IBM® Application Testing Collection for MVS/ESA ™
Version 1 Release 5 Modification O
General Information
Program Number: 5799-GBN

PRPQ: P85579

April 1999

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

This book is also available as an online book that can be viewed with:

¢ The IBM® BookManager® READ and IBM Library Reader™ licensed programs. The IBM Library Reader is available for
downloading from the following Web site:
http://booksrv2.raleigh.ibm.com/homepage/ilrserv.html

¢ Adobe Acrobat Reader 2.1 and later, which is available for downloading from the Adobe Web site.

Sixth Edition (April 1999)

This edition applies to Version 1 Release 5 Modification 0 of the IBM Application Testing Collection for MVS/ESA™, program number
5799-GBN. Changes are made periodically to the information herein.

This publication is available in downloadable form from the IBM Year 2000 Technical Support Center Web site:
http://www.software.ibm.com/year2000/
Select the Testing link on the main home page and then look for the Application Testing Collection on the page displayed.

This publication is provided on an as is basis. Although it has been thoroughly edited, it may nevertheless contain inaccuracies.
COPYRIGHT © 1996, 1999 NATIONAL WESTMINSTER BANK GROUP, ALL RIGHTS RESERVED
© Copyright International Business Machines Corporation 1998, 1999. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Table of Contents

Notices Vi
Trademarks L vii
About This Book iX
Who Should Read This Book, iX
Conventions and Terminology Used in This Book iX
Related Information X
Summary of Changes (VIR5MO) Xi
Coverage Assistant (CA) Xi
Coverage Assistant (CA), Distillation Assistant (DA), and Unit Test Assistant
(UTA) Xi
Automated Regression Testing Tool (ARTT) Xi
Summary of Changes (VIR4MO) Xi
Coverage Assistant (CA) Xi
Unit Test Assistant (UTA) Xi
Source Audit Assistant (SAA) Xi
Automated Regression Testing Tool (ARTT) Xi
Summary of Changes (VIR3M4) Xii
Coverage Assistant (CA), Unit Test Assistant (UTA), and Distillation Assistant
(DA) . Xii
Source Audit Assistant (SAA) Xii
Summary of Changes (VIR3MO) Xii
Unit Test Assistant (UTA) Xii
ATC User Documentation Xiii
Overview of the Year 2000 Problem 1
Introducing the IBM Application Testing Collection 3
Year 2000 Testing Requirements 4
Testing Methods and the Application Testing Collection 4
Black Box Testing 4
ATC Black Box Testing 5
White Box Testing e 6
ATC White Box Testing 7
Coverage Assistant 11
What Problem Does Coverage Assistant Solve? 11
Questions and ANSWEIS e 11
Overview of How to Use Coverage Assistant 16
INPULS . . . o 17
Outputs e 19
Coverage Summary Report 19
Annotated Listing Report 20
Targeted Summary Report 23
Source Audit Assistant . . . L 25
What Problem Does Source Audit Assistant Solve? 25
Questions and ANSWErS 25
Overview of How to Use Source Audit Assistant 28

© Copyright IBM Corp. 1998, 1999 ili

Executing SAA in the Background
Executing SAA in the Foreground L.
Creating an SAA Change Validation Report and Targeted Summary Control
File . o
INPUES e
Outputs

Distillation Assistant
What Problem Does Distillation Assistant Solve?
Questions and ANSWEIS e
Overview of How to Use Distillation Assistant
INPULS . . .
Outputs e

Unit Test Assistant
What Problem Does Unit Test Assistant Solve?,
Questions and ANSWEIS
Overview of How to Use Unit Test Assistant to Log or Warp Variables
INPUES . . .
Outputs e
Overview of How to Use UTA's File Warp Feature

Automated Regression Testing Tool
What Problem Does Automated Regression Testing Tool Solve?
Questions and ANSWEIS
Overview of How to Use Automated Regression Testing Tool
INPUES . . .
Outputs e

Capture Report

Replay Report

Integrating ATC and Using It in Testing Processes
Source Audit Assistant Integration
Coverage Assistant Integration
Distillation Assistant Integration
Unit Test Assistant Integration
Automated Regression Testing Tool Integration
sSummary .o

Appendix A. DBCS Support

iv Application Testing Collection 1.5.0 General Information

Figures

©CeoNoO~ONE

NNRPRPRPREPRPRRERRERRE R
POOXONOO U ~wWNEO

© Copyright IBM Corp. 1998, 1999

Control File for COBO1IM, 17
Targeted Summary Control File for COBOIM 18
Summary Report for COBO1IM 19
Annotated COBOL Listing 21
Targeted Summary Report for COBOIM 23
ATC Primary Option Menu 28
Execute Source Audit Assistant Panel L 29
SAA Background Execution Parameters Panel 29
SAA Foreground Execution Parameters Panel 30
SAA Postprocessor Panel 31
Output Report Created by Comparing COBOL Source Files 32
Distillation Control File for COB11M 37
Control File for COBO2M 42
Report for COBO2M 43
Sample Record Structure for FileWarp 43
Warp Control File Example 44
Batch Program Running in ARTT Capture Mode 48
Batch Program Running in ARTT Real Replay Mode 48
Batch Program Running in ARTT Virtual Replay Mode 48
Sample ARTT Output Report from Capture Mode 49
Sample ARTT Output Report from Real Replay Mode 50

Vi Application Testing Collection 1.5.0 General Information

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the pro-
ducts and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785, U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (1) the exchange of information between independently created programs
and other programs (including this one) and (2) the mutual use of the information
which has been exchanged, should contact the IBM Corporation, Department JO1,
555 Bailey Avenue, San Jose, CA 95161-9023. Such information may be available,
subject to appropriate terms and conditions, including in some cases, payment of a
fee.

Trademarks

The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

IBM
BookManager
CICs

DB2

IMS

Library Reader
MVS
MVS/ESA
0S/390
VisualAge

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 1998, 1999 vii

viii Application Testing Collection 1.5.0 General Information

About This Book

This book provides an overview and general information about the IBM Application
Testing Collection for MVS/ESA. The Application Testing Collection (ATC) is a
general purpose application development (AD) test tool suite. However, the test
technology it offers also has specific applicability to the Year 2000 problem.

This book provides a brief review of the Year 2000 problem. It also addresses
basic testing methodology, specifically issues that make the Year 2000 testing
problem unique from more traditional AD testing methodologies.

Finally, the book provides a high-to-medium level view of the ATC tool set. The
information and examples presented illustrate how these tools can be used in real-
world situations involving Year 2000 testing projects and in ongoing development
and maintenance testing projects as well.

Who Should Read This Book
You should read this book if you:

¢ Are involved in the selection of testing tools to be used in Year 2000 and/or
traditional application development testing activities

¢ Are planning or involved with planning a Year 2000 remediation project that will
involve testing of remediated applications

¢ Will be testing reengineered applications

e Will be testing applications on MVS™.

Conventions and Terminology Used in This Book

The following list shows special ways in which some characters and words are dis-
played in this manual and describes the meaning associated with each one:

Display Method Meaning
Monospaced type Shows something that you type (such as a command),

an example, or something that is displayed on your
monitor (for example, an error message, or the name of
a panel or field).

Italic type Indicates information that you supply (such as a param-
eter or a variable), or italic type can indicate a new
term. For definitions of new terms, see “Glossary” on
page 63.

Bold type Indicates information that you should pay particular
attention to.

© Copyright IBM Corp. 1998, 1999 4

Related Information

The following publications are available in downloadable form from the IBM Year
2000 Technical Support Center Web site:

» |IBM Application Testing Collection for MVS/ESA Version 1 Release 5 Modifica-
tion 0 User's Guide, Program Number 5799-GBN, PRPQ P85579

* |BM Automated Regression Testing Tool Version 2 Release 2 Modification 0
User's Guide, Program Number 5799-GBN, PRPQ P85579
To locate these documents on the Internet:
1. Go to http://www.software.ibm.com/year2000/
2. Select the Testing link on the main home page, and then look for the Applica-
tion Testing Collection on the page displayed.
IBM has developed the following Redbook that outlines the Y2K test process and
augments it with real-world application examples and tool usage information:
VisualAge 2000 Test Solution: Testing Your Year 2000 Conversion, SG24-2230

To order this Redbook from the Internet:
1. Go to http://www.redbooks.ibm.com/index.html
2. Select the Redbooks Online! button at the bottom of the page.
3. In the search field displayed, enter the Redbook's title or document number.

4. Look for ordering instructions on the page displayed.

X Application Testing Collection 1.5.0 General Information

Summary of Changes (V1R5MO0)

Changes have been made to the following components of the Application Testing
Collection (ATC) for Version 1 Release 5 Modification 0:

Coverage Assistant (CA)

The performance of CA targeted summary has been improved and a batch inter-
face has been added.

Coverage Assistant (CA), Distillation Assistant (DA), and Unit Test
Assistant (UTA)

The SETUP process has been updated to allow load modules to be instrumented
directly as an alternative to instrumenting object modules, which are then linked into
load modules.

Automated Regression Testing Tool (ARTT)

Support for Capture mode and Virtual Replay mode has been added for CICS,
DB2, and IMS.

Summary of Changes (V1R4MO)

Changes have been made to the following components of the Application Testing
Collection (ATC) for Version 1 Release 4 Modification O:

Coverage Assistant (CA)
CA now supports IBM High Level Assembler (HLASM) Release 1 Version 3.

Unit Test Assistant (UTA)

File warping is the modification of variables (typically date variables) in program
input files to simulate input conditions for testing. For example, dates in input files
can be modified to post-year 2000 values to test Y2K remediated programs.

The new UTA file warp feature can copy any QSAM or VSAM file and warp fields in
the copied file for testing. Any zoned or packed numeric field can be incremented,
decremented, or set. Any zoned, packed, or character field can be set to a
common value. For example, file warping could be used to clear fields in test
copies of production input files for privacy or security reasons.

Source Audit Assistant (SAA)
SAA now supports IBM High Level Assembler Release 1 Version 3.

Automated Regression Testing Tool (ARTT)

ARTT, an automated capture and verification tool, has been added to the collection
of tools.

© Copyright IBM Corp. 1998, 1999 Xi

Summary of Changes (V1R3M4)

Changes have been made to the following components of the Application Testing
Collection (ATC) for Version 1 Release 3 Modification 4:

Coverage Assistant (CA), Unit Test Assistant (UTA), and Distillation
Assistant (DA)

e Support has been added for DBCS characters in the input compiler and assem-
bler listings, and in identifiers and comments in the control files.

e Support has been added for the COBOL LANGUAGE(JAPANESE) compiler
option.

e The start monitor job now detects when another session has already been
started with a matching BRKTAB/listing/obj combination (error message
CMD5023W).

Source Audit Assistant (SAA)

e Support for DBCS characters in the input source/listings has been added for
the Comments and Declares filters for COBOL and assembler.

» Restrictions on the length of input data set names have been removed.
e Support for DBCS characters has been added to the SAA postprocessor.

e The seed list data set is no longer required in the SAA postprocessor; however,
if it is not specified, a change validation report is not created.

Summary of Changes (V1R3MO)

Changes have been made to the following components of the Application Testing
Collection (ATC) for Version 1 Release 3 Modification 0O:

Unit Test Assistant (UTA)

ATC now includes the UTA tool, which allows you to capture and log the values
assigned to selected variables in your application programs at selected points
during their execution. This is called unit testing. Unit testing allows you to confirm
the effectiveness of Year 2000 changes that have been made to an application
program.

In addition, Unit Test Assistant offers the ability to perform data warping. This
means that variables can be modified automatically as they are encountered during
program execution. UTA will intercept data entering or leaving a program at I/O
time (or at other times where application logic dictates) and change the value of
that data in a manner that you specify. This feature is especially useful when doing
internal white box testing of Year 2000 dates.

Xii Application Testing Collection 1.5.0 General Information

ATC User Documentation
The following changes pertain to the ATC user documentation. Information that
has changed since the last publication of the User's Guide and the General Infor-
mation document is marked with revision bars in the left margins of affected pages.

¢ New information about DBCS support has been added to the User's Guide and
the General Information document.

e Changes to the User's Guide and the General Information document have been
made to reflect functional changes to the product. Also, minor technical and
editorial changes have been made throughout both documents.

* A BookManager READ bookshelf, containing the User's Guide and the General
Information document, has been added to the group of documentation offerings
shipped with the ATC package.

Summary of Changes (V1R5MO0) xiii

Xiv Application Testing Collection 1.5.0 General Information

Overview of the Year 2000 Problem

The Y2K “bug” is found in code that performs comparisons and/or arithmetic com-
putations on data that represents years with two digits. Approaches to ridding code
of the Y2K bug have included the following:

Expansion

Windowing

Compression

Expanding all dates to four digits or storing the century value along
with the year. At first glance this solution sounds simple, but it
would require not only modifying the application code, but also
restructuring the entire data environment, including backup data
files.

Windowing allows the data to remain in a two-digit format, but
each location in the application code that carries out a comparison
or arithmetic instruction on a date value is updated to add logic
that interprets the 00 as a value greater than 99.

With this approach, the length of the date value remains at two
bytes, but the value is stored in a data representation other than
character.

Although a small number of information system (IS) shops have found that the
expansion approach is effective, most shops today are adopting the windowing
approach. Compression has yet to gain wide acceptance.

Primarily three factors distinguish Y2K code fixes from traditional code fixes:

e The Function of the Code Is Not Changing. Applications with code that has
been fixed/remediated should work the same as they did before they were
modified. New function is not being added.

¢ The Interpretation of the Data Entering the Application Is Changing. The
year data entering the application from data files, system calls, and user-
prompted input (terminal/screen input, for example) is changing from the logic
base for which the application was designed.

e The Time in Which You Have to Complete the Fix and Testing Is
Shrinking. Time is running out as you read this.

© Copyright IBM Corp. 1998, 1999

A testing approach that takes into account the unique challenges of the Y2K
problem is essential. Such an approach generates the following testing
requirements:

1. Testing activities must exercise all applied code changes.

2. All application programs that have been fixed/remediated must be able to
accept future dates as input.

3. The previous requirements, 1 and 2, must be accomplished in the earliest
phases of the testing process to beat the time limit. If, for instance, you
schedule the testing of future dates as the last phase of testing, you may run
out of time before you get there.

The IBM Application Testing Collection (ATC) is a set of testing tools designed to

manage these unique requirements and increase your confidence that
fixed/remediated code will perform correctly when handling post-1999 dates.

2 Application Testing Collection 1.5.0 General Information

Introducing the IBM Application Testing Collection

The IBM Application Testing Collection (ATC) is a set of testing tools that can be
used independently or in an integrated manner to address the unique nature of the
Y2K testing requirements. The tools that make up the collection are:

Coverage Assistant
A code coverage tool that reports the percentage of coverage of a test
suite, and the statements and branch conditions in the program that
have not been exercised. An application can be measured by listing all
source lines executed or by targeting the coverage to a select number of
source lines or all lines affected by a set of specified variables.

Source Audit Assistant
A code comparison tool that compares source before and after conver-
sion, identifying changes for audit purposes. The identified changed
source can also be directed as input to other tools in the collection, such
as Coverage Assistant's targeted summary.

Distillation Assistant
A data distillation tool that reduces a data set to the minimum size that
provides test coverage that is equivalent to the test coverage provided
by the original (larger) file.

Unit Test Assistant
A variable analysis tool that reads and logs variable values from a
program during its execution for later examination. Also, values that are
entering or exiting an application from or to data files, system calls, and
user prompts can be incremented, decremented, or initialized to
selected values at application run time. In addition to dynamically
warping dates as they are encountered during program execution, UTA
has a file warp feature that modifies copies of your input files according
to warp definitions specified in the control file.

Automated Regression Testing Tool
A capture and verification tool that records a baseline execution of your
program and automatically compares it with a proof execution using real
or previously captured input. ARTT permits all levels of testing (unit,
function, integration, and system) with or without a production system,
and its data conversion capability allows testing to continue when 1/O
and programs are in incompatible formats (for example, when one has
been modified to accept future dates and the other has not). Data con-
version can be particularly useful if you are unsure of the status of 1/0
received from outside sources.

These tools can be used in conjunction with IBM's VisualAge® 2000 Test Solution.
IBM's VisualAge 2000 Test Solution offers MVS COBOL, PL/I, and assembler users
a process and a tool set to test Y2K changes to applications. Rather than testing
to ensure that new enhancements to programs work correctly, Y2K testing focuses
on ensuring that applications behave the same way they did before Y2K fixes were
applied.

© Copyright IBM Corp. 1998, 1999 3

IBM has developed a Redbook that outlines the Y2K test process and augments it
with real-world application examples and tool usage information. To order this
Redbook from the Internet:

1. Go to http://www.redbooks.ibm.com/index.html

2. Select the Redbooks Online! button at the bottom of the page.

3. In the search field displayed, enter the following title or document number:
VisualAge 2000 Test Solution: Testing Your Year 2000 Conversion, document
number SG24-2230.

4. Look for ordering instructions on the page displayed.

The remainder of this chapter focuses on the ability of the ATC tools to address the
Y2K unique testing requirements.

Year 2000 Testing Requirements

For a variety of reasons, companies are finding that their Y2K testing processes will
have to be performed in the short amount of time remaining before applications are
forced to handle post-1999 dates. Testing may never be performed on items
scheduled to be tested later in the process because of this hard and fast cutoff.
Therefore, it is imperative that the Y2K testing process:

e Provide a higher level of confidence than traditional testing practices that appli-
cations will perform correctly with post-1999 dates

¢ Provide that higher level of confidence earlier in the testing process than with
more traditional testing practices (which typically have you wait until the later
phases to do post-1999 date testing).

* Reduce test cycle times so that the chances of completing a full test plan are
maximized

e Permit testing on isolated components

¢ Permit testing offsite without replicating complex environments.

Testing Methods and the Application Testing Collection

The concepts of white box and black box testing were first popularized in the early
1970s. These terms represent two very different, but complementary, methods of
testing. One method provides limited information about an application's internal
execution at run time; the other method offers detailed execution information. By
combining these two methods, described in the paragraphs that follow, you can
maximize your confidence that your applications will function correctly with
post-1999 dates.

Black Box Testing

Black box testing is data driven testing; that is, an application is tested by exam-
ining its inputs and outputs. Little internal runtime knowledge of the application
behavior is gathered. The application internals are viewed as a “black box” and
only the application outputs as compared to its inputs provide information about the
success or failure of a test case run. Some refer to this as testing the business
functionality of the application.

4 Application Testing Collection 1.5.0 General Information

For example, you could perform black box testing on an MVS batch application by
saving the application's input and output files before code modification. These files
serve as baseline files. After modification, rerun the saved baseline input through
the modified program. Compare the new output to the baseline output. Any
changes in the new output reflect either functional changes made to the application
or errors that have been introduced into the code with the changes.

ATC Black Box Testing

On the surface black box testing sounds simple, but in practice it can be quite chal-
lenging. Take regression testing, for example. When a modified application is
found to have introduced new defects and the function being implemented does not
perform to specification, the code is corrected by development and later returned to
the testing team. The test case that originally identified the failure is then run
against the modified application. This method of saving and rerunning a test case
suite to ensure that an application still functions according to specification after
being changed is a black box method that many shops employ. If you are familiar
with the process, you may also be familiar with the difficulties sometimes associ-
ated with this testing method:

e Many black box testing tools require you to shut down your system in order to
take a snapshot of your data.

e A lot of time is needed to modify program logic, data, and in some cases, data-
base schema.

e Many current tools also require increased DASD to hold multiple copies of data
sets.

 |nefficient test cases require too much CPU time and take so long to execute
that there is not enough time to complete testing.

ATC black box testing tools, however, simplify the process and decrease the time
and resources required by most existing tools.
The following ATC tools supply black box results:

Automated Regression Testing Tool (ARTT)
ARTT gathers black box information by:

* Intercepting application 1/0 events and data

e Checking that all application 1/O requests to file handlers and data-
base managers are in the original sequence

¢ Building a detailed audit trail for a baseline execution or checking in
real time a modified execution against a previously recorded
baseline execution.

e Performing data conversion
e Performing data aging or rejuvenation

¢ Reporting differences between the baseline and proof runs.

Introducing the IBM Application Testing Collection 5

Distillation Assistant (DA)
DA assists black box testing by:

Creating an efficient, cost-effective test bed. DA does this by
reducing test data to the minimum number of records required to
provide test coverage that is equivalent to the test coverage pro-
vided by the complete data. An efficient test case suite:

¢ Directly translates to a higher quality application portfolio for
your organization because your AD team will be able to do a
much better job of regression testing all changes (whether new
function changes or defect fixes) before passing modified appli-
cations back into production.

e Provides a return on investment by remaining usable beyond its
initial run. Distillation Assistant can help you come out of the
Y2K test period with an efficient, compact suite of test cases
that serve as an ongoing regression test bed for future develop-
ment.

e Extensively exercises modified applications and is cost-efficient
by using a minimum amount of CPU time.

Black box testing indicates how well your test ran and points out any areas that you
need to examine more closely. Once you have collected all of the information
obtainable from black box testing, you will want to gather white box testing informa-
tion. By letting you see inside your application at run time, white box testing lets
you ensure that Y2K fixes to your application code are exercised.

White Box Testing

The concept of white box testing refers to application testing that measures internal
application behavior during run time. For example, your testing could measure
what sections of the application were exercised during the test run or what variable
values were located at a specific internal point of the application run.

You can obtain white box information by designing and writing application programs
with internal code logic that provides it, or by using specific testing tools, such as
debuggers or code coverage engines.

Again, using an MVS batch application as an example, suppose you wanted to
gather information about which lines of source code were exercised in a test run.
The entire application could have been written with logic at each source instruction
to log this information, but this is not practical and is rarely done. A more practical
approach would be to use a testing tool that can instrument the application to
provide this information during the test run. All source instructions that were exer-
cised can be logged and evaluated to ensure that the affected sections of the
tested application were exercised. If a critical section was not exercised, then an
existing test case can be modified or a new test case can be created that will force
the execution of the untested section of code.

6 Application Testing Collection 1.5.0 General Information

ATC White Box Testing

Black box testing is a starting point in the Y2K testing process. However, by itself,
it is incomplete. Many AD shops are shocked to learn (after they get white box
tools in their shops) that what they thought was an adequate test case suite is in
actuality a methodology that leaves 50-60% of their application logic totally unexer-
cised. It is no wonder that enhancements and fixes are introducing new errors into
production on a continual basis.

Given the magnitude of the code changes required to handle the Y2K problem, the
potential for modified code not being tested is considerable if white box testing is
not employed. Entire sections of Y2K impacted code may never be exercised, and
black box testing, by itself, would not warn the tester of this exposure. White box
results are required to ensure that affected areas of the modified application have
been exercised.

The following ATC tools supply white box results:

Coverage Assistant (CA)
CA supplies white box results by:

¢ Reporting on each source level line of code that was executed
during one or more test runs

¢ Providing annotated listings that show which source lines have or
have not been executed

¢ Providing summary level information.

Coverage Assistant Targeted Summary
CA targeted summary supplies white box results by:

Reporting on the source lines executed that were impacted by code
changes. These impacted lines are provided as source line
numbers or as variable names. From the provided list of line
numbers and variable names, targeted summary can identify any
affected source statements and provide coverage information on this
subset of source statements. You can determine the affected
source statement variables using the ATC tool Source Audit
Assistant (also described in this list).

Source Audit Assistant (SAA)
SAA supplies white box results by:

Generating the input you give to Coverage Assistant's targeted
summary. By comparing the application source or listing before and
after Y2K remediation and then building a list of affected variables,
Source Audit Assistant generates a file that Coverage Assistant tar-
geted summary can use to report code coverage data for code
involving the affected variables.

Distillation Assistant (DA)
DA assists white box testing by:

Reducing input data files to a minimum number of records that will
cause equivalent test case coverage as the original files. It is used
to reduce testing time and expense. By reducing the size of the
input files, the amount of CPU time is cut significantly for repeated
runs of the test case suite, thus shortening the test cycle schedules.

Introducing the IBM Application Testing Collection 7

Distillation Assistant can be used to reduce the size of QSAM or
VSAM input files for COBOL and PL/I (record 1/O only) programs.

Unit Test Assistant (UTA)
UTA assists white box testing by:

Providing white box logging and warping of variable values at
selected points during the application test run. Also, the UTA file
warp feature can copy your input files and then warp specified fields
in the copied files for testing.

Automated Regression Testing Tool (ARTT)
ARTT assists white box testing by:

Allowing you to run ATC white box tools offsite or without any complex
environment setup, thus greatly reducing the cycle time required to test.

Fundamentally, you want to answer the question “Did | test what | changed?” Since
one of the first premises of the Y2K testing problem is that the functionality of the
application has not changed, then it is most critical to, at a minimum (and early),
test all of the code that has changed through Y2K remediation. Together, ATC
black box and white box test tools can provide concrete data to confirm that you
have indeed tested what you have changed.

Data Warping
Y2K readiness testing is confirming that the converted application will perform cor-
rectly when future dates are input via:

e File input

e Application calls to get the system date
e Terminal input/output

e Program invocation parameters

The Y2K conversion/testing process has evolved into the following procedure:
1. Update the application code to be Y2K ready.

2. Test the application with present dates to ensure that it will continue to perform
correctly in the present production environment.

3. Move the application back into production.

4. As time and resources allow, test the application for Y2K readiness to ensure
that it will work with post-1999 dates.

The optimal plan for readiness testing is to migrate the Y2K converted application
to a stand-alone CPU with the system clock set forward and dates in the input files
set forward to post-1999 dates. But as the schedule shortens and the cost of read-
iness testing rises, another solution is needed. Data warping offers part of that
solution by providing a means of incorporating Y2K readiness testing into the early
testing phases without requiring a dedicated Y2K CPU and aged data resources.

ATC File Warping

A standard data warping process is to age, or warp, occurrences of dates in the
input data files, setting them to values beyond the year 2000. The UTA file warp
feature supports this process. It can copy any flat file or VSAM file and then warp
specified fields in the copied file for testing. Numeric fields can be incremented,
decremented, or set to a value.

8 Application Testing Collection 1.5.0 General Information

While this process addresses most of the problem by providing a degree of confi-
dence that the application will perform correctly when running post-1999 dates, it
does not handle dates introduced through system calls and user prompts, and it
increases the effort of maintaining test data.

ATC Dynamic Data Warping

A preferred approach for data warping is providing a means for you to intercept
dates as they enter and exit the application and allowing you to modify, or warp,
the dates at that point. This allows you to not only modify dates entering from files,
but from system calls and user prompts as well. This also reduces the cost of
maintaining test data because all of your date testing can be driven from one set of
data containing current date values.

Unit Test Assistant (UTA) lets you do exactly this type of data warping. UTA's
dynamic data warping function allows testers to define, at an application source
level, where dates enter the application and also define how the dates should be
modified at those points. This is done without modification to the application source
code. The input and output dates can be incremented, decremented, or initialized.

When this UTA function is used with Coverage Assistant, testers can track the
application statement execution affected by the warped dates. This provides a
means of incorporating readiness testing into unit, function, integration, and system
testing.

Automated Regression Testing Tool (ARTT) also lets you perform data warping, but
only on a file record basis rather than on a variable or application source-level
basis.

Data Distillation

As stated in our requirements for the Y2K testing process, anything that can be
done to decrease testing cycle times is of great value. Because time is so limited,
Y2K test projects are in danger of simply running out of runway, so to speak.

A procedure that helps decrease testing cycle times is distillation. Distillation works
by reducing input data sets to the minimum number of records required to provide
code coverage that is equivalent to the coverage provided by the larger data sets.

ATC Data Distillation

ATC's answer to distillation is the Distillation Assistant (DA) tool. DA accepts test
case input data sets and reduces them to the smallest size that provides source
code coverage equivalent to that obtained when using the original (larger) data set.

For example, suppose you have a test case that provides 10,000 input transaction
records to the application being tested. The test run takes ten minutes of CPU time
and three hours of clock time to execute. The Coverage Assistant (CA) measured
code coverage is 70%. DA might reduce the transaction input data set to 1000
records, requiring one minute of CPU time and 20 minutes of clock time to execute,
and the CA measured code coverage will remain at or near 70%.

You can gain a significant reduction in test cycle times if DA is applied across appli-
cations that can take advantage of this functionality, especially applications that will
be tested through many cycles over the life of the Y2K remediation/test project or
that will be tested on an ongoing basis due to normal application enhancement/fix
activities.

Introducing the IBM Application Testing Collection 9

10 Application Testing Collection 1.5.0 General Information

Coverage Assistant

What Problem Does Coverage Assistant Solve?

Coverage Assistant (CA) is a white box test tool that monitors and collects code
coverage information at the source level as an application is executed against a
suite of test cases. You can get detailed and/or summary level information about
what statements and branches have or have not been executed during a run of a
suite of test cases intended to test the target program or programs.

There is also the capability of doing targeted summary against a set of source
statements and/or statements involving a list of specified variables in which you
may be interested.

Questions and Answers
1. What exactly is “code coverage”?

Code coverage, at the most basic level, is the ability to monitor and track which
instructions (at the source level) have or have not been executed at least once
while executing a defined suite of test cases. The test cases that would be run
to do this are completely up to you. In practice, they probably would be the
suite of test cases that you would normally run to test the business function of
an application (that is, black-box test cases).

Knowing which instructions have been executed as well as which branch state-
ments have been executed (none, or one or both branches taken), you can
begin to get a detailed picture of just how much of your application you have
actually tested.

2. How does this new information allow me to improve my testing?

Let us take a simple example. Assume that you have an application, X, and
you have 100 test cases set up as a regression bucket that you believe ade-
quately tests the business function that X is supposed to provide for you. How
did you make that determination? Whether you did it explicitly or not, you did a
black box, or business function, analysis and decided that you had put together
enough test cases to test all of the various functions of application X. As long
as you can run those test cases successfully, you consider your testing
successful/adequate. But is it?

Now with CA, you can collect code coverage information about all the routines
(compile units [CUs]) that make up application X while you are running the 100
test cases that you have assumed comprise an adequate test bed. If your
experience is like most projects that have used this tool in the past, you will
find that you typically have only covered 40-50% of the statements in the appli-
cation.

3. Are you saying that over half of the statements never get executed?

That is correct, at least when they are monitored in a testing situation. Keep in
mind that this is based on real experience over a period of more than 10 years.
Most development groups are amazed at how much of their code never gets
tested when they only perform black box testing. With CA, you can get

© Copyright IBM Corp. 1998, 1999 11

detailed information about what code is or is not getting executed. Once you
see the code segments that are not being exercised, you can quickly augment
the test bed with test cases that cause the previously unexecuted/untested
lines to be executed/tested.

Again, real experience has shown that with relatively little effort in building a
targeted set of additional test cases, you can increase the code coverage from
40-50% to 70-80%.

4. Why would | not want to get to 100% code coverage?

That is the ideal of course. However, experience has shown that you reach a
point of diminishing returns in terms of effort to raise the level above the 80%
level. When you get into that last 20% of the code, you are typically dealing
with exception processing, hardware dependencies, and so on. You will
expend more and more effort to create the specialized type of test cases that
you would need to force execution of the code that handles those exception-
type conditions.

When you get into this territory, you have to apply risk analysis to determine
when enough testing is enough. In other words, what is the risk that is taken if
a particular section of code is left untested given that it would take a consider-
able effort to put together the test case to force it to be tested. There is no
right or wrong answer here, and we don't make any claims in this area. Each
application owner needs to assess the application criticality of the areas that
are not yet tested to decide what the goal is in terms of code coverage.

However, the bottom line is that CA gives you a great deal of information that
you did not have previously in assessing your confidence in your present
testing. Further, you have the information to raise that confidence to a level
that you determine to be satisfactory for your application(s).

5. Can you be more specific about the information you can get from CA?

At the summary level, you get a report that shows at the compile unit level the
total number of code statements for each procedure/paragraph and the number
that have been executed (as a percentage), as well as the number of branches
that are possible and how many have actually been taken (as a percentage).

You also get a section identifying statements that have not been executed and
a section identifying statements that are branches that have not gone both
ways.

At a more detailed level, CA annotates the listing of any compile units that
make up your application to show which statements and branches have or
have not been executed. This is what would be most helpful to a programmer
who is trying to identify areas of code that are untested so that additional test
cases can be written.

12 Application Testing Collection 1.5.0 General Information

6. How do | use CA to get this code coverage information?

The tool is easy to use. At a high level, the steps to run CA on an application
are as follows:

a. Make sure you have all the correct source, include, or copy members that it
takes to compile and link edit your application.

b. Compile your source with compiler options required by CA. For the most
part, you can run with whatever options you normally run with. However, a
few options are required for CA to function correctly. Save the object and
| listing data sets from this set of compiles because they are used by CA to
| do its analysis.?

c. You need to create a CA control file that describes the structure of your
application. This includes what load modules you want to monitor, what
| object modules make up each load module, and where your object and
| listing data sets are stored.*

| d. Run a setup job that instruments the object code that makes up your appli-
| cation.!

| e. Run a link-edit job that links your application using the instrumented object
| modules.t

f. Start the CA monitor session.

g. Run whatever test cases that make up your test case suite against your
application.

h. Stop the CA monitor session.

i. Run a reports job that provides summary and detailed data from the test
run.

7. Sounds like there are a lot of jobs | have to run to make all this happen.

There are jobs that must be run and that must be run in sequence. However,
your job is made very simple in that ATC has an ISPF interface with options
that very easily lead you through the process of creating all the jobs required to
run CA (and the other tools). For new users, it makes the process very simple
and straightforward.

As you get more experienced with the tools, you will begin to incorporate the
various jobs into your normal development and test processes and procedures,
and the ISPF interface will be less important.

8. At the beginning, a concept called targeted summary was mentioned.
What is targeted summary?

Most simply, targeted summary works this way. First, you run your defined set
of test cases that will generate total code coverage over the set of programs
you have defined to CA. As we have already discussed, just doing that will
allow you to generate code coverage reports across the programs that are
being monitored by CA. Then, by running targeted summary, you can target
certain statements or variables of interest and see coverage data on just those
specified statements or statements that are involved somehow with any speci-
fied variables. You do not run additional test cases to do this if you have run

| 1 Note that an object module can be instrumented and then linked into a new load module, or a load module can be instrumented
| directly.

Coverage Assistant 13

CA against all the test cases you deem necessary for full coverage. Targeted
summary is simply a postprocess of the already collected coverage data that is
focused on the areas of code in which you are truly interested.

If you request targeted summary, CA produces summary reports that limit the
measurements to just the statements that pertain to your targeted set of state-
ments. The format of the reports is identical to what you would see on a
regular coverage summary report, but the scope covers only the statements
that you have specified.

9. Explain why targeted summary is more useful to me than regular code
coverage.

In order to explain the power of targeted summary, we need to step back and
talk about general testing philosophy. If you have a stable, functioning applica-
tion and an adequate test bed (as you determine it to be adequate), then what
are the most important things to do as you make enhancements or fixes to the
application? Typically, you want to:

a. Run whatever test case(s) that are required to validate that the new
enhancement works as designed or that a bug has been fixed so that the
program works as designed.

b. Run the modified application through a regression cycle to ensure that
existing functionality has not been broken.

c. Make sure that all code that has been modified or affected has been exer-
cised.

Items 9a and 9b are fairly self-explanatory. The regression cycle is simply
running the modified application against a set of known test cases to make
sure that something that was previously working has not inadvertently been
broken.

The third item is something that too few development/maintenance shops
enforce and is needed to ensure that all code that has been either directly
modified or affected by a modification (say to a variable declare) has, at a
minimum, been executed. In other words, have you truly tested what you have
changed? CA targeted summary lets you know how you are doing in this area.
Once this technology is available, many development teams are shocked to
find that their testing would often miss new code before putting the code into
production.

10. As a programmer, how do | take advantage of this capability?

Once you have made the changes to the source code and gone through the
steps required to prepare the application for testing, do the following:

a. Write any test cases you think are needed to test the new/modified
functionality of your program.

b. Run those test cases outside the control of CA just to ensure that they test
the new function and provide the expected output. Debug the application
and fix any bugs you discover.

¢. Run the regression test suite and the new test cases under control of CA.

d. Use Source Audit Assistant to analyze the listings for any of the compile
units you modified and produce a targeted summary control file.

14 Application Testing Collection 1.5.0 General Information

11.

12.

13.

e. You will have to make a few manual adjustments to the targeted summary
control file produced by SAA, such as indicating what data set(s) your
listing(s) are stored in.

f. Run a targeted summary report to generate the summary reports that point
out areas of the modified and affected lines of code that are not getting
exercised.

g. Use the targeted summary report and annotated listings to add/modify your
new test cases to ensure that all of the lines are getting exercised.

h. Add your new test cases to your regression test suite.
What environments does CA support?

CA can monitor applications running in many environments in the MVS world:
batch, TSO, CICS®, IMS™ TM, and ISPF. Also, you don't have to do anything
differently in terms of setting up for CA because of the target environment. CA
operates independently from all these environments, which makes this tool
easy to use even when testing spans multiple environments.

The monitor used by Coverage Assistant, Distillation Assistant, and Unit Test
Assistant uses SVCs as breakpoints, gaining control when the SVCs are
invoked. This technique minimizes runtime overhead and allows the programs
being tested to run in any environment (batch, online, under CICS, and so on).

What compilers and assemblers are supported?

e IBM COBOL for OS/390® & VM 2.1 (plus Millennium Language Extensions
[MLE])

e |IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions
[MLE])

e IBM VS COBOL Il Release 4.0

e IBM OS/VS COBOL Release 2.4

e |IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions
[MLE])

e IBM OS PL/I Optimizing Compiler 2.3.0

e IBM PL/I Optimizing Compiler 1.5.1

¢ |IBM High Level Assembler Version 1 Releases 2 and 3

e |IBM Assembler H Version 2

Is there much overhead added by the CA monitor?

For a test case coverage run, CA typically adds very little execution time to the
program. CA inserts SVCs (supervisor calls) into the application object
modules as breakpoints and then intercepts the breakpoints. Most breakpoints
are removed after their first execution. By using this technique, the increase in
test program execution time is minimal.

Coverage Assistant 15

Overview of How to Use Coverage Assistant

A typical coverage run would look like this:

1.

10.

11.

Compile or assemble your routines (compile units) using the options required
by CA. Save the listings and object modules into data sets.?

. Determine how you want to group your compile units together for testing. CA

can generate reports for either a single compile unit or any arbitrary collection
of compile units. Each grouping or collection of compile units is defined by a
CA control file.

. Create a CA control file that defines your collection of compile units. This

control file will consist of one control statement per compile unit that defines the
name of the compiler listing, the object module data set produced by the com-
piler, and the output object module data set produced by CA.?

. Create the JCL for the CA SETUP program and run it. This program will

analyze your compiler listings and create a new set of object modules that
contain CA breakpoints.? In addition, SETUP creates a data set called a
BRKTAB (breakpoint table).

Experienced users can integrate this SETUP program into their normal compile
procedures.

. Link edit your program(s) using the new object modules created by CA

SETUP.2

. Start a CA monitor session with the BRKTAB created by the CA SETUP

program.

. Run your test cases. The CA monitor intercepts the breakpoints inserted into

your program and records the coverage data. The handling of the breakpoints
is transparent to your program (and any run time that you are using).

. Stop the CA monitor session.

. Run the CA Summary and Annotated Report jobs.

For each COBOL paragraph, PL/l procedure, ON-unit, Begin-block, or assem-
bler listing, CA Summary provides you with:

e The percentage of statements executed and a list of unexecuted state-
ments

* The percentage of conditional branches executed and a list of conditional
branches that have not executed in both directions

The Annotated listing will contain a copy of your compiler listings where each
executable statement has been annotated with a symbol showing its execution
status.

Create a targeted summary control file that defines what COBOL or PL/| state-
ments or variables that you would like to target. This control file can be
created using either Source Audit Assistant or an editor, if you prefer to create
the file manually.

Run the CA targeted summary program to produce a targeted summary report.

| 2 Note that an object module can be instrumented and then linked into a new load module, or a load module can be instrumented

| directly.

16 Application Testing Collection 1.5.0 General Information

Inputs

Figure 1 is an example of a CA control file for a COBOL load module consisting of
three COBOL object modules. The control file is how you let CA know what rou-
tines (compile units) make up the application to be monitored and where to find all
the data sets associated with those routines.

Cobol Example

* Ok X F ok

Statements required for coverage

Defaults ListDsn=ATC.V1R5MO.SAMPLE.COBOLST(*),
LoadMod=C0BO1M,
FromObjDsn=ATC.V1R5M0.SAMPLE.OBJ,
ToObjDsn=ATC.V1R5MO.SAMPLE.ZAPOBJ

COBO1AM: COBOL ListMember=COBO1AM
COBO1CM: COBOL ListMember=COBO1CM
COBO1DM: COBOL ListMember=COBO1DM

Figure 1. Control File for COBO1M

All ATC control files are keyword oriented and are easy to navigate. In the case of
Figure 1, the tester/programmer has specified a control file that, when processed
by CA, will be interpreted as follows:

e The data set containing the listings is ATC.V1R5MO0.SAMPLE.COBOLST.
e The load module is named COBO1M.

¢ The data set containing the object code from the compiler is
ATC.V1R5M0.SAMPLE.OBJ.

e The data set containing the CA modified object code (used to create an instru-
mented load module that is used only when CA is monitoring the application) is
in ATC.V1R5M0.SAMPLE.ZAPOBJ.

¢ The tester/programmer wants to monitor coverage on three compile units
(COB01AM, COBO1CM, and COBO0O1DM).

This is a simple case and of course more complex control files can be built as
needed, but the point of this illustration is to show that understanding the control file
is a fairly easy task.

Coverage Assistant 17

Figure 2 is an example of a CA targeted summary control file for a COBOL routine.
You use the targeted summary control file to let CA know what routines (compile
units), and within those routines what source statements or variables, you are inter-
ested in getting code coverage data on. This file can be created manually or by
using the Source Audit Assistant postprocessor (which compares your pre- and
post-remediated code) to generate a targeted summary control file containing all
the variables that have been part of a change as a result of the remediation.

Cobol ListDsn=ATC.V1R5M0.SAMPLE.COBOLST (COBO1AM)
Scope ExtProgram-1d=COBO1AM
TargetVar Name=(STATE In LOC-ID In TASTRUCT)
Scope ExtProgram-Id=COBO1AM,NestedProgram-I1d=COBO1BM
TargetVar Name=(TBPARM2)
TargetStmt Stmts=(46,62,67)

Cobol ListDsn=ATC.V1R5M0.SAMPLE.COBOLST (COBO1CM)
Scope ExtProgram-Id=COBO1CM
TargetVar Name=(TCPARM1)

Figure 2. Targeted Summary Control File for COBOIM

In this case, the tester/programmer is asking to see targeted code coverage data
for the following:

e In the COB01AM compile unit, within load module COB01M, any lines that ref-
erence or modify the variable STATE In LOC-ID In TASTRUCT.

e In the nested program COBO01BM, within the COBO1AM compile unit, any line
that references or modifies the variable TBPARM2 and statements 46, 62, and
67 (from the listing).

e In the COB0O1CM compile unit, within load module COBO1M, any lines that ref-
erence or modify the variable TCPARM1.

There is one other feature of CA targeted summary that is worth pointing out here.
If a variable is specified in the target control file, CA is able to detect what
lines/statements reference that variable both explicitly and implicitly. In the pre-
vious example, suppose TCPARM1 is part of the following COBOL record defi-

nition:

01 BUFFER.
03 FIELD-1 PIC X(2).
03 TCPARM1 PIC 9(4).
03 FILLER PIC X(74).

and you had in the Procedure Division the following statement:
MOVE SPACES TO BUFFER.

If TCPARML1 had been a field that represented a 2-digit year that had been modi-
fied to 4 digits, you would want to know if any code referencing that variable had
been exercised. The MOVE statement shown actually changes the value of
TCPARM1 even though it is not directly referenced. CA targeted summary is able
to pick up this type of implicit usage and report on lines such as this.

18 Application Testing Collection 1.5.0 General Information

Outputs

Coverage Summary Report

Figure 3 is an example of a CA summary report. The CA summary report gives
statistics on the coverage of all program areas during the test run. The summary
report is divided into the following sections:

Program Area Data

Lists the following summary data for each program area:

¢ The total number of code statements

e The number of executed code statements
¢ The total number of branches

¢ The number of executed branches

Unexecuted Code

Lists the unexecuted code statements in each program area.

Branches That Have Not Gone Both Ways
Lists the conditional branches that have not executed in both directions

for each program area.

1 *%x%x%xx* CA SUMMARY: PROGRAM AREA DATA
0 DATE: 12/11/1998
TIME: 11:37.10
TEST CASE ID:

0 |<-- PROGRAM IDENTIFICATION

I

| PA LOAD MOD PROCEDURE | LISTING NAME
1 COBOIM ATC.VIR5MO.SAMPLE.COBOLST (COBO1AM)
2 PROGA
3 PROCA
4 PROGB
5 PROCB
6 COBOIM PROGC ATC.V1R5M0.SAMPLE.COBOLST (COBO1CM)
7 PROCC
8 COBOIM PROGD ATC.VIR5MO.SAMPLE.COBOLST(COBO1DM)
9 PROCD

Summary for all PAs:

1 #*%kxkkxx CA SUMMARY: UNEXECUTED CODE
0 DATE: 12/11/1998
TIME: 11:37.10
TEST CASE ID:

0 |<-- PROGRAM IDENTIFICATION

|

| PA LOAD MOD PROCEDURE | LISTING NAME
2 COBOIM PROGA ATC.V1R5M0.SAMPLE.COBOLST (COBO1AM)
3 PROCA
4 PROGB
6 COBOIM PROGC ATC.V1R5M0. SAMPLE.COBOLST (COBO1CM)
7 PROCC
8 COBOIM PROGD ATC.V1R5M0.SAMPLE.COBOLST (COBO1DM)
9 PROCD

kkhkkkkkhkk

| STATEMENTS: | BRANCHES:
| TOTAL EXEC % | CPATH TAKEN %

6 6 100.0 0 0 100.0
8 7 87.5 6 5 83.3
1 0 0.0 0 0 100.0
7 5 71.4 6 3 50.0
2 2 100.0 0 0 100.0
7 5 71.4 6 5 83.3
3 2 66.7 2 1 50.0
6 0 0.0 6 6 0.0
1 0 0.0 0 0 100.0
41 27 65.9 26 14 53.8
kkhkkkkkkk
-->|
|
| start end start end start end
67 67
79 79
118 119
39 40
58 58
37 46
51 51

Figure 3 (Part 1 of 2). Summary Report for COBO1IM

Coverage Assistant 19

1 x#*kxkkxx CA SUMMARY:

BRANCHES THAT HAVE NOT GONE BOTH WAYS ##sskakkxx

0 DATE: 12/11/1998
TIME: 11:37.10
TEST CASE 1D:
0 |<-- PROGRAM IDENTIFICATION -->|
| |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt
2 COBOIM PROGA ATC.V1R5MO. SAMPLE . COBOLST (COBO1AM) 66
4 PROGB 113 118
6 COBOIM PROGC ATC.VIR5MO.SAMPLE . COBOLST (COBO1CM) 37
7 PROCC 57
8 COBOIM PROGD ATC.V1R5MO. SAMPLE.COBOLST (COBO1DM) 37 41 45

Figure 3 (Part 2 of 2). Summary Report for COBO1IM

Annotated Listing Report
If you want more information on some or all of the modules that have been tested,
you can create an annotated listing. This listing contains information about each
breakpoint. To the right of each statement number, one of the following characters
is shown to indicate the results of the execution of that statement:

&
>

\Y,

Conditional branch instruction has executed both ways.

Conditional branch instruction has branched, but not fallen through.
Conditional branch instruction has fallen through, but not branched.
Non-branch instruction has executed.

Instruction has not executed.

Figure 4 on page 21 shows a sample annotated listing.

20 Application Testing Collection 1.5.0 General Information

000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044
000045

000046 :

000047
000048

000049 :
000050 :

000051
000052

000053 :
000054 :
000055 :

000056
000057
000058
000059
000060

000061 :
000062 :

000063

IDENTIFICATION DIVISION.
PROGRAM-ID. COBO1AM.

ek ok koo ok ok ok ko ok ok ok ok ko e ok ok ok ko ok ok ko ok ok ok ok ko ok ok ok ok ko ok ok ok ok ko
LICENSED MATERIALS - PROPERTY OF IBM

5799-GBN

(C) COPYRIGHT IBM CORP. 1997 ALL RIGHTS RESERVED

US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR

DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM
CORP.

ECHE R R R N
* 0% 0k ok X X 3k X X 3k X *

COBOL FOR MVS & VM TEST.

MEMBER COBO1AM HAS ENTRY POINT COBO1AM.
CALLS COBO1BM, WHICH CALLS COBO1CM, WHICH CALLS COBO1DM.

E R .
E R

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 TAPARM1 PIC 99 VALUE 5.
01 TAPARM2 PIC 99 VALUE 2.
01 COBO1BM PIC X(7) VALUE 'COBO1BM'.
01 P1PARM1 PIC 99 VALUE 0.

01 TASTRUCT.
05 LOC-ID.
10 STATE PIC X(2).
10 CITY PIC X(3).
05 OP-SYS PIC X(3).

PROCEDURE DIVISION.
* THE FOLLOWING ALWAYS PERFORMED

= ACCESS BY TOP LEVEL QUALIFIER
MOVE 'ILCHIMVS' TO TASTRUCT.

* ACCESS BY MID LEVEL QUALIFIERS
MOVE 'ILSPR' TO LOC-ID.
MOVE 'AIX' TO OP-SYS.

* ACCESS BY LOW LEVEL QUALIFIERS
MOVE 'KY' TO STATE.
MOVE 'LEX' TO CITY.
MOVE 'VM ' TO OP-SYS.

PROGA.

* THIS PERFORM EXECUTED
PERFORM WITH TEST BEFORE UNTIL TAPARM1 = 0
SUBTRACT 1 FROM TAPARM1
CALL 'COBO1BM!
END-PERFORM

Figure 4 (Part 1 of 2). Annotated COBOL Listing

Coverage Assistant

21

000064
000065

000066 >
000067 -

000068
000069
000070
000071
000072
000073

000074 :

000075
000076
000077
000078
000079
000080
000081
000082
000083
000084
000085
000086
000087
000088
000089
000090
000091
000092
000093
000094
000095
000096
000097
000098
000099
000100
000101
000102
000103
000104
000105
000106
000107

&

000108 :
000109 :

000110
000111
000112
000113

v

000114 :

000115
000116
000117
000118
000119
000120
000121
000122
000123
000124

-

-

000125 :

000126
000127

000128 :

000129
000130
000131

= s b b R b b b b b b e b b e b b e b b e b b b b b e e b b b b b b b e b b e b b s e e e e e

* THIS IF ALWAYS FALSE
IF TAPARM2 = 0
PERFORM PROCA
END-IF

* THIS PERFORM EXECUTED
PERFORM WITH TEST BEFORE UNTIL TAPARM2 = 0
SUBTRACT 1 FROM TAPARM2
END-PERFORM
STOP RUN

PROCA.
* PROCA NEVER CALLED
MOVE 10 TO P1PARM1

* START OF COBO1BM NESTED IN COBO1AM

IDENTIFICATION DIVISION.
PROGRAM-ID. COBO1BM.

COBOL FOR MVS & VM TEST.

E I

COBO1BM, CALLED BY COBO1AM.

E

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 TBPARM1 PIC 99 VALUE 5.
01 TBPARMZ PIC 99 VALUE 0.
01 COBOICM PIC X(7) VALUE 'COBO1CM'.
01 P1PARM1 PIC 99 VALUE 0.

PROCEDURE DIVISION.

PROGB.
* THIS PERFORM EXECUTED
PERFORM WITH TEST BEFORE UNTIL TBPARM1 = 0
SUBTRACT 1 FROM TBPARM1
CALL 'COBO1CM!
END-PERFORM

* THIS IF EXECUTED
IF TBPARMZ2 = 0
PERFORM PROCB
END-IF

* THIS PERFORM NOT EXECUTED
PERFORM WITH TEST BEFORE UNTIL TBPARM2 = 0
SUBTRACT 1 FROM TBPARM2
END-PERFORM

PROCB.
* PROCB EXECUTED
MOVE 10 TO P1PARM1

EXIT PROGRAM.

END PROGRAM COBO1BM.
END PROGRAM COBO1AM.

Figure 4 (Part 2 of 2). Annotated COBOL Listing

22 Application Testing Collection 1.5.0 General Information

Targeted Summary Report

Figure 5 is an example of a CA targeted summary report. As mentioned earlier, it
gives you a report identical in format to the CA coverage summary report, but in
this case only, is reporting on source lines that were the target based on the control
file.

For convenience, the target control cards of interest are included at the top of the
report. Similarly, all statistics calculated are based upon the scope of what lines
are targeted so that you can tell how well you have tested what you have changed.

1 *xxx*%%%%x CA TARGETED SUMMARY: CONTROL RECORDS kkkdK KKk
CONTROL DSN: 'ATC.VIR5MO.SAMPLE.TARGCTL(COBOIM)'
0 TARGETED SUMMARY DATE: 02/02/1999
TARGETED SUMMARY TIME: 19:57.15
0 |<-- TARGET PSEUDO CONTROL STATEMENTS -->

Variable ListDsn=ATC.V1R5MO.SAMPLE.COBOLST(COBO1AM),ExtProgram-I1d=COBO1AM,Name=(STATE In LOC-ID In TASTRUCT)
Variable ListDsn=ATC.V1R5MO.SAMPLE.COBOLST(COBO1AM),ExtProgram-1d=COBO1AM,NestedProgram-I1d=COBO1BM,Name=TBPARM2
Statement ListDsn=ATC.V1R5MO.SAMPLE.COBOLST(COBO1AM),Stmts=(46,62,67)

Variable ListDsn=ATC.V1R5MO.SAMPLE.COBOLST(COBO1CM),ExtProgram-1d=COBO1CM,Name=TCPARM1

1 *xxxx%%%x CA TARGETED SUMMARY: PROGRAM AREA DATA FkFF I IR
0 DATE: 12/11/1998
TIME: 11:37.10
TEST CASE ID:

0 |<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES:
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN %
1 COBOIM ATC.V1R5MO. SAMPLE.COBOLST (COBO1AM) 3 3 100.0 0 0 100.0
2 PROGA 2 1 50.0 0 0 100.0
4 PROGB 3 1 33.3 4 1 25.0
6 COBOIM PROGC ATC.VIR5MO.SAMPLE.COBOLST (COBO1CM) 2 1 50.0 2 1 50.0
Summary for all PAs: 10 6 60.0 6 2 33.3
1 sxkxxkxsx CA TARGETED SUMMARY: UNEXECUTED CODE FAAFERIE
DATE: 12/11/1998
TIME: 11:37.10
TEST CASE ID:
0 |<-- PROGRAM IDENTIFICATION -->|
I |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt
2 COBOIM PROGA ATC.V1R5MO. SAMPLE.COBOLST (COBO1AM) 67
4 PROGB 118 119
6 COBOIM PROGC ATC.VIR5MA.SAMPLE.COBOLST (COBO1CM) 39
1 s#xkxxxxx CA TARGETED SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS s
0 DATE: 12/11/1998
TIME: 11:37.10
TEST CASE 1D:
0 |<-- PROGRAM IDENTIFICATION -->|
|
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt
4 COBOIM PROGB ATC.VIR5MO.SAMPLE.COBOLST (COBO1AM) 113 118
6 COBOIM PROGC ATC.V1R5MO. SAMPLE.COBOLST (COBO1CM) 37

Figure 5. Targeted Summary Report for COBO1M

Coverage Assistant 23

24 Application Testing Collection 1.5.0 General Information

Source Audit Assistant

What Problem Does Source Audit Assistant Solve?

Source Audit Assistant (SAA) is a tool that helps you easily view changes that you
have made to your source code. It allows you to do a comparison of your code
base and provides several views of that comparison for your use.

Questions and Answers
1. What do you mean by a comparison of my code base?

Think about a simple program made up of several source files that get com-
piled and linked together to form your application. Suppose you have your pro-
duction copy of those source files in a partitioned data set (PDS). Further,
suppose you have to change one or more of those files in order to either add a
new function or fix a bug. You make your changes and store your changed
files into a new PDS that only contains the files that have been modified. Now
we are ready to delve into exactly what SAA can do for you.

In the simplest of terms, SAA performs a record level file comparison of the old
PDS and the new PDS and generates a report containing all common
members, with only the differences between the old and new files appearing in
the report. In other words, all you will see in the report are the differences
between your original code and your modified code.

2. Isn't this simply like any standard file compare utility?

No. While SAA at its base does a file comparison, it does much more for you
that differentiates it from standard file compare utilities.

3. Like what?

The name of the tool—Source Audit Assistant—implies that it assists you in
auditing changes to your code base. Many information systems (IS) shops
have a very structured process for reviewing, or auditing, all changes made to
code before allowing it back into production.

SAA provides that audit function so that the programmer, or an independent
review team, can look at all changes to validate that they are needed changes.

4. Sounds good but | still don't see why a simple file comparison utility
won't do the same thing for me.

For a number of reasons. One is that SAA is set up to help you audit massive
numbers of changes over a large number of files. A simple file utility could

bury you in such a situation with a comparison file that is so large that it would
literally take days to go through and review all of the changes that were made.

SAA provides a series of filters which help mask out or eliminate certain
changes that may be uninteresting to you. The filter simply ignores certain
types of changes so that they do not appear in the resulting report file, thereby
not cluttering the file with changes that you do not care to see.

© Copyright IBM Corp. 1998, 1999 25

5. What types of filters are provided?
Three filters are currently provided:

a. Comments filter. The comments filter, if specified, will mask out (ignore)
changes made to comments. That brings up another feature of SAA that
you will not find in most standard file comparison utilities. It “understands”
the languages it supports to a large extent. It is not as sophisticated as a
compiler, but it understands the basic syntax of its supported languages.
Having this understanding of the languages, SAA can detect when it finds a
difference in a record that is part of a comment. If you specify this filter,
then all comment changes will be filtered out, and you won't have to deal
with them in your output report.

b. Variable declaration filter. Again, using its language understanding, SAA
can filter out any changes that are made to statements that declare vari-
ables in the source code. So if you decide you don't need to see changes
that fall into this category, simply specify that filter when you use SAA and
those changes will be ignored.

c. Reformatted lines filter. This filter is intended to ignore changes on lines
that remain logically the same, but may have moved left or right because
you have changed the indentation of the line. For example, if you had a
series of statements that were always executed, you may have lined them
up to start in a certain column, just for readability and maintainability. Now,
to implement your change, you had to bracket those statements within an
IF statement.

You will probably insert your IF and ELSE at the same columns the already
existing statements are on and then indent the existing statements a few
columns, again simply for readability and maintainability. For example,
suppose you had a PL/I program that originally had the following code
segment:

WEEKS_PAY = 0;

and you changed that to:

IF NEW_WEEK = TRUE THEN
WEEKS_PAY = 0;
ELSE;

Without the reformatted lines filter, SAA would show all three statements as
having changed. However, logically, the middle statement did not change,
it was simply moved over two columns. If the reformatted lines filter is
turned on, then only the IF and ELSE lines would show in the output report
as having changed because those two lines are the ones that are truly dif-
ferent between the old and new files.

So as you can see, you have the ability to filter out certain types of changes to
help you focus on changes that you really care about and need to check.

6. OK. 1 see how the filters can help cut down the amount of data that |
have to look at. What other features are there?

Several. SAA can handle comparisons of not only source files, but compiler
listings as well. SAA strips away all of the non-source portions of the listing,
such as cross-reference and attribute sections, and then does a normal source
type comparison with what remains, which is your source code as it had been
processed by the compiler when the listing was created.

26 Application Testing Collection 1.5.0 General Information

7. Why would | want to compare listing files when it's my source that has
been modified?

When you compare source files, you are viewing all of the pieces of your
program separately, which may be what you want. However, most programs
you are interested in are made up of files that are combined together at
compile time to make a functioning program. The most obvious and common
instance of this would be the practice of isolating record and structure defi-
nitions in separate copy or include members that are introduced at compile time
and are processed by the compiler as one “logical” file. By having SAA
compare your listing files, you get to view all of the files that were included in
the compile as a single logical unit.

It depends on what you are trying to accomplish, but just know that you have
this option of comparing either source or listing input.

8. What other reason might | want to compare listings rather than source
files?

Two reasons primarily. When you compare source files, you usually don't have
a view of the data and executable part of your code at the same time. Typi-
cally, programs are broken up into pieces. Data structures are kept in separate
data sets so they can be shared among many programs that need to utilize
them. However, if you take a listing and use that as your base of comparison,
you have all of the copy books/include members brought in and in context with
the executable part of the program. Additionally, they're all visible in the listing.

This way, viewing and analyzing code changes is easier in most cases
because the data and executable portions of the program are all in one com-
parison file.

The second reason is that you can have SAA generate a CA targeted summary
control file that can be passed to CA for processing. It is much more straight-
forward generating this control file that SAA creates by pulling information from
the listing (where all the data structures are now present as was mentioned
previously) rather than having to generate it from a comparison of the source
files (in which the data structures may be spread out over several data sets).

In order to learn more about how these two tools work together, see “Coverage
Assistant” on page 11.

9. Are there other features of SAA that can help me audit my changes?

Certainly. Another key feature is the ability to generate a change validation
report, which will help you further analyze the changes that have been made to
your source code.

This part of SAA requires that you provide a data set that contains a list of
seed variables. These variables are ones that you are expecting to be used in
the changes between the production, or old files, and the changed, or new files.
In other words, you can provide a list of variables that you would expect to find
in the changes to your programs. With that input, SAA will provide you with a
change validation report that contains three parts.

The first part of the report simply identifies what data sets were used in the
comparison, the date and time of the run, and so on.

The second part of the report shows you a list of those variables that were not
found in any of the changed lines for the two compared files. It is up to you to
decide if there is a problem or not, but again this allows you to identify vari-

Source Audit Assistant 27

ables that you were expecting to be involved in the changes, but for one
reason or another, did not appear in any of the changed lines.

The third part is a report of any changed lines that did not contain at least one
of the variables in the provided list of variables. In this case, you will be shown
all lines that were changed, but did not contain any of the provided variables,
which may mean you are looking at possible unauthorized changes. You can
review this part of the report to look for just such instances.

10. Where does the list of expected variables that | need to provide to SAA
come from?

This list comes in the form of a sequential data set or a PDS member con-
taining the variable names. Where it comes from will depend on your particular
environment. There are many analysis tools available that analyze source
code, looking for variables of a certain type or description based on the name
of the variable. If your shop is using tools of this nature, you should be able to
create these files fairly easily using the output of those tools.

Again, keep in mind that this feature is an option for you. It is not required in
order to use the SAA base function. If you have other tools that do analysis of
your code, then you can take advantage of those tools and allow SAA to help
audit your changes even further.

11. What languages are supported by SAA?

Currently, SAA supports 370/390 Assembler, C, C++, COBOL, and PL/I source
files, as well as assembler, COBOL, and PL/I listing files.

Overview of How to Use Source Audit Assistant

Source Audit Assistant is very easy to use. You start it by selecting option 2 from
the ATC Primary Option Menu. Figure 6 shows you what that ISPF panel looks

like.
——————————————————————— ATC Primary Option Menu VIRAMO ----------ommommommmo oo
Option ===>
0 Defaults Manipulate ATC defaults
1 CA/DA/UTA Coverage, Distillation and Unit Test Assistant
2 SAA Source Audit Assistant
3 SINFO SInfo Assistant
Enter X to Terminate

Figure 6. ATC Primary Option Menu

The Execute Source Audit Assistant panel, shown in Figure 7 on page 29, is
then displayed.

28 Application Testing Collection 1.5.0 General Information

Option ===>

1 Background Execute as Batch Job(s) via generated JCL

2 Foreground Execute in the Foreground under ISPF

3 Compare View Compare Dsn

4 Log View Log Dsn

5 Postprocessor Validate Changes & Create Prototype Target Control Dsn

Enter END to Terminate

Figure 7. Execute Source Audit Assistant Panel

From this panel, you can choose to execute the code comparison in the foreground
or in the background (batch) so that you don't tie up your online ISPF session.

Executing SAA in the Background

If you want to execute the code comparison in the background, select the
Background option on the Execute Source Audit Assistant panel. The panel
shown in Figure 8 is displayed.

Option ===>

New Source Dsn: . . . 'project.newgroup.cobol ()"
01d Source Dsn: . . . ‘'project.oldgroup.cobol(*)'
Qutput Compare Dsn: . 'yourid.SAA.YYY.CMP'

Qutput Log Dsn: . . . ‘'yourid.SAA.YYY.LOG'

Programming Language: COBOL (ASM,C,C++,COBOL,PL/I,LASM,LCOB,or LPL/I)

Select Line Audit Filters (Y = apply filter, N = do not apply filter):
Comments Y (Y or N) Declares Y (Y or N) Reformatted Y (Y or N)

Select Comparison Columns: Select Execution Option:
Start Col 1 (1-176) End Col 72 (1-176) Edit JCL Y (Y or N)

DBCS support:
Enable N (Y or N)

Press END to Terminate

Figure 8. SAA Background Execution Parameters Panel

You simply fill in the fields to indicate where your old and new code files are stored,
as well as the language of those files, what filters you want to apply, and the data
set to which you want the comparison report written.

In addition, you can choose to edit the JCL created for you. While in edit, you can
save the file for future use or make changes and submit it yourself. The other
choice is to do the job submission now as the JCL is being created.

Lastly, you need to indicate whether the input files contain DBCS characters.

Source Audit Assistant 29

Depending on how many members you have in your old and new files, you will get
one or more jobs generated (and executed) in order to compare all of the files in
your data sets.

Once your job(s) have completed, you can view the results in the output data set
you specified.

Executing SAA in the Foreground

If you want to execute the code comparison in the foreground, you select the
Foreground option on the Execute Source Audit Assistant panel. The SAA
Foreground Execution Parameters panel is displayed. Simply fill in the requested
fields and press Enter to run the comparison.

Figure 9 shows the SAA Foreground Execution Parameters panel.

Option ===>

New Source Dsn: . . . 'project.newgroup.cobol ()"
01d Source Dsn: . . . ‘'project.oldgroup.COBOL(*)"
Qutput Compare Dsn: . ‘'yourid.SAA.YYY.CMP'

Qutput Log Dsn: . . . 'yourid.SAA.YYY.LOG'

Programming Language: COBOL (ASM,C,C++,COBOL,PL/T,LASM,LCOB,or LPL/I)
Select Line Audit Filters (Y = apply filter, N = do not apply filter):
Comments Y (Y or N) Declares Y (Y or N) Reformatted Y (Y or N)

Select Comparison Columns:
Start Col 1 (1-176) End Col 72 (1-176)

DBCS support:
Enable N (Y or N)

Press END to terminate

Figure 9. SAA Foreground Execution Parameters Panel

Creating an SAA Change Validation Report and Targeted Summary

Control File

After you run a comparison of your code base, you can then run the SAA
postprocessor, which will create an SAA change validation report and a prototype
targeted summary control file that can be used as input to the Coverage Assistant.

In order to create an SAA change validation report, select the Postprocessor option
on the Execute Source Audit Assistant panel. The SAA Postprocessor panel is
displayed. Simply fill in the requested fields and press Enter to run the SAA
postprocessor.

Figure 10 on page 31 shows the SAA Postprocessor panel.

30 Application Testing Collection 1.5.0 General Information

Command ===>

Input Data Sets:
SAA Compare Dsn . . . 'yourid.SAMPLE.SAA.COBOLM.CMP'
Seed List Dsn 'ATC.VIR5MO.SAMPLE.SAA.SEEDLIST(COBOLM)"

Qutput Data Sets:
Target Control Dsn . . 'yourid.SAMPLE.SAA.COBOLM.TARGCTL'
Chg Validation Rpt Dsn 'yourid.SAMPLE.SAA.COBOLM.REP'

DBCS support:
Enable N (Y or N)

Figure 10. SAA Postprocessor Panel

Inputs

The most obvious inputs to SAA are the two data sets that contain the old and new
source/listings that you want to compare. You can compare two sequential data
sets or you can compare two PDS files. If you have PDS files that have different
sets of member names, you will only get comparisons for the members that are
common to both data sets.

Other key inputs to SAA are as follows:

* Programming language of the file being compared.
e Setting of the three available filters to be used during the comparison.
¢ Specification of the columns to use during the comparison.

The SAA postprocessor has two main inputs. The first is an SAA compare data set
which is the output of the main SAA compare process. It can be a sequential data
set or a member of a PDS.

The second input is the seed list data set name, which contains a list of variables
that you are expecting to be found in lines of code that have been modified. It can
be a sequential data set or a member of a PDS. It contains free-form records, with
one or more variables per record. If multiple variables are specified per line, they
must be separated by one or more blanks.

Outputs

The SAA has two main outputs. The first is the comparison file, which contains the
actual comparison report done by SAA. Figure 11 on page 32 shows a sample
comparison report.

Source Audit Assistant 31

Source Audit Assistant V01.2 Date 12/62/1997 Time 11.07

New File Name -> ATC.VIR5MO.SAMPLE.SAA.NEW.COBOL (COBOLM)
01d File Name -> ATC.VIR5MO.SAMPLE.SAA.OLD.COBOL(COBOLM)

COBOL comments have been included

COBOL declares have been included
Reformatted lines have been included

The compare was from column 1 to column 176

THE FOLLOWING LINE(S) HAVE BEEN DELETED

312
313

01d
01d

WHEN NUM-MINUTES > 0 AND <= 20
COMPUTE INIT-COST = INIT-COST + (NUM-MINUTES * 8)

THE FOLLOWING LINE PAIR(S) HAVE BEEN REFORMATTED

313
315

New
01d

COMPUTE INIT-COST
COMPUTE INIT-COST

INIT-COST + (NUM-MINUTES * 7)
INIT-COST + (NUM-MINUTES * 7)

THE FOLLOWING LINE(S) HAVE BEEN INSERTED

369

New

MOVE 3 TO COST.

THE FOLLOWING LINE PAIR(S) HAVE BEEN REPLACED

401
402

431
432

460
461

New
01d

New
01d

New
01d

VARYING SUB1 FROM 2 BY 1 UNTIL SUB1
VARYING SUB1 FROM 1 BY 1 UNTIL SUB1

CALLS-MADE
CALLS-MADE

COMPUTE INIT-COST
COMPUTE INIT-COST

INIT-COST + TOTAL-COST + 6.
INIT-COST + TOTAL-COST + 5.

COMPUTE INIT-COST
COMPUTE INIT-COST

INIT-COST + TOTAL-COST + 20.
INIT-COST + TOTAL-COST + 10.

Figure 11. Output Report Created by Comparing COBOL Source Files

For your output file, if you run in the background, you have the option of specifying
a PDS or a sequential data set to contain the comparison report. If your input files
are PDS files (which is typical) and you specify a PDS for the output, you will get
comparison reports individually in the output PDS. The member names of the input
PDS files will be used as the member names of the output PDS files. If you specify
a sequential file for the output file in this same case, all the various member
compare reports will be combined into the single sequential data set.

If you are running in foreground, you only have the sequential file option for the
output file. In either case, if you intend to use the SAA postprocessor to generate a
prototype targeted summary control file, it is highly recommended that your SAA
compare output file always be a sequential file.

The second output is the SAA log file. Primarily, this file simply logs any errors that
SAA encounters while it is doing the comparison. This file will be uninteresting to
you 99.9% of the time, but if SAA fails for some reason and the problem is reported
to IBM, this file may be requested since it may contain information to help the
development team determine what the problem is.

The SAA postprocessor has two main outputs. The first is the SAA change vali-
dation report, which, as described previously, contains information to help you audit

32 Application Testing Collection 1.5.0 General Information

your changes against a set of variables that you were expecting to see in the
changes to the code.

The second output file is a prototype targeted summary control file. This targeted

summary control file, when completed, can be used as input to the Coverage
Assistant to generate a targeted summary report.

Source Audit Assistant 33

34 Application Testing Collection 1.5.0 General Information

Distillation Assistant

What Problem Does Distillation Assistant Solve?

Distillation Assistant (DA) is a tool provided to help you reduce the time and
resources required in your testing process by distilling the input data sets proc-
essed by your application.

Questions and Answers
1. What do you mean by “distillation”?

Distillation is the reduction of a data set used as an input by your application to
the minimum number of records needed to provide code coverage equivalent to
that provided by the original data set. This distilled data set can then be used
in future tests in place of the larger original data set.

2. Equivalent code coverage?

Code coverage measures which executable statements in an application were
actually executed during a test run. For a more complete description of cov-
erage, please see “Coverage Assistant” on page 11. Distillation Assistant can
usually produce a much smaller data set than the original, which can provide
nearly equivalent code coverage.

3. Why only nearly equivalent?

No distilled data set can be guaranteed to provide equivalent coverage in all
cases. There are certain cases where equal coverage cannot be attained at a
reasonable cost. One example is when a branch depends on the summation of
a field from multiple records. Only the first record and the one which put the
summation over the limit would be saved. However, in many cases the loss of
coverage is minimal.

4. How is the distillation done?

In the setup step, DA adds breakpoints to a copy of your application's object or
load modules. As your application runs, the breakpoints are removed as the
statements are executed, and the key of any record that caused new coverage
is saved.

The actual distillation is done in two steps:
a. Logical distillation

Collecting keys while running your application test suite under the control of
the monitor.

b. Physical distillation

Creating a new smaller file from your master file, including only the records
with the keys that were gathered in the logical distillation step.

5. What are these keys?

The keys are any contiguous area in a record that uniquely identifies that
record. The keys can contain any data type and can be up to 126 bytes long.

© Copyright IBM Corp. 1998, 1999 35

The keys must also be the same length and in the same position in each
record.

6. Do the keys have to be unique?

No. Nonunigue keys can be used, but the distillation will not be as effective.
All records with the same key as the one that caused new coverage will be
included in the distilled file.

7. What kinds of data sets can | distill?

The input master data set can be any sequential or VSAM data set that con-
tains logical keys. However, note the following input master data set
restrictions:

If the data set is sequential, the RECFM may be any valid MVS RECFM
except VS and VBS. Spanned records are not supported.

VSAM data sets with either KSDS or ESDS organizations can be distilled.
However, VSAM data sets that have alternate indexes will not have the cor-
responding alternate indexes built into the new master data set.

Any type of VSAM data set that cannot be distilled directly can be copied
using the IDCAMS REPRO function to a sequential data set, which can be
distilled and copied back to a VSAM data set.

8. What languages does Distillation Assistant support?

IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])

IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions
[MLE])

IBM VS COBOL Il Release 4.0

IBM OS/VS COBOL Release 2.4

IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions
[MLE])

IBM OS PL/I Optimizing Compiler 2.3.0

IBM PL/I Optimizing Compiler 1.5.1

Note: For PL/I, support is for record I/O only.

Overview of How to Use Distillation Assistant

A typical distillation run would look like this:

1. Compile or assemble your routines (compile units) using the options required
by DA. Save the listings and object modules into data sets.3

2. Create a DA control file that defines your collection of compile units.

This control file consists of one control statement per compile unit that defines

the name of the compiler listing, the object module data set produced by the

compiler, and the output object module data set produced by DA. It also con-

tains control statements defining the program or paragraph containing the file
| reads, the file name used in the application, and the length and location of the
| key in the records.?

| 3 Note that an object module can be instrumented and then linked into a new load module, or a load module can be instrumented

| directly.

36 Application Testing Collection 1.5.0 General Information

3. Start the ISPF panel interface, create the JCL for the SETUP program with DA
enabled, and run it.

This program analyzes your compiler listings and creates a new set of object
modules that contain DA breakpoints. In addition, SETUP creates data sets
called BRKTAB (breakpoint table) and DBGTAB (debug table).?

Experienced users can integrate this SETUP program into their normal compile
procedures rather than use the ISPF interface every time.

4. Link edit your program(s) using the new object modules created by DA
SETUP.3

5. Start a DA monitor session with the BRKTAB and DBGTAB data sets created
by the SETUP program.

6. Run your test cases.

The DA monitor intercepts the breakpoints inserted into your program and
records the keys of all records which cause new coverage. The breakpoints
are removed as they are encountered, so the performance impact is minimal.
The handling of the breakpoints is transparent to your program (and any run
time that you are using).

7. Stop the DA monitor session.

8. If you choose, generate the JCL to create the DA key list, an editable file in
which you can add or delete keys.

9. Generate the JCL to distill the master data set using the key list.

Inputs
Distillation Assistant requires the following inputs:
* A compiler listing file generated with the required options.
* The object or load modules which make up your application.

e A control file containing information on the data sets to be used, and the file
reads to be monitored. You can see an example of this control file in
Figure 12.

COBOL ListDsn=ATC.V1R5M0.SAMPLE.COBOLST(COB11M),
LoadMod=COB11M,
FromObjDsn=ATC.V1R5M0.SAMPLE.0BJ,
ToObjDsn=ATC.V1R5M0.SAMPLE.ZAPOBJ

Scope ExtProgram-Id=COB11M
File File=QSAMIN,KeyPosition=15,KeyLen=20

Figure 12. Distillation Control File for COB11M

Distillation Assistant 37

Outputs
Distillation Assistant provides the following outputs:

¢ An intermediate file containing the list of keys. This file can be edited to add or
remove keys as desired.

¢ A data set distilled from your master data set containing only those records with
keys in the key list.

38 Application Testing Collection 1.5.0 General Information

Unit Test Assistant

What Problem Does Unit Test Assistant Solve?

The Unit Test Assistant (UTA) is a tool that allows you to log and change (warp)
the values of selected variables in your application programs by intercepting them
at user-defined points during program execution. UTA offers these two important
functions while avoiding the need for modifications to source code or input files.
You execute your programs in your normal runtime environment, not under the
control of a debugger.

A standard data warping process is to age, or warp, occurrences of dates in the
input data files. The UTA file warp feature can copy your input files and then warp
specified fields in the copied files for testing.

Questions and Answers
1. When would UTA be used?

UTA logs variable values during the application test run. The log can then be
examined for trace back debugging. For instance, if during a test run of a
remediated application a date variable becomes contaminated with invalid data,
UTA can be used to locate the 1/0O record and source statement in which the
contamination originated.

Furthermore, UTA's data warping capability enables you to statically warp dates
in input files or dynamically warp dates during runtime. Dynamic date warping
allows you to perform runtime Year 2000 testing of date variables without the
need to maintain aged input files or a system whose clock has been set to a
future date. When combined with CA, you can easily determine the effects of
post-1999 dates on program execution.

2. What exactly is data warping?

Data warping is the modification of the data used by an application program. In
the context of the Year 2000 problem, it usually refers to the aging of all date
variables to dates on or around the year 2000. One way to do this is to phys-
ically change the data in your input files so that the year portion of every date
is post-1999. UTA's warping capabilities can help you do this. The file warp
feature modifies dates in input files and the dynamic data warping feature modi-
fies dates during program execution. With dynamic data warping, the values of
dates are advanced only in program storage.

3. What does UTA provide that is not provided by an interactive debugger,
such as IBM Debug Tool?

UTA, like CA and DA, does not require an interactive terminal session during
test case execution and therefore operates independently of the environment
under which the application is running. For example, the programs to be tested
can execute in batch, CICS, IMS TM, or ISPF.

In the case of a batch application reading an input file of 1000 records, each
record containing multiple fields, at least one of which is numeric, UTA's value
is evident. If you are attempting to identify which record is causing the program

© Copyright IBM Corp. 1998, 1999 39

logic to contaminate a data field, it would be impractical to interactively step
through all of the records and examine the data value at each application
instruction. Similarly, large amounts of time could be wasted if you had to alter
the value of a numeric field every time a new record was read. Using the
proper control file, UTA will not only log the data values for analysis after the
application test run has completed, but it will also “warp” the numeric field of
each record as it enters program storage.

4. How does Unit Test Assistant log or dynamically warp variables?

A user-edited control file determines which variables are logged, dynamically
warped, or both, and where in the program these actions will occur. A setup
step analyzes your listings that contain the variables you want to log or warp.
The setup step inserts user SVC breakpoints at appropriate places in your
object or load modules. You start a monitor session to wait for these break-
points to be executed. You then run your programs normally. When a break-
point is executed, UTA gets control and either places the value of a selected
variable into a log file or warps the value of a selected numeric variable. For
COBOL, UTA can log or warp most program variables. It has the ability to
determine if the requested variable is being evaluated from within a data struc-
ture or by itself. For PL/I, UTA can warp file input buffers. After you are fin-
ished testing your programs, you can generate a report of the logged variables.

5. What compilers are supported?

e IBM COBOL for OS/390 & VM 2.1 (plus Millennium Language Extensions
[MLE])
e |IBM COBOL for MVS & VM 1.2 (plus Millennium Language Extensions
[MLE])
e IBM VS COBOL Il Release 4.0
e IBM OS/VS COBOL Release 2.4
e The following PL/I compilers are supported for data warping of file input
buffers only :
— IBM PL/I for MVS & VM 1.1.1 (plus Millennium Language Extensions
[MLE])
— IBM OS PL/I Optimizing Compiler 2.3.0
— IBM PL/I Optimizing Compiler 1.5.1

6. How does Unit Test Assistant file warp work?

The UTA file warp feature changes date fields in flat files or VSAM files. You
supply a warp control file to control which fields are incremented, decremented,
or set to a value. Each field that is warped can be controlled by the contents of
another field in the file by assigning a label to the control field. You can then
modify other fields based upon the value of the labeled field by referencing the
label.

For instance, you might specify that records referencing a field labeled 1 be
incremented by 1, incremented by 2, or decremented by 1, depending on the
value of the labeled control field when the warp occurs. Records referencing a
field labeled 2 might be incremented by 4 or incremented by five, depending on
the value of the labeled field when the warp occurs. The warp control file is
similar in structure to a copy book defining your input file.

40 Application Testing Collection 1.5.0 General Information

Some major advantages of using Unit Test Assistant are:

Low overhead. UTA typically adds very little execution time to a program.

Panel-driven user interface. You can use an ISPF panel-driven interface to
create JCL for executing UTA programs.

Simple, flexible control. The control file used to define monitored/warped vari-
ables provides a simple method of controlling operations.

Overview of How to Use Unit Test Assistant to Log or Warp Variables

A typical run would be as follows:

1.

Compile your routines (compile units) that contain variables to log/warp using
the options required by UTA. Save the listings and object modules into data
sets.4

. Create a UTA control file that defines the variables which you want to log or

dynamically warp. This control file consists of one control statement per
compile unit describing the data sets to be used in this test, followed by state-
ments describing the variables of interest and the action(s) to be performed for
each variable.

. Create the JCL for the SETUP program and run it. This can be generated from

the ISPF panel interface with the Enable UTA option set to Yes. The SETUP
program analyzes the listings and creates a copy of the object modules with
breakpoints inserted.* Experienced users can integrate this SETUP program
into their normal compile procedures rather than use the ISPF interface every
time.

. Link edit your program(s) using the copies of the object modules with the

breakpoints inserted by the SETUP program.*

. Create the JCL to start a monitor session with UTA enabled (text deleted) and

run it.

. Run your test cases as normal. UTA will intercept the breakpoints and perform

log/warp actions as specified in the control file.

. Stop the monitor session.

. Create and run the UTA report JCL. This creates the report of logged vari-

ables.

Inputs

Unit Test Assistant requires the following inputs:

Compiler listings containing the variables to be logged/warped.
The object or load modules containing the variables to be logged/warped.

A control file which defines the data sets to be used, the variables of interest,
and the action to be taken for each variable.

| 4 Note that an object module can be instrumented and then linked into a new load module, or a load module can be instrumented

| directly.

Unit Test Assistant 41

Figure 13 on page 42 is an example of a UTA control file.

Defaults ListDsn=ATC.VIR5MO.SAMPLE.COBOLST(*),
LoadMod=C0OBO2M,
FromObjDsn=ATC.V1R5MO0.SAMPLE.OBJ,
ToObjDsn=ATC.V1R5MO.SAMPLE.ZAPOBJ

COBOL ListMember=C0BO2M
Scope ExtProgram-Id=COBO2M

Variable Name=JULIAN-DATE
* set JULIAN-DATE using Data Warping
Warp Action=Set, Value=0099365,
Datatype=Zoned,Unsigned,Stmts=(87)

Coverage Stmts=(94) // read JULIAN-DATE after it is warped and modified

Variable Name=CURR-DATE
* set CURR-DATE using Data Warping
Warp Action=Set, Value=00991231,
Datatype=Zoned,Unsigned,Stmts=(97)

Coverage Stmts=(103) // read CURR-DATE after it is warped

Variable Name=YEAR4
* increment YEAR4 by 3 using Data Warping
Warp Action=Increment,Value=3,
Datatype=Zoned,Unsigned,Stmts=(106)

Coverage Length=4,
Stmts=(114) // read YEAR4 after it is warped and modified

Variable Name=YEAR IN YEAR-BY-FIELD IN DATE-BY-FIELD
* decrement YEAR by 1 using Data Warping
Warp Action=Decrement, Value=1,
Datatype=Zoned,Unsigned,Stmts=(106)

Variable Name=YEAR2
Coverage Length=2,
Stmts=(117) // read YEAR2 after it gets the 2 digit
* year from CURR-DATE decremented by 1

Variable Name=(BEGIN-DATE In LOAN)
Coverage Length=8,

NAME // read BEGIN-DATE of LOAN
* structure by NAME
Coverage Length=8,
FULL // read BEGIN-DATE of LOAN structure
* by FULL (when LOAN referenced)

Variable Name=JULIAN-DATE
Coverage Length=7,
Stmts=(143) // read initialization of INC-DATE

Variable Name=J-DAY IN J-DATE
Coverage Length=3,ReadEvery=100,
MaxSave=5,Stmts=(153) // read J-DAY in loop
* every 100 times maximum of 5 times

Figure 13. Control File for COB02M

42 Application Testing Collection 1.5.0 General Information

Outputs

The UTA report contains the logged variable data. To reduce the amount of

logging, you can specify options in the control file that instruct UTA to log only on

the first execution of the statement, or only on some specified interval, for example

every fifth time. A sample report follows:

* Ok X Xk

DATE: 12/15/1998
TIME: 09:47:48

COBOZM
COBOZM
COBOZM
CoBo2M
CoBo2M
coBo2Mm
coBoz2Mm
CoBOZM
COBOZM
COBOZM
CoBo2M
CoBo2M
coBo2Mm
coBoz2Mm
coBo2Mm
COBOZM
COBOZM
COBOZM

prog-ID

C0BOZM
C0BOZM
C0BOZM
CoBO2M
CoBO2M
CoBO2M
CoBO2M
C0BOZM
C0BOZM
C0BOZM
CoBO2M
CoBO2M
CoBO2M
CoBO2M
CoBO2M
C0BOZM
C0BOZM
C0BOZM

var-name

JULIAN
BEGIN-
BEGIN-
CURR-D
YEAR4
BEGIN-
BEGIN-
YEARZ
BEGIN-
BEGIN-
BEGIN-
BEGIN-
J-DAY
J-DAY
J-DAY
J-DAY
J-DAY
JULIAN

-DATE

DATE of LOAN
DATE of LOAN
ATE

DATE of LOAN
DATE of LOAN

DATE of LOAN
DATE of LOAN
DATE of LOAN
DATE of LOAN
of J-DATE

of J-DATE

of J-DATE

of J-DATE

of J-DATE
-DATE

stmt-num

1999365

00991231
2002
00991231
00991231
98
19981231
19981231
19981231
19981231
098

198

298

032

132
2002267

Figure 14. Report for COB02M

Overview of How to Use UTA's File Warp Feature

For a file that has the following structure:

01 EMPLOYEE-RECORD.
03 EMPLOYEE_NAME

03
03

03

03

03

SOCIAL_SECURITY_NUMBER

SPACE1
HIRE_DATE
05
05
05
SPACE2
LAST_PROMOTI
05
05
05
SPACE3
CURRENT_LEVE
SPACE4

CURRENT_SALA

YEAR
MONTH
DAY

ON_DATE
YEAR
MONTH
DAY

L

RY

PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC

(X)20.
9(9).
(X)1.

9(2).
9(2).
9(2).
(X)1.

9(2) PACKED-DECIMAL.
9(2) PACKED-DECIMAL.
9(2) PACKED-DECIMAL.
(X)1.
9(1).
(X)1.
9(7).

Figure 15. Sample Record Structure for File Warp

Unit Test Assistant

43

The following warp control file could be used:

01 EMPLOYEE-RECORD.

03 EMPLOYEE_NAME 20 CHARACTER
03 SOCIAL_SECURITY_NUMBER 9 ZONED =0
03 SPACEL 1 CHARACTER
03 HIRE_DATE
05 YEAR 2 ZONED = 01
05 MONTH 2 ZONED
05 DAY 2 ZONED
03 SPACE2 1 CHARACTER
03 LAST_PROMOTION_DATE
05 YEAR 2 PACKED SIGNED
R1: 1 2 PACKED SIGNED + 1
R1: 2 2 PACKED SIGNED + 2
R1: DEFAULT 2 PACKED SIGNED - 1
05 MONTH 2 PACKED SIGNED
05 DAY 2 PACKED SIGNED
03 SPACE3 1 CHARACTER
1: 03 CURRENT_LEVEL 1 ZONED
03 SPACE4 1 CHARACTER
03 CURRENT_SALARY 7 ZONED = 0

Figure 16. Warp Control File Example

After creating the warp control file using your control book as a model, you execute
the ATC file warp program. ATC file warp copies your input file and warps the
fields defined in the warp control file. In the previous example, the following fields
would be warped as follows:

e For all records:

— The SOCIAL_SECURITY_NUMBER and CURRENT_SALARY fields are set
to 0.

— The 2-digit zoned field YEAR in HIRE_DATE is set to 01.

e For records with CURRENT_LEVEL =1, 1 is added to the packed field YEAR
in LAST_PROMOTION_DATE.

* For records with CURRENT_LEVEL = 2, 2 is added to the packed field YEAR
in LAST_PROMOTION_DATE.

e For records with any other CURRENT_LEVEL, 1 is subtracted to the packed
field YEAR in LAST_PROMOTION_DATE.

44 Application Testing Collection 1.5.0 General Information

Automated Regression Testing Tool

What Problem Does Automated Regression Testing Tool Solve?

Automated Regression Testing Tool (ARTT) is a black box test tool that captures
I/O events and data during an application's baseline execution and compares it with
output from the application's proof execution. ARTT can also modify data automat-
ically as it is encountered during execution to make it compatible with the format
expected by the application, a feature especially useful when date testing year
2000 remediated code.

Because Automated Regression Testing Tool automates much of the testing
process, your regression testing is more efficient. With ARTT you can:

Complete testing more quickly, thereby saving cycle time and reducing costs.
Complete more testing.

Perform all levels of testing (unit, function, integration, and system) with or
without a production system.

Improve the quality of your tests. Because Automated Regression Testing Tool
always uses the same input and produces the same type of output, you can
have more confidence in the validity of your measurements.

Test earlier and later in the testing cycle.

Test when programs and inputs are at different levels of remediation.

Questions and Answers

1. What is regression testing?

Regression testing is black box function testing that attempts to ensure that no
errors were introduced and no loss of function occurred when changes were
made to an existing application. It does this by comparing the output from a
baseline execution of the application before modification with the output from a
proof run of the application after modification. Typically, this should be done at
each stage of testing (unit, function, integration, and system) as the changed
application is promoted into production.

. Can't | just capture my own test cases and then run them over again

myself?

Yes you can, but without tools you may have to have highly skilled people to
set up the environment, run the test cases, and then interpret whether the test
cases were successful, AND you will need the same highly skilled people to run
the test cases each and every time. A more effective and economical way is to
use a good set of tools.

© Copyright IBM Corp. 1998, 1999 45

3. OK, so how does ARTT help me to do a better job of regression testing?
ARTT assists regression testing in several ways. For instance, ARTT:
a. Allows testing to occur separately from the I/O environment.

b. Automatically compares outputs and alerts you to differences that indicate
changed application behavior.

c. Allows programs with both transformed and untransformed data to be
tested in integration with other systems or files.

4. What do you mean by allowing me to run my testing separately from the
I/O environment?

You can capture the initial baseline execution with ARTT, copy the log file
offsite, and then replay modified versions of the program again and again
without having to copy real data or set up complex environments. ARTT can
test applications running in batch, CICS, DB2®, and IMS.

5. How does the tool tell me if there is a problem with a test case that has
previously run successfully?

ARTT automatically generates both a summary report of all I/O activity,
including the number of differences found between the Capture and Replay
runs, and a detailed listing, in both hex and EBCDIC, of every difference found.

6. Since ARTT is logging data as it comes into and goes out of the program,
can it operate on or make changes to the data as it does that?

Yes. Data can be transformed to and from one format to another. For
example, ARTT could change a YYMMDD (981109) format to a DDMMMYYYY
(0O9Nov1998) format, as well as rejuvenate or age all dates automatically as
they enter and exit the program.

7. What about Year 2000 testing? Does ARTT help me in this special testing
area?

Yes. It helps with Year 2000 testing in a number of ways. ARTT supports over
100 different date formats that can be used to transform and compare data on
the fly. For a date expansion solution, this capability allows ARTT to work with
any combination of transformed or untransformed programs and transformed or
untransformed files.

For example, suppose that your input files contain dates in the format
YYMMDD (981109), your program expects dates in the format DDMMMYYYY
(0O9NOV1998), and your output files must contain dates in the same format as
your input files. In this scenario, your testing could come to an abrupt halt
without a method of converting data.

ARTT's data conversion capability solves compatibility problems by dynamically
transforming data to required formats, as well as automatically rejuvenating or
aging all dates entering and exiting the program. In this way, ARTT allows
testing to continue uninterrupted.

46 Application Testing Collection 1.5.0 General Information

8. So can | do time or future date testing with ARTT?

ARTT can roll input and output dates either forward or backward by any
number of days or years, which allows time testing without statically aging data
files and databases. Therefore, with ARTT's date rolling capability, you could
test any future dates by instructing ARTT to dynamically roll dates forward
(age) as they enter or exit the program, and you could ensure proper func-
tioning of past dates by having ARTT dynamically roll dates backward
(rejuvenate) as they enter or exit the program.

9. Are there any other Year 2000 testing features?

When Y2K date expansion is required, ARTT could be used as a bridge in a
production environment to allow applications that have been remediated to run
with data files or databases that have not been remediated. This capability
eliminates the cost of having to write throwaway “bridge” programs.

10. What environments does ARTT support?

ARTT can be used to test applications running in the following MVS environ-
ments. You can even capture the initial baseline execution with ARTT, copy
the log file offsite, and then replay modified versions of the program again and
again without the actual 1/0 data or the I/O environment.

Batch ARTT supports QSAM and VSAM.
CICSs ARTT supports applications invoked by a terminal as well as the fol-
lowing transaction types:
e Terminal control
e File control
e Basic mapping support
¢ |MS attach facility
e DB2 attach facility

DB2 ARTT supports applications invoked by the DSN command
processor, and only static SQL statements within those applications.
IMS ARTT supports BMP, DL/I, and MPP applications. You should run

all MPP applications that are within a region as a unit in Capture
mode and in Virtual Replay mode.

Overview of How to Use Automated Regression Testing Tool

The following figures illustrate running your programs in each of ARTT's execution
modes. For detailed instructions on using ARTT, see the ARTT user documenta-
tion, which was shipped with the Application Testing Collection.

Automated Regression Testing Tool 47

A typical Capture run under ARTT control would look like this:

ARTT

Input) Program # Output

— >

Log File

Figure 17. Batch Program Running in ARTT Capture Mode

A typical Real Replay run under ARTT control would look like this:

ARTT

Input) Program # Output

Differences
Report

—

Log File

Figure 18. Batch Program Running in ARTT Real Replay Mode

A typical Virtual Replay run under ARTT control would look like this:

ARTT

Program
Log File

Differences
Report

Figure 19. Batch Program Running in ARTT Virtual Replay Mode

48 Application Testing Collection 1.5.0 General Information

Inputs

Capture Mode To run in Capture mode, you need to supply the logical JOB and

STEP specifications of the program you want to capture.

Replay Modes To run in either of the Replay modes, you need to supply the

logical JOB and STEP specifications of the program you want to
test. In addition, if you want to do date rolling or data conversion,
you must provide the logical file record formats for the data in
question.

Outputs

Capture Report

ARTT automatically generates a Capture report.

1ARTT V2.R2.MO -- Execution Report

Copyright (C) 1996-1999 National

ATGAGOO1I Program Control File
ATGA00O2I File Control File. .
ATGAGOO3I ARMS Control File. .
ATGAOOO4I User Library
ATGAOOO5I Conversion Library .
ATGAOOO6I Compare Library. . .
ATGAOOO8I Test Control File. .

ATGAO7041 Log File

ATC
ATC

ATC
ATC

. . = ATC

ATGAO7061 Run Mode = CAPTURE

ATGAO7071 Status
ATGAO7081 Run Id = BASE

=N

ATC.
.ART.
.ART.
ATC.
.ART.
.ART.
ATC.
.ART.
ATGAO705I Program ARTP020C executed with:

Westminster Bank, Plc., A1l Rights Reserved.

ART

ART

ART

ATGAOO30I Task ARTP020C attached with:
ATGAGO31I Parameters =

ATGA0O32I Initialisation complete. Passing control to application.
ATGAOO40I Program ARTPO20C completed with Return Code = 4.

ATGAO7121

"" (0 BYTES).

ATGAO7131 I/0 Activity from Current Run:
s Opens Closes

ATGAO7141 Name
ATGAO7121

ATGAO7151 SYSOUT

ATGAO715I SYSPRINT
ATGAO715I ARTPH20
ATGAO715I ARTFKSDI
ATGAO715I ARTFKSDO
ATGAO7151 ARTFESDI
ATGAO715I ARTFESDO
ATGAO7151 ARTFRRDI
ATGAO715I ARTFRRDO
ATGAO7151 ARTFQSMI
ATGAO715I ARTFQSMO
ATGAO719I Log File

ATGAOO41I Main task cleanup complete.

Closed.

O e N e
e e

Inputs Outputs Diffs Shown ConvMod CompMod Dataset Name

.V2R2MO. PROG. VSAM

.V2R2MO. SATGSLOD

.V2R2MO.TEST.VSAM

Date 03/04/1999 Time 21:24:44 Page 0001

V2R2MO.FILE.VSAM
V2R2MO . ARMS . VSAM

V2R2MO. SATGSLOD
V2R2MO. SATGSLOD

V2R2MO.ARTPO20C.BASE. LOG

0 1 0 0 NICH.NICHA.JOB21974.D0000109.?
0 23 0 0 NICH.NICHA.JOB21974.D0000108.?
3 0 0 0 FAMPO30

6 0 0 0 NICH.ARTFKSIN.VSAM

1 4 0 0 FAMPO10 NICH.ARTFKSON.VSAM

4 0 0 0 NICH.ARTFESIN.VSAM

0 3 0 0 NICH.ARTFESON.VSAM

4 0 0 0 FAMPO40 NICH.ARTFRRIN.VSAM

0 3 0 0 FAMPO40 NICH.ARTFRRON.VSAM

4 0 0 0 FAMP0O20 NICH.ARTFQSIN.QSAM

0 4 0 0 FAMPO20 NICH.ARTFQSON.QSAM

Figure 20. Sample ARTT Output Report from Capture Mode

The report provides the following types of information:

Header

The header information provided in the ARTT Capture report includes
general facts about the Capture run, such as the name of the program
executed in Capture mode, the run ID, the program's transformed
status, and so on.

Summary The ARTT Capture report provides a summary of all /O activity.

Automated Regression Testing Tool 49

Replay Report

Cur:
Log:

Cur:
Log:

Cur:
Log:

Cur:
Log:

Cur:
Log:

Cur:
Log:

Cur:
Log:

Cur:
Log:

Cur:
Log:

Cur:
Log:

1ARTT V2.R2.MO -- Execution Report
(C) 1996-1999 National Westminster Bank, Plc., A1l Rights Reserved.

1ARTT V2.R2.MO -- Differences Report
Copyright (C) 1996-1999 National Westminster Bank, Plc., A1l Rights Reserved.

ReqNo=00000016 FileReqNo=00000004

: RegqNo=00000016 FileReqNo=00000004

: 0000 40CID9E3 D7FOF2F1 C3406040
: 0000 40CID9E3 D7FOF2FO C3406040
*
0020 40E385A2 A3899587 40C48594
0020 40E385A2 A3899587 40C48594
0040 40404040 40404040 40404040
0040 40404040 40404040 40404040
0060 89948540 F2F17AF2 F57AFOF3
0060 89948540 F2F17AF2 FA7AFA4F6
* * *
0080 40404040 40
0080 40404040 40

ReqNo=00000019 FileReqNo=00000007
ReqNo=00000019 FileReqNo=00000007

0000 40FOFO40 40404040 FOF04040
0000 40FOFO40 40404040 FOF04040
0020 81848599 40998583 96998440
0020 81848599 40998583 96998440
0040 40404040 40404040 40404040
0040 40404040 40404040 40404040
0060 40404040 40404040 40404040
0060 40404040 40404040 40404040
0080 40404040 40

0080 40404040 40

Length=00133 RetCode=00000000
Length=00133 RetCode=00000000

C1A4A396
C1A4A396

9695A2A3
9695A2A3

C481A385
40400481
Khkkkhkkk *
40404040
40404040

Length=00133 RetCode=00000000
Length=00133 RetCode=00000000

F0404040
F0404040

8481A385
8481A385

40404040
40404040

40404040
40404040

PROG.VSAM
FILE.VSAM
ARMS . VSAM
SATGSLOD
SATGSLOD
SATGSLOD
TEST.VSAM
ARTPO21C.BASE.LOG

Copyright

ATGAGOO1I Program Control File = ATC.ART.V2R2MO.
ATGAG0O2I File Control File. . = ATC.ART.V2R2MO.
ATGAGOO3I ARMS Control File. . = ATC.ART.V2R2MO.
ATGAOOO4I User Library = ATC.ART.V2R2MO.
ATGAOOO5I Conversion Library . = ATC.ART.V2R2MO.
ATGAGOO6I Compare Library. . . = ATC.ART.V2R2MO.
ATGAOOO8I Test Control File. . = ATC.ART.V2R2MO.
ATGAO7041 Log File = ATC.ART.V2R2MO.
ATGAO705I Program ARTP0O21C executed with:
ATGAO7061 Run Mode = REAL

ATGAO7071 Status =Y

ATGAO7081 Run Id = BASE

ATGA0O30I Task ARTPO21C attached with:

ATGAGO311 Parameters = "" (0 BYTES).
ATGA0O32I Initialisation complete. Passing control to application.

9481A385 8440D985
9481A385 8440D985

9981A389
9981A389

969540D7
969540D7

40FOF361
A38540F0
*hkkkkkkk
D7818785
D7818785

FOF461F1
F361FOF4
*kkkk *
40404040
40404040

40404040
40404040

40FOFOFO
40FOFOFO

4089A240
4089A240

FOF361F0
FOF361F0

40404040
40404040

40404040
40404040

40404040
40404040

40404040
40404040

879985A2
879985A2

99968799
99968799

FOF9F940
61F9F940
*%

F1404040
F1404040

40404040
40404040

FA61F1F9
FA61FIF9
*
40404040
40404040

40404040
40404040

Date 03/04/1999

Date 03/04/1999

A2899695
A2899695

81944040
81944040

404040E3
404040E3

40404040
40404040

4040C885
4040C885

FIF94040
40404040
*kkk

40404040
40404040

40404040
40404040

Time 21:25:00

Time 21:25:05

Function=PUT
Function=PUT

Service=QSAM
Service=QSAM

ARTPO21C - Automated Regression

ARTP020C - Automated Regression
*

Testing Demonstration Program

Testing Demonstration Program

Date 03/04/1999 T
Date 03/04/99 T

KkkhRRKIKKHI KRR

ime 21:25:03 Page 1
ime 21:24:46 Page 1
* k%

Function=PUT
Function=PUT

Service=QSAM
Service=QSAM

00
00

00 0
00 0

000
000

He
He

ader record date is 03/04/1999
ader record date is 03/04/99

* k%

Page 0001

Page 0002

Figure 21 (Part 1 of 2). Sample ARTT Output Report from Real Replay Mode

50 Application Testing Collection 1.5.0 General Information

Cur: ReqNo=00000021 FileReqNo=00000005 Length=00082 RetCode=00000000 FeedBck=00000000
Log: ReqNo=00000021 FileReqNo=00000005 Length=00082 RetCode=00000000 FeedBck=00000000

Cur: 0000
Log: 0000

Cur: 0020
Log: 0020

F1FOFOFO FOFOFOFO F1404040 40404040
F1IFOFOFO FOFOFOFO F1404040 40404040

FAFAFOF4 FOF6D2A2 84A240D9 85839699
FAFAFOF4 FOF6D2A2 84A240D9 85839699

1ARTT V2.R2.MO -- Differences Report
Copyright (C) 1996-1999 National Westminster Bank, Plc., A1l Rights Reserved.

Cur: 0040
Log: 0040

ATGAGO40T
ATGAO7121

ATGAO7131
ATGAO7141
ATGAO7121

ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7121

ATGAO7181
ATGAO7141
ATGAO7121

ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7151
ATGAO7191
ATGAOO411

40404040 40404040 40404040 40404040 4040
40404040 40404040 40404040 40404040 4040

Program ARTPO21C completed with Return Code = 0.

1/0 Activity from Current Run:

Name

SYSOUT
SYSPRINT
ARTPH20
ARTFKSDI
ARTFKSDO
ARTFESDI
ARTFESDO
ARTFRRDI
ARTFRRDO
ARTFQSMI
ARTFQSMO

s Opens Closes Inputs Outputs Diffs Shown ConvMod CompMod Dataset Name

FAMPO30
FAMPO10
FAMPO10

FAMPO40
FAMPO40
FAMPO20
FAMPO20

1/0 Activity from Capture Run:
s Opens Closes Inputs Outputs Diffs Shown ConvMod

Name

SYSoUT

SYSPRINT
ARTPH20
ARTFKSDI
ARTFKSDO
ARTFESDI
ARTFESDO
ARTFRRDI
ARTFRRDO
ARTFQSMI
ARTFQSMO
Log File

Closed.

1 1 0 1 0 0
1 1 0 23 0 0
1 1 3 0 0 0 FAMPO30
1 1 6 0 0 0
2 2 1 4 0 0 FAMPO10
1 1 4 0 0 0
1 1 0 3 0 0
1 1 4 0 0 0 FAMPO40
1 1 0 3 0 0 FAMPO40
1 1 4 0 0 0 FAMPO20
1 1 0 4 0 0 FAMPO20

Main task cleanup complete.

40404040 40404040 40404040 4040F1F9
40404040 40404040 40404040 4040F2F0

* %

8440FOFO0 FOFOFOFO FOF14040 40404040
8440FOFO0 FOFOFOFO FOF14040 40404040

Dat

Service=VSAM Function=GET
Service=VSAM Function=GET

100000001 19

100000001 20
**

440406Ksds Record 00000001

440406Ksds Record 00000001

e 03/04/1999 Time 21:25:05 Page 0003

NICH.NICHA.JOB21975.D0000106.?
NICH.NICHA.JOB21975.D0000105.?

NICH.ARTFKSIT.VSAM
NICH.ARTFKSOT.VSAM
NICH.ARTFESIT.VSAM
NICH.ARTFESOT.VSAM
NICH.ARTFRRIT.VSAM
NICH.ARTFRROT.VSAM
NICH.ARTFQSIT.QSAM
NICH.ARTFQSOT.QSAM

NICH.NICHA.JOB21974.D0000109.?
NICH.NICHA.JOB21974.D0000108.?

NICH.ARTFKSIN.VSAM
NICH.ARTFKSON.VSAM
NICH.ARTFESIN.VSAM
NICH.ARTFESON.VSAM
NICH.ARTFRRIN.VSAM
NICH.ARTFRRON.VSAM
NICH.ARTFQSIN.QSAM
NICH.ARTFQSON.QSAM

Figure 21 (Part 2 of 2). Sample ARTT Output Report from Real Replay Mode

The report provides the following types of information:

Header The header information provided in the ARTT Replay report includes
general facts about the Replay run, such as the name of the program
executed in Replay mode, the run ID, the program's transformed status,

and so on.

Detall The ARTT Replay report contains a detailed listing of every difference
found. The differences are provided in both hex and EBCDIC.

Summary The ARTT Replay report contains a summary of all /O activity, including
the number of differences found between the Capture and Replay runs.

Automated Regression Testing Tool 51

52 Application Testing Collection 1.5.0 General Information

Integrating ATC and Using It in Testing Processes

The tools that comprise ATC are:
» Designed for ease of use
e Engineered to compliment existing testing processes
¢ Architected to work in an integrated manner to address the Y2K testing
problem.

This chapter describes various strategies for integrating ATC into your testing
process. The following terms are used throughout:

Baseline A compile unit before making changes needed to correct a
defect or implement a feature

Compile listing An output file showing a compile unit's source statements
produced by a translator

Compile unit A file containing source statements suitable for submission to a
translator

Object file An output file produced by a translator, suitable for submission
to the linker

Run unit An executable module resulting from the linking of one or more
object files

Translator An assembler or a compiler

White space One or more space characters in your source code

Most high-level views of a testing process include the following tasks. ATC is
designed to compliment these tasks, thereby reducing the impact to an existing test
process. Each ATC component can be integrated into one (or more) of these
tasks, resulting in an overall strengthening of the testing process.

1. Assemble/compile the baseline compile units.

2. Link object files generated from the baseline compile units to create baseline
run units.

3. Execute the baseline run units with test data, capturing baseline input data sets
and output results.

4. Change baseline compile units (implementing a feature or correcting a defect)
to create new compile units.

5. Compare the baseline compile units to the new compile units, identifying the
changed code and accommodating the code review process of the changes.

6. Assemble/compile the new compile units.
7. Link object files generated from the new compile units to create new run units.

8. Execute the new run units with baseline inputs and capture the new output
results.

9. Compare the baseline output results to the new output results to verify the
accuracy of the changes.

© Copyright IBM Corp. 1998, 1999 53

The listed steps should be the base of any Y2K testing process. More detail and
implementation can be added, but the core process steps should be the same for
all Y2K testing processes.

The remainder of this chapter describes how the each ATC tool could be used to
implement the defined Y2K testing process.

Source Audit Assistant Integration
Source Audit Assistant (SAA) assists the testing process by:
1. Providing an efficient way to compare compile units and/or their listing files
2. Indicating records in which changes were made, but were not intended
3. Indicating variables that should have been found in changed lines, but were not

4. Generating a control file that Coverage Assistant can use to produce its tar-
geted summary report.

SAA is first used as a compare tool because it provides the means to determine
how a compile unit was changed. By identifying the source statement(s) that differ
in the compile units before and after the remediation, the SAA reports can be used
to:

* Hold design reviews
e Audit the changes for security or other quality assurance reasons

It should be clear that without actually executing the resulting run units, the differ-
ences cannot really be proven satisfactorily. However, SAA provides an efficient
and objective method to assist code reviews on the changed compile units and/or
compile listings.

SAA has three filters, which may be used to further reduce the volume of differ-
ences reported. The most efficient SAA comparison report, in terms of the volume
of differences to look at when assisting in code reviews, is the SAA comparison
report that is generated when the comments filter and the reformatted filter are set
to Yes. Changes to program comments and reformatted source lines (keeping the
source line logic the same but changing the source line breaks and/or the source
line indentation) will not affect the program function or execution. These filtering
features distinguish SAA from other comparison tools.

The second and third uses of SAA are reflected in its name: auditing provides a
means to target those changes which may not have been intended. This is accom-
plished by providing SAA with a file containing a list of the variables for which
changes were intended (that is, a list of data elements of interest). For example, in
the case of Y2K testing, a list of date variables. After producing a comparison file
of the differences between a baseline and its related changed compile unit, SAA
can apply postprocessing to the comparison file. It then generates a change vali-
dation report containing those records which did not contain a data element of
interest. It also identifies any of the variables of interest that do not appear in any
of the changed source lines. This audit function can identify modified code that
may be suspect, because they do not have any relationship to the data elements of
interest.

The third use of SAA is to provide data for integration with Coverage Assistant (CA)
and its targeted summary function. By generating a targeted summary control file

54 Application Testing Collection 1.5.0 General Information

containing variables that were found within changed lines, Coverage Assistant can
provide targeted summary reports that focus on code that has been impacted by
the changes.

Coverage Assistant Integration

Coverage Assistant (CA) assists the testing process by:

1. Providing an efficient way to see what program logic was executed by test
cases

2. Reducing the amount of information to review after a test case has been run by
targeting only those compile unit source lines of interest

The tester must ensure that the source lines changed and/or affected by a change
are exercised by the test case. CA assists in this verification by indicating all logic
that was executed. It can, optionally, target only those lines of code that were
affected by changes. The best way to take advantage of CA is to fully integrate it
into the normal development/testing process. While it can be invoked through its
ISPF interface in an on-demand fashion, this usually results in a time consuming
effort for each tester assigned to do testing. When fully integrated, testers can
focus on testing, not on coverage monitoring preparation. The integration process
is straightforward, consisting of just three steps:

1. Activate CA setup steps in the normal compile and link process
2. Invoke the CA monitor around test cases as they are run
3. Produce and review CA reports

When the first step is complete, CA becomes very scalable. That is, the testers
can quickly monitor coverage for 100 (or more) test cases as easily as they can
monitor a single compile unit.

This expansion is achieved by modifying the shop's normal compile and link
processes/JCL for CA enablement so that the coverage gathering is available to the
entire development/test team. Doing this enablement does not mean CA must be
used. It simply means that the data sets required for CA to properly function will be
created and saved through the normal course of program development and mainte-
nance. Then when CA is required, the proper data sets will have already been
created and coverage information can be gathered and reported at will.

By modifying the compile and link procedures slightly, the invocation of CA can be
controlled by the test scripts that are submitted. The modifications to the compile
and link procedures include:

1. Specifying the CA required translator options
2. Saving the translator listings
3. Building CA control files for each run unit

4. Running the CA setup process against the object files®

5 Note that an object can be instrumented and then linked into a new load module, or a load module can be instrumented directly.

Integrating ATC and Using It in Testing Processes 55

5. Saving the original and instrumented (created in the previous step) object files®

6. Linking both the noninstrumented and instrumented object files into different
load libraries®

After choosing naming conventions for the listing, object, and load data sets, modify
the compile and link JCL to store the CA enabled and non-CA enabled files. Fol-
lowing is a simple naming convention that could be used:

Noninstrumented Instrumented
Before ATC Data Sets Data Sets
Source SOURCE Same Same
Include MACLIB Same Same
Listing SYSOUT=* LISTING Same
Object &&TEMP OBJ ZAPOBJ
Run unit LOAD Same ZAPLOAD

The organization and structure of a shop's data sets will vary so this naming con-
vention will have to be adapted to each situation. The main point to remember is
that CA will generate an instrumented object code or load data set that will need to
be kept as well as the translator listing, in order to perform its task.

After the compile and link processes have been modified, and all CA control files
have been built, CA should be used to measure coverage while executing the
baseline run units. Do not be surprised the first time if measurements of 40-50%
are produced, since this is what past experience with code coverage has shown.
The test team can use this data to augment the existing test bed to raise that per-
centage to an acceptable level of code coverage. It is up to the test team and/or
management to determine what is considered to be an acceptable level of code
coverage.

After completing the comparison of the baseline compile units to the new compile
units, the test team should use SAA to create CA targeted summary control files.
These files, along with the test data from the baseline test, will produce reports that
can ensure that all changes made were, in fact, exercised by the test case suite.

This is accomplished even when full run unit coverage is not 100% because it is
very possible, even desirable, for the targeted summary to be 100%. That is, those
lines that were changed (as indicated by SAA) were actually exercised by the test
data during their execution. If code coverage results are not verified as a part of
the testing process, latent errors may surface after the application is moved back
into production because production data causes the code logic that was left
untested during the test cycle to be exercised.

Upon satisfactory results in the coverage reports, the final step of testing should be
completed. This verifies that the defect correction or feature implementation has
been done correctly from an external point of view.

Finally, with both external test validation and code coverage data showing that all

code that has been modified or affected by a modification has been exercised, the
application can be moved back into production with a high level of confidence that
the code will operate as required.

56 Application Testing Collection 1.5.0 General Information

Distillation Assistant Integration

Distillation Assistant (DA) assists the testing process by providing an efficient way
to reduce the volume of a test case's input data, thereby reducing the CPU cycle
time a test case takes to process.

To say that Distillation Assistant should be integrated into the testing process may
be too strong of a statement. The value of DA comes when it is applied to test
cases that test high impact applications. If a test case is not built to be run more
than one time, DA may not apply. For those that have an input transaction file
which drives the test, DA can be used to optimize resources (save DASD and CPU
cycle time) compared to a full-file test run.

The usefulness of DA is directly related to the size of the input data being proc-
essed by any given test case and the number of times the test case will be run.
Usually there are a few data sets within a test environment that have a large impact
on the setup, processing, and restore time used to drive each run of a test case.
With DA, the input data can be reduced while maintaining equivalent code cov-
erage of the tested application. In addition, Coverage Assistant information can be
derived at the same time the DA process is running. You can, with the CA informa-
tion as a guide, augment the distilled file to drive up the coverage percentage.

The setup process for DA is very similar to the process for Coverage Assistant.
The main difference is in the user provided input control file information and the
distillation step itself.

The tester should identify, prior to beginning a test case if the data set or data sets
which drive the test case meet the criteria for distillation. If they do, the tester
should run the test case with Distillation Assistant enabled to produce a distilled file.
This distilled file can then be used on all subsequent runs and will produce equiv-
alent statement coverage of the application.

Note: DA always requires an initial run of the application using the original (large)
input file. This run will create the code coverage and key data required to generate
the distilled (smaller) file that will be used in subsequent test runs.

Unit Test Assistant Integration
Unit Test Assistant (UTA) assists the testing process by:

1. Providing a method of logging data variable values at selected source locations
during test case execution

2. Allowing data items to be “warped” at selected source locations during test
case execution.

3. Making copies of input files with date fields warped for testing.

These functions do not require modification to your test suite program logic, and the
first two functions do not require modification to your data.

Integrating ATC and Using It in Testing Processes 57

How a tester would use data logging is fairly straightforward:
1. A selected data variable from an application to be tested is defined.

2. Each time the variable is affected by the application logic, the values are
logged after the statement executes.

3. At the completion of the test case run, the logged values are reviewed.

If a data value becomes contaminated during a test case run, data logging provides
a post execution log to aid in debugging. This capability is unique from that of a
standard foreground debugger, in that it does not require either a dedicated fore-
ground terminal session or the intervention of a tester at each statement affecting
the data variable.

How a tester would use data warping may be initially less apparent, but this func-
tion is equally as powerful as data logging, and more powerful in some types of
testing. Data warping allows the tester to intercept data values at selected state-
ments and increment, decrement, or set the values after the statement is executed.
This allows the tester to change program data values without modifying the applica-
tion logic, the test data, or both. For example, a tester could increment an input
record value at the record read statement and decrement the value at the state-
ment prior to the record write.

Data values enter and exit an application by data files, system calls, screen input,
and program load parameters. UTA data warping provides a way to intercept and
modify values entering or exiting through any of these means. Without the UTA
data warping function, the tester would be required to modify and maintain separate
copies of input and output data files. The tester could also be required to modify
program logic to control and test various data values from system and program
calls. Using UTA data warping, the tester can modify (and log) data values without
modifying the application or test data. However, the UTA data warping function
does require the tester to understand the program logic of the application being
tested.

Also worth noting are the UTA functions that distinguish it from interactive
debuggers. An interactive debugger would require a screen session and inter-
vention by the tester at various points in the program logic to change and record
data values. This could only be done with languages and subsystems supported
by a selected debugger.

UTA functions run in the same fashion as CA and DA functions—unobtrusively,
under the control of the monitor. The capability to run in any environment and work
with other programs gives UTA logging and warping power that is unattainable with
interactive debugger tools. The UTA advantage is evident when you consider the
task of testing 100 applications, each processing test files of at least 500 records.
In this scenario, if an interactive debugger were used, the tester would be required
to intervene as many as 50,000 times through the debugger interface.

The setup process for UTA is similar to CA and even more similar to DA. The
program variables to be logged and warped are defined in the ATC control file. For
the UTA logging function, the tester defines the variable, and UTA determines all
affected program source statements and logs the values when those statements
are executed. For UTA data warping, the tester must provide additional informa-
tion, specifically, the data variable, the warp value, and the program statement at
which to warp. To use the UTA warping function, the tester must have an under-

58 Application Testing Collection 1.5.0 General Information

standing of the program source logic to determine the source statements at which
the warp action must take place to achieve the desired results.

Automated Regression Testing Tool Integration

Automated Regression Testing Tool (ARTT) assists:
e The testing process by allowing you to perform regression analysis

¢ The efficient execution of ATC white box tools by allowing offsite testing with no
complex setup.

Summary

This section is not intended to define all applications of the ATC testing tools to a
shop's testing process. As stated previously, each shop will have their own imple-
mentation of the base testing process, which will have been determined by the
unique needs of that organization. What we have attempted to do is prime the
process of understanding and implementing ATC into each testing shop's process.

Once the base functions and benefits of the ATC tools are understood, they can be

applied and integrated into the testing process that is already in place for either
normal application support and maintenance or Y2K remediation and testing.

Integrating ATC and Using It in Testing Processes 59

60 Application Testing Collection 1.5.0 General Information

Appendix A. DBCS Support

DBCSS® support for the Application Testing Collection (ATC) varies among the tools
as follows:

Coverage Assistant (CA), Distillation Assistant (DA), and Unit Test Assistant
(UTA)
DBCS characters are permitted in:

¢ Input compiler and assembler listings
e Control file identifiers and comments.

Source Audit Assistant (SAA)
If the input to SAA contains DBCS characters, then the:

e General compare function (with no filters turned on) is supported.
e Reformatted lines filter is supported.

e Comments and Declares filters are supported for COBOL and
assembler.

e Postprocessor is supported.

For more details, see the DBCS information in the Application Testing Collection for
MVS/ESA Version 1 Release 5 Modification 0 User's Guide.

6 Double-byte character set. A set of characters in which each character is represented by 2 bytes. Languages such as Japanese,
Chinese, and Korean, which contain more symbols than can be represented by 256 code points, require double-byte character
sets. Because each character requires 2 bytes, the typing, display, and printing of DBCS characters requires hardware and pro-
grams that support DBCS.

© Copyright IBM Corp. 1998, 1999 61

62 Application Testing Collection 1.5.0 General Information

Glossary

This glossary defines terminology and acronyms unique
to this document or not commonly known.

A

annotated listing . Compiler or assembiler listing that
contains Coverage Assistant information about the exe-
cution.

B

background execution The execution of lower-
priority computer programs when higher-priority pro-
grams are not using the system resources. Contrast
with foreground execution.

baseline execution . An execution in which Automated
Regression Testing Tool records a program's /0
activity, including program reads or writes, in a log file,
which can then be used as a base for comparison with
subsequent proof runs in Real Replay mode or Virtual
Replay mode.

black box testing A testing method that provides
information about a test run by comparing an applica-
tion's inputs and outputs. Black box testing provides
limited information about an application's internal exe-
cution at run time. Contrast with white box testing.

BP. Breakpoint.

breakpoint (BP) . The practice of replacing an instruc-
tion op code with a user SVC instruction so that the
ATC monitor gets control from the operating system.

BRKTAB. The DDNAME of the file of breakpoint data
(breakpoint table) created during Coverage Assistant
Setup and used during Coverage Assistant Execution.

C

Capture mode . A feature of Automated Regression
Testing Tool, which records your program's 1/O activity,
including program reads or writes, in a log file that can
be used as a base for comparison with subsequent
proof runs in Real Replay or Virtual Replay mode. See
also Real Replay mode and Virtual Replay mode.

change validation report A report that allows you to
verify changes found in the Source Audit Assistant com-
parison report against your seed list in order to make
sure that only planned changes were made and that all
seed variables were changed.

© Copyright IBM Corp. 1998, 1999

code coverage . A measurement of the number of
code statements that have been executed.

comparison report A Source Audit Assistant report
that allows you to see differences between original
source data and changed source data and helps you to
identify items that need closer examination.

compile unit (CU) . The programs contained within
one compiler listing.

compression . Any encoding to reduce the number of
bits used to represent a given message or record.

control file . A file that contains information describing
the compile units to be analyzed, the file that is to be
monitored, and the values of the variables to be
recorded. Coverage Assistant, Distillation Assistant,
and Unit Test Assistant share the same control file.

CU. Compile unit.

D

data aging . See date rolling.

data conversion . The process of transforming data
input to, or output from, a Real Replay or Virtual Replay
run by changing date formats (for example, from
mm/dd/yy to mm/dd/yyyy) or by rolling dates forward
(aging them) or backward (rejuvenating them).

data rejuvenation . See date rolling.

date rolling . A feature of ARTT, which automatically
ages dates (by rolling them forward) or rejuvenates
dates (by rolling them backward) in input and output
files according to values that you specify. Date rolling
is useful for verifying that your program will work cor-
rectly with past or future dates.

DBCS. Double-byte character set.

DBGTAB. Debug table. The DDNAME of a file gener-
ated by the Setup step when Distillation Assistant or
Unit Test Assistant is enabled. The DBGTAB is used
during the Distillation Assistant Logical Distillation step
and the Unit Test Assistant Report step. For a standard
coverage run, this file contains no useful data and its
DD card is coded DD DUMMY.

distillation . The reduction of a data set to the

minimum size that provides the same test coverage as
the complete data set.

63

Double-byte character set A set of characters in
which each character is represented by 2 bytes. Lan-
guages such as Japanese, Chinese, and Korean, which
contain more symbols than can be represented by 256
code points, require double-byte character sets.
Because each character requires 2 bytes, the typing,
display, and printing of DBCS characters requires hard-
ware and programs that support DBCS. Contrast with
single-byte character set.

dsname. Data set name.

dynamic data warping The process of changing pre-
defined variable values during runtime. Dynamic data
warping might be used to age, or warp, dates in input
data files, for example. Contrast with file warping.

E

EBCDIC. Extended binary-coded decimal interchange
code. A coded character set of 256 8-bit characters.

Execute. The Coverage Assistant step that monitors
your program while it is being executed to collect test
case coverage statistics.

Expansion . A method of coding that increases the
number of bits used to represent a given message or
record.

F

file warping . The process of statically modifying pre-
defined variables in copies of VSAM or QSAM input
files to simulate input conditions for testing. File
warping might be used to clear fields in test copies of
production input files for privacy or security reasons.
Contrast with dynamic data warping.

filter . In Source Audit Assistant, a capability keeps
changes that are not of interest to you from appearing
in the report file. You can choose to filter one or more
of the following: comments, variable declarations, and
reformatted lines.

foreground execution The execution of a computer
program that preempts the use of computer facilities.

input master data set . A data set to be distilled into
an output master data set by physical distillation.

instrument . To insert instructions into object modules

that tell the application to turn control over to the
monitor.

64 Application Testing Collection 1.5.0 General Information

K

key. One or more characters used to identify the
record and establish the order of the record within an
indexed file.

key list . A list of characters used to identify the record
and establish the order of the record within an indexed
file.

logical distillation Instrumenting your object code
and executing the instrumented code under the
Distillation Assistant monitor. As the instrumented code
reads records from the specified input master data set,
the monitor determines which keys in the input master
data set caused new code coverage in the instrumented
code. The list of these keys is then saved for the phys-
ical distillation step.

logical key . As used in reference to distillation, a
logical key is simply a field within a data record that can
be used to identify the record. This field may, or may
not, be identified as a physical key to the file system or
database manager involved in actually reading the
record.

Multiple records can have the same logical key. In this
case, it is assumed that all records with this key are
required to obtain the necessary code coverage.

M

Millennium Language Extensions (MLE) A compiler-
assisted solution for the Year 2000 problem. Available
for IBM's COBOL and PL/I compilers.

MLE. Millennium Language Extensions.

monitor . The program (MONSVC) that measures test
case coverage during execution of your programs.

monitor session A distinct invocation of the monitor

program.

N

new source file . A data set you want Source Audit
Assistant to compare. Typically, you want to compare a
modified data set (new source file) with an original data
set (old source file).

O

old source file . A data set you want Source Audit
Assistant to compare. Typically, you want to compare
an original data set (old source file) with a modified data
set (new source file).

P

PA. Program area.

partitioned data set (PDS) . A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

PDS. See partitioned data set.

physical distillation This step consists of creating a
new master data set by reading the list of keys
produced in the first step (logical distillation) and the
input master data set. The new master data set con-
sists of only those records in the input master data set
whose logical key appears in the list of keys.

Program area (PA) . Each specific PA contains all of
the breakpoints for one COBOL paragraph, PL/I block,
or assembler listing.

proof execution . An execution in which Automated
Regression Testing Tool monitors a program's 1/O
events and data and compares them with the events
and data recorded in the log file during the program's
base run in Capture mode. ARTT records any differ-
ences between the two runs in its output report.
Perform a proof execution using either ARTT's Real
Replay mode or Virtual Replay mode. See also Real
Replay mode and Virtual Replay mode.

Q

QSAM. Queued sequential access method.

Queued sequential access method (QSAM) . An
extended version of the basic sequential access method
(BSAM). When this method is used, a queue is formed
of input data blocks that are awaiting processing or of
output data blocks that have been processed and are
awaiting transfer to auxiliary storage or to an output
device.

R

Real Replay mode . A feature of Automated
Regression Testing Tool, which monitors the I/O events
and data for the proof run and compares them with the
events and data recorded in the log file for the pro-
gram's base run in Capture mode. ARTT records any

differences between the two runs in its output report.
See also Virtual Replay mode and Capture mode.

regression testing The process of verifying that an
application functions in the same way as it did before
changes were introduced into the application itself, the
data on which the application operates, or some related
software or hardware on which the application depends.

Report. The Coverage Assistant step that produces
the summary and annotated listing reports after a test
case run.

S

SAA postprocessor Generates a change validation
report or a prototype Coverage Assistant target control
file using a compare file generated by a previous
Source Audit Assistant run and a list of seed variables
that you want to monitor.

seed variable . A variable name used as input to the
Source Audit Assistant postprocessor. This is generally
a variable name that was identified as one needing to
be changed.

session . A distinct invocation of the monitor program.

SETUP. The Coverage Assistant program that ana-
lyzes your assembler listings in order to produce a table
of breakpoint data and insert breakpoints into disk resi-
dent programs.

summary report . A Coverage Assistant report that
provides the summary statistics for PAs.

supervisor call (SVC) . A request that serves as the
interface into operating system functions, such as allo-
cating storage. The SVC protects the operating system
from inappropriate user entry. All operating system
requests must be handled by SVCs.

SVC. Supervisor call.

T

targeted summary . A measurement of the number of
specific code statements and/or variables that have
been executed.

targeted summary report A report that allows you to
target certain statements and/or COBOL or PL/I vari-
ables. The format of a targeted summary report is iden-
tical to the format of a summary report, except that the
content is restricted to statements that you specify.

(You can specify a statement number, or you can
specify all statements that reference specific COBOL or
PL/I variables.)

Glossary 65

test bed . A collection of test data.

U

unit testing . A method of capturing and logging values
assigned to selected variables in your application
program at selected points during their execution.

Vv

Virtual Replay mode . A feature of Automated
Regression Testing Tool, which uses input from the log
file to monitor the 1/0 events and data for the proof run
and then compares them with the events and data
recorded in the log file for the program's base run in
Capture mode. ARTT records any differences between
the two runs in its output report. See also Real Replay
mode and Capture mode.

VSAM. Virtual storage access method.

66 Application Testing Collection 1.5.0 General Information

Virtual storage access method (VSAM) An IBM
licensed program that controls communication and the
flow of data in an SNA network. It provides single-
domain, multiple-domain, and interconnected network
capability.

W

warping . The process of statically (file warping) or
dynamically (dynamic data warping) modifying prede-
fined variables to simulate input conditions for testing.
See dynamic data warping and file warping.

white box testing A testing method that measures
internal application behavior during run time. White box
testing provides detailed information about an applica-
tion's internal execution at run time. Contrast with black
box testing.

Windowing . Coding that adds logic to arithmetic
instructions, which enables values to be interpreted dif-
ferently.

Index

A

aging dates 8, 46
annotated listing report 20
Application Testing Collection
Automated Regression Testing Tool 45
Coverage Assistant 11
Distillation Assistant 35
integrating into testing 53
overview 3
Source Audit Assistant 25
Unit Test Assistant 39
applications supported
batch 15, 29, 39, 47
CICS 15, 39, 47
DB2 47
IMS 15, 39, 47
IMS TM 15
ISPF 15
™ 39
TSO 15
assemblers 15, 28
Automated Regression Testing Tool
Capture mode 45
description 45
inputs 49
integrating into testing 59
log file 46, 47
outputs 49
problem addressed by 45
questions and answers 45
Replay mode 46

B

batch support

ARTT 46, 47

CA 15

SAA 29

UTA 39
black box testing 4
BMP applications 47
branches, executed 12, 19
bridging, production 47

C

Capture mode 45
change validation report 27, 30
changes, auditing 25
CICS support
ARTT 46, 47
CA 15

© Copyright IBM Corp. 1998, 1999

CICS support (continued)
UTA 39
code coverage 11
code, comparing 25
comparison
file 25
output 45, 46
report 31
compilers 15, 36, 40
compression solution 1
control file 13, 15, 16, 17, 49
targeted summary 30
conversion, data 9, 46
Coverage Assistant
control file 13, 15, 16, 17, 49
description 3, 11
environments supported 15
inputs 17
integrating into testing 55
outputs 19
problem addressed by 11
questions and answers 11
reports 51
software supported 15
coverage summary report 19, 51
coverage, code 11

D

data
conversion 9, 46
distillation 9, 35
logging 39, 58
warping 8, 39, 58
database support
CICS 15, 39, 46
DB2 46
for date testing 47
IMS 15, 39, 46
date formats 46
date rolling 8, 46, 47
DB2 support 46
DBCS support 61
debugging 39
Distillation Assistant
data distillation 9
data sets distilled 36
description 3, 35
inputs 37
integrating into testing 57
languages supported 36
outputs 38

67

Distillation Assistant (continued)
problem addressed by 35
questions and answers 35

regression testing 5
distillation, data 35
DL/l applications 47

dynamic data warping 8, 39—40

E

environments supported

ARTT 47

CA 15

complex 4, 8, 46

production 47

test 57

UTA 39, 58
executed statements 11
expansion solution 1
external testing 4

F

file comparison 25

file warping 8, 39—40, 43

filters, SAA 26, 54
comments 26
reformatted lines 26
variable declaration 26

IMS support

ARTT 46

CA 15

UTA 39
inputs

ARTT 49

CA 17

DA 37

SAA 31

UTA 41
interactive support

ARTT 47

CA 15

SAA 29

UTA 39
internal testing 6

K

key list, DA 38
keys, DA 35

68 Application Testing Collection 1.5.0 General Information

L

languages supported
DA 36
SAA 28
listing files, comparing 27
log file
ARTT 46, 47
SAA 32
logging data 39, 58

M

methods, testing 4
MPP applications 47

O

online support
ARTT 47
CA 15
SAA 29
UTA 39
outputs
ARTT 49
CA 19
comparing 45, 46
DA 38
SAA 31
UTA 43
overview
integrating ATC 53

using Automated Regression Testing Tool

using Coverage Assistant

using Distillation Assistant

16
36

using Source Audit Assistant
using Unit Test Assistant 41

P

postprocessor, SAA 30
production bridging 47

program changes, since last release xii

QSAM 47

R

regression testing 5, 45
Replay mode, ARTT 46
reports

annotated listing, CA 20

ARTT 51

CA 19

change validation 30

28

47

reports (continued)
comparison 31
coverage summary, CA 19
reducing data in 26, 54
SAA 31
summary, ARTT 51
targeted summary, CA 23
requirements
ATC 61
Y2K 4
rolling, dates 47

S

Source Audit Assistant
description 3, 25
filters 26, 54
inputs 31
integrating into testing 54
languages supported 28
log file 32
outputs 31
postprocessor 30
problem addressed by 25
questions and answers 25
statements executed 11
support
ARTT 46, 47
batch 15, 29, 39, 46, 47
CA 15
CICS 15, 39, 46, 47

compiler and assembler 15, 28, 40

date formats 46

DB2 46

DBCS 61

IMS 15, 39, 46
language 28, 36
online 15, 29, 39, 47
QSAM and VSAM 47
SAA 29

UTA 39

Web site i

T

targeted code coverage 13
targeted summary control file 30
targeted summary report 23
testing

black box 4

integrating ATC tools into 53

methods 4

process overview 53

regression 5

requirements 4

time, reducing 4, 35

testing (continued)

using ATC 4

white box 6
time, reducing testing 4
tools, testing 4
transforming data 46

U

Unit Test Assistant
description 3, 39
dynamic data warping 8, 39
file warping 8, 39—40, 43
inputs 41
integrating into testing 57
outputs 43
problem addressed by 39
questions and answers 39

V

VSAM 47

W

warping data 8, 39, 46, 58
white box testing

tools 7

with ARTT 8, 45

with CA 11

with SAA 25
windowing solution 1

Y

Year 2000 problem
approaches for correcting 1
compression solution 1
defined 1
expansion solution 1
windowing solution 1

Index

69

	About This Book
	Who Should Read This Book
	Conventions and Terminology Used in This Book
	Related Information

	Summary of Changes (V1R5M0)
	Summary of Changes (V1R4M0)
	Summary of Changes (V1R3M4)
	Summary of Changes (V1R3M0)

	Overview of the Year 2000 Problem
	Introducing the IBM Application Testing Collection
	Year 2000 Testing Requirements
	Testing Methods and the Application Testing Collection
	Black Box Testing
	ATC Black Box Testing
	White Box Testing
	ATC White Box Testing

	Coverage Assistant
	What Problem Does Coverage Assistant Solve?
	Questions and Answers
	Overview of How to Use Coverage Assistant
	Inputs
	Outputs
	Coverage Summary Report
	Annotated Listing Report
	Targeted Summary Report

	Source Audit Assistant
	What Problem Does Source Audit Assistant Solve?
	Questions and Answers
	Overview of How to Use Source Audit Assistant
	Executing SAA in the Background
	Executing SAA in the Foreground
	Creating an SAA Change Validation Report and Targeted Summary Control File

	Inputs
	Outputs

	Distillation Assistant
	What Problem Does Distillation Assistant Solve?
	Questions and Answers
	Overview of How to Use Distillation Assistant
	Inputs
	Outputs

	Unit Test Assistant
	What Problem Does Unit Test Assistant Solve?
	Questions and Answers
	Overview of How to Use Unit Test Assistant to Log or Warp Variables
	Inputs
	Outputs
	Overview of How to Use UTA's File Warp Feature

	Automated Regression Testing Tool
	What Problem Does Automated Regression Testing Tool Solve?
	Questions and Answers
	Overview of How to Use Automated Regression Testing Tool
	Inputs
	Outputs
	Capture Report
	Replay Report

	Integrating ATC and Using It in Testing Processes
	Source Audit Assistant Integration
	Coverage Assistant Integration
	Distillation Assistant Integration
	Unit Test Assistant Integration
	Automated Regression Testing Tool Integration
	Summary

	Appendix A. DBCS Support
	Glossary

