bellcore 1989, 1998All rights reserved.

SPARC, SunQOS, Solaris and SUN are trademarks of Sun Microsystems, Inc.
Microsoft, Windows, Windows NT and the Windows logo are registered trademarks of
Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

XSuds is a registered trademark of Bellcore.

AlX, 0OS/2, VisualAge, and IBM are trademarks of the IBM Corporation in the United
States or other countries or both.

Other company, product, or service names may be trademarks or service noérés of

User’'s Manual Table of Contents

Table of Contents

Chapter 1 INtrOAUCTION........ccooeiiireseeeeeee e 1-1
1.1 The Purpose of This Manualcccuuiiiiiiiiiiiiiiiiiieee e 1-2
1.2 The Contents of This Manualccccuveiiiiiiiiiiiiiie 1-2
1.3 How to Use This Manual..........cccueeeeeieiiiiiiiiiiieice e 1-3
1.3.1 AbOUL EXAMPIES ..cooviiiiiiiii i e e e e 1-4
1.3.2 Type CONVENLIONS ...ooevviieiiiiiiiiiiieeee e et e e 1-4
1.4 Other Sources of INformationccccceeiieriiiiniiiiinens 1-4
Chapter 2 ATAC: A TULOTIAL......ccoiiiieceee e 2-1
Chapter 3 ATAC: OVEIVIEW.......ccueeereerieeeesie e sieeee e see e ee e e 3-1
3.1 WAL IS ATAC? .ottt ees s e e eeeseeeeeeeeees 3-2
3.2 What is Coverage TeStiNg?........cuuueeeiiiiiiiiiiiiieee e 3-2
3.3 What DOES ATAC DO ..ottt 3-3
3.3.1 Function-Entry, Function-Return, Function-Call and Block
00 1YL= =T = 3-4
3.3.2 DeCISION COVEIAJE ...evvvvvrrereeeieeiieieieeeeeeeeeeeeeeeeeeeeeeeeeaaeeeeeees 3-5
3.3.3 C-Use, P-use, and coverage criteria All-Uses Coverage ...3-6
3.4 How D0eS ATAC WOIK? ...covvvviiiiiiiiieei e, 3-8
3.5 What Will Using ATAC COSt YOU?uuuuuiriniiiiiiiiiinninenninneininnnennnes 3-9
3.6 How Does ATAC Fit into the Development Process? 3-10
Chapter 4 ATAC: Setting Up Your Execution Environment....................... 4-1
4.1 Common Environment Variablesooccvviiviiiiiiiiiiiiiieee e 4-2
4.1.1 ATAC_BLOCKONLY ..oiiiiiieiiiiiiiiiieeeeeeeesiiieeee e 4-2
4.1.2 ATAC_COMPRESSottiiiieiieiiiiiieee e 4-2
4.1.3 ATAC COST .o 4-2
Sy N O] | = PP 4-3
4.1.5 ATAC_TEST oottt 4-3
4.1.6 ATAC_TMP ..o 4-3
4.1.7 ATAC_TRACE ..ot 4-3
4.1.8 ATAC UMASK ..t 4-4
4.2 UNIX Only Environment INformationccoccvvvveeveeeeniniinnnn. 4-4
4.2.1 ATAC_NOTRACE ...ttt 4-4
4.2.2 ATAC_SIGNAL ..ottt 4-4
4.2.3 ATAC_TEST_FILE oo 4-5
A.2.4 PATH oo 4-5
425 TERM Lo 4-5
4.2.6 ATACLIB ..o 4-5
4.3 Windows Only Environment Information..............ccccceevevnvnnnnnnns 4-5
4.3.1 ATAC_CL ottt 4-6

User’'s Manual Table of Contents

4.3.2 ATAC_ICC oot 4-6
4.3.3 ATAC_LIB oottt 4-6
4.3.4 ATAC_BIN ..o 4-6
4.3.5 ROOT iiiiiiiiiiiiite ettt e e e e e e a e e e e e e nnnnees 4-6
4.3.6 DEFINE ... 4-6
4.3.7 DEFINEPP ..o 4-7
4.3.8 VERSION ...ooiiiiiiiiiiiiiiiiiieee ettt 4-7
Chapter 5 ATAC: Instrumenting Your Software...........cccccevvvvrceereennene. 5-1
5.1 Instrumenting on UNDX ... 5-2
5.1.1 Basic Instrumentationccccccoiiiiiiies 5-2
5.1.2 Integrating with Makefiles ... 5-2
5.1.3 Selectively Instrumenting Softwareccccvvvvveeeennnns 5-2
5.1.4 Linking With I1dccoviiii e 5-3
5.1.5 Suppressing Instrumentation of Include Files 5-5
5.2 Instrumenting 0N WIiNAOWSuuuuuiiiiiiiiiiiiiiiiniiierieerrerreeee.. 5-6
5.2.1 Basic Instrumentationcccccoeiiiiiii, 5-6
5.2.2 Integrating with Makefilescccoooiiiiiiis 5-6
5.2.3 Selectively Instrumenting Software 5-7
5.2.4 Building Executables with Installed Linkers 5-8
5.2.5 Suppressing Instrumentation of Include Files 5-8
5.3 Common Instrumentation OPtioNSuuvvvvieeieieeeeirereeereeeeeeeeen. 5-9
5.3.1 Code Inside MaCrOSccovvviiiiiiiiiiiiieeeeeee 5-9
5.3.2 Marking Code for Selective Reportingcccccvvveeeeennnnne 5-9
5.4 Compilation and LinK EITOrS.........ccccvveeeiiiiiiiiiieee e 5-12
Chapter 6 ATAC: Executing Software TestS......cccccvvvreereninnenceerenene 6-1
6.1 Naming the Trace Fileccuviiiiiiiiiii e 6-2
6.2 Trace File COMPIrESSION.......cciiiiuriiiiiiee ettt e e 6-2
6.2.1 Forcing Trace File COMPressioncccoceeeeceeeeiiciiiinnnnnnnns 6-2
6.3 Temporary Trace FilesS.........ccccciviuriiiiiiiiiiiiiiiieeiieeieeeeeeeseeeeeeeeeeeees 6-3
6.4 Trace File LOCKING........couviiiiiiiiiiii 6-4
6.5 Trace File Permissioncooooiiiiiiii e 6-4
6.6 Parallel TESt EXECULIONvveiiiiiieeiieeiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 6-5
6.7 Improving Execution Speed and Saving Disk Space 6-5
6.8 Explaining RUN-TIME EITOIScuuvuiiiiiiiiiiriieerreerreerreereeereeeeeeeee. 6-7
Chapter 7 ATAC: Managing Your Test Cases.........cocoverrrerierererenenne 7-1
7.1 LiStiNg TeSE CASES....uuuuiiiiieeeiiiiiiiiiiee e e st e e e e e e 7-2
7.2 SeleCtiNng TESE CASESuuvuuruiriieiiiiriiiniiieiiieeieeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeees 7-3
7.3 NaMING TESE CASESuuuiiiiiiieeeiiiiiie e 7-4
7.3.1 Renaming TEeSt CASESccuviiiriiiiiiiiiiiiieeeeiaiiire e e 7-5
7.3.2 What's in @ NamMe?ccccoiiiiiiiiii e 7-6
7.4 Extracting Test Cases and Merging Trace Files...................ooee. 7-6
7.5 Deleting Test CasesScccvvviiiiiiiiiii 7-7

User’'s Manual Table of Contents

7.6 Assigning Cost to TESt CaSES ...ccoeeiieeeieeieecice e 7-7
7.7 Dealing with Source Code Modificationscccccceeeiinnn. 7-8
7.8 Concerning Trace File COmMPresSioNcoovveeevveveeviiiiine e eeeeeeviinennn, 7-9
Chapter 8 ATAC: Generating Summary Reports........cccoceeeveeveecnenene. 8-1
8.1 Generating Coverage SUMMANIESuuuieiiieeeeeeeeeiiiiiene e eeeeeeeeennnanns 8-2
8.2 Selecting What to SUMMANIZEooviiiiiiiiiiiiiieeee e 8-3
8.2.1 BYFIlE o 8-4
8.2.2 BY FUNCLON ...oeiiiiiiiiiiiiee e 8-5
8.2.3 BY TESE CaASE ..oovviiiiiiiiiii it 8-8
8.3 Restricting Summary Information..............cccceevvviiieiv e, 8-10
8.3.1 BY Fle oo 8-10
8.3.2 BY FUNCLON ...ooviiiiiiieee e 8-10
8.3.3 By Coverage Criteriaccccouiiuurririieeeiiiiiiiieeee e 8-11
8.4 Additional Test Case SUMMANIESc.uveveeeeeriiiiiiiiiieee e 8-11
8.4.1 Including Cumulative Coveragecccccceeeeeeeeeeneennnnn. 8-12
8.4.2 INCluding TeSt COSE ..vvvuiiiiiiiiieeeiiciii e e e 8-13
8.4.3 Sorting by Coveragecccooviiiiiiiiiiiiie e 8-13
8.4.4 Sorting by Cumulative Cost per Additional Coverage8-14
8.5 Ignoring What is Out-of-Date............ccceeeeiiiiiiiiiieeie e 8-14
Chapter 9 ATAC: Displaying Uncovered Code.........c..cceocvvvrvrceerernnnne. 9-1
9.1 Displaying Uncovered Code............cccceeiiiiiimiiiiiieeeniiiiiieieeee e 9-2
9.2 Selecting What to DISPIayuvvviviiiiiiiiiiiiiiiiieiiieiierireereereeeeeeneee. 9-5
0.2.1 BY FllE et 9-5
0.2.2 BY FUNCHON ..coieiiiiiie et 9-6
9.2.3 By Coverage Criteraccoouvuurmrerieeeeiiiiiiieeee e 9-7
9.2.4 BY TESt CASEuvvvviriiiiiiiiiiiiiiiiiiieiiinsieniienreeeseeeseeeeeesreesneeeees 9-8
9.2.5 All Uncovered Testable Attributescc.ccccvvvvvvivvenennnnn. 9-10
9.3 Ignoring What is Out-of-Date.............euvvevvevveeiieeiiieieeeeeeeeeeeeeeeee, 9-10
9.4 Using Underscoring Rather Than Highlighting.............cc.ccc........ 9-11
Chapter 10 ATAC: Testing Modified Code........ccccvvvrvereieinieninienenne 10-1
10.1 Coverage of Modified Codeuuuuruiiiiiiiieiiiiiiiiiieiieeeiieeeeeeeee. 10-2
10.2 Modification-Based Regression Test Selection.............ccccceee.... 10-5
Chapter 11xRegress: A Tool for Effective Regression Testing 111
0 A = 7= Tod o | 0 101 o PP 11-2
11.2 Test set minimization via a character-based user interface.......... 11-3
1121 e, Forcing Tests to be in the Minimal Set 11-6
11.2.2 . Choosing a Reduced Subset after Minimization 11-6
11.2.3 s Minimizing by Coverage Criteria 11-7
1124 e Minimizing by File 11-7
11.25 e Minimizing by Function 11-8
11.2.6 o Minimizing by Test Case 11-8

User’'s Manual Table of Contents

11.3 Test set prioritization via a character-based user interface.......... 11-9
11.4 Test set minimization and prioritization via a graphical user inter-
FBCE e 11-11
Chapter 1%Vue: A Tool for Effective Software Maintenance................. 12-1
D2 R = 7= Tt o | {0101 o PP 12-2
12.2 A TULOAL ..eveiieiiee et e e e e e e e e e e e 12-3
Chapter 13Slice: A Tool for Program Debugging.........ccccccecceineieeennennnns 13-1
13.1 BACKGIOUNG.....eeeiiiieiiiiiiiiiii e a e 13-2
13.2 A TULONAD ..eeeiieiieeei e 13-3
Chapter 14(Prof: A Tool for Detailed Performance Analysis................... 14-1
14.1 BACKGIOUNG.....eeviiiieiiiiiiiiiiee e ettt e e 14-2
14.2 A TULOMAD ..eveiiiiiiieiieee et 14-2
Chapter 15Find: A Tool for Transitive Pattern Recognition.................... 15-1
15.1 BACKGIrOUNG.......oviiiiiiiiiiiiiiie et 15-2
15.2 A TULOMAI .o 15-2
Chapter 16Diff: A Tool for Displaying Program Differences................. 16-1
16.1 BACKGIrOUNG.......oeiiiiiiiiiiiiiii et 16-2
16.2 A TULOMAL ..eveiiieeeeeeiiee e e e e e e 16-2
Appendix A: Platform Specific Information............cccccvvvvviiiiiiiiiieiieeiieenenn, A-1
AL UNDX et e et e e e e e e e e e e e e e nnnnes A-1
A.2 Windows NT/ WINdOWS'95........c.ooviiiiiiiiiiiiiieeeeeeeeeee e A-4
Appendix B: Command Reference Pages...........cccvvvvviiiiiii e, B-1
2 0 €= T £ B-1
B.2 Al8C .. i iiiiiiii e B-3
B.3 atac cC (UNIX ONIY) oo B-8
B.4 @tAClD.....eeeeeeeeee e B-12
B.S AlACM ... B-13
B.6 atacdiff........oooviiiiii B-16
B.7 atacid (UNDX ONIY) .ooiiiiiiiieieeceee e B-17
B.8 atac_env_create (UNIDX ONlY)......ooviiiiiiiiiiiiiiiieeiieeceee e B-18
B.9 atacCL (WINAOWS ONIY)...ccooiiiiiiiiiiiiiee e B-19
B.10 ataclCC (WINAOWS ONIY)uuuriiiiiiiiiiiiiiiiiiiiiiiniineinneeenesnnennnennees B-21
B.11 prformat (WIiNndows ONly)ccoiiiiiiiiiieciie e B-23
B.12 xconfig (WIiNAOWS ONIY)uvriiiiiiiiiiiiiieiiieiiieeeeeeeeeeeeeeeeeeeee e B-24
200G 351 o B-27
B.14 XAIff .. B-28

Vi

User’'s Manual Introduction

Chapter 1

Introduction

Software testing and maintenance are the two most expensive phases of the software life
cycle. Why? And why, in general, are customers not satisfied with the quality of software?
As much as 70% of the cost of an average software system over its lifetime is estimated to
be dedicated to these two tasks. Are there techniques and tools which can help us reduce
the development cost and also improve productivity and quality? Yes. IBM C'and C
Maintenance and Test Toolsuite incorporai®uids Technology from Bellcore, hereafter
referred to as the Toolsuite, is just such a solution. The Toolsuite emphasizes dynamic
behavior, and uses software visualization and heuristic guidance in the solution of software
problems.

1-1

User’'s Manual Introduction

1.1 The Purpose of This Manual

This manual covers the use of the Toolsuite. PART 1 explains the basic ideas behind
coverage testing, how ATAC arndTAC work, how to invoke the various features of
each, and how one might use ATACY#TAC to test a program. PART 2 looks at other
tools includingxRegress, a tool for effective regression testiMye, a tool for effective
software maintenancgslice, a tool for dynamic program debuggig&rof, a tool for
detailed performance analysjgzind, a tool for transitive pattern recognition; ieiff, a
tool for better displaying program differences.

1.2 The Contents of This Manual

In addition to thidntroduction this manual is comprised of fifteen other chapters, two
appendices and an index:
PART |

» Chapter 2ATAC: A Tutoria) describes howATAC might be used to test a simple
program;

» Chapter 3ATAC: Overviewexplains the basic ideas behind coverage testing and
describes how ATAC and ATAC work;

» Chapter 4ATAC: Setting Up Your Execution Environmeells you how to mod-
ify your execution environment in order to yo&TAC and ATAC,;

e Chapter 5ATAC: Instrumenting Your Softwamescribes how to instrument a
program using the ATAC compiler

» Chapter 6ATAC: Executing Software Test#iescribes how to manipulate the trace
file and identifies problems that might occur during test execution;

» Chapter 7TATAC: Managing Your Test Cas@escribes how to manage the con-
tents of an execution trace file;

* Chapter 8ATAC: Generating Summary Repoegscribes how to generate a
report summarizing the current level of code coverage;

» Chapter 9ATAC: Displaying Uncovered Cogdéescribes how to display source
code that has not yet been covered;

» Chapter 10ATAC: Testing Modified Coddescribes how to find code which has
been modified from one release to the next to facilitate test modification;

PART Il
» Chapter 11xRegress: A Tool for Effective Regression Testlegcribes the tool

1-2

User’'s Manual Introduction

used to identify a representative subset of tests to revalidate modified software;

» Chapter 12xVue: A Tool for Effective Software Maintenancescribes how to
use the tool which locates where features are implemented;

» Chapter 13xSlice A Tool for Program Debugginglescribes how to use the tool
which is the dynamic program debugger;

» Chapter 14xProf: A Tool for Detailed Performance Analysikescribes how to
use the tool which identifies poorly performing parts of code;

» Chapter 15xFind: A Tool for Transitive Pattern Recogniticaiescribes the tool
used to assist in identifying pieces of code that are related to one another in a the-
matic way;

» Chapter 16xDiff: A Tool for Displaying Program Differencedescribes how to
use the tool which graphically displays differences between files;

APPENDIX

* Appendix A,Platform Specific Informatigrprovides the specific commands to be
executed for the various operating systems/compilers (primarily for Chapter2).

* Appendix B,Command Reference Pageentains UNIX-style manual page
entries for some components of the Toolsuite.

1.3 How to Use This Manual

This manual contains both background material and reference material. The former
explains the basic ideas behind coverage testing and describes how the various components
work. This is what you read if you want to find out “what a coverage tool is good for” or
“what XATAC is all about.” The latter describes how to analyze a program using the

various tools.

When you are ready to instrument your code, ref€himpter SATAC: Instrumenting Your
Software If you want to avoid reading this manual in its entirety, but want txASAC,
readChapter 2ATAC: A Tutoria) working through the example as you go. Turn to the
other chapters in this manual, most likebhapter 3ATAC: Overvievand the relevant
sections ofChapter 4ATAC: Setting Up Your Execution Environmently if necessary.
If you are a software manager, you may only need toCéagter 3Looking through the
example provided for each to@ljapter 2 and 12-)6is useful in bringing all the details
together and seeing how the various tools are used in testing software.

1-3

User’'s Manual Introduction

1.3.1 About Examples

Throughout this manual, descriptive examples have been used to illustrate what is
discussed and whenever possible real output has been incorporated. Commands input by
the user are preceded by:

prompt:>
to assist the user in distinguishing inputs from outputs.

Most of the examples in this manual originate from using the various components of the
Toolsuite to testvordcounf a small program consisting of two source files,cand
main.c(and it's variants), which counts the number of characters, words and/or lines in its
input. A complete source code listing appear&ppendix A, Platform Specific

Information and specific examples appear in the chapters describing each tool.

1.3.2 Type Conventions

All text that represents input to or output from programs in the surrounding computing
environment appear in a font whose typefacechastant width . Environment

variables appear in ALL_CAPS. The names of executable programs, source code files, and
references to files created by the tocddégcand.tracefiles), symbols, command-line

options, and significant terminology (first usage) appedalits, as does descriptive text
representative of the actual words or phrases that are to appear. For efiemaiaeis
representative of any file name that might be referenced. Representations of interface
displays are as truthful to the color screen displays as possible. Widget labels (buttons and
pull down menu items) are italics and ‘guoted. Finally, some insets and figures are
annotated with descriptive comments or tags that may be referred to later in this manual.
The presence of these annotations and the points to which they refer are indicated by

arrows, like this: ~®— That marks the end of this subsection!

1.4 Other Sources of Information

Additional information concerning ATAC may be found in:

* J.R.Horgan and S. London, “Data Flow Coverage and the C Languade;6-in
ceedings of the Fourth Symposium on Software Testing, Analysis, and Verification
pp 87-97, Victoria, British Columbia, Canada, October 1991.

 J.R.Horganand S. London, “ATAC: A Data Flow Coverage Testing Tool for C,”

1-4

User’'s Manual Introduction

in Proceedings of Symposium on Assessment of Quality Software Development
Tools pp 2-10, New Orleans, LA, May 1992.

More information and an explanation of the ideas and terminology underlying coverage
testing may also be found in:

 R.A.DeMillo, R. J. Lipton and F. G. Sayward, “Hints on Test Data Selection: Help
for the Practicing ProgrammelEEE Computerl1(4), 1978.

* J. R. Horgan and A. P. Mathur, “Assessing Tools in Research and Education,”
IEEE Software9(3), May 1992.

* J.R.Horgan, Saul London and M. R. Lyu, “Achieving Software Quality with Test-
ing Coverage MeasuredEEE Computer27(9), September 1994.

* H. Agrawal, “Dominators, Super Blocks, and Program CoveragePrateed-
ings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languagespp 25-34, Portland, Oregon, January 1994.

Information regarding other tools providing automated support for testing may be found in:

» Berczik, Kenneth, Release 5.2 MYNAH System Administration Guigkue3,
October 1997. Bellcore Document 00750252005.

The value of coverage testing in detecting faults is explored in:

« W. E. Wong, J. R. Horgan, S. London and A. P. Mathur, “Effect of Test Set Size
and Block Coverage on Fault Detection EffectivenessProteedings of the 5th
IEEE International Symposium on Software Reliability Engineeppgt1-50,
Monterey, CA, November 1994,

« W. E. Wong, J. R. Horgan, S. London and A. P. Mathur, “Effect of Test Set Min-
imization on Fault Detection Effectiveness,”Rnoceedings of the 17th IEEE
International Conference on Software Engineerimg 230-238, Seattle, WA,

April 1995.

 W. E. Wong, J. R. Horgan, A. P. Mathur and A. Pasquini, “Test Set Size Minimi-
zation and Fault Detection Effectiveness: A Case Study in a Space Application,”
in Proceedings of the 21st IEEE International Computer Software and Application
Conferencepp 522-528, Washington, D.C., August 1997.

 W. E. Wong, J. R. Horgan, S. London and H. Agrawal, “A Study of Effective
Regression Testing in Practice,” Broceedings of the 8th IEEE International
Symposium on Software Reliability Engineeripg 264-274, Albuquerque, New
Mexico, November, 1997.

* H. Agrawal, J. R. Horgan, S. London and W. E. Wong, “Fault Localization using
Execution Slices and Dataflow Tests,” inoeeedings of the 6th IEEE Interna-
tional Symposium on Software Reliability Engineerjy143-151, Toulouse,

1-5

User’'s Manual Introduction

France, October 1995.

» P. Piwowarski, M. Ohba, J. Caruso, “Coverage Measurement Experience During
Function Test,” irProceedings of the 15th IEEE International Conference on Soft-
ware Engineeringpp 287-301, Baltimore, MD, May 1993.

Other related studies:

e H. Agrawal and J. R. Horgan, “Dynamic Program Slicing, Piroceedings of the
ACM SIGPLAN’'90 Conference on Programming Language Design and Imple-
mentation pp 246-256, White Plains, NY, June 1990.

* H.Agrawal, J. R. Horgan, E. W. Krauser and S. London, “Incremental Regression
Testing,” in Proceedings of the 1993 IEEE Conference on Software Maintenance,
Montreal, Canada, September, 1993.

1-6

User’s Manual PART |

PART |

ATAC & XATAC

User’'s Manual PART |

Testing is an essential part of software development. However, testing software can be both
complex and expensive. Automated support for effective testing techniques makes it easier
and cheaper to do a better job of testing and to produce higher quality software.

ATAC (Automatic Test Analysis for C) is a coverage analysis tool that allows testers to
measure how thoroughly a program has been exercised by a set of tests. ATAC uses data
flow coverage techniques to provide automated support for “white-box” testing. That is,
ATAC allows testing based upon a program'’s structure, in addition to its requirements.
ATAC measures how well a set of tests exercise a program by how well it covers flow
control and data flow relationships within the program’s code. Test sets that yield higher
coverage do a better job of testing. ATAC provides a feedback mechanism to measure and
guide the user to improve test coverage. Such feedback is very difficult, if not impossible,
to obtain without a tool like ATAC.

XATAC (X-based Automatic Test Analysis for C) extends the functionality of ATAC by
using state of the art color graphical interfaces. The ease of use improve&nAa
over ATAC is dramatic. Test cases are easy to create and coverage testing is a pleasure
rather than a chore. Notwithstanding the marked superiorfppA®AC, ATAC is a
valuable tool when only an ASCII terminal is available. Moreover, much of the
functionality of ATAC andyATAC are the same, so knowledge of one is valuable in
understanding the other. For these reasons, this manual is as much about ATAC as it is
aboutyATAC.
ATAC andxATAC have many useful features, some of which are:

» Support for block, decision, and data flow coverage testing;

» Display of coverage summary information;

» Display of uncovered source code;

» Guidance in creating effective tests;

» Display of coverage overlap among test cases;

e Support for test set management and minimization.

User’'s Manual ATAC: A Tutorial

Chapter 2

ATAC:
A Tutorial

This chapter illustrates how the basic features of ATACYGKDAC can be used in
reporting code coverage and identifying uncovered source code.

2-1

User’'s Manual ATAC: A Tutorial

In this tutorial we illustrate how the basic features of ATAC @A@AC can be used in
testing by way of a running example. ATAC is used towesticount a program that
counts the number of lines, words, and/or characters given to it as input. Within this
chapter, general terminology is used. 8peendix A,Platform Specific Informatiqrif

you need help determining exactly what to type, and to see expected output samples.

The word counting program takes as arguments an optional list of files and an optional
combination of the flagd, -w, and-c, each respectively indicating whether to count lines,
words, or characters within the argument files. By default, all input is read from standard
input and all lines, words, and characters are counted. The source code and sample input
for thewordcountprogram are contained in the filesin.c wc.g Makefile inputl, input2
andinput3 The complete source listings of the first three files appeaprendix A,

Platform Specific InformatianThese files are also installed with ATAC so you may

execute these commands as you read this tutorial. To copy these files, create a new
directory, cd to it, and copy the contents of the directory in which the tutorial files are
installed into the new directory.

Before using ATAC, check that the word counting program compiles and runs on a sample
input. To create your executable program, type the appropmiiteor nmakecommand

to build on your system. If you are unsure which command to use, répptmdix A,

Platform Specific Informatian

The output should indicate that the sourcgf{les are processed and an executable called
wordcount(.exels created.

An alternative way to build the executable is to run your compile command including all
the source files in the directory and specifying or renamimigicount(.exeqs your output
file name.
Oncewordcounthas been built, run it against a sample input:
prompt:> wordcount inputl
The fileinputl contains the following line (the first character is a tab):
test input file 1

The output ofwordcountshould look like this:

1 4 19 inputl
1 4 19 total

Now you are ready to use ATAC. Remove the previously created object files and the
executable file. One way to do this is to usecleancommand appropriate for your setup.

2-2

User’'s Manual ATAC: A Tutorial

Recompile thevordcountprogram with ATAC. Refer té\ppendix A,Platform Specific
Informationfor assistance determining these exact commands and for an approximate
example of the output you will see.

As discussed ikection 5.2.2Integrating with MakefilesATAC is easily integrated with
existingmakefilesAgain, if you do not wish to uga)makeyou may compile the program
under ATAC by entering the appropriate compile command at your system prompt. If
errors are encountered during compilation refe3dgotion 5.4Compilation and Link
Errors.

Notice that in addition to creating theeor .objfiles and the executable file, ATAC has
createdmain.atacandwc.atac ATAC creates aatacfile for each.cfile it compiles. Each
.atacfile contains a list of what needs to be covered when testing its corresparfilng
This static coverage information is used later during test analysis.

Now invokexATAC by entering the following command:
prompt:> xsuds *.atac

Figure 2-1shows the maigATAC window display. The source window in the middle
displays the first source filepain.g with all of its basidlocks highlighted in various

colors. Each color represents a certain wejghT.AC determines these weights by doing

a detailed control flow analysis of the program. If, for example, a block has weight 30, it
means any test case that causes that block to be exerciseebr@djs guaranteed to cover
aminimumof 29 other blocks as well. White represents zero weight and red represents the
highest weight among all blocks in the file. Thus, if a block is highlighted in white, it means
that it has already been covered by a test case and covering it again will not add new
coverage. If, on the other extreme, a block is highlighted in red, it means that it has not been
covered by any test case so far and covering it first is the most efficient way to add new
coverage to the program; it is the best way to add maximum coverage in a single program
execution.

The color spectrum chart above the source window displays the actual weights associated
with each color. For example, the charFigure 2-lindicates that all yellow blocks in
main.chave the weight 9, and the red blocks have the weight 15.

The scroll bar to the left of the source window displays a thumbnail sketch of the entire file.
Note that there are no white regions in the scroll bar at this point as we have not run the
instrumented program (the executable compiled with ATAC) on any inputs, so no blocks
in the file have been covered yet.

1. A basic blockor simply a block,is a code sequence that is always executed sequentially, i.e., it has no internal
branching constructs. It is also described as any “single-entry-single-exit” region of coflecsee 3.3\What
Does ATAC Do?

2-3

User’'s Manual ATAC: A Tutorial

File Toocl Options Summary TestCases Update GoBack Help

!

main. o

Hodified from "The € Programming Language"
by Kernighan & Ritchie, 1978.
page 18.

X R OE X K B %

*f
— J#¥include <stdio.h>
main{arge,argv)

int arge;
char **argw;

char *p;
int linect, wordet, charct;
long tlinect = 0;
long twordet = 0;
long tcharct = 0;
int doline = 0;
int doword = 0;
int dochar = 0;
— FILE “file;
if (arge > 1 && argv[1][0] == "-"} {

for (p = argv[1l] + 1; *p; ++p)
switch(*p) {

case '1°:
1 doline = 1;
ATAC File: Line: Coverage: Highlighting:
x main.c 1 of 96 hlock all prioritized

Figure 2-1 The initial display of the mayATAC window

The scroll bar is very useful in quickly locating where the red blocks, or the “hot spots,” in
the file are. Clicking with the left mouse button at any spot in the scroll bar brings the
corresponding region of the file into the source window. You may also use the arrows at
the top or the bottom of the scroll bar to scroll up or down the source file a few lines at a
time. You may also drag the mouse up or down the scroll bar with the left mouse button
pressed to rapidly scroll up or down the fH&TAC also provides keyboard shortcuts.
Pressing th&p or Downarrow key will move the text up or down one line at atime. The
PageUpandPageDowrkeys scroll up and down the source file one page at a time,
respectively. Thélomekey scrolls to the beginning of the file, whereasBhdkey goes

to the end of the file.

The scroll bar indicates that there is a red spot towards the bottom of4h€lffit& on or
near the red spot so that part of the file becomes visible in the source wifigore. 2-2
shows the resulting display.

2-4

User’'s Manual ATAC: A Tutorial

File Tool Options Summary TestCases Update GoBack Help
|
do {

if (!*argv) {
count (stdin, &linect, &wordet, &charct);
print(doline, doword, dochar, linect, wordct, charct,

else {
file = fopen(*argv, "r");
if (file == HULL}) {
perror{*argv);
return 1;

3
count(file, &linect, Swordct, &charct);
| feclose (file);
print(doline, doword, dochar, linect, wordect, charct,
*argv);

tlinect += linect;

twordet += wordet;

tcharet += charet;
} while(*++argv);

—;

static print({doline, doword, dochar, linect, wordet, charct, file)
- int doline, doword, dochar;

XATAC File: S:ion: :9l5 Co:lazz:e: Highl ighting:

main.c all prioritized

Figure 2-2 The source display showing the red blocks or “hot spots”

Analysis of the code reveals that the two red blocks are exercised whenever the program
reads its input from a file (as opposed to the standard input which is the default behavior).
Let us run wordcount on an input filaputl:

prompt:> wordcount inputl (wordcount.}

This test should produce the same output as that produced by the vemadafunt
compiled without ATAC as shown earlier.

Note that in addition to the expected output, running this test case has created an execution
trace file calledvordcount.traceThis file contains dynamic coverage information used in

test analysis. Subsequent tests will cause additional dynamic information to be logged to
the same file.

2. Although the red region, in this case, appears to consist of a single block, it is a sequence of two contiguous basic
blocks, as the first one of the two is a function call. A function call, in general, may never return, e.g., if it invokes
exitunder certain conditions. Thus a function call breaks the “single-entry-single-exit” property of a basic block
and results in the start of a new basic block at a statement immediately following the function call.

2-5

User’'s Manual ATAC: A Tutorial

To tellXATAC to incorporate the dynamic information from this trace file into its display,
click with the left mouse button on thEile” button in the top button bar. This will cause
the file menu to pop up. Select thepen trace file.”. entry in the menu. This will open a
dialog box as shown iRigure 2-3 (The Windows dialog box looks slightly different.)

Directory: fufewong/IBH/ doc97/ tutorial

[El wordcount.trace

File name: [wordcount.trace Open

Files of type: trace_file (*.trace) Cancel

Figure 2-3 The trace file dialog box for Unix

Selectwordcount.traceand click on thedpen” button. This will causgATAC to read
the trace file and update the source window disayure 2-4 shows the updated display.

Note that both the previously red blocks, along with several others, have turned in color to
white indicating that they were, indeed, covered by the test case you just ran. The scroll bar
also indicates that several other blocks not currently visible in the source window were
covered as well. Also note that the “hot spot” has now shifted to another statement in the
file. XATAC reassigns colors to all uncovered blocks each time it incorporates new
dynamic information from a trace file.

Click on the new red spot in the scroll bar to make that part of the file visible in the source
window. Figure 2-5shows the new display. The red block, as you can see by analyzing the
code, will be executed only when the program is invoked with an invalid command line
option. Let us runvordcountwith an invalid option, X"

prompt:> wordcount -x inputl (wordcount.2

It should produce an appropriate error message. Notg Afa&C highlights the covered

and uncovered blocks in the source code and prioritizes them into an order in which you
should try to cover them. It does not construct the tests or determine what inputs are needed
to cover the uncovered code. Constructing the tests is the role of the tester. It does, however,
simplify the tester’s job by guiding him or her into creating a small set of high-efficiency,
high-leverage test cases that yield high coverage quickly.

2-6

User’'s Manual ATAC: A Tutorial

File Tool oOptions Sunma ry TestCases Update GoBack Help

]

do {
if (!*argv) {
count (stdin, &linect, S&wordet, &charct);
print (deline, doword, dochar, linect, wordet, charct,
llll);
return;
else {
file = fopen{*argv, "r"J;
if (file == HULL} {
perror(*argwv);
— return 1;
}
count (file, &linect, Swordct, &charct);
folose(file);
1 print (doline, doword, dochar, linect, wordet, charet,
*argv) ;

tlinect += linect;

twordet += wordet;

tcharct += charct;
1 while{*++argv);

print{doline, doword, dochar, tlinect, twordet, tcharct, "total");
— return 0;

}

static print{doline, doword, dochar, linect, wordct, charct, file)

— int doline, doword, dochar;
ATAC File: Line: Coverage: Highl ight ing:
x main.e 53 of 96 hlock all prioritized

Figure 2-4 The source display after executimydcountl

Runningwordcount.Zcauses its coverage information to be added to the trace file. Note
thatxATAC has highlighted theUpdate” button in the top button bar, as shown in

Figure 2-6 to alert you to this fackATAC continuously monitors the specified trace files

to see if any new coverage information has been added to them. If so, it highlights the
“Updatée button to indicate this to you. You may choose to click on this button now to
update the display with the coverage information from the test case you just ran, or you may
choose to wait until you have run several test cases.

Click on the Updatée button to tellyATAC to incorporate the coverage information from
wordcount.2nto its display Figure 2-7shows the updated display.

Again notice that the block you were trying to cover, as well as some other previously
uncovered blocks, have changed in color to white indicating that they were covered by the
test you just ran. Also note that the “hot spot” has now shifted to yet another part of the
program.

The scroll bar irFigure 2-7indicates that there are very few colored blocks left in the file.
Recall, however, that the program consists of two fitesn.candwc.q and so far we have

2-7

User’'s Manual ATAC: A Tutorial

File Tool options Sunmary TestCases pdate GoBack Help

e FILE “file;

if {arge > 1 && arge[1]1[0] == "-"} {
for (p = argv[1] + 1; *p; ++p)
switch({*p) {
case ‘1°:
doline = 1;
— break;
case ‘w’:
doword
break;
case ‘¢’
— dochar = 1;
break;
default:

L furint(stderr, “invalld option: ~se\n”,

case 7?7
fputs{"usage: we [-lwe] [files]yn", stderr);
return 1;

)
[y

P

argv +=

else {
++argv;
doline
doword
dochar

nmimn
-
.

?

ATAC File: Line: Coverage: Highl ight ing:
)C main.e 24 of 96 hlock all prioritized

Figure 2-5 The source display showing the new “hot spot”

Summary TestCases GoBack Help
1 8

s B

Figure 2-6 The highlightedpdatebutton

only been looking anhain.c To look at the overall picture involving both files, click on the
“Summary”button in the top button bgtATAC displays the per file block coverage

summary, as shown Figure 2-8% The summary window shows that the two tests you have

run so far have covered 28 of the total 38 blocksain.cand all 13 of the 13 blocks in

wec.c Overall, they have covered 41 of the 51 blocks, as indicated by the “total” entry
towards the bottom of the display. The bars on the right display the coverages in terms of
percentages. The top two bars indicate that the tests you have run so far have covered 73.7%

3. If there are more files than can fit in the summary window, a scroll bar appears to the left of the window. You may
use it to scroll through the list of files.

2-8

User’'s Manual ATAC: A Tutorial

File Tool options Sunmary TestCases pdate GoBack Help

e FILE “file;

if {arge > 1 && arge[1]1[0] == "-"} {
for (p = argv[1l] + 1; *p; ++p)
switch({*p) {
case '1°:
doline = 1;
- — break;
case ‘w’:
doword = 1;
break;
case ‘¢’
dochar = 1;
break;
default:
fprintf(stderr, "inwvalid option: -%e\n",
P *p);
F— case 7?7
fputs{"usage: we [-lwe] [files]yn", stderr);
return 1;
}
argv += 2;

else {
++argv;
doline
doword
dochar

nmimn
el
e we v

?

ATAC File: Line: Coverage: Highl ight ing:
)C main.e 24 of 96 hlock all prioritized

Figure 2-7 Themain.csource display after executimgprdcount.2

of the blocks irmain.cand 100% of the blocks imc.g respectively. The bottom bar
indicates that they have covered 80.4% of the total number of blocks.

Note that each coverage bar is actually made up of two bars, one contained inside the other.
The length of the outer bar represents the maximum possible (100%) coverage for the
corresponding file and that of the inner bar represents the actual coverage attained so far
for that file. As the actual coverage increases, the length of the inner bar increases
accordingly. When it reaches 100%, the inner bar spans the entire length of the outer bar as
in the case of thevc.cbar inFigure 2-8

The relative lengths of the outer bars of individual files represent the relative sizes of
various files in terms of, in this case, blocks.wAschas about one-third the number of
blocks compared tmain.g the outer bar of the former is about one-third the size of the
latter.

If you want to see the summary with respect to each type, clickyotype”in the middle

button bar. The result is shownRigure 2-9 Similarly, click on by-function” for the
summary with respect to each function as showigire 2-10

2-9

User’s Manual ATAC: A Tutorial

File Tool options Sunmary TestCases pdate GoBack Help

s by-type # by-file ., by-function Disable Sort_by

block coverage summary by file over selected testcases |

¢ main.c 28 of 38 ?3.?%_
oW 13 of 13 100%'

total ‘ 41 of 51 | so. 2 [
XATAC ‘ Co:izzge: Files: ‘ Test cases:

2 of 2 2 of 2

Figure 2-8 The coverage summary by file after execwtiogicount2

rila Tool pk ions Summary TasiCases Update GoBack Halp

& hy-Eypo by-fila -« by-function

Fusect lon_sntey 3 of 3 1005
hlock a1 of S v [N
docision 1 of 1% &5, VI

= € ot 2 =
s 23 &l 31 . A

Figure 2-9 The coverage summary by type after executorgcount2

You may click on a file name in the summary window as showiigare 2-8to see the
source display of the corresponding file. For now, click omtfielabel in that window to

2-10

User’'s Manual ATAC: A Tutorial

Fila Toal opt loks PEmsary Tostfases Dpdabe CoBack Halp

o by-typs - by-file #* hy-funokion file_ mepmes Pisahle Soct_by

main. e main 20 of 30 is.'n_

i, e prink B of & 1i00%

W o eount 1% of 13 100%|

Figure 2-10 The coverage summary by function, after execwiimgcount2

see its source displayigure 2-11shows the resulting display. As expected, every block in

File Tool Options Summa ry TestCases Tpdate GoBack Help
0

=] i
* we.c
&
* Hodified from "The ¢ Programming Language"
* by Kernighan & Ritchie, 1978.
* page 18.
k4
*f
#include <stdio.h>
#define IN 1 /* inside a word */
#define OUT 0 /* outside a word */

/* count lines, words and characters in input */

count(file, p_nl, p_nw, p_nc)
FILE *file;

int “p_nl, *p_iw, *p_nc;
{

| simn | int ¢, nl, mw, no, state;

state = OUT;

nl = 0;

nw = 0;

nc = 0;

while (EOF != (¢ = gete(file})}) {
++nc;
if (¢ == '\n’)

1 ++n1;
ATAC File: Line: Coverage: Highl ight ing:
x we.c 1 of 44 block all prioritized

Figure 2-11 Theavc.csource display after executimgprdcount.2

the file is highlighted in white as each one of them has been covered.

2-11

User’'s Manual ATAC: A Tutorial

To go back to the summary window, click on tisfmmary”button in the top button bar.
This causes the summary windowrodure 2-8to be redisplayed with one exception: the
wec.clabel now appears selected instead ofita@.clabel indicating thatvc.cwas the last
file selected.

As mentioned earlier, thmain.cas well as the “total” entries indicate that we have not
achieved 100% block coverage yet. Although complete block coverage does not guarantee
that a set of tests will reveal all errors, testing is certainly incomplete if there are blocks of
code that are not exercised by any test. So click oméie.clabel to go back to thaain.c

source display, as shown previouslyFigure 2-7

Click near the red region in the scroll bar. This will bring the corresponding part of the file
into the source window, as showrHigure 2-12 The red block will be executed when the

File Tool oOptions Sunma ry TestCases Update GoBack Help
]

else {
++argv;
doline = 1;
doword = 1;
dochar = 1;

H

do {

file = fopen(*argv, "r"J;
F. if (file == WULL) {

perror(*argv);
return 1;

count (file, &linect, Swordet, &charct);
| felose(file);
| p— print (deline, doword, dochar, linect, wordet, charct,
“argv) ;

tlinect += linect;
twordet += wordet;
tcharct += charct;
— } while(*++targwv);

XATAC File: 4;’..1;1; :g i Co:jzz]q{[e: Highl ight ing:

main.e all prioritized

Figure 2-12 Thenain.csource display showing the new “hot spot”

program reads its input from the standard input instead of a file. So execute the following
command that copies the contenté$npiutl to the standard input @fordcount

2-12

User’'s Manual ATAC: A Tutorial

prompt:> wordcount < inputl (wordcount.3
This should produce the following output:
1 4 19
Note that the Update” button in the top button bar is again highlighted, as shown

previously inFigure 2-6 indicating that new information is available in the trace file. Click
on this buttonFigure 2-13shows the new display.

File Tool Options Summary TestCases Update GoBack Help
]

else {
trargv;
doline = 1;
doword = 1;
dochar = 1;

H

do {

if (!*argv) {
count {(stdin, &linect, Swordct, &charct);
print (doline, doword, dochar, linect, wordct, charct,
llll);

return;

else {
file = fopen(*argwv, "r"};
if (file == HULL}

il

" }
count (file, &linect, &wordct, &charct);
felose(file);
| p— print(doline, doword, dochar, linect, wordct, charct,
*argv);

tlinect += linect;
twordet += wordet;
teharet += charet;

— } while(*++argwv);

XATAC File: 4;..]':1: :Sl i Co;izzge: Highl ight ing:

main.c all prioritized

Figure 2-13 Thenmain.csource display after executimgrdcount3

The new red block indicates that we need a test case where the input file can not be opened,
e.g., if the file does not exist. Scrolling through the source window to see other nonwhite
blocks indicates that we need a test case where the line, word, and character counting
options are specified explicitly. The following test cases cover these situations:

prompt:> wordcount nosuchfile (wordcount.4

prompt:> wordcount -wlc inputl (wordcount.%

2-13

User’'s Manual ATAC: A Tutorial

The former test case should produce an error message indicating that the file could not be
found and the latter test case should produce the same outputdasunt.1as shown
earlier.

Click on the ‘Update” button.Figure 2-14shows the updated display. The scroll bar

File Tool Options Sunmary TestCases pdate GoBack Help
0
]

else {
++argv;
doline = 1;
doword = 1;
dochar = 1;

H

do {

if (!*argv) {
count (stdin, &linect, Swordet, &charct);
print {deline, doword, dochar, linect, wordet, charct,
llll);

return;

else {
file = fopen{*argw, "r"J;
if (file == HULL} {
perror(*argwv);
return 1;

count(file, &linect, Swordct, &charct);
folose(file);
| — print (doline, doword, dochar, linect, wordet, charet,

*argv);

tlinect += linect;
twordet += wordcet;
tcharct += charct;
— 1 while{*++argv);

XATAC File: 4;’..1:; :9 i Co;izzze: Highl ight ing:

main.c all prioritized

Figure 2-14 Thenain.csource display after executimgrdcount.5

indicates that all blocks in the file have now been covered. To view the by-file summary
again, click on theSummary”button in the top button bafigure 2-15shows the new
summary. As you can see, the five tests you have run so far have achieved 100% block
coverage over both files. They do not, however, constitute a complete set of tests. There
may be errors not revealed by these tests that will be revealed when different combinations
of statements are executed, or when they are executed in a different order. The remaining
coverage measures are designed to help create tests that will reveal these errors.

Click on the by-type” menu entry. This will show the coverages achieved so far using

various coverage measures, as showngdare 2-16 The first two entries indicate that the
five tests you ran have covered all 3 of 3 function entries and 51 of 51 blocks in all source

2-14

User’s Manual ATAC: A Tutorial

File Tool Options Sumary TestCases Update GoBack Help

~ by-type # hy-file ., by-function Disable Sort_by

block cowverage sunmary by file over selected testcases |

¢ main.c 38 of 38 1003

L WO 13 of 13 100%'

Figure 2-15 The coverage summary by file after executiogicounts

File Tool oOptions Summary TestCases Update GoBack Help

4 bhy-type -, by-file ., by-function

overall coverage summary by type over selected testcases |

function_entry 3 of 3 100%'

A
block 51 of 51 100%|

. decision 30 of 35 35.7%,-
« c_use 66 of 92 ?1.?%_
.. p_use 26 of 31 33.9%-

Figure 2-16 The coverage summary by type after executimgcount.5

files. The next three entries provide the coverage status for other coverage measures known
asdecision c-use andp-use(seeSection 3.3What Does ATAC Ddor an explanation of

these measures). Note that none of these measures have reached a 100% coverage status
yet. Let us now try to raise the decision coverage to 100%.

A decision is a conditional branch from one block to another. As can be seen from the
coverage summary figure 2-16it is possible that a set of tests will cover all blocks in a
program without covering some of the decisions. In this example, 30 of the total 35
decisions have been covered. In order to determine what additional test cases are needed to
cover the remaining five decisions, click on tldecisiori button in the third rowFigure

2-17 shows the resulting display.

Alternatively, to switch to decision coverage, you may also click on@p&idns button
in the top button bar and select tlketision coveradeentry from the resulting menu, as
shown inFigure 2-18

In a decision display, all conditional expressions in a file are highlighted. If an expression

is highlighted in white, it means all branches originating at that expression have been
covered. If, on the other hand, it is highlighted in a nonwhite color, it means there is at least

2-15

User’'s Manual ATAC: A Tutorial

File Tool options Sunmary TestCases pdate GoBack Help

0 [B
|
else {

++argv;
doline
doword
dochar

nn
= =
e

do {
if {!*argv) {
count {(stdin, &linect, Swordct, &charct);
print(doline, doword, dochar, linect, wordct, charct,
llll);

return;

else {
file = fopen(*argv, "r")};
if (file == HULL} {
perror(*argwv);
return 1;

}

count (file, &linect, S&wordct, &charct);

felose(file);

print(deline, doword, dochar, linect, wordet, charct,
*argv);

¥

. tlinect += linect;
' twordet += wordet;
tcharet += charct;

e } while (_) a

ATAC File: Line: Coverage: Highl ight ing:
)C main.e 46 of 96 decision all prioritized

Figure 2-17 Thenain.cdecision display after executimgprdcounts

Options Sunmary

function entry cowverage
block cowverage

decision cowverage
C_use coverage
p_use coverage

show all prioritized
show highest weight
show nonzero weight
show zero weight
show zero and nonzero weight

Figure 2-18 Thé&ptionsmenu

one branch originating there that has not been covered yet. To find out which one, you may
click on the highlighted expression. This will pop up a window showing a list of all

2-16

User’'s Manual ATAC: A Tutorial

branches originating there highlighted in colors that indicate their coverage status and
current weights.

The scroll bar shows that there are several expressions highlighted in red. Use the bottom
(or top) arrow in the scroll bar to scroll up (or down) the source window by a few lines so
the highlighted expression controlling ttle-whileloop becomes visible in the source
window. Then click on the highlighted expression to pop up the list of all branches
originating there, as shown figure 2-19

File Toocl Options Sunmary TestCases Update GoBack Help

0 N ——

do {
if (!*argv) {
count (stdin, &linect, S&wordet, &charct);
print{deline, doword, dochar, linect, wordet, charct,

")

return;

else {
file = fopen(*argv, "r");
if (file == HULL)} {
perror (*argv);
return 1;

count (file, &linect, Swordet, &charct);

felose(file);

print{deline, doword, dochar, linect, wordet, charct,
*argv);

}

tlinect += linect;
twordet += wordct;
tcharct += charct;

. } while(
print (doline fal Hochar, tlinect, twordet, tcharct, "total");
return 0; alse
i } dismiss
statie print(deline, doword, dochar, linect, wordet, charct, file)
int doline, doword, dochar;
ATAC File: Line: Coverage: Highl ighting:
x main.eo 53 of 96 decision all prieoritized

Figure 2-19 A decision “hot spot” imain.cwith a window showing the list of all
branches originating there

Note that, of the two possible outcomes of the highlighted conditional expreaaséamd

false the latter is highlighted in white indicating that thlsebranch of the loop expression
has already been covered. The former, however, is highlighted in red implying tiha¢the
branch is yet to be covered. Note that the loop expression itself is highlighted in red
indicating that at least one of the branches originating there remains to be covered. In
general, the color of a conditional expression at any time is the same as the color of the
“heaviest branch originating there at that time.

2-17

User’'s Manual ATAC: A Tutorial

To cover thdrue branch of the loop expression, you must invekedcountwith more
than one input file. Execute the following command to do this:

prompt:> wordcount inputl input2 (wordcount.§
It should produce the following output:
1 4 19 inputl
2 8 38 input2
3 12 57 total

Click on the highlightedUpdate” button to read the coverage information from the above
test casefigure 2-20shows the relevant part of the updated display.

i if (ar == 1t

. o1 . ge > 1 && arqe[1][0] ==)
tlinect += linect; for (p = argv[1] + 1; *p; ++p)
twordet += wordet; switch(
tcharct += charct; case ‘1’:

} while(*++ar H

true T

print (doline, char, tlinec case ‘W' ot
return 0; false default

dismiss case ‘¢’
print (doline, doword, dochar, linect,
int doline, doword, dochar; .
int linect, wordet, charct; default.fprintf(stderr’
char *file; *p);
Figure 2-20 A part of thenain.c Figure 2-21 A decision "hot spot” in
decision display after executing main.cwith its branch list after executing

wordcount.6 wordcount.6

Click on the tlismis$ entry at the bottom of the decision branch lisg(re 2-20. This
will remove the branch list window from the displ‘by.

The scroll bar now indicates that there are still three nonwhite conditional expressions
towards the bottom of the file and one towards the top of the file. Click near the top of the
scroll bar to bring the corresponding text in the source window. Then click on the
highlightedswitchexpression to show the corresponding branch list, as shown in

Figure 2-21 The branch list indicates that four of the five possible branches siviteh

4. A branch list window that pops up when you click on a highlighted conditional expressions in a source window
“sticks” to the display at the point where the mouse was clicked. It does not scroll up or down with the source
window. Therefore you should always close it by clicking on themis$ entry before scrolling the source win-
dow. You may, however, invokeATAC with the “nosticky option to make its behavior similar to that of a pull-
down menu. In that case, a branch list window will remain popped up as long as you keep the mouse button
pressed. It will be automatically closed when you release the button.

2-18

User’'s Manual ATAC: A Tutorial

statement have already been covered. The remaining branch can be covered by invoking
thewordcountprogram with a *?” option. The following command accomplishes this

prompt:> wordcount -? (wordcount.§

This test case should print an appropriate usage message. Click biptlaee” button to
confirm that it has, indeed, covered the desired branch of the switch statement. Then close
the branch list window by clicking on thdismis$ entry.

So far we have invokedordcountwith options that have caused it to print all three - line,
word, and character - counts. We have never invoked it to print only one or two of these
counts. Examining the remaining uncovered decisions reveals that we should invoke the
program with only one of the three optiods;w, and-c, in order to cover these uncovered
decisions. The following two commands achieve this:

prompt:> wordcount -l inputl (wordcount.§
prompt:> wordcount -w inputl (wordcount.9

They should produce appropriate line and word counts, respectively, for thmpiilt,

Click on the ‘Updat€ button and you will see that all decisions in the file have been
covered. Now go back to the summary window to check the overall coverage status by
clicking on the Summarybutton and selecting théy-typé entry in the summary menu.
Figure 2-22shows the new coverage summary.

File Tool Options Summary TestCases Update GoBack Help

% by-type -, by-file -, by-function ‘

overall cowverage summary by type over selected testcases |

. function_entry 3 of 3 1003
- hlock 51 of 51 1003 |
decision 35 of 35 1003
. c_use 80 of 92 870
. p_use 30 of 31 96.83 1]

Figure 2-22 The coverage summary by type after executimgcount.9

All blocks and decisions have now been covered. The fourth row in the summary display,
however, indicates that there are some c-uses that have not been exercissd,0h a

5. You may need quotes around the question mark depending on whether or not the command processor you are using
interprets it as a wildcard character.

2-19

User’'s Manual ATAC: A Tutorial

computational variable usés a combination of an assignment to a variable and a
subsequent use of that variable in a computation that is not part of a conditional expression
(seeSection 3.3What Does ATAC DQ?Typically one attempts to achieve high c-use
coverage only for code which must be tested very thoroughly. Let us now try to cover the
remaining c-uses that have not yet been covered.

Click on the ‘t_usé button in the summary displaffigure 2-23shows the resulting
display. A c-use display for a file highlights all the definitions of, or the assignments to, the

File Tool options Sunmary TestCases pdate GoBack Help
0 I
]
main({arge, argv)
int arge;
— char **argwv;
{
char s
m int linect, wordct, charct;

long tlinect = 0;
' long twordet = 0;
= lon tcharct = 0;

FILE *file;

if {(arge > 1 && arge[1][0] == -7} {

for (p = argv[1] + 1; *p; [EH)
switch(*p) {
case '1’:

fprintf{stderr, "inwvalid option: -%c\n",
1 *p);

File: Li g
YATAC e e

Coverage: ‘ Highl ight ing:

o_use all prioritized

Figure 2-23 The c-use definitions display foain.cafter executingvordcount.9

variables involved in all c-uses in the file. If a c-use assignment is highlighted in white, it
means all c-uses originating at that assignment have been covered. If, on the other hand, it
is highlighted in a nonwhite color it means that there is at least one c-use originating at this
assignment that has not been covered yet. For example, the white highlighting of the
assignment to the varialgpen the loop initialization of théor loop inFigure 2-23ndicates

that all c-uses involving this assignment have already been covered. The assignment of the
variabledolinein the firstswitchbranch inside théor loop, on the other hand, is

highlighted in red. This means there are one or more c-uses of this assignment that have not

2-20

User’'s Manual ATAC: A Tutorial

been covered yet. To see which ones, click on the assignment statément2-24shows
the resulting display after scrolling down the file so the highlighted c-uses become visible
in the source window. Note that the highlighting of the assignment is also retained for easy

File Tool Options Summary TestCases Update GoBack Help

0 I ——
] switeh(*p) {
case ‘1°:
doline = 1;
bhreak;
case ‘w’:
doword
break:;
case ‘¢’
1 dochar = 1;
break;
default:
fprintf(stderr, "inwvalid option: -%cin",
*p);

1}
[ury

case 7?7
fputs{"usage: we [-lwe] [files]yn", stderr);
return 1;

P

' argv +=

else {
++argv;
doline
doword
dochar

nmnn
=
.

do {
if (!*argv) {
count (stdin, &linect, Swordct, &charct);
print (A8IEME, doword, dochar, linect, wordet, charct,

XATAC File: 23[.10%96 Coverage:

main. ¢ c_use

Figure 2-24 The display showing the c-uses of the highlighted assignment to the variable
dolinein Figure 2-23

reference, although in a different color so as not to confuse it with the corresponding uses.
Of the three c-uses of the assignmemntdting two are highlighted in white indicating that
they have been covered. To cover the remaining uncovered c-use, we must invoke the
program asking it explicitly to count the number of lines when the input is supplied via the
standard input. The following test case achieves this:

prompt:> wordcount -| < inputl (wordcount.1

Updating the display with theJpdaté€ button confirms that the uncovered c-useoline
has been covered.

2-21

User’s Manual ATAC: A Tutorial

Click on the ‘Summarybutton and select thec* usé entry to go back to the c-use
definitions display. Execute the following two tests to cover the analogous c-uses involving
the assignments to the variabtEsvordanddocharinside theswitchstatement in

Figure 2-23

prompt:> wordcount -w < inputl (wordcount.1}
prompt:> wordcount -c < inputl (wordcount.12

Examining the remaining uncovered c-uses reveals that we have never tested the program
to see if it works correctly in the following situations:

» Invoking the program with a valid command line option in combination with an
input file that does not exist

* Invoking it with one valid and one invalid command line option at the same time;

* Invoking it with one valid and one invalid input file at the same time.

Execute the following test cases to address the above situations:

prompt:> wordcount -I nosuchfile (wordcount.13
prompt:> wordcount -Ix inputl (wordcount.1}
prompt:> wordcount inputl nosuchfile (wordcount.1%

Update the display with théJpdatée button. All c-uses in the file have now been covered.
Display the overall coverage summary by clicking on ®efimary button and selecting
the “by-typéentry from the summary menu, as showifrigure 2-25The c-use summary

File Tool Options Summary TestCases Update GoBack Help

% hy-type - by-file -. by-function ‘

overall coverage summary by type over selected testcases |

. function_entry 3 of 3 100%|
- hlock 51 of 51 100%|
. decision 35 of 35 100%|
® c_use 89 of 92 96. 75|
. p_use 30 of 31 95.3%.

Figure 2-25 The coverage summary by type after executimgcount.15

2-22

User’'s Manual ATAC: A Tutorial

indicates that only 89 of the total 92 c-uses have been covered yet. But all c-use
assignments imain.cwere highlighted in white indicating that all c-uses in that file have
been covered. This means the remaining three uncovered c-uses must be imthe file

To switch towc.cdisplay, click on the File” button in the top button bar and select the
“wc.c¢’ entry from the resulting file mentrigure 2-26shows the c-use display farc.c

count{file, p_nl, p_mw, p_nc)
FILE “file;
int *p_nl, *p_nw, *p_nc;

int ¢, nl, mw, ne, state;

state = OUT;
while EEOF I= (¢ = gete(file))) {
+41e;

if {c == "\n’)
++nl;
if (¢ ==’ 7|l e =\ || ¢==’\t")
state = OUT;
else if (state == OUT) {
state = INH;
++mw;

}

1

Figure 2-26 The c-use definitions display ¥ec.cafter executingvordcount.15

Click on the first highlighted assignmehtgure 2-27hows the corresponding c-uses. The

- state = OUT;
nl = 0;
mw = 0;
ne = 0;
while (EOF != (¢ = getc(file))) {
++he;
if (¢ == "\n’)
++nl ;
if (@ ==+ " |l ¢ ==""\n" || ¢ == "\t")
state = OUT;
else if (state == OoUT) {
state = IN;
++1w;
}
}
*p_nl = fll;
“p_iw = mw;
*p_nc = nc;
}

Figure 2-27 The display showing the c-uses of the first highlighted assignment in
Figure 2-26

2-23

User’'s Manual ATAC: A Tutorial

only remaining uncovered c-use in the display can be covered if the control never enters
the body of thevhile statement. This is possible only when the program is invoked with an
empty input file. Execute the following test case to achieve this:

prompt:> wordcount empty (wordcount.1®

Update the display using thefydatée button to check that the uncovered c-use is covered
by the last test case. Click on tf&mmarybutton and select thee*usé entry to go back
to the c-use definitions display, as showirigure 2-28 Note that besides covering the

count (file, p_nl, p mw, p_nc)
FILE *file;

int *p_nl, *p_nmw, *p_nc;
{

int ¢, nl, nw, nc, state;

- state = OUT;
nl 0;
mw 0;
ne = 0;
while (EOF != (¢ = getc(file))) {
+4ne;
if (¢ == '\n")

++1fl ;
if (e==' " Il ¢ ="\ || ¢ == "\t')
state = OUT;
else if (state == OUT) {
state = IN;
+HW;

1

Figure 2-28 The c-use definitions display ¥ec.c after executingvordcount.16

desired c-use involving the varialrlk the last test case also covered the analogous c-uses
involving the variablesw andnc. Figure 2-29%hows the new coverage summary. As the

File Tool Options Sunmmary TestCases Update GoBack Help

+ by-type ~ by-file ~ by-function |

overall cowverage summary by type ower selected testcases |

. function_entry 3 of 3 1005%|
. block 51 of 51 1005%|
- decision 35 of 35 1005%|
¢ c_use 92 of 92 1005%|
. p_use 30 of 31 96.8%

Figure 2-29 The coverage summary by type after executimgcount.16

c-use entry in the summary indicates, you have now achieved a 100% c-use coverage.

2-24

User’'s Manual ATAC: A Tutorial

The fifth row of the coverage summaryHigure 2-29ndicates the current p-use coverage
status. Ap-use or apredicate variable usés a combination of an assignment to a variable,

a subsequent use of that variable in a conditional expression, and a particular branch
originating at that conditional expression (Seetion 3.3What Does ATAC D92?Thus a

p-use is like a c-use except that the variable use is in a branch originating at a conditional
expression. Note that 30 of the total 31 p-uses have already been covered.

To see the only remaining uncovered p-use, click onghasé button in the summary
display.Figure 2-30shows the resulting display. Like the c-use display, the p-use display

File Tool Options Sunma ry TestCases Tpdate GoBack Help

0 T ——
&./
wo.c

Hodified from "The € Programming Language"
by Kernighan & Ritchie, 1978.

R OE R N OE OE

page 18.
*f
#include «<stdio.h>
$define IN 1 /* inside a word */
#define OUT 0 /* outside a word */

/* count lines, words and characters in input */

count(file, p_nl, p_nw, p_nc)
FILE *file;

int *p_nl, *p_mw, *p_nc;
{

[int ¢, nl, mw, nc, state;

state = OUT;

nl = 0;

nw = 0;

nc = 0;

while (EOF != (¢ = gete(file))) {
++nc;
if (¢ == "\n’)

1 ++nl ;
ATAC File: Line: Coverage: Highl ight ing:
x woe. o 1 of 44 p_use all prioritized

Figure 2-30 The p-use definitions display ¥ec.cafter executingvordcount.16

highlights all the definitions of, or assignments to, the variables involved in all p-uses in
the file. If a p-use assignment is highlighted in white, it means all p-uses originating at that
assignment have been covered. Four of the five highlighted assighiméngaire 2-3Care

6. Highlighting of a type declaration of a function argument, as in the case of the first highlighted definition in
Figure 2-3Qrefers to the implicit assignment of the formal argument with the actual argument in the correspond-
ing function call.

2-25

User’'s Manual ATAC: A Tutorial

highlighted in white. The nonwhite color of the remaining assignment indicates that there
is at least one p-use originating at that assignment that is yet to be covered. To see all the
p-uses of this assignment, click on the highlighted assignment exprésgioe. 2-31

shows the resulting display. It highlights all conditional expressions that use the variable

File Tool Options Sunmary TestCases pdate GoBack Help
0 |

/* count lines, words and characters in input */

|

count(file, p_nl, p_nw, p_nc)
FILE *file;

int *p_nl, *p_imw, *p_nc;
{

int ¢, nl, mw, nc, state;

- state = OUT;

nl = 0;
nw = 0;
nc = 0;
while (EOF != (e = gete(file})) {

++nc;

if (¢ == '\n’)

++nl;
if (¢ == 7 ||l ¢ == "\n” || ¢ == "\t’)

state = oUT;
else if (EESECESSNONN) {
state = INH;
++1mF;
}
H
*p_nl
*p_m-.'
*p_no

nl;
1w
ne;

}
/* $Header:@(%) IN /vobs/atac/wc.c /main/2? 06/07/96 10:21:43 &(#)§ */|

XATAC File: 1:10%44 Coverage:

wWC.C p_use

Figure 2-31 The conditional expressions involved in p-uses originating at the red
assignment ifrigure 2-30

assigned by the assignment in question. In this case there is only one such conditional
expression, highlighted in red. Note that the assignment in question has also been
highlighted in a different color for your reference. Recall that a p-use involves an
assignment, a conditional expression, and a particular branch originating at the conditional
expression. So far, we have only seen the former two elements of the remaining uncovered
p-use. To see the last element, click on the highlighted conditional expression. A window
containing a list of branches originating there pops up, as showigtre 2-32

The color of a branch indicates the coverage status of the corresponding p-use. The red

highlighting of thetrue branch indicates that the p-use involving the definition of the
variablestateoutside thevhile loop and its subsequent use in the branch of the

2-26

User’'s Manual ATAC: A Tutorial

(EOF != (¢ = gete(filed)) | (EBOF != (¢ = gete(file}))) {
++ng; ++ne;
if (¢ == "\n’) if (o == "\n’)
++nl; ++nl;
if (e==* "’ ||l ¢ == '\’ || ¢ == if (e ==’ " |] ¢ == "\ || ¢ ==
state = oUT; state = OUT;
else if (else if (state == oUm—*
state = IN: state = IN; true
} AT false } AR false
dismiss dismiss
= nl; =nl;

Figure 2-32 A part of thevc.cp-use Figure 2-33 A part of thec.cp-use
display after executingrordcount.16 display after executingrordcount.17

highlighted expression inside the loop is yet to be covered. Analysis of the code reveals that
this p-use will be covered only if the very first character read by the program is a nonwhite
character. Both input files we have used soifguytl andinput2, contained a tab in their

first character positions. On the other haingut3does not have white space at the

beginning of the file. So the following command should cover the above p-use:

prompt:> wordcount input3 (wordcount.1y

Click on the Updaté button.Figure 2-33hows the updated branch list indicating that the
p-use we were trying to cover was indeed covered.

Note that thdalseentry in the branch list is not highlighted at &ligure 2-32and

Figure 2-33 either in white or in a nonwhite color. This is because the corresponding p-use

is aninfeasiblep-use -- it is impossible to cover it by any test case. The assignment involved
assigns the valuQUT, to the variablestate The conditional expression involved checks

to see ifstatehas the valu®UT. Whenever the value examined by the latter is that assigned

by the former, the conditional expression will evaluategue. Thus it is impossible to

cover the corresponding p-use involving thlsebranch. ATAC automatically detects

many infeasible decisions, c-uses and p-uses and ignores them. It cannot, however, detect
all such decisions, c-uses or p-uées.

Click on the tlismis$ entry to close the branch list. Then click on ti&fhmary button

in the top button bar and select thwy-typéentry. Figure 2-34shows the resulting

coverage summary. All coverage criteria measured by ATAC are now covered. From
ATAC's point of view, these 17 tests are a completely adequate tesrad¢ount.Of

course, all we have done is create a set of tests that will thoroughly test the program. You
must check that the program actually passed the tests. This may be done while using
XATAC or after recompiling the program with the standard compiler.

7. No program can automatically detect all infeasible decisions, c-uses or p-uses as the general problem of determin-
ing if a decision , a c-use or a p-use is infeasible is an unsolvable problem.

2-27

User’s Manual ATAC: A Tutorial

File Tool Options Summary TestCases Update GoBack Help

® by type ~ by file ~ by-function ‘

overall cowverage summary by type over selected testcases |

. function_entry 3 of 3 1003 |
- block 51 of 51 1003
. decision 35 of 35 1003 |
Lo C_use 92 of 92 100%'
& p_use 31 of 31 1003

Figure 2-34 The coverage summary by type after executimgcount.17

There is no guarantee that a program which has passed a completely adequate set of tests
has no error§ However, in addition to producing test sets that reveal errors, the use of
ATAC andxATAC to achieve high coverage places the source code under intensive
scrutiny which also tends to reveal errors. A complete test set combined with the effort to
create such atest set is very effective at revealing errors. For large programs, it may require
extensive testing to achieve 100% block, decision, c-use, and p-use coverage as we did for
thewordcountprogram. In practice it may be necessary to settle for less than 100%
coverage.

To quitxATAC click on the ‘File” button in the top button bar, then seleexif’.

8. In general, only when all possible inputs have been tested does passing the tests imply the program is error free.
For most programs this is impossible.

2-28

User’'s Manual ATAC: Overview

Chapter 3

ATAC:

Overview

This chapter provides an overview of ATAC and is recommended reading for first-time
users or those who want a summary of ATAC.

3-1

User’'s Manual ATAC: Overview

3.1 Whatis ATAC?

ATAC is acoverage analysi®ol that aids in testing programs written in the C 6f C
programming language. ATAC measures how thoroughly a program has been exercised by
a set of tests, identifies code within the program that is not well tested, and determines the
overlap among individual test cases. ATAC is used by software developers and testers to
measure thadequacyof a test set and identify areas in a program that require further
testing. These measures may be used for project tracking to indicate progress during
testing, and as acceptance criteria to subsequent stages of development and testing.
Regression testers also may use ATAC to identify a particular subset of a test set that
achieves high coverage at limited cost.

3.2 What is Coverage Testing?

Coverage testing suggests a number of criteria that should be satisfied when testing a
program. Examples of such criteria are:

« All statements should be executed;
e All decisions should be evaluated both to true and to false.

The goal of coverage testing is to develop a set of tests that satisfy the criteria. Notice that
each of these example criteria are dependent upon a program'’s source code. Testing
methods that use information about a program’s internal structure are said to perform
white-boxtesting. Methods that only consider a program’s inputs and outputs, making no
use of its source code, are said to perfblack-boxtesting. ATAC supports white-box

testing, so theoverage criteriadiscussed here will be tied to the source code of the
program under test.

Each specific coverage criterion identifies a number of program constructs to be exercised
(covered)oy a set of tests. The constructs to be covered are tediadle attributes-or
instance, in covering all decisions as suggested above, there is one testable attribute for
each true branch and one for each false branch in the program. A tester covers them by
developing a test set that executes each of these branches. A test set is canedaetd

with respect to a given coverage criterion if all testable attributes identified by the criterion
are exercised, at least once, by some test within the set.

It is harder to develop an adequate test set for some coverage criteria than for others.
Weaker criteria usually require fewer test cases than stronger criteria to obtain completely
adequate coverage. However, a test set adequate for a weaker criterion is less likely to
reveal an error than a test set adequate for a stronger criterion. For example, it generally
requires fewer test cases to ensure that all functions within a program are invoked than to
ensure that all statements are executed. However, a test set that executes all program

3-2

User’'s Manual ATAC: Overview

statements tends to test a program more thoroughly than a test set that invokes all functions.
This is because it is possible to invoke all functions without executing all of their
statements. The converse is not true.

One coverage criteria is stronger than another if, for any program, completely adequate
coverage for the first implies completely adequate coverage for the second and, as with
statement and function coverage, the converse is not true. If the converse is also true, then
the coverage criteria are of equal strength.

In practice, for many coverage criteria, a completely adequate test set is not easy to create
for most programs. As a test set is being developed, it exhibits a level of adequacy called a
coverage measurethe percentage of testable attributes exercised by its set of tests. As a
test set’s coverage measure improves, it becomes harder to create test cases that cover the
remaining, uncovered testable attributes. In some cases, it may be impossible or impractical
to achieve completely adequate coverage. For example, a program may contain code to
detect and handle error conditions that are very hard to simulate during testing. The
appropriate target coverage measures for any program under test depend on the
characteristics and reliability requirements of that program.

3.3 What Does ATAC Do?

ATAC provides an integrated suite of software tools that support coverage testing for a
number of coverage criteria (as described lafanction-entry, function-call, function-
return, block, decision, c-use, p-usedall-uses It should be noted thatuse p-useand
all-usescoverage is not available fof G and thafunction-callandfunction-returnare not
currently available irxATAC, the graphical interfac€igure 3-1depicts an approximate

All-Uses
P A N
P-Use C-Use

Decision

Bloc(

v
Function Return Function Call

Function Eﬁt(ry

Figure 3-1 An approximate partial ordering of ATAC coverage criteria

partial ordering of these coverage criteria from weak to strong. Given a program to test,
ATAC computes its set of testable attributes and instruments it to record trace information
during test execution. As subsequent tests are executed, the trace information is appended

3-3

User’'s Manual ATAC: Overview

to a trace file. At any point, a tester can selectively report coverage measures or display
source code associated with any uncovered testable attributes. The former allows the tester
to assess how the test is progressing, the latter aids in developing new tests to exercise what
has not been covered.

ATAC can instrument all, or a selected portion, of the files making up a software system.
This allows testing to be targeted at a specific portion of the system and makes it possible
to incrementally manage the overhead of testing a large system. The coverage measures
reported only pertain to that source code which has been instrumented, and any
instrumentation added has no effect on non-instrumented code.

3.3.1 Function-Entry, Function-Return, Function-Call and Block
Coverage

The weakest coverage criteria measured by ATAQuaretion-entryfunction-return and
function-call Function-entrycoverage ensures that all functions within a program are
called at least onc&unction-returncoverage ensures that all explicit and implicit returns
or exits from a function are executed at least drgection-callcoverage ensures that each
call to a function is covered at least once. As indicatédgare 3-1completefunction-
return coverage usually guarantees compfetetion-entrycoverage, since, a function
usually has at least one return or €xtompletdfunction-callcoverage does not guarantee
completefunction-entrycoverage since it is possible to have a function that does not
contain any function calls.

Block coverage ensures that ladisic blocksire executed at least oncebdsic blockis a
sequence of instructions that, except for the last instruction, is free of branches and function
calls. So, the instructions in abgsic blockare either executed all together, or not at all. In

C and C*, ablockmay contain more than one statement if no branching occurs between
statements; a statement may contain multiple blocks if branching occurs inside the
statement; an expression may contain multiple blocks if branching is implied within the
expression (e.gconditional logical-and andlogical-or expressionsATAC begins a new

basic blockafter a function call because it is possible that the function call will not return
(e.g. if exit is called within the function). ATAC provides an option to alb@sic blocks

to span function calls.

Figure 3-2presents an example of three distinicicks as they are displayed in ATAC's
character-based interface. Block 1 consists of a logical-expression embedded within a
compound conditional-expression; Block 2 consists of an entire conditional expression;

1. Itis possible to create a function with no implicit or explicit return or exit (for example, a function that loops indef-
initely until killed by an interrupt signal). In such cases, complete function-return coverage does not guarantee
complete function-entry coverage.

3-4

User’'s Manual ATAC: Overview

Block 3 consists of the entire body of an if-statemenildék coverage is ever less than
100%, then there are program statements that have not been executed by any test. So,
achieving completely adequditock coverage ensures that the entire program is at least
executed. Completely adequateckcoverage implies completely adequatection-entry
coverage.

1

*p_nl
Ap_nw
*ponc

= nw;

Figure 3-2 An example of three distinct blocks (character-based interface)

3.3.2 Decision Coverage

Decisioncoverage ensures that each of the branches within a conditional statement
evaluate to both true and false, at least once. A conditional statement may contain a number
of conditional expressions, each having a true and false decision path passing through it.
Each of these decision paths corresponds to a different testable attribute to be covered. For
example Figure 3-3presents two distinct uncovered decisions occurring in the same
expression, as they are displayed by ATAC. The first is covered by developing a test case
that causexc =="" to evaluate true, the second by developing a test case causing this
expression to evaluate false.

If a decision is not covered during testing, then an error might not be revealed in the
conditional statement containing the decision. Completely adedecittoncoverage
implies completely adequaldock coverage, except for programs with no branches
(because there are no decisions to cover).

3-5

User’'s Manual ATAC: Overview

———————————————— = woocrcount decision not covered at line 20 <———m———

while (EOF != (o = geta(filel)) {
++nc;
if (o == ’"%n’)
++nl;

if (CHEENEEE || ¢ == M0 Il ¢ == AtY)
state = OUT;

alse if (state == QUT) |
state = IN;
++nw;

———————————————— > wo.oicount decision not covered at line 20 €-———————————————e

while (EOF != (o = getc(file)l) {
++1c;
if (o == *%n*)
++11l;

if (CHEEEE || c == "'n" || ¢ == "\t7)
state = OUT;

z2lse if (state == OQUT) |
state = IN;
++nw;

Figure 3-3 An example of true and false decision paths (character-based display)

3.3.3 C-Use, P-use, and coverage criteria All-Uses Coverage

In addition to block and decision coverage, ATAC also provides more advesused-
useandall-usescoverage for C code. These more sophisticated analyses are not available
for C**.

C-usep-use andall-usescoverage criteria are based on both the control flow and data flow
of a programC-use(computational usecoverage ensures that if a variable is defined
(assigned a value) and lategedwithin a computation that is not part of a conditional
expression, at least one path betweendéfsusepair is executed-igure 3-4presents an
examplec-use as displayed by ATAC. Because functions and statements need not define
or use any variables;usecoverage is not comparable to most of the other coverage
criteria.

P-use(predicate variable ugecoverage ensures that if a variable is defined and later used
within a conditional expression, thdef-usepair is executed at least once causing the
surrounding decision to evaluate true, and once causing the decision to evaluate false.
Completely adequafg-usecoverage implies completely adequdéeisioncoverage,

except when a program contains conditional expressions that do not contain any variables
(e.g.,while (getchar() !="\n’);)

Figure 3-5presents two distingkusesas they are displayed by ATAC. Much litecision

coverage, there are true and false execution paths passing through all conditional
expressions involved ip-uses each path corresponding to a distinct testable attribute.

3-6

User’'s Manual ATAC: Overview

—————————————————— * C-USE of B in count; we.co line 24 -

if (o == 7" || c=="%n" [| o == "}t")
state = OUT;
else 1f (state == COUT) {
state = IN;
s ;
}
1
*p_nl = nl;
*p_nw = B
Ap_no = no;

Figure 3-4 An example-use(character-based display)

The intuition behind-useandp-usecoverage is, when a variable is assigned a value and
that value is later used, a good test set will exercise this relationship. For any use of a
variable, this should occur for each assignment that might have given rise to the variable’s
value.All-usescoverage is the sum pfuseandc-usecoverage measures.

B in count; wo.o line 14 <————-———mmmm——-

u;
wvhile (EOF != (¢ = getc(file))) |
++nc;
if (o == *\n*)
++nl;
if (¢==" " || ¢=="n" || ¢ =="\t")

B in count; wo.c line 14 <———-———mmm———-

= D;
while (EOF != (o = getc(file))) |
+4nc;
if (¢ == "%n")
++nl;
if (e ==’ 7 || c =="'%n" || c == ’"\t")

i
Figure 3-5 An example of true and false p-uses (ASCII display)

3-7

User’'s Manual ATAC: Overview

3.4 How Does ATAC Work?

Using ATAC focuses on three main activities: instrumenting the software to be tested,
executing software tests, and determining how well the software has been tested.
Instrumentation of the software occurs at compile-time, and ATAC allows large systems to
be instrumented a-piece-at-a-time. Once instrumentation is complete and an executable has
been built, a tester executes tests and uses ATAC to generate reports or display uncovered
source code. The reports reveal the current coverage measures for each criteria, indicating
how adequate the existing test set is and providing a high-level view of progress during
testing. The tester can also display precisely what needs to be covered and develop new
tests to improve the current level of code coverage.

ATAC consists of the following tools: the ATAC compil@tac ccon UNIX, atacCLor
ataclCCon Windows3, atac, atactmandxatac.These are the user-layer components of
ATAC invoked by a tester from the command line. In addition, there are other executables
and a run-time library required by ATAC that are not of general interest to users. An
executable calledtaclib (UNIX) or atac_lib(Windows) is invoked by all other ATAC
components when they need to locate the ATAC library. This helps minimize the need for
users to modify their personal computing environment in order to use ATAC.

Figure 3-6depicts the key inputs and outputs during software instrumentation, test
execution, and coverage analysis. Instrumentation of the software to be tested is performed
by the ATAC compiler. The ATAC compiler replaces the standard compiler, while
accepting all the same command line options. The ATAC compiler supports separate
compilation and can be easily used in conjunction withrtakeor nmakeprograms. The

ATAC compiler accepts one or maiesource files as input and, for each, computes its
testable attributes and instruments it to record an execution trace at run-time. The outputs
of the ATAC compiler are atacfile corresponding to each file and an executable
program.a.out.All instrumentation is emitted as source code embedded within the
software to be tested, and then the standard compiler is invoked to genenaten

alternative compiler may be invoked if so desiré&djch.atacfile acts as a list of all

testable attributes that exist within its correspondarfde.

Each timea.outis executed, trace information is appended to a corresponding trace file,
a.out.trace.This occurs automatically due to the instrumentation generated by the ATAC
compiler. A tester uses tha&tacor xatactool to obtain a high-level measure of test

adequacy, or to view actual source code that still needs to be covered. The trace file and a
list of relevantatacfiles are inputs tatacandxatac ATAC reconciles the information
contained ira.out.traceagainst all the testable attributes to be covered, as recorded in the
.atacfiles. Once what has and has not been covered is determined, the results are output in
report or display mode, as appropriate.

Theatactmtool manipulates the contents of a trace file. Trace files contain coverage
information for each test that has been executed. Wsagym a tester can list, rename,

3-8

User’'s Manual ATAC: Overview

.
prog.c —W |ATAC compiler
B
I
— a.out
—_,__F_
S -
or
—_— T
xatac Display

Figure 3-6 Key inputs and outputs during program instrumentation, test execution and
coverage analysis

extract, delete, or assign cost to individual tests. ATAC permits the coverage achieved by
arbitrary subsets of tests to be compared and computes minimal size and cost subsets of
tests achieving the same coverage as the entire test set. A tester may use these tools to
manage a test set during testing and later compact it without reducing coverage. This
approach reduces the cost of any regression testing to be performed in the future.

Although ATAC provides a large number of options for varying the form and content of

the information reported, defaults have been chosen so that few options are required to use
the basic features. Complete details of the ATAC commands and options appear later in this
guide.

3.5 What Will Using ATAC Cost You?

Programs compiled with ATAC will execute more slowly and use more memory than they
normally do. The effect on execution time varies among programs depending upon the
nature of the computation and the size of the traceddepute-boungrocesses are more
severely effected thdfO-boundprocesses. Performance degradation can range from less
than one, to several times the normal execution time. Most programs do not experience

3-9

User’'s Manual ATAC: Overview

severe affects, but, in any case, performance degradation is only present during testing with
ATAC. After testing, the program should be recompiled without ATAC to obtain

maximum execution efficiency. The affect of this is insignificant in most testing
environments. However, in some time dependent applications a change in timing behavior
may effect the execution of the program. There are means of reducing performance
degradation, as discussedSaction 5.1.3Selectively Instrumenting SoftwgtgNIX) or

Section 5.2.3Selectively Instrumenting Softwa/indows).

Using ATAC will also require additional disk space. This need arises from three sources:
the increased size of the instrumented executable to be tested, the creatiactfités

during compilation, and the creation afracefile during test execution. The instrumented
executable is approximately twice the size of a non-optimized, non-instrumented
executable program. Eaditacfile is at least as large as its correspondafie. The size

of the.tracefile generated during testing is a function of the total number of testable
attributes to be covered and the size of the test set. When trace file compression is used, the
.tracefile grows very little unless a test actually improves coverage, in which case its
growth is proportional to what is covered. Omitting trace file compression reduces test
execution time but makes thteacefile grow more quickly, thereby costing additional disk
space. Uncompressdtacefiles can become rather large over time.

3.6 How Does ATAC Fit into the Development Process?

ATAC is primarily designed as a tool to support unit testing. That is, ATAC is to be used

by developers in testing individual program units, or integrated collections of program
units, within the development environment. The idea is to test each of the “software parts”
that make up a software product because constructing a system out of components that are
thoroughly tested results in a high quality software product.

The view that ATAC is a unit testing tool used by individual developers is largely one of
practicality, but this need not always be the case. All the software components of an entire
product can be instrumented and tested at the same time, if the product is of appropriate
size. Also, some projects might designate a team of one or more individuals to coverage
test all or part of the source code produced by its developers. Typically, it is most efficient
for the author of a piece of software to do the coverage testing. This is because developing
test cases that improve coverage is easier if one is very familiar with the source code under
test. However, there is some flexibility in how ATAC is used to best satisfy the testing
requirements and resource limitations of a given project.

ATAC is not generally perceived as a system testing tool because system test focuses on
verifying the behavior of software features, not on exercising constructs within the source
code. Furthermore, it is likely that a system is too large and/or system testers have
insufficient knowledge of a product’s architecture to effectively perform coverage testing.

3-10

User’'s Manual ATAC: Overview

Nevertheless, if the resources are available, it may be beneficial to instrument all or part of
a product’s source code using ATAC, and then run its system test suite. This provides a
means of determining the overall code coverage of the system test suite.

3-11

User’s Manual ATAC: Setting Up Your Execution Environment

Chapter 4
ATAC:

Setting Up Your Execution Environment

This chapter discusses how to set up your execution environment in order to use, or modify
the behavior of, ATACSection 4.Iprovides general information and describes the
environment variables which are common to UNIX and Windows platfdserstion 4.2
describes variables specific to the UNIX environm8ettion 4.3locuments variables

specific to Windows users.

4-1

User’s Manual ATAC: Setting Up Your Execution Environment

4.1 Common Environment Variables

ATAC components make use of a number of environment variables. The role played by
each of these variables and the specific ATAC components that make use of their values
are discussed below.

Some of these variables are seyésor no. For these variablesff, false f, n, and,0 are
equivalent tono; on, true, t, y, and non-zero numbers are equivalegewupper and lower
case are not distinguished.

4.1.1 ATAC_BLOCKONLY

When a test is run, ATAC records data for a number of types of coverage(den 3.3,

What Does ATAC DQ2?For very large programs it may be necessary to restrict run-time
recording to reduce the execution time and disk spac&gsamn 3.5\What Will Using

ATAC Cost Youy?If ATAC_BLOCKONLI® set toyesat run-time, ATAC will only record

data for block coverage and weaker coverage types. Zero is displayed for other coverage
types. Tests run with this option set can be identified imthetm -Llisting by theB flag
(see.Section 7.1Listing Test Cas@s

4.1.2 ATAC_COMPRESS

In order to save disk space, atac instruments the program under test to compress the
trace file after each test execution. WBAC_COMPRES#riable may be used to
suppress compression completely or to compress periodicalJAE_ COMPRESS set

to nowhen the program is executed, trace file compression is suppressed. If
ATAC_COMPRESS set to an integer, the trace file will be compressed after
approximately everm test executions. A trace file can be explicitly compressed using
atactm regardless of whether or ®fTAC_COMPRESS set.

4.1.3 ATAC_COST

If ATAC_COShas a numeric value it will be assigned as the execution cost of the test case.
Test case costs are used by ATAC to compute a minimal testaet) or a cost
effective orderingdtac -S. The default value AATAC_COSTis 100.

4-2

User’s Manual ATAC: Setting Up Your Execution Environment

4.1.4 ATAC_DIR

By default, trace data is written to a file in the current directo&TKC_DIRis set it is
the path name of the directory in which trace data is written. HoweVeFAC TRACE
(seeSection 4.1.7ATAC_TRACEis set to a fully qualified path nam®&TAC_DIRis not
used.

4.1.5 ATAC_TEST

Each program execution results in named test information being appended to the trace file.
The default test name is the base name of the trace file. A nhumeric suffix is appended to
each test name in order to make it unique (a:grdcount.1wordcount.2wordcount.3.

If ATAC_TESTis set, its value is used as the test name. The test name must be less than
1024 characters long, composed of alpha-numeric characters, comma, period, at-sign, and
underscore, and must not begin with a digit. Other characters in the test name are replaced
by question mark, except that slash is replaced by colon and hyphen is replaced by the
pound sign.

4.1.6 ATAC_TMP

While a test is running, ATAC stores coverage data in a temporary file. The default
directory on UNIX is theusr/tmpdirectory. On Windows, the default is
%SystemRoot%\TEMIBr Windows 95, an@&SystemDrive%\TEMPr Windows NT.
WhenATAC_TMRSs set, it is the path of the directory in which the temporary files will be
written. The temporary file is written Eppendmode. On some systems, appending to a
file on a networked file system is very slow. For this reason, it is recommended that
temporary files be written to a directory on a local disk. Normally, temporary files are
removed when test execution completes. (Ss#ion 4.1.2ATAC_COMPRES&nd
Chapter 7ATAC: Managing Your Test Casges

4.1.7 ATAC_TRACE

By default, trace data is written to a file nanpedg.tracewhereprog is the name of the
program executable. A TAC_TRACEHs set, it is the name of the file to which the trace data
will be written. If the name does not end with thrace suffix, the suffix is appended.

4-3

User’s Manual ATAC: Setting Up Your Execution Environment

4.1.8 ATAC_UMASK

ATAC_UMASKis always set to 0 for Windows. This means that global read/write
permission is allowed. On UNIX, when a trace file is created, it is given the same read/write
permissions as the directory in which it is created. This is important when multiple
processes run by different owners will be writing to the same trace file, so that the write
permissions on the trace file are not restricted to processes with the same owner as the
process that first created the trace file. If it is necessary to further restrict access to the trace
file, the ATAC_UMASKariable may be set. THeTAC_UMASKariable values function

the same as in the standard UNIX environment.

4.2 UNIX Only Environment Information

ATAC components make use of the following additional environment variables on UNIX:
ATAC_NOTRACE, ATAC_SIGNAL, ATAC_TEST_FILE,PATH andTERMOf these,
only thePATHvariable must be set.

On UNIX, all of the variables that are significant at run-time may be set at link time or when
atac_env_creatds run (se€section 5.1.4Linking with 1. The values set at link time
become defaults which may be overridden at run-time.

4.2.1 ATAC_NOTRACE

If ATAC_NOTRACEHS set, no trace file is created. This option may be useful when it is
necessary to run an instrumented program without creating a trace file.

4.2.2 ATAC_SIGNAL

Normally, a test case consists of a complete execution of a program. In some situations, a
single program execution may represent multiple test cases. The program can indicate the
start of a new test case by calligigic_restart() This requires that the code be modified to
include this call, and that the call be removed when ATAC is not Ae8IC_SIGNAL

provides an alternate way of indicating the start of a test ca8€AIE_SIGNALIs set to

a UNIX signal name or number, ATAC will start a new test case each time the specified
signal is received by the program under test. The signhal name must be a standard UNIX
signal name (e.@IGINT). TheSIG prefix is not required and upper and lower case are

not distinguished. The signal number may be any valid signal number for your system.

4-4

User’s Manual ATAC: Setting Up Your Execution Environment

4.2.3 ATAC TEST FILE

If ATAC_TESTis not set andTAC_TEST_FILE is the name of a readable file, the
contents of the first line of that file is used as the test name. This facility is useful when it
is not possible to vary the value of tR€éAC_TESTvariable at run-time. In this case the
ATAC_TEST_FILE variable may be set at link-time to the name of a file that may be
modified at run-time to contain the test name.

4.2.4 PATH

When running ATAC component tools or programs compiled atdlg, thePATHvariable
should include the bin directory containing ATAC component tools (refer to your shell’s
manual entry for more details). The component tools requiratheiib be found in the
PATHsearch. This permits ATAC user-layer components to locate ATAC library
components, and also permits you to execute each component from the command-line
without having to enter its absolute path name. Programs compiledtedttequire that
atactmbe found in thd®’ATHsearch at run-time in order to compress the trace file (see
Section 7.8Concerning Trace File Compressjon

4.2.5 TERM

Theatac (character-based) component requiregen@cap(or terminfg entry for the
terminal on which it is to display and highlight source code. This means thatateten
executesTERMshould be set appropriately for the terminal on which its output is to be
displayed.

4.2.6 ATACLIB

ataclib is the location of the directory containing the Toolsuite library file.

4.3 Windows Only Environment Information

The following registry variables can be set from xconfig (see Section B&gfig
(Windows only)) Although there are other variables defined in the Toolsuite registry, these
are installation options and should not be changed by the user.

4-5

User’s Manual ATAC: Setting Up Your Execution Environment

4.3.1 ATAC CL

ATAC_ClLis the root of the Microsoft Visual'C directory subtreeATAC_CLis set
automatically bykconfigat installation or through thé-ind Compilet control on the
xconfigdialog.

4.3.2 ATAC_ICC

ATAC_ICC is the root of the IBM VisualAge directory subtréd AC_ICC is set
automatically bykconfigat installation or through thé-ind Compilef' control on the
xconfigdialog.

4.3.3 ATAC_LIB

ATAC _LIB is the location of the directory containing the Toolsuite library files.

4.3.4 ATAC_BIN

ATAC_BIN is the location of the directory containing the Toolsuite executables.

4.3.5 ROOT

ROOTis the base directory of the Toolsuite installation.

4.3.6 DEFINE

DEFINE specifies extra default definitions not provided bydhexeor icc.execommand
processor for C code. THEEFINE variable contains a semicolon-separated list of
preprocessor definitions. For exampd; FINE=-DWIN32=1;-DX86=TRUE;-
DFPUBUG=FALSEis a legal format. Default empty.

4-6

User’s Manual ATAC: Setting Up Your Execution Environment

4.3.7 DEFINEPP

DEFINEPPfunctions the same &EFINE only for C™. Default empty.

4.3.8 VERSION

VERSIONprovides information about the current release of the Toolsuite software, in
terms of its underlyingSuds release number.

4-7

User’s Manual ATAC: Instrumenting Your Software

Chapter 5

ATAC:
Instrumenting Your Software

Instrumentation of the software to be tested is performed by executing the compile and link
commands with ATACATAC analyzes and instruments code and submits it to the C or
C** compiler. This chapter discusses how to instrument the software under test with
ATAC. UNIX users should reafection 5.1|nstrumenting on UNIXWindows users

should proceed t8ection 5.2|nstrumenting on Windows

5-1

User’s Manual ATAC: Instrumenting Your Software

5.1 Instrumenting on UNIX

5.1.1 Basic Instrumentation

To compile with ATAC, remove all previously created object files and executable files you
intend to build. Then compile the software as you normally would, but prefix the compile
command withatac. For example, to compile an executable calleddcountfrom two

source filesvc.candmain.g enter the following:

prompt:> atac cc -0 wordcount wc.c main.c

In addition to creating the executable prograardcountand the object filesic.oand

main.o, ATAChas created the filagc.atacandmain.atac. ATACreates aatacfile for
each.cfile it compiles. These files contain static coverage information used in test analysis.
It is possible to restrict instrumentation and the collection of coverage information to
selected source files (s8ection 5.1.3Selectively Instrumenting Software

5.1.2 Integrating with Makefiles

If your existing Makefiles make use of the CC macro, it is easy to integrate the use of
ATAC with make When invokingmaketo build a target, simply redefine CC to be
ATAC,as follows:

prompt:> make CC= "ataccc "
In the case of th&ordcountprogram, the output for a typidsllakefilemight look like this:
atac cc -c wc.c

atac cc -c main.c
atac cc -o wordcount wc.0 main.o

5.1.3 Selectively Instrumenting Software

If you only need coverage measures for a portion of your software contained in selected
source files, it is unnecessary to compile the remaining source files with ATAC. Because
compilation with ATAC increases execution time, memory use, and object code size, (see

5-2

User’s Manual ATAC: Instrumenting Your Software

Section 3.5What Will Using ATAC Cost Yolit may be advantageous to use ATAC only
on source files for which coverage measures are required.

You can limit coverage analysis of your software by selectively instrumenting specific
source files. Only those source files that have been compiled with ATAC are instrumented,
and only instrumented portions of the software collect trace information during test
execution. This is accomplished through separate compilation, which ATAC supports in
the same manner as. Simply compile all source files to be instrumented &ttt ccand

all remaining source files with the standard C compiler, then link the object files. Linking
must be performed bgtac ccso that the proper run-time library is included in the
executable. For example, we can manually instrumverttand leavenain.c untouched by
entering:

prompt:> rm *.0 wordcount

prompt:> atac cc -c wc.c

prompt:> cc -c main.c

prompt:> atac cc -0 wordcount wc.0 main.o

Alternatively, we can accomplish the same thing using the existing Makefile by doing the
following:

prompt:> make clean

prompt:> make main.o
prompt:> make CC= "ataccc "

Note that it is not possible to selectively instrument functions within a given source file,
except as described 8ection 6.7/mproving Execution Speed and Saving Disk Space

At times you may lose track of which object files or executable files were compiled with
ATAC. Theatacidcommand may be used to identify files compiled with ATAC. For
example, do the following for theordcountprogram:

prompt:> atacid wc.o main.o wordcount | fgrep ATAC

If none of the files were compiled with ATAC, no lines are printed.

5.1.4 Linking with Id

Theatac cccommand invokekl, the standard UNIX linker, to link the object modules
comprising an executable. If desired, you may explicitly invatiae Idto customize this
linking step. In this way, object files created waifac ccmay be linked with object files
and libraries created by other means.

5-3

User’s Manual ATAC: Instrumenting Your Software

The command line options fatac Idare the same as flat. A program linked in this way
outputs trace information to the fiteout.trace wherea.outis the name of the executable
file created byatac Id If the -0 progoption is used to explicitly name the resulting
executable, then the trace file generated is ngmegltrace To compile ATAC-specific
object files prior to its link stagatac Idinvokescc. After this ATAC-specific
preprocessing has been completddc Idthen invokedd to link all object files. The use
of another C compiler may be substituted forahheommand, and the use of another linker
may be substituted fdd.

The following commands compilgc.cusingatac ccandmain.cusingcc. The resulting
object files are then linked to buidordcount

prompt:> atac cc -c wc.c
prompt:> cc -¢c main.c
prompt:> atac Id -o wordcount /usr/lib/crt0.0 wc.o main.o -Ic

It is also possible to generate an ATAC instrumented executable without using a compiler
to do the link.

The explanation is most easily understood by an example. Let us use the same wordcount
program as used before for the illustration. To begin, create a directory, cd to it and copy
the contents of the directory in which the tutorial files are installed into the new directory.
There should be twofiles: main.candwec.g and a Makefile. You can compile the

wordcount program withtacby entering:

prompt:> make CC= "atac cc
This is the same as:

prompt:> atac cc -g -C wc.c
prompt:> atac cc -g -c main.c
prompt:> atac cc -g -0 wordcount wc.0 main.o

However, you are not required to wseto make the link. Instead of running the third
command aboveyou can use a link editor suchld$o generate the executable. To do so,
you must first run:

prompt:> atac_env_create
to create an atac environment fisggc_env.pin the same directory where
atac_env_creates invoked. Then you need to provide the standard C libriy ¢r any

customized C libraries which are essential for your programs. Note that the exact order of
these supporting libraries may vary depending on your environment. In addition, you need

5-4

User’s Manual ATAC: Instrumenting Your Software

to supply the ATAC run time routin@tac_rt.g in order for the executable to be able to
collect the execution trace. Given all these, the command you should use looks like:

prompt:> Id -0 wordcount wc.o main.o “ataclib/atac_rt.o
atac_env.o /usr/lib/crt0.0 -Ic

After a test execution, the trace information is savedlont.traceinstead of
wordcount.tracaunless ATAC_TRACE is set otherwise.

5.1.5 Suppressing Instrumentation of Include Files

In C and C* programs, source files included with #iacludedirective may contain
executable code. By default, ATAC instruments executable code in include files unless the
include file came from a system header file. The default definition of a system header file,
in this context, is any include file referenced with a complete path name (starting with a /)
or found in the include search list in a directory with a complete path name whose path
name does not start with the user’'s home directory.

Include files that have been instrumented with ATAC will appear in the coverage summary
by source file display. Suppressing instrumentation of seléutidie filesmay be

desirable either to improve run-time performance or to remove those files from the
coverage summary by source file. To modify the definition of a system file, edit the file
called$HOME/.atac/cc.iniwherecc is the compile command. If this file does not exist,
copy it from ataclib*/init/cc.ini, wherecc is the compile command. (To make an

installation change, maodify the file iataclib*/ini directly.) If this file does not exist either,
copy from ataclib’/init/comp.inj wherecompis the name of any similar compiler.

There should be a line in this file that begins with “INCLUDE=" (If not, add one). The
value of the INCLUDE parameter is a space separated list of include path prefixes where
each path prefix is preceded Hy-J, or -S. Source files beginning with a prefix preceded

by -1, as well as source files not beginning with any prefix on the list, are treated as user
files and are instrumented. Source files beginning withr -S are treated as system files

and are not instrumented. Source files beginning with a prefix precedgdimtreated as

C include files included into T (appropriate externC” code is inserted before

compilation).

Modify the INCLUDE parameter to specif$ for the path or path prefix for include files
that you do not want instrumented.

For example:

5-5

User’s Manual ATAC: Instrumenting Your Software

To augment the initial definition of a system include file to exclude files from directories
/usr/noshaandmynoshoeand to exclude any file in the current directory starting dighu
might use:

INCLUDE="-S/usr/nosho/ -S./mynosho/ -S./Z -I$3HOME -J/usr/include -S/"

It is important to put theSfor files under your home directory before tH BHOME entry;
otherwise the files would matefSHOME first and would not be considered system files.

5.2 Instrumenting on Windows

5.2.1 Basic Instrumentation

To compile with ATAC, remove all previously created object files and executable files you
intend to build. Then compile the software as you normally would, prefixing the compile
command with ATAC. These commands are:

If you use the IBM C compiler:

prompt:> ataclCC /Fewordcount.exe main.c wc.c

If you use the Microsoft C compiler:

prompt:> atacCL /Fewordcount.exe main.c wc.c
In addition to creating the executable prograardcount.exand the object filew/c.obj
andmain.obj ATAChas created the filegc.atacandmain.atac. ATACreates aatacfile
for each.cfile it compiles. These files contain static coverage information used in test

analysis. Itis possible to restrict instrumentation and the collection of coverage information
to selected source files (sBection 5.2.3Selectively Instrumenting Software

5.2.2 Integrating with Makefiles

If your existing makefiles make use of the a macro specifying a C'ocd@npiler, it is
easy to integrate the use of ATAC witmake Execute the command #Appendix A-10,
Compiling with atac - IBM compileif you are using the IBM compiler éppendix A-
11, Compiling with atac - Microsoft compil#éryou are using the Microsoft compiler. The
output associated with these commands is included.

5-6

User’s Manual ATAC: Instrumenting Your Software

5.2.3 Selectively Instrumenting Software

If you only need coverage measures for a portion of your software contained in selected
source files, it is unnecessary to compile the remaining source files with ATAC. Because
compilation with ATAC increases execution time, memory use, and object code size, (see
Section 3.5What Will Using ATAC Cost Yolit may be advantageous to use ATAC only

on source files for which coverage measures are required.

You can limit coverage analysis of your software by selectively instrumenting specific
source files. Only those source files that have been compiled with ATAC are instrumented,
and only instrumented portions of the software collect trace information during test
execution. This is accomplished through separate compilation with the installed compiler.
Simply compile all source files to be instrumented by prefixing your compileratath

and all remaining source files with your installed C compiler, then link the object files.
Linking must be performed bgtaclCCor atacCLso that the proper run-time library is
included in the executable. For example, we can manually instruvcerdnd leave
main.cuntouched by entering:

If you use the IBM C compiler:

prompt:> del *.obj wordcount.exe

prompt:> ataclCC /c wc.c

prompt:> icc /c main.c

prompt:> ataclCC /Fewordcount.exe wc.obj main.obj

If you use the Microsoft C compiler:

prompt:> del *.obj wordcount.exe

prompt:> atacCL /c wc.c

prompt:> cl /c main.c

prompt:> atacCL /Fewordcount.exe wc.obj main.obj

Alternatively, we can accomplish the same thing using the existing makefiles by first
executing the clean command for your compiler, as fourgpendix A, Platform
Specific Informationthen executing the following two commands, as appropriate for your
compiler:

If you use the IBM C compiler:

prompt:> nmake -f makefile_ibm main.obj
prompt:> nmake -f makefile_ibm CC=ataclCC wordcount.exe

5-7

User’s Manual ATAC: Instrumenting Your Software

If you use the Microsoft C compiler:

prompt:> nmake -f makefile_msc main.obj
prompt:> nmake -f makefile_msc CC=atacCL wordcount.exe

Note that it is not possible to selectively instrument functions within a given source file,
except as described $ection 6.7|mproving Execution Speed and Saving Disk Space

5.2.4 Building Executables with Installed Linkers

It is possible to generate an ATAC instrumented executable without using a compiler
command to do the link.

The explanation is most easily understood by an example. Let us use the same wordcount
program as used before for the illustration. To copy these files, create a new directory, cd
into it, and copy the contents of the directory in which the tutorial files are installed into the
new directory. There should be twdiles: main.candwc.g and a makefile. You can
compile the wordcount program widttac by executing themakecommand for your
setup, as specified lippendix A, Platform Specific Information
This is the same as:

If you use the IBM C compiler:

prompt:> ataclCC /c wc.c main.c
prompt:> link /Fewordcount.exe wc.obj main.obj <ataclib>\dllatacrt.lib

If you use the Microsoft C compiler:

prompt:> atacCL /c wc.c main.c
prompt:> link /Fewordcount.exe wc.obj main.obj <ataclib>\dllatacrt.lib

where <ataclib> represents the directory printed byatae libcommand.

5.2.5 Suppressing Instrumentation of Include Files

In C and C* programs, source files included with #iacludedirective may contain
executable code. By default atac instruments executable code in include files unless the
include file comes from a list of partial pathnames contained in the registry. The default list
suppresses header files whose pathnames begin with a disk drive identifier that contains the

5-8

User’s Manual ATAC: Instrumenting Your Software

current compiler. For example if a compiler is installe€ M BMCPPW then any header
files beginning withC: in #includestatements will not be instrumented.

Include files that have been instrumented with atac will appear in the coverage summary
by source file display.

Suppressing instrumentation of seledterlude filesmay be desirable either to improve
run-time performance or to remove those files from the coverage summary by source file.
Thexconfigutility contains an entry named “NO_INSTRUMENT” that may be modified

at any time. The “NO_INSTRUMENT" list is a series of partial path names separated by
semicolons. Any pathname of a header file that begins with one of the partial pathnames in
the “NO_INSTRUMENT?" list is not instrumented. Pathnames to suppress are selected by
case-sensitive string matching so upper and lower case entries for the same header file
name may be necessary.

5.3 Common Instrumentation Options

5.3.1 Code Inside Macros

When uncovered testable attributes exist inside a preprocessor macro expansion, ATAC
display components highlight the macro name and arguments within the original source
code. Normally, blocks other than the first block inside a macro expansion are not counted
or displayed. It is assumed that the tester does not expect complete coverage of each macro
at each invocation. These blocks may be counted usiragabeJoption.

5.3.2 Marking Code for Selective Reporting

In a program there is often code that is not normally intended to be executed because it
handles unexpected error conditions or it implements unsupported features or debugging
options, etc. By default, ATAC includes this code in coverage displays. If the programmer
does not intend to test this code, coverage displays that include this code may be distracting
and, possibly, misleading.

The programmer may identify this code by inserting a NOTTESTED comment in the code
indicating that it is not to be included in coverage computations. The comment should also
indicate the reason the code does not need to be tested. The recommended format of the
comment is:

5-9

User’s Manual ATAC: Instrumenting Your Software

/* NOTTESTED: reason */

where reason is one of:

» unsupported -- The code implements a feature that is not supported and therefore
does not need to be tested.

» debug -- The code implements debugging aids which are not intended to be used
in the field.

» logic-error -- The purpose of the code is to report a logic error whenreached. The
programmer believes that the conditions for executing this code cannot occur and
therefore it cannot be tested.

» system-error -- The purpose of the code is to report a system error when reached.
The programmer believes that the conditions for executing this code can only
occur if there is an error in the operating system, or a system library. It therefore
cannot be tested.

« caller-error -- The purpose of this code is to report an error in the usage of this
function, such as incorrect parameters passed. Since there are no intentional mis-
uses of the function, it is not possible to test this code.

» data-error -- The purpose of this code is to report invalid data passed by another
part of the system. Since the other parts of the system have been designed to pass
valid data, it is difficult to test this code.

Note that code that tests for user errors, input errors, or common system errors (e.g. write
failed due to disk full) should be tested and should not be identified by the NOTTESTED
comment. In general, code should be marked by the NOTTESTED comment only if an
error in that code will not be considered an error in the system either because the code will
never be executed, or the code will only be executed in a situation where failure is
acceptable.

In addition to the NOTTESTED comment, ATAC supports the NOTREACHED comment
used by the lint program. The NOTREACHED comment is intended to be used for code
that cannot be reached in the flow of the program. (E.g. code followétgra statement.)

The NOTTESTED comment may be inserted anywhere in the code that a comment is
allowed. ATAC will not report coverage for the block containing the comment (or the next
block if the comment is outside any block) nor for any following block that can only be
reached by passing through that block. If the NOTTESTED comment appears outside of
any subroutine, ATAC will not report coverage for the subroutine following the comment.

For example in the progradiEcho.c

5-10

User’s Manual ATAC: Instrumenting Your Software

/* dEcho program */
int dFlag, dCount;
/* NOTTESTED:debug */

dBug()
{
if (dFlag)
printf(“D: %d\n”, dCount);
}
main(int argc, char *argv[])
{
inti;
for (i=1;i<argc; ++i) {
++dCount;
if (Istrcmp(argv[i], “-d”)) { /*NOTTESTED:debug */
dFlag = 1;
}
else printf(*%s *“, argvli]);
}
putchar(‘\n’);
dBug();
return O;
}

Coverage is not reported for the entire dBug function nor fodfegy = 1 statement.

The-T option of theataccommand may be used to include code marked NOTTESTED in
the coverage computation. THR option may be used for code marked NOTREACHED.
For example the block coverage on the program above before any tests are run is given by:

prompt:> atac -s -mb dEcho.atac
% blocks

0(0/8) == total ==
When the-T option is given, blocks marked NOTREACHED are included:

prompt:> atac -s -mb dEcho.atac

% blocks

0(0/12) == total ==

The-mT option of theataccommand may be used to include a separate column for
coverage on code marked NOTTESTED. TimR option of theataccommand may be

used for code marked NOTREACHED. For example the NOTREACHED, NOTTESTED,
and other block coverage on the program above before any tests are run is given by:

5-11

User’s Manual ATAC: Instrumenting Your Software

prompt:> atac -s -mRTb dEcho.atac
% NOTREACHED % NOTTESTED % blocks

100(0) 0(0/4) 0(0/8) == total ==

The same options may be used to view covered or non-covered code marked NOTTESTED
or NOTREACHED.

These commands may be useful for determining how frequently the NOTTESTED and
NOTREACHED comments have been used, and whether code was executed that was not
expected to be tested.

5.4 Compilation and Link Errors

When a program fails to compile or link with ATACheck that it compiles and links

without errors using your installed compiler (RefeAmpendix A, Platform Specific
Informationfor the specific commands to execute.) If the same command line arguments
are used, a program that compiles and links without errors using a standard compiler should
compile and link without errors under ATAC, with the following exceptions:

» ATAC considersonst enum signedvoid, andvolatileto be keywords as required
by the ANSI C standald ATAC does not support the use of these keywords as
identifier names.

e ATAC does not support the ANSI C emptyuct/uniondeclaration to clear the
definition of astruct/uniontag. These declarations are ignored.

* ATAC does not support anachronistic C constructs that may be present in pro-
grams written before 1977. These constructs, sueh @astead ofr= and
int X 6; instead of int x=6;, are still supported by some compilers.

» Spaces inside assignment operators sugh=asnstead ofr= are not supported
by ATAC.

e ATAC does not supposdtruct/unionmember names used in association with a
struct/unionin which they were not declared.

» ATAC may not support extensions to the C language such as in-line assembler
code, syntax variations, etc. (It does support Microsoft and IBM language exten-
sions for C and €".)

» Some C compilers do not consider identifier names significant beyond the sixth
character position. ATAC considers the whole name significant. As a result,
ATAC may detect misspelled variable names that are not detected by these com-

1. American National Standard for Information Systems - Programming Language C, Document Number X3J11.

5-12

User’s Manual ATAC: Instrumenting Your Software

pilers.

In most of these cases, ATAC will issuparse failed message and fail to compile the
program.

After preprocessing and data-flow instrumentation of a source program, ATAC passes the
modified program to the standard C compiler. Errors from the standard C compiler may
indicate an error in ATAC (e.g., during instrumentation) or in the standard C compiler.

A program compiled with ATAC must be linked with ATAC. If linked with the standard
compiler, the linker will issue a message indicating an undefined external symbol named
aTaC43or _aTaC43because the required run-time library has not been included in the
executable.

5-13

User’s Manual ATAC: Executing Software Tests

Chapter 6

ATAC:

Executing Software Tests

When a program that has been compiled with ATAC is executed, in addition to its normal
output, it generates coverage information that is appended to a trace file. The information
within this file is later used byATAC and ATAC to produce coverage displays and

reports. This chapter discusses how to manipulate the trace file and identifies problems that
might occur during test execution.

6-1

User’s Manual ATAC: Executing Software Tests

6.1 Naming the Trace File

By default, execution of a program compiled with ATAC creates the tragarditetrace

in the current directory, wheprog is the name of the executable program under test. The
name of this executable is specified to the ATAC compiler using the appropriate command-
line option (se&ection 5.1.1,Basic InstrumentatioqUNIX) or Section 5.2.1Basic
Instrumentation(Windows)). If left unspecified, the executable created is nantwedand

the trace file is nameal.out.trace If the executable file is later renamed, the name of the
trace file to which it appends information at run-time remains unchanged. However, the
name of this file name can be overridden by settindh\ih®C_TRACEenvironment

variable to the desired trace file name before the next test is executed.

An ATAC trace file name ends with the extensitrace.If this extended name is not
specified and thATAC_TRACEnvironment variable is setracewill automatically be
appended to the name set in 81AC_TRACEenvironment variable. The trace file name
may not begin with a hyphen.

The trace file may be written in a directory other than the current directory by setting the
ATAC_DIRenvironment variable with a path to the desired direc®PAC _DIRmay be
set to either an absolute or relative path.

6.2 Trace File Compression

When a test case is run on a program instrumented with ATAC, trace information is
collected in a temporary trace file. A reference to this temporary trace file is appended to
the “master” trace file. By default, ATAC compresses the trace file after each test
execution.To save execution time at the expense of some disk space, automatic trace
compression can be disabled by setting the environment vaiidbleé_ COMPRESS8Nno

prior to program execution. In addition, the frequency of compression can be set to
approximately every files by setting the value to an integerTo restore automatic trace
compression after each test execution, unseat#eC_ COMPRESSwironment variable

or set it toyes (SeeSection 4.1.2ATAC_COMPRESHFIt should be noted that the
compressed trace file format used by ATAC is not the same as that used by general purpose
file compression tools.

6.2.1 Forcing Trace File Compression

Whenever thd\TAC_COMPRESShironment variable is set o, it is advisable to
periodically force trace file compression between test executions. This will prevent the
trace file from growing too large.

6-2

User’s Manual ATAC: Executing Software Tests

In addition, if the nature of a program or a set of tests is such that many executions exit
abnormally (e.g., via receipt of a signal), the trace file may not be compressed prior to
program exit. In this case, trace file compression should periodically be forced even if
ATAC_COMPRES#%s not been set.

If invoked with a.tracefile as it's argument, thatactmcommand performs trace file
compression (segection 7.8Concerning Trace File CompressjoiThis offers a simple
way to force trace file compression, regardless of whether or nAIAE COMPRESS
environment variable is set. For example, involatartmas follows:

prompt:> atactm wordcount.trace

forces the compression wlordcount.trace

6.3 Temporary Trace Files

The temporary trace file is normally created in the /usr/tmp directory. This can be
overridden by setting th&@TAC_TMRenvironment variable before linking or running the
instrumented program. On some systems performance will suffer if the temporary trace file
is written to an NFS mounted file system.

The temporary trace file will not be incorporated into the master trace file if:
» TheATAC_COMPRESShvironment variable is set @oor no.

* The instrumented program terminates abnormally.

» The master trace file is locked. The master trace file may be locked for the follow-
ing reasons:

— The trace file is being compressed by another program.
— The trace file is being browsed with the graphical interface.

— The lock file was not deleted due to a previous abnormal termination of the
graphical interface or thetactmcompression tool.

» Thereis not enough disk space available to incorporate the temporary trace file into
the master trace file.

e The temporary trace file is not readable (e.qg. the file system is not mounted) at the
time the compression tool is run.

The temporary trace file will be automatically incorporated into the master trace file except
under the conditions listed above.

6-3

User’s Manual ATAC: Executing Software Tests

6.4 Trace File Locking

A trace file must be locked to prevent concurrent attempts to compress or edit the trace file
(e.g. withatactm) and to permit the graphical interface to process concurrent trace file
changes efficiently.

The lock is a file in the same directory as the trace file with the same name as the trace file
except that therace suffix is replaced withAElock

If the lock file exists or cannot be created (due to directory permissions), tools that did not
create the lock cannot edit or compress the trace file. In addition, if the graphical interface
cannot create the lock and test cases are still running, the whole trace file will have to be
reread every time thdJpdatée button is selected.

Normally the lock file is automatically deleted by the tool that created the lock. If the tool
terminates abnormally, the lock file may not be deleted. The lock file may be deleted
manually.

Note that locking is not needed to prevent trace file corruption. If it becomes necessary to
“force” a lock, due to apparent failure of it's owner, the resulting trace may become
incomplete but will not become corrupted.

6.5 Trace File Permission

In the Windows environment, permissions are generally not an issue because of the single-
user nature of the setup. If you are working in a multi-user Windows environment, check
with your system administrator regarding file security. It is notable that the ownership of a
trace file changes to the last user who compressed it.

In the UNIX environment, the master trace file is created with the same read/write
permissions for user/group/other as the directory it is created in. Compression will preserve
the read/write permissions on the trace file.

Temporary trace files are created with the same permissions as the trace file that points to it.
For example, if the directory the trace file is created in is readable and writable by user and
group (0770), the trace file and temporary trace files are created readable and writable by
user and group (0660) when a test is run by anyone in the group. The same trace file may
be appended and/or compressed by anyone in the group.

If the ATAC_UMASIenvironment variable is set before linking or execution, it should be
set to an octal number from O to 0666. The value is used to restrict the permissions on the

6-4

User’s Manual ATAC: Executing Software Tests

trace file. E.qg. if the directory to contain the trace file has permissions 0775 and
ATAC_UMASIKs 026 then the trace file is created with permission 0640.

Note that the ownership of the trace file changes to the last one who compressed it. This
shouldn’t matter as long as the permissions for group or other permit reading and writing.

Note also, that if a directory has the “sticky bit” set, files can be deleted from the directory
only by the owner (regardless of file and directory permissions). This bit is often set on /
tmp and /usr/tmp so that people can't delete each others temporary files even though
everybody can write the directory. If this bit is set on the directory where ATAC is putting
the temporary trace files, and there are multiple users writing to the same trace file, during
compression, some of the temporary trace files will not get deleted. When this happens,
atactmtruncates the files to size zero to save disk space and as an indication that the file is
no longer needed.

6.6 Parallel Test Execution

ATAC supports parallel test execution. When multiple instances of a program instrumented
with ATAC are executed in parallel, writing to the same trace file, ATAC will maintain
separate trace data for each in the trace file.

6.7 Improving Execution Speed and Saving Disk Space

Programs compiled under ATAC execute more slowly, require more memory, and occupy
more disk space than when compiled with the standard C compile3gsgen 3.5What

Will Using ATAC Cost Yo)?The time required for program execution may be reduced, at

a cost of some disk space, by not compressing the trace file between each test execution. If
automatic trace file compression is turned off, it is advisable to periodically force
compression in order to reduce the size of the trace file&Sseien 6.2.1Forcing Trace

File Compression

The impact of ATAC on execution speed and disk space may also be reduced by limiting
the scope of coverage analysis to a subset of the source files in the program under test (see
Section 5.1.3Selectively Instrumenting SoftwakgNIX) or Section 5.2.3Selectively
Instrumenting Softwar@Vindows)). Using this approach, normal program performance

only degrades while executing code within the source files compiled with ATAC. Coverage
analysis of an entire software system is obtained by combining the results of executing
identical tests on a number of source file subsets, each selectively instrumented in a
complementary manner.

6-5

User’s Manual ATAC: Executing Software Tests

If testing is being conducted in a network environment where remote file systems are being
accessed from a file server, execution time may also be reduced by directing the trace file
to a file on a local disk (segection 6.1Naming the Trace File This eliminates network

file access time when writing to the trace fileAIFAC_TMPis set, it should also point to

a directory on a local disk (s&ection 4.1.6ATAC_TMB.

Execution time may also be reduced by restricting the amount of detail in the coverage data.
In particular, if only block coverage data is needed, execution time may be reduced by
settingATAC_BLOCKONLY yes(seeSection 4.1.1ATAC_BLOCKONLY.

Under certain circumstances, there may be a section of code for which normal execution
speed is critical, even at the cost of missing coverage data. If these sections are identified,
ATAC will omit instrumentation in them. These sections will be counted as code that has
not been covered. To identify code for which normal execution speed is critical, insert the
word TIMECRITICAL in a comment preceding the section of code. After the section of
code, insert the worNOTTIMECRITICAL in a comment. For example thiy_audio

function that follows must copy audio data to the output device as fast as possible to avoid
gaps in the sound.

play_audio(file_in, audio_out)

{ .
int n;
char *buf[8000];
while (1) {
/* TIMECRITICAL */
while (buf_level(audio_out) < HIGH_WATER){
n = read(file_in, buf,8000);
if (n==0)
return;
write(audio_out, buf, n);
}
[* NOTTIMECRITICAL */
usleep(100000);
}
}

To omit these sections from the ATAC summary counts and coverage displays atae the
-Y option. To count or view only these sections usethe -mYoption.

6-6

User’s Manual ATAC: Executing Software Tests

6.8 Explaining Run-Time Errors

A program compiled with ATAC should exhibit behavior identical to the same program
compiled with the standard C compiler, with the following exceptions:

» The program compiled with ATAC will create or append to a trace file (see
Section 6.1Naming the Trace File

e The program compiled with ATAC will execute somewhat more slowly than the
original program. If the program is timing sensitive, this may cause other behav-
ioral differences (seBection 3.5What Will Using ATAC Cost Yowahd
Section 6.7)mproving Execution Speed and Saving Disk Space

» The ATAC run-time routine usemalloc for memory allocation. Programs that
allocate memory in a manner that is not compatible mahoc may not execute
properly with ATAC.

* Programs that appear to behave correctly sometimes contain memory violations
which, by chance, do not interfere with program execution (e.g., accessing unallo-
cated memory locations). When ATAC is used, these violations may begin to inter-
fere with program execution and result in program failure. Conversely, memory
violations that would normally result in program failure may be masked when
using ATAC.

6-7

User’s Manual ATAC: Managing Your Test Cases

Chapter 7

ATAC:

Managing Your Test Cases

When a program is compiled with ATAC, coverage information is appended to a trace file
each time the resulting executable is tested. This information records the time of test case
execution, what is covered, and the occurrence of any abnormal conditions (e.g., trace file

corruption). This chapter discusses how to manage your test cases by manipulating the
contents of the trace file.

7-1

User’s Manual ATAC: Managing Your Test Cases

The contents of an ATAC trace file are not in human-readable form. However, the ATAC
trace managegtactm can be used to manipulate its conteAtactmcan list, rename,

extract, delete, and assign cost to test cases. Each of these operations can be qualified to
apply to a selective subset of test cases within a trace file. Listing test cases is a display
operation. Renaming, deleting, or assigning cost to tests can either be performed in-place,
effecting the existing trace file, or the results can be directed to a new trace file. Extracting
one or more test cases means to select and copy them to a new trace file. For a synopsis of
atactmusage, see its manual page entripendix B.5, atactmit should be noted that

some, but not all of the functionalitiesatbctmare available i ATAC.

7.1 Listing Test Cases

A list of all the tests represented in a given trace file is obtained usidgthk command-
line options. For example, assuming that four test cases have been executed against the
wordcountprogram, invokingatactmonwordcount.tracawith the-l option:

prompt:> atactm -| wordcount.trace

yields an abbreviated list of, in this case, default test nameS¢s&en 7.3Naming Test
Casesfor more details):

wordcount.1 wordcount.2 wordcount.3 wordcount.4
Alternatively, invokingatactmonwordcount.tracewith the-L option:
prompt:> atactm -L wordcount.trace

yields a longer, more informative, list of test case information:

12/25/97-09:53:45 0:00:01 4.0 100 ---------- wordcount.1
12/25/97-09:53:50 0:00:01 4.0 100 ---------- wordcount.2
12/25/97-09:53:57 0:00:00 4.0 100 ---------- wordcount.3
12/25/97-09:54:02 0:00:00 4.0 100 ---------- wordcount.4

Using-l can be convenient in conjunction with shell scripts to aid in performing actions on
large numbers of test cases. Usibgrovides more information. The test list contains six

or seven columns for each test providing the execution date-time and duration of the test,
the version of ATAC used, a user-assigned test cost (the default is 100), test trace attributes
(---------- for none), the test name, and the uncompressed trace file if applicable.The
significance of test cost is discussed in3setion 7.6Assigning Cost to Test Cases

7-2

User’s Manual ATAC: Managing Your Test Cases

The possible trace attribute values are:

» B, indicating that the test was run for block coverage data onh\s@se®n 4.1.1,
ATAC_BLOCKONLY

* ¢, indicating that test information has been corrupted

* C, indicating that the test was started or ended by a cathto restarf)
» f, indicating that execution count information is missing

* F, indicating that the process callfmtk in uninstrumented code

* i, indicating that some coverage may have been lost in a signal handler routine due
to interruption of user level code

* m, indicating that an uncompressed trace file is missing
* M, indicating that the process ran out of memory during the test
* N, indicating that the test was started by a calbtk

* O, indicating that the test ended by callfiogk, or that one or more object files
were compiled with an obsolete versioratdic

* 1, indicating that the test is apparently still running

* R,indicating that the test started or ended by receipt of a signal (UNIX only, see
Section 4.2.2, ATAC_SIGNAL

e S,indicating that the ATAC runtime routine encountered errors during this test

» T, indicating that the process could not create a trace file for this test

e U, indicating that the data for this test has not been compressed

* V, indicating that one or more object files were compiled with an obsolete version
of atac.

Like the othemtactmoperations, test cases can be selectively listed by using &imel-x
command-line options along with tHeor -L options.The use of these options in selecting
specific test cases is discussedattion 7.2Selecting Test Cases

7.2 Selecting Test Cases

Atactmoperates on the information within a trace file corresponding to one or more test
cases. The supported operations (e.g., list, rename, delete, etc.) can be performed on all
tests, or selectively, on a subset of the existing tests. This is achieved usingytien to

select the tests on which the operation is to be applied. For example, assume the same four
tests as listed iBection 7.1Listing Test Casgfave been executed againstwmedcount
program. The first two of these tests are listed by entering:

7-3

User’s Manual ATAC: Managing Your Test Cases

prompt:> atactm -l -n wordcount.1 -n wordcount.2 wordcount.trace
which results in the following output:
wordcount.1 wordcount.2

Notice that multiplen arguments may be submitted on a single command-line. In such a
case, the union of all the tests named are selected. Tests can also be named using wild card
characters. These wild cards are the same as those used by the UNIX-like command
processor in naming filgg, ?, [...]). So, entering the appropriate command below:

prompt:> atactm -l -n ‘word*.[1-2] wordcount.trace (UNIX)
or
prompt:> atactm -l -n word*.[1-2] wordcount.trace (Windows)

results in the same listing as the previous example. In some cases, quote marks may be
needed to prevent the shell from expanding the test names as file names.

Sometimes it is necessary to select all tests other than those that have been narred. The
option is used to select the compliment of all tests specified using one or more instances of
the-n option. For example, entering:

prompt:> atactm -l -x -n ‘word*.[1-2]' wordcount.trace (UNIX)
or
prompt:> atactm -| -x -n word*.[1-2] wordcount.trace (Windows)

lists the third and fourth test cases, which were excluded from the output of the previous
examples:

wordcount.3 wordcount.4

7.3 Naming Test Cases

By default, tests are namptdbg.n whereprog is the base name of the trace file arid a

number starting at 1. Unique numeric values are appended to all test names so that two tests
never have the same name in a given trace fileS8egon 7.1Listing Test Casgdor an

example listing of default test names.

A test can also be named explicitly by settingAf&C_TEST environment variable to

the test name prior to execution (Smxtion 4.1.5ATAC_TES]. Valid test names consist
of letters, digits, and underscores. As with default test names, a numeric suffix is added to

7-4

User’s Manual ATAC: Managing Your Test Cases

the name automatically to make it unique (a numeric suffix should not be specified in the
value ofATAC_TEST). For example, testingordcountby entering:

prompt:> ATAC_TEST=empty wordcount empty (UNIX)
or

prompt:> set ATAC_TEST=empty

prompt:> wordcount empty (Windows)

results in the creation of a new test case nasngoty.] as shown by thé listing:

wordcount.1 wordcount.2 wordcount.3 wordcount.4 empty.1

7.3.1 Renaming Test Cases

An existing test can be renamed using-theption ofatactm For example, assume the
wordcounttestswordcount.lthroughwordcount4 are respectively designed to test each of
the legal command-line options f@ordcount These options arv, -c, -, and-?. A more
meaningful set of test names can be providedbrdcount.tracéy entering the following
series of commands:

prompt:> atactm -r w_option -n wordcount.1 wordcount.trace
prompt:> atactm -r ¢c_option -n wordcount.2 wordcount.trace
prompt:> atactm -r |_option -n wordcount.3 wordcount.trace

prompt:> atactm -r g_option -n wordcount.4 wordcount.trace

Now listing the test cases representeddndcount.tracaesults in:

w_option.1 c_option |_option.1 g_option.1 empty.1
The-r option specifies the new test name, while-theption selects the old test to be
renamed. A group of tests may also be renamed using wild cards, multiple instances of the
-n option, or thex option to name the old tests (s&ection 7.2Selecting Test Case®r
more details). For example, to rename the tests from the last example so their names are all
related, enter:

prompt:> atactm -r option_test -n "*_option.* wordcount.trace (UNIX)
or

prompt:> atactm -r option_test -n *_option.* wordcount.trace (Windows)

Listing the test cases represented/grdcount.tracenow results in:

7-5

User’s Manual ATAC: Managing Your Test Cases

option_test.1 option_test.3 empty.1
option_test.2 option_test.4

Note that, to guarantee uniqueness, a differesuffix has been appended to the new test
name for each test case. Make sure that only the desired test names match when using wild
cards, otherwise multiple test cases can be unintentionally renamed.

7.3.2 What's in a Name?

ATAC supports the notion of a test case as a collection of trace information associated with
a single program execution. Furthermore, ATAC provides a set of operations that can be
selectively applied to each test case’s trace information. However, ATAC has no concept
of how a specific test case is intended to test a program, nor does ATAC manage test case
setup, inputs, or outputs.

Test names are what link ATAC trace information with the test plan for a program. It is
important to name test cases so that it is possible to identify what they are designed to test,
what setup is required to make them run, where their inputs and outputs are located, and so
on. While executing tests, the tester should keep track of all the required information and
map it to the appropriate ATAC test names. Descriptive test case names may facilitate this
process. Doing so will help to make tests repeatable and facilitate test set minimization (see
Section 11.2Test set minimization via a character-based user inteyféoth of which aid

in regression testing.

7.4 Extracting Test Cases and Merging Trace Files

Test cases can be selectively extracted from an existing trace file and copied to a new trace
file using the-e command-line option. Extracting test cases copies data to a new trace file
without deleting those test cases from the original trace file. For example, trace information
for the test case namedbrdcount.lis copied fromwordcount.traceand placed in

new.traceby entering:

prompt:> atactm -e -n option_test.1 -0 new.trace wordcount.trace
The-n and-o options are required in order to select the test case(s) of interest and specify
their destination. In addition, thg argument may optionally be used (S&tion 7.2,

Selecting Test CagedNote that, ihew.tracealready exists, it is overwritten and will now
only contain test casgordcount.1

7-6

User’s Manual ATAC: Managing Your Test Cases

Atactmmay be used to merge trace files. To merg@.traceandwordcount.tracento
merge.traceenter:

prompt:> atactm -o merge.trace wordcount.trace new.trace

In this casemerge.tracenow contains two copies of the first test case: the copy from
wordcount.tracewhich is namedption_test.Jand the copy fromew.tracewhich has

been renamedption_test.5Note that tests with the same name are renumbered to insure
that two test cases do not have the same name -tf tption is omitted, the first trace file

is overwritten by the merged trace file.

7.5 Deleting Test Cases

From time-to-time, it may become necessary to delete trace information corresponding to
specific test executions. This may occur if the program under test is modified (see
Section 7.7Dealing with Source Code Modificatigns

Deleting an entire trace file discards the trace information for all tests whose executions are
recorded in that file. Alternatively, trace information can be selectively discarded by
invoking atactmwith the-d command-line option. For example, trace information for the
test case nameslordcount.lis deleted fronwordcount.traceby entering:

prompt:> atactm -d -n wordcount.1 wordcount.trace
The-n option is required to select the test case(s) to be deleted, amcatijement may
optionally be used (segection 7.2Selecting Test Casedlternatively, the result after
deleting testvordcount.lfrom wordcount.tracas placed imew.traceby entering:
prompt:> atactm -d -n wordcount.1 -0 new.trace wordcount.trace
When the-o option is used, the trace fieordcount.traceemains unchanged.néw.trace

already exists, it is overwritten and will now contain all test casesidcount.trace,
except forwordcount.1

7.6 Assigning Cost to Test Cases

ATAC associates a cost with each test case. By default, all tests are given an initial cost of
100. However, invokingtactmwith the-c command-line option allows the cost of each

test to be selectively reassigned any non-negative value. This value is determined by the
user and should reflect the relative difficulty and expense of executing the test case.

7-7

User’s Manual ATAC: Managing Your Test Cases

Depending on the nature of the program under test, this may be a function of execution
time, tester time, test setup time, or other factors. For example, assume that a large file
called/etc/termcaps submitted to thevordcountprogram and this test is nanmiedmcap.
Furthermore, assume we regard this test to be twice as expensive to run as the default test
case. We can reassign the coseofmcapas 200 by entering:

prompt:> atactm -c 200 -n termcap wordcount.trace

The-n option is required in order to select the test case(s) of interest. In additien, the
argument may optionally be used for selection &asion 7.2Selecting Test Casgs
while the-o argument may optionally be used to place the results in a new trace file.

The cost assignments of one or more test cases can be selectively displayed by invoking
atactmusing theL command-line option (se&kection 7.1Listing Test Casg@sATAC uses

these cost assignments to minimize the size of a test set based upon the relative cost and
coverage characteristics of individual test casesyseton 11.2Test set minimization via

a character-based user interfgce

7.7 Dealing with Source Code Modifications

If a source file is modified while testing is underway, ATAC's list of what needs to be
covered within the file becomes out-of-date (Seetion 3.4How Does ATAC WorR?

This source file must be recompiled and the program under test relinked using the ATAC
compiler. Furthermore, test cases must be rerun because they may be out-of-date in relation
to the new executable program.

It may not be convenient or cost-effective to repeatedly recompile after each source code
maodification. If recompilation is deferred pending additional changes, it is suggested that
you make the modifications to source file copies, rather than the actual files originally
compiled with ATAC. If the originals are modified, ATAC may no longer be able to
display highlighted code fragments correctly. Warning messages signaling this are issued
if an attempt is made to display code fragments within a file modified more recently than
any of its trace information. However, the highlighted code fragments are still displayed in
the event that minor code changes will not misalign the display too much. This permits
coverage testing and display activities to continue prior to recompilation and in the face of
minor source code changes, without copying files or rerunning previous test cases.

When you rebuild the program under test you should delete the old trace file or the affected
tests. If you forget to do this and begin to execute tests, you should either delete all test
cases run prior to the rebuild (seection 7.5Deleting Test Casgser extract all test cases

run since the rebuild and overwrite the trace file &asgion 7.4Extracting Test Cases and
Merging Trace Files Otherwise, ATAC tools may output error messages identifying

7-8

User’s Manual ATAC: Managing Your Test Cases

obsolete test cases. For example, afterdcountsource filemain.cis substantially
modified andvordcountrebuilt, execution of the command:

prompt:> atac -s -n option_test.1 main.atac wordcount.trace
would result in the following message being printed and no output produced:

error: main.c differs substantially in test option_test.1
(12/24/97-15:25:39) from main.atac (12/25/97-13:04:38)

If the change appears to be inconsequential, the error is reduced to a warning and output is
produced. If the change only affects spaces and comments, no error or warning is issued.

7.8 Concerning Trace File Compression

Trace file compression discards all redundant trace information within a trace file. If two
distinct test cases overlap in terms of coverage, all trace information that redundantly
records this coverage for each test case is consolidated and shared between the tests. This
tends to reduce the size of the trace file. Moreover, if trace file compression is performed
after each test execution, other than a small entry recording that a test has been run, the trace
file only grows if a test case actually improves coverage.

Each timeatactmis invoked, if any options other thadrand-L are specified, including no
options, the trace file is automatically compressed. For examplaciimis invoked on
wordcount.traceas follows, compression will occur:

prompt:> atactm wordcount.trace

This feature is useful, under certain conditions, as a means of forcing trace file compression
(seeSection 6.2Trace File Compressign

7-9

User’s Manual ATAC: Generating Summary Reports

Chapter 8

ATAC:

Generating Summary Reports

When a program is compiled witttag, a.atacfile is generated for each instrumented

source file, and coverage information is appended to a trace file each time the compiled
executable is tested. Eagltacfile contains a list of what should be covered when testing

its corresponding source file. The trace file records what has actually been covered during
testing.xATAC uses the same facilities as does ATAC in reporting testing results,

therefore the presentation of summary reports for ATACEIAC are merged in this

chapter. This chapter discusses how to generate reports using these files that summarize the
current level of code coverage and what each test case has contributed to this coverage.
Such reports provide a high-level view of how a test is progressing and the relative
contribution of each test case to the software testing effort.

8-1

User’s Manual ATAC: Generating Summary Reports

The character-based interfaegac,accepts various command-line options, one or more
.atacfiles, and a trace file as inpataccompares what should be covered in a given source
file to what has been covered and outputs its findings in a variety of ways. cimmand-

line option is used to generate summary reports. Additional arguments are used along with
-sto further specify the contents and format of a report. For a synodscafsage, see

its command reference pagesiippendix B.2

In the graphical interfac@ ATAC, on the other hand, summary report selections are made
by posting the Summary menu and selecting the relevant entry with the help of the
mouse.Theatacand.tracefiles may be specified either on the command line or added later
during axATAC session using theFile” menu.

8.1 Generating Coverage Summaries

To invokeatacin summary generation mode, use theommand-line option. For
example, assume that therdcountprogram discussed Dhapter 2has been executed
only against the following three tests:

prompt:> wordcount -| empty
prompt:> wordcount -w empty
prompt:> wordcount -c empty
Then a summary of the current level of code coverage is obtained by entering:

prompt:> atac -s main.atac wc.atac wordcount.trace

The summary report generated looks like this:

% blocks % decisions % C-Uses % P-Uses

67(34/51) 49(17/35) 51(47/92) 42(13/31) ==total ==

This report indicates that, throughout all source files making upandcountprogram,
67% of all blocks (34 of 51), 49% of all decisions (17 of 35), 51% of all c-uses (47 of 92),
and 42% of all p-uses (13 of 31) have been covered.

The corresponding summary in the graphical interface is obtained by clicking on the
"Summarybutton in the top button bar and selecting tinetypé entry from the summary

menu that pops urigure 8-1 shows the resulting display. In any discussion involving
XATAC through out this chapter, we will assume that the three test cases mentioned above
have been executed apdTAC has been invoked using the following command:

prompt:> xatac main.atac wc.atac wordcount.trace

8-2

User's Manual ATAC: Generating Summary Reports

File Tool Options Summary TestCases Update GoBack Help

4 hy-type -, by-file -, by-function

overall cowerage summary by type owver selected testcases

. function_entry 3 of 3 1005%|
% block 34 of 51 _
-« decision 17 of 3h
o O_use 47 of 92
s p_use 13 of 31

YATAC | 35 T

Figure 8-1 Coverage summary by type

Note thatyATAC displays the percentages as a bar chart. Each bar is actually made up of
two bars, one contained inside the other. The length of the outer bar represents the
maximum possible (100%) coverage for the corresponding measure and that of the inner
bar represents the actual coverage attained so far for that measure. As the actual coverage
increases, the length of the inner bar increases accordingly.

Both ATAC andxATAC use standard rounding in reporting results except that 100%
coverage and 0% coverage are treated as special cases. No result is ever rounded up to
100% or down to 0%. Also, whereas ATAC rounds percentages to whole nux#es;

rounds them to their first decimal places.

8.2 Selecting What to Summarize

As mentioned earlier, ATAC uses various command-line options to specify the summary
format, and(ATAC uses various menus for the same purpose. You can break down the
summary information by file, by function, or by test case.

User’s Manual ATAC: Generating Summary Reports

8.2.1 By File

In the character-based interface, a coverage summary broken down by source file is printed
using the.g command-line option. Assuming that the test casé&seofion 8.lhave been
executed, a per source file coverage summary fovtiidcountprogram is printed by

entering:

prompt:> atac -sg main.atac wc.atac wordcount.trace

The summary report generated looks like this:

% blocks % decisions % C-Uses % P-Uses source file

76(29/38) 70(16/23) 53(39/74) 69(11/16) main.c
38(5/13) 8(1/12) 44(8/18) 13(2/15) wc.c
67(34/51) 49(17/35) 51(47/92) 42(13/31) == total ==

This right most column indicates whether the coverage levels presented correspond to
main.¢ wc.q or the union of all the source files presented. Note thagtbemmand-line
option cannot be used along with theommand-line option (se&ection 8.2.2By

Function).

In the graphical interface, a per file summary is obtained by selectingyttiée" entry of

the summary mentrigure 8-2 shows the per file summary after the three tests mentioned
above have been executed. Files listed in tBarfimary window can be sorted in

different ways. Clicking onSort_by in the middle button bar and selecting theame’

entry will sort files by name in alpha-numeric order. Tmeaith_covered

“ percentage_covergd" num_uncovered and “ percentage_uncoveréentries sort

files by the number or percentage of testable attributes covered or uncovered, respectively,
according to the currently selected coverage type. The entmn‘‘total _unit$ sorts files

by the total number of testable attributes with respect to the currently selected coverage
type. The ‘default_ordet selection performs the sort according to the orderdtecfiles
occurred on the command line; and the entlgrit_sort preserves the current state of the
sort allowing new information to be appended to the end.

Clicking with the right mouse button on a file label that is currently selected deselects it,
andvice versaClicking with the left mouse button oDisable’ and selecting the

“ Disable all .h file§ or ** Disable all source filésentry will deselect allh or sourcefiles,
respectively, whereas thé&ehable all .h files or *“ Enable all source filésentry will re-
select all.h or sourcefiles, respectively.

In the character-based interface the per-file summary includes information about all four
coverage types; however, in the graphical interface, it includes information only about the
currently selected coverage type. WR&TAC is first invoked, block coverage is selected

by default. To see the per-file coverage for another coverage type, e.g., decision coverage,

8-4

User's Manual ATAC: Generating Summary Reports

File Tool Options Summary TestCases Update GoBack Help

~ by-type 4 by-file -, by-function Disahle Sort_by ‘

hlock cowerage summary by file ower selected testcases |

¢ main.c 29 of 38 ?5.3%-

total ‘ 34 of 51 | 66. 75
ATAC Coverage: Files: Test cases:
x block 2 of 2 3 of 3

Figure 8-2 Block coverage summary by file

click on the Options button in the top button bar and select the corresponding coverage
entry in the options menu that pops Ejgure 8-3 shows the Options menu and

Figure 8-4 shows the per-file decision coverage summary after selectingdbision
coverageé entry of the options menu.

8.2.2 By Function

A code coverage summary broken down by function is printed usin§dbmmand-Iline
option in the character-based interface. Assuming that the test c&magion 8.lhave
been executed, a per function coverage summary fovdhdcountprogram is printed by
entering:

prompt:> atac -sf main.atac wc.atac wordcount.trace

8-5

User’s Manual

ATAC: Generating Summary Reports

File Tool

+~ by-type % by-file -, by-function

“ function entry coverage
“hlock cowverage

decision coverage
“¢_use coverage

“p_use coverage

¥ show
<+ show
“~ show
“~ show

“ show

all prioritized
highest weight
nonzero weight
zero weight

zero and nonzero weight

Figure 8-3 TheOptionsmenu

options

Sunmmary TestCases pdate GoBack

Disable

Help

Sort_by ‘

decision coverage sunmary by file ower selected testcases

¢ main.c 16 of 23 69. 64
ATAC Coveradge: Files: Test cases:
x decision 2 of 2 3 of 3

Figure 8-4 Decision coverage summary by file

8-6

User's Manual ATAC: Generating Summary Reports

The summary report generated looks like this:

% blocks % decisions % C-Uses % P-Uses function

70(21/30)
100(8)
38(5/13)
67(34/51)

59(10/17)
100(6)
8(1/12)

49(17/35)

50(35/70) 50(5/10) main
100(4) 100(6) print
44(8/18) 13(2/15) count
51(47/92) 42(13/31) ==total ==

This right most column indicates whether the coverage levels presented correspond to
main print, count or the union of all functions presented. Note thatftltemmand-line
option cannot be used along with tgecommand-line option (seg&ection 8.2.1By File).

In the graphical interface, the per function coverage summary is obtained by selecting the
"by functioni entry of the summary menkigure 8-5 shows an example. Functions listed

File Tool options Sunmary TaestCases Update GoBack Help

~ by-type -, by-file 4 bhy-function file name Disable Sort_by ‘

decision coverage summary by function owver selected testcases |

wain.cimain 10 of 17 58. 8%
main.c:print b of 6 100%'
total | 1of3s | 0. e[
ATAC Coverage: Functions: Test cases:
x decision 3 of 3 3 of 3

Figure 8-5 Decision coverage summary by function

in the “Summary window can be sorted in different ways. Clicking dBdtt_by in the
middle button bar and selecting theame' entry will sort functions by name in alpha-
numeric order. The Hum_covered “ percentage_covergd” num_uncoverédand

8-7

User’s Manual ATAC: Generating Summary Reports

‘“ percentage_uncoveréentries sort functions by the number or percentage of testable
attributes covered or uncovered, respectively, according to the currently selected coverage
type. The entry fium_total_unit$sorts functions by the total number of testable attributes
with respect to the currently selected coverage type. Be#atlt_ordet selection

performs the sort according to the orderatécfiles on the command line; and the entry
“dont_sort preserves the current state of the sort, allowing new information to be
appended to the end.

Clicking with the right mouse button on a function label that is currently selected deselects
it, andvice versaClicking with the left mouse button obisablé’ and selecting the

“ Disable all function entry will deselect all functions, whereas th&rfable all

functions' entry will re-select all functions.

Function names in theSummary window can be displayed with or without the
corresponding file name. Clicking with the left mouse buttorfite ‘hamé and selecting
the “include file nam@entry will have the file name included, whereas thextlude file
name’ entry excludes the file name.

Unlike the character-based interface which includes all coverage types and all functions in
all specified files in the per-function summary display, the graphical interface shows the
coverage statistics only for the currently selected coverage type. As in the case of the per-
file summary display, a different coverage type may be selected by choosing the
corresponding entry in theOptions menu.

8.2.3 By Test Case

In the character-based interface, theommand-line option may be used along with the
-soption to generate reports that summarize coverage on a per test case basis. Assuming
that the test cases B&ction 8.lhave been executed, a per test case coverage summary for
thewordcountprogram is printed by entering:

prompt:> atac -sp main.atac wc.atac wordcount.trace

The summary report generated looks like this:

% blocks % decisions % C-Uses % P-Uses test

59(30/51) 34(12/35) 42(39/92) 32(10/31) wordcount.1
59(30/51) 34(12/35) 42(39/92) 32(10/31) wordcount.2
59(30/51) 34(12/35) 42(39/92) 32(10/31) wordcount.3
67(34/51) 49(17/35) 51(47/92) 42(13/31) ==all==

This right most column indicates whether the coverage levels presented correspond to
wordcount.1, wordcount.2, wordcountds,the union of all test cases presented.

8-8

User's Manual ATAC: Generating Summary Reports

In the graphical interface, the per test case summary is obtained by clicking on the
“TestCase€sbutton on the top button bdrigure 8-6 shows the per test case summary after

File Tool Options Summary TestCases Update GoBack Help

Disable Sort_by

decision cowverage summary by testcase

wordcecount. 1 12 of 35 34.3%

wordcount . 2 12 of 35 34.33%

wordcount . 3 12 of 35 34.3%

total ‘ 17 of 35 48. 6%

YATAC

Test cases:
3 of 3

Coverage:

decision

Figure 8-6 Decision coverage summary by test case

executing the three tests mentione8éttion 8.1As in the case of per file and per function
display, the per test case display also shows coverages only for the currently selected
coverage type. But unlike the per function display, the per test case display shows the
coverage achieved by each test case over all source files, not just the currently selected file.

Clicking with the right mouse button on a test case label that is currently selected deselects
it, andvice versaClicking with the left mouse button obisablé’ and selecting the

“ Disable all tests entry will deselect all tests, whereas thErfable all testsentry will
re-select all tests. The entrydisable zero coverage testwill disable tests which do not
contribute any coverage with respect to the currently selected coverage type.

Clicking on “Sort_by in the middle button bar and selecting theame’ entry will sort

tests by name in alpha-numeric order. Tineifth_coveredentry sorts tests by the number
of testable attributes covered with respect to the currently selected coverage type. The entry

8-9

User’s Manual ATAC: Generating Summary Reports

“ default_ordeY sorts tests according to the order in which they were executed, and the
entry “dont_sort preserves the current state of the sort, allowing new information to be
appended to the end.

8.3 Restricting Summary Information

It is possible to restrict the information included in a summary by the character-based
interface in many ways. Restrictions are made by controllingthefiles submitted in the
argument list and using various command-line options. The graphical interface does not
offer any additional facilities for restricting the summary display besides those discussed
in Section 8.2Selecting What to SummariZdne options discussed within this section may
be used together freely.

8.3.1 By File

The coverage summary generatedatacis limited to thoseatacfiles submitted in the
argument list. For example, the per function summary generaBstion 8.2.2s limited
to those functions imain.cby entering:

prompt:> atac -sf main.atac wordcount.trace

The summary report generated looks like this:

% blocks % decisions % C-Uses % P-Uses function

70(21/30) 59(10/17) 50(35/70) 50(5/10) main
100(8) 100(6) 100(4) 100(6) print
76(29/38) 70(16/23) 53(39/74) 69(11/16) == total ==

8.3.2 By Function

An atacsummary is limited to a selected set of functions usingRltemmand-line
option. For example, the per function summary generatg8ddtion 8.2.2s limited to the
functionsmainandcountby entering:

prompt:> atac -sf -F main -F count main.atac wc.atac wordcount.trace

8-10

User’s Manual ATAC: Generating Summary Reports

The summary report generated looks like this:

% blocks % decisions % C-Uses % P-Uses function

70(21/30) 59(10/17) 50(35/70) 50(5/10) main
38(5/13) 8(1/12) 44(8/18) 13(2/15) count
60(26/43) 38(11/29) 49(43/88) 28(7/25) == total ==

Note that multiple functions may be specified by repeatingRRlogtion, and functions may

be named using wild card characters. These wild cards are the same as those used by the
UNIX-like command processor in naming filgs?, [...]). In some cases, quote marks may

be needed to prevent the command processor from expanding the test names as file names.

8.3.3 By Coverage Criteria

An atacsummary is limited to a selected set of coverage measures usiny{thedepu}
command-line option. The argumentmoselects one or more coverage measgrgsiects
function-entry coveragd, block coveragel decision coverage,c-use coverag®,p-use
coverage, and all-uses coverage (s&ection 3.3What Does ATAC Dg?or an
explanation of these measures). For example, the per function summary generated in
Figure 8-5is limited to block and decision coverage by entering:

prompt:> atac -sf -mbd main.atac wc.atac wordcount.trace

The summary report generated looks like this:

% blocks % decisions function

70(21/30) 59(10/17) main
100(8) 100(6) print
38(5/13) 8(1/12) count
67(34/51) 49(17/35) ==total ==

8.4 Additional Test Case Summaries

As mentioned irBection 8.2.3in the character-based interface, 4heommand-line

option may be used along with theoption to generate reports that summarize coverage

on a per test case basis. The character-based interface also provides various other ways to
display test case coverage summaries. If you are following the examples in the first three
sections of this chapter, clear out ttnacefile by removing it. Then execute thwrdcount

program against the following three test cases:

prompt:> wordcount -?

prompt:> wordcount empty
prompt:> wordcount < empty

8-11

User’s Manual ATAC: Generating Summary Reports

Also assumgATAC is not running and thattactmis used to rename (s&ection 7.3,
Naming Test Casgs

prompt:> atactm -n wordcount.1 -r help_test wordcount.trace

prompt:> atactm -n wordcount.2 -r empty_file_test wordcount.trace
prompt:> atactm -n wordcount.3 -r stdin_test wordcount.trace

and assign a cost (sBection 7.6Assigning Cost to Test Ca¥¢s each of these tests:

prompt:> atactm -n help_test.1 -c 10 wordcount.trace
prompt:> atactm -n empty_file_test.1 -c 20 wordcount.trace
prompt:> atactm -n stdin_test.1 -c 20 wordcount.trace

A per test case code coverage summary is obtained by entering:
prompt:> atac -sp main.atac wc.atac wordcount.trace

The summary report generated looks like this:

% blocks % decisions % C-Uses % P-Uses test

14(7/51) 11(4/35) 7(6/92) 6(2/31) help_test.1

53(27/51) 26(9/35) 38(35/92) 32(10/31) empty_file_test.1
37(19/51) 17(6/35) 18(17/92) 23(7/31) stdin_test.1
69(35/51) 40(14/35) 46(42/92) 42(13/31) ==all==

Additional arguments are available to sort or include other test case information in the
summary (se&ection B.2atad). These arguments may be used together freely.

8.4.1 Including Cumulative Coverage

Cumulative test case coverage is included in a summary usirggabeamand-line option.
For example, the following generates a cumulative summary of the test cases presented
above:

prompt:> atac -sq main.atac wc.atac wordcount.trace
The summary report generated looks like this:

% blocks % decisions % C-Uses % P-Uses test
(cumulative) (cumulative) (cumulative) (cumulative)

14(7/51) 11(4/35) 7(6/92) 6(2/31) help_test.1
63(32/51) 34(12/35) 42(39/92) 35(11/31) empty_file_test.1
69(35/51) 40(14/35) 46(42/92) 42(13/31) stdin_test.1

8-12

User’s Manual ATAC: Generating Summary Reports

With respect to block coverageeglp_test.lachieved 14 percent coverage,
empty file test.Adds an additional 49 percent coverage (total of 63%3taiml test.1

adds another 6 percent coverage (total of 69%). However, these results have been presented
as a cumulative running total. Tkepoption implies a per test case summary, segphe

option need not be explicitly included.

8.4.2 Including Test Cost

The user-assigned cost of executing each test case is included in a summary dKing the
command-line option. For example, the following generates a summary of the test cases
presented above, including test cost:

prompt:> atac -sK main.atac wc.atac wordcount.trace

The summary report generated looks like this:

cost % blocks % decisions % C-Uses % P-Uses test
10 14(7/51) 11(4/35) 7(6/92) 6(2/31) help_test.1

20 53(27/51) 26(9/35) 38(35/92) 32(10/31) empty_file_test.1
20 37(19/51) 17(6/35) 18(17/92) 23(7/31) stdin_test.1

50 69(35/51) 40(14/35) 46(42/92) 42(13/31) ==al

The-K option implies a per test case summary, sophmption need not be explicitly
included.

8.4.3 Sorting by Coverage

Test cases are sorted in order of decreasing additional coverage usBeptmenand-line
option. For example, to sort the test cases summarized above enter:

prompt:> atac -sS main.atac wc.atac wordcount.trace

The summary report generated looks like this:

% blocks % decisions % C-Uses % P-Uses test

53(27/51) 26(9/35) 38(35/92) 32(10/31) empty file_test.1
14(7/51) 11(4/35) 7(6/92) 6(2/31) help_test.l
37(19/51) 17(6/35) 18(17/92) 23(7/31) stdin_test.1
69(35/51) 40(14/35) 46(42/92) 42(13/31) ==all ==

8-13

User’s Manual ATAC: Generating Summary Reports

These test cases have been listed in order of increasing effectiveness across all coverage
measures. TheSoption implies a per test case summary, seplaption need not be
explicitly included.

The same output can also be obtained in the graphical interface by iny&eggess,
clicking on the Minimize_irf button in the middle button bar and selecting
“greedy_order(seeSection 11.4Test set minimization and prioritization via a graphical
user interfacg

8.4.4 Sorting by Cumulative Cost per Additional Coverage

Test cases are sorted in order of decreasing cost per additional code coverage 43ing the
command-line option. All costs are presented as cumulative values. For example, to
summarize the sorted cumulative cost per additional coverage for the test cases executed
above enter:

prompt:> atac -sQ main.atac wc.atac wordcount.trace

The summary report generated looks like this:

cost % blocks % decisions % C-Uses % P-Uses test
(cum) (cumulative) (cumulative) (cumulative) (cumulative)
20 53(27/51) 26(9/35) 38(35/92) 32(10/31) empty_file_test.1
30 63(32/51) 34(12/35) 42(39/92) 35(11/31) help_test.1
50 69(35/51) 40(14/35) 46(42/92) 42(13/31) stdin_test.1

This output is similar to that obtained using {B®ption, however test cost is also
considered. TheQ option implies a per test case summary, soeptmption need not be
explicitly included. Note that using th@ option is equivalent to using the option sequence
-gKS

The same output can also be obtained in the graphical interface by iny&eggess,
clicking on the Minimize_irf button in the middle button bar and selecting
“optimal_ordef (seeSection 11.4Test set minimization and prioritization via a graphical
user interfacg

8.5 Ignoring What is Out-of-Date

By default, the character-based interface issues an error message if any of a praggam’s
files have been significantly modified since a test case represented in its trace file was
executed. Maodifications which change only comments and white space in a program do not

8-14

User’s Manual ATAC: Generating Summary Reports

significantly affect theatacfiles. Other changes may affect the structure of a program and
these significantly affect thatacfiles. ATAC determines that a test is out-of-date by
comparing the check sums of source files in test casestaudiles, as appropriate (see
Section 7.7Pealing with Source Code ModificatignI he graphical interface also issues

a warning whenever it detects any test cases to be out-of-date with any source files. It also
marks the out-of-date test cases as an ‘0’ in the test case display.

If a .atacfile has been modified since the last test case was executed, you can force the
generation ohtacsummary reports using tAiecommand-line option. This will caus¢ac

to ignore out of date information although warnings may be issued. In generahghen

should be used with caution. However, it can be used to avoid re-running tests against
source code known to be unmaodified prior to the last system build. The graphical interface,
however, currently does not provide a way to force such a display.

8-15

User’s Manual ATAC: Displaying Uncovered Code

Chapter 9

ATAC:
Displaying Uncovered Code

When a program is compiled witttag, a.atacfile is generated for each instrumented

source file, and coverage information is appended to a trace file each time the compiled
executable is tested. Eagltacfile contains a list of what should be covered when testing

its corresponding source file. The trace file records what has actually been covered during
testing. This chapter discusses how to display uncovered source code using these files, a
capability that helps the tester in developing test cases to improve code coverage.

9-1

User’s Manual ATAC: Displaying Uncovered Code

9.1 Displaying Uncovered Code

ATAC offers two user interfaces: a character-based interface referredtecé®or
historical reasons), and a graphical interface referred¢8B8C. The former is invoked
using the commandtac, and the latter is invoked with the commaxatac

The character-based interfaeggac, accepts various command-line options that specify
various display selection choices besides accepting one or.atacand.tracefiles as

input. ataccompares what should be covered in a given source file to what has been
covered and outputs its findings in a variety of ways. Unless invoked in summary report
generation mode (with ths, -C, -H, -Tpr-vcommand-line options; s€hapter BATAC:
Generating Summary Repdrtatacoutputs the results of its analysis in the display mode.
Source code fragments are paged across the screen and uncovered testable attributes are
highlighted in reverse video. Additional arguments are used to further specify precisely
which testable attributes are displayed. For a synopsitaotisage, see its command
reference page iAppendix B.2, atac

If you are following the tutorial example, clear out ttracefile by removing it. Then
execute thevordcountprogram against the following four tests:

prompt:> wordcount -?

prompt:> wordcount -bad_option
prompt:> wordcount no_such_file
prompt:> wordcount empty

Now all uncovered testable attributes can be displayed using the character-based interface
by entering:

prompt:> atac main.atac wc.atac wordcount.trace

The beginning part of the display generated appedfgime 9-1 The first line of the

display informs the tester that function-entry coverage has been completely satisfied. This
line is followed by a code fragment highlighting the eight remaining uncovered blocks in
the filemain.cfollowed by some of the remaining uncovered blocks in theviile (recall

that a function call ends a block). Additional information follows in the display, but the
output appears one page at-a-time, so the tester can study it while developing test cases.

In the graphical user interfacgATAC, on the other hand, the display selections are made
by clicking appropriate menus and selecting relevant entries with the help of the mouse.The
.atacand.tracefiles may be specified either on the command line or added later during a
XATAC session. Refer t&€hapter 2ATAC: A Tutorialfor more explanatiorfigure 9-2

shows the result of invokingATAC (after moving a few lines down) using the following
command:

9-2

User’s Manual ATAC: Displaying Uncovered Code

All functions entered,

L= > main,cimain [B of 30 blocks not cowvered] lines 20 - BE {———————-—-
long tcharct = 0z
int doline = :
int doword = O
int dochar = O

FILE #File:

if farge » 1 za argelll[0] == "-") £
For (p = argelll + 1: =p: (A9
aswitchi*p) §
case "17%

casze "o}

deFault:-
fFerintfistderr, "invalid option: -Xcwn".
Pl
case 773
fputsi'usage: wc [-lwcl] [Fileslwn'.stdervi:
return 1z

t+rargyi
doline = 1
doword = 1:
dochar = 1:
3
do £
if (l=ar
1 | rdct, charct,
3
else &
file = fopenixargy. "r'"i:
if {file == HULLY £
pETTOri®argy
return 1z
L » wc,cicount [8 of 13 blocks not covered] lines 20 - 41 {-——--—-—-—-

O+

ne = 0f
while (EOF I=

-—HMore--[]

Figure 9-1 A partial display of all uncovered blocks using the character-based interface

prompt:> xatac main.atac wc.atac wordcount.trace

The source window in the middle displays the source file that corresponds to tladirst
file on the command line. All covered and uncovered blocks in the file are highlighted in

User’s Manual ATAC: Displaying Uncovered Code

File Options Summary TestCases Update GoBack Help
] case ‘w’:
doword = 1;
break;
case "¢’
dochar = 1;
break;
default:
fprintf({stderr, "inwalid option: -%c\n",
“p);
case "7?°:
fputs("usage: we [-lwe] [files]in", stderr);
return 1;
}
argv += 2;
else {
++argv;
P. doline = 1;
doword = 1;
dochar = 1;
}
do {
if {!*ar
}
——— else {
ATAC File: Line: Coverage: Highlighting:
)C main.eo 32 of 96 block prioritized

Figure 9-2 A partial display of all uncovered blocks using the graphical interface

various colors. Each color represents a certain weight. If, for instance, a block has a weight,
10, it means any test that causes that block to be covered is guaranteed tonioiveuia

of 9 other blocks or decisions as wglATAC determines these weights by doing a detailed
control flow analysis of the program. White represents zero weight and red represents the
highest weight among all blocks in the file. Thus, if a block is highlighted in white, it means
that it has already been covered by a test case and covering it again will not add new
coverage. If, on the other extreme, a block is highlighted in red, it means that it has not been
covered by any test case so far and covering it first is the most efficient way to add new
coverage to the program; it is the best way to add maximum coverage in a single program
execution.

The color spectrum chart above the source window displays the actual weights associated
with each color. The annotated scroll bar to the left of the source window displays a
thumbnail sketch of the entire file. It is very useful in quickly locating where the red blocks,
or the “hot spots,” in the file are. Clicking with the left mouse button at any spot in the scroll
bar brings the corresponding region of the file into the source window. The arrows at the
top and the bottom of the scroll bar may be used to scroll up or down the source file a few

9-4

User’s Manual ATAC: Displaying Uncovered Code

lines at a time. Alternatively, the mouse may be dragged up or down the scroll bar with the
left mouse button pressed to rapidly scroll through the file.

Test cases may be run in parallel tgfal AC session. Running a test case causes new
coverage information to be logged tdracefile. xATAC continuously monitors the

specified trace files to see if any new coverage information has been added to any of them.
If so, it highlights the Updaté' button in the top button bar to alert the tester to this fact.

The tester may then choose to click on this button to incorporate the new coverage
information in the display, or wait to do so until several other test cases have been run.

9.2 Selecting What to Display

It is possible to select the uncovered testable attributes to be displayed. In the character-
based interface, selections are made by controllingathefiles submitted on the

argument list and using various command-line options (the options discussed within this
section may be used together freely). In the graphical user inteffat&C, as mentioned

earlier, selections are made by selecting appropriate menus and the relevant entries with the
help of the mouse.

9.2.1 By File

The character-based interface only displays the uncovered testable attributes fatahose
files that are submitted on the argument list. For example, the display geneFatgnlerd-
1 may be limited to only one filenain.c,by entering:

prompt:> atac main.atac wordcount.trace

The graphical interface, on the other hand, always displays one source file at a time even
when multiple.atacfiles are specified on the command line. By default it displays the
source file that corresponds to the fiegacfile on the command line, as mentioned earlier.

A different source file may be displayed by clicking on tBerhmarybutton in the top

button bar and then selecting th®y“file” option. For eachatacfile specified on the

command linexATAC lists the corresponding source file in this window. This list can be
sorted in different ways. Clicking orsbrt_by in the middle button bar and selecting the
“name’ entry will sort files by name in alpha-numeric order. Thaufn_covered

“ percentage_covergd" num_uncovered and “ percentage_uncoveréentries sort

files by the number or percentage of testable attributes covered or uncovered, respectively,
according to the currently selected coverage type. The entmn'‘total_unit$ sorts files

by the total number of testable attributes with respect to the currently selected coverage
type. The ‘default_ordet selection performs the sort according to the orderdtefiles

9-5

User’s Manual ATAC: Displaying Uncovered Code

occurred on the command line; and the entlgrit_sort preserves the current state of the
sort allowing new information to be appended to the end.

A new file that is not listed may be added to the summary window and displayed by
clicking on the bpen .atac or source file .”.entry in the “File” menu and specifying the
name of the correspondingtacfile in the dialog box that pops up as showfrigure 9-3
(the Windows dialog box looks slightly different).

Directory: /tmp_mnt/fs/magic/usrl0/xsuds/draft-08-11/tuterial-xatac
2 main.atac
B we.atac

File name: main.atac Open
Files of type: .atac files (*.atac) Cancel

Figure 9-3 The atac file dialog box

Clicking with the right mouse button on a file label that is currently selected deselects it,
andvice versaClicking with the left mouse button oDisable’ and selecting the

“ Disable all .h file§ or “ Disable all source filésentry will deselect allh or sourcefiles,
respectively, whereas thé&ehable all .h files or ** Enable all source filésentry will re-
select all.h or sourcefiles, respectively.

9.2.2 By Function

In the character-based interface, display may be limited to uncovered testable attributes
within a selected set of functions using tRecommand-line option. For example, the
display generated iRigure 9-1may be limited to the functiomsainandcountby entering:

prompt:> atac -F main -F count main.atac wc.atac wordcount.trace
Note that multiple functions may be specified by repeatingRhaption and these
functions must be defined within ttegacfiles listed on the command-line. Functions may

be named using wild card characters. These wild cards are the same as those used by the
UNIX-like command processor in naming filgs?, [...]). In some cases, quote marks may

9-6

User’s Manual ATAC: Displaying Uncovered Code

be needed to prevent the command processor from expanding the function names
containing wild cards as file names.

The graphical interface, as mentioned earlier, always displays an entire source file in the
source window that the user can browse through using the scroll bar. Therefore there is no
direct way of limiting the source display to certain functions in the graphical interface.
Selecting the by-functiort option in the “Summary window and then clicking on a
particular function name, samain.c:main makes functiomainin main.cappear in the

source window. However, this does not prevent another fungiion,in our case, in
main.c(i.e., main.c:prin) from being displayed in the source window even though it may

be hidden due to the size of the source window. Nevertheless, you can still view the
functionprint by browsing through using the scroll bar.

Functions listed in the Summary window can be sorted in different ways. Clicking on
“Sort_by in the middle button bar and selecting theamé' entry will sort functions by
name in alpha-numeric order. Thaum_covered “ percentage_covergd
“num_uncoverétand “ percentage_uncovergentries sort functions by the number or
percentage of testable attributes covered or uncovered, respectively, according to the
currently selected coverage type. The entiyrh_total unit$ sorts functions by the total
number of testable attributes with respect to the currently selected coverage type. The
“ default_ordet selection performs the sort according to the orderticfiles on the
command line; and the entndbdnt_sort preserves the current state of the sort, allowing
new information to be appended to the end.

Clicking with the right mouse button on a function label that is currently selected deselects
it, andvice versaClicking with the left mouse button obisable’ and selecting the

“ Disable all function's entry will deselect all functions, whereas th&rfable all

function$ entry will re-select all functions.

Function names in theSummary window can be displayed with or without the
corresponding file name. Clicking with the left mouse buttorfie® ‘hamé and selecting
the “include file naméentry will have the file name included, whereas thextlude file
name’ entry excludes the file name.

9.2.3 By Coverage Criteria

In the character-based interface, display may be limited to uncovered attributes for a
selected set of coverage measure(s) usingiidcdepujcommand-line option. The
argument tem selects one or more coverage measwrsslects function-entry coverage,
b block coverage] decision coverage,c-use coverage, p-use coverage, andall-uses
coverage (segection 3.3What Does ATAC Dqg7%or an explanation of these measures).

9-7

User’s Manual ATAC: Displaying Uncovered Code

For example, the display generatedrigure 9-1may be limited to decision coverage in
main.candwc.chy entering:

prompt:> atac -md main.atac wc.atac wordcount.trace

In XATAC, the desired coverage type may be specified by clicking oropedhs button
in the top button bar and selecting the corresponding coverage type in the top half of the
menu that pops up, as showrFigure 9-4

oOptions Summary

function _entry cowerage
bhlock cowerage
decision coverage
¢_use coverage
p_use cowverage

show all prioritized
show highest weight
show nonzero weight
show zero weight
show zero and nonzero weight

Figure 9-4 The Options menu

9.2.4 By Test Case

By default,atacdisplays uncovered testable attributes after reconciling all test case trace
information recorded in a given trace file againstaa#icfiles submitted on the command-

line. You can display what has not been covered with respect to selected test cases in the
character-based interface by using-héest nameommand-line option. For example,

assume the four tests presented at the beginning of this chapter have been executed against
thewordcountprogram. Any testable attributes not covered by the first two of these tests

are displayed by entering:

prompt:> atac -n wordcount.1 -n wordcount.2 main.atac wc.atac wordcount.trace

Notice that multiplen arguments may be submitted on a single command-line. In such a
case, the union of all the tests named is selected. Tests can also be named using wild card
characters. These wild cards are the same as those used by the UNIX-like command
processor in naming filgg, ?, [...]). So, entering:

prompt:> atac -n 'wordcount.[1-2]' main.atac wc.atac wordcount.trace

9-8

User's Manual ATAC: Displaying Uncovered Code

results in the same listing as the previous example. In some cases, quote marks may be
needed to prevent the command processor from expanding the test names as file names.

Sometimes it is necessary to select all tests other than those that have been narred. The
option is used to select the complement of all tests specified using one or more instances of
the-n option. For example, entering:

prompt:> atac -x -n ‘wordcount.[1-2]' main.atac wc.atac wordcount.trace

displays any testable attributes not covered by the third and fourth test cases, excluded from
the output in the previous examples.

As in the character-based interface, the graphical interface also takes all test cases into
consideration by default while determining any uncovered testable attribut&sy(sex9-
5). Clicking with the right mouse button on a test case label that is currently selected

File Options Summary TestCases Update GoBack Help

Disable Sort_by

block coverage summary by testcase

wordcount . 1 7 of b1
wordcount . 2 8 of hl
wordcount . 3 9 of H1
wordcecount . 4 27 of 51
total ‘ 35 of 51 68. 65
ATAC Coverage: Test cases:
x block 1 of 4

Figure 9-5 A test case display

deselects it, andce versaClicking with the left mouse button oDisable’ and selecting
the “Disable all tests entry will deselect all tests, whereas thErable all testsentry

User’s Manual ATAC: Displaying Uncovered Code

will re-select all tests. The entryDisable zero coverage testwill disable tests which do
not contribute any coverage with respect to the currently selected coverage type.

Tests listed in the TestCaseswindow can be sorted into different orders. Clicking on
“Sort_by in the middle button bar and selecting theaime’ entry will sort tests by name

in alpha-numeric order. Thenim_coveredentry sorts tests by the number of testable
attributes covered with respect to the currently selected coverage type. The entry

“ default_ordet sorts tests according to the order in which they were executed, and the
entry “dont_sort preserves the current state of the sort, allowing new information to be
appended to the end.

9.2.5 All Uncovered Testable Attributes

By default, after performing the required analysis, the character-based interface only
displays those uncovered testable attributes that are covered by a weaker measure (see
Section 3.3What Does ATAC Dg%or a discussion concerning the relative strength of
coverage measures). For instance, supposgdhdcountprogram contains an uncovered
block that is also part of an uncovered decision. Only the uncovered block will be displayed
by atac and the uncovered decision will be omitted from its output (because it is a stronger
coverage measure). This is to avoid repeatedly displaying multiple uncovered testable
attributes, each involving the same source code constructs.

You can force the display of all uncovered testable attributes, whether they are covered by
a weaker measure or not, using theommand-line option. For example, assume the four
tests presented at the beginning of this chapter have been executed agaiotdbent
program. Enter the following to force the display of all uncovered testable attributes:

prompt:> atac -a main.atac wc.atac wordcount.trace
The graphical interface, on the other hand, always displays all uncovered testable attributes
whether or not the corresponding weaker measures are covered. This is because, unlike the
character-based interfaggd TAC displays all covered and uncovered attributes “in place”

in the source file and ignoring uncovered attributes not covered by a weaker measure will
not reduce the size of the output the user has to scroll through.

9.3 Ignoring What is Out-of-Date

By default, the character-based interface issues an error message if any of a pratgam’s
files have been significantly modified since a test case represented in its trace file was

9-10

User’s Manual ATAC: Displaying Uncovered Code

executed. Se€hapter 8.5lgnoring What is Out-of-Datfor more information about how
ATAC handles these situations.

9.4 Using Underscoring Rather Than Highlighting

The source code fragments output by the character-based interface are larger than the
uncovered testable attributes being displayed. This is to provide the tester with sufficient
context to identify and understand what needs to be covered within the program itself.
Within these source code fragmertag by default, identifies the testable attributes of
interest by highlighting them. This approach is convenient for display purposes, but the
output may not be easy to print without capturing screen images.

You can cause the character-based interface to use underscoring, rather than highlighting,
using the.u command-line option. For example, a display similar to thatgare 9-1
except using underscoring, is generated by entering:

prompt:>atac-umain.atac wc.atac wordcount.trace > myfile

and then viewing the contentsrof/file The output may also be sent directly to a printer,
allowing easy generation of hard copy coverage displays.

9-11

User’s Manual ATAC: Testing Modified Code

Chapter 10

ATAC:
Testing Modified Code

For a multiple release software product, testers may be more concerned with whether the
code that has been changed, added or deleted from one release to the next has been properly
tested rather than the overall coverage with respect to a module, a subsystem or the entire
software. They need to either create new tests or select existing regression tests to validate
the modified code in order to make sureritbevsoftware still behaves the same way as the
previous version, except where changes are expected. This can be done by first running
atacdiffto find the difference between two releases followed by a coverage analysis on the
generateddif files and other relate@tacand.tracefiles.

10-1

User’s Manual ATAC: Testing Modified Code

In this chapter we explain how to test the modified code. The same wordcount program as
used in previous chapters is used here. To copy these files, create a new directory, cd to it,
and copy the contents of the directory in which the tutorial files are installed into the new
directory. For illustration, we will use (1) thrediles: main_old.¢ main.candwc.¢ (2)

three data filesnputl, input2 andinput3and (3) theéests_regresscript.

The remainder of this chapter is organized as foll@&estion 10.describes how to view

the coverage of modified code afdction 10.2xplains how to select existing regression
tests to revalidate the modified code.

10.1 Coverage of Modified Code

To view coverage of modified code only, ratacdiffto create .dif and open it whenever
the correspondingtacis used.

Whenmain_old.cis updated tonain.g there is one addition, one deletion and one change
as shown irFigure 10-1 A tutorial forthexDiff tool is presented isection 16.2

T o Fuet | Fuez | | syne | Load | Ciose | Help |

xDlﬁ‘ changes

of changes: [1 | # of additions: [1 | # of deletions: [1 |
File name 1:|main_0|d.c File name 2: |main.c
argv[1][0] == '="} { argw[1][0] == '="'} {
= argv[l] + 1; *p; ++p) = argv[l] + 1; *p; ++p)
gwitch{*p) { gwitchi{*p) {
case '1': case '1':
doline = 2 doline = 1:
break: break:
case 'w': case 'w':
doword = 1: doword = 1:
break:; break:
cage 'c': cage 'c':

dochar = 1:
break:

dochar = 1;
break:
casge '7?':

frute{ "usage: wo [-lwc] [case '7?':
return 1; fpute("usage: we [-lwc] [£
return 1:

B =
an
—

1: = ig
| /-T:7b4 | =

q
R

Figure 10-1 Differences betweemin_old.candmain.c

10-2

User’s Manual ATAC: Testing Modified Code

Since all the madification is imain.¢ we only need to compile this file with ATAC.
Execute the command appropriate for your setup, as follows:

UNIX:
prompt:> atac cc -¢c main.c

Windows with IBM C compiler:
prompt:> ataclCC /w0 /Q /c main.c

Windows with Microsoft C compiler:
prompt:> atacCL /nologo /w /c main.c

Compilewc.cwithout ATAC according to your setup:

UNIX:
prompt:> cc -c wc.c

Windows with IBM C compiler:
prompt:> icc /w0 /Q /c wc.c

Windows with Microsoft C compiler:
prompt:> cl /nologo /w /c wc.c

Generate the executable as appropriate for your computing environment:

UNIX:
prompt:> atac cc -o wordcount main.o wc.o

Windows with IBM C compiler:
prompt:> ataclCC /w0 /Q wc.obj main.obj /Fewordcount.exe

Windows with Microsoft C compiler:
prompt:> atacCL /nologo /w wc.obj main.obj /link /out:wordcount.exe

After the compilation, oneatacfile (main.atacfor main.q and the executable
wordcount(.exeare created. Note oregtacfile is created for each instrumentedile, i.e.,
the.cfiles compiled with ATAC.

Run the followingatacdiffcommand

prompt:> atacdiff main.c main_old.c

to generatenain.difwhich contains the differences betweeain.candmain_old.c See
Appendix B.6, atacdiffor more details.

10-3

User’s Manual ATAC: Testing Modified Code

Invoke xATAC with respect to the modified code:
prompt:> xsuds main.atac main.dif

Scroll down thegATAC window until you see what is displayedrigure 10-2 Only three

File Tool Options Summary TestcCases Update GoBack Help
0 I ——
] char *p;
int linect, wordct, charct;
long tlinect = 0;
long twordet = 0;
long tcharct = 0;
int doline = 0;
int doword = 0;
int dochar = 0;
FILE *file;
r
if {arge > 1 && argv[1][0] == "-") {
r for {(p = argv[1l] + 1; *p; ++p)
p— switch(*p) {
case "1”:
case "wh:
doword = 1;
break;
case "o’
default:
case "7?7: ’
fputs("usage: we [-lwe] [files]\n", stderr);
return 1;
i
~— argv += 2;
ATqC File: Line: Coverage: Highlighting:
X main.c . 16 of 96 | block | all prioritized |

Figure 10-2 The initial display of the mgiATAC window to show the modifications
betweemain.candmain_old.c

basic blocks are highlighted as compared to every bloEigimme 2-1 To cover these
blocks, we need two tests:

prompt:> wordcount -x inputl
and
prompt:> wordcount -wlc inputl

If you are not familiar with how to generate tests to effectively increase the code coverage,
please refer t€hapter 2ATAC: A Tutorialfor a detailed discussion.

10-4

User’s Manual ATAC: Testing Modified Code

Figure 10-3shows these two tests also give 100% coverage with respect to other metrics.
In fact, the modification frommain_old.cto main.cdoes not involve a maodification of any
decision, c-use or p-use.

File Tool oOptions Sunmary TestCases Update GoBack Help

% hy-type -+ by-file .. bhy-function

owverall cowverage summary by type ower selected testcases |

~ function_entry 0 of 0 [100%
4 block 3 of 32 100%|
.~ decision 0 of 0 [100%
~ c_use 0 of 0 [100%
- p_use 0 of 0 §]1009s

Figure 10-3 The coverage summary by type after two test executions

The above example shows how testers, with the help of ATAC, can put their emphasis on
generating tests to cover only the modified code rather than the entire software under test.

10.2 Modification-Based Regression Test Selection

As a program evolves the regression test set grows lafd¢ests are rarely discarded, and

the expense of regression testing grows. Repeating all previous test cases in regression
testing after each minor software revision or patch is often impossible because of time
pressures and budget constraints. In this section we explain how to select only those
regression tests that execute the modified code. This includes all tests that have to be used
for revalidation. Hereafter, we refer to such selectiomadification-basedegression test
selection.

The selection of regression tests is made by using the execution trace files of the old
program. This is because if it is done on the new program, then the whole advantage of
modification-based selection vanishes. Selecting regression tests which execute the deleted
or changed code in tlodd program is easy, but it requires more work to identify tests that
execute the code added to the new program. One way to do so is to select the tests that
execute the line of code which is jlstforeandafter the corresponding position of the

added code in the new release. For example, if code at lines 10 to 15 has been added in
releasd’, atacdiffwill select line 9 (the one just before) and line 16 (the one just after) in
releasa for coverage analysis. In general, such a selection guarantees that if a test case
executes lines 9 and 16 in releaséalso executes lines 10 to 15 in releidseless the

10-5

User’s Manual ATAC: Testing Modified Code

execution in releasé can jump into or out of the added code without going through lines
9 or 16. In practice, this does not happen often.

Once we have regression tests selected based on their execution of the modified code, we
can go a step further, as discussedhiapter 11to apply test set minimization and test case
prioritization to determine which tests, among those necessary, should be reexecuted first,
and which ones have lower priority or are to be omitted from reexecution. For the moment,
let us emphasize modification-based regression test selectiormesimgold.candmain.c

as examples.

Once again, since all the modification igmain, we only need to compile this file with
atac.However, instead of usingain.cas inSection 10.1main_old.cis used here. Note

that before we compilmain_old.¢c we need to delete object files generated from the
previous compilation. This can be done by executing the clean command appropriate for
the setup you are using. S&gpendix A, Platform Specific Informaticte determine this.
Compilemain_old.cwith ATAC by using the appropriate command below:

UNIX:
prompt:> atac cc -c main_old.c

Windows with IBM C compiler:
prompt:> ataclCC /w0 /Q /c main_old.c

Windows with Microsoft C compiler:
prompt:> atacCL /nologo /w /c main_old.c

Compilewc.cwithout ATAC, as appropriate for your computing environment:

UNIX:
prompt:> cc -C wc.c

Windows with IBM C compiler:
prompt:> icc /w0 /Q /c wc.c

Windows with Microsoft C compiler:
prompt:> cl /nologo /w /c wc.c

10-6

User’s Manual ATAC: Testing Modified Code

Generate the executable, per your setup:

UNIX:
prompt:> atac cc -o wordcount main_old.o wc.o

Windows with IBM C compiler:
prompt:> ataclCC /w0 /Q wc.obj main_old.obj /Fewordcount.exe

Windows with Microsoft C compiler:
prompt:> atacCL /nologo /w wc.obj main_old.obj /link /out:wordcount.exe

After the compilation, oneatacfile (main_old.atador main_old.¢ and the executable
wordcount(.exeare created.

Run the followingatacdiffcommand

prompt:> atacdiff main_old.c main.c
to generatenain_old.dif which contains the differences betwerain_old.candmain.c
Suppose befommain_old.cwas updated tmain.c,all the tests irigure 11-1had already
been executed. This can be done by executing the &esipt regressiVhile the script is
running, you will see some ‘error’ messages because the tests are executing lines of code

designed to handle error conditions.

To find all the regression tests that execute the modified codenfiam old.cto main.g
run the following command:

prompt:> atac -t main_old.atac main_old.dif wordcount.trace

Of the 17 tests, only six are selected as showiginre 10-4 This implies a 64.7% savings

% blocks % decisions % C-Uses % P-Uses test

100(2) 100(0) 100(0) 100(0) wordcount.5
50(1/2) 100(0) 100(0) 100(0) wordcount.8
50(1/2) 100(0) 100(0) 100(0) wordcount.10
50(1/2) 100(0) 100(0) 100(0) wordcount.12
50(1/2) 100(0) 100(0) 100(0) wordcount.13
50(1/2) 100(0) 100(0) 100(0) wordcount.14

Figure 10-4 Regression tests that executed the modified codeaomold.co main.c

in terms of the number of regression tests that need to be reexecuted for program
revalidation.

10-7

User’'s Manual PART Il

PART Il

XxRegressxVue, xSlice,xProf, xFind & xDiff

User’s Manual XRegress: A Tool for Effective Regression Testing

Chapter 11

XRegress:
A Tool for Effective Regression Testing

e Do you spend excessive resources in regression testing?
* Do you know how to select effective regression tests?

* |Is your regression test suite too large to manage?

The purpose of regression testing is to ensure that changes made to software, such as adding
new features or modifying existing features, do not adversely affect features of the software
that should not change. It is not cost-effective to rerun all the tests in a regression suite; a
method is needed to reduce the testing efgdtegress is just such a tool which supports

test set minimization and test prioritization. It helps testers identify a representative subset
of tests which should be re-executed to revalidate modified software.

11-1

User’s Manual XRegress: A Tool for Effective Regression Testing

11.1 Background

No matter how well conceived and tested software is, it will eventually have to be modified

in order to fix bugs or respond to changes in user specifications. Regression testing must
be conducted to confirm that recent program changes have not adversely affected existing
features and new tests must be created to test new features. Testers mighttestioases
generated at earlier stages to ensure that the program behaves as expected. However, as a
program evolves the regression test set grows laslgiests are rarely discarded, and the
expense of regression testing grows. Repeating all previous test cases in regression testing
after each minor software revision or patch is often impossible due to time pressure and
budget constraints. On the other hand, for software revalidation, arbitrarily omitting test
cases used in regression testing is risky. Thus, we need to investigate methods to select
small subsets of effective fault-revealing regression test cases to revalidate software. It is
for this purpose thgtRegress, a test set minimization and prioritization tool, was

developed.

XRegress supports test sgihimizationto reduce the number of test cases contained in a
test set without loss of code coverage. In other words, it minimizes a test set to find a
minimal subsein terms of the number of test cases that preserves the code coverage with
respect to a certain criteriohl¢ck decision c-use p-useor all-usesas explained in

Section 3.3What Does ATAC DQdf the original test sexRegress also supports test set
prioritization by sorting tests in increasing order of additional coverage per cost.

For test set minimizatiolyRegress uses an implicit enumeration algorithm with reductions

to find the optimal subset based on all tests examined. In addition, to determine the exact
minimized subsel{Regress also provides options to select a fast but approximate solution
based omgreedyheuristics in case the exact solution is not obtained in reasonable time. For
test set prioritizationyRegress first selects a test case which gives the maximal coverage
with respect to a given criterion per unit cost. Subsequent tests are selected based on their
additional coverage per unit cost.

When testers can only afford to re-execute a few regression tests, they can either use every
test case in the minimized subset for software revalidation or select as many tests as
possible on the basis of test case priority, i.e., starting from the top of the prioritized test
list. The rationale behind these two techniques is the following:

1. Thecorrelationbetween the fault detection capability of a test set and its code cov-
erage on a program is higher than that between the fault detection capability and
test set size. Insufficient testing such as long hours of test case execution that do
not increase code coverage can lead to an incorrect assessment of program reliabil-

ity.
2. No matter how a test set is generated, its minimized test sets $iaeéeHective-

nessadvantage over the original set in terms of fewer test cases with little or no
compromise in the strength of revealing faults.

11-2

User’s Manual XRegress: A Tool for Effective Regression Testing

3. Ingeneral, a reduced set of tests selected by minimization/prioritization can detect
faults not detected by a reduced set of the same size selected in a random or arbi-
trary way. Null hypothesis testing indicates that such effectiveness advantage of
minimization/prioritization over randomization does not just happen by chance.

In practice, depending on the available resources, a trade-off between what we can do in
regression testing and what we can afford to do is applied to determine which test, among
those necessary, should be re-executed first, and which one has lower priority or is to be
omitted from re-execution. Our experience suggests that although neither test set
minimization nor prioritization can reduce the cost of testing the current release, it may
significantly reduce the cost of testing future releases of a software system. This savings
arises because less time is spent maintaining, documenting, executing, and evaluating the
output of smaller test sets.

The remainder of this chapter is organized as foll@&estion 11.2escribes how to
conduct test set minimization via a character-based user intesfaci&n 11.3lescribes
how to perform test set prioritization via a character-based user interfaSeetiwh 11.4
explains how these procedures are executed via a graphical user interface.

11.2 Test set minimization via a character-based user
interface

In this section we explain how test set minimization is done via a character-based user
interface. The same wordcount program as used before is used here. To copy these files,
create a new directory, cd to it, and copy the contents of the directory in which the tutorial
files are installed into the new directory. For the illustrations in this chapter, we will use:
(1) twoc files: main.candwec.g (2) three data filesnputl, input2, andinput3 (3) the
Makefileand (4) thetests_regresscript. Compile thevordcountprogram with ATAC.

Refer toAppendix A, Platform Specific Informaticto determine the correct command to
execute for your setup.

After the compilation, twoatacfiles (main.atacfor main.candwc.atacfor wc.g and the
executablevordcoun.exg are created. Note, onatacfile is created for each
instrumentedcfile, i.e., the.c files compiled with ATAC.

Now let's repeat all the tests executeimapter 2ATAC: A Tutoria) and assign costs to

each of these tests, as specifie8aation 7.6Assigning Cost to Test Casks save typing,

these commands have been collected in a script file ¢alies] regress(.batfigure 11-1

lists the commands it executes. To run the script, iygts_regress. While the

script is running, you will see some ‘error’ messages because the tests are executing lines
of code designed to handle error conditions.

11-3

User’s Manual XRegress: A Tool for Effective Regression Testing

wordcount inputl
wordcount -x inputl
wordcount < inputl
wordcount nosuchfile
wordcount -wlc inputl
wordcount inputl input2
wordcount “-?”
wordcount -l inputl
wordcount -w inputl
wordcount -l < inputl
wordcount -w < inputl
wordcount -c < inputl
wordcount - nosuchfile
wordcount -Ix inputl
wordcount inputl nosuchfile
wordcount empty
wordcount input3

atactm -n wordcount.1 -c 120 wordcount.trace
atactm -n wordcount.2 -c 50 wordcount.trace
atactm -n wordcount.3 -c 20 wordcount.trace
atactm -n wordcount.4 -c 10 wordcount.trace
atactm -n wordcount.5 -c 40 wordcount.trace
atactm -n wordcount.6 -c 60 wordcount.trace
atactm -n wordcount.7 -c 80 wordcount.trace
atactm -n wordcount.8 -c 20 wordcount.trace
atactm -n wordcount.9 -c 10 wordcount.trace
atactm -n wordcount.10 -c 70 wordcount.trace
atactm -n wordcount.11 -c 50 wordcount.trace
atactm -n wordcount.12 -c 50 wordcount.trace
atactm -n wordcount.13 -c 50 wordcount.trace
atactm -n wordcount.14 -c 40 wordcount.trace
atactm -n wordcount.15 -c 60 wordcount.trace
atactm -n wordcount.16 -c 20 wordcount.trace
atactm -n wordcount.17 -c 150 wordcount.trace

Figure 11-1 Commands executed by tidsts regresscript

After the script finishes, ruatac with the-q option to print out the cumulative coverage
with respect to each test case. The output of:

prompt:> atac -q main.atac wc.atac wordcount.trace
is in Figure 11-2 From this figure, it is obvious that some tests are redundant in terms of
coverage. A minimal cost subset of these tests which has the same block, decision and all-

uses coverage as the original set can be obtained by executing the command:

prompt:> atac -Mqg main.atac wc.atac wordcount.trace

11-4

User’s Manual XRegress: A Tool for Effective Regression Testing

% blocks % decisions % C-Uses % P-Uses test
(cumulative) (cumulative) (cumulative) (cumulative)

69(35/51) 57(20/35) 45(41/92) 71(22/31) wordcount.1
80(41/51) 66(23/35) 50(46/92) 74(23/31) wordcount.2
86(44/51) 71(25/35) 53(49/92) 81(25/31) wordcount.3
90(46/51) 74(26/35) 55(51/92) 84(26/31) wordcount.4
100(51) 86(30/35) 72(66/92) 84(26/31) wordcount.5
100(51) 89(31/35) 80(74/92) 87(27/31) wordcount.6
100(51) 91(32/35) 80(74/92) 87(27/31) wordcount.7
100(51) 97(34/35) 85(78/92) 94(29/31) wordcount.8
100(51) 100(35) 87(80/92) 97(30/31) wordcount.9
100(51) 100(35) 90(83/92) 97(30/31) wordcount.10
100(51) 100(35) 92(85/92) 97(30/31) wordcount.11
100(51) 100(35) 93(86/92) 97(30/31) wordcount.12
100(51) 100(35) 95(87/92) 97(30/31) wordcount.13
100(51) 100(35) 96(88/92) 97(30/31) wordcount.14
100(51) 100(35) 97(89/92) 97(30/31) wordcount.15
100(51) 100(35) 100(92) 97(30/31) wordcount.16
100(51) 100(35) 100(92) 100(31) wordcount.17

Figure 11-2 The cumulative coverage per test case

The output so generated is displayeéigure 11-3with tests in order of decreasing added
coverage per unit cost. Since ATAC minimization does not modifyréeefile, for those
tests which are not included in the minimal subset suatlbedcount.1their corresponding
trace information remains in the trace file unless it is deleted explicidydngmwith the

-d option (se&ection 7.5Deleting Test CasgsAfter this minimization, test set size is

% blocks % decisions % C-Uses % P-Uses test
(cumulative) (cumulative) (cumulative) (cumulative)

75(38/51) 66(23/35) 49(45/92) 71(22/31) wordcount.9
80(41/51) 74(26/35) 66(61/92) 81(25/31) wordcount.16
84(43/51) 77(27/35) 68(63/92) 84(26/31) wordcount.4
90(46/51) 83(29/35) 72(66/92) 90(28/31) wordcount.3
92(47/51) 89(31/35) 76(70/92) 94(29/31) wordcount.8
92(47/51) 91(32/35) 85(78/92) 97(30/31) wordcount.6
98(50/51) 94(33/35) 87(80/92) 97(30/31) wordcount.14
100(51) 97(34/35) 90(83/92) 97(30/31) wordcount.5
100(51) 97(34/35) 93(86/92) 97(30/31) wordcount.11
100(51) 97(34/35) 96(88/92) 97(30/31) wordcount.12
100(51) 97(34/35) 97(89/92) 97(30/31) wordcount.2
100(51) 97(34/35) 98(90/92) 97(30/31) wordcount.13
100(51) 97(34/35) 99(91/92) 97(30/31) wordcount.15
100(51) 97(34/35) 100(92) 97(30/31) wordcount.10
100(51) 100(35) 100(92) 97(30/31) wordcount.7
100(51) 100(35) 100(92) 100(31) wordcount.17

Figure 11-3 The minimal subset with the same block, decision and all-uses coverage as
the original test set

reduced from 17 to 16. A bigger size reduction can be obtained by doing

11-5

User’s Manual XRegress: A Tool for Effective Regression Testing

minimization with respect to a different coverage critefsaeSection 11.2.3,
Minimizing by Coverage Criter)a

11.2.1 Forcing Tests to be in the Minimal Set

There are some tests that you always want to be included in the minimal set regardless of
whether they provide additional cost-effective code coverage, such as tests that detect
previously fixed programming faults. You can force the inclusion of such tests in the
minimal set by giving them a cost of 0 usatgctm

11.2.2 Choosing a Reduced Subset after Minimization

In some cases, a cost effective test set need not be minimal. Suppose you only have two
hours to execute some subset of your regression test set; then you would like to execute the
most effective subset during that time. You may wish to make the cost versus effectiveness
trade-off decision yourself. In this case you can run ATAC minimization wittktbetion

to print out a cumulative summary of the cost. For example, a cumulative summary as
shown inFigure 11-4for tests inFigure 11-1is generated by entering:

prompt:> atac -MKq main.atac wc.atac wordcount.trace

cost % blocks % decisions % C-Uses % P-Uses test
(cum) (cumulative) (cumulative) (cumulative) (cumulative)

10 75(38/51) 66(23/35) 49(45/92) 71(22/31) wordcount.9
30 80(41/51) 74(26/35) 66(61/92) 81(25/31) wordcount.16
40 84(43/51) 77(27/35) 68(63/92) 84(26/31) wordcount.4
60 90(46/51) 83(29/35) 72(66/92) 90(28/31) wordcount.3
80 92(47/51) 89(31/35) 76(70/92) 94(29/31) wordcount.8
140 92(47/51) 91(32/35) 85(78/92) 97(30/31) wordcount.6
180 98(50/51) 94(33/35) 87(80/92) 97(30/31) wordcount.14
220 100(51) 97(34/35) 90(83/92) 97(30/31) wordcount.5
270 100(51) 97(34/35) 93(86/92) 97(30/31) wordcount.11
320 100(51) 97(34/35) 96(88/92) 97(30/31) wordcount.12
370 100(51) 97(34/35) 97(89/92) 97(30/31) wordcount.2
420 100(51) 97(34/35) 98(90/92) 97(30/31) wordcount.13
480 100(51) 97(34/35) 99(91/92) 97(30/31) wordcount.15
550 100(51) 97(34/35) 100(92) 97(30/31) wordcount.10
630 100(51) 100(35) 100(92) 97(30/31) wordcount.7
780 100(51) 100(35) 100(92) 100(31) wordcount.17

Figure 11-4 The minimal subset with the same block, decision and all-uses coverage as
the original test set (includes cost)

11-6

User’s Manual XRegress: A Tool for Effective Regression Testing

From this summary it is easy to identify a subset of the tests that achieve a given level of
coverage at reduced cost. For example, all tests together have cost 780. However, the first
four tests in the minimal set achieve at least #0386k coverage at a total cost of 60, a

fraction of the entire cost of the minimal set.

11.2.3 Minimizing by Coverage Criteria

With the-m{bcdepuloption, ATAC minimization can be limited to computing a minimal
subset for a selected set of coverage measure(s). The arguamesetects one or more
coverage measuresselects function-entry coveradeblock coveraged decision
coveragec c-use coverag®, p-use coverage, anthll-uses coverage (s€ection 3.3,

What Does ATAC Dg%or an explanation of these measures). For example, the minimal
subset generated for testdHigure 11-1 as shown ifrigure 11-5is limited to block and
decision coverage by entering:

prompt:> atac -Mq -mbd main.atac wc.atac wordcount.trace

In this case, test set size is reduced to from 17 to 6, which corresponds to a major size
reduction.

% blocks % decisions test
(cumulative) (cumulative)

75(38/51) 66(23/35) wordcount.9
86(44/51) 77(27/35) wordcount.3
94(48/51) 83(29/35) wordcount.14
98(50/51) 91(32/35) wordcount.15
100(51) 97(34/35) wordcount.12
100(51) 100(35) wordcount.7

Figure 11-5 The minimal subset with respect to the block and decision coverage

11.2.4 Minimizing by File

ATAC minimization can compute a minimal test set for selected testable attributes found
in the.atacfiles submitted on its argument list. For example, the minimal test set generated
for tests inFigure 11-1is limited to blocks, decisions and all-uses founthain.cby

entering:

prompt:> atac -M main.atac wordcount.trace

11-7

User’s Manual XRegress: A Tool for Effective Regression Testing

The output of this appears igure 11-6

% blocks % decisions % C-Uses % P-Uses test

66(25/38) 48(11/23) 42(31/74) 50(8/16) wordcount.9
24(9/38) 17(4/23) 11(8/74) 25(4/16) wordcount.4
37(14/38) 22(5/23) 12(9/74) 31(5/16) wordcount.3
66(25/38) 48(11/23) 42(31/74) 50(8/16) wordcount.8
58(22/38) 39(9/23) 46(34/74) 56(9/16) wordcount.6
26(10/38) 22(5/23) 14(10/74) 12(2/16) wordcount.14
76(29/38) 57(13/23) 47(35/74) 50(8/16) wordcount.5
47(18/38) 39(9/23) 20(15/74) 38(6/16) wordcount.11
47(18/38) 39(9/23) 20(15/74) 38(6/16) wordcount.12
21(8/38) 17(4/23) 9(7/74) 12(2/16) wordcount.2
37(14/38) 30(7/23) 19(14/74) 25(4/16) wordcount.13
58(22/38) 39(9/23) 34(25/74) 56(9/16) wordcount.15
47(18/38) 39(9/23) 20(15/74) 38(6/16) wordcount.10
18(7/38) 17(4/23) 8(6/74) 12(2/16) wordcount.7
100(38) 100(23) 100(74) 100(16) ==all ==

Figure 11-6 The minimal subset with respeati@in.c

11.2.5 Minimizing by Function

With the-F option, ATAC minimization can be limited to computing a minimal test set for
selected testable attributes found in a selected set of functions. For example, the minimal
test set generated for testdHigure 11-1is limited to the functionmainandcountby

entering:

prompt:> atac -M -F main -F count main.atac wc.atac wordcount.trace

11.2.6 Minimizing by Test Case

By default, ATAC minimization computes a minimal test set after reconciling all test case
trace information recorded in a givéracefile against allatacfiles submitted on the
command line. You can compute a minimal test set with respect to selected test cases by
using the-n option. A minimal test set is generated with respect to the block coverage of
the first nine test cases of thosd-igure 11-1by entering:

prompt:> atac -MKq -mb -n “wordcount.? " main.atac wc.atac wordcount.trace

The output generated is ingure 11-7

11-8

User’s Manual XRegress: A Tool for Effective Regression Testing

cost % blocks test
(cum) (cumulative)

20 53(27/51) wordcount.3
30 65(33/51) wordcount.4
70 94(48/51) wordcount.5
120 100(51) wordcount.2

Figure 11-7 The minimal subset with respectvtirdcount. lto wordcount.9

Notice that tests can be named by using wild card characters. These wild cards are the same
as those used by the UNIX-like command processor in naming files (*, ?, [...]). In some
cases, quotation marks may be needed to prevent the command processor from expanding
the test names as file names. Also, multiple instances afi ftrgument may be submitted

on a single command line. Sometimes it is necessary to select all tests other than those that
have been named. Theoption is used to select the complement of all tests specified using
one or more instances of theoption. For example, entering:

prompt> atac -MKq -mb -x -n “wordcount.? " main.atac wc.atac wordcount.trace

computes a minimal test set with respect to block coverage for all t€stsine 11-1
except the first nine. The generated summary report is displayeguire 11-8

cost % blocks test
(cum) (cumulative)

20 53(27/51) wordcount.16
70 86(44/51) wordcount.11
110 94(48/51) wordcount.14
160 98(50/51) wordcount.13
210 100(51) wordcount.12

Figure 11-8 The minimal subset with respect to all tests exeaplcount. 1to
wordcount.9

11.3 Test set prioritization via a character-based user
interface

In this section we explain how test set prioritization is performed via a character-based user
interface. To begin, we assume the samaén.ata¢wc.atacandwordcount.traceas those

in Section 11.2re used. You can then print out the cumulative cost and coverage of each
test inincreasingorder per additional coverage by entering:

11-9

User’s Manual XRegress: A Tool for Effective Regression Testing

prompt:> atac -Q main.atac wc.atac wordcount.trace

The corresponding output is igure 11-9 Testwordcount.9s selected as the first test
because it gives the maximum coverage with respect to block, decision, c-use and p-use per
unit cost. Subsequent tests are selected based on their additional coverage with respect to
these four criteria per unit cost. In our caserdcount.16s selected aftewordcount.9

because it gives the maximal additional block, decision, c-use and p-use coverage per unit
cost.

cost % blocks % decisions % C-Uses % P-Uses test
(cum) (cumulative) (cumulative) (cumulative) (cumulative)

10 75(38/51) 66(23/35) 49(45/92) 71(22/31) wordcount.9
30 80(41/51) 74(26/35) 66(61/92) 81(25/31) wordcount.16
40 84(43/51) 77(27/35) 68(63/92) 84(26/31) wordcount.4
60 90(46/51) 83(29/35) 72(66/92) 90(28/31) wordcount.3
80 92(47/51) 89(31/35) 76(70/92) 94(29/31) wordcount.8
140 92(47/51) 91(32/35) 85(78/92) 97(30/31) wordcount.6
180 98(50/51) 94(33/35) 87(80/92) 97(30/31) wordcount.14
220 100(51) 97(34/35) 90(83/92) 97(30/31) wordcount.5
270 100(51) 97(34/35) 93(86/92) 97(30/31) wordcount.11
320 100(51) 97(34/35) 96(88/92) 97(30/31) wordcount.12
370 100(51) 97(34/35) 97(89/92) 97(30/31) wordcount.2
420 100(51) 97(34/35) 98(90/92) 97(30/31) wordcount.13
480 100(51) 97(34/35) 99(91/92) 97(30/31) wordcount.15
550 100(51) 97(34/35) 100(92) 97(30/31) wordcount.10
630 100(51) 100(35) 100(92) 97(30/31) wordcount.7
780 100(51) 100(35) 100(92) 100(31) wordcount.17
900 100(51) 100(35) 100(92) 100(31) wordcount.1

Figure 11-9 Prioritized tests based on block, decision and all-uses

With the prioritized test list available, we can decide where the cut-off should be. For
example, suppose you want to select a subset of all the tests sHeynran11-9with

maximal possible coverage and a total cost less than 220 for your regression testing. Your
subset should contain tests {9, 16, 4, 3, 8, 6, 14, 5}. On the other hand, if your subset has
to achieve the same block coverage as the original set (100% in this case) and its cost
should be the least, then run the following command:

prompt:> atac -MKg-mb main.atac wc.atac wordcount.trace

to get the minimal set with respect to the block covéta'ljee output generated is shown
in Figure 11-10

1. The optionK can be omitted if you don’t want to include cost as part of the output.

11-10

User’s Manual XRegress: A Tool for Effective Regression Testing

cost % blocks test
(cum) (cumulative)

20 53(27/51) wordcount.3
30 65(33/51) wordcount.4
70 94(48/51) wordcount.5
110 100(51) wordcount.14

Figure 11-10 A minimized subset with 100% block coverage

11.4 Test set minimization and prioritization via a graph-
ical user interface

We now repeat test set minimization and prioritization via a graphical user interface using
the samenain.ata¢ wc.atacandwordcount.tracdiles as those iection 11.2Since the
current version of the Toolsuite’s graphical interface does not support all the features
discussed irsection 11.andSection 11.3we will only illustrate those that are supported.
Invoke the graphical interface of the Toolsuite by typing:

prompt:> xsuds main.atac wc.atac wordcount.trace

Then, pull down theTool’ menu and select thextegress option. Click on the
“TestCaseshutton in the top button bar to see the cumulative coverage by test case with
respect to the selected coverage criteria. By default, five criteria -- function-entry, block,
decision, c-use and p-use -- are selected. The resulting window appeartséll-11

with tests listed in the order of decreasing added coverage per unit cost.

Click with theleft mouse button onftinction_entry, “ decision, “c_usé and “p_usé in
the middle button bar to deselect these criteria. This nidéelscoverage the only selected
criterion and updates the test case window accordingly, as shduiguie 11-12 A
shortcut for this is to click orislocK’ with theright mouse button which will deselect every
criterion excepblock

By default,xRegress is iigreedy_ordemhich sorts test cases in order of increasing cost
per additional coverage. You can switctofiiimal_orderto do the test set minimization

by clicking on the Minimize_irf button in the middle button bar and selecting
“optimal_ordet. The updated test cases window is displaye@ignire 11-13 The Test

cases frame at the lower-right corner show®f 17 indicating that only the first four tests
(wordcount.3wordcount.4wordcount.5andwordcount.14are included in the minimized
subset with the santdock coverage as the original test set. The same output can be
obtained via the character-based interface by entering the following on the command line:

prompt:> atac -M -mb main.atac wc.atac wordcount.trace

11-11

User’s Manual XRegress: A Tool for Effective Regression Testing

Fila Teal opkicna Humsary TeublCases Update Goback Halp
] qmu-nn_-nnrq.r f block f e i ion IA' oG Al' P_maga Digable Hinimize in !

“All five coverage T1. 6
'criteria are selected. 7
wordoount . 3 Cwmerzz T e
wordeont. BT R B — |
S . T |
'' wordoount . 14 | 1% of 212 I T |
wordoount. , & [200 af 212
1| oo e —
ardoount 13 | eera: el
wordeant 2 werm el
wordoount. 13 T R S—
p—— o . T
" wordrount. . 10 | zwoerziz ey
wordoount, ¥ [210 erz12 |
—— s
wordoont | | merem
kotal | 212 of 212
filegrens || I EmERe I ame

Figure 11-11 Test cases windowydRegress imgreedy_ordewith all five coverage
criterion selected

The only difference is that the character-based command only returns tests in the
minimized set and ignores others, whereas the test case wing®edness lists all tests
including those not in the minimized set.

To quitxRegress click on the=ile” button in the top button bar and seleexit’.

11-12

User's Manual

XRegress: A Tool for Effective Regression Testing

File Tool Options

Summary

TestCases Update GoBack Help

| function_entry W block _| decision _| ¢_use _| p_use Disable Hinimize_in

cunulative coverage summary by testcase over selected coverage types |

[} wordcount. 9 38 of 51 74, 5: [
wordcount . 3 44 of 51 86.3% 0
wordcount . 4 46 of 51 90. 251
wordcount . 14 50 of 51 985/
wordcount . 5 51 of 51 100
wordcount . 8 51 of 51 100
wordcount. 16 51 of 51 100%'
wordcount . 2 51 of 51 100

B wordcount. 11 51 of 51 100%'
wordcount. 12 51 of 51 100%'
wordcount . 13 51 of 51 100%|

/ wordcount. 6 51 of 51 100

total 51 of 51 100
XRegress | e

Figure 11-12 The updated test case windograedy_ordewith only the block
coverage criterion selected

11-13

User's Manual

XRegress: A Tool for Effective Regression Testing

File Tool Options

Summary

TestCases Update GoBack Help

| function_entry W block _| decision _| ¢_use _| p_use Disable Hinimize_in

cunulative coverage summary by testcase over selected coverage types |

[} wordcount. 3 27 of 51 s2. 9
wordcount . 4 33 of 51 64. 75
wordcount . 5 48 of 51 94. 15[
wordcount . 14 51 of 51 100%)|
wordcount . 9 51 of 51 100
wordcount . 8 51 of 51 100
wordcount . 16 51 of 51 100%)|
wordcount . 2 51 of 51 100

B wordcount. 11 51 of 51 100%'
wordcount. 12 51 of 51 100%'
wordcount . 13 51 of 51 100%|

/ wordcount. 6 51 of 51 100

total 51 of 51 100
Coverage: Test cases:
% Regress | e —aer1

Figure 11-13 The updated test case windowytimal_orderwith only the block
coverage criterion selected

11-14

User’s Manual X Vue: A Tool for Effective Software Maintenance

Chapter 12

xVue:
A Tool for Effective Software Maintenance

* Do you need to know where features are implemented?
» Do you spend excess time in resolving maintenance requests?

e Can you visualize features in code?

Maintenance and modification of legacy software systems are the most costly activities in
the life cycle of a long-lived system. Central to this activity are techniques for effectively
finding and modifying code which implements features. The ydalg, is tailored to this

need and has a state of the art graphical user interface to allow the maintainer or
programmer to quickly locate code that is associated with features of the system.

12-1

User’s Manual X Vue: A Tool for Effective Software Maintenance

12.1 Background

Ideally, in a well-designed software system each program feature would be implemented

in a single identifiable module; in practice, though, this is never the case. In the early
development stage of a system, programmers may follow certain standards to ensure a clear
mapping between each feature and its corresponding code segments. However, as
development continues, it is likely that such traceability will often become the first casualty

of the pressure to keep a system operational. As a result, program features are implemented
over several non-adjacent subroutines which makes the features more difficult to locate and
understand. Such delocalized programs can lead to serious maintenance errors.

In general, the first step towards software maintenance is to locate the code relevant to a
particular feature. There are two methods of achieving this. Fagst@amati@approach can

be followed which requires a complete understanding of the program behavior before any
code modification. Second, as-neede@pproach can be adopted, which requires only a
partial understanding of the program so as to locate, as quickly as possible, certain code
segments that need to be changed for the desired debugging/enhancement. The systematic
approach provides a good understanding of the existing interactions among program
features, but is often impractical in a real work environment due to the pressures of time
and cost when working with large complicated software systems. On the other hand, the as-
needed approach, although less expensive, may ignore some non-local interactions among
the features and cause a program modification to result in disastrous side-effects. Thus, a
need arises to identify those parts of the system that are crucial for the maintainer to
understand. A possible solution is to read the documentation; however, in many cases, this
may not be effective. The documentation may not exist; or even if it exists it may be
incomplete, difficult to comprehend or not updated. Also, programmers/maintainers may
be reluctant to read it. Perhaps a faster and a more efficient way of identifying the important
segments of the code is to let the system speak for itself. It is this issue that théuepl,
attempts to address.

Theexecution slice-basdédchnique is a solution which helps programmers and
maintainers locate the implementation of different features in a software system. To find,
for example, where the call forwarding feature is implemented in a telephone switching
system, one would run a small, carefully selected, set of tests -- some that invoke the call
forwarding feature and others that do not. Such tests are classifiemkiangtests and
excludingtests, respectively. Traces of program execution are analyzed to look for code
components that were executed in the invoking tests but not in the excluding tests.
Although this technique may not find all relevant code that makes up the call forwarding
feature, it does identify a small number of program components that are unique to this
feature. The identified code can then be usedstarting pointfor studying this feature.

This is especially useful for those features that are implemented in many different modules
in a large, complicated and poorly documented system.

12-2

User’s Manual X Vue: A Tool for Effective Software Maintenance

It is important to note that code segments so identified rely heavily on the test cases used.
Different sets of code may be identified by different sets of invoking and excluding tests.
This implies poorly selected tests will lead to inaccurate identification by either including
components that are not unique to the feature or excluding the ones that should not be
excluded.

There are many ways in which execution traces of invoking and excluding tests may be
compared to identify pieces of code that are related to a given featuf.eQsayapproach

is to identify code that is executed by any invoking test case but not executed by any
excluding test case. Another approach is to identify program components that are executed
by every invoking test case but not executed by any excluding test case. The latter approach
identifies only those program components that are always executed whenfféature
exhibited but not otherwise. Another, simpler, approach is to compare the execution trace
of just one invoking test with that of one excluding test. To minimize the amount of relevant
code identified, the invoking test selected may be the one with the smallest execution trace
and the excluding test selected may be the one with the largest execution trace. Depending
on how features are implemented in the program, programmers/maintainers may have to
try all these approaches, or construct their own approaches, in order to find the best set of
code related to a given feature.

Ideally, the excluding tests used should be as similar as possible to the invoking tests in
order to filter out as much common code as possible. To illustrate how to select the
invoking and excluding tests, consider the example coBgyime 12-1 Suppose we want

to find the code that is uniquely used to identifyegnilateraltriangle. We first construct

an invoking test, that exhibits this feature and two excluding téstndt; which assign
isoscelesindrectangle respectively, telass Clearly,t; is closer ta, thants. The

difference between the execution tracety @ndt, shows that only statemersts ands13

are unique to this feature, whereas additional code such as the statsreniuld also

be identified shoulds be used in place @ as the excluding test. Furthermore, this
example also indicates we do not even need to use the feature that iderdtasngeto

find code that is unique equilateraltriangle. The ability to identify program components
unique to a feature without even knowing all the program’s features greatly enhances the
feasibility of using the execution slice technique to quickly highlight a small number of
program components.

12.2 A Tutorial

The use ofVue is most easily understood by an example. In this chapter we use the same
wordcount program as used in the previous chapters to illustrate how the basic features of
xVue can be used in identifying functional features. To copy these files, create a new
directory, cd to it, and copy the contents of the directory in which the tutorial files are
installed into the new directory.

12-3

User’s Manual X Vue: A Tool for Effective Software Maintenance

sl: scanf (“%c”, &type);
s2: if (type == triangle) {
s3: scanf (“%d %d %d”, &a, &b, &c);

s4: class = scalene;

sb: if (@==Db) || (b==c))

S6: class = isosceles;

Ss7: if (@*a == (b*b + c*c))

s8: class =right;

s9: if (a==Db) && (b ==¢))

s10: class = equilateral;

s11: switch (class) {

s12: case right :area=b*c/2.0; break;

s13: case equilateral : area = a * a * sqrt(3.0) / 4.0; break;
sl4: default :s=(a+b+c)/2.0;

s15: area = sqrt (s * (s-a) * (s-b) * (s-¢)); break
s16: }

s17: }else {

s18: scanf (“%d %d”, &w, &h);
s19: if (w==h)

s20: class = square;
s21: else

s22: class = rectangle;
s23: area=w*h;

s24: }

s25: output (class, area);

Figure 12-1 A simple example

For the illustrations in this chapter, we will use (1) teéiles: main.candwc.q (2) three
data filesinputl, input2 andinput3 and (3) theviakefile Now you are ready to compile
the wordcount program, wititac, by entering the appropriateakecommand, as specified
in Appendix A, Platform Specific Information

After the compilation, twoatacfiles (main.atacfor main.candwc.atacfor wc.g and the
executablevordcount(.exeare created. Note oretacfile is created for each instrumented
.cfile, i.e., the.cfiles compiled withatac cc

Invoke the graphical interface of the Toolsuite by:

prompt:> xsuds *.atac

Then, pull down theTool’ menu and select thextu€ option. Figure 12-2shows the
initial main window ofyVue.

12-4

User’s Manual X Vue: A Tool for Effective Software Maintenance

File Tool Options Features Summary TestCases Update GoBack Help

main.c

Hodified from "The ¢ Programming Language"
by Kernighan & Ritchie, 1978.
page 18.

® X X OE X OE %

“f

#include <stdio.h>

main{arge, argv)

int arge;
char **argw;
{
char *p;
int linect, wordet, charct;
long tlinect = 0;
long twordet = 0;
long tcharct = 0;
int doline = 0;
int doword = 0;
int dochar = 0;
FILE “file;
if {arge > 1 && argv[1][0] == "-") {

for (p = argv[1] + 1; *p; ++p)
switeh(*p) {
case '1°:
doline = 1;

‘/r g File: g Line: g Coverage: é Highlighting:
X ue main.c 1 of 96 block highest weight

Figure 12-2 The initial display of the mg{Vue window

Let us run the following tests:

prompt:> wordcount -x inputl (wordcount.)
prompt:> wordcount -wlc inputl (wordcount.2
prompt:> wordcount -wl inputl (wordcount.3
prompt:> wordcount -w inputl (wordcount.4
prompt:> wordcount nosuchfile (wordcount.%

The fileinputlcontains the following line:
test input file 1

After the execution, a trace filgordcount.traceas created containing the execution
information used in feature analysis.

To tellxVue to incorporate the dynamic information from this trace file into its display,
click with the left mouse button on thEile” button in the top button bar. This will cause

12-5

User's Manual X Vue: A Tool for Effective Software Maintenance

the “file” menu to pop-up. Click on thedpen trace file.”. entry in the menu. This will
open a dialog box as shownRigure 12-3 (The Windows dialog box looks slightly

Directory: Fufewong/ IBHS doc97/tutorial — I |

_E] wordcount.trace

el =]

File name: Iwordcomlt.trace Open

Files of type: trace_file (*.trace) —-I Cancel |

Figure 12-3 The trace file dialog box for UNIX

different.) Selectvordcount.traceand click on thedperi button. This will causgVue to
read in the trace file.

To verify this, you can click the left mouse button on thestCaseé'sbutton in the top
button bar. A block coverage summary by test case over all files will be displayed as shown
in Figure 12-4

File Tool oOptions Features Summary — TestCases Update GoBack Help

Disable Sort by

hlock slicing summary by testcase

wordcount . 2 42 of 51 :
wordcount . 3 40 of 51
wordcount . 4 38 of 51

Figure 12-4 The coverage summary by test case

Runwordcountagain usingnput2 andinput3with option-c and-I, respectively, by
entering:

12-6

User’s Manual X Vue: A Tool for Effective Software Maintenance

prompt:> wordcount -¢ < input2 (wordcount.§
prompt:> wordcount -l input3 (wordcount?)

Running these two additional tests causes their dynamic information to be added to the
trace file. Note thagVue has highlighted theJpdat€ button in the top button bar, as
shown inFigure 12-5to alert you to this fackVue continuously monitors the specified

TanktCannn - GnRank

————
ITED o |

AT 4 -

Figure 12-5 The Update button

trace files to see if any new information has been added to them. If so, it highlights the
“Updatée button to indicate this to you. You may choose to click on this button now to
update the display with the information from the test case you have just run, or you may
choose to wait until you have run several test cases.

Click on the ‘Updaté€ button to tellxVue to incorporate the information fromordcount.6
andwordcount.7into its display Figure 12-6shows the updated display.

Now it's time to specify a feature. Click on thiedature$ button in the top button bar to
switch back to the main window glue. Click on the add’ button in the middle button
bar to have a feature editing window pop up as showigimre 12-7 By default, all seven
tests appear in trdont_knowcategory, which means the user has not yet categorized them.

Suppose the feature we have in mind is wordcount’s character counting feature (te., the
option). Then we enter the name of the featthiaracter_counting , inthe rectangle
next toFeature NameEnter the corresponding description, tb@ption, in the rectangle
next toDescription Sincewordcount.2zandwordcount.@xhibit the feature, they should be
categorized as invoking tests. To achieve this categorization, seleittount. 2oy

clicking on it with the left mouse button, and then click the left arrow button between
invoking_testanddont_knowApply the same procedure amordcount.6 This will move
wordcount.Zandwordcount.@rom thedont_knowcategory to thinvoking_testgategory.

12-7

User's Manual X Vue: A Tool for Effective Software Maintenance

File Tool Options Features Summary TestCases Update GoBack Help

Disable Sort by

block slicing summary by testcase |

wordcount . 2 42 of 51 ’
wordcount . 3 40 of 51
wordcount . 4 38 of 51
wordcount . b 31 of 51
wordcount. 7 38 of 51

Figure 12-6 The updated coverage summary by test case

Edit feature attributes:

Feature Hame: Description: |
invoking-tests dont_know excluding-tests
Y _\ lwordeount . 1

wordcount .

wordcount .

: wordcount .

/ [wordcount .

ok | cancel |

Figure 12-7 The initial display of the feature editing window

o L M

/

Testswordcount.34 and7 do not involve this feature. Thus, they should be categorized as
excluding tests. To achieve this categorization, seleoticount.3oy clicking on it with

the left mouse button and then with the right arrow button betexesinding_testand
dont_knowApply the same procedure ardcount.dandwordcount.? This will move
wordcount.3, &and7 from thedont_knowcategory to thexcluding_testsategory. For
testswordcount.landwordcount.5 suppose we don't care. Hence, they remain in the
dont_knowcategory Figure 12-8shows the resulting display. If all the information is

12-8

User’s Manual X Vue: A Tool for Effective Software Maintenance

Edit feature Attributes:

Feature Hame: character counting Description: ithe —-¢ option

invoking tests dont_know excluding tests

Swordecount . 3
wordcount . 4
wordcount . 7

7

.m}} wordeount . 1

J wordocount . 5

5

ok l cancel l

Figure 12-8 The final display of the feature editing window

Aiwordeount. 2

J wordcount . 6

£

correct, click on thedk’ button to close this editing window. This will update the main
xVue window as shown iRigure 12-9

File Tool oOptions Features Sunmary — TestCases Update GoBack Help

open save save_as add delete edit heuristics find_ code

Feature Hame Invoking Tests Excluding Tests
. | wordcount. 2 ! wordcount .3
character_counting { wordcount. 6 41 wordeount . 4

L.

Figure 12-9 The updated display of the ma#ue window

If you make any mistake assigning a feature, you can select the feature to be modified
(character_countingn our case) by first clicking on it and then on tkedit’ button in the

middle button bar. An editing window will be displayed (that is the sarhegage 12-8n

our case) for your editing. You may now move tests from one category to another using the
techniques described earlier. After you are done, click onoliebtitton, thereby closing

the editing window and automatically updating the nydne window to reflect the latest
modification. Since there is no mistake involved in our case, instead of clickirakon “

you can click on thecancet button which closes the editing window without changing the
display of the mairxVue window.

You can save the present feature description in a file by clicking osake “asbutton

in the middle button bar. This will cause a dialog box to appear as shéugune 12-10
(The dialog box on Windows looks slightly different.) Enter as the name of the file in

12-9

User’s Manual X Vue: A Tool for Effective Software Maintenance

Directory: fufewong/IBH/ doc37/tutorial
File name: wc Save
Files of type: feature file (*.features) Cancel

Figure 12-10 Theave_aglialog box for UNIX

the rectangle next to the labiéle nameand click on the savé button. A file named
wec.featuress created in your working directory containing all the feature descriptions you
have entered. (The file extensideaturess appended automatically lg/ue.) Once you
have saved your feature description in a file, you can update it by simply clicking on the
“savé button in the middle button baxVue will reuse the last selected file name and
overwrite it with the latest feature descriptions.

To delete a feature, select it by clicking ondhdracter_countingn our case) and click

on the ‘teleté button in the middle button bar. A dialog box as showigure 12-1will
appear. Click on theok’ button to confirm the deletion. This will cause the selected feature
to be deleted and the mgiWue window to be updated accordingly. Since we do not want

Are you sure yvou want to delete
feature character counting?

yes ; cancel g

Figure 12-11 The feature deletion dialog box

to delete the feature, click on theahcet button to close the dialog box and return to the
main window ofxyVue as displayed iRrigure 12-9

To use features that were previously saved in another feature file, click ap#ré “

button in the middle button bar. This will cause a dialog box to pop up as shown in
Figure 12-12(The dialog box for Windows looks slightly different.) Select the file which
contains the feature(s) to be imported and then click onogheri* button to have them
displayed in the main window gfVue. In our case, there is no need to do so because the

12-10

User’s Manual X Vue: A Tool for Effective Software Maintenance

Directory: Fufewong/ IBH/ doc9 7T/ tutorial

[E] wec.features

File name: wc.features Open

Files of type: feature_ file (*. features) Ccancel
Figure 12-12 The feature open dialog box for UNIX

feature ¢haracter_countinpis already displayed. So, click on treahcel button to close
the dialog box and return to the main windovg®ie as displayed iRigure 12-9

The next step is to answer the question: “Where in wordcount is fehfanagcter _counting
(i.e., the-c option) implemented?” To look for program components that are uniquely
related tocharacter countingfirst select this feature by clicking @haracter_counting
under the Feature Nameébutton and click on thetfeuristic$ button in the middle button
bar. This will cause a heuristics window to appear as showigine 12-13

xVue provides three heuristics. By default, heuristic A is selected. With this heuristic (see
Figure 12-13 program components that are executed by any invokingitesi¢ount.2
andwordcount.@n our case), but not executed by any excluding testdcount.3
wordcount.4andwordcount.7n our case), are identified. In other words, program
components that are in the uniomafrdcount.2and6, but not in the union affordcount3

4 and7, are identified.

You can switch to heuristic B or heuristic C as showhRigure 12-14 by clicking on the
corresponding button with the left mouse button. With heuristic B, program components
that are commonly executed by all invoking testsrficount.2andwordcount.@n our

case), but not any excluding tesbfdcount.3wordcount.dandwordcount.7n our case),

are identified. In other words, program components that are in the intersection of
wordcount.2and6, but not in the union offordcount.34 and7, are identified. With

heuristic C, program components that are executed by the smallest invoking test
(wordcount.@n our case), but not by the largest excluding w@stdcount.3n our case),

are identified.

Instead of using the default heuristic, let us use heuristic B for the purposes of this tutorial.
Click on the Heuristic B button. Click on the find_codé button towards the bottom of

the heuristics window to close it and have a summary by file displayed in thevhain
window as shown iifrigure 12-15You can have the summary displayed in other formats

12-11

User’s Manual X Vue: A Tool for Effective Software Maintenance

Select a heuristic:

% heuristic & + heuristic B + heuristic C

invoking tests union_of

% diwordeount . 2
onrdcount. 6

L0 .

¢

Hinus

excluding tests union_of

% Yiwordeount . 3
onrdcount.4

wordcount . 7

L0 R

¢

find_code ! cancel

Figure 12-13 Heuristics window with heuristic A selected

by clicking on the by-typé or the “by-functiori button in the middle button bar. To see

the source display of the corresponding file, click on a file name in this summary window.
In our case, we can only sel@sain.csincewc.cdoes not have blocks that “seem to be
unique” to thecharacter_countindeature, the feature for which we are looking.

The source code ahain.cis displayed irFigure 12-16 The scroll bar is a thumbnail

sketch of the entire file indicating there are two red spots. Clicking with the left mouse
button at any spot in the scroll bar brings the corresponding region of the file into the source
window. You can use the arrows at the top or the bottom of the scroll bar to scroll up or
down the source file a few lines at a time. You can also drag the mouse up or down the scroll
bar with the left mouse button pressed to rapidly scroll up or down the file. In addition,
xVue also provides keyboard shortcuts. Pressingther Downarrow key will move the

file up or down one line at a time. TRageUpandPageDowrkeys scroll up and down the

file one page at a time, respectively. Hmmekey scrolls to the beginning of the file,
whereas th&ndkey goes to the end of the file.

The display irFigure 12-16shows the resulting code after the first red spot is selected.

Analysis of the code reveals that all the highlighted blocks are indeed “unique” to the
character_countindeature (thec option).

12-12

User’'s Manual

X Vue: A Tool for Effective Software Maintenance

Select a heuristic:

+ heuristic A

% heuristic B

+ heuristic ¢

invoking tests

N D

intersection_of

siwordocount . 2

leordcount.ﬁ

i

Hinus

excluding tests

|

find code I

union_of

Siwordcount.3
wordeount. 4
wordeount . 7

7

cancel I

Figure 12-14 Heuristics window with heuristic B selected

File Tool oOptions

+ bhy-type % by-file ., bhy-function

Features Summary

TestCases Update GoBack Help

Disahle Sort_hy

block slicing sumary by file over selected testcases |

main.c

2 of 38

Jowe. o

0 of 13

Figure 12-15 A summary by file over all selected test cases

Similarly, you can view the feature at ttiecision c-useor p-uselevel by selecting the
corresponding criterion from th&ptions menu as shown ikigure 12-17 For example,
the decisions imain.cthat are unique toharacter_countingre shown irFigure 12-18
For each highlightyVue can further indicate which branch of it is uniquely related to a
given feature. In our case it is tlrae but not thefalsebranch ofdocharthat is unique to

character_counting

12-13

User’'s Manual

X Vue: A Tool for Effective Software Maintenance

file Tool Options

Features Summary — TestCases Upddate GoBack Help

i..{
char *p;
int linect, wordet, charct;
long tlinect = 0;
N long twordet = 0;
long tocharct = 0;
int doline = 0;
int doword = 0;
int dochar = 0;
FILE “file;
F if (arge > 1 && argw[1][0] == *-*) {
for (p = argv[1l] + 1; *p; ++p)
switch(*p) {
case ‘1’: Blocks in red are unique
doline = 1; to character_counting.
hreak;
case ‘w’:
doword = 1;
hreak;
case ‘c’:
default:
fprintf({stderr, “invalid option: -%e¢\n",
“pl;
case "7?':
- fputs(“usage: we [-1lwe] [files]yn", stderr);
return 1;
— }
‘/r File: é Line: % Coverage: % Highlighting:
X ue main,c 15 of 96 block highest weight

Figure 12-16 Blocks imain.cthat are unigue toharacter_counting

function entry cowverage
block coverage

decision coverage

c_use coverage

p_use coverage

Figure 12-17 The Options menu

12-14

User’s Manual X Vue: A Tool for Effective Software Maintenance

"ile Tool Options Features Summary TestcCases Update GoBack Help
e
count(file, &linect, swordect, &charct);
felose(file);
print{doline, doword, dochar, linect, wordct, charct,
*argv);

}

tlinect += linect;

twordet += wordet;

techarct += charct;
} while(*++argv);

print {doline, doword, dochar, tlinect, twordet, tcharet, "total"};
return 0;

}

static print{doline, doword, dochar, linect, wordct, charct, file)

int doline, doword, dochar;
int linect, wordet, charct;
char *file; The true branch of dochar

is unique to character_counting.

] if (doline)
printf(" %71
if (doword)
rintf (" *pld", wordet);
if (
p d", charct);
} printf(false B);

. linect);

i
—|/* $Header:@(#) T . mooo ho/main.c /main/2 06/07/96 10:21:37 €(#)§ */

File: Line: Coverage: Highlighting:

6b of 96 decision highest weight

Figure 12-18 Decisions imain.cthat are unique toharacter_counting

You can make your own customized heuristic by moving tests around as shown in
Figure 12-191n this case, program components that are executesizicount.2out not
wordcount.3are identified. Recall that tesordcount.2is:

prompt:> wordcount -wlc inputl (an invoking test)
and test wordcount.3 is

prompt:> wordcount -wl inputl (an excluding test)
This heuristic follows the strategy discusse&eaction 12.1Backgroundby selecting an
invoking test yvordcount.2)and an excluding tesivprdcount.3 which have very similar
execution traces. In fact, the only difference between these two tests is that one executes

the-c option and the other does not. Unigue code so selected is the same as that selected by
heuristic B.

12-15

User’s Manual X Vue: A Tool for Effective Software Maintenance

Select a heuristic:

+ heuristic & + heuristic B + heuristic C

invoking_tests intersection_of

 iwordcount. 6 Yiwordcount . 2

Hinus

excluding_ tests union of

 Siwordeount. 4 Siwordeount. 3

wordceount . 7

find_code ! cancel I

Figure 12-19 Heuristics window with a custom heuristic selected

In some situations, the highlighted code may be a super set of the unique code with respect
to a certain feature. Nevertheless, code so selected provides st@oiod pointfor
mapping features to program components at different levels of granularity.

To quitxVue, click on the File” button in the top button bar, then click on tlexif’ entry
of the menu that pops up.

Since you have already run several tests and saved the informatiordoount.traceand
wordcount.featureghe next time you invokgVue you can use the command:

prompt:> xsuds *.atac *trace *features

to import them directly as command line arguments instead of loading them interactively
through the graphical interface.

12-16

User's Manual xSlice: A Tool for Dynamic Program Debugging

Chapter 13

xSlice:
A Tool for Program Debugging

e Do you know how to locate bugs quickly?
* Do you spend too much time finding faults in your program?

e Can you narrow down bugs to files, then functions, then lines of code?

xSlice is the program debugger in the Toolsuite. It automates many tedious tasks that
developers otherwise must perform manually while debugging their x8tee helps
developers to focus on just the relevant code by eliminating the tgpice¢ptual clutter

of debugging. It makes the relevant pieces of the code stand out in no time with its
intelligent analysis and state-of-the-art graphical interface.

13-1

User’s Manual xSlice: A Tool for Dynamic Program Debugging

13.1 Background

In this section we describe an execution slicing tg8lice, and show the usefulness of
slicing in locating program faults.

In general, program slicing can be categorizesdatgslicing anddynamicslicing. A static

slice is a set of statements of a program whiightaffect the value of a particular output

or the value of a variable instance; whereas a dynamic slice is the set of statements which
did affect the value of the output upon execution of a particular input. A dynamic slice with
respect to the output variables gives us the statements that are not only executed but also
have an impact on the program output under that test case. Although both static and
dynamic slices can be used as an abstraction to help programmers in locating faults, a static
slice is less effective because it, in general, requires that a larger portion of program code
be examined than does a dynamic slice.

Collecting dynamic slices may consume excessive time and file ¢&iwe computes an
execution slice instead. An execution slice is the set of statements executed under a test
case. Since not every statement that is executed under a test case has an effect on the
program output for that test case, some statements in an execution slice may not be in the
corresponding dynamic slice. This makes an execution slice a super set of a dynamic slice.
Based on execution slicesSlice also computes an execution dice which is the set
difference of two execution slices. Yislice, an execution slice is the set of a program’s
blocks decisionsc-usesor p-usesxecuted by a test input. Similarly, an execution dice is

the set oblocks decisionsc-usesor p-usesn one execution slice which do not appear in

the other execution slice.

The strategy for fault localization ¥Slice is as follows. Suppose a piece of software has
worked successfully for some time, so many error-free test cases are available. Then a
problem is reported from the field with a new test case that exhibits a failure. The fault will
be in the execution slice of the new test that exhibits the failure. It seems likely that the fault
is not in the execution slices of the similar tests that do not exhibit the failure. We refer to
the error-free test casesagcessfulests and those that cause a failurlaied tests. A

good starting point for locating the fault is to look at code that is in the failed execution slice
but not in the successful ones, i.e., the execution dice obtained by subtracting the successful
execution slices from the failed execution slice. Code in the resulting dice is highlighted in
red as the most likely location of the fault. Code in the failed execution slice but not in the
dice is highlighted in a different color with its likelihood of containing the fault inversely
proportional to the number of successful tests which also execute it.

Execution dices obtained depend on the test cases used. Different dices may be generated
by different sets of successful and failed tests. In order to have the best results one should
try to identify successful tests that are as similar as possible to the failed tests in order to
filter out as much irrelevant code as possible.

13-2

User’s Manual xSlice: A Tool for Dynamic Program Debugging

13.2 ATutorial

The use ofSlice is most easily understood by an example. In this section we use the same
wordcount program as used before to illustrate how the basic featy®i#cefcan be used

in locating program faults. To copy these files, create a new directory, cd to it, and copy the
contents of the directory in which the tutorial files are installed into the new directory. For
the illustrations in this chapter, we will use (1) thedibes: main_err.¢ main.candwc.q

(2) three data filesnputl, input2, andinput3and (3) aMakefile The filemain_err.cis an
erroneous version ohain.cwith a fault which is to be found. Follow the instructions in
Appendix A, Platform Specific Informatioto compilewordcountwithoutatac using

main.¢ delete the object files; and compile_errwith atacusingmain_err.c

After the compilation, twoatacfiles (main_err.atador main_err.candwc.atacfor wc.¢
and two executablegordcount(.exeandwc_err(.exelare created. Note, onatacfile is
created for each instrumentexfile, i.e., the.c files compiled with the ATAC compiler.

To find where the fault is, we need some successful tests and some tests that fail. Let us run
wc_erron the first test:

prompt:> wc_err inputl (wc_err.l)
This should produce the following output:

1 4 19 inputl
1 4 19 total

Repeat the same test witlordcount The same output is generated which implies that test
wc_err.1does not distinguish the behaviovas_errfrom that ofwordcount Hence, it is
a successful test.
We now run the second testwo_errby entering:
prompt:> wc_err -w inputl (wc_err.2

The output looks like:

4 inputl
4 total

This is the same as that obtained from executing:
prompt:> wordcount -w inputl

This implies that testvc_err.2is another successful test.

13-3

User’s Manual xSlice: A Tool for Dynamic Program Debugging

Let us run another test by:
prompt:> wc_err -w <inputl (wc_err.3

An output with an empty line is generated. Executed@mcount the same test produces
the following output:

4

This output differs from that generatedwg_errindicating testvc_err.3is a failed test.
So far, we have run three tests. On two of timerrandwordcountproduce the same
outputs, whereas on the third test different outputs are observed.

Next, we invoke the graphical user interface of the Toolsuite by entering the following
command:

prompt:> xsuds main_err.atac wc.atac wc_err.trace

Then pull down theTool” menu and select thexSlice” option. Figure 13-1shows the
main window ofxSlice.

Click on the ‘TestCasesbutton in the top button bar to get the test case windg8lafe.

Mark wc_err.1andwc_err.2as successful tests by clicking on the leftmost square next to
them. A check sign appears in the square. In additionerr.1andwc_err.2are

highlighted in green. Similarly, you can mavk_err.3as a failed test by clicking on the
square immediately to the leftwt_err.3. An X sign appears in the square ard err.3

is highlighted in red. The resulting test case window appediigime 13-2

Click on *Summary”in the top button bar to have a summary by file displayed in the main
xSlice window as shown iRigure 13-3 To see the source display of the corresponding
file, click on a file name in this summary window. You can have the summary displayed in
other formats by clicking on théy-typé or the “by-functiori button in the middle button

bar. To continue with this tutorial, be surbky-file" is selected.

As discussed iection 13.,lcode in the execution dice is highlighted in red as the most
likely location of the fault. Code in the failed execution slice but not in the dice is
highlighted in a different color with its likelihood of containing the fault inversely
proportional to the number of successful tests which also execute it. In our case, code in red
with the highest priority 3 is executed by the failed test Err.3 but not the successful

tests (neithewc_err.1norwc_err?. Code with a priority 2 is executed by the failed test
(wc_err.3 and one of the successful tests (eithererr.1orwc_err.. Code with a

priority 1 is executed by the failed testq_err.3 and both successful testsd err.1and

13-4

User's Manual xSlice: A Tool for Dynamic Program Debugging

File Tool Options Summary TestCases Update GoBack Help
0

/:Ic

* main.c

k3
This is a modified wersion of the main.c file
that contains an error.

Hodified from "The ¢ Programming Language"
by Kernighan & Ritchie, 1978.

*
*
*
*
*
*

L | */
#include <stdio.h>

main{arge, argv)

int arge;
char **argv;
{
char *p;
int linect, wordct, charct;
int tlinect = 0, twordet = 0, tcharct = 0;
int doline = 0, doword = 0, dochar = 0;
FILE “file;
if {arge > 1 && argw[1][0] == *-"} {

for (p = argv[l] + 1; *p; ++p)
switch(*p) {

case '1’:
doline = 1;
break;
case ‘w:
E;Z° File: Line: Coverage: Highlighting:
x Lce main_err.c 1 of 94 block all prioritized

Figure 13-1 The initial display of the magslice window

File Tool Options Summary TestCases Update GoBack Help

all_passed all_failed all_neutral Disahle Sort_by

block slicing summary by testcase |

wo_err. 1l | 35 of 5Kl EB.E%_
WC_err.2 | 18 of 5Kl ?4.5%-

Figure 13-2 The updated test case window
wc_err.2. Finally, code in white with a priority O is the code that is not executed by any of

the failed testswc_err.3 in our case). Note that only those pieces of code that are executed
by all of the failed tests get a nonzero priority (i.e., are highlighted in non-white colors).

13-5

User’s Manual xSlice: A Tool for Dynamic Program Debugging

File Tool Options Summary TestCases Update GoBack Help
+~ hy-type # by-file -, bhy-function Disable Sort_hy

block slicing summary by file over selected testcases |

WO | 13 of 13 100%'

Figure 13-3 A block slicing summary by file over all selected test cases

However, if the program under test has multiple faults with each detected by different tests,
you should try to locate one fault at a time. That is, while computing the execution slice or
dice, do not select failed tests from different faults at the same time. Otherwise, the
highlighted code will miss some of the faults. Those pieces of code that are not executed
by any of the failed tests get a priority of zero (i.e., are highlighted in white) irrespective of
whether or not they are executed by any (or some, or all) successful tests.

The highest priority among all pieces of code in a file gets reflected in the corresponding
entry in the summary window. As iiigure 13-3main_err.cis in red because some of its
code has a priority 3, but the highest priovity.chas is 1, so it is displayed in the color of
priority 1. In other wordsnain_err.c(but notwc.g has blocks that are executed by the
failed test vc_err.3 but not the successful tests (neitiver err.1norwc_err.2). Click on
main_err.¢ as it contains the most likely location of the fault.

The source code aofain_err.cwith the red spot selected is displayedrigure 13-4 The

scroll bar is a thumbnail sketch of the entire file indicating there is one red spot. Clicking
with the left mouse button at the spot in the scroll bar brings the corresponding region of
the file into the source window. You can use the arrows at the top or the bottom of the scroll
bar to scroll up or down the source file a few lines at a time. You can also drag the mouse
up or down the scroll bar with the left mouse button pressed to rapidly scroll up or down
the file. In additionxSlice also provides keyboard shortcuts. Pressinyyther Down

arrow key will move the file up or down one line at a time. PageUpandPageDown

keys scroll up and down the file one page at a time, respectiveljddrhekey scrolls to

the beginning of the file, whereas tBad key goes to the end of the file.

Analysis of the code ifigure 13-4reveals that the blocks highlighted in red contain the
fault. With the help okSlice and a careful selection of the successful and failed tests, this
example shows that program maintainers can quickly locate faults by examining a reduced
set of code instead of the entire program.

13-6

User's Manual xSlice: A Tool for Dynamic Program Debugging

r"ile Tool Options Summary TestCases Update GoBack Help
RN else {
++argv;
doline = 1;
g"wﬁ;d = i Code in red is executed by wc_err.3
} ochar = but not wc_err.1 and wc_err.2.
do {
if (!*ar
}
- else {
file = fopen(*argv, "r*
if (file == WULL) { Bug!
F— perror (*argv); should be doline

return 1;

}

count(file, &linect, &wordct, &charct);

feclose(file);

print (doline, doword, dochar, linect, wordct, charct,
— *argv);

tlinect += linect;

twordet += wordet;

teharct += charct;
} while(*++argv);

+ File: Line:
ySlice -y

main_err.c block

Coverage: ‘ Highl ight ing:

all prioritized

Figure 13-4 Possible locations of faultsain_err.c

To quitxSlice, click on the File” button in the top button bar, then seleekit’

13-7

User’s Manual XProf: A Tool for Detailed Performance Analysis

Chapter 14

X Prof:
A Tool for Detailed Performance Analysis

* Do you need to improve the performance of your program?
* Do you know which part of your program slows down the execution?

» Can you visualize the most frequently executed pieces in code?

xProf is a program performance enhancement tool in the Toolsuite. It helps
developers to improve their code performance. Unlike most other profilers that
provide approximate clock times spent while executing cdéief provides exact
execution counts for various software items ranging from high level functions and
subroutines down to the lowest level expressions. Such execution count based
profiles provide a precise, repeatable, and easily understood way of measuring and
improving code performancgProf uses an advanced graphical user interface to
point out only the relevant code that programmers need to analyze, and possibly
reorganize and/or rewrite, in order to improve the code’s overall performance.

14-1

User’s Manual XProf: A Tool for Detailed Performance Analysis

14.1 Background

Programmers are frequently asked to speed up code in response to user requests for
improved performance. It seems to be inevitable that any successful system will be stressed
by larger and larger data sets until performance bounds are encountered. Execution
profiles, showing how much time is spent in each function or subroutine, are the common
way of understanding such performance limitations. Many profiling tools are available for

a wide range of languages and environments.XFref tool leverages the coverage data
already collected in ATAC to provide a profiling that counts the number of times each
block, decision, c-user p-useis executed instead of an approximatek timespent while
executing code.

In general, execution time profiling is usually done afftimetionlevel to keep down the
overhead of processing system timgrof provides exact execution counts for various
software items ranging from high level functions and subroutines down to the lowest level
expressions. It can point more directly to the exact code that most impacts performance.

As a resultxProf provides a precise, repeatable, and easily understood way of measuring
and improving code performance.

14.2 A Tutorial

The use okProf is most easily understood by an example. In this section we use the same
wordcount program as used before to illustrate how the basic featyfebtan be used

to find the most frequently executed pieces of code. To copy these files, create a new
directory, cd to it, and copy the contents of the directory in which the tutorial files are
installed into the new directory. For the illustrations in this chapter, we will use () two
files: main.candwc.c (2) three data filesnputl, input2, andinput3 (3) aMakefileand (4)
thetests_regress(.bascript. Compile the wordcount program wittac as instructed in
Appendix A, Platform Specific Information

After the compilation, twoatacfiles (main.atacfor main.candwc.atacfor wc.g and the
executablevordcount(.exeare created. Note, onatacfile is created for each
instrumentedc file, i.e., the.c files compiled with ATAC.

Let us repeat all the tests execute@action 11.2as shown irFigure 11-1To do this,
execute theests_regresscript. Expect to see a couple of error messages during this
execution. We now invoke the graphical user interface of the Toolsuite by entering the
following command:

prompt:> xsuds main.atac wc.atac wordcount.trace

14-2

User's Manual XProf: A Tool for Detailed Performance Analysis

Then pull down theTool” menu and select thexprof’ option. Click on the Summary
button in the top button bar to havblackprofiling summary by file over all selected test
cases displayed in the mg{Rrof window as shown iRigure 14-1 In our case, although

File Tool oOptions Summary TestCases Update GoBack Help

~ by-type # hy-file .. by-function Disahle Sort by

hlock profiling summary by file over selected testcases |

" We.e 2024 33.1%-

Figure 14-1 Ablock profiling summanyby-file over all selected test cases

main.chas 38 blocks andc.chas 13 blocksnain.cis only responsible for 16.3% of the
total block execution counts whereag.cis responsible for the rest. You can have the
profiling summary displayed in other formats by clickingogrtypeor by-functionin the
middle button bar-igure 14-2shows thévlock profiling summary by functions over all

File Tool oOptions Summary — TestCases Update GoBack Help

~s by-type - by-file 4 hy-function file name Disahle Sort by

block profiling summary by function over selected testcases |

we. ¢: count 2024 33.?%-

Figure 14-2 Ablock profiling summanby-functionover all selected test cases

selected test cases. To see the source display of the corresponding function, click on a
function name in this summary window. Since functonntin wc.cis responsible for
83.7%, let us examine it first.

The source code of functiaountin wc.cis displayed irFigure 14-3 The scroll bar is a
thumbnail sketch of the entire file. Clicking with the left mouse button at the spot in the

14-3

User’s Manual XProf: A Tool for Detailed Performance Analysis

File Tool Options Summary — TestCases Update GoBack Help
0 1 19 76 113 150 187 224 G
="l4define OUT 0 /* outside a word */

/* count lines, words and characters in input */
count(file, p_nl, p_nw, p_nc)

FILE “file;

int *p_nl, *p_mw, *p_nc;

int ¢, nl, nw, nc, state;

The most frequently executed blocks
with 261 times.

state = OUT;
nl =
nw =
nc =

if (¢ == "\n’)
T ++nl;
TENEEE ¢ ¢ || ¢ ==\’] ¢ == '\b)
state = ouUT;
else if (state == OUT) {
state = IH;
1w ;
}
i block execution counts
*p_nl = nl;
*ponw = nw;
*p_ne = ne;
b
T
P File: Line: overage: Highlighting:
x rof wo.o 13 of 44 block all prioritized

Figure 14-3 Block execution countswe.dcount

scroll bar brings the corresponding region of the file into the source window. You can use
the arrows at the top or the bottom of the scroll bar to scroll up or down the source file a
few lines at a time. You can also drag the mouse up or down the scroll bar with the left
mouse button pressed to rapidly scroll up or down the file. In addjitiRnof also provides
keyboard shortcuts. Pressing the or Downarrow key will move the file up or down one

line at a time. Th&ageUpandPageDowrkeys scroll up and down the file one page at a
time, respectively. Thelomekey scrolls to the beginning of the file, whereasEhdkey

goes to the end of the file.

The background color igProf has a different meaning thangATAC. In this tool it
indicates the execution frequency. For example, the red spalre 14-3indicates the
while statement is the most frequently executed code with 261 times followed by
statements in orange such asthc” or * if (c == ‘\n") ” with an execution count equal to
224. Execution counts do not include those spent in system calls or other external
subroutines. Colors are assigned relative to code in that file only.

14-4

User’s Manual XProf: A Tool for Detailed Performance Analysis

It is your responsibility to determine whether the code in red is implemented in its most
efficient way. If not, revise it so as to improve the program’s performance. Otherwise, you
can examine the next most frequently executed code to see whether it is implemented
efficiently. This process continues until the overall performance of the program is
acceptable.

Similarly, you can view the source code atdieision c-useor p-uselevel by clicking on
“Options in the top button bar and selecting the corresponding criterion from the popped-
up menuFigure 14-4shows thaelecisioncounts for functiortountin wc.c As you can see
thetrue branch of ‘EOF != (c = getc(file))' is the most frequently executed decision with
248 times.

File Tool Options Sunmmary TestCases Update GoBack Help

0 1 37 73 108 143 178 213 [EE

e |
/* count lines, words and characters in input */

count{file, p_nl, p_nw, p_nc)
FILE “file;

int “p_nl, *p_w, *p_nc;
{

int ¢, nl, nw, nc, state;

state = OUT;
nl = 0; The most frequently executed
$ z gf decision with248times.
while (
++nc;
if (e == *xn’)
+4nl ; false
- if (e ==+ 7 |l ¢ 9 gismigs |@ == "\t7)
state = O
else if (state == OUT) {
state = IN;
++Iw;
}
H
*p_nl = nl;
“pnw = decision execution counts
p_nc¢ = nc;
H

/* $Header:@(#) IN fvobs/atac/wc.c fmain/? 06/07/796 1P:21:43 ‘(%)% */

File: Line:
xPrOf 14 of 44

wWC.C

Coverage: Highl ighting:

decision all prioritized

Figure 14-4 Decision execution countsain.dcount

To quitxProf, click on the File” button in the top button bar, then selestit’.

14-5

User’s Manual XFind: A Tool for Transitive Pattern Recognition

Chapter 15

xFind:
A Tool for Transitive Pattern Recognition

» Do you need to identify Year-2000 sensitivities in your applications?
+ Are you faced with analyzing difficult languages like C arfdT

* Are your applications implemented in languages without Year-2000 tool
support?

XFind is a Year-2000 static analysis tool in the Toolsyjteénd supports the identification

of date-sensitive objects through a simple transitive relation. Date-sensitive patterns are
initially specified which are common across the application. The atoms (groups of
characters, surrounded by white space) in the code that match each pattern are then either
accepted or rejected. Acceptance or rejection can be selected in either local file or global
scope. Once the initial atoms are selected, the transitive relation is invoked, which
identifies more candidates for date-sensitive objects. By selectively pruning objects that are
not date-sensitive, closure on the date-sensitive objects in the application can be reached.
Output fromxFind is then exported to the remaining tools to specify interesting regions for
testing. Because the transitive relation is a simple heuristic, namely objects on the same
line, xFind is language independent, and well-adapted to pointer-based languages like C or
C**. Other languages, like Perl or Tcl which are unlikely to have Year-2000 tool support,
are also excellent candidates for analysis throghd.

15-1

User’s Manual XFind: A Tool for Transitive Pattern Recognition

15.1 Background

XFind is a tool within the Toolsuite which performs transitive pattern recognition. Its
intended use is to assist in identifying pieces of code that are related to one another in a
thematic way. The user begins with seed files containing standard and/or customized
templates (regular expressions) to identify components with the designated patterns.
Unlike the rest of the Toolsuite which uses dynamic traces to analyzexEaudperforms

a simple static analysis of the code. Because of its simple heurngtind,is language
independent. It does simple lexical analysis rather than a full parse to determine
relationships among the elements of a language.

One ofxFind’s principle applications is to analyze and delineate date-sensitive code as part
of the solution to the Year-2000 challenge. The simplest form of a date pattern might be
mmddyy (two numbers each for month, day and year such as 032697). A default seed file
is provided for this application, which includes the most frequent formats for encoding
dates.

The tool applies the patterns to atoms (groups of characters, surrounded by white space) in
the code, which are all words except those included in a stop list. The stop list is user
definable and typically includes keywords of the language being analyzed. As the atoms
satisfy the patterns, they are highlighted in red as candidates.

The candidates are inspected for relevance to the feature code being delineated. Based upon
this determination, the atoms matching the patterns in the seed file are accepted or rejected
in either file or global scope. Upon completion of this task, the heuristic that generates
further candidates is applied. As currently implemented, new candidates are those atoms on
the same line but not excluded by the stop list.

Iteration through inspection of candidates, determination of their relevance, and generation
of new candidates is performed until no further relevant new candidates are generated. At
this point the process ceases.

xFind requires close user-interaction with and intuition about the program being analyzed.
Without this judgement, static analysis of the type outlined above does not converge. With
appropriate pruning of the dependencies among atoms in the code, static analysis becomes
a useful tool for isolating feature code in large programs.

15.2 A Tutorial

The use okFind is most easily understood by an example. In this chapter we use the same
wordcount program as used in previous chapters to illustrate the basic feapaslof
To copy these files, create a new directory, cd into it, and copy the contents of the directory

15-2

User’s Manual XFind: A Tool for Transitive Pattern Recognition

in which the tutorial files are installed into the new directory. This tutorial will not require
that any programs be compiled, so if preferred, files from a previous tutorial may be used.
For the illustrations in this chapter, we will use two filestin.candwc.c

The wordcount program has the ability to count either characters, words or lines depending
on the command line options. Each of these abilities is deemed a feature. This tutorial will
find and demark all code that implements the word counting feature. In another application
the feature might just as easily be date sensitive thereby making it relevant to the Year-2000
challenge. Start the tutorial by typing:

prompt:> xfind main.c wc.c

at the command-line prompt. The resulting display will appear Rigime 15-1

file Edit Seed Help - xFind

/k
* main.c
&

Modified from "The ¢ Programming Language"
by Kernighan & Ritchie, 1978.
page 18.

&
&
&
&

5
#include <stdie.h>

main(arge, argv)

int argce;
char **argv;

{
char “p;
int linect, wordct, charct;
long tlinect = 0;
long twordet = 0;
long tcharcet = 0;
int doline = 0;
int doword = 0;
int dochar = 0;
FILE “file;

Seed Files Seed List Modules Derived Seeds

Update | Al | none | Update | Al | none | ! main.c

| f*

= b = b = b [hd
Figure 15-1 The initiakFind window

ThexFind window is divided into two areas, a program display area in the upper region and
four control boxes in the lower region. The rightmost control box initially has a generic
label “Derived SeedsThis label changes toPatterned Seedsifter a seed file is

imported and to Transitive Seedsfter the transitive relation is applied. The control boxes

15-3

User’s Manual XFind: A Tool for Transitive Pattern Recognition

may be selected and deselected with Edit' menu “Show Controlsoption. Deselecting
the control boxes causes the program display area to fill the entire window.

Other entries in theEdit” menu include:

* “Find”, which displays a text-entry dialog used to specify text to scroll to in the
program area. Text to find may be entered as a regular expression. The text match-
ing the regular expression will be highlighted.

+ “Delete, which deletes entries from either theeed Files “ Seed Listor
“Derived Seedsontrol boxes. The menu entry changes depending on which con-
trol’s entry is selected.

» “Show Excluded a button that displays in yellow all those atoms that have been
excluded from consideration in either file or global scope. The default value for
this entry is deselected.

* “Show Candidate a button that displays in red all those atoms that the transitive
relation of residing on a common line has selected. The default value for this entry
is selected. Show Candidatemay be deselected at the end of the analysis to
reduce display clutter.

« “Scan Commerntsa button that causes comments to be included in the feature
analysis. This entry is always selected in this version.

As inFigure 15-1xFind displays the plain text ofiain.c which may be scrolled with
either the scroll bar to the left of the text or by usingRgelp, PgDnor arrow keys.
Selectingwc.cin the *Modules control box causegFind to displaywc.cin the program
area. The displayed module is denoted by an exclamation mark to its left. If the control
boxes are deselected by using tedit/Show Controlsmenu entry, then aModule$

menu appears in the tool bar that enables the user to switch between modules. Before
continuing the tutorial, reselect the control boxesraath.cin the “Modules” box. The
resulting display will be the same as thaFigure 15-1

The program may be seeded with initial patterns to be matched either from a seed file or
interactively from the program display area. Selecting seeds interactively is accomplished
by sweeping out an atom with the left mouse button and invoking eitheklther“ File”

option in the Seed menu depending on whether the selected atom is in either global or file
scope. Two seed files are included in the tutorial as shofigime 15-2 The fileseeds.sd

is used in this tutorial, wheredates.sds displayed to provide a more illustrative example

of a seed file. Patterns can be changed or inserted one per line in the seed files, which must
have the extensiasd Patterns may be excluded beyond the default list by populating the
excludeSeetkgion of the file. These patterns should be entered between the curly braces,
one pattern per line.

Import theseeds.sdile from the ‘File” menu by selecting thdrhport’ entry which
invokes a standard file selection dialog. Other entries inkhe"menu include:

15-4

User’s Manual XFind: A Tool for Transitive Pattern Recognition

set includeSeed {{seedList {
word

m

set excludeSeed {}

set includeSeed {{seedList {
ti?me?
da?te?
epoch
ne?we?r
older
ye?a?r
mo?n?th
da?y
ho?u?r
minute
seco?n?d?
n

set excludeSeed {}

Figure 15-2 The word-sensitivededs.sdand date-sensitivelétes.siiseed files

“New’, which clears the state of the currgfind session and makes the tool avail-
able for analyzing a new feature in a different set of modules. The state of an anal-
ysis is savable at any time intgxBind document file, which has thedfile

extension. This document allows the state of an analysis to be saved and restored
so large problems may be subdivided into sevgrald sessions. TheFind doc-

ument contains references to all modules, seeds, included and excluded atoms and
any other data necessary to continue working on a particular problem.

“Oper, which opens a previously savg#ind document for continuation or
review of feature code analysis.

“Savé, which saves the current state of the analysis ingBiad document. The
“Savé menu entry displays a standard file dialog for saving a file the first time it
is selected. Thereatfter tR€ind file is saved each time this menu entry is invoked.

“Save A% which saves a copy of the currggitind document. TheSave Asmenu

entry also uses a standard file dialog. TRewW, “Oper, “ Savé, and “Save As

menu entries interact in a way that has become familiar to most users of GUI-based
applications.

“Import’, which allows the reading of both seed and code moduleghiibal. This
tutorial has already demonstrated how tinegiort’ menu entry is used to read seed
files. Although the example modules were invoked from the command line in this
tutorial, code modules may also be read j#od using the Import’ file dialog.

15-5

User’s Manual XFind: A Tool for Transitive Pattern Recognition

Filters exist in the standard file dialog for C arld Ginguage files. Any other type
of text file may also be read ingd-ind.

« “Export, which allows the saving of items listed in tHEransitive Seed<ontrol
box. This item is of limited usefulness to the general user and may go away in a
future release.

» “Report, which publishes the results of an analysis in printable form. The report
is formatted to facilitate postprocessing that makes it suitable input for other tools.

« “Adiff’, which exports the results of a feature-code analysis in a format compatible
with atacdiff (seeChapter 10, ATAC: Testing Modified Cgd€his output is
usable anywhere in the Toolsuite whatacdiffresults are used. It is particularly
useful in identifying test sets that exercise the feature code that the user delineates
with xFind.

« “Exit’, which exits the programyFind will query whether to save any unsaved
state changes in the analysis.

OncexFind reads the seed file and code modules, analysis begingFiFltewindow
should look likeFigure 15-3xFind highlights all the atoms that satisfy the regular

Fle Edit Seed Help - xFind‘

/x
* main.c
*
Hodified from "The ¢ Programming Language"

= by Kernighan & Ritchie, 1978.
|
' page 18.

® o® % om o®

/

#include <stdio.h>

main{arge,argv)

int arge;
char **argv;
{
char 'H
int linect, {SE0EE. charct;
long tlinect = 0;
' long [EGEEEE - 0;
y long teharet = 0;
ink doline = 0;
int [IGHOE - 0;
int dochar = 0;

FILE *file;

Seed Files Seed List Modules Patterned Seeds
Update | Al | Hone | Update | Al | Hone | ! main,c
wo.o
! seeds.sd ! word
1= hd B l hd . il |2 4

Figure 15-3 The updated-ind window afteiseeds.sis imported

expression represented bydrd’. Each of these is now a candidate for inclusion or

15-6

User’s Manual XFind: A Tool for Transitive Pattern Recognition

exclusion into the code-feature set in either file or global scope. The white area covering
each line that includes a candidate enhances its visibility in the scroll bar. Small candidates
in large modules tend to be overlooked without this highlighting.

Before proceeding with the analysis, take a few moments to become familiar with the
operation of the Seed Filesand “Seed Listcontrols at the bottom of the screen. The
“Update, “ All” and “Non€ buttons in each control box determine whether the seed file or
individual regular-expression seeds are considered when generating candidates. The
“Updatée button functions as a toggle. Selecting the entmofrd’ in the “Seed List

control box and clicking theUpdaté button removes the highlighting of all atoms that
match the patternWord’. Reselecting ‘word”’ and clicking the “Update” button

highlights all atoms that match the pattemmdrd’ again. The ‘All” and “Noné€ buttons

have the expected effects. Tigeed Filescontrol box operates similarly. An exclamation
mark to the left of the pattern or file indicates that the item is active.

Classify each of the candidates highlighted in red according to whether it is included or
excluded in file or global scope. Atoms that are defined as static or automatic variables
should be selected at file scope while those defined as global should be selected at global
scope. Click the left mouse button on the red highlightedictat the beginning ahain.c

The pop-up menu iRigure 15-4appears. Move the mouse down to seldotlude Fil€.

This will insertwordctinto the ‘Patterned Seedisontrol box. Other entries in the pop-up
menu include:

* “Include All, which selects the atom as a global patterned seed in all code mod-
ules. Double clicking an atom is a short cut for selecting this entry.

« “Exclude All, which excludes the atom from further consideration in all code
modules.

« “Exclude Filg, which excludes the atom from further consideration in this file.

» “Show/Hidé&, which shows candidates in the file that have been selected through
the transitive relation. This menu item is not useful at this point but its purpose will
become clear later.

» “Next, which selects the next instance of the atom specified. This menu is used in
conjunction with ‘Showi.

If a classification needs to be changed, remove entries fronPttieefned Seedsontrol
box by clicking the seed and selectingdit/Deleté.

Click twordctand move the mouse down to selektclude Fil€. Repeat this fodoword.

These atoms will appear in thedtterned Seedsontrol box and all other instances of the
atom will change color to either green or yellow depending on whether they were included
or excluded from further consideration. Atoms that the user does not wish to explicitly
exclude may be left alone; they will not appear at the next level in the relation. For example,

15-7

User’s Manual XFind: A Tool for Transitive Pattern Recognition

Hle Edit Seed Help - xFind

/*
* main.e
*

* Hodified from "The € Programming Language"
* by Kernighan & Ritchie, 197§.
' * page 18.
*
%

#include <stdie.h>

main{arge,argv)

int arge;

’ char **argv;
i

char *p;

int linect, HOEGEER ~harot:

long tlinect = 0; Hide

' ionq NI - gi Next
1 ong chnarct = H

' int doline = ; Incuedl
' int iSEEE - o; Include File

int dochar = 0; Exclude All

*fq .
L i1l Exclude File
Seed Files Seed List Modules Pattemed Seeds
Update | Al | hone | Update | Al | hone | I main.c
we. o
! seeds.sd ! word
] ¥ =] ¥ = [¥ [= i

Figure 15-4 The updated-ind window as the user begins to classify candidates
according to whether they are included or excluded in file or global scope

the candidates which match thedrd’ pattern in modulevc.cshould be ignored, as should
all words within comments.

Now invoke the New Levélentry in the ‘Seed menu, which computes the next set of
candidate atoms and updates{Rénd window. Scroll down until you see what is
displayed inFigure 15-5

Going to a new level causes several changes in the window. The title Efaihertied
Seedscontrol box changes toTtansitive Seedsndicating that atoms are no longer being
selected through regular expressions but rather through the transitive relation of residing on
the same line in the module. The entry in tBeéd Filescontrol box changes from
‘seeds.sdthe name of the seeds file, teededGen_"lindicating the level of the transitive
relation between atoms. Most importantly a new set of candidate seeds is highlighted in red
and the included seeds remain highlighted in green with red text, which indicates these
atoms are included in a previous classification pass.

15-8

User’s Manual XFind: A Tool for Transitive Pattern Recognition

Hle Edit Seed Help - xFind

=] dochar = 1;
1

do {

if (1*argy) {
| { , , Swordet, 1;
E(A N AT

ll|l);

! return;

}

else {

file = fopen(*argw, "r");

if (file == HULL) {
perror{*argv);
return 1;

}

e EGTHE (Fil8, sDHREEE, svordct, EHAFGE);

fclose(file);

o [TEEHE (BBI6fE, doword, [GCHAE, DHFEEE, wordct, EHAEGE,
e } ‘argv);

tlinect += linect;

twordet += wordet;

teharet += charct;

Seed Files Seed List Motules Transitive Seeds
Update | Al | None | Update | Al | None | ! main.c
we.c
| seedGen_1 + doword
+ twordet
+ wordcet
L b ol .4 b [hd R 1= ki

Figure 15-5 The updated-ind window after ‘New Levélis selected from
the “Seed menu

Other entries in theSeed menu include:

« “All”, which is used in conjunction with manually selected atoms. An unhigh-
lighted atom which is not in the stop list is selected by either double clicking on it
or sweeping it out with the left mouse button. On choosingAli& rhenu entry,
the selected text is included as a transitive seed in global scope just as if it were a
candidate selected with the pop-up menu.

* “File”, similar to “All” except the atom is included in file scope.

Go through the modules excluding the following atoms at file sdimeet, charct, tlinect,

tcharct, dochar, doling andfile and excluding at global scop#lin,a global variable.

These atoms are excluded to relieve clutter on the display at the next level. If they were not
excluded they would remain as candidates. The atoonstandprint should be included

at global scope, thereby selecting them as candidate atovoscin the next level.Invoke
“SeedNew Levélto go to the next level.

15-9

User’s Manual XFind: A Tool for Transitive Pattern Recognition

Select thevc.cmodule and observe thatdunt is a candidate atom. It is known from the
previous level that the third argument ebunt is connected with the word counting

feature, thereforep' nw should be included in file scope. Everything else on that line

should be excluded at the file level. SeleSeéd/New Levelo generate new candidates.

This action leads to one new candidate atom/,“which should be included in file scope

and “Seed/New Leveselected. At this point no new relevant candidates emerge. Ignore

the candidates on the integer declaration line as there is no true dependency among these.
This is because the declaration of a variable does not convey how it is going to be used and
hence what it is related to. The analysis is now comptegeile 15-§. Saving the state in
a.xfdfile, generating a report or creatingd file may be done at this time if desired.

file Edit Seed Help - xFind

gount(file, p_nl, p oy, p_ne)
FILE “file;

int “p_nl, *p_mM, *p_nc;
{
int @, B0, i 06 S5
state = OUT;
[T Al =0,
-0
i ne = o
while (EOF != (¢ = gete(file))) {
++ne;
: if (c == "\n’)
++nl;
if (c ==’ ' |l c="\n’ || ¢=="\t)
state = OUT;
else if (state == oUT) {
state = IN;
++iM;
}
}
“p_nl = nl;
“ponw = IM;
Seed Files Seed List Modules Transitive Seeds
Update | al | Hone | Update | al | Hone | main.¢
! we.c
| seedGen_1 ! count
| seedGen_2 + nw
! seedGen_3 + p_nw
! seedGen_4 ! print
|5 | b = | b = | b = 4 b

Figure 15-6 The updated-ind window after completion of the static analysis

Displaying each module shows the atoms included in the word counting feature for that
module in the Seed Listcontrol box. Global atoms are preceded with an exclamation
point, and seeds in file scope are preceded with a “+” sign.

Examination ofigure 15-6demonstrates one of the limitations of static analysis. The
integer variable stat€ (e.g. in the statementstate = OUT) was not found byFind but

15-10

User's Manual XFind: A Tool for Transitive Pattern Recognition

is in fact an atom that contributes to counting words, as the code shows. To include the
“staté variable from this statemenfigure 15-7 in the analysis, double click it with the
left mouse button and select tHeeed/Filé menu entry.

File Edit Seed Help - xFind

EouiE(file, p_nl, pUH, p_nc)
FILE file;
int “p_nl, *pmM, *p_nc;
{
int @, @l i 06 S5
state = OUT;
[T nl = 0,
W - 0 . .
ne = 0. includestateat the file lev
i while (EOF != (¢ = getc(file))) {
+ne;
! if (c == "\n’)
++nl;
if (¢ =="* ' ¢ == '\n" || ¢ == "\t’)
state = oUT;
else if (state == oUT) {
state = IN;
++l;
}
}
“p_nl = nl;
“ponM = DM
Seed Files Seed List Motules ’Tzwéive Seeds
Update | Al | None | Update | Al | None | main.c state
! we.c
| seedGen_1 ! count
! seedGen_2 + nw
! seedGen_3 + p_nw
! seedGen_4 ! print
P | b 2 | b 2 | b 2 [V

Figure 15-7 Include the varialdtatein the statementstate = OUT into analysis

To quitxFind, click on the File” button in the top button bar, then selegkit’.

15-11

User’s Manual XxDiff: A Tool for Better Displaying Program Differences

Chapter 16

x Diff:

A Tool for Displaying Program Differences

* Do you need to visualize the difference between two files?

* Do you need to compare versions of code? documents?
data? computer outputs?

xDiff is the Toolsuite componefur displaying differeses between files. It displays

two files side by side with line by line differences highlighted in color. A green
background is used for lines that are changed, a blue background for lines that are
added, and a red background for lines that are deleted. Two customized bit-mapped
scroll bars are used to display a thumbnail sketch of the differences between the two
files. They are useful for quickly locating changes, deletions, and addiffs.

also reports the number of changes, additions, and deletions that have to be made to
bring two files into agreement.

16-1

User’s Manual XxDiff: A Tool for Better Displaying Program Differences

16.1 Background

One of the major problems in using & (UNIX) command to find the differences

between two files is that the user has to expend a tremendous amount of effort
understanding its output before discovering how these two files djfdéff, on the other

hand, has a graphical user interface which displays two files side by side with line by line
differences highlighted in color. A green background is used for lines that are changed, a
blue background for lines that are added, and a red background for lines that are deleted.
Two customized bit-mapped scroll bars are used to display a thumbnail sketch of the
differences between the two files. They are useful for quickly locating changes, deletions,
and additions.

The scrolling can be eitheynchronizear independentin the synchronized mode, when
one file is scrolled up or down, the other file scrolls to ensure that changes are displayed
side by side in the two text windows. On the other hand, in the non-synchronized mode,
only the file in the text window under the mouse is scrolled while the other file remains
unmoved.

xDiff is valuable for merging versions of a program produced by two programmers into a
single, reconciled version. It can also quickly identify differences between a new and an
old version of a document.

16.2 A Tutorial

The use okDiff is most easily understood by an example. In this chapter we use the same
wordcount program as used in the previous chapters to illustrate the basic fegtDiéfs of

To copy these files, create a new directory, cd to it, and copy the contents of the directory
in which the tutorial files are installed into the new directory. For the illustrations in this
chapter, we will use two filegnain.candmain_err.c

Invoke xDiff by:
prompt:> xdiff main_err.c main.c

Figure 16-1shows the resulting display. If no file names are specified aftegilie
command, the text windows will be empty. There are two other ways to specify which two
files to compare. One way is to enter the first file name in the rectangle nésitemame

1" and the second file name in the rectangle nextRite“'name 2. The other way is to

click on the *Filel” or “File2” button to open a file dialog window, then select a file from
the file list and click on the Ll'oad” button with the left mouse button or hit the return key.

16-2

User's Manual XxDiff: A Tool for Better Displaying Program Differences

xni,j m m m Fiet | Fiez | Sme | Load | Close | Help |

of changes: |3 | # of additions: [1 | # of deletions: [1
menmne14mam_mrc Henmnezﬂmamc

g g

* main.c * main.c

* *

* Modified from "The C Programming

* by Kernighan & Ritchie, 1978
* Modified from "The C Programming e
® by Kernighan & Ritchie, 1978 @4
*
f fiinclude <stdio.h>
#include <stdic.h> mainf{argc.argv)
int argc:
main{argc,argv) char **argv;
= int argc: -
char **argv: char tpr
{ int linect, wordet, cha
char “Eg
int linect, wordet, cha

FILE *file:

if {arge > 1 && arqgv[1]1[0] :
= I PR

Figure 16-1 The display window gDiff

Clicking with any mouse button (left, middle or right) at any spot in the scroll bars brings
the corresponding region of the file into the text window. You can use the arrows at the top
or the bottom of the scroll bar to scroll up or down the source file a few lines at a time. You
can also drag the mouse up or down the scroll bar with the left mouse button pressed to
rapidly scroll up or down the file. In additiogDiff provides keyboard shortcuts. It may be
necessary to click with the left mouse button to activate the desired text area. Once focused
properly, thdJp or Downarrow key will move the text up or down one line at a time. Any
time the mouse is over the horizontal bar, you may scroll horizontally in that file, either
with the Left and Right arrow keys or using the left mouse buttonPalgeUpand
PageDowrkeys scroll up and down the source file one page at a time, respectively. The
Homekey scrolls to the beginning of the file, whereasEhdkey goes to the end of the

file.

The “Sync”button in the top button bar works as a toggle. If it is on, clicking turns it off;
if it is off, clicking turns it on. This button is used to determine whether filel and file2

16-3

User’s Manual XxDiff: A Tool for Better Displaying Program Differences

should be moved together in a synchronized way. By default, they are synchronized. As
displayed inFigure 16-1 we see that a block of two lines in filel is replaced by a block of
six lines in file2. Both blocks are highlighted in green. Since the ratio of the number of lines
changed in these two files is 1)@iff ensures that when every line in the block that is
highlighted in green in filel is scrolled up or down, three such lines in file2 are also scrolled
up or down, or vice versa. We also see that a block of new code has been added to file2.
This block is highlighted in blugDiff ensures that filel stays unmoved, that is, not
scrolled up or down, while the blue highlighted block in file2 is scanned to examine the new
code. The same technique also applies to the deletion code in filel which is highlighted in
red.

If you want to view these two files independently, i.e., without moving them together, you
can click on the Sync” button to turn it off. Once it is clicked, the button is dimmed to
indicatexDiff is in the non-synchronized mode. In this mode, the text window under the
mouse has the focus. You can move the file in that window up or down by clicking a mouse
button on the corresponding scroll bar or pressing shortcut Wpysrow, DownArrow,
LeftArrow, RightArrow, PageUfPageDown Homeor End

You can switch back to the synchronized mode by clicking on Sy¢” button again.
Depending on which text window has the last focus, the file in the other text window will
be automatically scrolled to resume the synchronization. For example, if the left text
window has the last focus, when the Sync mode is turned on, file2 in the right text window
will then be automatically scrolled up or down to make itself in synchronization with file1.
In the same way, if the right text window has the last focus, the left window will be
adjusted.

The number of changes, additions, and deletions that has to be made to bring the two files
into agreement appears in the middle bar in the rectangles next t9 dieHanges, " #

of additions”, and “# of deletionslabels. In our case as displayedrigure 16-1there are

3 changes, 1 addition, and 1 deletion fro@in_err.cto main.c

To see a description of the colors used in highlighting, selectahaiges’ *“ additions”,
or ““deletions”button in the top button bar. A highlighted description window will pop up
as inFigure 16-2

To get on-line help, click on theHelp” button in the top button bar.

To quitxDiff, click on the “Close” button in the top button bar. This will close WRiff
text window.

16-4

User’s Manual XxDiff: A Tool for Better Displaying Program Differences

Changes are highlighted in green.
Additions are highlighted in blue. .

Deletions are highlighted in red. .

Figure 16-2 The highlight description window dDiff

16-5

User’s Manual Appendix & Index

Appendix & Index

User's Manual Platform Specific Information

Appendix A:
Platform Specific Information

This appendix documents the platform specific commands to be executed when setting up
and using the examples provided in the tutorial sections of each chapter, espaeiaibr
2,ATAC: A Tutorial

A.1 UNIX

When running on a UNIX system, the following command will copy the contents of the
‘ataclib’/tutorial directory to the current (working) directory:

prompt:> cp ‘ataclib‘/tutorial/* .

To compile the wordcount program from thiakefile
prompt:> make

The output frommakeshould look approximately like this:
cC -g -C wc.C
cC -g -C main.c
cc -g -0 wordcount wc.o main.o

If you wish to compile the program manually, in one step:

prompt:> cc -g -0 wordcount *.c

The complete source listings of thmin.g wc.¢ andMakefilefiles are listed irFigure A-
1 throughFigure A-3

To remove the previously created object files and the executable file:
prompt:> make clean
To compile thevordcountprogram withatacby prefixing the standard C compilec;

prompt:> make CC= "atac cc

A-1

User’'s Manual

Platform Specific Information

The output generated Inyakeshould look something like this:

atac cc -g -c wc.c

atac cc -g -c main.c

atac cc -g -0 wordcount wc.0 main.o
I* else {
* main.c ++argy;
* doline = 1;
* Madified from “The C Programming Language” doword = 1,
* by Kernighan & Ritchie, 1978. dochar = 1,
* page 18. }
* do {
*/ if (*argv) {

#include <stdio.h>

main(argc,argv)
int argc;
char **argv;

char*p;

int linect, wordct, charct;
longtlinect = 0;
longtwordct = 0;
longtcharct = 0;

int doline = 0;

int doword = 0;

int dochar = 0;

FILE*file;

if (argc > 1 && argv[1][0] == ‘') {

}

for (p = argv[1] + 1; *p; ++p)
switch(*p) {
case 'I":
doline = 1;
break;
case ‘W’
doword = 1;
break;
case ‘c:
dochar = 1;
break;
default:
fprintf(stderr, “invalid option: -%c\n”,
)
case ‘?":
fputs(“usage: wc [-lwc] [files]\n”,stderr);
return 1;

}

argv += 2;

}

count(stdin, &linect, &wordct, &charct);
print(doline, doword, dochar, linect, wordct, charct,
“);
return;
}
else {
file = fopen(*argy, “r");
if (file == NULL) {
perror(*argv);
return 1;
}
count(file, &linect, &wordct, &charct);
fclose(file);
print(doline, doword, dochar, linect, wordct, charct,
*argv);
}
tlinect += linect;
twordct += wordct;
tcharct += charct;
} while(*++argv);

print(doline, doword, dochar, tlinect, twordct, tcharct, “totall’

return O;

static print(doline, doword, dochar, linect, wordct, charct, file)

int doline,doword, dochar;
int linect, wordct, charct;
char*file;

if (doline)

printf(* %71d”, linect);
if (doword)

printf(* %71d”, wordct);
if (dochar)

printf(“ %71d”, charct);
printf(* %s\n”, file);

Figure A-1 The source listing of the fiteain.c

A-2

~

User's Manual Platform Specific Information

I* int ¢, nl, nw, nc, state;
*wc.c state = OUT;
* nl=0;
* Modified from “The C Programming Language” nw = 0;
* by Kernighan & Ritchie, 1978. nc =0;
* page 18. while (EOF = (c = getc(file))) {
* ++nc;
*/ if (c ==1n)
++nl;
#include <stdio.h> if(c==""|lc==""||c=="1)
state = OUT;
#define IN1/* inside a word */ else if (state == OUT) {
#define OUTO/* outside a word */ state = IN;
++nw;
/* count lines, words and characters in input */ }
}
count(file, p_nl, p_nw, p_nc) *p_nl=nl;
FILE*file; *p_nw = nw;
int *p_nl, *p_nw, *p_nc; *p_nc = nc;
{ }
Figure A-2 The source listing @fc.c

CFLAGS=-g

wordcount:wc.0 main.o
$(CC) -g -0 wordcount wc.o main.o

WC_err:wc.o main_err.o
$(CC) -g -0 wc_err wc.o main_err.o

clean:
-@atactm wordcount.trace
-@atactm wc_err.trace
rm -f *.0 wordcount wc_err
rm -f *.atac *.trace *.dif *.features tests_log

Figure A-3 The UNIX source listing dflakefile

If you do not wish to usmake you may compile the program under ATAC by entering the
following command yourself:

prompt:> atac cc -g -0 wordcount *.c

In Section 13.2A Tutorial, you are instructed to compile thve_errprogram withatac.
Do this by:

prompt:> make wc_err CC= "atac cc

A-3

User's Manual Platform Specific Information

A.2 Windows NT/ Windows 95

When running on a Windows NT or 95 system, if you installed into the default installation
directory, the following command will copy the contents of the tutorial directory to the
current (working) directory:

prompt:> xcopy /I “C:\Program Files\Bellcore\xSuds\tutorial*

If you installed into a different directory, use the path you chose for your installation in this
command.

To compile the wordcount program from thlakefile
If you use the IBM C compiler:
prompt:> nmake -f makefile_ibm
If you use the Microsoft C compiler:
prompt:> nmake -f makefile_msc

If you use the IBM C compilgfigure A-4shows about how the output fratmakewill
appear.If you use the Microsoft C compiler, it will look something filgure A-5

prompt:> nmake -f makefile_ibm

IBM(R) Program Maintenance Utility for Windows(R)
Version 3.50.000 Feb 13 1996

Copyright (C) IBM Corporation 1988-1995
Copyright (C) Microsoft Corp. 1988-1991

All rights reserved.

icc /W0 /Q /c we.c
icc /W0 /Q /c main.c
icc /W0 /Q wc.obj main.obj /Fe wordcount.exe.

Figure A-4 The output aimakewith the IBM compiler

The complete source listings of thmin.candwc.cfiles are inFigure A-landFigure A-
2. TheMakefilefile is listed inFigure A-6for the IBM compiler and~igure A-7for the
Microsoft compiler.

A-4

User's Manual Platform Specific Information

prompt:> nmake -f makefile_msc

Microsoft (R) Program Maintenance Utility Version 1.61.6038
Copyright (C) Microsoft Corp 1988-1996. All rights reserved.

cl /nologo /w /c we.c
wc.c
cl /nologo /w /c main.c
main.c
cl /nologo /w wc.obj main.obj /link /out:wordcount.exe

Figure A-5 The output aimakewith the Microsoft compiler

CFLAGS=/WO0 /Q

wordcount.exe:wc.obj main.obj
$(CC) $(CFLAGS) wc.obj main.obj /Fe wordcount.exe

wc_err.exe:wc.obj main_err.obj
$(CC) $(CFLAGS) wc.obj main_err.obj /Fe wc_err.exe

clean:
del wc.obj main.obj main_err.obj wordcount.exe wc_err.exe
del wc.atac main.atac main_err.atac wordcount.trace wc_err.trace
del main.dif we.dif wc.features tests_log.txt

Figure A-6Makefilesource listing for IBM compilef

CFLAGS=/nologo /w

wordcount.exe:wc.obj main.obj
$(CC) $(CFLAGS) wc.obj main.obj /link /out:wordcount.exe

WcC_err.exe:wc.obj main_err.obj
$(CC) $(CFLAGS) wc.obj main_err.obj /link /out:wc_err.exe

clean:
del wc.obj main.obj main_err.obj wordcount.exe wc_err.exe
del wc.atac main.atac main_err.atac wordcount.trace wc_err.trace
del main.dif wc.dif wc.features tests_log.txt

Figure A-7Makefilesource listing for Microsoft
compiler

To remove the previously created object files and the executable file:
If you use the IBM C compiler:

prompt:> nmake -f makefile_ibm clean

A-5

User's Manual Platform Specific Information

If you use the Microsoft C compiler:
prompt:> nmake -f makefile_msc clean

To see the approximate output of these commands, refeguce A-8or Figure A-9
according to the compiler you are using.

prompt:> nmake -f makefile_ibm clean

IBM(R) Program Maintenance Utility for Windows(R)
Version 3.50.000 Feb 13 1996

Copyright (C) IBM Corporation 1988-1995
Copyright (C) Microsoft Corp. 1988-1991

All rights reserved.

del wc.obj main.obj main_err.obj wordcount.exe wc_err.exe
Could Not Find D:\tutorial\main_err.obj
Could Not Find D:\tutorial\wc_err.exe
del wc.atac main.atac main_err.atac wordcount.trace wc_etrr.trace
Could Not Find D:\USERS\JLA\tutorial\wc.atac
Could Not Find D:\tutorial\main.atac
Could Not Find D:\tutoria\main_err.atac
Could Not Find D:\tutorial\wordcount.trace
Could Not Find D:\tutorial\wc_err.trace
del main.dif wc.dif wc.features tests_log.txt
Could Not Find D:\tutorial\main.dif
Could Not Find D:\tutorial\wc.dif
Could Not Find D:\tutorial\wc.features
Could Not Find D:\tutorial\tests_log.txt

Figure A-8 Thecleancommand and it's output with the IBM
compiler

prompt:> nmake -f makefile_msc clean

Microsoft (R) Program Maintenance Utility Version 1.61.6038
Copyright (C) Microsoft Corp 1988-1996. All rights reserved.

del wc.obj main.obj main_err.obj wordcount.exe wc_err.exe
Could Not Find D:\tutorial\main_err.obj
Could Not Find D:\tutorial\wc_err.exe
del wec.atac main.atac main_err.atac wordcount.trace wc_err.trace
Could Not Find D:\tutoria\main_err.atac
Could Not Find D:\tutorial\wordcount.trace
Could Not Find D:\tutorial\wc_err.trace
del main.dif wc.dif wc.features tests_log.txt
Could Not Find D:\tutorial\main.dif
Could Not Find D:\tutorial\wc.dif
Could Not Find D:\tutorial\wc.features
Could Not Find D:\tutorial\tests_log.txt

Figure A-9 Thecleancommand and it's output with the Microsoft
compiler

A-6

User's Manual Platform Specific Information

To compile thevordcountprogram with ATAC:
If you use the IBM C compiler:
prompt:> nmake -f makefile_ibm CC=atacICC wordcount.exe
If you use the Microsoft C compiler:
prompt:> nmake -f makefile_msc CC=atacCL wordcount.exe
The output generated Iynakeshould look something like :

Figure A-10if you use the IBM compiler.

prompt:> nmake -f makefile_ibm CC=ataclCC wordcount.exe

IBM(R) Program Maintenance Utility for Windows(R)
Version 3.50.000 Feb 13 1996

Copyright (C) IBM Corporation 1988-1995
Copyright (C) Microsoft Corp. 1988-1991

All rights reserved.

ataclCC /W0 /Q /c wc.c
ataclCC /W0 /Q /c main.c
ataclCC /WO /Q wc.obj main.obj /Fe wordcount.exe

Figure A-10 Compiling withatac- IBM compiler

Figure A-11if you use the Microsoft compiler.

prompt:> nmake -f makefile_msc CC=atacCL wordcount.exe

Microsoft (R) Program Maintenance Utility Version 1.61.6038
Copyright (C) Microsoft Corp 1988-1996. All rights reserved.

atacCL /nologo /w /c wc.c
wc.c
wc.c
atacCL /nologo /w /c main.c
main.c
main.c
atacCL /nologo /w wc.obj main.obj /link /out:wordcount.exe

Figure A-11 Compiling withatac- Microsoft compiler

A-7

User's Manual Platform Specific Information

In Section 13.2A Tutorial, you are instructed to compile thve_errprogram with ATAC
Do this by:

If you use the IBM C compiler:
prompt:> nmake -f makefile_ibm wc_err.exe
If you use the Microsoft C compiler:

prompt:> nmake -f makefile_msc wc_err.exe

A-8

Users’ Manual Command Reference Pages

Appendix B:
Command Reference Pages

B.1 xsuds

NAME

xsuds, xatac, xslice, xprof, xvue, xregregbe graphical interface Toolsuite
SYNOPSIS
xsuds [options][atac-files] [trace-files] [dif-file] [feature-files]
xatac [options] [atac-files] [trace-files] [dif-files]
xslice [options] [atac-files] [trace-files] [dif-files]
xprof [options] [atac-files] [trace-files] [dif-files]
xvue [options][atac-files] [trace-files] [dif-files] [feature-files]
xregress[options] [atac-files] [trace-files] [dif-files]
DESCRIPTION

The common, integrated graphical user-interface for all tools in the Toolsxsteds The

user may switch back and forth between various tools in the Toolsuite by selecting the ap-
propriate entry from th&ool menu in the display. Alternatively, if one desires to use an
individual tool and does not wish to move back and forth between various tools, one may
invoke that tool directly. In the latter case, one does not gétablenenu and hence one
does not get the ability to move from tool to tool. For example, if one inwskesdirect-

ly, the user is taken directly to tiy&lice display and the ability to move to other tools is
taken away. The same holds wittac, xprof, xvueandxregress

All of these tools use the data-flow files, call@c files, created bytac cg atac CG

atacCL ataclCCetc., and the trace files produced by executions of programs compiled
with atac They also accejlif files, produced using theacdiffcommand, to restrict their
analysis to differences between two versions of the corresponding source files. Additional-
ly, xsudsandxvuealso acceplieaturefiles, which may have been created previously using
thexVue tool. One may also spec#yacandtracefiles using thd=ile menu after the tools

have been invoked. Similarly, a new feature file may be opened using the open button from
the features display undeYue.Dif files, however, can only be specified on the command
line when the tools are first invoked.

OPTIONS (the “-" sign preceding any of the options can be replaced by “/ on Windows)

-columnscount
Adjust the width of the source window sountcharacters per line of source can
be displayed.

B-1

Users’ Manual Command Reference Pages

FILES

-lines count
Adjust the height of the source windowamuntlines of source can be displayed
at one time.

-nocompress
Do not compress trace files upon exit. By default, all of the tools compress the
trace files specified when one exits them.

-nopoll
Do not automatically check if a trace file has been changed. By default, all of the
tools monitor the specified trace files and automatically highlight/fiaatebut-
ton when they detect a change in any of them.

-noweights
Do not prioritize and color code uncovered program element&TAC. This
may speed up performanceyATAC when using extremely large source files.

file.atac- data-flow, oratac file.
file.trace- coveragdracefile.
file.dif - atacdif file.
file.features- xVue featurefile.

B-2

Users’ Manual Command Reference Pages

B.2 atac

NAME
atac - the command line browser
SYNOPSIS
atac|[-ailJrRTuUY][other-optiond... [trace-file] atac-files...
atac -s[-fghilJKMpgQRSTUY][other-optiong... [trace-file] atac-files...
atac -C|[-fghilJKpgRTUY][other-optiond... [trace-file] atac-files...
atac-v
other-options:
-c test-name
-F function
-m { bBcdeflJprRTuUY }...
-m F function
-n test-namd -x]
DESCRIPTION

Theataccommand displays test coverage information in character format by analyzing the
data-flow files created bgtac ccand trace files produced by executions of a program com-
piled withatac cc (An enhanced view of the data is obtained using the graphical interface.)
Theatac command will display source code, highlighting code fragments not covered by
test executions. Various coverage options may be selected witin fleg-to display un-
executed code. By default unentered functions and unexedgloEd; decisions c-uses
andp-usesare displayed. On UNIX, thEERM environment variable must be set to dis-
play code fragments. Output is displayed page by page.

Theatac scommand will present a coverage summaryikeic corresponding to the spec-
ified file.atac Various coverage options may be selected withrthiéag to count executed
code. By defaulblock, decision c-use andp-usecoverages are counted.

If no trace file is specifiedtacassumes that no tests have been run.
OPTIONS (the “-" sign preceding any of the options can be replaced by “/ on Windows)

-a Display all unexecuted code even if not covered by a weaker measure. All mea-
sures are considered equal exceptfilmattion entryis weaker than all others; all
are weaker thadecisionexcept-useandp-use and all are weaker thaauseand
p-use By default, only code whose components are covered by a weaker measure
are displayed. (For example, an unexecuted block is not displayed if the function
containing that block was never entered.)

-c test-name

Present a comparison of coverage with that of named test cases. Code is consid-
ered covered only if it is not also covered by the named test cases. Wild cards may

B-3

Users’ Manual

Command Reference Pages

be used in the test case name. On UNIX, wild cards are the same as those used for
file names bysh(1) (*, ?, and [...]). Quote marks may be needed to prevent the
shell from expanding the test name as file names. Multiple test-cases may also be
specified by repeating the eption.

-C Present execution counts.

-D Generate debugging output.

-f Present coverage summary on a per function basis. (Imgles -

-F function
Present coverage for C subroutine narfiuedtion Wild cards may be used in the
function name (see-option). Multiple functions may also be specified by repeat-
ing the F option.

-g Present coverage summary on a per source file basis. (Implies -s.)

-h Suppress column headings (used with -s, and -C).

-K Include test cost in coverage summary. (Implgsnd p.)

i Ignore time stamps on source files atacfiles. By defaultatacissues an error
if source files have been modified since execution of a test represented in the trace
file.

-l Include code ATAC considers unreachable. By default, this code is not counted
nor highlighted in displays.

-J Include code embedded in a preprocessor macro expansion. By default, this code
is not counted nor highlighted in displays.

-m{bBcdeflJprRTuUY }...

Specifies the coverage measures to be used:
Block - code fragments not containing control flow branching or function calls.
Basic Block - code fragments not containing control flow branching.

C-use - (computational use) pairs of blocks for which the first block contains an
assignment to a variable and the second block contains a use of that variable in a
computation.

Decision - pairs of blocks for which the first block ends at a control flow branch
and the second block is a target of one of these branches.

Function entry - covered when the function is entered at least once.
Function call - individual function calls.

Ffunction

Named function call - function calls matchifunction Wild cards may be used
in the function name (see eption). Multiple test cases may also be specified by
repeating themF option.

Infeasible code - code ATAC considers unreachable.

J Macro internals - code embedded in a preprocessor macro expansion.

B-4

Users’ Manual

Command Reference Pages

-

< cc 4

P-use - (predicate use) triples of blocks for which the first block contains an as-
signment to a variable, the second block ends at a control flow branch based on a
predicate containing that variable, and the third block is a target of one of these
branches.

Return - explicit or implicit function return or call t@xit _longjmp abort, exit,
longjmp siglongjmp if available.

Not reached - code marked witiN® TREACHED.

Not tested - code marked witiNOTTESTEDeason*/.

All-uses - sum op-useandc-use

Not instrumented - uninstrumented code (not normally present).
Performance critical - code marked witfTIMECRITICAL*/.

-M Present a minimal cost set of test cases that achieves the same coverage, for the

specified coverage measure, as all cases together. (Ingdied p.)

-n test-name

Present coverage for named test cases only. (Sealption.) Wild cards may
be used in the function name (seeption). Multiple test cases may also be spec-
ified by repeating then-option.

Present coverage summary on a per test case basis. (Implies -
Present cumulative coverage per test case. (Imglesd-p.)

Sort test cases in order of increasing cost per additional coverage. Present cumu-
lative coverage per test case. Include test cost in coverage summary. Same as
-qSK. (Implies sand p.)

Reverse the display criteria; display onlyveredcode.

Include code marked withROTREACHEDY. By default, this code is not count-
ed nor highlighted in displays.

Present coverage summary.

Sort test cases in order of decreasing additional coverage per unit cost. (Implies -
sand p.)

Present coverage summary on a per test case basis - non zero only.

Include code marked with ROTTESTEDreason*/. By default, this code is not
counted nor highlighted in displays.

Use underscoring instead of other standout mode for source code highlighting.

Include uninstrumented code. In unusual situations some code may not be instru-
mented. By default, this code is not counted nor highlighted in displays.

Display Toolsuite release number.

Exclude test cases specified layand fn options. Include all unspecified test cas-
es.

B-5

Users’ Manual Command Reference Pages

-Y Exclude code marked TTIMECRITICAL*/. This code is not instrumented so that
instrumentation will not interfere with performance. By default, this code is count-
ed as not covered and highlighted in displays.

EXAMPLE

The following commands display coverage $ocl.candsrc2.clinked with other.oand
run with datafor test input:

compile srcl.c and src2.c witlatacand save the executable as testprog
testprog < data

atac -s -f srcl.atac src2.atac testprog.trace

atac srcl.atac src2.atac testprog.trace

FILES

file.atac- data-flow file.
file.trace - coverage trace.

B-6

Users’ Manual Command Reference Pages

B.3 atac cc (UNIX only)

NAME

atac cc - compile C and'Ccode for the Toolsuite
SYNOPSIS

atac cc[options]... files...
DESCRIPTION

Theatac cccommand is the compiler/source code instrumenter for the Toolsuitatathe

cc command compiles and links C/C++ programs creating a data-flowfifdeatac for
eachfile.c) and object files or an executable program. dtiae(1) andxsud$l) commands
display information by analyzing the data-flow files with the trace file produced by test ex-
ecutions of the program.

The arguments tatac ccare exactly the same as arguments to the standard C or C++ com-
piler (e.g.cc(1)). The appropriate compiler may be substitute@éam the command line.
Source files are assumed to be C code if they havexdension, otherwise, C++. Prepro-
cessing is done witbc -Eand compilation and linking are done witt) wherecc is spec-

ified on the command line. These options can be modified by setting parameters in a
file as described below.

Object files created withtac ccmay be linked with object files and libraries created by
other means, usingtac ccor atac |ld When the program compiled layac ccis tested, a
coverage trace is outputaoout.tracewherea.outis the name of the executable file created
by atac cc(i.e. the argument to the option, or, by default, literallg.ou).

ENVIRONMENT VARIABLES

The following environment variables may be set at link-time or run-time to modify the run-
time placement of the trace file, test case names, etc. Run-time settings will override link-
time settings.

Some of these variables are set to yes or no. For these variables, off, false, f, n, and, 0 are
equivalent to no; on, true, t, y, and non-zero numbers are equivalent to yes. Upper and lower
case are not distinguished.

ATAC_BLOCKONLY

When atest is run, ATAC records data for a number of types of coverage. For very
large programs it may be necessary to restrict run-time recording to reduce the ex-
ecution time and disk space ATAC_BLOCKONLY is set to yes at run-time,
ATAC will only record data for block coverage and weaker coverage types. Zero
is displayed for other coverage types. Tests run with this option set can be identi-
fied in the atactm -L listing by the B flag.

ATAC_COMPRESS

In order to save disk space, atac instruments the program under test to compress
the trace file after each test execution. The ATAC_COMPRESS variable may be
used to suppress compression completely or to compress periodically. If
ATAC_COMPRESS is set to no, when the program is executed, trace file com-

B-7

Users’ Manual Command Reference Pages

pression is suppressed. If ATAC_COMPRESS is set to an integer n, the trace file
will be compressed after approximately every n test executions. A trace file can
be explicity compressed using atactm, regardless of whether or not

ATAC_COMPRESS is set.

ATAC_COST

By default, each test case is assigned a cost of 1B0AC_COST is set to an
integer n, each test case will be assigned cost n. In any case, the cost may be reas-
signed after the test is run using the atactm command.

ATAC_DIR

By default, trace data is written to a file in the current directoATARC_DIR is
set it is the path name of the directory in which trace data is written. However, if
ATAC_TRACE is set to a fully qualified path nan®TAC_DIR is not used.

ATAC_NOTRACE

If ATAC_NOTRACE is set, no trace file is created. This option may be useful
when it is necessary to run an instrumented program without creating a trace file.

ATAC_SIGNAL

Normally, a test case consists of a complete execution of a program. In some sit-
uations, a single program execution may represent multiple test cases. The pro-
gram can indicate the start of a new test case by calliag restart(). This
requires that the code be modified to include this call, and that the call be removed
when ATAC is not usedATAC_SIGNAL provides an alternate way of indicat-

ing the start of a test case ATAC_SIGNAL is set to a UNIX signal name or
number, ATAC will start a new test case each time the specified signal is received
by the program under test. The signal name must be a standard UNIX signal name
(e.g. SIGINT). The SIG prefix is not required and upper and lower case are not
distinguished. The signal number may be any valid signal number for your system.

ATAC_TEST

Each program execution results in named test information being appended to the
trace file. The default test name is the base name of the trace file. A numeric suffix
is appended to each test name in order to make it unique (e.g., wordcount.1, word-
count.2, wordcount.3). WTAC_TEST is set, its value is used as the test name.
The test name must be less than 1024 characters long, composed of alpha-numeric
characters, comma, period, at-sign, and underscore, and must not begin with a dig-
it. Other characters in the test name are replaced by question mark, except that
slash is replaced by colon and hyphen is replaced by the pound sign.

ATAC_TEST_FILE

If ATAC_TEST is not set and\TAC_TEST_FILE is the name of a readable
file, the contents of the first line of that file are used as the test name. This facility
is useful when it is not possible to vary the value ofAMAC_TEST variable at
run-time. In this case tiTAC_TEST_FILE variable may be set at link-time to

the name of a file that may be modified at run-time to contain the test name.

B-8

Users’ Manual Command Reference Pages

ATAC_TMP

While a test is running, ATAC stores coverage data in a temporary file in the /usr/
tmp directory. IfATAC_TMP is set, it is the path of a directory in which the tem-
porary files will be written. The temporary file is written in append mode. On
some systems, appending to a file on a networked file system is very slow. For this
reason, it is recommended that temporary files be written to a directory on a local
disk. Normally, temporary files are removed when test execution completes (See
ATAC_COMPRESS above).

ATAC_TRACE

By default, trace data is written to a file nanpedg tracewhereprog is the name
of the program executable. ATAC_TRACE s set, it is the nhame of the file to
which the trace data will be written. If the name does not end wittralse suffix,
the suffix is appended.

ATAC_UMASK

When a trace file is created, it is given the same read/write permissions as the di-
rectory in which it is created. This is important when multiple processes of differ-
ent owners will be writing to the same trace file, so that the write permissions on
the trace file are not restricted to processes with the same owner as the process that
first created the trace file. If it is necessary to further restrict access to the trace
file, the ATAC_UMASK variable may be set. Bits set in tA@ AC_UMASK

variable will be cleared from the file creation mask.

COMPILER .INI FILES

If $HOME/atac/cc.inior ‘ataclib'/init/cc.ini is a readable file, wherec is the compiler
specified on the command line, it may contain parameters that will modify the compilation
process. (The latter is read only if the former is not readable.)

Parameters are specified one per line with parameter name followed by an equal sign fol-
lowed by the quoted value with no spaces around the equal sign.

The following parameters may be present:

LANGUAGE-="c/c**/ld’
By default, source files are assumed to be C code if they hawxt@nsion, oth-
erwise, C*. If LANGUAGE is ‘c, all source files are treated as C. If LAN-
GUAGE is ¢**, all source files are treated a3'CIf LANGUAGE is ‘Id’, only
linking is performed.

FULLPATH= "compile-command’
By default, the compiler given e is used for all compilation, linking, and pre-
processing (except when LANGUAGE="Id’, in which casds used for compil-
ing the environment file). If FULLPATH is set ard does not begin with /, all
compilation, linking and preprocessing is done with the value assigned.

LOCAL_CPP="preprocess-command’
By default preprocessing is done wib -E wherecc is given on the command
line or by the FULLPATH parameter. Whe®@CAL_CPP is specified, its value
is the command to use for preprocessing.

B-9

Users’ Manual Command Reference Pages

C_COMPILE="compile-command’
By default the environment file is compiled withgiven on the command line or
by the FULLPATH parameter. IE_COMPILE is set, its value is used as the
compile command for the environment file.

C_LIB="libraries’
The value of the CLIB parameter is appended to the link line.

INCLUDE-="system-include-list’
The value of the INCLUDE parameter is a space separated list of include path pre-
fixes where each path prefix is preceded by -S or -J. Source files beginning with
any prefix on the list are assumed to be system files and are not instrumented.
Source files beginning with a prefix preceded by -J on the list are assumed to be
C include files included into T. The appropriate extern “C” code is inserted be-
fore compilation. For example:

INCLUDE="-J/usr/include -S/’

means that any source file starting with / is treated as a system file and any source
file starting with /usr/include is treated as a C include file.
EXAMPLE

The following commands display coverage $ocl.candsrc2.clinked with other.oand
run with datafor test input:

atac cc -o testprog srcl.c src2.c other.o
testprog < data

atac -s -f srcl.atac src2.atac testprog.trace
atac srcl.atac src2.atac testprog.trace

FILES

file.atac- data-flow file.
file.trace- coverage trace.

B-10

Users’ Manual Command Reference Pages

B.4 ataclib

NAME
ataclib - locate installation of Toolsuite library
SYNOPSIS
ataclib
DESCRIPTION
Theataclibcommand prints the name of the directory where the runtime library is installed.

Users’ Manual Command Reference Pages

B.5 atactm

NAME
atactm - Toolsuite trace manager
SYNOPSIS

atactm [-o new.trace] trace-file

atactm -c cost-n test-namdg -x] [-0 new.trace] trace-file

atactm -d -ntest-namd -x] [-0 new.trace] trace-file

atactm -e -ntest-namd -x | -o new.trace trace-file]

atactm {IL} [-n test-namd -x]] trace-file

atactm -r new-test-nameg-n test-namd -x]] [-o new.trace] trace-file

DESCRIPTION

Theatactmcommand manages trace files created by execution of a program compiled with
atac cc A trace file contains coverage information for each test case executed by a pro-
gram. Theatactmcommand can list, rename, extract, or assign cost to selected test cases.
The optionse, -d, -g, -, -L, and ¢ select the operation to be performed and are mutually
exclusive. If any of these options excdmnd L are specified the trace file is compressed.

If no option is specified, the only effect is to compress the trace file. The original trace file
is over-written unless th@ option is specified.

OPTIONS (the “-" sign preceding any of the options can be replaced by “/" on Windows)

-c cost Assign cost to test cases specified wittest-nameTest case cost is useddipc
-M.

-d Delete test cases specified withtest-name
-D Generate debugging output.
-e Extract test cases specified withtest-name

-l List test case names. If output is to a terminal, names are formatted into columns.
If -n test- name is specified, only selected test cases are listed.

-L List test cases with time stamp, duration, ATAC release, cost, attributes, and test
name. Attributes are described below. If a test has not been compressed, the name
of the temporary trace file is also listed.dftest-namas specified, only selected
test cases are listed.

-n test-name
Select test cases matchiegt-namdSee alsox.) Wild cards may be usedtest-
name On UNIX, wild cards are the same as those used for file nansrg)\(*,
?, and [...]). Quote marks may be needed to prevent the shell from expanding the
test name as file names. Multiple test cases may also be specified by repeating the
-n option.

-I new-test-name
Rename test cases specified withtest-nameIf omitted, all test cases are re-
named. Test case nhames are composed of alphanumeric characters and under-
score. A numeric suffix is appended to distinguish test cases with the same name.

B-12

Users’ Manual Command Reference Pages

-X Include only test cases not selectedbgptions.

The attributes displayed with the option are each a single positional character with the
following fields. The default value in each field is a dash.

count forked blockonly busy missing corrupt uncompressed error end start
The possible values are:

countf
Execution counts are not available due to abnormal termination.

forkedF (UNIX only)
Process calletbrk(2) in uninstrumented code. Test contains data for parent and
child processes.

blockonlyB
Only block coverage data is available for this test.

busyi
Some coverage may have been lost in a signal handler routine due to interruption
of user level code.

missingm
Uncompressed data for this test is missing. (Named temporary trace file has been
deleted or is not accessible.)

corruptc
Temporary trace file for this test has been corrupted. Coverage data may be miss-
ing.

corruptv
This test was created by a program compiled with an obsolete version of ATAC.
Coverage from this test is ignored.

uncompressed
This test has not been compressed.

uncompressed
This test has not been compressed and is apparently still running.

error M
Process ran out of memory during this test.

error O/V
Process has linked one or more object files compiled with an obsolete version of
ATAC. Coverage in those files is ignored.

error S
ATAC runtime routine encountered errors during this test.

error T
Process could not open temporary trace file during this test.

end/startC
Test ended/started by calliagac_restarf).

B-13

Users’ Manual Command Reference Pages

end/startO/N (UNIX only)
Test ended/started by callifigrk(2) in instrumented code.

end/starR (UNIX only)
Test ended/started by receiving the signal indicated IAT#¢C_SIGNAL envi-
ronment variable in instrumented code.

EXAMPLE
The following command lists test caseping.trace
atactm -l prog.trace
The output looks like this:
prog.1 prog.2 prog.3
FILES

file.trace - trace file.

Users’ Manual Command Reference Pages

B.6 atacdiff
NAME
atacdiff - Create .dif file for Toolsuite browsers
SYNOPSIS
atacdiff source-file alternate-version-of-source-file
DESCRIPTION
Theatacdiffcommand creates a file with thilf extension that encodes the differences be-
tween two versions of a source file. This file may be supplied tattweor xsudsbrowser
along with the correspondingtacfiles to restrict the browser to source code that has been
modified or to identify test cases that may be affected by the source code modification. The
order of the two source files on the command line does not matter except that fitee
shares the base file name of the first of the source files.
To browse coverage on source code that has been modified, test cases must be run on the
modified code after it is instrumented witac To identify test cases that may be affected
by a source code modification, test cases must be run onigieal codeafter it is instru-
mented withatac
EXAMPLE
The following commands display coverage for codsrincthat has been modified from
src.c.old
compile src.c withatacand save the executable as testprog
testprog < data
atacdiff src.c src.c.old
atac -s -f src.atac src.dif testprog.trace
The following commands run three test cases on codecinand then list the test cases
that execute code that has been modifiestérc.new These test cases should be re-run to
verify the results after the modification.
compile src.c withatacand save the executable as testprog
testprog < datal
testprog < data2
testprog < data3
atacdiff src.c src.c.new
atac -t src.atac src.dif testprog.trace
FILES

file.dif - difference file.
file.trace- coverage trace.

Users’ Manual Command Reference Pages

B.7 atacid (UNIX only)

NAME

atacid - identify atac instrumented object files and executables
SYNOPSIS

atacidfile ... | grep ATAC
DESCRIPTION

Theatacidcommand searches files of any type for a compiled-in string and prints the con-
tents of the string. When piped injoep ATAC the output indicates whether a file was
compiled or linked withatacand what default runtime values were used.

If file is -, the standard input is used.
EXAMPLE

The following commands compile the wordcount tutorial program atghand usetacid
to identify the instrumented files.

atac cc -c wc.c

atac cc -c main.c

atac cc -g wc.o main.o

atacid wc.c main.c wordcount.trace

The output is:

wc.o:wc.c instrumented by ATAC release 1.0
main.o:main.c instrumented by ATAC release 1.0
wordcount:ATAC var ATACUMASK=
wordcount:ATAC var ATACTRACE=wordcount
wordcount:ATAC var ATACTMP=
wordcount:ATAC var ATACTESTFILE=
wordcount:ATAC var ATACTEST=
wordcount:ATAC var ATACSIGNAL=
wordcount:ATAC var ATACNOTRACE=
wordcount:ATAC var ATACDIR=

wordcount:ATAC var ATACCOST=
wordcount:ATAC var ATACCOMPRESS=yes
wordcount:ATAC var ATACBLOCKONLY=
wordcount:ATAC linked env vars:

wordcount:wc.c instrumented by ATAC release 1.0
wordcount:main.c instrumented by ATAC release 1.0
wordcount:ATAC runtime (release 1.0)
wordcount:ATAC runtime unbuffered 10

B-16

Users’ Manual Command Reference Pages

B.8 atac_env_create (UNIX only)

NAME

atac_env_create - create atac_env.o for linking ATAC instrumented object files
SYNOPSIS

atac_env_createenv-var=value...
DESCRIPTION

Theatac_env_createommand creates a file nanadc_env.aontaining default environ-
ment values for the ATAC run-time. This file is linked with object files compiled atdh
and the ATAC runtime routinéataclib‘/atac_rt.o

Normally, files compiled withatac may be linked withatac ccor atac Id In this case,
atac_env.as not needed. However, if files compiled wétac are to be linked by calling
the linker explicitly,atac_env.as needed.

The atacidcommand may be used to determine which default values have been compiled
into theatac_env.@r executable file.

EXAMPLE

The following commands may be used to create the instrumenteldountas in the tuto-
rial, usingatac ccfor the compiles but not for the link. The default trace name is set to
wec.trace By default, the trace file will not be compressed.

atac cc -c wc.c

atac cc -c main.c

atac_env_create ATAC_TRACE=wc.trace ATAC_COMPRESS=no

Id -o wordcount wc.0 main.o atac_env.o ‘ataclib'/atac_rt.o /lib/crt0.0 -Ic

Users’ Manual Command Reference Pages

B.9 atacCL (Windows only)

NAME

atacCL - automatic test analysis for C programs - compiler for Microsoft Windows using
Microsoft Visual C™*

SYNOPSIS
atacCL [options] ... files ...
DESCRIPTION

The compiler/source code instrumenter for ATAC, when used with the Microsoft compiler
is atacCL It compiles and links C and C++ programs creating a data-flowifdeatacfor
eachfile.c or file.cpp and object files or an executable program. ATAC and the graphical
user interface of the Toolsuite display test coverage information by analyzing the data-flow
files with the trace file produced by test executions of the program. The arguments to
atacCLare exactly the same as arguments to the Microsoft Visual C++ compiler with two
exceptions. The arguments specifying optimization and precompiled header files are ig-
nored.atacCLsupports 32-bit applications using the WIN32 interface only; 16-bit applica-
tions will not work. Source files are assumed to be C code if they hawxtension and

C++ code if they have .@ppextension.

Preprocessing is done with-E and compilation and linking are done with wherecl is
specified on the command line. These steps can be modified by parameters in the registry
or environment as described below. Object files createdatéttCL may be linked with

object files and libraries created without this instrumenter by wsigCL Object files
created withatacCLmay be successfully linked witt or link by appendinglllatac_rt.lib

to the command line. Thalllatac_rt.lib file resides in the directory path name printed by
theataclib command.

RUN-TIME PARAMETERS

When the program compiled layacCLis tested, a coverage trace is outpuatere.trace

by default. The user may modify certain parameters at run-time either from the environ-
ment or the registry. Registry values should not be modified directly but rather by using the
xconfig interactive configuration tool. If environment variable or registry key
ATAC_TRACE has a value at run-time, it is used as the trace file name. If environment
variable or registry keATAC_DIR has a value at run-time, it is used as the directory for
the trace file; otherwise the current directory is used. If the trace file already exists it is ap-
pended to.

Normally the trace is compressed at the end of execution to save file space. If environment
variable ATAC__ COMPRESS has a value 00 at run-time, trace compression is sup-
pressed. Otherwise, A TAC_COMPRESS has a value df, other tharD, trace compres-

sion occurs approximately once every n executions. A trace may be explicitly compressed
usingatactm If environment variabl&TAC_TMP has a value at run-time, it is used as

the directory for temporary trace files. By default temporary trace files are plagest/in

tmp.

If environment variabl&TAC_TEST has a value it is used as the test case name. The de-
fault test case name is derived from the name of the trace file. A numeric suffix is appended

B-18

Users’ Manual Command Reference Pages

to each test case name to make it unique.
atacCLparses C andC code as extended by Microsoft.

If environment variablATAC_BLOCKONLY has a value at run-time of yes, only block
coverage data is written to the trace file. This will result in faster execution and smaller
trace files, however, decision, c-use, and p-use data will not be available.

If environment variabl&TAC_COST has a numeric value at run-time it will be assigned
as the execution cost of the test case. By default, each test case has a cost of 100. Test case
costs are used atacto compute a minimal test settdc -M) or a cost effective ordering
(atac -3.
COMPILE-TIME

The registry entry iHKEY_LOCAL_MACHINE\SOFTWARE\Bellcore\xSuds\1.0 supports
two parameters that may be used to tune the actiataoc€L

DEFINEHist of preprocessor definitions for C code

The DEFINE parameter contains a semicolon-separated list of preprocessor defi-
nitions. For exampleDEFINE=-DWIN32=1;-DX86=TRUE;-DFPUBUG=FALSE is
a legal parameter format.

DEFINEPP4ist of preprocessor definitions for'€ code

The DEFINEPP parameter contains a semicolon separated list of preprocessor
definitions as in the previous example.

EXAMPLE

The following commands display coverage $ocl.candsrc2.clinked with other.oand
run with datafor test input:

atacCL srcl.c src2.c other.obj /link /out:testprog.exe
set ATAC_TRACE=testprog

testprog < data

atac /s /f srcl.atac src2.atac testprog.trace

atac srcl.atac src2.atac testprog.trace

FILES

file.atac- data-flow file.

file.trace - coverage trace.

dllatac_rt.lib - the atac run-time library, which resides in the directory pathname printed
by theataclib command.

B-19

Users’ Manual Command Reference Pages

B.10 atacICC (Windows only)

NAME
ataclCC - automatic test analysis for C programs - compiler for Microsoft Windows using
IBM VisualAge

SYNOPSIS
ataclCC [options]... files...

DESCRIPTION

The compiler/source code instrumenter for ATAC, when used with the IBM compaler is
aclCC. It compiles and links C and C++ programs creating a data-flowfiféeatac for
eachfile.c orfile.cpp and object files or an executable program. ATAC and the graphical
user interface of the Toolsuite display test coverage information by analyzing the data-flow
files with the trace file produced by test executions of the program. The argunegiats to

ICC are exactly the same as arguments to the IBM VisualAge development system with
two exceptions. The arguments specifying optimization and precompiled header files are
ignored.ataclCCsupports 32-bit applications using the WIN32 interface only; 16-bit ap-
plications will not work. Source files are assumed to be C code if they haext@nsion

and C++ code if they have.gppextension.

Preprocessing is done wiittc -EP and compilation and linking are done witie, where

icc is specified on the command line. These steps can be modified by parameters in the reg-
istry or environment as described below. Object files createdatathCCmay be linked

with object files and libraries created without this instrumenter by @agjCC Object

files created withataclCC may be successfully linked witiec or link by appending
dllatac_rt.lib to the command line. Thallatac_rt.lib files resides in the directory path
name printed by thataclib command.

RUN-TIME PARAMETERS

When the program compiled layaclCCis tested, a coverage trace is outpidtae.trace

by default. The user may modify certain parameters at run-time either from the environ-
ment or the registry. Registry values should not be modified directly but rather by using the
xconfig interactive configuration tool. If environment variable or registry key
ATAC_TRACE has a value at run-time, it is used as the trace file name. If environment
variable or registry keATAC_DIR has a value at run-time, it is used as the directory for
the trace file; otherwise the current directory is used. If the trace file already exists it is ap-
pended to.

Normally the trace is compressed at the end of execution to save file space. If environment
variable ATAC_COMPRESS has a value 00 at run-time, trace compression is sup-
pressed. Otherwise STAC_COMPRESS has a value afi, other thar0, trace compres-

sion occurs approximately once evargxecutions. A trace may be explicitly compressed
usingatactm If environment variablATAC_TMP has a value at run-time, it is used as

the directory for temporary trace files. By default temporary trace files are plagext/in

tmp.

If environment variablATAC_TEST has a value it is used as the test case name. The de-
fault test case name is derived from the name of the trace file. A numeric suffix is appended

B-20

Users’ Manual Command Reference Pages

to each test case name to make it unique.
ataclCCparses C and C++ code as extended by Microsoft and IBM.

If environment variablATAC_BLOCKONLY has a value at run-time of yes, only block
coverage data is written to the trace file. This will result in faster execution and smaller
trace files, however, decision, c-use, and p-use data will not be available.

If environment variabl&TAC_COST has a numeric value at run-time it will be assigned
as the execution cost of the test case. By default, each test case has a cost of 100. Test case
costs are used atacto compute a minimal test settdc -M) or a cost effective ordering
(atac -3.
COMPILE-TIME PARAMETERS

The registry entry irHKEYLOCALMACHINE\SOFTWARE\Bellcore\xSuds\1.0 supports
two parameters that may be used to tune the actiatacfCC

DEFINEHist of preprocessor definitions for C code

The DEFINE parameter contains a semicolon-separated list of preprocessor defi-
nitions. For exampleDEFINE=-DWIN32=1;-DX86=TRUE;-DFPUBUG=FALSE is
a legal parameter format.

DEFINEPP+ist of preprocessor definitions for C++ code

The DEFINEPP parameter contains a semicolon separated list of preprocessor
definitions as in the previous example.

EXAMPLE

The following commands display coverage $ocl.candsrc2.clinked with other.oand
run with datafor test input:

ataclCC srcl.c src2.c other.obj /link /out:testprog.exe
set ATAC_TRACE=testprog

testprog < data

atac /s /f srcl.atac src2.atac testprog.trace

atac srcl.atac src2.atac testprog.trace

FILES

file.atac- data-flow file.

file.trace - coverage trace.

dllatac_rt.lib - the atac run-time library, which resides in the directory pathname printed by
theataclib command.

B-21

Users’ Manual Command Reference Pages

B.11 prformat (Windows only)

NAME

prformat - convert underline notation fratac -uto rtf format
SYNOPSIS

prformat
DESCRIPTION

Theprformatcommand converts underline output from aitec -uto rich text format suit-
able for printing fromwordpador word.

EXAMPLE

The output ofatac -u -vis
xSuds release 1.0 Copyright (c) 1989, 1998 Bellcore. All rights reserved.
LICENSED MATERIAL PROPERTY OF BELLCORE

On filtering through th@rformatcommand it becomes
{\rtf1\ansi\deffO\deftab720{\fonttbl{\fO\fswiss MS Sans Serif;}
{\f1\froman\fchar set2 Symbol;}{\f2\fmodern\fprql Courier New;}
{\f3\froman Times New Roman;H{\f4oman Times New Roman;}}
{\colortbl\redO\greenO\blueO;}

\deflang1033\pardxSud\plain\f2\fs20 s release 1.0 Copyright (c) 1989, 1998
Bellcore. All rights reserved.

\par \plain\f2\fs20
\par \plain\f2\fs20 LICENSED MATERIAL PROPERTY OF BELLCORE
\par \plain\f2\fs20 \par }

B-22

Users’ Manual Command Reference Pages

B.12 xconfig (Windows only)

NAME

xconfig - Toolsuite configuration utility for Windows
SYNOPSIS

xconfig
DESCRIPTION

The xconfigcommand is a graphical user interface application that lets the user manage
registry variables in the registry kesconfiguses four control#\pply, Cance| Close and
Find Compilerto manage the settings.

Apply
updates any variables the user has changed in the dialog.
Cancel
exitsxconfigwithout applying any changes to the registry.
Close
exitsxconfigand prompts the user to save changes, if any, in the registry.
Find Compiler

searches in well-known places for either the Microsoft VisdalaE the IBM Vi-
sualAge compilers. If either of these is installed in an unusual diregtgfig

might not locate it. The user must then manually enter the root directory by com-
pleting a dialog that allow the user to browse for the compiler. For example, if the
path to the IBMicc command isC:\IBMCPPW\BIN\icc.exe then the root direc-

tory isC:IBMCPPW . The first time the user executes it after Toolsuite installa-
tion, xconfigwill automatically search for each supported compiler.

REGISTRY VARIABLES

The following variables are settable fromonfig Although there are other variables de-
fined in the registry, these are installation options and should not be changed by the user.

DEFINE

Extra default definitions not provided by tbleexeor icc.execommand processor
for C code. Th®EFINE variable contains a semicolon-separated list of prepro-
cessor definitions. For exampl®EFINE=-DWIN32=1;-DX86=TRUE;-DF-
PUBUG=FALSE is a legal format. Default empty.

DEFINEPP
Same a®EFINE only for C™*. Default empty.
NO_INSTRUMENT

Semicolon separated list of pathname prefixes for turning off instrumentation of
header files. All header files containing any of the listed prefixes in their path-
names are not instrumented. The matches are by string and are case sensitive. For

B-23

Users’ Manual Command Reference Pages

BUGS

example NO_INSTRUMENT=C:;D: is a legal format. Default: drive contain-
ing compilers.

ATAC_TMP

Directory for the temporary files used by the Toolsuite. May be overridden in the
environment. This variable should always be set. DeféélBystem-
RoOt%\TEMP for Windows 95 an&oSystemDrive%\TEMP for Windows NT.

ATAC_COMPRESS

Controls compression of the trace fileATAC_COMPRESS has a value of 0,
trace compression is suppressed®TAC_COMPRESS has a value of n, other

than 0, trace compression occurs approximately once every n tests executed. A

trace may be explicitly compressed usatgctm Default 1.
ATAC_COST
Default test cost for minimization. S TAC_COST has a humeric value it will be

assigned as the execution cost of the test case. Test case costs are used by atac to

compute a minimal test settéc -M) or a cost effective orderingtac -S. Default
100.

ATAC_DIR

Directory for the trace file. IATAC_DIR has a value, it is used as the directory
for the trace file; otherwise the current directory is used. Default empty.

ATAC_SIGNAL

Not supported in this release. Default empty.
ATAC_TEST

Current test name. ATAC_TEST has a value it is used as the test case name.

The default test case name is derived from the name of the trace file. A numeric

suffix is appended to each test case name to make it unique. Default empty.
ATAC_TRACE

Trace file name. When the program compiledatacCL or ataclCCis tested, a
coverage trace is outputatac.trace If ATAC_TRACE has a value, itis used as

the trace file name. If the trace file already exists it is appended to. Default empty.

ATAC_CL

Root of the Microsoft Visual € directory subtreeATAC_CL is set automati-
cally byxconfigat installation or through the Find Compiler control onxitenfig
dialog.

ATAC_ICC

Root of the IBM VisualAge directory subtre€TAC_ICC is set automatically by
xconfigat installation or through tHeénd Compiler control on thexconfigdialog.

ATAC_SIGNAL should be implemented using Windows-style notification.

B-24

Users’ Manual Command Reference Pages

B.13 xfind

NAME

xfind - Toolsuite static analysis tool

SYNOPSIS

xfind [options] [seed-file] [code-files ...]

DESCRIPTION

XFind is a language independent static analysis tool that performs transitive pattern recog-
nition. It uses simple lexical analysis rather than a full parse to determine relationships
among the elements of a language. Its intended use is to assist in identifying pieces of code
that are related to one another in a thematic way.

xFind uses seed files containing standard and/or customized templates to identify compo-
nents with the designated patterns. It has been described as a (UNIX-likejreyper

The principle application ofFind is to analyze and delineate date-sensitive code as part of
the solution to the year-2000 challenge. A default seed file is provided which includes the
most frequent formats for encoding dates suahrmasldyy The tool applies the patterns in

the seed file(s) to match all possible words except those included in a stop list. The stop list
is user definable and typically includes keywords of the language being analyzed.

OPTIONS (the “-" sign preceding any of the options can be replaced by “/" on Windows)

FILES

-columns count

Adjust the width of the source window sountcharacters per line of source can
be displayed.

-linescount

Adjust the height of the source windowamuntlines of source can be displayed
at one time.

file.sd- xFind seed or pattern file.
file.xfd - xFind state file.
file.dif - atacdif file.

B-25

Users’ Manual Command Reference Pages

B.14 xdiff

NAME

xdiff - Toolsuite diff command
SYNOPSIS

xdiff [filenamel][filename2]
DESCRIPTION

Thexdiff command displays two files side by side with line by line differences highlighted

in color. Agreenbackground is used for lines that are changbtyebackground for lines

that are added, andrad background for lines that are deleted. Customized bit-mapped
scroll bars summarize the differences between the two files. The scrolling can be either syn-
chronized or independent. In thgnchronizeanode, when one file is scrolled up or down,

the other file scrolls to ensure that changes are displayed side by side in the two text win-
dows. In thenon-synchronizedhode, only the file in the text window under the mouse is
scrolled while the other file remains unmoved. xdiff also reports the number of changes,
additions, and deletions that have to be made to bring two files into agreement.

B-26

User’'s Manual Index

INDEX

Symbols

AElockfile 6-4
.atacfile 2-3

dif file 10-2, 15-10
featuredile 12-10
.sdfile 15-4
tracefile 2-5
xfdfile 15-5, 15-10
_aTaC435-13

A

all-uses. See coverage criteria
ANSI Standard 5-12
ATAC 3-2

compiler 3-8

cost of using 3-9

in development process 3-10

tutorial 2-1
atac 3-8, 8-2, 9-2, B-3
atac cc5-2, A-1, B-8
atac 1d5-3
ATAC_BIN 4-6
ATAC _BLOCKONLY. See environment variables
ATAC_COMPRESS. See environment variables
ATAC_COST. See environment variables
ATAC_DIR. See environment variables
atac_env.®b-4
atac_env_creat@UNIX) 4-4, 5-4, B-18
ATAC_ICC. See environment variables
atac_lib ATAC LIB 3-8, 4-6
ATAC_NOTRACE. See environment variables
atac_restart7-3, B-9, B-15
atac_rt.05-5
ATAC_SIGNAL. See environment variables
ATAC_TEST. See environment variables
ATAC TEST_FILE. See environment variables

User’'s Manual

Index

ATAC_TMP. See environment variables
ATAC_TRACE. See environment variables
ATAC_UMASK. See environment variables
aTaC43 5-13
atacCL5-7, B-19
atacdiff10-2, B-16
ataclCC5-7, B-21
atacid5-3, B-17
ataclib 3-8, 4-5, B-12, B-19, B-21
atactm3-8, 7-2, 7-9, B-13
atom 15-1, 15-2

compute candidate 15-8

B

block 2-5, 3-4

buttons
Disable 8-4, 9-6
edit 12-9
Enable 8-4, 9-6
Features 12-7
File 12-5
file_name 8-8, 9-7
heuristics 12-11
minimize_in 8-14, 11-11
Options 8-5
save_as 12-9
Sort_by 8-4, 9-5
Summary 2-8, 8-4, 9-5, 13-4
TestCases 12-6, 13-4
Tool 12-4
Update 2-7, 9-5, 12-7

C

code preprocessors 5-9

compilation errors. See instrumenting code
complement 9-9, 11-9

compute-bound processes 3-9

correlation 11-2

cost

User’'s Manual

Index

cumulative 11-9
coverage analysis 3-2
adequate coverage 3-2
cumulative 11-9
data flow 3-6
modified code 10-2
testable attributes 3-2
coverage bar 2-9
coverage criteria 3-2, 3-3
all-uses 3-6
block 2-3, 3-4
c-use 2-19, 3-6
decision 2-15, 3-5
def-use pair 3-6
function-entry 3-4
p-use 2-25, 3-6
infeasible 2-27
coverage measures 3-3, 9-7
coverage overlap 3-2
c-use. See coverage criteria

D

date-sensitive code 15-2
DEFINE 4-6
DEFINEPP 4-7
detailed performance analysis 14-1
diff command (UNIX) 16-2
displaying program differences 16-1
displaying uncovered code

by coverage criteria 9-7

by file 9-5

by function 9-6

by test case 9-8

out-of-date 9-10

underscoring 9-11
dllatac_rt.lib B-19, B-21

E

environment variables

User’'s Manual Index

ATAC__COMPRESS B-19
ATAC_BLOCKONLY 4-2, B-8, B-20, B-22
ATAC_COMPRESS 4-2, 6-2, B-8, B-21
ATAC_COST 4-2, B-9, B-20, B-22
ATAC _DIR 4-3, 6-2, B-9, B-19, B-21
ATAC_ICC 4-6
ATAC_NOCOMPRESS 6-2
ATAC_NOTRACE 4-4, B-9
ATAC_SIGNAL 4-4, B-9, B-15
ATAC TEST 4-3, 7-4, B-9, B-19, B-21
ATAC_TEST_FILE 4-5, B-9
ATAC_TMP 4-3, 6-3, B-9, B-19, B-21
ATAC_TRACE 4-3, 6-2, B-10, B-21
ATAC _UMASK 4-4, 6-4, B-10
PATH 4-5
TERM 4-5

excluding tests 12-2

executing software tests
improving execution speed 6-5
run-time errors 6-7
saving disk space 6-5

execution count 14-2, 14-4

execution dice 13-2

execution environment. See environment variables

execution slice 12-2, 13-2

F
feature
character counting 12-7
name 12-7
function-entry. See coverage criteria
G
greedy_order 11-11
H

heuristic 12-11, 12-15, 15-1

l-iv

User’'s Manual Index

I/O-bound processes 3-9
instrumenting code 3-8
compilation errors 5-12
integrating with makefiles 5-2, 5-6
link errors 5-12
replacing the default C compiler 5-3, 5-8
selective 5-2, 5-7
include files 5-5, 5-8
NOTREACHED 5-10
NOTTESTED 5-9
TIMECRITICAL 6-6
invoking tests 12-2

L

Id 5-3
link errors. See instrumenting code
linking 5-3, 5-8

M

make(UNIX) 5-2, A-1
clean A-1
Makefile
IBM compiler A-4, A-5
Microsoft compiler A-4, A-5
UNIX A-1, A-3
minimization 11-2
reduced subset 11-6

N

nmake(Windows) 5-6, A-4
clean
IBM compiler A-5
Microsoft compiler A-6
with ATAC A-7

User’'s Manual Index

0]
optimal_order 11-11
P

PATH. See environment variables
prformatB-23

prioritization 11-2

profiling 14-2

program debugging 13-1

p-use. See coverage criteria

R

registry variables B-24
ATAC_CL B-25
ATAC_COMPRESS B-25
ATAC_COST B-25
ATAC_DIR B-25
ATAC_ICC B-25
ATAC_SIGNAL B-25
ATAC_TEST B-25
ATAC_TMP B-25
ATAC_TRACE B-25
DEFINE B-24
DEFINEPP B-24
NO_INSTRUMENT B-24

regression testing 3-2, 11-1
modification-based 10-5
tests_regress script 10-7

ROOT 4-6

S

scrolling
horizontal 16-3
independent 16-2, 16-4, B-28
synchronized 16-2, 16-3, B-28
seed file 15-2

I-vi

User’'s Manual

Index

import 15-4
templates 15-2
seed list control 15-7
slicing
dynamic 13-2
execution 12-2, 13-2
static 13-2
software maintenance 12-1
software testing
black-box 3-2
white-box 3-2
source code modifications 7-8
static analysis 15-2
summary reporting 8-2
by file 8-4
by function 2-9, 8-5
by test case 8-8
by type 2-9
cumulative coverage 8-12
out-of-date 8-14
per test case 8-12
restricting 8-10
by coverage criteria 8-11
by file 8-10
by function 8-10
selective 8-3, 8-10
sort by coverage 8-13
test cost 8-13

T

TERM. See environment variables

test cases
assigning cost 7-7
deleting 7-7
extracting 7-6
listing 7-2
naming 7-4, 7-6
renaming 7-5
selecting 7-3
sorting by coverage 8-13

I-vii

User’'s Manual

Index

sorting by cumulative cost per additional coverage 8-14
summarizing by cumulative coverage 8-12

summarizing test cost 8-13
trace attributes 7-2
user-defined cost 7-2
tests
failed 13-2
successful 13-2
tests_regresscript 11-3, 14-2
trace file 3-10
compression 7-9
disabling 6-2
enabling 6-2
forcing 6-2
corruption 6-5
locking 6-4
naming 6-2
opening 2-6, 12-6
permission 6-4
transitive pattern recognition 15-1
transitive relation 15-1
tutorial directory
UNIX A-1
Windows A-4
type conventions 1-4

U

uncovered code. See displaying uncovered code

UNIX 4-4, A-1
compiler
cc.inifile B-10
\Y,
VERSION 4-7, B-7
w

wordcountl-4, 5-2

-viii

User’'s Manual Index

X

xatac3-8
weights 2-3, 9-4
xconfig4-5, B-24
xDiff 16-1, 16-2
additions 16-4
changes 16-4
deletions 16-4
xdiff B-28
xFind 15-1, 15-3
xfind B-27
xProf 14-1
xRegress 11-1
xSlice 13-1
xsudsl1-11, 12-4, 13-4, 14-2, B-1
xVue 12-1

Y

Year-2000 challenge 15-2

I-ix

