
IBM Application Testing Collection for MVS/ESA
Version 1 Release 5 Modification 0

User's Guide
Program Number: 5799-GBN

PRPQ: P85579

April 1999

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xv.

This book is also available as an online book that can be viewed with:

� The IBM BookManager READ and IBM Library Reader licensed programs. The IBM Library Reader is available for
downloading from the following Web site:
http://booksrv2.raleigh.ibm.com/homepage/ilrserv.html

� Adobe Acrobat Reader 2.1 and later, which is available for downloading from the Adobe Web site.

Eighth Edition (April 1999)

This edition applies to Version 1 Release 5 Modification 0 of the IBM Application Testing Collection for MVS/ESA, program number
5799-GBN. Changes are made periodically to the information herein.

This publication is available in downloadable form from the IBM Year 2000 Technical Support Center Web site:
http://www.software.ibm.com/year2000/

| Select the Testing link on the main home page and then look for the Application Testing Collection on the page displayed.

This publication is provided on an as is basis. Although it has been thoroughly edited, it may nevertheless contain inaccuracies.

 Copyright International Business Machines Corporation 1997, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Table of Contents

Notices . xv
Trademarks . xv

Preface . xvii
Who Should Read This Book . xvii
How This Book Is Organized . xvii
Conventions for Words and Type . xviii
How to Read Syntax Diagrams . xviii

| Related Information . xx
Getting Help . xx

| Summary of Changes (V1R5M0) . xxi
| Coverage Assistant (CA) . xxi
| Coverage Assistant (CA), Distillation Assistant (DA), and Unit Test Assistant
| (UTA) . xxi

Summary of Changes (V1R4M0) . xxi
Coverage Assistant (CA) . xxi
Unit Test Assistant (UTA) . xxi
Source Audit Assistant (SAA) . xxi
Automated Regression Testing Tool (ARTT) xxii

Summary of Changes (V1R3M4) . xxii
Coverage Assistant (CA), Unit Test Assistant (UTA) and Distillation

Assistant (DA) . xxii
Source Audit Assistant (SAA) . xxii

Summary of Changes (V1R3M0) . xxii
Coverage Assistant (CA) . xxii
Unit Test Assistant (UTA) . xxii
ATC User Documentation . xxiii

Summary of Changes (V1R2M4) . xxiii
Coverage Assistant (CA) and Distillation Assistant (DA) xxiii
General . xxiii

Introducing the IBM Application Testing Collection . 1

Overview . 3

Installing and Customizing ATC . 5

Prerequisites and Supported Software . 7

Converting Existing ATC Systems and Users to the Current Release 9
| V1R4M0 Systems and Users to V1R5M0 . 9
| V1R3M4 Systems and Users to V1R5M0 . 9
| V1R3M0 Systems and Users to V1R5M0 . 10
| V1R2M4 Systems and Users to V1R5M0 . 10
| V1R2M0 Systems and Users to V1R5M0 . 11

System Installation . 13
Installing Data Sets . 13

 Copyright IBM Corp. 1997, 1999 iii

Modifying the FORMS, REXX, and BKSHELF Data Sets 15
Setting up the Authorized Data Sets . 16
Installing and Enabling the Monitor SVCs . 18

| Ensuring Users Have Access to AMASPZAP . 20
Editing the Site Defaults Data Set . 20
Verifying the Installation . 25

Basic User Setup . 27
Modifying Your ATC Defaults . 27

Editing Your User Defaults . 28
Resetting Your User Defaults to the System Defaults 32

Allocating Data Sets and Testing Installation . 33
Accessing the Language Environment Runtime Library 36
Running the Sample Test Cases . 36

Using Coverage Assistant . 37

Introduction . 39
What Is Coverage Assistant? . 39
What Does CA Require? . 40
How Does CA Work? . 40

Setup . 42
Execution . 42
Report . 43

Where Can You Get Further Details? . 43

Coverage Assistant Samples . 45
COBOL Summary of Test Case Coverage . 47

Edit the CA Control File . 49
Create Setup JCL . 50
Create JCL to Start a Monitor Session . 51
Create JCL for a Summary Report . 52
Create JCL to Link the Modified Object Modules 52
Create JCL to Run the GO Step . 52
Execute the JCL . 53

Annotated COBOL Listings . 54
Edit the CA Control File . 57
Create Setup JCL . 57
Create JCL To Start a Monitor Session . 57
Create JCL for an Annotated Listing . 57
Create JCL to Link the Modified Object Modules 58
Create JCL to Run the GO Step . 58
Execute the JCL . 58

PL/I Summary of Test Case Coverage . 59
Edit the CA Control File . 61
Create Setup JCL . 62
Create JCL to Start a Monitor Session . 62
Create JCL for a Summary Report . 63
Create JCL to Link the Modified Object Modules 63
Create JCL to Run the GO Step . 63
Execute the JCL . 64

Annotated PL/I Listings . 64
Edit the CA Control File . 66

iv Application Testing Collection 1.5.0 User's Guide

Create Setup JCL . 66
Create JCL to Start a Monitor Session . 66
Create JCL for an Annotated Listing . 66
Create JCL to Link the Modified Object Modules 67
Create JCL to Run the GO Step . 67
Execute the JCL . 67

Assembler Summary of Test Case Coverage 68
Edit the CA Control File . 71
Create Setup JCL . 72
Create JCL to Start a Monitor Session . 73
Create Summary Report JCL . 73
Create JCL to Link the Modified Object Modules 74
Create JCL to Run the GO Step . 74
Execute the JCL . 74

Annotated Assembler Listings . 75
Edit the CA Control File . 79
Create Setup JCL . 79
Create JCL to Start a Monitor Session . 79
Create JCL for an Annotated Listing . 79
Create JCL to Link the Modified Object Modules 79
Create JCL to Run the GO Step . 79
Execute the JCL . 80

Editing the Coverage Assistant Control File 81
Contents of the Control File . 81

Coverage Assistant Reports . 83
Summary Coverage Report . 83

Areas of the Report . 86
Suppression of Conditional Branch Coverage with Performance Mode . . . 87

Examples of Reports Using Listings . 88
Summary Report for Assembler . 88

Areas of the Report . 88
Creating Coverage Reports . 90

Creating Summary and Annotated Listing Report JCL Using the Panels . . 91
Creating JCL for a Summary without Annotated Listings 94

Annotated Listing Coverage Report . 95
Selecting Specific Listings to Annotate . 101
Reducing the Size of Annotated Listings . 101
Displaying Execution Counts in an Annotated Listing 102

Differences in CA Reports When DA and UTA Are Used 103
Changes in Annotation Symbols with Performance Mode 104
Parameters for the SUMMARY and REPORT Programs 104

SUMMARY . 104
REPORT . 105

Printing Reports . 105
Targeted Summary Reports . 105

Target Control File . 106
| Creating Targeted Summary Reports . 112

Using Coverage Assistant in a Large Project Environment 115
Creating CA Files during Code Development 115

Breakpoint Data . 116
Test Case Coverage Results . 116

 Table of Contents v

Combining Test Case Coverage Results . 116
Creating the Combine JCL Using the Panels 117
Rules for Combining Results . 120
Sample Combine Test Case . 120

Measuring Coverage for Individual Test Cases 121

Using Distillation Assistant . 123

Introduction . 125
What Is Distillation Assistant? . 125
What Does DA Require? . 126

Input Master Data Set Restrictions . 126
Logical Distillation Requirements . 127

How Does DA Work? . 127
Setup . 130
Execution . 130
Physical Distillation . 130

Where Can You Get Further Details? . 131

Distillation Assistant Samples . 133
COB11x and PLI11x Test Cases . 135

Logical Distillation . 141
Description of Reading Input Data Sets . 141
Coverage of the Distilled Data Set . 141
PL/I ON-Units . 141
How Much Data Can Be Read . 142
Recording Which Keys Execute a Statement 142

Editing the Distillation Assistant Control File 145
Contents of the Control File . 145

Examples . 147

Physical Distillation . 149
Physical Distillation Summary . 149
Parameters Used by Physical Distillation . 150
Running Physical Distillation . 151

Generating JCL for Physical Distillation . 152
Editing Distillation JCL . 156
Submitting JCL for Physical Distillation . 157

Physical Distillation Return Codes . 158

Using Unit Test Assistant . 159

Introduction . 161
What Is Unit Test Assistant? . 161
What Does UTA Require? . 162
How Does UTA Work? . 162

Setup . 165
Execution . 165
Report . 166

Where Can You Get Further Details? . 166

vi Application Testing Collection 1.5.0 User's Guide

Unit Test Assistant Samples . 167
COB02x Test Cases . 169
Multiple Compile Unit Test Case (COB01x) . 176

Unit Test Assistant Read and Warp Descriptions 183
Description of the Variable Read Operation 183

Where a Variable Is Read . 183
Which COBOL Storage Areas Can Be Read 183
How Much Data Can Be Read . 184

Description of the Variable Warp Operation 184
What COBOL Variables Can Be Warped 184
When a COBOL Variable Is Warped . 185
What PL/I Variables Can Be Warped . 185
When a PL/I Variable Is Warped . 185

Reading and Warping on the Same Statement 185

Editing the Unit Test Assistant Control File 187
Contents of the Control File . 187

Examples . 188

Unit Test Assistant Reports . 189
Monitored Variables Report (MVR) . 189
Variable Data Report (VDR) . 191

Errors During Data Warping . 192
Combined Variable Data Report (CVDR) . 193
Creating Unit Test Report JCL Using the Panels 194
Examples of Reports . 196
Parameters for the PRINTVAR Program . 196

Unit Test Assistant File Warping . 197
File Warp Operation . 197
File Warp Samples . 199
File Warp Control File Syntax . 200

Field Definition . 201
Group Level Definition . 201
Record Type Definition . 202
Positional Parameter Definitions . 203
Control File Example . 205
File Warp Return Codes . 206

Common CA, DA, and UTA Information . 207

CA, DA, and UTA Control File . 209
Contents of the Control File . 211

Control File Statement Syntax . 212
Control File Examples . 228

CA, DA, and UTA Setup . 231
Setup . 231

Compiler Options . 231
| Instrumentation of Load Modules instead of Object Modules 238

Creating the Setup JCL Using the Panels . 239
When to Create or Submit Setup JCL . 241

 Table of Contents vii

Setup JCL for the Compile Job Stream . 241
Parameters for SETUP and ZAPTXT Programs 241

SETUP . 241
ZAPTXT . 243

Monitor Execution . 245
Creating the Monitor JCL Using the Panels . 246
Parameters for Start Monitor (CMDUSVC) . 249
Parameters for Variable Monitor (VARMON3) 249
Multiple User Sessions . 249

Coverage of Common Modules with Multiple User Sessions 250
Using the Performance Mode to Reduce Monitor Overhead 253
Buffer Monitor . 254

Monitor Commands . 255
Issuing Commands . 255

CABPDSP . 256
CADATA . 259
CAIDADD . 261
CALIST . 262
CAPRFOFF . 263
CAPRFON . 264
CAQUIT . 265
CARESET . 266
CASESSN . 267
CASTATS . 268
CASTOP . 270
CAVADSP . 272

Diagnosing Monitor Problems . 275
047 Abend . 275
Operation Exception (0C1) on User Program 275
System Interruption Code of Fnn on User Program 275
Lack of SQA Space . 276
Poor Performance When Measuring Conditional Branch Coverage 276

Using Source Audit Assistant . 277

Introduction . 279
What Is Source Audit Assistant? . 279
What Does SAA Require? . 279
How Does SAA Work? . 280

Source Audit Assistant Samples . 281
Sample Data Sets . 281
Execution and Verification . 282

Standard Group - Background Execution 283
Standard Group - Foreground Execution . 285
Target Group . 287

Starting Source Audit Assistant . 289
Executing SAA in the Background . 289
Executing SAA in the Foreground . 293

viii Application Testing Collection 1.5.0 User's Guide

Executing the SAA Postprocessor . 296

Understanding the Comparison Report . 299
Areas of the Comparison Report . 299

Source Audit Assistant Postprocessor . 301
SAA Postprocessor Inputs . 301
SAA Postprocessor Outputs . 302

Reserved Data Set Names in Source Audit Assistant 303

Appendixes . 305

Appendix A. Problem Determination . 307
Installation Abends . 307
Error Messages . 308
COMBINE: Creating the JCL (ARCOxxxx) . 309
SUMMARY: Creating the JCL (ARSUxxxx) . 310
SETUP: Creating the JCL (ASETxxxx) . 311
COMBINE: Executing the JCL (CMBxxxx) . 312
COMMANDS: Executing User Commands (CMD5xxxx) 314
COMMON: Common Messages for CA/DA/UTA User Interface (COMNxxxx) 319
DEFAULTS: Defaults Processing (DFLTxxxx) 326
FILE WARP & DISTILLATION: File Conversion (FCVxxxx) 328
FILE WARP: Control File Reader (FWPxxxx) 332
COMMON: Additional Common Messages (KPDSxxxx) 334
CTLFILE: Control File Processing (N2Oxxxx) 335
TARGETED SUMMARY: Targeted Summary (OCUSxxxx) 340
VARIABLE REPORTS: Executing the JCL (PVRxxxx) 343
DISTILLATION: Read the Keylist (RKEYxxxx) 346
REPORT: Executing the JCL (RPT03xx) . 347
SAA: Source Audit Assistant (SAACxxxx) . 350
SAA POSTPROCESSOR: Source Audit Assistant Change Validation Report

(SAAFxxxx) . 353
SAA EXECUTION: Source Audit Assistant Execution (SAARxxxx) 355
SETUP: Executing the JCL (SP601xx) . 359
SUMMARY: Executing the JCL (SUM0xxxx) 362
VAREAD: Extracting Variable Information from Listing (VAR0xxx) 364
EXECUTE: Buffer Monitor (WVAxxxx) . 373
ZAPTXT: Executing the JCL (ZAP00yy or ZAP88xx) 375
Understanding the SAA Log File . 377

Description of the Message Format . 377
Restrictions Regarding Embedded Statements 378
Message List . 379

Appendix B. ATC Requirements and Resources 383
Prerequisites and Supported Compilers . 383
CA Resources . 385

Setup . 385
Monitor ECSA, SQA, and ESQA Usage . 386
Reports . 386
Data Set Attributes . 387
DDNAMEs . 387

 Table of Contents ix

DA and UTA Resources . 388
Setup . 388
Monitor ECSA, SQA, and ESQA Usage . 389
Data Set Attributes . 389
DDNAMEs . 389

SAA Resources . 389

Appendix C. DBCS Support . 391
DBCS Requirements for ATC Compilers and Assemblers 391
CA/DA/UTA DBCS Support . 391
SAA DBCS Support . 392
SAA Postprocessor DBCS Support . 392

Glossary and Index . 393

Glossary . 395

Index . 399

x Application Testing Collection 1.5.0 User's Guide

 Figures

1. Site Defaults Data Set . 22
2. ATC Primary Option Menu . 27
3. Manipulate ATC Defaults Panel . 28
4. ATC Defaults Panel . 29
5. Reset Defaults to System Defaults Panel 32
6. CA—Flow Diagram . 41
7. Sample Run—Flow Diagram . 46
8. Summary Reports for COB01M . 48
9. Control File for COB01M . 50

10. Annotated COBOL Listing . 55
11. Summary Report for PLI01M . 60
12. Control File for PLI01M . 62
13. Annotated PL/I Listing . 66
14. Summary Report for ASM01L . 70
15. Control File for ASM01L . 72
16. Annotated Assembler Listing . 76
17. Summary Coverage Report for COB01M in COBOL 84
18. Summary Coverage Reports for PLI01M in PL/I 85
19. Summary Report for ASM01L . 89
20. Coverage Reports Panel . 90
21. Create JCL for Summary Report Panel . 91
22. Create JCL for Summary and Annotated Listing Report Panel 93
23. Annotated COBOL Listing . 96
24. Annotated PL/I Listing . 98
25. Annotated ASM Listing . 99
26. Annotated Listing with Execution Counts 102
27. Sample Conditional Branch Coverage with UTA 103
28. Sample Conditional Branch Coverage without UTA 103
29. Sample Annotated Listing with UTA . 103
30. Sample Annotated Listing without UTA 103
31. Target Control File . 111

| 32. Create JCL for Targeted Summary Report 112
33. Using CA in a Large Project Environment—Flow Diagram 116
34. Combining Results of Multiple Testers—Flow Diagram 117
35. Create JCL for Combining Multiple Runs Panel 118
36. ISPF Edit Screen for Combine . 119
37. DA—Flow Diagram . 129
38. Sample Run—Flow Diagram . 134
39. Input Master Data Set for COB11M and PLI11M 136
40. New (Distilled) Master Data Set for COB11M and PLI11M 136
41. Control File for COB11x . 138
42. Control File for PLI11x . 138
43. Partial Annotated Listing for COB011 Showing Key Numbers 142
44. CACTL Statements for Distillation (COBOL) 147
45. COBOL File Definition . 147
46. CACTL Statements for Distillation (PL/I) 147
47. Generate JCL to Generate Key List and Distill Data Panel 151
48. Generate JCL to Generate Key List and Distill DASD Data Panel . . . 152
49. Generate JCL to Generate Key List and Distill Tape Data Panel 154
50. Edit Distillation JCL Panel . 156

 Copyright IBM Corp. 1997, 1999 xi

51. Submit Distillation JCL Panel . 157
52. UTA—Flow Diagram . 164
53. Sample Run—Flow Diagram . 168
54. MVR for COB02M . 171
55. VDR for COB02M . 171
56. Control File for COB02x . 173
57. MVR for COB01M . 178
58. VDR for COB01M . 178
59. Control File for COB01M . 180
60. Sample UTA Control File . 188
61. COBOL File Definitions . 188
62. Control File for Warping a PL/I Input Buffer 188
63. MVR for COB01M . 191
64. VDR for COB01M . 192
65. CVDR for COB01M . 193
66. Unit Test Report Panel . 194
67. UTA—Flow Diagram . 197
68. Copy Book Defining a File Record . 198
69. Example of a Warp Control File . 198
70. Generate JCL for File Warping Panel . 199
71. Example Control File with File Warping Definitions 205
72. Coverage, Distillation and Unit Test Assistant Panel 209
73. Work with the CA/DA/UTA Control File Panel 209
74. CA Setup—Flow Diagram . 237
75. DA and UTA Setup—Flow Diagram . 237
76. Create JCL for Setup Panel . 239
77. CA Test Case Execution—Flow Diagram 245
78. DA Test Case Execution—Flow Diagram 246
79. UTA Test Case Execution—Flow Diagram 246
80. Create JCL to Start the Monitor Panel 247
81. Control the CA/DA/UTA Monitor Panel 256
82. Monitor: Display Breakpoint Status Panel 256
83. Breakpoint Status Panel . 257
84. Monitor: Take Snapshot of Data—Panel 1 259
85. Monitor: Take Snapshot of Data—Panel 2 259
86. Snapshot Status Panel . 260
87. Monitor: Add ID Panel . 261
88. Add ID Status Panel . 261
89. Monitor: Display Listings . 262
90. Listings Statistics Panel . 263
91. Monitor: Quit Monitor—Panel 1 . 265
92. Monitor: Quit Monitor—Panel 2 . 265
93. Quit Monitor Status Panel . 265
94. Monitor: Reset All Data in Monitor Panel 266
95. Active Session Display Panel . 267
96. Release Level and Table Address Data 267
97. Monitor: Display Statistics Panel . 268
98. PA Statistics Panel . 269
99. Monitor: Stop Monitor—Panel 1 . 270
100. Monitor: Stop Monitor—Panel 2 . 270
101. Stop Completed Panel . 271
102. Monitor: Display Variable Status Panel 272
103. Variable Information Panel . 272
104. ATC Primary Option Menu . 282

xii Application Testing Collection 1.5.0 User's Guide

105. Execute Source Audit Assistant Panel 283
106. SAA Background Execution Parameters Panel 283
107. SAA Foreground Execution Parameters Panel 285
108. Status Messages When All Filter Options Are Yes 286
109. SAA Foreground Execution Parameters Panel for Target Group Samples 287
110. Status Messages When All Filter Options Are No 287
111. SAA Postprocessor Panel . 288
112. Execute Source Audit Assistant Panel 289
113. SAA Background Execution Parameters Panel 290
114. SAA Foreground Execution Parameters Panel 293
115. SAA Postprocessor Panel . 296
116. Output Report Created by Comparing COBOL Source Files 299
117. Sample SAA Change Validation Report 302

 Figures xiii

xiv Application Testing Collection 1.5.0 User's Guide

 Notices

| This information was developed for products and services offered in the U.S.A.
| IBM may not offer the products, services, or features discussed in this document in
| other countries. Consult your local IBM representative for information on the pro-
| ducts and services currently available in your area. Any reference to an IBM
| product, program, or service is not intended to state or imply that only that IBM
| product, program, or service may be used. Any functionally equivalent product,
| program, or service that does not infringe any IBM intellectual property right may be
| used instead. However, it is the user's responsibility to evaluate and verify the
| operation of any non-IBM product, program, or service.

| IBM may have patents or pending patent applications covering subject matter
| described in this document. The furnishing of this document does not give you any
| license to these patents. You can send license inquiries, in writing, to the IBM
| Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
| 10504-1785, U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (1) the exchange of information between independently created programs
and other programs (including this one) and (2) the mutual use of the information
which has been exchanged, should contact the IBM Corporation, Department J01,
555 Bailey Avenue, San Jose, CA 95161-9023. Such information may be available,
subject to appropriate terms and conditions, including in some cases, payment of a
fee.

 Trademarks
| The following terms are trademarks of International Business Machines Corporation
| in the United States, or other countries, or both:

| IBM
| BookManager
| CICS
| DB2
| DFSMS/MVS
| Language Environment
| Library Reader
| MVS/ESA
| OS/390

| Other company, product, and service names may be trademarks or service marks
| of others.

 Copyright IBM Corp. 1997, 1999 xv

xvi Application Testing Collection 1.5.0 User's Guide

 Preface

The IBM Application Testing Collection is a suite of tools that provide software to
help you resolve potential problems related to the Year 2000.

Who Should Read This Book
Read this book if you are an application programmer who must ensure that pro-
grams comply with Year 2000 requirements.

How This Book Is Organized
This book is organized into the following parts:

� “Introducing the IBM Application Testing Collection” offers a general
description of the Application Testing Collection suite of tools.

� “Installing and Customizing ATC” describes how to install ATC and cus-
tomize functions for your location.

� “Using Coverage Assistant” describes information that is specific to the Cov-
erage Assistant tool, including steps that explain how to edit the control file and
run reports.

� “Using Distillation Assistant” describes information that is specific to the
Distillation Assistant tool, including steps that explain how to edit the control file
and run distillation.

� “Using Unit Test Assistant” describes information that is specific to the Unit
Test Assistant tool, including steps that explain how to edit the control file and
run reports.

� “Common CA, DA, and UTA Information” describes information that is
common between Coverage Assistant, Distillation Assistant, and Unit Test
Assistant. This information includes setting up, executing the monitor, and trou-
bleshooting.

� “Using Source Audit Assistant” explains how to use the Source Audit
Assistant tool, including the use of filters, which allow you to specify types of
information that you want to see in your comparison report.

� Appendix A, “Problem Determination” explains any error messages you may
encounter while using ATC.

� Appendix B, “ATC Requirements and Resources” contains ATC resource
requirements.

� Appendix C, “DBCS Support” describes variances among the ATC tools for
DBCS (double-byte character set) support.

 Copyright IBM Corp. 1997, 1999 xvii

Conventions for Words and Type
The following list shows special ways in which some characters and words are dis-
played in this manual and describes the meaning associated with each one:

Display Method Meaning

Monospaced type Shows something that you type (such as a command),
an example, or something that is displayed on your
monitor (for example, an error message, or the name of
a panel or field).

Italic type Indicates information that you supply (such as a param-
eter or a variable), or italic type can indicate a new
term. See the glossary for definitions of new terms.

Bold type Indicates information that you should pay particular
attention to.

How to Read Syntax Diagrams
Throughout this book, syntax is presented in diagrams. The following list describes
how to read the diagrams to enter commands correctly.

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The 55─── symbol indicates the beginning of a statement.

The ───5 symbol indicates that the statement syntax is continued on the
next line.

The 5─── symbol indicates that a statement is continued from the previous
line.

The ───5% symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
5─── symbol and end with the ───5 symbol.

Fragments of a syntax diagram are enclosed by the symbol ├───┤.

� Required items appear on the horizontal line (the main path).

55──statement──required-item───5%

xviii Application Testing Collection 1.5.0 User's Guide

� Optional items appear below the main path.

55──statement─ ──┬ ┬─────────────── ────────────────────────────────────5%
 └ ┘─optional-item─

� Defaults appear above the main path.

 ┌ ┐─default-item─
55──statement─ ──┴ ┴────────────── ─────────────────────────────────────5%

� If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

55──statement─ ──┬ ┬─required-choice1─ ─────────────────────────────────5%
 └ ┘─required-choice2─

If choosing one of the items is optional, the entire stack appears below the
main path.

55──statement─ ──┬ ┬────────────────── ─────────────────────────────────5%
 ├ ┤─optional-choice1─
 └ ┘─optional-choice2─

� An arrow returning to the left above the main path indicates an item that can be
repeated.

 ┌ ┐───────────────────
55──statement─ ───

6
┴─repeatable-item─ ──────────────────────────────────5%

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

� An out-of-line fragment of a syntax diagram, which is shown later in the syntax
diagram (or in another syntax diagram), is enclosed in vertical bars.

55──statement──required-item──┤ required-group ├─ ──┬ ┬─────────────── ─5%
 └ ┘─optional-item─

required-group:
├─ ──┬ ┬─OPTION1─ ─more-required-items───────────────────────────────────┤
 └ ┘─OPTION2─

� Keywords appear as bold uppercase letters and should be spelled exactly as
shown (for example, DEFAULTS). However, keywords may be coded in any
combination of uppercase and lowercase characters.

Variables appear in all italic letters (for example, label). They represent user-
supplied names or values.

� Only one keyword from a particular group can be specified, and the same
keyword cannot be specified more than once unless explicitly indicated.

� If punctuation marks, parentheses, arithmetic operators, or any such symbols
are shown, you must enter them as part of the syntax.

 Preface xix

| Related Information
| The following publications are available in downloadable form from the IBM Year
| 2000 Technical Support Center Web site:

| � IBM Application Testing Collection for MVS/ESA Version 1 Release 5 Modifica-
| tion 0 General Information, Program Number 5799-GBN, PRPQ P85579

| � IBM Automated Regression Testing Tool Version 2 Release 2 Modification 0
| User's Guide, Program Number 5799-GBN, PRPQ P85579

| To locate these documents on the Internet:

| 1. Go to http://www.software.ibm.com/year2000/

| 2. Select the Testing link on the main home page, and then look for the Applica-
| tion Testing Collection on the page displayed.

| IBM has developed the following Redbook that outlines the Y2K test process and
| augments it with real-world application examples and tool usage information:

| VisualAge 2000 Test Solution: Testing Your Year 2000 Conversion, SG24-2230

| To order this Redbook from the Internet:

| 1. Go to http://www.redbooks.ibm.com/index.html

| 2. Select the Redbooks Online! button at the bottom of the page.

| 3. In the search field displayed, enter the Redbook's title or document number.

| 4. Look for ordering instructions on the page displayed.

 Getting Help
To open a problem with ATC, please enter an electronic PMR (problem manage-
ment record) in RETAIN (remote technical assistance information network [IBM]) to
the queue and center ATC,136 using the Compid 5799GBN00.

| If you do not have access to RETAIN, in the United States you can call
| 1-800-237-5511 to have support personnel open a PMR for you in RETAIN.

xx Application Testing Collection 1.5.0 User's Guide

| Summary of Changes (V1R5M0)

| Changes have been made to the following components of the Application Testing
| Collection (ATC) for Version 1 Release 5 Modification 0:

| Coverage Assistant (CA)
| The performance of CA targeted summary report has been improved and a batch
| interface has been added.

| Coverage Assistant (CA), Distillation Assistant (DA), and Unit Test
| Assistant (UTA)
| The SETUP process has been updated to allow load modules to be instrumented
| directly as an alternative to instrumenting object modules, which are then linked into
| load modules.

Summary of Changes (V1R4M0)
Changes have been made to the following components of the Application Testing
Collection (ATC) for Version 1 Release 4 Modification 0:

Coverage Assistant (CA)
CA now supports IBM High Level Assembler (HLASM) Release 1 Version 3.

CA targeted coverage sample JCL for batch invocation has been added to the
samples.

Unit Test Assistant (UTA)
File warping is the modification of variables (typically date variables) in program
input files to simulate input conditions for testing. For example, file warping could
be used to modify dates in input files to post-Year 2000 values for Year 2000
testing of remediated programs.

The new UTA file warp feature can copy any QSAM or VSAM file and warp fields in
the copied file for testing. Any zoned or packed numeric field can be incremented,
decremented, or set. Any zoned, packed, or character field can be set to a
common value. For example, file warping could be used to clear fields in test
copies of production input files for privacy or security reasons.

UTA logging and warping of COBOL variables now takes place at the beginning of
a statement rather than at the end.

Source Audit Assistant (SAA)
SAA now supports IBM High Level Assembler (HLASM) Release 1 Version 3.

SAA postprocessor sample JCL for batch invocation has been added to the
samples.

 Copyright IBM Corp. 1997, 1999 xxi

Automated Regression Testing Tool (ARTT)
ARTT, an automated code capture and verification tool, has been added to the col-
lection of tools.

Summary of Changes (V1R3M4)
Changes have been made to the following components of the Application Testing
Collection (ATC) for Version 1 Release 3 Modification 4:

Coverage Assistant (CA), Unit Test Assistant (UTA) and Distillation
Assistant (DA)

� Support has been added for DBCS characters in the input compiler and assem-
bler listings, and in identifiers and comments in the control files.

� Support has been added for the COBOL LANGUAGE(JAPANESE) compiler
option.

� The start monitor job now detects when another session has already been
started with a matching BRKTAB/listing/obj combination (error message
CMD5023W).

Source Audit Assistant (SAA)
� Support for DBCS characters in the input source/listings has been added for

the Comments and Declares filters for COBOL and assembler.

� Restrictions on the length of input data set names have been removed.

� Support for DBCS characters has been added to the SAA postprocessor.

� The seed list data set is no longer required in the SAA postprocessor; however,
if it is not specified, a change validation report is not created.

Summary of Changes (V1R3M0)
Changes have been made to the following components of the Application Testing
Collection for release V1R3M0:

Coverage Assistant (CA)
The requirement for the LANGUAGE(UE) option has been removed for the High
Level Assembler.

Unit Test Assistant (UTA)
ATC now includes the UTA tool, which allows you to capture and log the values
assigned to selected variables in your application programs at selected points
during their execution. This is called unit testing. Unit testing allows you to confirm
the effectiveness of Year 2000 changes that have been made to an application
program.

In addition, Unit Test Assistant offers the ability to perform data warping. This
means that variables can be modified automatically as they are encountered during
program execution. UTA will intercept data entering or leaving a program at I/O
time (or at other times where application logic dictates) and change the value of

xxii Application Testing Collection 1.5.0 User's Guide

that data in a manner that you specify. This feature is especially useful when doing
future date testing of Year 2000 remediated code.

ATC User Documentation
The following changes pertain to the ATC user documentation. Information that
has changed since the last publication of the User's Guide and the General Infor-
mation document is marked with revision bars in the left margins of affected pages.

� New information about DBCS support has been added to the User's Guide and
the General Information document.

� Changes to the User's Guide and the General Information document have been
made to reflect functional changes to the product. Also, minor technical and
editorial changes have been made throughout both documents.

� A BookManager READ bookshelf, containing the User's Guide and the
General Information document, has been added to the group of documentation
offerings shipped with the ATC package.

Summary of Changes (V1R2M4)
The following changes have been made to the Application Testing Collection for
release V1R2M4. This User's Guide reflects these changes.

Coverage Assistant (CA) and Distillation Assistant (DA)
The monitor and breakpoints are used by Coverage Assistant (CA) and Distillation
Assistant (DA).

The breakpoint method now uses a user SVC rather than an invalid opcode. The
monitor now consists of an SVC rather than a First Level Interrupt Handler. This
allows the monitor to be run on systems that may be running production applica-
tions and removes the need to start the monitor before any other monitor at IPL
time.

 General
The following changes affect two or more ATC tools:

� Support for new levels of compilers and the Millennium Language Extensions
(MLE) for the COBOL and PL/I compilers has been added.

� The installation procedures, system defaults, and personal defaults have been
changed to handle the new user SVCs.

� Program abends because of breakpoint mismatch or monitor not installed have
been updated to reflect the new SVC breakpoints. Appendix A, “Problem
Determination” on page 307 contains these updated abends.

� The formulas for calculating monitor storage usage and binary file disk usage
have changed. Appendix B, “ATC Requirements and Resources” on page 383
contains the new formulas.

� The SETUP (S*) and start monitor (X*) JCL are significantly different for
V1R2M4 (as compared to V1R2M0). You must recreate any manually gener-
ated or custom JCL (using the samples as templates).

� The start monitor JCL generation panel now allows you to edit the Session ID
option, but it continues to default to your TSO user ID.

 Summary of Changes (V1R5M0) xxiii

� The DCB characteristics of the VARCTL file has been changed to LRECL=64,
any valid block size.

� The format of all of the binary files (BRKOUT, BRKTAB, DBGTAB, VARTAB,
and VARCTL) has changed. You must regenerate all binary files when moving
to this release.

� Since the breakpointing technique has changed, any existing breakpointed
object or load modules must be regenerated.

� Many of the parameters of the CA commands have changed, and some new
CA commands have been created. The new CALIST and existing CASTATS
and CABPDSP commands provide a hierarchy of commands that allow you to
look at a running session at different levels of detail.

xxiv Application Testing Collection 1.5.0 User's Guide

Introducing the IBM Application Testing Collection

 Copyright IBM Corp. 1997, 1999 1

2 Application Testing Collection 1.5.0 User's Guide

 Overview

The Application Testing Collection (ATC) is a set of tools that enable you to
examine application programs for compliance with Year 2000 requirements. The
tools that make up ATC are as follows:

Coverage Assistant
Coverage Assistant (CA) measures code coverage in application pro-
grams written in the COBOL, PL/I, and S/390 assembler languages and
compiled by specific IBM* COBOL and PL/I compilers or assembled by
the High Level Assembler or Assembler H.

Distillation Assistant
Distillation Assistant (DA) monitors file reads for a specified file that con-
tains logical keys and determines all of the keys that caused increased
code coverage. It then creates a “distilled” copy of the input file, con-
taining only the records containing these keys. This smaller, distilled file
can then be used during program testing to obtain equivalent code cov-
erage, but at the same time, decrease the time and resources required
for the testing. DA does this for applications written in the COBOL or
PL/I language and compiled by specific IBM COBOL or PL/I compilers.

Unit Test Assistant
Unit Test Assistant (UTA) reads and records the values assigned to vari-
ables at selected statement numbers in an application program as it is
executing. It creates a report, which allows subsequent analysis of the
variable data. UTA does this for applications written in the COBOL lan-
guage and compiled by specific IBM COBOL compilers.

In addition, UTA provides two types of data warping:

1. Dynamic data warping
 2. File warping

UTA dynamic data warping automatically modifies variables as they are
encountered during program execution. When data enters or exits a
program at I/O time (or at other times where the application logic dic-
tates), UTA changes the value of that data in a manner that you specify.
UTA does this for COBOL variables and PL/I input buffers.

A standard file warping process is that of aging, or warping, occurrences
of dates in input data files. Using UTA file warping, copies of input files
are made with data fields of records warped under user control.

Source Audit Assistant
Source Audit Assistant (SAA) compares two levels of source code and
places the results in a comparison report. SAA helps locate differences,
verify whether changes are valid, and identify items that need closer
examination.

Automated Regression Testing Tool
Automated Regression Testing Tool (ARTT) is a code capture and verifi-
cation tool that records a baseline execution of your program and auto-
matically compares it with a proof execution using real or previously
captured input. ARTT permits all levels of testing (unit, function, inte-
gration, and system) with or without a production system, and its data
conversion capability allows testing to continue when I/O and programs

 Copyright IBM Corp. 1997, 1999 3

are in incompatible formats (for example, when one has been modified
to accept future dates and the other has not). Data conversion can be
particularly useful if you are unsure of the status of I/O received from
outside sources. For more information, see the user documentation that
was shipped with ARTT.

4 Application Testing Collection 1.5.0 User's Guide

Installing and Customizing ATC

 Copyright IBM Corp. 1997, 1999 5

6 Application Testing Collection 1.5.0 User's Guide

Prerequisites and Supported Software

ATC was developed and tested in the following environments. These environments
and newer releases support ATC.

| � MVS/ESA 5.1.0, DFSMS/MVS 1.2, TSO/E 2.5 and ISPF 4.2.1
� MVS/ESA 5.2.2, DFSMS/MVS 1.3, TSO/E 2.5 and ISPF 4.2.1
� OS/390 2.4.0, DFSMS/MVS 1.4, TSO/E 2.6, and ISPF for OS/390 1.3
� Language Environment for MVS & VM 1.5

Note: The ATC programs use Language Environment for MVS & VM 1.5,
however it is not a requirement for the user's programs.

All IBM supported releases of OS/390 and the OS/390 versions of DFSMS/MVS,
TSO/E, ISPF, and Language Environment support ATC.

Coverage Assistant supports the following compilers and assemblers:1

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions [MLE])
� IBM OS PL/I Optimizing Compiler 2.3.0
� IBM PL/I Optimizing Compiler 1.5.1
� IBM High Level Assembler Version 1 Release 2 and Release 3
� IBM Assembler H Version 2

Distillation Assistant supports the following compilers:1

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions [MLE])
� IBM OS PL/I Optimizing Compiler 2.3.0
� IBM PL/I Optimizing Compiler 1.5.1

Unit Test Assistant supports the following compilers:1

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4

1 For a list of required compiler options and restrictions, see “Compiler Options” on page 231.

 Copyright IBM Corp. 1997, 1999 7

� The following PL/I compilers are supported for data warping of file input buffers
only :

– IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions
[MLE])

– IBM OS PL/I Optimizing Compiler 2.3.0
– IBM PL/I Optimizing Compiler 1.5.1

Source Audit Assistant supports the following languages in source code form (the
reports option only supports seed analysis and template target control file gener-
ation for COBOL and PL/I):2

 � Assembler
 � C
 � C++
 � COBOL
 � PL/I

Source Audit Assistant supports the following languages in listing form (the reports
option only supports seed analysis and template target control file generation for
COBOL and PL/I):

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions [MLE])
� IBM OS PL/I Optimizing Compiler 2.3.0
� IBM PL/I Optimizing Compiler 1.5.1
� IBM High Level Assembler Version 1 Releases 1, 2, and 3
� IBM Assembler H Version 2

2 For restrictions, see “What Does SAA Require?” on page 279.

8 Application Testing Collection 1.5.0 User's Guide

Converting Existing ATC Systems and Users to the Current
Release

You may have to make modifications when converting your existing ATC systems
and users to the current ATC release. The following information provides detailed
conversion instructions based upon the release you are presently using.

| V1R4M0 Systems and Users to V1R5M0
| When converting from ATC release V1R4M0 to release V1R5M0, note the fol-
| lowing:

| � Running more than one release at the same time. V1R5M0 is intended to
| be installed in a separate code base so that you can have both releases of the
| tool available at the same time.

| � V1R5M0 and V1R4M0 monitors. The V1R5M0 monitor replaces the V1R4M0
| monitor. If both releases of code must be run on the same machine, the
| V1R5M0 monitor should be used for both releases.

| � Defaults changes. The changes to defaults are minor. However, it is still
| recommended that each user reset the defaults (ATC option 0.2) when
| switching from one release to another. (Users will have to reenter any personal
| changes.)

| � Binary data sets. The binary data sets (BRKOUT, BRKTAB, DBGTAB,
| VARTAB, and VARCTL) are upwards compatible between V1R4M0 and
| V1R5M0.

| � JCL. Any existing JCL (or JCL generators) should be updated to point to the
| V1R5M0 data sets. Any existing CA Targeted Summary report JCL should be
| regenerated with the new JCL generator or recreated using the V1R5M0
| sample as a template.

| V1R3M4 Systems and Users to V1R5M0
| When converting from ATC release V1R3M4 to release V1R5M0, note the fol-
| lowing:

� Running more than one release at the same time. V1R5M0 is intended to
be installed in a separate code base so that you can have both releases of the
tool available at the same time.

� V1R5M0 and V1R3M4 monitors. The V1R5M0 monitor replaces the V1R3M4
monitor. If both releases of code must be run on the same machine, the
V1R5M0 monitor should be used for both releases.

� Defaults changes. The changes to defaults are minor. However, it is still
recommended that each user reset the defaults (ATC option 0.2) when
switching from one release to another. (Users will have to reenter any personal
changes.)

� Binary data sets. The binary data sets (BRKOUT, BRKTAB, DBGTAB,
VARTAB, and VARCTL) are upwards compatible between V1R3M4 and
V1R5M0.

 Copyright IBM Corp. 1997, 1999 9

| � JCL. Any existing JCL (or JCL generators) should be updated to point to the
| V1R5M0 data sets. The hi_lev_qual.*.SETCTL data set (ddname SETCTL) is
| no longer needed for the SETUP (S*) JCL. Any existing CA Targeted
| Summary report JCL should be regenerated with the new JCL generator or
| recreated using the V1R5M0 sample as a template.

� CACTL. UTA logging and warping of COBOL variables now takes place at the
beginning of a statement rather than at the end. Any existing control files con-
taining a coverage statement must be modified accordingly.

| V1R3M0 Systems and Users to V1R5M0
| When converting from ATC release V1R3M0 to release V1R5M0, note the fol-
| lowing:

� Running more than one release at the same time. V1R5M0 is intended to
be installed in a separate code base so that you can have both releases of the
tool available at the same time.

� V1R5M0 and V1R3M0 monitors. The V1R5M0 monitor replaces the V1R3M0
monitor. If both releases of code must be run on the same machine, the
V1R5M0 monitor should be used for both releases.

� Defaults changes. The changes to defaults are minor. However, it is still
recommended that each user reset the defaults (ATC option 0.2) when
switching from one release to another. (Users will have to reenter any personal
changes.)

� Binary data sets. The binary data sets (BRKOUT, BRKTAB, DBGTAB,
VARTAB, and VARCTL) are upwards compatible between V1R3M0 and
V1R5M0.

| � JCL. Any existing JCL (or JCL generators) should be updated to point to the
| V1R5M0 data sets. Any existing batch SAA JCL must be regenerated. The
| hi_lev_qual.*.SETCTL data set (ddname SETCTL) is no longer needed for the
| SETUP (S*) JCL. Any existing CA Targeted Summary report JCL should be
| regenerated with the new JCL generator or recreated using the V1R5M0
| sample as a template.

� CACTL. UTA logging and warping of COBOL variables now takes place at the
beginning of a statement rather than at the end. Any existing control files con-
taining a coverage statement must be modified accordingly.

| V1R2M4 Systems and Users to V1R5M0
| When converting from ATC release V1R2M4 to release V1R5M0, note the
| following:

� Running more than one release at the same time. V1R5M0 is intended to
be installed in a separate code base so that you can have both releases of the
tool available at the same time.

� V1R5M0 and V1R2M4 monitors. The V1R5M0 monitor replaces the V1R2M4
monitor. If both releases of code must be run on the same machine, the
V1R5M0 monitor should be used for both releases.

� Defaults changes. The changes to defaults are minor. However, it is still
recommended that each user do a RESET DEFAULTS (ATC option 0.2) when

10 Application Testing Collection 1.5.0 User's Guide

switching from one release to another. (Users will have to reenter any personal
changes.)

� Binary data sets. The binary data sets (BRKOUT, BRKTAB, DBGTAB,
VARTAB, and VARCTL) are upwards compatible between V1R2M4 and
V1R5M0.

| � JCL. Any existing JCL (or JCL generators) should be updated to point to the
| V1R5M0 data sets. Any existing batch SAA JCL must be regenerated. The
| hi_lev_qual.*.SETCTL data set (ddname SETCTL) is no longer needed for the
| SETUP (S*) JCL. Any existing CA Targeted Summary report JCL should be
| regenerated with the new JCL generator or recreated using the V1R5M0
| sample as a template.

| V1R2M0 Systems and Users to V1R5M0
| When converting from ATC release V1R2M0 to release V1R5M0, note the
| following:

� Running more than one release at the same time. The V1R5M0 level of
code introduces a new monitor technology that uses user SVCs (supervisor
calls) as breakpoints rather than invalid opcodes. This new monitor can be run
on the same machine as the older monitor (V1R2M0) if you install the V1R2M1
(or newer) maintenance level on your V1R2M0 code base.

V1R5M0 is intended to be installed in a separate code base so that you can
have both releases of the tool available at the same time. Follow on releases
will only use the new monitor technology, so you are encouraged to move all of
your test scenarios to the V1R5M0 code base.

� Defaults changes. It is recommended that each user do a RESET
DEFAULTS (ATC option 0.2) when switching from one release to another.
(Users will have to reenter any personal changes.)

� Data set changes. The DCB characteristics of the VARCTL data set have
been changed to LRECL=64, any valid block size. If you use sequential data
sets for the VARCTL file, you do not have reallocate existing files since they
are normally deleted and recreated by the JCL generated by the tool. If you
use partitioned data sets, you must reallocate these data sets to use the new
LRECL.

The internal format of all of the binary data sets (BRKOUT, BRKTAB, DBGTAB,
VARTAB, and VARCTL) has changed in V1R5M0. You must regenerate all
binary files when moving to this release (no binary files generated by V1R2M0
can be used as input to the V1R5M0 monitor and other tools). In addition, you
must regenerate any existing breakpointed object and must relink any existing
load modules containing breakpointed code.

Existing control files (CACTL and TARGCTL), compiler listings, and object
modules may be reused.

� JCL changes. The SETUP (S*), start monitor (X*), and batch SAA JCL are
significantly different for V1R5M0 (as compared to V1R2M0); therefore, you
must:

– Regenerate any S* and X* JCLs that you want to rerun
– Regenerate any existing batch SAA JCL that you want to rerun
– Update any custom JCL generators (using the samples as templates)

 Converting Existing ATC Systems and Users to the Current Release 11

– Any other existing JCL or JCL generators should be updated to point to the
V1R5M0 data sets.

| Any existing CA targeted summary report JCL should be regenerated with the
| new JCL generator or recreated using the V1R5M0 sample as a template.

� CA command (exec) changes. Many of the parameters of the CA commands
have changed, and some new CA commands have been created. The new
CALIST and existing CASTATS and CABPDSP commands provide a hierarchy
of commands that allow you to look at a running session at different levels of
detail. If you have existing CLIST, REXX, or JCL procedures that invoke these
commands, you should review each invocation to ensure that it meets the
current syntax definition.

� Monitor common storage usage. The storage usage formula for the monitor
has changed. For details, see “Monitor ECSA, SQA, and ESQA Usage” on
page 386.

� CACTL. UTA logging and warping of COBOL variables now takes place at the
beginning of a statement rather than at the end. Any existing control files con-
taining a coverage statement must be modified accordingly.

12 Application Testing Collection 1.5.0 User's Guide

 System Installation

This chapter provides information about installing the Application Testing Collection.
To use ATC, you must perform a system installation for each MVS system.

System installation consists of the following activities:

1. Installing the data sets
2. Modifying the FORMS, REXX, and BKSHELF data sets
3. Setting up the authorized data sets
4. Installing and enabling the monitor SVCs (supervisor calls)

| 5. Ensuring users have access to AMASPZAP
6. Editing the site defaults data set
7. Verifying the installation.

Each activity is described more fully in topics that follow in this chapter. For infor-
mation about installing Automated Regression Testing Tool (ARTT), see the user
documentation that was shipped with ARTT.

Installing Data Sets
To use this tool on MVS, install the following data sets from the installation media.
During installation, hi_lev_qual will be replaced by the MVS data set high-level
qualifier that you specify.

� Install Notes and JCL:

hi_lev_qual.V1R5M0.README Installation notes and JCL

 � Execution Libraries:

hi_lev_qual.V1R5M0.LOADLIB Executable modules
hi_lev_qual.V1R5M0.REXX Command procedures (REXX

execs)
hi_lev_qual.V1R5M0.PANELS ISPF panels
hi_lev_qual.V1R5M0.SKELS ISPF JCL skeletons
hi_lev_qual.V1R5M0.MSGS ISPF messages
hi_lev_qual.V1R5M0.TABLES ISPF tables

� Defaults Data Sets:

hi_lev_qual.V1R5M0.MASTER.DEFAULTS Site defaults
hi_lev_qual.V1R5M0.FORMS Control file templates

� General Information Guide:

hi_lev_qual.V1R5M0.ATCGI.LIST3820 ATC General Information Guide
hi_lev_qual.V1R5M0.ATCGI.PSBIN ATC General Information Guide

(for a PostScript** printer)
hi_lev_qual.V1R5M0.ATCGI.BOOK ATC General Information Guide

(for online viewing)
hi_lev_qual.V1R5M0.ATCGI.PDFBIN ATC General Information Guide

(for online viewing with Adobe**
Acrobat** Reader)

 Copyright IBM Corp. 1997, 1999 13

 � User's Guide:

hi_lev_qual.V1R5M0.ATCUG.LIST3820 ATC User's Guide
hi_lev_qual.V1R5M0.ATCUG.PSBIN ATC User's Guide (for a

PostScript** printer)
hi_lev_qual.V1R5M0.ATCUG.BOOK ATC User's Guide (for online

viewing)
hi_lev_qual.V1R5M0.ATCUG.PDFBIN ATC User's Guide (for online

viewing with Adobe** Acrobat**
Reader)

 � Bookshelf:

hi_lev_qual.V1R5M0.BKSHELF ATC bookshelf (for online viewing)
hi_lev_qual.V1R5M0.BKINDEX ATC bookshelf index (for online

viewing)

� CA/DA/UTA Sample Libraries:

hi_lev_qual.V1R5M0.SAMPLE.COBOL Sample COBOL test cases
hi_lev_qual.V1R5M0.SAMPLE.COBOLST Sample COBOL listings
hi_lev_qual.V1R5M0.SAMPLE.COSVSLST Sample OS/VS COBOL listings
hi_lev_qual.V1R5M0.SAMPLE.PLI Sample PL/I test cases
hi_lev_qual.V1R5M0.SAMPLE.PLILST Sample PL/I listings
hi_lev_qual.V1R5M0.SAMPLE.ASM Sample ASM test cases
hi_lev_qual.V1R5M0.SAMPLE.ASMLLST Sample High Level Assembler

listings
hi_lev_qual.V1R5M0.SAMPLE.ASMHLST Sample Assembler H listings
hi_lev_qual.V1R5M0.SAMPLE.JCL Sample JCL
hi_lev_qual.V1R5M0.SAMPLE.OBJ Sample object code
hi_lev_qual.V1R5M0.SAMPLE.ZAPOBJ Modified object code
hi_lev_qual.V1R5M0.SAMPLE.RUNLIB Sample executable programs

� DA Sample Master Data Set:

hi_lev_qual.V1R5M0.SAMPLE.COB11.MASTER

� UTA Sample File Warp Input Data Set:

hi_lev_qual.V1R5M0.SAMPLE.FWARPIN

� CA/DA/UTA Sample Control Data Sets:

hi_lev_qual.V1R5M0.SAMPLE.CACTL CA/DA/UTA control statements
hi_lev_qual.V1R5M0.SAMPLE.TARGCTL CA target control statements
hi_lev_qual.V1R5M0.SAMPLE.CBCTL Combine control statements
hi_lev_qual.V1R5M0.SAMPLE.FWCTL UTA file warp control statements

� CA/DA/UTA Sample Output:

hi_lev_qual.V1R5M0.SAMPLE.BRKOUT
hi_lev_qual.V1R5M0.SAMPLE.BRKTAB
hi_lev_qual.V1R5M0.SAMPLE.DBGTAB
hi_lev_qual.V1R5M0.SAMPLE.REPORT
hi_lev_qual.V1R5M0.SAMPLE.SUMMARY
hi_lev_qual.V1R5M0.SAMPLE.TARGREP
hi_lev_qual.V1R5M0.SAMPLE.VARCTL
hi_lev_qual.V1R5M0.SAMPLE.VARDATA
hi_lev_qual.V1R5M0.SAMPLE.VARID
hi_lev_qual.V1R5M0.SAMPLE.VARTAB
hi_lev_qual.V1R5M0.SAMPLE.COB11M.DISTILL

14 Application Testing Collection 1.5.0 User's Guide

hi_lev_qual.V1R5M0.SAMPLE.COB112.DISTILL
hi_lev_qual.V1R5M0.SAMPLE.COB11O.DISTILL
hi_lev_qual.V1R5M0.SAMPLE.PLI11M.DISTILL
hi_lev_qual.V1R5M0.SAMPLE.PLI112.DISTILL
hi_lev_qual.V1R5M0.SAMPLE.PLI111.DISTILL
hi_lev_qual.V1R5M0.SAMPLE.FWARPOUT

� SAA Sample Data Sets:

hi_lev_qual.V1R5M0.SAMPLE.SAA.NEW.COPY
hi_lev_qual.V1R5M0.SAMPLE.SAA.OLD.COPY
hi_lev_qual.V1R5M0.SAMPLE.SAA.COPY.B.NNN.CMP
hi_lev_qual.V1R5M0.SAMPLE.SAA.COPY.B.NNY.CMP
hi_lev_qual.V1R5M0.SAMPLE.SAA.COPY.B.NYY.CMP
hi_lev_qual.V1R5M0.SAMPLE.SAA.COPY.B.YYY.CMP
hi_lev_qual.V1R5M0.SAMPLE.SAA.COPY.NNN.CMP
hi_lev_qual.V1R5M0.SAMPLE.SAA.COPY.NNY.CMP
hi_lev_qual.V1R5M0.SAMPLE.SAA.COPY.NYY.CMP
hi_lev_qual.V1R5M0.SAMPLE.SAA.COPY.YYY.CMP
hi_lev_qual.V1R5M0.SAMPLE.SAA.NEW.COBOL
hi_lev_qual.V1R5M0.SAMPLE.SAA.OLD.COBOL
hi_lev_qual.V1R5M0.SAMPLE.SAA.SEEDLIST
hi_lev_qual.V1R5M0.SAMPLE.SAA.COBOLM.CMP
hi_lev_qual.V1R5M0.SAMPLE.SAA.COBOLM.REP
hi_lev_qual.V1R5M0.SAMPLE.SAA.COBOLM.TARGCTL
hi_lev_qual.V1R5M0.SAMPLE.SAA.NEW.COBLST
hi_lev_qual.V1R5M0.SAMPLE.SAA.OLD.COBLST
hi_lev_qual.V1R5M0.SAMPLE.SAA.COBLST.CMP

Modifying the FORMS, REXX, and BKSHELF Data Sets
Once the data sets are installed on your system, you must modify the following
data sets to specify your data set names.

� Edit the CBCTL, EXMCTLA, EXMCTLB, and EXMCTLP members of the
FORMS data set. Change all entries that start with ATC to the high-level qual-
ifier used for installation at your site, which is referred to as hi_lev_qual in the
rest of this manual.

� Edit the ATSTART member of the REXX data set, following the directions in
the member's prolog for site customization.

� Edit the BKSHELF data set. Change all entries that start with ATC to
hi_lev_qual. If you want this bookshelf to be listed when BookManager READ
is started on your system, refer to the “List of Bookshelves Available to All
Users” topic in BookManager READ/MVS Installation, Planning, and
Customization, SC38-2035.

 System Installation 15

Setting up the Authorized Data Sets
The following authorized data set or sets are needed for ATC:

1. Monitor interface and variable monitor

a. Copy the following modules from the LOADLIB into an authorized data set
that your users are permitted to access via STEPLIB/PGM= in a batch job
and via TSO CALL in a REXX EXEC:

� CMDUSVC (monitor interface)
� VARMON3 (variable monitor)

b. Add the CMDUSVC program to the AUTHPGM entry in the
SYS1.PARMLIB member (IKJTSOxx) so that it can be called as an author-
ized TSO program; otherwise, an 047 abend will occur. Have your systems
programmer tell TSO to use this new authority (dynamically, by issuing the
PARMLIB UPDATE(xx) command from TSO, or by doing an IPL). You
must be able to invoke this program using the TSO CALL command.

You may need to contact your site information systems personnel to com-
plete this change.

2. Monitor installer/enabler and monitor SVCs

The MONINSTS and MONSVC load modules must be placed in an authorized
library from which only a system programmer (or whoever is allowed to install
SVCs) can execute from. This can be done in either of the following ways:

� Use RACF to control who can execute these programs.

a. Move the following modules from the LOADLIB into the same author-
ized data set that you used for CMSUSVC and VARMON3.

– MONINSTS (monitor installer/enabler)
– MONSVC (monitor SVCs)

b. Set up RACF PROGRAM profiles to restrict who can execute these
programs. Here is an example:

RDEFINE PROGRAM(MONINSTS) NOTIFY(notify) UACC(NONE) +

DATA('RACF profile for ATC monitor') +

 ADDMEM('authlib'/'volser'/PADCHK) OWNER(owner))

RDEFINE PROGRAM(MONSVC) NOTIFY(notify) UACC(NONE) +

DATA('RACF profile for ATC monitor') +

 ADDMEM('authlib'/'volser'/PADCHK) OWNER(owner)

SETROPTS WHEN(PROGRAM) REFRESH

PERMIT MONINSTS CLASS(PROGRAM) ID(id) ACCESS(READ)

PERMIT MONSVC CLASS(PROGRAM) ID(id) ACCESS(READ)

SETROPTS WHEN(PROGRAM) REFRESH

where:

notify TSO user Id of the person who should be notified of a
RACF access failure

authlib Data set name of authorized library containing
MONINSTS and MONSVC

16 Application Testing Collection 1.5.0 User's Guide

volser Volume serial of authlib data set (or ****** to specify
the current SYSRES volume)

owner TSO user ID or RACF group name that will own this
profile

id TSO user ID or RACF group name of the person or
persons who should have the ability to install the SVCs

c. Allow the MONINSTS-started task (described in “Installing and Enabling
the Monitor SVCs” on page 18) to execute these modules.

d. Ensure that your users do not have read/execute access to these
modules in an authorized library.

� Use RACF to control who has access to the authorized library that contains
these load modules.

a. Move the following modules from the LOADLIB into an authorized data
set that ONLY a systems programmer (or whoever is allowed to install
SVCs) has read/write access.

– MONINSTS (monitor installer/enabler)
– MONSVC (monitor SVCs)

b. Allow the MONINSTS-started task (described in “Installing and Enabling
the Monitor SVCs” on page 18) to execute programs out of this data
set.

c. Ensure that your users do not have read/execute access to these
modules in an authorized library.

You may need to contact your site information systems personnel to com-
plete these changes.

 System Installation 17

Installing and Enabling the Monitor SVCs
Before a user starts a monitor session, the monitor SVCs must be installed and
enabled. The MONINSTS module does this for you. It must be run to
install/enable the SVCs, reinstall/enable the SVCs, or at any IPL time after the
initial installation (to reinstall and re-enable the monitor SVCs).

To do the initial installation:

1. Acquire two free user SVC numbers from your systems programmer.

Note: SYS1.PARMLIB(IEASVCxx) does not need to be updated since these
user SVCs will be installed dynamically. However, you do need to ensure that
these SVC numbers are not being used on your system.

2. Edit hi_lev_qual.V1R5M0.SAMPLE.JCL(INSTATC) and change the following:

a. Change the STEPLIB data set name to the authorized data set that con-
tains the MONINSTS and MONSVC modules.

b. Change the JOB card to run on your system.

c. Change the PARM operands to contain the two SVC numbers you acquired
for ATC. Make sure you enter these numbers (in hexadecimal nota-
tion) correctly!

3. Submit this JCL on the system on which you intend to run the monitor (this JCL
must be run by a system programmer who has access to these modules). The
job should get a return code of 0 (RC=0). For a list of possible abends while
running MONINSTS, see “Installation Abends” on page 307.

4. To verify that the monitor has been installed/enabled properly, run the following
command from ISPF 6:

ex 'hi_lev_qual.V1R5Mð.REXX(CASESSN)' 'LEVEL'

You should then see an ISPF Browse panel that looks similar to this:

BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð

Command ===> Scroll ===>

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\

Monitor Release: V1R5Mð Date: 1998.346

MAST: ððF9B8E8 PSA: ððF87ððð CPU: ððF87ððð SEST: ððF9BCE8 UNID: ðððððð18

Verify that the monitor release is V1R5M0 and the date is 1998.346 or later.

18 Application Testing Collection 1.5.0 User's Guide

5. To reinstall and re-enable the monitor SVCs after a system IPL, make the fol-
lowing changes:

a. Add line 000600 in the following example to the
SYS1.PARMLIB(COMMNDxx) data set. (Usually it is COMMND00,
however your systems programmer should know if it has been renamed.)
The SYS1.PARMLIB(COMMNDxx) data set contains the names of pro-
grams to start at IPL time, and line 000600 installs and enables the ATC
monitor SVCs.

 ððð1ðð COM='MN JOBNAMES,T'

 ððð11ð COM='SET DIAG=ð1'

 ððð2ðð COM='K M,AMRF=N'

 ððð3ðð COM='K S,DEL=RD,SEG=2ð,CON=N,RNUM=2ð,RTME=1/2,MFORM=M,L=ð1'

 ððð4ðð COM='S JES2,PARM='WARM,NOREQ''

 ððð5ðð COM='S IRRDPTAB'

>ððð6ðð COM='S MONINSTS'

 ððð7ðð COM='S VTAM43P1,,,(LIST=15)'

 ððð8ðð COM='S EZAZSSI,P=SPIMVSP1'

 ððð9ðð COM='S STARTUP,M=STARTP1'

b. Add the following PROC to your SYS1.PROCLIB data set:

//MONINSTS PROC

//\

//\ This is a cataloged proc that can be placed in SYS1.PROCLIB and

//\ invoked at IPL time to install/enable the ATC monitor SVCs.

//\

//\ The following line must go in the COMMNDxx member of SYS1.PARMLIB

//\ that is used during IPL:

//\

//\ COM='S MONINSTS'

//\

//\ Change the PARM operands to contain the 2 ATC SVC numbers

//\ (in HEX).

//\

//ATCMTR EXEC PGM=MONINSTS,PARM=(FE,FF)

//\

//\ The following AUTHLIB must contain MONINSTS and MONSVC.

//\

//STEPLIB DD DSN=LSTTOOL.TA.APF.LOAD,DISP=SHR

//SYSOUT DD SYSOUT=\

//SYSPRINT DD SYSOUT=\

c. Make the same changes to this PROCLIB member as you made to
'hi_lev_qual.V1R5M0.SAMPLE.JCL(INSTATC)'.

6. Give the MONINSTS-started task RACF access to the MONINSTS and
MONSVC load modules.

 System Installation 19

| Ensuring Users Have Access to AMASPZAP
| User access to the SPZAP service aid program (AMASPZAP) is required if the user
| chooses to place breakpoints in load modules directly (rather than in object
| modules) via the TOLOADDSN CA/DA/UTA control card keyword. If your users
| need to do this, ensure that they can execute the AMASPZAP program.

Editing the Site Defaults Data Set
Complete the following steps to edit hi_lev_qual.V1R5M0.MASTER.DEFAULTS for
your installation:

1. Change all occurrences of ATC.V1R5M0 to hi_lev_qual.V1R5M0. For example,
if you want to use the high-level qualifier SMITH, change all occurrences of
ATC.V1R5M0 to SMITH.V1R5M0. In addition, change all occurrences of
ATC.EX to hi_lev_qual.EX. Figure 1 on page 22 shows the contents of the
site defaults data set for MVS as shipped.

2. In the execute step data entry for EXEJOBLB, change the name
LSTTOOL.TA.APF.LOAD to the name of the authorized library you used for the
CMDUSVC and VARMON3 programs identified in “Setting up the Authorized
Data Sets” on page 16.

3. Enter the ATC Monitor SVC numbers (in hexadecimal notation) in the
ATGSVC2B and ATGSVC4B entries.

4. For JCL generation, if your system requires it, change the *JOBLn lines. When
JCL is created, these will be the first three lines of the JCL (for each respective
job). You may also need to change all of the *JOBJL lines to specify any JES
control information required by your site. If your installation will primarily run
PL/I test cases (instead of COBOL), change the EXMCTLTY line to P.

5. The Language Environment for MVS & VM 1.5 (or later) runtime library is
required for some ATC batch jobs. If this library is not available through your
system's normal search path for load modules, you should enter its name in the
ATCJBLB2 line. (An example would be CEE.V1R5M0.SCEERUN.)

| 6. If your site does not use UNIT=SYSDA for batch data set allocations, then
| change all occurrences of UNIT=SYSDA to the proper specification for your
| site. You will need to make the same change in the ATGUTFW, ATSAABG,
| ATSAABG2, QCOMBINE, QEXECUTE, and QSETUP members of the SKELS
| data set.

7. If your site does not use UNIT=VIO for batch temporary data set allocations,
then edit the ATSAABG and ATSAABG2 members of the SKELS data set and
change all occurrences of UNIT=VIO to the proper specification for your site.

8. By setting the USEPRGNM variable setting to N, you can tell ATC not to gen-
erate or build any data set names automatically.

20 Application Testing Collection 1.5.0 User's Guide

9. If the USEPRGNM variable setting is Y, then you can tell ATC to generate or
build each data set as either a sequential or a partitioned data set.

10. To generate a data set as a:

� Sequential data set, set the DSORG variable after the data set variable to
SEQ.

� Partitioned data set, set the DSORG variable after the data set variable to
PDS.

ATC will use the following forms to generate data set names:

� For sequential data sets:

'proj_qual.program_name.file_type'

For example: 'YOUNG.TEST.COB01M.BRKTAB'
� For partitioned data sets:

'proj_qual.file_type(program_name)'

For example: 'YOUNG.TEST.BRKTAB(COB01M)'

 System Installation 21

/\\/

| /\ ATC DEFAULTS FILE V1R5Mð @DRC \/

/\ GENERAL DEFAULTS \/

/\ ISPF \/

/\ DEFAULTS DATA VARIABLE ANY COMMENTS \/

| ATC.V1R5Mð.REXX /\ EXCMDDSN DATASET CONTAINING ATC REXX EXECS @DRC \/

CAHLQ /\ PROJQUAL PROJECT LEVEL QUALIFER FOR MVS DATASET NAMES \/

CAMEMBER /\ PROGNAME PROGRAM NAME-FOR 2ND LEVEL DS QUALIFIER @D3C \/

Y /\ USEPRGNM USE PROGRAM NAME FOR FILE NAME? \/

I /\ SHOWMSGS DISPLAY MESSAGES? (N/E/W/R/I) \/

I /\ LOGMSGS LOG MESSAGES? (N/E/W/R/I) \/

Y /\ CAENABLE PROCESS FOR CA (Y/N) \/

N /\ DAENABLE PROCESS FOR DA (Y/N) \/

N /\ UTENABLE PROCESS FOR UTA (Y/N) \/

CAHLQ.JCL.CNTL /\ JCLLIB NAME OF DATASET TO PUT GENERATED JCL IN \/

JCL.CNTL /\ JCLLIBNM JCLLIB DESIRED TYPE QUALIFIER \/

PDS /\ JCLLIBDT JCLLIB DESIRED DSORG \/

LRECL(8ð) RECFM(F B) BLKSIZE(ð) /\ JCLLIBAð JCLLIB DESIRED ALLOCATION PARMS \/

TRACKS SPACE(1ð 1ð) /\ JCLLIBA1 JCLLIB DESIRED ALLOCATION PARMS \/

| ATC.V1R5Mð.LOADLIB /\ ATCJBLB NAME OF DATASET WITH ALL ATC LOAD MODULES@DRC \/

NONE /\ ATCJBLB2 2ND DATASET IN JOBLIB CONCATENATION \/

NONE /\ ATCJBLB3 3RD DATASET IN JOBLIB CONCATENATION \/

NONE /\ ATCJBLB4 4TH DATASET IN JOBLIB CONCATENATION \/

NONE /\ ATCJBLB5 5TH DATASET IN JOBLIB CONCATENATION \/

NONE /\ ATCJBLB6 6TH DATASET IN JOBLIB CONCATENATION \/

CAHLQ.CAMEMBER.CACTL /\ EXMCTLFI NAME OF CA CONTROL FILE DATASET @D3C \/

CACTL /\ EXMCTLNM EXMCTLFI DESIRED TYPE QUALIFIER \/

PDS /\ EXMCTLDT EXMCTLFI DESIRED DSORG \/

LRECL(255) RECFM(V B) BLKSIZE(ð) /\ EXMCTLAð EXMCTLFI DESIRED ALLOCATION PARMS \/

TRACKS SPACE(1ð 1ð) /\ EXMCTLA1 EXMCTLFI DESIRED ALLOCATION PARMS \/

SPACE=(TRK,(2,2)),UNIT=SYSDA, /\ EXMCTDD1 EXMCTLFI DESIRED DD PARMS @D4A \/

DCB=(RECFM=VB,LRECL=255,BLKSIZE=ð) /\ EXMCTDD2 EXMCTLFI DESIRED DD PARMS @D4A \/

B /\ EXMCTLTY TYPE OF CA CONTROL FILE (B/P/A) @DLB \/

/\\/

/\ SETUP STEP DEFAULTS \/

/\\/

USERID /\ STPJOBNM NAME ON JOB CARD FOR SETUP STEP \/

(12345678), /\ STPJOBL1 FIRST LINE OF JOB CARD FOR SETUP STEP \/

USERID,NOTIFY=USERID,USER=USERID, /\ STPJOBL2 SECOND LINE OF JOB CARD FOR SETUP STEP \/

MSGCLASS=H,CLASS=A /\ STPJOBL3 THIRD LINE OF JOB CARD FOR SETUP STEP \/

NONE /\ STPJOBL4 FORTH LINE OF JOB CARD FOR SETUP STEP \/

NONE /\ STPJOBJL JES CONTROL CARD FOR SETUP STEP \/

NONE /\ STPJOBJ2 JES CONTROL CARD FOR SETUP STEP \/

NONE /\ STPJOBJ3 JES CONTROL CARD FOR SETUP STEP \/

CAHLQ.CAMEMBER.BRKTAB /\ BRKTBFIL NAME OF BREAKPOINT TABLE DATASET @D3C \/

BRKTAB /\ BRKTBNM BREAKPOINT TABLE NAME \/

SEQ /\ BRKTBDT BREAKPOINT TABLE DSORG @D4A \/

LRECL(256) RECFM(F B) BLKSIZE(4ð96) /\ BRKTBAð BREAKPOINT TABLE ALLOCATION PARMS @D4A \/

TRACKS SPACE(2 2) /\ BRKTBA1 BREAKPOINT TABLE ALLOCATION PARMS @D4A \/

SPACE=(TRK,(2,2)),UNIT=SYSDA, /\ BRKTBDD1 BREAKPOINT TABLE DD PARMS @D4C \/

DCB=(DSORG=PS,RECFM=FB,LRECL=256,BLKSIZE=4ð96) /\ BRKTBDD2 BREAKPOINT TABLE DD PARMS @D4C \/

CAHLQ.CAMEMBER.DBGTAB /\ DBGTBFIL NAME OF DEBUG TABLE DATASET @D3C \/

DBGTAB /\ DBGTBNM DEBUG TABLE NAME \/

SEQ /\ DBGTBDT DEBUG TABLE DSORG @D4A \/

LRECL(128) RECFM(F B) BLKSIZE(4ð96) /\ DBGTBAð DEBUG TABLE ALLOCATION PARMS @D4A \/

TRACKS SPACE(2 2) /\ DBGTBA1 DEBUG TABLE ALLOCATION PARMS @D4A \/

SPACE=(TRK,(2,2)),UNIT=SYSDA, /\ DBGTBDD1 DEBUG TABLE DD PARMS @D4C \/

DCB=(DSORG=PS,RECFM=FB,LRECL=128,BLKSIZE=4ð96) /\ DBGTBDD2 DEBUG TABLE DD PARMS @D4C \/

CAHLQ.CAMEMBER.VARCTL /\ VARCTFIL NAME OF VARIABLE CONTROL DATASET @D3C \/

VARCTL /\ VARCTNM VARIABLE CONTROL NAME \/

SEQ /\ VARCTDT VARIABLE CONTROL DSORG @D4A \/

LRECL(64) RECFM(F B) BLKSIZE(ð) /\ VARCTAð VARIABLE CONTROL ALLOCATION PARMS @DEC \/

TRACKS SPACE(2 2) /\ VARCTA1 VARIABLE CONTROL ALLOCATION PARMS @D4A \/

SPACE=(TRK,(2,2)),UNIT=SYSDA, /\ VARCTDD1 VARIABLE CONTROL DD PARMS @D4C \/

DCB=(DSORG=PS,RECFM=FB,LRECL=64,BLKSIZE=ð) /\ VARCTDD2 VARIABLE CONTROL DD PARMS @DEC \/

FE /\ ATGSVC2B SVC NUMBER (HEX) FOR 2 BYTE BREAKPOINT @DEA \/

FF /\ ATGSVC4B SVC NUMBER (HEX) FOR 4 BYTE BREAKPOINT @DEA \/

N /\ ATGPRFMD ENABLE THE MONITOR PERFORMANCE MODE @DGC \/

NN /\ DEBGMODE USE DEBUG MODE (Y/N) AND FREQUENCY COUNT (Y/N)\/

Figure 1 (Part 1 of 3). Site Defaults Data Set

22 Application Testing Collection 1.5.0 User's Guide

/\\/

/\ EXECUTE STEP DATA \/

/\\/

LSTTOOL.TA.APF.LOAD /\ EXEJOBLB DATASET W/ CA MODULES FOR EXECUTE STEP \/

USERID /\ EXEJOBNM NAME ON JOB CARD FOR EXECUTE STEP \/

(12345678), /\ EXEJOBL1 FIRST LINE OF JOB CARD FOR EXECUTE STEP \/

USERID,NOTIFY=USERID,USER=USERID, /\ EXEJOBL2 SECOND LINE OF JOB CARD FOR EXECUTE STEP \/

MSGCLASS=H,CLASS=A,REGION=4M,MSGLEVEL=(1,1) /\ EXEJOBL3 THIRD LINE OF JOB CARD FOR EXECUTE STEP \/

NONE /\ EXEJOBL4 FORTH LINE OF JOB CARD FOR EXECUTE STEP \/

NONE /\ EXEJOBJL JES CONTROL CARD FOR EXECUTE STEP \/

NONE /\ EXEJOBJ2 JES CONTROL CARD FOR EXECUTE STEP \/

NONE /\ EXEJOBJ3 JES CONTROL CARD FOR EXECUTE STEP \/

2ð /\ MINWAIT MIN TIME TO WRITE BUFFERS (1/1ððSEC) @D7A \/

8ðð /\ MAXWAIT MAX TIME TO WRITE BUFFERS (1/1ððSES) @D7A \/

CAHLQ.CAMEMBER.BRKOUT /\ BRKOTFIL NAME OF BREAKOUT TABLE DATASET @D3C \/

CAHLQ.CAMEMBER.CMBOUT /\ COMBROUT NAME OF COMBINED BREAKOUT TABLE DATASET @D4C \/

BRKOUT /\ BRKOTNM BREAKOUT TABLE NAME \/

CMBOUT /\ COMBRNM COMBINED BREAKOUT TABLE NAME @D4A \/

SEQ /\ BRKOTDT BREAKOUT TABLE DSORG @D4A \/

SEQ /\ COMBRDT COMBINED BREAKOUT TABLE DSORG @D4A \/

LRECL(256) RECFM(F B) BLKSIZE(4ð96) /\ BRKOTAð BREAKOUT TABLE ALLOCATION PARMS @D4A \/

TRACKS SPACE(3 3) /\ BRKOTA1 BREAKOUT TABLE ALLOCATION PARMS @D4A \/

SPACE=(TRK,(3,3)),UNIT=SYSDA, /\ BRKOTDD1 BREAKOUT TABLE DD PARMS @D4C \/

DCB=(DSORG=PS,RECFM=FB,LRECL=256,BLKSIZE=4ð96) /\ BRKOTDD2 BREAKOUT TABLE DD PARMS @D4C \/

CAHLQ.CAMEMBER.VARTAB /\ VARTBFIL NAME OF VARIABLE TABLE DATASET @D3C \/

VARTAB /\ VARTBNM VARIABLE TABLE NAME \/

SEQ /\ VARTBDT VARIABLE TABLE DSORG @D4A \/

LRECL(128) RECFM(F B) BLKSIZE(4ð96) /\ VARTBAð VARIABLE TABLE ALLOCATION PARMS @D4A \/

TRACKS SPACE(3 3) /\ VARTBA1 VARIABLE TABLE ALLOCATION PARMS @D4A \/

SPACE=(TRK,(3,3)),UNIT=SYSDA, /\ VARTBDD1 VARIABLE TABLE DD PARMS @D4C \/

DCB=(DSORG=PS,RECFM=FB,LRECL=128,BLKSIZE=4ð96) /\ VARTBDD2 VARIABLE TABLE DD PARMS @D4C \/

/\\/

/\ REPORT STEP DATA \/

/\\/

USERID /\ REPJOBNM NAME ON JOB CARD FOR REPORT STEP \/

(12345678), /\ REPJOBL1 FIRST LINE OF JOB CARD FOR REPORT STEP \/

USERID,NOTIFY=USERID,USER=USERID, /\ REPJOBL2 SECOND LINE OF JOB CARD FOR REPORT STEP \/

MSGCLASS=H,CLASS=A /\ REPJOBL3 THIRD LINE OF JOB CARD FOR REPORT STEP \/

NONE /\ REPJOBL4 FORTH LINE OF JOB CARD FOR REPORT STEP \/

NONE /\ REPJOBJL JES CONTROL CARD FOR REPORT STEP \/

NONE /\ REPJOBJ2 JES CONTROL CARD FOR REPORT STEP \/

NONE /\ REPJOBJ3 JES CONTROL CARD FOR REPORT STEP \/

CAHLQ.CAMEMBER.CBCTL /\ CBCTLFIL NAME OF COMBINE INPUT CONTROL FILE DATASET@D3C\/

CBCTL /\ CBCTLNAM CBCTLNAM DESIRED TYPE QUALIFIER \/

PDS /\ CBCTLDT CBCTLNAM DESIRED DSORG \/

LRECL(255) RECFM(V B) BLKSIZE(ð) /\ CBCTLAð CBCTLNAM DESIRED ALLOCATION PARMS \/

TRACKS SPACE(1ð 1ð) /\ CBCTLA1 CBCTLNAM DESIRED ALLOCATION PARMS \/

CAHLQ.CAMEMBER.REPORT /\ REPRTFIL NAME OF REPORT FILE DATASET @D3C \/

CAHLQ.CAMEMBER.SUMMARY /\ SUMMFIL NAME OF SUMMARY FILE DATASET @D3C \/

REPORT /\ REPRTTYP REPORT FILE DATASET NAME \/

SUMMARY /\ SUMMTYP REPORT FILE DATASET NAME \/

SEQ /\ REPRTDT REPORT FILE DSORG @D4A \/

LRECL(133) RECFM(F B A) BLKSIZE(2793ð) /\ REPRTAð REPORT FILE ALLOCATION PARMS @D4A \/

TRACKS SPACE(1ð 1ð) /\ REPRTA1 REPORT FILE ALLOCATION PARMS @D4A \/

SPACE=(TRK,(1ð,1ð)),UNIT=SYSDA, /\ REPRTDD1 REPORT FILE DD PARMS @D4C \/

DCB=(DSORG=PS,RECFM=FBA,LRECL=133,BLKSIZE=2793ð) /\ REPRTDD2 REPORT FILE DD PARMS @D4C \/

I /\ SUMINEXT SUMMARY INTERNAL(I) OR EXTERNAL(E) \/

N /\ PLXINLIN SUMMARY INCLUDE PL/X INLINED CODE (I/N) @DPA \/

A /\ USEROPT REPORT ALL(A) OR UNEXECUTED(U) CODE \/

Y /\ PRNTREPT PRINT REPORT FILE DATASET? (Y/N) \/

/\\/

/\ UNIT TEST REPORTS DATA \/

/\\/

F /\ VARREPT FULL OR COMBINED VAR REPORT @D2A \/

CAHLQ.CAMEMBER.VARID /\ VARIDFIL NAME OF VARIABLE ID DATASET @D3C \/

VARID /\ VARIDNM VARIABLE ID NAME \/

SEQ /\ VARIDDT VARIABLE ID DSORG @D4A \/

LRECL(255) RECFM(V B) BLKSIZE(27998) /\ VARIDAð VARIABLE ID ALLOCATION PARMS @D4A \/

Figure 1 (Part 2 of 3). Site Defaults Data Set

 System Installation 23

TRACKS SPACE(2 2) /\ VARIDA1 VARIABLE ID ALLOCATION PARMS @D4A \/

SPACE=(TRK,(2,2)),UNIT=SYSDA, /\ VARIDDD1 VARIABLE ID DD PARMS @D4C \/

DCB=(DSORG=PS,RECFM=VB,LRECL=255,BLKSIZE=27998) /\ VARIDDD2 VARIABLE ID DD PARMS @D4C \/

CAHLQ.CAMEMBER.VARDATA /\ VARDAFIL NAME OF VARIABLE DATA DATASET @D3C \/

VARDATA /\ VARDANM VARIABLE DATA NAME \/

SEQ /\ VARDADT VARIABLE DATA DSORG @D4A \/

LRECL(255) RECFM(V B) BLKSIZE(27998) /\ VARDAAð VARIABLE DATA ALLOCATION PARMS @D4A \/

TRACKS SPACE(2 2) /\ VARDAA1 VARIABLE DATA ALLOCATION PARMS @D4A \/

SPACE=(TRK,(2,2)),UNIT=SYSDA, /\ VARDADD1 VARIABLE DATA DD PARMS @D4C \/

DCB=(DSORG=PS,RECFM=VB,LRECL=255,BLKSIZE=27998) /\ VARDADD2 VARIABLE DATA DD PARMS @D4C \/

CAHLQ.CAMEMBER.FWCTL /\ FWCTLFI DSNAME OF FILE WARP CONTROL FILE @DOA \/

FWCTL /\ FWCTLNM FILE WARP CONTROL DATASET TYPE NAME @DOA \/

PDS /\ FWCTLDT FILE WARP CONTROL FILE DSORG @DOA \/

/\\/

| /\ TARGETED SUMMARY DATA \/

| /\\/

| CAHLQ.CAMEMBER.TARGCTL /\ FOCCTLFI DSNAME OF TARGETED SUMMARY CTL FILE @D5C \/

| TARGCTL /\ FOCCTLTP TARGETED SUMMARY CTL FILE DATA SET TYPE @D5C \/

| PDS /\ FOCCTLDT TARGETED SUMMARY CONTROL FILE DSORG @D4A \/

| /\ 3@DSD \/

| CAHLQ.CAMEMBER.TARGREP /\ FOCREPFI DSNAME OF TARGETED SUMMARY REP ORT DATAST@D5C \/

| TARGREP /\ FOCREPTP TARGETED SUMMARY REPORT DATASE T TYPE @D5C \/

| SEQ /\ FOCREPDT TARGETED SUMMARY REPORT DATASE T DSORG @D4A \/

/\\/

/\ SOURCE AUDIT ASSISTANT DEFAULT VALUES \/

/\\/

USERID /\ SAAJBNM NAME ON JOB CARD FOR SAA STEP @DA1 \/

(12345678), /\ SAAJBL1 FIRST LINE OF JOB CARD FOR SAA STEP @DA1 \/

USERID,NOTIFY=USERID,USER=USERID, /\ SAAJBL2 SECOND LINE OF JOB CARD FOR SAA STEP @DA1 \/

MSGCLASS=H,CLASS=A /\ SAAJBL3 THIRD LINE OF JOB CARD FOR SAA STEP @DA1 \/

NONE /\ SAAJBL4 FORTH LINE OF JOB CARD FOR SAA STEP @DA1 \/

CAHLQ.SAA.NEW.COBOL(\) /\ SAANDSN NEW DSNAME \/

CAHLQ.SAA.OLD.COBOL(\) /\ SAAODSN OLD DSNAME \/

CAHLQ.SAA.CMP /\ SAACDSN CMP DSNAME \/

CAHLQ.SAA.LOG /\ SAALDSN LOG DSNAME \/

COBOL /\ SAALANG LANGUAGE (COBOL,PLI,C,C++,LCOB) \/

N /\ SAAFCOM FILTER COMMENTS \/

N /\ SAAFDCL FILTER DATA DEFINITIONS \/

N /\ SAAFLIN FILTER REFORMATTED LINES \/

1 /\ SAASTART BEGINNING COLUMN OF COMPARISON @D1A \/

176 /\ SAAEND ENDING COLUMN OF COMPARISON @D1A @D6C \/

N /\ SAAED JCL EDIT FLAG @DA1 \/

N /\ SAADBCS SCAN FOR DBCS (Y/N) @DLA \/

/\\/

/\ SAA POST-PROCESSOR DEFAULT VALUES \/

/\\/

CAHLQ.SAA.SEEDLIST /\ SAASEEDS SEED LISTDSNAME @DMA \/

CAHLQ.SAA.TARGCTL /\ SAAVARS TARGET CONTROL TEMPLATE DSN @DMA \/

CAHLQ.SAA.REPORT /\ SAAREP CHANGE VALIDATION REPORT DSN @DMA \/

Figure 1 (Part 3 of 3). Site Defaults Data Set

24 Application Testing Collection 1.5.0 User's Guide

Verifying the Installation
To ensure that the ATC package has been installed correctly and to give you some
familiarity with ATC if you are a new user, we recommend that you run the sample
test cases shipped with the package. Run the following test cases as appropriate,
depending on the version of the compiler you use:

Tool Test Cases
CA PLI01M, PLI012, PLI011, ASM01L, and ASM01H
CA and UTA COB01M, COB012, and COB01O
UTA COB02M, COB022, and COB02O
DA COB11M, COB112, COB11O, PLI11M, PLI112, and PLI111

For details on setting up your user ID to use ATC and then running the samples,
see “Basic User Setup” on page 27, “Allocating Data Sets and Testing Installation”
on page 33, “Coverage Assistant Samples” on page 45, “Distillation Assistant
Samples” on page 133, and “Unit Test Assistant Samples” on page 167. For SAA,
see “Source Audit Assistant Samples” on page 281.

 System Installation 25

26 Application Testing Collection 1.5.0 User's Guide

Basic User Setup

This chapter contains topics describing ATC customization procedures and setup
options. These topics will be of most interest to individuals who are new to ATC.

Modifying Your ATC Defaults
Typically, you do not have to perform any installation or customization procedures;
however, if you want to change ATC user defaults, the ATC panels let you change
all of the user defaults provided in the site defaults data set (listed on page 13).
Using the panels, you can modify your defaults in the following ways:

� Edit your defaults
� Reset your defaults to the system defaults
� Import defaults from a sequential data set
� Export defaults to a sequential data set

Note: If you are changing from one release of ATC to another, it is recommended
that you do a Defaults RESET (ATC option 0.2) and reenter any personal changes.

To start changing your ATC user defaults, complete the following steps:

1. Start ATC by selecting ISPF option 6 and entering:

EX 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

where:

hi_lev_qual is the MVS data set high-level qualifier under which ATC was
installed.

The first panel that you will see is the ATC Primary Option Menu, shown in
Figure 2.

à ð
 ------------------------ ATC Primary Option Menu V1R5Mð -----------------------

 Option ===>_

 ð Defaults Manipulate ATC defaults

 1 CA/DA/UTA Coverage, Distillation and Unit Test Assistant

 2 SAA Source Audit Assistant

 3 SINFO SInfo Assistant

 Enter X to Terminate

á ñ

Figure 2. ATC Primary Option Menu

2. To specify your ATC user default values, select option ð from the ATC Primary

Option Menu. This displays the Manipulate ATC Defaults panel shown in
Figure 3 on page 28.

 Copyright IBM Corp. 1997, 1999 27

à ð
-------------------------- Manipulate ATC Defaults --------------------------

 Option ===>_

 1 EDIT Edit defaults

 2 RESET Reset defaults to system defaults

 3 IMPORT Import defaults from a sequential dataset

 4 EXPORT Export defaults to a sequential dataset

 Enter END to Terminate

 Import | Export Dataset (Options 3 and 4 only):

Data Set Name

á ñ

Figure 3. Manipulate ATC Defaults Panel

You can change your ATC user defaults using the options and Data Set Name

field on this panel. The options and field are as follows:

EDIT Edit your user defaults.

RESET Reset the user defaults to the system default values.

IMPORT Import previously exported default values from the data
set specified in Data Set Name.

EXPORT Export the current default values to the data set specified
in Data Set Name.

Data Set Name Name of the data set that is the source or target of the
import or export operation, respectively.

The following topics describe editing and resetting your defaults to the system
defaults in more detail.

Editing Your User Defaults
To edit your user defaults:

1. Select option 1 from the Manipulate ATC Defaults panel. The scrollable panel
shown in Figure 4 on page 29 is displayed.

2. If you choose, you can change the Project Qualifier value to the high-level
qualifier you want ATC to use to construct names for user and project data
sets.

3. If you want ATC to generate or build any data set names automatically, make
sure Use Pgm Name For File Name is set to Yes. ATC uses the Project Qual-
ifier, the Program Name, and each data set's specified values for Type and
DSORG to build names of the following forms:

� For sequential data sets:

'proj_qual.program_name.file_type'

For example: 'YOUNG.TEST.COB01M.BRKTAB'

� For partitioned data sets:

'proj_qual.file_type(program_name)'

For example: 'YOUNG.TEST.BRKTAB(COB01M)'

28 Application Testing Collection 1.5.0 User's Guide

If No is specified for Use Pgm Name For File Name, ATC will not build or
change any data set names automatically.

à ð
-------------------------------- Edit Defaults -------------------------------

 Command ===>

Enter END (to Exit and Save changes) or CANCEL (to Exit without saving)

------------------------------- General Defaults -----------------------------

Project Qualifier. YOUNG.TEST

Use Pgm Name for File Name YES (Yes|No)

Program Name COBð1M

JCL Output Dsn 'YOUNG.TEST.JCL.CNTL'

Type JCL.CNTL

DSORG. PDS (SEQ|PDS)

Alloc Parms. LRECL(8ð) RECFM(F B) BLKSIZE(ð)

TRACKS SPACE(1ð 1ð)

| 1st JOBLIB Dsn 'ATC.V1R5Mð.LOADLIB'

2nd Alternate JOBLIB Dsn .

3rd Alternate JOBLIB Dsn .

4th Alternate JOBLIB Dsn .

5th Alternate JOBLIB Dsn .

6th Alternate JOBLIB Dsn .

| REXX Dsn 'ATC.V1R5Mð.REXX'

Display Messages I (S|E|W|R|I)

Log Messages I (S|E|W|R|I)

Enable CA. YES (Yes|No)

Enable DA. NO (Yes|No)

Enable UTA NO (Yes|No)

Control File Dsn 'YOUNG.TEST.CACTL(COBð1M)'

Type CACTL

DSORG. PDS (SEQ|PDS)

Alloc Parms. LRECL(255) RECFM(V B) BLKSIZE(ð)

TRACKS SPACE(1ð 1ð)

DD Parms SPACE=(TRK,(2,2)),UNIT=SYSDA,

 DCB=(RECFM=VB,LRECL=255,BLKSIZE=ð)

Type of Control File . . . COBOL (COBOL|PL/I|ASM)

-------------------------------- Setup Defaults ------------------------------

Jobcard Name YOUNG

Jobcard Operands (12345678),

 YOUNG,NOTIFY=YOUNG,USER=YOUNG,

 MSGCLASS=H,CLASS=A

JES Control Card

Breakpoint Table Dsn . . . 'YOUNG.TEST.COBð1M.BRKTAB'

Type BRKTAB

DSORG. SEQ (SEQ|PDS)

Alloc Parms. LRECL(256) RECFM(F B) BLKSIZE(4ð96)

TRACKS SPACE(2 2)

DD Parms SPACE=(TRK,(2,2)),UNIT=SYSDA,

 DCB=(DSORG=PS,RECFM=FB,LRECL=256,BLKSIZE=4ð96)

Debug Table Dsn. 'YOUNG.TEST.COBð1M.DBGTAB'

Type DBGTAB

DSORG. SEQ (SEQ|PDS)

Alloc Parms. LRECL(128) RECFM(F B) BLKSIZE(4ð96)

TRACKS SPACE(2 2)

DD Parms SPACE=(TRK,(2,2)),UNIT=SYSDA,

 DCB=(DSORG=PS,RECFM=FB,LRECL=128,BLKSIZE=4ð96)

Variable Cntl Dsn. 'YOUNG.TEST.COBð1M.VARCTL'

Type VARCTL

DSORG. SEQ (SEQ|PDS)

Alloc Parms. LRECL(64) RECFM(F B) BLKSIZE(ð)

TRACKS SPACE(2 2)

á ñ

Figure 4 (Part 1 of 3). ATC Defaults Panel

 Basic User Setup 29

à ð
DD Parms SPACE=(TRK,(2,2)),UNIT=SYSDA,

 DCB=(DSORG=PS,RECFM=FB,LRECL=64,BLKSIZE=ð)

SVC number for 2 byte BP . FE (in HEX)

SVC number for 4 byte BP . FF (in HEX)

Performance Mode NO (Yes|No)

Debug Mode NO (Yes|No)

Frequency Count Mode . . . NO (Yes|No)

------------------------------- Monitor Defaults -----------------------------

Loadlib Dsn. 'LSTTOOL.TA.APF.LOAD'

Jobcard Name YOUNG

Jobcard Operands (12345678),

 YOUNG,NOTIFY=YOUNG,USER=YOUNG,

 MSGCLASS=H,CLASS=A,REGION=4M,MSGLEVEL=(1,1)

JES Control Card

Min Wait time to Write Buf 2ð (1/1ðð secs)

Max Wait time to Write Buf 8ðð (1/1ðð secs)

Breakout Table Dsn 'YOUNG.TEST.COBð1M.BRKOUT'

Type BRKOUT

DSORG. SEQ (SEQ|PDS)

Alloc Parms. LRECL(256) RECFM(F B) BLKSIZE(4ð96)

TRACKS SPACE(3 3)

DD Parms SPACE=(TRK,(3,3)),UNIT=SYSDA,

 DCB=(DSORG=PS,RECFM=FB,LRECL=256,BLKSIZE=4ð96)

Variable Table Dsn 'YOUNG.TEST.COBð1M.VARTAB'

Type VARTAB

DSORG. SEQ (SEQ|PDS)

Alloc Parms. LRECL(128) RECFM(F B) BLKSIZE(4ð96)

TRACKS SPACE(3 3)

DD Parms SPACE=(TRK,(3,3)),UNIT=SYSDA,

 DCB=(DSORG=PS,RECFM=FB,LRECL=128,BLKSIZE=4ð96)

--------------------------- Coverage Report Defaults -------------------------

Combined Cntl Dsn. 'YOUNG.TEST.CBCTL(COBð1M)'

Type CBCTL

DSORG. PDS (SEQ|PDS)

Alloc Parms. LRECL(255) RECFM(V B) BLKSIZE(ð)

TRACKS SPACE(1ð 1ð)

Combined Breakout Dsn. . . 'YOUNG.TEST.COBð1M.CMBOUT'

Type CMBOUT

DSORG. SEQ (SEQ|PDS)

Jobcard Name YOUNG

Jobcard Operands (12345678),

 YOUNG,NOTIFY=YOUNG,USER=YOUNG,

 MSGCLASS=H,CLASS=A

JES Control Card

Report File Dsn. 'YOUNG.TEST.COBð1M.REPORT'

Summary File Dsn 'YOUNG.TEST.COBð1M.SUMMARY'

Report File Type REPORT

Summary File Type. . . . SUMMARY

DSORG. SEQ (SEQ|PDS)

á ñ

Figure 4 (Part 2 of 3). ATC Defaults Panel

30 Application Testing Collection 1.5.0 User's Guide

à ð
Alloc Parms. LRECL(133) RECFM(F B A) BLKSIZE(2793ð)

TRACKS SPACE(1ð 1ð)

DD Parms SPACE=(TRK,(1ð,1ð)),UNIT=SYSDA,

 DCB=(DSORG=PS,RECFM=FBA,LRECL=133,BLKSIZE=2793ð)

Summary Type INTERNAL (Internal|External)

Summary PL/X Inline. . . . N (I|N)

Report User Options. . . . A (A|U)

Print Report File Dataset. YES (Yes|No)

-------------------------- Unit Test Report Defaults -------------------------

Variable Report Type . . . FULL (Full|Combine)

Variable ID Dsn. 'YOUNG.TEST.COBð1M.VARID'

Type VARID

DSORG. SEQ (SEQ|PDS)

Alloc Parms. LRECL(255) RECFM(V B) BLKSIZE(27998)

TRACKS SPACE(2 2)

DD Parms SPACE=(TRK,(2,2)),UNIT=SYSDA,

 DCB=(DSORG=PS,RECFM=VB,LRECL=255,BLKSIZE=27998)

Variable Data Dsn. 'YOUNG.TEST.COBð1M.VARDATA'

Type VARDATA

DSORG. SEQ (SEQ|PDS)

Alloc Parms. LRECL(255) RECFM(V B) BLKSIZE(27998)

TRACKS SPACE(2 2)

DD Parms SPACE=(TRK,(2,2)),UNIT=SYSDA,

 DCB=(DSORG=PS,RECFM=VB,LRECL=255,BLKSIZE=27998)

File Warp Control Dsn. . . 'YOUNG.TEST.FWCTL(COBð1M)'

Type FWCTL

DSORG. PDS (SEQ|PDS)

| -------------------------- Targeted Summary Defaults -------------------------

| Targeted Summary Ctl Dsn 'YOUNG.TEST.TARGCTL(COBð1M)'

Type TARGCTL

DSORG. PDS (SEQ|PDS)

Alloc Parms.

| Targeted Sum. Report Dsn . 'YOUNG.TEST.COBð1M.TARGREP'

Type TARGREP

DSORG. SEQ (SEQ|PDS)

Alloc Parms.

----------------------- Source Audit Assistant Defaults ----------------------

Jobcard Name YOUNG

Jobcard Operands (12345678),

 YOUNG,NOTIFY=YOUNG,USER=YOUNG,

 MSGCLASS=H,CLASS=A

Unmodified Source Dsn. . . 'YOUNG.TEST.SAA.OLD.COBOL(\)'

Modified Source Dsn. . . . 'YOUNG.TEST.SAA.NEW.COBOL(\)'

Output Compare Dsn 'YOUNG.TEST.SAA.CMP'

Output Log Dsn 'YOUNG.TEST.SAA.LOG'

Programming Language . . . COBOL (ASM|LASM|C|C++|COBOL|LCOB|PL/I|LPLI)

Filter Comments. N (Y|N)

Filter Data Definitions. . N (Y|N)

Filter Reformatted Lines . N (Y|N)

Start Column 1 (1-176|blank)

End Column 176 (1-176|blank)

Edit JCL N (Y|N)

Enable DBCS. N (Y|N)

------------------------- SAA Post-Processor Defaults ------------------------

Seed List Dsn. 'YOUNG.TEST.SAA.SEEDLIST'

Target Control Dsn 'YOUNG.TEST.SAA.TARGCTL'

Change Validation Rpt Dsn. 'YOUNG.TEST.SAA.REPORT'

á ñ

Figure 4 (Part 3 of 3). ATC Defaults Panel

 Basic User Setup 31

Resetting Your User Defaults to the System Defaults
To reset your user defaults to the site defaults:

1. Select option 2 from the Manipulate ATC Defaults panel. This displays the
panel shown in Figure 5.

à ð
---------------------- Reset Defaults to System Defaults ----------------------

Command ===>

Project Qualifier. YOUNG.TEST

Program Name COBð1M

Enter ENTER to Reset Defaults

Enter END to Cancel and Terminate

á ñ

Figure 5. Reset Defaults to System Defaults Panel

The panel's fields are as follows:

Project Qualifier Specifies the qualifier to be used to construct file
names for user and project files.

Program Name Specifies the file_type qualifier to be used when file
names for user and project files. Use Program Name

for File Name is set to Yes.

2. If you want to reset all of your user defaults to the system defaults using the
project high-level qualifier and the program name specified in the panel, press
Enter. If you do not want to reset your defaults, press the End key (PF3) to
return to the previous panel.

32 Application Testing Collection 1.5.0 User's Guide

Allocating Data Sets and Testing Installation
ATC provides samples for CA, DA, and UTA for each of the supported languages.
This section describes how to set up your proj_qual data sets before running the
samples. For SAA samples, see “Source Audit Assistant Samples” on page 281.

1. Allocate the following data sets:

a. proj_qual.JCL.CNTL with DSORG=PO, RECFM=FB, and LRECL=80.

b. proj_qual.ZAPOBJ with DSORG=PO, RECFM=FB, LRECL=80,
BLKSIZE=3200.

c. proj_qual.RUNLIB with DSORG=PO, RECFM=U, BLKSIZE=23200.

2. Test the installation for each supported compiler:

a. Test the CA and UTA installation for the COBOL for MVS & VM compiler3

by copying the following from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL
data set you allocated in step 1:

COMPCOBM (Compiles test cases.)
LCOB01M (Links COB01M test case.)
GCOB01M (Executes COB01M.)

For information on running this sample, see “Coverage Assistant Samples”
on page 45 and “Unit Test Assistant Samples” on page 167.

b. Test the CA and UTA installation for the VS COBOL II compiler by copying
the following from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL data set
you allocated in 1:

COMPCOB2 (Compiles test cases.)
LCOB012 (Links COB012 test case.)
GCOB012 (Executes COB012.)

For information on running this sample, see “Coverage Assistant Samples”
on page 45 and “Unit Test Assistant Samples” on page 167.

c. Test the CA and UTA installation for the OS/VS COBOL compiler by
copying the following from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL
data set you allocated in 1:

COMPCOBO (Compiles test cases.)
LCOB01O (Links COB01O test case.)
GCOB01O (Executes COB01O.)

For information on running this sample, see “Coverage Assistant Samples”
on page 45 and “Unit Test Assistant Samples” on page 167.

3 You can also test the CA and UTA installation for the COBOL for OS/390 & VM compiler by copying the same JCL members and
making minor edits to the compiler, link-edit, and runtime library names.

 Basic User Setup 33

d. Test the CA installation for the PL/I for MVS & VM 1.1.1 compiler by
copying the following from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL
data set you allocated in 1 on page 33:

COMPPLIM (Compiles test cases.)
LPLI01M (Links PLI01M test case.)
GPLI01M (Executes PLI01M.)

For information on running this sample, see “Coverage Assistant Samples”
on page 45.

e. Test the CA installation for the PL/I 2.3.0 compiler by copying the following
from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL data set you allocated
in 1 on page 33:

COMPPLI2 (Compiles test cases.)
LPLI012 (Links PLI012 test case.)
GPLI012 (Executes PLI012.)

For information on running this sample, see “Coverage Assistant Samples”
on page 45.

f. Test the CA installation for the PL/I 1.5.1 compiler by copying the following
from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL data set you allocated
in 1 on page 33:

COMPPLI1 (Compiles test cases.)
LPLI011 (Links PLI011 test case.)
GPLI011 (Executes PLI011.)

For information on running this sample, see “Coverage Assistant Samples”
on page 45.

g. Test the DA installation for the COBOL for MVS & VM compiler4 by copying
the following from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL data set
you allocated in 1 on page 33:

COMPCOBM (Compiles test cases.)
LCOB11M (Links COB11M test case.)
GCOB11M (Executes COB11M.)

For information on running this sample, see “Distillation Assistant Samples”
on page 133.

h. Test the DA installation for the VS COBOL II compiler by copying the fol-
lowing from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL data set you
allocated in 1 on page 33:

COMPCOB2 (Compiles test cases.)
LCOB112 (Links COB112 test case.)
GCOB112 (Executes COB112.)

For information on running this sample, see “Distillation Assistant Samples”
on page 133.

4 You can also test the DA installation for the COBOL for OS/390 & VM compiler by copying the same JCL members and making
minor edits to the compiler, link-edit, and runtime library names.

34 Application Testing Collection 1.5.0 User's Guide

i. Test the DA installation for the OS/VS COBOL compiler by copying the fol-
lowing from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL data set you
allocated in 1 on page 33:

COMPCOBO (Compiles test cases.)
LCOB11O (Links COB11O test case.)
GCOB11O (Executes COB11O.)

For information on running this sample, see “Distillation Assistant Samples”
on page 133.

j. Test the DA installation for the PL/I for MVS & VM 1.1.1 compiler by
copying the following from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL
data set you allocated in 1 on page 33:

COMPPLIM (Compiles test cases.)
LPLI11M (Links PLI11M test case.)
GPLI11M (Executes PLI11M.)

For information on running this sample, see “Distillation Assistant Samples”
on page 133.

k. Test the DA installation for the PL/I 2.3.0 compiler by copying the following
from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL data set you allocated
in 1 on page 33:

COMPPLI2 (Compiles test cases.)
LPLI112 (Links PLI112 test case.)
GPLI112 (Executes PLI112.)

For information on running this sample, see “Distillation Assistant Samples”
on page 133.

l. Test the DA installation for the PL/I 1.5.1 compiler by copying the following
from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL data set you allocated
in 1 on page 33:

COMPPLI1 (Compiles test cases.)
LPLI111 (Links PLI111 test case.)
GPLI111 (Executes PLI111.)

For information on running this sample, see “Distillation Assistant Samples”
on page 133.

m. Test the CA installation for Assembler H and the High Level Assembler by
copying the following from hi_lev_qual.V1R5M0.SAMPLE.JCL to the JCL
data set you allocated in 1 on page 33:

COMPASMH (Compiles Assembler H test cases.)
COMPASML (Compiles High Level Assembler test cases.)
LASM01H (Links ASM01H test case.)
LASM01L (Links ASM01L test case.)
GASM01H (Executes ASM01H.)
GASM01L (Executes ASM01L.)

For information on running this sample, see “Coverage Assistant Samples”
on page 45.

 Basic User Setup 35

The recommended approach for running the samples is to use the supplied com-
piler listings and object and edited copies of the link-edit and GO JCL as input and
to generate all outputs under proj_qual. In order to do this, edit the L* and G*
members of your proj_qual.JCL.CNTL data set and change the names of the
ZAPOBJ and RUNLIB data sets to match your proj_qual data set names. Change
the hi_lev_qual of the OBJ data sets to match the hi_lev_qual under which ATC
was installed. Change any compiler link-edit and runtime libraries to use your
system data set names for these libraries.

If you want to recompile the samples, allocate listing and OBJ data sets under
proj_qual (see the shipped sample data sets for appropriate allocation parameters),
and then edit the COMP* members of your proj_qual.JCL.CNTL data set to point
the listing and OBJ data sets to your proj_qual data sets.

Accessing the Language Environment Runtime Library
The Language Environment for MVS & VM 1.5 (or later) runtime library is required
for some ATC functions. For batch jobs, see “Editing the Site Defaults Data Set”

| on page 20. For the foreground functions (only the Targeted Summary function, at
| this time), this library must be available either through your system's normal search

path for load modules or through a STEPLIB, TSOLIB, or ISPLLIB mechanism for
your TSO session. This runtime library is typically named
CEE.V1R5M0.SCEERUN.

Running the Sample Test Cases
If you are a new user, you can become familiar with ATC by running the sample
test cases shipped with the package. Run the following test cases as appropriate,
depending on the version of the compiler you use:

Tool Test Cases
CA PLI01M, PLI012, PLI011, ASM01H, and ASM01L
CA and UTA COB01M, COB012, and COB01O
UTA COB02M, COB022, and COB02O
DA COB11M, COB112, COB11O, PLI11M, PLI112, and PLI111

For details on running the samples, see “Coverage Assistant Samples” on page 45,
“Distillation Assistant Samples” on page 133, and “Unit Test Assistant Samples” on
page 167. For SAA, see “Source Audit Assistant Samples” on page 281.

36 Application Testing Collection 1.5.0 User's Guide

Using Coverage Assistant

 Copyright IBM Corp. 1997, 1999 37

38 Application Testing Collection 1.5.0 User's Guide

 Introduction

This chapter contains the following topics:

� What Is Coverage Assistant?
� What Does CA Require?
� How Does CA Work?
� Where Can You Get Further Details?

What Is Coverage Assistant?
Coverage Assistant (CA) contains programs that allow you to execute application
programs in a test environment and retrieve information that helps you determine
which code statements have been executed. This process is called measuring test
case coverage.

CA supports applications generated by the following compilers and assemblers:

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions [MLE])
� IBM OS PL/I Optimizing Compiler 2.3.0
� IBM PL/I Optimizing Compiler 1.5.1
� IBM High Level Assembler Version 1 Release 2 and Release 3
� IBM Assembler H Version 2

For each COBOL paragraph, PL/I procedure, ON-unit, Begin-block, or assembler
listing, CA can provide you with:

� The percentage of statements executed and a list of unexecuted statements

� The percentage of conditional branches executed and a list of conditional
branches that have not executed in both directions

� Annotated listings showing the execution status of each statement

| In addition, targeted summary reports allow you to obtain similar information, which
is “targeted” on specific statements of interest. You can specify a statement by its
number, or you can specify all statements that reference specific COBOL or PL/I
variables.

 Copyright IBM Corp. 1997, 1999 39

CA has the following characteristics:

 � Low overhead

For a test case coverage run, CA typically adds very little to the execution time
of the program. CA inserts SVC instructions into the application object
modules as breakpoints and then is given control by MVS when these SVCs
are executed. Most breakpoints are removed after their first execution. By
using this technique, the increase in test program execution time is minimal.

� Panel-driven user interface

You can use an ISPF panel-driven interface to create JCL for executing CA
programs.

What Does CA Require?
CA has the following requirements:

� CA runs under MVS. Detailed MVS system resource requirements for CA are
described in Appendix B, “ATC Requirements and Resources” on page 383.
CA uses ISPF services to display dialogs and to produce the JCL to run the CA
steps.

� As part of its input, CA requires listings created by the application program
compilers and assemblers that it supports. These compilers and assemblers
offer options that allow you to include assembler statements in the listings. CA
uses these statements to determine where to insert breakpoints.

� CA also requires the application program object modules as input. CA creates
copies of these object modules with breakpoints inserted into them.

See “Execution” on page 42 for a description of how the CA authorized programs
intercept breakpoints. For CA program runtime library requirements, see
“Accessing the Language Environment Runtime Library” on page 36. No change
to the runtime environment of the programs you are testing is required.

How Does CA Work?
Running CA consists of the following steps. This list is an overview of the process.
Each activity is described in more detail in topics that follow in this chapter.

Step 1 Setup

a. Compile the source code that you want to analyze, using the
required compiler options.

b. Generate CA JCL using the CA ISPF dialog:

1) Edit the CA control file.
2) Create the setup JCL.
3) Create the monitor JCL.
4) Create the report or summary JCL.

40 Application Testing Collection 1.5.0 User's Guide

| c. Edit the link-edit JCL to include the modified object modules, which
| are created by the setup step. Note that you can also instrument
| load modules after your build process.

| d. Edit the GO JCL (or program invocation) to point to the instru-
| mented load module from step 1c.

Step 2 Execution

a. Run the setup JCL (created at step 1b2).
b. Run the link-edit JCL (created at step 1c).
c. Run the JCL to start a monitor session (created at step 1b3).

| d. Run your application using the load module(s) from step 2b.
e. Stop the monitor session (with the CASTOP command).

Step 3 Report

a. Run the report or summary JCL (created at step 1b4).
| b. Run as many targeted summary reports as you want.

If you change your program and want to rerun the test cases, you must repeat step
1a using the changed source code, and then complete steps 1b through 3a again.

Figure 6 shows a diagram of the entire process.

| Load Modules

| User Program or

| Listings Object Modules

| 6 6

| ┌───────────────────┐

| │ Step 2a: │ Breakpoints

| │ CA Setup ├────────────────────────┐

| │ │ Inserted │ Test

| │ │ Executable Cases

| └─────────┬─────────┘ Programs │

| BRKTAB file │ │

| ┌───────┘ 6 6 6

| │┌───────────────────┐ Control Returned ┌───────────────────┐

| ││ Step 2c: ├──────────────────5│ Step 2d: │

| ││ Execution │ │ User Program │

| ││ (Monitor) │ BP found │ │

| ││ │%──────────────────┤ │

| │└─────────┬─────────┘ └───────────────────┘

| │ BRKOUT file

| └───────┐ │

| 6 6

| ┌───────────────────┐

| │ Step 3: │

| │ CA Reports │

| │ │

| │ │

| └─────────┬─────────┘

| 6

| Reports: Summary of test case coverage

| Annotated listing

Figure 6. CA—Flow Diagram

 Introduction to CA 41

 Setup
CA Setup analyzes assembler statements included in the compiler or assembler

| output listings. From this analysis, CA determines where to insert breakpoints in
| disk-resident copies of the object or load modules you want to examine, and then
| inserts them.

Setup runs in MVS. To run it, you need:

1. Source/assembler listings of the object modules
| 2. The object modules or load modules you want to test.

The Setup step produces:

| 1. Modified test programs containing breakpoints
2. A file of breakpoint-related information (called a BRKTAB in this User's Guide)

required for the monitor program in the Execution step.

 Execution
| If you instrumented object modules, you must link the modified object modules into
| an executable load module.

Start a monitor session and run your test case programs. As breakpoints are
encountered, the monitor gains control, updates test case coverage statistics, and
then returns control to your program. After your test cases have completed, stop
the monitor session. The results are written to a file called BRKOUT in this User's
Guide.

The monitor inserts reserved supervisor call (SVC) instructions as breakpoints and
is given control by MVS when these SVC instructions are executed in a program.
Using SVCs as breakpoints is the architected way to receive control from MVS, and
requires no modification to MVS. This technique is called user SVCs.

Two SVC instructions are used, one for two-byte instructions, and one for four- or
six-byte instructions. During installation, the monitor is installed as the handler for
the two SVC instructions used as breakpoints.

42 Application Testing Collection 1.5.0 User's Guide

 Report
The CA report program uses the results from the monitor to produce summary
reports and annotated listings. You can print a summary report of overall test case
coverage and annotated listings for each module tested. These reports are
described at “Coverage Assistant Reports” on page 83.

To run reports you need:

1. The BRKTAB data set from the Setup step
2. The BRKOUT data set from the Execution step
3. Any listings you want to annotate

| In addition to the basic CA reports, you can also produce targeted summary
| reports, which allow you to target certain statements and/or COBOL or PL/I vari-
| ables. The format of a targeted summary report is identical to the format of a
| summary report, except that the content is restricted to statements that you specify.

(You can specify a statement number, or you can specify all statements that refer-
ence specific COBOL or PL/I variables.)

| To run targeted summary reports you need:

1. A control file that specifies the statements and/or COBOL or PL/I variables of
interest

2. The BRKTAB data set from the Setup step

3. The BRKOUT data set from the Execution step

Where Can You Get Further Details?
Refer to the following sections for additional information.

For information about... See...

Installing ATC on your system “System Installation” on page 13

Samples of CA test case coverage,
including sample reports

“Coverage Assistant Samples” on
page 45

Editing the CACTL file, which contains the
names of the listing data sets

“Editing the Coverage Assistant Control
File” on page 81

Setting up the table of breakpoints from
the listings

“CA, DA, and UTA Setup” on page 231

Starting the monitor session and running
test cases on your programs

“Monitor Execution” on page 245

Reports on the test run “Coverage Assistant Reports” on page 83

Using CA in a large project environment “Using Coverage Assistant in a Large
Project Environment” on page 115

Commands that control the monitor
program

“Monitor Commands” on page 255

System resources needed by CA Appendix B, “ATC Requirements and
Resources” on page 383

 Introduction to CA 43

44 Application Testing Collection 1.5.0 User's Guide

Coverage Assistant Samples

This section describes samples of CA test case coverage support using examples
provided with the ATC package.

CA provides statistics on each program area (PA) in your programs. A PA can be
any of the following:

� A COBOL paragraph
� A PL/I external or internal procedure, an ON-unit, or a Begin-block
� An assembler listing

CA does not have to examine all object modules in your program. You can select
which areas of the program you want to test. You can also test multiple programs
(load modules) simultaneously.

The samples include a summary of test case coverage and annotated listings for
several COBOL, PL/I, and assembler programs:

� COB01M (COBOL for IBM MVS & VM 1.2 sample)5

� COB012 (IBM VS COBOL II Release 4.0 sample)
� COB01O (IBM OS/VS COBOL Release 2.4 sample)
� PLI01M (IBM PL/I for MVS & VM 1.1.1 sample)
� PLI012 (IBM OS PL/I Optimizing Compiler 2.3.0 sample)
� PLI011 (IBM PL/I Optimizing Compiler 1.5.1 sample)
� ASM01L (IBM High Level Assembler Version 1 Release 2 sample)
� ASM01H (IBM Assembler H Version 2 sample)

A flow diagram of the steps required to run these samples is shown in Figure 7 on
page 46. The names in the steps are the member names of the JCL executed for
the step. (For example: SCOBnnx, where nnx is 01M, 012, or 01O; SPLInnx,
where nnx is 01M, 012, or 011; or SASMnnx, where nnx is 01L or 01H.)

The following CA samples use the ATC ISPF dialog to create the JCL to run the
CA steps. The ATC ISPF dialog is provided as an aid in creating the JCL. Once
the JCL is created for a test environment, it does not have to be recreated from the
dialog. In a typical user test environment, the creation of the JCL can be incorpo-
rated into the user's procedures. You do not have to use the ISPF dialog to use
CA. For information on integrating the creation and running of the CA JCL, see
“Using Coverage Assistant in a Large Project Environment” on page 115.

5 You can also test the CA and UTA installation for the COBOL for OS/390 & VM compiler by copying the JCL members and
making minor edits to the compiler, link-edit, and runtime library names.

 Copyright IBM Corp. 1997, 1999 45

| Program COBOL, PL/I, or Assembler

| listings object modules or load modules

| │ │

| 6 6

| ┌────────────────────┐ Object modules modified

| │ Step 1: ├─────────────────────┐

| │ SCOBð1M │ with breakpoints │Link into

| │ setup step │ │executable program

| │ │ Instrumented │

| └────────┬───────────┴─────────────┐ │

| BRKTAB: breakpoint file load modules│ │

| │ │ │ │

| ┌──────┘ 6 6 6

| │ ┌────────────────────┐ ┌────────────────────┐

| │ │ ├───────────5│ │

| │ │ │ │ Step 4: │

| │ │ │ │ GCOBð1M │

| │ │ │ │ run sample program │

| │ │ Step 3: │%───────────┤ │

| │ │ XCOBð1M │ └────────────────────┘

| │ │ (Monitor) │ ┌────────────────────┐

| │ │ │ │ Step 6: │

| │ │ │%───────────┤ CASTOP │

| │ │ │ │ stop monitor │

| │ └────────┬───────────┘ └────────────────────┘

| │ │

| │ BRKOUT: results of test run

| └────────┐ │

| 6 6

| ┌────────────────────┐

| │ Step 7: │

| │ RCOBð1M │

| │ print report on │

| │ test run │

| └────────┬───────────┘

| │

| 6

| Summary and annotated listings

| in proj_qual.COBð1M.REPORT

| Figure 7. Sample Run—Flow Diagram

Note: The JCL member names for the steps, such as SCOB01M, depend on the
test case you are running. For example, the setup JCL for the PLI01M test case
would be SPLI01M.

46 Application Testing Collection 1.5.0 User's Guide

COBOL Summary of Test Case Coverage
The content of the summary report is the same regardless of the compiler for which
it is created. For COBOL programs, breakpoints are inserted into the object
modules during Setup. When you are ready to test your program, you link the
object modules that have been modified with breakpoints.

Figure 8 on page 48 is a summary of a COBOL program called COB01M. To
produce a summary for COB01M, perform the following steps. Steps 2a through
6 are described in more detail in topics that follow in this chapter.

1. Compile the COBOL source you want to test. This produces listings that
include the assembler statements needed by CA. (This has already been done
for the COB01M example. The listings are in
hi_lev_qual.V1R5M0.SAMPLE.COBOLST for the COBOL for MVS & VM and
VS COBOL II compilers, and in hi_lev_qual.V1R5M0.SAMPLE.COSVSLST for
the OS/VS compiler.)

Make sure to use the compiler options specified in “Setup” on page 231.

2. Start the ATC ISPF dialog by entering the following from ISPF option 6:

 EX 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

The ATC Primary Option Menu is displayed (shown in Figure 2 on page 27).

a. Edit the CA control file.

Verify that the control file includes the listings of the object modules you
want to test.

b. Create the setup JCL.

| Create the JCL that enables the Setup job to produce a file containing
| breakpoint data and to instrument programs. You can instrument either
| object modules or load modules.

c. Create the monitor JCL.

Create the JCL to start a monitor session.

d. Create the summary report JCL.

Create the JCL to produce the test case coverage summary after COB01M
has executed.

3. End the ATC ISPF dialog by pressing the End key (PF3) on the ATC Primary

Option Menu.

| 4. If you instrumented object modules, create the JCL to link the modified object
| modules.

After the Setup step, and before starting the monitor session, you must link the
modified object modules into an executable program you can test. Edit the link
JCL and specify the library that will contain the modified object modules for the
OBJECT ddname and the library that will contain the modified load module for
the SYSLMOD ddname.

 CA Samples 47

5. Create the JCL to run the GO step.

Create the JCL to run your program. Specify the same modified load module
as in step 4 on page 47.

6. Execute the JCL.

Execute the created JCL files for COB01M in the correct order. (This order is
shown in “Execute the JCL” on page 53.)

Figure 8 shows a sample summary report. For details about the information
included in the report, see “Summary Coverage Report” on page 83.

| 1 \\\\\\\\\ CA SUMMARY: PROGRAM AREA DATA \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 11:47.41

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | | STATEMENTS: | BRANCHES: |

| | PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |

| --

| 1 COBð1M ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM) 6 6 1ðð.ð ð ð 1ðð.ð

| 2 PROGA 8 7 87.5 6 5 83.3

| 3 PROCA 1 ð ð.ð ð ð 1ðð.ð

| 4 PROGB 7 5 71.4 6 3 5ð.ð

| 5 PROCB 2 2 1ðð.ð ð ð 1ðð.ð

| 6 COBð1M PROGC ATC.V1R5Mð.SAMPLE.COBOLST(COBð1CM) 7 5 71.4 6 5 83.3

| 7 PROCC 3 2 66.7 2 1 5ð.ð

| 8 COBð1M PROGD ATC.V1R5Mð.SAMPLE.COBOLST(COBð1DM) 6 ð ð.ð 6 ð ð.ð

| 9 PROCD 1 ð ð.ð ð ð 1ðð.ð

| --

| Summary for all PAs: 41 27 65.9 26 14 53.8

| 1 \\\\\\\\\ CA SUMMARY: UNEXECUTED CODE \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 11:47.41

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | |

| | PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end

| --

| 2 COBð1M PROGA ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM) 67 67

| 3 PROCA 79 79

| 4 PROGB 118 119

| 6 COBð1M PROGC ATC.V1R5Mð.SAMPLE.COBOLST(COBð1CM) 39 4ð

| 7 PROCC 58 58

| 8 COBð1M PROGD ATC.V1R5Mð.SAMPLE.COBOLST(COBð1DM) 37 46

| 9 PROCD 51 51

| --

| 1 \\\\\\\\\ CA SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 11:47.41

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | |

| | PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt

| --

| 2 COBð1M PROGA ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM) 66

| 4 PROGB 113 118

| 6 COBð1M PROGC ATC.V1R5Mð.SAMPLE.COBOLST(COBð1CM) 37

| 7 PROCC 57

| 8 COBð1M PROGD ATC.V1R5Mð.SAMPLE.COBOLST(COBð1DM) 37 41 45

| --

Figure 8. Summary Reports for COB01M

48 Application Testing Collection 1.5.0 User's Guide

Edit the CA Control File
CA uses assembler statements from the compiler listings to determine where to
insert breakpoints. You supply the names of the listing files in the CA control file
(CACTL).

Make sure to use the compiler options specified in “Setup” on page 231.

The CACTL control file for the COBOL summary example is
hi_lev_qual.V1R5M0.SAMPLE.CACTL(COB01M). The file is shown in Figure 9 on

| page 50. This example shows how to instrument object modules. To instrument
| load modules, see “Instrumentation of Load Modules instead of Object Modules” on
| page 238.

To edit the CACTL for the COB01M summary example:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation, and Unit Test Assistant panel is displayed.

2. Select option 1.

The Work with the CA/DA/UTA Control File panel is displayed.

3. Specify the following:

Use Program Name for File Name YES

Program Name COBð1M

Listing Type COBOL

An ISPF edit session for the CA control file you requested is displayed.

The data in the control file consists of the following:

� The type of listing file (COBOL)
� Names of the listing files you want to test
� Names of the load modules that contain the code of each listing

| � Copy to/from information for making copies of the object modules or load
| modules into which the breakpoints are inserted

If the control file you requested did not previously exist, it is created with com-
ments in it to help you enter the appropriate information in the fields.

If you want to use the shipped sample CACTL member as a template for your
control file, delete the existing lines in the member and copy in
hi_lev_qual.V1R5M0.SAMPLE.CACTL(COB01M). Change ATC. to hi_lev_qual.
for all occurrences. Change the value of the ToObjDsn operand to
proj_qual.ZAPOBJ. If you have recompiled the samples into proj_qual data
sets, you will also have to edit the ListDsn and FromObjDsn keyword operands
to point to your proj_qual listing and object data set names.

The control file shown in Figure 9 on page 50 is the control file for COB01M.
It contains both CA and UTA control information. Only the DEFAULTS and
COBOL statements are processed by CA. (PL/I statements would also be
processed by CA, if any were present.)

4. Verify that the listing file names and the copy to/from object module names are
correct.

5. Press the End key (PF3) to terminate the edit session.

 CA Samples 49

For more detailed information, see “Editing the Coverage Assistant Control File” on
page 81.

\

\ Cobol Example

\

\ Statements required for coverage and unit test

\

 Defaults ListDsn=ATC.V1R5Mð.SAMPLE.COBOLST(\),

 LoadMod=COBð1M,

 FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

 ToObjDsn=ATC.V1R5Mð.SAMPLE.ZAPOBJ

COBð1AM: COBOL ListMember=COBð1AM

COBð1CM: COBOL ListMember=COBð1CM

COBð1DM: COBOL ListMember=COBð1DM

\

\ Statements required for unit test

\

COBð1AM_S: Scope COBOL=COBð1AM,ExtProgram-Id=COBð1AM

COBð1AM_S_B: Scope COBOL=COBð1AM,ExtProgram-Id=COBð1AM,

 NestedProgram-Id=COBð1BM

COBð1CM_S: Scope COBOL=COBð1CM,ExtProgram-Id=COBð1CM

TAPARM1: Variable Scope=COBð1AM_S,Name=(TAPARM1)

CITY: Variable Scope=COBð1AM_S,Name=(CITY In LOC-ID In TASTRUCT)

STATE: Variable Scope=COBð1AM_S,Name=(STATE In LOC-ID In TASTRUCT)

TBPARM2: Variable Scope=COBð1AM_S_B,Name=(TBPARM2)

TCPARM1: Variable Scope=COBð1CM_S,Name=(TCPARM1)

Coverage Variable=TAPARM1,Length=2,NAME // read TAPARM1

\ wherever it occurs (by NAME)

Coverage Variable=CITY,Length=3,NAME // read CITY of

\ TASTRUCT

Coverage Variable=STATE,Length=2,FULL // read STATE of

\ STRUCT whether directly referenced or

\ via structure (FULL)

 Coverage Variable=TBPARM2,Length=2,MaxSave=1,Stmts=(113)

\ in COBð1BM read TBPARM2 on line 113 only,

\ only once

Coverage Variable=TCPARM1,Length=2,MaxSave=1,NAME // in

\ COBð1CM read TCPARM1 only once

Figure 9. Control File for COB01M

Create Setup JCL
Before test cases can be executed on the COB01M test program, CA must insert
breakpoints into the test program. CA does this using the Setup JCL.

When you execute the Setup JCL, the CA Setup program analyzes the assembler
statements in the compiler listings and creates a table containing breakpoint data
(address, op code, and so on). User SVC instructions are inserted for the
instructions at the breakpoints in the instrumented object modules or load modules.

| If you instrumented object modules, you then link these modified object modules
| into a modified COB01M load module for CA to use.

50 Application Testing Collection 1.5.0 User's Guide

To create the Setup JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation, and Unit Test Assistant panel is displayed.

2. Select option 2.

The Create JCL for Setup panel is displayed. You create the JCL for the
setup of COB01M from this panel.

All of the default values on this panel are correct for the COB01M example.
The defaults will usually be correct for your test coverage run. The only field
that you may need to change is the Program Name field.

3. If necessary, change the program name to COBð1M.

4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name SCOB01M.

5. Press the End key (PF3) to exit the panel.

For more detailed information, see “CA, DA, and UTA Setup” on page 231.

Create JCL to Start a Monitor Session
JCL is required to start a CA monitor session.

To create the JCL to start a monitor session:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 3.

The Create JCL to Start the Monitor panel is displayed. You create the JCL
to start a CA monitor session for COB01M from this panel.

3. If necessary, change the program name to COBð1M.

4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name XCOB01M.

5. Press the End key (PF3) to exit the panel.

Use the monitor JCL to start a monitor session before you run your test case
program. Note that you can perform CA execution on a system other than the
one on which you have stored the listing.

For more detailed information, see “Monitor Execution” on page 245.

 CA Samples 51

Create JCL for a Summary Report
JCL is required to generate a summary report.

To create the summary report JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation, and Unit Test Assistant panel is displayed.
2. Select option 4.

The Coverage Reports panel is displayed.
3. Select option 1.

The Create JCL for Summary Report panel is displayed. You create the JCL
for generating the COB01M summary report from this panel.

4. If necessary, change Program Name to COBð1M.
5. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name TCOB01M.

6. Press the End key (PF3) to exit the panel.

For more detailed information, see “Summary Coverage Report” on page 83.

Create JCL to Link the Modified Object Modules
| If you instrumented object modules, you must link the modified object modules
| (modified by the Setup step) into an executable program for testing. You can use

the normal JCL that links your program, but be sure to specify the object module
library that contains the modified object modules. Sample JCL to link the COB01M
example is provided in hi_lev_qual.V1R5M0.SAMPLE.JCL(LCOB01M).

Create JCL to Run the GO Step
You can use the normal JCL that executes your program, but be sure to specify the
load module library that contains the link-edited modified object modules. Sample
JCL to execute the GO step for the COB01M example is provided in
hi_lev_qual.V1R5M0.SAMPLE.JCL(GCOB01M).

52 Application Testing Collection 1.5.0 User's Guide

Execute the JCL
When you have created all of the COB01M JCL, you can run the COB01M
summary example by executing the following functions in the order listed. To see a
flow diagram of these steps, go to Figure 7 on page 46.

 1. SCOB01M6

Performs the Setup step. All JCL steps should complete with condition code 0.

 2. LCOB01M7

| If you instrumented object modules, links the object modules that were modified
| with breakpoints in the Setup step into the COB01M load module.

 3. XCOB01M6

Starts the monitor. JCL completes with condition code 0.

 4. GCOB01M7

Runs sample program COB01M. COB01M runs to completion with condition
code 0.

 5. CASTATS8

Displays statistics with the CASTATS command. You should see a nonzero
EVNTS count in the TOTALS line. (This is an optional step for illustrative pur-
poses.)

 6. CASTOP8

Stops the monitor session. CA writes the statistics to disk.

 7. TCOB01M6

Creates the summary of COB01M. The summary is in data set
proj_qual.COB01M.SUMMARY.

6 JCL created from the panels and put into the JCL library.

7 JCL supplied with the installation materials in hi_lev_qual.V1R5M0.SAMPLE.JCL. (Sample JCL for all of the steps can be found in
this partitioned data set [PDS].)

8 Monitor commands issued from either the Control the CA/DA/UTA Monitor panel or the TSO command processor (ISPF option 6)
by entering:

 EX 'hi_lev_qual.V1R5Mð.REXX(cacmd)'

where cacmd is the command issued (such as, CASTATS, CASTOP, and so on).

 CA Samples 53

Annotated COBOL Listings
To produce an annotated COBOL listing of COB01M, perform the following steps.
Steps 2a through 6 are described in more detail in topics that follow in this
chapter.

1. Compile the COBOL source you want to test. This produces listings that
include the assembler statements needed by CA. (This has already been done
for the COB01M example. The listings are in
hi_lev_qual.V1R5M0.SAMPLE.COBOLST.)

Make sure to use the compiler options specified in “Setup” on page 231.

2. Start the ATC ISPF dialog by entering the following from ISPF option 6:

 EX 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

The ATC Primary Option Menu is displayed (shown in Figure 2 on page 27).

a. Edit the CA control file.

Verify that the control file includes the listings of the object modules you
want to test.

b. Create the setup JCL.

Create the JCL that enables you to produce a file that contains breakpoint
data and that modifies copies of your object modules by inserting break-
points.

c. Create the JCL to start a monitor session.
d. Create the JCL for an annotated listing.

Create the JCL to produce the annotated listing after COB01M has exe-
cuted.

3. End the ATC ISPF dialog by pressing the End key (PF3) on the ATC Primary

Option Menu.

4. Create the JCL to link the modified object modules.

After the Setup step, and before starting the monitor, you must link the modified
object modules into an executable program you can test. Edit the link JCL and
specify the library that will contain the modified object modules for the OBJECT
ddname and the library that will contain the modified load module for the
SYSLMOD ddname.

5. Create the JCL to run the GO step.

Create the JCL to run your program. Specify the same modified load module
as in step 4.

6. Execute the JCL.

Execute the created JCL files for COB01M in the correct order. (This order is
shown in “Execute the JCL” on page 58.)

54 Application Testing Collection 1.5.0 User's Guide

If you want more information on some or all of the modules that have been tested,
you can create an annotated listing of the COBOL listing. This listing contains
information about each breakpoint. To the right of each statement number, one of
the following characters is shown to indicate the results of the execution of that
statement:

& A conditional branch instruction has executed both ways.

> A conditional branch instruction has branched, but not fallen through.

V A conditional branch instruction has fallen through, but not branched.

: Non-branch instruction has executed.

¬ Instruction has not executed.

Figure 10 shows a sample annotated listing.

 ððððð1 IDENTIFICATION DIVISION.

 ððððð2 PROGRAM-ID. COBð1AM.

 ððððð3 \\

 ððððð4 \ \

ððððð5 \ LICENSED MATERIALS - PROPERTY OF IBM \

 ððððð6 \ \

 ððððð7 \ 5799-GBN \

 ððððð8 \ \

ððððð9 \ (C) COPYRIGHT IBM CORP. 1997, 1998 ALL RIGHTS RESERVED \

 ðððð1ð \ \

ðððð11 \ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR \

ðððð12 \ DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM \

 ðððð13 \ CORP. \

 ðððð14 \ \

 ðððð15 \ \

 ðððð16 \\

 ðððð17 \\

 ðððð18 \ \

ðððð19 \ COBOL FOR MVS & VM TEST. \

 ðððð2ð \ \

ðððð21 \ MEMBER COBð1AM HAS ENTRY POINT COBð1AM. \

ðððð22 \ CALLS COBð1BM, WHICH CALLS COBð1CM, WHICH CALLS COBð1DM. \

 ðððð23 \\

 ðððð24

 ðððð25 ENVIRONMENT DIVISION.

 ðððð26

 ðððð27 DATA DIVISION.

 ðððð28

 ðððð29 WORKING-STORAGE SECTION.

ðððð3ð ð1 TAPARM1 PIC 99 VALUE 5.

ðððð31 ð1 TAPARM2 PIC 99 VALUE 2.

ðððð32 ð1 COBð1BM PIC X(7) VALUE 'COBð1BM'.

ðððð33 ð1 P1PARM1 PIC 99 VALUE ð.

 ðððð34

 ðððð35 ð1 TASTRUCT.

 ðððð36 ð5 LOC-ID.

 ðððð37 1ð STATE PIC X(2).

 ðððð38 1ð CITY PIC X(3).

 ðððð39 ð5 OP-SYS PIC X(3).

 ðððð4ð

Figure 10 (Part 1 of 3). Annotated COBOL Listing

 CA Samples 55

 ðððð41 PROCEDURE DIVISION.

 ðððð42

ðððð43 \ THE FOLLOWING ALWAYS PERFORMED

 ðððð44

ðððð45 \ ACCESS BY TOP LEVEL QUALIFIER

ðððð46 : MOVE 'ILCHIMVS' TO TASTRUCT.

 ðððð47

ðððð48 \ ACCESS BY MID LEVEL QUALIFIERS

ðððð49 : MOVE 'ILSPR' TO LOC-ID.

ðððð5ð : MOVE 'AIX' TO OP-SYS.

 ðððð51

ðððð52 \ ACCESS BY LOW LEVEL QUALIFIERS

ðððð53 : MOVE 'KY' TO STATE.

ðððð54 : MOVE 'LEX' TO CITY.

ðððð55 : MOVE 'VM ' TO OP-SYS.

 ðððð56

 ðððð57 PROGA.

 ðððð58

ðððð59 \ THIS PERFORM EXECUTED

ðððð6ð & PERFORM WITH TEST BEFORE UNTIL TAPARM1 = ð

ðððð61 : 1 SUBTRACT 1 FROM TAPARM1

 ðððð62 : 1 CALL 'COBð1BM'

 ðððð63 END-PERFORM

 ðððð64

ðððð65 \ THIS IF ALWAYS FALSE

ðððð66 > IF TAPARM2 = ð

 ðððð67 ¬ 1 PERFORM PROCA

 ðððð68 END-IF

 ðððð69

ðððð7ð \ THIS PERFORM EXECUTED

ðððð71 & PERFORM WITH TEST BEFORE UNTIL TAPARM2 = ð

ðððð72 : 1 SUBTRACT 1 FROM TAPARM2

 ðððð73 END-PERFORM

 ðððð74 : STOP RUN

 ðððð75 .

 ðððð76

 ðððð77 PROCA.

ðððð78 \ PROCA NEVER CALLED

ðððð79 ¬ MOVE 1ð TO P1PARM1

 ðððð8ð .

 ðððð81

ðððð82 \ START OF COBð1BM NESTED IN COBð1AM

 ðððð83

 ðððð84 1 IDENTIFICATION DIVISION.

 ðððð85 1 PROGRAM-ID. COBð1BM.

 ðððð86 1 \\

 ðððð87 1 \ \

 ðððð88 1 \ COBOL FOR MVS & VM TEST. \

 ðððð89 1 \ \

 ðððð9ð 1 \ COBð1BM, CALLED BY COBð1AM. \

 ðððð91 1 \\

 ðððð92 1

 ðððð93 1 ENVIRONMENT DIVISION.

 ðððð94 1

 ðððð95 1 DATA DIVISION.

 ðððð96 1

 ðððð97 1 WORKING-STORAGE SECTION.

 ðððð98 1 ð1 TBPARM1 PIC 99 VALUE 5.

 ðððð99 1 ð1 TBPARM2 PIC 99 VALUE ð.

 ððð1ðð 1 ð1 COBð1CM PIC X(7) VALUE 'COBð1CM'.

 ððð1ð1 1 ð1 P1PARM1 PIC 99 VALUE ð.

 ððð1ð2 1

Figure 10 (Part 2 of 3). Annotated COBOL Listing

56 Application Testing Collection 1.5.0 User's Guide

 ððð1ð3 1 PROCEDURE DIVISION.

 ððð1ð4 1

 ððð1ð5 1 PROGB.

 ððð1ð6 1 \ THIS PERFORM EXECUTED

ððð1ð7 & 1 PERFORM WITH TEST BEFORE UNTIL TBPARM1 = ð

ððð1ð8 : 1 1 SUBTRACT 1 FROM TBPARM1

ððð1ð9 : 1 1 CALL 'COBð1CM'

 ððð11ð 1 END-PERFORM

 ððð111 1

 ððð112 1 \ THIS IF EXECUTED

ððð113 V 1 IF TBPARM2 = ð

ððð114 : 1 1 PERFORM PROCB

 ððð115 1 END-IF

 ððð116 1

 ððð117 1 \ THIS PERFORM NOT EXECUTED

ððð118 ¬ 1 PERFORM WITH TEST BEFORE UNTIL TBPARM2 = ð

ððð119 ¬ 1 1 SUBTRACT 1 FROM TBPARM2

 ððð12ð 1 END-PERFORM

 ððð121 1 .

 ððð122 1

 ððð123 1 PROCB.

 ððð124 1 \ PROCB EXECUTED

ððð125 : 1 MOVE 1ð TO P1PARM1

 ððð126 1 .

 ððð127 1

ððð128 : 1 EXIT PROGRAM.

 ððð129 1

 ððð13ð 1 END PROGRAM COBð1BM.

ððð131 END PROGRAM COBð1AM.

Figure 10 (Part 3 of 3). Annotated COBOL Listing

Edit the CA Control File
This step is identical to the corresponding procedure for summary reports at “Edit
the CA Control File” on page 49.

Create Setup JCL
This step is identical to the corresponding procedure for summary reports at
“Create Setup JCL” on page 50.

Create JCL To Start a Monitor Session
This step is identical to the corresponding procedure for summary reports at
“Create JCL to Start a Monitor Session” on page 51.

Create JCL for an Annotated Listing
To create the annotated listing JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation, and Unit Test Assistant panel is displayed.

2. Select option 4.

The Coverage Reports panel is displayed.

3. Select option 2.

The Create JCL for Summary and Annotation Report panel is displayed. You
create the JCL for printing the annotated listing (along with a summary) for
COB01M from this panel.

 CA Samples 57

4. If necessary, change the program name to COBð1M.

5. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name RCOB01M.

6. Press the End key (PF3) to exit the panel.

For more detailed information, see “Annotated Listing Coverage Report” on
page 95.

Create JCL to Link the Modified Object Modules
This step is identical to the corresponding procedure for summary reports at
“Create JCL to Link the Modified Object Modules” on page 52.

Create JCL to Run the GO Step
This step is identical to the corresponding procedure for summary reports at
“Create JCL to Run the GO Step” on page 52.

Execute the JCL
When you have created all of the COB01M JCL, you can run the COB01M
example by executing the following JCL in the order listed. See Figure 7 on
page 46 for a flow diagram of these steps.

 1. SCOB01M9

Performs the Setup step. All JCL steps should complete with condition code 0.

 2. LCOB01M10

| If you instrumented object modules, links the object modules that were modified
| with breakpoints during the Setup step into the COB01M load module.

 3. XCOB01M9

Starts the monitor. JCL completes with condition code 0.

 4. GCOB01M10

Runs sample program COB01M. COB01M runs to completion with condition
code 0.

 5. CASTATS11

Displays statistics with the CASTATS command. You should see a nonzero
EVNTS count in the TOTALS line. (This is an optional step for illustrative pur-
poses.)

9 JCL created from the panels and put into the JCL library.

10 JCL supplied with the installation materials in hi_lev_qual.V1R5M0.SAMPLE.JCL. (Sample JCL for all of the steps can be found in
this partitioned data set [PDS].)

11 Monitor commands issued from either the Control the CA/DA/UTA Monitor panel or the TSO command processor (ISPF option 6)
by entering:

 EX 'hi_lev_qual.V1R5Mð.REXX(cacmd)'

where cacmd is the command issued (such as, CASTATS, CASTOP, and so on).

58 Application Testing Collection 1.5.0 User's Guide

 6. CASTOP11

Stops the monitor session. CA writes the statistics to disk.

 7. RCOB01M9

Creates the annotated listing (and summary) of COB01M. The report is in data
set proj_qual.COB01M.REPORT.

summary of test case summary of test case

PL/I Summary of Test Case Coverage
The content of the summary report is the same regardless of the compiler for which
it is created. For PL/I programs, the breakpoints are inserted into the object
modules during Setup. When you are ready to test your program, you link the
object modules that have been modified with breakpoints.

Figure 11 on page 60 is a summary of a PL/I program called PLI01M. To produce
a summary for PLI01M, perform the following steps. Steps 2a through 6 are
described in more detail in topics that follow in this chapter.

1. Compile the PL/I source you want to test. This produces listings that include
the assembler statements needed by CA. (This has already been done for the
PLI01M example. The listings are in hi_lev_qual.V1R5M0.SAMPLE.PLILST.)

Make sure to use the compiler options specified in “Setup” on page 231.

2. Start the ATC ISPF dialog by entering the following from ISPF option 6:

 EX 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

The ATC Primary Option Menu is displayed (shown in Figure 2 on page 27).

a. Edit the CA control file.

| Verify that the control file includes the listings of the object modules or load
| modules you want to test.

b. Create the setup JCL.

Create the JCL that enables the Setup job to produce a file containing
breakpoint data and to modify copies of your object modules by inserting
breakpoints.

c. Create the monitor JCL.

Create the JCL to start a monitor session.

d. Create the summary report JCL.

Create the JCL to produce the test case coverage summary after PLI01M
has executed.

3. End the ATC ISPF dialog by pressing the End key (PF3) on the ATC Primary

Option Menu.

4. Create the JCL to link the modified object modules.

| If you instrumented object modules, you must link the modified object modules
| into an executable program you can test. Edit the link JCL and specify the

library that will contain the modified object modules for the OBJECT ddname
and the library that will contain the modified load module for the SYSLMOD
ddname.

 CA Samples 59

5. Create the JCL to run the GO step.

Create the JCL to run your program. Specify the same modified load module
as in step 4 on page 59.

6. Execute the JCL.

Execute the created JCL files for PLI01M in the correct order. (This order is
shown in “Execute the JCL” on page 64.)

Figure 11 shows a sample summary report. For details about the information
included in the report, see “Summary Coverage Report” on page 83.

| 1 \\\\\\\\\ CA SUMMARY: PROGRAM AREA DATA \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 12:28.34

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | | STATEMENTS: | BRANCHES: |

| | PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |

| --

| 1 PLIð1M PLIð1AM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1AM) 9 9 1ðð.ð 6 5 83.3

| 2 PROC2A 2 ð ð.ð ð ð 1ðð.ð

| 3 PLIð1M PLIð1BM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1BM) 11 8 72.7 6 4 66.7

| 4 PROC1 2 2 1ðð.ð ð ð 1ðð.ð

| 5 PLIð1M PLIð1CM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1CM) 7 4 57.1 6 3 5ð.ð

| 6 PROC1 4 3 75.ð 2 1 5ð.ð

| 7 PLIð1M PLIð1DM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1DM) 2 ð ð.ð 2 ð ð.ð

| 8 PROC1 4 ð ð.ð 2 ð ð.ð

| --

| Summary for all PAs: 41 26 63.4 24 13 54.2

| 1 \\\\\\\\\ CA SUMMARY: UNEXECUTED CODE \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 12:28.34

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | |

| | PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end

| --

| 2 PLIð1M PROC2A ATC.V1R5Mð.SAMPLE.PLILST(PLIð1AM) 17 18

| 3 PLIð1M PLIð1BM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1BM) 9 9 15 16

| 5 PLIð1M PLIð1CM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1CM) 6 6 1ð 11

| 6 PROC1 16 16

| 7 PLIð1M PLIð1DM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1DM) 3 11

| 8 PROC1 6 1ð

| --

| 1 \\\\\\\\\ CA SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 12:28.34

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | |

| | PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt

| --

| 1 PLIð1M PLIð1AM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1AM) 1ð

| 3 PLIð1M PLIð1BM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1BM) 8 14

| 5 PLIð1M PLIð1CM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1CM) 5 8 9

| 6 PROC1 15

| 7 PLIð1M PLIð1DM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1DM) 3

| 8 PROC1 7

| --

Figure 11. Summary Report for PLI01M

60 Application Testing Collection 1.5.0 User's Guide

Edit the CA Control File
CA uses assembler listings to determine where to insert breakpoints. You supply
the names of the listing files in the CA control file (CACTL).

Make sure to use the compiler options specified in “Setup” on page 231.

The CACTL control file for the PL/I summary example is
hi_lev_qual.V1R5M0.SAMPLE.CACTL(PLI01M). The file is shown in Figure 12 on
page 62.

To edit the CACTL for the PLI01M summary example:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 1.

The Work with the CA/DA/UTA Control File panel is displayed.

3. Specify the following:

Use Program Name for File Name YES

Program Name PLIð1M

Listing Type PL/I

An ISPF edit session for the CA control file you requested is displayed.

The data in the control file consists of the following:

� The type of listing file (PL/I)
� Names of the listing files you want to test
� Names of the load modules that contain the code of each listing

| � Copy to/from information for making copies of the object modules or load
| modules into which the breakpoints are inserted

If the control file you requested did not previously exist, it is created with com-
ments in it to help you enter the appropriate information in the fields. The

| control file shown in Figure 12 on page 62 is the control file for PLI01M. This
| example shows how to instrument object modules. To instrument load
| modules, see “Instrumentation of Load Modules instead of Object Modules” on
| page 238.

4. Verify that the listing file names and the copy to/from object module names are
correct.

5. Press the End key (PF3) to terminate the edit session.

For more information, see “Editing the Coverage Assistant Control File” on
page 81.

 CA Samples 61

 Defaults ListDsn=ATC.V1R5Mð.SAMPLE.PLILST(\),

 LoadMod=PLIð1M,

 FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

 ToObjDsn=ATC.V1R5Mð.SAMPLE.ZAPOBJ

 PL/I ListMember=PLIð1AM

 PL/I ListMember=PLIð1BM

 PL/I ListMember=PLIð1CM

 PL/I ListMember=PLIð1DM

Figure 12. Control File for PLI01M

Create Setup JCL
Before test cases can be executed on the test program (PLI01M), CA must insert
breakpoints into the test program. During Setup, the CA Setup program analyzes
the assembler statements from the compiler listings and creates a table containing

| breakpoint data (address, op code, and so on). User SVC instructions are inserted
| for the instructions at the breakpoints in the object modules or load modules. If you
| instrument object modules, you then link these modified object modules into a mod-
| ified PLI01M load module for CA to use.

To create the setup JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation, and Unit Test Assistant panel is displayed.

2. Select option 2.

The Create JCL for Setup panel is displayed. You create the JCL for the
setup of PLI01M from this panel.

All of the default values on this panel are correct for the PLI01M example. The
defaults will usually be correct for your test coverage run. The only field that
you may need to change is the Program Name field.

3. If necessary, change the program name to PLIð1M.

4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name SPLI01M.

5. Press the End key (PF3) to exit the panel.

For more detailed information, see “CA, DA, and UTA Setup” on page 231.

Create JCL to Start a Monitor Session
JCL is required to start a monitor session.

To create the JCL to start a monitor session:

1. Select option 1 from the ATC Primary Option Menu and option 3 from the
Coverage, Distillation, and Unit Test Assistant panel.

The Create JCL to Start the Monitor panel is displayed. You create the JCL
for the CA execution of PLI01M from this panel.

62 Application Testing Collection 1.5.0 User's Guide

2. If necessary, change the program name to PLIð1M.

3. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name XPLI01M.

4. Press the End key (PF3) to exit the panel.

Use the monitor JCL to start a monitor session before you run your test case
program. Note that you can perform CA execution on a system other than the
one on which you have stored the listing.

For more detailed information, see “Monitor Execution” on page 245.

Create JCL for a Summary Report
JCL is required to generate a summary report.

To create the summary report JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 4.

The Coverage Reports panel is displayed.

3. Select option 1.

The Create JCL for Summary Report panel is displayed. You create the JCL
for generating the PLI01M summary report from this panel.

4. If necessary, change the program name to PLIð1M.

5. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name TPLI01M.

6. Press the End key (PF3) to exit the panel.

For more detailed information, see “Summary Coverage Report” on page 83.

Create JCL to Link the Modified Object Modules
| If you instrumented object modules, you must link the modified object modules
| (modified by the Setup step) into an executable program for testing. You can use

the normal JCL that links your program, but be sure to specify the object module
library that contains the modified object modules. Sample JCL to link the PLI01M
example is provided in hi_lev_qual.V1R5M0.SAMPLE.JCL(LPLI01M).

Create JCL to Run the GO Step
You can use the normal JCL that executes your program, but be sure to specify the
load module library that contains the link-edited modified object modules. Sample
JCL to execute the GO step for the PLI01M example is provided in
hi_lev_qual.V1R5M0.SAMPLE.JCL(GPLI01M).

 CA Samples 63

Execute the JCL
When you have created all of the PLI01M JCL, you can run the PLI01M summary
example by executing the following functions in the order listed. See Figure 7 on
page 46 for a flow diagram of these steps.

 1. SPLI01M12

Performs the Setup step. All JCL steps should end with condition code 0.

 2. LPLI01M13

| If you instrumented object modules, links the object modules that were modified
| with breakpoints in the Setup step into the PLI01M load module.

 3. XPLI01M12

Starts the monitor. JCL completes with condition code 0.

 4. GPLI01M13

Runs sample program PLI01M. PLI01M runs to completion with condition code
0.

 5. CASTATS14

Displays statistics with the CASTATS command. You should see a nonzero
EVNTS count in the TOTALS line. (This is an optional step for illustrative pur-
poses.)

 6. CASTOP14

Stops the monitor session. CA writes the statistics to disk.

 7. TPLI01M12

Creates the summary of PLI01M. The summary is in data set
proj_qual.PLI01M.SUMMARY.

Annotated PL/I Listings
To produce an annotated PL/I listing of PLI01M, perform the following steps. Steps
2a through 6 are described in more detail in topics that follow in this chapter.

1. Compile the PL/I source you want to test. This produces listings that include
the assembler statements needed by CA. (This has already been done for the
PLI01M example. The listings are in hi_lev_qual.V1R5M0.SAMPLE.PLILST.)

Make sure to use the compiler options specified in “Setup” on page 231.

2. Start the ATC ISPF dialog by entering the following from ISPF option 6:

 EX 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

12 JCL created from the panels and put into the JCL library.

13 JCL supplied with the installation materials in hi_lev_qual.V1R5M0.SAMPLE.JCL. (Sample JCL for all of the steps can be found in
this partitioned data set [PDS].)

14 Monitor commands issued from either the Control the CA/DA/UTA Monitor panel or the TSO command processor (ISPF option 6)
by entering:

 EX 'hi_lev_qual.V1R5Mð.REXX(cacmd)'

where cacmd is the command issued (such as, CASTATS, CASTOP, and so on).

64 Application Testing Collection 1.5.0 User's Guide

The ATC Primary Option Menu is displayed (shown in Figure 2 on page 27).

a. Edit the CA control file.

Verify that the control file includes the listings of the object modules you
want to test.

b. Create the setup JCL.

Create the JCL that enables the Setup job to produce a file containing
breakpoint data and to modify copies of your object modules by inserting
breakpoints.

c. Create the JCL to start a monitor session.

d. Create the JCL for an annotated listing.

Create the JCL to produce the annotated listing after PLI01M has executed.

3. End the ATC ISPF dialog by pressing the End key (PF3) on the ATC Primary

Option Menu.

4. Create the JCL to link the modified object modules.

| If you instrumented object modules, you must link the modified object modules
| into an executable program you can test. Edit the link JCL and specify the

library that will contain the modified object modules for the OBJECT ddname
and the library that will contain the modified load module for the SYSLMOD
ddname.

5. Create the JCL to run the GO step.

Create the JCL to run your program. Specify the same modified load module
as in step 4.

6. Execute the JCL.

Execute the created JCL files for PLI01M in the correct order. (This order is
shown in “Execute the JCL” on page 64.)

If you want more information on some or all of the modules that have been tested,
you can create an annotated listing of the PL/I listing. This listing contains informa-
tion about each breakpoint. To the right of each statement number, one of the
following characters is shown to indicate the results of the execution of that state-
ment:

& A conditional branch instruction has executed both ways.

> A conditional branch instruction has branched, but not fallen through.

V A conditional branch instruction has fallen through, but not branched.

: Non-branch instruction has executed.

¬ Instruction has not executed.

Figure 13 on page 66 shows a sample annotated listing.

 CA Samples 65

1 ð PLIð1AM:PROC OPTIONS(MAIN); /\ PL/I FOR MVS & VM TEST

 /\\/

 /\ \/

/\ Licensed Materials - Property of IBM \/

 /\ \/

 /\ 5799-GBN \/

 /\ \/

/\ (C) Copyright IBM Corp. 1997, 1998 All Rights Reserved \/

 /\ \/

/\ US Government Users Restricted Rights - Use, duplication or \/

/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp.\/

 /\ \/

 /\\/

2 1 ð DCL EXPARM1 FIXED BIN(31) INIT(5);

3 1 ð DCL EXPARM2 FIXED BIN(31) INIT(2);

4 1 ð DCL PARM2 FIXED BIN(31) INIT(2);

5 1 ð DCL PLIð1BM EXTERNAL ENTRY; /\ \/

6& 1 ð DO WHILE (EXPARM1 > ð); /\ THIS DO LOOP EXECUTED 5 TIMES\/

7: 1 1 EXPARM1 = EXPARM1 -1; /\

8: 1 1 CALL PLIð1BM(PARM2); /\ PLIð1BM CALLED 5 TIMES

9: 1 1 END;

1ð> 1 ð IF (EXPARM2 = ð) THEN /\ THIS BRANCH ALWAYS TAKEN \/

CALL PROC2A(EXPARM2); /\ PROC2A NEVER CALLED \/

11& 1 ð DO WHILE (EXPARM2 > ð); /\ DO LOOP EXECUTED TWICE \/

12: 1 1 EXPARM2 = EXPARM2 - 1;

13: 1 1 END;

14: 1 ð RETURN;

15 1 ð PROC2A: PROCEDURE(P1PARM1); /\ THIS PROCEDURE NEVER EXECU

16 2 ð DCL P1PARM1 FIXED BIN(31);

17¬ 2 ð P1PARM1 = 1ð;

18¬ 2 ð END PROC2A;

19 1 ð END PLIð1AM;

Figure 13. Annotated PL/I Listing

Edit the CA Control File
This step is identical to the corresponding procedure for summary reports at “Edit
the CA Control File” on page 61.

Create Setup JCL
This step is identical to the corresponding procedure for summary reports at
“Create Setup JCL” on page 62.

Create JCL to Start a Monitor Session
This step is identical to the corresponding procedure for summary reports at
“Create JCL to Start a Monitor Session” on page 62.

Create JCL for an Annotated Listing
To create the annotated listing JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 4.

The Coverage Reports panel is displayed.

66 Application Testing Collection 1.5.0 User's Guide

3. Select option 2.

The Create JCL for Summary and Annotation Report panel is displayed. You
create the JCL for printing the annotated listing (along with a summary) for
PLI01M from this panel.

4. If necessary, change the program name to PLIð1M.

5. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name RPLI01M.

6. Press the End key (PF3) to exit the panel.

For more detailed information, see “Annotated Listing Coverage Report” on
page 95.

Create JCL to Link the Modified Object Modules
This step is identical to the corresponding procedure for summary reports at
“Create JCL to Link the Modified Object Modules” on page 63.

Create JCL to Run the GO Step
This step is identical to the corresponding procedure for summary reports at
“Create JCL to Run the GO Step” on page 63.

Execute the JCL
When you have created all of the PLI01M JCL, you can run the PLI01M example
by executing the following JCL in the order listed. See Figure 7 on page 46 for a
flow diagram of these steps.

 1. SPLI01M15

Performs the Setup step. All JCL steps should complete with condition code 0.

 2. LPLI01M16

| If you instrumented object modules, links the object modules that were modified
| with breakpoints during the Setup step into the PLI01M load module.

 3. XPLI01M15

Starts the monitor. JCL completes with condition code 0.

 4. GPLI01M16

Runs sample program PLI01M. PLI01M runs to completion with condition code
0.

15 JCL created from the panels and put into the JCL library.

16 JCL supplied with the installation materials in hi_lev_qual.V1R5M0.SAMPLE.JCL. (Sample JCL for all of the steps can be found in
this partitioned data set [PDS].)

 CA Samples 67

 5. CASTATS17

Displays statistics with the CASTATS command. You should see a nonzero
EVNTS count in the TOTALS line. (This is an optional step for illustrative pur-
poses.)

 6. CASTOP17

Stops the monitor session. CA writes the statistics to disk.

 7. RPLI01M15

Creates the annotated listing (and summary) of PLI01M. The report is in data
set proj_qual.PLI01M.REPORT.

Assembler Summary of Test Case Coverage
The content of the summary report is the same for the two assemblers supported:
Assembler H and High Level Assembler. The breakpoints are inserted into the
object modules during Setup. When you are ready to test your program, you link
the object modules that have been modified with breakpoints.

Figure 14 on page 70 is a summary of a sample assembler program called
ASM01L, a High Level Assembler program. The steps for Assembler H are iden-
tical. The Assembler H sample program is called ASM01H. For Assembler H, sub-
stitute ASM01H for ASM01L in the following steps. To produce a summary for
ASM01L, perform the following steps as listed. Steps 2a through 6 are described
in more detail in topics that follow in this chapter.

1. Assemble the assembler source you want to test. This produces the listings
that include the assembler statements needed by CA. (This has already been
done for the ASM01L example. The listings are in
hi_lev_qual.V1R5M0.SAMPLE.ASMLLST for the High Level Assembler and
hi_lev_qual.V1R5M0.SAMPLE.ASMHLST for the H Assembler.)

Make sure to use the assembler options specified in “Setup” on page 231.

2. Start the ATC ISPF dialog by entering the following from ISPF option 6:

 EX 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

The ATC Primary Option Menu is displayed (shown in Figure 2 on page 27).

a. Edit the CA control file.

| Verify that the control file includes the listings of the object modules or load
| modules you want to test. The samples shipped with the product show
| how to instrument object modules. To instrument load modules, see “Instru-
| mentation of Load Modules instead of Object Modules” on page 238.

b. Create the setup JCL.

| Create the JCL that enables the Setup job to produce a file containing
| breakpoint data and instrumented object modules or load modules by
| inserting breakpoints.

17 Monitor commands issued from either the Control the CA/DA/UTA Monitor panel or the TSO command processor (ISPF option 6)
by entering:

 EX 'hi_lev_qual.V1R5Mð.REXX(cacmd)'

where cacmd is the command issued (such as, CASTATS, CASTOP, and so on).

68 Application Testing Collection 1.5.0 User's Guide

c. Create the monitor JCL.

Create the JCL to start a monitor session.

d. Create the summary report JCL.

Create the JCL to produce the test case coverage summary after ASM01L
has executed.

3. End the ATC ISPF dialog by pressing the End key (PF3) on the ATC Primary

Option Menu.

4. Create the JCL to link the modified object modules.

| If you instrumented object modules, you must link the modified object modules
| into an executable program you can test. Edit the link JCL and specify the

library that will contain the modified object modules for the OBJECT ddname
and the library that will contain the modified load module for the SYSLMOD
ddname.

5. Create the JCL to run the GO step.

Create the JCL to run your program. Specify the same modified load module
as in step 4.

6. Execute the JCL.

Execute the created JCL files for ASM01L in the correct order. (This order is
shown in “Execute the JCL” on page 74.)

Figure 14 on page 70 shows a sample summary report. For details about the
information included in the report, see “Summary Report for Assembler” on
page 88.

 CA Samples 69

1 \\\\\\\\\ CA SUMMARY: PROGRAM AREA DATA \\\\\\\\

ð DATE: ð4/22/1998

 TIME: 15:ð9.53

TEST CASE ID:

ð |<-- PROGRAM IDENTIFICATION -->|

 | | | STATEMENTS: | BRANCHES: |

| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |

 --

1 ASMð1L TEST2 ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1AL) \ 144 1ð4 72.2 6 5 83.3

2 ASMð1L TEST2B ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1BL) \ 164 144 87.8 6 4 66.7

3 ASMð1L TEST2C ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1CL) \ 14ð 118 84.3 8 5 62.5

4 ASMð1L TEST2D ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1DL) \ 92 ð ð.ð 4 ð ð.ð

 --

Summary for all PAs: 54ð 366 67.8 24 14 58.3

1 \\\\\\\\\ CA SUMMARY: UNEXECUTED CODE \\\\\\\\

ð DATE: ð4/22/1998

 TIME: 15:ð9.53

TEST CASE ID:

ð |<-- PROGRAM IDENTIFICATION -->|

 | | |

| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end

 --

 1 ASMð1L TEST2 ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1AL) ðððð56 ðððð62 ðððð86 ððððAð

 2 ASMð1L TEST2B ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1BL) ðððð5ð ðððð5A ðððð78 ðððð82

 3 ASMð1L TEST2C ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1CL) ðððð34 ðððð3A ðððð5ð ðððð5A ðððð92 ðððð98

 4 ASMð1L TEST2D ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1DL) ðððððð ðððððð ðððð16 ðððð6C

 --

1 \\\\\\\\\ CA SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS \\\\\\\\

ð DATE: ð4/22/1998

 TIME: 15:ð9.53

TEST CASE ID:

ð |<-- PROGRAM IDENTIFICATION -->|

 | | |

| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt

 --

 1 ASMð1L TEST2 ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1AL) ðððð52

 2 ASMð1L TEST2B ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1BL) ðððð4ð ðððð8C

3 ASMð1L TEST2C ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1CL) ðððð3ð ðððð64 ðððð8E

 4 ASMð1L TEST2D ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1DL) ðððð3ð ðððð5E

 --

Figure 14. Summary Report for ASM01L

70 Application Testing Collection 1.5.0 User's Guide

Edit the CA Control File
CA uses assembler listings to determine where to insert breakpoints. You supply
the names of the listing files in the CA control file (CACTL).

Make sure to use the assembler options specified in “Setup” on page 231.

The CACTL control file for the assembler summary example is
hi_lev_qual.V1R5M0.SAMPLE.CACTL(ASM01L). The file is shown in Figure 15 on
page 72.

To edit the CACTL for the ASM01L summary example:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 1.

The Work with the CA/DA/UTA Control File panel is displayed.

3. Specify the following:

Use Program Name for File Name YES

Program Name ASMð1L

Listing Type ASM

An ISPF edit session for the CA control file you requested is displayed.

The data in the control file consists of the following:

� The type of listing file (ASM)
� Names of the listing files you want to test
� Names of the load modules that contain the code of each listing

| � Copy to/from information for making copies of the object modules or load
| modules into which the breakpoints are inserted

If the control file you requested did not previously exist, it is created with com-
ments in it to help you enter the appropriate information in the fields. The

| control file shown in Figure 15 on page 72 is the control file for ASM01L. This
| example shows how to instrument object modules. To instrument load
| modules, see “Instrumentation of Load Modules instead of Object Modules” on
| page 238.

4. Verify that the listing file names and the copy to/from object module names are
correct.

5. Press the End key (PF3) to terminate the edit session.

For more information, see “Editing the Coverage Assistant Control File” on
page 81.

 CA Samples 71

 Defaults ListDsn=ATC.V1R5Mð.SAMPLE.ASMLLST(\),

 LoadMod=ASMð1L,

 FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

 ToObjDsn=ATC.V1R5Mð.SAMPLE.ZAPOBJ

 ASM ListMember=ASMð1AL

 ASM ListMember=ASMð1BL

 ASM ListMember=ASMð1CL

 ASM ListMember=ASMð1DL

Figure 15. Control File for ASM01L

Create Setup JCL
Before test cases can be executed on the test program (ASM01L), CA must insert
breakpoints into the test program. During Setup, the CA Setup program analyzes
the assembler listings and creates a table containing breakpoint data (address, op

| code, and so on). User SVC instructions are inserted for the instructions at the
| breakpoints in the object modules or load modules. If you instrument object
| modules, you then link these modified object modules into a modified ASM01L load
| module for CA to use.

To create the setup JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation, and Unit Test Assistant panel is displayed.

2. Select option 2.

The Create JCL for Setup panel is displayed. You create the JCL for the
setup of ASM01L from this panel.

All of the default values on this panel are correct for the ASM01L example.
The defaults will usually be correct for your test coverage run. The only field
that you may need to change is the Program Name field.

3. If necessary, change the program name to ASMð1L.

4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name SASM01L.

5. Press the End key (PF3) to exit the panel.

For more detailed information, see “CA, DA, and UTA Setup” on page 231.

72 Application Testing Collection 1.5.0 User's Guide

Create JCL to Start a Monitor Session
JCL is required to start a monitor session.

To create the JCL to start a monitor session:

1. Select option 1 from the ATC Primary Option Menu and option 3 from the
Coverage, Distillation, and Unit Test Assistant panel.

The Create JCL to Start the Monitor panel is displayed. You create the JCL
for the CA execution of ASM01L from this panel.

2. If necessary, change the program name to ASMð1L.

3. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name XASM01L.

4. Press the End key (PF3) to exit the panel.

Use the monitor JCL to start a monitor session before you run your test case
program. Note that you can perform CA execution on a system other than the
one on which you have stored the listing.

For more detailed information, see “Monitor Execution” on page 245.

Create Summary Report JCL
JCL is required to generate a summary report.

To create the summary report JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 4.

The Coverage Reports panel is displayed.

3. Select option 1.

The Create JCL for Summary Report panel is displayed. You create the JCL
for generating the ASM01L summary report from this panel.

4. If necessary, change the program name to ASMð1L.

5. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name TASM01L.

6. Press the End key (PF3) to exit the panel.

For more detailed information, see “Summary Coverage Report” on page 83.

 CA Samples 73

Create JCL to Link the Modified Object Modules
| If you instrumented object modules, you must link the modified object modules
| (modified by the Setup step) into an executable program for testing. You can use
| the normal JCL that links your program, but be sure to specify the object module

library that contains the modified object modules. Sample JCL to link the ASM01L
example is provided in hi_lev_qual.V1R5M0.SAMPLE.JCL(LASM01L).

Create JCL to Run the GO Step
You can use the normal JCL that executes your program, but be sure to specify the
load module library that contains the link-edited modified object modules. Sample
JCL to execute the GO step for the ASM01L example is provided in
hi_lev_qual.V1R5M0.SAMPLE.JCL(GASM01L).

Execute the JCL
When you have created all of the ASM01L JCL, you can run the ASM01L summary
example by executing the following functions in the order listed. See Figure 7 on
page 46 for a flow diagram of these steps.

 1. SASM01L18

Performs the Setup step. All JCL steps should end with condition code 0.

 2. LASM01L19

| If you instrumented object modules, links the object modules that were modified
| with breakpoints during the Setup step into the ASM01L load module.

 3. XASM01L18

Starts the monitor. JCL completes with condition code 0.

 4. GASM01L19

Runs sample program ASM01L. ASM01L runs to completion with condition
code 0.

 5. CASTATS20

Displays statistics with the CASTATS command. You should see a nonzero
EVNTS count in the TOTALS line. (This is an optional step for illustrative pur-
poses.)

 6. CASTOP20

Stops the monitor session. CA writes the statistics to disk.

 7. TASM01L18

Creates the summary of ASM01L. The summary is in data set
proj_qual.ASM01L.SUMMARY.

18 JCL created from the panels and put into the JCL library.

19 JCL supplied with the installation materials in hi_lev_qual.V1R5M0.SAMPLE.JCL. (Sample JCL for all of the steps can be found in
this partitioned data set [PDS].)

20 Monitor commands issued from either the Control the CA/DA/UTA Monitor panel or the TSO command processor (ISPF option 6)
by entering:

 EX 'hi_lev_qual.V1R5Mð.REXX(cacmd)'

where cacmd is the command issued (such as, CASTATS, CASTOP, and so on).

74 Application Testing Collection 1.5.0 User's Guide

Annotated Assembler Listings
To produce an annotated assembler listing of ASM01L, perform the following steps.
Steps 2a through 6 are described in more detail in topics that follow in this
chapter.

1. Assemble the assembler source you want to test. This produces assembler
listings needed by CA. (This has already been done for the ASM01L example.
The listings are in hi_lev_qual.V1R5M0.SAMPLE.ASMLLST for the High Level
Assembler and hi_lev_qual.V1R5M0.SAMPLE.ASMHLST for the H Assembler.)

Make sure to use the assembler options specified in “Setup” on page 231.

2. Start the ATC ISPF dialog by entering the following from ISPF option 6:

 EX 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

The ATC Primary Option Menu is displayed (shown in Figure 2 on page 27).

a. Edit the CA control file.

Verify that the control file includes the listings of the object modules you
want to test.

b. Create the setup JCL.

| Create the JCL that enables the Setup job to produce a file containing
| breakpoint data and to modify copies of your object modules or load
| modules by inserting breakpoints.

c. Create the monitor JCL.

Create the JCL to start a monitor session.

d. Create the JCL for an annotated listing.

Create the JCL to produce the annotated listing after ASM01L has exe-
cuted.

3. End the ATC ISPF dialog by pressing the End key (PF3) on the ATC Primary

Option Menu.

4. Create the JCL to link the modified object modules.

| If you instrumented object modules, you must link the modified object modules
| into an executable program you can test. Specify the library that will contain

the modified object modules and the library that will contain the modified load
module.

5. Create the JCL to run the GO step.

Create the JCL to run your program. Specify the same modified load module
as in step 4.

6. Execute the JCL.

Execute the created JCL files for ASM01L in the correct order. (This order is
shown in “Execute the JCL” on page 74.)

 CA Samples 75

If you want more information on some or all of the modules that have been tested,
you can create an annotated listing of the assembler listing. This listing contains
information about each breakpoint. To the right of each statement number, one of
the following characters is shown to indicate the results of the execution of that
statement:

& A conditional branch instruction has executed both ways.

> A conditional branch instruction has branched, but not fallen through.

V A conditional branch instruction has fallen through, but not branched.

: Non-branch instruction has executed.

¬ Instruction has not executed.

@ Data area in the assembler listing.

% Unconditional branch that has been executed in the assembler listing.

Figure 16 shows a sample annotated listing.

ACTIVE USINGS: NONE

 LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT HLASM R2.ð 1997/11/14 ð9.55

 1 \\ ððððð1ðð

 2 \ \ ððððð2ðð

3 \ LICENSED MATERIALS - PROPERTY OF IBM \ ððððð3ðð

 4 \ \ ððððð4ðð

5 \ 5799-GBN \ ððððð5ðð

 6 \ \ ððððð6ðð

7 \ (C) COPYRIGHT IBM CORP. 1997, 1998 ALL RIGHTS RESERVED \ ððððð7ðð

 8 \ \ ððððð8ðð

9 \ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR \ ððððð9ðð

1ð \ DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM \ ðððð1ððð

11 \ CORP. \ ðððð11ðð

 12 \ \ ðððð12ðð

 13 \ \ ðððð13ðð

 14 \\ ðððð14ðð

 15 \\ ðððð15ðð

 16 \ \ ðððð16ðð

17 \ HIGH LEVEL ASSEMBLER TEST. \ ðððð17ð1

 18 \ \ ðððð18ðð

 19 \\ ðððð19ðð

ðððððð 2ð TEST2 CSECT , ð1Sððð1 ðððð2ððð

 1 \\ ððððð1ðð

 2 \ \ ððððð2ðð

3 \ LICENSED MATERIALS - PROPERTY OF IBM \ ððððð3ðð

 4 \ \ ððððð4ðð

5 \ 5799-GBN \ ððððð5ðð

 6 \ \ ððððð6ðð

7 \ (C) COPYRIGHT IBM CORP. 1997 ALL RIGHTS RESERVED \ ððððð7ðð

 8 \ \ ððððð8ðð

9 \ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR \ ððððð9ðð

1ð \ DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM \ ðððð1ððð

11 \ CORP. \ ðððð11ðð

 12 \ \ ðððð12ðð

 13 \ \ ðððð13ðð

 14 \\ ðððð14ðð

Figure 16 (Part 1 of 3). Annotated Assembler Listing

76 Application Testing Collection 1.5.0 User's Guide

 15 \\ ðððð15ðð

 16 \ \ ðððð16ðð

17 \ HIGH LEVEL ASSEMBLER TEST. \ ðððð17ð1

 18 \ \ ðððð18ðð

 19 \\ ðððð19ðð

ðððððð 21 @MAINENT DS ðH ð1Sððð1 ðððð3ððð

R:F ððððð 22 USING \,@15 ð1Sððð1 ðððð4ððð

ðððððð 47Fð Fð16 ððð16 23% B @PROLOG ð1Sððð1 ðððð5ððð

ððððð4 1ð 24@ DC AL1(16) ð1Sððð1 ðððð6ððð

ððððð5 E3C5E2E3F24ð4ð4ð 25@ DC C'TEST2 97.295' ð1Sððð1 ðððð7ððð

 26 DROP @15 ðððð8ððð

ðððð15 ðð

ðððð16 9ðEC DððC ððððC 27:@PROLOG STM @14,@12,12(@13) ð1Sððð1 ðððð9ððð

ðððð1A 18CF 28: LR @12,@15 ð1Sððð1 ððð1ðððð

 ððððð 29 @PSTART EQU TEST2 ð1Sððð1 ððð11ððð

R:C ððððð 3ð USING @PSTART,@12 ð1Sððð1 ððð12ððð

ðððð1C 5ðDð CðBð ðððBð 31: ST @13,@SAðððð1+4 ð1Sððð1 ððð13ððð

ðððð2ð 41Eð CðAC ðððAC 32: LA @14,@SAðððð1 ð1Sððð1 ððð14ððð

ðððð24 5ðEð Dðð8 ðððð8 33: ST @14,8(,@13) ð1Sððð1 ððð15ððð

ðððð28 18DE 34: LR @13,@14 ð1Sððð1 ððð16ððð

35 \ DO WHILE(EXPARM1>ð); /\ THIS DO LOOP EXECUTED 5 TIMES \/ ððð17ððð

ðððð2A 47Fð Cð42 ððð42 36% B @DEðððð6 ð1Sððð6 ððð18ððð

ðððð2E 37 @DLðððð6 DS ðH ð1Sððð7 ððð19ððð

38 \ EXPARM1 = EXPARM1 - 1; /\ \/ ððð2ðððð

ðððð2E 581ð C1ðð ðð1ðð 39: L @ð1,EXPARM1 ð1Sððð7 ððð21ððð

ðððð32 ð61ð 4ð: BCTR @ð1,ð ð1Sððð7 ððð22ððð

ðððð34 5ð1ð C1ðð ðð1ðð 41: ST @ð1,EXPARM1 ð1Sððð7 ððð23ððð

42 \ CALL TEST2B(PARM2); /\ TEST2B CALLED 5 TIMES \/ ððð24ððð

ðððð38 58Fð CðF8 ðððF8 43: L @15,@CVððð63 ð1Sððð8 ððð25ððð

ðððð3C 411ð CðA4 ðððA4 44: LA @ð1,@ALðððð2 ð1Sððð8 ððð26ððð

ðððð4ð ð5EF 45% BALR @14,@15 ð1Sððð8 ððð27ððð

 46 \ END; ð1Sððð9 ððð28ððð

ðððð42 58ðð C1ðð ðð1ðð 47:@DEðððð6 L @ðð,EXPARM1 ð1Sððð9 ððð29ððð

ðððð46 12ðð 48: LTR @ðð,@ðð ð1Sððð9 ððð3ðððð

ðððð48 472ð Cð2E ððð2E 49& BP @DLðððð6 ð1Sððð9 ððð31ððð

5ð \ IF (EXPARM2 = ð) THEN /\ THIS BRANCH ALWAYS TAKEN \/ ððð32ððð

ðððð4C 581ð C1ð4 ðð1ð4 51: L @ð1,EXPARM2 ð1Sðð1ð ððð33ððð

ðððð5ð 1211 52: LTR @ð1,@ð1 ð1Sðð1ð ððð34ððð

ðððð52 477ð Cð6C ððð6C 53> BNZ @RFððð1ð ð1Sðð1ð ððð35ððð

ðððð56 411ð CðA8 ðððA8 55¬ LA @ð1,@ALðððð3 ð1Sðð11 ððð37ððð

ðððð5A 45Eð Cð86 ððð86 56¬ BAL @14,PROC1 ð1Sðð11 ððð38ððð

57 \ DO WHILE(EXPARM2>ð); /\ DO LOOP EXECUTED TWICE \/ ððð39ððð

ðððð5E 47Fð Cð6C ððð6C 58¬ B @DEððð12 ð1Sðð12 ððð4ðððð

ðððð62 59 @DLððð12 DS ðH ð1Sðð13 ððð41ððð

6ð \ EXPARM2 = EXPARM2 - 1; ð1Sðð13 ððð42ððð

ðððð62 582ð C1ð4 ðð1ð4 61: L @ð2,EXPARM2 ð1Sðð13 ððð43ððð

ðððð66 ð62ð 62: BCTR @ð2,ð ð1Sðð13 ððð44ððð

ðððð68 5ð2ð C1ð4 ðð1ð4 63: ST @ð2,EXPARM2 ð1Sðð13 ððð45ððð

 64 \ END; ð1Sðð14 ððð46ððð

ðððð6C 583ð C1ð4 ðð1ð4 65:@DEððð12 L @ð3,EXPARM2 ð1Sðð14 ððð47ððð

ðððð7ð 1233 66: LTR @ð3,@ð3 ð1Sðð14 ððð48ððð

ðððð72 472ð Cð62 ððð62 67& BP @DLððð12 ð1Sðð14 ððð49ððð

 68 \ RETURN CODE(ð); ð1Sðð15 ððð5ðððð

ðððð76 1FFF 69: SLR @15,@15 ð1Sðð15 ððð51ððð

ðððð78 58Dð Dðð4 ðððð4 7ð: L @13,4(,@13) ð1Sðð15 ððð52ððð

ðððð7C 58Eð DððC ððððC 71: L @14,12(,@13) ð1Sðð15 ððð53ððð

ðððð8ð 98ðC Dð14 ððð14 72: LM @ðð,@12,2ð(@13) ð1Sðð15 ððð54ððð

ðððð84 ð7FE 73% BR @14 ð1Sðð15 ððð55ððð

 74 \ END TEST2; ð1Sðð2ð ððð56ððð

 75 \PROC1: ð1Sðð16 ððð57ððð

76 \ PROCEDURE(P1PARM1); /\ THIS PROCEDURE NEVER EXECUTED \/ ððð58ððð

ðððð86 9ðEC DððC ððððC 77¬PROC1 STM @14,@12,12(@13) ð1Sðð16 ððð59ððð

ðððð8A D2ð3 CðF4 1ððð ðððF4 ððððð 78¬ MVC @PCðððð2(4),ð(@ð1) ð1Sðð16 ððð6ðððð

79 \ P1PARM1 = 1ð; ð1Sðð18 ððð61ððð

Figure 16 (Part 2 of 3). Annotated Assembler Listing

 CA Samples 77

ðððð9ð 582ð CðF4 ðððF4 8ð¬ L @ð2,@PAððð64 ð1Sðð18 ððð62ððð

ðððð94 413ð ðððA ððððA 81¬ LA @ð3,1ð ð1Sðð18 ððð63ððð

ðððð98 5ð3ð 2ððð ððððð 82¬ ST @ð3,P1PARM1(,@ð2) ð1Sðð18 ððð64ððð

 83 \ END PROC1; ð1Sðð19 ððð65ððð

ðððð9C 84 @ELðððð2 DS ðH ð1Sðð19 ððð66ððð

ðððð9C 85 @EFðððð2 DS ðH ð1Sðð19 ððð67ððð

ðððð9C 98EC DððC ððððC 86¬@ERðððð2 LM @14,@12,12(@13) ð1Sðð19 ððð68ððð

ððððAð ð7FE 87¬ BR @14 ð1Sðð19 ððð69ððð

ððððA2 88 @DATA DS ðH ððð7ðððð

ððððA4 89 DS ðF ððð71ððð

ððððA4 9ð @ALðððð2 DS ðA ððð72ððð

ððððA4 ððððð1ð8 91@ DC A(PARM2) ððð73ððð

ððððA8 92 @ALðððð3 DS ðA ððð74ððð

ððððA8 ððððð1ð4 93@ DC A(EXPARM2) ððð75ððð

ððððAC 94 DS ðF ððð76ððð

ððððAC 95@@SAðððð1 DS 18F ððð77ððð

ððððF4 96@@PCðððð2 DS 1F ððð78ððð

ððððF8 97 DS ðF ððð79ððð

ððððF8 ðððððððð 98@@CVððð63 DC V(TEST2B) ððð8ðððð

ððð1ðð 99 LTORG ððð81ððð

ððð1ðð 1ðð DS ðD ððð82ððð

ððð1ðð ððððððð5 1ð1@EXPARM1 DC F'5' ððð83ððð

ððð1ð4 ððððððð2 1ð2@EXPARM2 DC F'2' ððð84ððð

ððð1ð8 ððððððð2 1ð3@PARM2 DC F'2' ððð85ððð

ððððð 1ð4 @DYNSIZE EQU ð ððð86ððð

 ððððð 1ð5 @ðð EQU ð ððð87ððð

 ðððð1 1ð6 @ð1 EQU 1 ððð88ððð

 ðððð2 1ð7 @ð2 EQU 2 ððð89ððð

 ðððð3 1ð8 @ð3 EQU 3 ððð9ðððð

 ðððð4 1ð9 @ð4 EQU 4 ððð91ððð

 ðððð5 11ð @ð5 EQU 5 ððð92ððð

 ðððð6 111 @ð6 EQU 6 ððð93ððð

 ðððð7 112 @ð7 EQU 7 ððð94ððð

 ðððð8 113 @ð8 EQU 8 ððð95ððð

 ðððð9 114 @ð9 EQU 9 ððð96ððð

 ððððA 115 @1ð EQU 1ð ððð97ððð

 ððððB 116 @11 EQU 11 ððð98ððð

 ððððC 117 @12 EQU 12 ððð99ððð

 ððððD 118 @13 EQU 13 ðð1ððððð

 ððððE 119 @14 EQU 14 ðð1ð1ððð

 ððððF 12ð @15 EQU 15 ðð1ð2ððð

 ððððð 121 P1PARM1 EQU ð,4,C'F' ðð1ð3ððð

ðððF4 122 @PAððð64 EQU @PCðððð2,4,C'F' ðð1ð4ððð

ððð6C 123 @RFððð1ð EQU @DEððð12 ðð1ð5ððð

ððð11ð 124 DS ðD ðð1ð6ððð

ðð11ð 125 @ENDDATA EQU \ ðð1ð7ððð

 ðð11ð 126 @MODLEN EQU @ENDDATA-TEST2 ðð1ð8ððð

 127 END , ðð1ð9ððð

Figure 16 (Part 3 of 3). Annotated Assembler Listing

78 Application Testing Collection 1.5.0 User's Guide

Edit the CA Control File
This step is identical to the corresponding procedure for summary reports at “Edit
the CA Control File” on page 71.

Create Setup JCL
This step is identical to the corresponding procedure for summary reports at
“Create Setup JCL” on page 72.

Create JCL to Start a Monitor Session
This step is identical to the corresponding procedure for summary reports at
“Create JCL to Start a Monitor Session” on page 73.

Create JCL for an Annotated Listing
To create the annotated listing JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 4.

The Coverage Reports panel is displayed.

3. Select option 2.

The Create JCL for Summary and Annotation Report panel is displayed. You
create the JCL for printing the annotated listing (along with a summary) for
ASM01L from this panel.

4. If necessary, change the program name to ASMð1L.

5. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name RASM01L.

6. Press the End key (PF3) to exit the panel.

For more detailed information, see “Annotated Listing Coverage Report” on
page 95.

Create JCL to Link the Modified Object Modules
This step is identical to the corresponding procedure for summary reports at
“Create JCL to Link the Modified Object Modules” on page 74.

Create JCL to Run the GO Step
This step is identical to the corresponding procedure for summary reports at
“Create JCL to Run the GO Step” on page 74.

 CA Samples 79

Execute the JCL
When you have created all of the ASM01L JCL, you can run the ASM01L example
by executing the following JCL in the order listed. See Figure 7 on page 46 for a
flow diagram of these steps.

 1. SASM01L21

Performs the Setup step. All JCL steps should complete with condition code 0.

 2. LASM01L22

| If you instrumented object modules, links the object modules that were modified
| with breakpoints during the Setup step into the ASM01L load module.

 3. XASM01L21

Starts the monitor. JCL completes with condition code 0.

 4. GASM01L22

Runs sample program ASM01L. ASM01L runs to completion with condition
code 0.

 5. CASTATS23

Displays statistics with the CASTATS command. You should see a nonzero
EVNTS count in the TOTALS line. (This is an optional step for illustrative pur-
poses.)

 6. CASTOP23

Stops the monitor session. CA writes the statistics to disk.

 7. RASM01L21

Creates the annotated listing (and summary) of ASM01L. The report is in data
set proj_qual.ASM01L.REPORT.

21 JCL created from the panels and put into the JCL library.

22 JCL supplied with the installation materials in hi_lev_qual.V1R5M0.SAMPLE.JCL. (Sample JCL for all of the steps can be found in
this partitioned data set [PDS].)

23 Monitor commands issued from either the Control the CA/DA/UTA Monitor panel or the TSO command processor (ISPF option 6)
by entering:

 EX 'hi_lev_qual.V1R5Mð.REXX(cacmd)'

where cacmd is the command issued (such as, CASTATS, CASTOP, and so on).

80 Application Testing Collection 1.5.0 User's Guide

Editing the Coverage Assistant Control File

This chapter describes the function of the control file (CACTL) used by CA. The
CACTL contains the names of the compiler listings and copy to/from information.
CA, DA, and UTA share the CACTL file. See “CA, DA, and UTA Control File” on
page 209 for a complete description of this control file. This chapter only explains
how to use the control file with Coverage Assistant.

Contents of the Control File
The control file defines the programs to be analyzed. A sample control file
(CACTL) used to produce a COBOL summary or an annotated COBOL listing is
shown in Figure 9 on page 50. The sample control file for a PL/I summary or an
annotated PL/I listing is shown in Figure 12 on page 62. The sample file for an
ASM summary or an annotated ASM listing is shown in Figure 15 on page 72.
The statements and operands used in these control files can be summarized as
follows:

� The DEFAULTS statement specifies default values to be used by subsequent
COBOL , PL/I, and ASM statements.

� The COBOL statement indicates a COBOL program specification.

� The PL/I statement indicates a PL/I program specification.

� The ASM statement indicates an assembler program specification.

� The operand of the LISTDSN= keyword specifies the data set containing the
program's compiler listing.

| � The operand of the LISTMEMBER= keyword specifies the member name of a
| particular program listing in the LISTDSN data set. This operand replaces the
| asterisk in the LISTDSN specification in the DEFAULTS statement.

� The operand of the LOADMOD= keyword specifies the load module member
name.

� The operand of the FROMOBJDSN= keyword specifies the data set name of
the partitioned data set that contains the object code.

� The operand of the TOOBJDSN= keyword specifies the data set name of the
| partitioned data set that is to contain the instrumented object code generated
| by the CA Setup job.

� The OBJMEMBER= keyword that indicates the member name of the object
code within the FROMOBJDSN and TOOBJDSN data sets. If it is not speci-
fied, it defaults to the value of the LISTMEMBER operand.

| � The FROMLOADDSN= keyword specifies the data set name of the partitioned
| data set that contains the input load module.

| � The TOLOADDSN= keyword specifies the data set name of the partitioned
| data set that is to contain the instrumented load module generated by the CA
| Setup job.

| Note: The FROMOBJDSN and TOOBJDSN keywords are mutually exclusive of
| the FROMLOADDSN and TOLOADDSN keywords.

 Copyright IBM Corp. 1997, 1999 81

See “Contents of the Control File” on page 211 for a description of the syntax of
the control file.

Note: The control file shown in Figure 9 on page 50 contains both CA and UTA
control information. Only the DEFAULTS, COBOL, PL/I, and ASM statements are
processed by CA.

82 Application Testing Collection 1.5.0 User's Guide

Coverage Assistant Reports

CA can generate three kinds of reports to describe test case coverage:

 � Summary

A summary of the test case coverage using statement numbers of a high-level
language or offsets for the assembler language.

 � Annotated listings

Annotated compiler and assembler listings with a character on each break-
pointed statement to describe how each statement was executed.

| � Targeted Summary

A summary report that provides coverage information on specific “target” state-
ments, which can be identified by statement number or, for COBOL and PL/I,
by statements that reference specific variables.

You can select the type of CA report you want from the Coverage Reports panel.

Summary Coverage Report
The summary coverage report gives statistics on the coverage of all program areas
(PAs) during the test run. The summary report is divided into the following
sections:

� Program Area Data
Lists summary data on each PA. Lists the total number of code statements
and the number that were executed. Also lists the total number of branches
and the number of branches executed. See “PROGRAM AREA DATA” on
page 86 for details.

 � Unexecuted Code
Lists the unexecuted code statements in each PA. See “UNEXECUTED
CODE” on page 87 for details.

� Branches That Have Not Gone Both Ways
Lists the conditional branches that have not executed in both directions for
each PA. See “BRANCHES THAT HAVE NOT GONE BOTH WAYS” on
page 87 for details.

Examples of summary reports are shown in Figure 17 on page 84 and Figure 18
on page 85.

Each section of a report contains the date, time, and test case ID (if provided) of
the CA test run. You may provide the test case ID with the CAIDADD operator
command during a monitor session. See “CAIDADD” on page 261 for details on
this command. A summary of data for all PAs is displayed following the PA-specific
data.

The INTERNAL option was used to create the report in Figure 17 on page 84.
Paragraphs and their related statistics appear on separate lines. If the EXTERNAL
option had been used, statistics for all paragraphs in the object module would have
been combined on one line.

 Copyright IBM Corp. 1997, 1999 83

| 1 \\\\\\\\\ CA SUMMARY: PROGRAM AREA DATA \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 11:47.41

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | | STATEMENTS: | BRANCHES: |

| | PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |

| --

| 1 COBð1M ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM) 6 6 1ðð.ð ð ð 1ðð.ð

| 2 PROGA 8 7 87.5 6 5 83.3

| 3 PROCA 1 ð ð.ð ð ð 1ðð.ð

| 4 PROGB 7 5 71.4 6 3 5ð.ð

| 5 PROCB 2 2 1ðð.ð ð ð 1ðð.ð

| 6 COBð1M PROGC ATC.V1R5Mð.SAMPLE.COBOLST(COBð1CM) 7 5 71.4 6 5 83.3

| 7 PROCC 3 2 66.7 2 1 5ð.ð

| 8 COBð1M PROGD ATC.V1R5Mð.SAMPLE.COBOLST(COBð1DM) 6 ð ð.ð 6 ð ð.ð

| 9 PROCD 1 ð ð.ð ð ð 1ðð.ð

| --

| Summary for all PAs: 41 27 65.9 26 14 53.8

| 1 \\\\\\\\\ CA SUMMARY: UNEXECUTED CODE \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 11:47.41

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | |

| | PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end

| --

| 2 COBð1M PROGA ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM) 67 67

| 3 PROCA 79 79

| 4 PROGB 118 119

| 6 COBð1M PROGC ATC.V1R5Mð.SAMPLE.COBOLST(COBð1CM) 39 4ð

| 7 PROCC 58 58

| 8 COBð1M PROGD ATC.V1R5Mð.SAMPLE.COBOLST(COBð1DM) 37 46

| 9 PROCD 51 51

| --

| 1 \\\\\\\\\ CA SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 11:47.41

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | |

| | PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt

| --

| 2 COBð1M PROGA ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM) 66

| 4 PROGB 113 118

| 6 COBð1M PROGC ATC.V1R5Mð.SAMPLE.COBOLST(COBð1CM) 37

| 7 PROCC 57

| 8 COBð1M PROGD ATC.V1R5Mð.SAMPLE.COBOLST(COBð1DM) 37 41 45

| --

Figure 17. Summary Coverage Report for COB01M in COBOL

The INTERNAL option was used to create the report in Figure 18 on page 85.
Procedures, ON-units, Begin-blocks, and their related statistics are shown on sepa-
rate lines. If the EXTERNAL option had been used, statistics for all procedures,
ON-units, and Begin-blocks in the object module would have been combined on
one line.

84 Application Testing Collection 1.5.0 User's Guide

| 1 \\\\\\\\\ CA SUMMARY: PROGRAM AREA DATA \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 12:28.34

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | | STATEMENTS: | BRANCHES: |

| | PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |

| --

| 1 PLIð1M PLIð1AM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1AM) 9 9 1ðð.ð 6 5 83.3

| 2 PROC2A 2 ð ð.ð ð ð 1ðð.ð

| 3 PLIð1M PLIð1BM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1BM) 11 8 72.7 6 4 66.7

| 4 PROC1 2 2 1ðð.ð ð ð 1ðð.ð

| 5 PLIð1M PLIð1CM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1CM) 7 4 57.1 6 3 5ð.ð

| 6 PROC1 4 3 75.ð 2 1 5ð.ð

| 7 PLIð1M PLIð1DM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1DM) 2 ð ð.ð 2 ð ð.ð

| 8 PROC1 4 ð ð.ð 2 ð ð.ð

| --

| Summary for all PAs: 41 26 63.4 24 13 54.2

| 1 \\\\\\\\\ CA SUMMARY: UNEXECUTED CODE \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 12:28.34

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | |

| | PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end

| --

| 2 PLIð1M PROC2A ATC.V1R5Mð.SAMPLE.PLILST(PLIð1AM) 17 18

| 3 PLIð1M PLIð1BM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1BM) 9 9 15 16

| 5 PLIð1M PLIð1CM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1CM) 6 6 1ð 11

| 6 PROC1 16 16

| 7 PLIð1M PLIð1DM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1DM) 3 11

| 8 PROC1 6 1ð

| --

| 1 \\\\\\\\\ CA SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS \\\\\\\\

| ð DATE: ð2/15/1999

| TIME: 12:28.34

| TEST CASE ID:

| ð |<-- PROGRAM IDENTIFICATION -->|

| | | |

| | PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt

| --

| 1 PLIð1M PLIð1AM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1AM) 1ð

| 3 PLIð1M PLIð1BM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1BM) 8 14

| 5 PLIð1M PLIð1CM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1CM) 5 8 9

| 6 PROC1 15

| 7 PLIð1M PLIð1DM ATC.V1R5Mð.SAMPLE.PLILST(PLIð1DM) 3

| 8 PROC1 7

| --

Figure 18. Summary Coverage Reports for PLI01M in PL/I

 CA Reports 85

Areas of the Report

PROGRAM AREA DATA
The portion of the report called PROGRAM AREA DATA contains the following
information:

 � PROGRAM IDENTIFICATION

– The load module name, paragraph name, and listing name (COBOL)
– The load module name, the procedure, ON-unit, or Begin-block name, and

the listing name (PL/I)
– The load module name, CSECT name, and listing name (ASM)

 � Coverage statistics

Data on test case coverage for each PA.

PROGRAM IDENTIFICATION

The fields in the PROGRAM IDENTIFICATION area are:

PA Number of the program area (PA)

LOAD MOD Load module name.

PROCEDURE COBOL: Paragraph name. These are shown in source order.
Section names are listed only if they contain statements outside
of paragraphs.

PL/I: Procedure, ON-unit, or Begin-block name (a user-supplied
label, the compiler-generated name, or a CA-generated name).
These are shown in source order.

ASM: CSECT name.

LISTING NAME Listing name.

Coverage Statistics

The fields in Coverage Statistics are:

STATEMENTS: TOTAL The statements of code for this test case run

STATEMENTS: EXEC The statements of code that were executed

STATEMENTS: % The percentage of statements that were executed

BRANCHES: CPATH The number of conditional branch paths (number of con-
ditional branches multiplied by 2)

BRANCHES: TAKEN The number of conditional branch paths that were exe-
cuted

BRANCHES: % The percentage of conditional branch paths that were
executed

86 Application Testing Collection 1.5.0 User's Guide

 UNEXECUTED CODE
The portion of the report called UNEXECUTED CODE contains the following infor-
mation:

PROGRAM IDENTIFICATION Described previously under PROGRAM IDEN-
TIFICATION.

start The line number of the first unexecuted instruc-
tion in this unexecuted segment.

end The line number of the last unexecuted instruc-
tion in this unexecuted segment.

BRANCHES THAT HAVE NOT GONE BOTH WAYS
The portion of the report called BRANCHES THAT HAVE NOT GONE BOTH
WAYS contains the following information:

PROGRAM IDENTIFICATION Described previously under PROGRAM IDEN-
TIFICATION.

stmt The line number of the conditional branch
instruction that did not execute in both
directions.

Suppression of Conditional Branch Coverage with Performance Mode
When the Performance Mode (described at “Using the Performance Mode to
Reduce Monitor Overhead” on page 253) is used, the breakpoints for conditional
branches are not kept in storage, and the conditional branch coverage data is inac-
curate. For summaries produced from test runs when the Performance Mode is
enabled during SETUP, the conditional branch coverage data is suppressed. In the
PROGRAM AREA DATA section of the summary report, the BRANCHES section is
blank. In the BRANCHES THAT HAVE NOT GONE BOTH WAYS section, the con-
ditional branches are not listed.

If the summary is performed on a test run where some object modules are tested
with the Performance Option on, and some with it off, those object modules that are
tested with it off have their conditional branch coverage listed.

 CA Reports 87

Examples of Reports Using Listings
The ATC installation package contains the following examples:

� COB01M (COBOL for MVS & VM example)
� COB012 (VS COBOL II example)
� COB01O (OS/VS COBOL example)
� COB02M (COBOL for MVS & VM example)
� COB022 (VS COBOL II example)
� COB02O (OS/VS COBOL example)
� PLI01M (PL/I for MVS & VM example)
� PLI012 (PL/I 2.3.0 example)
� PLI011 (PL/I 1.5.1 example)
� ASM01L (High Level Assembler 1.2.0 example)
� ASM01H (Assembler H 2.1.0 example)

All of these examples include sample coverage reports. COB01M, COB02M, and
PLI01M also include sample targeted coverage reports.

Summary Report for Assembler
The summary for a High Level Assembler or an Assembler H program differs from
the high-level summaries described previously. For assembler, code references
are in offsets within the listing, not references to statement numbers. For an
example summary report, see Figure 19 on page 89.

Areas of the Report

 EXECUTED CODE
STATEMENTS: TOTAL The bytes of executable code in the program. Data

areas occurring anywhere in the listing are excluded
from this count.

STATEMENTS: EXEC The bytes of executable code in the program that exe-
cuted.

 UNEXECUTED CODE
START The offset within the PA of the first unexecuted instruc-

tion in this unexecuted segment

END The offset within the PA of the last unexecuted instruc-
tion in this unexecuted segment

88 Application Testing Collection 1.5.0 User's Guide

BRANCHES THAT HAVE NOT GONE BOTH WAYS
STMT The offset within the PA of the conditional branch

instruction that did not execute in both directions

ASTERISKS BY STATEMENT TOTALS
If your code contains relative branching, for example:

B \+2ð

your coverage data may not be accurate (indicated by an * in the STATEMENT
TOTALS column). To get accurate coverage in this case, enable the frequency
mode flag in defaults and recreate your SETUP JCL (and rerun all steps).

1 \\\\\\\\\ CASUMMARY: PROGRAM AREA DATA \\\\\\\\

ð DATE: ð4/22/1998

 TIME: 15:ð9.53

TEST CASE ID:

ð |<-- PROGRAM IDENTIFICATION -->|

 | | | STATEMENTS: | BRANCHES: |

| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |

 --

1 ASMð1L TEST2 ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1AL) \ 144 1ð4 72.2 6 5 83.3

2 ASMð1L TEST2B ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1BL) \ 164 144 87.8 6 4 66.7

3 ASMð1L TEST2C ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1CL) \ 14ð 118 84.3 8 5 62.5

4 ASMð1L TEST2D ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1DL) \ 92 ð ð.ð 4 ð ð.ð

 --

Summary for all PAs: 54ð 366 67.8 24 14 58.3

1 \\\\\\\\\ CASUMMARY: UNEXECUTED CODE \\\\\\\\

ð DATE: ð4/22/1998

 TIME: 15:ð9.53

TEST CASE ID:

ð |<-- PROGRAM IDENTIFICATION -->|

 | | |

| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end

 --

 1 ASMð1L TEST2 ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1AL) ðððð56 ðððð62 ðððð86 ððððAð

 2 ASMð1L TEST2B ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1BL) ðððð5ð ðððð5A ðððð78 ðððð82

 3 ASMð1L TEST2C ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1CL) ðððð34 ðððð3A ðððð5ð ðððð5A ðððð92 ðððð98

 4 ASMð1L TEST2D ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1DL) ðððððð ðððððð ðððð16 ðððð6C

 --

1 \\\\\\\\\ CASUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS \\\\\\\\

ð DATE: ð4/22/1998

 TIME: 15:ð9.53

TEST CASE ID:

ð |<-- PROGRAM IDENTIFICATION -->|

 | | |

| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt

 --

 1 ASMð1L TEST2 ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1AL) ðððð52

 2 ASMð1L TEST2B ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1BL) ðððð4ð ðððð8C

3 ASMð1L TEST2C ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1CL) ðððð3ð ðððð64 ðððð8E

 4 ASMð1L TEST2D ATC.V1R5Mð.SAMPLE.ASMLLST(ASMð1DL) ðððð3ð ðððð5E

 --

Figure 19. Summary Report for ASM01L

 CA Reports 89

Creating Coverage Reports
To create a coverage report, select option 1 from the ATC Primary Option Menu,
and then option 4 from the Coverage, Distillation, and Unit Test Assistant

panel. The Coverage Reports panel, shown in Figure 20 is displayed. This panel
allows you to select the kind of report you want.

à ð
 ------------------------------- Coverage Reports ------------------------------

 Option ===>

 1 Summary Create JCL for Summary Report

 2 Annotation Create JCL for Summary and Annotation Report

 3 Combine Create JCL for Combining Multiple Runs

| 4 Targeted Generate a Targeted Summary Report

 Enter END to Terminate

á ñ

Figure 20. Coverage Reports Panel

Summary Create JCL for a summary report.

Annotation Create JCL for both summary and annotated listing reports.

Combine Create JCL for combining multiple CA coverage runs.

| Targeted Generate a targeted summary report from a coverage run.

90 Application Testing Collection 1.5.0 User's Guide

Creating Summary and Annotated Listing Report JCL Using the Panels
To create a summary report, select option 1 on the Coverage Reports panel. The
Create JCL for Summary Report panel, shown in Figure 21, allows you to specify
summary report options and parameters.

à ð
------------------------ Create JCL for Summary Report ------------------------

 Option ===>_

 1 Generate Generate JCL from parameters

 2 Edit Edit JCL

 3 Submit Submit JCL

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COBð1M

 Input Files:

Breakpoint Table Dsn. 'YOUNG.TEST.COBð1M.BRKTAB'

Breakout Dsn. 'YOUNG.TEST.COBð1M.BRKOUT'

JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(Txxxxxxx)'

Output Summary Type and File:

Type. INTERNAL (Internal|External)

Report Dsn 'YOUNG.TEST.COBð1M.SUMMARY'

(\ for default sysout class)

á ñ

Figure 21. Create JCL for Summary Report Panel

Generate
Generate JCL from the parameters you have specified on the panel.

Edit
Make changes to existing JCL.

Submit
Submit for execution the JCL specified in the JCL Dsn field on this
panel.

Use Program Name for File Name
If you want to construct the data set names from the default high-level
qualifier, the specified program name, and the default low-level qualifier
for each data set, enter YES.

When you press Enter, the file names on the panel are changed auto-
matically. Using the program name to construct the data set names is
the normal CA procedure.

 CA Reports 91

Program Name
Name to use for CA files if you enter YES in the Use Program Name for

File Name field. Note that this can be any valid name. It does not have
to be the name of any of your programs. Names of the following form
are created:

� Sequential data sets:

'proj_qual.program_name.file_type'

For example: 'YOUNG.TEST.COB01M.BRKTAB'

� Partitioned data sets:

'proj_qual.file_type(program_name)'

For example: 'YOUNG.TEST.BRKTAB(COB01M)'

Input Files
Names of the breakpoint table and breakout data sets.

JCL Dsn
Specifies the name of the JCL data set that contains the JCL for this
action.

Note: If the Use Program Name for File Name field is set to YES, then
the member name or program name qualifier of the data set will be
Txxxxxxx, where xxxxxxx is the first seven characters of the program
name.

Output Summary Type and File
Type of summary report (internal or external) and the name of the data
set containing the summary report.

92 Application Testing Collection 1.5.0 User's Guide

To create a summary report and annotated listings, select option 2 on the Coverage
Reports panel. The Create JCL for Summary and Annotation Report panel, shown
in Figure 22, allows you to specify summary report and annotated listing options.

à ð
----------------- Create JCL for Summary and Annotation Report ----------------

 Option ===>_

 1 Generate Generate JCL from parameters

 2 Edit Edit JCL

 3 Submit Submit JCL

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COBð1M

 Input Files:

Control File Dsn. . . 'YOUNG.TEST.COBð1M.CACTL'

Breakpoint Table Dsn. 'YOUNG.TEST.COBð1M.BRKTAB'

Breakout Dsn. 'YOUNG.TEST.COBð1M.BRKOUT'

JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(Rxxxxxxx)'

Output Summary Type and Annotation File:

Type. INTERNAL (Internal|External)

Report Dsn 'YOUNG.TEST.COBð1M.REPORT'

(\ for default sysout class)

á ñ

Figure 22. Create JCL for Summary and Annotated Listing Report Panel

The panel's options and fields are as follows:

Generate
Generate JCL from the parameters you have specified on the panel.

Edit
Make changes to existing JCL.

Submit
Submit for execution the JCL specified in the JCL Dsn field on this
panel.

Use Program Name for File Name
If you want to construct the data set names from the default high-level
qualifier, the specified program name, and the default low-level qualifier
for each data set, enter YES.

When you press Enter, the file names on the panel are changed auto-
matically. Using the program name is the normal CA procedure.

 CA Reports 93

Program Name
Name to use for CA files if you enter YES in the Use Program Name for

File Name field. Note that this can be any valid name. It does not have
to be the name of any of your programs. Names of the following form
are created:

� Sequential data sets:

'proj_qual.program_name.file_type'

For example: 'YOUNG.TEST.COB01M.BRKTAB'

� Partitioned data sets:

'proj_qual.file_type(program_name)'

For example: 'YOUNG.TEST.BRKTAB(COB01M)'

Input Files
Names of the control file (CACTL), breakpoint table, and breakout data
sets.

JCL Dsn
Specifies the name of the JCL data set that contains the JCL for this
action.

Note: If the Use Program Name for File Name field is set to YES, then
the member name or program name qualifier of the data set will be
Rxxxxxxx, where xxxxxxx is the first seven characters of the program
name.

Output Summary Type and Annotation File
Type of summary report (internal or external) and the name of the data
set containing the summary and annotated listing report.

Creating JCL for a Summary without Annotated Listings
If you only want a summary of test case coverage results, without the annotated
listings, select option 1 from the Coverage Reports panel.

94 Application Testing Collection 1.5.0 User's Guide

Annotated Listing Coverage Report
You can create two kinds of annotated listings to show code coverage:

All Every line of the listing is printed.

Unexecuted Only unexecuted instructions or conditional branch instructions that
have not gone both ways are printed.

Each instruction line in the listings has an annotation character placed to the right
of the statement number to indicate what happened during the test run:

& A conditional branch instruction has executed both ways.24

> A conditional branch instruction has branched, but not fallen through.24

V A conditional branch instruction has fallen through, but not branched.24

: A non-branch instruction has executed.

¬ An instruction has not executed.

@ Data area in the assembler listing

% Unconditional branch that has been executed in the assembler listing

These characters are the defaults. You can replace them with any others you
prefer by supplying a parameter to the REPORT program.

Figure 23 on page 96 shows a sample COBOL annotated listing in which all lines
have been printed.

Figure 24 on page 98 shows a sample PL/I annotated listing in which all lines have
been printed.

Figure 25 on page 99 shows a sample ASM annotated listing in which all lines
have been printed.

24 The annotation of statements with conditional branches is affected by the Performance Mode. For more information, see
“Changes in Annotation Symbols with Performance Mode” on page 104

 CA Reports 95

 ððððð1 IDENTIFICATION DIVISION.

 ððððð2 PROGRAM-ID. COBð1AM.

 ððððð3 \\

 ððððð4 \ \

ððððð5 \ LICENSED MATERIALS - PROPERTY OF IBM \

 ððððð6 \ \

 ððððð7 \ 5799-GBN \

 ððððð8 \ \

ððððð9 \ (C) COPYRIGHT IBM CORP. 1997, 1998 ALL RIGHTS RESERVED \

 ðððð1ð \ \

ðððð11 \ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR \

ðððð12 \ DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM \

 ðððð13 \ CORP. \

 ðððð14 \ \

 ðððð15 \ \

 ðððð16 \\

 ðððð17 \\

 ðððð18 \ \

ðððð19 \ COBOL FOR MVS & VM TEST. \

 ðððð2ð \ \

ðððð21 \ MEMBER COBð1AM HAS ENTRY POINT COBð1AM. \

ðððð22 \ CALLS COBð1BM, WHICH CALLS COBð1CM, WHICH CALLS COBð1DM. \

 ðððð23 \\

 ðððð24

 ðððð25 ENVIRONMENT DIVISION.

 ðððð26

 ðððð27 DATA DIVISION.

 ðððð28

 ðððð29 WORKING-STORAGE SECTION.

ðððð3ð ð1 TAPARM1 PIC 99 VALUE 5.

ðððð31 ð1 TAPARM2 PIC 99 VALUE 2.

ðððð32 ð1 COBð1BM PIC X(7) VALUE 'COBð1BM'.

ðððð33 ð1 P1PARM1 PIC 99 VALUE ð.

 ðððð34

 ðððð35 ð1 TASTRUCT.

 ðððð36 ð5 LOC-ID.

 ðððð37 1ð STATE PIC X(2).

 ðððð38 1ð CITY PIC X(3).

 ðððð39 ð5 OP-SYS PIC X(3).

 ðððð4ð

 ðððð41 PROCEDURE DIVISION.

 ðððð42

ðððð43 \ THE FOLLOWING ALWAYS PERFORMED

 ðððð44

ðððð45 \ ACCESS BY TOP LEVEL QUALIFIER

ðððð46 : MOVE 'ILCHIMVS' TO TASTRUCT.

 ðððð47

ðððð48 \ ACCESS BY MID LEVEL QUALIFIERS

ðððð49 : MOVE 'ILSPR' TO LOC-ID.

ðððð5ð : MOVE 'AIX' TO OP-SYS.

 ðððð51

ðððð52 \ ACCESS BY LOW LEVEL QUALIFIERS

ðððð53 : MOVE 'KY' TO STATE.

ðððð54 : MOVE 'LEX' TO CITY.

ðððð55 : MOVE 'VM ' TO OP-SYS.

 ðððð56

 ðððð57 PROGA.

 ðððð58

ðððð59 \ THIS PERFORM EXECUTED

ðððð6ð & PERFORM WITH TEST BEFORE UNTIL TAPARM1 = ð

ðððð61 : 1 SUBTRACT 1 FROM TAPARM1

 ðððð62 : 1 CALL 'COBð1BM'

 ðððð63 END-PERFORM

 ðððð64

ðððð65 \ THIS IF ALWAYS FALSE

ðððð66 > IF TAPARM2 = ð

 ðððð67 ¬ 1 PERFORM PROCA

 ðððð68 END-IF

Figure 23 (Part 1 of 2). Annotated COBOL Listing

96 Application Testing Collection 1.5.0 User's Guide

 ðððð69

ðððð7ð \ THIS PERFORM EXECUTED

ðððð71 & PERFORM WITH TEST BEFORE UNTIL TAPARM2 = ð

ðððð72 : 1 SUBTRACT 1 FROM TAPARM2

 ðððð73 END-PERFORM

 ðððð74 : STOP RUN

 ðððð75 .

 ðððð76

 ðððð77 PROCA.

ðððð78 \ PROCA NEVER CALLED

ðððð79 ¬ MOVE 1ð TO P1PARM1

 ðððð8ð .

 ðððð81

ðððð82 \ START OF COBð1BM NESTED IN COBð1AM

 ðððð83

 ðððð84 1 IDENTIFICATION DIVISION.

 ðððð85 1 PROGRAM-ID. COBð1BM.

 ðððð86 1 \\

 ðððð87 1 \ \

 ðððð88 1 \ COBOL FOR MVS & VM TEST. \

 ðððð89 1 \ \

 ðððð9ð 1 \ COBð1BM, CALLED BY COBð1AM. \

 ðððð91 1 \\

 ðððð92 1

 ðððð93 1 ENVIRONMENT DIVISION.

 ðððð94 1

 ðððð95 1 DATA DIVISION.

 ðððð96 1

 ðððð97 1 WORKING-STORAGE SECTION.

 ðððð98 1 ð1 TBPARM1 PIC 99 VALUE 5.

 ðððð99 1 ð1 TBPARM2 PIC 99 VALUE ð.

 ððð1ðð 1 ð1 COBð1CM PIC X(7) VALUE 'COBð1CM'.

 ððð1ð1 1 ð1 P1PARM1 PIC 99 VALUE ð.

 ððð1ð2 1

 ððð1ð3 1 PROCEDURE DIVISION.

 ððð1ð4 1

 ððð1ð5 1 PROGB.

 ððð1ð6 1 \ THIS PERFORM EXECUTED

ððð1ð7 & 1 PERFORM WITH TEST BEFORE UNTIL TBPARM1 = ð

ððð1ð8 : 1 1 SUBTRACT 1 FROM TBPARM1

ððð1ð9 : 1 1 CALL 'COBð1CM'

 ððð11ð 1 END-PERFORM

 ððð111 1

 ððð112 1 \ THIS IF EXECUTED

ððð113 V 1 IF TBPARM2 = ð

ððð114 : 1 1 PERFORM PROCB

 ððð115 1 END-IF

 ððð116 1

 ððð117 1 \ THIS PERFORM NOT EXECUTED

ððð118 ¬ 1 PERFORM WITH TEST BEFORE UNTIL TBPARM2 = ð

ððð119 ¬ 1 1 SUBTRACT 1 FROM TBPARM2

 ððð12ð 1 END-PERFORM

 ððð121 1 .

 ððð122 1

 ððð123 1 PROCB.

 ððð124 1 \ PROCB EXECUTED

ððð125 : 1 MOVE 1ð TO P1PARM1

 ððð126 1 .

 ððð127 1

ððð128 : 1 EXIT PROGRAM.

 ððð129 1

 ððð13ð 1 END PROGRAM COBð1BM.

ððð131 END PROGRAM COBð1AM.

Figure 23 (Part 2 of 2). Annotated COBOL Listing

 CA Reports 97

1 ð PLIð1AM:PROC OPTIONS(MAIN); /\ PL/I FOR MVS & VM TEST

 /\\/

 /\ \/

/\ Licensed Materials - Property of IBM \/

 /\ \/

 /\ 5799-GBN \/

 /\ \/

/\ (C) Copyright IBM Corp. 1997, 1998 All Rights Reserved \/

 /\ \/

/\ US Government Users Restricted Rights - Use, duplication or \/

/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp.\/

 /\ \/

 /\\/

2 1 ð DCL EXPARM1 FIXED BIN(31) INIT(5);

3 1 ð DCL EXPARM2 FIXED BIN(31) INIT(2);

4 1 ð DCL PARM2 FIXED BIN(31) INIT(2);

5 1 ð DCL PLIð1BM EXTERNAL ENTRY; /\ \/

6& 1 ð DO WHILE (EXPARM1 > ð); /\ THIS DO LOOP EXECUTED 5 TIMES\/

7: 1 1 EXPARM1 = EXPARM1 -1; /\

8: 1 1 CALL PLIð1BM(PARM2); /\ PLIð1BM CALLED 5 TIMES

9: 1 1 END;

1ð> 1 ð IF (EXPARM2 = ð) THEN /\ THIS BRANCH ALWAYS TAKEN \/

CALL PROC2A(EXPARM2); /\ PROC2A NEVER CALLED \/

11& 1 ð DO WHILE (EXPARM2 > ð); /\ DO LOOP EXECUTED TWICE \/

12: 1 1 EXPARM2 = EXPARM2 - 1;

13: 1 1 END;

14: 1 ð RETURN;

15 1 ð PROC2A: PROCEDURE(P1PARM1); /\ THIS PROCEDURE NEVER EXECU

16 2 ð DCL P1PARM1 FIXED BIN(31);

17¬ 2 ð P1PARM1 = 1ð;

18¬ 2 ð END PROC2A;

19 1 ð END PLIð1AM;

Figure 24. Annotated PL/I Listing

98 Application Testing Collection 1.5.0 User's Guide

ACTIVE USINGS: NONE

 LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT HLASM R2.ð 1997/11/14 ð9.55

 1 \\ ððððð1ðð

 2 \ \ ððððð2ðð

3 \ LICENSED MATERIALS - PROPERTY OF IBM \ ððððð3ðð

 4 \ \ ððððð4ðð

5 \ 5799-GBN \ ððððð5ðð

 6 \ \ ððððð6ðð

7 \ (C) COPYRIGHT IBM CORP. 1997, 1998 ALL RIGHTS RESERVED \ ððððð7ðð

 8 \ \ ððððð8ðð

9 \ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR \ ððððð9ðð

1ð \ DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM \ ðððð1ððð

11 \ CORP. \ ðððð11ðð

 12 \ \ ðððð12ðð

 13 \ \ ðððð13ðð

 14 \\ ðððð14ðð

 15 \\ ðððð15ðð

 16 \ \ ðððð16ðð

17 \ HIGH LEVEL ASSEMBLER TEST. \ ðððð17ð1

 18 \ \ ðððð18ðð

 19 \\ ðððð19ðð

ðððððð 2ð TEST2 CSECT , ð1Sððð1 ðððð2ððð

 1 \\ ððððð1ðð

 2 \ \ ððððð2ðð

3 \ LICENSED MATERIALS - PROPERTY OF IBM \ ððððð3ðð

 4 \ \ ððððð4ðð

5 \ 5799-GBN \ ððððð5ðð

 6 \ \ ððððð6ðð

7 \ (C) COPYRIGHT IBM CORP. 1997 ALL RIGHTS RESERVED \ ððððð7ðð

 8 \ \ ððððð8ðð

9 \ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR \ ððððð9ðð

1ð \ DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM \ ðððð1ððð

11 \ CORP. \ ðððð11ðð

 12 \ \ ðððð12ðð

 13 \ \ ðððð13ðð

 14 \\ ðððð14ðð

 15 \\ ðððð15ðð

 16 \ \ ðððð16ðð

17 \ HIGH LEVEL ASSEMBLER TEST. \ ðððð17ð1

 18 \ \ ðððð18ðð

 19 \\ ðððð19ðð

ðððððð 21 @MAINENT DS ðH ð1Sððð1 ðððð3ððð

R:F ððððð 22 USING \,@15 ð1Sððð1 ðððð4ððð

ðððððð 47Fð Fð16 ððð16 23% B @PROLOG ð1Sððð1 ðððð5ððð

ððððð4 1ð 24@ DC AL1(16) ð1Sððð1 ðððð6ððð

ððððð5 E3C5E2E3F24ð4ð4ð 25@ DC C'TEST2 97.295' ð1Sððð1 ðððð7ððð

 26 DROP @15 ðððð8ððð

ðððð15 ðð

ðððð16 9ðEC DððC ððððC 27:@PROLOG STM @14,@12,12(@13) ð1Sððð1 ðððð9ððð

ðððð1A 18CF 28: LR @12,@15 ð1Sððð1 ððð1ðððð

 ððððð 29 @PSTART EQU TEST2 ð1Sððð1 ððð11ððð

R:C ððððð 3ð USING @PSTART,@12 ð1Sððð1 ððð12ððð

ðððð1C 5ðDð CðBð ðððBð 31: ST @13,@SAðððð1+4 ð1Sððð1 ððð13ððð

ðððð2ð 41Eð CðAC ðððAC 32: LA @14,@SAðððð1 ð1Sððð1 ððð14ððð

ðððð24 5ðEð Dðð8 ðððð8 33: ST @14,8(,@13) ð1Sððð1 ððð15ððð

ðððð28 18DE 34: LR @13,@14 ð1Sððð1 ððð16ððð

35 \ DO WHILE(EXPARM1>ð); /\ THIS DO LOOP EXECUTED 5 TIMES \/ ððð17ððð

ðððð2A 47Fð Cð42 ððð42 36% B @DEðððð6 ð1Sððð6 ððð18ððð

ðððð2E 37 @DLðððð6 DS ðH ð1Sððð7 ððð19ððð

38 \ EXPARM1 = EXPARM1 - 1; /\ \/ ððð2ðððð

ðððð2E 581ð C1ðð ðð1ðð 39: L @ð1,EXPARM1 ð1Sððð7 ððð21ððð

ðððð32 ð61ð 4ð: BCTR @ð1,ð ð1Sððð7 ððð22ððð

ðððð34 5ð1ð C1ðð ðð1ðð 41: ST @ð1,EXPARM1 ð1Sððð7 ððð23ððð

42 \ CALL TEST2B(PARM2); /\ TEST2B CALLED 5 TIMES \/ ððð24ððð

ðððð38 58Fð CðF8 ðððF8 43: L @15,@CVððð63 ð1Sððð8 ððð25ððð

ðððð3C 411ð CðA4 ðððA4 44: LA @ð1,@ALðððð2 ð1Sððð8 ððð26ððð

ðððð4ð ð5EF 45% BALR @14,@15 ð1Sððð8 ððð27ððð

 46 \ END; ð1Sððð9 ððð28ððð

Figure 25 (Part 1 of 3). Annotated ASM Listing

 CA Reports 99

ðððð42 58ðð C1ðð ðð1ðð 47:@DEðððð6 L @ðð,EXPARM1 ð1Sððð9 ððð29ððð

ðððð46 12ðð 48: LTR @ðð,@ðð ð1Sððð9 ððð3ðððð

ðððð48 472ð Cð2E ððð2E 49& BP @DLðððð6 ð1Sððð9 ððð31ððð

5ð \ IF (EXPARM2 = ð) THEN /\ THIS BRANCH ALWAYS TAKEN \/ ððð32ððð

ðððð4C 581ð C1ð4 ðð1ð4 51: L @ð1,EXPARM2 ð1Sðð1ð ððð33ððð

ðððð5ð 1211 52: LTR @ð1,@ð1 ð1Sðð1ð ððð34ððð

ðððð52 477ð Cð6C ððð6C 53> BNZ @RFððð1ð ð1Sðð1ð ððð35ððð

ðððð56 411ð CðA8 ðððA8 55¬ LA @ð1,@ALðððð3 ð1Sðð11 ððð37ððð

ðððð5A 45Eð Cð86 ððð86 56¬ BAL @14,PROC1 ð1Sðð11 ððð38ððð

57 \ DO WHILE(EXPARM2>ð); /\ DO LOOP EXECUTED TWICE \/ ððð39ððð

ðððð5E 47Fð Cð6C ððð6C 58¬ B @DEððð12 ð1Sðð12 ððð4ðððð

ðððð62 59 @DLððð12 DS ðH ð1Sðð13 ððð41ððð

6ð \ EXPARM2 = EXPARM2 - 1; ð1Sðð13 ððð42ððð

ðððð62 582ð C1ð4 ðð1ð4 61: L @ð2,EXPARM2 ð1Sðð13 ððð43ððð

ðððð66 ð62ð 62: BCTR @ð2,ð ð1Sðð13 ððð44ððð

ðððð68 5ð2ð C1ð4 ðð1ð4 63: ST @ð2,EXPARM2 ð1Sðð13 ððð45ððð

 64 \ END; ð1Sðð14 ððð46ððð

ðððð6C 583ð C1ð4 ðð1ð4 65:@DEððð12 L @ð3,EXPARM2 ð1Sðð14 ððð47ððð

ðððð7ð 1233 66: LTR @ð3,@ð3 ð1Sðð14 ððð48ððð

ðððð72 472ð Cð62 ððð62 67& BP @DLððð12 ð1Sðð14 ððð49ððð

 68 \ RETURN CODE(ð); ð1Sðð15 ððð5ðððð

ðððð76 1FFF 69: SLR @15,@15 ð1Sðð15 ððð51ððð

ðððð78 58Dð Dðð4 ðððð4 7ð: L @13,4(,@13) ð1Sðð15 ððð52ððð

ðððð7C 58Eð DððC ððððC 71: L @14,12(,@13) ð1Sðð15 ððð53ððð

ðððð8ð 98ðC Dð14 ððð14 72: LM @ðð,@12,2ð(@13) ð1Sðð15 ððð54ððð

ðððð84 ð7FE 73% BR @14 ð1Sðð15 ððð55ððð

 74 \ END TEST2; ð1Sðð2ð ððð56ððð

 75 \PROC1: ð1Sðð16 ððð57ððð

76 \ PROCEDURE(P1PARM1); /\ THIS PROCEDURE NEVER EXECUTED \/ ððð58ððð

ðððð86 9ðEC DððC ððððC 77¬PROC1 STM @14,@12,12(@13) ð1Sðð16 ððð59ððð

ðððð8A D2ð3 CðF4 1ððð ðððF4 ððððð 78¬ MVC @PCðððð2(4),ð(@ð1) ð1Sðð16 ððð6ðððð

79 \ P1PARM1 = 1ð; ð1Sðð18 ððð61ððð

ðððð9ð 582ð CðF4 ðððF4 8ð¬ L @ð2,@PAððð64 ð1Sðð18 ððð62ððð

ðððð94 413ð ðððA ððððA 81¬ LA @ð3,1ð ð1Sðð18 ððð63ððð

ðððð98 5ð3ð 2ððð ððððð 82¬ ST @ð3,P1PARM1(,@ð2) ð1Sðð18 ððð64ððð

 83 \ END PROC1; ð1Sðð19 ððð65ððð

ðððð9C 84 @ELðððð2 DS ðH ð1Sðð19 ððð66ððð

ðððð9C 85 @EFðððð2 DS ðH ð1Sðð19 ððð67ððð

ðððð9C 98EC DððC ððððC 86¬@ERðððð2 LM @14,@12,12(@13) ð1Sðð19 ððð68ððð

ððððAð ð7FE 87¬ BR @14 ð1Sðð19 ððð69ððð

ððððA2 88 @DATA DS ðH ððð7ðððð

ððððA4 89 DS ðF ððð71ððð

ððððA4 9ð @ALðððð2 DS ðA ððð72ððð

ððððA4 ððððð1ð8 91@ DC A(PARM2) ððð73ððð

ððððA8 92 @ALðððð3 DS ðA ððð74ððð

ððððA8 ððððð1ð4 93@ DC A(EXPARM2) ððð75ððð

ððððAC 94 DS ðF ððð76ððð

ððððAC 95@@SAðððð1 DS 18F ððð77ððð

ððððF4 96@@PCðððð2 DS 1F ððð78ððð

ððððF8 97 DS ðF ððð79ððð

ððððF8 ðððððððð 98@@CVððð63 DC V(TEST2B) ððð8ðððð

ððð1ðð 99 LTORG ððð81ððð

ððð1ðð 1ðð DS ðD ððð82ððð

ððð1ðð ððððððð5 1ð1@EXPARM1 DC F'5' ððð83ððð

ððð1ð4 ððððððð2 1ð2@EXPARM2 DC F'2' ððð84ððð

ððð1ð8 ððððððð2 1ð3@PARM2 DC F'2' ððð85ððð

ððððð 1ð4 @DYNSIZE EQU ð ððð86ððð

 ððððð 1ð5 @ðð EQU ð ððð87ððð

 ðððð1 1ð6 @ð1 EQU 1 ððð88ððð

 ðððð2 1ð7 @ð2 EQU 2 ððð89ððð

 ðððð3 1ð8 @ð3 EQU 3 ððð9ðððð

 ðððð4 1ð9 @ð4 EQU 4 ððð91ððð

Figure 25 (Part 2 of 3). Annotated ASM Listing

100 Application Testing Collection 1.5.0 User's Guide

 ðððð5 11ð @ð5 EQU 5 ððð92ððð

 ðððð6 111 @ð6 EQU 6 ððð93ððð

 ðððð7 112 @ð7 EQU 7 ððð94ððð

 ðððð8 113 @ð8 EQU 8 ððð95ððð

 ðððð9 114 @ð9 EQU 9 ððð96ððð

 ððððA 115 @1ð EQU 1ð ððð97ððð

 ððððB 116 @11 EQU 11 ððð98ððð

 ððððC 117 @12 EQU 12 ððð99ððð

 ððððD 118 @13 EQU 13 ðð1ððððð

 ððððE 119 @14 EQU 14 ðð1ð1ððð

 ððððF 12ð @15 EQU 15 ðð1ð2ððð

 ððððð 121 P1PARM1 EQU ð,4,C'F' ðð1ð3ððð

ðððF4 122 @PAððð64 EQU @PCðððð2,4,C'F' ðð1ð4ððð

ððð6C 123 @RFððð1ð EQU @DEððð12 ðð1ð5ððð

ððð11ð 124 DS ðD ðð1ð6ððð

ðð11ð 125 @ENDDATA EQU \ ðð1ð7ððð

 ðð11ð 126 @MODLEN EQU @ENDDATA-TEST2 ðð1ð8ððð

 127 END , ðð1ð9ððð

Figure 25 (Part 3 of 3). Annotated ASM Listing

Selecting Specific Listings to Annotate
You do not always have to produce annotated listings. You may create a Summary
report first, and then, based on the summary, decide to produce annotated listings
on only a few selected program areas.

To select the specific listings you want to annotate after completing a test case run:

1. Edit the CACTL, leaving in the names of the listings you want to annotate:
a. Select option 1 from the ATC Primary Option Menu, then select option 1

from the Coverage, Distillation, and Unit Test Assistant panel.
b. On the Work with the CA/DA/UTA Control File panel, select option 1,

which displays an ISPF edit session to allow you to modify the control file.
(You may also edit the control file directly, using the ISPF editor.)

c. Delete the unwanted listings. The easiest way to do this is to comment out
the line by putting an asterisk (*) in column 1.

2. Create the report JCL:

Select option 1 from the Create JCL for Summary and Annotation Report

panel. See “Creating Summary and Annotated Listing Report JCL Using the
Panels” on page 91 for details.

3. Submit the report JCL:

Select option 3 from the Create JCL for Summary and Annotation Report

panel.

CA produces an Annotated Listing for each listing file specified in the CACTL.

Reducing the Size of Annotated Listings
To save paper when printing annotated listings, you may want to set the USEROPT
parameter in your defaults to U (display only unexecuted code) rather than A
(display all code). The report then lists only those lines that were not executed or
that had conditional branches that did not go both ways.

 CA Reports 101

Displaying Execution Counts in an Annotated Listing
The number of times each statement was executed can be displayed in an anno-
tated listing. To do so, change the Debug Mode and Frequency Count Mode flags
in your ATC defaults before generating the JCL for the SETUP step.

To change your ATC defaults:

1. Select option 0 from the ATC Primary Option Menu.

The Manipulate ATC Defaults panel is displayed.

2. Select option 1.

The ATC Defaults panel is displayed.

3. In the Setup Defaults area of the panel, change Debug Mode to YES and
Frequency Count Mode to YES.

Every time SETUP JCL is created, these flags will be set. You can also change
these flags in SETUP JCL that has already been created. This may be simpler
than changing the defaults (and then changing them back) if you want to get exe-
cution counts for just one test case. To identify these flags in the parameters
passed to the SETUP program, see the comments in the created SETUP JCL.

When Debug Mode flag is set to YES, breakpoints are left in storage for the entire
test run instead of being removed after their first execution. Each time the break-
point is executed, the count field is incremented.

When the Frequency Count Mode flag is YES, the execution counts are saved in
the BRKOUT file of coverage results. The annotated listing report will display them
on the right hand side of the listing, as shown in Figure 26:

 ðððð6ð & PERFORM WITH TEST BEFORE UNTIL TAPARM1 = ð 3ð >ððð6 ðððð <

 ðððð61 : 1 SUBTRACT 1 FROM TAPARM1 3ð >ððð5 ðððð <

 ðððð62 : 1 CALL 'COBð1BM' 85 >ððð5 ðððð <

 ðððð63 END-PERFORM

 ðððð64

 ðððð65 \ THIS IF ALWAYS FALSE

 ðððð66 > IF TAPARM2 = ð 31 >ððð1 ðððð <

 ðððð67 [1 PERFORM PROCA 77 >ðððð ðððð <

 ðððð68 END-IF

 ðððð69

 ðððð7ð \ THIS PERFORM EXECUTED

 ðððð71 & PERFORM WITH TEST BEFORE UNTIL TAPARM2 = ð 31 >ððð3 ðððð <

 ðððð72 : 1 SUBTRACT 1 FROM TAPARM2 31 >ððð2 ðððð <

 ðððð73 END-PERFORM

 ðððð74 : STOP RUN >ððð1 ðððð <

 ðððð75 .

Figure 26. Annotated Listing with Execution Counts

The execution counts for each statement are on the right between the right arrow
(>) and the left arrow (<). For example, statement 60 was executed six times and
statement 61 was executed five times. The other field between the arrows (always
zeros in this example) is used to display the first key number that executed this
statement when Distillation Assistant is used. For more information about key
numbers, see “Recording Which Keys Execute a Statement” on page 142.

Note: Enabling Debug Mode and Frequency Count Mode may significantly
degrade the performance of the monitored program.

102 Application Testing Collection 1.5.0 User's Guide

Differences in CA Reports When DA and UTA Are Used
When DA or UTA is used with CA, extra breakpoints are inserted. Some of these
extra breakpoints can be on conditional branch instructions, which will alter the con-
ditional branch coverage in the summary. For example, if a test case were set up
to read variables with UTA as well as to measure code coverage, its conditional
branch coverage could be as follows:

| BRANCHES: |

| CPATH TAKEN % |

 18 9 5ð.ð

 18 9 5ð.ð

Figure 27. Sample Conditional Branch Coverage with UTA

If you run the sample test case with UTA disabled, the extra breakpoints for reading
variables are not inserted, and the conditional branch coverage is as follows:

| BRANCHES: |

| CPATH TAKEN % |

 2 2 1ðð.ð

 2 2 1ðð.ð

Figure 28. Sample Conditional Branch Coverage without UTA

Note: Statement coverage is not affected if you enable UTA and DA.

The annotated listing will show the added conditional branches. For example, a
test case with UTA enabled produced the following in the annotated listing:

ðððð89 \ OPERATIONS ON A DATE

ðððð9ð VV¬ COMPUTE INTEGER-DATE = FUNCTION INTEGER-OF-DATE(CURR-DATE)

Figure 29. Sample Annotated Listing with UTA

Because variables are read on statement 90, any conditional branches in the state-
ment are monitored for coverage. Without UTA, no conditional branches are moni-
tored on assignment statements, as shown in the following:

ðððð89 \ OPERATIONS ON A DATE

ðððð9ð : COMPUTE INTEGER-DATE = FUNCTION INTEGER-OF-DATE(CURR-DATE)

Figure 30. Sample Annotated Listing without UTA

 CA Reports 103

Changes in Annotation Symbols with Performance Mode
When the Performance Mode (described at “Using the Performance Mode to
Reduce Monitor Overhead” on page 253) is used, the breakpoints for conditional
branches are not kept in storage, and the conditional branch coverage data is inac-
curate. For reports produced from test runs when the Performance Mode is
enabled during SETUP, the following change to annotation occurs.

Conditional statements (IF, PERFORM(COBOL), DO WHILE(PL/I), and others) that
were annotated with one conditional annotation symbol (>,V,&) per conditional
branch within the statement, are now annotated with one : (a colon), if the state-
ment is executed, or one ¬ (a not symbol), if the statement is not executed.

Parameters for the SUMMARY and REPORT Programs
This section describes the input parameters specified as the first character of the
PARM field on the EXEC JCL statement for the SUMMARY and REPORT pro-
grams.

 SUMMARY
The SUMMARY program produces a summary report from test case results. Its
parameter is built automatically by the ISPF dialog. The parameter and its values
are:

Internal/external
I Summary with each PA listed separately.
E Combine all PAs into one entry per object module.

| PL/X Inline/NoInline (Optional unless Target specified)
|
| I Include PL/X inlined code.
| N Do not include PL/X inlined code.

| Target/NoTarget (Optional)
|
| Y Indicates targeted summary.
| N Indicates normal summary.

| Note: This parameter is ignored for assembler.

104 Application Testing Collection 1.5.0 User's Guide

 REPORT
The REPORT program produces annotated source listings from test case results.
Its parameters are built automatically by the ISPF dialog. The types of parameters
and their values are:

User code to display This flag indicates which part of the user code is dis-
played in the report.
A All user code displayed.
U Only unexecuted user code displayed.

Listing Type
B COBOL listing.
P PL/I listing.
A assembler listing.

Annotation characters Optional list of annotation characters. The default list is
as follows:
¬ : > V % @ and &
For a description of each of these default characters, see
“Annotated Listing Coverage Report” on page 95.

 Printing Reports
You can reduce the size of annotated listings by printing only the lines with unexe-
cuted code. To do this, specify U instead of A as the User Options variable in the
Coverage Report Defaults section of the ATC Defaults panel, shown in Figure 4 on
page 29.

Targeted Summary Reports
| The targeted summary report is similar to a summary report except that it is based
| on a specific subset of statements. You can select statements by specifying the
| statement numbers directly, or by specifying that all statements that reference given
| COBOL or PL/I variables are of interest. You can also specify a range of state-
| ments to target.

| The targeted summary report includes a header section containing a stylized
| version of the target control cards to generate the report. This provides an easy
| means for identifying the control cards used to generate the report in case you
| choose to produce multiple different Targeted Summary Reports from a single cov-
| erage run.

| The other difference between the targeted summary report and the summary report
| is in the unexecuted code section. The targeted summary report lists all targeted
| unexecuted statements rather than the starting and ending statement numbers of
| unexecuted code segments. For a description of the summary format, see
| “Summary Coverage Report” on page 83.

| To create a targeted summary report, you must supply:

| � Breakpoint table (BRKTAB) and breakout (BRKOUT) data sets from a coverage
| run
| � A target control data set
| � Complier listings for the programs of interest

 CA Reports 105

| The target control cards, which specify the statements to be targeted, can be
| included by the user in the same CA control file used for the coverage run, or can
| be in a separate target control file. The SAA post processor can also be used to
| produce a template target control file based on an SAA comparison report, which
| targets all statements containing variables which appeared on changed lines. For
| details, see “SAA Postprocessor Outputs” on page 302.

Target Control File
A target control file is used to specify the statements that are of interest in the tar-
geted summary report. It must be a sequential file or a member of a partitioned
data set, and can have any DCB attributes. It is generally free-form and subject to
the following requirements:

� Statements are free form (not column dependent)

� An asterisk in column 1 indicates a comment.

� The characters // (two consecutive slashes) indicate that the rest of the line
following the two slashes is a comment.

� Lines containing nothing but blanks are ignored.

� Keywords and operands may be coded in any combination of upper and lower
case.

� Operands may appear in any order

� Operands must be separated by a comma

� One or more blanks can appear between keywords and the corresponding
equal sign as well as between the equal sign and the operand and between the
operand and the following comma.

� The order of statements is not significant except that:

– All labels must be defined before they are referenced

– The DEFAULTS25 statement is position dependent (it applies only to the
statements that follow it).

– The default value for some operands is the previous statement of the
proper type.

� Statements may be continued, if desired, by interrupting the line after a comma
and continuing the statement on the next line.

� Labels, if present, are specified preceding the statement name and must be
immediately followed by a colon. Labels cannot contain embedded blanks,
commas, parentheses, or equal signs.

� Labels specified on COBOL, PL/I, and PLI statements cannot be repeated on
any of those statements. Likewise, labels on SCOPE statements cannot be
repeated on another SCOPE statement and labels on TARGETVAR statements
cannot be repeated on another TARGETVAR statement.

� Operands shown in the syntax diagrams as being enclosed in parentheses,
need not be enclosed in these parentheses if the operand contains no
embedded blanks or commas.

25 The DEFAULTS statement is described in “DEFAULTS Statement” on page 213.

106 Application Testing Collection 1.5.0 User's Guide

DBCS support for the control file statements is explained in Appendix C, “DBCS
Support” on page 391.

The format of these statements is shown in the following sections.

Compilation Unit Definition (COBOL or PL/I) Statement
The COBOL and PL/I statements identify the compilation unit to which subsequent
Target Control statements apply.

Note: The purpose and syntax of the COBOL and PL/I control statements is the
same as that of the corresponding CA/DA/UTA control statement. However, not all
information that is required for CA/DA/UTA is required in the Target Control state-
ment.|

| 55─ ──┬ ┬────────── ──┬ ┬─COBOL─ ─LISTDSN──=─ ──(1)──┬ ┬─listdsname─ ───────────────5%
| └ ┘| ─label──:─ ├ ┤─PL/I── └ ┘─\──────────
| └ ┘─PLI───

Note:
1 All other operands that can be specified on the corresponding CA control file

statement (see “Control File Statement Syntax” on page 212) may be specified
but are ignored.

where:

label
a label that can be used to refer to this statement in subsequent statements.

COBOL
indicates that this compilation unit is for a COBOL program.

PL/I
PLI
indicates that this compilation unit is for a PL/I program.

listdsname
the data set name of the data set which contains the compiler listing for this
program.

* indicates that all listings in the coverage run are of interest. (* cannot be speci-
fied in a COBOL or PL/I statement referenced by a TARGETVAR statement.)

 SCOPE Statement
The SCOPE statement identifies a name scope in a COBOL or PL/I program which
contains variables of interest.

Note: The purpose and syntax of the SCOPE target control statement is the same
as that of the SCOPE CA/DA/UTA control statement.

 CA Reports 107

55─ ──┬ ┬────────── ─SCOPE─ ──┬ ┬──────────────────────────────── ──────────────5
 └ ┘ ─label──:─ └ ┘──┬ ┬─COBOL─ ─=──cobolplilabel──,─
 ├ ┤─PL/I──
 └ ┘─PLI───

5─ ──┬ ┬ ─EXTPROGRAM-ID──=─ ──┬ ┬─extname─ ──┬ ┬─────────────── ─────────────────5%
 │ │└ ┘─\─────── └ ┘─┤ NestedPgm ├─
 │ │┌ ┐─.───────────
 └ ┘ ──┬ ┬─PROCEDURE─ ─=─ ──┬ ┬───

6
┴──┬ ┬─pliname─ ───────────

 └ ┘─PROC────── │ │└ ┘─stmt────
 └ ┘─\───────────────

NestedPgm:
├──,──NESTEDPROGRAM-ID──=─ ──┬ ┬─intname─ ───────────────────────────────────┤
 └ ┘─\───────

where:

cobolplilabel
a label on the COBOL or PL/I statement that defines the compilation unit con-
taining this scope. If this operand is omitted, the default is the previous
COBOL or PL/I statement.

extname
the COBOL program-id of the external COBOL program which contains items to
be referenced.

* indicates that the search for the referenced items is to be done through all
external COBOL programs in the specified listing.

intname
the COBOL program-id of the internal (nested) COBOL program which contains
items to be referenced. This operand should be specified only if the variables
of interest are defined in a nested COBOL program. If this keyword is not
specified, the variable is assumed to be defined in the external COBOL
program.

* indicates that the search for the referenced items is to be done through all
internal program-ids in the specified external COBOL program-id or through all
procedures in the specified external PL/I procedure in the specified listing.

pliname
the PL/I procedure or BEGIN block which contains items to be referenced. For
PL/I internal procedures, the form PROC1.PROC2 must be used where PROC1
is the external procedure and PROC2 is an internal procedure contained in
PROC1. Also, in the case of PL/I, named BEGIN blocks are considered to be
equivalent to named procedures and are specified in exactly the same way.
For unnamed BEGIN blocks, the statement number (stmt) where the BEGIN
block is defined is used in place of the procedure name.

For example, PROCEDURE=P0.P1.B1.2451.P3 would specify an external pro-
cedure named P0 which contains an internal procedure or named BEGIN block
named P1 which contains an internal procedure or named BEGIN block named
B1 which contains an unnamed BEGIN block defined in statement 2451 which
contains an internal procedure or named BEGIN block named P3.

108 Application Testing Collection 1.5.0 User's Guide

stmt
see the description of pliname above.

* indicates that the search for the referenced items is to be done through all PL/I
procedures and BEGIN blocks in the specified listing.

 INCLUDE Statement
The INCLUDE statement can be used to include information from a CA/UTA/DA
control file. When such a control file is included, all statements except
DEFAULTS25, COBOL, PL/I, and SCOPE are ignored.

Note: The INCLUDE statement allows labels defined on these statements to be
referenced on subsequent TARGETVAR and TARGETSTMT control statements.

55─ ──┬ ┬────────── ─INCLUDE─ ──┬ ┬─DSNAME──=──dsname─ ────────────────────────5%
 └ ┘ ─label──:─ └ ┘─DDNAME──=──ddname─

where:

dsname
specifies the data set name of the CA/DA/UTA control file to be included.

ddname
specifies a ddname which has been previously allocated to a CA/DA/UTA
control file.

 TARGETVAR Statement
The TARGETVAR statement specifies that all COBOL or PL/I statements that refer-
ence a specific variable are of interest.

For COBOL variables, all statements that refer to the specified variable either
directly (via the variable's name) or indirectly (via the name of a containing or con-
tained group) are considered to be of interest.

For PL/I variables, only statements that refer to the specified variable directly (via
the variable's name) are considered to be of interest.

The SCOPE specified for a PL/I variable must be the procedure or begin block in
which the variable is defined (either explicitly or implicitly) although it may be refer-
enced in other, contained blocks. This means that the scope for implicitly declared
variables (other than parameters) must be defined as the external procedure.

 CA Reports 109

The syntax of the TARGETVAR statement is:

55──TARGETVAR─ ──┬ ┬───────────────────────── ─NAME──=──(────────────────────5
 └ ┘─SCOPE──=──scopelabel──,─

5─ ─── ───┬ ┬─varname─ ──┬ ┬─────────────────────── ─)─────────────────────────5%
 │ ││ │┌ ┐─────────────────────
 │ │├ ┤───

6
┴──┬ ┬─IN─ ─groupname─

 │ ││ │└ ┘─OF─
 │ │└ ┘ ──┬ ┬─IN─ ─\─────────────
 │ │└ ┘─OF─
 └ ┘ ──┬ ┬─────────────────── ─varname─────
 │ │┌ ┐─────────────────
 ├ ┤───

6
┴─structname──.─

 └ ┘─\──.──────────────

where:

scopelabel a label on a SCOPE statement that defines the scope con-
taining the specified variable. If this operand is omitted, the
default is the previous SCOPE statement.

varname the name of the variable of interest.

groupname the name of a group containing the referenced variable.

* specifies that the variable is an unqualified name. In this
case, all occurrences of this name will be selected irrespective
of the containing group name(s).

structname the name of a structure containing the referenced variable.

 TARGETSTMT Statement
| The TARGETSTMT statement identifies specific statements of interest for Targeted
| Summary. It has the following syntax:

55──TARGETSTMT─ ──┬ ┬──────────────────────────────── ─STMTS──=──(───────────5
 └ ┘──┬ ┬─COBOL─ ─=──cobolplilabel──,─
 ├ ┤─PL/I──
 └ ┘─PLI───

 ┌ ┐───────────────────
5─ ──┬ ┬───

6
┴──┬ ┬─stmt──────── ─)──5%

 │ │└ ┘─stmt1-stmt2─
 └ ┘─\───────────────────

where:

cobolplilabel a label on a COBOL or PL/I statement that defines the compile unit
containing the specified statements. If this operand is omitted, the
previous COBOL or PL/I statement will be used.

* indicates that all statements in the source listing are to be selected.

stmt one or more statement numbers from the executable statements in
the source listing.

For COBOL listings, use the line number field shown in the compiler
listing (under the LINEID header in the more recent compilers). For
statements that span more than one line in the listing, use the first
line number on which the statement occurs.

110 Application Testing Collection 1.5.0 User's Guide

For PL/I listings, use the statement number field (STMT header) if
the STMT compiler option is used or use the line number field
(NUMBER header) if the NUMBER compiler option is used.

stmt1-stmt2 one or more ranges of statement numbers from the source listing.
All statements within the range are selected. stmt1 must not be
greater than stmt2.

Example

| Cobol ListDsn=ATC.V1R5Mð.Sample.CobolLst(Cobð1M),

 FromObjDsn=ATC.V1R5Mð.Sample.Obj,ObjMember=Cobð1M,ToObjDsn=ATC.V1R5Mð.Sample.Zapped.Obj

 Scope ExtProgram-Id=\

\

TargetVar Name=(Date1 In MyFile In Record1)

 TargetStmt Stmts=(21,33)

Figure 31. Target Control File

 CA Reports 111

| Creating Targeted Summary Reports
| To create a Targeted Summary report, select option 4 on the Coverage Reports

| panel. The Create JCL for Targeted Summary Report panel, shown in Figure 32,
| allows you to specify targeted summary report parameters.

| à| ð
| -------------------- Create JCL for Targeted Summary Report -------------------

| Option ===>

| 1 Generate Generate JCL from parameters

| 2 Edit Edit JCL

| 3 Submit Submit JCL

| 4 Foreground Run Targeted Summary in the Foreground

| Enter END to Terminate

| Use Program Name for File Name YES (Yes|No) Program Name COBð1M

| Input Files:

| Control File Dsn. . . 'YOUNG.TEST.TARGCTL(COBð1M)'

| Breakpoint Table Dsn. 'YOUNG.TEST.COBð1M.BRKTAB'

| Breakout Dsn. 'YOUNG.TEST.COBð1M.BRKOUT'

| JCL Library and Member:

| JCL Dsn 'YOUNG.TEST.JCL.CNTL(QCOBð1M)'

| Output Summary Type and File Name:

| Type. INTERNAL (Internal|External)

| Report Dsn 'YOUNG.TEST.COBð1M.TARGREP'

| (\ for default sysout class)

| á| ñ

| Figure 32. Create JCL for Targeted Summary Report

| Generate
| Generate JCL from the parameters you have specified on the panel.

| Edit
| Make changes to existing JCL.

| Submit
| Submit for execution the JCL specified in the JCL Dsn field on this panel.

| Foreground
| Run Targeted Coverage in the foreground using the parameters you
| have specified on the panel.

Use Program Name for File Name
To construct all data set names from the default high-level qualifier, the
specified program name, and the default low-level qualifier for each data
set, enter YES.

When you press Enter, the file names on the panel are changed auto-
matically.

112 Application Testing Collection 1.5.0 User's Guide

Program Name
Name to use to construct data set names if you enter YES in the Use
Program Name for File Name field. Note that this can be any valid
name. It does not have to be the name of any of your programs.

Names of the following forms are created:

� Sequential data sets:

'proj_qual.program_name.file_type'

For example: 'YOUNG.TEST.COB01M.BRKTAB'

� Partitioned data sets:

'proj_qual.file_type(program_name)'

For example: 'YOUNG.TEST.BRKTAB(COB01M)'

Control File Dsn
Name of the targeted coverage control data set.

Breakpoint Table Dsn
Name of the breakpoint (BRKTAB) data set created by the coverage
run.

BreakOut Dsn
Name of the breakout (BRKOUT) data set created by the coverage run.

| JCL Dsn
| Specifies the name of the JCL data set that contains the JCL for this
| action.

| Note: If the Use Program Name for File Name field is set to YES, then
| the member name or program name qualifier of the data set will be
| Qxxxxxxx, where xxxxxxx is the first seven characters of the program
| name.

| Type
| Type of targeted summary report to produce. An Internal summary lists
| totals for each PA separately. An External summary combines all PAs
| into one entry per object module.

Report Dsn
Name of the targeted coverage report data set. This data set will be
created if it does not currently exist.

 CA Reports 113

114 Application Testing Collection 1.5.0 User's Guide

Using Coverage Assistant in a Large Project Environment

Typically, large projects involve many code developers and testers, the compilation
of continually changing application program modules over an extended period of
time, (a process which produces the listings needed by CA), and a testing interval
that may last many days or weeks. This chapter explains how CA supports this
type of complex testing environment.

Creating CA Files during Code Development
The creation of the listings and modified object modules used by CA can be incor-
porated into the coder's standard development procedure.

In this chapter:

� Coder refers to the code developer(s) developing multiple compilable object
modules for a product.

� Tester refers to the person(s) running test cases on the product to obtain test
case coverage data.

� Module refers to a separately compilable object module of the project that has
a listing.

A flow diagram of test case coverage in a large project environment is shown in
Figure 33 on page 116.

To create CA files during code development, complete the following steps:

1. Each coder should generate breakpoint data on object modules when they are
ready to be tested. The breakpoint data could be created automatically by a
CA step included in the coder's compile procedure or JCL. At that time, a
breakpoint table would be created to match the object module. In the CA step,
you should include a ZAPTXT program that uses the breakpoint data and modi-
fies the object module by inserting the breakpoints.

2. The tester selects the object modules to be measured by CA (created in step
1) and links them with the remaining unmodified object modules to create the
executable load module.

3. The tester enters the names of the modules to be measured by CA into the
CACTL.

4. The tester starts a monitor session, runs test cases, and stops the monitor.
When the monitor is stopped, it writes its output data to a results file.

5. The tester produces a report on selected modules from the test case coverage
results.

6. The tester performs steps 2 through 4 for as many coders or test case cov-
erage runs as desired.

7. For overall test case coverage, the tester combines results from each coder or
test case coverage run into one report.

 Copyright IBM Corp. 1997, 1999 115

User compile job stream.

CA setup of one listing

 ┌──────────────┐

┌───────────5│ Breakpoint │

 6 │ Data │

 ┌──────────────┐ └──────┬───────┘

 │ Modified │ │

 │Object Modules│ │

 └──────┬───────┘ │

 6LINK 6

 ┌───────────┐ ┌──────────────┐

 │ Programs ├─────5│ Execution │

│ to Test │%─────┤ (Monitor) │

 └───────────┘ └──────┬───────┘

 6

 ┌──────────────┐

 │ Test Case │

 │ Results │

 └──────┬───────┘

 6

 ┌──────────────┐

 │ CA │

 │ Reports │

 └──────────────┘

Figure 33. Using CA in a Large Project Environment—Flow Diagram

 Breakpoint Data
You can generate breakpoint data for an object module every time you compile the
module or for any number of listings at the same time. To update the breakpoint
data for a module every time you compile, insert a CA Setup step into the coder's
compile job stream.

When the tester is ready to do a test case coverage run, the tester edits the
CACTL by entering the file names of each object module to be measured. When
the monitor JCL is run, the breakpoint files need to be concatenated as DD state-
ments for use by the monitor during the test case coverage run.

Test Case Coverage Results
If you stop a monitor session, it writes the test case coverage results for each
module to a test case results (BRKOUT) file. To create a summary and annotated
listings for selected modules, the tester puts their names in the CACTL. These
names can be any modules that have been tested in any test coverage run, as long
as the results are in a BRKOUT file.

Combining Test Case Coverage Results
To combine individual test case coverage runs into a report showing overall test
case coverage, the tester executes the CA test case coverage combine program.
For an example of combining test case results, see Figure 34 on page 117.

116 Application Testing Collection 1.5.0 User's Guide

 Tester 1 Tester 2 Tester 3

 test case coverage test case coverage test case coverage

 results results results

 (TEST1.BRKOUT) (TEST2.BRKOUT) (TEST3.BRKOUT)

 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐

 │ results for: │ │ results for: │ │ results for: │

 │ module A │ │ module B │ │ module A │

 │ module B │ │ module C │ │ module B │

 │ module C │ │ module D │ │ module D │

 └──────┬───────┘ └─────┬────────┘ └──────┬───────┘

└───────────────┐ │ ┌─────────────────────┘

6 6 6

 ┌───────────────┐

 │ CA combine │

│ program │

 └───────┬───────┘

 6

 TESTCMB.BRKOUT

 ┌──────────────┐

 │ combined │

│ results for: │

│ module A │

│ module B │

│ module C │

│ module D │

 └──────────────┘

Figure 34. Combining Results of Multiple Testers—Flow Diagram

Three test case coverage runs were made, each with a different set of test cases:

� Tester 1 measured modules A, B, and C.
� Tester 2 measured modules B, C, and D.
� Tester 3 measured modules A, B, and D.

The test case results were put into different BRKOUT files. Run the CA combine
program to combine the results from the three test case coverage runs into one file.
The combined results show the overall test case coverage. A summary or anno-
tated listing report can then be produced using the combined BRKOUT file.

The BRKTAB files used for the reports must include all modules that have cov-
erage in BRKOUT (modules A through D). If the BRKTABs for modules A through
D exist in different files, you can concatenate them in the BRKTAB DD JCL state-
ment in the report JCL.

Creating the Combine JCL Using the Panels
To combine test case coverage results using the panels:

1. Select option 1 from the ATC Primary Option Menu to display the Coverage,

Distillation and Unit Test Assistant panel.

2. Select option 4 to display the Coverage Reports panel.

3. Select option 3 to display the Create JCL for Combining Multiple Runs panel,
shown in Figure 35 on page 118.

 Using Coverage Assistant in a Large Project Environment 117

à ð
 -------------------- Create JCL for Combining Multiple Runs ------------------

 Option ===>

 1 EditCtl Edit Combined Control File

 2 ResetCtl Reset Combined Control File

 3 Generate Generate JCL from parameters

 4 Edit Edit JCL

 5 Submit Submit JCL

 Enter END to Terminate

 Use Program Name for File Name YES (Yes|No) Program Name COBð6M

 Combined Control File:

Combined Cntl Dsn . . 'YOUNG.TEST.CBCTL(COBð6M)'

 JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(CCOBð6M)'

 Combined Breakout File:

Breakout Dsn. 'YOUNG.TEST.COBð6M.CMBOUT'

á ñ

Figure 35. Create JCL for Combining Multiple Runs Panel

4. Select option 1 and change the values entered in each field as appropriate.

The panel's options and fields are as follows:

EditCtl
Edit the combined control file.

ResetCtl
Reset the combined control file.

Generate
Generate JCL using the parameters you have specified on the
panel.

Edit
Make changes to existing JCL.

Submit
Submit for execution the JCL specified in the JCL Dsn field on this
panel.

Use Program Name for File Name
If you want to construct the data set names from the default high-
level qualifier, the specified program name, and the default low-level
qualifier for each data set, enter YES. Using the program name is
the normal CA procedure.

When you press Enter, the file names on the panel are changed
automatically.

118 Application Testing Collection 1.5.0 User's Guide

Program Name
Name to use for CA data sets if you enter YES in the Use Program

Name for File Name field. Note that this can be any valid name; it
does not have to be the name of any of your programs.

Names of the following forms are created:

� Sequential data sets:

'proj_qual.program_name.file_type'

For example: 'YOUNG.TEST.COB01M.BRKTAB'
� Partitioned data sets:

'proj_qual.file_type(program_name)'

For example: 'YOUNG.TEST.BRKTAB(COB01M)'

Combined Cntl Dsn
Name of the data set containing the list of breakout data sets you
want to combine.

JCL Dsn
Specifies the name of the JCL data set that contains the JCL for this
action.

Note: If Use Program Name for File Name is set to YES, then the
member name or program name qualifier of the data set will be
Cxxxxxxx, where xxxxxxx is the first seven characters of the
program name.

Breakout Dsn
Name of the combined BRKOUT data set created by running the
combine JCL.

5. The EditCtl option puts you into an ISPF edit session in which you list the
data sets to be combined (see Figure 36 for an example). You must enter the
complete data set name for each data set.

à ð
EDIT YOUNG.TEST.CBCTL(COBð6M) Columns ðððð1 ððð72

Command ===> Scroll ===> CSR

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ððððð1 \ List the input files (PDS or SEQ) you wish to combine (one per line),

ððððð2 \ using JCL naming conventions. All comment lines must start with '\'.

ððððð3 YOUNG.TEST.COBð6M1.BRKOUT <= Input DSN 1

ððððð4 YOUNG.TEST.COBð6M3.BRKOUT <= Input DSN 2

ððððð5 YOUNG.TEST.COBð6M5.BRKOUT <= Input DSN 3

ððððð6 YOUNG.TEST.COBð6M7.BRKOUT <= Input DSN 4

ððððð7 <= Input DSN 5

ððððð8 <= Input DSN 6

ððððð9 <= Input DSN 7

ðððð1ð <= Input DSN 8

ðððð11 <= Input DSN 9

ðððð12 <= Input DSN 1ð

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 36. ISPF Edit Screen for Combine

 Using Coverage Assistant in a Large Project Environment 119

Rules for Combining Results
| Two coverage runs will be combined only if they were created using the same
| BRKTAB file. The following coverage runs will be combined:

| 1. Run setup, create BRKTAB file
| 2. Coverage run 1 uses BRKTAB file
| 3. Coverage run 2 uses same BRKTAB file

| The following coverage runs will not be combined because the setup step was
| rerun:

| 1. Run setup, create BRKTAB1 file
| 2. Coverage run 1 uses BRKTAB1 file
| 3. Rerun setup, create new BRKTAB2 file
| 4. Coverage run 2 uses BRKTAB2 file

Sample Combine Test Case
A sample test case (COB06M) is provided in the samples shipped with ATC that
illustrates combining test case results.

COB06M was executed several times with a different numerical (1-8) input param-
eter each time. Each number caused a different set of statements to be executed.
The results of running COB06M under CA with each of the input parameters speci-
fied are in BRKOUT files hi_lev_qual.V1R5M0.SAMPLE.BRKOUT(COB06Mx),
where x=1 to 8.

For an example of JCL that runs COB06M, see
hi_lev_qual.V1R5M0.SAMPLE.JCL(GCOB06M).

Running a report with one of these BRKOUT files shows only the coverage of that
input number. Four of the eight BRKOUT files (inputs 1, 3, 5, and 7) were com-
bined. The JCL to combine these BRKOUT files is in
hi_lev_qual.V1R5M0.SAMPLE.JCL(CCOB06M).

Executing this JCL produces BRKOUT file
hi_lev_qual.V1R5M0.SAMPLE.BRKOUT(COB06M). Executing the report program,
whose JCL is in hi_lev_qual.V1R5M0.SAMPLE.JCL(RCOB06M), produces a com-
bined report that shows the coverage of running COB06M with inputs 1, 3, 5, and
7. For an example combined report, see the
hi_lev_qual.V1R5M0.SAMPLE.REPORT(COB06M) file.

120 Application Testing Collection 1.5.0 User's Guide

Measuring Coverage for Individual Test Cases
Testers may want to keep coverage results on a test case basis. This allows them
to run test cases for regression testing of fixes that affect only a few modules
instead of running all of the test cases.

Test case coverage results are saved in a BRKOUT file if the monitor is running
and the tester issues either the CADATA or CASTOP command. When these
commands are executed, the tester can select the file name of the BRKOUT file.

For example:

XTEST2 Start the monitor

TEST2 parm1 Run TEST2 for test case 1

CADATA TC1 Save the coverage results in file proj_qual.TC1.BRKOUT

CARESET Reset statistics

TEST2 parm2 Run TEST2 for test case 2

CADATA TC2 Save the coverage results in file proj_qual.TC2.BRKOUT

CARESET Reset statistics

TEST2 parm3 Run TEST2 for test case 3

CASTOP TC3 Save the coverage results in file proj_qual.TC3.BRKOUT

and stop the monitor session

The BRKOUT files TC1, TC2, and TC3 contain coverage results for their respective
test cases. Testers can run the CA report program on the BRKOUT files to obtain
coverage results for the specific test cases. To obtain overall coverage, execute
the Combine program on TC1, TC2, and TC3.

 Using Coverage Assistant in a Large Project Environment 121

122 Application Testing Collection 1.5.0 User's Guide

Using Distillation Assistant

 Copyright IBM Corp. 1997, 1999 123

124 Application Testing Collection 1.5.0 User's Guide

 Introduction

This chapter contains the following topics:

� What Is Distillation Assistant?
� What Does DA Require?
� How Does DA Work?
� Where Can You Get Further Details?

What Is Distillation Assistant?
Distillation is the reduction of a data set to the minimum size that provides the
same test coverage as the complete data set. Distillation Assistant (DA) supports
distillation of QSAM or VSAM input data sets that are processed by applications
generated with the following IBM COBOL and PL/I compilers:

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions [MLE])
� IBM OS PL/I Optimizing Compiler 2.3.0
� IBM PL/I Optimizing Compiler 1.5.1

While the program under test is running, DA records all logical keys (for data read
from a specified input data set) that cause new coverage. When you have com-
pleted testing, you can run a DA program that makes a copy of your input data set,
but includes only the records that have these keys. Further testing using this dis-
tilled input data set results in much faster test runs with coverage that is equivalent
to that produced by using the complete input data set.

For example, your input master data set may contain thousands of employee or
customer records. DA may distill the input master data set to several hundred
records that caused new coverage during your original test run. Further testing
time is greatly reduced by using the distilled input master data set.

The distillation process consists of two steps:

Step 1 Logical Distillation

This step consists of instrumenting your object code and executing the
instrumented code under the DA monitor. As the instrumented code
reads records from the specified input master data set, the monitor
determines which “keys” in the input master data set caused new code
coverage in the instrumented code. The list of these keys is then
saved for the second step.

Step 2 Physical Distillation

This step consists of creating a new master data set by reading the list
of keys produced in the first step and the input master data set. The
new master data set consists of only those records in the input master
data set whose logical key appears in the list of keys.

 Copyright IBM Corp. 1997, 1999 125

DA has the following characteristics:

 � Low overhead

For a test case run, DA typically adds very little to the execution time of the
program. DA inserts user SVC instructions as breakpoints and then intercepts
the interrupts.

� Panel-driven user interface

You can use an ISPF panel driven interface to create JCL for executing DA
programs.

� Simple, flexible control

The control file used to define your input master data set provides a simple
method of controlling DA operations.

What Does DA Require?
DA runs under MVS. Detailed MVS system resource requirements for DA are
described in “DA and UTA Resources” on page 388. DA uses ISPF services to
display dialogs and to produce the JCL to run the DA steps.

Input Master Data Set Restrictions
The input master data set can be any sequential or VSAM data set which contains
logical26 keys. However, note the following input master data set restrictions:

� If the data set is sequential, the RECFM may be any valid MVS RECFM except
VS and VBS. Spanned records are not supported.

� VSAM data sets with either KSDS or ESDS organizations can be distilled.
However, VSAM data sets that have alternate indexes will not have the corre-
sponding alternate indexes built into the new master data set.

� Any type of VSAM data set that cannot be distilled directly, can be copied using
the IDCAMS REPRO function to a sequential data set, which can be distilled
and copied back to a VSAM data set.

In addition to the previously described restrictions, the logical keys:

� Cannot exceed 126 bytes in length
� Must appear at the same offset in each record
� Must be the same length in each record

26 A logical key is simply a field which can be used to identify the record. These need not be defined as physical keys. For
example, a VSAM ESDS or a sequential data set can be distilled as long as a field exists that can be logically used as a key.

126 Application Testing Collection 1.5.0 User's Guide

Logical Distillation Requirements
DA requires, as part of its input, listings created by the application program com-
pilers that it supports. These compilers offer options that allow you to include
assembler statements, data maps, and data cross-references in the listings, all of
which DA uses.

DA also requires the application program object modules as input. DA creates
copies of these object modules with breakpoints inserted into them.

See “Execution” on page 130 for a description of how the DA authorized programs
intercept breakpoints.

Notes:

1. Logical distillation cannot be performed on more than one physical file at
a time. This means that if more than one FILE control statement is specified
for a logical distillation run, all of the specified COBOL FDs or PL/I file con-
stants must resolve to the same DDNAME.

2. UTA variable monitoring should not be done in conjunction with DA key gath-
ering. If the two are performed at the same time, the variable reads are inter-
mixed with the keys, and no process is provided for separating them.

3. PL/I distillation does not support the following constructs:

� Stream I/O. Only record I/O is supported.

� Files which have the ENVIRONMENT(TOTAL) attribute.

� READ operations on file variables. Only READs of file constants are sup-
ported.

� READ statements that specify the EVENT option.

4. COBOL distillation is not supported under CICS for routines compiled with the
OS/VS COBOL compiler. Reentrant COBOL routines are only supported for
compilers that support the RENT compiler option.

How Does DA Work?
Running DA consists of the following steps. This list is an overview of the process.
Each activity is described in more detail in topics that follow in this chapter.

Step 1 Setup

a. Compile the source code that you want to analyze, using the
required compiler options.

b. Generate DA JCL using the DA ISPF dialog:

1) Edit the DA control file.
2) Create the setup JCL.
3) Create the monitor JCL.
4) Create the distillation JCL.

 Introduction to DA 127

| c. If you instrumented object modules, edit your program’s link-edit
JCL to pick up the modified object modules, which are created by
the Setup step.

d. Edit your program’s GO JCL (or program invocation) to point to the
new load module that will be created when you run the JCL
created in step 1c.

Step 2 Execution

a. Run the Setup JCL (created at step 1b2).

b. Run the link-edit JCL (created at step 1c).

c. Run the monitor JCL to start a monitor session (created at step
1b3).

d. Run your application using the load module(s) created in step 2b.

e. Stop the monitor session (using the CASTOP command).

Step 3 Distillation

a. Run the distillation JCL (created at 1b4 on page 127).

If you change your program and want to rerun the test cases, you must repeat step
1a using the changed source code, and then complete steps 1b through 3a again.

Figure 37 on page 129 shows a diagram of the entire process.

128 Application Testing Collection 1.5.0 User's Guide

 User User COBOL or PL/1

 control program object or

 file listings load modules

 │ │ │

 6 6 6

 ┌───────────────────────────┐ Breakpoints

 │ │ Inserted

 │ Step 2a: ├──────────────────────┐

│ SCOB11M │ │

 │ Setup Step │ │ Executable

 └──┬──────────┬──────────┬──┘ │ Programs

┌───DBGTAB BRKTAB VARCTL │

│ variables breakpoint variable │

│ to read file locations │

│ │ to read │

│ 6 6 6

│ ┌───────────────────────────┐ Control Returned ┌────────────────────┐

│ │ ├─────────────────5│ Step 2d: │

│ │ │ File Read │ GCOB11M │%───┐

│ │ Step 2c: │%─────────────────┤ run sample program │ │

│ │ XCOB11M │ └────────────────────┘ │

│ │ (Execution Monitor) │ ┌────────────────────┐ │

│ │ │ │ Step 2e: │ │

│ │ │%─────────────────┤ CASTOP │ │

│ │ │ │ Stop monitor │ │

│ └─────────────┬─────────────┘ └────────────────────┘ │

│ VARTAB │

│ variable │

└───────┐ data saved │

 │ │ │

 ┌───┼──────DCOB11M──────────┐ │

 │ 6 6 │ │

 │ ┌────────────────────┐ │ Input Master

│ │ Step 3: │ │ file

 │ │ KCOB11M │ │ │

│ │ DA Key Report │ │ │

 │ └──────────┬─────────┘ │ │

│ VARDATA │ │

 │ file │ │

│ 6 │ │

 │ ┌────────────────────┐ │ │

│ │ Step 3: │ │ │

 │ │ ECOB11M │%──┼──┘

 │ │ Distillation │ │

 │ └──────────┬─────────┘ │

│ │ │

 └─────────────┼─────────────┘

 6

 Distilled file

Figure 37. DA—Flow Diagram

 Introduction to DA 129

 Setup
DA Setup analyzes assembler statements and cross-reference information included
in the compiler output listings to determine where to insert breakpoints into disk-
resident copies of the object modules. It then inserts the breakpoints.

Setup runs in MVS. To run it, you need:

1. Compiler listings of the object modules
| 2. The object modules or load modules you want to test

3. The user control file listing the input data set to distill

The Setup step produces:

| 1. Modified test programs (object modules or load modules) containing break-
| points

2. A file of breakpoint-related information (called BRKTAB in this User's Guide)
required for the monitor program in the Execution step.

3. A file of data for the data set to be monitored (called DBGTAB in this User's
Guide).

4. A file of locations where the input data set is read by the monitor (called
VARCTL in this User's Guide).

 Execution
| If you instrumented object modules, you must link the modified object modules into

an executable load module.

Then start a DA monitor session and run your test case programs. As the selected
breakpoints are encountered, the monitor gains control, logs a key if it caused new
coverage, then returns control to your program. After your test cases have com-
pleted, use CASTOP to stop the monitor session. It writes the results (the list of
keys that caused new coverage) to a file called VARTAB.

The monitor inserts reserved supervisor call (SVC) instructions as breakpoints and
is given control by MVS when these SVC instructions are executed in a program.
Using SVCs as breakpoints is the architected way to receive control from MVS, and
requires no modification to MVS. This technique is called user SVCs.

Two SVC instructions are used, one for two-byte instructions, and one for four- or
six-byte instructions. During installation, the monitor is installed as the handler for
the two SVC instructions used as breakpoints.

 Physical Distillation
DA physical distillation has two steps:

1. Format the list of keys that caused new coverage (the VARTAB file created by
execution step).

2. Distill the input master data set.

The key list from step 1 is used in step 2 to make a distilled copy of your input
master data set.

130 Application Testing Collection 1.5.0 User's Guide

You can create JCL to run these two steps consecutively, or you can create JCL to
run each step separately. If you run the steps separately, you can inspect and edit
the key list to produce a customized distillation data set.

For example, you may want to include keys in a distilled data set even though they
did not cause new coverage, or you may want to remove keys that caused new
coverage, but are not important to your testing.

Where Can You Get Further Details?
Refer to the following sections for additional information.

For information about... See...

Samples of DA test case coverage,
including sample reports

“Distillation Assistant Samples” on
page 133

Editing the CACTL file that contains the
names of the listing data sets

“Editing the Distillation Assistant Control
File” on page 145

Setting up the table of breakpoints from
the listings

“CA, DA, and UTA Setup” on page 231

Starting the DA monitor session and
running test cases on your programs

“Monitor Execution” on page 245

Commands that control the DA monitor
program

“Monitor Commands” on page 255

Distilling your data “Physical Distillation” on page 149

System resources needed by DA “DA and UTA Resources” on page 388

 Introduction to DA 131

132 Application Testing Collection 1.5.0 User's Guide

Distillation Assistant Samples

This chapter describes a sample distillation using an example provided with the
ATC package.

Distillation Assistant (DA) performs the distillation based on information that you
specify in the control file.

This sample distills data read by the COBOL and PL/I test cases:

� COB11M (COBOL for IBM MVS & VM 1.2 sample)27

� COB112 (IBM VS COBOL II Release 4.0 sample)
� COB11O (IBM OS/VS COBOL Release 2.4 sample)
� PLI11M (IBM PL/I for MVS & VM 1.1.1 sample)
� PLI112 (IBM OS PL/I Optimizing Compiler 2.3.0 sample)
� PLI111 (IBM PL/I Optimizing Compiler 1.5.1 sample)

A flow diagram of the steps required to run these samples is shown in Figure 38
on page 134. The names in the steps are the member names of the JCL executed
for the step. For COBOL, the steps are SCOBnnx, where nn is the test case
number and x is M for COBOL for MVS & VM, 2 for VS COBOL II, or O for OS/VS
COBOL. The PL/I steps are SPLInnx. For PL/I the compiler identification is M for
PL/I for MVS & VM, 2 for PL/I 2.3.0, or 1 for PL/I 1.5.1. In the flow diagram, ccc is
the compiler identification: COB for COBOL (for example, SCOB11M) or PLI for
PL/I (for example, SPLI11M).

The following DA samples use the ATC ISPF dialog to create the JCL to run the
DA steps. The ATC ISPF dialog is provided as an aid in creating the JCL. Once
the JCL is created for a test environment, it does not have to be recreated from the
dialog. In a typical user test environment, the creation of the JCL can be incorpo-
rated into the user's procedures. You do not have to use the ISPF dialog to use
DA.

27 You can also test the DA installation for the COBOL for OS/390 & VM compiler by copying the JCL members and making minor
edits to the compiler, link-edit, and runtime library names.

 Copyright IBM Corp. 1997, 1999 133

 User User COBOL or PL/I

 control program object or

 file listings load modules

│ │ │

6 6 6

 ┌───────────────────────────┐ Breakpoints

 │ │ Inserted

 │ Step 1: ├──────────────────────┐

│ Sccc11M │ Instrumented │

 │ Setup Step ├───────────────────┐ │ Executable

 └──┬─────────┬─────────┬────┘ Load Modules │ │ Programs

┌───DBGTAB BRKTAB VARCTL │ │

│ variables breakpoint variable locations │ │

│ to read file │ to read │ │

│ │ │ │ │

│ 6 6 6 6

│ ┌───────────────────────────┐ Control Returned ┌────────────────────┐

│ │ ├─────────────────5│ Step 4: │

│ │ │ File Read │ Gccc11M │%───┐

│ │ Step 3: │%─────────────────│ run sample program │ │

│ │ Xccc11M │ └────────────────────┘ │

│ │ (Monitor) │ ┌────────────────────┐ │

│ │ │ │ Step 6: │ │

│ │ │%─────────────────│ CASTOP │ │

│ │ │ │ Stop monitor │ │

│ └─────────────┬─────────────┘ └────────────────────┘ │

│ VARTAB │

│ variable │

└────────┐ data saved │

 │ │ │

 │ │ │

 ┌────┼────Dccc11M───────────┐ │

 │ 6 6 │ Input Master

 │ ┌────────────────────┐ │ file

│ │ Step 7: │ │ │

 │ │ Kccc11M │ │ │

│ │ DA Key Report │ │ │

 │ └──────────┬─────────┘ │ │

│ VARDATA │ │

 │ file │ │

│ 6 │ │

 │ ┌────────────────────┐ │ │

│ │ Step 7: │ │ │

 │ │ Eccc11M │%──┼──┘

│ │ Distillation │ │

 │ └──────────┬─────────┘ │

│ │ │

 └─────────────┼─────────────┘

 6

 Distilled file

Figure 38. Sample Run—Flow Diagram

134 Application Testing Collection 1.5.0 User's Guide

COB11x and PLI11x Test Cases
The COB11x (for COBOL) and PLI11x (for PL/I) test cases are examples of reading
a file from one compile unit. The control files are shown in Figure 41 on page 138
and Figure 42 on page 138, the input master data set is shown in Figure 39 on
page 136, and the new master data set is shown in Figure 40 on page 136. In
the following descriptions, the test cases are referred to as ccc11x, where ccc is
the compiler (COB for COBOL or PLI for PL/I).

Breakpoints are inserted into the object modules during Setup. These breakpoints
are positioned so that the reads of the specified file can be monitored when the
breakpoint interrupt occurs. When you are ready to test your program, you link the
object modules that have been modified with the breakpoints.

To distill the input master data set read by ccc11x, perform the following steps.
Steps 2a through 6 are described in more detail in topics that follow in this
chapter.

1. Compile the source you want to test. This produces listings that include the
assembler statements needed by DA. (This has already been done for the
examples. For COBOL, the listings are in
hi_lev_qual.V1R5M0.SAMPLE.COBOLST for the COBOL for MVS & VM and
VS COBOL II compilers, and in hi_lev_qual.V1R5M0.SAMPLE.COSVSLST for
the OS/VS compiler. For PL/I, the listings are in
hi_lev_qual.V1R5M0.SAMPLE.PLILST).

Make sure to use the compiler options specified in “Setup” on page 231.

2. Start the ATC ISPF dialog by entering the following from ISPF option 6:

 EX 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

The ATC Primary Option Menu is displayed.

a. Edit the DA control file.

Verify that the control file includes the listings of the object modules you
want to test and information about the file that you want to distill.

b. Create the setup JCL.

| Create the JCL that enables the Setup job to produce files containing
| breakpoint data, file read data, and instrumented programs. You can instru-
| ment either object modules or load modules.

c. Create the monitor JCL.

Create the JCL to start a monitor session.

d. Create the JCL to perform the physical distillation.

Create the JCL to perform the physical distillation after the ccc11x test case
has executed.

3. End the ATC ISPF dialog by pressing the End key (PF3) on the ATC Primary

Option Menu.

| 4. If you instrumented object modules, create the JCL to link the modified object
| modules.

After the setup step, and before starting the monitor session, you must link the
modified object modules into an executable program you can test. Specify the

 DA Samples 135

library that will contain the modified object modules and the library that will
contain the modified load module.

5. Create the JCL to run the GO step.

Create the JCL to run your program. Specify the same modified load module
as in step 4 on page 135.

6. Execute the JCL.

Execute the created JCL files for ccc11x in the correct order. (This order is
shown in “Execute the JCL” on page 140.)

Figures 39 and Figure 40 show portions of the input master data set and new
master data set for this example.

%%Lincoln's Ge4a++++++++++++++ð4ð2ttysburg Address, given November 19, 1863

%%Four score a8b++++++++++++++5154nd seven years ago, our fathers brought fo

%%dedicated to9c++++++++++++++11ð8 the proposition that all men are created

%%Now we are e5d++++++++++++++8ð36ngaged in a great civil war. . .testing wh

%%can long end1e++++++++++++++6ð86ure. We are met on a great battlefield of

%%We have come5f++++++++++++++9ð96 to dedicate a portion of that field as a

%%It is altoge7g++++++++++++++5ðð8ther fitting and proper that we should do

%%But, in a la1h++++++++++++++57ð6rger sense, we cannot dedicate. . .we cann

%%who struggle8i++++++++++++++8587d here have consecrated it, far above our

%%what we say 3j++++++++++++++5249here, but it can never forget what they di

%%It is for us2k++++++++++++++4243 the living, rather, to be dedicated here

%%It is rather4l++++++++++++++2ð39 for us to be here dedicated to the great

%%to that caus6m++++++++++++++ðð68e for which they gave the last full measur

%%that this na2n++++++++++++++3536tion, under God, shall have a new birth of

%%shall not pe9o++++++++++++++4977rish from this earth.

%%Lincoln's Ge9p++++++++++++++2638ttysburg Address, given November 19, 1863

%%Four score a1q++++++++++++++ðð65nd seven years ago, our fathers brought fo

%%dedicated to3r++++++++++++++2252 the proposition that all men are created

%%Now we are e7s++++++++++++++37ð5ngaged in a great civil war. . .testing wh

%%can long end5t++++++++++++++168ðure. We are met on a great battlefield of

%%We have come6u++++++++++++++4811 to dedicate a portion of that field as a

%%It is altoge3v++++++++++++++7672ther fitting and proper that we should do

%%But, in a la8w++++++++++++++ð965rger sense, we cannot dedicate. . .we cann

%%who struggle1x++++++++++++++9577d here have consecrated it, far above our

%%what we say 2y++++++++++++++6ð3ðhere, but it can never forget what they di

%%It is for us1z++++++++++++++ð649 the living, rather, to be dedicated here

%%It is rather9+++++++++++++++8834 for us to be here dedicated to the great

%%to that caus7a++++++++++++++7844e for which they gave the last full measur

%%that this na3b++++++++++++++1954tion, under God, shall have a new birth of

 ...

Figure 39. Input Master Data Set for COB11M and PLI11M

%%Lincoln's Ge4a++++++++++++++ð4ð2ttysburg Address, given November 19, 1863

%%Four score a8b++++++++++++++5154nd seven years ago, our fathers brought fo

%%It is for us1z++++++++++++++ð649 the living, rather, to be dedicated here

%%shall not pe8f++++++++++++++4843rish from this earth.

 ...

Figure 40. New (Distilled) Master Data Set for COB11M and PLI11M

136 Application Testing Collection 1.5.0 User's Guide

Edit the DA Control File
DA uses assembler listings to determine where to insert breakpoints to monitor file
reads. You supply the names of the listing files and data on the variables to read
in each listing in the DA control file (CACTL).

DA uses the assembler listings produced by the COBOL or PL/I compiler. Make
sure to use the compiler options specified in “Setup” on page 231.

The CACTL control file for this example is
hi_lev_qual.V1R5M0.SAMPLE.CACTL(ccc11M). The file is shown in Figure 41 on
page 138.

To edit the CACTL for the ccc11x example:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 1 from the Coverage, Distillation and Unit Test Assistant

panel.

The Work with the CA/DA/UTA Control File panel is displayed.

3. Enter option 1 and specify the following:

Use Program Name for File Name YES

Program Name ccc11x

Listing Type COBOL or PLI

 4. Press Enter.

An ISPF edit session for the DA control file you requested is displayed.

The data in the control file consists of the following types of statements:

COBOL or PLI
Indicates that the program is a COBOL (or PL/I) program and speci-
fies information about the compiler listing, object module, and load
module.

SCOPE
Specifies information about the scope of the program in which the
file of interest is defined.

FILE
Specifies information about the file that is to be distilled, including
logical key information.

If the control file you requested did not previously exist, it is created with com-
ments in it to help you enter the appropriate information in the fields.

If you want to use the shipped sample CACTL member as a template for your
control file, delete the existing lines in the member and copy in
hi_lev_qual.V1R5M0.SAMPLE.CACTL(ccc11x). Change ATC. to hi_lev_qual.
for all occurrences. Change the value of the ToObjDsn operand to
proj_qual.ZAPOBJ. If you have recompiled the samples into proj_qual data
sets, you will also have to edit the ListDsn and FromObjDsn keyword operands
to point to your proj_qual listing and object data set names.

The control file shown in:

� Figure 41 on page 138 is the control file for COB11x.
� Figure 42 on page 138 is the control file for PLI11x.

 DA Samples 137

5. Verify that the listing file names and the copy to/from object module names are
correct for your installation.

6. Press the End key (PF3) to terminate the edit session.

For more detailed information about the control file, see “Editing the Distillation
Assistant Control File” on page 145.

 COBOL ListDsn=ATC.V1R5Mð.SAMPLE.COBOLST(COB11M),

 LoadMod=COB11M,

 FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

 ToObjDsn=ATC.V1R5Mð.SAMPLE.ZAPOBJ

 Scope ExtProgram-Id=COB11M

 File File=QSAMIN,KeyPosition=15,KeyLen=2ð

Figure 41. Control File for COB11x

 PL/I ListDsn=ATC.V1R5Mð.SAMPLE.PLILST(PLI11M),

 LoadMod=PLI11M,

 FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

 ToObjDsn=ATC.V1R5Mð.SAMPLE.ZAPOBJ

 Scope PROCEDURE=PLI11M

 File File=QSAMIN,KeyPosition=15,KeyLen=2ð,Stmts=38

Figure 42. Control File for PLI11x

Create Setup JCL
Before test cases can be executed on the ccc11x test program, DA must insert
breakpoints into the test program. DA does this using the Setup program. When
you execute the Setup JCL, the DA Setup program analyzes the assembler listings
and creates a table containing breakpoint data (address, op code, and so on).
User SVC instructions are inserted for the instructions at the breakpoints in the
object modules. You then link the modified object modules into an executable load
module for DA to use.

To create the Setup JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 2.

The Create JCL for Setup panel is displayed. You create the JCL for the
setup of ccc11x from this panel. All of the default values on the panel are
correct for the ccc11x examples except for possibly the Enable DA and the
Program Name fields.

3. Ensure that Enable DA is set to Yes, that Enable UTA is set to No, and that the
entry in the Program Name field is correct.

4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name Sccc11x.

138 Application Testing Collection 1.5.0 User's Guide

5. Press the End key (PF3) to exit the panel.

For more detailed information, see “CA, DA, and UTA Setup” on page 231.

Create JCL to Start a Monitor Session
To create the JCL to start a monitor session:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 3.

The Create JCL to Start the Monitor panel is displayed. You create the JCL
for the DA execution of ccc11x from this panel.

3. Ensure that Enable DA is set to YES and that the entry in the Program Name field
is correct.

4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name Xccc11x.

5. Press the End key (PF3) to exit the panel.

Use the monitor JCL to start a monitor session before you run your test case
program. Note that you can perform DA execution on a system other than the
one on which you have stored the listing.

For more detailed information, see “Monitor Execution” on page 245.

Create Physical Distillation JCL
To create the physical distillation JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 5.

The Distillation panel is displayed.

3. Select option 3.

The Generate JCL to Generate Key List and Distill Data panel is displayed.

4. Specify the following:

� Enter 'hi_lev_qual.V1R5Mð.SAMPLE.ccc11.MASTER' in the Master Data Dsn

field.
� Enter 15 in the Key Position field.
� Enter 2ð in the Key Length field.
� Enter the name you would like to give to the new (distilled) master data set

in the Distilled Master Dsn field.
� Enter ccc11x in the Program Name field.

5. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name Dccc11x.

6. Press the End key (PF3) to exit the panel.

 DA Samples 139

Create JCL to Link the Modified Object Modules
You must link the modified object modules (modified by the Setup step) into an
executable program for testing. You can use the normal JCL that links your
program, but be sure you use the object module library that contains the modified
object modules. Sample JCL to link the ccc11x example is provided in
hi_lev_qual.V1R5M0.SAMPLE.JCL(Lccc11x).

Create JCL to Run the GO Step
You can use the normal JCL that executes your program, but be sure to specify the
load module library that contains the link-edited modified object modules. Sample
JCL to execute the GO step for the ccc11x example is provided in
hi_lev_qual.V1R5M0.SAMPLE.JCL(Gccc11x).

Execute the JCL
When you have created all of the ccc11x JCL, you can run the ccc11x summary
example by executing the following functions in the order listed. To see a flow
diagram of these steps, see Figure 38 on page 134

 1. Sccc11x28

Performs the Setup step. All JCL steps should complete with condition code 0.

 2. Lccc11x29

Links the object modules that have been modified with breakpoints in the Setup
step into the ccc11x load module.

 3. Xccc11x28

Starts a monitor session. For DA, a program continuously runs to write variable
data to disk. The JCL does not complete until your session is stopped by step
6.

 4. Gccc11x29

Runs sample program ccc11x. ccc11x runs to completion with condition code
0.

 5. CASTATS30

Displays statistics using the CASTATS command. You should see a nonzero
EVNTS count in the TOTALS line. (This is an optional step for illustrative pur-
poses.)

 6. CASTOP30

Stops the monitor session. DA writes the variable data to disk.

 7. Dccc11x28

Performs the physical distillation for ccc11x.

28 JCL created from the panels and put into the JCL library.

29 JCL supplied with the installation materials in hi_lev_qual.V1R5M0.SAMPLE.JCL. (Sample JCL for all of the steps can be found in
this partitioned data set [PDS].)

30 Monitor commands issued from either the Control the CA/DA/UTA Monitor panel or the TSO command processor (ISPF option 6)
by entering:

 EX 'hi_lev_qual.V1R5Mð.REXX(cacmd)'

where cacmd is the command issued (such as, CASTATS, CASTOP, and so on).

140 Application Testing Collection 1.5.0 User's Guide

 Logical Distillation

This chapter contains information about logical distillation. Logical distillation is the
process of instrumenting your object code and executing the instrumented code
under the Distillation Assistant monitor. As the instrumented code reads records
from the specified input master data set, the monitor determines which keys in the
input master data set caused new code coverage in the instrumented code. The
list of these keys is then saved for the physical distillation process, which is
described in “Physical Distillation” on page 149.

Description of Reading Input Data Sets
After each read of the input data set that you specified in the Setup step, DA reads
and saves the associated key. Breakpoints are inserted in your program so that
new statement and conditional branch coverage can be measured. Whenever a
statement is executed for the first time, the last key read is saved (if not previously
saved). Whenever a condition in a conditional statement (for COBOL: IF,
PERFORM, EVALUATE, and GO; for PL/I: IF, DO/END, and SELECT) takes a new
path, the last key read is saved (if not previously saved). After termination of your
test run using the DA command CASTOP, this list of saved keys is written to disk.

Coverage of the Distilled Data Set
No distilled data set will give equivalent coverage in all cases.

For example, your input data set may be customer purchase records. You may do
special processing for customers whose total purchases exceed $1000. DA will
record the key of the first customer record that caused the $1000 total to be
exceeded. However the distilled data set will probably not contain all of the pur-
chase records that totaled $1000. Therefore the path to process the $1000 cus-
tomer totals will never be executed while running the distilled data set. In general,
any “quantity” type paths executed while processing your input master data set will
not be executed while processing the distilled data set.

 PL/I ON-Units
If an ON-unit that handles an input condition in a PL/I program returns control to a
statement following a READ for which distillation data is being recorded, the
monitor cannot tell whether valid data was read or not. This may result in the pre-
vious record being included in the distilled output, even if it did not cause any
unique coverage.

For example, an ON ENDFILE condition that returns control to the point after the
READ causing the condition will cause the last record in the master data set to be
included in the distilled data set, even though the end of file occurred after it had
been processed.

 Copyright IBM Corp. 1997, 1999 141

How Much Data Can Be Read
One read of the input data set can save up to 126 bytes of key data.

Keys that cause new coverage are kept in storage buffers while your program is
running, and periodically the keys are written to disk. Two buffers are used: one is
written to disk while the other is being used. It is possible that the buffers could be
full when a new key is to be written to the buffer. However, this is unlikely
because:

1. Very few keys cause new coverage, and little data is written to the buffers.
The size of each buffer is 65536 bytes. Each data entry contains the key plus
eight bytes of other data.

2. To cause a new key to be read, the user program must do I/O. This allows
time for the buffer monitor program to write any full buffers to disk.

If a buffer overrun occurs and causes loss of new key data, you will see a state-
ment similar to the following in the VARDATA file of key data:

11915 1 1 38 KYLEX 3722AIX.

11916 1 1 38 KYLEX 3723AIX.

\\\\\\\\ !!! BUFFER OVERFLOW !!! \\\\\\\\

11917 1 1 38 KYLEX ððððMVS.

If a buffer overflow occurs, the program that creates the VDR report of variable
data (stepname EXVAR) completes with a return code of 4.

Recording Which Keys Execute a Statement
You can produce an annotated listing (similar to the Coverage Assistant report
described in “Annotated COBOL Listings” on page 54, or “Annotated PL/I Listings”
on page 64) that contains the key numbers that first execute each statement.
Figure 43 shows the portion of an annotated listing that lists these numbers.

 ðð15ð

 ðð151 1ð1-CASE.

 ðð152 : ADD 1 TO WS-COUNT-1ð1. >ððð1 ððð1 <

 ðð153

 ðð154 1ð2-CASE.

 ðð155 : ADD 1 TO WS-COUNT-1ð2. >ððð1 ðð16 <

 ðð156

 ðð157 1ð3-CASE.

 ðð158 : ADD 1 TO WS-COUNT-1ð3. >ððð1 ðð17 <

 ðð159

 ðð16ð 1ð4-CASE.

 ðð161 : ADD 1 TO WS-COUNT-1ð4. >ððð1 ðð1ð <

 ðð162

 ðð163 1ð5-CASE.

 ðð164 : ADD 1 TO WS-COUNT-1ð5. >ððð1 ðð13 <

 ðð165

 ðð166 1ð6-CASE.

 ðð167 : ADD 1 TO WS-COUNT-1ð6. >ððð1 ððð8 <

 ðð168

 ðð169 1ð7-CASE.

 ðð17ð : ADD 1 TO WS-COUNT-1ð7. >ððð1 ððð3 <

 ðð171

Figure 43. Partial Annotated Listing for COB011 Showing Key Numbers

142 Application Testing Collection 1.5.0 User's Guide

In addition to the annotation symbols on each executable statement that appear on
the left, two columns of numbers appear to the right of each statement within
brackets:

� The number in the first of these columns is the number of times the statement
was executed

� The number in the second column is the key number of the key that first
caused the statement to execute.

In most cases, DA removes the breakpoint the first time that the statement is exe-
cuted, therefore the count on most lines will be one. However, the breakpoint on
the file read statement in the file being distilled is left in for the entire execution.
The count shown on this line will show how many reads to the file were executed.

The key number refers to the keys listed in the DA Key List of keys that caused
new coverage.

In Figure 43 on page 142, key 1 (with key 4a) caused 101-CASE to execute first,
and key 16 (with key 7n) caused 102-CASE to execute first.

You create an annotated listing with key data by changing your defaults before gen-
erating the setup JCL. To change your defaults:

1. Select option ð from the ATC Primary Option Menu.
This displays the Manipulate ATC Defaults panel.

2. Select option 1.
The ATC Defaults panel is displayed.

3. In the Setup Defaults area of the panel, change Frequency Count Mode to YES.

Complete the remaining DA steps to run the program under test.

Then generate the annotated listing with key data by executing a CA annotated
listing report, as described in “Annotated COBOL Listings” on page 54 and “Anno-
tated PL/I Listings” on page 64.

 Logical Distillation 143

144 Application Testing Collection 1.5.0 User's Guide

Editing the Distillation Assistant Control File

This chapter describes the function of the control file (CACTL) used by DA. The
CACTL contains information that tells DA what compile units to analyze and the file
that is to be monitored. CA, DA, and UTA share the CACTL file. See “CA, DA,
and UTA Control File” on page 209 for a complete description of this control file.
This chapter only explains how to use the control file with Distillation Assistant.

Contents of the Control File
The control file consists of a series of lines that specify information about the file to
be distilled. The following describes the contents of the control file as it is used by
DA. See “Contents of the Control File” on page 211 for a description of the syntax
of the control file.

� The COBOL statement specifies the following:

– The source language (COBOL)

– The data set containing the compiler listing file

– The name of the load module containing the program

| – The data set containing either the object code generated by the complier or
| the load module created by the linker/binder

| – The data set that is to contain either the instrumented object code gener-
| ated by the Setup job or the instrumented load module generated by the
| Setup job

� The PL/I statement specifies the following:

– The source language (PL/I)

– The data set containing the compiler listing file

– The name of the load module containing the program

| – The data set containing either the object code generated by the complier or
| the load module created by the linker/binder

| – The data set that is to contain either the instrumented object code gener-
| ated by the Setup job or the instrumented load module generated by the
| Setup job

 Copyright IBM Corp. 1997, 1999 145

� The SCOPE statement specifies the following:

 – COBOL

- The PROGRAM-ID of the external program in which the file is defined.
The external program ID is the first program ID in the listing file.

- The PROGRAM-ID of the nested (internal) program in which the file is
defined. This operand is required only if the file is defined within a
nested program.

 – PL/I

- The name of the procedure or begin block in which the file is defined.

� The FILE statement specifies the following:

– That all reads of the specified file are to be monitored

– For COBOL, the FD name of the file to be monitored

– For PL/I, the name of the file constant to be monitored

– The position and length of the logical key within the file

– For PL/I, the statement number where the file is read.

When performing distillation, you would normally want to monitor all reads of the file
as is done using the statements previously described. If, however, for some reason
you only want to monitor reads into a specific variable or group, the FILE statement
previously described could be replaced by a VARIABLE and COVERAGE state-
ment specifying the FILE option (for COBOL only). The syntax of these statements
is described in “Contents of the Control File” on page 211.

146 Application Testing Collection 1.5.0 User's Guide

 Examples
The following figure shows an example of a file read in a COBOL program:

 COBOL ListDsn=ATC.V1R5Mð.SAMPLE.COBOLST(COB11M),

 LoadMod=COB11M,

 FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

 ToObjDsn=ATC.V1R5Mð.SAMPLE.ZAPOBJ

 Scope ExtProgram-Id=COB11M

 File File=QSAMIN,KeyPosition=15,KeyLen=2ð

Figure 44. CACTL Statements for Distillation (COBOL)

The example in Figure 44 is based on the following COBOL declarations:

 IDENTIFICATION DIVISION.

 ...

 DATA DIVISION.

 FILE SECTION.

 FD QSAMIN

RECORDING MODE IS F

BLOCK CONTAINS ð RECORDS

LABEL RECORDS ARE STANDARD.

 ð1 INPUT-RECORD PIC X(76).

 EJECT

 WORKING-STORAGE SECTION.

 ...

Figure 45. COBOL File Definition. All reads for the file QSAMIN are monitored. Whenever
a record causes new code coverage, the key field located in columns 15 to 34 of the record
is saved.

The following figure shows an example of a file read in a PL/I program:

 PL/I ListDsn=ATC.V1R5Mð.SAMPLE.PLILST(PLI11M),

 LoadMod=PLI11M,

 FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

 ToObjDsn=ATC.V1R5Mð.SAMPLE.ZAPOBJ

 Scope PROCEDURE=PLI11M

 File File=QSAMIN,KeyPosition=15,KeyLen=2ð,Stmts=38

Figure 46. CACTL Statements for Distillation (PL/I)

 Editing the DA Control File 147

148 Application Testing Collection 1.5.0 User's Guide

 Physical Distillation

This chapter describes physical distillation. Physical distillation is the process of
creating a new master data set by reading the list of keys produced in the logical
distillation step (described in “Logical Distillation” on page 141) and the input
master data set. The new master data set consists of only those records in the
input master data set whose logical keys appear in the list of keys.

Physical Distillation Summary
The physical distillation process has two steps:

1. Format the list of keys that caused new coverage from the data saved by the
execution monitor.

2. Use this key list to distill the input master data set.

You can create JCL to run these two steps consecutively, or you can create JCL to
run each step separately. If you run the steps separately, you can inspect and edit
the key list to produce a customized distillation data set. For example, you may
want to include keys in a distilled data set even though they did not cause new
coverage, or you may want to remove other keys that caused new coverage, but
are not important to your testing.

Before the physical distillation begins, the new master data set is, in most cases,
deleted if it currently exists, and allocated with the attributes of the input master
data set. The exceptions to this rule are:

� If the new master data set is a member of a partitioned data set, the data set is
not deleted and reallocated. However, if the attributes of the new master parti-
tioned data set do not match those of the input master data set, the physical
distillation process is ended.

� If a volume is specified for the new master data set, the data set is not deleted
and reallocated. However, if the attributes of the new master data set do not
match those of the input master data set, the physical distillation process ends.

� If the new master data set is on tape, no check is made to see if the data set
exists; the specified file on the tape is simply rewritten.

 Copyright IBM Corp. 1997, 1999 149

The following chart shows the input/output combinations that are supported:

Table 1. Supported Input/Output Combinations

Input

Output

seq pds(mem) vsam

Exists New Exists New Exists New

seq del/realloca alloc like add/replace no no no

pds(mem)
nob no add/replace alloc like

add
no no

vsam no no no no del/realloca alloc like

Notes:

del/realloc Delete and reallocate like input data set.
add/replace Add or replace member in existing PDS.
add Add member in existing PDS.
alloc like Allocate like input data set.

a If the volume/unit is specified for the output data set, no del/realloc will be done (the output data set will be
reused).

b If the volume/unit is specified for the output data set, pds(mem) to seq is allowed.

Parameters Used by Physical Distillation
The inputs to the physical distillation process are:

� Input master data set
� Input master data set's volume
� Input master data set's unit
� Key position in master data set
� Key length in master data set

Outputs from the logical distillation process are:

 � Debug table
 � Variable table

The following intermediate files are created during the physical distillation process:

� Variable ID file
� Variable data file

The physical distillation process creates the new master data set.

150 Application Testing Collection 1.5.0 User's Guide

Running Physical Distillation
You generate the JCL to run the physical distillation from the Distillation panel.
To display the Distillation panel:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.
2. Select option 5.

The Distillation panel is displayed.
3. Select option 3.31

The Generate JCL to Generate Key List and Distill Data panel, shown in
Figure 47, is displayed. From this panel, you can generate JCL, edit JCL, and
submit JCL for physical distillation.

à ð
-------------- Generate JCL to Generate Key List and Distill Data ------

Option ===>

1 Generate DASD Generate JCL for distilling master file on DASD

2 Generate Tape Generate JCL for distilling master file on TAPE

3 Edit Edit JCL

4 Submit Submit JCL

Enter END to Terminate

á ñ

Figure 47. Generate JCL to Generate Key List and Distill Data Panel

The panel's options are as follows:

Generate DASD
Generates the JCL required to perform both steps in the physical
distillation. Use this option when the new distilled master data set
will be stored on a DASD (direct access storage device).

Generate Tape
Generates the JCL required to perform both steps in the physical
distillation. Use this option when the input master data set is on
tape and the new distilled master data set will be stored on tape.

Edit
Starts an ISPF edit session for the JCL created by either Generate
option.

Submit
Submits the JCL created by either Generate option for physical
distillation.

31 If you would like to edit the key list after it is produced, you can select the KeyList option (option 1) to generate the key list and
edit it. Select the DistillKey option (option 2) to complete the distillation. Because the fields used in these options are very
similar to those used in the Distill option, they are not discussed here.

 Physical Distillation 151

Generating JCL for Physical Distillation
To generate the JCL required for physical distillation, select the appropriate gen-
erate option (option 1 or 2) from the Generate JCL to Generate Key List and

Distill Data panel. Either of these options allow you to perform both steps of the
physical distillation.

If you select option 1, the Generate JCL to Generate Key List and Distill DASD

Data panel, shown in Figure 48, is displayed. If you select option 2, the Generate
JCL to Generate Key List and Distill Tape Data panel, shown in Figure 49 on
page 154, is displayed.

The following topics describe how to complete these panels.

Generating JCL for DASD
If the new distilled master data set will be stored on DASD, complete the Generate
JCL to Generate Key List and Distill DASD Data panel as described in this topic,
and then press Enter. This panel allows you to generate the JCL required for both
steps of the physical distillation: (1) generate a key list, and (2) distill the new
master data set from the input master data set.

à ð
----------- Generate JCL to Generate Key List and Distill DASD Data ----

Command ===>

Enter END to Terminate

Input Master File:

Master Data Dsn . . . 'ATC.V1R5Mð.SAMPLE.COB11.MASTER'

Volume Serial Unit . . (If not cataloged)

Key Position 15 (1 is first character of record)

Key Length 2ð

Output Master File:

Distilled Master Dsn 'YOUNG.TEST.COB11.DISTFILE'

Volume Serial Unit . . (If not cataloged)

Use Program Name for File Name YES (Yes|No) Program Name COB11M

Input Files:

Debug Table Dsn . . . 'YOUNG.TEST.COB11M.DBGTAB'

Variable Table Dsn. . 'YOUNG.TEST.COB11M.VARTAB'

JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(DCOB11M)'

Output Files:

Variable ID Dsn . . . 'YOUNG.TEST.COB11M.VARID'

(\ for default sysout class)

Variable Data Dsn . . 'YOUNG.TEST.COB11M.VARDATA'

á ñ

Figure 48. Generate JCL to Generate Key List and Distill DASD Data Panel

152 Application Testing Collection 1.5.0 User's Guide

The panel's fields are as follows:

Master Data Dsn
Specifies the data set name of the input master data set to be distilled.

Volume Serial
Specifies the volume on which the data set resides.

Unit
Specifies the device on which the data set resides.

Key Position
Specifies the position of the logical key in each input master data set
record. Position 1 is the first byte of the record.

Key Length
Specifies the length of each logical key in the input master data set.

Distilled Master Dsn
The name of the new master data set (the result of the distillation).

Volume Serial
Specifies the volume on which the new data set will be stored.

Unit
Specifies the device on which the new data set will be stored.

Use Program Name for File Name
If you want to construct the subsequent data set names from the default
high-level qualifier, the specified program name, and the default low-
level qualifier for each data set, enter YES.

When you press Enter, the file names on the panel are changed auto-
matically. Using the program name is the normal DA procedure.

Program Name
Specifies the next-to-last qualifier to be used when the Use Program

Name for File Name field is set to YES.

Debug Table Dsn
Specifies the name of the debug table produced by the DA logical
distillation.

Variable Table Dsn
Specifies the name of the variable table produced by the DA logical
distillation.

JCL Dsn
Specifies the name of the JCL data set that contains the JCL for this
action.

Note: If the Use Program Name for File Name field is set to YES, then
the member name or program name qualifier of the data set will be
Dxxxxxxx, where xxxxxxx is the first seven characters of the program
name.

 Physical Distillation 153

Variable ID Dsn
Specifies the name of the data set that will contain the variable ID inter-
mediate file created during the physical distillation process.

Variable Data Dsn
Specifies the name of the data set that will contain the variable data
intermediate file created during the physical distillation process.

Generating JCL for Tape
If the new distilled master data set will be stored on tape, complete the Generate
JCL to Generate Key List and Distill Tape Data panel as described in this topic,
and then press Enter. This panel allows you to generate the JCL required for both
steps of the physical distillation: (1) generate a key list, and (2) distill the new
master data set from the input master data set.

à ð
----------- Generate JCL to Generate Key List and Distill Tape Data ----

Command ===>

Enter END to Terminate

Input Master File:

Master Data Dsn . . . 'ATC.V1R5Mð.SAMPLE.COB11.MASTER'

Volume Serial DADST1 Unit . . 348ð (If not cataloged)

File Number 1

Key Position 15 (1 is first character of record)

Key Length 2ð

Output Master File:

Distilled Master Dsn 'YOUNG.TEST.COB11.DISTFILE'

Volume Serial DADST2 Unit . . 348ð

File Number 1 Expiration Date

Catalog Data Set . . No (Yes|No)

Use Program Name for File Name YES (Yes|No) Program Name COB11M

Input Files:

Debug Table Dsn . . . 'YOUNG.TEST.COB11M.DBGTAB'

Variable Table Dsn. . 'YOUNG.TEST.COB11M.VARTAB'

JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(DCOB11M)'

Output Files:

Variable ID Dsn . . . 'YOUNG.TEST.COB11M.VARID'

(\ for default sysout class)

Variable Data Dsn . . 'YOUNG.TEST.COB11M.VARDATA'

á ñ

Figure 49. Generate JCL to Generate Key List and Distill Tape Data Panel

154 Application Testing Collection 1.5.0 User's Guide

The panel's fields are as follows:

Master Data Dsn
Specifies the name of the input master data set to be distilled.

Volume Serial
Specifies the volume on which the data set resides.

Unit
Specifies the device on which the data set resides.

File Number
Specifies the position count of the data set relative to other data sets on
the tape. The first data set is number 1.

Key Position
Specifies the position of the logical key in each input master data set
record. Position 1 is the first byte of the record.

Key Length
Specifies the length of each logical key in the input master data set.

Distilled Master Dsn
The name of the new master data set (the result of the distillation).

Volume Serial
Specifies the volume on which the new data set will be stored.

Unit
Specifies the device on which the new data set will be stored.

File Number
Specifies the position count of the data set relative to other data sets on
the tape. The first data set is number 1.

Expiration Date
Specifies the expiration date for the new data set. The recommended
format is YYYY/DDD.

Catalog Data Set
Specifies whether the system is to make an entry pointing to the data
set in the system or user catalog.

Use Program Name for File Name
If you want to construct the subsequent data set names from the default
high-level qualifier, the specified program name, and the default low-
level qualifier for each data set, enter YES.

When you press Enter, the file names on the panel are changed auto-
matically. Using the program name is the normal DA procedure.

Program Name
Specifies the next-to-last qualifier to be used when the Use Program

Name for File Name field is set to YES.

 Physical Distillation 155

Debug Table Dsn
Specifies the name of the debug table produced by the DA logical
distillation.

Variable Table Dsn
Specifies the name of the variable table produced by the DA logical
distillation.

JCL Dsn
Specifies the name of the JCL data set that contains the JCL for this
action.

Note: If the Use Program Name for File Name field is set to YES, then
the member name or program name qualifier of the data set will be
Dxxxxxxx, where xxxxxxx is the first seven characters of the program
name.

Variable ID Dsn
Specifies the name of the data set that will contain the variable ID inter-
mediate file created during the physical distillation process.

Variable Data Dsn
Specifies the name of the data set that will contain the variable data
intermediate file created during the physical distillation process.

Editing Distillation JCL
To start an ISPF edit session for the distillation JCL you created with either the
Generate DASD option or the Generate Tape option:

1. Select option 2 from the Generate JCL to Generate Key List and Distill

Data panel.

The Edit Distillation JCL panel, shown in Figure 50, is displayed.

à ð
---------------------------- Edit Distillation JCL ---------------------

Command ===>

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COB11M

JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(DCOB11M)'

á ñ

Figure 50. Edit Distillation JCL Panel

2. Complete the panel, and press Enter.

156 Application Testing Collection 1.5.0 User's Guide

The panel's fields are as follows:

Use Program Name for File Name
If you want to construct the subsequent data set names from the
default high-level qualifier, the specified program name, and the
default low-level qualifier for each data set, enter YES.

When you press Enter, the file names on the panel are changed
automatically. Using the program name is the normal DA proce-
dure.

Program Name
Specifies the next-to-last qualifier to be used when the Use Program

Name for File Name field is set to YES.

JCL Dsn
Specifies the name of the JCL data set that contains the JCL for this
action.

Note: If the Use Program Name for File Name field is set to YES,
then the member name or program name qualifier of the data set
will be Dxxxxxxx, where xxxxxxx is the first seven characters of the
program name.

Submitting JCL for Physical Distillation
To submit JCL that you created with either the Generate DASD option or the
Generate Tape option:

1. Select option 4 from the Generate JCL to Generate Key List and Distill

Data panel.

The Submit Distillation JCL panel, shown in Figure 51, is displayed.

à ð
--------------------------- Submit Distillation JCL --------------------

Command ===>

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COB11M

JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(DCOB11M)'

á ñ

Figure 51. Submit Distillation JCL Panel

2. Complete the panel, and press Enter to submit the batch job.

 Physical Distillation 157

The panel's fields are as follows:

Use Program Name for File Name
If you want to construct the subsequent data set names from the
default high-level qualifier, the specified program name, and the
default low-level qualifier for each data set, enter YES.

When you press Enter, the file names on the panel are changed
automatically. Using the program name is the normal DA proce-
dure.

Program Name
Specifies the next-to-last qualifier to be used when the Use Program

Name for File Name field is set to YES.

JCL Dsn
Specifies the name of the JCL data set that contains the JCL for this
action.

Note: If the Use Program Name for File Name field is set to YES,
then the member name or program name qualifier of the data set
will be Dxxxxxxx, where xxxxxxx is the first seven characters of the
program name.

3. Inspect the output to ensure that the distillation ran successfully.

Physical Distillation Return Codes
When physical distillation is done successfully, the return codes for all steps are
zero. The following information is available in the SYSPRINT DD name of the
DISTILL step:

� Number of keys: 0000000019
� Number of input master records: 0000001440
� Number of output master records: 0000000019

The previous values are for the distillation test case shipped with ATC.

When physical distillation fails, the return code of the DISTILL step is nonzero. The
return code is the number of an FCVxxx error. The error message is printed in the
SYSPRINT DDNAME of the DISTILL step. For more information about the error,
see Appendix A, “Problem Determination” on page 307.

158 Application Testing Collection 1.5.0 User's Guide

Using Unit Test Assistant

 Copyright IBM Corp. 1997, 1999 159

160 Application Testing Collection 1.5.0 User's Guide

 Introduction

This chapter contains the following topics:

� What Is Unit Test Assistant?
� What Does UTA Require?
� How Does UTA Work?
� Where Can You Get Further Details?

What Is Unit Test Assistant?
Unit Test Assistant (UTA) allows you to capture and log the values assigned to
selected variables in your application programs at selected points during their exe-
cution. This is called unit testing. Unit testing allows you to confirm the effective-
ness of Year 2000 changes that have been made to an application program.

In addition, Unit Test Assistant offers the ability to perform data warping. This
means that variables can be modified automatically as they are encountered during
program execution. UTA will intercept data entering or leaving a program at I/O
time (or at other times where application logic dictates) and change the value of
that data in a manner that you specify. This feature is especially useful when doing
future date testing of Year 2000 remediated code.

UTA provides two types of data warping:

 1. File warping
2. Dynamic data warping

A standard data warping process is to age, or warp, occurrences of dates in the
input data files. UTA's file warp feature copies VSAM or QSAM files and warps
record data fields in the copied files under user control. File warping is described
in more detail in “Unit Test Assistant File Warping” on page 197. The remainder of
this chapter describes logging and dynamic runtime warping of variables.

UTA supports applications generated by the following compilers:

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� The following PL/I compilers are supported for data warping of file input buffers

only :
– IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions

[MLE])
– IBM OS PL/I Optimizing Compiler 2.3.0
– IBM PL/I Optimizing Compiler 1.5.1

For variables that you select to monitor in any compile units in any of your pro-
grams, UTA saves the contents of the variables while your program is executing,
and writes this data to a log file for later analysis. (Warped variables are only
logged if there is an error.)

 Copyright IBM Corp. 1997, 1999 161

UTA has the following characteristics:

� Low overhead. For a test case run, UTA typically adds very little to the exe-
cution time of the program. UTA inserts SVC instructions as breakpoints and
then is given control of MVS when these SVCs are executed.

� Panel-driven user interface. You can use an ISPF panel-driven interface to
create JCL for executing UTA programs.

� Simple, flexible control. The control file used to define what variables to
monitor provides a simple method of controlling UTA operations.

What Does UTA Require?
UTA has the following requirements:

� UTA runs under MVS. Detailed MVS system resource requirements for UTA
are described at “DA and UTA Resources” on page 388. UTA uses ISPF ser-
vices to display dialogs and to produce the JCL to run the UTA steps.

� As part of its input, UTA requires listings created by the application program
compilers that it supports. These compilers offer options that allow you to
include assembler statements, data maps, and data cross-references in the
listings, all of which UTA uses.

� UTA also requires the application program object modules as input. UTA
creates copies of these object modules with breakpoints inserted into them.

See “Execution” on page 165 for a description of how the UTA authorized pro-
grams intercept breakpoints.

How Does UTA Work?
Running UTA consists of the following steps: This list is an overview of the process.
Each activity is described in more detail in topics that follow in this chapter.

Step 1 Setup

a. Compile the source code that you want to analyze, using the
required compiler options.

b. Generate UTA JCL using the UTA ISPF dialog:

1) Edit the UTA control file.
2) Create the setup JCL.
3) Create the monitor JCL.
4) Create the variable report JCL.

| c. If you instrumented object modules, edit your program’s link-edit
| JCL to pick up the modified object modules, which are created by
| the Setup step.

d. Edit your program’s GO JCL (or program invocation) to point to the
new load module that is created when you run the JCL created in
step 1c.

162 Application Testing Collection 1.5.0 User's Guide

Step 2 Execution

a. Run the setup JCL (created at step 1b2).
b. Run the link-edit JCL (created at step 1c).
c. Run the monitor JCL to start a monitor session (created at step

1b3).
d. Run your application using the load module(s) created in step 2b.
e. Stop the monitor session (using the CASTOP command).

Step 3 Report

a. Run the variable report JCL (created at 1b4 on page 162).

If you change your program and want to rerun the test cases, you must repeat step
1a using the changed source code, and then complete steps 1b through 3a again.

Figure 52 shows a diagram of the entire process.

 Introduction to UTA 163

| Object

| User User modules

| control program or

| file listings load modules

 │ │ │

 6 6 6

 ┌───────────────────────────┐ Breakpoints

 │ │ inserted

 │ Step 2a: ├──────────────────────┐

 │ UTA Setup │ │

 │ │ │

 └───┬─────────┬──────────┬──┘ │ Executable

┌───DBGTAB VARCTL BRKTAB │ programs

│ file file file │

│ │ │ │

│ 6 6 6

│ ┌───────────────────────────┐ Control returned ┌────────────────────┐

│ │ ├─────────────────5│ │

│ │ │ │ Step 2d: │

│ │ │ breakpoint │ User program │

│ │ Step 2c: │ executed │ │

│ │ Execution │%─────────────────┤ │

│ │ (Monitor) │ └────────────────────┘

│ │ │ ┌────────────────────┐

│ │ │ │ Step 2e: │

│ │ │%─────────────────┤ Stop Monitor │

│ │ │ │ │

│ └─────────────┬─────────────┘ └────────────────────┘

│ VARTAB

└──────┐ file

 │ │

 6 6

 ┌───────────────────────────┐

 │ │

 │ Step 3: │

 │ UTA Reports │

 │ │

 └─────────────┬─────────────┘

 │

 6

Reports: Table of monitored variables

Table of variable data

Figure 52. UTA—Flow Diagram

164 Application Testing Collection 1.5.0 User's Guide

 Setup
UTA Setup analyzes assembler statements and cross-reference information
included in the compiler output listings to determine where to insert breakpoints into
disk-resident copies of the object modules containing variables you want to
examine. It then inserts the breakpoints.

Setup runs in MVS. To run it, you need:

1. Compiler listings of the object modules
| 2. The object modules or load modules you want to test

3. The user control file listing variables to monitor

The Setup step produces:

| 1. Modified test programs (object modules or load modules) containing break-
| points

2. A file of breakpoint-related information (called BRKTAB in this User's Guide)
required for the monitor program in the Execution step.

3. A file of variable control data on variables to monitor (called DBGTAB in this
User's Guide).

4. A file of variable locations to be used by the monitor (called VARCTL in this
User's Guide).

 Execution
| If you instrumented object modules, you must link the modified object modules into
| an executable load module.

Start the UTA monitor program and run your test case programs. As the selected
breakpoints are encountered, the monitor gains control, logs the predefined
selected variable values, changes (warps) predefined variables or buffers, and then
returns control to your program. After your test cases have completed, use
CASTOP to stop the monitor session. It writes the results (variable values) to a file
called VARTAB.

The monitor inserts reserved supervisor call (SVC) instructions as breakpoints and
is given control by MVS when these SVC instructions are executed in a program.
Using SVCs as breakpoints is the architected way to receive control from MVS, and
requires no modification to MVS. This technique is called user SVCs.

Two SVC instructions are used, one for two-byte instructions, and one for four- or
six-byte instructions. During installation, the monitor is installed as the handler for
the two SVC instructions used as breakpoints.

 Introduction to UTA 165

 Report
The UTA Report program uses the results from the monitor and from DBGTAB to
produce a report of all logged user-defined variables.

To run reports, you need:

1. The DBGTAB data set from the Setup step
2. The VARTAB data set from the Execution step

The reports produced are as follows:

� Monitored Variables Report (MVR). A table of monitored variables and their
read specifications. The MVR is always generated.

� Either of the following reports:

– Variable Data Report (VDR). A table of data that is read during execution
with references to the MVR for variable identification.

– Combined Variable Data Report (CVDR). A variation of the VDR, which
includes a fully-qualified variable name for each entry.

See pages 191 and 192 for examples of these reports.

Where Can You Get Further Details?
Refer to the following sections for additional information.

For information about... See...

Samples of UTA test case coverage,
including sample reports

“Unit Test Assistant Samples” on
page 167

Editing the CACTL file that contains the
names of the listing data sets

“Editing the Unit Test Assistant Control
File” on page 187

Setting up the table of breakpoints from
the listings

“CA, DA, and UTA Setup” on page 231

Starting a UTA monitor session and
running test cases on your programs

“Monitor Execution” on page 245

Reports on the test run “Unit Test Assistant Reports” on
page 189

Commands that control the UTA monitor
program

“Monitor Commands” on page 255

System resources needed by UTA “DA and UTA Resources” on page 388

166 Application Testing Collection 1.5.0 User's Guide

Unit Test Assistant Samples

This chapter describes samples of Unit Test Assistant (UTA) variable monitoring
support using examples provided with the ATC package.

UTA monitors or warps the values of the variables that you select in the control file.

The samples comprise the monitored variable report (MVR) and the variable data
report (VDR) for the COBOL test cases:

� COB02M (COBOL for IBM MVS & VM 1.2 sample)32

� COB022 (IBM VS COBOL II Release 4.0 sample)
� COB02O (IBM OS/VS COBOL Release 2.4 sample)
� COB01M (COBOL for IBM MVS & VM 1.2 sample)
� COB012 (IBM VS COBOL II Release 4.0 sample)
� COB01O (IBM OS/VS COBOL Release 2.4 sample)

A flow diagram of the steps required to run these samples is shown in Figure 53
on page 168. The names in the steps are the member names of the JCL executed
for the step. For example, SCOBnnx, where nn is the test case number and x is M
for COBOL for MVS & VM, 2 for VS COBOL II, or O for OS/VS COBOL.

The following UTA samples use the ATC ISPF dialog to create the JCL to run the
UTA steps. The ATC ISPF dialog is provided as an aid in creating the JCL. Once
the JCL is created for a test environment, it does not have to be recreated from the
dialog. In a typical user test environment, the creation of the JCL can be incorpo-
rated into the user's procedures. You do not have to use the ISPF dialog to use
UTA.

32 You can also test the CA and UTA installation for the COBOL for OS/390 & VM compiler by copying the JCL members and
making minor edits to the compiler, link-edit, and runtime library names.

 Copyright IBM Corp. 1997, 1999 167

 COBð1M

| object

| Control Program modules

| file listings or load modules

 │ │ │

 6 6 6

 ┌──────────────────────────┐ Breakpoints

 │ │ inserted

 │ Step 1: ├───────────────────────┐

 │ SCOBð1M │ Instrumented │

 │ Setup step ├────────────────────┐ │

 └───┬────────┬─────────┬───┘ Load modules │ │

┌───DBGTAB BRKTAB VARCTL │ │ Executable

│ variables breakpoint variable │ │ programs

│ to read file locations │ │

│ │ to read │ │

│ 6 6 6 6

│ ┌───────────────────────────┐ ┌────────────────────┐

│ │ ├─────────────────5│ Step 4: │

│ │ │ │ GCOBð1M │

│ │ Step 3: │%─────────────────┤ Run sample program │

│ │ XCOBð1M │ └────────────────────┘

│ │ (Monitor) │ ┌────────────────────┐

│ │ │ │ Step 6: │

│ │ │%─────────────────┤ CASTOP │

│ │ │ │ Stop monitor │

│ └───────────────────────────┘ └────────────────────┘

│ VARTAB

└──────┐ variable

 │ data saved

 │ │

 6 6

 ┌───────────────────────────┐

 │ Step 7: │

│ VCOBð1M │

│ Print MVR and VDR │

│ reports │

 └─────────────┬─────────────┘

 6

MVR and VDR reports

 in proj_qual.COBð1M.VARID

 and proj_qual.COBð1M.VARDATA

Figure 53. Sample Run—Flow Diagram

168 Application Testing Collection 1.5.0 User's Guide

COB02x Test Cases
The COB02M, COB022, and COB020 test cases are examples that include reading
variables from a single compile unit and using data warping to set, increment, and
decrement variables. The control file is shown in Figure 56 on page 173, the MVR
is shown in Figure 54 on page 171, and the VDR is shown in Figure 55 on
page 171.

A total of eight variables are monitored in this test case. The first two are each set
using data warping, and are read on subsequent statements. JULIAN-DATE is set
to 0099365 on statement #87 as variable 2, and read on statement #94 as variable
1. CURR-DATE is set to 00991231 on statement #97 as variable 4, and read on
statement #103 as variable 3. These values represent the appropriate format of
the date December 31,1999 with a two-digit year. The variable numbers are those
from the VARID report. Note that the variable numbers representing warp state-
ments do not appear in the VARDATA report unless an error occurs.

The next entry, YEAR4, is incremented by three on statement #106, and read on
statements #106 and #114 as variables 5 and 6. YEAR of YEAR-BY-FIELD of
DATE-BY-FIELD is decremented by one on statement #106 as variable 7. This
variable is subsequently copied into variable 8, YEAR2, which is read on statement
#117.

The next two entries, variables 9 and 10, are both for BEGIN-DATE of LOAN, and
demonstrate the difference between the NAME and FULL options in the control file
coverage line. Variable 9 in the MVR uses the NAME option, and variable 10 uses
the FULL option. As can be seen from the MVR, when using the NAME option, the
variable is read only on statements #97 and #117, where it is referenced by the
level name BEGIN-DATE. Using the FULL option, the variable is also read at all
statements on which the high-level qualifier LOAN is accessed.

The next entry, variable 11, indicates that JULIAN-DATE is to be read only once on
statement #143.

The final entry, variable 12, indicates that the variable J-DAY of J-DATE should be
read once every 100th time that statement #153 is executed, for a maximum of five
reads.

The reports for OS/VS COBOL have fewer statements listed for the variable
BEGIN-DATE of LOAN than the reports from the other compilers. Other than that,
the reports should be the same regardless of the compiler that is used for the pro-
grams under test.

For COBOL programs, breakpoints are inserted into the object modules during
Setup. These breakpoints are positioned so that the requested variable data can be
read when the breakpoint interrupt occurs. When you are ready to test your
program, you link the object modules that have been modified with the breakpoints.

 UTA Samples 169

To produce the reports for COB02x, you need to perform the following steps.
Steps 2a through 6 are described in more detail in topics that follow in this
chapter.

1. Compile the COBOL source you want to test. This produces listings that
include the assembler statements needed by UTA. (This has already been
done for the examples. The listings are in
hi_lev_qual.V1R5M0.SAMPLE.COBOLST for the COBOL for MVS & VM and
VS COBOL II compilers, and in hi_lev_qual.V1R5M0.SAMPLE.COSVSLST for
the OS/VS compiler.)

Make sure to use the compiler options specified in “Setup” on page 231.

2. Start the ATC ISPF dialog by entering the following from ISPF option 6:

 EX 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

The ATC Primary Option Menu is displayed.

a. Edit the UTA control file.

Verify that the control file includes the listings of the object modules you
want to test and information on the variables you want to monitor.

b. Create the setup JCL.

Create the JCL that enables the Setup job to produce files containing
breakpoint data and variable read data, and to modify copies of your object
modules by inserting breakpoints.

c. Create the start monitor session JCL.

Create the JCL to start a monitor session.

d. Create the variable report JCL.

Create the JCL to produce the MVR and VDR reports after the COB02x
test case has executed.

3. End the ATC ISPF dialog by pressing the End key (PF3) on the ATC Primary

Option Menu.

4. Create the JCL to link the modified object modules.

After the Setup step, and before the Execution step, you must link the modified
object modules into an executable program you can test. Edit the link JCL and
specify the library that will contain the modified object modules for the OBJECT
ddname and the library that will contain the modified load module for the
SYSLMOD ddname.

5. Create the JCL to run the GO step.

Create the JCL to run your program. Specify the same modified load module
as in step 4.

6. Execute the JCL.

Execute the created JCL files for COB02x in the correct order. (This order is
shown in “Execute the JCL” on page 175.)

Figures 54 and 55 on page 171 show sample variable reports. For details about
the information included in the report, see “Unit Test Assistant Reports” on
page 189.

170 Application Testing Collection 1.5.0 User's Guide

\ DATE: 12/12/1998

\ TIME: ð5:58:16

\

\

\CU Name: ATC.V1R5Mð.SAMPLE.COBOLST(COBð2M)

\External Program Id: COBð2M

\

\ CU var var data read read read read read prog var

\ numbr ID mode type offst lngth freq max stmts id name

\--

 1 1 I C ð 7 1 94 COBð2M ð1 JULIAN-DATE

 1 2 I Z ð 7 1 87 COBð2M ð1 JULIAN-DATE

 1 3 I C ð 8 1 1ð3 COBð2M ð1 CURR-DATE

 1 4 I Z ð 8 1 97 COBð2M ð1 CURR-DATE

 1 5 I C ð 4 1 114 COBð2M ð1 YEAR4

 1 6 I Z ð 4 1 1ð6 COBð2M ð1 YEAR4

 1 7 I Z ð 2 1 1ð6 COBð2M ð1 DATE-BY-FIELD ð2 YEAR-BY-FIELD ð3 YEAR

 1 8 I C ð 2 1 117 COBð2M ð1 YEAR2

 1 9 I C ð 8 1 97 COBð2M ð1 LOAN ð2 BEGIN-DATE

 117

 1 1ð I C ð 8 1 97 COBð2M ð1 LOAN ð2 BEGIN-DATE

 117

 124

 127

 13ð

 134

 1 11 I C ð 7 1 143 COBð2M ð1 JULIAN-DATE

1 12 I C ð 3 1ðð 5 153 COBð2M ð1 J-DATE ð2 J-DAY

Figure 54. MVR for COB02M

\ DATE: 12/12/1998

\ TIME: ð5:58:16

\

\

\ seq CU var at data

\ numbr numbr ID stmt stat read

\--

 1 1 1 94 1999365

 2 1 1ð 97

 3 1 9 97

 4 1 3 1ð3 ðð991231

 5 1 5 114 2ðð2

 6 1 1ð 117 ðð991231

 7 1 9 117 ðð991231

 8 1 8 117 98

 9 1 1ð 124 19981231

 1ð 1 1ð 127 19981231

 11 1 1ð 13ð 19981231

 12 1 1ð 134 19981231

 13 1 12 153 ð98

 14 1 12 153 198

 15 1 12 153 298

 16 1 12 153 ð32

 17 1 12 153 132

 18 1 11 143 2ðð2267

Figure 55. VDR for COB02M

 UTA Samples 171

Edit the UTA Control File
UTA uses assembler listings to determine where to insert breakpoints to monitor
variables. You supply the names of the listing files and data on the variables to
read in each listing in the UTA control file (CACTL).

Make sure to use the compiler options specified in “Setup” on page 231.

The CACTL control file for the COBOL one compile unit example is
hi_lev_qual.V1R5M0.SAMPLE.CACTL(COB02M). The file is shown in Figure 56
on page 173.

To edit the CACTL for the COB02x one compile unit example:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 1 from the Coverage, Distillation and Unit Test Assistant

panel.

The Work with the CA/DA/UTA Control File panel is displayed.

3. Enter option 1 and specify the following:

Control File Dsn COBð2x

Listing Type COBOL

 4. Press Enter.

An ISPF edit session for the UTA control file you requested is displayed.

The data in the control file consists of the following types of statements:

DEFAULTS Specifies default values for operands not specified on subse-
quent COBOL statements.

COBOL Specifies the data sets containing the compiler listing, object
| module, instrumented object module, and load module for the
| program that is to be tested.

SCOPE Specifies the program scope in which the variables to be tested
are defined.

VARIABLE Specifies the name of the variables to be tested.

COVERAGE Specifies detailed information about the type of coverage
testing to be performed on a particular variable.

WARP Specifies detailed information about the type of data warping to
be performed on a particular variable or buffer.

If the control file you requested did not previously exist, it is created with com-
ments in it to help you enter the appropriate information in the fields.

If you want to use the shipped sample CACTL member as a template for your
control file, delete the existing lines in the member and copy in
hi_lev_qual.V1R5M0.SAMPLE.CACTL(COB02X). Change ATC. to hi_lev_qual.
for all occurrences. Change the value of the ToObjDsn operand to
proj_qual.ZAPOBJ. If you have recompiled the samples into proj_qual data
sets, you will also have to edit the ListDsn and FromObjDsn keyword operands
to point to your proj_qual listing and object data set names.

The control file shown in Figure 56 on page 173 is the control file for COB02x.

172 Application Testing Collection 1.5.0 User's Guide

5. Verify that the data set names are correct for your installation.

6. Press the End key (PF3) to terminate the edit session.

For more detailed information about the control file, see “Editing the Unit Test
Assistant Control File” on page 187.

 Defaults ListDsn=ATC.V1R5Mð.SAMPLE.COBOLST(\),

 LoadMod=COBð2M,

 FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

 ToObjDsn=ATC.V1R5Mð.SAMPLE.ZAPOBJ

 COBOL ListMember=COBð2M

 Scope ExtProgram-Id=COBð2M

 Variable Name=JULIAN-DATE

\ set JULIAN-DATE using Data Warping

Warp Action=Set, Value=ðð99365,

 Datatype=Zoned,Unsigned,Stmts=(87)

Coverage Stmts=(94) // read JULIAN-DATE after it is warped and modified

 Variable Name=CURR-DATE

\ set CURR-DATE using Data Warping

Warp Action=Set, Value=ðð991231,

 Datatype=Zoned,Unsigned,Stmts=(97)

Coverage Stmts=(1ð3) // read CURR-DATE after it is warped

 Variable Name=YEAR4

\ increment YEAR4 by 3 using Data Warping

 Warp Action=Increment,Value=3,

 Datatype=Zoned,Unsigned,Stmts=(1ð6)

 Coverage Length=4,

Stmts=(114) // read YEAR4 after it is warped and modified

Variable Name=YEAR IN YEAR-BY-FIELD IN DATE-BY-FIELD

\ decrement YEAR by 1 using Data Warping

Warp Action=Decrement, Value=1,

 Datatype=Zoned,Unsigned,Stmts=(1ð6)

 Variable Name=YEAR2

 Coverage Length=2,

Stmts=(117) // read YEAR2 after it gets the 2 digit

\ year from CURR-DATE decremented by 1

Variable Name=(BEGIN-DATE In LOAN)

 Coverage Length=8,

NAME // read BEGIN-DATE of LOAN

\ structure by NAME

 Coverage Length=8,

FULL // read BEGIN-DATE of LOAN structure

\ by FULL (when LOAN referenced)

 Variable Name=JULIAN-DATE

 Coverage Length=7,

Stmts=(143) // read initialization of INC-DATE

Variable Name=J-DAY IN J-DATE

 Coverage Length=3,ReadEvery=1ðð,

MaxSave=5,Stmts=(153) // read J-DAY in loop

\ every 1ðð times maximum of 5 times

Figure 56. Control File for COB02x

 UTA Samples 173

Create Setup JCL
Before test cases can be executed on the COB02x test program, UTA must insert
breakpoints into the test program. UTA does this using the Setup JCL.

When you execute the Setup JCL, the UTA Setup program analyzes the assembler
listings and creates a table containing breakpoint data (address, op code, and so
on). Invalid instruction op codes are inserted for the instructions at the breakpoints
in the object modules. You then link these modified object modules into a modified
COB02x load module for UTA to use.

To create the Setup JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 2.

The Create JCL for Setup panel is displayed. You create the JCL for the
setup of COB02x from this panel. All of the default values on the panel are
correct for the COB02x example except for possibly the Enable UTA and the
Program Name fields.

3. Ensure that Enable UTA is set to YES, that Enable DA is set to NO, and that the
entry in the Program Name field is correct.

4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name SCOB02x.

5. Press the End key (PF3) to exit the panel.

For more detailed information, see “CA, DA, and UTA Setup” on page 231.

Create JCL to Start a Monitor Session
To create the JCL to start a monitor session:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 3.

The Create JCL to Start the Monitor panel is displayed. You create the JCL
for the UTA execution of COB02M from this panel.

3. Ensure that Enable UTA is set to YES, that Enable DA is set to NO, and that the
entry in the Program Name field is correct.

4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name XCOB02x.

5. Press the End key (PF3) to exit the panel.

Use the monitor JCL to start a monitor session before you run your test case
program. Note that you can perform UTA execution on a system other than the
one on which you have stored the listing.

For more detailed information, see “Monitor Execution” on page 245.

174 Application Testing Collection 1.5.0 User's Guide

Create JCL for a Variable Report
JCL is required to create a variable report. To create the variable report JCL:

1. Select option 1 from the ATC Primary Option Menu.

2. Select option 6.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

The Unit Test Report panel is displayed.

3. Change the Program Name to COBð2x, and then select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name VCOB02x.

4. Press the End key (PF3) to exit the panel.

Create JCL to Link the Modified Object Modules
You must link the modified object modules (modified by the Setup step) into an
executable program for testing. You can use the normal JCL that links your
program, but be sure you use the object module library that contains the modified
object modules. Sample JCL to link the COB02x example is provided in
hi_lev_qual.V1R5M0.SAMPLE.JCL(LCOB02x).

Create JCL to Run the GO Step
You can use the normal JCL that executes your program, but be sure to specify the
load module library that contains the link-edited modified object modules. Sample
JCL to execute the GO step for the COB02x example is provided in
hi_lev_qual.V1R5M0.SAMPLE.JCL(GCOB02x).

Execute the JCL
When you have created all of the COB02x JCL, you can run the COB02x summary
example by executing the following functions in the order listed.

To see a flow diagram of these steps, see Figure 53 on page 168.

 1. SCOB02x33

Performs the setup step. All JCL steps should complete with condition code 0.

 2. LCOB02x34

Links the object modules that have been modified with breakpoints in the Setup
step into the COB02x load module.

 3. XCOB02x33

Starts a monitor session. For UTA, a program continuously runs to write vari-
able data to disk. The JCL does not complete until your session is stopped by
step 6 on page 176.

33 JCL created from the panels and put into the JCL library.

34 JCL supplied with the installation materials in hi_lev_qual.V1R5M0.SAMPLE.JCL. (Sample JCL for all of the steps can be found in
this partitioned data set [PDS].)

 UTA Samples 175

 4. GCOB02x34

Runs sample program COB02x. COB02x runs to completion with condition
code 0.

 5. CASTATS35

Displays statistics using the CASTATS command. You should see a nonzero
EVNTS count on the TOTALS line. (This is an optional step for illustrative pur-
poses.)

 6. CASTOP35

Stops the monitor session. Unit Test Assistant writes the variable data to disk.

 7. VCOB02x33

Creates the variable reports for COB02x. The reports are in data sets
proj_qual.COB02x.VARID and proj_qual.COB02x.VARDATA.

Multiple Compile Unit Test Case (COB01x)
The COB01M, COB012, and COB01O test cases are examples of reading vari-
ables from multiple compile units. The control file is shown in Figure 59 on
page 180, the monitored variable report (MVR) is shown in Figure 57 on
page 178, and the variable data report (VDR) is shown in Figure 58 on page 178.

In the COB01x test cases, variables are monitored in two of three compile units.

In COB01AM:

� The variable TAPARM1 is monitored on all statements in which it is referenced.
� Variable 2 is CITY In LOC-ID In TASTRUCT. It is monitored on all statements

in which it is referenced by the level name CITY.
� Variable 3 is STATE In LOC-ID In TASTRUCT. It is monitored on all state-

ments in which it is referenced by the level name or any of the qualifier names,
since the FULL option was used in the read line in the control file.

In the program COB01BM, which is nested in the program COB01AM, the next var-
iable monitored is TBPARM2. It is read only once, the first time statement #113 is
executed. In the program COB01CM, variable 5 is TCPARM1. It is read once at
each statement in which it is referenced. In COB01DM, no variables are moni-
tored.

The MVR and VDR are the same regardless of the compiler that was used for the
programs under test.

COB01M is a COBOL for MVS & VM test case, COB012 is a VS COBOL II test
case, and COB01O is an OS/VS test case.

35 Monitor commands issued from either the Control the CA/DA/UTA Monitor panel or the TSO command processor (ISPF option 6)
by entering:

 EX 'hi_lev_qual.V1R5Mð.REXX(cacmd)'

where cacmd is the command issued (such as, CASTATS, CASTOP, and so on).

176 Application Testing Collection 1.5.0 User's Guide

For COBOL programs, breakpoints are inserted into the object modules during
Setup. These breakpoints are positioned so that the requested variable data can be
read when the breakpoint interrupt occurs. When you are ready to test your
program, you link the object modules that have been modified with breakpoints.

To produce the reports for COB01M, perform the following steps. Steps 2a
through 6 are described in more detail in topics that follow in this chapter.

1. Compile the COBOL source you want to test. This produces listings that
include the assembler statements needed by UTA. (This has already been
done for the examples. For COBOL, the listings are in
hi_lev_qual.V1R5M0.SAMPLE.COBOLST for the COBOL for MVS & VM and
VS COBOL II compilers, and in hi_lev_qual.V1R5M0.SAMPLE.COSVSLST for
the OS/VS compiler.)

Make sure to use the compiler options specified in “Setup” on page 231.

2. Start the ATC ISPF dialog by entering the following from ISPF option 6:

 EX 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

The ATC Primary Option Menu is displayed.

a. Edit the UTA control file.

Verify that the control file includes the listings of the object modules you
want to test.

b. Create the setup JCL.

Create the JCL that enables the Setup job to produce files containing
breakpoint data, and to modify copies of your object modules by inserting
breakpoints and information on variables you want to monitor.

c. Create the start monitor session JCL.

Create the JCL to start a monitor session.
d. Create the variable report JCL.

Create the JCL to produce the MVR and VDR reports after the COB01x
test case has executed.

3. End the ATC ISPF dialog by pressing the End key (PF3) on the ATC Primary

Option Menu.

4. Create the JCL to link the modified object modules.

After the Setup step and before starting the monitor session, you must link the
modified object modules into an executable program you can test. Edit the link
JCL and specify the library that will contain the modified object modules for the
OBJECT ddname and the library that will contain the modified load module for
the SYSLMOD ddname.

5. Create the JCL to run the GO step.

Create the JCL to run your program. Specify the same modified load module
as in step 4.

6. Execute the JCL.

Execute the created JCL files for COB01M in the correct order. (This order is
shown in “Execute the JCL” on page 182.)

Figure 57 and Figure 58 show sample variable reports. For details about the infor-
mation included in the reports, see “Unit Test Assistant Reports” on page 189.

 UTA Samples 177

\ DATE: ð9/11/1997

\ TIME: ð8:15:42

\

\

\CU Name: ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM)

\External Program Id: COBð1AM

\

\ CU var var data read read read read read prog var

\ numbr ID mode type offst lngth freq max stmts id name

\---

 1 1 I C ð 2 1 6ð COBð1AM ð1 TAPARM1

 61

 1 2 I C ð 3 1 54 COBð1AM ð1 TASTRUCT ð2 LOC-ID ð3 CITY

 1 3 I C ð 2 1 46 COBð1AM ð1 TASTRUCT ð2 LOC-ID ð3 STATE

 49

 53

 1 4 I C ð 2 1 1 113 COBð1BM ð1 TBPARM2

\

\

\CU Name: ATC.V1R5Mð.SAMPLE.COBOLST(COBð1CM)

\External Program Id: COBð1CM

\

\ CU var var data read read read read read prog var

\ numbr ID mode type offst lngth freq max stmts id name

\---

 2 5 I C ð 2 1 1 37 COBð1CM ð1 TCPARM1

 39

\

\

\CU Name: ATC.V1R5Mð.SAMPLE.COBOLST(COBð1DM)

Figure 57. MVR for COB01M

\ DATE: 12/12/1998

\ TIME: ð5:56:28

\

\

\ seq CU var at data

\ numbr numbr ID stmt stat read

\--

 1 1 3 46

 2 1 3 49 IL

 3 1 3 53 IL

 4 1 2 54 SPR

 5 1 1 6ð ð5

 6 1 1 61 ð5

 7 2 5 37 ð5

 8 1 4 113 ðð

 9 1 1 6ð ð4

1ð 1 1 61 ð4

11 1 1 6ð ð3

12 1 1 61 ð3

13 1 1 6ð ð2

14 1 1 61 ð2

15 1 1 6ð ð1

16 1 1 61 ð1

17 1 1 6ð ðð

Figure 58. VDR for COB01M

178 Application Testing Collection 1.5.0 User's Guide

Edit the UTA Control File
UTA uses assembler listings to determine where to insert breakpoints to monitor
variables. You supply the names of the listing files and data on the variables to
read in each listing in the UTA control file (CACTL).

UTA uses the assembler listings produced by the COBOL compiler. Make sure to
use the compiler options specified in “Setup” on page 231.

The CACTL control file for the COBOL one compile unit example is named
COB01M (see Figure 59 on page 180).

To edit the CACTL for the COB01M one compile unit example:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 1.

The Work with the CA/DA/UTA Control File panel is displayed.

3. Enter option 1 and specify the following:

Use Program Name for File Name YES

Program Name COBð1M

Listing Type COBOL

 4. Press Enter.

An ISPF edit session for the UTA control file you requested is displayed.

The data in the control file consists of the following types of statements:

DEFAULTS Specifies default values for operands not specified on subse-
quent COBOL statements.

COBOL Specifies the data sets containing the compiler listing, object
| module, instrumented object module, and load module for the
| program that is to be tested.

SCOPE Specifies the scope of the program in which the variables to be
tested are defined.

VARIABLE Specifies the name of the variables to be tested.

COVERAGE Specifies detailed information about the type of coverage
testing to be performed on a particular variable.

If the control file you requested did not previously exist, it is created with com-
ments in it to help you enter the appropriate information in the fields.

If you want to use the shipped sample CACTL member as a template for your
control file, delete the existing lines in the member and copy in
hi_lev_qual.V1R5M0.SAMPLE.CACTL(COB01M). Change ATC. to hi_lev_qual.
for all occurrences. Change the value of the ToObjDsn operand to
proj_qual.ZAPOBJ. If you have recompiled the samples into proj_qual data
sets, you will also have to edit the ListDsn and FromObjDsn keyword operands
to point to your proj_qual listing and object data set names.

The control file shown in Figure 59 on page 180 is the control file for
COB01M. For a description of each of these lines, see “Editing the Unit Test
Assistant Control File” on page 187.

 UTA Samples 179

5. Verify that the data set names are correct for your installation.

6. Press the End key (PF3) to exit the edit session.

For more detailed information about the control file, see “Editing the Unit Test
Assistant Control File” on page 187.

\

\ Cobol Example

\

\ Statements required for coverage and unit test

\

 Defaults ListDsn=ATC.V1R5Mð.SAMPLE.COBOLST(\),

 LoadMod=COBð1M,

 FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

 ToObjDsn=ATC.V1R5Mð.SAMPLE.ZAPOBJ

COBð1AM: COBOL ListMember=COBð1AM

COBð1CM: COBOL ListMember=COBð1CM

COBð1DM: COBOL ListMember=COBð1DM

\

\ Statements required for unit test

\

COBð1AM_S: Scope COBOL=COBð1AM,ExtProgram-Id=COBð1AM

COBð1AM_S_B: Scope COBOL=COBð1AM,ExtProgram-Id=COBð1AM,

 NestedProgram-Id=COBð1BM

COBð1CM_S: Scope COBOL=COBð1CM,ExtProgram-Id=COBð1CM

TAPARM1: Variable Scope=COBð1AM_S,Name=(TAPARM1)

CITY: Variable Scope=COBð1AM_S,Name=(CITY In LOC-ID In TASTRUCT)

STATE: Variable Scope=COBð1AM_S,Name=(STATE In LOC-ID In TASTRUCT)

TBPARM2: Variable Scope=COBð1AM_S_B,Name=(TBPARM2)

TCPARM1: Variable Scope=COBð1CM_S,Name=(TCPARM1)

Coverage Variable=TAPARM1,Length=2,NAME // read TAPARM1

\ wherever it occurs (by NAME)

Coverage Variable=CITY,Length=3,NAME // read CITY In

\ TASTRUCT

Coverage Variable=STATE,Length=2,FULL // read STATE In

\ STRUCT whether directly referenced or

\ via structure (FULL)

 Coverage Variable=TBPARM2,Length=2,MaxSave=1,Stmts=(113)

\ in COBð1BM read TBPARM2 on line 113 only,

\ only once

Coverage Variable=TCPARM1,Length=2,MaxSave=1,NAME // in

\ COBð1CM read TCPARM1 only once

Figure 59. Control File for COB01M

Create Setup JCL
Before test cases can be executed on the COB01M test program, UTA must insert
breakpoints into the test program. UTA does this using the Setup JCL.

When you execute the Setup JCL, the UTA Setup program analyzes the assembler
listings and creates a table containing breakpoint data (address, op code, and so
on). Invalid instruction op codes are inserted for the instructions at the breakpoints
in the object modules. You then link these modified object modules into an execut-
able COB01M load module for UTA to use.

180 Application Testing Collection 1.5.0 User's Guide

To create the Setup JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 2.

The Create JCL for Setup panel is displayed. You create the JCL for the
setup of COB01M from this panel. All the default values on the Create JCL

for Setup panel are correct for the COB01M example, except for possibly the
Enable UTA and the Program Name fields.

3. Ensure that Enable UTA is set to YES, that Enable DA is set to NO, and that the
Program Name field is correct.

4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name SCOB01M.

5. Press the End key (PF3) to exit the panel.

For more detailed information, see “CA, DA, and UTA Setup” on page 231.

Create JCL to Start a Monitor Session
To create the JCL to start a monitor session:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 3.

The Create JCL to Start the Monitor panel is displayed. You create the JCL
for the UTA execution of COB01M from this panel.

3. Ensure that Enable UTA is set to YES, that Enable DA is set to NO, and that the
entry in the Program Name field is correct.

4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name XCOB01M.

5. Press the End key (PF3) to exit the panel.

Use the monitor JCL to start a monitor session before you run your test case
program. Note that you can perform UTA execution on a system other than the
one on which you have stored the listing.

For more detailed information, see “Monitor Execution” on page 245.

Create Report JCL
To create the variable report JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 6.

The Unit Test Report panel is displayed.

 UTA Samples 181

3. Change the Program Name to COBð1M, and then select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library identified on the panel using member
name VCOB01M.

4. Press the End key (PF3) to exit the panel.

Create JCL to Link the Modified Object Modules
You must link the modified object modules (modified by the Setup step) into an
executable program for testing. You can use the normal JCL that links your
program, but be sure you use the object module library that contains the modified
object modules. Sample JCL to link the COB01M example is provided in
hi_lev_qual.V1R5M0.SAMPLE.JCL(LCOB01M).

Create JCL to Run the GO Step
You can use the normal JCL that executes your program, but be sure to specify the
load module library that contains the link-edited modified object modules. Sample
JCL to execute the GO step for the COB01M example is provided in
hi_lev_qual.V1R5M0.SAMPLE.JCL(GCOB01M).

Execute the JCL
When you have created all of the COB01M JCL, you can run the COB01M
summary example by executing the following functions in the order listed.

To see a flow diagram of these steps, see Figure 53 on page 168.

 1. SCOB01M33

Performs the Setup step. All JCL steps should complete with condition code 0.

 2. LCOB01M34

Links the object modules that have been modified with breakpoints in the Setup
step into the COB01M load module.

 3. XCOB01M33

Starts a monitor session. For UTA, a program continuously runs to write vari-
able data to disk. The JCL does not complete until your session is stopped by
step 6.

 4. GCOB01M34

Runs sample program COB01M. COB01M runs to completion with condition
code 0.

 5. CASTATS35

Displays statistics using the CASTATS command. You should see a nonzero
EVNTS count on the TOTALS line. (This is an optional step for illustrative pur-
poses.)

 6. CASTOP35

Stops the monitor session. UTA writes the variable data to disk.

 7. VCOB01M33

Creates the reports for COB01M. The reports are in data sets
proj_qual.COB01M.VARID and proj_qual.COB01M.VARDATA.

182 Application Testing Collection 1.5.0 User's Guide

Unit Test Assistant Read and Warp Descriptions

This chapter describes what variables can be read or warped by Unit Test Assistant
(UTA) and when reading and warping takes place.

Description of the Variable Read Operation
The control file identifies the variables to read, the statements on which to read
them, the number of times to read them, where variables are to be warped, and so
on. See “Editing the Unit Test Assistant Control File” on page 187 for more infor-
mation.

Where a Variable Is Read
A variable is read when the statement in which it is located is executed, and the
maximum reads for that statement are not exceeded. A variable is read before the
statement is executed. If the statement is a looping or iterative statement (such as
a PERFORM), the variable will only be read before the first iteration.

Which COBOL Storage Areas Can Be Read
UTA does not support CICS routines compiled with the OS/VS COBOL compiler.
Reentrant COBOL routines are only supported for compilers that support the RENT
compiler option.

UTA uses the compiler listings that contain the assembler code and cross-reference
to determine where variables reside in storage. The variables to be read must
appear in the cross-reference and reside in one of the following areas:

 � Working storage
� Variably located data

 � Linkage
 � File

Consider the following when identifying COBOL storage areas that can and cannot
be read:

� UTA can only read the first occurrence of a variable that is defined multiple
times by way of the OCCURS clause.

� UTA cannot read variables defined in a LOCAL storage area. The LOCAL
storage area is an IBM extension available in the COBOL for MVS & VM com-
piler. UTA also cannot read linkage variables in a program in which local vari-
ables are defined.

� If a variable is the object of a REDEFINE, all names should be monitored to
ensure full coverage (that is, each name should have an entry in the control
file).

� If a variable is declared as EXTERNAL, and is used in more than one level of
nested programs, the control file must include entries for the variable for each
internal program name in which it is used for full coverage.

 Copyright IBM Corp. 1997, 1999 183

� If a variable is the object of a USING statement (passed to another program as
a parameter), entries must be included in the control file for the variable in the
calling program and for the linkage variable in all called programs that use it in
order to ensure full coverage.

� UTA cannot monitor COBOL variables accessed through pointer references.

How Much Data Can Be Read
One read of one variable can save up to 126 bytes of data. If the data item you
want to save is longer than 126 bytes, you can do multiple reads with appropriate
offsets and lengths defined.

Variable data is kept in storage buffers while your program is running, and period-
ically the data is written to disk. Two buffers are used: one is written to disk while
the other is being used. It is possible that the buffers may be full when new data is
to be written to the buffer. The size of each buffer is 65536 bytes. Each data entry
contains the variable data plus eight bytes of other data.

If a buffer overrun occurs and causes loss of new variable data, you will see a
statement similar to the following in the VARDATA file of data:

11915 1 1 38 KYLEX 3722AIX.

11916 1 1 38 KYLEX 3723AIX.

\\\\\\\\ !!! BUFFER OVERFLOW !!! \\\\\\\\

11917 1 1 38 KYLEX ððððMVS.

If a buffer overflow occurs, the program that creates the VDR report of variable
data (stepname EXVAR) completes with a return code of 4.

To reduce buffer overflows, try the following:

1. If you are reading a variable that is in a loop, only read it at intervals (for
example, once every 10th time or 100th time).

2. Reduce the size of each read (for example, the variable may be 100 bytes
long, but you may just need to look at the first 10 bytes).

3. Reduce the number of reads (for example, a variable may occur in hundreds of
lines in your program, but you may only be interested in its value at a few
locations).

Description of the Variable Warp Operation
The control file identifies the variable to warp, the statement that contains the vari-
able to warp, the warp value, and so on. For more information about the contents
and function of the control file, see “Editing the Unit Test Assistant Control File” on
page 187.

What COBOL Variables Can Be Warped
Any COBOL variable that can be read by UTA can be warped. For more informa-
tion, see “Which COBOL Storage Areas Can Be Read” on page 183.

184 Application Testing Collection 1.5.0 User's Guide

When a COBOL Variable Is Warped
A COBOL variable is warped before the execution of the statement. For example,
suppose a file is read into a buffer via this COBOL READ statement:

ððð226 READ QSAMIN INTO WS-INPUT-RECORD

A warp of WS-INPUT-RECORD on line 226 would be performed before the file
read was complete. Therefore, to warp the data in WS-INPUT-RECORD, the warp
should be done on the statement following WS-INPUT-RECORD.

What PL/I Variables Can Be Warped
Only PL/I file input buffers can be warped. In the following example, any field in
IN_RECORD can be warped on statement 38. Any other variables (including
IN_RECORD located on other statements) cannot be warped.

38 2 ð READ FILE(QSAMIN) INTO(IN_RECORD);

PL/I warps can only be performed on the statement where the file read occurs.

When a PL/I Variable Is Warped
The warp is performed after the file read is complete, and the new data is in the
buffer.

Reading and Warping on the Same Statement
If a variable or buffer is read and warped on the same statement, the ordering of
the read and warp is indeterminate. If you want to read a variable or buffer that
has been warped, do the read on the following statement.

 UTA Read and Warp Descriptions 185

186 Application Testing Collection 1.5.0 User's Guide

Editing the Unit Test Assistant Control File

This chapter describes the function of the control file (CACTL) used by UTA. The
CACTL contains information that tells UTA what compile units to analyze and the
values of which variables to record. CA, DA, and UTA share the CACTL file. See
“CA, DA, and UTA Control File” on page 209 for a complete description of this
control file. This chapter only explains how to use the control file with Unit Test
Assistant.

Contents of the Control File
The control file defines the variable to be recorded. The following describes the
contents of the control file as it is used by Unit Test Assistant. See “Contents of
the Control File” on page 211 for a description of the syntax of the control file.

� The COBOL statement specifies the following:

– The source language (COBOL)

– The data containing the compiler listing file

– The name of the load module containing the program

| – The data set containing either the object code generated by the compiler or
| the load module created by the linker/binder

| – The data set that is to contain either the instrumented object code gener-
| ated by the Setup job or the instrumented load module generated by the
| Setup job

� The SCOPE statement specifies the following:

– The PROGRAM-ID of the external program in which variables are defined.
The external program ID is the first program ID in the listing file.

– The PROGRAM-ID of the nested (internal) program in which the variables
are defined. This operand is required only if variables are defined within a
nested program.

� The VARIABLE statement specifies the following:

– The scope in which the variable is defined
– The name of the variable

� The COVERAGE statement specifies attributes and coverage details for a spe-
cific variable.

� The WARP statement specifies details about how warping of a specific variable
or buffer on a specific statement (or statements) is to be performed.

 Copyright IBM Corp. 1997, 1999 187

 Examples
The examples show how you might construct a UTA control file (1) for capturing
and logging COBOL variables and (2) for warping a PL/I input buffer.

1. The following example shows how variables in structures are read:

 COBOL ListDsn=Atc.V1R5Mð.Sample.CoboLst(COBð1AM),LoadMod=COBð1M,

 FromObjDsn=Atc.V1R5Mð.Sample.Obj,ToObjDsn=Atc.V1R5Mð.Sample.ZapObj,ObjMember=COBð1AM

 Scope ExtProgram-Id=COBð1AM

 Variable Name=(CITY In LOC-ID In TASTRUCT)

 Coverage MaxSave=1ð,Name

 Variable Name=(STATE In LOC-ID In TASTRUCT)

 Coverage ReadEvery=2,Full

Figure 60. Sample UTA Control File. The variable CITY In LOC-ID In TASTRUCT is read
up to a maximum of 10 times, for each statement where CITY is accessed by name. The
variable STATE In LOC-ID In TASTRUCT is read every second time a statement is executed
on which it is accessed through any level of the structure TASTRUCT. There is no
maximum number of reads for this variable.

The example in Figure 60 is based on the following COBOL declarations:

 In COBð1AM:

 WORKING-STORAGE SECTION.

ð1 TAPARM1 PIC 99 VALUE 5.

ð1 TAPARM2 PIC 99 VALUE ð.

 ð1 TASTRUCT.

 ð5 LOC-ID.

 1ð STATE PIC X(2).

 1ð CITY PIC X(3).

 In COBð1BM:

 WORKING-STORAGE SECTION.

ð1 TBPARM1 PIC 99 VALUE 5.

ð1 TBPARM2 PIC 99 VALUE ð.

Figure 61. COBOL File Definitions

For an example of a control file for warping COBOL variables, see Figure 56
on page 173.

2. Figure 62 is an example of a control file for warping a PL/I input buffer:

PL/I ListDsn=ATC.V1R5Mð.TEST.PLILST(PLI12M),

 LoadMod=PLI12M,

 FromObjDsn=ATC.V1R5Mð.TEST.OBJ,

 ToObjDsn=ATC.V1R5Mð.TEST.ZAPOBJ

 Scope PROCEDURE=PLI12M

 Variable Name=sfile

Warp Position=1,Length=4,Stmts=(33),Action=INCREMENT,VALUE=1ð,

 DataType=zoned,signed

Figure 62. Control File for Warping a PL/I Input Buffer

In the following statement, the field in buffer si (position 1 for a length of 4) is
warped by incrementing it by 10 after each file read. This position must hold a
zoned, signed integer.

33 1 ð read file(sfile) into(si);

188 Application Testing Collection 1.5.0 User's Guide

Unit Test Assistant Reports

This chapter describes the following reports, which UTA creates for the monitored
variables:

� Monitored variables report (MVR). A table of the monitored variables defined in
the control file and their read specifications.

� Variable data report (VDR). A table of data for each time a monitored variable
is read during the program execution.

� Combined variable data report (CVDR). An alternative version of the VDR,
which includes the fully-qualified variable names for each read along with the
read data.

Monitored Variables Report (MVR)
The monitored variables report lists the data for all monitored variables as defined
in the control file. For an example of an MVR, see Figure 63 on page 191. For a
description of the variable information in the control file, see “Editing the Coverage
Assistant Control File” on page 81. All data in the MVR comes from the control
file.

Each monitored compile unit (CU) is listed in the report. The CU NAME is the listing
file name that was used in the Setup step. The External Program ID is the
external program ID of your COBOL program.

Each monitored variable has one entry in this report. Each entry contains the fol-
lowing data:

CU numbr (compile unit number)
The sequential number of the CU containing this monitored variable.
The VDR lists the CU Number of the variable.

Var ID (variable ID)
The sequential number of this monitored variable. The VDR identifies
the variable by this variable ID.

Var mode (variable mode)
The mode for this variable, which can be either of the following:

I Internal (UTA variable read)
F File (DA file read)

Data type
Format in which data is displayed in the report:

C Character representation of data
X Hexadecimal representation of data

Read offst (read offset)
The offset within the variable data area to read. For example, a variable
might be defined as 132 characters in length, but you only want to read
a serial number field that is at offset 40 within the field. This entry is
0-based (that is, 0 is the offset of the first byte).

 Copyright IBM Corp. 1997, 1999 189

Read lngth (read length)
The length of the variable data item to read. This may be the length of
the entire data item, or some subset of it. A maximum of 126 bytes can
be read from one variable. If more than 126 bytes is desired, you can
have two (or more) reads of the same variable. All 256 bytes of
CUST-REC can be read by the control file entries:

Definition of CUST-REC:

ð1 CUST-REC PIC X(256)

Control File entries:

 VARIABLE NAME=(CUST-REC)

 COVERAGE Offset=ð,Length=126,Name

 VARIABLE NAME=(CUST-REC)

 COVERAGE Offset=126,Length=126,Name

 VARIABLE NAME=(CUST-REC)

 COVERAGE Offset=252,Length=4,Name

The first variable/coverage pair reads the first 126 bytes of CUST-REC,
the second reads the next 126 bytes, and the third reads the last 4
bytes.

Read freq (read frequency)
How often to read the variable when the statement in which the variable
is located is executed. For example, if read frequency is one, the vari-
able is read and the data is saved on each execution of the monitored
statement. If the read frequency is five, it is read every fifth time the
statement is executed.

Read max (Read maximum)
The maximum number of times to read the variable. If blank, it is read
on each execution of monitored statements. You may only be interested
in the value of the variable the first time a statement is executed, of the
first n times the statement is executed; therefore, this is useful to reduce
the number of reads (and consequently the amount of variable data
saved).

Read stmts (read statements)
All statement numbers where the UTA control file requested (either
explicitly or implicitly) that the specified variable be monitored.

Prog ID (program ID)
The program ID (external or internal) that contains the variable. The
same variable name may be used in different program IDs.

Var name (variable name)
The variable name contains all qualifying level names if this is a read
from a structure. A two-digit level number (starting with ð1) precedes
each level name:

ð1 Level1-name ð2 level2-name ...

190 Application Testing Collection 1.5.0 User's Guide

The following example shows an MVR.

\ DATE: ð9/11/1997

\ TIME: ð8:15:42

\

\

\CU Name: ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM)

\External Program Id: COBð1AM

\

\ CU var var data read read read read read prog var

\ numbr ID mode type offst lngth freq max stmts id name

\---

 1 1 I C ð 2 1 6ð COBð1AM ð1 TAPARM1

 61

 1 2 I C ð 3 1 54 COBð1AM ð1 TASTRUCT ð2 LOC-ID ð3 CITY

 1 3 I C ð 2 1 46 COBð1AM ð1 TASTRUCT ð2 LOC-ID ð3 STATE

 49

 53

 1 4 I C ð 2 1 1 113 COBð1BM ð1 TBPARM2

\

\

\CU Name: ATC.V1R5Mð.SAMPLE.COBOLST(COBð1CM)

\External Program Id: COBð1CM

\

\ CU var var data read read read read read prog var

\ numbr ID mode type offst lngth freq max stmts id name

\---

 2 5 I C ð 2 1 1 37 COBð1CM ð1 TCPARM1

 39

\

\

\CU Name: ATC.V1R5Mð.SAMPLE.COBOLST(COBð1DM)

Figure 63. MVR for COB01M

Variable Data Report (VDR)
The VDR is a table of variable data. Each row shows the data of one variable read
at one statement number. Columns of the row (for example, CU numbr and var ID)
are used to reference the characteristics and names of the variables in the MVR.

The columns in the VDR are:

Seq numbr (sequence number)
A sequential number identifying the variable data row.

CU numbr (CU number)
The CU number containing the variable in the MVR.

Var ID (variable ID)
The variable ID number in the MVR.

At stmt (at statement)
The statement number where the variable was read.

 UTA Reports 191

Stat (status)
This field is only used for data warp errors. For information about data
warp errors, see “Errors During Data Warping.”

Data read
The variable data read at this statement number. The length of the data
is specified by the read lngth column in the MVR. A maximum of 126
bytes can be read. Hexadecimal numbers are flagged with an X to the
left of the number and are displayed as two hexadecimal digits for each
byte represented.

The following example shows a VDR.

\ DATE: ð9/11/1997

\ TIME: ð8:15:43

\

\

\ seq CU var at data

\ numbr numbr ID stmt stat read

\--

 1 1 3 46 IL

 2 1 3 49 IL

 3 1 3 53 KY

 4 1 2 54 LEX

 5 1 1 6ð ð5

 6 1 1 61 ð4

 7 2 5 37 ð5

 8 1 4 113 ðð

 9 1 1 6ð ð4

1ð 1 1 61 ð3

11 1 1 6ð ð3

12 1 1 61 ð2

13 1 1 6ð ð2

14 1 1 61 ð1

15 1 1 6ð ð1

16 1 1 61 ðð

17 1 1 6ð ðð

Figure 64. VDR for COB01M

Errors During Data Warping
A sign check is done if you increment or decrement a packed or zoned variable.
The sign you specify for the variable must match the sign of the variable in storage
before the warp is performed. If there is a sign mismatch, a read of the variable in
storage is done. You can view the error information by running the Unit Test
Assistant reports described in this chapter.

The reads of variables with sign mismatches have an error number in the status
field:

4 Packed signed error. The variable was specified as a signed packed
number, but the variable read in the user program was unsigned.

5 Packed unsigned error. The variable was specified as an unsigned
packed number, but the variable read in the user program was signed.

6 Zoned signed error. The variable was specified as a signed zoned
number, but the variable read in the user program was unsigned.

7 Zoned unsigned error. The variable was specified as an unsigned
zoned number, but the variable read in the user program was signed.

192 Application Testing Collection 1.5.0 User's Guide

Combined Variable Data Report (CVDR)
The CVDR, an alternative to the VDR, combines elements of the MVR and the
VDR. Each row shows the data from one variable read at one statement number
and enough information to uniquely identify the variable. The var-ID column is
used to reference the variable read characteristics in the MVR.

The columns in the CVDR are:

var-ID (variable ID)
The variable ID number in the MVR.

CU-Name (compile unit name)
The name of the CU containing the variable.

prog-ID (program ID)
The name of the program containing the variable.

var-name (variable name)
The fully-qualified variable name.

stmt-num (statement number)
The statement number at which the variable data was read.

data
The variable data read at this statement number.

\ DATE: ð9/11/1997

\ TIME: 1ð:55:54

\

\

\ var-ID CU-Name prog-ID var-name stmt-num data

\--

3 COBð1AM COBð1AM STATE of LOC-ID of TASTRUCT 46 IL

3 COBð1AM COBð1AM STATE of LOC-ID of TASTRUCT 49 IL

3 COBð1AM COBð1AM STATE of LOC-ID of TASTRUCT 53 KY

2 COBð1AM COBð1AM CITY of LOC-ID of TASTRUCT 54 LEX

 1 COBð1AM COBð1AM TAPARM1 6ð ð5

 1 COBð1AM COBð1AM TAPARM1 61 ð4

 5 COBð1CM COBð1CM TCPARM1 37 ð5

 4 COBð1AM COBð1BM TBPARM2 113 ðð

 1 COBð1AM COBð1AM TAPARM1 6ð ð4

 1 COBð1AM COBð1AM TAPARM1 61 ð3

 1 COBð1AM COBð1AM TAPARM1 6ð ð3

 1 COBð1AM COBð1AM TAPARM1 61 ð2

 1 COBð1AM COBð1AM TAPARM1 6ð ð2

 1 COBð1AM COBð1AM TAPARM1 61 ð1

 1 COBð1AM COBð1AM TAPARM1 6ð ð1

 1 COBð1AM COBð1AM TAPARM1 61 ðð

 1 COBð1AM COBð1AM TAPARM1 6ð ðð

Figure 65. CVDR for COB01M

 UTA Reports 193

Creating Unit Test Report JCL Using the Panels
To display the Unit Test Report panel:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.
2. Select option 6.

The Unit Test Report panel, shown in Figure 66, is displayed.

à ð
------------------------------- Unit Test Report ------------------------------

 Option ===>

 1 Generate Generate JCL from parameters

 2 Edit Edit JCL

 3 Submit Submit JCL

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COBð1M

Variable Report Type FULL (Full/Combine)

 Input Files:

Debug Table Dsn . . . 'YOUNG.TEST.COBð1M.DBGTAB'

Variable Table Dsn. . 'YOUNG.TEST.COBð1M.VARTAB'

JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(Vxxxxxxx)'

 Output Files:

Variable ID Dsn . . . 'YOUNG.TEST.COBð1M.VARID'

(\ for default sysout class)

Variable Data Dsn . . 'YOUNG.TEST.COBð1M.VARDATA'

(\ for default sysout class)

á ñ

Figure 66. Unit Test Report Panel

The panel's options and fields are as follows:

Generate
Generate JCL from the parameters you have specified on the panel.

Edit
Make changes to existing JCL.

Submit
Submit for execution the JCL specified in the JCL Dsn field on this
panel.

Use Program Name for File Name
If you want to construct the data set names from the default high-
level qualifier, the specified program name, and the default low-level
qualifier for each data set, enter YES.

When you press Enter, the file names on the panel are changed
automatically. Using the program name to construct the data set
names is the normal UTA procedure.

194 Application Testing Collection 1.5.0 User's Guide

Program Name
Name to use for UTA files if you enter YES in the Use Program Name

for File Name field. Note that this can be any valid name. It does
not have to be the name of any of your programs. Names of the
following form are created:

� Sequential data sets:

'proj_qual.program_name.file_type'

For example: 'YOUNG.TEST.COB01M.BRKTAB'

� Partitioned data sets:

'proj_qual.file_type(program_name)'

For example: 'YOUNG.TEST.BRKTAB(COB01M)'

Variable Report Type
Specifies the parameter to be used for the report program
(PRINTVAR). FULL produces the VDR and COMBINE produces the
CVDR.

Debug Table Dsn
Specifies the name of the file containing the variables that UTA is to
monitor.

Variable Table Dsn
Specifies a UTA work file containing intermediate results of informa-
tion gathered when variables were monitored.

JCL Dsn
Specifies the name of the JCL data set that contains the JCL for this
action.

Note: If the Use Program Name for File Name field is set to YES,
then the member name or program name qualifier of the data set
will be Vxxxxxxx, where xxxxxxx is the first seven characters of the
program name.

Variable ID Dsn
Specifies the name of the file to contain various information about
the variables being monitored (MVR). This includes the location of
the variables in the listing, the compilation unit, and so on. (Enter *
for the default SYSOUT class.)

Variable Data Dsn
Specifies the name of the file to contain the final monitoring results
(VDR). This is formatted output based on the variable table work
file. (Enter * for the default SYSOUT class.)

 UTA Reports 195

Examples of Reports
The ATC installation package contains the following examples:

� COB01M (COBOL for MVS & VM example)
� COB012 (VS COBOL II example)
� COB01O (OS/VS COBOL example)
� COB02M (COBOL for MVS & VM example)
� COB022 (VS COBOL II example)
� COB02O (OS/VS COBOL example)

The sample reports are contained in the following data sets. The data set names
are in the form hi_lev_qual.V1R5M0.SAMPLE.Y(X), where X is the test case name
(COB02M, COB01M, and so on) and Y is one of the following:

� VARID. The MVR report.
� VARDATA. The VDR report.

These reports were created from the JCL in hi_lev_qual.V1R5M0.SAMPLE.JCL.
The report JCL member is named VCOB02M, VCOB01M, and so on.

Parameters for the PRINTVAR Program
One parameter is passed to the report program (PRINTVAR). The values are:

� FULL. Produces the standard VDR report as described in “Variable Data
Report (VDR)” on page 191.

� COMBINE. Produces the CVDR report as described in “Combined Variable
Data Report (CVDR)” on page 193.

� KEYS_ONLY. Produces a report containing some informational comments fol-
lowed by lines containing only the Data read information (starting in column 2).

� BOTH. Produces a report similar to FULL, but with the data lines prefixed by \
(indicating a comment) followed by lines containing only the Data read informa-
tion (starting in column 2).

The MVR report is always produced.

196 Application Testing Collection 1.5.0 User's Guide

Unit Test Assistant File Warping

File warping is the modification of variables (typically date variables) in program
input files to simulate input conditions for testing. In the context of the Year 2000
problem, file warping could be used to modify dates in input files to post-Year 2000
values to perform Year 2000 testing of remediated programs.

The UTA file warp feature enables you to statically warp dates in input files. File
warp can copy any QSAM or VSAM file and warp fields in the copied file for
testing. Any zoned or packed numeric field can be incremented, decremented, or
set. Any zoned, packed, or character field can be set to a common value. A useful
implementation of this file warping capability might be clearing fields in test copies
of production input files for privacy or security reasons.

File Warp Operation
The following figure illustrates the UTA file warping process:

 ┌─────────────────────┐

┌────────────┐ │ │

│ Input file ├───────5│ │

│to be warped│ │ │ ┌─────────────┐

└────────────┘ │ UTA file warp │ │Copy of input│

│ program ├──────5│ file with │

┌────────────┐ │ │ │warped fields│

│Warp control│ │ │ └─────────────┘

│ file ├───────5│ │

└────────────┘ │ │

 └─────────────────────┘

Figure 67. UTA—Flow Diagram

The UTA file warping feature can perform the following types of warps:

� Warps on all records
� Warps on matching record types

The warp control file controls the warping of file fields.

 Copyright IBM Corp. 1997, 1999 197

For record type warps, a field is identified as the record type. A warp record is
then defined to do the warp if the record type matches the record type field value
supplied. Note how a file record is defined in the following example copy book:

 ð1 EMPLOYEE-RECORD.

 ð3 EMPLOYEE_NAME PIC 2ð(X).

 ð3 SOCIAL_SECURITY_NUMBER PIC 9(9).

 ð3 SPACE1 PIC 1(X).

 ð3 HIRE_DATE

 ð5 YEAR PIC 9(2).

 ð5 MONTH PIC 9(2).

 ð5 DAY PIC 9(2).

 ð3 SPACE2 PIC 1(X).

 ð3 LAST_PROMOTION_DATE

ð5 YEAR PIC 9(2) PACKED-DECIMAL.

ð5 MONTH PIC 9(2) PACKED-DECIMAL.

ð5 DAY PIC 9(2) PACKED-DECIMAL.

 ð3 SPACE3 PIC 1(X).

 ð3 CURRENT_LEVEL PIC 9(1).

 ð3 SPACE4 PIC 1(X).

 ð3 CURRENT_SALARY PIC 9(7).

Figure 68. Copy Book Defining a File Record

The following warp control file could be used for the copy book in Figure 68:

ð1 EMPLOYEE-RECORD.

 ð3 EMPLOYEE_NAME 2ð CHARACTER

ð3 SOCIAL_SECURITY_NUMBER 9 ZONED = ð
 ð3 SPACE1 1 CHARACTER

 ð3 HIRE_DATE

ð5 YEAR 2 ZONED = ð1
 ð5 MONTH 2 ZONED

 ð5 DAY 2 ZONED

 ð3 SPACE2 1 CHARACTER

 ð3 LAST_PROMOTION_DATE

ð5 YEAR 2 PACKED SIGNED

 R1: 1 2 PACKED SIGNED + 1
 R1: 2 2 PACKED SIGNED + 2
 R1: DEFAULT 2 PACKED SIGNED - 1

ð5 MONTH 2 PACKED SIGNED

ð5 DAY 2 PACKED SIGNED

 ð3 SPACE3 1 CHARACTER

 1: ð3 CURRENT_LEVEL 1 ZONED

 ð3 SPACE4 1 CHARACTER

ð3 CURRENT_SALARY 7 ZONED = ð

Figure 69. Example of a Warp Control File

For all records:

� The SOCIAL_SECURITY_NUMBER and CURRENT_SALARY are set to 0.

� The 2-digit zoned field YEAR in HIRE_DATE is set to 01.

� For records with CURRENT_LEVEL=1, 1 is added to the packed field YEAR in
LAST_PROMOTION_DATE.

� For records with CURRENT_LEVEL=2, 2 is added to the packed field YEAR in
LAST_PROMOTION_DATE.

� For records with any other CURRENT_LEVEL, 1 is subtracted from the packed
field YEAR in LAST_PROMOTION_DATE.

198 Application Testing Collection 1.5.0 User's Guide

File Warp Samples
The samples shipped with ATC include a file warp sample. This sample has the
following files:

File warp control file:
| hi_lev_qual.V1R5M0.SAMPLE.FWCTL(FWARP)

QSAM input file:
| hi_lev_qual.V1R5M0.SAMPLE.FWARPIN

QSAM output file created as the result of the file warp:
hi_lev_qual.V1R5M0.SAMPLE.FWARPOUT

To create file warp JCL and execute this sample, complete the following steps:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation and Unit Test Assistant panel is displayed.

2. Select option 6.

The Unit Test Assistant panel is displayed.

3. Select option 2.

The Generate JCL for File Warping panel is displayed.

------------------------ Generate JCL for File Warping ---------- Enter option

 Command ===>

 1 Generate Generate JCL from parameters

 2 Edit Edit JCL

 3 Submit Submit JCL

 Enter END to Terminate

| Input Dsn 'ATC.V1R5Mð.SAMPLE.FWARPIN'

Volume Serial . . . Unit . . (If not cataloged)

 Output Dsn. 'YOUNG.TEST.FWARPOUT'

Volume Serial . . . Unit . . (If not cataloged)

 Use Identifier for File Name YES (Yes|No) Identifier FWARP

| File Warp Control Dsn 'ATC.V1R5Mð.SAMPLE.FWCTL(FWARP)'

(If the File Warp Control Dsn is blank, the input file is copied unchanged.)

 JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(FFWARP)'

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F1ð=Actions F12=Cancel

Figure 70. Generate JCL for File Warping Panel

4. Specify the following on the Generate JCL for File Warping panel:

| � The 'hi_lev_qual.V1R5M0.SAMPLE.FWARPIN' in the Input Dsn field.

� The name you would like to use for the new warped copy in the Output Dsn

field.

� YES in the Use Identifier for File Name field.

� FWARP in the Identifier field.

 UTA File Warping 199

| � 'hi_lev_qual.V1R5M0.SAMPLE.FWCTL(FWARP)' in the File Warp

| Control Dsn field.

� The data set and member name you want to use for the JCL name in the
JCL Dsn field.

5. Press Enter to return to the command line.

6. Select option 1.

Informational messages are written to your screen as the JCL is created. The
JCL is created in the JCL library member you specified.

7. If you want to edit the JCL you just generated, select option 2.

An edit session is opened for the JCL data set.

8. Select option 3.

Your JCL will be submitted to run file warping.

The output file is created with fields warped as defined in the file warp control file.
The record structure and file warp control file contents are the same as those used
in the example in “File Warp Operation” on page 197.

File Warp Control File Syntax
The file warp control file contains the following types of lines:

 � Field definition
� Record type definition

The warp control file structure allows copy books to be the basis for the definitions.
For structures, the lowest level variables have to have a length and data type.
Higher level variables can have length/data type information, or this information can
be left blank. If provided, the keyword LEVEL must be present. The entire copy
book does not need to be used for the control file. You can just select the fields to
be warped, and use filler field names to define the spaces between warped vari-
ables.

You might use a definition similar to the following if you were only interested in
warping 2 fields and you calculated the offsets to them. The offsets are supplied in
the fill fields.

ð1 master_file

 ð3 fill 2ð character

ð3 warp_field1 2 zoned + 28

 ð3 fill 4ð character

ð3 warp_field2 4 packed signed - 28

200 Application Testing Collection 1.5.0 User's Guide

 Field Definition
A field definition is the lowest level of a structure (copy book). A field can be
warped or it can just be present as a filler. The following is an example of a field
definition:

ð3 BEGIN-DATE 8 Packed Signed + 2

 ð3 SKIP_UNTIL_WARP 1ðð Character

1: ð5 BIRTH-DATE 4 Binary + 1ðð

LAST_NAME 16 Character = ABCDEFGHIJLMNOPS

FIRST_NAME 6 Character = " "

 birthday 4 Binary = 'ðððð'x

The syntax for field definition statements is as follows:

55─ ──┬ ┬────────── ──┬ ┬────────────── ─field_name─ ─length──data_type─────────5
 └ ┘ ─label──:─ └ ┘ ─level_number─

5─ ──┬ ┬────── ──┬ ┬──────── ──┬ ┬──────────── ─────────────────────────────────5%
 └ ┘ ─sign─ └ ┘ ─action─ └ ┘ ─warp_value─

Group Level Definition
A group level definition is a higher level structure that contains field definitions. The
following is an example of a group level definition that is not warped:

// length data_type optional:

 ð3 EMP-HIRE-DATE

// If length and data_type are present,

// keyword LEVEL must be supplied

 ð3 EMP-HIRE-DATE LEVEL 6 Zoned

// followed by structure definition:

 ð5 YY 2 Zoned

 ð5 MM 2 Zoned

 ð5 DD 2 Zoned

The syntax for group-level field definition statements that are not warped is as
follows:

55─ ──┬ ┬────────── ──┬ ┬────────────── ─field_name────────────────────────────5
 └ ┘ ─label──:─ └ ┘ ─level_number─

5─ ──┬ ┬──────────────────────────────────── ───────────────────────────────5%
 └ ┘─LEVEL──length──data_type─ ──┬ ┬──────
 └ ┘ ─sign─

 UTA File Warping 201

The following is an example of a group level definition that is warped:

 \ length, data_type and keyword LEVEL must be present if warped

 ð3 EMP-HIRE-DATE LEVEL 6 character = 991231

 ð5 YY 2 Zoned

 ð5 MM 2 Zoned

 ð5 DD 2 Zoned

The syntax for group-level field definition statements that are warped is as follows:

55─ ──┬ ┬────────── ──┬ ┬────────────── ─field_name──LEVEL─────────────────────5
 └ ┘ ─label──:─ └ ┘ ─level_number─

5─ ─length──data_type─ ──┬ ┬────── ─action──warp_value───────────────────────5%
 └ ┘ ─sign─

Record Type Definition
Record type definitions define record type fields used to selectively perform warping
based on the contents of the record type field:

r1: 1 2 packed + 1

r1: 2 2 packed - 1

 r6: 'ðððð1'x 2 Zoned signed = 99

 r99: DEFAULT 4 character = ABCD

Record type definitions follow the field definition that they warp. The record type
label must end with a number that is defined in the warp file as a field definition
label.

The syntax for record type definition statements is as follows:

55─ ─record_type_label──:─ ─record_type_value──length──data_type────────────5

5─ ──┬ ┬────── ─action──warp_value──5%
 └ ┘ ─sign─

202 Application Testing Collection 1.5.0 User's Guide

Positional Parameter Definitions
All parameters are positional and separated by at least one blank. Parameters are
not case sensitive.

label A label is a positive integer followed by a colon (:). It is used
on field definition statements to define them as record types.
It is recommended (but not required) that label numbers start
with one and be sequential. The following example shows a
label parameter definition:

 1:

 99:

-5: // illegal: negative integer

4.5: // illegal: not an integer

level_number The level_number is an optional positive integer typically
used in structures. It is ignored by file warping and can be
omitted. The following example shows a level number
parameter definition:

 ð3 EMP-DATE 2 packed

ð5 BIRTHDAY 6 zoned level

-9 EMP-DATE // illegal: negative

field_name The name of the field. It can be any characters (it need not
be a legal compiler name) but must be present. The fol-
lowing example shows a field name parameter definition:

 ð5 LAST_NAME 2ð character

 1: @%$&#(4 zoned

ð3 fill 5ð // Fill to define record length

// until field to be warped

ð3 4 packed + 1 // error: no field name

length The length of the field:

Packed Number of digits. File warp translates
the number to bytes needed for the field:
(digits + 2)/2

Binary Number of digits. File warp translates
the number to bytes needed for the field:

1 to 4 2 bytes
5 to 9 4 bytes
10 to 18 8 bytes

Zoned Number of digits. One byte per digit.

Character Number of characters. One byte per
character.

Any other data type cannot be warped. It must be defined as
a character field of the proper length. The length must be a
positive integer.

 UTA File Warping 203

data_type One of the following types of fields:

 � Packed
 � Zoned
 � Binary
 � Character

The above types follow COBOL definitions. Only the first
character of the data_type is examined. For example, P may
be used for packed.

sign For packed and zoned numbers, the sign (Signed or
Unsigned) of the field. For binary and character fields, the
sign (if supplied) is ignored. If supplied, the sign must follow
the data_type. If omitted, the default is Unsigned. Signed
can be abbreviated to S; Unsigned can be abbreviated U.
To add or subtract from zoned and packed fields, the sign in
the control file must match the sign of the field in the record
or an error will occur.

action One of the following warp actions to take:

+ Add the warp_value to the field.
− Subtract the warp_value from the field.
= Replace the field with the warp_value.

For character fields, only = is valid.

warp_value The warp value used in conjunction with the action. For + or
−, the warp_value must be a positive integer. For =, the field
can be a:

� Hexadecimal value enclosed in quotes and followed by
X:
'0001'X.

� Character string. If the string contains spaces, enclose in
quotes. For example: 'AB CD'
Either single quotes (') or double quotes (") can be
used.

record_type_label The definition of a record type for record type warping. It
must be of the format: the character r followed by a positive
integer, followed by a colon (:). For example:

 r1:

 r99:

204 Application Testing Collection 1.5.0 User's Guide

record_type_value The value to be matched with the record type in order to do
the warp. If DEFAULT, the warp is done if none of the
defined record type values matches the record type. For
example:

r4: 1 2 z + 1

r4: 2 2 z + 2

r4: default 2 z = 3 // if record type 4

// is not 1 or 2, do

 // this warp

The record_type_value is treated as a character (byte) field
for comparison to the record type. In the previous examples,
the values character 1 ('F1'x) or 2 ('F2'x) are compared to
the record type.

comments Comments can be as follows:

Entire line The line must start with *.
End of line Anything following // is commented

The following example shows an end of line comment:

fieldName 4 zoned + 1 // end of line comment on

// a field definition

Control File Example
The following is an example of the control file with the file warping definitions:

 ð1 hi_level_name1

1: ð3 what_record1 1 char // record type field used for warping

ð3 fill 39 char // user can leave out

// fields as long

// as they put in a field with

// cumulative offset

ð3 some_date 8 packed signed = 2ðð1

some_number 2 z + 1 // level numbers are

 // optional

ð5 rec_warp1 2 packed signed

r1: 'ð1'x 2 p s = 99 // if 'ð1'x records set rec_warp

r1: 'ð2'x 2 p s = ð1 // if 'ð2'x records set rec_warp

r1: 'ð3'x 2 p s + 1 // if 'ð3'x records add 1 to rec_warp

r1: default 2 p s = 98 // otherwise set to 98

 ð5 rec_warp2 4 z

r2: CUST1 4 z + 1 // if CUST1 record add 1 to rec_warp2

r2: CUST2 4 z + 2 // if CUST2 record add 2 to rec_warp2

r2: ' C 3' 4 z + 3 // if ' C 3 ' record add 3 to

 // rec_warp2

2: what_record2 5 c // record type field for rec_warp2 field

fill 1ðð c // space to next warp

some_name 1ð c = 123456789ð

Figure 71. Example Control File with File Warping Definitions

In the previous example:

� The some_date field is set to the packed signed number 2001 for all records.

� The some_number field is incremented with the zoned unsigned value 1 for all
records.

 UTA File Warping 205

� The what_record1 field defines a record type. The rec_warp1 field is warped
as follows:

– If '01'x, records (hex) are set to the packed, signed number 99.
– If '02'x, records (hex) are set to the packed, signed number 01.
– If '03'x, records (hex) add 1.
– Any records that do not have one of the previous values will be set to 98.

� The what_record2 field is a record type used to warp rec_warp2 as follows:

– CUST1 records (character) are incremented by 1.
– CUST2 records are incremented by 2.
– ' C 3 ' records (character) are incremented by 3.

� The some_name field is set to the character string '1234567890' for all
records.

File Warp Return Codes
For file warping, there are two job steps:

1. Check the file warp control file for syntax (job step CVTCTL).
2. Perform the file warp (job step FWARP).

If the file warp JCL returns a nonzero return code, there was a failure in the warp
process.

When the CVTCTL step fails, an error message is printed in the SYSTSPRT DD
statement of the CVTCTL step. When the FWARP step fails, an error message is
printed in the SYSPRINT DD statement of the FWARP step. For an explanation of
file warping error messages, see Appendix A, “Problem Determination” on
page 307.

206 Application Testing Collection 1.5.0 User's Guide

Common CA, DA, and UTA Information

 Copyright IBM Corp. 1997, 1999 207

208 Application Testing Collection 1.5.0 User's Guide

CA, DA, and UTA Control File

This chapter describes the function of the CA/DA/UTA control file (CACTL). The
CACTL file contains information that describes the compile units to be analyzed,
the file that is to be monitored, and the values of the variables to be recorded.

Note: CA, DA, and UTA share the CACTL file.

To edit the control file:

1. Select option 1 from the ATC Primary Option Menu. The Coverage,
Distillation and Unit Test Assistant panel is displayed.

à ð
 ------------ Coverage, Distillation and Unit Test Assistant--------------------

 Option ===>

 1 Cnt1File Work with the CA/DA/UTA Control File

 2 Setup Create JCL for Setup

 3 StartMon Create JCL to Start the Monitor

 4 CA Coverage Reports

 5 DA Distillation

 6 UTA Unit Test Report

 7 Monitor Control the CA/DA/UTA Monitor

 Enter END to Terminate

á ñ

Figure 72. Coverage, Distillation and Unit Test Assistant Panel

2. Select option 1 to display the Work with the CA/DA/UTA Control File panel,
shown in Figure 73.

à ð
 --------------------- Work with the CA/DA/UTA Control File --------------------

 Option ===>

 1 Edit Edit CA/DA/UTA Control File

 2 Reset Reset CA/DA/UTA Control File from System Master

 Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COBð1M

 CA/DA/UTA Control File:

Control File Dsn. . . 'YOUNG.TEST.COBð1M.CACTL'

Listing Type. COBOL (COBOL|PL/I|ASM)

á ñ

Figure 73. Work with the CA/DA/UTA Control File Panel

3. Enter option 1 and change the values for Control File Dsn and Listing Type

as appropriate.

 Copyright IBM Corp. 1997, 1999 209

The panel's options and fields are as follows:

Edit
Starts an edit session for the control file specified in the Control

File Dsn field.

Reset
Replaces the information in the control file specified in the Control

File Dsn field with information from the system master control file.
The system master control file is a sample control file with com-
ments describing all of the lines, fields, and options. (See Listing
Type below.)

Use Program Name for File Name
If you want to construct the data set names from the default high-
level qualifier, the specified program name, and the default low-level
qualifier for each data set, enter YES.

When you press Enter, the file names on the panel are changed
automatically. Using the program name is the normal CA, DA, and
UTA procedure.

Program Name
Specifies the next-to-last qualifier to be used when the Use Program

Name for File Name field is set to Yes.

Control File Dsn
Specifies the name of the control file data set to be used.

Listing Type
Type of CACTL template that is retrieved from
hi_lev_qual.V1R5M0.FORMS if you select Edit (and the data set or
member in the Control File Dsn field does not exist) or Reset.

 4. Press Enter.

An ISPF edit session for the data set you identified is displayed. If the data set
did not previously exist, it is created with comments to help you enter the
appropriate information in the fields.

5. Edit the control file to include all programs and variables to be monitored in this
session.

6. Press the End key (PF3) key to save your information and exit the edit session.

210 Application Testing Collection 1.5.0 User's Guide

Contents of the Control File
The control file consists of a series of statements that specify information about the
desired coverage, unit testing, or distillation.

The following describes the contents of the control file:

� The INCLUDE statement. This statement allows control statements in a sepa-
rate data set to be processed as if they were a part of the current data set.
The operand of the INCLUDE statement must specify either of the following:

– The data set name of the file to be included

– The DDNAME of a previously allocated file that is to be included

| � The DEFAULTS statement. This statement allows defaults to be set for certain
| keywords on subsequent COBOL, PL/I, or ASM statements.

� The compilation unit (COBOL , PL/I, or ASM) statement. This statement identi-
fies the following:

– The type of listing file (COBOL, PL/I, or ASM)

– The name of the data set containing the compiler listing of the compilation
unit of interest

– The name of the load module that contains the code from the listing

| – The data set containing either the object code generated by the compiler or
| the load module created by the linker/binder

| – The data set that is to contain either the instrumented object code gener-
| ated by the Setup job or the instrumented load module generated by the
| Setup job

| Note: If breakpoints are placed in object modules, then a specific compi-
| lation unit should be specified only once in a control file. If the compilation

unit is link-edited into more than one load module, it should be listed for just
one of the load modules.

� The scope definition (SCOPE) statement.36 This statement does either of the
following:

– Defines the scope for subsequent COBOL variable or file definitions and
identifies:

- The PROGRAM-ID of the external program containing the variable
- The PROGRAM-ID of the internal (nested) program containing the vari-

able (if the variable is defined within a nested program)

– Defines the scope for subsequent PL/I file definitions and identifies the
name of the procedure or begin-block containing the variable

� The variable definition (VARIABLE) statement. This statement identifies the
fully-qualified name of the COBOL variable for which unit test coverage is
requested or the partially-qualified name of a variable when unit test coverage
is requested for all variables containing this qualifier.

� The coverage definition (COVERAGE) statement. This statement specifies attri-
butes and coverage details for a particular variable.

36 SCOPE statements are used only by Distillation Assistant and Unit Test Assistant. They are not used by Coverage Assistant.

 CA, DA, and UTA Control File 211

� The warp definition (WARP) statement. This statement specifies attributes and
warping details for a particular variable or buffer.

� The file definition (FILE) statement. This statement specifies that all reads of
the specified COBOL or PL/I file are to be monitored for distillation. The VARI-
ABLE and FILE statements should never be used in the same control file.

DBCS support for the control file statements is explained in Appendix C, “DBCS
Support” on page 391.

Control File Statement Syntax
This section describes the syntax of the control statements described previously.
The syntax of all control statements follows the same general rules:

� Statements are free form (not column dependent)

� An asterisk in column 1 indicates a comment.

� Two consecutive slashes (//) indicate that the rest of the line following the two
slashes is a comment.

� Lines containing nothing but blanks are ignored.

� Keywords and operands may be coded in any combination of uppercase and
lowercase characters.

� Operands may appear in any order.

� Operands must be separated by a comma.

� One or more blanks can appear between keywords and the corresponding
equal sign, the equal sign and the operand, and the operand and the following
comma.

� The order of statements is not significant except that:

– All labels must be defined before they are referenced.

– The DEFAULTS statement is position dependent (it applies only to the
statements that follow it).

– The default value for some operands is the previous statement of the
proper type.

� Statements may be continued, if desired, by interrupting the line after a comma
and continuing the statement on the next line.

� Labels, if present, are specified before the statement name and must be imme-
diately followed by a colon. Labels cannot contain embedded blanks, commas,
parentheses, or equal signs.

� Labels specified on COBOL, PL/I, and ASM statements cannot be repeated on
any of those statements. Likewise, labels on SCOPE statements cannot be
repeated on other SCOPE statements and labels on VARIABLE statements
cannot be repeated on other VARIABLE statements.

� Operands shown in the syntax diagrams as being enclosed in parentheses, do
not have to be enclosed in parentheses if the operand contains no embedded
blanks or commas.

212 Application Testing Collection 1.5.0 User's Guide

 INCLUDE Statement
The INCLUDE statement can be used to include information from another
CA/UTA/DA control file. When such a control file is included, all statements are
processed as if they were in the original control file.

55─ ──┬ ┬────────── ─INCLUDE─ ──┬ ┬─DSNAME──=──dsname─ ────────────────────────5%
 └ ┘ ─label──:─ └ ┘─DDNAME──=──ddname─

where:

dsname specifies the data set name of the CA/DA/UTA control file to be
included.

ddname specifies a ddname which has been previously allocated to a
CA/DA/UTA control file.

 DEFAULTS Statement
The DEFAULTS statement specifies defaults to be used for certain keywords on
subsequent COBOL, PL/I, and ASM statements.

If a COBOL, a PL/I, or an ASM statement that does not specify a keyword is
encountered, and the statement was preceded by a DEFAULTS statement that
specified the keyword, the value specified on the DEFAULTS statement is used. If
more than one DEFAULTS statement is found, the last DEFAULTS statement that
specified the keyword in question is used.

55──DEFAULTS─ ──┬ ┬─────────────────────────── ──────────────────────────────5
 └ ┘─LISTDSN──=──listdsname──,─

5─ ──┬ ┬─────────────────────────── ───5
 └ ┘─LOADMOD──=──membername──,─

5─ ──┬ ┬─── ───────────────────────────5
| └ ┘| ──┬ ┬──FROMOBJDSN=fromobjdsn ── ─,──┤ FVU ├─
| └ ┘──FROMLOADDSN=fromloaddsn

5─ ──┬ ┬────────────────────────────────── ─────────────────────────────────5%
| └ ┘| ──┬ ┬──TOOBJDSN=toobjdsn ── ─┤ TVU ├─
| └ ┘──TOLOADDSN=toloaddsn

FVU:
├─ ──┬ ┬── ──────────────────┤
 └ ┘─FROMVOL──=──fromvol──,──FROMUNIT──=──fromunit──,─

TVU:
├─ ──┬ ┬── ──────────────────────────┤
 └ ┘─,──TOVOL──=──tovol──,──TOUNIT──=──tounit─

where:

listdsname the name of the data set that contains the compiler listing for this
compilation unit. If listdsname is specified on the DEFAULTS
statement, an asterisk must be specified as the member name if
the data set is partitioned or as one of the qualifiers if the data set
is sequential. If LISTDSN= is not specified on a subsequent
COBOL, PL/I, or ASM statement, the LISTMEMBER= operand
must be specified. In this case the LISTMEMBER= operand will
be used to replace the asterisk to create the name to be used for
that statement.

 CA, DA, and UTA Control File 213

membername the name of the load module containing this compilation unit.

| fromobjdsn the data set name of the partitioned data set containing the object
| generated by the compiler for this compilation unit.

| fromloaddsn the data set name of the partitioned data set containing the load
| module generated by the linker/binder.

| fromvol the volume containing the fromobjdsn or fromloaddsn data set if it
| is not cataloged.

| fromunit the unit specification for the fromobjdsn or fromloaddsn data set if
| it is not cataloged.

| toobjdsn the data set name of the partitioned data set that will contain the
| instrumented object created by the Setup for this compilation unit.

| toloaddsn the data set name of the partitioned data set that will contain the
| instrumented load module generated by Setup.

| tovol the volume containing the toobjdsn or toloaddsn data set if it is
| not cataloged.

| tounit the unit specification for the toobjdsn or toloaddsn data set if it is
| not cataloged.

214 Application Testing Collection 1.5.0 User's Guide

COBOL Statement (COBOL Compilation Unit Definition)
The COBOL statement identifies a COBOL compilation unit.

| Note: If breakpoints are placed in object modules, then a specific compila-
| tion unit should be specified only once in a control file. If the compilation unit

is link-edited into more than one load module, it should be listed for just one of the
load modules.

The syntax of the COBOL statement is:

55─ ──┬ ┬────────── ─COBOL──LISTDSN──=──listdsname──,─ ──┬ ┬────────────────────────────── ────────────────────5
 └ ┘ ─label──:─ └ ┘─LISTMEMBER──=──listmember──,─

5──LOADMOD──=──membername──,───5

| 5─ ──┬ ┬──FROMOBJDSN=fromobjdsn,─┤ FVU ├─ ──┬ ┬────────────────────── TOOBJDSN=toobjdsn─┤ TVU ├─ ─────────────5%
| │ │└ ┘| ──OBJECTmember=objmem,
| └ ┘| ──┬ ┬───────────────────────────────────| ──TOLOADDSN=toloaddsn─┤ TVU ├─ ────────────────
| └ ┘| ──FROMLOADDSN=fromloaddsn,─┤ FVU ├─

FVU:
├─ ──┬ ┬── ───┤
 └ ┘─FROMVOL──=──fromvol──,──FROMUNIT──=──fromunit──,─

TVU:
├─ ──┬ ┬── ───┤
 └ ┘─,──TOVOL──=──tovol──,──TOUNIT──=──tounit─

where:

label a label that can be used to refer to this statement in subsequent
statements.

listdsname the name of the data set that contains the compiler listing for this
compilation unit.

listmember the member name to be substituted for an asterisk specification in
the listdsname. This operand would usually be specified only
when the LISTDSN operand is specified on the DEFAULTS state-
ment.

membername the name of the load module (member name) containing this com-
pilation unit.

 CA, DA, and UTA Control File 215

fromobjdsn the data set name of the partitioned data set that contains the
object modules generated by the compiler.

| fromloaddsn the data set name of the partitioned data set that contains the
| load module generated by the linker/binder.

| fromvol the volume containing the fromobjdsn or fromloaddsn data set if it
| is not cataloged.

| fromunit the unit specification for the fromobjdsn or fromloaddsn data set if
| it is not cataloged.

objmem the member name in the fromobjdsn for the object for this compi-
lation unit. If fromobjdsn is specified and this operand is not
specified, listdsname must be specified and must contain a
member name specification (which may be obtained from the
LISTMEMBER= operand). In this case, the member name speci-
fied as a part of listdsname will be used for objmem.

toobjdsn the data set name of the partitioned data set that will contain the
modified object modules generated by Setup.

| toloaddsn the data set name of the partitioned data set that will contain the
| instrumented load module generated by Setup.

| tovol the volume containing the toobjdsn or toloaddsn data set if it is
| not cataloged.

| tounit the unit specification for the toobjdsn or toloaddsn data set if it is
| not cataloged.

| In a set of control cards you can process either object modules or load modules,
| but not both. Thus, the FROMOBJDSN and FROMLOADDSN keywords are mutu-
| ally exclusive, as are the TOOBJDSN and TOLOADDSN keywords.

| If TOOBJDSN is coded, then FROMOBJDSN is required.

| If TOLOADDSN is coded, FROMLOADDSN is optional. Coding FROMOBJDSN
| indicates that the load module membername is to be copied from fromloaddsn to
| toloaddsn before the breakpoints are applied via AMASPZAP to membername in
| toloaddsn.

| The fromloaddsn load module may be coded as an * to prevent copying of the load
| modules before AMASPZAP is called (typically, this is only used if
| FROMLOADDSN has a default value).

| AMASPZAP is used to instrument breakpoints in a load module. It is invoked when
| either the membername or toloaddsn changes, or when the last control card is
| processed.

| If the load module being instrumented has aliases, you should not use the
| FROMLOADDSN keyword, but should do the copy yourself using a method that
| preserves the aliases. Note that applying breakpoints to load modules is slower
| than applying them to object modules and requires access to AMASPZAP.
| However, it may be preferable if your normal build process does not keep a copy of
| the object modules for later processing or you do not want to maintain a separate
| set of link/bind JCL.

216 Application Testing Collection 1.5.0 User's Guide

PL/I Statement (PL/I Compilation Unit Definition)
The PL/I statement identifies a PL/I compilation unit.

| Note: If breakpoints are placed in object modules, then a specific compila-
| tion unit should be specified only once in a control file. If the compilation unit

is link-edited into more than one load module, it should be listed for just one of the
load modules.

The syntax of the PL/I statement is:

55─ ──┬ ┬────────── ──┬ ┬─PL/I─ ─LISTDSN──=──listdsname──,─ ──┬ ┬────────────────────────────── ─LOADMOD──=──────5
 └ ┘─label──:─ └ ┘─PLI── └ ┘─LISTMEMBER──=──listmember──,─

5──membername──,───5

| 5─ ──┬ ┬──FROMOBJDSN=fromobjdsn,─┤ FVU ├─ ──┬ ┬────────────────────── TOOBJDSN=toobjdsn─┤ TVU ├─ ─────────────5%
| │ │└ ┘| ──OBJECTmember=objmem,
| └ ┘| ──┬ ┬───────────────────────────────────| ──TOLOADDSN=toloaddsn─┤ TVU ├─ ────────────────
| └ ┘| ──FROMLOADDSN=fromloaddsn,─┤ FVU ├─

FVU:
├─ ──┬ ┬── ───┤
 └ ┘─FROMVOL──=──fromvol──,──FROMUNIT──=──fromunit──,─

TVU:
├─ ──┬ ┬── ───┤
 └ ┘─,──TOVOL──=──tovol──,──TOUNIT──=──tounit─

where:

label a label that can be used to refer to this statement in subsequent
statements.

listdsname the name of the data set that contains the compiler listing for this
compilation unit.

listmember the member name to be substituted for an asterisk specification in
the listdsname. This operand would usually be specified only
when the LISTDSN operand is specified on the DEFAULTS state-
ment.

membername the name of the load module (member name) containing this com-
pilation unit.

fromobjdsn the data set name of the partitioned data set that contains the
object modules generated by the compiler.

| fromloaddsn the data set name of the partitioned data set that contains the
| load module generated by the linker/binder.

| fromvol the volume containing the fromobjdsn or fromloaddsn data set if it
| is not cataloged.

| fromunit the unit specification for the fromobjdsn or fromloaddsn data set if
| it is not cataloged.

objmem the member name in the fromobjdsn for the object for this compi-
lation unit. If fromobjdsn is specified and this operand is not
specified, listdsname must be specified and must contain a
member name specification (which may be obtained from the
LISTMEMBER= operand). In this case, the member name speci-
fied as a part of listdsname will be used for objmem.

 CA, DA, and UTA Control File 217

toobjdsn the data set name of the partitioned data set that will contain the
modified object modules generated by Setup.

| toloaddsn the data set name of the partitioned data set that will contain the
| instrumented load module generated by Setup.

| tovol the volume containing the toobjdsn or toloaddsn data set if it is
| not cataloged.

| tounit the unit specification for the toobjdsn or toloaddsn data set if it is
| not cataloged.

| In a set of control cards you can process either object modules or load modules,
| but not both. Thus, the FROMOBJDSN and FROMLOADDSN keywords are mutu-
| ally exclusive, as are the TOOBJDSN and TOLOADDSN keywords.

| If TOOBJDSN is coded, then FROMOBJDSN is required.

| If TOLOADDSN is coded, FROMLOADDSN is optional. Coding FROMOBJDSN
| indicates that the load module membername is to be copied from fromloaddsn to
| toloaddsn before the breakpoints are applied via AMASPZAP to membername in
| toloaddsn.

| The fromloaddsn load module may be coded as an * to prevent copying of the load
| modules before AMASPZAP is called (typically, this is only used if
| FROMLOADDSN has a default value).

| AMASPZAP is used to instrument breakpoints in a load module. It is invoked when
| either the membername or toloaddsn changes, or when the last control card is
| processed.

| If the load module being instrumented has aliases, you should not use the
| FROMLOADDSN keyword, but should do the copy yourself using a method that
| preserves the aliases. Note that applying breakpoints to load modules is slower
| than applying them to object modules and requires access to AMASPZAP.
| However, it may be preferable if your normal build process does not keep a copy of
| the object modules for later processing or you do not want to maintain a separate
| set of link/bind JCL.

218 Application Testing Collection 1.5.0 User's Guide

ASM Statement (Assembler Compilation Unit Definition)
The ASM statement identifies an assembler program compilation unit.

| Note: If breakpoints are placed in object modules, then a specific compila-
| tion unit should be specified only once in a control file. If the compilation unit

is link-edited into more than one load module, it should be listed for just one of the
load modules.

The syntax of the ASM statement is:

55─ ──┬ ┬────────── ─ASM──LISTDSN──=──listdsname──,─ ──┬ ┬────────────────────────────── ─LOADMOD──=───────────5
 └ ┘ ─label──:─ └ ┘─LISTMEMBER──=──listmember──,─

5──membername──,───5

| 5─ ──┬ ┬──FROMOBJDSN=fromobjdsn,─┤ FVU ├─ ──┬ ┬────────────────────── TOOBJDSN=toobjdsn─┤ TVU ├─ ─────────────5%
| │ │└ ┘| ──OBJECTmember=objmem,
| └ ┘| ──┬ ┬───────────────────────────────────| ──TOLOADDSN=toloaddsn─┤ TVU ├─ ────────────────
| └ ┘| ──FROMLOADDSN=fromloaddsn,─┤ FVU ├─

FVU:
├─ ──┬ ┬── ───┤
 └ ┘─FROMVOL──=──fromvol──,──FROMUNIT──=──fromunit──,─

TVU:
├─ ──┬ ┬── ───┤
 └ ┘─,──TOVOL──=──tovol──,──TOUNIT──=──tounit─

where:

label a label that can be used to refer to this statement in subsequent
statements.

listdsname the name of the data set which contains the assembler listing for
this compilation unit.

listmember the member name to be substituted for an asterisk specification in
the listdsname. This operand would usually be specified only
when the LISTDSN operand is specified on the DEFAULTS state-
ment.

membername the name of the load module (member name) containing this com-
pilation unit.

fromobjdsn the data set name of the partitioned data set that contains the
object modules generated by the assembler.

| fromloaddsn the data set name of the partitioned data set that contains the
| load module generated by the linker/binder.

| fromvol the volume containing the fromobjdsn or fromloaddsn data set if it
| is not cataloged.

| fromunit the unit specification for the fromobjdsn or fromloaddsn data set if
| it is not cataloged.

objmem the member name in the fromobjdsn for the object for this compi-
lation unit. If fromobjdsn is specified and this operand is not
specified, listdsname must be specified and must contain a
member name specification (which may be obtained from the
LISTMEMBER= operand). In this case, the member name speci-
fied as a part of listdsname will be used for objmem.

 CA, DA, and UTA Control File 219

toobjdsn the data set name of the partitioned data set that will contain the
modified object modules generated by Setup.

| toloaddsn the data set name of the partitioned data set that will contain the
| instrumented load module generated by Setup.

| tovol the volume containing the toobjdsn or toloaddsn data set if it is
| not cataloged.

| tounit the unit specification for the toobjdsn or toloaddsn data set if it is
| not cataloged.

| In a set of control cards you can process either object modules or load modules,
| but not both. Thus, the FROMOBJDSN and FROMLOADDSN keywords are mutu-
| ally exclusive, as are the TOOBJDSN and TOLOADDSN keywords.

| If TOOBJDSN is coded, then FROMOBJDSN is required.

| If TOLOADDSN is coded, FROMLOADDSN is optional. Coding FROMOBJDSN
| indicates that the load module membername is to be copied from fromloaddsn to
| toloaddsn before the breakpoints are applied via AMASPZAP to membername in
| toloaddsn.

| The fromloaddsn load module may be coded as an * to prevent copying of the load
| modules before AMASPZAP is called (typically, this is only used if
| FROMLOADDSN has a default value).

| AMASPZAP is used to instrument breakpoints in a load module. It is invoked when
| either the membername or toloaddsn changes, or when the last control card is
| processed.

| If the load module being instrumented has aliases, you should not use the
| FROMLOADDSN keyword, but should do the copy yourself using a method that
| preserves the aliases. Note that applying breakpoints to load modules is slower
| than applying them to object modules and requires access to AMASPZAP.
| However, it may be preferable if your normal build process does not keep a copy of
| the object modules for later processing or you do not want to maintain a separate
| set of link/bind JCL.

 SCOPE Statement
The SCOPE statement identifies a program scope in a COBOL or PL/I compilation
unit that contains variables or files of interest.

Each SCOPE statement must be preceded by (and applies to) a COBOL or PL/I
statement that specifies the listing containing the scope defined by the SCOPE
statement.

220 Application Testing Collection 1.5.0 User's Guide

The syntax of the SCOPE statement is:

55─ ──┬ ┬────────── ─SCOPE─ ──┬ ┬──────────────────────────────── ──────────────5
 └ ┘ ─label──:─ └ ┘──┬ ┬─COBOL─ ─=──cobolplilabel──,─
 ├ ┤─PL/I──
 └ ┘─PLI───

5─ ──┬ ┬ ─EXTPROGRAM-ID──=─ ──┬ ┬─extname─ ──┬ ┬─────────────── ─────────────────5%
 │ │└ ┘─\─────── └ ┘─┤ NestedPgm ├─
 │ │┌ ┐─.───────────
 └ ┘ ──┬ ┬─PROCEDURE─ ─=─ ──┬ ┬───

6
┴──┬ ┬─pliname─ ───────────

 └ ┘─PROC────── │ │└ ┘─stmt────
 └ ┘─\───────────────

NestedPgm:
├──,──NESTEDPROGRAM-ID──=─ ──┬ ┬─intname─ ───────────────────────────────────┤
 └ ┘─\───────

where:

cobolplilabel a label on the COBOL or PL/I statement that defines the compila-
tion unit containing this scope. If this operand is not specified, the
default is the previous COBOL or PL/I statement.

extname the COBOL program-ID of the external COBOL program that con-
tains items to be referenced.

* indicates that the search for the referenced items is to be done
through all external COBOL programs in the specified listing.

intname the COBOL program-ID of the internal (nested) COBOL program
that contains items to be referenced. This operand should be spec-
ified only if the variables of interest are defined in a nested COBOL
program. If this keyword is not specified, the variable is assumed
to be defined in the external COBOL program.

* indicates that the search for the referenced items is to be done
through all internal program IDs in the specified external COBOL
program-ID or through all procedures in the specified external PL/I
procedure in the specified listing.

pliname the PL/I procedure or BEGIN-block that contains items to be refer-
enced. For PL/I internal procedures, the form PROC1.PROC2
must be used, where PROC1 is the external procedure and PROC2
is an internal procedure contained in PROC1. Also, in the case of
PL/I, named BEGIN blocks are considered to be equivalent to
named procedures and are specified in exactly the same way. For
unnamed BEGIN-blocks, the statement number (stmt) where the
BEGIN-block is defined is used in place of the procedure name.

For example, PROCEDURE=P0.P1.B1.2451.P3 specifies an
external procedure named P0 that contains an internal procedure,
or named BEGIN-block, called P1 that contains an internal proce-
dure, or named BEGIN-block, called B1 that contains an unnamed
BEGIN-block defined in statement 2451 that contains an internal
procedure, or named BEGIN-block, called P3.

 CA, DA, and UTA Control File 221

stmt see the previous description of pliname.

* indicates that the search for the referenced items is to be done
through all PL/I procedures and BEGIN-blocks in the specified
listing.

 VARIABLE Statement
The VARIABLE statement identifies a COBOL variable for which coverage or a
warp action is to be requested. The VARIABLE statement can also identify a PL/I
file constant whose associated input file buffer is to be warped. VARIABLE state-
ment can be used to specify either of the following:

1. The name of a fully-qualified variable.

2. The name of a single qualifier. In this case any fully-qualified names containing
this qualifier are considered to be a match.

The SCOPE specified for a PL/I variable must be the procedure or BEGIN-block in
which the variable is defined (either explicitly or implicitly), although it can be refer-
enced in other, contained blocks. This means that the scope for implicitly declared
variables (other than parameters) must be defined as the external procedure.

The syntax of the VARIABLE statement is:

55─ ──┬ ┬────────── ─VARIABLE─ ──┬ ┬───────────────────────── ─NAME──=──(───────5
 └ ┘ ─label──:─ └ ┘─SCOPE──=──scopelabel──,─

5─ ─── ──── ──varname─ ──┬ ┬─────────────────────── ─)─────────────────────────5%
 │ │┌ ┐─────────────────────
 ├ ┤───

6
┴──┬ ┬─IN─ ─groupname─

 │ │└ ┘─OF─
 └ ┘ ──┬ ┬─IN─ ─\─────────────
 └ ┘─OF─

where:

scopelabel the label specified on a SCOPE statement (which can refer to either
a COBOL or a PL/I statement) that defines the scope in which this
variable was defined. If this operand is not specified, the default is
the previous SCOPE statement.

varname the name of the variable to be referenced.

groupname the name of a group containing the referenced variable.

* indicates that a single qualifier is specified and that any fully-qualified
variable that contains this qualifier is considered to be a match.

222 Application Testing Collection 1.5.0 User's Guide

 COVERAGE Statement
| The COVERAGE statement specifies the coverage desired for a specific COBOL
| variable. COVERAGE with VARIABLE (coded or implied) causes the logging of the

variable value at the beginning of the statement (for additional details, see “Where
a Variable Is Read” on page 183). COVERAGE with FILE causes logging of the
variable after a READ but before any other type of COBOL statement.

The syntax of the COVERAGE statement is:

 ┌ ┐─VARIABLE─
55──COVERAGE─ ──┬ ┬─────────────────────────────── ──┼ ┼────────── ─,──────────5
 └ ┘─VARIABLE──=──variablelabel──,─ └ ┘─FILE─────

 ┌ ┐─CHAR─
5─ ──┼ ┼────── ─,─ ──┬ ┬────────────────────────────── ─────────────────────────5
 └ ┘─HEX── │ │┌ ┐─ð──────
 ├ ┤ ─OFFSET──=─ ──┴ ┴─offset─ ─,─────
 │ │┌ ┐─1────────
 └ ┘ ─POSITION──=─ ──┴ ┴─position─ ─,─

5─ ──┬ ┬────────────────────────── ──┬ ┬──────────────────────────── ──────────5
 │ │┌ ┐─-1───── │ │┌ ┐─1─────
 └ ┘ ─LENGTH──=─ ──┴ ┴─length─ ─,─ └ ┘ ─READEVERY──=─ ──┴ ┴─times─ ─,─

 ┌ ┐─,────
5─ ──┬ ┬──────────────────────── ──┬ ┬─STMTS──=──(─ ───

6
┴─stmt─ ─)─ ─────────────5%

 │ │┌ ┐─ð─── ├ ┤─NAME─────────────────────
 └ ┘ ─MAXSAVE──=─ ──┴ ┴─max─ ─,─ └ ┘─FULL─────────────────────

where:

variablelabel
the label on the VARIABLE statement to which this coverage applies.
If this operand is not specified, the default is the previous VARIABLE
statement.

VARIABLE indicates an internal (program) variable.

FILE indicates a File read variable to be processed for distillation.

CHAR specifies that variable data will be displayed as characters.

HEX specifies that variable data will be displayed as hexadecimal numbers,
two hexadecimal digits per byte.

offset specifies the offset from the start of the data item where the read of
the value is to begin. (An offset of 0 indicates the beginning of the
item.)

position specifies the position of the first byte of the data item where the read
of the value is to begin. (A position of 1 indicates the beginning of the
item.)

length specifies the number of bytes of the data item to be read. A value of
-1 indicates that the length is to be taken from the listing. The
maximum length supported is 126 bytes.

times specifies the number of times to skip reading this data item. A value
of 1 indicates that the value of the item is to be saved each time the
item is referenced.

 CA, DA, and UTA Control File 223

max specifies the maximum number of values that are to be saved for the
item. A value of 0 indicates that all values are to be saved.

STMTS specifies that the variable is to be monitored only at specific state-
ments.

stmt specifies the specific statements at which the variable is to be moni-
tored.

NAME specifies that the contents of the variable are to be read at all state-
ments that reference it by the specified, fully-qualified name.

FULL specifies that the contents of the variable are to be read at all state-
ments that reference it by the specified, fully-qualified name or by the
name of any containing or contained group or element.

 WARP Statement
The WARP statement specifies that a COBOL variable or PL/I file buffer is to be
modified at a particular statement or statements (taken from the listing). This mod-
ification takes place before the statement has executed for COBOL, and after the
statement has executed for PL/I.

The syntax of the WARP statement is:

55──WARP─ ──┬ ┬─────────────────────────────── ─DATATYPE──=──datatype──,─────5
 └ ┘─VARIABLE──=──variablelabel──,─

5─ ──┬ ┬───────────── ──┬ ┬────────────────────────────── ─────────────────────5
 ├ ┤─SIGNED──,─── │ │┌ ┐─ð──────
 └ ┘ ─UNSIGNED──,─ ├ ┤ ─OFFSET──=─ ──┴ ┴─offset─ ─,─────
 │ │┌ ┐─1────────
 └ ┘ ─POSITION──=─ ──┴ ┴─position─ ─,─

5─ ──┬ ┬────────────────────── ─ACTION──=──action──,──VALUE──=──value──,─────5
 └ ┘─LENGTH──=──length──,─

 ┌ ┐─,────
5──STMTS──=──(─ ───

6
┴─stmt─ ─)──5%

where:

variablelabel
the label on the VARIABLE statement to which this warp action
applies. If this operand is not specified, the default is the previous
VARIABLE statement. For COBOL, this label can refer to any vari-
able that represents a number. For PL/I, this label must refer to a file
constant, and warping can occur only at file reads.

datatype specifies the type of data that is to be warped. Valid types are:

ZONED Indicates that the variable or file segment contains zoned
decimal data (for example, 99='F9F9'x).

PACKED Indicates that the variable or file segment contains packed
decimal data (for example, 99='099F'x).

BINARY Indicates that the variable or file segment contains binary
data (for example, 99='63'x).

SIGNED specifies that the data is signed. This is the default for PL/I PACKED
and PL/I BINARY datatypes.

224 Application Testing Collection 1.5.0 User's Guide

UNSIGNED specifies that the data is unsigned. This is the default for all COBOL
datatypes and also PL/I ZONED data types.

offset specifies the offset of the first byte of the data item where the read of
the value is to begin. (An offset of 0 indicates the beginning of the
item.)

position specifies the position of the first byte of the data item where the read
of the value is to begin. (A position of 1 indicates the beginning of the
item.)

length specifies the length of the data item to be warped.

This parameter indicates the number of:

� Digits (1-15) for ZONED and PACKED data.
� Bytes (2 or 4) for BINARY data.

The default values are as follows:

� For COBOL, the default of -1 indicates that the length is to be
taken from the listing.

� For PL/I, the defaults are 2, if the data type is BINARY, and 1, if
the datatype is ZONED or PACKED.

action specifies the warp action to be taken on the data. Valid actions are:

INCREMENT Add the VALUE parameter to the data.
DECREMENT Subtract the VALUE parameter from the data.
SET Set the data equal to the VALUE parameter.

value indicates the numeric value to be used by the specified ACTION. The
value must be a nonnegative integer.

stmt specifies the specific statements at which the variable or file segment
is to be warped.

 CA, DA, and UTA Control File 225

COBOL and PL/I Syntax Conversion Tables: The following tables may be
helpful in converting COBOL and PL/I syntax to control card syntax for WARP
statements:

Table 2. COBOL Syntax Conversion Table

COBOL Data Division Entry Datatype Sign Length

Pic 9(P) Usage Display Zoned Unsigned P

Pic S9(P) Usage Display Zoned Signed P

Pic 9(P) Usage Comp-3 Packed Unsigned P

Pic S9(P) Usage Comp-3 Packed Signed P

Pic 9(1...4) Usage Comp Binary Unsigned 2

Pic 9(5...9) Usage Comp Binary Unsigned 4

Pic S9(1...4) Usage Comp Binary Signed 2

Pic S9(5...9) Usage Comp Binary Signed 4

Note: P=any integer 1-15 inclusive

Table 3. PL/I Syntax Conversion Table

PL/I Declare Datatype Sign Length

Character (P)1 Zoned Unsigned P

Picture '(P)9'2 Zoned Unsigned P

Picture '(P-1)9T'2 Zoned Signed P

Fixed Decimal (P,0) Packed Signed P

Fixed Binary (15,0) Binary Signed/Unsigned 2

Fixed Binary (31,0) Binary Signed/Unsigned 4

Notes:

P=any integer 1-15 inclusive

For Fixed Decimal (P,Q) and Fixed Binary (P,Q), 0 is the only valid value for Q.

1 Data must be right-justified within the field and padded on the left with zeros.

2 Only characters 9 and T are supported (if used, T must be the rightmost char-
acter).

226 Application Testing Collection 1.5.0 User's Guide

FILE Read Statement
The FILE statement identifies a COBOL or PL/I file to be processed for distillation.
The file buffer is processed after the execution of the READ statement.

Note: Never use the FILE statement with VARIABLE statements in the same
control file. If you use these statements together, the variable read data will be
mixed with the key list, preventing distillation.

The syntax of the File statement is:

55──FILE─ ──┬ ┬───────────────────────── ─FILE──=──filename──,───────────────5
 └ ┘─SCOPE──=──scopelabel──,─

5─ ──┬ ┬─KEYOFFSET──=──keyoff─── ─,──KEYLEN──=──keylen───────────────────────5
 └ ┘─KEYPOSITION──=──keypos─

5─ ──┬ ┬───────────────────────────── ──────────────────────────────────────5%
 │ │┌ ┐─,────
 └ ┘─,──STMTS──=──(─ ───

6
┴─stmt─ ─)─

where:

scopelabel the label specified on the SCOPE statement that defines the scope in
which this file was defined. If this operand is not specified, the
default is the previous SCOPE statement.

filename the COBOL filename as specified on the FD statement or the name
of a PL/I file constant with the RECORD attribute. PL/I file variables
cannot be specified.

keyoff specifies the offset from the start of the record to the start of the
logical key. (An offset of 0 indicates the beginning of the record.)

keypos specifies the position of the start of the logical key within the record.
(A position of 1 indicates the beginning of the record.)

keylen the length of the logical key.

stmt a list of COBOL or PL/I statement numbers at which reads of the file
are to be monitored.

For COBOL, if no stmt values are specified, all reads of the specified
file are monitored.

For PL/I, stmt values are required. Only reads of the specified file
at the specified statements are monitored.

 CA, DA, and UTA Control File 227

Control File Examples
The following examples show how these statements might be used.

Coverage Assistant Control File Examples
These examples show two control files that might be used for Coverage Assistant
only.

Coverage Assistant Example 1: This example shows a typical control file where
coverage is requested for a single compilation unit.

 Cobol ListDsn=ATC.V1R5Mð.Sample.Cobolst(Cobð1AM),

 LoadMod=Cobð1M,

 FromObjDsn=ATC.V1R5Mð.Sample.Obj,

 ToObjDsn=ATC.V1R5Mð.Sample.ZapObj

Coverage Assistant Example 2: This example shows a typical control file where
coverage is requested for multiple compilation units.

 Defaults ListDsn=ATC.V1R5Mð.Sample.Cobolst(\),

 LoadMod=Cobð1M,

 FromObjDsn=ATC.V1R5Mð.Sample.Obj,

 ToObjDsn=ATC.V1R5Mð.Sample.ZapObj

\

 Cobol ListMember=Cobð1AM

 Cobol ListMember=Cobð1CM

 Cobol ListMember=Cobð1DM

Distillation Assistant Control File Example
This example shows a control file that might be used for Distillation Assistant. In
this example, all reads of the specified file are monitored.

 Cobol ListDsn=ATC.V1R5Mð.Sample.Cobolst(Cobð92),

 LoadMod=Cobð92,

 FromObjDsn=ATC.V1R5Mð.Sample.Obj,

 ToObjDsn=ATC.V1R5Mð.Sample.ZapObj

 Scope ExtProgram-Id=Cobð92

 File File=VSAMIN,KeyPosition=1,KeyLen=11

228 Application Testing Collection 1.5.0 User's Guide

Unit Test Assistant Control File Example
This example shows a control file that might be used for Unit Test Assistant
(including data warping).

 Defaults ListDsn=ATC.V1R5Mð.SAMPLE.COBOLST(\),

 LoadMod=COBð2M,

 FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

 ToObjDsn=ATC.V1R5Mð.SAMPLE.ZAPOBJ

 COBOL ListMember=COBð2M

 Scope ExtProgram-Id=COBð2M

 Variable Name=JULIAN-DATE

Warp Action=Set, Value=ðð99365,

 Datatype=Zoned,Unsigned,Stmts=(83)

Coverage Stmts=(87) // read JULIAN-DATE after it is warped

 Variable Name=CURR-DATE

Warp Action=Set, Value=ðð991231,

 Datatype=Zoned,Unsigned,Stmts=(94)

Coverage Stmts=(97) // read CURR-DATE after it is warped

 Variable Name=YEAR4

 Warp Action=Increment,Value=3,

 Datatype=Zoned,Unsigned,Stmts=(1ð3)

 Coverage Length=4,

Stmts=(1ð6) // read YEAR4 after it is warped

Variable Name=YEAR IN YEAR-BY-FIELD IN DATE-BY-FIELD

Warp Action=Decrement, Value=1,

 Datatype=Zoned,Unsigned,Stmts=(1ð3)

 Variable Name=YEAR2

 Coverage Length=2,

Stmts=(114) // read YEAR2 after it gets the 2 digit

Variable Name=(BEGIN-DATE In LOAN)

 Coverage Length=8,

NAME // read BEGIN-DATE of LOAN

 Coverage Length=8,

FULL // read BEGIN-DATE of LOAN structure

 Variable Name=INC-DATE

 Coverage Length=7,

Stmts=(143) // read initialization of INC-DATE

Variable Name=J-DAY IN J-DATE

 Coverage Length=3,ReadEvery=1ðð,

MaxSave=5,Stmts=(153) // read J-DAY in loop

 CA, DA, and UTA Control File 229

230 Application Testing Collection 1.5.0 User's Guide

CA, DA, and UTA Setup

This chapter describes the CA, DA, and UTA Setup steps. You create the JCL to
start the CA, DA, and UTA Setup program from the Create JCL for Setup panel,
shown in Figure 76 on page 239.

 Setup
The Setup process uses assembler statements from the listings produced by the
compiler to determine where to place breakpoints. For DA and UTA, Setup also
uses data map and data cross-reference (XREF) to extract variable storage and
access information.

You must supply the following items for Setup:

1. Compiler listings with assembler statements included (for DA and UTA, also
include data map and XREF)

2. The original object modules created during the source compile step

3. An object library (allocated like the original) to receive the new object modules,
(after they have been modified with breakpoints)

4. Information on what variables (UTA only) or files (DA only) to monitor.

Modify this information as necessary in the control file (CACTL), as described at
“Editing the Coverage Assistant Control File” on page 81, “Editing the Distillation
Assistant Control File” on page 145, “Editing the Unit Test Assistant Control File”
on page 187, and “CA, DA, and UTA Control File” on page 209.

| Note: When using CA Targeted Summary, you must use the instructions, which
follow, under DA and UTA Setup .

 Compiler Options
CA Setup

COBOL For COBOL for OS/390 & VM and COBOL for MVS & VM,
specify the following compiler options:37

 � SOURCE
 � LIST
 � OBJECT
 � NOOPTIMIZE
 � NONUMBER
� NOTEST or TEST(NONE)

 � LIB38

37 Specifying the *CBL (*CONTROL) NOSOURCE Compiler-Directing Statement to suppress printing of COBOL executable state-
ments prevents these statements from being included in the annotated listing report. Specifying the *CBL (*CONTROL) NOLIST
Compiler-Directing Statement to suppress printing of the assembler code prevents setup from inserting any breakpoints into the
suppressed assembler code.

38 The LIB compiler option is only required by ATC if you have multiple source programs separated by CBL (Process) Compiler-
Directing Statements.

 Copyright IBM Corp. 1997, 1999 231

For VS COBOL II, specify the following compiler options:37

 � SOURCE
 � LIST
 � OBJECT
 � NOOPTIMIZE
 � NONUMBER
 � NOTEST
 � LIB38

For OS/VS COBOL, specify the following compiler options:

 � SOURCE
 � PMAP
 � OBJECT
 � NOLST
 � NOOPTIMIZE
 � NONUM
 � NOBATCH
 � NOTEST
 � NOFLOW
 � NOCOUNT
 � NOSYMDMP

For COBOL, each listing may contain multiple COBOL para-
graphs. Each paragraph is listed in the summary report as a
separate program area (PA). The PA name is the paragraph
name.

All COBOL listings must have the following DCB attributes:

 � RECFM=FBA
� LRECL=133 for COBOL for OS/390 & VM, COBOL for

MVS & VM, and VS COBOL II
� LRECL=121 for OS/VS COBOL

PL/I For PL/I for MVS & VM, specify the following compiler
options:40

 � SOURCE
 � LIST
 � OBJECT
 � NOOPTIMIZE
� NOTEST or TEST(NONE)

For PL/I 2.3.0, specify the following compiler options:39 40

 � SOURCE
 � LIST
 � OBJECT
 � NOOPTIMIZE

39 ATC requires that PTF PN49349 be applied to the IBM OS PL/I Optimizing Compiler 2.3.0 to provide support for more than 9999
statements. The IBM PL/I Optimizing Compiler 1.5.1 does not support more than 9999 statements.

40 Specifying the %NOPRINT statement to suppress printing of PL/I executable statements prevents these statements from being
included in the annotated listing report produced by CA.
Multiple PL/I external source programs separated by *PROCESS statements are not supported.
The use of the REORDER Procedure or BEGIN block option is not supported.

232 Application Testing Collection 1.5.0 User's Guide

 � NOTEST
 � NOCOUNT
 � NOFLOW

For PL/I 1.5.1, specify the following compiler options:39 40

 � SOURCE
 � LIST
 � OBJECT
 � NOOPTIMIZE
 � NOCOUNT
 � NOFLOW

For PL/I, each listing may contain (1) one external procedure,
and (2) multiple internal procedures, ON-units, and BEGIN
blocks. Each of these is listed in the summary report as a
separate program area (PA). The PA name is the name of
the procedure or labeled BEGIN block, or is a compiler-
generated name or CA-generated name for ON-units and
unlabeled BEGIN blocks.

The following PL/I condition prefixes should not be enabled:

 � SUBSCRIPTRANGE
 � STRINGRANGE
 � CHECK

All PL/I listings must have the following DCB attributes:

 � RECFM=VBA
 � LRECL=125

ASM For the High Level Assembler, specify the following assem-
bler options:

 � NOBATCH
 � ESD
� NOGOFF (Release 3 only)

 � LIST
� OBJECT or DECK

 � NOXOBJECT
 � PCONTROL(ON,GEN)

For Assembler H, specify the following assembler options:41

 � NOBATCH
 � ESD
 � LIST
� OBJECT or DECK

All ASM listings must have the following DCB attributes:

 � RECFM=FBM
� LRECL=133 for the High Level Assembler
� LRECL=121 for Assembler H

41 Specifying the PRINT assembler directive to suppress printing of executable instructions or data prevents Setup from inserting any
breakpoints into the suppressed assembler code.

 CA, DA, and UTA Setup 233

Each listing can contain one assembly. If you only want a summary
report of code coverage, you can discard the compiler listings after the
Setup step.

ATC does not support breakpointing of:

 � Self-modifying code
� Code that uses the ESA/390 branch relative instructions

| � An assembly that contains more than one executable CSECT

| DA and UTA Setup and CA Targeted Summary Setup

COBOL For COBOL for OS/390 & VM and COBOL for MVS & VM,
specify the following compiler options:42

 � SOURCE
 � LIST
 � OBJECT
 � XREF
 � MAP
 � NOOPTIMIZE
 � NONUMBER
� NOTEST or TEST(NONE)

 � LIB38

For VS COBOL II, use the following compiler options:42

 � SOURCE
 � LIST
 � OBJECT
 � XREF
 � MAP
 � NOOPTIMIZE
 � NONUMBER
 � NOTEST
 � LIB38

For OS/VS COBOL, use the following compiler options:43

 � SOURCE
 � DMAP
 � PMAP
 � OBJECT
 � XREF
 � NOLST
 � NOCLIST
 � NOOPTIMIZE
 � NONUM
 � NOBATCH
 � NOSXREF

42 Specifying the *CBL (*CONTROL) NOLIST Compiler-Directing Statement to suppress printing of the assembler code prevents CA
from inserting any breakpoints into the suppressed assembler code.

43 DA and UTA do not support CICS routines compiled with the OS/VS COBOL compiler.

234 Application Testing Collection 1.5.0 User's Guide

 � NOTEST
 � NOFLOW
 � NOCOUNT
 � NOSYMDMP

For COBOL, each listing may contain multiple COBOL para-
graphs. Each paragraph is listed in the summary report as a
separate program area (PA). The PA name is the paragraph
name.

All COBOL listings must have the following DCB attributes:

 � RECFM=FBA
� LRECL=133 for COBOL for OS/390 & VM, COBOL for

MVS & VM, and VS COBOL II
� LRECL=121 for OS/VS COBOL

PL/I For PL/I for MVS & VM, specify the following compiler
options:40

 � ATTRIBUTES(FULL)
 � NOGRAPHIC
 � LIST
 � MAP
 � NEST
 � OBJECT
 � OFFSET
 � NOOPTIMIZE
 � OPTIONS
 � SOURCE
 � XREF(FULL)
� NOTEST or TEST(NONE)

For PL/I 2.3.0, specify the following compiler options:39 40

 � ATTRIBUTES(FULL)
 � NOGRAPHIC
 � LIST
 � MAP
 � NEST
 � OBJECT
 � OFFSET
 � NOOPTIMIZE
 � OPTIONS
 � SOURCE
 � XREF(FULL)
 � NOTEST
 � NOCOUNT
 � NOFLOW

For PL/I 1.5.1, specify the following compiler options:40

 � ATTRIBUTES(FULL)
 � NOGRAPHIC
 � LIST
 � MAP
 � NEST
 � OBJECT
 � OFFSET

 CA, DA, and UTA Setup 235

 � NOOPTIMIZE
 � OPTIONS
 � SOURCE
 � XREF(FULL)
 � NOCOUNT
 � NOFLOW

For PL/I, each listing may contain (1) one external procedure,
and (2) multiple internal procedures, ON-units, and BEGIN
blocks. Each of these is listed in the summary report as a
separate program area (PA). The PA name is the name of
the procedure or labeled BEGIN block, or is a compiler-
generated name or CA-generated name for ON-units and
unlabeled BEGIN blocks.

The following PL/I condition prefixes should not be enabled:

 � SUBSCRIPTRANGE
 � STRINGRANGE
 � CHECK

All PL/I listings must have the following DCB attributes:

 � RECFM=VBA
 � LRECL=125

Setup creates a breakpoint table (BRKTAB) and uses it along with the object
module created at compile time to create a new object module containing the
breakpoint data. Once the breakpoints have been inserted into the object module

| or modules, link-edit the object modules into the executable load module. Alterna-
| tively, the Setup job can insert breakpoints directly into load modules.

For DA and UTA, Setup also creates a debug table (DBGTAB) of data on variables
to read. DA and UTA use the DBGTAB table during the Execution and Report
steps.

Also for DA and UTA, setup creates a VARCTL file that contains variable location
information. DA and UTA use the VARCTL file during Execution.

The steps involved in the Setup procedure for CA are shown in Figure 74 on
page 237. The DA and UTA Setup procedure is shown in Figure 75 on page 237.
The names outside the boxes in the figures (for example, BRKTAB) correspond to
the DDNAMEs in the created JCL.

236 Application Testing Collection 1.5.0 User's Guide

| Load modules

| User program or

| listings object modules

| │ │

| │ │

| │ │

| 6 6

| LISTINB/P/A

| ┌───────────────────────────────────────┐

| │ │

| │ SETUP │

| │ │

| └─────┬─────────────────────────┬───────┘

| │ │

| │ │

| BRKTAB │

| │ │

| │ │

| │ │

| 6 6

| Breakpoints table Instrumented load modules

| used during execution or

| Instrumented object modules

Figure 74. CA Setup—Flow Diagram

| User User Load modules

| program Control program or

| listings file listings object modules

| │ │ │ │

| │ │ │ │

| │ │ │ │

| 6 6 6 6

| ┌──┐

| │ │

| │ SETUP │

| │ │

| └──┬───────────────┬───────────────┬────────────┬──┘

| │ │ │ │

| │ │ │ │

| │ │ │ │

| │ │ │ │

| 6 6 6 6

| DBGTAB VARCTL Breakpoint Instrumented

| Debug table Variable table load modules

| used during control file or

| reports used during Instrumented

| execution object modules

Figure 75. DA and UTA Setup—Flow Diagram

 CA, DA, and UTA Setup 237

| Instrumentation of Load Modules instead of Object Modules
| You can instrument breakpoints into your object modules before you link them into
| an executable load module, or you can instrument breakpoints into the executable
| programs. For locations where instrumenting object modules is difficult because
| the link step is built into the standard location-wide build procedures, instrumenta-
| tion of load modules can be used.

| The samples shipped with ATC show how to instrument object modules.

| To instrument object modules for the COB01M test case, the following control file
| would be used:

| Defaults ListDsn=ATC.V1R5Mð.SAMPLE.COBOLST(\),

| LoadMod=COBO1M,

| FromObjDsn=ATC.V1R5Mð.SAMPLE.OBJ,

| ToObjDsn=yourid.SAMPLE.ZAPOBJ

| COBð1AM: COBOL ListMember=COBð1AM

| COBð1CM: COBOL ListMember=COBð1CM

| COBð1DM: COBOL ListMember=COBð1DM

| To instrument load modules, the control file is changed. All other steps remain the
| same, except you can skip the step that links the instrumented object modules into
| a program to test.

| For example, to instrument the load module for the COB01M test case, the fol-
| lowing COBOL control file would be used:

| Defaults ListDsn=ATC.V1R5Mð.SAMPLE.COBOLST(\),

| LoadMod=COBO1M,

| FromLoadDsn=ATC.V1R5Mð.SAMPLE.LOADLIB,

| ToLoadDsn=yourid.SAMPLE.RUNLIB

| COBð1AM: COBOL ListMember=COBð1AM

| COBð1CM: COBOL ListMember=COBð1CM

| COBð1DM: COBOL ListMember=COBð1DM

| Note that the FromObjDsn and ToObjDsn keywords that identify object module
| libraries are not used. Instead you use the FromLoadDsn and ToLoadDsn
| keywords. If both FromLoadDsn and ToLoadDsn are supplied, the load module is
| copied before being instrumented. If only the ToLoadDsn keyword is supplied, the
| load module is instrumented in place.

| You cannot use both object module instrumentation (use of FromObjDsn and
| ToObjDsn keywords) and load module instrumentation (FromLoadDsn and
| ToLoadDsn keywords) in the same set of control cards.

| Note that the load module copy step (using IEBCOPY) will not work for load
| modules that have aliases.

| The instrumentation of the load module is done using the IBM utility AMASPZAP
| (sometimes referred to as the Superzap utility). Your location may restrict the use
| of this utility. Contact your system support personnel if you cannot access it.

| Instrumenting load modules using the AMASPZAP utility takes significantly longer
| than instrumentation of object modules for large programs.

238 Application Testing Collection 1.5.0 User's Guide

Creating the Setup JCL Using the Panels
To create the setup JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation, and Unit Test Assistant panel is displayed.

2. Select option 2.

The Create JCL for Setup panel, shown in Figure 76, is displayed. Each field
on the panel is described following the figure.

3. Enter any information you want to change, select option 1, and press Enter.

à ð
----------------------------- Create JCL for Setup ----------------------------

 Option ===>_

 1 Generate Generate JCL from parameters

 2 Edit Edit JCL

 3 Submit Submit JCL

Enter END to Terminate

 Process Options:

 Enable CA YES (Yes|No) Enable DA NO (Yes|No) Enable UTA NO (Yes|No)

Use Program Name for File Name YES (Yes|No) Program Name COBð1M

CA/DA/UTA Control File:

Control File Dsn. . . 'YOUNG.TEST.COBð1M.CACTL'

JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(Sxxxxxxx)'

Output Breakpoint Table:

Breakpoint Table Dsn. 'YOUNG.TEST.COBð1M.BRKTAB'

DA/UTA Output Debug Table and Variable Control Files:

Debug Table Dsn . . . 'YOUNG.TEST.COBð1M.DBGTAB'

Variable Control Dsn. 'YOUNG.TEST.COBð1M.VARCTL'

á ñ

Figure 76. Create JCL for Setup Panel

The panel's options and fields are as follows. In most cases, you only need to
change the Program Name field and then press Enter. The defaults for the
Setup step are used.

Generate
Generates JCL using the parameters you have specified on the
panel.

Edit
Displays an ISPF edit session for you to make changes to existing
JCL.

Submit
Submits for execution the JCL specified in the JCL Dsn field on this
panel.

 CA, DA, and UTA Setup 239

Enable CA
Specifies whether Coverage Assistant's setup JCL is to be gener-
ated.

Enable DA
Specifies whether Distillation Assistant's setup JCL is to be gener-
ated. If you set this option to YES, set Enable UTA to NO.

Enable UTA
Specifies whether Unit Test Assistant's setup JCL is to be gener-
ated. If you set this option to YES, set Enable DA to NO.

Use Program Name for File Name
If you want to construct the data set names from the default high-
level qualifier, the specified program name, and the default low-level
qualifier for each data set, enter YES.

When you press Enter, the file names on the panel are changed
automatically. Using the program name is the normal ATC proce-
dure.

Program Name
Name to use for ATC files if you enter YES in the Use Program Name

for File Name field. Note that this can be any valid name. It does
not have to be the name of any of your programs. Names of the
following form are created:

� Sequential data sets:

'proj_qual.program_name.file_type'

For example: 'YOUNG.TEST.COB01M.BRKTAB'

� Partitioned data sets:

'proj_qual.file_type(program_name)'

For example: 'YOUNG.TEST.BRKTAB(COB01M)'

Control File Dsn
Specifies the control file (CACTL) data set containing the names of
the listing files being annotated and the variables being read. If you
want to edit the control file, you can do so from the Work with the

CA/DA/UTA Control File panel.

JCL Dsn
Specifies the name of the JCL data set that contains the JCL for this
action.

Note: If the Use Program Name for File Name field is set to YES,
then the member name or program name qualifier of the data set
will be Sxxxxxxx, where xxxxxxx is the first seven characters of the
program name.

Breakpoint Table Dsn
Name of the BRKTAB data set created during setup and used by
the monitor program.

240 Application Testing Collection 1.5.0 User's Guide

Debug Table Dsn
Name of the data set containing the variables that UTA is to monitor
and the files that DA is to monitor.

Variable Control Dsn
Name of the data set containing the variable information.

When to Create or Submit Setup JCL
Run the setup JCL if:

� A user program (and consequently, the listing) changes.
� You change the variables to read.

You only need to recreate the setup JCL if the test environment changes.

For example, if you:

� Add or delete listings in the CACTL, recreate the setup JCL from the panel,
and run the new setup JCL.

� Change a listing, then submit the old setup JCL without changes.
� Change a variable in the CACTL, submit the old setup JCL without changes.

Setup JCL for the Compile Job Stream
If you insert the JCL that creates setup output files in your compile job stream,
whenever you change a module and recompile, the setup output files are created
and saved automatically.

You can create this JCL by modifying the sample JCL in the ATC JCL library or by
generating the setup JCL from the Create JCL for Setup panel.

Parameters for SETUP and ZAPTXT Programs
This section describes the input parameters you can provide to the SETUP and
ZAPTXT programs.

 SETUP
The SETUP program input parameters are created automatically from the defaults
file. The parameters are as follows:

LoadMod Load module name. This is the name of the load module that contains
the PA or CSECT name.

LPDFRP List_Type/PA_Type/Debug_mode/Frequency_mode/Read_Variable_data/
Performance_mode.
This is a six-part parameter defined as follows:

List_Type The type of listing. This is controlled by the CACTL variable
in the site defaults file. Enter any of the following:
B For COBOL
P For PL/I
A For Assembler

PA_Type Program Area Type. Enter the following:
ð For DASD resident program

 CA, DA, and UTA Setup 241

Debug_mode
Use Debug Mode? Enter either of the following:

Y Use debug mode: execute breakpoints as many times
as encountered.

| Note: Use debug mode only at the direction of ATC
| support personnel or as directed by this manual.

N Do not use debug mode: only execute breakpoints
once.

| Note: For CA, DA, and UTA, set to N. See also “Dis-
| playing Execution Counts in an Annotated Listing” on
| page 102 for more information about the use of this
| flag.

| Frequency_count_mode
| Use Frequency Count Mode? Enter either of the following:

Y Save frequency and branch to information (for
branches) in the coverage file (BRKOUT). This adds
16 bytes per breakpoint to the BRKOUT size. This can
be set to N, unless you want the Events count informa-
tion in the annotated listing.

N Do not save the Events count and branch to information
in the BRKOUT file.

| Note: For CA, set to N unless analyzing assembler
| code with relative branches (see “ASTERISKS BY
| STATEMENT TOTALS” on page 89), displaying exe-
| cution counts (see “Displaying Execution Counts in an
| Annotated Listing” on page 102). For DA, set to N
| unless recording first execution of DA keys
| (see“Recording Which Keys Execute a Statement” on
| page 142). For UTA, set to N.

Read_Variable_data
Read Variable Data? Enter either of the following:

Y DA and UTA can read file keys and variable data.

N Do not set read points for DA and UTA.

Note: For CA, set to N. For UTA and DA, set to Y.

Performance_mode
Use Performance Mode? Enter either of the following:

Y Conditional branch coverage is disabled.

N Conditional branch coverage is enabled.

For more information, see “Using the Performance Mode to
Reduce Monitor Overhead” on page 253.

242 Application Testing Collection 1.5.0 User's Guide

Listing file name
Listing file name used to determine breakpoint placement.

2-byte SVC #
SVC number (in hexadecimal notation) for breakpointing 2-byte
instructions.

4-byte SVC #
SVC number (in hexadecimal notation) for breakpointing 4- and 6-byte
instructions.

 ZAPTXT
The ZAPTXT program inserts breakpoints into object modules. It has one input
parameter, which is built automatically by the ISPF dialog during the creation of the
setup job.

//OBJZAP EXEC PGM=ZAPTXT,PARM='x'

where x is a number that indicates which BRKTAB in the BRKTAB data set to use.

 CA, DA, and UTA Setup 243

244 Application Testing Collection 1.5.0 User's Guide

 Monitor Execution

This chapter describes the procedures for running a monitor session for MVS. The
monitor handles the user supervisor call instructions (SVCs) that are used as
breakpoints (BPs).

You install the monitor by running the monitor installation program during ATC
installation. For details about installing the monitor, see “System Installation” on
page 13.

You create the JCL to start a monitor session from the Create JCL to Start the

Monitor panel (shown in Figure 80 on page 247). Multiple user sessions can be
active at the same time.

The monitor program examines the breakpoint table information (and for UTA and
DA, the variable control information) produced by the Setup step and accumulates
data as the application program test case executes. When you execute the
CASTOP command, the monitor writes the results to disk. The CA execution flow
is shown in Figure 77, the DA execution flow is shown in Figure 78 on page 246,
and the UTA execution flow is shown in Figure 79 on page 246.

When the monitor session is started, the tables needed for handling the session are
created in ESQA. For the amount of storage used for a user session, see
Appendix B, “ATC Requirements and Resources” on page 383. For more details
on running multiple sessions, see page 249.

 | From Setup |

 BRKTAB

 6

 ┌────────────────────┐ breakpoints ┌─────────────────────┐

 │ Execution │%──────────────┤ │

 │ (Monitor) │ return │ User Program │

 │ ├─────────────5 │ │

 └───────┬────────────┘ └─────────────────────┘

 │

 BRKOUT

 6

Breakout table to REPORTS

Figure 77. CA Test Case Execution—Flow Diagram

 Copyright IBM Corp. 1997, 1999 245

│ From DA SETUP │

 BRKTAB VARCTL

 │ │

 6 6

 ┌────────────────────┐ breakpoints ┌─────────────────────┐

 │ Execution │%──────────────┤ │

 │ (Monitor) │ return │ User Program │

 │ ├─────────────5 │ │

 └──────────┬─────────┘ └─────────────────────┘

 VARTAB &

 6 │

 ┌────────────────────┐ │

│ Physical │%─────────────────Master Input File

 │ Distillation │

 │ │

 └────────────────────┘

 │

 6

 Distilled

New Master File

Figure 78. DA Test Case Execution—Flow Diagram

| From UTA SETUP |

 BRKTAB VARCTL

 │ │

 6 6

 ┌────────────────────┐ breakpoints ┌─────────────────────┐

 │ Execution │%──────────────┤ │

 │ (Monitor) │ return │ User Program │

 │ ├─────────────5 │ │

 └──────────┬─────────┘ └─────────────────────┘

 VARTAB

 6

 VARIABLE REPORT

Figure 79. UTA Test Case Execution—Flow Diagram

Creating the Monitor JCL Using the Panels
To create the monitor JCL:

1. Select option 1 from the ATC Primary Option Menu.

The Coverage, Distillation, and Unit Test Assistant panel is displayed.

2. Select option 3.

The Create JCL to Start the Monitor panel, shown in Figure 80 on page 247
is displayed.

3. Enter any information you want to change, select option 1, and press Enter.

246 Application Testing Collection 1.5.0 User's Guide

à ð
----------------------- Create JCL to Start the Monitor -----------------------

Option ===>

1 Generate Generate JCL from parameters

2 Edit Edit JCL

3 Submit Submit JCL

Enter END to Terminate

Process Options:

Enable CA YES (Yes|No) Enable DA NO (Yes|No) Enable UTA NO (Yes|No)

Use Program Name for File Name YES (Yes|No) Program Name COBð1M

Session ID YOUNG

Input File:

Breakpoint Table Dsn. 'YOUNG.TEST.COBð1M.BRKTAB'

DA/UTA Input File:

Variable Control Dsn. 'YOUNG.TEST.COBð1M.VARCTL'

JCL Library and Member:

JCL Dsn 'YOUNG.TEST.JCL.CNTL(Xxxxxxxx)'

Output File:

Breakout Dsn. 'YOUNG.TEST.COBð1M.BRKOUT'

DA/UTA Output File:

Variable Table Dsn. . 'YOUNG.TEST.COBð1M.VARTAB'

á ñ

Figure 80. Create JCL to Start the Monitor Panel

The panel's options and fields are as follows:

Generate
Generates JCL from the parameters you have specified on the panel.

Edit
Displays an ISPF edit session for you to make changes to existing JCL.

Submit
Submits for execution the JCL specified in the JCL Dsn field on this
panel.

Enable CA
Specifies whether Coverage Assistant's execution JCL is to be gener-
ated.

Enable DA
Specifies whether Distillation Assistant's execution JCL is to be gener-
ated. If you set this option to YES, set Enable UTA to NO.

Enable UTA
Specifies whether Unit Test Assistant's execution JCL is to be gener-
ated. If you set this option to YES, set Enable DA to NO.

 Monitor Execution 247

Use Program Name for File Name
If you want to construct the data set name from the default high-level
qualifier, the specified program name, and the default low-level qualifier
for each data set, enter YES.

When you press Enter, the file names on the panel are changed auto-
matically. Using the program name to construct the data set names is
the normal ATC procedure.

Program Name
Name to use for ATC files if you enter YES in the Use Program Name for

File Name field. Note that this can be any valid name. It does not have
to be the name of any of your programs. Names of the following form
are created:

� Sequential data sets:

'proj_qual.program_name.file_type'

For example: 'YOUNG.TEST.COB01M.BRKTAB'

� Partitioned data sets:

'proj_qual.file_type(program_name)'

For example: 'YOUNG.TEST.BRKTAB(COB01M)'

Session ID
Session ID for your session. This defaults to your TSO user ID. Mul-
tiple testers can use the monitor simultaneously. For more information,
see “Multiple User Sessions” on page 249 for details.

Breakpoint Table Dsn
Name of the BRKTAB data set created during Setup and used by the
monitor program.

Variable Control Dsn
Name of the data set containing the variable control information (created
during Setup).

JCL Dsn
Specifies the name of the JCL data set that contains the JCL for this
action.

Note: If the Use Program Name for File Name field is set to YES, then
the member name or program name qualifier of the data set will be
Xxxxxxxx, where xxxxxxx is the first seven characters of the program
name.

Breakout Dsn
Name of the BRKOUT data set created during Execution and used by
the Report program.

Variable Table Dsn
Name of the variable table data set, which is a work file containing inter-
mediate results of information gathered when variables were monitored.

248 Application Testing Collection 1.5.0 User's Guide

Parameters for Start Monitor (CMDUSVC)
You can provide the following input parameters to the start monitor routine
(CMDUSVC):

Session type

START The user is trying to start a new session (with the ID
passed in the Session ID parameter). Up to 32 ses-
sions can be active on the same MVS system.

Session ID An eight-character string that identifies the session.

Parameters for Variable Monitor (VARMON3)
You can provide the following input parameters to the variable monitor routine.

Session ID An eight-character string that identifies the session. This must
match the Session ID passed to CMDUSVC.

MinWait The minimum wait time to write buffers (in 1/100 seconds)

MaxWait The maximum wait time to write buffers (in 1/100 seconds)

Multiple User Sessions
More than one tester can execute simultaneously on an MVS system. Each sepa-
rate invocation of the monitor is called a session. The monitor identifies sessions
by a session ID passed to it as a parameter. The Create JCL to Start the

Monitor panel, which creates the JCL, creates a session ID from the tester's TSO
user ID or a user-specified session ID. Each tester can start or stop a session
independently of any other tester.

Change the session ID to a user-defined ID by either changing the Session ID
option on the Create JCL to Start the Monitor panel or by editing the start
monitor JCL. To change the session ID by editing the start monitor JCL, change
each of the following to the ID you choose:

� The second qualifier in the following data set names:
 – prefix.sessid.EXTEMP.EXEC
 – prefix.sessid.TEMP.VMTEMP

� The second parm to the CMDUSVC program
� The first parm to the VARMON3 program (optional; only used for DA and UTA)

Changing the session ID lets you create custom batch test runs for automation pur-
poses.

Any user can stop or cancel any session if the user knows the session ID (which
can be determined by issuing the CASESSN command). This may be necessary,
for example, if there are plans to IPL the system, which will cause the loss of test
data.

 Monitor Execution 249

Coverage of Common Modules with Multiple User Sessions
When multiple testers simultaneously execute shared modules, coverage reports
are affected. In some environments (for example, CICS), only one copy of a
module is in storage for all users of that module.

In general the following rules apply. When multiple testers execute a monitored
module, and the module is monitored by:

1. Only one session (its BRKTAB appears in only one session), all coverage from
all testers appears in that session's coverage data.

2. Multiple sessions (its BRKTAB appears in multiple sessions), the first session in
which the module is started will usually receive all of the coverage data. Other
sessions where the module is monitored will show no coverage data.

The following topics in this chapter describe various scenarios in which the monitor
may be used:

1. “Multiple Testers Executing Code in a Module Monitored by One Session” on
page 251

2. “Multiple Testers Executing Code in a Module Monitored by Multiple Sessions”
on page 252

3. “Multiple Testers Executing Code in a Module, but Each Tester with a Unique
Copy of the Module” on page 253

250 Application Testing Collection 1.5.0 User's Guide

Multiple Testers Executing Code in a Module Monitored by One Session:
This example describes multiple testers executing the same module, but only one
session is monitoring the module:

Table 4. Multiple Testers Executing Code in a Module Monitored by One Session

 Setup Start Session
Execute
Code

Tester 1 � Listings for module A,
module C, and module D

 � Instrumented objects
linked into executable
modules A through F

 � Session 1
 � BRKTABs from

module A,
module C, and
module D

In modules A
through F

Note: Tester 1 is monitoring the coverage of modules A, C, and D, but
running test cases that execute modules A through F.

Tester 2 � Listings for module B and
module E

 � Instrumented objects
linked into executable
modules A through F

 � Session 2
 � BRKTABs from

module B and
module E

In modules A
through F

Note: Tester 2 is monitoring modules B and E, but executing test cases
that execute modules A through F.

Tester 3 � Listings for module F
 � Instrumented objects

linked into executable
modules A through F

 � Session 3
 � BRKTABs from

module F

In modules A
through F

Note: Tester 3 is monitoring module F, but executing test cases that
execute modules A through F.

The coverage data from session 1 will be the cumulative coverage of all three
testers for modules A, C, and D. There is no way for Tester 1 to know what cov-
erage data was caused by each tester. The same is true for the coverage data
from session 2 and session 3.

 Monitor Execution 251

Multiple Testers Executing Code in a Module Monitored by Multiple
Sessions: This example describes multiple testers executing the same module,
with multiple sessions monitoring identical module.

Common Setup is performed for modules A through F and instrumented objects are
linked into executable modules A through F

Table 5. Multiple Testers Executing Code in a Module Monitored by Multiple Sessions

 Setup Start Session
Execute
Code

Tester 1 � Listings for modules A
through F

 � Instrumented objects
linked into executable
modules A through F

 � Session 1
 � BRKTABs from

module A,
module C, and
module D

In modules A
through F

Note: In session 1, Tester 1 is monitoring the coverage of modules A, C,
and D, but running test cases that execute Modules A through F.

Tester 2 � Listings for modules A
through F

 � Instrumented objects
linked into executable
modules A through F

 � Session 2
 � BRKTABs from

module B,
module C, and
module E

In modules A
through F

Note: In session 2, Tester 2 is monitoring modules B, C and E, but exe-
cuting test cases that execute modules A through F.

Tester 3 � Listings for modules A
through F

 � Instrumented objects
linked into executable
modules A through F

 � Session 3
 � BRKTABs from

module B and
module F

In modules A
through F

Note: In session 3, Tester 3 is monitoring modules B and F, but exe-
cuting test cases that execute modules A through F.

Assume the order that the sessions were started is session 1, session 2, and then
session 3. Note that module C is being monitored in sessions 1 and 2, and module
B is being monitored in sessions 2 and 3.

Any coverage in C from any tester will usually be shown in session 1. Even though
Session 2 is monitoring C, the coverage data for C from session 2 will probably
show no coverage. The same is true for module B, monitored by sessions 2 and 3.
Coverage for B will show up in session 2.

However if session 1 is stopped, any subsequent execution of module C will now
appear in the session 2 coverage data. The same will be true for module B, if
session 2 is stopped but session 3 is still active.

252 Application Testing Collection 1.5.0 User's Guide

Multiple Testers Executing Code in a Module, but Each Tester with a Unique
Copy of the Module: Each tester can ensure unique coverage data for test cases
run by that tester, by using the following procedure:

Table 6. Multiple Testers Executing Code in a Module, but Each Tester with a Unique
Copy of the Module

 Setup Start Session
Execute
Code

Tester 1 � Listings for modules A
through F

� Link into modules A1
through F1

 � Session 1
 � BRKTABs from

modules A
through F from
Tester 1 Setup

In modules
A1 through
F1

Tester 2 � Listings for modules A
through F

� Link into modules A2
through F2

 � Session 2
 � BRKTABs from

modules A
through F from
Tester 2 Setup

In modules
A2 through
F2

Tester 3 � Listings for modules A
through F

� Link into modules A3
through F3

 � Session 3
 � BRKTABs from

modules A
through F from
Tester 3 Setup

In modules
A3 through
F3

Each tester performed a unique Setup for the code to be monitored in modules A
through F. Then the instrumented objects were linked into unique executable
modules Ax through Fx. The coverage statistics represent testing done by an indi-
vidual tester and no one else.

Using the Performance Mode to Reduce Monitor Overhead
Measuring when a conditional branch branches takes more overhead because the
breakpoint at the conditional branch must be left in storage. If the increased over-
head is unacceptable for your testing, conditional branch coverage can be turned
off. You can do this by setting the Performance Mode. Set the Performance Mode
in either of the following ways:

1. Change a default setting. Change the Performance Mode default (in the Setup
Defaults section of ATC Defaults) to Yes. For more information, see “Modifying
Your ATC Defaults” on page 27. Any BRKTAB files created in the Setup step
will have a flag set to indicate that conditional branches should not be left in
storage.

2. Issue a command to turn Performance Mode on temporarily during testing.
After a session is started, turn Performance Mode on or off by entering the
following commands:

a. EX 'hi_lev_qual.V1R5Mð.REXX(CAPRFON)' turns the Performance Mode on
b. EX 'hi_lev_qual.V1R5Mð.REXX(CAPRFOFF)' turns the Performance Mode off

 Monitor Execution 253

When the Performance Mode is set on via SETUP, the summary report for the test
run will not show conditional branch coverage. For more information, see “Sup-
pression of Conditional Branch Coverage with Performance Mode” on page 87.
The annotation for conditional statements in an annotated listing is also modified.
For more information, see “Changes in Annotation Symbols with Performance
Mode” on page 104.

When the Performance Mode is set off via SETUP, and then later enabled via
CAPRFON, then summary reports and annotated listings will still include conditional
breakpoint information, although the data may be incomplete.

 Buffer Monitor
A buffer monitor program is available for UTA and DA. The buffer monitor stays
resident while your session is active in order to write full buffers of data to disk.
Two buffers are used: one is written to disk and the other saves data.

The size of each buffer is 65536 bytes. These buffers reside in ESQA storage.

You can specify the minimum and maximum times that the buffer monitor program
checks for full buffers. As shipped, the minimum time is 20 (.2 seconds) and the
maximum time is 800 (8 seconds). These times are in hundredths of a second.
Valid settings range from 20 to 1600. If you try to set times outside of this range, a
warning message is displayed and the time is set within this range.

Your program may access variables to be saved faster than they can be written to
disk, which causes a buffer overflow and a loss of data occurs. The following
statement appears in the VARDATA report if a buffer overflow and a loss of data
occurs:

11915 1 1 38 KYLEX 3722AIX.

11916 1 1 38 KYLEX 3723AIX.

\\\\\\\\ !!! BUFFER OVERFLOW !!! \\\\\\\\

11917 1 1 38 KYLEX ððððMVS.

The buffer monitor program is resident as long as your session is active. The job
that started your monitor session stays active until you end your session with the
CASTOP or CAQUIT command. This is not true for CA monitor sessions. For CA
sessions, there is no buffer monitor program, and your start monitor job ends once
your monitor session has been established.

254 Application Testing Collection 1.5.0 User's Guide

 Monitor Commands

Several commands are available to control the execution monitor and to display
statistics. These commands, which are described in this chapter, can only be exe-
cuted while the monitor is running.

Note: A common monitor program executes for the CA, DA, and UTA tools and
the commands described in this chapter are valid for all three tools.

The command execs are shipped in a partitioned data set (PDS) named
hi_lev_qual.V1R5M0.REXX. Any status messages resulting from the commands
are written to the data set prefix.MSGS.FILE. If this data set does not exist, it is
created when a command is issued.

 Issuing Commands
You can issue commands in the following ways:

� From the Control the CA/DA/UTA Monitor panel, shown in Figure 81 on
page 256. The commands are listed on the panel. If you select a command, a
panel is displayed allowing you to enter any command parameters.

� From the TSO command line. Some commands have optional parameters that
can be passed. The explicit invocation shows the method for passing parame-
ters to the command. The following is an example of issuing a command from
the TSO command line:

EX 'hi_lev_qual.V1R5Mð.REXX(cmdname)' 'parm1 parm2'

� From MVS BATCH using JCL. This method is useful in automating test case
runs. The JCL can be embedded in your batch stream. When the commands
are executed in batch mode, the MSGS.FILE is appended with messages from
each command executed in the job. You can view this file for problem determi-
nation. The following is an example of issuing commands using JCL:

//YOUNGC JOB (12345678),

// YOUNG,NOTIFY=YOUNG,USER=YOUNG,

// TIME=1,MSGCLASS=H,CLASS=A,REGION=2M

//\ SAMPLE JCL TO EXECUTE CA COMMANDS:

//\ FIRST A CASTATS COMMAND IS EXECUTED, WITH RESULTS IN

//\ YOUNG.MSGS.FILE

//\ NEXT A CASTOP COMMAND IS EXECUTED

//TSOTMP EXEC PGM=IKJEFTð1,DYNAMNBR=3ð,REGION=4ð96K

//SYSEXEC DD DSN=hi_lev_qual.V1R5Mð.REXX,DISP=SHR
//SYSTSPRT DD SYSOUT=\

//SYSUDUMP DD SYSOUT=\

//SYSTSIN DD \

CASTATS YOUNG 1 1 9999

 CASTOP

/\

To see a list of the ATC operator commands common to CA, DA, and UTA, select
option 1 from the ATC Primary Option Menu panel and option 7 from the Coverage,
Distillation, and Unit Test Assistant panel. This displays the Control the

CA/DA/UTA Monitor panel, shown in Figure 81 on page 256, which contains a list of
commands you can select.

 Copyright IBM Corp. 1997, 1999 255

Each command on the Control the CA/DA/UTA Monitor panel is described in more
detail in the topics that follow in this chapter.

à ð
------------------------ Control the CA/DA/UTA Monitor -----------------------

 Option ===>

 1 Start Create JCL to Start the Monitor

 2 Stop Stop monitor execution normally (CASTOP)

 3 SessDisplay Display all active sessions (CASESSN)

 4 Listings Display listings (CALIST)

 5 Statistics Display statistics (CASTATS)

 6 BPDisplay Display Breakpoint status (CABPDSP)

 7 VADisplay Display Variable status (CAVADSP)

 8 AddId Specify a unique testcase id (CAIDADD)

 9 Snapshot Take snapshot of data (CADATA)

1ð Reset Reset all data in monitor (CARESET)

11 Quit Terminate monitor without saving breakpoint data (CAQUIT)

Enter END to Terminate

á ñ

Figure 81. Control the CA/DA/UTA Monitor Panel

 CABPDSP
The CABPDSP command, issued from the panel shown in Figure 82, displays the
status of breakpoints.

à ð
---------------------- Monitor: Display Breakpoint Status --------------------

 Command ===>

To display breakpoint status, complete the menu below and press ENTER:

Session id YOUNG

List number 1

PA number. 1

First breakpoint number . 1

Last breakpoint number . . 9999

á ñ

Figure 82. Monitor: Display Breakpoint Status Panel

Note: This command may produce a large amount of data, so use it with dis-
cretion.

256 Application Testing Collection 1.5.0 User's Guide

You can enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CABPDSP)' 'session_id list pa_num bp_start bp_end'

where:

session_id Session ID to be displayed.

list Listing number (the default is 1).

pa_num PA number (the default is 1) in this listing. The PA number is 1
origined for the specified listing.

bp_start BP number of the first breakpoint in the PA you want displayed (the
default is 1).

bp_end BP number of the last breakpoint in the PA you want displayed (the
default is 9999).

Example 1

To display all breakpoints in LIST 1, PA 1 of your session ID, enter this command:

 EX 'hi_lev_qual.V1R5Mð.REXX(CABPDSP)'

Example 2

To display all breakpoints for session YOUNG in LIST 1, PA 2 with a bp≥10 and
≤50, enter this command:

EX 'hi_lev_qual.V1R5Mð.REXX(CABPDSP)' 'YOUNG 1 2 1ð 5ð'

A status panel, such as that shown in Figure 83, is displayed.

à ð
 --

BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð1 ð8ð

Command ===> Scroll ===> CSR

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 Num Listing Date Time PAs BPs VAs

 ðð1 ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM) 98.121 ð9:35.59 ðððð5 ðððð44 ðððð7

 PA ADR BPS EVNTS ACTVE

 ðððð1 ðððððððð ððððð6 ðððððððððð ððððð6

 RNUM OFFSET OPCD BRNCH TO EVENTS 1ST KY VRIX LB NB AB DE CT CF BV B> AC

 9BC8 ððð2A4 D2ð78ð2ð ðððððððð ððððððððð ðððððð X X X

 A353 ððð2AA D2ð48ð2ð ðððððððð ððððððððð ðððððð ðððð X X X

 BDEF ððð2Bð D2ð28ð25 ðððððððð ððððððððð ðððððð ððð1 X X X

 2E7C ððð2B6 D2ð18ð2ð ðððððððð ððððððððð ðððððð X X X

 59AF ððð2BC D2ð28ð22 ðððððððð ððððððððð ðððððð ððð2 X X X

 199A ððð2C2 D2ð28ð25 ðððððððð ððððððððð ðððððð ððð3 X X X

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 83. Breakpoint Status Panel

The following fields are displayed for the selected listing and PA:

Num
Sequential listing number.

Listing
Listing data set name.

 Monitor Commands 257

Date
Date of compile

Time
Time of compile

PAs
Number of PAs in listing

BPs
Number of BPs in listing

VAs
Number of variable reads in listing

PA
Sequential PA number.

ADR
If the program has executed, this is the storage address of the PA.

BPS
Number of BPs in this PA.

EVNTS
Number of events (BP executions) for this PA.

ACTVE
Number of active BPs in the PA.

The following fields are displayed for each breakpoint:

RNUM
Random number for this long SVC BP (0 if short SVC BP).

OFFSET
The hexadecimal offset of the breakpoint in the PA.

OPCD (op code)
The op code of the instruction at the breakpoint.

BRNCH TO (branch to)
If this is a branch instruction that has branched, this is the target
address. If it starts with FF, the address is an offset within this PA.

EVENTS
The number of times this breakpoint was executed before it was
removed. For CA, breakpoints are removed as soon as possible, so
that most breakpoints are only executed once. In some cases, condi-
tional branch breakpoints must stay in memory and are executed more
than once.

1ST KY
For Distillation Assistant, the key number that caused the BP to execute
for the first time.

VRIX
The index into the VARCTL file for a UTA/DA read at this BP.

LB
For UTA/DA, this BP left in storage.

258 Application Testing Collection 1.5.0 User's Guide

NB (not a branch)
If not a branch instruction, this is an X.

AB (always branch)
If an unconditional branch instruction, this is an X.

DE (dummy entry)
If a dummy entry, this is an X. A dummy entry is the instruction after a
conditional branch instruction that is breakpointed to tell when the
branch falls through.

CT (condition true)
A conditional branch instruction has branched.

CF (condition false)
A conditional branch instruction has fallen through.

BV (conditional branch fall through)
A conditional branch that has always fallen through and never branched.

B> (conditional branch branched)
A conditional branch that has always branched and never fallen through.
The breakpoint is not active. When the dummy entry following this
instruction is executed, this breakpoint is updated as fallen through.

AC (active)
The breakpoint is active (invalid instruction still present).

 CADATA
The CADATA command, issued from the panel shown in Figure 84, writes the cov-
erage statistics (BRKOUT) to the file name specified on the panel.

à ð
------------------------ Monitor: Take Snapshot of Data ----------------------

 Command ===>

Override Default File and Session Info

Specify a test case id NO (Yes|No)

Override default session id NO (Yes|No)

á ñ

Figure 84. Monitor: Take Snapshot of Data—Panel 1

When you press Enter on this panel, the monitor displays the panel shown in
Figure 85, allowing you to enter additional parameters.

à ð
------------------------ Monitor: Take Snapshot of Data ----------------------

 Command ===>

Complete information to be overridden and press ENTER to write stats:

Specify a test case id NO (Yes|No)

Test case id.

Override default session id . . NO (Yes|No)

Session id.

á ñ

Figure 85. Monitor: Take Snapshot of Data—Panel 2

 Monitor Commands 259

Statistics are not reset. This command allows you to take a snapshot of the
current coverage activity and run a report (for example, for each test case).

You can enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CADATA)' 'test_id, session_id'

where:

test_id Assigned test ID.

session_id Session ID for the snapshot.

Example 1

To allow the test ID to default to a time stamp and the BRKOUT name to be built
using that same time stamp, enter this command:

 EX 'hi_lev_qual.V1R5Mð.REXX(CADATA)'

Example 2

To add the test ID to the BRKOUT data and write the BRKOUT file to
userid.TCASE1.BRKOUT, enter this command:

EX 'hi_lev_qual.V1R5Mð.REXX(CADATA)' 'TCASE1'

A status panel, such as that shown in Figure 86, is displayed.

à ð

BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð1 ð8ð

Command ===>_ Scroll ===> PAGE

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 The TEST ID has been set to ð5/14/9713:38:59

 The data has been written to 'YOUNG.M134.M49139.BRKOUT'

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 86. Snapshot Status Panel

All parameters are optional. If you invoke the command with no parameters, an
exec named prefix.sessionid.EXTEMP.EXEC, which is built during execution, runs.

The session ID defaults to the TSO user ID.

The test ID, if entered, is used to build the BRKOUT file name. If you do not
provide the test ID parameter, the default time stamp (date and time) is used. The
BRKOUT file name is created using the day of the year and the number of seconds
that have elapsed since the start of the day.

Note that the parameters are separated by commas; therefore, to code a null
parameter, enter a comma in the parameter's position.

260 Application Testing Collection 1.5.0 User's Guide

 CAIDADD
The CAIDADD command, issued from the panel shown in Figure 87, allows you to
add a unique test case ID.

à ð
------------------------------- Monitor: Add ID -------------------------------

 Option ===>_

To assign a test case ID, complete the menu below and press ENTER:

Test Case ID

Session ID YOUNG

á ñ

Figure 87. Monitor: Add ID Panel

The test case ID is printed in the summary report.

You can enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CAIDADD)' 'test_id, session_id'
EX 'hi_lev_qual.V1R5Mð.REXX(CAIDADD)' 'TCASE1'

where:

test_id Assigned test ID.

session_id Session ID to be added.

A status panel, such as that shown in Figure 88, is displayed.

à ð

BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð1 ð8ð

Command ===>_ Scroll ===> PAGE

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 The TEST ID has been set to ð5/14/9713:38:38

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 88. Add ID Status Panel

Test ID is an optional parameter and defaults to a time stamp comprised of the
date and time the command was invoked. Session ID is also optional and defaults
to the TSO user ID. The parameters are delimited with commas; therefore, if you
want to code the session ID and set the test ID to the default value, code a single
comma for test ID. The test case ID is printed in the summary report.

 Monitor Commands 261

 CALIST
The CALIST command, issued from the panel shown in Figure 89, allows you to
select listings for which you want to display statistics.

à ð
-------------------------- Monitor: Display Listings -------------------------

 Command ===>

To display the listings for a session, complete the menu below and press

 ENTER:

Session ID YOUNG

Starting List number . 1

Ending List number . . 9999

á ñ

Figure 89. Monitor: Display Listings

You can enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CALIST)' 'session_id start_list end_list'

where:

session_id The session for which to display statistics.

start_list The first listing number to be displayed (the default is 1).

end_list The last listing number to be displayed (the default is 9999).

The session ID is an optional parameter used to indicate which session table you
want to display. It defaults to the TSO user ID. If start_list and end_list are
passed, then session_id must also be passed, even if the default user ID is used.

Example 1:

To display statistics on all listings, enter this command:

 EX 'hi_lev_qual.V1R5Mð.REXX(CALIST)'

Example 2:

To display statistics for session YOUNG starting with listing 2, enter this command:

EX 'hi_lev_qual.V1R5Mð.REXX(CALIST)' 'YOUNG 2'

Example 3:

To display statistics for session YOUNG starting for listings 2 to 4, enter this
command:

EX 'hi_lev_qual.V1R5Mð.REXX(CALIST)' 'YOUNG 2 4'

A statistics panel, such as that shown in Figure 90 on page 263 is displayed.

262 Application Testing Collection 1.5.0 User's Guide

à ð
 --

BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð1 ð8ð

Command ===> Scroll ===> CSR

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 Num Listing Date Time PAs BPs VAs

 ðð1 ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM) 98.121 ð9:35.59 ðððð5 ðððð44 ðððð7

 ðð2 ATC.V1R5Mð.SAMPLE.COBOLST(COBð1CM) 98.121 ð9:36.ð6 ðððð2 ðððð22 ðððð2

 ðð3 ATC.V1R5Mð.SAMPLE.COBOLST(COBð1DM) 98.121 ð9:36.13 ðððð2 ðððð17 ððððð

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 90. Listings Statistics Panel

For each listing, the following fields are displayed:

Num Sequential listing number
Listing Listing data set name
Date Date of compile
Time Time of compile
PAs Number of PAs in listing
BPs Number of BPs in listing
VAs Number of variable reads in listing

 CAPRFOFF
The CAPRFOFF command turns the monitor Performance Mode off. This enables
conditional branch coverage. The BPs needed for conditional coverage are left in
storage. Note that overhead will be higher when these BPs are left in storage.

If you are not interested in conditional coverage, turn the Performance Mode on,
either by changing the default parameter that controls Performance Mode before
you generate the JCL for the Setup step, or by using the CAPRFON command.
Performance mode can be turned on and off for all PAs or for a selected PA.

You enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CAPRFOFF)' 'session_id, PA_number'

where:

session_id The session for which to turn Performance Mode off.

PA_number The PA number.

The session ID defaults to the TSO user ID. It identifies the session you want to
modify. The PA number defaults to ALL for the specific session. The parameters
are delimited with commas; therefore, if you want to code the PA number and set
the session ID to the default value, code a single command for session ID.

 Monitor Commands 263

Use the CASTATS command to get the PA number for selectively resetting break-
points.

Example 1:

To turn Performance Mode off for all PAs, enter this command:

 EX 'hi_lev_qual.V1R5Mð.REXX(CAPRFOFF)'

Example 2:

To turn Performance Mode off for session YOUNG, PA 2, enter this command:

EX 'hi_lev_qual.V1R5Mð.REXX(CAPRFOFF)' 'YOUNG, 2'

 CAPRFON
The CAPRFON command turns the monitor Performance Mode on. This disables
conditional branch coverage. The BPs needed for conditional coverage are not left
in storage. Note that overhead will be higher when these BPs are left in storage. If
you are not interested in conditional coverage, turn the Performance Mode on,
either by changing the default parameter that controls Performance Mode before
you generate the JCL for the Setup step or by using the CAPRFON command.
Performance Mode can be turned on and off for all PAs or for a selected PA.

You enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CAPRFON)' 'session_id, PA_number'

where:

session_id The session for which to turn Performance Mode on.

PA_number The PA number.

The session ID defaults to the TSO user ID. It identifies the session you want to
modify. The PA number defaults to ALL for the specific session. The parameters
are delimited with commas; therefore, if you want to code the PA number and set
the session ID to the default value, code a single command for session ID.

Use the CASTATS command to get the PA number for selectively resetting break-
points.

Note: If the BRKTAB for this session was built with the Performance Mode flag
set to N (off), then the Summary and Annotated listings will still include (possibly
incomplete) conditional breakpoint information after this command is issued.

Example 1:

To turn Performance Mode on for all PAs, enter this command:

 EX 'hi_lev_qual.V1R5Mð.REXX(CAPRFON)'

Example 2:

To turn Performance Mode on for session YOUNG, PA 2, enter this command:

EX 'hi_lev_qual.V1R5Mð.REXX(CAPRFON)' 'YOUNG, 2'

264 Application Testing Collection 1.5.0 User's Guide

 CAQUIT
The CAQUIT command, issued from the panel shown in Figure 91, is the same as
CASTOP, except that no output file is written (BRKOUT or VARTAB).

à ð
---------------------------- Monitor: Quit Monitor ----------------------------

 Option ===>_

Quit Monitor Without Saving Breakpoint Data:

Override default session id NO (Yes|No)

á ñ

Figure 91. Monitor: Quit Monitor—Panel 1

When you press Enter from this panel, the monitor displays the panel shown in
Figure 92, allowing you to enter additional parameters.

à ð
---------------------------- Monitor: Quit Monitor ----------------------------

 Option ===>_

Press ENTER to Quit Monitor Without Saving Breakpoint Data:

Override default session id NO (Yes|No)

Session Id

á ñ

Figure 92. Monitor: Quit Monitor—Panel 2

You can enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CAQUIT)' 'session_id'

where:

session_id Session ID to cancel.

When the quit command completes, a panel such as the one shown in Figure 93 is
displayed.

à ð

BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð1 ð8ð

Command ===>_ Scroll ===> PAGE

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 Session YOUNG ended no data written.

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 93. Quit Monitor Status Panel

Session ID is an optional parameter used to indicate which session to cancel. If
not specified, the session ID defaults to the TSO user ID.

 Monitor Commands 265

 CARESET
The CARESET command, issued from the panel shown in Figure 94, resets all sta-
tistics in the current monitor session to zero.

à ð
---------------------- Monitor: Reset All Data in Monitor ---------------------

 Option ===>_

To reset data to zero, complete the menu below and press ENTER:

Session ID YOUNG

PA Number. ALL

á ñ

Figure 94. Monitor: Reset All Data in Monitor Panel

The monitor resumes updating statistics immediately.

You can enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CARESET)' 'session_id, PA_number'

where:

session_id The session ID for which to reset statistics.

PA_number The PA number.

The session ID defaults to the TSO user ID. It identifies the session you want to
reset. The PA number defaults to ALL for the specific session. The parameters
are delimited with commas; therefore, if you want to code the PA number and set
the session ID to the default value, code a single comma for session ID.

Use the CASTATS command to get the PA number for selectively resetting break-
points.

266 Application Testing Collection 1.5.0 User's Guide

 CASESSN
The CASESSN command displays a list of the current active sessions. Figure 95
shows a typical display in response to selecting option 3 (Display all active

sessions) on the Control the CA/DA/UTA Monitor panel.

à ð
 BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð1 ð8ð

 Command ===> Scroll ===> PAGE

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Session name = YOUNG in use.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 95. Active Session Display Panel

Use this command to identify session names or currently active users who need to
stop or cancel their sessions before the monitor is terminated.

You can enter this command on the command line as follows:

 EX 'hi_lev_qual.V1R5Mð.REXX(CASESSN)'

To display the current release of the ATC monitor, use the level parameter. For
example:

 EX 'hi_lev_qual.V1R5Mð.REXX(CASESSN)' 'level'

The CASESSN command with this parameter displays the release level and table
address data used by ATC support. For example:

 --

BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð1 ð8ð

Command ===> Scroll ===> CSR

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 Monitor Release: V1R5Mð Date: 1998.346

 MAST: ððF9B6ð8 PSA: ððF87ððð CPU: ððF87ððð SEST: ððF9B2Fð UNID: ðððððððð

 SESSION ID: YOUNG PA: ð1A4B99ð BP: ð1A36F1ð VA: ð19F7CAð

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Figure 96. Release Level and Table Address Data

 Monitor Commands 267

 CASTATS
The CASTATS command, issued from the panel shown in Figure 97, allows you to
select a session ID and PAs for which to display statistics.

à ð
------------------------- Monitor: Display Statistics ------------------------

 Command ===>

To display PA statistics, complete the menu below and press ENTER:

Session ID YOUNG

List number 1

Starting PA number . . 1

Ending PA number . . . 9999

á ñ

Figure 97. Monitor: Display Statistics Panel

You can enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CASTATS)' 'session_id start_PA end_PA'

where:

session_id The session ID for which to display statistics.

list The listing number to display (the default is 1).

start_PA The first PA number to be displayed (the default is 1) in this listing.
The start_PA number is 1 origined for the specified listing.

end_PA The last PA number to be displayed (the default is 9999). The
end_PA number is 1 origined for the specified listing.

The session ID is an optional parameter used to indicate which session result table
you want to display. It defaults to the TSO user ID. If start_PA and end_PA are
passed, then session_id must also be passed, even if the default user ID is used.

Example 1:

To display statistics on all PAs, enter this command:

 EX 'hi_lev_qual.V1R5Mð.REXX(CASTATS)'

Example 2:

To display statistics for session YOUNG for LIST 1 starting with PA 1, enter this
command:

EX 'hi_lev_qual.V1R5Mð.REXX(CASTATS) 'YOUNG 1 1'

Example 3:

To display statistics for LIST 1 on PAs 2 through 4 of session YOUNG, enter this
command:

EX 'hi_lev_qual.V1R5Mð.REXX(CASTATS) 'YOUNG 1 2 4'

A statistics panel, such as that shown in Figure 98 on page 269, is displayed.

268 Application Testing Collection 1.5.0 User's Guide

à ð
 --

BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð1 ð8ð

Command ===> Scroll ===> CSR

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 Num Listing Date Time PAs BPs VAs

 ðð1 ATC.V1R5Mð.SAMPLE.COBOLST(COBð1AM) 98.121 ð9:35.59 ðððð5 ðððð44 ðððð7

 PA ADR BPS EVNTS ACTVE

 ðððð1 ðððððððð ððððð6 ðððððððððð ððððð6

 ðððð2 ðððððððð ðððð18 ðððððððððð ðððð18

 ðððð3 ðððððððð ððððð1 ðððððððððð ððððð1

 ðððð4 ðððððððð ðððð17 ðððððððððð ðððð17

 ðððð5 ðððððððð ððððð2 ðððððððððð ððððð2

 TOTAL ðððððððð ðððð44 ðððððððððð ðððð44

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 98. PA Statistics Panel

For each PA, the following fields are displayed:

Num
Sequential listing number.

Listing
Listing data set name.

Date
Date of compile.

Time
Time of compile.

PAs
Number of PAs in listing.

BPs
Number of BPs in listing.

VAs
Number of variable reads in listing.

PA
Sequential PA number of PAs in listing.

ADR
When PA has executed, the storage address of the PA.

BPS
Number of BPs in PA.

EVNTS (events)
Number of BPs that have executed in the PA.

ACTVE (active)
Number of BPs still in storage in the PA.

 Monitor Commands 269

 CASTOP
The CASTOP command, issued from the panel shown in Figure 99, writes current
statistics to disk, removes all remaining breakpoints for all PAs and terminates the
monitor session.

à ð
---------------------------- Monitor: Stop Monitor ---------------------------

 Command ===>

Stop Monitor Normally:

Override default session id NO (Yes|No)

Override breakout dsn NO (Yes|No)

á ñ

Figure 99. Monitor: Stop Monitor—Panel 1

When you press Enter for this panel, the monitor displays the panel shown in
Figure 100, allowing you to enter additional parameters.

à ð
---------------------------- Monitor: Stop Monitor ---------------------------

 Command ===>

Press ENTER to Stop Monitor Normally:

Override default session id NO (Yes|No)

Session id

Override breakout dsn NO (Yes|No)

Breakout Dsn

á ñ

Figure 100. Monitor: Stop Monitor—Panel 2

The statistics (BRKOUT file) are written to the BRKOUT data set name as supplied
in the JCL that started the monitor session. You can supply a different file name
with the CASTOP command. The variable data for UTA and DA is written to the
VARTAB file as supplied in the JCL that started the monitor session.

You can enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CASTOP)' 'session_id brkout'

where:

session_id The session ID to stop.

brkout Name of the breakout table data set.

Warning: CASTOP does not currently support the BRKOUT parameters if the
monitor session has DA or UTA enabled.

270 Application Testing Collection 1.5.0 User's Guide

Example 1

To write data to the default files and set the BRKOUT session ID to the default
value of the TSO user ID, enter this command:

 EX 'hi_lev_qual.V1R5Mð.REXX(CASTOP)'

Example 2

To write data from MySessId to proj_qual.TEST1.BRKOUT, enter this command:

EX 'hi_lev_qual.V1R5Mð.REXX(CASTOP)' 'MySessID TEST1.BRKOUT'

When the stop command completes, a status panel, such as that shown in
Figure 101, is displayed.

à ð

BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð1 ð8ð

Command ===>_ Scroll ===> CSR

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Monitor session YOUNG stopped - session data written to disk

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 101. Stop Completed Panel

All parameters are optional. If you invoke the command with no parameters, an
exec named prefix.userid.EXTEMP.EXEC, which is built during execution, runs. It
allocates the BRKOUT and VARTAB files based on the data set names used when
the monitor JCL was created.

If you supply a session ID parameter, but not a BRKOUT file parameter, an exec
name prefix.sessionid.EXTEMP.EXEC, which is built during execution, runs. It allo-
cates the BRKOUT and VARTAB files based on the data set names used when the
monitor JCL was created.

If you supply a session ID and a BRKOUT file, the statistics are written to the
BRKOUT file you specified.

 Monitor Commands 271

 CAVADSP
The CAVADSP command, issued from the panel shown in Figure 102, allows you
to display various information on variables being monitored.

à ð
----------------------- Monitor: Display Variable Status ---------------------

 Command ===>

To display the variable status for a session, complete the menu below and

 press ENTER:

Session ID YOUNG

á ñ

Figure 102. Monitor: Display Variable Status Panel

You can enter this command on the command line as follows:

EX 'hi_lev_qual.V1R5Mð.REXX(CAVADSP)' 'session_id'

where:

session_id The session for which to display statistics.

The session ID is an optional parameter used to indicate which
session information you want to display. It defaults to the TSO
user ID.

Example 1:

To display variable information, enter this command:

 EX 'hi_lev_qual.V1R5Mð.REXX(CAVADSP)'

Example 2:

To display variable information for session YOUNG, enter this command:

EX 'hi_lev_qual.V1R5Mð.REXX(CAVADSP)' 'YOUNG'

An information panel, such as that shown in Figure 103, is displayed.

à ð
 --

BROWSE YOUNG.MSGS.FILE Line ðððððððð Col ðð1 ð8ð

Command ===> Scroll ===> CSR

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 DBGI LNTH TIMES MAX BLOC BOFF EX TOT EX CNT FI PL

 ðððð ððð2 ððððð1 999999 ð128ððð9 ðð2ð ðððððð ðððððð N N

 ðððð ððð2 ððððð1 999999 ð128ððð9 ðð2ð ðððððð ðððððð N N

 ðððð ððð2 ððððð1 999999 ð128ððð9 ðð2ð ðððððð ðððððð N N

 ðððð ððð3 ððððð1 999999 ð128ððð9 ðð22 ðððððð ðððððð N N

 ðððð ððð2 ððððð1 999999 ð128ððð9 ðððð ðððððð ðððððð N N

 ðððð ððð2 ððððð1 999999 ð128ððð9 ðððð ðððððð ðððððð N N

 ðððð ððð2 ððððð1 ððððð1 ð128ððð9 ðð3ð ðððððð ðððððð N N

 ððð1 ððð2 ððððð1 ððððð1 ð128ððð9 ðððð ðððððð ðððððð N N

 ððð1 ððð2 ððððð1 ððððð1 ð128ððð9 ðððð ðððððð ðððððð N N

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of Data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 103. Variable Information Panel

272 Application Testing Collection 1.5.0 User's Guide

For each variable, the following fields are displayed:

DBGI Index of DBGTAB section this variable read came from
LNGTH Length of variable
TIMES Times to read variable (1 means to read every time)
MAX Maximum times to read variable
BLOC Base offset and register that points to working storage
BOFF Offset of variable in working storage
EX TOT Total times variable read
EX CNT Number of times BP executed since last variable read
FI File read
PL DA read for PL/I program

 Monitor Commands 273

274 Application Testing Collection 1.5.0 User's Guide

Diagnosing Monitor Problems

This chapter describes how to solve the following problems:

� 047 abend when trying to start a monitor session
� 0C1 abend on user program during test case run
� Fnn system interruption code during test case run
� Insufficient SQA space
� Poor performance when measuring conditional branch coverage

 047 Abend
If this abend occurs when submitting the monitor JCL or when using the com-
mands, the command handler program was not in an authorized data set. See
“Setting up the Authorized Data Sets” on page 16 to identify the ATC program that
must meet this requirement. If you are not sure which data sets are authorized or
how to copy programs into them, contact your MVS system support personnel.

Operation Exception (0C1) on User Program
If an instrumented user program is executed and a session has not been started to
handle it, or the session is started with a BRKTAB file that does not match the
executable program, the user program abends when the monitor cannot identify the
user SVC installed as the breakpoint. When this occurs, the program terminates
with an 0C1 operation exception (001 program-interruption code). The monitor
forces the user program to terminate by replacing the unidentified user SVC with
the invalid instruction C8, which causes the operation exception. The monitor may
not recognize the user SVC as a breakpoint if:

� The listing used during Setup does not match the code in the module under
test.

� The program has changed, but the Setup step has not been re-executed.

� You have not relinked your program with the modified object modules after
running the Setup step.

� A monitor session that matches the code in the module under test is not
running.

� You have not stopped and restarted the monitor session after the Setup step
has completed.

System Interruption Code of Fnn on User Program
If the monitor is not installed and an instrumented program is executed, the user
program terminates with a system interruption code of Fnn, where nn is the SVC
number used as the breakpoint.

 Copyright IBM Corp. 1997, 1999 275

Lack of SQA Space
The monitor is loaded in ECSA and SQA storage and allocates ESQA storage for
the tables. For storage requirements, see “Monitor ECSA, SQA, and ESQA Usage”
on page 386. If you encounter ESQA storage limitations, contact your systems
programmer to see if ESQA storage can be increased.

Because of ESQA storage fragmentation, there may be sufficient free storage avail-
able, but not in a segment of sufficient size to load the tables. When a request for
ESQA storage is made to the operating system, it fails if there is no free segment
large enough to honor the request.

Poor Performance When Measuring Conditional Branch Coverage
Because of the change in breakpoint instrumentation (using user SVCs), measuring
when a conditional branch branches takes more overhead (the breakpoint at the
conditional branch must be left in storage). If the increased overhead is unaccept-
able for your testing, you can turn off conditional branch coverage. For instructions
on turning off conditional branch coverage, see “Using the Performance Mode to
Reduce Monitor Overhead” on page 253.

276 Application Testing Collection 1.5.0 User's Guide

Using Source Audit Assistant

 Copyright IBM Corp. 1997, 1999 277

278 Application Testing Collection 1.5.0 User's Guide

 Introduction

This chapter contains the following topics:

� What Is Source Audit Assistant?
� What Does SAA Require?
� How Does SAA Work?

What Is Source Audit Assistant?
The Source Audit Assistant (SAA) is an application that compares two levels of
source code, usually before and after modification. The results are placed in a
comparison report, which allows you to see differences and helps you to identify
items that need closer examination. SAA also supports compiler listing compar-
isons. Listings are converted to source code prior to comparison.

What Does SAA Require?
SAA requires the Interactive System Productivity Facility (ISPF).

Currently, SAA supports MVS and the following programming languages:

 � Assembler
 � C
 � C++
 � COBOL
 � PL/I

Notes:

1. SAA does not support redefined character operators for PL/I (that is, use of the
NOT or OR compiler options is not supported). The supported NOT symbol is
X'5F'; the supported OR symbol is X'4F'.

2. SAA does not support templates in C++ programs.
3. If C/C++ keywords (such as, if, do, and so on) or block begin/end symbols

(such as, { }) are redefined in the source, they will not be processed correctly.

SAA also supports the following types of listings:

� IBM Assembler H Version 2
� IBM High Level Assembler Version 1 Releases 1, 2, and 3
� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions

[MLE])
� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions [MLE])
� IBM OS PL/I Optimizing Compiler 2.3.0
� IBM PL/I Optimizing Compiler 1.5.1

You specify these listing types by entering LPL/I, LCOB, or LASM in the language
field on the Execute Source Audit Assistant panel. When you generate this
listing, specify the appropriate language processor option to produce a listing of the

 Copyright IBM Corp. 1997, 1999 279

source code. For the DCB requirements of each listing type, see “Compiler
Options” on page 231 in “CA, DA, and UTA Setup.”

Note: Any preprocessor source will be ignored in a PL/I listing.

How Does SAA Work?
When comparing source code, SAA lets you select filters, which gives you control
over the types of information placed in the comparison report. For instance, you
can tell SAA to disregard changes to comments or declaration statements. You
can also specify a range of columns that are to be compared.

If you are comparing listing files, SAA converts the listings to source code prior to
performing the comparison.

| After generating a comparison report, you can run the SAA postprocessor. The
| postprocessor generates a prototype CA targeted summary control file and a
| change validation report. The change validation report is based on matching the

comparison report against a list of variables, the seed list, which are expected to be
involved in the changes. The change validation report identifies:

� All specified variables that did not appear in any new line in the SAA compar-
ison report

� All lines in the comparison report that did not contain at least one of the speci-
fied variables.

280 Application Testing Collection 1.5.0 User's Guide

Source Audit Assistant Samples

This chapter describes the samples delivered with SAA and how to verify your
installation.

The samples are divided into two groups. The first, or standard group , demon-
strates running SAA against two partitioned data sets using each of the filtering
options. The second, or target group , demonstrates running SAA against a
member of two partitioned data sets and then running a change validation report
against that output.

Sample Data Sets
The following table lists all SAA sample data sets for the standard group .

Data Set Name Description

'ATC.V1R5M0.SAMPLE.SAA.NEW.COPY' Modified PDS of COBOL copy members.

'ATC.V1R5M0.SAMPLE.SAA.OLD.COPY' Original PDS of COBOL copy members.

'ATC.V1R5M0.SAMPLE.SAA.COPY.B.NNN.CMP' Comparison results using No|No|No for the Comments,
Declares, and Reformatted filtering options, respec-
tively (background execution).

'ATC.V1R5M0.SAMPLE.SAA.COPY.B.NNY.CMP' Comparison results using No|No|Yes for the Com-
ments, Declares, and Reformatted filtering options,
respectively (background execution).

'ATC.V1R5M0.SAMPLE.SAA.COPY.B.NYY.CMP' Comparison results using No|Yes|Yes for the Com-
ments, Declares, and Reformatted filtering options,
respectively (background execution).

'ATC.V1R5M0.SAMPLE.SAA.COPY.B.YYY.CMP' Comparison results using Yes|Yes|Yes for the Com-
ments, Declares, and Reformatted filtering options,
respectively (background execution).

'ATC.V1R5M0.SAMPLE.SAA.COPY.NNN.CMP' Comparison results using No|No|No for the Comments,
Declares, and Reformatted filtering options, respec-
tively (foreground execution).

'ATC.V1R5M0.SAMPLE.SAA.COPY.NNY.CMP' Comparison results using No|No|Yes for the Com-
ments, Declares, and Reformatted filtering options,
respectively (foreground execution).

'ATC.V1R5M0.SAMPLE.SAA.COPY.NYY.CMP' Comparison results using No|Yes|Yes for the Com-
ments, Declares, and Reformatted filtering options,
respectively (foreground execution).

'ATC.V1R5M0.SAMPLE.SAA.COPY.YYY.CMP' Comparison results using Yes|Yes|Yes for the Com-
ments, Declares, and Reformatted filtering options,
respectively (foreground execution).

'ATC.V1R5M0.SAMPLE.SAA.NEW.COBLST' PDS containing a COBOL listing of a modified
program.

'ATC.V1R5M0.SAMPLE.SAA.OLD.COBLST' PDS containing a COBOL listing of an original
program.

'ATC.V1R5M0.SAMPLE.SAA.COBLST.CMP' Comparison results between the two COBOL listing
data sets (foreground execution).

 Copyright IBM Corp. 1997, 1999 281

The following table lists all SAA sample data sets for the target group .

Data Set Name Description

'ATC.V1R5M0.SAMPLE.SAA.NEW.COBOL(COBOLM)' Modified PDS COBOL member for demonstrating SAA
change validation reports.

'ATC.V1R5M0.SAMPLE.SAA.OLD.COBOL(COBOLM)' Original PDS COBOL member for demonstrating SAA
change validation reports.

'ATC.V1R5M0.SAMPLE.SAA.COBOLM.CMP' Comparison results using No|No|No as filtering options
(foreground execution).

'ATC.V1R5M0.SAMPLE.SAA.SEEDLIST(COBOLM)' Input seed list for SAA change validation reports.

'ATC.V1R5M0.SAMPLE.SAA.COBOLM.REP' Change validation report using
'ATC.V1R5M0.SAMPLE.SAA.SEEDLIST(COBOLM)'
and 'ATC.V1R5M0.SAMPLE.SAA.COBOLM.CMP'.

'ATC.V1R5M0.SAMPLE.SAA.COBOLM.TARGCTL'| A skeleton CA targeted summary control file (listing
DSName must be modified).

Execution and Verification
The information in this topic explains how to verify the SAA installation by running
the sample programs and comparing your output with the output that is shipped
with the package.

As a member of the ATC collection of tools, you start SAA from the ATC main
menu. To invoke ATC, issue the following command from ISPF option 6:

EXEC 'hi_lev_qual.V1R5Mð.REXX(ATSTART)'

The ATC Primary Option Menu, shown in Figure 104, is displayed.

à ð
 ------------------------ ATC Primary Option Menu V1R5Mð -----------------------

 Option ===>_

 ð Defaults Manipulate ATC defaults

 1 CA/DA/UTA Coverage, Distillation and Unit Test Assistant

 2 SAA Source Audit Assistant

 3 SINFO SInfo Assistant

 Enter X to Terminate

á ñ

Figure 104. ATC Primary Option Menu

Select option 2 to start SAA. The Execute Source Audit Assistant panel, shown
in Figure 105 on page 283, is displayed.

282 Application Testing Collection 1.5.0 User's Guide

à ð
 ------------------------ Execute Source Audit Assistant ----------------------

 Option ===>

 1 Background Execute as Batch Job(s) via generated JCL

 2 Foreground Execute in the Foreground under ISPF

 3 Compare View Compare Dsn

 4 Log View Log Dsn

 5 Postprocessor Validate Changes & Create Prototype Target Control Dsn

 Enter END to Terminate

á ñ

Figure 105. Execute Source Audit Assistant Panel

Standard Group - Background Execution
To run the standard group of samples in the background, complete the following
steps to generate a comparison report:

1. Select option 1 on the Execute Source Audit Assistant panel. The panel
shown in Figure 106 is displayed.

à ð
 --------------------- SAA Background Execution Parameters ---------------------

 Option ===>

| New Source Dsn: . . . 'ATC.V1R5Mð.SAMPLE.SAA.NEW.COPY(\)'

| Old Source Dsn: . . . 'ATC.V1R5Mð.SAMPLE.SAA.OLD.COPY(\)'

 Output Compare Dsn: . 'yourid.SAMPLE.SAA.COPY.B.xxx.CMP'

 Output Log Dsn: . . . 'yourid.SAMPLE.SAA.COPY.B.xxx.LOG'

 Programming Language: COBOL (ASM,C,C++,COBOL,PL/I,LASM,LCOB,or LPL/I)

 Select Line Audit Filters (Y = apply filter, N = do not apply filter):

Comments Y (Y or N) Declares Y (Y or N) Reformatted Y (Y or N)

 Select Comparison Columns: Select Execution Option:

Start Col 1 (1-176) End Col 72 (1-176) Edit JCL Y (Y or N)

 DBCS support:

Enable N (Y or N)

 Press END to Terminate

á ñ

Figure 106. SAA Background Execution Parameters Panel

2. Complete the SAA Background Execution Parameters panel as follows, and
then press Enter:

� Replace ATC with the high-level qualifier under which ATC was installed.

� Replace yourid with your TSO user ID, your TSO prefix, or a high-level
qualifier other than the one with which you replaced ATC.

 SAA Samples 283

� Replace xxx with the first letter of each value you enter for the filter options
if you want to verify each sample data set shipped with SAA.

For example, if you enter Yes for each filter, you would replace xxx with
YYY. If you enter Yes for the Comments filter, No for the Declares filter,
and Yes for the Reformatted filter, you would replace xxx with YNY.

� Change the value for any of the filter options that you choose. Any combi-
nation of Yes or No values is acceptable. SAA supplies samples for four of
the possible combinations.

� Change the range of columns to be compared. For the samples, change
the Start Col value to 1, and change the End Col value to 72.

� Change the value of the Edit JCL field. If you enter:

– Y (Yes), SAA generates the JCL stream in a temporary file and displays
an ISPF edit session for that file. From the edit session, you can:

- SUBMIT the JCL to run the background compare. The message
IKJ5625ðI JOB XXXXXXX1(JOBXXXXX) SUBMITTED is displayed upon
successful submission of the job.

- Close the session without submitting the job by pressing the END
key (PF3) or typing CANCEL on the command line and pressing
Enter.

– N (No), SAA generates the JCL and submits the job to run.

� Change the value of the DBCS support Enable field. When running the
samples, set the value to N.

Figure 106 on page 283 shows an example of the panel.

The background execution places the comparison report and log file into the
data sets specified on the SAA Background Execution Parameters panel.

Use an output viewing utility such as SDSF to see the completion codes of the
batch job.

Note: If syntax problems occur during the analysis, they are written to the
analysis log, which you can view by selecting option 4 from the Execute Source

Audit Assistant panel.

3. After the SAA background job has executed, press the End key (PF3) to return
to the Execute Source Audit Assistant panel.

Note: If you want to view the comparison report, select option 3 on the
Execute Source Audit Assistant panel.

4. Verify the SAA installation by comparing the comparison report with the
SAA-supplied data set that was created using the same filter option values that
you used (that is, ATC.V1R5M0.SAMPLE.SAA.COPY.B.xxx.CMP).

5. After you finish viewing the comparison report, press the End key (PF3) to
return to the Execute Source Audit Assistant panel.

284 Application Testing Collection 1.5.0 User's Guide

Standard Group - Foreground Execution
To run the standard group of samples in the foreground, complete the following
steps to generate a comparison report:

1. Select option 2 on the Execute Source Audit Assistant panel. The panel
shown in Figure 107 is displayed.

à ð
 --------------------- SAA Foreground Execution Parameters ---------------------

 Option ===>

 New Source Dsn: . . . 'ATC.V1R5Mð.SAMPLE.SAA.NEW.COPY(\)'

 Old Source Dsn: . . . 'ATC.V1R5Mð.SAMPLE.SAA.OLD.COPY(\)'

 Output Compare Dsn: . 'yourid.SAMPLE.SAA.COPY.xxx.CMP'

 Output Log Dsn: . . . 'yourid.SAMPLE.SAA.COPY.xxx.LOG'

 Programming Language: COBOL (ASM,C,C++,COBOL,PL/I,LASM,LCOB,or LPL/I)

 Select Line Audit Filters (Y = apply filter, N = do not apply filter):

Comments Y (Y or N) Declares Y (Y or N) Reformatted Y (Y or N)

 Select Comparison Columns:

 Start Col 1 (1-176) End Col 72 (1-176)

 DBCS support:

Enable N (Y or N)

 Press END to terminate

á ñ

Figure 107. SAA Foreground Execution Parameters Panel

2. Complete the SAA Foreground Execution Parameters panel as follows, and
then press Enter:

� Replace ATC with the high-level qualifier under which ATC was installed.

� Replace yourid with your TSO user ID, your TSO prefix, or a high-level
qualifier other than the one with which you replaced ATC.

� Replace xxx with the first letter of each value you enter for the filter options
if you want to verify each sample data set shipped with SAA.

For example, if you enter Yes for each filter, you would replace xxx with
YYY. If you enter Yes for the Comments filter, No for the Declares filter,
and Yes for the Reformatted filter, you would replace xxx with YNY.

� Change the value for any of the filter options that you choose. Any combi-
nation of Yes or No values is acceptable. SAA supplies samples for four of
the possible combinations.

� Change the range of columns to be compared. For the samples, change
the Start Col value to 1, and change the End Col value to 72.

� Change the value of the DBCS support Enable field. When running the
samples, set the value to N.

Figure 107 shows an example of the panel.

 SAA Samples 285

As SAA is executing, status messages are displayed for each data set or
member that is processed. Figure 108 on page 286 shows an example of
what you would see if you entered Yes for each filter option.

Note: Status messages are not displayed for options set to No.

SAARðð8I Comparing Partitioned Datasets

SAARðð6I Comparing member DADIV

SAACðð3I New and old files are being compared

SAACðð4I Comparison results are being filtered

SAACðð5I Reformatted lines are being removed

SAACðð6I New and old files are being analyzed

SAACðð7I Comment lines are being filtered

SAACðð8I Declare lines are being filtered

SAACðð9I Output being formatted

SAACð1ðR SAA Comparison done RC = ð

SAARðð6I Comparing member IDDIV

SAACðð3I New and old files are being compared

SAACðð4I Comparison results are being filtered

SAACðð5I Reformatted lines are being removed

SAACðð6I New and old files are being analyzed

SAACðð7I Comment lines are being filtered

SAACðð8I Declare lines are being filtered

SAACðð9I Output being formatted

SAACð1ðR SAA Comparison done RC = ð

SAARðð6I Comparing member MOVES

SAACðð3I New and old files are being compared

SAACðð4I Comparison results are being filtered

SAACðð5I Reformatted lines are being removed

SAACðð6I New and old files are being analyzed

SAACðð7I Comment lines are being filtered

SAACðð8I Declare lines are being filtered

SAACðð9I Output being formatted

SAACð1ðR SAA Comparison done RC = ð

Figure 108. Status Messages When All Filter Options Are Yes

The foreground execution places the comparison report and log file into the
data sets specified on the SAA Foreground Execution Parameters panel.

Note: If syntax problems occur during the analysis, they are written to the
analysis log, which you can view by selecting option 4 from the Execute Source

Audit Assistant panel.

3. After the SAA foreground job has executed, press the End key (PF3) to return
to the Execute Source Audit Assistant panel.

Note: If you want to view the comparison report, select option 3 on the
Execute Source Audit Assistant panel. If you want to view the analysis log,
select option 4.

4. Verify the SAA installation by comparing the comparison report with the
SAA-supplied data set (that is, ATC.V1R5M0.SAMPLE.SAA.COPY.xxx.CMP)
that was created using the same filter option values that you used.

5. After you finish viewing the comparison report, press the End key (PF3) to
return to the Execute Source Audit Assistant panel.

286 Application Testing Collection 1.5.0 User's Guide

 Target Group
To run the target group of samples, complete the following steps to generate an
SAA comparison report, and then run the SAA postprocessor step:

1. Select option 2 on the Execute Source Audit Assistant panel. The SAA
Foreground Execution Parameters panel is displayed.

2. Complete the panel displayed as follows and press Enter when you are
finished:

� Replace ATC with the high-level qualifier under which ATC was installed.

� Replace yourid with your TSO user ID, your TSO prefix, or a high-level
qualifier other than the one with which you replaced ATC.

� Leave each filter option value as No for this sample.

� Leave the DBCS support Enable field set to N for this sample.

Figure 109 shows an example of the SAA Foreground Execution Parameters

panel.

à ð
 --------------------- SAA Foreground Execution Parameters ---------------------

 Option ===>

 New Source Dsn: . . . 'ATC.V1R5Mð.SAMPLE.SAA.NEW.COBOL(COBOLM)'

 Old Source Dsn: . . . 'ATC.V1R5Mð.SAMPLE.SAA.OLD.COBOL(COBOLM)'

 Output Compare Dsn: . 'yourid.SAMPLE.SAA.COBOLM.CMP'

 Output Log Dsn: . . . 'yourid.SAMPLE.SAA.COBOLM.LOG'

 Programming Language: COBOL (ASM,C,C++,COBOL,PL/I,LASM,LCOB,or LPL/I)

 Select Line Audit Filters (Y = apply filter, N = do not apply filter):

Comments N (Y or N) Declares N (Y or N) Reformatted N (Y or N)

 Select Comparison Columns:

 Start Col 1 (1-176) End Col 72 (1-176)

 DBCS support:

Enable N (Y or N)

 Press END to terminate

á ñ

Figure 109. SAA Foreground Execution Parameters Panel for Target Group Samples

As SAA is executing, the following status messages are displayed:

SAACðð3I New and old files are being compared

SAACðð4I Comparison results are being filtered

SAACðð9I Output being formatted

SAACð1ðR SAA Comparison done RC = ð

Figure 110. Status Messages When All Filter Options Are No

3. Verify the SAA installation by comparing the comparison report with the SAA
supplied data set (that is, ATC.V1R5M0.SAMPLE.SAA.COBOLM.CMP).

4. Press the End key (PF3) to return to the Execute Source Audit Assistant

panel.

 SAA Samples 287

5. To run the SAA postprocessor step, select option 5 from the Execute Source

Audit Assistant panel.

6. Complete the SAA Postprocessor panel as follows, and then press Enter:

� Replace ATC with the high-level qualifier under which ATC was installed.

� Replace yourid with your TSO user ID, your TSO prefix, or a high-level
qualifier other than the one with which you replaced ATC.

� Leave the DBCS support Enable field set to N for this sample.

Figure 111 shows an example of the panel.

à ð
 ------------------------------ SAA Postprocessor ------------------------------

 Command ===>

 Input Data Sets:

 SAA Compare Dsn . . . 'yourid.SAMPLE.SAA.COBOLM.CMP'

 Seed List Dsn 'ATC.V1R5Mð.SAMPLE.SAA.SEEDLIST(COBOLM)'

 Output Data Sets:

 Target Control Dsn . . 'yourid.SAMPLE.SAA.COBOLM.TARGCTL'

 Chg Validation Rpt Dsn 'yourid.SAMPLE.SAA.COBOLM.REP'

 DBCS support:

Enable N (Y or N)

á ñ

Figure 111. SAA Postprocessor Panel

After the SAA change validation report is generated, a session in which you
can view the report is displayed.

7. When you are finished viewing the report, press the End key (PF3) to return to
the Execute Source Audit Assistant panel.

288 Application Testing Collection 1.5.0 User's Guide

Starting Source Audit Assistant

You start SAA by selecting option 2 from the ATC Primary Option Menu. From the
Execute Source Audit Assistant panel, shown in Figure 112, you can select
option 1 to execute SAA in the background (batch), option 2 to execute SAA in the
foreground (TSO), option 3 to view the comparison report(s), or option 4 to view the
log file generated from the last execution of SAA. (The log file is a collection of
system messages from the most recent execution of SAA. These messages

| pertain to the execution of the tool rather than the content of the comparison.) You
| can also select option 5 to create a change validation report and a prototype CA
| targeted summary control file based on the changes reported.

à ð
 ------------------------ Execute Source Audit Assistant ----------------------

 Option ===>

 1 Background Execute as Batch Job(s) via generated JCL

 2 Foreground Execute in the Foreground under ISPF

 3 Compare View Compare Dsn

 4 Log View Log Dsn

 5 Postprocessor Validate Changes & Create Prototype Target Control Dsn

 Enter END to Terminate

á ñ

Figure 112. Execute Source Audit Assistant Panel

Executing SAA in the Background
When you select option 1 on the Execute Source Audit Assistant panel, the SAA
Background Execution Parameters panel, shown in Figure 113, is displayed.

 Copyright IBM Corp. 1997, 1999 289

à ð
 --------------------- SAA Background Execution Parameters ---------------------

 Option ===>

 New Source Dsn: . . . 'project.newgroup.cobol(\)'

 Old Source Dsn: . . . 'project.oldgroup.cobol(\)'

 Output Compare Dsn: . 'yourid.SAA.YYY.CMP'

 Output Log Dsn: . . . 'yourid.SAA.YYY.LOG'

 Programming Language: COBOL (ASM,C,C++,COBOL,PL/I,LASM,LCOB,or LPL/I)

 Select Line Audit Filters (Y = apply filter, N = do not apply filter):

Comments Y (Y or N) Declares Y (Y or N) Reformatted Y (Y or N)

 Select Comparison Columns: Select Execution Option:

Start Col 1 (1-176) End Col 72 (1-176) Edit JCL Y (Y or N)

 DBCS support:

Enable N (Y or N)

 Press END to Terminate

á ñ

Figure 113. SAA Background Execution Parameters Panel

The panel's options and fields are as follows:

New Source Dsn
Enter the name of the data set you want SAA to compare. If you are
comparing a partitioned data set (PDS), include the member name, a
matching pattern (for example, AB*), or an asterisk (*) to include all
members.

You can compare an original source data set (Old Source File) with a
modified source data set (New Source File), or you can compare listing
data sets.

Old Source Dsn
Enter the name of the data set you want SAA to compare. If you are
comparing a partitioned data set (PDS), include the member name, a
matching pattern (for example, AB*), or an asterisk (*) to include all
members.

Output Compare Dsn
Enter the name of the comparison report to be generated by SAA. This
can be a physical sequential (PS) data set or a partitioned data set
(PDS) file. You can preallocate this file or allow SAA to allocate it for
you.

To preallocate the comparison file, use the following parameters:
� DSORG=PS or PO
� SPACE=(TRK, (5,5)) for PS
� SPACE=(TRK, (10,5,20)) for PO

 � RECFM=FB
 � LRECL=203
 � BLKSIZE=27811

Background processing automatically creates a compare file if the speci-
fied output data set is not found at the time of execution. To allow for

290 Application Testing Collection 1.5.0 User's Guide

this allocation, SAA uses the following rules to determine the data set
organization (DSORG) of the output comparison file.

If the DSORG of the input New Source File and Old Source File is:
PO Output Compare File will be type PDS.
PS Output Compare File will be type sequential.

Background processing does not allow input of New Source Files and
Old Source Files of mixed type DSORGs.

Notes:

1. When you use a sequential file, DISP=(MOD,KEEP) will be used so
that all compare reports for a multistep job will be preserved. If you
use a PDS, each member will contain a report for the corresponding
source (or listing) member.

| 2. If the SAA postprocessor is going to be used to generate a change
| validation report and a prototype targeted summary control file, it is
| highly recommended that a sequential file be used as the coverage
| output comparison file.

Output Log Dsn
Enter the name of the analysis log to be generated by SAA. This
should be a physical sequential (PS) data set.

Programming Language
Enter the programming language of your source or listing file. This
allows SAA to identify comment lines, declaration statements, and refor-
matted lines, if you choose to filter these out of the comparison report.

The following values are accepted:
 � ASM
 � C
 � C++
 � COBOL
 � PL/I
 � LASM
 � LCOB
 � LPL/I

Note: When you compare listings, the comparison report will show the
changes to the source code that was extracted from the listing files.

Select Line Audit Filters:
Select which filters you want use.

Comments
Enter Y to have the application disregard all comment lines.
These lines will not be shown in the comparison report.
Enter N to have the application show all mismatched
comment lines in the comparison report.

Note: One or more comments located on a line (record) that
also contains code will not be filtered.

Declares
Enter Y to have the application disregard all declaration state-
ments for the language specified. These lines will not be
shown in the comparison report.
Enter N to have the application show all mismatched declara-
tion statements in the comparison report.

 Starting SAA 291

Reformatted
Enter Y to have the application disregard all reformatted lines
for the language specified. These lines will not be shown in
the comparison report.
Enter N to have SAA show all reformatted lines in the com-
parison report.

Note: This filter only looks at one line (record) at a time
(that is, reformatted language statements that span more
than one line will not be filtered unless all reformatting is
done within a line).

Select Comparison Columns
Enter the column positions in the source file where you want the com-
parison to begin and end.

Start Col Either enter a column position from 1–176 to indicate where
you want the comparison to begin or leave the field empty.

Notes:

1. If you leave this field or the End Col field empty, SAA will
compare all columns.

2. The Start Col value must be less than or equal to the
End Col.

3. When comparing listings, enter the starting column posi-
tion in the converted source code, not in the listing.

End Col Either enter a column position from 1–176 to indicate where
you want the comparison to end or leave the field empty.

Notes:

1. If you leave this field or the Start Col field empty, SAA
will compare all columns.

2. The End Col value must be greater than or equal to the
Start Col.

3. When comparing listings, enter the ending column posi-
tion in the converted source code, not in the listing.

Select Execution Option
Select whether to edit the JCL before submitting it.

Edit JCL Enter Y to generate the JCL and then edit the JCL in an ISPF
edit session that starts after the JCL is generated. Enter N to
generate the JCL and SUBMIT the job stream directly to the
system for execution.

DBCS Support
Select whether DBCS support is enabled.

Enable Enter N if the source code does not contain DBCS charac-
ters. Enter Y if it does.

DBCS support for the control file statements is explained in
Appendix C, “DBCS Support” on page 391.

292 Application Testing Collection 1.5.0 User's Guide

Executing SAA in the Foreground
When you select option 2 on the Execute Source Audit Assistant panel, the SAA
Foreground Execution Parameters panel, shown in Figure 114, is displayed.

à ð
 --------------------- SAA Foreground Execution Parameters ---------------------

 Option ===>

 New Source Dsn: . . . 'project.newgroup.cobol(\)'

 Old Source Dsn: . . . 'project.oldgroup.COBOL(\)'

 Output Compare Dsn: . 'yourid.SAA.YYY.CMP'

 Output Log Dsn: . . . 'yourid.SAA.YYY.LOG'

 Programming Language: COBOL (ASM,C,C++,COBOL,PL/I,LASM,LCOB,or LPL/I)

 Select Line Audit Filters (Y = apply filter, N = do not apply filter):

Comments Y (Y or N) Declares Y (Y or N) Reformatted Y (Y or N)

 Select Comparison Columns:

 Start Col 1 (1-176) End Col 72 (1-176)

 DBCS support:

Enable N (Y or N)

 Press END to terminate

á ñ

Figure 114. SAA Foreground Execution Parameters Panel

The panel's fields are as follows:

New Source Dsn
Enter the name of the data set you want SAA to compare. If you are
comparing a partitioned data set (PDS), include the member name or an
asterisk (*) to include all members.

You can compare an original source data set (Old Source Dsn) with a
modified source (New Source Dsn), or you can also compare listing data
sets.

Old Source Dsn
Enter the name of the data set you want SAA to compare. If you are
comparing a partitioned data set (PDS), include the member name or an
asterisk (*) to include all members.

 Starting SAA 293

Output Compare Dsn
Enter the name of the comparison report to be generated by SAA.
Foreground processing requires a physical sequential (PS) data set.
You can preallocate this file or allow SAA to allocate it for you.

To preallocate the comparison file, use the following parameters:
 � DSORG=PS
 � SPACE=(TRK, (5,5))
 � RECFM=FB
 � LRECL=203
 � BLKSIZE=27811

Note: Foreground processing automatically creates a sequential Output
Compare File if the specified data set is not found at the time of exe-
cution.

Output Log Dsn
Enter the name of the analysis log to be generated by SAA. This
should be a physical sequential (PS) data set. You can preallocate this
file or allow SAA to allocate it for you.

To preallocate the log file, use the following parameters:
 � DSORG=PS
 � SPACE=(TRK, (5,5))
 � RECFM=FBA
 � LRECL=121
 � BLKSIZE=27951

Note: Foreground processing automatically creates a sequential Output
Log File if the specified data set is not found at the time of execution.

Programming Language
Enter the programming language of your source or listing data set. This
allows SAA to identify comment lines, declaration statements, and refor-
matted lines, if you choose to filter these out of the comparison report.

The following values are accepted:
 � ASM
 � C
 � C++
 � COBOL
 � PL/I
 � LASM
 � LCOB
 � LPL/I

Note: When you compare listings, the comparison report will show the
changes to the source code that was extracted from the listing data
sets.

294 Application Testing Collection 1.5.0 User's Guide

Select Line Audit Filters
Select which filters you want use.

Comments
Enter Y to have the application disregard all comment lines.
These lines will not be shown in the comparison report.
Enter N to have the application show all mismatched
comment lines in the comparison report.

Note: One or more comments located on a line (record) that
also contains code will not be filtered.

Declares
Enter Y to have the application disregard all declaration state-
ments for the language specified. These lines will not be
shown in the comparison report.
Enter N to have the application show all mismatched declara-
tion statements in the comparison report.

Reformatted
Enter Y to have the application disregard all reformatted lines
for the language specified. These lines will not be shown in
the comparison report.
Enter N to have SAA show all reformatted lines in the com-
parison report.

Note: This filter only looks at one line (record) at a time
(that is, reformatted language statements that span more
than one line will not be filtered unless all reformatting is
done within a line).

Select Comparison Columns
Enter the column positions in the source file where you want the com-
parison to begin and end.

Start Col Either enter a column position from 1–176 to indicate where
you want the comparison to begin or leave the field empty.

Notes:

1. If you leave this field or the End Col field empty, SAA will
compare all columns.

2. The Start Col value must be less than or equal to the
End Col.

3. When comparing listings, enter the starting column posi-
tion in the converted source code, not in the listing.

 Starting SAA 295

End Col Either enter a column position from 1–176 to indicate where
you want the comparison to end or leave the field empty.

Notes:

1. If you leave this field or the Start Col field empty, SAA
will compare all columns.

2. The End Col value must be greater than or equal to the
Start Col.

3. When comparing listings, enter the ending column posi-
tion in the converted source code, not in the listing.

DBCS Support
Select whether DBCS support is enabled.

Enable Enter N if the source code does not contain DBCS charac-
ters. Enter Y if it does.

DBCS support for the control file statements is explained in
Appendix C, “DBCS Support” on page 391.

Executing the SAA Postprocessor
If you select option 5 on the Execute Source Audit Assistant panel, the SAA
Postprocessor panel, shown in Figure 115, is displayed. This panel allows you to
invoke the SAA postprocessor, which can use a compare file generated by a pre-
vious SAA run and a list of seed variables that you are interested in monitoring to
generate:

1. A change validation report, which shows changed lines that did not contain any
seed variables and seed variables that did not appear in any changed lines.
The change validation report allows you to ensure that:

� Only planned changes to your source code were made
� All seed variables were changed

This report is optional.

| 2. A prototype CA target control file, which can be used with few or no changes
| as input to CA targeted summary. CA targeted summary can then produce a
| summary report on all variables found in the New Source Dsn's changed lines.

à ð
 ------------------------------ SAA Postprocessor ------------------------------

 Command ===>

 Input Data Sets:

 SAA Compare Dsn . . . 'yourid.SAMPLE.SAA.COBOLM.CMP'

 Seed List Dsn 'ATC.V1R4Mð.SAMPLE.SAA.SEEDLIST(COBOLM)'

 Output Data Sets:

 Target Control Dsn . . 'yourid.SAMPLE.SAA.COBOLM.TARGCTL'

 Chg Validation Rpt Dsn 'yourid.SAMPLE.SAA.COBOLM.REP'

 DBCS support:

Enable N (Y or N)

á ñ

Figure 115. SAA Postprocessor Panel

296 Application Testing Collection 1.5.0 User's Guide

The panel's fields are as follows:

SAA Compare Dsn
Name of a previously generated SAA output comparison data set, as
specified in Figure 113 on page 290 or Figure 114 on page 293.

Note: You can use a physical sequential (PS) data set or a partitioned
data set (PDS) for the SAA Compare Dsn. You must include a member
name if the comparison data set is a PDS.

Seed List Dsn
| Name of a data set containing a list of those variables that were to be
| changed and that you may be interested in monitoring if you run tar-
| geted summary.

If no Seed List Dsn is specified, the change validation report is not gen-
erated.

Target Control Dsn
| Name of a prototype target control data set, which can be used as input
| to CA targeted summary to target on all variables found on changed
| new file records. (The COBOL or PL/I record may require modification

to specify the correct listing DSName.)
Chg Validation Rpt Dsn

Name you want the postprocessor to give to the change validation
report it creates. This report lists the following information:
� All of the changed lines that did not contain any seed variables.
� Variables that did not appear in any of the changed lines.

If no data set is specified for Seed List Dsn, any value entered in the
Chg Validation Rpt Dsn field is not verified or used.

DBCS Support
Select whether DBCS support is enabled.

Enable Enter N if the source code does not contain DBCS charac-
ters. Enter Y if it does.

DBCS support for the control file statements is explained in
Appendix C, “DBCS Support” on page 391.

Press Enter to run the postprocessor. Upon completion, the change validation
report data set is displayed for viewing (if you chose to create one).

You can also submit a batch job to run the SAA postprocessor. For an example of
JCL that runs the SAA postprocessor, see the data set
'hi_lev_qual.V1R5M0.SAMPLE.JCL(SAAPP)'.

For information about SAA change validation reports and about input and output file
contents, see “Source Audit Assistant Postprocessor” on page 301.

 Starting SAA 297

298 Application Testing Collection 1.5.0 User's Guide

Understanding the Comparison Report

SAA lists the differences between the two input files in a comparison report.
Figure 116 shows a sample comparison report.

Source Audit Assistant Vð1.2 Date 12/ð2/1997 Time 11.ð7

- -

New File Name -> ATC.V1R5Mð.SAMPLE.SAA.NEW.COBOL(COBOLM)

Old File Name -> ATC.V1R5Mð.SAMPLE.SAA.OLD.COBOL(COBOLM)

- -

COBOL comments have been included

COBOL declares have been included

Reformatted lines have been included

The compare was from column 1 to column 176

- -

Line # File Contents

------ ----

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----1ð---+----11---+----12

THE FOLLOWING LINE(S) HAVE BEEN DELETED

 312 Old WHEN NUM-MINUTES > ð AND <= 2ð

 313 Old COMPUTE INIT-COST = INIT-COST + (NUM-MINUTES \ 8)

THE FOLLOWING LINE PAIR(S) HAVE BEEN REFORMATTED

 313 New COMPUTE INIT-COST = INIT-COST + (NUM-MINUTES \ 7)

 315 Old COMPUTE INIT-COST = INIT-COST + (NUM-MINUTES \ 7)

THE FOLLOWING LINE(S) HAVE BEEN INSERTED

 369 New MOVE 3 TO COST.

THE FOLLOWING LINE PAIR(S) HAVE BEEN REPLACED

 4ð1 New VARYING SUB1 FROM 2 BY 1 UNTIL SUB1 = CALLS-MADE

 4ð2 Old VARYING SUB1 FROM 1 BY 1 UNTIL SUB1 = CALLS-MADE

 431 New COMPUTE INIT-COST = INIT-COST + TOTAL-COST + 6.

 432 Old COMPUTE INIT-COST = INIT-COST + TOTAL-COST + 5.

 46ð New COMPUTE INIT-COST = INIT-COST + TOTAL-COST + 2ð.

 461 Old COMPUTE INIT-COST = INIT-COST + TOTAL-COST + 1ð.

Figure 116. Output Report Created by Comparing COBOL Source Files

Areas of the Comparison Report
At various intervals in the comparison report, SAA identifies the input data sets and
lists any filters that you have selected. It also lists the range of columns that you
compared.

The input data sets are called New file and Old file in the comparison report, corre-
sponding to the values you entered for the file name fields on the Execute Source

Audit Assistant panel.

 Copyright IBM Corp. 1997, 1999 299

When comparing listings, the comparison report shows the input listing files on the
New File Name and Old File Name lines. SAA extracts the source code from these
listings and creates two temporary source code input files. The comparison report
shows changes in the source code that was extracted from the listings.

SAA identifies each difference as one of the following types: insertion, deletion,
replacement, or reformatted line.

300 Application Testing Collection 1.5.0 User's Guide

Source Audit Assistant Postprocessor

The SAA postprocessor allows you to verify the changes found in the SAA compar-
ison report against your seed list in order to make sure that:

1. Only planned changes were made.
2. All seed variables were changed

In order to create an SAA change validation report, you need an SAA comparison
report, which compares two COBOL or PL/I source files and a list of COBOL or
PL/I variables (seeds) that you intended to change44. The SAA change validation
report that is generated identifies:

1. All specified variables that did not appear in any new line in the SAA compar-
ison report

2. All lines in the SAA comparison report that did not contain at least one of the
specified variables

| In addition, a skeleton CA targeted summary control file is generated, which selects
| all variables referenced in all mismatched new file lines. This file can be used as
| an input file for CA targeted summary. However, first you may need to modify the

listing data set name to specify the correct listing data set name.

SAA Postprocessor Inputs
| In order to create an SAA change validation report and a skeleton CA targeted
| summary control file, you need an SAA comparison report that compares two

COBOL or PL/I source or listing files. The SAA comparison report is generated by
running the SAA program against old and new COBOL or PL/I source or listing
data sets as previously described.

In addition, a variable (seed) list file is required if you want to create a change
validation report. This contains a list of COBOL or PL/I variables (seeds) that you
intended to change. The variable (seed) list file is a sequential data set or a
member of a partitioned data set and can have any DCB attributes. The format of
this file is a free-form list of COBOL or PL/I variable names subject to the following
restrictions:

1. Variable names cannot be continued from one line to the next.

2. When more than one variable name appears on a line, the variable names
must be separated by one or more blanks.

DBCS support for the seed list file entries is explained in Appendix C, “DBCS
Support” on page 391.

44 “Change” in this context means that you want to change either the definition of the variable or references to the variable.

 Copyright IBM Corp. 1997, 1999 301

SAA Postprocessor Outputs
Two output data sets are created by the SAA postprocessor:

1. An SAA change validation report (optional)
| 2. A skeleton CA targeted summary control file

The SAA change validation report data set contains three sections. The first
section simply identifies the old and new files used in the SAA comparison report,
the date and time of the run, and so on. The second section of the report, titled
“Input Seeds Not Found In Any Changed Lines,” identifies all specified variables
which were not found in any new file line in the SAA comparison report. The last
section of the report, titled “New Lines Containing No Seed References,” identifies
new file lines in the SAA Comparison report that did not contain at least one of the
specified variables.

Figure 117 shows a sample SAA change validation report. This report was gener-
ated from the COBOL source files indicated and from the variable list in
ATC.V1R5M0.SAMPLE.SAA.SEEDLIST(COBOLM) which consists of a single line:

 INIT-COST NOTHERE

 - - - - - - - - - - - - SAA Change Validation Report - - - - - - - - - - -

Date:12/ð2/1997 Time:11:ð8:ð6

SAA Report Dataset: 'ATC.V1R5Mð.SAMPLE.SAA.COBOLM.CMP'

SAA Report Created: 12/ð2/1997 11.ð7

New Source Dataset: 'ATC.V1R5Mð.SAMPLE.SAA.NEW.COBOL(COBOLM)'

Old Source Dataset: 'ATC.V1R5Mð.SAMPLE.SAA.OLD.COBOL(COBOLM)'

 - - - - - - - - Input Seeds Not Found In Any Changed Lines - - - - - - - -

 NOTHERE

 - - - - - - - - - New Lines Containing No Seed References - - - - - - - - -

 Line Contents

 369 MOVE 3 TO COST.

4ð1 VARYING SUB1 FROM 2 BY 1 UNTIL SUB1 = CALLS-MADE

Figure 117. Sample SAA Change Validation Report

| The target control data set contains a skeleton targeted summary control file that
| can be used to create a CA targeted summary report for all variables found in mis-
| matched new file records. However, before this data set can be used as a CA
| targeted summary control file, you must ensure that the listing data set name is
| correct. See “Targeted Summary Reports” on page 105 for more information on
| targeted summary.

The SAA postprocessor creates the listing data set name by replacing the low-level
qualifier in the new file data set name with “LISTING.” If this is not correct, you
must modify the line to specify the correct listing data set name.

302 Application Testing Collection 1.5.0 User's Guide

Reserved Data Set Names in Source Audit Assistant

As SAA executes in the foreground, it creates various data sets. The following is a
list of these data sets. Ensure that you do not use these data set names for other
purposes.

 userid.TEMP.SAA.CMPOUT
 userid.TEMP.SAA.CMP.COL
 userid.TEMP.SAA.FCOMOUT
 userid.TEMP.SAA.FDCLOUT
 userid.TEMP.SAA.FINPOUT
 userid.TEMP.SAA.FRNOOUT

 userid.TEMP.SAA.NEW.CNTL
 userid.TEMP.SAA.NEW.DATACT
 userid.TEMP.SAA.NEW.DATAMOD
 userid.TEMP.SAA.NEW.DATASW
 userid.TEMP.SAA.NEW.DATASWU
 userid.TEMP.SAA.NEW.DATASWUO

 userid.TEMP.SAA.OLD.CNTL
 userid.TEMP.SAA.OLD.DATACT
 userid.TEMP.SAA.OLD.DATAMOD
 userid.TEMP.SAA.OLD.DATASW
 userid.TEMP.SAA.OLD.DATASWU
 userid.TEMP.SAA.OLD.DATASWUO

 userid.TEMP.SAA.NEW.LIST2SRC
 userid.TEMP.SAA.NEW.LIST2SRC.*

 userid.TEMP.SAA.OLD.LIST2SRC
 userid.TEMP.SAA.OLD.LIST2SRC.*

When SAA executes in the background and uses compiler listings as input, it
extracts source code from the listings and creates the following temporary data
sets:

 � userid.Dddd.Thhmmssu.NEW.LIST2SRC
 � userid.Dddd.Thhmmssu.NEW.LIST2SRC.*
 � userid.Dddd.Thhmmssu.OLD.LIST2SRC
 � userid.Dddd.Thhmmssu.OLD.LIST2SRC.*

 Copyright IBM Corp. 1997, 1999 303

304 Application Testing Collection 1.5.0 User's Guide

 Appendixes

 Copyright IBM Corp. 1997, 1999 305

306 Application Testing Collection 1.5.0 User's Guide

 Appendix A. Problem Determination

This appendix describes abends that you may encounter during ATC installation, as
well as error messages that you may receive during ATC operation.

 Installation Abends
The following abends could occur during installation of the monitor SVCs. If an
abend occurs, find the abend code in the following table, and then take the correc-
tive action described.

Abend Code Description Corrective Action

444 Failure finding monitor program. Verify that the monitor program
(MONSVC) is installed in an
authorized library in the load
module search path for the
installation job.

445 Cannot allocate ECSA (extended
common service area) storage
for monitor. The monitor
program is installed in ECSA,
but insufficient ECSA storage
was available.

The amount of storage used by
the monitor is listed in
Appendix B, “ATC Requirements
and Resources” on page 383.
Verify with your system pro-
grammer that this much ECSA
storage is available.

446 Failure to load monitor in ECSA. Verify that the monitor program
(MONSVC) is installed in an
authorized library in the load
module search path for the
installation job.

447 Failure updating SVC table with
new user SVC numbers.

Verify that the user SVC
numbers passed to the install
program (MONINSTS) are avail-
able.

448 Failure removing prior SVC
token.

Contact ATC support.

449 Failure setting SVC token. Contact ATC support.

450 Short SVC number supplied is
not allowed. The short SVC
number (the first number passed
to MONINSTS) is not between
C8 and FF (200 to 255 in
decimal).

Pass a hexadecimal number
between C8 and FF, without any
surrounding quotes or any
hexadecimal identifier, using the
following command:

EXEC PGM=MONINSTS,PARM=(FE,FF)

451 Long SVC number supplied is
not allowed. The long SVC
number (the second number
passed to MONINSTS) is not
between C8 and FF (200 to 255
in decimal).

Pass a hexadecimal number
between C8 and FF, without any
surrounding quotes or any
hexadecimal identifier, using the
following command:

EXEC PGM=MONINSTS,PARM=(FE,FF)

 Copyright IBM Corp. 1997, 1999 307

 Error Messages
The following error messages could occur during ATC operation. In this appendix,
errors are grouped into categories and errors codes are arranged alphabetically.

If you receive an error message, find the error code prefix in the following list, go to
the page specified, and find your message within that category of errors. Each
error message explains why the error occurred, how your system responded to the
error, and what action you should take to correct the error.

� COMBINE: Creating the JCL (ARCOxxxx). See page 309.

� SUMMARY: Creating the JCL (ARSUxxxx). See page 310.

� SETUP: Creating the JCL (ASETxxxx). See page 311.

� COMBINE: Executing the JCL (CMBxxxx). See page 312.

� COMMANDS: Executing User Commands (CMD5xxxx). See page 314.

� COMMON: Common Messages for CA/DA/UTA User Interface (COMNxxxx).
See page 319.

� DEFAULTS: Defaults Processing (DFLTxxxx). See page 326.

� FILE WARP & DISTILLATION: File Conversion (FCVxxxx). See page 328.

� FILE WARP: Control File Reader (FWPxxxx). See page 332.

| � COMMON: Additional Common Messages (KPDSxxxx). See page334 .

� CTLFILE: Control File Processing (N2Oxxxx). See page 335.

| � TARGETED SUMMARY: Targeted Summary (OCUSxxxx). See page 340.

� VARIABLE REPORTS: Executing the JCL (PVRxxxx). See page 343.

� DISTILLATION: Read the Keylist (RKEYxxxx). See page 346.

� REPORT: Executing the JCL (RPT03xx). See page 347.

� SAA: Source Audit Assistant (SAACxxxx). See page 350.

� SAA POSTPROCESSOR: Source Audit Assistant Change Validation Report
(SAAFxxxx). See page 353.

� SAA EXECUTION: Source Audit Assistant Execution (SAARxxxx). See page
355.

� SETUP: Executing the JCL (SP601xx). See page 359.

� SUMMARY: Executing the JCL (SUM04xx). See page 362.

� VAREAD: Executing the JCL (VAR0xxx). See page 364.

� EXECUTE: Buffer Monitor (WVAxxxx). See page 373.

� ZAPTXT: Executing the JCL (ZAP00yy or ZAP88xx). See page 375.

308 Application Testing Collection 1.5.0 User's Guide

 ARCO001E � ARCO003E

COMBINE: Creating the JCL (ARCOxxxx)

ARCO001E Quick Combine file is a PDS but no member name specified

Explanation: The file specified to contain the combined files is a partitioned data set but no
member name was specified.

Combine Action: Combine terminates.

User Response: Specify a member name for the combined files or specify a sequential
data set.

ARCO002E Combine input file format is incorrect, use panels to create file

Explanation: The format of at least one the files containing input to combine is not correct.

Combine Action: Combine terminates.

User Response: Use the ISPF panels to create the breakout files to be combined.

ARCO003E Only 1 input found, 2 files required

Explanation: Combine must have at least two breakout files to combine.

Combine Action: Combine terminates.

User Response: Specify at least two breakout files to be combined in the combine control
file.

 Appendix A. Problem Determination 309

 ARSU001E � ARSU001E

SUMMARY: Creating the JCL (ARSUxxxx)

ARSU001E Quick Summary found an invalid value for Internal/External

Explanation: An invalid value has been specified for the type of summary report to be gen-
erated.

Summary Action: Summary terminates.

User Response: Specify either an I for an Internal report or an E for an External report.

310 Application Testing Collection 1.5.0 User's Guide

 ASET011E � ASET011E

SETUP: Creating the JCL (ASETxxxx)

ASET011E Load and Object datasets can not both be specified within a set of
control cards.

Explanation: The object library control cards FROMOBJDSN and TOOBJDSN are mutually
exclusive with the load library control cards FROMLOADDSN and TOLOADDSN within a
given control data set.

Setup Action: Setup terminates.

User Response: Ensure that only object library control cards or only load library control
cards are used within a single control data set.

 Appendix A. Problem Determination 311

 CMB0101E � CMB0101E

COMBINE: Executing the JCL (CMBxxxx)
CA may issue the following messages while executing the combine JCL:

CMB0101E CA: Error - Incorrect parameters supplied.

Explanation: A parameter was supplied to Combine, but it requires none.

Combine Action: Combine terminates.

User Response: Remove the parameter(s).

CMB0102E CA: Error opening input file: (dsn).

Explanation: Combine could not open the specified data set.

Combine Action: Combine terminates.

User Response: Ensure that the data set exists and is available.

CMB0103E CA: Error opening output file: (dsn).

Explanation: Combine could not open the specified data set.

Combine Action: Combine terminates.

User Response: Ensure that the data set is allocated and can be accessed.

CMB0501E CA: Error - insufficient storage to satisfy request.

Explanation: The CA combine program got an error code from the operating system
command used to request storage for the BRKOUT table. Thirty two bytes are needed for
each breakpoint (plus 96 byte per PA and 32 bytes per logical file number).

Combine Action: Combine terminates.

User Response: Check the region size on your job card for the step, and increase it. CA
obtains job card information from the site defaults file.

CMB0510E CA: Error - Input file 1 is not a BRKOUT or BRKTAB file.

Explanation: Input file 1 is not a BRKOUT or BRKTAB file.

Combine Action: Combine terminates.

User Response: Ensure that input file 1 is a valid BRKOUT or BRKTAB file.

312 Application Testing Collection 1.5.0 User's Guide

 CMB0511E � CMB0511E

CMB0511E CA: Error - Input file 2 is not a BRKOUT or BRKTAB file.

Explanation: Input file 2 is not a BRKOUT or BRKTAB file.

Combine Action: Combine terminates.

User Response: Ensure that input file 2 is a valid BRKOUT or BRKTAB file.

CMB0520E CA: Error - Input files don't match. One is a BRKTAB and one is a
BRKOUT.

Explanation: The input files are of a matching type (either both BRKTAB or both
BRKOUT).

Combine Action: Combine terminates.

User Response: Ensure that the file types (BRKOUT or BRKTAB) match.

 Appendix A. Problem Determination 313

 CMD5001E � CMD5005E

COMMANDS: Executing User Commands (CMD5xxxx)
The following messages may be issued when commands are executed (all CAxxxx
commands issued are from the command panel, directly from TSO, or while starting
a monitor session [Xnnnnnnn JCL]):

CMD5001E Invalid command

Explanation: An invalid command was issued.

Command Action: Ignored.

User Response: Since the commands are generated by REXX programs or created JCL,
check that the REXX or JCL that issued the command has not been corrupted.

CMD5002E Error reading BRKTAB file

Explanation: A user tried to start a session, but there was an error reading the BRKTAB
file of breakpoint data.

Command Action: Command not executed.

User Response: Check that the BRKTAB file (DD name BRKTAB in the execute JCL
Xnnnnnn) is accessible and is a valid BRKTAB file (starts with characters BT8).

CMD5003E Invalid BRKTAB file

Explanation: A user tried to start a session, but the BRKTAB file of breakpoint data is
invalid.

Command Action: Command not executed.

User Response: Check that the BRKTAB file (DD name BRKTAB in the execute JCL
Xnnnnnn) is a valid BRKTAB file and was created by the V1R5M0 or later Setup program
(starts with characters BT8).

CMD5004E Error opening BRKOUT file

Explanation: A user tried to stop a session, but the BRKOUT file of breakpoint data could
not be opened.

Command Action: Command not executed.

User Response: Check that the BRKOUT file (DD name BRKOUT in the execute JCL
Xnnnnnn) exists and is accessible.

CMD5005E Error writing BRKOUT file

Explanation: A user tried to stop a session, but the BRKOUT file of breakpoint data could
not be written.

Command Action: Command not executed.

User Response: Check that the BRKOUT file (DD name BRKOUT in the execute JCL
Xnnnnnn) exists and is accessible.

314 Application Testing Collection 1.5.0 User's Guide

 CMD5006E � CMD5010E

CMD5006E Error opening VARCTL file

Explanation: A user tried to start a session, but the VARCTL file of variable read data
could not be opened.

Command Action: Command not executed.

User Response: Check that the VARCTL file (DD name VARCTL in the execute JCL
Xnnnnnn) exists and is accessible.

CMD5007E Invalid VARCTL file

Explanation: A user tried to start a session, but the VARCTL file of variable read data
could not be opened.

Command Action: Command not executed.

User Response: Check that the VARCTL file (DD name VARCTL in the execute JCL
Xnnnnnn) is a valid VARCTL file produced by Setup and starts with the characters VAR03.

CMD5008E Error reading VARCTL file

Explanation: A user tried to start a session, but an error occurred reading the VARCTL file
of variable read data.

Command Action: Command not executed.

User Response: Check that the VARCTL file (DD name VARCTL in the execute JCL
Xnnnnnn) is a valid VARCTL file produced by Setup and starts with the characters VAR03.

CMD5009E No ESQA space for BP table

Explanation: A user tried to start a session, but the monitor could not allocate sufficient
space for the breakpoint (BP) table in ESQA.

Command Action: Command not executed.

User Response: For the storage requirements of the BP table, see Appendix B, “ATC
Requirements and Resources” on page 383. Reduce the number of object modules being
tested, or contact the system programmer to increase ESQA storage.

CMD5010E No ESQA space for PA table

Explanation: A user tried to start a session, but the monitor could not allocate sufficient
space for the program area (PA) table in ESQA.

Command Action: Command not executed.

User Response: For the storage requirements of the PA table, see Appendix B, “ATC
Requirements and Resources” on page 383. Reduce the number of object modules being
tested, or contact the system programmer to increase ESQA storage.

 Appendix A. Problem Determination 315

 CMD5011E � CMD5102E

CMD5011E No ESQA space for VA table

Explanation: A user tried to start a session, but the monitor could not allocate sufficient
space for the variable read table in ESQA.

Command Action: Command not executed.

User Response: For the storage requirements of the breakpoint (BP) table, see
Appendix B, “ATC Requirements and Resources” on page 383. Reduce the number of vari-
able reads, or contact the system programmer to increase ESQA storage. Because the
storage requirements of the variable (VA) table are small, this may be a symptom of an
invalid VARCTL table.

CMD5015E Downlevel Monitor running - cannot execute command

Explanation: The installed monitor is at a previous level that is now incompatible.

Command Action: Command not executed.

User Response: Install the current monitor.

CMD5017E No storage in SQA for monitor tables

Explanation: During installation of the ATC monitor, the monitor could not obtain SQA
space for its tables.

Command Action: The installation of the monitor is terminated.

User Response: See Appendix B, “ATC Requirements and Resources” on page 383 for
the amount of SQA needed by the monitor during installation. Contact your systems pro-
grammer to determine the amount of SQA space available on your system.

CMD5023W Dup listing in ID: user_ID listing_name

Explanation: A monitor session was started that contains a BRKTAB for a listing/object
module that is being monitored by another session.

Command Action: The session is started.

User Response: Note that if two or more sessions share a BRKTAB for a listing/object
module, the first session started will get all coverage for the listing/object module (sessions
started after the first will have incomplete coverage for any shared listings/object modules).

CMD5102E The requested session id sess_id was not found.

Explanation: A command that requires a session ID was issued, but the session ID
(sess_id) was not found.

Command Action: Command not executed.

User Response: Check that the sess_id is valid. The session ID is usually your TSO
session ID.

316 Application Testing Collection 1.5.0 User's Guide

 CMD5103E � CMD5202E

CMD5103E The requested session id is not active. Command rejected.

Explanation: A command that requires a session ID was issued, but the session ID was
not active.

Command Action: Command rejected.

User Response: Check that the sess_id is active by using the CASESSN command.

CMD5104E The requested PA# pa_num was not found.

Explanation: A command that requires a program area (PA) number was issued, but the
PA number (pa_num) was not found.

Command Action: Command not executed.

User Response: Check that the pa_num is valid. The CALIST command lists the number
of PAs for each listing in a session.

CMD5105E No free sessions in session table - session not started

Explanation: A user attempted to start a new session, but there are new free sessions in
the monitor session table.

Command Action: Command not executed.

User Response: Use the CASESSN to display active sessions. Stop or quit sessions that
are not needed. A maximum of 32 sessions can be active.

CMD5106E Session already active, cannot be started again

Explanation: A user attempted to start a new session, but a session is already started with
that session ID.

Command Action: Command not executed.

User Response: Use the CASESSN command to display active sessions. Stop or quit the
session with the name that you are trying to start, or start a session with a different name.

CMD5200E No previous copy of the monitor exists - cannot do commands to it

Explanation: The monitor is not installed, or has been corrupted.

Command Action: Command not executed.

User Response: Reinstall the monitor.

CMD5202E No session table exists

Explanation: The session table does not exist or has been corrupted.

Command Action: Command not executed.

User Response: Reinstall the monitor.

 Appendix A. Problem Determination 317

 CMD5999E � CMD5999E

CMD5999E Error number err_num occurred. Contact ATC support.

Explanation: An undocumented error occurred.

Command Action: The operation terminates.

User Response: Contact ATC support with the error number and explain the circum-
stances that caused it.

318 Application Testing Collection 1.5.0 User's Guide

 COMN001I � COMN006E

COMMON: Common Messages for CA/DA/UTA User Interface
(COMNxxxx)

These messages are common across most areas of CA/DA/UTA and can be issued
by many of the the functions.

COMN001I function is starting

Explanation: The specified function is starting.

System Action: The function begins execution

User Response: None.

COMN002I function is verifying your parameters

Explanation: The specified function is verifying the parameters are correct.

System Action: The function continues.

User Response: None.

COMN003I function is reading the CACTL file

Explanation: The specified function is reading the CA/DA/UTA control file.

System Action: The function continues.

User Response: None.

COMN004I function is creating the JCL member name

Explanation: The specified function is creating the JCL for this function in the user's JCL
library.

System Action: The function continues.

User Response: None.

| COMN005R function is done

Explanation: The specified function has completed.

System Action: The function terminates.

User Response: None.

COMN006E function JCL library does not exist: library dsn

Explanation: The specified JCL library does not exist.

System Action: The function terminates.

User Response: Specify an existing JCL library and rerun the function.

 Appendix A. Problem Determination 319

 COMN007E � COMN015I

COMN007E function found this invalid report parameter: parameter

Explanation: The specified parameter is invalid for this function.

System Action: The function terminates.

User Response: Correct the parameter and rerun the function.

COMN008I data

Explanation: This message displays information in support of the previous message.

System Action: See the corresponding message.

User Response: See the corresponding message.

COMN011I Data data element saved

Explanation: The specified data has been saved.

System Action: The function continues.

User Response: None.

COMN012E Dataset dataset name not found

Explanation: The specified data set was not found.

System Action: The function terminates.

User Response: Specify the name of an existing data set.

COMN013S Unknown option

Explanation: An unknown option was encountered when trying to execute a function.

System Action: The function terminates.

User Response: Contact ATC support.

COMN014I JCL submitted

Explanation: The JCL to execute the requested function has been submitted.

System Action: A batch job is submitted and the function terminates.

User Response: None.

COMN015I Dataset dsn reset

Explanation: The specified control data set has been reset to the default values.

System Action: The function terminates.

User Response: None.

320 Application Testing Collection 1.5.0 User's Guide

 COMN016E � COMN022E

COMN016E Copy error occurred trying to reset dataset dsn

Explanation: When trying to reset a control data set from the default template, an error
occurred either reading the default template file (FORMS) or writing to the user control file.

System Action: The function terminates.

User Response: Ensure that the default template file (FORMS) is available on the system
and that the user control file that is to be reset can be written to.

COMN018E option is not a valid option'"

Explanation: The specified option is invalid for this function.

System Action: The function terminates.

User Response: Correct the option and retry the function.

COMN019E Error rc allocating dsn

Explanation: An error occurred when trying to allocate the specified data set. The allo-
cation return code is indicated by 'rc'

System Action: The function terminates.

User Response: Determine the allocation error and retry the function. Ensure that data
sets required for this function exist.

COMN020I data

Explanation: This message displays information in support of the previous message.

System Action: See the corresponding message.

User Response: See the corresponding message.

COMN021E No output dataset specified

Explanation: The function requires the name of an output data set and none was specified.

System Action: The function terminates.

User Response: Specify the name of a data set to contain output from the function.

COMN022E Error processing input]output dataset dsn : message

Explanation: An error occurred processing the data set specified by 'dsn'. Further informa-
tion about the error is contained in 'message'. For example, 'message' may indicate a data
set or member not found.

System Action: The function terminates.

User Response: Correct the specified error and retry the function.

 Appendix A. Problem Determination 321

 COMN023E � COMN028E

COMN023E Members specified but input not PDS

Explanation: A member has been specified for a data set that is not a partitioned data set.

System Action: The function terminates.

User Response: Do not specify a member name or specify the correct data set.

COMN024E Invalid operand operand

Explanation: An invalid operand has been specified.

System Action: The function terminates.

User Response: Correct the error and retry the function.

COMN025E Input is PDS but output is not

Explanation: You cannot place the members of a partitioned data set into a sequential
data set. Both input and output files must be the same organization.

System Action: The function terminates.

User Response: Specify a partitioned data set as the output data set.

COMN026E Input is sequential but output is PDS

Explanation: The input is a sequential data set but the output is a partitioned data set and
no member name has been specified.

System Action: The function terminates.

User Response: Specify a sequential data set as the output data set or specify a member
name.

COMN027E Error rc from function

Explanation: The specified function returned the indicated return code.

System Action: The function terminates.

User Response: Contact ATC support.

COMN028E ISPF not active

Explanation: This function requires ISPF to execute.

System Action: The function terminates.

User Response: Start ISPF and retry the function.

322 Application Testing Collection 1.5.0 User's Guide

 COMN029E � COMN034I

COMN029E Operand operand of function is message

Explanation: The indicated operand for this function is incorrect. Further information is con-
tained in 'message'.

System Action: The function terminates.

User Response: Correct the operand and retry the function.

COMN030E operation is not currently supported

Explanation: The indicated operation for this function is not supported.

System Action: The function terminates.

User Response: Specify a supported operation.

COMN031E Error rc deleting dsn

Explanation: An error occurred when trying to delete the specified data set. rc contains
the return code from delete.

System Action: The function terminates.

User Response: Correct the error indicated by the return code and retry.

COMN032E Error rc writing dsn

Explanation: An error occurred when trying to write to the specified data set. 'rc' contains
the return code from EXECIO write.

System Action: The function terminates.

User Response: Correct the error indicated by the return code and retry.

COMN033E JCL submit error rc

Explanation: The TSO submit failed with rc=rc.

System Action: The function terminates.

User Response: None.

COMN034I Performing File Tailoring step jcldsn

Explanation: File Tailoring is being performed for step step on data set jcldsn.

System Action: The function continues.

User Response: None.

 Appendix A. Problem Determination 323

 COMN035E � COMN041E

COMN035E FTOpen error rc=rc

Explanation: The FTOpen failed with rc=rc.

System Action: The function terminates.

User Response: None.

COMN036E FTIncl error rc=rc

Explanation: The FTIncl failed with rc=rc.

System Action: The function terminates.

User Response: None.

COMN037E FTClose error rc=rc

Explanation: The FTClose failed with rc=rc.

System Action: The function terminates.

User Response: None.

COMN038E Unable to alloc ddname dataset dsname

Explanation: The TSO alloc for ddname and dsname failed.

System Action: The function terminates.

User Response: None.

COMN039E Unable to read ddname dataset dsname

Explanation: Unable to read ddname dsname.

System Action: The function terminates.

User Response: None.

COMN040E Unable to write ddname dataset dsname

Explanation: Unable to write ddname dsname.

System Action: The function terminates.

User Response: None.

COMN041E DD not found ddname

Explanation: DD ddname not found allocated.

System Action: The function terminates.

User Response: None.

324 Application Testing Collection 1.5.0 User's Guide

 COMN042E � COMN046E

COMN042E ISPExec Error command rc=rc

Explanation: ISPExec Command command failed with rc=rc.

System Action: The function terminates.

User Response: None.

COMN043E Member in use member dsname

Explanation: Member member of data set dsname is already in use.

System Action: The function terminates.

User Response: None.

COMN044E Member not found member dsname

Explanation: Member member of data set dsname could not be found.

System Action: The function terminates.

User Response: None.

COMN045E DA and UTA may not be enabled together

Explanation: The Enable DA and Enable UTA process options on the Create JCL for

Setup panel or the Create JCL to Start the Monitor panel cannot be set to YES at the
same time.

System Action: The function terminates.

User Response: Enable only one (or neither) of these options.

COMN046E Data set dataset name has a DCB characteristic of invalid value, but it
should be valid value

Explanation: The specified data set name has a DCB characteristic (such as LRECL) of
invalid value. The JCL created expects this data set to be preallocated and therefore cannot
change its DCB characteristics.

System Action: The function terminates.

User Response: Reallocate data set name with a DCB characteristic of valid value.

 Appendix A. Problem Determination 325

 DFLT001E � DFLT007I

DEFAULTS: Defaults Processing (DFLTxxxx)

DFLT001E Unable to allocate system defaults dataset dsn

Explanation: Could not allocate the ATC defaults data set.

Action: Defaults terminates.

User Response: Ensure the defaults file is available.

DFLT002E Unable to read system defaults dataset dsn

Explanation: The ATC defaults data set could not be read.

Action: Defaults terminates.

User Response: Ensure the data set is a proper ATC defaults data set and is accessible.

DFLT003E Unable to alloc import dataset dsn

Explanation: The import defaults data set could not be allocated.

Action: Defaults terminates.

User Response: Ensure the import defaults data set is accessible and the name is correct.

DFLT004E Unable to read import dataset dsn

Explanation: The import defaults data set could not be read.

Action: Defaults terminates.

User Response: Ensure the import defaults data set is accessible and is the proper format.

DFLT005E Unable to alloc export dataset dsn

Explanation: The export data set to contain the ATC defaults could not be allocated.

Action: Defaults terminates.

User Response: Ensure the export defaults data set is accessible and the name is correct.

DFLT006E Unable to write export dataset dsn

Explanation: The export defaults data set could not be written.

Action: Defaults terminates.

User Response: Ensure the export defaults data set is accessible and is the proper format.

DFLT007I ATC ISPF variables gotten

Explanation: The ISPF variables required to run ATC have been read.

Action: Defaults continues.

User Response: None.

326 Application Testing Collection 1.5.0 User's Guide

 DFLT008I � DFLT013E

DFLT008I ATC ISPF variables saved

Explanation: The ISPF variables have been saved.

Action: Defaults continues.

User Response: None.

DFLT009I ATC ISPF variable edit canceled

Explanation: The ISPF variables edit has been cancelled

Action: Defaults terminates.

User Response: None.

DFLT010I ATC ISPF variables reset from system defaults

Explanation: The ISPF variables have been reset to the system defaults.

Action: Defaults terminates.

User Response: None.

DFLT011I ATC ISPF variables imported from user dataset

Explanation: The ISPF variables have been imported from your import data set.

Action: Defaults terminates.

User Response: None.

DFLT012I ATC ISPF variables exported to user dataset

Explanation: The ISPF variables have been exported to your export data set.

Action: Defaults terminates.

User Response: None.

DFLT013E Unknown command

Explanation: An unknown command was encountered when trying to execute defaults.

Action: Defaults terminates.

User Response: Contact ATC support.

 Appendix A. Problem Determination 327

 FCV108E � FCV124E

FILE WARP & DISTILLATION: File Conversion (FCVxxxx)
These messages are for errors in the distillation/file warp program. The error
number corresponds to the return code from the program (PROCSTEP FWARP or
DISTILL in the JCL output). The messages are printed in the SYSPRINT DD state-
ment of the FWARP or DISTILL step in the JCL output.

FCV108E Key positions and/or length not specified

Explanation: The key position and/or length was not supplied on the create distillation JCL
screen.

Action: Distillation is not done.

User Response: Supply the values on the screen and recreate the JCL.

FCV112E Unable to OPEN KEYFILE DCB

Explanation: The key file cannot be opened.

Action: Distillation is not done.

User Response: Verify that a key file of keys that caused new coverage was created.
Usually the key file will be in a PDS with the last qualifier being VARDATA. If it is a sequen-
tial data set, the last qualifier is usually VARDATA. Look at the distillation JCL (Dxxxxxx)
DISTILL step, KEYFILE DDNAME for the data set name used for the key file.

FCV116E Illegal function requested

Explanation: The option supplied to the file conversion program was illegal.

Action: Distillation/file warp is not done.

User Response: The option is supplied automatically within the ATRUNKEY REXX
program, so you should never see this error. Contact ATC support.

FCV120E RECFM=VS is not currently supported

Explanation: You specified an input data set with VS record format.

Action: Distillation/file warp is not done.

User Response: VS record formats are not supported.

FCV124E Unable to OPEN MASTER(INPUT) DCB

Explanation: The input data set could not be opened.

Action: Distillation/file warp is not done.

User Response: Verify that you specified the correct input data set.

328 Application Testing Collection 1.5.0 User's Guide

 FCV128E � FCV148E

FCV128E Unable to OPEN NEWMASTER(OUTPUT) DCB

Explanation: The output data set could not be opened.

Action: Distillation/file warp is not done.

User Response: Verify that you specified correct qualifiers for the output data set.

FCV132E Specified key position lies outside of KeyFile record

Explanation: The key position supplied on the create distillation JCL screen is greater than
the size of the record.

Action: Distillation is not done.

User Response: Correct the key position on the panel and recreate the JCL.

FCV136E DSORG of MASTER(INPUT) is not supported

Explanation: The organization of the input data set is not supported. Supported organiza-
tions are: PS, PSU, PO, POU, or VSAM.

Action: Distillation/file warp is not done.

User Response: Specify a correct input data set.

FCV140E Error from Dynamic Allocation. Error/Info Code: xxxx

Explanation: An error obtaining dynamic storage occurred.

Action: Distillation/file warp is not done.

User Response: Use the error code to obtain further information. Verify your parameters
on the create distillation JCL screen.

FCV144E Specified key position lies outside of Master record

Explanation: The key position supplied on the create distillation JCL screen is greater
than the size of the record.

Action: Distillation is not done.

User Response: Correct the key position on the panel and recreate the JCL.

FCV148E I/O error reading VSAM Master(INPUT). Feedback: xxxx

Explanation: An error occurred reading the input data set.

Action: Distillation/file warp is not done.

User Response: Check that the input data set is valid. Feedback contains the error
returned from the I/O routine.

 Appendix A. Problem Determination 329

 FCV152E � FCV172E

FCV152E I/O error writing VSAM Master(OUTPUT). Feedback: xxxx

Explanation: An error occurred writing the output data set.

Action: Distillation/file warp is not done.

User Response: Check that the output data set is valid. "Feedback" contains the error
returned from the I/O routine.

FCV156E xxxx is not a valid decimal parameter

Explanation: A number passed to the distillation program (key position, length) is not
valid.

Action: Distillation warp is not done.

User Response: Correct the number on the create distillation JCL screen.

FCV160E Unable to OPEN Warp File or file empty.

Explanation: The intermediate warp control file created by the warp control file conversion
step could not be opened.

Action: File warp is not done.

User Response: Verify that the first step (warp control file conversion) executed success-
fully. Verify that your warp control file is correct.

FCV164E Warping signed, but value in file is unsigned offset: xxxx

Explanation: You specified that the field to warp was a signed number in the warp control
file, but the field in the file contains an unsigned number.

Action: File warp is not done.

User Response: Correct the warp control file.

FCV168E Warping unsigned, but value in file is signed offset: xxxx

Explanation: You specified that the field to warp was an unsigned number in the warp
control file, but the field in the file contains an signed number.

Action: File warp is not done.

User Response: Correct the warp control file.

FCV172E No space for warp array

Explanation: The dynamic allocation of storage for the warp action array failed.

Action: File warp is not done.

User Response: Check that the warp control file is valid, and that the warp file conversion
program ran successfully.

330 Application Testing Collection 1.5.0 User's Guide

 FCV176E � FCV180E

FCV176E Unable to OPEN MASTER(INPUT) ACB. Error Code: xxxx

Explanation: The input data set could not be opened.

Action: Distillation/file warp is not done.

User Response: Verify that you specified the correct input data set.

FCV180E Unable to OPEN NEWMASTR(OUTPUT) ACB. Error Code: xxxx

Explanation: The output data set could not be opened.

Action: Distillation/file warp is not done.

User Response: Verify that you specified correct qualifiers for the output data set.

 Appendix A. Problem Determination 331

 FWP212E � FWP228E

FILE WARP: Control File Reader (FWPxxxx)
These messages are for errors reported by the program that reads the file warp
control file and checks it for syntax. The error number corresponds to the return
code from the program (PROCSTEP CVTCTL in the JCL output). The messages
are printed in the SYSTSPRT DD statement of the CVTCTL step in the JCL output.

FWP212E Error xxxx opening file warp dataset dsn

Explanation: The file warp control file cannot be opened.

Action: File warp is not done.

User Response: Verify the name of the file warp control file that you entered on the create
file warp JCL screen.

FWP220E Return Code xxxx from ALLOCATE allocating dsn

Explanation: The program could not allocate the intermediate file of warp statements to be
passed to the file warp program.

Action: File warp is not done.

User Response: Check that the file warp JCL has not been corrupted. This is an interme-
diate temporary file passed between job steps.

FWP224E Return Code xxxx from EXECIO reading dsn

Explanation: An I/O failure occurred reading the file warp control file.

Action: File warp is not done.

User Response: Verify that the file warp control file is readable.

FWP226E Double Byte Character Set error on record xxxx. Invalid DBCS or
mixed string. Check DBCS name(s) on line xxxx of the control file

Explanation: There was a control file error with DBCS names.

Action: File warp is not done.

User Response: Check the DBCS names used for the DBCS control characters.

FWP228E xxxx is not a valid option for the yyyy statement

Explanation: An incorrect use of options for a statement was detected.

Action: File warp is not done.

User Response: Check the indicated statement for correct syntax.

332 Application Testing Collection 1.5.0 User's Guide

 FWP232E � FWP268E

FWP232E Required operand omitted from: xxxx

Explanation: A required warp operand was omitted (for example, warp value).

Action: File warp is not done.

User Response: Check the indicated statement for correct syntax.

FWP236E Return Code xxxx from EXECIO writing yyyy

Explanation: An I/O error occurred writing to the intermediate file.

Action: File warp is not done.

User Response: Check that the created JCL has not been corrupted. Recreate it if neces-
sary.

FWP240E dsn file is not allocated

Explanation: The intermediate output file is not allocated.

Action: File warp is not done.

User Response: Check that the created JCL has not been corrupted. Recreate it if neces-
sary.

FWP244E Return Code xxxx from ALLOCATE allocating dsn

Explanation: The intermediate output file could not be allocated.

Action: File warp is not done.

User Response: Check that the created JCL has not been corrupted. Recreate it if neces-
sary.

FWP260E Record label mismatch detected at statement: xxxx

Explanation: A statement used to define a record label has incorrect syntax.

Action: File warp is not done.

User Response: Check the indicated statement for correct syntax.

FWP264E xxxx is not a valid operand for yyyy

Explanation: A statement has incorrect syntax.

Action: File warp is not done.

User Response: Check the indicated statement for correct syntax.

FWP268E Warp control file has no warps

Explanation: The warp control file contained no warp actions.

Action: File warp is not done.

User Response: Check that you used a valid warp control file.

 Appendix A. Problem Determination 333

 KPDS001E � KPDS001E

COMMON: Additional Common Messages (KPDSxxxx)

KPDS001E Dataset dsn has an invalid DSORG

Explanation: The specified data set has the wrong DSORG.

Action: The function terminates.

User Response: Specify a data set that has the correct organization.

334 Application Testing Collection 1.5.0 User's Guide

 N2O012E � N2O026E

CTLFILE: Control File Processing (N2Oxxxx)

N2O012E Error xxxxxxxx for dataset dddddddd.

Explanation: The specified message (xxxxxxxx) was returned from the SYSDSN command
indicating that the specified data set (dddddddd) could not be found or could not be proc-
essed.

Processor Action: Processing terminates.

User Response: Correct the data set name specification or make sure that the data set
can be accessed.

N2O016E oooooooo is not a valid option.

Explanation: The specified option was found on the command invocation but is not a valid
option recognized by this command.

Processor Action: Processing terminates.

User Response: Remove or correct the specified option.

N2O020E Return Code rr from ALLOCATE allocating dddddddd.

Explanation: Return Code rr was returned from the ALLOCATE command attempting to
allocate the specified input data set.

Processor Action: Processing terminates.

User Response: Correct the data set name specification or ensure that the data set can be
allocated.

N2O024E Return Code rr from EXECIO reading dddddddd.

Explanation: Return Code rr was returned from the EXECIO command attempting to read
the specified data set.

Processor Action: Processing terminates.

User Response: Correct the indicated error or correct the data set name specification.

N2O026E Invalid DBCS or mixed string. Check DBCS name(s) on line num of
the control file.

Explanation: The statement shown in the second line of the message contains an invalid
DBCS or mixed string. This statement was found on line number num in the control file.

Processor Action: Processing terminates.

User Response: Correct the DBCS usage in the statement indicated.

 Appendix A. Problem Determination 335

 N2O028E � N2O032E

N2O028E oooooooo is not a valid option for the ssss statement.

Explanation: A keyword (oooooooo) was specified for the ssss statement which is not valid
on that statement.

Processor Action: Processing terminates. The statement in error is shown in the second
line of the error message.

User Response: Correct the specified option.

N2O029E Volume and Unit cannot be specified without the corresponding
DSName.

Explanation: A keyword FromVol or FromUnit was specified without FromObjDsn or
ToVol or ToUnit was specified without ToObjDsn . statement which is not valid on that
statement. These operands can only be specified when the corresponding data set name is
specified.

Processor Action: Processing terminates. The statement in error is shown in the second
line of the error message.

User Response: Correct the specified option.

N2O030E oooooooo is not a valid option for the ssss statement.

Explanation: A keyword (oooooooo) was specified for the ssss statement which is not valid
on that statement.

Processor Action: Processing terminates. The statement in error is shown in the second
line of the error message.

User Response: Correct the specified option.

| N2O031E The operand of the COBOL or PL/I operand does not point to a state-
| ment of that type.

| Explanation: The SCOPE statement is coded with a COBOL or PL/I operand whose
| operand does not point to a matching COBOL or PL/I statement.

| Processor Action: Processing terminates. The statement in error is shown in the second
| line of the error message.

| User Response: Correct the control statement.

N2O032E Required operand omitted from:

Explanation: A required operand was omitted from the statement shown in the second line
of the message.

Processor Action: Processing terminates. The statement in error is shown in the second
line of the error message.

User Response: Correct the statement by adding all required operands.

336 Application Testing Collection 1.5.0 User's Guide

 N2O033E � N2O037E

N2O033E LISTDSN=dddddddd contains an asterisk specification. However
LISTMEMBER= was not specified.

Explanation: When the data set name dddddddd contains an asterisk, LISTMEMBER=
must be specified to replace the asterisk.

Processor Action: Processing terminates. The statement in error is shown in the second
line of the error message.

User Response: Correct the statement by adding the LISTMEMBER= operand or removing
the asterisk from the LISTDSN= operand.

N2O034E llll is a duplicate label on the following statement. It is ignored.

Explanation: The specified label was previously found on a statement of the same type.

Processor Action: Processing terminates. The statement in error is shown in the second
line of the error message.

User Response: Change the label to be unique.

N2O035E llll is not a previously defined label. The following statement is
ignored.

Explanation: The statement shown in the second line of the message referenced a label
which was not previously defined.

Processor Action: Processing terminates. The statement in error is shown in the second
line of the error message.

User Response: Correct the label reference.

N2O036E Return Code rr from EXECIO writing dddddddd.

Explanation: Return Code rr was returned from the EXECIO command attempting to write
the specified data set.

Processor Action: Processing terminates.

User Response: Correct the indicated error or correct the data set name specification. *

N2O037E Invalid NAME= operand in statement:

Explanation: The statement shown in the second line of the message contains an invalid
operand of the NAME=.

Processor Action: Processing terminates. The statement in error is shown in the second
line of the error message.

User Response: Correct the variable name specification.

 Appendix A. Problem Determination 337

 N2O038E � N2O052E

| N2O038E A SCOPE cannot be defined in an ASM program.

| Explanation: The SCOPE control statement is not supported for assembler programs.

| Processor Action: Processing terminates. The statement in error is shown in the second
| line of the error message.

| User Response: Remove the indicated control statement.

| N2O039E The SCOPE referenced by the following statement must be COBOL.

| Explanation: The indicated control statement is only supported for COBOL programs.

| Processor Action: Processing terminates. The statement in error is shown in the second
| line of the error message.

| User Response: Remove the indicated control statement.

N2O040E ffffffff file is not allocated.

Explanation: The specified DDNAME was not previously allocated.

Processor Action: Processing terminates.

User Response: Correct the DDNAME specification or ensure that the file is allocated.

N2O044E Return Code rr from ALLOCATE allocating dddddddd.

Explanation: Return Code rr was returned from the ALLOCATE command attempting to
allocate the specified output data set.

Processor Action: Processing terminates.

User Response: Correct the data set name specification or ensure that the data set can be
allocated.

N2O048E Last line is continued. It is ignored.

Explanation: The last non-comment line in the control file ended in a comma indicating that
it was continued. Since no more lines were found in the file. The partial line is ignored.

Processor Action: Processing terminates.

User Response: Correct the control statement.

N2O052E Statement ssssssss not recognized.

Explanation: The indicated keyword is not a valid control statement type.

Processor Action: Processing terminates. The statement in error is shown in the second
line of the error message.

User Response: Correct the control statement.

338 Application Testing Collection 1.5.0 User's Guide

 N2O056E � N2O060E

N2O056E oooooooo is not a valid operand for the kkkkkkkk keyword.

Explanation: The indicated operand is not valid for the indicated keyword.

Processor Action: Processing terminates. The statement in error is shown in the second
line of the error message.

User Response: Correct the control statement.

N2O060E Load and Object datasets can not both be specified within a set of
control cards.

Explanation: The object library control cards FROMOBJDSN and TOOBJDSN are mutually
exclusive with the load library control cards FROMLOADDSN and TOLOADDSN within a
given control data set.

Processor Action: Processing terminates. The statement at which the error was detected
is shown in the second line of the error message.

User Response: Ensure that only object library control cards or only load library control
cards are used within a single control data set.

 Appendix A. Problem Determination 339

 OCUS001E � OCUS010E

TARGETED SUMMARY: Targeted Summary (OCUSxxxx)

OCUS001E EXECIO read of dsn failed, RC= rc

Explanation: An error occurred while reading dsn. rc contains the return code from
EXECIO.

Action: Target file creation terminates.

User Response: Correct the error indicated by the return code and retry.

OCUS005E EXECIO write of output dataset failed, RC = rc

Explanation: A failure occurred while writing to the output data set. rc contains the return
code from the write.

Action: Target file creation terminates.

User Response: Correct the error indicated by the return code and retry.

OCUS006E Invalid statement in control file:

Explanation: An invalid statement was discovered in the targeted coverage control file. An
accompanying message indicates the invalid statement.

Action: Target file creation terminates.

User Response: Correct the control statement and retry.

OCUS008E procedure name is not a valid procedure name in the specified report
file

Explanation: The indicated procedure does not exist in the listing file.

Action: Target file creation terminates.

User Response: Specify the proper procedure name or listing name.

OCUS009E * is not a valid listing name when a variable name is specified

Explanation: You must specify a listing name if a variable name is specified.

Action: Target file creation terminates.

User Response: Specify the name of the listing where the variable is located.

OCUS010E Invalid control statement:

Explanation: An invalid statement was discovered in the targeted coverage control file. An
accompanying message indicates the load module, procedure, and so on containing the
invalid statement.

Action: Target file creation terminates.

User Response: Correct the control statement and retry.

340 Application Testing Collection 1.5.0 User's Guide

 OCUS017I � OCUS023E

| OCUS017I Reading target control dataset.

| Explanation: The target control data set is being read and processed.

| Action: Processing continues.

| User Response: None.

| OCUS018I Processing listing dsn .

| Explanation: The listing data set dsn is being read and processed.

| Action: Processing continues.

| User Response: None.

| OCUS019I Generating Targeted Summary Report

| Explanation: The targeted summary report is being generated.

| Action: Processing continues.

| User Response: None.

| OCUS020E DDname cannot be allocated. dsn may not exist.

| Explanation: The specified dsn could not be allocated to DDname.

| Action: Processing terminates.

| User Response: Ensure that the specified data set is accessible.

| OCUS021E DDname cannot be allocated to dsn .

| Explanation: The specified dsn could not be allocated to DDname.

| Action: Processing terminates.

| User Response: Ensure that the specified data set is accessible.

| OCUS022E DDname cannot be allocated.

| Explanation: The specified DDname could not be allocated.

| Action: Processing terminates.

| User Response: Contact your system programmer.

| OCUS023E Error detected in Summary. RC = rc

| Explanation: The summary report routine returned RC = rc.

| Action: Processing terminates.

| User Response: See the associated message(s) for more information.

 Appendix A. Problem Determination 341

 OCUS024W � OCUS027E

| OCUS024W Function messages issued. RC = rc

| Explanation: The function routine has issued messages and returned RC = rc.

| Action: See the associated messages.

| User Response: See the associated message(s) for more information. This message is
| issued since the associated messages appear in a separate SYSOUT data set.

| OCUS025W No statements targeted.

| Explanation: There were no statements targeted.

| Action: Processing terminates.

| User Response: Ensure that the control data set contains the appropriate TARGETVAR
| and/or TARGETSTMT entries.

| OCUS026E EXECIO write of dsn dataset failed, RC = rc .

| Explanation: A failure occurred while writing to the output data set dsn. rc contains the
| return code from the write.

| Action: Processing terminates.

| User Response: Correct the error indicated by the return code and retry.

| OCUS027E DD name dd1 found when DD dd2 was expected.

| Explanation: The DD name dd1 was found when dd2 was expected.

| Action: Processing terminates.

| User Response: Ensure that all required parameters were provided with the correct DD
| names and in the correct order.

342 Application Testing Collection 1.5.0 User's Guide

 PVR020E � PVR020E

VARIABLE REPORTS: Executing the JCL (PVRxxxx)

PVR020E Variable Report: Missing Parameter(s)

Explanation: No parameter for the VARDATA output file was specified.

Report Action: Variable report terminates.

User Response: Verify that the VARDATA parameter in the report JCL exists.

PVR022E Variable Report: Variable Data List File Parameter is Invalid.

Explanation: The parameter for the VARDATA file is incorrect.

Report Action: Variable Report terminates.

User Response: Verify that the VARDATA parameter in the report JCL is valid. Refer to
the User’s Guide for a list of the valid parameters for the VARDATA Variable Report.

PVR0100E Variable Report: Debug Table File Open Failure

Explanation: The input debug table file (DDNAME DBGTAB) could not be opened.

Report Action: Variable Report terminates.

User Response: Verify that the name supplied in the Variable Report JCL for the DBGTAB
file is valid and the file exists.

PVR0101E Variable Report: Variable ID List File Open Failure

Explanation: The output variable ID list file (DDNAME VARID) could not be opened.

Report Action: Variable Report terminates.

User Response: Verify that the name supplied in the report JCL for the VARID file is valid
and there are no JCL errors in its definition.

PVR0102E Variable Report: Variable Table File Open Failure

Explanation: The input variable data file (DDNAME VARTAB) could not be opened.

Report Action: Variable Report terminates.

User Response: Verify that the name supplied in the report JCL for the VARTAB file is
valid and the file exists.

 Appendix A. Problem Determination 343

 PVR0103E � PVR0103E

PVR0103E Variable Report: Variable Data List File Open Failure

Explanation: The output variable data list file (DDNAME VARDATA) could not be opened.

Report Action: Variable Report terminates.

User Response: Verify that the name supplied in the report JCL for the VARDATA file is
valid and there are no JCL errors in its definition.

PVR0104E Variable Report: Debug Table File is invalid

Explanation: The input debug table file is invalid (not a DBGTAB file or at the wrong
release level).

Report Action: Variable Report terminates.

User Response: Verify that the name supplied in the report JCL for the DBGTAB file is
valid and at the correct release level for the release you have installed (was not created by
an earlier UTA release that is not compatible with this release). Valid DBGTAB files have
VAR01 as the first five characters of the file.

PVR0105E Variable Report: Array Bounds for Reading DBGTAB Records Has
Been Exceeded.

Explanation: The number of DBGTAB records has exceeded the 10,000 array index limit.

Report Action: Variable Report Terminates.

User Response: Decrease the number of DBGTAB records per DBGTAB file to 10,000 or
fewer or contact ATC support.

PVR0106E Variable Report: Variable Table File is invalid

Explanation: The input variable data file is invalid (not a VARTAB file or at the wrong
release level).

Report Action: Variable Report terminates.

User Response: Verify that the name supplied in the report JCL for the VARTAB file is
valid and at the correct release level for the release you have installed (was not created by
an earlier UTA release that is not compatible with this release). A valid VARTAB file has
VTAB7 as the first five characters of the file.

PVR0200E Variable Report: Failure in Allocating Storage for Debug Table
Header Section.

Explanation: The allocation of storage for the debug table header failed.

Report Action: Variable Report terminates.

User Response: Check your system for storage allocation problems and check that the
DBGTAB file is valid.

344 Application Testing Collection 1.5.0 User's Guide

 PVR0201E � PVR0201E

PVR0201E Variable Report: Failure in Allocating Storage for Debug Table Char-
acter Data Section

Explanation: The allocation of storage for the debug table character data failed.

Report Action: Variable Report terminates.

User Response: Check your system for storage allocation problems and check that the
DBGTAB file is valid.

PVR0202E Variable Report: Failure in Allocating Storage for Debug Table State-
ment Records Section

Explanation: The allocation of storage for the debug table statement records failed.

Report Action: Variable Report terminates.

User Response: Check your system for storage allocation problems and check that the
DBGTAB file is valid.

PVR0203E Variable Report: Failure in Allocating Storage for Debug Table Vari-
able Records Section

Explanation: The allocation of storage for the debug table variable records failed.

Report Action: Variable Report terminates.

User Response: Check your system for storage allocation problems and check that the
DBGTAB file is valid.

PVR0204E Variable Report: Failure in Allocating Storage for Variable Table
Records Section

Explanation: The allocation of storage for the variable table records failed.

Report Action: Variable Report terminates.

User Response: Check your system for storage allocation problems and check that the
VARTAB file is valid.

PVR0300W Variable Report: Buffer Overflow—A Loss of Data May Have
Occurred.

Explanation: Data was read from the input file faster than it could be written to the
VARTAB file.

Report Action: Warning messages are generated at the beginning of VARDATA file and
on lines where data was lost.

User Response: Scale down the amount of your variable data or contact ATC support.

 Appendix A. Problem Determination 345

 RKEY001E � RKEY005E

DISTILLATION: Read the Keylist (RKEYxxxx)

RKEY001E Required operand omitted

Explanation: An operand required to run Distillation has not been specified.

Distillation Action: Distillation terminates.

User Response: Specify the omitted operand and retry.

RKEY002E Error rc from LISTDSI for dsn

Explanation: An error has occurred while obtaining data set information for dsn. rc contains
the return code from LISTDSI.

Distillation Action: Distillation terminates.

User Response: Correct the error indicated by the return code and retry.

RKEY003E Error rc allocating dsn like model dsn

Explanation: An error has occurred while allocating dsn like the model data set. rc contains
the return code from allocate.

Distillation Action: Distillation terminates.

User Response: Correct the error indicated by the return code and retry.

RKEY004E New Master DCB not identical to Master DCB

Explanation: The DCBs for the original data file and the distilled data file do not match.

Distillation Action: Distillation terminates.

User Response: Reallocate the data set to contain the distilled data with the same DCB
attributes as the original data set.

RKEY005E Master New file volser specified without Unit (or vice versa)

Explanation: You have specified a UNIT or VOLSER, but not both, for either the original
data file or the distilled data file.

Distillation Action: Distillation terminates.

User Response: If a data set is not cataloged, specify both a UNIT and VOLSER parame-
ters.

346 Application Testing Collection 1.5.0 User's Guide

 RPT0301E � RPT0301E

REPORT: Executing the JCL (RPT03xx)
CA may issue the following messages while executing the report JCL:

RPT0301E REPORT: Error - No procedures or entry name found in listing.

Explanation: The CA report program (REPORT) did not find an entry name in the listing
being processed. For COBOL for MVS & VM and VS COBOL II, REPORT expects to find
an entname DS ðH instruction in the assembler listing section of the listing, where entname is
the name used during setup to identify this PA. For OS/VS COBOL, the name of the first
PROGRAM-ID is used (extracted from the title line). For PL/I, Report expects to find
Procedure entname in the assembler listing section of the listing.

Report Action: Report terminates.

User Response: Verify that you are using the BRKOUT file of test case coverage results
with the listings that go with it.

RPT0302E REPORT: Error - Entry name: 'ename' not found in BRKTAB file

Explanation: The entry name of the listing being processed was not found in the BRKTAB
table. For COBOL, the entry name is from the PROGRAM-ID paragraph. For PL/I, the entry
name is the name of the external procedure.

Report Action: Report terminates.

User Response: Verify that the listing you are trying to process is one that has coverage
data in the BRKTAB file being used. You should be able to find the first CSECT name of
your listing in the BRKOUT file.

RPT0303E REPORT: Error - Entry name: 'ename' not found in BRKOUT file

Explanation: The entry name of the listing being processed was not found in the BRKOUT
table. For COBOL, the entry name is from the PROGRAM-ID paragraph. For PL/I, the entry
name is the name of the external procedure.

Report Action: Report terminates.

User Response: Verify that the listing you are trying to process is one that has coverage
data in the BRKOUT file being used. You should be able to find the first CSECT name of
your listing in the BRKOUT file.

RPT0305E REPORT: Error - No space for Bit map

Explanation: The CA Report program (REPORT) received an error code from the oper-
ating system command used to request storage for the Bit map.

Report Action: Report terminates.

User Response: Increase the region size on your job card for this step. CA obtains job
card information from the site defaults file.

 Appendix A. Problem Determination 347

 RPT0307E � RPT0307E

RPT0307E REPORT: Error - no space for BRKTAB table

Explanation: The CA report program (REPORT) received an error code from the operating
system command used to request storage for the BRKOUT table. For storage requirements,
see Appendix B, “ATC Requirements and Resources” on page 383.

Report Action: Report terminates.

User Response: Increase the region size on your job card for the report step. CA obtains
job card information from the site defaults file.

RPT0310E REPORT: Error - Illegal listing input file

Explanation: Report detected something wrong with the assembler listing. Report expects
a standard Assembler H or High Level Assembler listing format.

Report Action: Report terminates.

User Response: Check that you are using a standard Assembler H or High Level Assem-
bler listing.

RPT0330E REPORT: Error - Invalid BRKTAB file

Explanation: The input BRKTAB file does not contain valid BRKTAB data.

Report Action: Report terminates.

User Response: Ensure that SETUP has completed creating the BRKTAB file successfully.
If it has, contact ATC support, else correct any errors that SETUP issued and rerun the job.

RPT0331E REPORT: Error - Invalid BRKOUT file

Explanation: The input BRKOUT file does not contain valid BRKOUT data.

Report Action: Report terminates.

User Response: Ensure that CASTOP or CADATA has been issued in order to create the
BRKOUT file. If it has, contact ATC support.

RPT0392E REPORT: Error - Invalid file name file_name cannot be opened

Explanation: The file file_name cannot be opened.

Report Action: Report terminates.

User Response: Ensure that the DDNAME is specified in the JCL, that the file it points to
exists, is available to the Report job, and that the job that created the file completed suc-
cessfully.

348 Application Testing Collection 1.5.0 User's Guide

 RPT0393E � RPT0393E

RPT0393E REPORT: Invalid invocation.

Explanation: One or more of the parameters passed to Report are invalid.

Report Action: Report terminates.

User Response: Refer to the User's Guide for a list of the valid parameters for Report.

 Appendix A. Problem Determination 349

 SAAC001E � SAAC006I

SAA: Source Audit Assistant (SAACxxxx)

SAAC001E Old dataset dsn not found.

Explanation: The original source listing cannot be found.

SAA Action: Source Audit Assistant terminates.

User Response: Make sure the original source listing is accessible.

SAAC002E New dataset dsn not found.

Explanation: The changed source listing cannot be found.

SAA Action: Source Audit Assistant terminates.

User Response: Make sure the modified source listing is accessible.

SAAC003I New and old files are being compared

Explanation: The original source listing and the modified source listing are being com-
pared.

SAA Action: Source Audit Assistant continues.

User Response: None.

SAAC004I Comparison results are being filtered

Explanation: The comparison results are being modified based on the filter criteria you
specified (i.e. comment lines are being removed, etc.)

SAA Action: Source Audit Assistant continues.

User Response: None.

SAAC005I Reformatted lines are being removed

Explanation: Lines that did not changed except for their indentation are being removed
from the comparison.

SAA Action: Source Audit Assistant continues.

User Response: None.

SAAC006I New and old files are being analyzed

Explanation: The original source and the modified source are being analyzed.

SAA Action: Source Audit Assistant continues.

User Response: None.

350 Application Testing Collection 1.5.0 User's Guide

 SAAC007I � SAAC012W

SAAC007I Comment lines are being filtered

Explanation: Comment lines are being removed from the comparison.

SAA Action: Source Audit Assistant continues.

User Response: None.

SAAC008I Declare lines are being filtered

Explanation: Data declarations lines are being removed from the comparison.

SAA Action: Source Audit Assistant continues.

User Response: None.

SAAC009I Output being formatted

Explanation: Comparison output is being formatted.

SAA Action: Source Audit Assistant continues.

User Response: None.

SAAC010I SAA Comparison done RC = rc

Explanation: The Source Audit Assistant has completed. rc indicates the success of the
comparison.

SAA Action: Source Audit Assistant terminates.

User Response: None.

SAAC011I data

Explanation: This message is produced in association with another message and contains
data pointed to by the previous message.

SAA Action: Source Audit Assistant continues.

User Response: See the action described by the associated message.

SAAC012W data

Explanation: This message is produced in association with another message and contains
data pointed to by the previous message.

SAA Action: Source Audit Assistant continues.

User Response: See the action described by the associated message.

 Appendix A. Problem Determination 351

 SAAC013W � SAAC015I

SAAC013W data

Explanation: This message is produced in association with another message and contains
data pointed to by the previous message.

SAA Action: Source Audit Assistant terminates.

User Response: See the action described by the associated message.

SAAC014S data

Explanation: This message is produced in association with another message and contains
data pointed to by the previous message.

SAA Action: Source Audit Assistant terminates.

User Response: See the action described by the associated message.

SAAC015I Listing files being stripped.

Explanation: This message is produced when source code is being stripped out of listing
files for subsequent comparison by SAA.

SAA Action: Source Audit Assistant continues.

User Response: None.

352 Application Testing Collection 1.5.0 User's Guide

 SAAF001E � SAAF007E

SAA POSTPROCESSOR: Source Audit Assistant Change Validation
Report (SAAFxxxx)

SAAF001E Output report file Dsname not found

Explanation: The data set to contain the SAA change validation report cannot be found.

Action: SAA postprocessor terminates.

User Response: Make sure the report data set is allocated and accessible.

SAAF002I SAA change validation report written to dsn

Explanation: The Source Audit Assistant change validation report has been written.

Action: SAA postprocessor terminates.

User Response: None.

SAAF003I SAA change validation report JCL has been created

Explanation: The change validation report JCL has been created in the JCL library.

Action: SAA postprocessor terminates.

User Response: None.

SAAF005E Error rc from EXECIO reading dsn

Explanation: The input data set dsn could not be read. rc contains the return code from
EXECIO.

Action: SAA postprocessor terminates.

User Response: Ensure the input data set is in the proper format and is accessible.

SAAF006E dsn was not generated from a COBOL source file

Explanation: The specified data set is not a COBOL source listing.

Action: SAA postprocessor terminates.

User Response: Specify the proper source listing data set and retry.

SAAF007E Error rc from EXECIO writing dsn

Explanation: The output data set dsn could not be written. rc contains the return code from
EXECIO.

Action: SAA postprocessor terminates.

User Response: Ensure the output data set is accessible.

 Appendix A. Problem Determination 353

 SAAF008E � SAAF009E

SAAF008E Invalid DBCS string str on line num of the seed list data set.

Explanation: An invalid DBCS string str was found on line num in the seed list data set
with DBCS scanning enabled.

Action: The input line is discarded and processing continues.

User Response: Ensure that any DBCS in the seed list complies with the rules for gener-
ating DBCS as required by the compilers, REXX, and so on. For information about DBCS
support, see Appendix C, “DBCS Support” on page 391.

SAAF009E Invalid DBCS string in the compare data set at input str.

Explanation: An invalid DBCS string str was found in the compare data set.

Action: The input is discarded and processing continues.

User Response: Ensure that DBCS scanning is only enabled if the source was compiled
with the DBCS (COBOL) or GRAPHIC (PL/I) compiler option and it compiled without errors.

354 Application Testing Collection 1.5.0 User's Guide

 SAAR001E � SAAR007E

SAA EXECUTION: Source Audit Assistant Execution (SAARxxxx)

SAAR001E Old dataset dsn not found.

Explanation: The original source listing cannot be found.

SAA Action: Source Audit Assistant terminates.

User Response: Make sure the original source listing is accessible.

SAAR002E New dataset dsn not found.

Explanation: The changed source listing cannot be found.

SAA Action: Source Audit Assistant terminates.

User Response: Make sure the modified source listing is accessible.

SAAR003E A member name or * must be specified for dsn

Explanation: dsn is a partitioned data set so a member name or * (that is, ALL) must be
specified.

SAA Action: Source Audit Assistant terminates.

User Response: Specify a member name or *.

SAAR005E Error writing PDS header RC = rc

Explanation: An error occurred when writing the header for a partitioned data set. rc con-
tains the return code from the write.

SAA Action: Source Audit Assistant terminates.

User Response: Correct the error indicated by the return code and retry.

SAAR006I Comparing member member name

Explanation: SAA is currently comparing the specified member in the old and new data
sets.

SAA Action: Source Audit Assistant continues.

User Response: None.

SAAR007E Invalid new and old file DSORG combination

Explanation: The DSORG for the original source listing data set and the modified source
listing data set must be the same.

SAA Action: Source Audit Assistant terminates.

User Response: Ensure both data sets have the same DSORG or specify a member name
if one is a partitioned data set.

 Appendix A. Problem Determination 355

 SAAR008I � SAAR013E

SAAR008I Comparing Partitioned Datasets

| Explanation: The original source listing data set and the modified source listing data set
| are being compared.

SAA Action: Source Audit Assistant continues.

User Response: None.

SAAR009I Error writing Compare Column Dataset

Explanation: An error occurred when writing output to the yourid.TEMP.SAA.CMP.COL
data set.

SAA Action: Source Audit Assistant continues.

User Response: None.

SAAR010E A member name must be specified.

Explanation: The SAA Output Compare File fields must include a member name if the
compare file is a PDS (partitioned data set) and the New Source File is a physical sequential
file.

SAA Action: Source Audit Assistant returns to the SAA Background Execution Parameters

panel.

User Response: Provide a member name for the SAA Output Compare File.

SAAR011E Member, pattern, or * required.

Explanation: If the New Source File is a PDS (partitioned data set), then a member name,
a matching pattern (for example, COB*), or an * is required.

SAA Action: Returns to the SAA Background Execution Parameters panel.

User Response: Provide a member name, a matching pattern, or an * for the New Source

File as a member name.

SAAR012E No new members found in new data.

Explanation: SAA did not find any members in the new source file.

SAA Action: Returns to the SAA Background Execution Parameters panel.

User Response: Determine and enter the correct data set name or names.

SAAR013E No pattern matches found.

Explanation: The pattern given in the new source file and/or old source file resulted in no
member name matches.

SAA Action: Returns to the SAA Background Execution Parameters panel.

User Response: Change the pattern to be used to a specific member name (in both fields)
or to an *.

356 Application Testing Collection 1.5.0 User's Guide

 SAAR014E � SAAR018E

SAAR014E Invalid length for member name

Explanation: The length of the member name is greater than 8 characters.

SAA Action: Source Audit Assistant returns to the SAA Foreground Execution Parameters

panel or the SAA Background Execution Parameters panel.

User Response: Check the member name for spelling errors, make any necessary cor-
rections, and reenter the information.

SAAR015E Compare not partitioned

Explanation: A member name was specified with the Compare File Dsn that is physical
sequential instead of partitioned data set organization.

SAA Action: Source Audit Assistant returns to the SAA Background Execution Parameters

panel.

User Response: Check the spelling of the data set name and retry.

SAAR016E Global file-name character not allowed

Explanation: Global file-name character (*) for member name not allowed for the SAA
Output Compare File on the SAA Background Execution Parameters panel.

SAA Action: Source Audit Assistant returns to the SAA Background Execution Parameters

panel.

User Response: Enter a member name or eliminate the global file-name character from
the SAA Output Compare File data set name and retry.

SAAR017E Compare File must be SEQ

Explanation: The SAA Output Compare File used for SAA Foreground processing must be
a physical sequential (PS) data set.

SAA Action: Source Audit Assistant returns to the SAA Foreground Execution Parameters

panel.

User Response: Enter the name of a physical sequential data set for the SAA Output
Compare File data set name and retry.

SAAR018E Member name not allowed

Explanation: The SAA Output Compare File used for SAA Foreground processing will be a
physical sequential (PS) data set.

SAA Action: Source Audit Assistant returns to the SAA Foreground Execution Parameters

panel.

User Response: Remove the member name from the SAA Output Compare File data set
name and retry.

 Appendix A. Problem Determination 357

 SAAR019E � SAAR020E

SAAR019E Log File must be SEQ

Explanation: The SAA Output Log File used for SAA Foreground processing must be a
physical sequential (PS) data set.

SAA Action: Source Audit Assistant returns to the SAA Foreground Execution Parameters

panel.

User Response: Enter the name of a physical sequential data set for the SAA Output Log
File data set name and retry.

SAAR020E Member name not allowed

Explanation: The SAA Output Log File used for SAA Foreground processing will be a
physical sequential (PS) data set.

SAA Action: Source Audit Assistant returns to the SAA Foreground Execution Parameters

panel.

User Response: Remove the member name from the SAA Output Log File data set name
and retry.

358 Application Testing Collection 1.5.0 User's Guide

 SP60101E � SP60101E

SETUP: Executing the JCL (SP601xx)
The setup program ends with a return code corresponding to the number of the
message. For example, if message SP60101E is issued, return code ð1ð1 is dis-
played.

The following messages may be issued while executing the setup JCL:

SP60101E SETUP: Error - Illegal listing type in CA control file

Explanation: The Listing type value (first field) in the CACTL was neither B nor P. This
character is passed to SETUP as parameter 1.

Setup Action: Setup terminates.

User Response: Correct the value. Rerun setup.

SP60108E SETUP: Error - No BRKTAB written. Too few bpoints.

Explanation: No BRKTAB was written because SETUP could not find assembler
instructions at which to insert breakpoints.

Setup Action: Setup terminates.

User Response: Check the input listing to SETUP and verify that it is correct, including the
assembler statements.

SP60109E SETUP: Error - Invalid PA type specified

Explanation: The PA type passed to SETUP is invalid. For COBOL and PL/I, it must be ð.

Setup Action: Setup terminates.

User Response: Correct the PA type in the JCL.

SP60111E SETUP: Illegal assembler listing

Explanation: The assembler listing is not valid.

Setup Action: Setup terminates.

User Response: Check that the assembler listing passed to setup is a valid Assembler H
or High Level Assembler listing.

SP60114E SETUP: Error - DBGTAB file not valid.

Explanation: The DBGTAB file does not contain valid data.

Setup Action: Setup terminates.

User Response: Ensure that a VAREAD step was run successfully to create the DBGTAB
file. If it was, contact ATC support, else correct any errors that VAREAD issued and rerun
the job.

 Appendix A. Problem Determination 359

 SP60115E � SP60115E

SP60115E SETUP: Error allocating storage for DBGTAB file statements.

Explanation: SETUP could not acquire enough storage to process the DBGTAB file state-
ments.

Setup Action: Setup terminates.

User Response: Specify a larger REGION size for the SETUP job.

SP60116E SETUP: Error allocating storage for DBGTAB file variables.

Explanation: SETUP could not acquire enough storage to process the DBGTAB file vari-
ables.

Setup Action: Setup terminates.

User Response: Specify a larger REGION size for the SETUP job.

SP60117E SETUP: Error - Invalid statement read type - must be R/C/N.

Explanation: A DBGTAB record contains an invalid statement read type.

Setup Action: Setup terminates.

User Response: Ensure that a VAREAD step was run successfully to create the DBGTAB
file. If it was, contact ATC support, else correct any errors that VAREAD issued and rerun
the job.

SP60118E SETUP: Error allocating storage for DBGTAB character data.

Explanation: SETUP could not acquire enough storage to process the DBGTAB character
data.

Setup Action: Setup terminates.

User Response: Specify a larger REGION size for the SETUP job.

SP60119E SETUP: Error - Cannot find requested listing in DBGTAB.

Explanation: No DBGTAB entry was found for the compiler listing being processed.

Setup Action: Setup terminates.

User Response: Ensure that a VAREAD step was run successfully to create the DBGTAB
file. If it was, contact ATC support, else correct any errors that VAREAD issued and rerun
the job.

360 Application Testing Collection 1.5.0 User's Guide

 SP60120E � SP60120E

SP60120E SETUP: Error - Cannot find assembler line that reads TGT.

Explanation: For UTA and DA, SETUP reads the assembler listing for the statement where
the TGT register is loaded. This line was not found.

Setup Action: Setup terminates.

User Response: Verify that you have passed a correct listing to SETUP, that includes the
assembler listing. If so, contact ATC support.

 Appendix A. Problem Determination 361

 SUM0301E � SUM0301E

SUMMARY: Executing the JCL (SUM0xxxx)
CA may issue the following messages while executing the summary JCL:

SUM0301E SUMMARY: Error - no space for BRKTAB file

Explanation: The CA Summary program (SUMMARY) received an error code from the
operating system command used to request storage for the BRKTAB file. For storage
requirements, see Appendix B, “ATC Requirements and Resources” on page 383.

Summary Action: Summary terminates.

User Response: Increase the region size on your job card for this step. CA obtains job
card information from the site defaults file.

SUM0302E SUMMARY: Error - EOF of BRKTAB before finding the testid test
case

Explanation: The testid test case was not found in the BRKTAB file provided.

Summary Action: Summary terminates.

User Response: Make sure that the BRKTAB file in the BRKTAB DD statement of the JCL
is the same one that was used when running the monitor session that created the BRKOUT
file in the BRKOUT DD statement. If you have run Setup to create a new BRKTAB file since
creating the BRKOUT file, the BRKOUT and the BRKTAB files will not match.

SUM0305E SUMMARY: Error - No space for BP table or Bit map

Explanation: The CA Summary program (SUMMARY) received an error code from the
operating system command used to request storage for the BP table or Bit map.

Summary Action: Summary terminates.

User Response: Increase the region size on your job card for this step. CA obtains job
card information from the site defaults file.

SUM0330E SUMMARY: Error - Invalid BRKTAB file

Explanation: The BRKTAB file is not valid.

Summary Action: Summary terminates.

User Response: Make sure you are passing the correct BRKTAB file in the BRKTAB DD
statement of the JCL.

362 Application Testing Collection 1.5.0 User's Guide

 SUM0331E � SUM0331E

SUM0331E SUMMARY: Error - Invalid BRKOUT file

Explanation: The BRKOUT file is not valid.

Summary Action: Summary terminates.

User Response: Make sure you are passing the correct BRKOUT file in the BRKOUT DD
statement of the JCL.

SUM0405E SUMMARY: Invalid invocation.

Explanation: The parameter passed to Summary is invalid.

Summary Action: Summary terminates.

User Response: Refer to “SUMMARY” on page 104 for a list of the valid parameters.

SUM0406E SUMMARY: Error - Invalid file name file_name cannot be opened

Explanation: The file file_name cannot be opened.

Summary Action: Summary terminates.

User Response: Ensure that the DDNAME is specified in the JCL, that the file it points to
exists, is available to the Report job, and that the job that created the file completed suc-
cessfully.

 Appendix A. Problem Determination 363

 VAR0010W � VAR0013W

VAREAD: Extracting Variable Information from Listing (VAR0xxx)
| DA, UTA, and targeted summary may issue the following messages while executing
| the VAREAD program:

VAR0010W VAREAD: Warning - Level 88 flag variables cannot be monitored.
 Variable: str

Explanation: The level 88 flag variable str was listed to be monitored. These flags cannot
be monitored.

Action: The variable is discarded.

User Response: Ensure that the variable was specified correctly.

VAR0011W VAREAD: Warning - Invalid control character found in internal
control card.

At input: str

Explanation: The first character in the internal control card, str, is not a valid control char-
acter.

Action: Output message. The line is ignored.

User Response: Check for errors from the CVTCTL step of Setup. Look for errors in or
around fields in the control file that match elements in str.

Note: The control file is converted by CVTCTL into internal control cards. The control
cards may or may not contain data in a recognizable format, but will be provided for support
purposes.

VAR0012W VAREAD: Warning - Internal control card sequence error.
At Input: str

Explanation: The internal control card str is not valid at this point in the internal control
card sequence.

Action: Output message. The entry is ignored.

User Response: Check for errors from the CVTCTL step of Setup. Look for errors in or
around fields in the control file that match elements in str.

VAR0013W VAREAD: Warning - No data found in internal control card.
At Input: str

Explanation: No data fields were found in the internal control card str.

Action: Output message. The entry is ignored.

User Response: Check for errors from the CVTCTL step of Setup.

364 Application Testing Collection 1.5.0 User's Guide

 VAR0014W � VAR0018W

VAR0014W VAREAD: Warning - Invalid variable level number in internal control
card.

At Input: str

Explanation: The variable level number field on internal control card str was either more
than 2 numeric digits or was an invalid alphabetic value.

Action: Output message. If numeric, truncate to 2 digits, otherwise the line is ignored. If
ignored, this will typically be followed by Variable not found messages.

User Response: Check for errors from the CVTCTL step of Setup. Check for control file
errors in any variable entries that contain a level with the variable name found in str.

VAR0015W VAREAD: Warning - Missing data field in internal control card.
At Input: str

Explanation: One or more required keyword fields were missing in the control file.

Action: Output message. The control card is ignored.

User Response: Check for errors from the CVTCTL step of Setup. Include all required
fields in the control file.

VAR0016W VAREAD: Warning - Invalid variable residence entry in internal
control card.

At Input: str

Explanation: In an internal control card, an invalid value was found for the variable resi-
dence. This relates to the VARIABLE and FILE keywords of the coverage statement in the
control file. This error should only occur as a side effect of another problem.

Action: Output message. The control card is ignored, but processing continues.

User Response: Check for errors from the CVTCTL step of Setup.

VAR0017W VAREAD: Warning - Invalid variable type entry in internal control
card.

At Input: str

Explanation: In an internal control card, an invalid value was found for the variable type
field. This relates to the CHAR keyword of the coverage statement in the control file. This
error should only occur as a side effect of another problem.

Action: Output message. The control card is ignored, but processing continues.

User Response: Check for errors from the CVTCTL step of Setup.

VAR0018W VAREAD: Warning - Invalid variable offset entry in control file.
At Input: str

Explanation: A nonnumeric character was found in the operand of either the OFFSET or
POSITION keywords of a coverage statement, or the KEYOFFSET, or KEYPOSITION
keywords in a file statement in the control file.

Action: Output message. The entry is ignored, but the processing continues.

User Response: Check for errors from the CVTCTL step of Setup. Correct the control file
entry.

 Appendix A. Problem Determination 365

 VAR0019W � VAR0023I

VAR0019W VAREAD: Warning - Invalid variable length entry in internal control
card.

At Input: str

Explanation: A nonnumeric character was found in the operand str to the LENGTH or
KEYLEN keyword in the control file.

Action: Output message. The entry is ignored, but processing continues.

User Response: Check for errors from the CVTCTL step of Setup. Correct the control file
entry.

VAR0020W VAREAD: Warning - Invalid variable read times entry in internal
control card.

At Input: str

Explanation: A nonnumeric character was found in the operand str of the READEVERY
keyword in the control file.

Action: Output message. The entry is ignored, but processing continues.

User Response: Check for errors from the CVTCTL step of Setup. Correct the control file
entry.

VAR0021W VAREAD: Warning - Invalid variable read max entry in internal
control card.

At Input: str

Explanation: A nonnumeric character was found in the operand str of the MAXSAVE
keyword in the control file.

Action: Output message. The statement is ignored, but processing continues.

User Response: Check for errors from the CVTCTL step of Setup. Correct the control file
entry.

VAR0022W VAREAD: Warning - Invalid statement list entry in internal control
card.

At Input: str

Explanation: A nonnumeric entry was found as the operand to the STMTS keyword in the
control file.

Action: Output message. The statement is ignored, but processing continues.

User Response: Check for errors from the CVTCTL step of Setup. Correct the control file
entry.

VAR0023I VAREAD: Informational - An unrecognized base locator type was
found in the listing.

Base Locator: str

Explanation: An unknown base locator type was found in the listing file.

Action: This message is issued.

User Response: None required.

366 Application Testing Collection 1.5.0 User's Guide

 VAR0025W � VAR0029W

VAR0025W VAREAD: Error - Read exceeds the variable length.
Read length truncated to variable length.

 Variable: str1

Explanation: The combined read length and offset given in the control file for the variable
str1 exceeds the actual length of the variable as read from the listing file data map.

Action: Reset the read length to the actual variable data length less the given offset.

User Response: Ensure that the variable read length and offset were correctly specified in
the control file.

VAR0026W VAREAD: Warning - Read exceeds the maximum length supported.
Read length truncated to nnnn.

 Variable: str1

Explanation: The read length specified for the variable str1 exceeds the maximum sup-
ported read length of nnnn.

Action: Reset the read length to nnnn.

User Response: Ensure that the variable read length and offset were correctly specified in
the control file. If the desired read length exceeds the supported maximum, use multiple
reads with appropriate offsets.

VAR0027W VAREAD: Warning - Offset exceeds the variable data length.
Offset set to 0.

 Variable: str1

Explanation: The read offset specified for the variable str1 exceeds the actual data length
of variable str1.

Action: Reset the offset to 0.

User Response: Ensure that the variable read offset is correctly specified in the control file.

VAR0028W VAREAD: Warning - Invalid wildcard character found in control file.
 Variable: str

Explanation: The wildcard character * was found in an invalid location in the control file,
associated with the variable str.

Action: Output message and attempt to process normally.

User Response: Check for errors from the CVTCTL step of Setup. Edit the control file to
remove or correct the wildcard usage.

VAR0029W VAREAD: Warning - Failed to find a variable in the listing file.
Variable Name: var-name

Explanation: The variable var-name was not found in the listing file.

Action: Output message and continue with the next variable.

User Response: Edit the control file to verify that the variable name is spelled correctly. If
there are multiple programs in the listing, also check that the correct program is being search
for the given variable.

 Appendix A. Problem Determination 367

 VAR0030I � VAR0034W

VAR0030I VAREAD: Informational - No statements were found for a variable.
Variable Name: str1
Program ID: str2

Explanation: The variable str1 in the program str2 was not accessed on any statements
within the specified search.

Action: The variable is discarded.

User Response: Edit the control file to ensure that the variable was specified in the form
desired. Try using the FULL option for the variable statement list. The variable may be
unused.

VAR0031W VAREAD: Warning - Unknown line format in listing file data map.
 Line: str

Explanation: The line str is not a recognized format for a listing file data map line.

Action: Ignore the line and continue.

User Response: Contact ATC support.

VAR0032W VAREAD: Warning - Invalid action entry in internal control card.
 At Input: str

Explanation: An invalid action key was found in an internal control card. This error should
only occur as a side effect of another problem.

Action: Output message. The control card is ignored, but processing continues.

User Response: Check for errors from the CVTCTL step of setup.

VAR0033W VAREAD: Warning - Invalid sign entry in internal control card.
 At Input: str

Explanation: An invalid sign value was found in an internal control card. This error should
only occur as a side effect of another problem.

Action: Output message. The control card is ignored, but processing continues.

User Response: Check for errors from the CVTCTL step of setup.

VAR0034W VAREAD: Warning - Invalid value entry in internal control card.
 At Input: str

Explanation: A nonnumeric value was found in an internal control card where a numeric
value was expected. This error should only occur as a side effect of another problem.

Action: Output message. The control card is ignored, but processing continues.

User Response: Check for errors from the CVTCTL step of setup.

368 Application Testing Collection 1.5.0 User's Guide

 VAR0050W � VAR0060W

VAR0050W VAREAD: Warning - Program name not found in listing.
File Name: str1

Explanation: The program name str1 was not found in the listing file.

Action: Output message.

User Response: Ensure that the program name is entered under the correct listing file in
the control file, and that it is spelled correctly.

| VAR0051W VAREAD: Warning - Targeted statement code is not in executable
| code.
| In listing: list

| Explanation: Statement number num was targeted in listing list, but is not within execut-
| able code. The statement cannot be resolved to an executable statement.

| Action: The statement is discarded and processing continues.

| User Response: Ensure that only executable statements are targeted. See the description
| of the TARGETSTMT control statement in the “Target Control File” on page 106 of this doc-
| ument for the rules for determining statement numbers.

| VAR0052W VAREAD: Warning - Targeted statement(s) was resolved to different
| executable statement(s).
| In listing: list
| Statement(s): stmts

| Explanation: One or more statement numbers was targeted in listing list, but is not an
| executable statement. In each pairing in the statements list the first number was given, but
| was not an executable statement. The second is the statement number actually used in gen-
| erating the targeted summary report.

| Action: The second statement of each pair is used in place of the first.
| Processing continues.

| User Response: Ensure that only executable statements are targeted. See the description
| of the TARGETSTMT control statement in the “Target Control File” on page 106 of this doc-
| ument for the rules for determining statement numbers.

VAR0060W VAREAD: Warning - Key gathering and variable monitoring detected
in the same run

Explanation: Keys from file reads (DA) are being read in the same run. as variables are
being monitored (UTA). The values read from the keys and variables will be mingled in the
output reports and key lists. You must separate these if you want to do distillation.

Action: This message is issued.

User Response: Create two control files, one for DA and the other for UTA, and then run
DA and UTA as separate jobs.

 Appendix A. Problem Determination 369

 VAR0061E � VAR0107E

| VAR0061E VAREAD: Error - UTA or DA commands mixed with Targeted Cov-
| erage commands.

| Explanation: UTA or DA commands were mixed with targeted coverage commands in the
| same run.

| Action: The VAREAD program terminates.

| User Response: Check for an invalid program invocation. Contact ATC support.

VAR0100E VAREAD: Error - Control file open failure.

Explanation: The program was unable to open the control file.

Action: Output message and terminate.

User Response: Ensure that the file name and path were correctly specified, and that the
file exists.

VAR0101E VAREAD: Error - Listing file open failure.

Explanation: The program was unable to open the listing file.

Action: Output message and terminate.

User Response: Ensure that the file name and path were correctly specified, and that the
file exists.

VAR0102E VAREAD: Error - DBGTAB file open failure.

Explanation: The program was unable to open the DBGTAB file.

Action: Output message and terminate.

User Response: Ensure that the file name and path were correctly specified, and that the
file exists.

VAR0104E VAREAD: Error - Invalid listing file.

Explanation: The listing file passed to the VAREAD program could not be identified as a
valid listing file for any supported language or compiler.

Action: The VAREAD program terminates.

User Response: Ensure that the file is a valid listing file from a supported compiler, and
that the correct compiler options were specified. For a list of compiler options, see “Setup”
on page 231.

VAR0107E VAREAD: Error - Memory allocation failure for statement record.

Explanation: A request for a memory allocation for a statement record failed.

Action: Output message and terminate.

User Response: Increase the region size on your job card for the setup step.

370 Application Testing Collection 1.5.0 User's Guide

 VAR0108E � VAR0150E

VAR0108E VAREAD: Error - Memory allocation for variable record failed.

Explanation: A request for a memory allocation for a variable record failed.

Action: Output message and terminate.

User Response: Increase the region size on your job card for the setup step.

VAR0120E VAREAD: Error - No Data Cross-reference found in the compiler
listing.

Explanation: No data cross-reference was found in the compiler listing file.

Action: Output message and terminate.

User Response: Ensure that the compiler option to generate a cross-reference was used
for the compile.

VAR0121E VAREAD: Error - No Data Map section found in the compiler listing.

Explanation: No data map section was found in the compiler listing file.

Action: Output message and terminate.

User Response: Ensure that the compiler option to generate the data map was used for
the compile.

VAR0122E VAREAD: Error - No assembler code section found in the compiler
listing.

Explanation: No assembler code section was found in the compiler listing file.

Action: Output message and terminate.

User Response: Ensure that the compiler option to include pseudo-assembler code in the
listing was used for the compile.

VAR0123E VAREAD: Error - No Table of Offsets found in the compiler listing.

Explanation: The listing section labeled “TABLES OF OFFSETS AND STATEMENT
NUMBERS” was not found. The OFFSET compiler option is required to produce this table.

Action: The VAREAD program terminates.

User Response: Ensure that you specify the OFFSET option when you compile.

VAR0150E VAREAD: Error - Listing file name argument required.

Explanation: The listing file name is a required parameter for this program.

Action: Output message and terminate.

User Response: Include the listing file name as a parameter exactly as it appears in the
control file.

 Appendix A. Problem Determination 371

 VAR0151E � VAR0165E

VAR0151E VAREAD: Error - No entry found in control file for specified listing.
File Name: str1

Explanation: The listing file name str1 was not found in the control file.

Action: Output message and terminate.

User Response: Include the listing file name as a parameter exactly as it appears in the
control file.

VAR0157E VAREAD: Error - A fully qualified variable name was too long for the
buffer.

Variable Name: str1

Explanation: The fully qualified variable name str1 was too long for the program buffer.

Action: Output message and terminate.

User Response: Check that an R, C, or N line follows each set of type L lines which fully
qualify a variable in the control file.

Note: The buffer is longer than the longest valid COBOL variable name.

VAR0160E VAREAD: Error - Internal error 160.

Explanation: An internal error has caused a program failure.

Action: Output message and terminate.

User Response: Contact ATC support.

VAR0165E VAREAD: Error - Invalid internal control card.

Explanation: An invalid internal control card has caused a program failure, or you coded a
control card for a tool that you are not licensed for.

Action: Output message and terminate.

User Response: Ensure that all parameters in the control file are specified correctly, or
remove the control card that specifies the unlicensed function from your control cards.

372 Application Testing Collection 1.5.0 User's Guide

 WVA5010E � WVA5104E

EXECUTE: Buffer Monitor (WVAxxxx)
The following messages may be issued while executing the buffer monitor:

WVA5010E Error writing VARTAB file

Explanation: A user tried to stop a session, but the VARTAB file of variable read data
could not be written.

Execute Action: VARMON3, the program that writes full buffers of variable data, termi-
nates.

User Response: Check that the VARTAB file (DD name VARTAB in the execute JCL
Xnnnnnn) is valid.

WVA5101E Minimum wait time >= Maximum wait time

Explanation: The minimum wait time specified for the buffer monitor in the ATC defaults
was greater than the maximum time.

Execute Action: The buffer monitor program terminates.

User Response: Terminate the monitor (using the CAQUIT command), correct the
minimum and maximum times in the ATC defaults, and recreate the monitor JCL from the
panels.

WVA5102W The lowest wait time is lower than 10 (.1 seconds). It is set to 10.

Explanation: The minimum wait time specified for the buffer monitor in the ATC defaults
was less than 10 (.1 seconds). It is set to 10, and the buffer monitor continues.

Execute Action: The buffer monitor program continues.

User Response: Correct the minimum wait time in the ATC defaults, and recreate the
monitor JCL so that you will not get this message.

WVA5103W The highest wait time is higher than 1600 (16 seconds). It is set to
16.

Explanation: The maximum wait time specified for the buffer monitor in the ATC defaults
was greater than 1600 (16 seconds). It is set to 1600, and the buffer monitor continues.

Execute Action: The buffer monitor program continues.

User Response: Correct the maximum wait time in the ATC defaults, and recreate the
monitor JCL so that you will not get this message.

WVA5104E Session name xxxxxx not found. Write buffer program ending.

Explanation: The session name xxxxxx was not found as an active session. This should
only occur if you have modified your monitor JCL incorrectly.

Execute Action: The buffer monitor program terminates.

User Response: Terminate the monitor (using the CAQUIT command), and correct the
session name in the VARMON3 step of the monitor JCL.

 Appendix A. Problem Determination 373

 WVA5106E � WVA5109E

WVA5106E No session table exists. Cannot continue.

Explanation: The monitor is not installed, or has been corrupted.

Execute Action: VARMON3, the program that writes full buffers of variable data, termi-
nates.

User Response: Reinstall the monitor.

WVA5108I The session has ended - variable write program for this session
ending.

Explanation: The session being monitored has ended. The buffer monitor program is
ending. This is the normal termination message.

Execute Action: The buffer monitor program terminates.

User Response: None.

WVA5109E Error opening VARTAB file

Explanation: A user tried to stop a session, but the VARTAB file of variable read data
could not be opened.

Execute Action: VARMON3, the program that writes full buffers of variable data, termi-
nates.

User Response: Check that the VARTAB file (DD name VARTAB in the execute JCL
Xnnnnnn) is valid.

374 Application Testing Collection 1.5.0 User's Guide

 ZAP8802E � ZAP8802E

ZAPTXT: Executing the JCL (ZAP00yy or ZAP88xx)
| The following messages may be issued while executing the ZAPTXT or ZAPLM
| JCL:

ZAP8802E ZAPTXT: Error - TXT record not found to match this BRKTAB record.
ZAP8802E ZAPTXT: OFFSET(oooo) OPCODE(cccc)

Explanation: During the scan of a COBOL or PL/I object module, a TXT record was found
not to match the breakpoint code (cccc) at offset (oooo) in the BRKTAB data set. The
BRKTAB data set contains all of the breakpoints as identified from the COBOL or PL/I
source listings. The ZAPTXT program reads the BRKTAB data set and looks through the
object for each breakpoint. If a breakpoint cannot be found, the ZAPTXT program termi-
nates.

Zaptxt Action: ZAPTXT program terminates.

Possible Cause: Wrong object module used as input to ZAPTXT program.

User Response: Ensure the object module passed as input to the ZAPTXT program was
created by the same source listing as the BRKTAB file. Rerun ZAPTXT JCL.

ZAP8803W ZAPTXT: Warning - Breakpoint record not found. Errors possible
ZAP8803W ZAPTXT: Check the RPTMSGS dataset for additional information.

Explanation: No match in the object module for this breakpoint in BRKTAB.

Zaptxt Action: ZAPTXT program continues.

Possible Cause: BRKTAB and object module do not match.

User Response: Ensure the object module passed as input to the ZAPTXT program was
created by the same source listing as the BRKTAB file. Rerun ZAPTXT JCL.

ZAP8804E ZAPTXT: Error - BRKTAB header not found! Cannot continue.
ZAP8804E ZAPTXT: BRKTAB header is not record # nnnnn

Explanation: A BRKTAB header number passed as a PARM to the ZAPTXT program
could not be found. The number passed as the PARM is outside the range of possibilities
for this BRKTAB.

Zaptxt Action: ZAPTXT program terminates.

Possible Cause: Errors during QSETUP creation of setup JCL.

User Response: Complete the following steps:

 1. Rerun setup.
2. Locate the header record in BRKTAB and update the PARM passed in the ZAPTXT JCL.

 Appendix A. Problem Determination 375

 ZAP8805E � ZAP8805E

ZAP8805E ZAPTXT: Error - Storage could not be allocated. Program ending.
ZAP8805E ZAPTXT: Insufficient storage.

Explanation: ZAPTXT could not acquire enough storage in order to process the object
module.

Zaptxt Action: ZAPTXT program terminates.

Possible Cause: Not enough storage was available to the job.

User Response: Specify a larger REGION size for the SETUP job.

| ZAP8806E ZAPLM: ERROR - Cannot open BRKTAB file created during setup.

| Explanation: The BRKTAB file of breakpoint data created in a previous step cannot be
| opened.

| ZAPLM Action: Program terminates.

| User Response: The BRKTAB file is created in a previous step. You should not see this
| error unless you modified the JCL for inclusion into your build process. Check the modified
| setup JCL.

| ZAP8807E ZAPLM: ERROR - Cannot open output file for VER/REP records.

| Explanation: The output file containing update records for the AMASPZAP utility that
| instruments load modules cannot be opened.

| ZAPLM Action: Program terminates.

| User Response: This file is created as a temporary data set in the JCL. You should not
| see this error unless you modified the JCL for inclusion into your build process. Check the
| modified setup JCL.

| ZAP8808E ZAPLM: ERROR - Illegal BRKTAB file.

| Explanation: The BRKTAB file of breakpoint data created in a previous step is not a
| correct BRKTAB.

| ZAPLM Action: Program terminates.

| User Response: The BRKTAB file is created in a previous step. You should not see this
| error unless you modified the JCL for inclusion into your build process. Check the modified
| setup JCL.

376 Application Testing Collection 1.5.0 User's Guide

Understanding the SAA Log File
When SAA runs the scan phase (named ATCSXSCN), it creates a message data
set. This data set contains information about ATCSXSCN processing, as well as
error information.

Most of the information in this data set is self-explanatory. You may, however,
encounter some numbered error messages as well. The remainder of this chapter
explains the ATCSXSCN message format and the messages you may receive.

Description of the Message Format
ATCSXSCN issues only 60 messages per scan, using the following format:

n msglevel messagetext comment

Where:

n
The error message number.

msglevel
A letter indicating the severity level. The letter is associated with a
numerical MSGLEVEL code or return code, as follows. ATCSXSCN
issues all messages whose severity is equal to or greater than the
message level you specify.

messagetext
The character string “________” in the message text, denotes variable
text in the message. When ATCSXSCN actually issues the message, it
replaces the variable text with specific information such as a file name,
table name, or record number.

Message
Level Return Code Description

I 0 Information

W 4 Warning

E 8 Error

S 12 Severe error

T 16 Terminating error condition

 Appendix A. Problem Determination 377

comment
An explanation of the message, as appropriate.

Message Description

Informational
ATCSXSCN informs you of actions taken. You probably
expect the action. These messages keep you informed of
the progress. The list on the following pages does not
include informational messages. An example of an informa-
tional message is:

XSCð68 ATCSXSCN completed with Return Code ‘___’

Warning
An ATCSXSCN action was taken or a condition encountered
that may not produce the correct results. The condition or
action taken is given in the message.

Error
These errors are expected to result in incorrect data. For
example, an INCLUDE control statement explicitly requests
that a specific module be processed, but the module is not
found in the library.

Severe Error
These messages indicate errors that can effect the entire
run. No processing is done when this type of error is found.

Terminating error
ATCSXSCN terminates processing when this error occurs.

Restrictions Regarding Embedded Statements
Macro invocations, preprocessor statements, and compiler control statements are
frequently embedded within code scanned by ATCSXSCN. ATCSXSCN can
handle some embedded statements, such as the following:

?receiver_macro = source expression;

However, it is unable to process some embedded statements.

Additionally, ATCSXSCN suppresses repetitive messages, such as:

Embedded macro invocation skipped...

378 Application Testing Collection 1.5.0 User's Guide

 Message List
Number Severity Message and Explanation

3 S Statementtype Overflow in modulename processing record
recordnumber

This error message occurs when a table in an ATCSXSCN
system module overflows.

1. Make sure a source statement is not too long.
2. Make sure you are running with sufficient memory.
3. Ensure that the language you specified is the language

in which the program is coded.
4. Make sure your source margins are correct. Your

program must use default margins for the language in
which it is written. Default margins are as follows:
Language Right Left
COBOL 7 72
C 1 256
C++ 1 256
PL/I 2 72

If you are certain that you have sufficient memory, you
specified the correct language, and your source margins
are correct, contact ATC support for possible program
enhancements.

8 E Sequential libraries must have exactly one include card
with module name.

13 S Control statement READ error.

ATCSXSCN was unable to read the file containing the
control statements. Contact ATC support for possible
program enhancements.

14 E CLASS table full.

The current release allows up to 2000 classes per
program. Contact ATC support for possible program
enhancements.

15 E OBJECT table full.

The current release allows up to 2000 objects per program.
Contact ATC support for possible program enhancements.

16 W Analysis error in record recordnumber near column
columnnumber. The following line(s) were ignored:

This error might be due to an improper language specifica-
tion, an ATCSXSCN scan misinterpretation, or a syntax
error. ATCSXSCN displays the records that were skipped
and not included in the intermediate data files for comment
and declaration line determination.

17 S Unable to OPEN the filename.

23 S Modulename not found.

The following Module was not found:Modulename.

34 T Error in user control statements. Processing terminated.

Contact ATC support and provide the control and list files
for analysis.

 Appendix A. Problem Determination 379

Number Severity Message and Explanation

49 S Bad PARM control statement.

Contact ATC support and provide the control and list files
for analysis.

56 E No STAE Exit will be taken due to errors encountered
when STAE was issued.

ATCSXSCN attempted an unsuccessful recovery.

57 S Unable to load modulename.

66 E Language unknown. Contact ATC support and provide the
control and list files for analysis.

67 E Language unknown. Contact ATC support and provide the
control and list files for analysis.

69 E Maximum instantiations exceeded. Table Overflow Error.

72 W Left Source Margin assumed as 6.

80 E Failure in allocating storage in Module: modulename.

81 E Control statement syntax error near column columnnumber.

Contact ATC support and provide the control and list files
for analysis.

82 E Failure to release storage in Module: modulename.

84 W Parsing error. The following lines were ignored:

99 W Unrecognized Character in record recordnumber near
column number columnnumber.

103 T No STAE work area passed from supervisor. No retry pos-
sible.

104 E Symbol Where Used Table overflow.

Contact ATC support for possible tool enhancement.

110 T Unable to recover.

This error occurs during STAE processing.

115 S X13 Abend opening SDDS.

This error occurs during STAE processing.

117 S X13 Abend opening PDS.

This error occurs during STAE processing.

119 S X13 Abend opening SYM.

This error occurs during STAE processing.

121 S X13 Abend opening SEQ.

This error occurs during STAE processing.

123 S X13 Abend opening CLR MOD.

This error occurs during STAE processing.

125 S This library cannot be processed because of problems
reading SDDS (CLEAR) or directory (PDS).

126 S Dynamic allocation failed for library libraryname.

ATCSXSCN was unable to find the library.

380 Application Testing Collection 1.5.0 User's Guide

Number Severity Message and Explanation

140 W Modulename was not found in library.
The following file was either empty or not found -
Modulename.

An INCLUDE control statement named a module that was
not in the input source library.

145 E Modulename is empty or file not found.
The following file was either empty or not found -
Modulename.

This Module does not exist, or an I/O error occurred during
search.

146 W Message limit exceeded. No more messages will be
printed.

The default message limit is 60. To see all messages in
the listing file, specify a message level of 1.

150 S Called from module modulename via Link.

This error occurs during STAE processing.

151 S Called from module modulename via SVC svc#(_____x).

This error occurs during STAE processing.

152 S Last module called modulename.

This error occurs during STAE processing.

154 S Called from module modulename.

This error occurs during STAE processing.

156 W Imbedded compiler control statement skipped in record
recordnumber.

159 W Imbedded macro invocation skipped in record
recordnumber.

163 W Imbedded preprocessor statement skipped in record
recordnumber.

167 W Empty Library libraryname.

This error occurs most often on MVS when a PDS library is
empty.

 Appendix A. Problem Determination 381

382 Application Testing Collection 1.5.0 User's Guide

Appendix B. ATC Requirements and Resources

This chapter lists the:

� Environments and compilers that support ATC.
� Resources you need to setup, execute, and run reports in Coverage Assistant,

Distillation Assistant, and Unit Test Assistant. Data set attributes and data set
definition (DD) names are also provided.

Prerequisites and Supported Compilers
ATC was developed and tested in the following environments. These environments
and newer releases support ATC.

� MVS/ESA 5.1.0, DFSMS/MVS 1.2, TSO/E 2.5 and ISPF 4.2.1
� MVS/ESA 5.2.2, DFSMS/MVS 1.3, TSO/E 2.5 and ISPF 4.2.1
� Language Environment for MVS & VM 1.5
� OS/390 2.4.0, DFSMS/MVS 1.4, TSO/E 2.6, and ISPF for OS/390 1.3

All IBM supported releases of OS/390 and the OS/390 versions of DFSMS/MVS,
TSO/E, ISPF, and Language Environment support ATC.

Coverage Assistant supports the following compilers:

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions [MLE])
� IBM OS PL/I Optimizing Compiler 2.3.0
� IBM PL/I Optimizing Compiler 1.5.1
� IBM High Level Assembler Version 1 Release 2 and Release 3
� IBM Assembler H Version 2

Distillation Assistant supports the following compilers:

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions [MLE])
� IBM OS PL/I Optimizing Compiler 2.3.0
� IBM PL/I Optimizing Compiler 1.5.1

 Copyright IBM Corp. 1997, 1999 383

Unit Test Assistant supports the following compilers:

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� The following PL/I compilers are supported for data warping of file input buffers

only :
– IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions

[MLE])
– IBM OS PL/I Optimizing Compiler 2.3.0
– IBM PL/I Optimizing Compiler 1.5.1

Source Audit Assistant supports the following languages in source code form (the
reports option only supports seed analysis and template control file generation for
COBOL):

 � Assembler
 � C
 � C++
 � COBOL
 � PL/I

Source Audit Assistant supports the following languages in listing form:

� IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

� IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions [MLE])
� IBM VS COBOL II Release 4.0
� IBM OS/VS COBOL Release 2.4
� IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions [MLE])
� IBM OS PL/I Optimizing Compiler 2.3.0
� IBM PL/I Optimizing Compiler 1.5.1
� IBM High Level Assembler Version 1 Releases 1, 2, and 3
� IBM Assembler H Version 2

384 Application Testing Collection 1.5.0 User's Guide

 CA Resources
The following system resources are required by CA.

 Setup
CA provides two programs used during the setup process:

� SETUP creates the breakpoint data file (BRKTAB). It requires the following
resources:

Description Requirements

Disk space needed for the breakpoint table
(BRKTAB) upon completion of SETUP

Determine the size of the BRKTAB data set in bytes using the
following formula:
128 + (64 + PA name length) × number of
PAs + 32 × number of breakpoints45 46

Disk space needed for the breakout table
(BRKOUT) upon completion of SETUP

96 + (number of breakpoints ÷ 8)

� ZAPTXT modifies user object modules to insert breakpoints. It requires the fol-
lowing resources:

Description Requirements

Storage allocated while ZAPTXT is running Size of object module

Disk space needed for modified object
module on completion of ZAPTXT

Same size as unmodified object module

45 For COBOL, a PA is a paragraph; for PL/I, a PA is a procedure; for assembler, a PA is a listing.

46 For COBOL and PL/I, there is approximately one breakpoint per high-level executable statement. For assembler, there are
approximately two breakpoints per assembler instruction that change program flow (that is, branch instructions).

 Appendix B. ATC Requirements and Resources 385

Monitor ECSA, SQA, and ESQA Usage
Because the monitor must trace programs in any address space, it is loaded in
ECSA and SQA space and uses ESQA storage for tables. The monitor uses the
following system storage when it is installed:

Note: Each of these values is approximate.

� Fixed amount when monitor is installed/enabled:

ECSA 10344 bytes
SQA 13232 bytes

� Each session started uses the following storage in ESQA:

– 96 bytes per program area (PA)
– 52 bytes per breakpoint (BP)

Note: Each of the following is a PA:

 – COBOL paragraph
 – PL/I procedure

– Assembler object module

Breakpoints are placed at the start of each high-level instruction for COBOL and
PL/I and at conditional branches in high-level statements that can cause a change
of program flow (IF, DO WHILE, PERFORM, and others).

When variables are monitored for UTA/DA, about 132K of additional ESQA storage
is used.

UTA/DA may have a few extra BPs per location where a variable is read.

If you want an exact count of BPs for any given session, count the number of
VERIFY or REPLACE statements in the RPTMSGS DDs in the SETUP job, or
issue a CASTATS command for a running monitor session and look at the BPS
TOTALS column.

If you want an exact count of PAs for any given session, look at the last entry in
the SUMMARY report Program Area Data section for the highest PA number. The
number of PAs in a session is also in the Annotated listing REPORT.

 Reports
CA provides two reports programs:

� SUMMARY produces a summary report.
� REPORT produces an annotated listing.

386 Application Testing Collection 1.5.0 User's Guide

The reports programs require the following resources:

Description Requirements

Storage needed by breakpoint table while
SUMMARY is running

24 bytes per breakpoint

Disk space needed for the summary report on com-
pletion of SUMMARY

Negligible

Storage size of REPORT 22KB

Storage needed by breakpoint table while high-level
report program is running

40 bytes per breakpoint

Storage needed by breakpoint table while assembler
report program (REPORT) is running

16 bytes per breakpoint

Disk space needed for the annotated listing on com-
pletion of REPORT program

Size of listing

Data Set Attributes
CA uses several data sets, whose requirements are as follows:

DDNAME LRECL BLKSIZE RECFM

BRKOUT 256 4096 FB

BRKTAB 256 4096 FB

CACTL 255 2799848 VB

LISTINB47 133 2793048 FBA

LISTINP 125 2799848 VBA

LISTINA 133 for the High Level
Assembler

2793048 FBM

121 for Assembler H 2795148

LISTOUT 133 2793048 FBA

SUM 133 2793048 FBA

 DDNAMEs
FILEDEF Description

BRKOUT Contains CA test case results

BRKTAB Contains all breakpoint data used by the monitor program

CACTL Control file used for creation of CA runtime environment

LISTINB Input listing from COBOL

LISTINP Input listing from PL/I

LISTINA Input listing from ASM

LISTOUT Output from REPORT program (annotated listings)

SUM Output from SUMMARY program

47 LRECL=121, BLKSIZE=12100 (or smaller) for OS/VS COBOL listings.

48 Any valid BLKSIZE can be used.

 Appendix B. ATC Requirements and Resources 387

DA and UTA Resources
The following system resources are required by DA and UTA.

 Setup
DA and UTA provide three programs used during the setup process:

� SETUP creates the breakpoint data file (BRKTAB). It requires the following
resources:

Description Requirements

Disk space needed for the breakpoint table
(BRKTAB) upon completion of SETUP

Determine the size of the BRKTAB data set in bytes using the
following formula:
128 + (64 + PA name length) × number of
PAs + 32 × number of breakpoints45 46

Disk space needed for the variable table
(VARCTL) upon completion of SETUP

64 bytes for each occurrence of a monitored variable in a state-
ment

Disk space needed for the breakout table
(BRKOUT) upon completion of SETUP

96 + (number of breakpoints ÷ 8)

� ZAPTXT modifies user object modules to insert breakpoints. It requires the fol-
lowing resources:

Description Requirements

Storage allocated while ZAPTXT is running Size of object module

Disk space needed for modified object
module upon completion of ZAPTXT

Same size as unmodified object module

� VAREAD creates the variable data file (DBGTAB). It requires the following
resources:

Description Requirements

Disk space needed for the debug table
(DBGTAB) upon completion of VAREAD

128 bytes + file name lengths + 56 bytes per variable + vari-
able name length + 16 bytes per statement record

388 Application Testing Collection 1.5.0 User's Guide

Monitor ECSA, SQA, and ESQA Usage
This information is identical to the information in the Coverage Assistant topic
“Monitor ECSA, SQA, and ESQA Usage” on page 386.

Data Set Attributes
DDNAME LRECL BLKSIZE RECFM

BRKOUT 256 4096 FB

BRKTAB 256 4096 FB

CACTL 255 2799848 VB

LISTINB47 133 2793048 FBA

DBGTAB 128 4096 FB

VARCTL 64 2796848 FB

VARTAB 128 4096 FB

VARID 255 2799848 VB

VARDATA 255 2799848 VB

 DDNAMEs
FILEDEF Description

BRKOUT Contains DA and UTA test case results

BRKTAB Contains all breakpoint data used by the monitor program

CACTL Control file used for creation of DA and UTA runtime environment

LISTINB Input listing from COBOL

LISTINP Input listing from PL/I

DBGTAB Variable read information and associated statement numbers

VARCTL Variable location information

VARTAB Variable data read during execution

VARID A table of data on the monitored variables defined in the control
file. Also known as a Monitored Variables Report (MVR).

VARDATA A table of data for each time a monitored variable was read
during program execution. Also known as a Variable Data Report
(VDR).

 SAA Resources
SAA requires the Interactive System Productivity Facility (ISPF).

 Appendix B. ATC Requirements and Resources 389

390 Application Testing Collection 1.5.0 User's Guide

 Appendix C. DBCS Support

This appendix describes ATC DBCS (double-byte character set)49 support. ATC
support for DBCS varies among the tools as follows.

DBCS Requirements for ATC Compilers and Assemblers
The compilers and assemblers supported by ATC implement DBCS support that is
consistent with the following rules:

1. DBCS characters are delimited by a leading Shift Out (0x0E) byte and a trailing
Shift In (0x0F) byte.

2. There must be an even number of bytes between Shift Out and Shift, which
have values between 0x41 and 0xFE (except the DBCS space 0x4040).

3. In identifiers, all lowercase DBCS EBCDIC50 (0x42 in the first byte) will be con-
verted to uppercase.

4. If an identifier is all DBCS EBCDIC, it will be converted to its SBCS (single-byte
character set) equivalent.

5. If an identifier contains one or more non-EBCDIC DBCS characters, the whole
identifier will be converted to its DBCS representation.

6. Any DBCS, SBCS, or mixed DBCS and SBCS identifiers that convert to the
same identifier by the previous rules are considered equivalent.

7. The DBCS EBCDIC form of a character is only allowed in an identifier name if
the SBCS version is allowed.

8. Each compiler/assembler has an option that tells the tool whether DBCS is to
be recognized as such (also referred to as enabled).

Notes:

a. In the previous list, identifier only pertains to COBOL and PL/I.
b. PL/I allows DBCS EBCDIC characters in keywords.

CA/DA/UTA DBCS Support
DBCS support is implemented in the following way by CA/DA/UTA:

| � The CA/DA/UTA and targeted summary control files will accept DBCS identi-
| fiers and DBCS strings within comments.

� CA/DA/UTA will provide DBCS support that is consistent with support provided
by the compilers, except that the DBCS space will not be supported within the
control files except in comments.

� DBCS in control cards is always enabled.

49 Double-byte character set. A set of characters in which each character is represented by 2 bytes. Languages such as Japanese,
Chinese, and Korean, which contain more symbols than can be represented by 256 code points, require double-byte character
sets. Because each character requires 2 bytes, the typing, display, and printing of DBCS characters requires hardware and pro-
grams that support DBCS.

50 Extended binary-coded decimal interchange code. A coded character set of 256 8-bit characters.

 Copyright IBM Corp. 1997, 1999 391

� DBCS identifiers will be normalized according to the above rules before any
comparisons are performed.

� DBCS identifiers in all outputs will be in the normalized form.

� All control file keywords, delimiters, and MVS data set names must be entered
in SBCS.

� The COBOL LANGUAGE(JAPANESE) compiler option is allowed.

SAA DBCS Support
DBCS support is implemented in the following way by SAA:

� SAA will accept DBCS identifiers, DBCS strings, and DBCS comments within
input source files and listings for the supported COBOL compilers.

� SAA will accept DBCS strings and DBCS comments within input source files
and listings for the supported assemblers.

� SAA will accept DBCS identifiers, DBCS keywords, DBCS strings, and DBCS
comments within the input source files and listings for the supported PL/I com-
pilers only within the general compare function and the Reformatted line filter
function. The Comments and Declares filters produce unpredictable results if
the input files contain DBCS characters.

� If the input source contains DBCS characters, the DBCS support Enable field
must be set to Y.

� SAA will provide DBCS support that is consistent with support provided by the
compilers/assemblers, except that there will be no character conversions (rules
3, 4, and 5 under “DBCS Requirements for ATC Compilers and Assemblers” on
page 391).

� All control information and MVS data set names must be entered in SBCS.

� The COBOL LANGUAGE(JAPANESE) compiler option is allowed for COBOL
listing input.

SAA Postprocessor DBCS Support
DBCS support is implemented in the following way by the SAA Postprocessor:

� The SAA postprocessor will accept DBCS identifiers (COBOL and PL/I), DBCS
keywords (PL/I), DBCS strings, and DBCS comments within input source lines
in the compare files.

� The seed list can contain DBCS entries.

� The SAA postprocessor will provide DBCS support consistent with that provided
by the compilers.

� DBCS input identifiers and keywords will be normalized according to the above
rules before any comparisons are done.

� DBCS identifiers and keywords in the output files will be in the normalized form.

� If the input source contains DBCS characters, the DBCS support Enable field
must be set to Y.

� All control information and MVS data set names must be entered in SBCS.

392 Application Testing Collection 1.5.0 User's Guide

Glossary and Index

 Copyright IBM Corp. 1997, 1999 393

394 Application Testing Collection 1.5.0 User's Guide

 Glossary

This glossary defines terminology and acronyms unique
to this document or not commonly known.

A
annotated listing . Compiler or assembler listing that
contains Coverage Assistant information about the exe-
cution.

annotated listing coverage report . An annotated
listing that shows which code statements have been
executed.

APF-authorized . Authorized program facility.

B
background execution . The execution of lower-
priority computer programs when higher-priority pro-
grams are not using the system resources. Contrast
with foreground execution.

BP. Breakpoint.

breakpoint (BP) . The practice of replacing an instruc-
tion op code with a user SVC instruction so that the
ATC monitor gets control from the operating system.

breakpoint library . A library (partitioned data set) of
breakpoint data for your listings. Each member
includes the data for one listing.

BRKOUT . The DDNAME of the file of test case cov-
erage results (breakpoint output) created during Cov-
erage Assistant Execution and used during Coverage
Assistant Report.

BRKTAB . The DDNAME of the file of breakpoint data
(breakpoint table) created during Coverage Assistant
Setup and used during Coverage Assistant Execution.

C
CABPDSP . An execution monitor command that dis-
plays the status of breakpoints.

CACTL . The DDNAME of the Coverage Assistant,
Distillation Assistant, and Unit Test Assistant control file.

CADATA . An execution monitor command that writes
the coverage statistics (BRKOUT) to the file name spec-
ified on the panel.

CAIDADD . An execution monitor command that allows
you to add a unique test case ID.

CALIST . An execution monitor command that allows
you to select listings for which to display statistics.

CAQUIT. An execution monitor command that func-
tions like the CASTOP command. However, unlike the
CASTOP command, CAQUIT does not write output to
disk. Contrast with CASTOP.

CARESET. An execution monitor command that resets
all statistics in the current monitor session to zero.

CASESSN. An execution monitor command that dis-
plays a list of the current active sessions.

CASTATS . An execution monitor command that allows
you to select the session ID, listing number, and
program areas (PAs) for which you want statistics dis-
played.

CASTOP. An execution monitor command that writes
current statistics to disk and terminates the monitor
session. Contrast with CAQUIT.

change validation report . A report that allows you to
verify changes found in the Source Audit Assistant com-
parison report against your seed list in order to make
sure that only planned changes were made and that all
seed variables were changed.

code coverage . A measurement of the number of
code statements that have been executed.

combined variable data report (CVDR) . A table of
data that is read during execution. A CVDR includes
references to the monitored variable report (MVR) for
variable identification and a fully-qualified variable name
for each entry.

comparison report . A Source Audit Assistant report
that allows you to see differences between original
source data and changed source data and helps you to
identify items that need closer examination.

compile unit (CU) . The programs contained within
one compiler listing.

control file . A file that contains information describing
the compile units to be analyzed, the file that is to be
monitored, and the values of the variables to be
recorded. Coverage Assistant, Distillation Assistant,
and Unit Test Assistant share the same control file.

CU. Compile unit.

CVDR. Combined variable data report.

 Copyright IBM Corp. 1997, 1999 395

D
dynamic data warping . The process of changing pre-
defined variable values during runtime. Dynamic data
warping might be used to age, or warp, dates in input
data files, for example. Contrast with file warping.

DBCS. Double-byte character set.

DBGTAB . Debug table. The DDNAME of a file gener-
ated by the Setup step when Distillation Assistant or
Unit Test Assistant is enabled. The DBGTAB is used
during the Distillation Assistant Logical Distillation step
and the Unit Test Assistant Report step. For a standard
coverage run, this file contains no useful data and its
DD card is coded DD DUMMY.

ddname . The symbolic representation for a name
placed in the name field of a DD statement.

distillation . The reduction of a data set to the
minimum size that provides the same test coverage as
the complete data set.

Double-byte character set . A set of characters in
which each character is represented by 2 bytes. Lan-
guages such as Japanese, Chinese, and Korean, which
contain more symbols than can be represented by 256
code points, require double-byte character sets.
Because each character requires 2 bytes, the typing,
display, and printing of DBCS characters requires hard-
ware and programs that support DBCS. Contrast with
single-byte character set.

dsname . Data set name.

E
EBCDIC. Extended binary-coded decimal interchange
code. A coded character set of 256 8-bit characters.

Execute . The Coverage Assistant step that monitors
your program while it is being executed to collect test
case coverage statistics.

F
file warping . The process of statically modifying pre-
defined variables in copies of VSAM or QSAM input
files to simulate input conditions for testing. File
warping might be used to clear fields in test copies of
production input files for privacy or security reasons.
Contrast with dynamic data warping.

foreground execution . The execution of a computer
program that preempts the use of computer facilities.

I
input master data set . A data set to be distilled into
an output master data set by physical distillation.

J
jcldsn . JCL data set name.

K
key . One or more characters used to identify the
record and establish the order of the record within an
indexed file.

key list . A list of characters used to identify the record
and establish the order of the record within an indexed
file.

L
LISTINA . DDNAME of the Assembler H or High Level
Assembler listing file used in Setup or Reports.

LISTINB . DDNAME of the COBOL assembler listing
file used in Setup or Reports.

LISTINP. DDNAME of the PL/I assembler listing file
used in Setup or Reports.

logical distillation . Instrumenting your object code
and executing the instrumented code under the
Distillation Assistant monitor. As the instrumented code
reads records from the specified input master data set,
the monitor determines which keys in the input master
data set caused new code coverage in the instrumented
code. The list of these keys is then saved for the phys-
ical distillation step.

logical key . As used in reference to distillation, a
logical key is simply a field within a data record that can
be used to identify the record. This field may, or may
not, be identified as a physical key to the file system or
database manager involved in actually reading the
record.

Multiple records can have the same logical key. In this
case, it is assumed that all records with this key are
required to obtain the necessary code coverage.

396 Application Testing Collection 1.5.0 User's Guide

M
Millennium Language Extensions (MLE) . A compiler-
assisted solution for the Year 2000 problem. Available
for IBM's COBOL and PL/I compilers.

MLE. Millennium Language Extensions.

monitor . The program (MONSVC) that measures test
case coverage during execution of your programs.

monitor session . A distinct invocation of the monitor
program.

monitored variable report (MVR) . A table of moni-
tored variables and their read specifications.

MVR. Monitored variable report.

N
new source file . A data set you want Source Audit
Assistant to compare. Typically, you want to compare a
modified data set (new source file) with an original data
set (old source file).

O
old source file . A data set you want Source Audit
Assistant to compare. Typically, you want to compare
an original data set (old source file) with a modified data
set (new source file).

Op code . Operation code. A code for representing the
operation parts of the machine instructions of a com-
puter.

P
PA. Program area.

physical distillation . This step consists of creating a
new master data set by reading the list of keys
produced in the first step (logical distillation) and the
input master data set. The new master data set con-
sists of only those records in the input master data set
whose logical key appears in the list of keys.

Program area (PA) . Each specific PA contains all of
the breakpoints for one COBOL paragraph, PL/I block,
or assembler listing.

Q
QSAM. Queued sequential access method.

Queued sequential access method (QSAM) . An
extended version of the basic sequential access method
(BSAM). When this method is used, a queue is formed
of input data blocks that are awaiting processing or of
output data blocks that have been processed and are
awaiting transfer to auxiliary storage or to an output
device.

R
reentrant program . A computer program that may be
entered at any time before any prior execution of the
program has been completed.

Report . The Coverage Assistant step that produces
the summary and annotated listing reports after a test
case run.

S
SAA postprocessor . Generates a change validation
report or a prototype Coverage Assistant target control
file using a compare file generated by a previous
Source Audit Assistant run and a list of seed variables
that you want to monitor.

SBCS. Single-byte character set.

seed list . A list of seed variables.

seed variable . A variable name used as input to the
Source Audit Assistant postprocessor. This is generally
a variable name that was identified as one needing to
be changed.

session . A distinct invocation of the monitor program.

session ID . The identification of your session to the
monitor program. This defaults to your TSO user ID.

SETUP. The Coverage Assistant program that ana-
lyzes your assembler listings in order to produce a table
of breakpoint data and insert breakpoints into disk resi-
dent programs.

Single-byte character set (SBCS) . A character set in
which each character is represented by a one-byte
code. Contrast with double-byte character set.

site defaults . Default settings in
hi_lev_qual.V1R5M0.MASTER.DEFAULTS. These
defaults are used by all individuals at a particular
location and are typically set by the person or persons
who install ATC. Contrast with user defaults.

 Glossary 397

SQA. System queue area.

System queue area (SQA) . An area of MVS storage
used for running authorized programs or for storage
allocation.

summary coverage report . A Coverage Assistant
report that gives statistics on the coverage of all
program areas (PAs) during the test run.

summary report . A Coverage Assistant report that
provides the summary statistics for PAs.

supervisor call (SVC) . A request that serves as the
interface into operating system functions, such as allo-
cating storage. The SVC protects the operating system
from inappropriate user entry. All operating system
requests must be handled by SVCs.

SVC. Supervisor call.

T
targeted summary . A measurement of the number of
specific code statements and/or variables that have
been executed.

targeted summary report . A report that allows you to
target certain statements and/or COBOL or PL/I vari-

| ables. The format of a targeted summary report is iden-
| tical to the format of a summary report, except that the
| content is restricted to statements that you specify.

(You can specify a statement number, or you can
specify all statements that reference specific COBOL or
PL/I variables.)

U
user defaults . Default settings that only affect your
personal ATC sessions. You can change these defaults
using the ATC panels. Contrast with site defaults.

unit testing . A method of capturing and logging values
assigned to selected variables in your application
program at selected points during their execution.

V
VARCTL . A file used by Distillation Assistant and Unit
Test Assistant that lists variable locations where the
input data set is read by the monitor.

variable data report (VDR) . A table of data that is
read during execution with references to the monitored
variable report (MVR) for variable identification.

VDR. Variable data report.

VSAM. Virtual storage access method.

Virtual storage access method (VSAM) . An IBM
licensed program that controls communication and the
flow of data in an SNA network. It provides single-
domain, multiple-domain, and interconnected network
capability.

W
warping . The process of statically (file warping) or
dynamically (dynamic data warping) modifying prede-
fined variables to simulate input conditions for testing.
See dynamic data warping and file warping.

Z
ZAPTXT. A program that uses breakpoint data to
modify object modules by inserting breakpoints.

398 Application Testing Collection 1.5.0 User's Guide

 Index

A
abend errors 307, 380
age, data 161
annotated listings

creating JCL for an annotated listing 57, 66, 79
creating specific 101
displaying execution counts 102

debug mode 102
frequency count mode 102

reducing size 101
annotation symbols

changes with Performance Mode 104
ARTT 3
assembler options required 233
ATC defaults, modifying 27
authorized data sets 16, 275
Automated Regression Testing Tool 3

B
background execution, SAA 283
branch, conditional 55

breakpoints 258, 269
coverage 83, 87, 89, 103, 141
instruction 55, 65, 76, 95, 259

breakpoint data 116
breakpoints

definition 42, 130, 165
displaying status using CABPDSP 256
errors executing 275
purpose in execution step 42, 130, 165

BRKOUT
definition 42
specifying file name with CADATA command 259

BRKTAB
creating 236
definition 42

buffer monitor 254

C
C/370 access 36
CACTL 81, 145, 187, 209

assembler
editing the control file 71
sample 72

COBOL
editing the control file 49, 81
sample 50, 72, 138, 173, 180

PL/I
editing the control file 61, 71
sample 62

change validation reports (SAA)
description 301
inputs 301
outputs 302

CLASS table full error 379
coder, definition 115
Combine edit screen 119
Combine JCL, creating 117
Combine panel 117
combined variable data report 193
commands

issuing 255
monitor 256
parameters 255—271

comment lines 291, 295
common CA, DA, and UTA information

commands
CABPDSP 256
CADATA 259
CAIDADD 261
CALIST 262
CAPRFOFF 263
CAPRFON 264
CAQUIT 265
CARESET 266
CASESSN 267
CASTATS 268
CASTOP 270
CAVADSP 272
issuing commands 255

control file 209—229
monitor

commands 255—271
execution 245—254
problems 275

setup 231—243
comparison range 292, 295, 299
comparison report 299
compiler options

CA 231
CA targeted coverage 234
DA and UTA 234

compilers supported 7, 39, 125, 161, 383, 384
conditional branch 55

breakpoints 258, 269
coverage 83, 87, 89, 103, 141
instruction 55, 65, 76, 95, 259

conditional branch coverage
overhead 253
poor performance when measuring 276
suppressing with Performance Mode 87

 Copyright IBM Corp. 1997, 1999 399

control file 81, 145, 187, 209
assembler

editing the control file 71
COBOL

editing the control file 49, 137, 172, 179
sample 50, 138, 173, 180

common CA, DA, and UTA 209
contents 211
statement syntax 212

PL/I
editing the control file 61, 71
sample 62, 72, 147

warp 197, 200—206
control statements error 379, 381
conversion, data 3
coverage

conditional branch, measuring 276
overhead 253
suppressing conditional branch 87

Coverage Assistant (CA)
compiler options 231, 234
compilers supported 7, 39
control file 81—82
description 39
execution 42
files 13
flow diagram 41
languages supported 39
large project environments 115—121
overview 40
process overview 39
report differences with DA or UTA 103
reports 43, 83—113
requirements and resources 383
samples 45—80
terminating 265, 270

customizing ATC
running sample test cases 36

D
DA setup 130
data conversion 3
data set, site defaults 20
data sets 13

attributes 387, 389
installation 13
reserved, SAA 303

data warping
conversion tables 226
statement 224

DBCS support 391
debug mode 30, 102, 242
declaration statements 291, 295
defaults file, creating and modifying 27

defaults, site 20
defaults, user 27
diagnosing problems

See also error messages
047 abend 275
0C1 abend on user program 275
conditional branch coverage, poor performance 276
SQA storage depleted 276

distillation
logical

description 125
outputs 150
requirements 127

physical
DASD data 152
description 125
editing JCL 156
generating JCL 152
parameters 150
process 149
return codes 158
running 151
submitting JCL 157
tape data 154

Distillation Assistant (DA)
CA report differences when enabled 103
compiler options 234
compilers supported 7, 125
control file 145—147
description 125
execution 130
flow diagram 129
languages supported 125
logical distillation 125, 127
panel 151
physical distillation 149—158
process overview 127
requirements and resources 383
samples 133—143
setup 130

distillation, logical 127

E
editing the control file (CACTL)
embedded statements 378
error messages

description 377
list 379—381

error messages and return codes
See also troubleshooting
ARCOxxxx 309
ARSUxxxx 310
ASETxxxx 311
CMBxxxx 312
CMD5xxxx 314

400 Application Testing Collection 1.5.0 User's Guide

error messages and return codes (continued)
COMNxxxx 319
DFLTxxxx 326
KPDSxxxx 334
N2Oxxxxx 335
OCUSxxxx 340
PVRxxxx 343
RKEYxxxx 346
RPT03xx 347
SAACxxxx 350
SAAFxxxx 353
SAARxxxx 355
SP601xx 359
SUM0xxxx 362
VAR0xxx 364
WVAxxxx 373
ZAP00yy or ZAP88xx 375

errors
abend 380
CLASS table full 379
control statements 379, 381
find 379, 381
library 380
macro 381
margin 379, 380
message limit 381
OBJECT table full 379
OPEN 379
parsing 380
preprocessor 381
READ 379
recovery 380
retry 380
scan 379
sequential libraries 379
severe 377
STAE 380, 381
storage 380
table overflow 380
terminating 377, 378
unrecognized character 380
warning 377, 378

ESQA usage 386, 389
execution

CA overview 42
DA overview 130
monitor 245
multiple user sessions 249
UTA overview 165

F
file

input 289, 293, 296
installation 389
output 291, 294

file warp
control file 197, 200—206
JCL 199
return codes 206
samples 199

filters, SAA
comment lines 291, 295
declarations 291, 295
reformatted lines 291, 295

find error 379, 381
foreground execution, SAA 285
frequency count mode 30, 102, 143, 242

H
help, getting xx
high-level qualifier (hi_lev_qual) 15

I
information message 377, 378
input data sets 141
input master data set 126
inputs, SAA 289, 293, 296, 301
insertions 300
installation

See system installation
introducing

Coverage Assistant (CA) 39
Distillation Assistant (DA) 125
Source Audit Assistant (SAA) 279
Unit Test Assistant (UTA) 161

J
JCL

CA
creating combine 117
creating report 91
for assembler examples 68—80
for COBOL examples 47—59
for PL/I examples 59—68

CA/DA/UTA Setup
creating monitor 246
creating Setup 239
creating Setup for compile job stream 241

DA
editing distillation 156
for COBOL and PL/I examples 135—140
generating for physical distillation 152
submitting for physical distillation 157

file warp 199
UTA

creating report 194
for COBOL examples 169—182

 Index 401

L
Language Environment runtime library 36
language, source 291, 294
languages supported 8, 39, 125, 161
large project environments 115
libraries, ATC 13

modifying FORMS and REXX 15
library error 380
listings

assembler 75
example 95

COBOL 54, 279, 291, 294, 352
example 55, 95

PL/I 64
example 65, 95

log file (SAA)
embedded statements, restrictions 378
message format description 377
message list 379

logical distillation, requirements 127

M
macro 378
macro error 381
margins, source 379, 380
menu

primary option 282
Source Audit Assistant 289

message limit error 381
messages, displaying

See also error messages
reports 312
setup 239

messages, error 377
Millennium Language Extensions

definition 397
support 7

MLE
See Millennium Language Extensions

module, definition 115
monitor program 42, 130, 165, 245

commands 255
problems, diagnosing 275
SQA and ESQA usage 386

monitored variables report 189
multiple user sessions 245

O
OBJECT table full error 379
operating systems

CA 40
DA 126
SAA 279
UTA 162

options, compiler
CA 231
CA targeted coverage 234
DA and UTA 234

output
areas 299
comparison report 299
examples 299
explanation 299

overhead 253
overview, ATC 3

P
PA

See program area
panel interface 40, 126
panels

ATC Defaults 29
ATC Primary Option Menu 27
CA

Coverage Reports 90
Create JCL for Combining Multiple Runs 117
Create JCL for Summary and Annotation

Report 93
Create JCL for Summary Report 91
Create JCL for Targeted Summary Report 112

Common CA, DA, and UTA
Control the CA/DA/UTA Monitor 256
Coverage, Distillation and Unit Test

Assistant 209
Create JCL for Setup 239
Create JCL to Start the Monitor 246
Monitor: Add ID 261
Monitor: Display Breakpoint Status 256
Monitor: Display Statistics 268
Monitor: Quit Monitor 265
Monitor: Reset All Data in Monitor 266
Monitor: Stop Monitor 270
Monitor: Take Snapshot of Data 259
Work with the CA/DA/UTA Control File 209

DA
Edit Distillation JCL 156
Generate JCL to Generate Key List and Distill

DASD Data 152
Generate JCL to Generate Key List and Distill

Data 151
Generate JCL to Generate Key List and Distill

Tape Data 154
Submit Distillation JCL 157

Manipulate ATC Defaults 27
Reset Defaults to System Defaults 32
SAA

Execute Source Audit Assistant 289
Postprocessor 296
SAA Background Execution Parameters 289
SAA Foreground Execution Parameters 293

402 Application Testing Collection 1.5.0 User's Guide

panels (continued)
UTA

Unit Test Report 194
parameters

command 255—271
physical distillation 150
PRINTVAR program 196
SETUP and ZAPTXT 241

debug mode 242
frequency count mode 242

parsing error 380
Performance Mode 87, 253

changes in annotation symbols 104
physical distillation 149
postprocessor, SAA 280, 296

panel 288
preprocessor error 381
prerequisites 7
problem diagnosis

See also error messages
047 abend 275
0C1 abend on user program 275
conditional branch coverage, poor performance 276
SQA storage depleted 276

program area
definition 45
displaying statistics for 268

R
range of comparison, SAA 292, 295, 299
READ error 379
recovery error 380
reformatted lines 292, 295
regression testing 3
replacements, SAA 300
REPORT program

errors 312
parameters 196
resources required 386

reports
annotated listings 95

creating specific listings 101
CA with DA or UTA 103
combined variable data 193
monitored variables 189
printing 105
summary coverage 83
summary for assembler 88
summary without annotated listings 94
targeted summary 105
variable data 191

requirements, ATC 383, 391
reserved data sets, SAA 303
resources required

CA 385

resources required (continued)
compilers, supported 383
DA and UTA 388
prerequisites 383
SAA 389

restrictions, SAA 303
results 116

combining 116, 120
measuring individual test cases 120
rules used 120
test case 120

retry error 380
return codes

file warp 206
physical distillation 158

runtime library, accessing 36

S
sample

annotated listings
assembler 75
COBOL 54
PL/I 64

CA 45
combining coverage results 120
DA 133, 141
file warp 199
files, list of 13
running 36
SAA 281
summary of test case coverage 47

assembler 68
COBOL 47
PL/I 59

test cases 36, 120
using to test installation 33
UTA 167, 183

scan error 379
scan phase 377
sequential libraries error 379
sessions

definition 249
determining active sessions 267
multiple 249

setup
creating JCL using the panels 239
for summary and listings 231
JCL for the compile job stream 241
overview 42
parameters 241

SETUP 241
ZAPTXT 243

when to create or submit JCL 241
SETUP program

parameters 241

 Index 403

SETUP program (continued)
resources required 385, 388

severe error 377
site defaults data set

editing 20
example 22

source
language 291, 294
margins 379

Source Audit Assistant (SAA)
comparison report 299
description 279
error log file 377
installation, verifying 281
languages supported 279
postprocessor 296
prerequisites 8, 384
process overview 280
requirements 279
reserved data set names 303
samples 281—288
starting 289
verification 282

SQA storage depleted 276
SQA usage 386, 389
STAE error 380, 381
starting ATC 27
statements

compiler control 378
control 379, 381
declaration 379
embedded 378

statistics, resetting 266
stopping the monitor 270
storage error 380
SUMMARY program

parameters 104
resources required 386

summary test case coverage
assembler

create monitor JCL 73
create summary JCL 73
execute the JCL 74

COBOL
create JCL to link the modified object

modules 52
create JCL to run the GO step 52
create JCL to start a monitor session 51
create setup JCL 50
create summary JCL 52
editing the control file 49
execute the JCL 53
summary 47

PL/I
create JCL to link the modified object

modules 63, 74
create JCL to run the GO step 63, 74

summary test case coverage (continued)
PL/I (continued)

create monitor JCL 62
create setup JCL 62
create summary JCL 63
editing the control file 61, 71
execute the JCL 64
summary 59, 68

supervisor call (SVC)
definition 398
installing and enabling 18
problems, diagnosing 275
used as breakpoints 162, 245

support, technical xx
SVC

definition 398
installing and enabling 18
problems, diagnosing 275
used as breakpoints 162, 245

symbols, annotation
changes with Performance Mode 104

syntax
conversion tables 226
statements and options

ASM 219
COBOL 215
compilation unit definition (COBOL or PL/I) 107
COVERAGE 223, 224
defaults 213
examples 228
FILE Read 227
INCLUDE 109, 213
PL/I 217
reading xviii
SCOPE 107, 220
TARGETSTMT 110
TARGETVAR 109
VARIABLE 222
WARP 224

system considerations
CA 40
DA 126
SAA 279
UTA 162

system installation
abends 307
allocating data sets 33
installing data sets 13
modifying the FORMS and REXX libraries 15
setting up the authorized data set 16
site defaults file, editing 27

T
table overflow error 380

404 Application Testing Collection 1.5.0 User's Guide

target control file 106
technical support xx
terminating ATC

CAQUIT command 265
CASTOP command 270

terminating error, SAA 377, 378
test cases

combining results 116
individual, measuring coverage 121
multiple compile unit 176
rules used 116
running samples 36
sample 25
specifying ID 261

tester, definition 115
testing, regression 3
timeout, monitor 266
troubleshooting 377

U
unexecuted 88
Unit Test Assistant (UTA)

CA report differences when enabled 103
compiler options 234
compilers supported 161
control file, editing 187—188
description 161
execution 165
flow diagram 164
languages supported 161
prerequisites 7
process overview 162
reports 166, 189—196
requirements 162
samples 167—184
setup 165

unrecognized character error 380
user defaults

editing 28
panel 29
resetting 32

user SVCs 42, 130, 165

V
variable data report 191
variable read operation

where the variable is read 183
variable warp operation
verification of installation 25

W
warning error 377, 378

warping
control file 197, 200—206
conversion tables 226
dynamic data 161
file 197
JCL 199
return codes 206
samples 199
statement 224

Z
ZAPTXT program

errors 375
parameters 243
resources required 385, 388

 Index 405

	Notices
	Trademarks

	Preface
	Who Should Read This Book
	How This Book Is Organized
	Conventions for Words and Type
	How to Read Syntax Diagrams
	Related Information
	Getting Help

	Summary of Changes (V1R5M0)
	Summary of Changes (V1R4M0)
	Summary of Changes (V1R3M4)
	Summary of Changes (V1R3M0)
	Summary of Changes (V1R2M4)
	Introducing the IBM Application Testing Collection
	Overview

	Installing and Customizing ATC
	Prerequisites and Supported Software
	Converting Existing ATC Systems and Users to the Current Release
	V1R4M0 Systems and Users to V1R5M0
	V1R3M4 Systems and Users to V1R5M0
	V1R3M0 Systems and Users to V1R5M0
	V1R2M4 Systems and Users to V1R5M0
	V1R2M0 Systems and Users to V1R5M0

	System Installation
	Installing Data Sets
	Modifying the FORMS, REXX, and BKSHELF Data Sets
	Setting up the Authorized Data Sets
	Installing and Enabling the Monitor SVCs
	Ensuring Users Have Access to AMASPZAP
	Editing the Site Defaults Data Set
	Verifying the Installation

	Basic User Setup
	Modifying Your ATC Defaults
	Editing Your User Defaults
	Resetting Your User Defaults to the System Defaults
	Allocating Data Sets and Testing Installation
	Accessing the Language Environment Runtime Library
	Running the Sample Test Cases

	Using Coverage Assistant
	Introduction
	What Is Coverage Assistant?
	What Does CA Require?
	How Does CA Work?
	Setup
	Execution
	Report

	Where Can You Get Further Details?

	Coverage Assistant Samples
	COBOL Summary of Test Case Coverage
	Edit the CA Control File
	Create Setup JCL
	Create JCL to Start a Monitor Session
	Create JCL for a Summary Report
	Create JCL to Link the Modified Object Modules
	Create JCL to Run the GO Step
	Execute the JCL

	Annotated COBOL Listings
	Edit the CA Control File
	Create Setup JCL
	Create JCL To Start a Monitor Session
	Create JCL for an Annotated Listing
	Create JCL to Link the Modified Object Modules
	Create JCL to Run the GO Step
	Execute the JCL

	PL/I Summary of Test Case Coverage
	Edit the CA Control File
	Create Setup JCL
	Create JCL to Start a Monitor Session
	Create JCL for a Summary Report
	Create JCL to Link the Modified Object Modules
	Create JCL to Run the GO Step
	Execute the JCL

	Annotated PL/I Listings
	Edit the CA Control File
	Create Setup JCL
	Create JCL to Start a Monitor Session
	Create JCL for an Annotated Listing
	Create JCL to Link the Modified Object Modules
	Create JCL to Run the GO Step
	Execute the JCL

	Assembler Summary of Test Case Coverage
	Edit the CA Control File
	Create Setup JCL
	Create JCL to Start a Monitor Session
	Create Summary Report JCL
	Create JCL to Link the Modified Object Modules
	Create JCL to Run the GO Step
	Execute the JCL

	Annotated Assembler Listings
	Edit the CA Control File
	Create Setup JCL
	Create JCL to Start a Monitor Session
	Create JCL for an Annotated Listing
	Create JCL to Link the Modified Object Modules
	Create JCL to Run the GO Step
	Execute the JCL

	Editing the Coverage Assistant Control File
	Contents of the Control File

	Coverage Assistant Reports
	Summary Coverage Report
	Areas of the Report
	Suppression of Conditional Branch Coverage with Performance Mode

	Examples of Reports Using Listings
	Summary Report for Assembler
	Areas of the Report

	Creating Coverage Reports
	Creating Summary and Annotated Listing Report JCL Using the Panels
	Creating JCL for a Summary without Annotated Listings

	Annotated Listing Coverage Report
	Selecting Specific Listings to Annotate
	Reducing the Size of Annotated Listings
	Displaying Execution Counts in an Annotated Listing

	Differences in CA Reports When DA and UTA Are Used
	Changes in Annotation Symbols with Performance Mode
	Parameters for the SUMMARY and REPORT Programs
	SUMMARY
	REPORT

	Printing Reports
	Targeted Summary Reports
	Target Control File
	Creating Targeted Summary Reports

	Using Coverage Assistant in a Large Project Environment
	Creating CA Files during Code Development
	Breakpoint Data
	Test Case Coverage Results

	Combining Test Case Coverage Results
	Creating the Combine JCL Using the Panels
	Rules for Combining Results
	Sample Combine Test Case

	Measuring Coverage for Individual Test Cases

	Using Distillation Assistant
	Introduction
	What Is Distillation Assistant?
	What Does DA Require?
	Input Master Data Set Restrictions
	Logical Distillation Requirements

	How Does DA Work?
	Setup
	Execution
	Physical Distillation

	Where Can You Get Further Details?

	Distillation Assistant Samples
	COB11x and PLI11x Test Cases

	Logical Distillation
	Description of Reading Input Data Sets
	Coverage of the Distilled Data Set
	PL/I ON-Units
	How Much Data Can Be Read
	Recording Which Keys Execute a Statement

	Editing the Distillation Assistant Control File
	Contents of the Control File
	Examples

	Physical Distillation
	Physical Distillation Summary
	Parameters Used by Physical Distillation
	Running Physical Distillation
	Generating JCL for Physical Distillation
	Editing Distillation JCL
	Submitting JCL for Physical Distillation

	Physical Distillation Return Codes

	Using Unit Test Assistant
	Introduction
	What Is Unit Test Assistant?
	What Does UTA Require?
	How Does UTA Work?
	Setup
	Execution
	Report

	Where Can You Get Further Details?

	Unit Test Assistant Samples
	COB02x Test Cases
	Multiple Compile Unit Test Case (COB01x)

	Unit Test Assistant Read and Warp Descriptions
	Description of the Variable Read Operation
	Where a Variable Is Read
	Which COBOL Storage Areas Can Be Read
	How Much Data Can Be Read

	Description of the Variable Warp Operation
	What COBOL Variables Can Be Warped
	When a COBOL Variable Is Warped
	What PL/I Variables Can Be Warped
	When a PL/I Variable Is Warped

	Reading and Warping on the Same Statement

	Editing the Unit Test Assistant Control File
	Contents of the Control File
	Examples

	Unit Test Assistant Reports
	Monitored Variables Report (MVR)
	Variable Data Report (VDR)
	Errors During Data Warping

	Combined Variable Data Report (CVDR)
	Creating Unit Test Report JCL Using the Panels
	Examples of Reports
	Parameters for the PRINTVAR Program

	Unit Test Assistant File Warping
	File Warp Operation
	File Warp Samples
	File Warp Control File Syntax
	Field Definition
	Group Level Definition
	Record Type Definition
	Positional Parameter Definitions
	Control File Example
	File Warp Return Codes

	Common CA, DA, and UTA Information
	CA, DA, and UTA Control File
	Contents of the Control File
	Control File Statement Syntax
	Control File Examples

	CA, DA, and UTA Setup
	Setup
	Compiler Options

	Instrumentation of Load Modules instead of Object Modules
	Creating the Setup JCL Using the Panels
	When to Create or Submit Setup JCL
	Setup JCL for the Compile Job Stream
	Parameters for SETUP and ZAPTXT Programs
	SETUP
	ZAPTXT

	Monitor Execution
	Creating the Monitor JCL Using the Panels
	Parameters for Start Monitor (CMDUSVC)
	Parameters for Variable Monitor (VARMON3)
	Multiple User Sessions
	Coverage of Common Modules with Multiple User Sessions

	Using the Performance Mode to Reduce Monitor Overhead
	Buffer Monitor

	Monitor Commands
	Issuing Commands
	CABPDSP
	CADATA
	CAIDADD
	CALIST
	CAPRFOFF
	CAPRFON
	CAQUIT
	CARESET
	CASESSN
	CASTATS
	CASTOP
	CAVADSP

	Diagnosing Monitor Problems
	047 Abend
	Operation Exception (0C1) on User Program
	System Interruption Code of Fnn on User Program
	Lack of SQA Space
	Poor Performance When Measuring Conditional Branch Coverage

	Using Source Audit Assistant
	Introduction
	What Is Source Audit Assistant?
	What Does SAA Require?
	How Does SAA Work?

	Source Audit Assistant Samples
	Sample Data Sets
	Execution and Verification
	Standard Group - Background Execution
	Standard Group - Foreground Execution
	Target Group

	Starting Source Audit Assistant
	Executing SAA in the Background
	Executing SAA in the Foreground
	Executing the SAA Postprocessor

	Understanding the Comparison Report
	Areas of the Comparison Report

	Source Audit Assistant Postprocessor
	SAA Postprocessor Inputs
	SAA Postprocessor Outputs

	Reserved Data Set Names in Source Audit Assistant

	Appendixes
	Appendix A. Problem Determination
	Installation Abends
	Error Messages
	COMBINE: Creating the JCL (ARCOxxxx)
	SUMMARY: Creating the JCL (ARSUxxxx)
	SETUP: Creating the JCL (ASETxxxx)
	COMBINE: Executing the JCL (CMBxxxx)
	COMMANDS: Executing User Commands (CMD5xxxx)
	COMMON: Common Messages for CA/DA/UTA User Interface (COMNxxxx)
	DEFAULTS: Defaults Processing (DFLTxxxx)
	FILE WARP & DISTILLATION: File Conversion (FCVxxxx)
	FILE WARP: Control File Reader (FWPxxxx)
	COMMON: Additional Common Messages (KPDSxxxx)
	CTLFILE: Control File Processing (N2Oxxxx)
	TARGETED SUMMARY: Targeted Summary (OCUSxxxx)
	VARIABLE REPORTS: Executing the JCL (PVRxxxx)
	DISTILLATION: Read the Keylist (RKEYxxxx)
	REPORT: Executing the JCL (RPT03xx)
	SAA: Source Audit Assistant (SAACxxxx)
	SAA POSTPROCESSOR: Source Audit Assistant Change Validation Report (SAAFxxxx)
	SAA EXECUTION: Source Audit Assistant Execution (SAARxxxx)
	SETUP: Executing the JCL (SP601xx)
	SUMMARY: Executing the JCL (SUM0xxxx)
	VAREAD: Extracting Variable Information from Listing (VAR0xxx)
	EXECUTE: Buffer Monitor (WVAxxxx)
	ZAPTXT: Executing the JCL (ZAP00yy or ZAP88xx)

	Understanding the SAA Log File
	Description of the Message Format
	Restrictions Regarding Embedded Statements
	Message List

	Appendix B. ATC Requirements and Resources
	Prerequisites and Supported Compilers
	CA Resources
	Setup
	Monitor ECSA, SQA, and ESQA Usage
	Reports
	Data Set Attributes
	DDNAMEs

	DA and UTA Resources
	Setup
	Monitor ECSA, SQA, and ESQA Usage
	Data Set Attributes
	DDNAMEs

	SAA Resources

	Appendix C. DBCS Support
	DBCS Requirements for ATC Compilers and Assemblers
	CA/DA/UTA DBCS Support
	SAA DBCS Support
	SAA Postprocessor DBCS Support

	Glossary

