

ibm.com/redbooks

Communications Server for
z/OS V1R2 TCP/IP
Implementation Guide
Volume 5: Availability, Scalability, and Performance

Adolfo Rodriguez
Marcia Maria Fascini

Giancarlo Rodolfi
Heather Woods

Covers load balancing with DNS/WLM,
Sysplex Distributor and MNLB

Describes high availability with
dynamic VIPA scenarios

Details z/OS TCP/IP settings
to increase performance

Front cover

International Technical Support Organization

Communications Server for z/OS V1R2 TCP/IP
Implementation Guide Volume 5: Availability,
Scalability, and Performance

October 2002

SG24-6517-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (October 2002)

This edition applies to Volume 1, Release 2 of Communications Server for z/OS IP.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the general
information in “Notices” on page vii.

Contents

Contents . iii

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Comments welcome. .x

Chapter 1. Introduction . 1
1.1 The role of the sysplex . 2

1.1.1 High availability . 2
1.1.2 Load balancing . 2

1.2 Sysplex overview . 3
1.3 Communications Server for z/OS . 4
1.4 Network interfaces to the sysplex . 4
1.5 Workload Manager . 5
1.6 Cross-system coupling facility . 5
1.7 High availability with Virtual IP Addressing (VIPA) . 6
1.8 Providing load balancing and high availability simultaneously . 7

1.8.1 DNS/WLM solution . 8
1.8.2 Network Dispatcher. 10
1.8.3 Sysplex Distributor . 12
1.8.4 MultiNode Load Balancing and Sysplex Distributor . 14
1.8.5 Which solution is best? . 15

Chapter 2. DNS/WLM (connection optimization) . 17
2.1 Domain Name System (DNS) overview . 18

2.1.1 Why DNS? . 18
2.1.2 What is the Domain Name System? . 18
2.1.3 DNS implementation with CS for z/OS IP . 20
2.1.4 Files to support a DNS implementation. 20

2.2 How load distribution works using DNS/WLM . 21
2.2.1 Data returned by the name server . 23
2.2.2 Using VIPA and a dynamic routing protocol with DNS/WLM 25

2.3 The pros and cons of DNS/WLM . 25
2.3.1 Benefits of DNS/WLM workload distribution . 25
2.3.2 DNS/WLM limitations . 26

2.4 Application and stack registration to WLM . 26
2.4.1 Stack registration with DNS/WLM . 27
2.4.2 Communications Server for z/OS V1R2 IP application support 27
2.4.3 DNS/WLM registration results. 28

2.5 Working with DNS/WLM . 29
2.5.1 WLM configuration . 29
2.5.2 DNS/WLM TCPDATA consideration . 30
2.5.3 Client/server affinity . 31
2.5.4 Starting the DNS server . 31
2.5.5 Displaying the DNS active sockets . 34
2.5.6 Dumping the DNS server cache . 35
© Copyright IBM Corp. 2002. All rights reserved. iii

2.5.7 DNS statistics . 36
2.5.8 Discovering signals available for process . 37
2.5.9 Tracing the name server . 38
2.5.10 Reloading DNS data . 40
2.5.11 Stopping the DNS server . 40

2.6 Implementation scenario . 40
2.6.1 Primary DNS configuration on MVS03 . 42
2.6.2 Secondary DNS configuration MVS28 . 44
2.6.3 Parent DNS configuration . 45
2.6.4 BIND DNS resource records. 46
2.6.5 Observing the effects of WLM and DNS . 47
2.6.6 DNS DUMP of primary DNS server in the sysplex . 49
2.6.7 DNS trace of WLM data for the primary DNS in the sysplex. 50
2.6.8 Testing workload distribution with different CPU utilizations. 53
2.6.9 More on resource record TTL . 55
2.6.10 Test application . 57
2.6.11 Test application - server failure case . 58

Chapter 3. Dynamic VIPA (for application instance) . 61
3.1 Benefits of Dynamic VIPA . 62
3.2 Implementing Dynamic VIPA . 62

3.2.1 Dynamic VIPA configuration (for application instance) . 63
3.2.2 Solutions for applications that bind() to INADDR_ANY. 64
3.2.3 Examples of Dynamic VIPA . 65

3.3 Dynamic VIPA conflicts . 70
3.3.1 bind() . 70
3.3.2 IOCTL . 71
3.3.3 Scenarios . 72

Chapter 4. Automatic VIPA takeover and takeback . 87
4.1 Overview of VIPA takeover/takeback . 88

4.1.1 VIPA concept . 88
4.1.2 Dynamic VIPA enhancements . 88
4.1.3 VIPA takeover and VIPA takeback . 89
4.1.4 Benefits of sysplex-wide VIPA takeover . 90
4.1.5 Benefits of sysplex-wide VIPA takeback . 91

4.2 Implementing VIPA takeover and takeback . 91
4.2.1 Automatic VIPA takeover/takeback configuration . 91

4.3 Monitoring VIPA status . 93
4.3.1 Display Sysplex command . 93
4.3.2 NETSTAT commands . 94

4.4 Examples of VIPA takeover and takeback . 96
4.4.1 Automatic VIPA takeover/takeback - MOVE IMMED . 96
4.4.2 Automatic VIPA takeover/takeback - MOVE WHENIDLE 102

Chapter 5. Sysplex Distributor . 109
5.1 Static VIPA and Dynamic VIPA overview . 110
5.2 What is Sysplex Distributor? . 111

5.2.1 Sysplex Distributor functionality . 112
5.2.2 Backup capability . 113
5.2.3 Recovery. 115

5.3 The role of dynamic routing with Sysplex Distributor . 115
5.4 Sysplex Distributor implementation . 116

5.4.1 Requirements . 117
iv Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

5.4.2 Limitations. 117
5.4.3 Implementation . 120

5.5 Sysplex Distributor and policy . 122
5.5.1 Sysplex Distributor QoS policy in the PAGENT file. 123
5.5.2 Starting and stopping PAGENT . 126
5.5.3 Monitoring the Sysplex Distributor QoS . 128
5.5.4 Sysplex Distributor policies in the LDAP server . 131

5.6 Implementation examples . 133
5.6.1 Scenario 1: Three IP stacks distributing FTP services . 133
5.6.2 Scenario 2: VIPA takeover and takeback with Sysplex Distributor 148
5.6.3 Scenario 3: Distributing multiple IP services . 154
5.6.4 Scenario 4: Deleting and adding a VIPADISTRIBUTE statement. 163
5.6.5 Scenario 5: Removing a target stack from distribution . 166
5.6.6 Scenario 4 - Fast connection reset demonstration . 170

5.7 Diagnosing Sysplex Distributor problems . 177

Chapter 6. Sysplex Distributor with MNLB . 179
6.1 Sysplex Distributor/MNLB joint solution overview . 180
6.2 Advantages of the solution . 181
6.3 IP addresses used during our tests. 181
6.4 Data flow: Service Manager and Forwarding Agent . 189

6.4.1 Wildcard affinity and processing . 190
6.4.2 Service Manager processes TCP connection request . 191
6.4.3 Continuation of the TCP connection establishment process. 192
6.4.4 Fixed affinity processing . 192
6.4.5 Prerequisites for the CASA protocol exchange. 192
6.4.6 Message flow of wildcard and fixed affinities, SYN, ACK, data 193
6.4.7 Message flow for connection data with no fixed affinity 194
6.4.8 Message flow for closing a TCP connection . 195

6.5 Service Manager implementation . 197
6.5.1 Service Manager new TCPIP.PROFILE definitions . 197

6.6 TCP/IP stack of the target systems . 198
6.6.1 Basic TCPIP.PROFILE definitions . 198

6.7 Forwarding Agent definitions. 199
6.7.1 CASA definitions for Cisco 7507 . 199
6.7.2 CASA definitions for Cisco router 7206VXR . 199

6.8 Operations: control and displays. 199
6.8.1 CASA information in the Sysplex Distributor. 200
6.8.2 CASA information in the Forwarding Agent . 210
6.8.3 Integrated CASA information . 213

6.9 Sysplex Distributor backup . 220
6.9.1 TCPIP.PROFILE definitions . 220
6.9.2 Sysplex Distributor backup procedures. 221

6.10 Generic Routing Encapsulation (GRE) protocol . 231
6.10.1 The need for GRE. 231
6.10.2 Search for a shared OSA-Express solution . 235
6.10.3 Generic Routing Encapsulation (GRE) overview . 236
6.10.4 Definitions in the Cisco routers 7507 and 7206 . 240

Chapter 7. Performance and tuning . 247
7.1 Tuning the stack for performance . 248

7.1.1 TCP/IP configuration files . 248
7.1.2 Setting the appropriate MTU for devices. 248
 Contents v

7.1.3 Devices and links . 249
7.1.4 Tracing . 250

7.2 z/OS UNIX System Services tuning . 250
7.2.1 BPXPRMxx (SYS1.PARMLIB) tuning . 250

7.3 Storage requirements . 251
7.3.1 TCP and UDP send/receive buffer sizes. 251
7.3.2 CSM storage usage . 251
7.3.3 VTAM buffer settings . 252

7.4 Application performance and capacity . 254
7.4.1 Telnet (TN3270) . 254
7.4.2 FTP . 255

7.5 TCP/IP performance checklist. 257

Appendix A. Dump of T28ATCP name server - single-path network 259

Appendix B. REXX EXECs to gather connection statistics. 261
32-Bit Windows EXEC to issue repeated pings . 262
EXEC to connect to server using TCP . 266
REXX statistics subroutine . 270

Appendix C. Sample applications and programs. 273
WLMREG, a sample registration program . 274

The registration call. 274
To deregister, or not to deregister?. 275
Waiting for WLM to Update DNS . 276

Collecting statistics using REXX . 276
WLMQ, a WLM query program . 278
SOCSRVR, a simple socket server program . 279

Modifying SOCSRVR for Dynamic VIPA. 281
Sysplex sockets . 282

Discovering partner information . 282
SSOCCLNT, a sample sysplex sockets program . 283

Loading the system . 284
MTCSRVR, a multitasking socket program. 284
Extra option for the REXX client program . 285

Appendix D. Sample C program source code . 287
WLMREG registration sample . 287

WLM query program . 289
SOCSRVR single threading server . 294
SSOCCLNT sysplex sockets sample . 296
MTCSRVR multitasking sockets program . 298
MTCSUBT subtask for the multitasking sockets program . 304

Related publications . 307
IBM Redbooks . 307

Other resources . 307
Referenced Web sites . 308
How to get IBM Redbooks . 308

IBM Redbooks collections. 308

Index . 309
vi Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved.. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks(logo)™
AIX®
AnyNet®
CICS®
DB2®
DFS™
ESCON®
FFST™
IBM®
IBM eServer™
MVS™

OpenEdition®
OS/390®
PAL®
Parallel Sysplex®
RACF®
Redbooks™
RMF™
RS/6000®
S/390®
SecureWay®
SP™

SP1®
TCS®
Tivoli®
VTAM®
WebSphere®
z/OS™
z/VM™
zSeries™
3890™

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Domino™ Lotus®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
viii Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and

Preface

The Internet and enterprise-based networks have led to a rapidly increasing reliance upon
TCP/IP implementations. The zSeries platform provides an environment in which critical
business applications flourish. The demands placed on these systems are growing and
require a solid, scalable, highly available, and highly performing operating system and
TCP/IP component. z/OS and Communications Server for z/OS provide for such a
requirement with a TCP/IP stack that is robust and rich in functionality. The Communications
Server for z/OS TCP/IP Implementation Guide series provides a comprehensive, in-depth
survey of CS for z/OS.

Volume 5 concentrates on the availability and scalability of z/OS TCP/IP. We cover
load-balancing solutions including DNS/WLM, Sysplex Distributor, and the preferred Sysplex
Distributor/MNLB joint solution. We further describe mechanisms by which availability is
increased on z/OS systems with dynamic VIPA and Automatic VIPA Takeover. Finally, we
provide a survey of tuning exercises that can be employed to further enhance the
performance of your z/OS TCP/IP system.

Because of the varied scope of CS for z/OS, this volume is not intended to cover all aspects
of it. The main goal of this volume is to provide an insight into the different functions available
in CS for z/OS to increase availability, scalability, and performance through the use of VIPAs,
load-balancing mechanisms, and performance tuning. For more information, including
applications available with CS for z/OS IP, please refer to the other volumes in the series
These are:

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base
and TN3270 Configuration, SG24-5227

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX
Applications, SG24-5228

� OS/390 eNetwork Communications Server for V2R7 TCP/IP Implementation Guide
Volume 3: MVS Applications, SG24-5229

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 4:
Connectivity and Routing, SG24-6516

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 6: Policy
and Network Management, SG24-6839

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security,
SG24-6840

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Adolfo Rodriguez is a Senior I/T Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively and teaches IBM classes worldwide on
all areas of TCP/IP. Before joining the ITSO, Adolfo worked in the design and development of
CS for z/OS, in RTP, NC. He holds a B.A. degree in Mathematics and B.S. and M.S. degrees
in Computer Science, from Duke University. He is currently pursuing the Ph.D. degree in
Computer Science at Duke University, with a concentration on Networking Systems.
© Copyright IBM Corp. 2002. All rights reserved. ix

Marcia Maria Fascini is a Systems Specialist in Brazil. She has four years of experience in
CICS and six years of experience in the networking field. She holds a degree in Mathematics
from Fundação Santo André. Her areas of expertise include VTAM and TCP/IP networks.

Giancarlo Rodolfi is a zSeries FTSS for Latin America. He has 16 years of experience in the
zSeries field. His areas of expertise include TCP/IP, z/VM, z/OS, UNIX System Services, CS
for z/OS, Security, Linux, WebSphere Application Server, Firewall, TN3270 Server, and
Domino. He has written extensively on CS for z/OS TCP/IP services and security.

Heather Woods is a Network Systems Programmer with IBM Strategic Outsourcing in the
UK. She has eight years’ experience in S/390 systems, and has spent the past four years
working mainly with TCP/IP, CS for OS/390 (z/OS), NCP, and SNA.

Thanks to the following people for their contributions to this project:

Bob Haimowitz, Jeanne Tucker, Margaret Ticknor, Tamikia Barrow, Gail Christensen, Linda
Robinson
International Technical Support Organization, Raleigh Center

Jeff Haggar, Bebe Isrel, Van Zimmerman, Jerry Stevens, Tom Moore, Robert Perrone,
Michael Fitzpatrick, Gus Kassimis, Dinakaran Joseph, Jay Aiken, Jeremy Geddes
Communications Server for z/OS Development, Raleigh, NC

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your comments about this
or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
x Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

The increasing demands of network servers, and in particular zSeries servers, has led to a
focus on performance within Communications Server for z/OS IP. For example, the stack has
been improved in terms of performance in every release since its inception. In addition, CS
for z/OS IP has seen the creation of different techniques to address performance
requirements when a single server is not capable of providing the availability and scalability
demands placed on it by its clients. Specifically, network solutions make use of what is
referred to as the clustering technique, whereby multiple servers are associated together into
a cluster to provide sufficient processing power and availability characteristics to handle the
demands of the clients.

Within the scope of this book, the cluster functionality is provided by the sysplex. That is, the
sysplex provides the necessary capability to cluster together a number of zSeries servers that
can cooperate with one another to deliver the processing power and availability needed to
service the demands required of a particular service environment.

This redbook provides insight into the performance tuning of Communications Server for
z/OS IP and solutions implementing various forms of the clustering technique. We compare
these approaches, noting the advantages and disadvantages of each. Additionally, we
describe the Virtual IP Addressing (VIPA) concept and the high availability problems that it
addresses.

A previous redbook regarding this topic was based on a Communications Server for OS/390
V2R8 environment. In this updated redbook, we have not made any changes to some of the
examples provided in the earlier edition. This applies to the examples in Chapter 2,
“DNS/WLM (connection optimization)” on page 17. The examples are still valid, but you
should be aware that the details of the displays may have changed when you implement
Communications Server for z/OS V1R2 IP.

1

© Copyright IBM Corp. 2002. All rights reserved. 1

1.1 The role of the sysplex
Beyond providing basic tuning guidelines to improve the performance of CS, this book
describes solutions utilizing the clustering approach. These functions increase server
availability and processing capability and attempt to provide mechanisms by which they
ensure the viability of the cluster in an environment containing a large number of clients
generating a potentially high number of requests. To do so, the clustering technique can
provide for two main objectives: high availability and load balancing. In some cases,
clustering techniques address only high availability, as is the case with Dynamic VIPA that
provides for availability in spite of potential TCP/IP stack or z/OS image failures. In other
cases, the intent is to provide for both high availability and load balancing, as is done by the
Domain Name System/Workload Manager solution (DNS/WLM), Network Dispatcher,
Sysplex Distributor, and MultiNode Load Balancing (MNLB).

In general, load balancing refers to the ability to utilize different systems within the cluster
simultaneously, thereby taking advantage of the additional computational function of each.
Further, clustering techniques addressing load balancing lead to other system requirements,
such as that of a single system-wide image (one identity by which clients access the system),
horizontal growth, and ease of management.

1.1.1 High availability
The traditional view of a single server has been primarily a single machine with perhaps a few
network interfaces (IP addresses). This tends to lead to many potential points of failure within
the server: the machine itself (hardware), the operating system (including TCP/IP stack)
kernel executing on the machine, or a network interface (and the IP address associated with
it). Static Virtual IP Addresses (VIPAs) exclude the network interface as a point of failure,
while Dynamic VIPAs additionally aid with server (image) or kernel failure. In this way, high
availability is seen as the availability of the entire server cluster and the service it provides.
Further, VIPAs can be used in conjunction with the three load-balancing solutions discussed
in this book: DNS/WLM, Network Dispatcher, and Sysplex Distributor.

Clustering techniques that address the load balancing of connection requests also typically
provide for some high availability. That is, these techniques dispatch connections to target
servers and can exclude failed servers from the list of target servers that can receive
connections. In this way, the dispatching function avoids routing connections and requests to
a server incapable of satisfying such requests.

1.1.2 Load balancing
Load balancing is the ability of a cluster to spread workload evenly (or based on some policy)
to target servers comprising the cluster. Usually, this load balancing is measured by some
notion of perceived load on each of the target servers. This book describes and compares
three CS for z/OS IP-based techniques that provide load balancing: DNS/WLM, Sysplex
Distributor, and MNLB (in conjunction with Sysplex Distributor). Though not implemented
directly in CS for z/OS IP, we also provide some information on Network Dispatcher. Each of
these methodologies identifies the target zSeries servers willing to receive client connections
based on some specification.

By providing load balancing, clustering techniques must also provide for other system
requirements in addition to the dispatching of connections. These include the ability to
advertise some single system-wide image or identity so that clients can uniquely and easily
identify the service. Additionally, clustering techniques should also provide for horizontal
growth of the system and ease of management.
2 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Single system-wide image
Clients connecting to a cluster should not be aware of the internal makeup of a cluster. More
specifically, clients should not even be aware that the service they are requesting is actually
being serviced by a collection or cluster of servers. Instead, clients must be provided with
some single image identifier to be used when connecting to the service. DNS/WLM uses
some specific host name to identify a service within the cluster. In this manner, clients making
requests of the service use the host name as the single system-wide identity. In Network
Dispatcher (ND), Sysplex Distributor, and MNLB, however, the identity is that of some IP
address associated with the cluster. In the case of Sysplex Distributor and MNLB (in
conjunction with Sysplex Distributor), this address is called a distributed Virtual IP Address
(VIPA).

Horizontal growth
As the clients’ demands on the service increase, clusters must provide a way to expand the
set of cooperating servers to accommodate such growing demand. Put another way, the
cluster must provide a mechanism by which to add servers without disrupting the operation of
the cluster. To this end, the service is made available to clients at all times and can grow to
accommodate the increased demand placed on the cluster by the clients.

Ease of management
The administrative burden associated with the cluster should not increase as we add servers
to the cluster. It is desirable to use the same configurations for many systems in the cluster
(sysplex). Within a sysplex, servers are homogenous, since a sysplex is comprised solely of
zSeries servers. As such, many of the configurations can be shared among the different
zSeries servers, thereby reducing the administrative burden associated with the sysplex.
Additionally, as the size of the cluster increases, the administrative overhead in adding
systems to the cluster should be as low as possible.

1.2 Sysplex overview
Within this redbook, we use the term sysplex to refer to a group of loosely coupled z/OS
(MVS) images. For example, a sysplex could be comprised of several LPARs within a
physical host, or it could be multiple physical hosts connected via ESCON channels. In this
way, the sysplex provides the basis for implementations of the clustering technique. For the
remainder of this book, we use the terms cluster and sysplex interchangeably.

Sysplex systems can be distinguished between base sysplex and Parallel Sysplex, the
Parallel Sysplex having a coupling facility. The coupling facility is a high-speed shared
medium that improves availability and performance by allowing vital data to be stored
independently of any attached z/OS system, yet retrieved more quickly than if it were on disk.
Although the SNA component of Communications Server for z/OS makes use of the coupling
facility to improve service to VTAM users, the IP component does not (although it is enhanced
in V1R4 to do so). Therefore, all the functions described in this book apply to a base sysplex
as well as to a Parallel Sysplex.

Regardless of their physical connectivity, sysplex z/OS hosts are able to cooperate with each
other to such a degree that they are able to share disks, provide backup capabilities for
availability, and distribute workload (load balancing).
Chapter 1. Introduction 3

1.3 Communications Server for z/OS
Communications Server for z/OS (formerly known as IBM Communications Server for
OS/390 and SecureWay Communications Server for OS/390) is the communications engine
of z/OS. It is comprised of IP (TCP/IP), SNA (VTAM), and AnyNet components. With CS for
z/OS, TCP/IP and SNA are very closely integrated in the z/OS environment.

The performance of TCP/IP was greatly improved with the redesign of the stack in CS for
OS/390 V2R5, and further improved in subsequent releases. The TCP/IP stack was made
multiprocessor-capable in OS/390 Version 1 Release 3; this reduces the advantage of
running multiple stacks, although such a configuration is still supported. Although the reasons
for running with a multiple stack environment are rapidly fading, we demonstrate multiple
stack configurations to aid in the understanding of the concepts involved in doing so.
Additionally, in our environment, there are many different tests involved with CS for z/OS IP
that require the exclusive use of a particular stack. Running a multiple stack environment
allows our LPARs to have more stacks on which to run these tests.

For a complete list of changes in recent releases of the TCP/IP for MVS product, see z/OS
V1R2.0 CS: IP Migration, GC31-8773.

1.4 Network interfaces to the sysplex
One of the major ways in which the SNA and IP components of CS for z/OS (formerly VTAM
and TCP/IP for MVS respectively) are integrated is the use of a common DLC connection
manager to handle most of the network connections available to CS for z/OS. The DLC
connection manager implements the following DLCs:

� Multipath Channel Plus (MPC+)

� Asynchronous Transfer Mode (ATM)

� XCF (see 1.6, “Cross-system coupling facility” on page 5)

� LAN Channel Station (LCS)

� Channel Data Link Control (CDLC)

� Channel to Channel (CTC)

� HYPERchannel

� Common Link Access to Workstations (CLAW)

� SAMEHOST, providing connectivity between the stack and gateway applications:

– X.25
– SNALINK
– SNALINK LU 6.2

� Queued Direct I/O (QDIO) providing direct memory access to the OSA-Express for
connectivity to Gigabit and Fast Ethernet

� Hipersockets

The first three of these (MPC+, ATM and XCF) are shared between VTAM and TCP/IP; the
remainder are used exclusively by TCP/IP. VTAM retains its own DLC management for all
SNA connections other than the three listed here.
4 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

In viewing the collection of zSeries images within a sysplex as a cluster, we can in turn view
network interfaces available on each of the images collectively as the set of network
interfaces available to the sysplex as a whole. That is, systems in the sysplex may take
advantage of network interfaces attached to other systems in the sysplex. Potentially this may
include high-performing network interfaces, such as the QDIO interface to the OSA-Express.

1.5 Workload Manager
The Workload Manager (WLM) is a component of z/OS used to control work scheduling, load
balancing, and performance (goal) management. Additionally, WLM can provide information
regarding the current load on systems within the sysplex. It is because of these features that
WLM is the basis for operation within DNS/WLM, Network Dispatcher, and Sysplex
Distributor. That is, periodic updates received from WLM tell the server which hosts in the
sysplex have the most processing resources available so that these systems can receive
more of the workload from the dispatching agent, the function that routes connection requests
based on feedback from WLM.

To take advantage of WLM-based sysplex load balancing (as opposed to round-robin),
TCP/IP requires that WLM be configured in goal mode. For more information on how WLM
functions, see z/OS V1R2.0 MVS Planning: Workload Management, SA22-7602. For more
information specific to CS for z/OS IP, see z/OS V1R2.0 CS: IP Configuration Guide,
SC31-8775.

1.6 Cross-system coupling facility
The z/OS systems in a sysplex have an additional communication path between them that is
denied to non-sysplex systems. This is the cross-system coupling facility (XCF), not to be
confused with the coupling facility that marks a Parallel Sysplex. Data using XCF connections
may travel over ESCON channels or through the coupling facility, depending on the
configuration. CS for z/OS can use XCF for communication between sysplex members (for
coordination among them) and for the transfer of IP packets between them. The SNA
component (VTAM) requires no definitions to use the facility, but the earlier releases of the IP
component had to have them predefined.

Starting with OS/390 V2R7 IP, you have the option of defining IP connectivity over XCF to
other TCP/IP stacks dynamically. XCF dynamics provides nondisruptive horizontal growth for
TCP/IP in a sysplex, allowing you to add new TCP/IP images without requiring the
coordination of definitions for existing sysplex members. Because only a single definition for
each new TCP/IP image is needed to establish IP connections between every system in the
sysplex, it is easier to scale to handle higher workloads without impacting existing systems
and their users. XCF dynamics automatically create device and link definitions and you need
to define only one new IP address per system.

Aside from transferring IP traffic, CS for z/OS IP can use XCF signalling for communication
and coordination between the stacks themselves. The dynamic VIPA function (see Chapter 3,
“Dynamic VIPA (for application instance)” on page 61), for example, uses XCF signalling to
coordinate the placement of VIPA addresses within a sysplex.
Chapter 1. Introduction 5

1.7 High availability with Virtual IP Addressing (VIPA)
The original purpose of (static) VIPA was to eliminate a host application's dependence on a
particular network attachment. A client connecting to a server would normally select one of
several network interfaces (IP addresses) to reach the server. If the chosen interface goes
down, the connection also goes down and has to be reestablished over another interface.
Additionally, while the interface is down, new connections to the failed interface (and IP
address) cannot be established.

With VIPA, you define a virtual IP address that does not correspond to any physical
attachment or interface. CS for z/OS IP then makes it appear to the IP network that the VIPA
address is on a separate subnetwork, and that CS for z/OS itself is the gateway to that
subnetwork. A client selecting the VIPA address to contact its server will have packets routed
to the VIPA via any one of the available real host interfaces. If that interface fails, the packets
will be rerouted nondisruptively to the VIPA address using another active interface.

CS for OS/390 V2R8 IP extended the availability coverage of the VIPA concept to allow for the
recovery of failed system images or entire TCP/IP stacks. In particular, it introduced two
enhancements to VIPA:

� The automatic VIPA takeover function allows you to define the same VIPA address on
multiple TCP/IP stacks in a sysplex. One stack is defined as the primary or owning stack
and the others are defined as secondary or backup stacks for the VIPA. Only the primary
one is made known to the IP network. If the owning stack fails, then one of the secondary
stacks takes its place and assumes ownership of the VIPA. The network simply sees a
change in the routing tables. In this case, applications associated with these DVIPAs are
active on the backup systems, thereby providing a hot standby for the services.

� Dynamic VIPA (for an application instance) allows an application to register to the TCP/IP
stack with its own VIPA address. This lets the application server move around the sysplex
images without affecting the clients that know it by name or address; the name and
address stay constant although the physical location of the single application instance may
move. In this way, the application can dynamically activate the VIPA on the system image it
wishes to host the application. Because the application instance is only active on one
image in the sysplex at a time, the other images provide a cold standby of the service.

These VIPA enhancements were enabled by the use of XCF to communicate between the
TCP/IP stacks. That is, XCF has become the basis for communication regarding VIPAs within
the sysplex. Because of the ease of configuration provided by XCF dynamics, many of the
newer VIPA functions in turn are easily configurable.

Because of the different functions provided by each of the two flavors of Dynamic VIPA, we
recommend these general rules in regards to the applicability of each:

� If load balancing is required, you should consider using DNS/WLM, Network Dispatcher,
Sysplex Distributor, or MNLB as outlined in 1.8, “Providing load balancing and high
availability simultaneously” on page 7.

� If more than one instance of the application can run simultaneously within the sysplex and
the flexibility to dynamically activate the DVIPA by starting the application is not necessary,
you should look toward automatic VIPA takeover. Note that in this case, the DVIPA will not
move unless the stack owning the DVIPA has failed, at which time the backup stack
assumes ownership.

� In the event that multiple applications cannot run simultaneously in the sysplex, or the
ability to activate the DVIPA when the application starts is desired, we recommend the use
of a Dynamic VIPA for an application instance.
6 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

1.8 Providing load balancing and high availability
simultaneously

The main objective of a sysplex is high availability without compromising perceived client
performance. High availability requires a number of servers providing the same service to
their clients so that these servers allow for the recovery of the service in the presence of
failures. That is, servers perform some sort of backup functionality for each other within the
cluster.

In contrast, load balancing ensures that such a group or cluster of servers can maintain
optimum performance by serving client requests simultaneously. Additionally, an evenly
spread workload minimizes the number of users affected by the failure of a single server.
Thus, load balancing and availability are closely linked; in this chapter, and throughout the
book, we consider these two functions together as they apply to TCP/IP in a sysplex.

The ultimate goal is, of course, to provide 100% perceived service availability and at the same
time provide top performance to end users when they request server functions. The latter is
achieved by implementing some sort of connection dispatching technology such as
DNS/WLM, Network Dispatcher, Sysplex Distributor, or MNLB. Because these solutions can
exclude failed servers from connection reception, they also inherently allow for increased
service availability. Additionally, all of these solutions can take advantage of increased
availability associated with Virtual IP Addresses.

In general, there are various ways of addressing load balancing within a cluster:

� One technique is to let the users themselves choose a server at random from a number of
host names or addresses. When users try to connect to a server they are not aware if the
server is available, nor do the users know how well the server will perform when they
connect to it. This approach is quite common but very inefficient. Web-based applications
use this technique by creating multiple copies of Web pages with different explicit HTTP
links.

� Another technique is round-robin, in which a function independent of the users selects a
server to handle requests. This approach is better, but it does not take into consideration
the current load on the target server or even whether the target server is available.

� A third approach is to use a simple advisor that checks availability (and, perhaps, the
number of connections) on different servers to some extent, before selecting a server.
With this approach, failed servers can be excluded from server selection, thereby
increasing availability of the service.

� The most sophisticated technique is to have performance agents in all application servers
that feed managers with statistics; the absence of any statistics also gives an indication of
non-availability. The managers, armed with this information, select servers based on the
overall service levels that they expect to be delivered.

� A final approach could be to grow the size of a single server, avoiding the use of a
clustering technique altogether. This approach can be extremely costly and not possible in
some circumstances (if, for example, the current demand on the service could overload
even the most powerful of servers).

Additionally, all of these clustering techniques could be used together to some extent. In this
way, simplicity, accuracy, and performance are balanced somewhat.
Chapter 1. Introduction 7

Availability is also highly dependent on the IP network, not so much on the transport network
between servers and clients (because IP can reroute around failures), but on the network
adapters through which the servers access the network. By using functions such as Virtual IP
Addressing (VIPA), together with sophisticated routing techniques such as OSPF equal-cost
multipath, we can improve availability even further.

In this book we have used the three main approaches available to TCP/IP users in a sysplex
to perform load balancing and to accomplish high availability. These techniques can (and
usually do) make use of the MVS Workload Manager to distribute IP traffic across a number
of servers, but they are different in the approach they take. While we summarize Network
Dispatcher in this introduction, we do not provide detailed information on its implementations,
since it is a function external to CS for z/OS IP. Hence, this book concentrates on the
following z/OS-based solutions: DNS/WLM, Sysplex Distributor, and MNLB (in conjunction
with SD).

1.8.1 DNS/WLM solution
The DNS solution is based on the DNS name server BIND 4.9.3 and the z/OS Workload
Manager. Intelligent sysplex distribution of connections is provided through cooperation
between WLM and DNS. For customers who elect to place a name server in a z/OS sysplex,
the name server can utilize WLM to determine the best system to service a given client
request. Please note that the latest version of DNS, BIND 9, does not support this connection
dispatching capability. As a result, you must continue to use BIND 4.9.3 for this function.

In general, DNS/WLM relies on the host name to IP address resolution for the mechanism by
which to distribute load among target servers. Hence, the single system image provided by
DNS/WLM is that of a specific host name. Note that the system most suitable to receive an
incoming client connection is determined only at the time of host name resolution. Once the
resolution is completed, the client may cache the results and therefore re-use the address on
subsequent connections.

The DNS approach works only in a sysplex environment, because the Workload Manager
requires it. If the server applications are not all in the same sysplex, then there can be no
single WLM policy and no meaningful coordination between WLM and DNS.

The operation of the DNS/WLM combination is described more fully in Chapter 2, “DNS/WLM
(connection optimization)” on page 17, but in essence it functions as follows:

� The TCP/IP stack registers its IP addresses with WLM.

� The servers register with WLM under a particular server group name for the purpose of
providing some service described by this name (for example, TN3270). WLM then
matches each server instance with the IP addresses registered by the TCP/IP stack in that
same LPAR.

� At regular intervals, DNS asks WLM for its workload measurements.

� The client requests a server by IP host name via a process called host name resolution.
This host name is the server group name known to WLM.

� The DNS name server in the sysplex checks its WLM information for details of the server
instances registered under that host (server group) name.

� DNS responds to the client with the IP address of the most suitable server instance so that
the client can connect to that specific server.
8 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

All BIND-based name servers use a simple sorting algorithm (by default) when returning one
of multiple addresses during host name resolution. This is more or less the basic round-robin
technique. However, WLM also has some additional notion of performance or server load and
can return addresses for the server with the least current load. As a result, we get a lot more
than just simple round-robin selection.

WLM will provide host and application weights that help the name server to load balance the
connections to the sysplex servers. If the application is registered to WLM, the name server
will resolve the client's name query for the application; and if the application is de-registered,
WLM will no longer provide its details to the DNS. This means that dead applications will not
be selected by the DNS.

The advantages of the DNS approach are:

� Familiar technology

Most installations already utilize DNS in their organizations even though it may not have
been implemented on z/OS. Additionally, the technique of simply modifying host name to
IP address mapping for load balancing is somewhat easier to understand than other
clustering techniques.

� No additional software needed

The prerequisites are there when you have a z/OS system; it is just a matter of
configuration. That is, the DNS server is included with the z/OS operating system as part
of CS for z/OS IP.

� Performance

Once the host name is resolved to a server address, there is no more involvement from
the DNS/WLM load balancing function. No state needs to be maintained to identify the
current connection and its distribution.

� High availability

Secondary name servers can be implemented in a sysplex to fulfill the functions of the
primary one should it fail. Further, the DNS/WLM function will not distribute connections to
failed application servers within the sysplex. In this way, perceived client availability is
increased.

� Ease of use

Users (clients) are not aware of changes in the location or the IP address of an application
server. Clients simply resolve some host name and use the IP address returned on the
host name resolution request.

� Ease of administration

Because applications register with DNS/WLM, adding servers as candidates for
connection requests is administratively simple and dynamic.

Possible drawbacks include:

� Potential end-user configuration

The users may need to learn new names for the generic applications or services, although
the use of aliases can reduce or eliminate this work. DNS/WLM creates these names
dynamically as applications register for use with the function.

� Distribution available for sysplex systems only

Because of its inherent dependence on the sysplex, DNS/WLM can only be used with
applications running within the sysplex and cannot be used with applications running on
other servers.
Chapter 1. Introduction 9

� Requires application support

Because applications must register with DNS/WLM, application support is necessary to
take advantage of the function. Currently, not many applications provide this support.

� Users can bypass load balancing

Users that know the real host names or IP addresses of the servers can bypass the
DNS/WLM load balancing algorithm altogether.

� Stale WLM information

The name server queries WLM periodically for updated information, by default every 60
seconds. This means that the name server's information may become stale between
intervals. Additionally, clients and intermediate name servers can cache host name-to-IP
address mappings (even if they contain a low TTL) and propagate stale mappings.

� Increased network utilization

To avoid caching side effects, administrators can reduce the TTL field in DNS resource
records (RRs). This generally causes increased network utilization because clients must
resolve host names on every connection request.

1.8.2 Network Dispatcher
The Network Dispatcher (ND) is load-balancing software that is part of the WebSphere Edge
Server. ND determines the most appropriate server to receive new incoming IP connections.
This section gives an overview of Network Dispatcher. Please reference TCP/IP in a Sysplex,
SG24-5235 for a more detailed description of Network Dispatcher.

With the Network Dispatcher, it is possible to link many servers that provide equivalent
applications with common data into what appears to be a single virtual server. Servers may
have different hardware architectures and operating systems, as long as the TCP/IP services
are the same. The clients just reference one special IP address (known as a cluster address),
which is shared between the cluster of servers and the Network Dispatcher. All client
requests to the shared IP address are sent to the Network Dispatcher. The Network
Dispatcher then selects the optimal server at that time and sends the connection request to
that server. The server sends a response back to the client directly, without any involvement
of the Network Dispatcher.

The Network Dispatcher also provides a high-availability option, utilizing a standby machine
that remains ready to take over load balancing in case of failure of the primary Network
Dispatcher.

The Network Dispatcher technique does not depend on host names; rather it provides an IP
address (the cluster address) as the single system image specification. Clients send
connection requests to the cluster address. These packets reach the Network Dispatcher,
which then forwards them to the chosen server. ND has knowledge of the available servers
through advisors that keep a watch on various protocols (HTTP, Telnet, FTP) and an MVS
advisor that communicates with WLM regarding server load. ND uses all the information
obtained from the advisors to select a server.

All packets from the client to the server pass through the Network Dispatcher, since the IP
network knows only one address for the servers (the cluster address) and that address
belongs to the ND. From the server back to the client, packets use normal IP routing because
the client's IP address is given to the server as the source of the packet.
10 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Although the ND solution will function with separate hosts (not part of the same sysplex), the
load balancing will not work correctly for the same reason as in the DNS case: WLM
instances in separate sysplexes do not communicate with each other. In this case ND will rely
on its own perception of the workload, which is confined to the inbound TCP/IP traffic.

Advantages of the Network Dispatcher approach include:

� Ease of configuration

It is very easy to change the server configuration, for example, to add, quiesce, stop and
delete servers dynamically.

� Comprehensive advisors

An MVS advisor that connects to WLM gets load metrics for connection optimization, and
also determines availability. Protocol advisors poll different ports and measure response
times. This ensures availability, functionality, and high performance.

� High availability

There is a built-in option to configure a standby ND that remains ready to take over if the
primary fails.

� Easy integration

The end users do not know that the ND exists; they just connect to a new server IP
address (or host name).

� Flexibility

The ND solution can be used with IP hosts other than a sysplex, although the
workload-balancing functions will not be able to use WLM input.

� Independence from DNS

ND does not depend on host name resolution for load balancing. Rather, the workload
distribution occurs at TCP connection setup. As a result, ND is not susceptible to host
name caching effects or increased network utilization resulting from low TTL settings of
DNS resource records.

Possible disadvantages of ND may be:

� Extra hardware costs

Currently, the Network Dispatcher is part of the WebSphere Edge Server, which is
available on AIX, Windows NT, Red Hat Linux, and Sun Solaris operating systems. Hence,
additional hardware running on these operating systems is required. ND is also
implemented in discontinued IBM hardware, such as the IBM 2216.

� Performance and capacity

Advisors typically poll servers for information every five seconds. Together with the fact
that each packet may (depending on the configuration) require one extra hop on the IP
network, this can place additional loading on that network. In addition, the ND machine
must maintain knowledge of the TCP connections to the servers in the cluster and thus
requires more capacity than a simple router.

� Incompatibility with IPSec and VPN

IPSec in tunnel mode encrypts the true destination IP address, so Network Dispatcher
cannot be an intermediate node on an IPSec connection. It must itself be the endpoint
(firewall). In the kinds of environments we are describing, however, that is probably not an
issue, since the Network Dispatcher will usually be in a secure environment.
Chapter 1. Introduction 11

� FTP support inconsistent

Because FTP connection flow is somewhat different from the traditional client/server
application flow, ND must make special considerations for this protocol. In general, FTP
connections originating from the same client are always directed to the same target server.
This may be an issue when using an FTP proxy in which a larger number of clients appear
to be a single client.

1.8.3 Sysplex Distributor
Sysplex Distributor is the state of the art in connection dispatching technology among z/OS IP
servers. Essentially, Sysplex Distributor extends the notion of Dynamic VIPA and automatic
VIPA takeover to allow for load distribution among target servers within the sysplex. It
combines technology used with Network Dispatcher for the distribution of incoming
connections with that of Dynamic VIPAs to ensure high availability of a particular service
within the sysplex.

Technically speaking, the functionality of Sysplex Distributor is similar to that of Network
Dispatcher in that one IP entity advertises ownership of some IP address by which a
particular service is known. In this fashion, the single system image of Sysplex Distributor is
also that of a special IP address. However, in the case of Sysplex Distributor, this IP address
(known as the cluster address in Network Dispatcher) is called a distributed DVIPA. Further,
in Sysplex Distributor, the IP entity advertising the distributed VIPA and dispatching
connections destined for it is itself a system image within the sysplex, referred to as the
distributing stack.

Like Network Dispatcher and DNS/WLM, Sysplex Distributor also makes use of Workload
Manager (WLM) and its ability to gauge server load. In this paradigm, WLM informs the
distributing stack of server load so that it may make the most intelligent decision regarding
where to send incoming connection requests. Additionally, Sysplex Distributor has the ability
to specify certain policies within the Policy Agent so that it may use QoS information from
target stacks in addition to WLM server load. Further, these policies can specify which target
stacks are candidates for clients in particular subnetworks.

As with ND, connection requests are directed to the distributing stack of Sysplex Distributor.
The stack selects which target server is the best candidate to receive an individual request
and routes the request to it. It maintains state so that it can forward data packets associated
with this connection to the correct stack. Additionally, data sent from the servers within the
sysplex to clients need not travel through the distributing stack.

Sysplex Distributor also enhances the Dynamic VIPA and automatic VIPA takeover functions
introduced in SecureWay Communications Server for OS/390 V2R8 IP. The enhancements
allow a VIPA to move nondisruptively to another stack. That is, in the past, a VIPA was only
allowed to be active on one single stack in the sysplex. This led to potential disruptions in
service when connections existed on one stack, yet the intent was to move the VIPA to
another stack. With Sysplex Distributor, the movement of VIPAs can occur without disrupting
existing connections on the original VIPA owning stack.

In summary, Sysplex Distributor offers the following advantages:

� Ease of configuration

Sysplex Distributor takes ease of configuration to another level. The initial configuration of
a distribution is made extremely easy. Additionally, servers can be added to a distribution
without the need for any configuration.
12 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

� More accurate measure of server load

Sysplex Distributor makes use of WLM-provided server load information. But it can also
use QoS performance metrics from target servers to guide in the selection of target
servers on incoming connections. Additionally, the set of potential target stacks can be
different depending on which client is requesting the connection. This allows for the
reservation of particular stacks to some subset of clients in a straightforward manner.

� The ultimate in availability

Sysplex Distributor can function with automatic VIPA takeover to ensure that the
distribution of connections associated with a particular service is made available. Because
every stack in the sysplex distribution can be a backup distributing stack, the survival of
just one system image ensures the availability of the service. In this way, target servers
can become backup stacks for the distribution of incoming connections.

� Easy integration

End users are not aware of the distribution being performed by Sysplex Distributor; they
just connect to a server IP address (or host name).

� Independence from DNS

Sysplex Distributor does not depend on host name resolution for load balancing. Rather,
the workload distribution occurs at TCP connection setup, as with ND. As a result, Sysplex
Distributor is not susceptible to host name caching effects or increased network utilization
resulting from low TTL settings of DNS resource records, as is the case with DNS/WLM.

� No additional hardware required

Because all of the Sysplex Distributor function is contained within the sysplex, no
additional hardware is necessary to take advantage of this function.

� Performance

Again, because Sysplex Distributor is contained within the sysplex, CS for z/OS IP can
take advantage of the homogeneity within the cluster. That is, forwarding connection and
data through the distributing stack is done extremely fast. Additionally, extra
communication occurs between the stacks in the sysplex, allowing for fast recognition of
VIPA failure and enhanced backup functions.

� No need for application-specific pings

Another advantage is that Sysplex Distributor knows when an application establishes a
relevant listening socket on a target stack, through exchange of messages between the
target stack and the routing stack, so no application advisors or pings are required to
determine server instance availability.

Possible disadvantages of Sysplex Distributor may be:

� The cluster is the sysplex

In Sysplex Distributor, all target servers must be zSeries servers and resident within a
single sysplex. In some regards, this limits the flexibility in having heterogeneity among
servers within the cluster, as is available with ND.

� Incompatibility with IPSec and VPN

As with ND, the end of an IPSec tunnel mode must not be a target server. This is hardly
much of a limitation, but worth mentioning. Additionally, this restriction is removed in
V1R4.
Chapter 1. Introduction 13

� FTP support limited

Being exposed to the intricacies of the FTP protocol, as was Network Dispatcher, Sysplex
Distributor has limited support. The distribution of non-passive mode FTP is fully
supported, including the capability of establishing data connections. Passive mode FTP,
however, is currently not supported. This restriction is also removed in V1R4.

� Lack of TN3270 printer session support

Another limitation is support for TN3270 printer sessions. These are established via a
second, parallel connection from the client.

1.8.4 MultiNode Load Balancing and Sysplex Distributor
Cisco’s MultiNode Load Balancing (MNLB) architecture is designed to perform similar
functionality as Network Dispatcher and Sysplex Distributor. In its essence, MNLB dispatches
connections by distributing incoming TCP SYN packets to destination target servers. The one
main advantage that this solution has over ND and Sysplex Distributor is that the forwarding
decision of where to send data packets is done within the router (or switch) where the packets
are processed anyway. Note that the initial selection of target servers for incoming
connections need not necessarily be done with the router (forwarding agent). The
disadvantage, however, is that information regarding target server load must be pushed out to
the router so that it may select the appropriate target server. This introduces issues of
staleness as this information rapidly becomes stale and not indicative of current server load
and increase the load on the network outside the sysplex.

With CS for z/OS V1R2 IP, the MNLB architecture can cooperate with the Sysplex Distributor
function. In this paradigm, the connection dispatching function once performed by Sysplex
Distributor is divided into two main portions: the distribution of connections and the forwarding
of data. What results is a ‘best of both worlds’ scenario in which the Sysplex Distributor
leverages its strength in using up-to-date information to select the most appropriate target
stack to receive a connection and in which the MNLB router can learn of this selection and
can directly forward data to target servers without the need to place additional load on the
Sysplex Distributor. That is, the Sysplex Distributor is relieved of the job of multiplexing
incoming data packets to target servers while the MNLB router is relieved of the task of
selecting the appropriate target server with potentially state information.

In the MNLB architecture, the entity that dispatches connections to the appropriate target
server is called the Service Manager. The entity that forwards data to target servers is called
the Forwarding Agent. Hence, in this hybrid environment, Sysplex Distributor becomes the
Service Manager and the Cisco router is the Forwarding Agent.

In summary, this hybrid MNLB/SD solution has the following advantages over a pure Sysplex
Distributor or a pure MNLB solution:

� The router performs the forwarding of data packets to target servers, thereby substantially
reducing the load placed on the Sysplex Distributor. Routers have been engineered to
forward packets very quickly. This solution allows routers do what they do best.

� The Sysplex Distributor makes the appropriate target stack selection based on current
information. The distributing stack in the sysplex is the best entity to make the right
decision as to which target server should receive an incoming connection request. This
solution leverages this as well.

� Separation of distinct functionality. The MNLB architecture allows the separation of distinct
functionality so that each may be placed in the appropriate location. For example, this
solution encourages routers to be the Forwarding Agents, a function that is clearly in the
router domain.
14 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

In contrast, the MNLB/SD joint solution suffers from the following drawbacks:

� Increased complexity. Of course, whenever new hardware is brought into the mix,
complexity is likely to increase. We must now be familiar with CS for z/OS and with Cisco
router configuration to make this work. Though Cisco’s penetration into the market implies
that most people have Cisco experience, the complexity of the architecture is not trivial.

� Additional hardware. In order to fully leverage the advantages of this functionality, you
must have an MLNB-supporting Cisco router. This implies increased cost. However, if
such a router already exists in your network, the price of this solution is suddenly more
appealing.

1.8.5 Which solution is best?
The connection dispatching technologies described within this chapter all implement some
sort of clustering technique. All of these techniques can learn the performance and availability
characteristics of the target servers to which traffic is directed. Sysplex Distributor (and
MNLB/SD) provides a bit more functionality here by taking into consideration QoS
performance metrics in dispatching decisions.

Also, all of these techniques can be configured (by means of redundancy) to provide very
high availability. In the case of DNS/WLM and Network Dispatcher, the entity making
dispatching solutions can have a single backup. With Sysplex Distributor (and MNLB/SD), the
dispatching function can be backed up by all systems within the sysplex, yielding increased
availability characteristics.

Because of these and the other benefits of Sysplex Distributor, we generally recommend it as
the dispatching solution of choice. To leverage Cisco router functionality, we recommend the
use of Sysplex Distributor with Cisco MNLB-enabled routers.

However, DNS/WLM and Network Dispatcher should be considered in some cases. In
general terms, the circumstances under which the DNS/WLM solution and/or Network
Dispatcher should be considered are:

� It is desired that host name be the single system image rather than IP address

� Passive mode FTP must be supported

� Heterogeneity among target servers is desired

If any of these conditions are the case, then you might consider the use of either DNS/WLM
or Network Dispatcher depending on the type of application. In general:

� If the application tends to use a large number of short connections (UDP or Web access),
use Network Dispatcher because it does not require name resolution on every connection.

� If connections are long-lived (Telnet and especially FTP), use DNS/WLM. The overhead of
name resolution is infrequent, and thus small compared with the performance gained by
not sending the traffic through the ND function.
Chapter 1. Introduction 15

16 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Chapter 2. DNS/WLM (connection
optimization)

Officially known as connection optimization, DNS/WLM provides intelligent sysplex
distribution of requests through cooperation between the WLM and the DNS server. For
customers who elect to place a DNS in a z/OS sysplex, DNS will invoke WLM sysplex routing
services to determine the best system to service a given client request.

WLM provides various workload related services: performance administration, performance
management and workload distribution. WLM is capable of dynamically assessing resource
utilization on all participating hosts within a sysplex.

A DNS server running on a host in the sysplex can take advantage of WLM's knowledge and
use it to control how often an address for a particular host in the sysplex is returned on a DNS
query. When a sysplex name server queries the WLM for information, it is provided with a
weight corresponding to the relative resource availability of each participating host in the
sysplex. These weights are used by the name server to control the frequency with which an
address will be returned for a given host. If a host in the sysplex is relatively busy, its address
will not be returned by the server as often as a less busy host's address. As you might have
guessed, this means that you must use host names when accessing an application in the
sysplex. If you use an IP address directly, no workload balancing can occur with the
DNS/WLM solution.

Please note that DNS BIND 9 does not support connection optimization. You must use BIND
4.9.3, which is still currently being shipped with CS for z/OS IP. For more information, please
refer to Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2:
UNIX Applications, SG24-5228.

2

© Copyright IBM Corp. 2002. All rights reserved. 17

2.1 Domain Name System (DNS) overview
This section provides a very brief overview of the Domain Name System (DNS). This subject
is very complex and numerous books on DNS have been written. One of the most popular
books is DNS and BIND by Paul Albitz and Cricket Liu. If you are going to implement a DNS,
we strongly recommend you refer to such texts on the subject for more complete
descriptions.

2.1.1 Why DNS?
The TCP/IP applications refer to host computers by their IP addresses. IPv4 addresses are
numeric, in the format nnn.nnn.nnn.nnn where nnn can range from 0 to 255 (with a few
exceptions). The major drawback of this system is that, for most people, numbers are difficult
to remember. As a result, today's IP-based networks use a mapping of host names to host
numbers or addresses. The obvious advantage of this name-to-IP address mapping is that
we can assign easily remembered names to hosts in the network. For example, what if we
map the host Garth to the number 9.24.104.200? We no longer need to memorize the
numeric address; just use the name Garth instead. What happens, though, if another Garth
wants to use this name on the network too? The Domain Name System not only handles the
name to address (and vice versa) mapping, it also encompasses a system that is capable of
ensuring that names are unique throughout all interconnected networks.

2.1.2 What is the Domain Name System?
The Domain Name System (DNS) is a distributed database providing mappings between host
names and IP addresses. Essentially, the increased importance of host names and the size of
the Internet hosts file led to the creation of the DNS. It is now the method of choice for
resolving host names to IP addresses and vice versa.

The DNS is a client/server model in which programs called name servers contain information
about host systems and IP addresses. Name servers provide this information to clients called
resolvers.

Logistically, it is best likened to a hierarchical file system. All levels of directories in a file
system begin with a root directory. All levels of a domain in the DNS also begin with a root
domain. Instead of separating each level of domain with a slash (“/”), the DNS uses a dot (“.”).

Controlling the names
The uniqueness of host names within a domain is managed in a similar fashion to the way file
names are used within a directory. For example, the files /bin/matt and /sbin/matt are
obviously different. The DNS uses the same principle, but the root directory is listed on the far
right, and successive subdomains (equivalent to successive subdirectories) are listed from
right to left. For example, if we have an address such as:

buddha.ral.ibm.com

our highest (or closest to the root) domain is com. Note that the root domain is represented by
a dot, just as on a file system the root directory is a slash. The same address could correctly
be written as

buddha.ral.ibm.com.

Often we leave the final dot out of the address, but you will see situations later in this text
where it becomes very important. The next subdomain is ibm, and we continue down to the
lowest subdomain of buddha.
18 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

At this point, you might be wondering where the hosts are. Any domain name can represent a
host while at the same time it can represent the domain of a group of hosts (or more
subdomains even). In other words, we know the domain ibm.com represents the domain of
the IBM Corporation, but there could also be a host called ibm.com out there as well.

So how does DNS get hold of these name-to-address mappings? The DNS is essentially a
distributed database system. A network administrator chooses a host on the network as a
DNS server. This server will usually have a zone for which it is responsible for resolving
names to addresses (and addresses to names, called reverse mapping). A zone can describe
an entire domain of mappings, more than one domain, or only a subset of a domain. In each
case, the server will refer to a configuration file containing simple lists of address and name
records, often referred to as a data file. A host-to-address (and vice versa) mapping is
referred to as a resource record. For example:

mvs03a IN A 172.16.250.3

is the resource record that maps host mvs03a to the address 172.16.250.3.

The name server's job is to respond to queries by providing either an address for a name, or
a name for a supplied address. Initially, each server will know only about the hosts within the
zones for which it is configured to respond. Caching allows the server to learn and remember
data acquired from other name servers. It should also be noted that the name-to-address
mapping can be one-to-many, because a host can have more than one IP address.

Finding an address
Hosts on a network must be configured to look for a DNS server when a host name is used
instead of an address. The request for name resolution is handed to a resolver routine. The
resolver routine will have an address or list of addresses that points to hosts running a DNS
server. In the z/OS TCP/IP environment, this is controlled by the NSINTERADDR parameter.
The resolver routine will send the query to the host listed in NSINTERADDR, and the resolver
routine waits for a response and passes the answer back to the application that requested the
resolution. When a query is sent to a name server and the name server is expected to find the
answer, this is referred to as a recursive query. Later, we discuss a situation where we simply
want a name server to give us the best answer it has (that is, the name and address of a more
likely name server). This is referred to as an iterative (or non-recursive) query.

It can happen that a name server does not know the mapping that is being requested. When
this happens, there are several courses of action the server can take. Usually, there is a name
server record pointed to by a data file that maps a domain name to a specific server for
resolution. This hard-coded record gives the name server a mapping between a domain for
which it does not have data and the address of a name server that should have the mapping.
That name server will respond back to the original name server with its answer, and the
original name server will then respond back to the resolver routine on the host that originated
the request.

So what if we get a request for a domain that is completely separate from any domain for
which we have data files? This distributed database Domain Name System contains
something called a root name server. A root name server's purpose in the DNS world is to
provide other servers with information on where to find the top-level domain server for a given
domain. In other words, if a name server gets a request for where.world.ca, and the name
server knows nothing about the ca domain, we can send the request to our root name server.
The root name server probably will not resolve the request, but it should return the address of
a name server more likely to be able to resolve the request (for example, it could return the
address for a name server responsible for a world.ca zone). This process of sending the
request to another name server and receiving ever better responses is called iterative
resolution.
Chapter 2. DNS/WLM (connection optimization) 19

Once we have the IP address of the host, the work of the DNS is done.

Reverse mappings
Sometimes, we might already know an IP address, but we want to find the host name
associated with the address. When such a request comes to a name server, it is referred to
as a reverse lookup. Reverse mappings are considered to be in a domain called
in-addr.arpa. The term in-addr.arpa is associated with the actual coding of the resource
record for a reverse mapping. For example, the reverse mapping for host mvs03a would look
like this:

3.250.16.172 IN PTR mvs03a.buddha.ral.ibm.com.

Primary (master) and secondary (slave) servers
As with any good distributed database system, we do not want to duplicate our database
entries, but we also want to have backup data available in the event of a problem. When we
implement a name server, we have the ability to load some or all of our data file contents from
another name server dynamically. If a name server is running as the primary one within a
zone, this indicates that we own our data file resource records (forward and/or reverse
mappings). The data physically exists on the system where the name server is running.

Alternatively, a name server can indicate it wants to act as a secondary (also referred to as a
slave) server for a particular zone. To do this, we provide the name of the zone and the
address of the primary (also referred to as the master) name server from which we want to
transfer the data. When the name server starts up, it will request a zone transfer from the
primary name server, and will load its data files dynamically with the received data.

There should be only one primary server for any given zone, but there can be many
secondaries.

2.1.3 DNS implementation with CS for z/OS IP
Communications Server for z/OS IP provides two Domain Name System implementations
based on Berkeley Internet Name Domain (BIND). The ported BIND servers enable the ability
to implement a z/OS-based DNS that is similar to de facto standard UNIX implementations of
DNS in configuration and processing. Please note that the later implementation, BIND 9,
does not support connection optimization. BIND 4.9.3 does support it and is therefore used
as the basis for the discussion in this chapter.

The BIND-based DNS was first made available as a kit with OS/390 Version 2 Release 4 and
could be run as an OpenEdition (now UNIX System Services) server on an OS/390 TCP/IP
OpenEdition stack or an IBM TCP/IP Version 3 Release 2 for MVS stack. The BIND DNS has
since been enhanced and is available as part of Communications Server for z/OS.

DNS/WLM provides intelligent sysplex distribution of requests through cooperation between
WLM and the DNS server. WLM provides sysplex services to determine the best system to
service a given client request.

2.1.4 Files to support a DNS implementation
A DNS server usually contains at least three configuration files:

1. A startup file or boot file, by default /etc/named.boot.

2. A data file or zone file that maps host names to IP addresses for specific domains. We
refer to this zone file as the forward domain file. It conventionally uses a suffix of for, as in
named.for. The file name is usually the zone name, but it can be anything.
20 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

3. A data file or zone file that resolves IP addresses to host names for IP networks. We refer
to this zone file as the reverse domain file, or the in-addr.arpa file. It conventionally uses a
suffix of rev, as in named.rev. Again, the file name is usually the zone name, but it can be
anything.

Optionally a DNS server may have additional configuration files:

� Extra forward files for additional zones that the name server may be servicing

� Extra reverse files if the name server manages more than one IP network

� A loopback file, which by convention uses the suffix lbk, to define the loopback names
and addresses

� A cache file that references standard domains in the Internet

� Forward and reverse zone files that are used to manage a name server that cooperates
with WLM

� Forward and reverse zone files that are used in a network with DHCP and the Dynamic
Domain Name System (DDNS)

All of these files may be present at both primary and secondary name servers. A secondary
name server obtains most of its data from the primary name server through a process called
zone transfer. The secondary server uses its forward and reverse files to store the data
obtained from the primary name server.

2.2 How load distribution works using DNS/WLM
Before any application can take part in workload balancing (connection optimization), the
TCP/IP stack should register itself to WLM. It, and only it, can correctly maintain the IP
addresses that DNS/WLM will need to resolve a host name to an address. Once the stack
has been registered, WLM knows its name and its interface addresses. The
SYSPLEXRouting keyword in the IPCONFIG statement in the TCP/IP profile tells the stack to
do this. As interfaces are activated and deactivated, the stack keeps WLM informed of the
status. Note that if the stack does not register, DNS uses the defined interface addresses but
they are never checked for active status.

Once the TCP/IP stacks have registered with WLM, the following occurs (see Figure 2-1 on
page 22):

1. When each application becomes active in the sysplex, it registers with WLM using the
appropriate group, server, and host (stack) name.

2. The name server will query WLM periodically for a list of available applications. WLM
returns the names of the applications within each group, the active IP addresses
associated with them (obtained from the associated stack name), and a set of
workload-related weights.

Note: For each TCP/IP stack within a sysplex, only the first 15 addresses listed in the
HOME statement of your profile will be registered to WLM (and passed on to the name
server when it requests the information). If an interface is not active, its address will not be
forwarded to WLM. When the name server receives these active addresses from WLM, it
will accept only the addresses that have a matching address listed in its data file. This
requirement for statically defined addresses ensures full administrative control over the
workload distribution.
Chapter 2. DNS/WLM (connection optimization) 21

3. Resource records representing the application's group name are dynamically (and not
permanently) added to the name server's data files. These entries will now be treated the
same as any hard-coded entries read from the server's data file.

4. When a request to resolve one of these group (server) names comes in, the server will
choose an address to return based upon the weighting factor provided from WLM.

5. The next request for the same group name within the sysplex will be given the next
address according to the weighting. Depending on the relative resource utilization of the
hosts in the sysplex, this could be the same address as retrieved in the previous query, it
could be a different address for the same host, or it could be an address for another host
in the sysplex.

6. WLM is queried by the name server every 60 seconds (by default) for a new set of
addresses and host weights. This can be controlled by the -t parameter at startup of the
name server task (daemon).

Figure 2-1 WLM and name server working together

If you are familiar with DNS, you might have already noticed that we appear to have crossed a
boundary: an application registers with WLM, providing its service name or identification, and
then the name server picks up this information and creates a host name entry. The name
server dynamically maps an application (actually the group name representing the
application) within the sysplex to a host address. While this might be confusing at first, it
makes great sense.

If an application goes down, either WLM will be notified by a deregistration command, or else
it will detect automatically that the address space has terminated. Then WLM will remove the
entry from its tables. When the name server next queries WLM, it will no longer be given that
application, group, and host name. Since we can have multiple applications within a single
group, another request for the same group will still succeed if another application registered
with the same group is active within the sysplex.

TCP/IP1Appl1 weight addr
Appl2 weight addr

WLM

Sysplex Host

Appl1
Appl2
Appl3

DNS Server

1. Registration

2. Query list of active APPLs

3. List of registered groups
and active addresses

4. DNS Request
5. DNS response based on
the weight from WLM

hostname
groupname
servername
22 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

2.2.1 Data returned by the name server
When the sysplex DNS returns information to a DNS requesting data about WLM resources,
the sysplex DNS returns a time-to-live (TTL) of 0 so that the local DNS does not cache the
results. However, some resolver and name server implementations do not honor a zero TTL,
thus reducing the effect of connection optimization during the time they preserve knowledge
of cached resources. If you find that there are too many queries on the network for sysplex
resources and you wish to choose reduced network traffic over completely optimized
connections, you may start the DNS/WLM with a longer TTL value by overriding the default of
0 with the -l option.

WLM weights
The DNS/WLM queries the WLM every 60 seconds by default for information regarding
resource usage (weights) and available resource addresses. Weights are reflected in the
server entries and represent available capacity. The highest weight possible for a server is
64, which indicates the highest capacity available.

The weight 1 of a resource is only visible in a debug trace of the DNS as you can see in
Figure 2-2.

Figure 2-2 Partial output of debug trace with WLM weight for MVS images

Static addresses versus registered addresses
The static addresses are those that are defined to the DNS in the sysplex (cluster) domain
file. The registered addresses are those that have been defined and are active within the
TCP/IP protocol stack. In response to queries, DNS/WLM sends a list of available addresses
comprised of the intersection of active addresses registered to the WLM and active
addresses that have been defined to the DNS zone files. The idea is to present a list of
addresses that are reachable by any host that needs to know. If you have VIPAs configured in
your TCP/IP stacks, only VIPA addresses should be statically defined in DNS data files. For a
TCP/IP stack within the sysplex, only the first 15 addresses listed in the HOME statement of
TCPIP.PROFILE will be registered to WLM (and passed on to the name server when it
requests the information). If an interface is not active, its address will not be forwarded to
WLM. When the name server receives these active addresses from WLM, it will accept only
the addresses that have matching address listed in its data file. This requirement for statically
defined addresses ensures full administrative control over the workload distribution.

Server info from WLM follows for group, TCPIP, with 3 entries:
 Server # 1: Netid = MVS03A, Server = TCPIPA, Weight = 21, Num_addrs = 3
 [172.16.250.3], [9.24.104.113], [9.24.105.126], 1
 host_name = MVS03A
 Server # 2: Netid = MVS28A, Server = TCPIPA, Weight = 21, Num_addrs = 3
 [172.16.252.28], [9.24.104.42], [9.24.105.74], 1
 host_name = MVS28A
 Server # 3: Netid = MVS39A, Server = TCPIPA, Weight = 21, Num_addrs = 2
 [172.16.232.39], [9.24.104.149], 1
 host_name = MVS39A
 End of WLM Server info
Chapter 2. DNS/WLM (connection optimization) 23

Figure 2-3 DNS addresses used in WLM distribution

The emphasis should be on the words reachable addresses. Whether you use static or
dynamic routing protocols, you must ensure that any address returned in response to a DNS
query can be reached.

If you are running static routing in your network without a comprehensive set of static routing
definitions on the appropriate platforms, many such addresses could be unreachable. A DNS
extraction might present a list of addresses, some of which would not be reachable by every
host in the network.

Recommendation for DNS/WLM address definition
Based on the discussion so far, we have come to the following conclusions:

1. If you have implemented dynamic routing protocols in your network, limit your statically
defined addresses in the sysplex subdomain to the VIPA address and use SOURCEVIPA.

2. If you use dynamic routing protocols throughout your network, but you do not use VIPA at
the z/OS IP host, you may still successfully use multiple addresses in your name server
forward zone files.

3. If you use static routes in your network, limit the statically defined name server addresses
to those that are reachable throughout the network.

Round-robin technique and addresses returned
If the intersection of active addresses and DNS-defined addresses yields multiple potential
addresses for a query and if all systems have the same weights, you would expect to see a
rotation of the addresses being offered a client. Yet you may test with DNS/WLM and never
perceive the phenomenon. This is due to the default for the -t option on the DNS startup. -t
represents the amount of time between queries to the WLM about sysplex names, addresses,
and weights. When the time specified in -t (default of 60 seconds) expires, DNS resets its list
of potential addresses to the order specified in the DNS definition sequence. The default of 60
seconds has been deemed optimal for a production system, because weights can change
rapidly; DNS should refresh its knowledge of weights frequently. A great number of
connections occur in a production environment in those 60 seconds, and these will receive
the benefits of the round-robin address offers. If you set -t to a value greater than 60 seconds,
you defeat the purpose of connection balancing by overriding refreshed knowledge about
sysplex weights.

However, if you want to see the round-robin effect in action during testing, you can
temporarily set the value higher than 60 seconds. Multiple (o)nslookups in rapid succession
should deliver a list of addresses that rotate with each command.

named.for

TN3270E

 FTPD

TCPIP

Static Address Used Address Registered
Address
24 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

2.2.2 Using VIPA and a dynamic routing protocol with DNS/WLM
From a purely DNS and WLM perspective, the use of VIPA does not alter the host selection
criteria for a sysplex application or WLM group. From a routing perspective, there are benefits
in using the VIPA address for a TCP/IP stack rather than the physical address.

In general, access to the mainframe will traverse a router somewhere in the network for most
users. That router can make routing decisions based upon the topology of the network. When
a z/OS TCP/IP stack has multiple physical connections, a router can choose the most direct
link and should that link fail, an alternate may be transparently substituted.

There is enough evidence to suggest the most viable configuration is to use the DNS/WLM
sysplex functions with a VIPA address. This provides a very high availability solution with a
minimal configuration requirement at the workstation. If a route fails, including a channel
connection, the router can simply redirect the traffic to an available route. If a stack fails, the
user can reconnect immediately to an alternate stack without changing the application
destination. This means there is no longer a requirement to define "backup icons" for
sysplex-supported services or for the user to have to choose between normal Telnet or
backup Telnet. DNS will automatically select what is available and will balance the load when
the failing system returns.

2.3 The pros and cons of DNS/WLM
The DNS/WLM solution provides for a nice workload distribution, particularly when using an
application with long-lived connections. Because of its dependence on the DNS host name to
IP address mapping, this solution also has some potential drawbacks. This section lists these
advantages and disadvantages.

2.3.1 Benefits of DNS/WLM workload distribution
Since the target TCP/IP stack is chosen by the DNS server using the workload information
provided by WLM, the workload is balanced in a sysplex based on the current load and
system capacity.

Clients use the sysplex name as a server’s host name. In case of TCP/IP stack failure, the
connection can be re-established to an appropriate surviving TCP/IP stack within the sysplex.

Summary of benefits:

� Distributes connections in a sysplex based on current load and capacity.

� Distributes load across adapters on a single host.

� Dynamically avoids crashed hosts and servers.

� Dynamically avoids crashed TCP/IP stacks when using sysplex name.

� Highly scalable - new servers may be added without DNS administration.

� Inexpensive to deploy - uses existing technology. No special software/hardware is
required.

� Provides for high performance since the distribution is done during host name resolution.
Chapter 2. DNS/WLM (connection optimization) 25

2.3.2 DNS/WLM limitations
Most of the DNS/WLM solution’s limitations arise from its inherent dependence on the
Domain Name System. The following lists some of these drawbacks:

� To take advantage of DNS/WLM connection optimization, the clients must be using DNS
to resolve addresses.

� Additionally, the DNS server must be implemented within the sysplex. Further, the
dynamic naming structure may require client re-configuration.

� The DNS/WLM solution is not applicable to all applications, since application software
support is required.

� The DNS/WLM implementation does not distinguish among multiple servers on the same
host but using a different port.

� If caching is enabled at other name servers or at hosts and these name servers or hosts
ignore the TTL value, full connection optimization is defeated.

� The DNS/WLM can optimize connections only within a single sysplex.

� DNS/WLM is intended primarily for long-lived connections. Although short-lived
connections do exploit the potential of DNS/WLM, the added network traffic they generate
may outweigh the benefits.

� DNS/WLM is currently only supported by BIND 4.9.3. DNS BIND 9 does not support this
function.

2.4 Application and stack registration to WLM
In order for Workload Manager to become aware of an application, the application must
register with WLM. There is an assembler macro and a C function available for doing this
(IWMSRSRG and IWMDNREG, respectively). Although they have different names, the C
function is just a wrapper to call IWMSRSRG. When an application registers, the following
information must be passed to WLM:

� Group (cluster) name

A generic name used to represent a group of applications running on the sysplex. This can
be considered the name of the service provided.

� Server name

The name of the application running on that particular host in the sysplex. Each
application in a group must register with a different server name. Essentially, this is the
name of the application instance providing the service.

� Host name

The TCP/IP host name of the stack associated with the application (server). This can be
obtained by issuing the gethostname() call.

When the name server requests a list of registered applications from WLM, the above
information is returned for each one, along with a list of active addresses associated with the
host name; that is, all the interfaces that have been successfully activated and have an
address assigned via the HOME statement in the TCP/IP profile.
26 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 2-4 Application and stack registration to WLM

2.4.1 Stack registration with DNS/WLM
If you plan to use the connection optimization features of the BIND DNS server that is
exploiting WLM, then you need to be aware of several additions to your TCP/IP Profile data
set:

IPCONFIG
 SYSPLEXRouting 1

SYSPLEXRouting 1 indicates that this CS for z/OS IP stack participates in a sysplex and
should notify the Workload Manager (WLM) of any changes in interface definitions or
statuses. This statement allows the stack to register itself and its interfaces with the WLM for
connection optimization purposes. SYSPLEXRouting is part of the IPCONFig statements of
the PROFILE.TCPIP.

2.4.2 Communications Server for z/OS V1R2 IP application support
Several applications shipped with CS for z/OS IP are able to register with WLM. For example,
the TN3270 server and the FTP server can be configured to register with WLM. Our scenarios
used these two applications. Additionally, other IBM applications for the z/OS platform have
the ability to register with WLM.

For CICS, you specify the group names in the listener definition. You may specify up to three
group names for a CICS listener. If you want to change the registration, you have to stop and
restart the listener.

TN3270 configuration
TELNETPARMS
 WLMCLUSTERNAME 2
 TN03 3
 TNRAL 3
 TNTSO 3
 ENDWLMCLUSTERNAME 2
ENDTELNETPARMS

SYSPLEX1

DNS

HOST1 HOST2

WLM REGISTRATION

FTPD1

CICS1

DDF1

APPL1

FTPD1

CICS1

DDF1

APPL1

 TCPIPA

TN3270E1

FTPD2

CICS2

DDF2

APPL2

TCPIPB

TN3270E2

HOST3

FTPD3

CICS3

DDF3

APPL3

TCPIPC

TN3270E3

TNRAL : TN3270E1,TN3270E2,TN3270E3 CICS : CICS1,CICS2,CICS3 DDF : DDF1,DDF2,DDF3
FTPRAL : FTPD1,FTPD2,FTPD3 APPL1 : APPL1,APPL2,APPL3

GROUP NAMES
Chapter 2. DNS/WLM (connection optimization) 27

If you want Telnet to register with WLM, you need to add WLMCLUSTERNAME and
ENDWLMCLUSTERNAME 2 to the TELNETPARMS section of your profile coding. Imbedded
between WLMC and ENDWLMC you may specify the names that you would like the TN3270
Server to register as with WLM. TNRAL 3 and the other names in the WLMC list are known as
group names. They represent a cluster of equivalent server names in a sysplex environment
that provide some common service.

The TCP/IP stack and the Telnet server are registered at stack startup if the appropriate
definitions have been placed in the PROFILE.TCPIP. Re-registration occurs after every
OBEYFILE command. You may deregister by stopping the stack or by issuing an OBEYFILE
command against a PROFILE that has coded NOSYSPLEXrouting or by changing the
specifications in the PROFILE between WLMC and ENDWLMC.

The Telnet server can also be deregistered with:

V TCPIP,procname,TELNET,QUIESCE

and

V TCPIP,procname,TELNET,STOP

A re-registration is accomplished with:

V TCPIP,procname,TELNET,RESUME

You may specify up to 16 group names for a TN3270 server.

FTP configuration
If you want FTP to register with WLM, you need to add WLMCLUSTERNAME to the
FTP.DATA file.

WLMCLUSTERNAME FTPRAL

You may also specify up to 16 group names for the FTP server. If you want to change the
registration, you have to stop and restart the FTP server.

Registering your own applications
To register your own server application, use a C interface or an assembler interface. For C
language, the IWMDNREG and IWMDNDRG API is provided. For assembler applications,
use IWMSRSRG and IWMSRDRS macros. Appendix C, “Sample applications and programs”
on page 273 contains the description of a sample application that is capable of registering
with WLM. The source code for this application is included in Appendix D, “Sample C program
source code” on page 287.

For information on how to code the assembler macro, see z/OS V1R2.0 MVS Workload
Management Services, SA22-7619.

2.4.3 DNS/WLM registration results
Unfortunately there is no generic query available to determine from z/OS WLM the names of
resources registered with it. Some applications issue messages about a successful
registration like the FTP server, as shown in Figure 2-5.

Figure 2-5 FTP server registration with WLM

EZYFT57I FTP registering with WLM as group = FTPRAL host = MVS03A
EZY2702I Server-FTP: Initialization completed at 12:39:25 on 09/21/00.
28 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Other applications, such as Telnet, have commands available to display the group names
registered with WLM (see Figure 2-6).

Figure 2-6 Display Telnet group names registration with WLM

If there is no command or message available to check the registration with WLM, you can use
the nslookup or any other function that resolves host names to verify the results. Another
possibility to be certain if an application has registered is to dump the DNS database. Please
refer to 2.5.6, “Dumping the DNS server cache” on page 35 for a detailed explanation.

2.5 Working with DNS/WLM
The hosts, servers, and stacks register with Workload Manager (WLM), and DNS/WLM
retrieves its knowledge of system loads and available resources from the WLM. DNS/WLM
distributes connections in a sysplex based on currently available system capacities. It also
distributes the system load across active adapters on a single host and through dynamically
updated awareness of crashed stacks, servers, and adapters. It can avoid them in distributing
traffic across a sysplex. Since server registration is dynamic, no DNS administration is
required to recognize new resources in the network.

2.5.1 WLM configuration
Load balancing in the sysplex requires that all hosts participating in connection optimization
be operating in WLM goal mode. Without goal mode, all hosts are treated equally and there is
no WLM consideration of the different workloads they may have. To set goal mode, you have
two choices:

1. Omit the keyword IPS= from IEASYSxx in SYS1.PARMLIB

2. Dynamically configure goal mode by issuing the MVS console command:

F WLM,MODE=GOAL

You can discover whether your system is in goal mode or not with the command
D WLM,SYSTEM=sysname. You see the output of the command in Figure 2-7 on page 30.

D TCPIP,TCPIPA,T,WLM
EZZ6067I TELNET WLM DISPLAY 240
WLM CLUSTER NAME STATUS
------------------ ---------------------
----- PORT: 23 ACTIVE BASIC
TNTSO Registered
TNRAL Registered
TN03 Registered
4 OF 4 RECORDS DISPLAYED
Chapter 2. DNS/WLM (connection optimization) 29

Figure 2-7 Display of WLM status

2.5.2 DNS/WLM TCPDATA consideration
The TCPDATA file (or resolver file) is used by clients to determine, among other things, the
stack name they should have affinity to and the domain name that will automatically be
appended to their name-based queries. The fully qualified name for mvs03 could end up being
mvs03.itso.ral.ibm.com. or mvs03.ralplex1.itso.ral.ibm.com. even if all you entered at
the client was ping mvs03. This depends on the resolver file your client is using.

If you are implementing the DNS server for a sysplex domain, you have a decision to make
about how you designate the domain name for the TSO or shell client. If you leave the domain
name as itso.ral.ibm.com., then every time your client needs to have, for example, ftpral
converted into a fully qualified name, it will be resolved into ftpral.itso.ral.ibm.com. You
may not find the group name ftpral under these conditions; however, you would find the
thousands of other resources in the domain itso.ral.ibm.com and served by another name
server very easily by allowing the default domain to be appended.

Your network users who need to get to the few resources managed by the sysplex domain
simply need to change those requests to something like ftp ftpral.ralplex1, ensuring that
they do not append a period to the request. (The period or dot would indicate that the fully
qualified name has been specified and the current domain name should not be appended.)
Their client resolver process will expand the two-part name into the fully qualified
ftpral.ralplex1.itso.ral.ibm.com. To avoid your network users having to specify the long
sysplex names, you can simply code CNAME records for your sysplex resources as shown in
Figure 2-28 on page 45.

On the other hand, if you make the domain name something like
ralplex1.itso.ral.ibm.com, then every time your TSO client needs to find the group name
ftpral, it will be correctly resolved into ftpral.ralplex1.itso.ral.ibm.com. However, to
reach the thousands of resources by name that are actually in the itso.ral.ibm.com
domain, the TSO or shell client would have to specify the fully qualified name to begin with or
would have to rely on your CNAME coding in the name server. (The CNAME coding would
spell out the fully qualified name of the resource.)

D WLM,SYSTEMS
IWM025I 11.33.23 WLM DISPLAY 295
 ACTIVE WORKLOAD MANAGEMENT SERVICE POLICY NAME: EQUALESY
 ACTIVATED: 2000/06/28 AT: 08:32:08 BY: LUNA FROM: RA03
 DESCRIPTION: Policy for equal imp case
 RELATED SERVICE DEFINITION NAME: CICSpol
 INSTALLED: 1998/01/30 AT: 15:44:05 BY: WOZA FROM: SA28
 WLM VERSION LEVEL: LEVEL011
 WLM FUNCTIONALITY LEVEL: LEVEL004
 WLM CDS FORMAT LEVEL: FORMAT 3
 STRUCTURE SYSZWLM_WORKUNIT STATUS: DISCONNECTED
 STRUCTURE SYSZWLM_61989672 STATUS: DISCONNECTED
 SYSNAME *MODE* *POLICY* *WORKLOAD MANAGEMENT STATUS*
 RA03 GOAL EQUALESY ACTIVE
 RA28 GOAL EQUALESY ACTIVE
 RA39 GOAL EQUALESY ACTIVE
30 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

You have probably figured out that the issue of what domain name to put into the TCPDATA
file is one of degree: how many host-based clients are there versus workstation clients? If
there are few z/OS-based clients trying to reach resources that are based mostly in the
sysplex, then you might decide to use the sysplex subdomain as your TCPDATA domain. If
the same clients are trying to reach resources in a completely different domain, then you
might decide to use the domain name that represents the greater number of resources.

In our network, we left the TCPDATA file at the host with a domain of itso.ral.ibm.com. for
the clients to use and CNAME records to point to the sysplex resources.

2.5.3 Client/server affinity
Some client/server applications require that the client connects to the same server instance
after an interruption. This is achieved in the following way:

1. The server uses the new ioctl() function SIOCGSPLXFQDN to get its fully qualified name
from the TCP/IP stack.

2. After the connection has been established using only the group name or the sysplex name
the server sends its fully qualified name
(server_instance.groupname.sysplex_subdomain.domain) to the client.

3. After an interruption, the client uses this fully qualified name to make sure it connects to
the same server it was connected to before the interruption.

To enable this function, the following definition has to be added to the sysplex name servers
loopback file:

127.0.0.128 IN PTR ralplex1.itso.ral.ibm.com; Sysplex Loopback Address (SLA)

The loopback address range 127.0.0.128-127.0.0.255 has been reserved by IBM for this
purpose.

2.5.4 Starting the DNS server
The BIND DNS name server must be associated with a TCP/IP stack. This process occurs by
default if there is only one copy of CS for z/OS IP in the z/OS image. A single copy will
probably be the more common implementation, since the reasons for running multiple stacks
are rapidly disappearing. The establishing of affinity to a particular stack then becomes an
issue only if you are running in a CINET configuration with multiple stacks. This issue is easy
to solve with a pointer to the correct TCPDATA file. The TCPDATA file (also called the
resolver file) is found according to the following search sequence:

1. RESOLVER_CONFIG environment variable

2. /etc/resolv.conf

3. //SYSTCPD DD

4. jobname or userid.TCPIP.DATA

5. SYS1.TCPPARMS(TCPDATA)

6. TCPIP.TCPIP.DATA

There can be problems with some applications using the TCPDATA reference by way of the
//SYSTCPD DD card. (Forked tasks do not resolve correctly if the DD card is used; for such
forked tasks you must duplicate the contents of the //SYSTCPD DD card in an HFS data set
called /etc/resolv.conf.) Although the BIND name server forks a new task, this task already
has the information it needs from the parent task; therefore, at the ITSO, we had no problems
running with the //SYSTCPD DD card.
Chapter 2. DNS/WLM (connection optimization) 31

If you have an /etc/resolv.conf in place, you can, of course, omit the //SYSTCPD DD
statement from your name server JCL. If you need to override the default /etc/resolv.conf for a
particular name server procedure, you may use //SYSTCPD DD or you may reference an
HFS resolver configuration file with the environment variable RESOLVER_CONFIG. We used the
//SYSTCPD DD 1 as you can see in Figure 2-8.

Figure 2-8 DNS server startup procedure

2 The PORT value and the boot file parameter are not required in the example above since it
is the default, but are included for illustration purposes.

For the DNS server you reserve the PORT in the PROFILE data set with the name of the
parent process. This varies from procedure to procedure, with some procedures requiring
that the child process be named. If you autolog a DNS server procedure, then both the
AUTOLOG and the PORT statement must reference the parent process. This is in marked
contrast to what occurs with FTP, where the child process must be named on the PORT and
AUTOLOG statements:

AUTOLOG
 NAMED
;
PORT
 53 TCP NAMED
 53 UDP NAMED

The DNS server can also be started from the UNIX system services shell environment, but
starting it requires superuser authority or an authorized TSO user ID. You cannot start the
name server with the inetd daemon. The startup must know either via default or via
parameters what the boot file name is, so that the correct data can be loaded. Figure 2-9
shows how you can start the DNS server with a UNIX System Services shell environment.

Figure 2-9 Start DNS server in UNIX System Services shell environment

//NAMED PROC B='/etc/named.boot',P='53' 2
//**
//NAMED EXEC PGM=EZANSNMD,REGION=0K,TIME=NOLIMIT,
// PARM='POSIX(ON) ALL31(ON)/ -b &B -p &P -d 11'
//*STEPLIB DD DISP=SHR,DSN=TCPIP.SEZALINK
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSTCPD DD DISP=SHR,DSN=TCPIP.TCPPARMS.R2611(TCPD&SYSCLONE.A) 1

Note: If we had coded a default /etc/resolv.conf, we would not have needed to specify the
RESOLVER_CONFIG parameter.

export RESOLVER_CONFIG="//’TCPIP.TCPPARMS(TCPD03A)’"
_BPX_JOBNAME=’NAMED’ /usr/sbin/named -b /etc/named.boot
32 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Table 2-1 lists additional startup parameters with a brief description:

Table 2-1 Additional start options for the DNS server

We have started the name server with a procedure from the MVS console. Figure 2-10 shows
the console log of the startup of the DNS server process on our MVS03 system.

Note that procedure NAMED 1 has ended, but you will later see that it has created a child
process called NAMED1. The message EZZ6475I 2 actually tells you that the domain name
server finished loading its resources and is now ready to respond to query requests.

Figure 2-10 Console log of DNS start

Depending on whether you have started the syslog daemon, you will see additional
messages about the files that DNS is loading either on the MVS console or in the syslogd.log
in HFS. Debugging is usually easier if you allow the messages to be sent to syslogd. The
messages you see at MVS03 from the initialization with our boot file are shown in Figure 2-11
on page 34.

S NAMED
$HASP100 NAMED ON STCINRDR
IEF695I START NAMED WITH JOBNAME NAMED IS ASSIGNED TO USER
TCPIP3 , GROUP OMVSGRP
$HASP373 NAMED STARTED
IEF403I NAMED - STARTED - TIME=16.01.35
EZZ6452I NAMED STARTING. @(#) DDNS/NS/NS_MAIN.C, DNS_NS, DNS_R1.1 1.
239
62 9/23/97 10:57:21
- --TIMINGS (MINS.)--
 ----PAGING COUNTS---
-JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB CLOCK
 SERV PG PAGE SWAP VIO SWAPS
-NAMED NAMED 00 731 31 .00 .00 .0
11841 0 0 0 0 0
IEF404I NAMED - ENDED - TIME=16.01.36
-NAMED ENDED. NAME- TOTAL TCB CPU TIME= .00
 TOTAL ELAPSED TIME= .0
$HASP395 NAMED ENDED 1
+EZZ6475I NAMED: READY TO ANSWER QUERIES. 2

Option Name Description

-d n
Specifies a debugging option and causes the named daemon to write
debugging information to the file /tmp/named.run. Valid debug levels are one to
11, where 11 supplies the most information.

-p Reassigns the port that is used in queries to other name servers. (The default is
53.) The local / remote port number can be specified.

-b filename Specifies an alternate boot file to /etc/named.boot.

-q Enables the logging of queries received by the name server.

-r Disables recursive query processing.

-t nn
Specifies the time (nn, in seconds) between refreshes of sysplex names and
addresses and of the weights associated with those names and addresses. The
default is sixty seconds.

-l nn Specifies the time-to-live (nn, in seconds) for sysplex names and addresses
after they are sent into the network. The default is zero seconds.
Chapter 2. DNS/WLM (connection optimization) 33

Figure 2-11 DNS messages in syslogd.log: file loading

You can see in Figure 2-11 (1) how our server has been associated via the resolver process
with the TCPIPA stack. You can also see which level of your customization has been loaded
(2) as shown by the displayed serial number. You may want to maintain the serial number
designation in the files as you customize them in order to understand which version of a file
has been loaded. The serial number is also used at secondary name servers to determine
whether data needs to be reloaded after a zone transfer. If you discover a mismatch between
the data at a secondary name server and that at a primary, the discrepancy could be due to
one of the following:

� A view of the secondary name server prior to its having pulled new data from the primary

� The failure of the secondary to pull new data from the primary because a matching serial
number at the primary signalled the secondary not to update its data

We get back to this in more detail when we review the configuration files of the primary and
secondary name server.

2.5.5 Displaying the DNS active sockets
Once the DNS server process has started, you can display the active sockets with an
onetstat -a display. Also, you can use the -c and the -s options of onetstat to display the
active sockets. Figure 2-12 shows the result of an onetstat display and you can observe 1 how
the port we reserved in the PROFILE.TCPIP and specified (or defaulted) in the DNS startup
is port 53.

Figure 2-12 Display of active sockets: onestat -a

EZZ6452I named starting. @(#) ddns/ns/ns_main.c, dns_ns, dns_r1.1 1.62 9/23/97
EZZ6701I named established affinity with 'TCPIPA' 1
EZZ6540I Static primary zone '104.24.9.in-addr.arpa' loaded (serial 1999040101) 2
EZZ6540I Static primary zone '16.172.in-addr.arpa' loaded (serial 1999040101)
EZZ6540I Static primary zone '0.0.127.in-addr.arpa' loaded (serial 1999040101)
EZZ6540I Static cache zone '' loaded (serial 0)
EZZ6475I named: ready to answer queries.

MVS TCP/IP onetstat CS V2R10 TCPIP Name: TCPIPA 13:49:51
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
BPXOINIT 0000000A 0.0.0.0..10007 0.0.0.0..0 Listen
FTPDA1 000000ED 0.0.0.0..21 0.0.0.0..0 Listen
NAMED 00000107 0.0.0.0..53 1 0.0.0.0..0 Listen
OMPROUTA 0000001B 127.0.0.1..1027 127.0.0.1..1028 Establsh
TCPIPA 0000000C 0.0.0.0..1025 0.0.0.0..0 Listen
TCPIPA 00000016 0.0.0.0..23 0.0.0.0..0 Listen
TCPIPA 000000F7 9.24.104.113..23 9.24.106.31..4906 Establsh
TCPIPA 00000011 127.0.0.1..1025 127.0.0.1..1026 Establsh
TCPIPA 00000010 127.0.0.1..1026 127.0.0.1..1025 Establsh
TCPIPA 000000F2 172.16.250.3..23 9.24.106.102..2889 Establsh
TCPIPA 00000014 127.0.0.1..1028 127.0.0.1..1027 Establsh
NAMED 00000108 0.0.0.0..53 1 *..* UDP
34 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

2.5.6 Dumping the DNS server cache
When you start the DNS server process, it will read all the zone files and place the
information in memory. This memory database will get updated with entries that it learns from
other DNS servers because of the recursive searching that may go on between DNS servers.

You have the ability to dump this memory table by sending a signal to the DNS server. The
SIGINT signal dumps the name server memory database in the HFS file
/tmp/named_dump.db. You can issue the signal through the ISPF command ISHELL, or you
can issue the command in the UNIX System Services shell by entering:

kill -INT $(cat /etc/named.pid)

The process ID of the named daemon is stored in the /etc/named.pid file at the named
startup. Alternatively you might enter the PID directly:

kill -INT 402653187

You can obtain the PID 1 with a UNIX System Services shell command ps -e or with the D
OMVS,A=ALL console command, as you see in Figure 2-13. Note the name of the executed
program: EZANSMD 2.

Figure 2-13 Displaying process ID and DNS program

See Figure 2-14 on page 36 for a partial copy of the /tmp/named_dump.db file that was
created when you issued signal #2 (-INT) against the DNS program, EZANSNMD. The output
shows you only the zone table and a few lines in the beginning of the dump, but it should give
an idea how it looks. You will see a more detailed dump later in 2.6.6, “DNS DUMP of primary
DNS server in the sysplex” on page 49.

D OMVS,A=ALL
BPXO040I 17.58.45 DISPLAY OMVS 106
OMVS 000E ACTIVE OMVS=(03)
USER JOBNAME ASID PID PPID STATE START CT_SECS
OMVSKERN BPXOINIT 0022 1 0 MF 11.11.42 136.551
 LATCHWAITPID= 0 CMD=BPXPINPR
 SERVER=Init Process AF= 0 MF=00000 TYPE=FILE
......
TCPIP3 OMPROUTA 007D 67108935 1 HS 11.22.54 99.130
 LATCHWAITPID= 0 CMD=/usr/lpp/tcpip/sbin/omproute
TCPIP3 TCPIPC 005F 50331738 1 1F 16.39.18 27.061
 LATCHWAITPID= 0 CMD=EZASASUB
TCPIP2 SYSLOGD1 003C 50331805 1 1FI 16.03.05 6.437
 LATCHWAITPID= 0 CMD=/usr/sbin/syslogd -c -u -f /etc/syslog.c
TCPIP3 FTPDC1 0062 83886238 1 1FI 16.39.18 .020
 LATCHWAITPID= 0 CMD=FTPD
TCPIP3 TCPIPC 005F 50331862 1 1F 16.39.17 27.061
 LATCHWAITPID= 0 CMD=EZACFALG
TCPIP3 NAMED1 004A 67109097 1 1 1F 16.01.36 3.959
 LATCHWAITPID= 0 CMD=EZANSNMD 2
TCPIP3 TCPIPC 005F 67109098 1 MR 16.39.13 27.061
 LATCHWAITPID= 0 CMD=EZBTCPIP
TCPIP3 TCPIPC 005F 83886356 1 1R 16.39.16 27.061
......
Chapter 2. DNS/WLM (connection optimization) 35

Figure 2-14 Partial copy of /tmp/named_dump.db (from a SIGINT to DNS process)

2.5.7 DNS statistics
You can obtain DNS statistics by using the signal #3 (ABRT), available either from the ISHELL
selection menus or by issuing kill -3 $(cat /etc/named.pid) from the shell. The data is
stored in /tmp/named.stats. See Figure 2-15 on page 37 for a sample output.

; Dumped at Tue Sep 19 14:36:12 2000
;; ++zone table++
; ralplex1.itso.ral.ibm.com (type 1, class 1, source ralplex1.for)
; time=969374208, lastupdate=937949821, serial=1999040102,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937949821, xaddr=[0.0.0.0], state=20041, pid=0
; 104.24.9.in-addr.arpa (type 1, class 1, source ralplex1.rev9)
; time=969378400, lastupdate=937951070, serial=1999040101,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937951070, xaddr=[0.0.0.0], state=0041, pid=0
; 16.172.in-addr.arpa (type 1, class 1, source ralplex1.rev)
; time=969379773, lastupdate=937949840, serial=1999040101,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937949840, xaddr=[0.0.0.0], state=0041, pid=0
; 0.0.127.in-addr.arpa (type 1, class 1, source mvs03a.lbk)
; time=969377837, lastupdate=937950997, serial=1999040101,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937950997, xaddr=[0.0.0.0], state=0041, pid=0
;; --zone table--
; Note: Cr=(auth,answer,addtnl,cache) tag only shown for non-auth RR's
; Note: NT=milliseconds for any A RR which we've used as a nameserver
; --- Cache & Data ---
 $ORIGIN itso.ral.ibm.com.
 ralplex1 IN SOA mvs03a.ralplex1.itso.ral.ibm.com.
 1999040102 7200 3600 604800 3600) ;Cl=5
 IN NS mvs03a.ralplex1.itso.ral.ibm.com.
 IN A 172.16.250.3 ;Cl=5
 IN A 172.16.252.28 ;Cl=5
 IN A 172.16.232.39 ;Cl=5
 $ORIGIN ralplex1.itso.ral.ibm.com.
36 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 2-15 Name server statistics

2.5.8 Discovering signals available for process
Most of the signal numbers are documented in z/OS V1R2.0 UNIX System Services
Command Reference, SA22-7802. If you want a list of the available signals in an
environment, you may issue a LIST 1 command, as in Figure 2-16.

Figure 2-16 kill -l: requesting a list of available process signals

+++ Statistics Dump +++ (969401611) Tue Sep 19 22:13:31 2000
7915.time since boot (secs)
7915.time since reset (secs)
0.Unknown query types
2.PTR queries
++ Name Server Statistics ++
(Legend)
.RQ.RR.RIQ.RNXD.RFwdQ
.RFwdR.RDupQ.RDupR.RFail.RFErr
.RErr.RTCP.RAXFR.RLame.ROpts
.SSysQ.SAns.SFwdQ.SFwdR.SDupQ
.SFail.SFErr.SErr.RNotNsQ.SNaAns
.SNXD
(Global)
.2 3 0 0 2 0 0 0 3 0 0 0 0 0 0 1 0 2 0 0 2 0 0 2 0 0
›9.24.104.125®
.0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0
›172.16.250.3®
.2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0
-- Name Server Statistics --
--- Statistics Dump --- (969401611) Tue Sep 19 22:13:31 2000

IBM
Licensed Material - Property of IBM
5647-A01 (C) Copyright IBM Corp. 1993, 2000
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

 -
 - Improve performance by preventing the propagation -
 - of TSO/E or ISPF STEPLIBs -
 -
@ RA03:/u/pabst>kill -l 1
 NULL HUP INT ABRT ILL POLL URG STOP FPE KILL BUS SEGV SYS PIPE ALRM TERM USR1 U
SR2 ABND CONT CHLD TTIN TTOU IO QUIT TSTP TRAP IOERR WINCH XCPU XFSZ VTALRM PROF
 DCE DUMP
Chapter 2. DNS/WLM (connection optimization) 37

Table 2-2 lists all the valid signals for the domain name server.

Table 2-2 Valid signals for the domain name server

A sample started procedure in TCPIP.SEZAINST named NSSIG allows you to issue signals
to the name server from the MVS console:

S NSSIG,SIG=SIGINT

By sending the signal SIGINT, you can dump the memory table into the HFS file
/tmp/named_dump.db. This is just another way to produce a dump, as was mentioned in
2.5.6, “Dumping the DNS server cache” on page 35.

The documentation for issuing signals with the name server is in z/OS V1R2.0 CS: IP
Configuration Guide, SC31-8775. In Figure 2-17, you see the a copy of the NSSIG JCL we
used in ITSO Raleigh.

Figure 2-17 Running NSSIG procedure from ITSO Raleigh

2.5.9 Tracing the name server
As you can see in the output in Figure 2-18 on page 39, there are other ways to send the
same signals. In this case we use the ISPF command ISHELL. We can select the Work with
Processes option by doing the following:

1. Select TOOLS

2. Select Work with Processes

3. Find process ID or use command EZANSNMD

4. Select process with S=SIGNAL

//NSSIG PROC SIG=''
//NSSIG EXEC PGM=BPXBATCH,REGION=30M,TIME=NOLIMIT,
// PARM='SH kill -s &SIG $(cat /etc/named.pid)'
//* STDIN and STDOUT are both defaulted to /dev/null
//STDERR DD PATH='/etc/log',PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)

Signal Name Description

SIGHUP Reloads the boot file from the disk

SIGINT Dumps the name server's database and hints file into the
/tmp/named_dump.db file

SIGABRT Dumps the current statistics of the name server in the /tmp/named.stats file

SIGUSR1 Starts debug tracing for the name server, or increment the debug level by one
if the tracing has been activated already

SIGUSR2 Stops debug tracing

SIGWINCH Toggles query logging on and off
38 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 2-18 Another way to issue signals to the DNS server

Signal #16 (USR 1) 1 begins a trace of the DNS server process. Signal #17 (USR2) 2
terminates the trace. The data is written to /tmp/named.run. See Figure 2-19 for a partial
trace output. A more detailed trace is included in 2.6.7, “DNS trace of WLM data for the
primary DNS in the sysplex” on page 50.

Figure 2-19 /tmp/named.run partial trace output

 Work with Processes
+--
 Enter Signal Number Command is not active

 Process ID : 67109097
 Command : EZANSNMD
 Signal number __

 Some of the common signal numbers are:
 1 SIGHUP hangup 2 17 SIGUSR2 application defined
 3 SIGABRT abnormal termination 19 SIGCONT continue
 7 SIGSTOP stop 20 SIGCHLD child
 9 SIGKILL kill 21 SIGTTIN ctty background read
 13 SIGPIPE write with no readers 22 SIGTTOU ctty background write
 14 SIGALRM alarm 23 SIGIO I/O completion
 15 SIGTERM termination 24 SIGQUIT quit
 1 16 SIGUSR1 application defined 25 SIGTSTP interactive stop

 F1=Help F3=Exit F6=Keyshelp F12=Cancel
+--

Debug turned ON, Level 1
Debug turned ON, Level 2
Debug turned ON, Level 3
Debug turned ON, Level 4
Debug turned ON, Level 5
Debug turned ON, Level 6
Debug turned ON, Level 7
Debug turned ON, Level 8
Debug turned ON, Level 9
datagram from [172.16.250.3].1027, fd 5, len 43; now Tue Sep 19 15:37:15 2000
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5657
;; flags: rd; Ques: 1, Ans: 0, Auth: 0, Addit: 0
;; QUESTIONS:
;; 102.106.24.9.in-addr.arpa, type = PTR, class = IN
;; ...truncated
ns_req(from=[172.16.250.3].1027)
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5657
;; flags: rd; Ques: 1, Ans: 0, Auth: 0, Addit: 0
;; QUESTIONS:
;; 102.106.24.9.in-addr.arpa, type = PTR, class = IN
Chapter 2. DNS/WLM (connection optimization) 39

The debug level was raised to 9 in the trace because we issued the USR1 signal (#16)
multiple times. We really wanted a debug level of 11, the recommended (and highest
allowable) setting. Attempting to reach debug level 11 via the ISHELL TOOLS menu can be
tedious, as you see. We recommend instead bypassing the ISHELL process and setting the
debug trace level to 11 by one of two methods:

� Use -d 11 on the named start command or in your JCL.

� Issue the kill -USR1 ($cat /etc/named.pid) multiple times from the shell with the help of
the retrieve key.

Resolver tracing is available with the name server and is enabled by default in the TCPDATA
file. The output goes to the MVS console or to the syslogd output if you have started the
syslog daemon.

2.5.10 Reloading DNS data
To reload data that you may have changed during a particular lifetime of the name server, you
can send a signal to the UNIX System Services shell asking the DNS to reread its
configuration files. Issue kill -HUP ($cat /etc/named.pid) or use signal #1 from the
ISHELL after you select Tools -> Work with Processes.

This command works only at a primary name server. A secondary server periodically returns
to query the primary for new data, theoretically eliminating the need to reload a secondary
with a signal. (The refresh interval is one of the settings in the SOA record. See 2.6.1,
“Primary DNS configuration on MVS03” on page 42 for further details on SOA records and
their configuration.)

The reload process is not designed for dynamic domains, since these are updated via the
nsupdate command.

2.5.11 Stopping the DNS server
You can stop the DNS server with the MVS STOP command P T03DNS1. The advantage of
the STOP command is the graceful termination of the name server and the issuing of
messages in syslogd. Other alternatives are to use the MVS CANCEL command or the
OMVS KILL command. The OMVS KILL command can be issued from OMVS or from the
NSSIG procedure.

2.6 Implementation scenario
When implementing DNS/WLM, you can leave in place your primary name server, which may
reside on a platform other than z/OS, and still take advantage of the DNS/WLM. The only
changes to your standard DNS definitions are minimal additions to allow for the specification
of the zSeries DNS as the authoritative name server for some subdomain. That is, the sysplex
subdomain that is created within your network’s domain will be serviced by the zSeries, but
that does not necessarily force you to use the zSeries DNS as the authoritative server for your
entire network domain.

In our scenario, our existing domain, itso.ral.ibm.com, has been using a name server built on
an AIX platform (RSSERVER, an RS/6000). We leave that name server in place, adding to it
a subdomain definition for the new sysplex subdomain. Within this new sysplex subdomain,
we will place our authoritative DNS server that will balance load among the different servers
providing the same service.
40 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 2-20 depicts the servers and groups running in our environment. You may be
wondering why we chose different group names for the TN3270 function. Functionally each
group name is not equivalent to every other group name. TNRAL represents a group name
that allows users to reach the same application on all three MVS images. TN03 is a group
name that allows you only to access the MVS image MVS03. TN28 is a group name that
allows you only to access the MVS image MVS28, and so on for TN39.

Figure 2-20 Telnet and FTP distribution in a sysplex

Figure 2-21 on page 42 shows the environment under which we have implemented our
scenario. We use a sysplex system that consists of three OS/390 images running with IBM
Communications Server for OS/390 V2R10 IP on each stack with OMPROUTE routing
daemon executing the OSPF routing protocol. Though this scenario used OS/390 V2R10, it is
still valid for z/OS V1R2. On system RA03, the primary DNS server for the sysplex domain
ralplex1.itso.ral.ibm.com has been configured. As a secondary DNS server for this
sysplex subdomain, the system RA28 is used. The parent DNS server, which is authoritative
for the parent domain itso.ral.ibm.com, is located on the local LAN.

MVS03

TN03
TNRAL

FTPRAL

DNS WLM

MVS28

TN28
TNRAL

DNS WLM

MVS39

TN39
TNRAL

FTPRAL

DNS WLM

RALPLEX1
Chapter 2. DNS/WLM (connection optimization) 41

Figure 2-21 Environment at ITSO Raleigh

This type of DNS solution may also be desirable if you have implemented a firewall in your
network. You may want only the primary name server (in our case, RSSERVER) to be
accessible by workstations in the network. The workstations would not reference the sysplex
name server in their configuration files but would rather point to the parent name server
RSSERVER. RSSERVER, on the other hand, would be allowed to penetrate the firewall to
reach the sysplex name server.

2.6.1 Primary DNS configuration on MVS03
The boot file initializes the name server environment and points to the individual name server
definition files and to the options that the name server will provide for each zone it supports.
Figure 2-22 on page 43 shows our /etc/named.boot file.

The following definitions can be specified in the BOOT file:

directory Defines the location of the files that are listed within the boot file.

primary Defines the domain name for the zone followed by the file to read for the
name-to-IP/IP-to-name address mapping called the forward file. The mapping
file to map the loopback address also has to be specified.

cache Corresponds to the root level domain, identified by a dot(.), and indicates the
file in which the IP address of the root DNS server can be found. The cache file
is also known as the hint file.

TCPIPA

RA03

Primary
DNS

FTPD

OMPROUTE

 VIPA:
172.16.250.3

TN3270
Server

RA39

OMPROUTE

TCPIPA

TN3270
Server

 VIPA:
172.16.232.39

TCPIPA

RA28

OMPROUTE

TN3270
Server

 VIPA:
172.16.252.28

Secondary
DNS

DNS Subdomain: itso.ral.ibm.com

Parent
DNS

9672

Sysplex Subdomain: ralplex1.itso.ral.ibm.com

FTPD

RSSERVER

2216
42 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 2-22 /etc/named.boot file for DNS/WLM

This file looks similar to many other boot files, but there are two significant differences:

� 1 shows that our name server is primary for the sysplex subdomain called
ralpex1.itso.ral.ibm.com

� 2 the cluster keyword indicates that this name server will communicate with the Workload
Manager to achieve connection optimization. The keyword is used only once in the boot
file for a DNS/WLM configuration.

Figure 2-23 shows you the forward file that we have pointed to in our boot file. Notice in 1 how
MVS03 is the authority for the sysplex domain called ralplex1.itso.ral.ibm.com. If you
have VIPAs 2 configured on your TCP/IP stacks, only VIPAs should be specified in the
forward file, so that only VIPAs are returned to the DNS queries from clients. We have defined
only VIPA addresses, as was shown in Figure 2-21 on page 42.

Figure 2-23 DNS/WLM forward file

The reverse file, which is also referred to as an in-addr.arpa file, is referenced in the
named.boot file as the primary DNS information for the in-addr.arpa domain (for example,
16.172.in-addr.arpa domain as shown in Figure 2-24 on page 44). Note the 1 inverse syntax
used for referencing the in-addr.arpa file. The @ sign 2 on the start of authority (SOA) record
is a special character that indicates the SOA is for the zone named in the named.boot file. It is
used as a shorthand method, but it is equally as valid to specify the ORIGIN statement in the
configuration. See Figure 2-24 on page 44 for details.

;
; /etc/named.boot for TCPIPA on RA03
;
; TYPE DOMAIN HOST FILE
;
directory /etc/dnsdata
;
primary ralplex1.itso.ral.ibm.com 1 ralplex1.for cluster 2
primary 104.24.9.in-addr.arpa ralplex1.rev9
primary 16.172.in-addr.arpa ralplex1.rev
primary 0.0.127.in-addr.arpa mvs03a.lbk
cache . ralplex1.ca

; /etc/dnsdata/ralplex1.for for TCPIPA on RA03
;
$ORIGIN ralplex1.itso.ral.ibm.com. 1
@ IN SOA mvs03a.ralplex1.itso.ral.ibm.com. garthm@mvs03a (
 1999040102 ; Serial
 7200 ; Refresh time after 2 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 3600) ; Minimum TTL of 1 hour
 IN NS mvs03a
 IN NS mvs28a
mvs03a IN A 172.16.250.3 2
mvs03c IN A 172.16.251.5 2
mvs28a IN A 172.16.252.28 2
mvs39a IN A 172.16.232.39 2
Chapter 2. DNS/WLM (connection optimization) 43

Figure 2-24 DNS/WLM reverse file

The loopback file is also referenced in the named.boot file as the primary name server
information for the domain 0.0.127.in-addr.arpa. Please refer to Figure 2-25.

Figure 2-25 DNS/WLM loopback file

2.6.2 Secondary DNS configuration MVS28
A secondary name server could be primary for some zones and secondary for others. Its boot
file indicates for which zones it is primary and for which it is secondary. The cluster 1 keyword
appears in the secondary name server’s boot file, as it did in the primary name server. Again
we identify the sysplex domain in the domain record. Figure 2-26 shows the boot file for the
secondary name server.

Figure 2-26 /etc/named.boot file for MVS28 (secondary DNS server)

@ 2 IN SOA mvs03a.ralplex1.itso.ral.ibm.com. garthm@mvs03a (
 1999040101 ; Serial
 7200 ; Refresh time after 2 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 3600) ; Minimum TTL of 1 hour
 IN NS mvs03a.ralplex1.itso.ral.ibm.com.
 IN NS mvs28a.ralplex1.itso.ral.ibm.com.
3.250 1 IN PTR mvs03a.ralplex1.itso.ral.ibm.com.
3.251 1 IN PTR mvs03c.ralplex1.itso.ral.ibm.com.
28.252 1 IN PTR mvs28a.ralplex1.itso.ral.ibm.com.
39.232 1 IN PTR mvs39a.ralplex1.itso.ral.ibm.com.

;
; /etc/dnsdata/mvs03a.lbk for TCPIPA on RA03
;
@ IN SOA mvs03a.ralplex1.itso.ral.ibm.com. garthm@mvs03a (
 1999040101 ; Serial
 7200 ; Refresh time after 2 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 3600) ; Minimum TTL of 1 hour
 IN NS mvs03a.ralplex1.itso.ral.ibm.com.
1 IN PTR loopback.
127 IN PTR ralplex1.itso.ral.ibm.com.

;
; /etc/named.boot for TCPIPA on RA28
;
; TYPE DOMAIN FILE OR HOST
directory /etc/dnsdata
;
secondary ralplex1.itso.ral.ibm.com 172.16.250.3 fback cluster 1
secondary 104.24.9.in-addr.arpa 172.16.250.3 rback9
secondary 16.172.in-addr.arpa 172.16.250.3 rback
primary 0.0.127.in-addr.arpa mvs28a.lbk
cache . mvs28a.ca
44 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Using the zone transfer process, the secondary server retrieves the files for specified zones
from the primary name server that it points to. The secondary stores this information in its
own files if the retrieved serial number is higher than the current serial number stored in the
secondary. The secondary obtains the files from the primary name server based upon the
refresh interval coded on the SOA record or the resource record (RR) itself.

Figure 2-27 shows you the loopback file for the secondary DNS server that has to be
configured.

Figure 2-27 DNS/WLM loopback file of secondary DNS server

2.6.3 Parent DNS configuration
In this sample configuration, the parent name server is authoritative for the domain
itso.ral.ibm.com. Additional configurations for the parent name server would be required if
you want to use the resources in a sysplex without using fully qualified domain names
(FQDN). 1 NS records identify the name servers for the sysplex subdomain, and two A 2
records identify the fully qualified domain names and addresses of the DNS servers. CNAME
records identify the fully qualified names of resources that can be found by registering their
short names, as in ping tnral. CNAME 3 allows the tnral resource name to work as if it
were in the itso.ral.ibm.com domain. Clients that submit a query for tnral use their resolver
code to fully qualify the name so that the name server sees it as tnral.itso.ral.ibm.com.
The CNAME record for the tnral entry at the parent name server resolves
tnral.itso.ral.ibm.com into an alias called tnral.ralplex1.itso.ral.ibm.com. The parent
DNS server knows that the authoritative name server for ralplex1.itso.ral.ibm.com is
either mvs03.ralplex1.itso.ral.ibm.com or mvs28.ralplex1.itso.ral.ibm.com. The parent
DNS server sends the query to the sysplex name server, which then sends back a list of
usable addresses.

Figure 2-28 Additions to parent domain server to reflect sysplex subdomain resources

;
; /etc/dnsdata/mvs28a.lbk for T28ATCP
;
@ IN SOA mvs28a.ralplex1.itso.ral.ibm.com. garthm@mvs03a (
 1999040101 ; Serial
 7200 ; Refresh time after 2 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 3600) ; Minimum TTL of 1 hour
 IN NS mvs28a.ralplex1.itso.ral.ibm.com.
1 IN PTR loopback.
127 IN PTR ralplex1.itso.ral.ibm.com.

$ORIGIN ral.ibm.com.
itso IN SOA rsserver.itso.ral.ibm.com. karina@itso.ral.ibm.com. (
1 10800 3600 60 800 86 00)
$ORIGIN itso.ral.ibm.com.
ralplex1 IN NS mvs03.ralplex1.itso.ral.ibm.com. 1
ralplex1 IN NS mvs28.ralplex1.itso.ral.ibm.com. 1
mvs03.ralplex1.itso.ral.ibm.com. IN A 172.16.250.3 2
mvs28.ralplex1.itso.ral.ibm.com. IN A 172.16.252.28 2
tnral IN CNAME tnral.ralplex1.itso.ral.ibm.com. 3
tn03 IN CNAME mvs03a.tnral.ralplex1.itso.ral.ibm.com. 3
tn28 IN CNAME mvs28a.tnral.ralplex1.itso.ral.ibm.com. 3
:
Chapter 2. DNS/WLM (connection optimization) 45

You would have to add the NS records for the sysplex name server in the parent name
server’s reverse file configuration, because some applications, such as nslookup, rely on
address-to-name resolution and will fail if your definitions are not comprehensive. Additional
applications that also rely on address-to-name resolution are NFS and the DDNS client.

2.6.4 BIND DNS resource records
The entries configured in DNS data files are defined using a special format defined by RFC.
Each resource record (RR) has the format shown below:

name ttl address_class record_type record_data

The record_type and record_data fields are the only required fields. The name, ttl, and
address_class have defaults that may be set if they are not specified. The record_type
indicates the type of resource record that defines the record data format. Valid resource
record types include, but are not limited to, those shown in Table 2-3.

Table 2-3 DNS resource record types

Resource record details
The SOA record specifies the fully qualified name of the host that has the domain name
server authority for the zone. Note the period at the end of the resource name, which means
that this name is fully qualified and should be appended with the ORIGIN. The SOA record
includes a mailbox address of the user who is responsible for the zone, for example
karina@itso.ral.ibm.com.

The SOA record is continued into the following master data set records. A left parenthesis
signals that everything between here and a succeeding right parenthesis should be
considered as belonging to the same resource record, despite record boundaries of the
master data set.

You use the SERIAL field to keep track of your changes to the master data set. A good
practice is to enter the date when you last made changes to the data set. A suggestion is to
use YYMMDDx, where x is the number of updates per day. We were making changes several
times a day, so we used a simple sequence number instead of the date. You must update the
serial value every time you make changes to the zone. The secondary name servers
determine when to do a zone transfer based on an increment in this value.

The REFRESH field is expressed in seconds. A secondary name server that has transferred
this zone from the primary name server should not wait more than this number of seconds
before it requests a refresh (a full zone transfer) from the primary name server. Before
requesting a zone transfer, the secondary name server checks if the value of the serial field
for the zone in question has changed or not. If not, a zone transfer is not necessary.

The RETRY field is expressed in seconds. If a secondary name server fails to refresh its copy
of resource records, it should wait this number of seconds before it retries the refresh from
the primary name server.

Record Type Description

SOA Start of ZONE authority for the stated domain

A Name to IP address translation

PTR IP address to name translation

NS Name of the authoritative DNS server for the stated domain

CNAME Alias name
46 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The EXPIRE field is expressed in seconds. This is the maximum time a secondary name
server should consider its copy of resource data valid. If the secondary name server does not
succeed with a zone transfer from the primary name server within this amount of time, it
should consider its copy of the resource data obsolete, and stop answering queries for this
zone.

The MINIMUM TTL field is expressed in seconds. Every time a response from this name
server is sent out, it contains a time-to-live (TTL) field, which signifies how long the receiver
should be able to consider the response valid. In BIND name servers, this MINIMUM TTL field
really represents the DEFAULT if no TTL value has been specified on an individual resource.
With the BIND name server, the TTL value on a resource takes precedence over the
DEFAULT coded on the SOA record.

2.6.5 Observing the effects of WLM and DNS
Where are all these definitions leading? We are using the configuration as documented
earlier in this chapter. The configuration diagram is shown in Figure 2-21 on page 42. As you
can see, we used VIPAs together with OMPROUTE.

The theory of sysplex operation indicates that we should be able to balance the load between
applications registered with the same group name on more than one host in the sysplex. We
have registered an application called TNRAL to each WLM in the ralplex1 sysplex. TNRAL
represents a TN3270E server application. All the stacks are configured for TN3270E, so each
stack has registered TNRAL with its respective Workload Manager using the VIPA address. We
have also registered an application called ftpral to WLM running on MVS03 and MVS39.

Earlier in this chapter, we described a configuration with two name servers. The primary
name server for the sysplex runs on MVS03 and a secondary sysplex name server runs on
MVS28. In many organizations the TCP/IP network was established long before the sysplex.
As a result, workstations have been configured to use an existing name server for name
resolution. In most cases this happened before TCP/IP was installed on the mainframe. In our
implementation, this "existing" name server resides on a third system.

We execute our test using a small REXX EXEC that sends as many pings as needed to a
specified application and keeps a tally of the resource for each address returned by the name
server, and writes it to a file. The source is provided in Appendix B, “REXX EXECs to gather
connection statistics” on page 261 for Windows 95/98 and Windows NT workstations. By the
way, REXX is not provided as part of Windows 95/98/NT, so a separate REXX interpreter is
required.

The REXX EXEC is executed by the following line commands:

REXX SYSPLEXW WLM_registered_name number_of_pings extra_delay

Where the parameters are:

� WLM_registered_name is the name used to define the application group to WLM (for
example tnral)

� number_of_pings is how many pings you want to send (default 10)

� extra_delay is an optional value that inserts a delay in seconds in the ping loop (default 0)

Note: For dynamic WLM resources, the TTL value defaults to 0 and can be specified with
the -l start option.
Chapter 2. DNS/WLM (connection optimization) 47

This test of the balancing effect of DNS/WLM was run when the systems were lightly loaded.
In this environment we expected an even balance of system selection. The workstation was
connected directly to the sysplex. The following command was issued:

REXX SYSPLEXW TNRAL 20

The results of running the REXX EXEC are shown in Figure 2-29.

Figure 2-29 Distribution test of telnet in the sysplex DNS/WLM environment

Examining the output of the EXEC, we can see the name tnral has been fully qualified as
tnral.ralplex1.itso.ral.ibm.com. This is the name reported by the ping application. The
address assigned is in the next column and we see that the address provided by DNS started
with 172.16.250.3, 172.16.252.28 and then 172.16.232.39 and then it repeats continuously.
The time entry is the elapsed time between ping iterations, not the response time reported by
ping. The summary of ping responses is used to check whether any pings were lost. Hits by
canonical addresses summarize how DNS distributed the workload requests from this
workstation. If there were other requests for the same application, then the results may well
look different. Again, time shows the average elapsed time between pings, including the DNS
lookup time, the ping response time, and any delays introduced.

Application or Host Name IP Address Time

tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.590000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.701000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.590000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.581000

Summary of Ping responses

Good Responses : 20
Lost Responses : 0
Total Responses: 20

Hits by Canonical Addresses

Number IP Address Application or Host Name Time
7 172.16.250.3 tnral 0.58514285
7 172.16.252.28 tnral 0.58657142
6 172.16.232.39 tnral 0.60433333
48 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The results from running the EXEC showed an evenly balanced workload between
applications running on all three MVS systems.

2.6.6 DNS DUMP of primary DNS server in the sysplex
To confirm the number of instances of an application in a WLM group, we can dump the
information in the DNS to see what has been registered to WLM, since WLM data is
periodically retrieved by DNS. From the WLM information, DNS determines and then stores
the current state of application availability. The dump of DNS does not show the relative
weighting of the host or application instances, but only their registration. There are two ways
to dump the DNS server. Please refer to 2.5.6, “Dumping the DNS server cache” on page 35
for a detailed description. We divided the dump in different parts to make it easier to go
through the dump and explain it. You will find the whole dump in Appendix A, “Dump of
T28ATCP name server - single-path network” on page 259.

Figure 2-30 Zone table of the primary DNS server in the sysplex

The first thing we see in the dump is the zone table (1) from the primary DNS on MVS03. It
defines the domain name, ralplex1.itso.ral.ibm.com, the time and date of the dump, and
the zone information. The zone information has three sections:

� The sysplex domain
� The in-addr.arpa
� The loopback

These three sections refer to the three records defined in named.boot on MVS03. Figure 2-22
on page 43 shows the corresponding boot records.

In Figure 2-31 on page 50, we can see the information obtained from the primary DNS
concerning ralplex1. This information comes from the primary DNS forward cluster file
pointed to in the named.boot. The forward cluster file is shown in Figure 2-23 on page 43.

The $ORIGIN and SOA records identify the source of the information,
mvs03a.ralplex1.itso.ral.ibm.com 4. The IN NS record 5 defines the primary DNS while the
IN A records 6 define the IP home addresses available to the sysplex. Each home address
also identifies a separate IP stack.

; Dumped at Tue Sep 19 14:36:12 2000
;; ++zone table++ 1
; ralplex1.itso.ral.ibm.com (type 1, class 1, source ralplex1.for)
; time=969374208, lastupdate=937949821, serial=1999040102,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937949821, xaddr=[0.0.0.0], state=20041, pid=0
; 104.24.9.in-addr.arpa (type 1, class 1, source ralplex1.rev9)
; time=969378400, lastupdate=937951070, serial=1999040101,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937951070, xaddr=[0.0.0.0], state=0041, pid=0
; 16.172.in-addr.arpa (type 1, class 1, source ralplex1.rev)
; time=969379773, lastupdate=937949840, serial=1999040101,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937949840, xaddr=[0.0.0.0], state=0041, pid=0
; 0.0.127.in-addr.arpa (type 1, class 1, source mvs03a.lbk)
; time=969377837, lastupdate=937950997, serial=1999040101,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937950997, xaddr=[0.0.0.0], state=0041, pid=0
;; --zone table--
Chapter 2. DNS/WLM (connection optimization) 49

Figure 2-31 More data from the primary DNS server

Figure 2-32 shows the domain statements for ralplex1.itso.ral.ibm.com. There we can see
entries for the WLM-managed applications: TNRAL, TN03,TN28,TN39, and FTPRAL. TNRAL 7 is
available on all three stacks 03,28 and 39, where FTPRAL 8 is only available on stacks 03 and
39. TN03,TN28, and TN39 9 are only available on their corresponding stacks as you can see in
the dump. Even though we are looking at the DNS entries for the sysplex domain, not all of
the DNS entries necessarily reflect applications that are sysplex capable. Host entries come
either as part of a zone transfer from the primary name server or dynamically from WLM. Only
those defined to WLM will have multiple entries.

The information in this part of the dump will be updated dynamically to reflect the application
availability. Should one instance (for example FTPRAL) of a WLM-managed application be
brought down, then this DNS record would be updated accordingly. Similarly, should an
additional instance of the application be started, we would then see the new application
instance in this record. For information on how applications can register to WLM, see 2.4,
“Application and stack registration to WLM” on page 26.

Figure 2-32 Servers defined in the sysplex domain

2.6.7 DNS trace of WLM data for the primary DNS in the sysplex
The DNS dump showed us which applications have multiple instances. How can we
determine the balance weights that DNS will use when building the application selection
table, based on CPU utilization of each system? There is no way to directly generate queries
to WLM, so the next best approach is to trace the activity in DNS itself. When DNS is started,
the parameter -d 11 can be passed from the EXEC PARM keyword.

The DNS trace is much longer than the dump we showed earlier, so we will split the trace into
different parts for illustrative purposes.

$ORIGIN itso.ral.ibm.com.
ralplex1 4 IN SOA mvs03a.ralplex1.itso.ral.ibm.com. (
 1999040102 7200 3600 604800 3600) ;Cl=5
 5 IN NS mvs03a.ralplex1.itso.ral.ibm.com.
 6 IN A 172.16.250.3 ;Cl=5
 6 IN A 172.16.252.28 ;Cl=5
 6 IN A 172.16.232.39 ;Cl=5

$ORIGIN ralplex1.itso.ral.ibm.com.
FTPRAL 8 IN A 172.16.232.39 ;Cl=5
 8 IN A 172.16.250.3 ;Cl=5
TN28 9 IN A 172.16.252.28 ;Cl=5
mvs03a IN A 172.16.250.3 ;Cl=5
TN03 9 IN A 172.16.250.3 ;Cl=5
mvs03c IN A 172.16.251.5 ;Cl=5
mvs28a IN A 172.16.252.28 ;Cl=5
TNTSO IN A 172.16.250.3 ;Cl=5
TNRAL 7 IN A 172.16.250.3 ;Cl=5
 7 IN A 172.16.252.28 ;Cl=5
 7 IN A 172.16.232.39 ;Cl=5
ralplex1 IN CNAME ralplex1.itso.ral.ibm.com.
TN39 9 IN A 172.16.232.39 ;Cl=5
mvs39a IN A 172.16.232.39 ;Cl=5
50 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The first area of interest comprises the applications managed by WLM. Note that there are no
static records for them. We have not defined them anywhere in DNS. We have told DNS to
query WLM to see what additional applications are available.

We can see the WLM query 1 for ralplex1.itso.ral.ibm.com. We have listed here only three
entries returned by WLM: TCPIP 2, TNRAL 3 and FTPRAL 4. TCP/IP is automatically generated
by each stack when it starts up, but DNS will not respond to this application name, and it will
not be shown in a dump of DNS. Please review Figure 2-33 for this trace output. Note that
some of the traces included in this section are from an earlier release and have not been
generated again due to the small amount of change in the output.

Figure 2-33 WLM data from DNS trace part 1 (querying group names)

In Figure 2-34 on page 52, we can see the entries for each of the stacks and the relative
weights associated with each system. The entry for the 6 processing group shows the
minimum weight available for a server to be 21. Once the processing group parameters have
been established, each of the servers is assigned a weight. The assigned weights 7 of the
servers are 21 for all three servers. As you can see, the hosts are fairly evenly balanced.

wlm_load ralplex1.itso.ral.ibm.com 1
 group list retcode = -1 rsncode = 1034
 group list retcode = 0 rsncode = 0
 group list entry_count = 7
 Group list from WLM follows:
 Group number 1 = TCPIP
 Group number 2 = TN03
 Group number 3 = TNRAL
 Group number 4 = TNTSO
 Group number 5 = FTPRAL
 Group number 6 = TN28
 Group number 7 = TN39
 End of Group list
.......
querying group = TCPIP 2
server list retcode = -1 rsncode = 1034
server list retcode = 0 rsncode = 0
querying group = TNRAL 3
server list retcode = -1 rsncode = 1034
server list retcode = 0 rsncode = 0
querying group = FTPRAL 4
server list retcode = -1 rsncode = 1034
server list retcode = 0 rsncode = 0
Chapter 2. DNS/WLM (connection optimization) 51

Figure 2-34 WLM data from DNS trace part2 (assigned WLM weight to OS/390 images)

In Figure 2-35 on page 53 we can see that the minimum weight for the TNRAL application is 21
8 and that there are three instances of the application. All three applications have the same
minimum weight of 21 9 on each of the systems, as you can see in the trace. This would
provide a fairly evenly balanced load.

processing group = ralplex1.itso.ral.ibm.com count = 3
minimum weight = 21 6
processing server = TCPIPA weight = 21 host = MVS03A 7
adding MVS03A to list
db_update(ralplex1.itso.ral.ibm.com, 0x16154630, 0x16154630, 01, 0x16153970)
match(0x161539e0, 1, 6) 1, 6
match(0x161539e0, 1, 1) 1, 6
match(0x16153bf0, 1, 1) 1, 2
db_update: adding 16154630
processing server = TCPIPA weight = 21 host = MVS28A 7
adding MVS28A to list
db_update(ralplex1.itso.ral.ibm.com, 0x16154668, 0x16154668, 01, 0x16153970)
match(0x161539e0, 1, 6) 1, 6
match(0x161539e0, 1, 1) 1, 6
match(0x16153bf0, 1, 1) 1, 2
match(0x16154630, 1, 1) 1, 1
db_update: flags = 0x1, sizes = 4, 4 (cmp -1)
credibility for ralplex1.itso.ral.ibm.com is 4(5) from [0.0.0.0].0, is 4(5) in
db_update: adding 16154668
 processing server = TCPIPA weight = 21 host = MVS39A 7
 adding MVS39A to list
52 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 2-35 Application weights

2.6.8 Testing workload distribution with different CPU utilizations
We now looked at DNS/WLM distribution to target servers that had varying CPU utilizations.
During this test, Telnet and FTP servers were running on the systems MVS03 and MVS28
(we exclude MVS39 from this test). The application instances have registered to WLM with
the group names TNRAL and FTPRAL.

processing group = TNRAL.ralplex1.itso.ral.ibm.com count = 3
minimum weight = 21 8
processing server = MVS03A weight = 21 host = MVS03A 9
db_update(TNRAL.ralplex1.itso.ral.ibm.com, 0x161547f8, 0x161547f8, 01, 0x16153
match(0x161539e0, 1, 6) 1, 6
db_update: adding 161547f8
db_update(MVS03A.TNRAL.ralplex1.itso.ral.ibm.com, 0x16154868, 0x16154868, 01,
savehash GROWING to 2
match(0x161547f8, 1, 6) 1, 1
match(0x161547f8, 1, 2) 1, 1
match(0x161539e0, 1, 6) 1, 6
db_update: adding 16154868
processing server = MVS28A weight = 21 host = MVS28A 9
db_update(TNRAL.ralplex1.itso.ral.ibm.com, 0x161548f0, 0x161548f0, 01, 0x16153
match(0x161547f8, 1, 6) 1, 1
match(0x161547f8, 1, 2) 1, 1
match(0x161539e0, 1, 6) 1, 6
match(0x161547f8, 1, 1) 1, 1
db_update: flags = 0x1, sizes = 4, 4 (cmp -1)
credibility for TNRAL.ralplex1.itso.ral.ibm.com is 4(5) from [0.0.0.0].0, is 4
db_update: adding 161548f0
db_update(MVS28A.TNRAL.ralplex1.itso.ral.ibm.com, 0x16154928, 0x16154928, 01,
match(0x161547f8, 1, 6) 1, 1
match(0x161548f0, 1, 6) 1, 1
match(0x161547f8, 1, 2) 1, 1
match(0x161548f0, 1, 2) 1, 1
match(0x161539e0, 1, 6) 1, 6
db_update: adding 16154928
processing server = MVS39A weight = 21 host = MVS39A 9
db_update(TNRAL.ralplex1.itso.ral.ibm.com, 0x16154998, 0x16154998, 01, 0x16153
match(0x161547f8, 1, 6) 1, 1
match(0x161548f0, 1, 6) 1, 1
match(0x161547f8, 1, 2) 1, 1
match(0x161548f0, 1, 2) 1, 1
match(0x161539e0, 1, 6) 1, 6
match(0x161547f8, 1, 1) 1, 1
db_update: flags = 0x1, sizes = 4, 4 (cmp 1)
credibility for TNRAL.ralplex1.itso.ral.ibm.com is 4(5) from [0.0.0.0].0, is 4
match(0x161548f0, 1, 1) 1, 1
db_update: flags = 0x1, sizes = 4, 4 (cmp 1)
credibility for TNRAL.ralplex1.itso.ral.ibm.com is 4(5) from [0.0.0.0].0, is 4
db_update: adding 16154998
db_update(MVS39A.TNRAL.ralplex1.itso.ral.ibm.com, 0x161549d0, 0x161549d0, 01,
match(0x161547f8, 1, 6) 1, 1
match(0x161548f0, 1, 6) 1, 1
match(0x16154998, 1, 6) 1, 1
match(0x161547f8, 1, 2) 1, 1
match(0x161548f0, 1, 2) 1, 1
match(0x16154998, 1, 2) 1, 1
match(0x161539e0, 1, 6) 1, 6
db_update: adding 161549d0
Chapter 2. DNS/WLM (connection optimization) 53

Since all of our previous examples showed lightly loaded systems and even balancing, we
now show an unbalanced environment where one of the hosts has a noticeably heavier
workload than the other. When this test was running, we introduced a job on the MVS28
system to increase CPU utilization to over 50% while the MVS03 system was running around
20% CPU utilization. The load observations are very rough in that they were taken from SDSF
samples and made no allowance for other resource utilization such as paging, I/O rate, or
memory, but it gives you a general idea of the overall load on each of the systems.

The output from the SYSPLEXW EXEC for this run is shown in Figure 2-36. The run was for
50 samples at 0 delay, but only the first 20 entries are shown.

Figure 2-36 Workload distribution of DSN/WLM with different CPU utilizations

As can be seen from the results, the load was balanced 2 to 1 in favor of the MVS03 system.
How did DNS determine the appropriate load balance? To see this, it is again necessary to
look at the DNS trace. Figure 2-37 on page 55 shows us only a part of the trace where the
WLM weight is shown for the processing group TNRAL.

Application or Host Name IP Address Time

tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.156000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.156000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
...........

Summary of Ping responses

Good Responses : 50
Lost Responses : 0
Total Responses: 50

Hits by Canonical Addresses

Occurrences IP Address Application or Host Name Time
34 172.16.250.3 tnral 0.14617647
16 172.16.252.28 tnral 0.1463125
54 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 2-37 Application weights for test with different CPU utilizations

At 1 we see the minimum weight 21 that can be assigned to TNRAL. WLM assigns a weight of
42 for the processing server MVS03A, while MVS28A was assigned a weight of 21. As you
may have noticed, the weight is identical for TNRAL and for FTPRAL, because they are running
on the same MVS images.

2.6.9 More on resource record TTL
We were running the SYSPLEXW EXEC from two different clients; one of them was
configured to use the external name server and the other one to use the sysplex name server.

We started our external name server with a time-to-live of three seconds to illustrate the
difference in operation between our sysplex DNS (which always returns TLL=0 to the client)
and a typical name server (which is unlikely to return TTL=0 even if the sysplex DNS is
configured to do so).

First, we pointed our client to the external name server. We again used the SYSPLEXW
REXX EXEC. We issued the following command:

SYSPLEXW TNRAL 300

Figure 2-38 on page 56 shows the resulting output.

wlm_load ralplex1.buddha.ral.ibm.com
 querying group = FTPRAL
 querying group = TNRAL
 querying group = TCPIP
 processing group = FTPRAL.ralplex1.buddha.ral.ibm.com count = 2
 minimum weight = 21
 processing server = MVS03A weight = 42 host = MVS03A
savehash GROWING to 2
 processing server = MVS28A weight = 21 host = MVS28A
db_update(FTPRAL.ralplex1.buddha.ral.ibm.com, 0x14dce9f8, 0x14dce9f8, 01, 0x14dcd8b8)
credibility for FTPRAL.ralplex1.buddha.ral.ibm.com is 4(5) from 0.0.0.0 .0, is 4(5) in
cache
db_update(MVS28A.FTPRAL.ralplex1.buddha.ral.ibm.com, 0x14dcea30, 0x14dcea30, 01,
0x14dcd8b8)
 processing group = TNRAL.ralplex1.buddha.ral.ibm.com count = 2
 minimum weight = 21 1
 processing server = MVS03A weight = 42 host = MVS03A 2
db_update(TNRAL.ralplex1.buddha.ral.ibm.com, 0x14dceaa0, 0x14dceaa0, 01, 0x14dcd8b8)
db_update(MVS03A.TNRAL.ralplex1.buddha.ral.ibm.com, 0x14dceb10, 0x14dceb10, 01,
0x14dcd8b8)
savehash GROWING to 2
 processing server = MVS28A weight = 21 host = MVS28A 3
Chapter 2. DNS/WLM (connection optimization) 55

Figure 2-38 Distributing workload result - external name server

As you can see the client using the external name server received the same name resolution
from the name server for about three seconds. The external name server responded with its
cached entry during the TTL period. After the TTL period the name server returned a new
address and in the long run the returned addresses seemed to be equally balanced among
the three stacks in the sysplex.

Figure 2-39 on page 57 shows the corresponding output on the client using the sysplex name
server. In this case the lines deleted looked like the first three repeated.

Application or Host Name IP Address Time

tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.094000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.125000
: deleted 35 rows to 172.16.252.28
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.125000
: deleted 35 rows to 172.16.232.39
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.125000
: deleted 35 rows to 172.16.250.3
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.172000
: deleted * rows

Summary of Ping responses

Good Responses : 330
Lost Responses : 0
Total Responses: 330

Hits by Canonical Addresses

Occurrences IP Address Application or Host Name Time
109 172.16.250.3 tnral 0.09606422
113 172.16.252.28 tnral 0.11131858
108 172.16.232.39 tnral 0.09563888
56 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 2-39 Distributing workload result - sysplex name server

The client configured to use the sysplex name server received a different resolution on each
query. The sysplex name server did not cache a single answer for three seconds, as did the
external name server; it returned exactly what WLM indicated it should.

2.6.10 Test application
Next, we ran a job that registered our application to DNS with the name TESTRAL, then started
the socket server application. The application was set to listen on port 1234. We ran this job
on all of our sysplex hosts. Please refer to 2.4, “Application and stack registration to WLM” on
page 26 for how to register your own application.

On the client side we used the client test program described in “EXEC to connect to server
using TCP” on page 266 to perform our tests. The EXEC will connect to a server on a given
host name/port a specified number of times. On each connection it will read 4 bytes from the
server.

We executed sysplex2 testral 1234 -c 350 -b 0.1 from both of our clients, one at a time.
Figure 2-40 on page 58 shows the results for the client with the external name server, and
Figure 2-41 on page 58 shows those for the other client.

Application or Host Name IP Address Time

tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.070000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.071000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.060000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.060000
: deleted 296 rows

Summary of Ping responses

Good Responses : 300
Lost Responses : 0
Total Responses: 300

Hits by Canonical Addresses

Occurrences IP Address Application or Host Name Time
101 172.16.232.39 tnral 0.06396039
100 172.16.252.28 tnral 0.0642
99 172.16.250.3 tnral 0.06333333
Chapter 2. DNS/WLM (connection optimization) 57

Figure 2-40 Socket application client result - external name server

Figure 2-41 Socket application client result - sysplex name server

2.6.11 Test application - server failure case
Next, we simulated the failure of one of the socket application servers while the socket
application client was running. Figure 2-42 shows how the DNS/WLM dealt with the failure in
the external name server case. Figure 2-43 on page 60 shows the sysplex name server case.

+----------------------+------------------+----------------+--------+--------+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |
+----------------------+------------------+----------------+--------+--------+
| testral | 172.16.250.3 | 172.16.250.3 | 0.0630 | 0.0160 |
| : deleted 22 rows to 172.16.250.3
| testral | 172.16.252.28 | 172.16.252.28 | 0.0320 | 0.0160 |
| : deleted 27 rows to 172.16.252.28
| testral | 172.16.232.39 | 172.16.232.39 | 0.0310 | 0.0160 |
| : deleted 27 rows to 172.16.232.39
| testral | 172.16.250.3 | 172.16.250.3 | 0.0310 | 0.0160 |
| : deleted 28 rows to 172.16.250.3
 :

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
172.16.250.3	115
172.16.252.28	112
172.16.232.39	123

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
| 172.16.250.3 | 115 |

+----------------------+------------------+----------------+--------+--------+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |
+----------------------+------------------+----------------+--------+--------+
testral	172.16.232.39	172.16.232.39	0.0200	0.0100
testral	172.16.250.3	172.16.250.3	0.0100	0.0100
testral	172.16.252.28	172.16.252.28	0.0100	0.0100
 :

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
172.16.250.3	100
172.16.252.28	100
172.16.232.39	100

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.250.3	100
172.16.252.28	100
172.16.232.39	100
58 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 2-42 Socket application server failure case - external name server

 sysplex2 testral 1234 -c 100 -b 1.5

+----------------------+------------------+----------------+--------+--------+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec
|+----------------------+------------------+----------------+--------+--------+
| testral | 172.16.232.39 | 172.16.232.39 | 0.0630 | 0.0160 |
| : deleted 3 rows to 172.16.232.39
| testral | 172.16.252.28 | 172.16.252.28 | 0.0310 | 0.0160 |
| : deleted 2 rows to 172.16.252.28
| testral | 172.16.250.3 | 172.16.250.3 | 0.0320 | 0.0150 |
| : deleted 2 rows to 172.16.250.3
| testral | 172.16.252.28 | 172.16.252.28 | 0.0310 | 0.0310 |
| : deleted 2 rows to 172.16.252.28
| testral | 172.16.232.39 | 172.16.232.39 | 0.0310 | 0.0160 |
| : deleted 3 rows to 172.16.232.39
Error on connecting socket to '172.16.250.3': ECONNREFUSED
Error on connecting socket to '172.16.250.3': ECONNREFUSED
Error on connecting socket to '172.16.250.3': ECONNREFUSED
| testral | 172.16.232.39 | 172.16.232.39 | 0.0320 | 0.0150 |
| : deleted 3 rows to 172.16.232.39
| testral | 172.16.252.28 | 172.16.252.28 | 0.0310 | 0.0160 |
| : deleted 2 rows to 172.16.252.28
Error on connecting socket to '172.16.250.3': ECONNREFUSED
Error on connecting socket to '172.16.250.3': ECONNREFUSED
Error on connecting socket to '172.16.250.3': ECONNREFUSED
Error on connecting socket to '172.16.250.3': ECONNREFUSED
| testral | 172.16.232.39 | 172.16.232.39 | 0.0310 | 0.0160 |
| : deleted 5 rows to 172.16.232.39
| testral | 172.16.252.28 | 172.16.252.28 | 0.0310 | 0.0150 |
| : deleted 5 rows to 172.16.252.28
| testral | 172.16.232.39 | 172.16.232.39 | 0.0310 | 0.0160 |
| : deleted 5 rows to 172.16.232.39
| testral | 172.16.252.28 | 172.16.252.28 | 0.0310 | 0.0150 |
 : deleted *

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
172.16.250.3	10
172.16.252.28	41
172.16.232.39	49

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.250.3	3
172.16.252.28	41
172.16.232.39	49
ECONNREFUSED	7
Chapter 2. DNS/WLM (connection optimization) 59

After we stopped the application server on MVS03, the client tried to connect to the failed
server a few times. DNS on the sysplex continued to return the address of the failed server
according to its last communication with WLM, so the external name server passed it on to
the client for the defined three seconds. For those three seconds, the client tried and failed to
connect. Eventually the sysplex DNS received updated information from WLM, returned new
information to the external name server, and the client never saw the address 172.16.250.3
again.

The sysplex name server client is shown in Figure 2-43.

Figure 2-43 Socket application server failure case - sysplex name server

Here a similar thing occurs: DNS returns each server address in turn (they seem to be equally
weighted) until the first WLM call after the failure sets the record straight.

 sysplex2 testral 1234 -c 30 -b 3

+----------------------+------------------+----------------+--------+--------+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |
+----------------------+------------------+----------------+--------+--------+
testral	172.16.252.28	172.16.252.28	0.0300	0.0100
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
testral	172.16.250.3	172.16.250.3	0.0100	0.0200
testral	172.16.252.28	172.16.252.28	0.0100	0.0100
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
Error on connecting socket to '172.16.250.3': ECONNREFUSED				
testral	172.16.252.28	172.16.252.28	0.0100	0.0200
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
Error on connecting socket to '172.16.250.3': ECONNREFUSED				
testral	172.16.252.28	172.16.252.28	0.0200	0.0100
testral	172.16.232.39	172.16.232.39	0	0.0100
Error on connecting socket to '172.16.250.3': ECONNREFUSED				
testral	172.16.252.28	172.16.252.28	0.0200	0.0200
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
testral	172.16.252.28	172.16.252.28	0.0100	0.0200
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
testral	172.16.252.28	172.16.252.28	0.0100	0.0100
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
testral	172.16.252.28	172.16.252.28	0.0100	0.0200
 :

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
172.16.250.3	4
172.16.252.28	13
172.16.232.39	13

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.250.3	1
172.16.252.28	13
172.16.232.39	13
ECONNREFUSED	3
60 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Chapter 3. Dynamic VIPA (for application
instance)

By providing IP addresses for the z/OS applications that are not associated with a specific
physical network attachment or gateway, a Virtual IP Address (VIPA) enables fault tolerance
against outages in the IP interfaces on the z/OS host. However, in earlier releases, if the stack
itself failed, you had to move the application workload manually and activate a VIPA on
another stack via the VARY OBEY command. Since V2R8, VIPAs can be dynamically
activated. Furthermore, a VIPA can now be regarded as the private address of an application
server in the sysplex and can follow that server across sysplex images.

CS for z/OS IP has two flavors of Dynamic VIPA: the application-specific Dynamic VIPA
(designed for single instance applications) and the automatic VIPA takeover/takeback flavor
(designed for sysplex-wide VIPA takeover). The former is the subject of this chapter, while the
latter is covered in Chapter 4, “Automatic VIPA takeover and takeback” on page 87.

3

© Copyright IBM Corp. 2002. All rights reserved. 61

3.1 Benefits of Dynamic VIPA
In general, the application-specific Dynamic VIPA allows an application to activate a VIPA
dynamically. This allows the application instances to have control of when the VIPA is active
and in which stack in the sysplex the VIPA is active. The Dynamic VIPA is usually only active
in at most one stack in a sysplex. That is, one stack owns the VIPA and advertises reachability
to that stack (usually via some dynamic routing protocol). We will see some cases in which a
VIPA appears active in more than one stack, but it is only advertised by one.

The application-specific Dynamic VIPA allows the VIPA address to be associated with a
particular application instance. VIPA activation is performed, without any DEVICE, LINK or
HOME definitions, either by the application issuing bind() to that particular IP address, or by
an APF-authorized program issuing an IOCTL to the stack or by invoking the MODDVIPA
utility. The stack must be configured appropriately to permit activation of such a Dynamic
VIPA, with a VIPA subnet range defined to ensure that unwanted IP addresses are not
created.

In this method, the failure of the application instance (or stack, or z/OS) means that the
application instance could be restarted elsewhere in a sysplex environment. How this restart
is accomplished is not determined by the stack function. It could be by operator intervention,
Automatic Restart Manager (ARM), or other sysplex-wide mechanism.

The application-specific Dynamic VIPA function allows VIPA IP addresses to be defined and
activated by individual applications (with or without modifying the applications), so that the
VIPA IP address moves when the application is moved to another z/OS host image in the
sysplex environment. In this regard, a VIPA is typically associated with some application. The
movement of this Dynamic VIPA is done by the activation of the application instance or of the
Dynamic VIPA itself on some other system in the sysplex.

When some application fails in a sysplex environment, this application can be restarted on
another stack. If correctly defined, the application can bind() to the same IP address without
any intervention. The VIPA will be activated dynamically at the second stack.

Application-specific Dynamic VIPAs are intended for applications for which only one instance
of the application can be running simultaneously. If a second stack activates the VIPA at the
same time that a first stack has the VIPA active, the resulting behavior may be confusing.
Because of this, it is important to have a good understanding of the behavior associated with
multiple Dynamic VIPA activations. With CS for OS/390 V2R8 IP, this behavior was
considered disruptive. CS for OS/390 V2R10 IP alleviated this disruptiveness by allowing a
smooth transition in VIPA ownership.

3.2 Implementing Dynamic VIPA
It is important to note that the application-specific Dynamic VIPA is defined exclusively with
the VIPARange statement within the VIPADynamic block in the TCP/IP profile. The
VIPADynamic block has other statements as shown in Figure 3-1 on page 63.
62 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 3-1 Definition format for Dynamic VIPA statement

VIPADEFine, VIPABackup, VIPADELete, and VIPADISTribute statements are used in
conjunction with the automatic takeover flavor of VIPA as discussed in Chapter 4, “Automatic
VIPA takeover and takeback” on page 87. The VIPADEFine statement designates one or
more VIPA IP addresses that a stack should initially own. VIPADELete is used to delete one of
these defined VIPA addresses. The VIPADISTribute statement is used to configure the
Sysplex Distributor and is the subject of Chapter 5, “Sysplex Distributor” on page 109.

The VIPARange statement is used to define and delete IP subnets from which an application
can activate a Dynamic VIPA by issuing a bind() or IOCTL. That is, if an application expects to
activate a VIPA dynamically, it must be contained within some subnet specification of an
active VIPARange statement.

3.2.1 Dynamic VIPA configuration (for application instance)
Activation of an application-specific Dynamic VIPA IP address associated with a specific
application instance occurs only via an application program's API call, in either of the
following ways:

� An application issues a bind() to that particular (specific) IP address.

� An application binds to INADDR_ANY instead of a specific IP address, but the Server
Bind Control function changes the generic bind() to a specific one. This situation is
discussed in 3.2.2, “Solutions for applications that bind() to INADDR_ANY” on page 64.

� An authorized application issues the SIOCSVIPA IOCTL() command. An example of such
an application is the MODDVIPA utility.

Since the VIPA IP address is specified by the application, it need not be defined in the TCP/IP
profile. However, we must ensure that the addresses being used by the application
correspond to our IP addressing scheme. We use the VIPARange statement in the TCP/IP
profile to indicate the range of VIPAs that we are willing to dynamically activate as shown in
Figure 3-2.

Figure 3-2 Definition format for VIPARange

The VIPARange statement defines an IP subnetwork using the network address (prefix) and
the subnet mask. Since the same VIPA address may not be activated by IOCTL/bind() while
also participating in automatic takeover as defined by VIPADEFine/VIPABackup, it is
recommended that subnets for VIPADEFine be different from subnets for VIPARange.

VIPADynamic ENDVIPADynamic

VIPABackup

VIPADEFine

VIPADELete

VIPADISTribute

VIPARange

VIPARange address_mask ipaddr

DEFINE

DELEte

MOVEable NONDISRUPTive

MOVEable DISRUPTive
Chapter 3. Dynamic VIPA (for application instance) 63

VIPARANGE in itself does not create or activate or reserve any Dynamic VIPAs. It merely
defines an allocated range within which program action (or the BIND parameter or a PORT
statement) may cause a Dynamic VIPA to be created and activated, for a specific IP address.
Also, the same range may have DVIPAs defined via VIPADEFINE or VIPABACKUP, as long as
no attempt is made to use the same IP address for both VIPADEFINE and activation via
program BIND.

For our tests in 3.2.3, “Examples of Dynamic VIPA” on page 65, we use the configuration in
Figure 3-3.

Figure 3-3 VIPARange statement

Once activated on a stack via bind() or IOCTL, a Dynamic VIPA IP address remains active
unless the VIPA IP address is moved to another stack or it is deleted. The system operator
may delete an active application-specific Dynamic VIPA IP address by using the MODDVIPA
utility or by stopping the application that issued the bind() to activate the VIPA. To remove an
active VIPARange statement, the VIPARange DELETE statement may be used.

Deleting a VIPARANGE does not affect existing DVIPAs that are already activated within the
range, but will simply ensure that new ones may not be activated within the deleted range until
the VIPARANGE is reinstated.

3.2.2 Solutions for applications that bind() to INADDR_ANY
An application may issue a bind() to INADDR_ANY to accept connection requests from any
IP address associated with the stack. In that case, if the application is to be associated with a
specific VIPA address, it is not possible to determine which VIPA IP address it should be
associated with. There are three ways to get around this situation:

� Define the application to bind() to a specific address instead of INADDR_ANY using the
new function Server Bind Control, implemented by the BIND keyword on the PORT
statement. Note that the port must be known ahead of time, since this will be coded in the
TCPIP profile.

� Modify the application to bind() to a specific address (however, sometimes this is not
possible without source code modifications).

� Use the utility MODDVIPA or change the application to send the appropriate IOCTL.

The most attractive solution is to use the new Server Bind Control function because it does
not require changing the application or the use of a manual utility. Using this function, a
generic server (such as the TN3270 Server) will bind to a specific address instead of
INADDR_ANY. When the application binds to INADDR_ANY, the bind() is intercepted and
converted to the specified IP address. The process then continues as if the server had issued
a bind() to that specific address. If the application does not support the ability to specify a
specific local address to which to bind, the Server Bind Control function provides an attractive
alternative to changing application source code. In order to use this function, however, the
port used by the application must be known in advance so that it can be added to the PORT
statement in the TCPIP profile.

VIPADYNAMIC
 VIPARANGE DEFINE MOVEABLE NONDISRUPT 255.255.255.0 172.16.240.193
ENDVIPADYNAMIC
64 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

If the Server Bind Control function cannot be used and the application can be modified,
change the target address for the bind() from INADDR_ANY to the specific Dynamic VIPA IP
address. In “SOCSRVR, a simple socket server program” on page 279, we show how we did
this for the sample sockets application used in many of our tests.

To address the case in which the application cannot take advantage of the Server Bind
Control function and it cannot be modified, CS for z/OS IP provides a utility MODDVIPA to
create a Dynamic VIPA IP address using the IOCTL call. The utility can be initiated via JCL,
from the OMVS command line, or from a shell script. MODDVIPA is the name of utility
EZBXFDVP, which was available in CS for OS/390 IP V2R8. The name EZBXFDVP can still
be used to run the utility, but this name is not mentioned in CS for OS/390 IP V2R10 (or later
release) documentation anymore. See “Using MODDVIPA utility” on page 65 for an example.

3.2.3 Examples of Dynamic VIPA
In this section, we give examples of Dynamic VIPAs activated in three different ways:

� Using the MODDVIPA utility

� Server issues a bind() to INADDR_ANY which is converted to a specific address via the
Server Bind Control function

� Application issues a bind() to a specific address directly

Using MODDVIPA utility
 Figure 3-4 shows our sample procedure to invoke the utility.

Figure 3-4 Sample JCL to run MODDVIPA

The utility expects a parameter specifying the VIPA IP address to be activated. It may also be
used to delete a VIPA IP address as an alternative to the VARY OBEY command by a system
operator. The parameter option field can be -c for create or -d for delete. The example above
will create a Dynamic VIPA with IP address 172.16.240.193. Activation of the Dynamic VIPA
IP address will succeed as long as the desired IP address is not claimed by any other stack,
is not an IP address of a physical interface or a static VIPA, and is not defined via VIPADEFine
or VIPABackup in a VIPADynamic block.

The following completion codes are expected when creating (-c) a DVIPA IP address:

0 Success: The DVIPA was activated.

4 Warning: The required DVIPA was not activated because the specified IP is already
active on this stack.

8 Error: The IP address is not defined as a DVIPA on this TCP/IP

The following completion codes are expected when deleting (-d) a DVIPA IP address:

0 Success: The DVIPA was deleted.

//TCPDVP PROC
//TCPDVP EXEC PGM=MODDVIPA,REGION=0K,TIME=1440,
// PARM='-p TCPIPC -c 172.16.240.193'
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//SYSERR DD SYSOUT=A
//SYSERROR DD SYSOUT=A
//SYSDEBUG DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
Chapter 3. Dynamic VIPA (for application instance) 65

8 The requested DVIPA was not deleted.

Note that the issuer of this utility must be APF authorized and have root authority. If the user
is not APF authorized, the following message is issued:

SIOCSVIPA IOCTL failed: EDC5111I Permission denied. errno2=74057209

After authorizing the user, the job was executed again. Figure 3-5 shows that the DVIPA IP
address 172.16.240.193 was added to this stack.

Figure 3-5 Display NETSTAT,HOME

Figure 3-6 shows the result of SYSPLEX,VIPADYN and how this address was activated
(IOCTL).

Figure 3-6 Display SYSPLEX,VIPADYN

Using Server Bind Control
Some servers can only bind to INADDR_ANY (0.0.0.0). For these servers, we can use the
Server Bind Control function to convert the bind to INADDR_ANY to a bind to a specific IP
address as defined in the PORT statement. Figure 3-7 on page 67 shows the TCP/IP profile
including the port reservation statement for port 23, the Telnet well-known port.

D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 749
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED

D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 792
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
 ORIGIN: VIPARANGE IOCTL
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 BACKUP 100
3 OF 3 RECORDS DISPLAYED
66 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 3-7 Port definition

Refer to z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776 for a complete description
of the PORT statement.

We established a TN3270 connection to the DVIPA IP address and issued some display
commands. Figure 3-8 shows that the DVIPA IP address 172.16.240.193 was added to stack
TCPIPC.

Figure 3-8 Display NETSTAT,HOME

Figure 3-9 on page 68 shows the result of SYSPLEX,VIPADYN and how this IP address was
activated (bind).

PORT
 7 UDP MISCSERV
 7 TCP MISCSERV
 9 UDP MISCSERV
 9 TCP MISCSERV
 19 UDP MISCSERV
 19 TCP MISCSERV
 20 TCP OMVS NOAUTOLOG ; FTP SERVER
 21 TCP FTPDC1 ; FTP SERVER
 23 TCP INTCLIEN BIND 172.16.240.193 ;
 23 TCP INETD1 BIND 9.24.105.74 ;

D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 580
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28
172.16.233.3 EZAXCF39
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED
Chapter 3. Dynamic VIPA (for application instance) 67

Figure 3-9 Display SYSPLEX,NETSTAT

Our example shows how this function can allow multiple servers to bind to the same port on
different interfaces. Specifically, Telnet 3270 server and OE Telnet server can both listen on
the same port 23 simultaneously.

Application issues a bind() to a specific address
In this test, we used an application that binds a specific address and give some displays. The
application receives the port number and the IP address as parameters to use on the bind()
call. Figure 3-10 shows the invocation of the tool.

Figure 3-10 Application jcs

With this invocation, the application binds to port 4343 and the specific IP address
172.16.240.193. Figure 3-11 shows that the Dynamic VIPA IP address was activated on
TCPIPC stack.

Figure 3-11 Display NETSTAT,HOME

D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 662
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
 ORIGIN: VIPARANGE BIND
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 BACKUP 100
3 OF 3 RECORDS DISPLAYED

RA03:/u/claudia>jcs -s 1/0/0/0 -b 4343/172.16.240.193/0/0/0 -l -d 200

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 248
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28
172.16.233.3 EZAXCF39
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED
68 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 3-12 shows how the Dynamic VIPA IP address was activated (bind).

Figure 3-12 Display SYSPLEX,VIPAD

Figure 3-13 shows the application using port 4343 and the Dynamic VIPA IP address added.

Figure 3-13 Display NETSTAT,CONN

In this case, the Dynamic VIPA IP address is deleted when the application finishes.

Figure 3-14 on page 70 shows that the Dynamic VIPA IP address is not active anymore.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 252
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
 ORIGIN: VIPARANGE BIND
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 BACKUP 100
3 OF 3 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 258
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA4 0000056A 172.16.240.193..4343 0.0.0.0..0 LISTEN
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 0000001A 127.0.0.1..1026 127.0.0.1..1027 ESTBLSH
TCPIPC 00000018 172.16.240.193..23 0.0.0.0..0 LISTEN
Chapter 3. Dynamic VIPA (for application instance) 69

Figure 3-14 Display NETSTAT,HOME after the application ends

3.3 Dynamic VIPA conflicts
TCP/IP stacks have a mechanism for preventing conflicts when the same Dynamic VIPA IP
address is activated in more than one stack. Sometimes a conflict can occur as a result of
changes in the sysplex environment. For example, a DVIPA could be activated due to a stack
or application failure. To help with these conflicts, only one TCP/IP stack advertises a
Dynamic VIPA IP address to routers. The stack that receives packets destined for the VIPA is
considered its owning stack.

The next section explains the behavior of a Dynamic VIPA IP address that is activated and
another application tries to activate the same Dynamic VIPA IP address in another IP stack.
As of CS for OS/390 V2R10 IP, the resulting behavior depends on the VIPARange definition
in the first stack.

3.3.1 bind()
Every time an application issues a bind() to a specific IP address, this IP address is checked
against IP addresses in the HOME list. If the IP address is already active, the bind() is
successful. If the IP address is not active on this stack, the VIPARange statement is checked.
If there is no VIPARange statement corresponding to the address requested in an application
call, the call is rejected.

Otherwise, if this IP address is already active in another stack, the behavior will be
established by the options MOVEable DISRUPTive and MOVEable NONDISRUPTive in the
VIPARange statement corresponding to this VIPA.

The DVIPA IP address is immediately moved to the second stack if the VIPARange is defined
as MOVEable NONDISRUPTive. The DVIPA IP address is added to the HOME list of a new
stack and this stack notifies neighboring routers that it is now the owner of this IP address.
New connections will be directed to the new owning stack and outstanding connections to the
previously owning stack will remain active and functional, despite its having lost the
ownership of the DVIPA. The new owning stack routes the data for these existing connections
to the old stack as shown in Figure 3-15 on page 71. In this regard, the movement of the
DVIPA is nondisruptive. The DVIPA is eventually deleted when the application closes its
DVIPA owning socket.

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 591
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28
172.16.233.3 EZAXCF39
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED
70 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 3-15 With nondisruptive behavior, the new owning stack forwards data for old connections

If the VIPARange is defined as MOVEable DISRUPTive, the VIPA is not moved and the bind()
request for the application on the second stack fails. In this case, the second application
issuing the bind() is said to have been disrupted. This is the only behavior allowed with CS for
OS/390 V2R8 IP. NONDISRUPTive is the default behavior for CS for z/OS V1R2 IP. Both
stacks should be at a V2R10 or later code level or the behavior will be DISRUPTive.

3.3.2 IOCTL
The TCP/IP configuration for the IOCTL() call is the same as for the bind(specific) call,
namely a VIPARange defining a subnet containing the desired VIPA IP addresses. The same
VIPARange may be used for both if desired. However, the behavior when the IP address is
already active in another stack is different.

The DVIPA IP address is immediately transferred to the second stack in both cases
(MOVEable DISRUPTive and NONDISRUPTive).

When VIPARange is defined as NONDISRUPTive, the routers are notified about the
ownership change and the old connections are preserved on the old stack. The new stack
routes the old connections data to the old stack. The status for the DVIPA IP address on the
old stack will be moving until the existing connections with the old stack terminate.

When VIPARange is defined as DISRUPTive, the routers are notified about the new
ownership and the DVIPA IP address is deleted from the HOME list on the first stack. All
existing connections on the first stack will be broken.

Note: Bringing up a third application before the first has closed its socket will lead to errors
because there cannot be two stacks with the same DVIPA in MOVING status.

New
owning
stack

Advertises
DVIPA

Old
owning
stack

Does not
advertise
DVIPA

Client

Client's connection continues
to send data to the DVIPA

New stack forwards data for old
connections to the old stack
Chapter 3. Dynamic VIPA (for application instance) 71

3.3.3 Scenarios
In this section we show four different scenarios:

� Dynamic VIPA IP address activated via IOCTL and VIPARange defined as MOVEable
NONDISRUPTive

� Dynamic VIPA IP address activated via IOCTL and VIPARange defined as MOVEable
DISRUPTive

� Dynamic VIPA IP address activated via bind() and VIPARange defined as MOVEable
NONDISRUPTive

� Dynamic VIPA IP address activated via bind() and VIPARange defined as MOVEable
DISRUPTive

In our tests, the environment shown in Figure 3-16 was used.

Figure 3-16 Test environment

For convenience, stack TCPIPC on RA39 was not used.

IOCTL and VIPARange defined as MOVEable NONDISRUPTive
In this test, we followed this sequence of actions:

1. Define Dynamic VIPA IP address in VIPARange as shown in Figure 3-3 on page 64 on
TCPIPC on RA03.

2. Define Dynamic VIPA IP address in VIPARange as shown in Figure 3-3 on page 64 on
TCPIPC on RA28.

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0

172.16.102.254
255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

CF
72 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

3. Run MODDVIPA to activate Dynamic VIPA IP address 172.16.240.193 on TCPIPC on
RA03.

4. Verify the Dynamic VIPA IP address 172.16.240.193 is active on TCPIPC on RA03. See
Figure 3-17 and Figure 3-18.

Figure 3-17 Display NETSTAT,HOME on TCPIPC on RA03

Figure 3-18 Display SYSPLEX,VIPAD

5. Start an FTP server in both stacks.

6. Establish a connection to an FTP server using Dynamic VIPA 172.16.240.193 (activated
on TCPIPC on RA03). The resulting connections are shown in Figure 3-19 on page 74.

7. Start transfer of a big file from a client to the server (TCPIPC on RA03).

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 768
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED

D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 770
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
 ORIGIN: VIPARANGE IOCTL
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 100
5 OF 5 RECORDS DISPLAYED
Chapter 3. Dynamic VIPA (for application instance) 73

Figure 3-19 Display NETSTAT,CONN

8. Run MODDVIPA to activate Dynamic VIPA 172.16.240.193 on TCPIPC on RA28.
Figure 3-20 shows the messages on the console log (the first one is issued on RA28 and
the second one on RA03) when the Dynamic VIPA IP address is moved.

Figure 3-20 Console log

9. Verify the Dynamic VIPA 172.16.240.193 is active on TCPIPC on RA28. This is shown in
the displays in Figure 3-21 and Figure 3-22 on page 75. Notice the status of MOVING
associated with the VIPA during this process.

Figure 3-21 Display NETSTAT,HOME

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 841
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 00002F15 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA 000044B6 172.16.240.193..20 9.24.104.75..3356 ESTBLSH
FTPDC1 000044B1 172.16.240.193..21 9.24.104.75..3355 ESTBLSH
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN

EZZ8302I VIPA 172.16.240.193 TAKEN FROM TCPIPC ON RA03
EZZ8303I VIPA 172.16.240.193 GIVEN TO TCPIPC ON RA28

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 820
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED
74 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 3-22 Display SYSPLEX,VIPAD

10.Check if the FTP connections are still active on TCPIPC on RA03. Figure 3-23 shows that
they are.

Figure 3-23 Display NETSTAT,CONN

The FTP protocol makes use of two TCP ports, 21 for the control connection and 20 for the
data connections. When the session is established, only port 21 is allocated. As data needs
to be transferred, connections from port 20 are created by the server. If the Dynamic VIPA IP
address is moved before the port 20 connection is created, the information regarding that
particular connection cannot be moved (since it does not yet exist). As a result, when any
additional data is to be transferred, the data connection will not be established because the
second stack does not know to where the information should be routed. In this case, the
connection is hung. Figure 3-24 on page 76 shows an example of this case, with a status of
SYNSENT for a data connection. Because of this type of problem, it is very important to keep in
mind the movement of a DVIPA, particularly when using FTP.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 873
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193
 ORIGIN: VIPARANGE IOCTL
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.240.0
 TCPIPC RA03 MOVING 255.255.255.0 0.0.0.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 100
6 OF 6 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 844
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 00002F15 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA 000044B6 172.16.240.193..20 9.24.104.75..3356 ESTBLSH
FTPDC1 000044B1 172.16.240.193..21 9.24.104.75..3355 ESTBLSH
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
Chapter 3. Dynamic VIPA (for application instance) 75

Figure 3-24 Display NETSTAT,CONN

IOCTL and VIPARange defined as MOVEable DISRUPTive
In this test, we followed this sequence of actions:

1. Define Dynamic VIPA in VIPARange as shown in Figure 3-25 on TCPIPC on RA03.

2. Define Dynamic VIPA in VIPARange as shown in Figure 3-25 on TCPIPC on RA28.

Figure 3-25 Definition VIPARange MOVEable DISRUPTive

3. Run MODDVIPA to activate Dynamic VIPA 172.16.240.193 on TCPIPC on RA03.

4. Verify the Dynamic VIPA 172.16.240.193 is active on TCPIPC on RA03. This is illustrated
in the displays in Figure 3-26 and Figure 3-27 on page 77.

Figure 3-26 Display NETSTAT,HOME on TCPIPC on RA03

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 088
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 00002F15 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA 00004B5C 172.16.240.193..20 9.24.106.64..1037 SYNSENT
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
FTPDC1 00004B55 172.16.240.193..21 9.24.106.64..1035 ESTBLSH

VIPADYNAMIC
 VIPARANGE DEFINE MOVEABLE DISRUPT 255.255.255.0 172.16.240.193
ENDVIPADYNAMIC

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 718
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED
76 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 3-27 Display SYSPLEX,VIPAD

5. Start the FTP server in both stacks.

6. Establish a connection to the FTP server using Dynamic VIPA 172.16.240.193 (activated
on TCPIP on RA03). The resulting connection displays are shown in Figure 3-28.

7. Start transfer of a file from the client to the server (TCPIPC on RA03).

Figure 3-28 Display NETSTAT,CONN

8. Run MODDVIPA to activate Dynamic VIPA 172.16.240.193 on TCPIPC on RA28.
Figure 3-29 shows the messages on the console log (the first one is issued on RA28 and
the second one on RA03) when the Dynamic VIPA IP address is moved.

Figure 3-29 Console log

9. Verify the Dynamic VIPA 172.16.240.193 was deleted from stack TCPIPC on RA03 (see
Figure 3-30 on page 78) and activated in stack TCPIPC on RA28 (see Figure 3-31 on
page 78).

D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 720
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
 ORIGIN: VIPARANGE IOCTL
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 100
5 OF 5 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 758
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA 00000067 172.16.240.193..20 9.24.104.75..3358 ESTBLSH
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
FTPDC1 00000065 172.16.240.193..21 9.24.104.75..3357 ESTBLSH
OMPROUTC 0000001C 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
TCPIPC 00000014 127.0.0.1..1025 127.0.0.1..1026 ESTBLSH

EZZ8302I VIPA 172.16.240.193 TAKEN FROM TCPIPC ON RA03
EZZ8304I VIPA 172.16.240.193 SURRENDERED TO TCPIPC ON RA28
Chapter 3. Dynamic VIPA (for application instance) 77

Figure 3-30 Display NETSTAT,HOME on RA03

Figure 3-31 Display NETSTAT,HOME on RA28

10. Verify the status of Dynamic VIPA IP address on the sysplex as shown in Figure 3-32 on
page 79.

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 831
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 496
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
9.24.104.34 LOOPBACK
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
8 OF 8 RECORDS DISPLAYED
78 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 3-32 Display SYSPLEX,VIPAD

11.Check that the FTP connection is not active on TCPIPC on RA03 anymore. The
connection was broken as can be seen in Figure 3-33.

Figure 3-33 Display NETSTAT,CONN

bind() and VIPARange defined as MOVEable NONDISRUPTive
In this test, we performed the following sequence of actions:

1. Define Dynamic VIPA in VIPARange as shown in Figure 3-3 on page 64 on TCPIPC on
RA03.

2. Define Dynamic VIPA in VIPARange as shown in Figure 3-3 on page 64 on TCPIPC on
RA28.

3. Start application to bind Dynamic VIPA 172.16.240.193 on RA03.

4. Verify the Dynamic VIPA 172.16.240.193 is active on TCPIPC on RA03. Figure 3-34 on
page 80 and Figure 3-35 on page 80 show the Dynamic VIPA’s active state.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 838
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.240.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 100
5 OF 5 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 146
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 0000001C 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
TCPIPC 00000015 0.0.0.0..23 0.0.0.0..0 LISTEN
Chapter 3. Dynamic VIPA (for application instance) 79

Figure 3-34 Display SYSPLEX,VIPAD

Figure 3-35 Display NETSTAT,HOME

5. Establish a connection to Dynamic VIPA 172.16.240.193 (TN3270). This connection can
be seen in Figure 3-36.

Figure 3-36 Display NETSTAT,CONN

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 662
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
 ORIGIN: VIPARANGE BIND
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 100

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 664
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
9.24.105.76 EN103
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
8 OF 8 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 674
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA5 00000053 172.16.240.193..1500 0.0.0.0..0 LISTEN
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 00000019 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
TCPIPC 00000016 0.0.0.0..23 0.0.0.0..0 LISTEN
TCPIPC 0000005A 172.16.240.193..23 9.24.106.64..1126 ESTBLSH
80 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

6. Start the same application to bind to Dynamic VIPA 172.16.240.193 on RA28. Figure 3-37
shows the messages on the console logs (the first one is issued on RA28 and the second
one on RA03) when the Dynamic VIPA IP address is moved.

Figure 3-37 Console log

7. Verify the Dynamic VIPA 172.16.240.193 was activated on TCPIPC on RA28 as shown in
Figure 3-38.

Figure 3-38 Display NETSTAT,HOME on TCPIPC on RA28

8. Verify the Dynamic VIPA 172.16.240.193 still exists on TCPIPC on RA03 because there
are active connections on this stack. Figure 3-39 and Figure 3-40 on page 82 show the
MOVING state.

Figure 3-39 Display NETSTAT,HOME on TCPIPC on RA03

EZZ8302I VIPA 172.16.240.193 TAKEN FROM TCPIPC ON RA03
EZZ8303I VIPA 172.16.240.193 GIVEN TO TCPIPC ON RA28

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 832
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
9.24.104.34 LOOPBACK
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 830
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
9.24.105.76 EN103
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1 I
127.0.0.1 LOOPBACK
8 OF 8 RECORDS DISPLAYED
Chapter 3. Dynamic VIPA (for application instance) 81

Figure 3-40 Display SYSPLEX,VIPAD

9. Verify the connection status of TCPIPC on RA03 as illustrated in Figure 3-41.

Figure 3-41 Display NETSTAT,CONN

10.Start a new connection to Dynamic VIPA 172.16.240.193 and check the connection is
established to TCPIPC on RA28 as shown in Figure 3-42.

Figure 3-42 Display NETSTAT,CONN

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 832
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193
 ORIGIN: VIPARANGE BIND
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.240.0
 TCPIPC RA03 MOVING 255.255.255.0 0.0.0.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 100

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 834
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA5 00000053 172.16.240.193..1500 0.0.0.0..0 LISTEN
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 00000019 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
TCPIPC 00000016 0.0.0.0..23 0.0.0.0..0 LISTEN
TCPIPC 0000005A 172.16.240.193..23 9.24.106.64..1126 ESTBLSH

RO RA28,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 838
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 00000019 127.0.0.1..1026 127.0.0.1..1027 ESTBLSH
TCPIPC 00000018 0.0.0.0..23 0.0.0.0..0 LISTEN
TCPIPC 000000B9 172.16.240.193..23 9.24.106.64..1127 ESTBLSH
82 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

bind() and VIPARange defined as MOVEable DISRUPTive
In this test, we performed the following sequence of actions:

1. Define Dynamic VIPA in VIPARange as shown in Figure 3-25 on page 76 on TCPIPC on
RA03.

2. Define Dynamic VIPA in VIPARange as shown in Figure 3-25 on page 76 on TCPIPC on
RA03.

3. Start application to bind Dynamic VIPA 172.16.240.193 on stack TCPIPC on RA03. The
resulting bind and listen can be displayed as in Figure 3-43.

Figure 3-43 Display NETSTAT,CONN

4. Verify the Dynamic VIPA 172.16.240.193 is activated on TCPIPC on RA03 as illustrated in
Figure 3-44 and Figure 3-45 on page 84.

Figure 3-44 Display NETSTAT,HOME

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 261
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA2 00000028 172.16.240.193..1500 0.0.0.0..0 LISTEN
FTPDC1 00000012 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 00000019 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 819
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
9.24.105.76 EN103
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
8 OF 8 RECORDS DISPLAYED
Chapter 3. Dynamic VIPA (for application instance) 83

Figure 3-45 Display SYSPLEX,VIPAD

5. Start the same application on TCPIPC on RA28 to bind to the same Dynamic VIPA
172.16.240.193. The bind fails as shown in Figure 3-46.

Figure 3-46 Messages for application jcs

6. Verify the Dynamic VIPA 172.16.240.193 is still active on TCPIPC on RA03. Figure 3-47
shows the home list display and Figure 3-48 on page 85 shows the VIPAD display.

Figure 3-47 Display NETSTAT,HOME

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 821
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
 ORIGIN: VIPARANGE BIND
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0

CLAUDIA @ RA28:/u/claudia>jcs -s 1/0/0/0 -b 1500/172.16.240.193/0/0/0 -l -d 1000
expected retval 0 from bind, got -1
expected retcode 0 from bind, got 1116 (EDC8116I Address not available.)
expected reason 00000000 from bind, got 744C7228
The bind call didn't work as expected.

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 115
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
9.24.105.76 EN103
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
8 OF 8 RECORDS DISPLAYED
84 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 3-48 Display SYSPLEX,VIPAD

7. The active connection to Dynamic VIPA 172.16.240.193 is not broken, as is shown in the
connection display in Figure 3-48.

Figure 3-49 Display NETSTAT,CONN

More information about the results of attempting to create a Dynamic VIPA IP address when it
already exists in the sysplex or when there is the same IP address configured in a HOME
statement can be found in z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 121
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
 ORIGIN: VIPARANGE BIND
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 200

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 263
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA2 00000028 172.16.240.193..1500 0.0.0.0..0 LISTEN
FTPDC1 00000012 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 00000019 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
Chapter 3. Dynamic VIPA (for application instance) 85

86 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Chapter 4. Automatic VIPA takeover and
takeback

By providing IP addresses for the z/OS applications that are not associated with a specific
physical network attachment or gateway, Virtual IP Addresses (VIPAs) facilitate fault
tolerance against outages of the IP interfaces on the zSeries. With static VIPAs, however, if
the stack itself failed, the VIPA also failed. To overcome such a failure, the VIPA IP address
had to move to another stack via the manual VARY OBEY command. Since CS for OS/390 IP
V2R8, the following improvements were provided to allow more systematic VIPA takeover
operation:

� VIPA can be taken over automatically by another stack.
� VIPA can be taken back automatically by the original stack.

However, in CS for OS/390 IP V2R8, the VIPA IP address was not taken back by the original
stack while there were any active connections on the VIPA backup stack. So, the takeback
process could be delayed, potentially for a long period of time.

CS for OS/390 V2R10 IP solved this problem and provided the following improvements:

� VIPA takeback can be immediate and nondisruptive.

� A DVIPA can also be distributed for load balancing using the Sysplex Distributor function.
Sysplex Distributor is covered in detail in Chapter 5, “Sysplex Distributor” on page 109.

4

© Copyright IBM Corp. 2002. All rights reserved. 87

4.1 Overview of VIPA takeover/takeback
In this section, we explain the theory behind the VIPA concept. We discuss the goals of
Dynamic VIPA and VIPA takeover/takeback and how these goals are met by CS for z/OS IP.

4.1.1 VIPA concept
An IP network provides nondisruptive rerouting of traffic in the event of a failure, but only
within the routing network itself, not at the endpoint hosts. For most client hosts (PCs or
workstations), failure of the host, the network adapter, or the connected link will just isolate
the client application from the network, if it does not take down the client application
altogether. For servers, on the other hand, particularly large-capacity and highly scalable
servers such as z/OS, it is extremely common to have more than one link into a z/OS image
and its associated IP stack. While connections may be distributed among the various links
and adapters, failure of one such will mean loss of all TCP connections associated with the
failing device or link, because the TCP connection is in part defined by the IP address of the
failed adapter. In addition, no new data destined for this address, regardless of whether it is
TCP or UDP, may be received.

CS for z/OS addresses the requirement of nondisruptive rerouting around a failing network
adapter by allowing the customer to define a virtual adapter with an associated Virtual IP
Address (VIPA). A virtual adapter (interface) has no real existence, and a VIPA is really
associated with the stack as a whole. To the routers attached to the stack via physical
adapters, a VIPA appears to be on a subnet on the other side of the z/OS IP stack, and the
TCP stack looks like another router that happens to have reachability to that IP address. On
the z/OS IP stack, on the other hand, the VIPA acts somewhat like a loopback address;
incoming packets addressed to the VIPA are routed up the stack for handling by TCP or UDP
as with any other home IP interface. Dynamic routing protocols can provide transparent
rerouting around the failure of an adapter on the endpoint stack, in that the VIPA still appears
reachable to the routing network via one of the other adapters on the z/OS.

4.1.2 Dynamic VIPA enhancements
While VIPA removes a single hardware interface and the associated transmission medium as
a single point of failure for a large number of connections, the connectivity of the server can
still be lost through a failure of a single stack or an MVS image. Of course, we can move a
VIPA manually to the other stack, but customers require automatic recovery wherever
possible, especially in a sysplex environment.

Therefore, CS for OS/390 IP V2R8 and later provides improvements by adding the VIPA
takeover function. VIPA takeover builds on the VIPA concept, but automates the movement of
the VIPA to an appropriate surviving stack. Automatic VIPA takeover allows a VIPA address
to move automatically to a stack where an existing suitable application instance already
resides, allowing that instance to serve clients formerly connecting to the failed stack.
Automatic VIPA takeback allows a VIPA address to move back automatically to the failed
stack once it is restored.

The VIPA takeover function is supported since CS for OS/390 IP V2R8, but VIPA takeback
was either disruptive or occurred only when all connections on the stack that originally took
over the VIPA terminated. In CS for OS/390 IP V2R10 and later, VIPA takeback can be
immediate and nondisruptive. That is, the VIPA can be taken back by its rightful owner
immediately without disrupting existing connections to the current owner.
88 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The Sysplex Distributor function allows connections to be distributed among TCP/IP stacks in
a sysplex environment. The distributed DVIPA is defined with the VIPADISTribute statement
and is discussed in Chapter 5, “Sysplex Distributor” on page 109.

Application-specific Dynamic VIPAs allow VIPAs to be defined and activated by individual
applications (with or without modifying the applications), so that the VIPA moves when the
application is moved. Dynamic VIPA is defined by the VIPARANGE statement that is
discussed in Chapter 3, “Dynamic VIPA (for application instance)” on page 61.

4.1.3 VIPA takeover and VIPA takeback
Automatic VIPA takeover requires that dynamic VIPA IP addresses (as opposed to traditional
static VIPA IP addresses) be defined as having a normal "home" stack, and optionally one or
more backup stacks. All the stacks share information regarding dynamic VIPAs using z/OS
XCF messaging (the same mechanism as dynamic XCF and sysplex sockets), so that, for
each dynamic VIPA, all stacks know:

� Which stack has the VIPA active
� Which stack(s), and in what order, will participate in backup if the active one fails

When a failure of a stack owning an active dynamic VIPA is detected, the first stack in the
backup list automatically defines DEVICE, LINK, and HOME statements for the same
dynamic VIPA, and notifies its attached routing daemon of the activation. This information is
passed onto the routing network via dynamic routing protocols and ultimately ensures that the
DVIPA is still reachable.

Figure 4-1 shows a sysplex with three TCPIP images. In this example, stack RA03 fails and
its DVIPA is subsequently taken over by RA28, which is providing the backup capability for
this address.

Figure 4-1 Automatic VIPA takeover of 172.16.251.03 by stack RA28

 DVIPA:172.16.251.03

TCPIPC
TN3270E

 FTPD

TCPIPC
TN3270E

 FTPD
TCPIPC
TN3270E

 FTPD

DVIPA:172.16.251.03
DVIPA:172.16.251.28

RA39

RA28

RA03

DVIPA:172.16.251.39
Chapter 4. Automatic VIPA takeover and takeback 89

When the original "normal home" stack is reactivated, the dynamic VIPA may be taken back
from the backup stack to the original stack automatically as shown in Figure 4-2. In this case,
new connections are sent to the reactivated stack and the connections with the backup stack
are not necessarily broken. The data of the old connections is forwarded to the backup stack.
This is the default behavior for CS for z/OS V1R2 IP. In CS for z/OS V1R2, the older behavior
can be enabled by setting different parameters on the VIPADEFINE statement.

Figure 4-2 172.16.251.03 is taken back by the restarted RA03 stack

4.1.4 Benefits of sysplex-wide VIPA takeover
When a stack or its underlying z/OS fails, it is not necessary to restart the stack with the same
configuration profile on a different z/OS image as is needed with static VIPA.

After the stack failure, the VIPA address is automatically moved to another stack without the
need for human intervention. The new stack will have received information regarding the
connections from the original stack and will accept new connections for the DVIPA. The
routers are automatically informed about the change. This increases availability because
multiple server instances can be started in different stacks.

VIPA takeover allows complete flexibility in the placement of servers within sysplex nodes,
not limited to traditional LAN interconnection with MAC addresses. Building on the VIPA
concept means that spare adapters do not have to be provided, as long as the remaining
adapters have enough capacity to handle the increased load. Spare processing capacity may
be distributed across the sysplex rather than on a single node.

DVIPA:172.16.251.39

DVIPA: 172.16.251.28

TCPIPC
TN3270E

 FTPD

TCPIPC
TN3270E

 FTPD

 DVIPA:172.16.251.3

TCPIPC
TN3270E

 FTPD

DVIPA:172.16.251.3

RA03

RA28

RA39

DVIPA moves
back to RA03

Data for
connections
with RA28 is
forwarded
90 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

4.1.5 Benefits of sysplex-wide VIPA takeback
When a TCP/IP stack fails, its load may be assumed by another stack. As soon as the failed
stack is activated, this stack may take back the control of all connections. No connections are
lost, because only new connections will be established with the original stack. The
connections that were already established in the backup stack are kept. However, the
information about these connections is sent by the backup stack to the original owning stack.
Using this information, the original stack routes data packets for connections terminating on
the backup stack to it.

In CS for OS/390 IP V2R8, the original stack could take back the VIPA only when there were
no more active connections on the backup stack. The takeback could be delayed for a long
time or the outstanding connections on the backup could be broken. This behavior was
viewed as being too restrictive and was improved in CS for OS/390 V2R10 IP.

If the original stack has defined a VIPA address supporting the Sysplex Distributor function
(see Chapter 5, “Sysplex Distributor” on page 109), this function automatically will be taken
back by the original distributing VIPA owner immediately. That is, a distributed VIPA can be
backed up and moved around immediately and nondisruptively.

4.2 Implementing VIPA takeover and takeback
In this section we give an overview of how VIPA takeover and takeback can be defined.
Practical examples are shown in 4.4, “Examples of VIPA takeover and takeback” on page 96.

4.2.1 Automatic VIPA takeover/takeback configuration
Each VIPA has a preferred home stack and set of backup stacks. Additionally, the backup
stacks have a preferred order. CS for z/OS provides configuration options that allow the
administrator to define which stacks should start off owning a VIPA, and which stacks should
provide backup for that VIPA in the event of failure of the primary stack.

Every Dynamic VIPA parameter is defined in the VIPADynamic block in the TCP/IP profile, as
shown in Figure 4-3.

Figure 4-3 Definition format for dynamic VIPA block

Automatic VIPA takeover/takeback requires you to define the primary and backup VIPA
addresses to each stack that will participate. Everything else is automatic. The configuration
options are illustrated in Figure 4-4 on page 92.

VIPADynamic ENDVIPADynamic

VIPABackup

VIPADEFine

VIPADELete

VIPADISTribute

VIPARange
Chapter 4. Automatic VIPA takeover and takeback 91

Figure 4-4 Definition format for VIPA backup

The VIPADEFine statement designates one or more VIPAs that this stack should initially own.
Each is known throughout the IP network, so it requires an address and a subnet mask to
determine how many of the bits of the IP address specify the network.

More than one IP address can be defined within one VIPADEFine statement, but every IP
address defined should belong to the same network. It means that each IP address in a
subnet should be in the same range. To check if this rule is being used, convert the subnet
mask value to binary and verify the following points:

� The most significant bit should be 1.

� After the first 0 encountered (to the right of the most significant bit), all bits should be 0.

� If every subnet mask is logically ANDed with all IP addresses in the list, the result should
be the same.

CS for OS/390 IP V2R10 introduced the parameters MOVE IMMEDiate and MOVE
WHENIDLE. MOVE IMMEDiate means that when an original stack comes back up after it has
failed, the VIPA addresses are taken back immediately, independent of the existing
connections on the backup stack. If MOVE WHENIDLE is defined, the VIPA address will be
owned by the backup stack while there is at least one connection active managed by the
backup stack. This is the only possible situation in CS for OS/390 IP V2R8. So, if one of the
stacks is running CS for OS/390 IP V2R8, the MOVE IMMED definition will be ignored and
MOVE WHENIDLE will be used instead.

To preserve connections, the configuration option IPCONFIG DATAGRAMFWD must be
specified in the TCP/IP profile.

The VIPABackup statement designates one or more VIPAs for which this stack will provide
automatic backup when the owning stack fails. It is not necessary to define a subnet mask
because it is the same as that on the primary stack for the address in question. Valid values
for the rank parameter are from 0 to 255. Larger rank values move the respective stacks
closer to the top of the backup chain, which means a higher priority when the need for
activating a backup stack arises. That is, the higher the rank, the higher its backup priority.

There is also a statement to delete a VIPA that has been defined with VIPADEFine or
VIPABackup called VIPADELete. It is coded in the VIPADynamic block and simply specifies
the IP addresses to be deleted.

VIPADELete may also be used to delete a VIPA address that was defined in a VIPARange
subsequently created via BIND to a specific address or via IOCTL. The VIPADELete
command is executed immediately. If there are any connections to the VIPA address, they will
be lost. The connections will no longer be able to communicate. However, the connections will
not be removed until either they time out or are closed by the application. If the application
doest not attempt to send data and the application never closes the connections, they could
actually be active forever, although they will never be able to send data again.

 VIPADEFine

MOVEable IMMEDiate
ip addressaddr_mask

MOVEable WHENIDLE

VIPABackup
1

rank

ipaddress
92 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

4.3 Monitoring VIPA status
Several operator commands are provided to monitor dynamic VIPA and VIPA backup
configuration and status. We used some of them in our tests, but we summarize them in this
section for convenience. Figure 4-5 shows the base network configuration used.

Figure 4-5 Base network configuration

4.3.1 Display Sysplex command
The command D TCPIP,<tcpipjobname>,SYSplex,VIPADyn is available to show you the
status of dynamic VIPAs (both application related as defined by VIPARange and takeover
flavor as defined by VIPADEFine) in the sysplex. Figure 4-6 on page 94 shows an example
with VIPAs configured via VIPADEFine and VIPABackup. The origin (configuration statement
responsible for the VIPA) and status of each dynamic VIPA on the stack (TCPNAME) and
system (MVSNAME) in the sysplex are shown. The RANK value indicates the order in which
the backup stacks will be chosen if the stack on which the dynamic VIPA is active is stopped.
The active system with the highest rank is the one that will take over the dynamic VIPA.

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0

172.16.102.254
255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

CF
Chapter 4. Automatic VIPA takeover and takeback 93

Figure 4-6 Display VIPA backup configuration in the sysplex

The Distribution Status (DIST) field show how this stack is configured. It can be a distributor
stack and/or a destination stack. In our example, 1 is a distributing and destination stack
(BOTH status), while 2 and 3 are destination stacks.

4.3.2 NETSTAT commands
In addition to the Display SYSplex command, there are several new parameters in the
NETSTAT commands related to dynamic VIPA. The NETSTAT commands include the
following:

� NETSTAT for TSO

� onetstat for UNIX System Services

� D TCPIP,tcpname,NETSTAT for the MVS console

The output for all of the commands have a new section in the CONFIG (-f) report. Additionally,
each is now able to generate a new VIPADYN (-v) report. These reports show the dynamic
VIPAs on a system basis, not a sysplex-wide basis. The global configuration information
section (1) of the CONFIG report is displayed whether there are any dynamic VIPAs known to
this system (see 1 in Figure 4-7 on page 95).

D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 779
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH 1
 TCPIPC RA28 BACKUP 200 DEST 2
 TCPIPC RA39 BACKUP 100 DEST 3
3 OF 3 RECORDS DISPLAYED
94 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 4-7 Display NETSTAT, CONFIG command

The NETSTAT,CONFIG command was changed in CS for OS/390 IP V2R10 and a new
command, NETSTAT,VIPADCFG, is available to show the information about VIPA related to
the stack where the command is issued. An example is shown in Figure 4-8.

Figure 4-8 Display NETSTAT,VIPADFCG command

D TCPIP,TCPIPC,N,CONFIG
EZZ2500I NETSTAT CS V2R10 TCPIPC 124
TCP CONFIGURATION TABLE:
DEFAULTRCVBUFSIZE: 00016384 DEFAULTSNDBUFSIZE: 00016384
DEFLTMAXRCVBUFSIZE: 00262144
MAXRETRANSMITTIME: 120.000 MINRETRANSMITTIME: 0.500
ROUNDTRIPGAIN: 0.125 VARIANCEGAIN: 0.250
VARIANCEMULTIPLIER: 2.000 MAXSEGLIFETIME: 60.000
DEFAULTKEEPALIVE: 0.120 LOGPROTOERR: 00
TCPFLAGS: 90
UDP CONFIGURATION TABLE:
DEFAULTRCVBUFSIZE: 00016384 DEFAULTSNDBUFSIZE: 00016384
CHECKSUM: 00000001 LOGPROTOERR: 01
UDPFLAGS: 2C
IP CONFIGURATION TABLE:
FORWARDING: YES TIMETOLIVE: 00060 RSMTIMEOUT: 00060
FIREWALL: 00000 ARPTIMEOUT: 01200 MAXRSMSIZE: 65535
IGREDIRECT: 00001 SYSPLXROUT: 00001 DOUBLENOP: 00000
STOPCLAWER: 00001 SOURCEVIPA: 00001 VARSUBNET: 00001
MULTIPATH: NO PATHMTUDSC: 00000 DEVRTRYDUR: 0000000090
DYNAMICXCF: 00001
 IPADDR: 172.16.233.3 SUBNET: 255.255.255.0 METRIC: 01
SMF PARAMETERS:
INITTYPE: 00 TERMTYPE: 00 CLIENTTYPE: 00 TCPIPSTATS: 00
GLOBAL CONFIGURATION INFORMATION: 1
TCPIPSTATS: 00

RO RA03,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 190
DYNAMIC VIPA INFORMATION:
 VIPA BACKUP:
 IP ADDRESS RANK
 ---------- ----
 172.16.251.28 000100
 172.16.251.39 000200
 VIPA DEFINE:
 IP ADDRESS ADDRESSMASK MOVEABLE
 ---------- ----------- --------
 172.16.251.3 255.255.255.0 IMMEDIATE
 VIPA RANGE:
 ADDRESSMASK IP ADDRESS MOVEABLE
 ----------- ---------- --------
 255.255.255.0 172.16.251.193 NONDISR
 VIPA DISTRIBUTE:
 IP ADDRESS PORT XCF ADDRESS
 ---------- ---- -----------
 172.16.251.3 00020 ALL
 172.16.251.3 00021 ALL
Chapter 4. Automatic VIPA takeover and takeback 95

Figure 4-9 shows the results of a DISPLAY N,VIPADYN command. The same display can be
achieved using onetstat -v from a UNIX System Services prompt.

Figure 4-9 Display NETSTAT,VIPADYN(-v) command

With the advent of Sysplex Distributor, the stack may need to keep track of a VIPA
Connection Routing Table (VCRT). Figure 4-10 shows the results of a DISPLAY N,VCRT
command.

Figure 4-10 Display NETSTAT,VCRT command

4.4 Examples of VIPA takeover and takeback
In this section we demonstrate two examples of VIPA takeover and takeback using different
configurations. These are:

� VIPA takeover/takeback when the VIPADEFine statement is defined with the MOVE
IMMED parameter. VIPA definitions are coded on multiple stacks, so that the failure of one
stack results in the takeover of its VIPA address by another stack. When the original stack
is recovered, the VIPA address is taken back immediately.

� VIPA takeover/takeback when the VIPADEFine statement is defined with the MOVE
WHENIDLE parameter. After a failure of one stack, the backup stack takes over the VIPA
address. However, after recovering from the failure on the original stack, the takeback is
delayed until all connections are finished on backup stack.

For this test, we used only two TCP/IP stacks: TCPIPC on RA28 and TCPIPC on RA03. For
convenience, TCPIPC on RA39 is not running.

4.4.1 Automatic VIPA takeover/takeback - MOVE IMMED
We configured on each stack a primary VIPA address and a backup address for the other
stack's primary VIPA. We performed the following sequence of actions:

1. Define the primary VIPA IP addresses: 172.16.251.3 on TCPIPC on RA03 and
172.16.251.28 on TCPIPC on RA28.

RO RA03,D TCPIP,TCPIPC,N,VIPADYN
D TCPIP,TCPIPC,N,VIPADYN
EZZ2500I NETSTAT CS V2R10 TCPIPC 382
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 ACTIVE VIPADEFINE DIST/DEST
172.16.251.28 255.255.255.0 BACKUP VIPABACKUP
172.16.251.39 255.255.255.0 BACKUP VIPABACKUP
172.16.251.193 255.255.255.0 ACTIVE VIPARANGE IOCTL
4 OF 4 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 882
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00021 9.24.106.64 01105 172.16.233.39
172.16.251.3 00023 9.24.106.64 01106 172.16.233.39
2 OF 2 RECORDS DISPLAYED
96 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

2. Define the backup VIPA IP addresses: 172.16.251.3 on TCPIPC on RA28 and
172.16.251.28 on TCPIPC on RA03.

3. Start our server applications on both of the stacks, and establish connections from a client
to the server on TCPIPC on RA03 using the VIPA 172.16.251.3.

4. Log on to the TN3270 server on TCPIPC on RA03 using the VIPA.

5. Stop the TCPIPC on RA03 stack.

6. Make sure the backup stack TCPIPC on RA28 takes over the VIPA 172.16.251.3.

7. Via dynamic routing (OSPF), the network is informed that the VIPA has moved and all
connection requests are routed to the stack owning the VIPA now.

8. Restart the TCPIPC on RA03 stack and the server application.

9. Check that the VIPA moves back to the original stack.

Figure 4-11 shows our VIPA definitions on TCPIPC on RA03, and Figure 4-12 shows the
corresponding definitions on TCPIPC on RA28.

Figure 4-11 Dynamic VIPA definition for TCPIPC on RA03

Figure 4-12 Dynamic VIPA definition for TCPIPC on RA28

10.Before stopping the TCPIPC stack on RA03, we used the DISPLAY SYSplex command on
TCPIPC on RA28 to see which dynamic VIPA was known to each stack. Figure 4-13
shows the results that match our definitions.

Figure 4-13 Display VIPA definition for TCPIPC on RA28 before TCPIPC on RA03 stack failure

VIPADYNAMIC
 VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
 VIPABACKUP 100 172.16.251.28
ENDVIPADYNAMIC

VIPADYNAMIC
 VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.28
 VIPABACKUP 100 172.16.251.3
ENDVIPADYNAMIC

D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 194
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 100
4 OF 4 RECORDS DISPLAYED
Chapter 4. Automatic VIPA takeover and takeback 97

11.We also displayed the OSPF routing table on TCPIPC on RA28, as shown in Figure 4-14.
Note the presence of the local dynamic VIPA 1 with its stack-generated link name, and the
remote VIPA 2 belonging to TCPIPC on RA03.

Figure 4-14 Display OMPROUTE table before TCPIPC on RA03 stack failure

12.We then stopped the TCP/IP stack TCPIPC on RA03, which caused the servers (TN3270
and FTP) to go down. All the other sysplex stacks were informed of the failure through
XCF and took steps to recover the failed VIPA. The stack with the highest rank (indeed,
the only stack) on the backup list for 172.16.251.3 was TCPIPC on RA28. Therefore,
TCPIPC on RA28 defined and activated this VIPA address itself. The console log on RA28
confirmed this, as shown in Figure 4-15.

Figure 4-15 Console message on RA28 at VIPA takeover

13.We then issued some TCP/IP display commands on RA28 to check the new status, as in
Figure 4-16 on page 99.

RO RA03,D TCPIP,TCPIPC,OMPROUTE,RTTABLE
D TCPIP,TCPIPC,OMPROUTE,RTTABLE
EZZ7847I ROUTING TABLE 370
TYPE DEST NET MASK COST AGE NEXT HOP(S)

SPE2 0.0.0.0 0 1 536 172.16.100.254
SPE2 9.0.0.0 FF000000 1 536 172.16.100.254
 SPF 9.1.150.0 FFFFFE00 1814 1359 172.16.100.254
 SPF 9.3.1.0 FFFFFF00 1814 1359 172.16.100.254
 SPF 9.3.240.0 FFFFFF00 1814 1359 172.16.100.254
SPE2 9.12.0.0 FFFFFF00 1 536 172.16.100.254
 SPF 9.12.2.0 FFFFFF00 14 1359 172.16.100.254
 SPF 9.12.3.0 FFFFFFF0 1808 1359 172.16.100.254
 SPF 9.12.3.16 FFFFFFF0 1808 1359 172.16.100.254
 SPF 9.12.3.32 FFFFFFF0 1808 1359 172.16.100.254
 SPF 9.12.3.48 FFFFFFF0 1808 1359 172.16.100.254
SPE2 9.12.6.0 FFFFFF00 1 536 172.16.100.254
SPE2 9.12.9.0 FFFFFF00 1 536 172.16.100.254
SPE2 9.12.13.0 FFFFFF00 1 536 172.16.100.254
 SPF 9.12.14.0 FFFFFF00 14 1359 172.16.100.254
SPE2 9.12.15.0 FFFFFF00 1 536 172.16.100.254
 SPF 9.24.104.0 FFFFFF00 7 1359 172.16.100.254
 SPF 9.24.104.1 FFFFFFFF 7 1359 172.16.100.254
 SPF 9.24.104.18 FFFFFFFF 1 1359 172.16.100.254
 SPF 9.24.105.0 FFFFFF00 17 1359 172.16.100.254
 SPF 9.24.106.0 FFFFFF00 7 1359 172.16.100.254
SPE2 9.32.41.40 FFFFFFFC 1 536 172.16.100.254
 DIR* 172.16.233.0 FFFFFF00 1 568 172.16.233.3(2)
 SPF 172.16.233.3 FFFFFFFF 0 1430 EZASAMEMVS
STAT* 172.16.233.28 FFFFFFFF 0 1431 172.16.233.3
 SPF* 172.16.251.0 FFFFFF00 14 607 172.16.100.254
 DIR* 172.16.251.3 FFFFFFFF 1 1430 VIPLAC10FB03 2
 SPF 172.16.251.28 FFFFFFFF 14 1359 172.16.100.254 1
.

EZZ8301I VIPA 172.16.251.3 TAKEN OVER FROM TCPIPC ON RA03
EZZ4323I CONNECTION TO 172.16.233.3 CLEARED FOR DEVICE RA03M
98 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 4-16 Displays after VIPA takeover on TCPIPC on RA28

D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 121
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED 1

D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 124
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA28
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 ------- ------- ------ ---- ------- ---- -------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0 2
IPADDR: 172.16.251.28 LINKNAME: VIPLAC10FB1C
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 ------- ------- ------ ---- ------------ -------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
2 OF 2 RECORDS DISPLAYED

D TCPIP,TCPIPC,N,CON
EZZ2500I NETSTAT CS V2R10 TCPIPC 209
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 00000F2C 0.0.0.0..10007 0.0.0.0..0 LISTEN
FTPDC1 00000012 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 0000001A 127.0.0.1..1026 127.0.0.1..1027 ESTBLSH
TCPIPC 000040AB 172.16.251.3..23 9.24.106.64..1092 ESTBLSH 3
TCPIPC 00000019 0.0.0.0..23 0.0.0.0..0 LISTEN
TCPIPC 000040A1 172.16.251.28..23 9.24.106.64..1091 ESTBLSH
.
.
D TCPIP,TCPIPC,N,SOCKETS
EZZ2500I NETSTAT CS V2R10 TCPIPC 219
SOCKETS INTERFACE STATUS:
TYPE BOUND TO CONNECTED TO STATE CONN
NAME: BPXOINIT SUBTASK: 006ECAE8
NAME: TCPIPC SUBTASK: 00000000
STREAM 172.16.251.3..23 9.24.106.64..1092 ESTBLSH 000040AB
STREAM 172.16.251.28..23 9.24.106.64..1091 ESTBLSH 000040A1
.

Chapter 4. Automatic VIPA takeover and takeback 99

In these displays:

1 shows the VIPA address 172.16.251.3 in TCPIPC on RA28's HOME list. This stack now
owns the address.

2 is a DISPLAY SYSplex command showing the status of the dynamic VIPA addresses
known to TCPIPC on RA28. The recovered address 172.16.251.3 was defined as
VIPABackup but is now active.

3 shows that new connections to our server application are connected to the instance on
TCPIPC on RA28.

Figure 4-17 shows an FTP client connection to TCPIPC on RA03 (IP address 172.16.251.3).
Even though stack TCPIPC on RA03 is not active, the connection is established with TCPIPC
on RA28C (MVS28C).

Figure 4-17 FTP connection using the VIPA 172.16.251.3 after stopping TCPIPC on RA03

Figure 4-18 shows that the connections with destination address to RA03 are being
connected through XCF address 172.16.233.28.

Figure 4-18 VIPA connection routing table after stopping TCPIPC on RA03

Some time later, we restarted the failed TCP/IP stack TCPIPC on RA03 and the server
application on TCPIPC on RA03. Figure 4-19 shows the console message at RA03 system
after restarting of stack TCPIPC on RA03.

Figure 4-19 Console message on RA03 after restarting TCPIPC on RA03

Although TCPIPC on RA28 had the VIPA 172.16.251.3 active and some active connections
through the dynamic VIPA, this address was taken back by RA03. The old connections are
not broken, however. TCPIPC on RA03 is now receiving all new connections. Figure 4-20 on
page 101 shows the creation of a new FTP connection.

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS28C, 14:59:37 on 2000-09-12.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "CLAUDIA.".

RO RA28,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 403
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00021 9.24.106.64 01138 172.16.233.28
172.16.251.3 00023 9.24.106.64 01139 172.16.233.28
172.16.251.28 00023 9.24.106.64 01140 172.16.233.28
3 OF 3 RECORDS DISPLAYED

EZZ8302I VIPA 172.16.251.3 TAKEN FROM TCPIPC ON RA28
EZZ8303I VIPA 172.16.251.3 GIVEN TO TCPIPC ON RA03
100 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 4-20 FTP connection using the VIPA 172.16.251.3 after restarting TCPIPC on RA03

Figure 4-21 shows the VIPA Connection Routing Table (VCRT) in RA03 and RA28, which
include the old and new connections to 172.16.251.3.1, 2 and 3 are old connections that are
still active on RA28. 4 is the new FTP connection to RA03.

Figure 4-21 Display VCRT on RA03 and RA28 after takeback

Figure 4-22 on page 102 shows the status of stacks TCPIPC on RA03 and TCPIPC on RA28
in each system. The status MOVING for IP address 172.16.251.3 in the RA28 display means
that another stack has activated the VIPA and has advertised reachability to it.

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS03C, 15:45:38 on 2000-09-12.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "/u/claudia".

RO RA28,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 717
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00020 9.24.106.64 01181 172.16.233.28 1
172.16.251.3 00021 9.24.106.64 01180 172.16.233.28 2
172.16.251.3 00023 9.24.106.64 01179 172.16.233.28 3
172.16.251.28 00023 9.24.106.64 01178 172.16.233.28
4 OF 4 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 932
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00021 9.24.106.64 01182 172.16.233.3 4
172.16.251.3 00021 9.24.106.64 01180 172.16.233.28 2
172.16.251.3 00023 9.24.106.64 01179 172.16.233.28 3
3 OF 3 RECORDS DISPLAYED
Chapter 4. Automatic VIPA takeover and takeback 101

Figure 4-22 Display VIPAD after takeback

4.4.2 Automatic VIPA takeover/takeback - MOVE WHENIDLE
On each stack we configured a primary VIPA address and a backup address for the other
stack's primary VIPA. We performed the following sequence of actions:

1. Define the primary VIPA IP addresses: 172.16.251.3 on TCPIPC on RA03 and
172.16.251.28 on TCPIPC on RA28. This time, the primary VIPA 172.16.251.3 on
TCPIPC on RA03 was defined with parameter MOVE WHENIDLE.

2. Define the backup VIPA IP addresses: 172.16.251.3 on TCPIPC on RA28 and
172.16.251.28 on TCPIPC on RA03.

3. Start our server applications on both of the stacks, and establish connections from a client
to the server on TCPIPC on RA03 using the VIPA 172.16.251.3.

4. Log on to the TN3270 server on TCPIPC on RA03 using the VIPA.

5. Stop the TCPIPC on the RA03 stack.

6. Make sure the backup stack TCPIPC on RA28 takes over the VIPA 172.16.251.3.

7. Via dynamic routing (OSPF) the network is informed that the VIPA has moved and all
connection requests are routed to the stack owning the VIPA now (RA28).

8. Restart the TCPIPC and our server application at RA03.

9. Check that the VIPA is not moved back to the original stack.

10. Close all existing connections to VIPA address 172.16.251.3.

11. Make sure the original stack TCPIPC on RA03 takes back the VIPA 172.16.251.3.

12. Establish a new connection on TCPIPC on RA03 using VIPA 172.16.251.3.

Figure 4-23 shows our VIPA definitions on TCPIPC on RA28 and Figure 4-24 on page 103
shows the corresponding definitions on TCPIPC on RA03.

Figure 4-23 Dynamic VIPA definition for TCPIPC on RA03

RO RA03,D TCPIP,TCPIPC,N,VIPAD
D TCPIP,TCPIPC,N,VIPAD
EZZ2500I NETSTAT CS V2R10 TCPIPC 562
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 ACTIVE VIPADEFINE
172.16.251.28 255.255.255.0 BACKUP VIPABACKUP
2 OF 2 RECORDS DISPLAYED
RO RA28,D TCPIP,TCPIPC,N,VIPAD
D TCPIP,TCPIPC,N,VIPAD
EZZ2500I NETSTAT CS V2R10 TCPIPC 721
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 MOVING VIPABACKUP
172.16.251.28 255.255.255.0 ACTIVE VIPADEFINE
2 OF 2 RECORDS DISPLAYED

VIPADYNAMIC
 VIPADEFINE MOVE WHENIDLE 255.255.255.0 172.16.251.3
 VIPABACKUP 100 172.16.251.28
ENDVIPADYNAMIC
102 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 4-24 Dynamic VIPA definition for TCPIPC on RA28

Before stopping the TCPIPC on RA03, we used the DISPLAY SYSplex command to see our
definitions. Figure 4-25 shows the resulting output.

Figure 4-25 Display VIPA definition for TCPIPC on RA03 before stack failure

We also displayed the OSPF routing table on TCPIPC on RA03 as shown in Figure 4-26.

Figure 4-26 OMPROUTE table before TCPIPC on RA03 stack failure

We then stopped the TCP/IP stack TCPIPC on RA03, which caused the servers (TN3270 and
FTP) to terminate. The behavior in this case is exactly the same as in the previous scenario.
RA28 was informed of the failure through XCF and took steps to recover the failed VIPA.
TCPIPC on RA28 dynamically defined and activated this VIPA address itself because it is the
only backup. If more than one backup is defined, the stack defined with the highest rank will
receive the VIPA address. The console log on RA28 confirmed this, as shown in Figure 4-27.

VIPADYNAMIC
 VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.28
 VIPABACKUP 100 172.16.251.3
ENDVIPADYNAMIC

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 173
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 ------- ------- ------ ---- ------------ -------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- ------ ------ ---- ------------ -------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 100
4 OF 4 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,OMPROUTE,RTTABLE
D TCPIP,TCPIPC,OMPROUTE,RTTABLE
EZZ7847I ROUTING TABLE 268
TYPE DEST NET MASK COST AGE NEXT HOP(S)
 SPF 172.16.232.39 FFFFFFFF 8 1309 172.16.100.254
 DIR* 172.16.233.0 FFFFFF00 1 313 172.16.233.3
 SPF 172.16.233.3 FFFFFFFF 0 312 EZASAMEMVS
STAT* 172.16.233.28 FFFFFFFF 0 313 172.16.233.3
 SPF* 172.16.251.0 FFFFFF00 14 1309 172.16.100.254
 DIR* 172.16.251.3 FFFFFFFF 1 1304 VIPLAC10FB03
 SPF 172.16.251.28 FFFFFFFF 14 1309 172.16.100.254
 SPF 172.16.252.0 FFFFFF00 8 1309 172.16.100.254
 SPF 172.16.252.28 FFFFFFFF 8 1309 172.16.100.254
.
.

Chapter 4. Automatic VIPA takeover and takeback 103

Figure 4-27 Console message on RA28 at VIPA takeover

Figure 4-28 shows an FTP client connection to TCPIPC on RA03 (address 172.16.251.3).
Although stack TCPIPC on RA03 is not active, the connection is established with TCPIPC on
RA28 (MVS28C), the stack that took over ownership of the VIPA.

Figure 4-28 FTP connection established after stopping TCPIPC stack on RA03

We then issued some TCP/IP display commands at RA28 to check the new status.
Figure 4-29 shows the VIPA address 172.16.251.3 is active on RA28.

Figure 4-29 Display NETSTAT,VIPADYN after stopping TCPIPC on RA03

Figure 4-30 on page 105 shows the VIPA address 172.16.251.3 was added to stack TCPIPC
on RA28.

EZZ8301I VIPA 172.16.251.3 TAKEN OVER FROM TCPIPC ON RA03
EZZ4323I CONNECTION TO 172.16.233.3 CLEARED FOR DEVICE RA03M

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS28C, 19:47:45 on 2000-09-15.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "CLAUDIA.".
ftp>

RO RA28,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 153
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA28
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 ------- ------- ------ ---- ------------ -------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
IPADDR: 172.16.251.28 LINKNAME: VIPLAC10FB1C
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 ------- ------- ------ ---- ------------ -------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
2 OF 2 RECORDS DISPLAYED
104 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 4-30 Display NETSTAT,HOME after stopping TCPIPC on RA28

After some time, we restarted TCPIPC on RA03 and started a new connection to VIPA
address 172.16.251.3. Since we defined this VIPA as MOVE WHENIDLE, this VIPA was not
taken back for TCPIPC on RA03 because there were some active connections to
172.16.251.3 on stack TCPIPC on RA28. Figure 4-31 shows a new FTP connection to VIPA
address 172.16.251.3 and shows that this connection was established with RA28, since the
VIPA has not yet been taken back.

Figure 4-31 FTP connection after restarting TCPIPC on RA03

Figure 4-32 shows active connections to VIPA address 172.16.251.3 on TCPIPC on RA28.

Figure 4-32 Display NETSTAT,SOCKETS after restarting TCPIPC on RA03

Figure 4-33 on page 106 shows the VIPA address 172.16.151.3 is still active on stack
TCPIPC on RA28.

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 161
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS28C, 20:06:39 on 2000-09-15.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "CLAUDIA.".
ftp>

O RA28,D TCPIP,TCPIPC,N,SOCKETS
D TCPIP,TCPIPC,N,SOCKETS
EZZ2500I NETSTAT CS V2R10 TCPIPC 279
SOCKETS INTERFACE STATUS:
TYPE BOUND TO CONNECTED TO STATE CONN
NAME: BPXOINIT SUBTASK: 006ECB58
STREAM 172.16.251.3..21 9.24.106.64..1234 ESTBLSH 00000678
STREAM 172.16.251.3..23 9.24.106.64..1233 ESTBLSH 00000671
STREAM 172.16.251.28..23 9.24.106.64..1220 ESTBLSH 00000420
Chapter 4. Automatic VIPA takeover and takeback 105

Figure 4-33 Display SYSPLEX,VIPAD after restarting TCPIPC on RA03

Figure 4-34 shows that VIPA address 172.16.251.3 is not deleted from TCPIPC on RA28 and
is not added to TCPIPC on RA03.

Figure 4-34 Display NETSTAT,HOME after restarting TCPIPC on RA03

After these displays, we closed all connections to VIPA IP address 172.16.251.3, which is
active on TCPIPC on RA28. At this moment, the VIPA IP address 172.16.251.3 is taken back
to the original stack TCPIPC on RA03 image. The console log on RA28 and RA03 (the first
message is issued on RA28 and the second one is issued on RA03) confirmed this as shown
in Figure 4-35 on page 107.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 927
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3
 ORIGIN: VIPADEFINE CONTENTION
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 ------- ------- ------ ---- ------------ -------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 255
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 ------- ------- ------ ---- ------------ -------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 100

4 OF 4 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 161
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 634
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28
172.16.233.3 EZAXCF39
127.0.0.1 LOOPBACK
5 OF 5 RECORDS DISPLAYED
106 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 4-35 Console message on RA28 and RA03 at VIPA takeback

Then, we issued the NETSTAT,HOME command and verified that the VIPA IP address
172.16.251.3 was added to TCPIPC on RA03 again and deleted from TCPIPC on RA28 as
shown in Figure 4-36.

Figure 4-36 Display NETSTAT,HOME after takeback

Figure 4-37 on page 108 shows the VIPA address 172.16.251.03 is active on TCPIPC on
RA03 again.

EZZ8303I VIPA 172.16.251.3 GIVEN TO TCPIPC ON RA03
EZZ8301I VIPA 172.16.251.3 TAKEN OVER FROM TCPIPC ON RA28

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 120
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28
172.16.233.3 EZAXCF39
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 260
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED
Chapter 4. Automatic VIPA takeover and takeback 107

Figure 4-37 Display SYSPLEX,VIPAD after takeback

Figure 4-38 shows a new connection to VIPA address 172.16.251.3, which is established on
TCPIPC on RA03.

Figure 4-38 FTP connection after takeback

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 207
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 ------- ------- ------ ---- ------------ -------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA28 BACKUP 200
IPADDR: 172.16.251.28
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 ------- ------- ------ ---- ------------ -------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
 TCPIPC RA03 BACKUP 100
4 OF 4 RECORDS DISPLAYED

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS03C, 20:26:53 on 2000-09-15.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "/u/claudia".
ftp>
108 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Chapter 5. Sysplex Distributor

Sysplex Distributor is a function introduced in IBM Communications Server for OS/390
V2R10 IP that takes the XCF dynamics and Dynamic VIPA support to a whole new level in
terms of availability and workload balancing in a sysplex. Workload can be distributed to
multiple server instances within the sysplex without requiring changes to clients or networking
hardware and without delays in connection setup. CS for z/OS IP provides the way to
implement a dynamic VIPA as a single network-visible IP address for a set of hosts that
belong to the same sysplex cluster. Any client located anywhere in the IP network is able to
see the sysplex cluster as one IP address, regardless of the number of hosts that it includes.

With Sysplex Distributor, clients receive the benefits of workload distribution provided by both
Workload Manager (WLM) and Quality of Service (QoS) Policy Agent. In addition, Sysplex
Distributor ensures high availability of the IP applications running on the sysplex cluster, no
matter if one physical network interface fails or an entire IP stack or z/OS is lost.

5

© Copyright IBM Corp. 2002. All rights reserved. 109

5.1 Static VIPA and Dynamic VIPA overview
The concept of virtual IP address (VIPA) was introduced by IBM to remove the dependencies
of other hosts on particular network attachments to CS for z/OS IP. Prior to VIPA, other hosts
were bound to one of the home IP addresses and, therefore, to a particular network interface.
If the physical network interface failed, the home IP address became unreachable and all the
connections already established with this IP address also failed. VIPA provides a virtual
network interface with a virtual IP address that other TCP/IP hosts can use to select a z/OS
IP stack without choosing a specific network interface on that stack. If a specific physical
network interface fails, the VIPA address remains reachable by other physical network
interfaces. Hosts that connect to z/OS IP applications can send data to a VIPA address via
whatever path is selected by the dynamic routing protocol (such as RIP or OSPF).

A VIPA is configured the same as a normal IP address for a physical adapter, except that it is
not associated with any particular interface. VIPA uses a virtual device and a virtual IP
address. The virtual IP address is added to the home address list. The virtual device defined
for the VIPA using DEVICE, LINK and HOME statements is always active and never fails.
Moreover, the z/OS IP stack advertises routes to the VIPA address as if it were one hop away
and has reachability to it.

To an attached router, the IP stack in z/OS simply looks like another router. When the IP stack
receives a packet destined for the VIPA, the inbound IP function of the stack notes that the IP
address of the packet is in the stack’s home list and forwards the packet up the stack.
Assuming that the IP stack has more than one network interface, if a particular network
interface fails, the downstream router will simply route VIPA-targeted packets to the stack via
an alternate route. In other words, the destination IP stack on z/OS is still reachable and it
looks like another intermediate node. The VIPA may thus be thought of as an address of the
stack and not of any particular network interface associated with the stack.

While VIPA certainly removes the dependency on any particular network interface as a single
point of failure, the connectivity of a server can still be lost when a single stack or a z/OS
image fails. When this occurs, we could manually move a VIPA to another stack using the
OBEY command (or semi-automatically using any system management automation of the
manual process). This type of VIPA is not viewed as attractive, since the process is inherently
manual. As a result, an automatic VIPA movement and activation mechanism were added.

Dynamic VIPA was introduced by SecureWay Communications Server for OS/390 V2R8 IP to
enable the dynamic activation of a VIPA as well as the automatic movement of a VIPA to
another surviving z/OS image after a z/OS stack failure. There are two forms of Dynamic
VIPA, both of which can be used for takeover functionality:

� Automatic VIPA takeover allows a VIPA address to move automatically to a stack (called a
backup stack) where an existing suitable application instance is already active and allows
the application to serve the client formerly going to the failed stack.

� Dynamic VIPA activation for an application server allows an application to create and
activate VIPA so that the VIPA moves when the application moves.

Nondisruptive, immediate, automatic VIPA takeback was introduced by IBM Communications
Server for OS/390 V2R10 to move the VIPA back to where it originally belongs once the failed
stack has been restored. This takeback is nondisruptive to existing connections with the
backup stack and the takeback is not delayed until all connections with the backup stack have
terminated (as was the case with CS for OS/390 V2R8 IP). New connections will be handled
by the new (original) primary owner, thereby allowing the workload to move back to the
original stack.
110 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

5.2 What is Sysplex Distributor?
Sysplex Distributor was designed to address the requirement of one single network-visible IP
address for the sysplex cluster and let the clients in the network receive the benefits of
workload distribution and high availability within the sysplex cluster. With Sysplex Distributor,
client connections seem to be connected to a single IP host even if the connections are
established with different servers in the same sysplex cluster.

Because the Sysplex Distributor function resides on a system in the sysplex itself, it has the
ability to factor "real-time" information concerning the multiple server instances including
server status as well as QoS and Policy information provided by CS for z/OS IP’s Policy
Agent. By combining these "real-time" factors with the information from WLM, the Sysplex
Distributor has the unique ability to ensure that the best destination server instance is chosen
for a particular client connection. The Sysplex Distributor has more benefits than other
load-balancing implementations, such as the Network Dispatcher or DNS/WLM. Their
limitations are removed with Sysplex Distributor.

In summary, the benefits of Sysplex Distributor include:

1. Removes configuration limitations of Network Dispatcher

Target servers can use XCF (or Hipersockets) links between the distributing stack and
target servers as opposed to LAN connections such as an OSA.

2. Removes dependency of specific hardware in WAN

Provides a total CS for z/OS IP solution for workload distribution.

3. Provides real-time workload balancing for TCP/IP applications

Even if clients cache the IP address of the server (a common problem for DNS/WLM).

4. Enhances VIPA takeover and takeback support

– Allows for nondisruptive takeback of VIPA original owner to get workload where it
belongs.

– Distributing function can be backed up and taken over.

5. Enhances Dynamic VIPA support

Nondisruptive application server instance movement.

6. Has immediate visibility of new server instances or loss of a server instance.

Target stacks are aware of when an application instance has a listening socket that could
accept connections via a distributed DVIPA, or when such a socket is closed (or the
application instance terminates for any reason). The target stacks notify the routing stack
proactively, and there is no need for application advisors on the routing stack.

In summary, Sysplex Distributor provides a single network-visible IP address of a sysplex
cluster service. One IP address can be assigned to the entire sysplex cluster (usually for each
service provided, such as Telnet):

� Sysplex Distributor will query the Policy Agent to find if there exists any policy defined for
routing the incoming connection requests.

� WLM and QoS policy can be specified for workload balancing in real time on every new
connection request.

The specific profile statements that should be used to configure Sysplex Distributor will be
detailed later in 5.4, “Sysplex Distributor implementation” on page 116.
Chapter 5. Sysplex Distributor 111

5.2.1 Sysplex Distributor functionality
Let us consider the scenario depicted in Figure 5-1 on page 113. This includes four CS for
OS/390 V2R10 IP stacks running in the same sysplex cluster in GOAL mode (WLM GOAL
mode). All of them have SYSPLEXROUTING, DATAGRAMFWD, and DYNAMICXCF
configured. Let us assume that:

� H1 is configured as the distributing IP stack with V1 as the Dynamic VIPA (DVIPA)
assigned to the sysplex cluster.

� H2 is configured as backup for V1.

� H3 and H4 are configured as secondary backups for V1.

� Let us suppose that APPL1 is running in all the hosts that are members of the same
sysplex cluster. Note that the application could also be running in two or three of the hosts
or in all of them at the same time.

With this in mind, we describe how Sysplex Distributor works:

1. When IP stack H1 is activated, the definitions for the local XCF1 link are created
dynamically due to DYNAMICXCF being coded in the H1 profile. Through this new link, H1
recognizes the other IP stacks that belong to the same sysplex cluster and their XCF
associated links: XCF2, XCF3, and XCF4.

2. The DVIPA assigned to the sysplex cluster and the application ports that this DVIPA serves
are read from the VIPADISTRIBUTE statement in the profile data set. An entry in the
home list is added with the distributed IP address in all the IP stacks. The home list entry
on the target stacks is actually done with a message that H1 sends to all the stacks read
from the VIPADISTRIBUTE statement. Only one stack advertises the DVIPA through the
RIP or OSPF routing protocol. In this case it is the one that resides in H1, the host in
charge of load distribution.

3. H1 monitors whether there is at least one application (APPL1 in Figure 5-1 on page 113)
with a listening socket for the designated port and DVIPA. Actually H2, H3, and H4 will
send a message to H1 when a server (in our case APPL1) is bound to either
INADDR_ANY or specifically to the DVIPA (and, of course, the designated port). With that
information H1 builds a table with the name of the application and the IP stacks that could
serve any connection request for it. The table matches the application server listening port
with the target XCF IP address.

4. When a client in the network requests a service from APPL1, the DNS resolves the IP
address for the application with the DVIPA address. This DNS could be any DNS in the IP
network and does not need to register with WLM.

5. As soon as H1 receives the connection request (TCP segment with the SYN flag), it
queries WLM and/or QoS to select the best target stack for APPL1 and forwards the SYN
segment to the chosen target stack. In our example, it is APPL1 in H4 that best fits the
request.

6. One entry is created in the connection routing table (CRT) in H1 for this new connection
with XCF4 as the target IP address. H4 also adds the connection to its connection routing
table.

7. The H1 IP stack will forward subsequent incoming data for this connection to the correct
target stack.

Note: If a program binds to DVIPA on H4 and initiates a connection, H4 needs to send a
message to H1, so H1 can update its connection routing table accordingly. As an
example, this is used when the FTP server on H4 would initiate a data connection (port
20) to a client.
112 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

8. When the H4 IP stack decides that the connection no longer exists, it informs the H1 IP
stack with a message so H1 can remove the connection from its connection routing table.

Figure 5-1 Sysplex Distributor functionality

5.2.2 Backup capability
Let us say that the scenario depicted has been running for some time without problems. The
new APPL1 connections have been distributed according to WLM and/or QoS to H1, H2, H3,
and H4. Suppose that a considerable amount of connections are currently established
between several APPL1 server images and clients in the IP network. What would happen if
we had a major failure in our distributing IP stack, H1?

Automatic Dynamic VIPA takeover was introduced in SecureWay Communications Server for
OS/390 V2R8 IP. This function allows a VIPA address to automatically move from one IP
stack where it was defined to another one in the event of the failure of the first. The VIPA
address remains active in the IP network, allowing clients to access the services associated
with it.

In IBM Communication Server for OS/390 V2R10, this VIPA takeover functionality was
enhanced to support Sysplex Distributor. Consider the scenario described in Figure 5-2 on
page 114.

WLM/QOS

Dest=V1
Src=a.b.c.d

Unadvertised V1

Unadvertised V1
XCF2

XCF3

XCF4XCF1

DVIPA: V1 H1 APPL1

H3 APPL1

H2 APPL1

CRT

DPT: Destination port table
CRT: Connection routing table

SYN?
 Select server
 Add conn to table
RST/FIN?
 Find conn table
 Remove table
Otherwise?
 Find conn table
Forward to server (x)

 DPT CRT

CRT

CF

Dest=V1
Src=a.b.c.d

Unadvertised V1

H4 APPL1

CRT
Chapter 5. Sysplex Distributor 113

H1 is the distributing IP stack and H2 is the primary VIPABACKUP IP stack. When H1 fails
(Figure 5-2):

1. All the IP connections terminating at H1 are lost.

2. The Sysplex Distributor connection routing table (CRT) is also lost.

Figure 5-2 Sysplex Distributor and VIPA takeover

3. H2 detects that H1 is down and defines itself as the distributing IP stack for the VIPA.

4. Because H2 saved information about H1, it informs the other target stacks that it knows V1
is distributable.

5. H3 and H4 find out that H2 is the chosen backup for V1 and immediately send connection
information regarding V1 to IP stack H2.

6. H2 advertises V1(DVIPA) through the dynamic routing protocol (RIP or OSPF).
Retransmitted TCP segments for already existing connections or SYN segments for new
connections are hereafter processed by IP stack H2 and routed by H2 to the appropriate
target stacks.

Note: Only the IP connections with the failing IP stack were lost. All other connections
remain allocated and function properly

Dest=V1
Src=a.b.c.d

Unadvertised V1

XCF2
XCF3

XCF4XCF1

DVIPA: V1 H1
APPL1

H3 APPL1

H2 APPL1

Same algorithm as in
original distributor Dest=V1

Src=a.b.c.d

WLM/QOS

V1
TakeOver

 DPT CRT

CRT

SYN ?
 Select server
 Add conn to table
RST/FIN ?
 Find conn table
 Remove table
Otherwise ?
 Find conn table
Forward to server (x)

 DPT CRT
DPT: Destination port table
CRT: Connection routing table

CF

Unadvertised V1

H4 APPL1

CRT
114 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

5.2.3 Recovery
Once the H1 IP stack is activated again the process of taking back V1 to H1 is started. This
process is nondisruptive for the IP connections already established with V1 regardless of
which host is the owner at that time (in our example H2). In our example, connection
information is maintained by H2. When H1 is re-activated, H2 sends its connection
information to H1. This gives H1 the information it needs to once again distribute packets for
existing connections to the correct stacks in the sysplex.

Connections with the backup host are not broken when the V1 address is taken back to H1,
and takeback is not delayed until all connections with the backup host have terminated
(Figure 5-3).

Figure 5-3 Sysplex Distributor and VIPA takeback

5.3 The role of dynamic routing with Sysplex Distributor
Routing IP packets for Sysplex Distributor can be divided into two cases: routing inside the
sysplex cluster and routing through the IP network. Routing inside the sysplex cluster is
accomplished by the distributing host. All incoming traffic (new connection requests and
connection data) arrives first to the distributing stack. It forwards the traffic to the target
applications, wherever they are in the sysplex cluster, through the XCF links. Here the routing
process is done without considering any IP routing table. The WLM and QoS weights are the

WLM/QOS

Dest=V1
Src=a.b.c.d

Dest=V1
Src=a.b.c.d

Unadvertised V1

Unadvertised V1
XCF2

XCF3

XCF4XCF1

DVIPA: V1 H1 APPL1

H3 APPL1

H2 APPL1

V1
TakeBack

Same algorithm
as in original
 Distributor

 DPT CRT

CRT

 DPT CRT

DPT: Destination port table
CRT: Connection routing table

CF

Unadvertised V1

H4 APPL1

CRT
Chapter 5. Sysplex Distributor 115

factors considered in target selection for new requests and the CRT is the consulted data
structure for connection data. On the other hand, the outgoing traffic generated by the
applications is routed considering the destination IP address and the routing table in each
stack.

Routing outside the sysplex through the IP network is done by the downstream routers.
Those routers learn about the DVIPA assigned to the sysplex dynamically using OSPF or RIP
routing protocols. As a result, it is usually necessary to implement either one of these routing
protocols in all the IP stacks of the sysplex cluster.

The distributing VIPA address is dynamically added to the home list of each IP stack
participating in the Sysplex Distributor, but only one IP stack advertises the sysplex VIPA
address to the routers: the one defined as the distributing IP stack. The other stacks do not
advertise it and only the backup IP stack will do so if the distributing IP stack fails.

If ORouteD is being used, then the Dynamic VIPA support generates the appropriate
BSDROUTINGPARMS statement.

If you are using OMPROUTE, you should consider the following as referenced in Figure 5-4:

� The names 2 of Dynamic VIPA interfaces are assigned dynamically by the stack when
they are created. Therefore, the name coded for the OSPF_Interface statement in the
Name 2 field will be ignored by OMPROUTE.

� It is recommended that each OMPROUTE server have an OSPF_Interface defined for
each Dynamic VIPA address that the IP stack might own or, if the number of DVIPAs
addresses is large, a wildcard should be used.

It is also possible to define ranges of dynamic VIPA interfaces using the subnet mask and the
IP address on the OSPF_Interface statement. The range defined will be all the IP addresses
that fall within the subnet defined by the mask and the IP address. The following example 1
defines a range of Dynamic VIPA addresses from 10.138.165.80 to 10.138.165.95:

Figure 5-4 Dynamic VIPA OSPF definition

For consistency with the VIPARANGE statement in the TCPIP.PROFILE, any value that may
fall within this range can be used with the mask to define a range of dynamic VIPAs.

For additional information on routing, please see Communications Server for z/OS V1R2
TCP/IP Implementation Guide Volume 4: Connectivity and Routing, SG24-6516.

5.4 Sysplex Distributor implementation
The implementation of Sysplex Distributor is very straightforward. The TCP/IP configuration
that needs to take place is minimal compared to other connection dispatching technologies.
For the most part, the sysplex environment enables the dynamic establishment of links and
the dynamic coordination between stacks in the cluster.

OSPF_Interface
 IP_address = 10.138.165.80 1
 Name = dummy_name 2
 Subnet_mask = 255.255.255.240
116 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

5.4.1 Requirements
The IPCONFIG DATAGRAMFWD and DYNAMICXCF statements must be coded in the
TCPIP.PROFILE data set in all the IP stacks of the sysplex cluster.

If you want to implement a WLM-based distribution, you have to register all IP stacks
participating in the sysplex with WLM coding SYSPLEXROUTING in each IP stack. Also
verify that all the participating CS for z/OS IP images are configured for WLM GOAL mode.

To enable the distributing IP stack to forward connections based upon a combination of
workload information and network performance information, configure all the participating
stacks for WLM GOAL mode. Specify SYSPLEXROUTING in the IPCONFIG statement in all
the participating stacks and also define a Sysplex Distributor Performance Policy on the target
stack with the Policy Agent. Otherwise, If SYSPLEXROUTING is not coded in any IP stack,
the distribution for incoming connections to the target applications will be random.

For those z/OS images that are running more than one IP stack, the recommended way to
define XCF and IUTSAMEH links is to use the IPCONFIG DYNAMICXCF. In fact, IUTSAMEH
links should not be specified if the IP stack is participating in Sysplex Distributor.

For any IP application that uses both control and data ports, both port numbers must be
distributed by the same Dynamic VIPA address (for example FTP).

5.4.2 Limitations
FTP passive mode should not be used with Sysplex Distributor, as documented in z/OS
V1R2.0 CS: IP User’s Guide and Commands, SC31-8780. If the host for the secondary FTP
server has the Sysplex Distributor function distributing FTP server workload, then the client
should not use the proxy subcommand. The PASV command that is used by the proxy
subcommand to allow the secondary FTP server to be the passive side of a data connection
cannot be handled properly at the secondary FTP server host. Note that Sysplex Distributor
cannot work with FTP passive mode, because the FTP server uses ephemeral ports for the
passive connection and ephemeral ports cannot be distributed by Sysplex Distributor
function. Note that this restriction is removed in V1R4.

 Figure 5-5 on page 118 and the steps below show a short example:

1. The client that requests the passive mode connection to allow the FTP server to be the
passive side of the data connection is using the DVIPA V1 of the Sysplex Distributor.

2. Sysplex Distributor in conjunction with WLM selects the target stack.

3. Sysplex Distributor forwards this control connection request to port 21 on the target stack.
The FTP server recognizes the request for passive mode and selects an ephemeral port
1428 for the data connection.

4. This information of the ephemeral port is sent to the client over the control connection.

5. The client will use this ephemeral port (1428) to establish the data connection using the
DVIPA V1 of the Sysplex Distributor.

6. But the Sysplex Distributor will reject that request, since it is not aware of such a port
number. Remember that we have to define on the VIPADISTRibute statement the ports for
which we are to distribute workload.
Chapter 5. Sysplex Distributor 117

Figure 5-5 FTP passive mode limitations for Sysplex Distributor

During our tests we found another limitation that should be mentioned. If the Sysplex
Distributor distributing stack is distributing workload for one port and not for some other (no
VIPADISTribute statement for it is defined), the Sysplex Distributor stack will not allow the
connection to that port even if a local application is listening on it.

Consider the example shown in Figure 5-6 on page 119:

� Assume that we want to distribute only TN3270E services to the participating stacks
RA03,RA28, and RA39. For that we code the following statements:

 VIPADYNAMIC
 VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
 VIPADISTRIBUTE 172.16.251.3 PORT 23 DESTIP ALL
 ENDVIPADYNAMIC

� We have only defined one DVIPA to distribute the workload.

RA03 RA28

DVIPA V1
DISTRIBUTOR
STACK

DVIPA V1
TARGET
 STACK

FTPD
21,20

D/T 2216

NETWORK

FTP client requesting passive mode

SYN ?
Select server
forward to server

WLM

1

2

3

4

5

6

Selects ephemeral
port 1428 for data
connection

CF
118 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

� If we now try to connect to the FTP or the Web server on the distributing stack RA03 using
the same DVIPA, the Sysplex Distributor stack disallows access to these ports even
though the distributing stack has these applications currently active. The connection
requests for these applications time out.

Figure 5-6 Sysplex Distributor limitation

There are actually two bypasses to solve this limitation:

1. We could code another VIPADISTribute statement for the IP service (port) in question
(FTP in our case) and explicitly define on the DESTIP keyword the <dynxcfip> address to
which target stack it should be distributed (the local, distributing stack). However, note that
you can only define four distributed ports per DVIPA. In our case, we would define this for
the Web server using the following VIPADISTribute statement:

VIPADYNAMIC
 VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
 VIPADISTRIBUTE 172.16.251.3 PORT 23 DESTIP ALL
 VIPADISTRIBUTE 172.16.251.3 PORT 80 DESTIP 172.16.233.3
ENDVIPADYNAMIC

The configuration for the FTP server would be similar.

D/T 2216

CF

RA03

DVIPA
172.16.251.3
DISTRIBUTOR
STACK

FTP 20, 21

TN3270E 23

Web server 80

RA28

DVIPA
172.16.251.3
TARGET STACK

TN3270E 23

RA39

DVIPA
172.16.251.3
TARGET STACK

TN3270E 23

172.16.233.3 172.16.233.39
172.16.233.28

NETWORK
Chapter 5. Sysplex Distributor 119

2. An alternative is to code one DVIPA for every different IP service (port). The limit of
DVIPAs per stack has been raised to 256, thereby effectively eliminating this concern.
However, you would have to use different host names/IP addresses to connect to the
applications, which may pose a problem in already implemented environments in which
the same DVIPA is already being used for multiple services.

5.4.3 Implementation
The following list shows what is needed to implement Sysplex Distributor:

1. Choose which IP stack is going to execute the Sysplex Distributor distributing function.

2. Select which IP stacks are going to be the backup stack for the Sysplex Distributor stack
and in which order.

3. Ensure that WLM GOAL mode is enabled in all the LPARs participating in the Sysplex
Distributor.

4. Enable sysplex routing in all the IP stack participating in the Sysplex Distributor with the
SYSPLEXROUTING statement.

5. For those IP stacks that are active under a multi-stack environment, the SAMEHOST links
have to be created dynamically. In general, code DYNAMICXCF in all the IP stacks
participating in the Sysplex Distributor.

6. Code DATAGRAMFWD in all IP stacks participating in the Sysplex Distributor.

7. Select, by port numbers, the applications that are going to be distributed using the Sysplex
Distributor function. Note that if the application chosen requires data and control ports,
both ports have to be considered.

8. Code the VIPADYNAMIC/ENDVIPADYNAMIC block for the distributing IP stack:

– Define the dynamic VIPA associated to the distributing IP stack with the VIPADEFINE
statement.

– Associate the sysplex Dynamic VIPA to the application’s port number with the
VIPADISTRIBUTE statement.

9. Code VIPADYNAMIC/ENDVIPADYNAMIC block for the distributor’s backup IP stack:

– Define the IP stack as backup for the sysplex DVIPA address with the VIPABACKUP
statement.

Figure 5-7 on page 121 shows the VIPA configuration statements. We show the syntax of the
VIPADEFINE, VIPABACKUP, and VIPADISTRIBUTE statements. VIPADYNAMIC and
ENDVIPADYNAMIC define the block of statements related to Dynamic VIPAs and Sysplex
Distributor. For a complete description of these statements, please refer to z/OS V1R2.0 CS:
IP Configuration Reference, SC31-8776.

Note: For Sysplex Distributor you cannot specify the XCF address using the
IUTSAMEH DEVICE, LINK, and HOME statements. XCF addresses must be allowed to
be dynamically created by coding the IPCONFIG DYNAMICXCF statement.
120 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-7 VIPADEFINE, VIPABACKUP, and VIPADISTRIBUTE syntax

VIPADEFINE designates one or more Dynamic VIPAs that this IP stack should initially own
and support. The parameter MOVEable IMMEDiate indicates that this Dynamic VIPA can be
moved to the original owning stack as soon as it re-initializes after a failure. On the other
hand, MOVEable WHENIDLE indicates that this Dynamic VIPA can be moved back to the
original owning stack only after the backup has no outstanding connections. In this case, new
connection requests will continue to be directed to the current owning stack (the backup).

VIPABACKUP designates one or more Dynamic VIPAs for which this IP stack will provide
automatic backup if the owning stack fails. The option rank specifies the intended backup
order; the stack with the highest rank will be used first.

VIPADISTRIBUTE enables (VIPADISTRIBUTE DEFINE) or disables (VIPADISTRIBUTE
DELETE) the Sysplex Distributor function on a Dynamic VIPA. PORT limits the scope of this
VIPADISTRIBUTE to the specified port number (up to four ports can be coded for the same
Dynamic VIPA).

DESTIP specifies the Dynamic XCF addresses that are candidates to receive new incoming
connection requests. DESTIP ALL means that all IP stacks in the sysplex that have defined a
Dynamic XCF address are candidates for incoming connection requests for this DVIPA,
including future stacks that are currently not active and running. Stacks are eligible to receive
connections if they have at least one application instance listening on the specified port.

The way that Sysplex Distributor distributes the workload can be modified using the Policy
Agent. Please refer to 5.5, “Sysplex Distributor and policy” on page 122. For a detailed
description about policy-based network management, refer to Communications Server for
z/OS V1R2 TCP/IP Implementation Guide Volume 6: Policy and Network Management,
SG24-6839.

VIPADEFine

MOVEable WHENIDLE

ipaddr

VIPADISTribute

ipaddr

DELETE

DEFINE

PORT num

DESTIP

ALL

dynxcfip

VIPABackup 1 ipaddr

address_mask

MOVEable IMMEDiate

rank

SERVICEMGR
Chapter 5. Sysplex Distributor 121

5.5 Sysplex Distributor and policy
Policies are an administrative means to define controls for a network, in order to achieve the
QoS levels promised by a given SLA or to implement security or resource balancing
decisions. Quality of Service policy allows classification of IP traffic by application, user
group, time of day, and assignment of relative priority. The Policy Agent reads policy entries
from a flat file called pagent.conf that can be located in any MVS or HFS file or from an LDAP
server or both. The Sysplex Distributor uses these policies to limit the target stack to route its
work in conjunction with the WLM weights. Note that the WLM has to run in GOAL mode at
the target stacks, or the QoS weights will have no effect and the distribution of the work is
random.

The following types of policies are supported in CS for z/OS IP:

Integrated Services Type of service that provides end-to-end QoS using resource
reservations along a network path from sender to receiver. This
service is provided by the RSVP Agent.

Differentiated Services Type of services that provides aggregate QoS to broad classes of
traffic (for example, all FTP traffic).

Sysplex Distribution Policies specify to which target stack the Sysplex Distributor may
route incoming connection requests.

Traffic Regulation Mgmt Policies define the maximum number of connections to a TCP
port and control the number from a single host to this port.

Intrusion Detection Policies detect possible intrusion attacks.

The Policy Agent performs two distinct functions to assist the Sysplex Distributor:

1. Policies can be defined to control which stack the sysplex distributor routes traffic to. The
definition of the outbound interface on the PolicyAction statement can limit the stacks to
which work is distributed to a subset of those defined on the VIPADISTRIBUTE statement
in the TCPIP.PROFILE. Using a policy, the stack to which work is distributed can vary, for
example, based on time periods. Another possibility is to limit the number of SD target
stacks for inbound traffic from a given subnet (Figure 5-8 on page 123).

2. The PolicyPerfMonitorForSDR statement in the pagent.conf file will activate the Policy
Agent QoS performance monitor function. When activated, the Policy Agent will use data
about packet loss and timeouts that exceed defined thresholds and derive a QoS weight
fraction for that target stack. This weight fraction is then used to reduce the WLM weight
assigned to the target stacks, so that the Sysplex Distributor stack can use this information
to better direct workload to where network traffic is best being handled. This policy is
activated on SD target stacks (Figure 5-8 on page 123).

To exclude stale data from target stacks where the Policy Agent has terminated, the Policy
Agent sends a “heartbeat” to the SD distributing stack at certain intervals. The SD distributing
stack deletes QoS weight fraction data from a target stack when the “heartbeat” has not been
received within a certain amount of time.

At ITSO Raleigh, we configured SD policies in two ways. In one scenario, the Policy Agent
extracts the policy information from a static configured HFS file (PAGENT file), and in another
case, an LDAP server running in z/OS provides all policy information in the network.

The sysplex consists of three z/OS systems: RA03, RA28, and RA39. On each system, there
is a TCP/IP stack named TCPIPC, which participates in Sysplex Distributor. The TCPIPC
stack on RA03 takes the role of the distributing stack, and the stacks on RA39 and RA28 act
as the primary and secondary backup respectively. An FTP server has been configured on
each SD stack as an application served by SD.
122 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

We have defined an SD policy for FTP connections to install into the SD distributing stack,
which is TCPIPC on RA03, and have defined an SD performance monitoring policy for the SD
target stacks, which are TCPIPC on RA28 and RA39. Figure 5-8 illustrates the system
environment at ITSO Raleigh.

Figure 5-8 Sysplex Distributor policy implementation at ITSO Raleigh

5.5.1 Sysplex Distributor QoS policy in the PAGENT file
Please review the definition of the TCPIP.PROFILE for the stacks RA03, RA28 and RA39 in
5.4, “Sysplex Distributor implementation” on page 116. We did not change anything in the
TCPIP.PROFILE to run the QoS policy for Sysplex Distributor.

We defined the SD policies that limit the number of SD target stacks for inbound traffic on the
SD target stack, and the SD performance monitoring policies on all the participating stacks.
For SD performance monitoring, the traffic to be monitored has to be represented by at least
one Differentiated Services policy defined for the target application.

All policies have been configured in the image configuration file, which is the second-level
PAGENT configuration file, namely /etc/pagent.r2615c.conf.

You will find further information about SD policy and SD performance monitor policy in z/OS
V1R2.0 CS: IP Configuration Guide, SC31-8775 and z/OS V1R2.0 CS: IP Configuration
Reference, SC31-8776. More detailed information is also found in the redbook
Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 6: Policy and
Network Management, SG24-6839.

We have the following SD policies configured in the SD distributing stack (TCPIPC on RA03):

#
IBM Communications Server for OS/390
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAPAGCO
#

SD Target Stack TCPIPC

SD

QoS Weight
Fraction

PAGENT
Policy Agent

Statistics

SD Target Stack TCPIPC

SD

QoS Weight
Fraction

PAGENT
Policy Agent

Statistics

CF

List of target XCF addresses for
inbound traffic to target port.

- TCP Timeouts and
 retransmissions for source
 port.
- TRM constrained destination
 port.

QoS Weight
Fraction

SD Distributing Stack TCPIPC

SD/WLM
Interface

PAGENT
Policy Agent

Policies
TCPIPA

LDAP
FTPD

FTPD FTPD

RA03

RA28 RA39
Chapter 5. Sysplex Distributor 123

LogLevel Statement
Loglevel 511

PolicyPerfMonitorForSDR Statement
PolicyPerfMonitorForSDR enable
{
 samplinginterval 60
 LossRatioAndWeightFr 20 25
 TimeoutRatioAndWeightFr 50 50
 LossMaxWeightFr 95
 TimeoutMaxWeightFr 100
}

Policy Action statement
policyAction ftpaction
{
 policyScope DataTraffic
 outboundinterface 172.16.233.28 1
 outboundinterface 172.16.233.39 1
outboundinterface 0.0.0.0 2
}

Policy Rule statement
policyRule ftprule
{
 ProtocolNumberRange 6
 DestinationPortRange 20 21 3
 SourceAddressRange 9.24.106.0 9.24.106.255 4
 policyactionreference ftpaction 5
}

The policies are identified as SD policies by the presence of the Outboundinterface 1 attribute
in the PolicyAction statement. You have to define to which SD target stacks incoming
connection requests that map to this rule should be distributed. The target stacks are
identified by the IP address of the dynamic XCF link. Up to 32 instances of this attribute can
be specified. See 5.4, “Sysplex Distributor implementation” on page 116 for the DESTIP 1
address of the dynamic XCF link participating in Sysplex Distributor.

2 A value of zero can be specified for the interface, which indicates to the SD distributing
stack that if it cannot distribute the request to a target stack on one of the other specified
interfaces, then the request can be distributed to any of the other eligible target stacks.

Because we commented out the Outboundinterface 0.0.0.0 definition, SD will reject the
request when neither of the target stacks is available.

In our implementation, the incoming FTP connection requests will be forwarded to either
RA28 or RA39 for inbound traffic from a given 4 subnet, even though there is an FTP server
running on RA03. For FTP and other applications that use a 3 control port and a data port,
you always have to define both. Note that without this SD policy activated, an incoming FTP
connection will be forwarded to either of three systems.

5 You always match the policyRule to the policyAction by the policyActionReference
statement.
124 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

An additional possibility would be to activate this policy only at certain times, let’s say during
normal working hours from Monday to Friday between 08:00 and 17:00, which we didn’t do in
our implementation. But you would have to add only two statements to the policyRule
definitions. Check the sample file /usr/lpp/tcpip/samples/pagent.conf for the correct syntax
and explanation.

DayOfWeekMask 0111110
TimeOfDayRange 08:00-17:00

On the SD target stacks, the following policies have been activated:

#
IBM Communications Server for OS/390
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAPAGCO
#
LogLevel Statement
Loglevel 511

PolicyPerfMonitorForSDR Statement
PolicyPerfMonitorForSDR enable 1
{
 samplinginterval 60 2
 LossRatioAndWeightFr 20 25 3
 TimeoutRatioAndWeightFr 50 50 4
 LossMaxWeightFr 95 5
 TimeoutMaxWeightFr 100 6
}

Policy Action statement
policyAction ftpaction 7
{
 policyScope DataTraffic 8
 MaxConnections 50 # Limit FTP concurrent connections to 50.
 MaxRate 400 # Limit FTP connection throughput to 400
 OutgoingTOS 01000000 # the TOS value of outgoing FTP packets.
}

Policy Rule statement
policyRule ftprule 9
{
 ProtocolNumberRange 6
 DestinationPortRange 20 21
 SourceAddressRange 9.24.106.0 9.24.106.255
 policyactionreference ftpaction
}

1 Enables the policy performance monitor function, which assigns a weight fraction to the
monitored policy performance data and sends them to the SD distributing stack as the
monitored data crosses defined thresholds. The SD distributing stack uses this weight
fraction for its routing decisions for incoming connection requests.

2 With the samplingInterval we specify how often we want to sample the policy information for
changes.
Chapter 5. Sysplex Distributor 125

3 The LossRatioAndWeightFr has two values: the ratio of retransmitted bytes over transmitted
bytes in tenths of a percent, and the weight fraction to be assigned in percentage. In our
implementation, if a loss ratio rate of 2% occurs, the loss fraction will be 25%. If a loss ratio
rate above 4% occurs, the loss weight fraction will be 50%. Let’s assume we have a loss ratio
rate of 3%, which means a loss weight fraction of 25%.

4 The TimeoutRatioAndWeightFr has two values: the timeout ratio in tenths of a percent, and
the weight fraction to be assigned in percentage. In our implementation, if a timeout ratio rate
of 5% occurs, the timeout fraction weight would be 50%. If the timeout ratio rate is above
10%, the timeout weight fraction would be 100%. Let’s assume we have a timeout ratio of 6%,
which means we have a timeout weight fraction of 50%.

The two weight fractions LossRatioAndWeightFr and TimeoutRatioWeightFr will then be
added. In our case, we would have a QoS weight fraction value of 75%, which this target
stack sends to the Sysplex Distributor. This value will be used by the Sysplex Distributor stack
to reduce the WLM weight given to this stack. So if the WLM weight assigned to this target
stack is 50, the QoS weight fraction of 75% will give an effective WLM weight fraction of 37.5.

5 LossMaxWeightFr defines the maximum loss weight fraction.

6 TimeoutMaxWeightFr defines the maximum timeout weight fraction.

The Policy Agent monitors the traffic for which one or more service policy statements have
been defined 7, 9. The policyScope attribute for the monitored policy has to be either
DataTraffic 8 or Both. We monitored the FTP traffic originated from the 9.24.106 IP
subnetwork.

5.5.2 Starting and stopping PAGENT
The Policy Agent can be started from the UNIX System Services shell or as a started task. At
ITSO Raleigh, we used a started task procedure to start the Policy Agent.

Although the etc/pagent.conf file is the default configuration file, a specific search order is
used when starting the Policy Agent. The following order is used:

1. File or data set specified with the -c startup option

2. File or data set specified with the PAGENT_CONF_FILE environment variable

3. /etc/pagent.conf

4. hlq.PAGENT.CONF

Security product (for example, RACF) authority is required to start the Policy Agent. The
following commands can be used to create the necessary profile and permit users to use it:

RDEFINE OPERCMDS (MVS.SERVMGR.PAGENT) UACC(NONE)
PERMIT MVS.SERVMGR.PAGENT ACCESS(CONTROL) CLASS(OPERCMDS) ID(userid)SETROPTS
RACLIST(OPERCMDS) REFRESH i

For example, the following command could be used to start PAGENT in the shell:

pagent -c /etc.pagent.r2615.conf

The following is a Policy Agent started task procedure that we used in our system:

//PAGENT PROC
//*
//* SecureWay Communications Server IP
//* SMP/E distribution name: EZAPAGSP
126 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

//*
//* 5647-A01 (C) Copyright IBM Corp. 1999.
//* Licensed Materials - Property of IBM
//*
//PAGENT EXEC PGM=PAGENT,REGION=0K,TIME=NOLIMIT,
// PARM='POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/'
//*
//* PARM='POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/-c /
//* etc/pagent.r2615.conf -d' 1
//* PARM='POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/-d'
//*
//* Example of passing parameters to the program (parameters must
//* extend to column 71 and be continued in column 16):
//*
//*STDENV DD DSN=TCPIP.TCPPARMS.R2615(PAG&SYSCLONE.ENV),DISP=SHR
//STDENV DD PATH='/etc/pagent.r2615.env',PATHOPTS=(ORDONLY) 2
//*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

You can use environment variables, either configured in an MVS data set or HFS file,
specified by the STDENV DD (1) to run with the desired configuration. We have configured
environment variables in an HFS file(2), /etc/pagent.r2615.env, shown in Figure 5-9.

Figure 5-9 Environment variables for Policy Agent

We have configured four environment variables for the Policy Agent to run successfully. The
first variable, LIBPATH, enables PAGENT to search the dynamic link libraries needed to act as
an LDAP client (3). The PAGENT_CONFIG_FILE specifies the PAGENT configuration file to
use (4). The PAGENT_LOG_FILE specifies the log file name used by PAGENT (5), and the
PAGENT_LOG_FILE_CONTROL (6) defines how many PAGENT log files are used in round
robin and the size of the file; we use the default value.

If you define the PAGENT to use a syslogd to log messages, which means you define
PAGENT_LOG_FILE=SYSLOGD, then the PAGENT_LOG_FILE_CONTROL has no
meaning.

For the Policy Agent to run in your local time zone, you might have to specify the time zone in
your working location using the TZ environment variable (7) even if you have the TZ
environment variable configured in /etc/profile. Note that most OS/390 UNIX applications that
start as MVS started tasks cannot use environment variables that have been configured in
/etc/profile.

BROWSE -- /etc/pagent.r2615.env --------------------
 Command ===>
********************************* Top of Data *******
LIBPATH=/lib:/usr/lib:/usr/lpp/ldapclient/lib:. 3
PAGENT_CONFIG_FILE=/etc/pagent.r2615.conf 4
PAGENT_LOG_FILE=/tmp/pagent.r2615.log 5
PAGENT_LOG_FILE_CONTROL=300,3 6
TZ=EST5EDT 7
******************************** Bottom of Data *****
Chapter 5. Sysplex Distributor 127

Note that while we do not have the RESOLVER_CONFIG variable configured, PAGENT can
establish an affinity to a proper TCP/IP stack. The Policy Agent will use the TCP/IP image
name configured in the TcpImage statement in the Policy Agent configuration file to
determine to which TCP/IP it will install the policies.

We used the following statement in /etc/pagent.r2615.conf to do that:

TcpImage TCPIPC /pagent.r2615c.conf FLUSH 600

The Pagent Server can be stopped by:

� Using the cancel command; for example C PAGENT

� Using the kill command in the OS/390 shell

� Using the operator command STOP

The following command with the TERM signal will enable PAGENT to clean up resources
properly before terminating:

kill -s TERM pid

The PAGENT process ID can be obtained using the following OS/390 UNIX command:

ps -A

5.5.3 Monitoring the Sysplex Distributor QoS
You can use the NETSTAT command to display Sysplex Distributor information as shown in
Figure 5-10.

Figure 5-10 Sysplex Distributor VPDT detail display

ı DEST IPADDR: the distributing VIPA address of our sysplex complex.

2 DPORT: the port number to distribute workload in the sysplex.

3 DESTXCF ADDR: IP address of the SD target stacks. This address is configured for the
dynamic XCF link in the IPCONFIG statement.

4 TOTALCONN: counter of connections distributed.

D TCPIP,TCPIPC,N,VDPT,DETAIL
EZZ2500I NETSTAT CS V2R10 TCPIPC 606
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR 1 2 DPORT DESTXCF ADDR 3 RDY TOTALCONN 4
172.16.251.3 00020 172.16.233.3 000 0000000000
 WLM: 01 5 W/Q: 01 6
172.16.251.3 00020 172.16.233.28 000 0000000005
 WLM: 01 W/Q: 01
172.16.251.3 00020 172.16.233.39 000 0000000007
 WLM: 01 W/Q: 01
172.16.251.3 00021 172.16.233.3 001 0000000000
 WLM: 01 W/Q: 01
172.16.251.3 00021 172.16.233.28 001 0000000005
 WLM: 01 W/Q: 01
172.16.251.3 00021 172.16.233.39 001 0000000006
 WLM: 01 W/Q: 01
6 OF 6 RECORDS DISPLAYED
COMMAND INPUT ===>
128 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

5 WLM: Workload Manager weight.

6 W/Q: QoS weight.

As you can see, all FTP connection requests were forwarded to two of three SD target stacks
in our sysplex.

To verify that Sysplex Distributor policy has been successfully enabled, we can check the
active policies using the pasearch command; the command requires a superuser authority.
Figure 5-11 on page 130 shows the pasearch policies.
Chapter 5. Sysplex Distributor 129

Figure 5-11 Display policies with pasearch command

The pasearch report shows all attributes of the policy installed, such as version 1 of this policy
and the policy status 2.

MVS TCP/IP pasearch CS V2R10 TCP/IP Image: TCPIPC
 Date: 08/10/2000 Time: 14:42:26

policyRule: ftprule
 Version: 2 1 Status: Active 2
 Priority: 0 Sequence Actions: Don't Care
 ConditionListType: DNF No. Policy Action: 1
 policyAction: ftpaction
 ActionType: QOS Action Sequence: 0
 Time Periods:
 Day of Month Mask: 1111111111111111111111111111111
 Month of Year Mask: 111111111111
 Day of Week Mask: 1111111 (Sunday - Saturday)
 Start Date Time: None
 End Date Time: None
 From TimeOfDay: 00:00 To TimeOfDay: 24:00
 From TimeOfDay UTC: 04:00 To TimeOfDay UTC: 04:00
 TimeZone: Local
 Condition Summary: Negative Indicator: OFF
 RouteCondition:
 InInterface: 0.0.0.0 OutInterface: 0.0.0.0
 HostCondition:
 SourceIpFrom: 9.24.106.0 SourceIpTo: 9.24.106.255
 DestIpFrom: 0.0.0.0 DestIpTo: 0.0.0.0
 ApplicationCondition:
 ProtocolNumFrom: 6 ProtocolNumTo: 6
 SourcePortFrom: 0 SourcePortTo: 0
 DestPortFrom: 20 DestPortTo: 21
 ApplicationName:
 ApplicationData:

 Qos Action: ftpaction
 Version: 2 1 Status: Active 2
 Scope: DataTraffic 5 OutgoingTOS: 00000000
 Permission: Allowed
 MaxRate: 0 MinRate: 0
 MaxDelay: 0 MaxConn: 0
 Routing Interfaces: 2 3
 Interface Number: 1 Interface: 172.16.233.28 4
 Interface Number: 2 Interface: 172.16.233.39 4
 RSVP Attributes
 ServiceType: 0 MaxRatePerFlow: 0
 MaxTokBuckPerFlw: 0 MaxFlows: 0
 DiffServ Attributes
 InProfRate: 0 InProfPeakRate: 0
 InProfTokBuck: 0 InProfMaxPackSz: 0
 OutProfXmtTOSByte: 00000000 ExcessTrafficTr: BestEffort
 TR Attributes
 TotalConnections: 0 LoggingLevel: 0
 Percentage: 0 TimeInterval: 0
 TypeActions: 0
130 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The Routing Interfaces attribute 3 indicate whether this policy is the SD policy or not. Two
interface attributes have been defined for this policy. The value has to be an IP address of the
dynamic XCF link that has been defined for the SD target stack 4. Those dynamic XCF links
are used to route the incoming connection requests. The PolicyScope attribute 5 must specify
either DataTraffic or Both to define interfaces using this attribute.

5.5.4 Sysplex Distributor policies in the LDAP server
In this scenario, the SD policies have been stored in the OS/390 LDAP server, and is
retrieved by the Policy Agent running on the SD distributing stack.

We configured the following policies as LDAP objects:

dn: pg=SDpolicy, g=policy, o=IBM_US, c= US 1
objectclass:ibm-policyGroup
ibm-policyGroupName:SDpolicy
ibm-policyRulesAuxContainedSet:pr=SDftprule, pg=SDpolicy, g=policy, o=IBM_US, c=US
description:SD policy for the SD distributing stack

dn:pr=SDftprule, pg=SDpolicy, g=policy, o=IBM_US, c= US
objectclass:ibm-policyRule
ibm-policyRuleName:SDftprule
cn:ftp application - rule
ibm-policyRuleEnabled:1
ibm-policyRuleConditionList:1:+:pc=ftpcond, pg=SDpolicy, g=policy, o=IBM_US, c=US
ibm-policyRuleActionList:1:pa=ftpaction, pg=SDpolicy, g=policy, o=IBM_US, c=US
ibm-policyRuleValidityPeriodList:pc=period1, pg=SDpolicy, g=policy, o=IBM_US, c=US
ibm-policyRuleKeywords:SDPolicyRules
ibm-policyRulePriority:2
ibm-policyRuleMandatory:TRUE
ibm-policyRuleSequencedActions:1

dn: pa=ftpaction, pg=SDpolicy, g=policy, o=IBM_US, c=US
objectclass:ibm-policyAction
objectclass:ibm-serviceCategories
ibm-policyActionName:ftpaction
cn:ftp-cos-1
ibm-PolicyScope:DataTraffic
ibm-MaxRate:400
ibm-MaxConnections:50
ibm-OutgoingTOS:01000000
ibm-interface:1--172.16.233.28 2
ibm-interface:1--172.16.233.39 2
ibm-interface:1--0.0.0.0 2

dn:pc=period1, pg=SDpolicy, g=policy, o=IBM_US, c= US
objectclass:ibm-policyTimePeriodCondition
ibm-policyConditionName:timeperiod1
cn:active time period 1
ibm-ptpConditionTime:19990713000000:20021030200000
ibm-ptpConditionMonthOfYearMask:111100111100
ibm-ptpConditionDayOfMonthMask:1111111111111111111111111111111
ibm-ptpConditionDayOfWeekMask:1111111
ibm-ptpConditionTimeOfDayMask:020000:230000
ibm-ptpConditionTimeZone:Z
description:time period 1

dn:pc=ftpcond, pg=SDpolicy, g=policy, o=IBM_US, c= US
objectclass:ibm-networkingPolicyCondition
objectclass:ibm-hostConditionAuxClass
Chapter 5. Sysplex Distributor 131

objectclass:ibm-applicationConditionAuxClass
ibm-policyConditionName:hostftpapplcondition1
cn:ftp host and application condition 1
ibm-ProtocolNumberRange:6
ibm-SourceIPAddressRange:2-9.24.106.0-24
ibm-DestinationPortRange:20:21

We defined a new PolicyGroup 1 for the SD policy objects.The policies are identified as SD
policies by the presence of the ibm-Interface attribute 2 in the ibm_policyAction object class.
Here, we have defined ibm-interface 0.0.0.0, so that when neither RA28 nor RA39 can handle
an FTP connection request, it will be forwarded to RA03 if an FTP server is running there.

The second-level PAGENT configuration file also has been updated to communicate with the
z/OS LDAP server as shown below:

ReadFromDirectory
{
 LDAP_Server 172.16.250.3
 LDAP_ProtocolVersion 3
 LDAP_SchemaVersion 2
 SearchPolicyBaseDN pg=SDpolicy, g=policy, o=IBM_US, c=US 1
}

PolicyPerfMonitorForSDR Statement
PolicyPerfMonitorForSDR enable 2
{
 samplinginterval 60
 LossRatioAndWeightFr 20 25
 TimeoutRatioAndWeightFr 50 50
 LossMaxWeightFr 95
 TimeoutMaxWeightFr 100
}

1 PAGENT will download all objects under this tree. Note that all SD policy-related objects
defined belong to this group.

2 Because the SD performance monitor policy is not supported by the LDAP server, it has to
be defined in the PAGENT configuration file if necessary.

Using the pasearch z/OS UNIX command, you will see the SD policies installed into the SD
distributing stack:

MVS TCP/IP pasearch CS V2R10 TCP/IP Image: TCPIPC
 Date: 08/10/2000 Time: 16:04:37

policyRule: SDftprule
 Version: 2 Status: Active
 Distinguish Name: pr=SDftprule,pg=SDpolicy,g=policy,o=IBM_US,c=US 1
 Group Distinguish Nm: pg=SDpolicy,g=policy,o=IBM_US,c=US
 Priority: 2 Sequence Actions: Mandatory
 ConditionListType: DNF No. Policy Action: 1
 policyAction: ftpaction
 ActionType: QOS Action Sequence: 1
 Time Periods:
 Day of Month Mask: 1111111111111111111111111111111
 Month of Year Mask: 111100111100
 Day of Week Mask: 1111111 (Sunday - Saturday)
 Start Date Time UTC: Tue Jul 13 00:00:00 1999
 End Date Time UTC: Wed Oct 30 20:00:00 2002
 From TimeOfDay UTC: 02:00 To TimeOfDay UTC: 23:00
132 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

 TimeZone: UTC
 Condition Summary: Negative Indicator: OFF
 RouteCondition:
 InInterface: 0.0.0.0 OutInterface: 0.0.0.0
 HostCondition:
 SourceIpFrom: 9.24.106.0 SourceIpTo: 9.24.106.255
 DestIpFrom: 0.0.0.0 DestIpTo: 0.0.0.0
 ApplicationCondition:
 ProtocolNumFrom: 6 ProtocolNumTo: 6
 SourcePortFrom: 0 SourcePortTo: 0
 DestPortFrom: 20 DestPortTo: 21
 ApplicationName:
 ApplicationData:

 Qos Action: ftpaction
 Version: 2 Status: Active
 Distinguish Name: pa=ftpaction,pg=SDpolicy,g=policy,o=IBM_US,c=US 1
 Scope: DataTraffic OutgoingTOS: 01000000
 Permission: Allowed
 MaxRate: 400 MinRate: 0
 MaxDelay: 0 MaxConn: 50
 Routing Interfaces: 3
 Interface Number: 1 Interface: 172.16.233.28 2
 Interface Number: 2 Interface: 172.16.233.39 2
 Interface Number: 3 Interface: 0.0.0.0 2
 RSVP Attributes
 ServiceType: 0 MaxRatePerFlow: 0
 MaxTokBuckPerFlw: 0 MaxFlows: 0
 DiffServ Attributes
 InProfRate: 0 InProfPeakRate: 0
 InProfTokBuck: 0 InProfMaxPackSz: 0
 OutProfXmtTOSByte: 00000000 ExcessTrafficTr: BestEffort
 TR Attributes
 TotalConnections: 0 LoggingLevel: 0
 Percentage: 0 TimeInterval: 0

 TypeActions: 0

1 The Distinguish Names defined for the LDAP objects.

2 The Routing Interfaces attribute, which indicates that this policy is an SD policy, is defined in
the same way when the SD policies are defined in the PAGENT configuration file.

5.6 Implementation examples
In this section, we cover a number of scenarios to illustrate the way in which Sysplex
Distributor is implemented.

5.6.1 Scenario 1: Three IP stacks distributing FTP services
Let us consider the scenario depicted in Figure 5-12 on page 134. We have three LPARs,
each running CS for OS/390 V2R10 IP. Each LPAR has only one IP stack configured. There
are three physical connections to a 2216 router, one per IP stack. The 2216 router
connections have been configured as MPC+ and OSPF is the routing protocol selected to
work in this scenario. There is one FTP server running in each IP stack using the port
numbers 20 and 21.
Chapter 5. Sysplex Distributor 133

We will go through the steps listed in 5.4.3, “Implementation” on page 120 to set up our
Sysplex Distributor configuration properly.

Figure 5-12 Scenario 1: Three IP stack in the Sysplex Distributor for FTP services

First, we have to decide which IP stack will be the distributor and which will be the backup. In
our case, we have chosen RA03 as the distributing IP stack (1) and RA28 as primary backup
(2) and RA39 as secondary backup (2). Please refer to Figure 5-13 on page 135, Figure 5-14
on page 136, and Figure 5-15 on page 137.

We can use the command D WLM,SYSTEMS to ensure that all the LPARs participating in the
Sysplex Distributor are running in GOAL mode.

We have coded SYSPLEXROUTING (4), DYNAMICXCF (5), and DATAGRAMFWD (6) in each
participating IP stack. Remember that the XCF device/link has to be defined dynamically.
Sysplex Distributor will not work for an IP stack that has an IUTSAMEH device explicitly
coded.

In this scenario, we describe FTP services being distributed by the RA03 IP stack. We will see
later how we can distribute other services (such as TN3270, etc.) as long as we code the
proper port number in the VIPADISTRIBUTE statement. For our example we select the ports
20 and 21, which are the default values for FTP server (8). Note that if the application requires
more than one port, these ports have to be coded in the same VIPADISTRIBUTE statement.

OMPROUTE (OSPF)

FTPD
Port 20,21

DVIPA 172.16.251.3
 255.255.255.0

DVIPA 172.16.251.3
 255.255.255.0

DVIPA 172.16.251.3
 255.255.255.0

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0

172.16.102.254
255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

SD Distributing Stack SD Target Stack/1.Backup SD Target Stack/2.Backup

FTPD
Port 20,21

FTPD
Port 20,21

OMPROUTE (OSPF) OMPROUTE (OSPF)

DVIPA of SD Distributing Stack
is added to the home list of RA28
and RA39

CF

D/T2216
134 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

In the distributing IP stack (RA03 in our example), we have to define the dynamic VIPA that
will be associated with the sysplex cluster to distribute the FTP services. In order to do that,
we use two statements: VIPADEFINE and VIPADISTRIBUTE. With the VIPADEFINE
statement we are designating a set of Dynamic VIPAs that the stack initially owns and
supports. We have chosen 172.16.251.3 as the Dynamic VIPA address assigned to the
sysplex cluster for distributing FTP services (9). Once we have defined which Dynamic VIPA
is going to be used for distributing, we have to assign the port numbers for this Dynamic VIPA
using the VIPADISTRIBUTE statement. Finally, for those IP stacks that will serve as backup, it
is necessary to code a VIPABACKUP statement with the proper rank number and ip-address
to back up (10).

Figure 5-13 Scenario 1: PROFILE data set used for RA03

; SYSPLEX DISTRIBUTOR: RA03 (DISTRIBUTOR) 1
IPCONFIG
 DATAGRAMFWD 6
 DYNAMICXCF 172.16.233.3 255.255.255.0 1 5
 SYSPLEXROUTING 4
 IGNOREREDIRECT
 VARSUBNETTING
...
PORT
 ...
 20 TCP OMVS NOAUTOLOG ; FTP SERVER
 21 TCP FTPDC1 ; FTP SERVER
 ...
AUTOLOG 5
 FTPDC JOBNAME FTPDC1
 OMPROUTC
ENDAUTOLOG

DEVICE M032216B MPCPTP AUTORESTART
LINK M032216B MPCPTP M032216B

HOME
 172.16.100.3 M032216B

VIPADYNAMIC 9
 VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
 VIPADISTRIBUTE 172.16.251.3 PORT 20 21 DESTIP ALL
ENDVIPADYNAMIC 8

START M032216B
Chapter 5. Sysplex Distributor 135

Figure 5-14 Scenario 1: PROFILE data set for RA28

 ; SYSPLEX DISTRIBUTOR: RA28 (BACKUP) 2
IPCONFIG
 DATAGRAMFWD 6
 DYNAMICXCF 172.16.233.28 255.255.255.0 1 5
 SYSPLEXROUTING 4
 IGNOREREDIRECT
 VARSUBNETTING
...
PORT
 20 TCP OMVS NOAUTOLOG ; FTP SERVER
 21 TCP FTPDC1 ; FTP SERVER
...
AUTOLOG 5
 FTPDC JOBNAME FTPDC1
 OMPROUTC
ENDAUTOLOG

DEVICE M282216B MPCPTP AUTORESTART
LINK M282216B MPCPTP M282216B

HOME
 172.16.101.28 M282216B

VIPADYNAMIC 10
 VIPABACKUP 200 172.16.251.3
ENDVIPADYNAMIC

START M282216B
136 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-15 Scenario 1: PROFILE data set for RA39

In our example, we decided to use all of the XCF links (DESTIP ALL). In addition, we wanted
the Dynamic VIPA to be taken back as soon the original IP stack is restarted (MOVE IMMED)
in the event of a failure.

Because any one of the three IP stacks in our example can eventually be the Dynamic VIPA
owner, we had to code the following entry in the OMPROUTE configuration file:

OSPF_Interface IP_Address=172.16.251.*
 Subnet_mask=255.255.255.0
 Cost0=8
 Non_Broadcast=Yes
 MTU=32768;

Figure 5-16 on page 138, Figure 5-17 on page 138, and Figure 5-18 on page 139 display the
OMPROUTE configuration file used for each stack. Note that we have not coded the name
parameter for these OSPF_Interface statements that define the generic interfaces because
this is assigned dynamically. OMPROUTE would ignore any name for these OSPF_Interface
statements.

11 represents the Dynamic VIPA definitions while 12 represents the XCF definitions.

 ; SYSPLEX DISTRIBUTOR: RA39 (BACKUP) 2

IPCONFIG
 DATAGRAMFWD 6
 DYNAMICXCF 172.16.233.39 255.255.255.0 1 5
 SYSPLEXROUTING 4
 IGNOREREDIRECT
 VARSUBNETTING
...
PORT
 20 TCP OMVS NOAUTOLOG ; FTP SERVER
 21 TCP FTPDC1 ; FTP SERVER
...
AUTOLOG 5
 FTPDC JOBNAME FTPDC1
 OMPROUTC
ENDAUTOLOG

DEVICE M282216B MPCPTP AUTORESTART
LINK M282216B MPCPTP M282216B

HOME
 172.16.102.39 M282216B

VIPADYNAMIC 10
 VIPABACKUP 100 172.16.251.3
ENDVIPADYNAMIC

START M282216B
Chapter 5. Sysplex Distributor 137

Figure 5-16 OMPROUTE configuration file for RA03

Figure 5-17 OMPROUTE configuration file for RA28

; RA03 omproute
;
Area Area_Number=0.0.0.0
 Stub_Area=NO
 Authentication_type=None;
OSPF_Interface IP_Address=172.16.100.3
 Name=M032216B
 Cost0=1
 Subnet_mask=255.255.255.0 11
 MTU=32768;
OSPF_Interface IP_Address=172.16.251.*
 Subnet_mask=255.255.255.0 12
 Cost0=8
 Non_Broadcast=Yes
 MTU=32768;
OSPF_Interface IP_Address=172.16.233.*
 Subnet_mask=255.255.255.0
 Cost0=8
 Non_Broadcast=Yes
 MTU=32768;

; RA28 omproute
;
Area Area_Number=0.0.0.0
 Stub_Area=NO
 Authentication_type=None;
OSPF_Interface IP_Address=172.16.101.28
 Name=M032216B
 Cost0=1
 Subnet_mask=255.255.255.0 11
 MTU=32768;
OSPF_Interface IP_Address=172.16.251.*
 Subnet_mask=255.255.255.0 12
 Cost0=8
 Non_Broadcast=Yes
 MTU=32768;
OSPF_Interface IP_Address=172.16.233.*
 Subnet_mask=255.255.255.0
 Cost0=8
 Non_Broadcast=Yes
 MTU=32768;
138 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-18 OMPROUTE configuration file for RA39

We now describe how this scenario works once all the IP stacks are active. Figure 5-19 on
page 140 shows the output from the NETSTAT VIPADCFG command in all the IP stacks
participating in the sysplex cluster. As you can see, only the distributing IP stack (TCPIPC on
RA03) shows the VIPA DEFINE (1) and VIPA DISTRIBUTE (2) configuration with the port
numbers (3) and the XCF IP addresses (4) assigned.

The output from the IP stack in RA28 shows that this stack is the primary backup (5) with rank
200, and the output from the IP stack in RA39 is the secondary backup (6) with rank 100.

; RA39 omproute
;
Area Area_Number=0.0.0.0
 Stub_Area=NO
 Authentication_type=None;
OSPF_Interface IP_Address=172.16.102.39
 Name=M032216B
 Cost0=1
 Subnet_mask=255.255.255.0 11
 MTU=32768;
OSPF_Interface IP_Address=172.16.251.*
 Subnet_mask=255.255.255.0
 Cost0=8 12
 Non_Broadcast=Yes
 MTU=32768;
OSPF_Interface IP_Address=172.16.233.*
 Subnet_mask=255.255.255.0
 Cost0=8
 Non_Broadcast=Yes
 MTU=32768;
Chapter 5. Sysplex Distributor 139

Figure 5-19 NETSTAT VIPADCFG for RA03, RA28, and RA39 IP stacks

Figure 5-20 on page 141 shows the output from the NETSTAT HOME command for all the IP
stacks participating in the sysplex cluster. Note that only one address is coded below the
actual home statement in the PROFILE data set (1). The following three IP addresses are one
and the same DYNAMICXCF (2). The next one is the DVIPA assigned to the Sysplex
Distributor function (3). Note the flag I in the non-distributing IP stacks. Remember that this
DVIPA is learned dynamically for all stacks participating in the Sysplex Distributor but only
one stack advertises this IP address (with OSPF in our example).

RO RA03,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 912
DYNAMIC VIPA INFORMATION:
 VIPA DEFINE: 1
 IP ADDRESS ADDRESSMASK MOVEABLE
 ---------- ----------- --------
 172.16.251.3 255.255.255.0 IMMEDIATE
 VIPA DISTRIBUTE: 2
 IP ADDRESS PORT XCF ADDRESS
 ---------- ---- -----------
 172.16.251.3 00020 ALL
 172.16.251.3 3 00021 ALL 4

RO RA28,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 831
DYNAMIC VIPA INFORMATION:
 VIPA BACKUP:
 IP ADDRESS RANK
 ---------- ----
 172.16.251.3 000200 5

RO RA39,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
RO RA39,D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 719
DYNAMIC VIPA INFORMATION:
 VIPA BACKUP:
 IP ADDRESS RANK
 ---------- ----
 172.16.251.3 000100 6
140 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-20 NETSTAT HOME command for RA03, RA28, and RA39 IP stacks

Figure 5-21 on page 142 shows the output from the NETSTAT VDPT command for all the IP
stacks participating in the sysplex cluster. The output for this command shows the Dynamic
VIPA destination port table. You can see the destination IP address (1) which is the Sysplex
Distributor IP address, the port numbers to which connections are being distributed (2), the
destination XCF address (3), the number of applications listening on the port number selected
(4), and the total number of connections that have been forwarded by the Sysplex Distributor
(5).

Note that the output for the stacks in RA28 and RA39 does not show any record because
these stacks are not distributing workload. They are considered the target stacks by the
distributing IP stack.

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 982
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P 1
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28 2
172.16.233.3 EZAXCF39
172.16.251.3 VIPLAC10FB03 3
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 840
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P 1
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39 2
172.16.233.28 EZAXCF03
172.16.251.3 VIPLAC10FB03 I 3
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED

RO RA39,D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 723
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.102.39 M392216B P 1
172.16.233.39 EZASAMEMVS
172.16.233.39 EZAXCF28 2
172.16.233.39 EZAXCF03
172.16.251.3 VIPLAC10FB03 I 3
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED
Chapter 5. Sysplex Distributor 141

Figure 5-21 NETSTAT VDPT command for RA03, RA28, and RA39 IP stacks

Figure 5-22 on page 143 shows the output from the NETSTAT VDPT DET command for the
distributing IP stack only. This command provides additional information regarding the
Workload Manager weight values (1) for the target IP stacks and the value assigned after
modification using QoS information provided by the Policy Agent (2). These values are used
by the distributing IP stack to determine the quantity of connections that should be forwarded
to each target IP stack. Note that in this scenario no Policy Agent was used.

If all target stacks for a particular destination address and port have zero W/Q values, the
connection forwarding will be done randomly rather than based upon WLM/QoS information.

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 989
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
 1 2 3 4 5
172.16.251.3 00020 172.16.233.3 000 0000000000
172.16.251.3 00020 172.16.233.28 000 0000000000
172.16.251.3 00020 172.16.233.39 000 0000000000
172.16.251.3 00021 172.16.233.3 001 0000000000
172.16.251.3 00021 172.16.233.28 001 0000000000
172.16.251.3 00021 172.16.233.39 001 0000000000
6 OF 6 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 846
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
0 OF 0 RECORDS DISPLAYED

RO RA39,D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 727
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
0 OF 0 RECORDS DISPLAYED
142 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-22 NETSTAT VDPT,DET for RA03, RA28 and RA39 IP stacks

Figure 5-23 and Figure 5-24 on page 144 actually show the same information with a slight
difference. The SYSPLEX VIPADYN command displays the information for all the stacks
participating in the sysplex at once. The command shows the MVS (system) name 1 and the
actual status 2 of each stack. If the stack is defined as a backup you also can see the rank 3
value defined for it. The display also indicates whether each stack is defined as the distributor
or a destination 4 or both.

Figure 5-23 SYSPLEX VIPADYN for all the stacks participating in the sysplex

Figure 5-24 on page 144 shows the output from the NETSTAT VIPADYN command for the IP
stacks participating in the sysplex cluster. The output for this command shows the actual
dynamic VIPA information for the local host. With this command, you can see if the DVIPA is
active (1) or a backup (2) for the local stack. In addition it is shown if the DVIPA is being used
as the distributing DVIPA (3) or destination DVIPA (4).

RO RA03,D TCPIP,TCPIPC,N,VDPT,DET
D TCPIP,TCPIPC,N,VDPT,DET
EZZ2500I NETSTAT CS V2R10 TCPIPC 515
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000000
 WLM: 00 1 W/Q: 00 2
172.16.251.3 00020 172.16.233.28 000 0000000000
 WLM: 00 W/Q: 00
172.16.251.3 00020 172.16.233.39 000 0000000000
 WLM: 00 W/Q: 00
172.16.251.3 00021 172.16.233.3 001 0000000000
 WLM: 00 W/Q: 00
172.16.251.3 00021 172.16.233.28 001 0000000000
 WLM: 00 W/Q: 00
172.16.251.3 00021 172.16.233.39 001 0000000000
 WLM: 00 W/Q: 00
6 OF 6 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 027
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- --1----- --2--- -3-- --------------- --------------- -4--
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
 TCPIPC RA28 BACKUP 200 DEST
 TCPIPC RA39 BACKUP 100 DEST
3 OF 3 RECORDS DISPLAYED
Chapter 5. Sysplex Distributor 143

Figure 5-24 NETSTAT VIPADYN for RA03, RA28 and RA39 IP stacks

Figure 5-25 on page 145 shows the output from the NETSTAT VCRT command for all the IP
stacks participating in the sysplex cluster.The output of this command displays the dynamic
VIPA connection routing table (CRT). During Sysplex Distributor normal operation, this table
could be quite large. It contains one entry for each connection being distributed. Figure 5-25
on page 145 shows the initial status just after the IP stacks have been started and no
connection requests have been received yet.

RO RA03,D TCPIP,TCPIPC,N,VIPADYN
D TCPIP,TCPIPC,N,VIPADYN
EZZ2500I NETSTAT CS V2R10 TCPIPC 999
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 ACTIVE VIPADEFINE DIST/DEST
1 OF 1 RECORDS DISPLAYED 1 3

RO RA28,D TCPIP,TCPIPC,N,VIPADYN
D TCPIP,TCPIPC,N,VIPADYN
EZZ2500I NETSTAT CS V2R10 TCPIPC 856
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 BACKUP VIPABACKUP DEST
1 OF 1 RECORDS DISPLAYED 2 4

RO RA39,D TCPIP,TCPIPC,N,VIPADYN
D TCPIP,TCPIPC,N,VIPADYN
EZZ2500I NETSTAT CS V2R10 TCPIPC 729
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 BACKUP VIPABACKUP DEST
1 OF 1 RECORDS DISPLAYED 2 4
144 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-25 NETSTAT VCRT for RA03, RA28 and RA39 IP stacks

Figure 5-26 on page 146 shows a portion of the output from the NETSTAT VCRT command
for the distributing IP stack during normal operation. The output of this command displays the
dynamic VIPA CRT for the local stack. Because this is the distributing IP stack, it shows all the
connections between the clients and the participating IP stacks. It includes all the XCF
addresses(1). During Sysplex Distributor normal operation, this table could be very large. It
contains one entry for each connection being distributed.

While NETSTAT VCRT on the distributing IP stack displays all the distributed connections,
the same command on the other stacks will show only those connections established with the
local server instance. Figure 5-27 on page 146 and Figure 5-28 on page 147 show the VCRT
on RA28 and RA39. They show the destination IP address (2), the port destination (3), the
source IP address (4), the source port (5), and the Dynamic XCF address of the stack
processing this connection (1).

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 068
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
0 OF 0 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 862
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
0 OF 0 RECORDS DISPLAYED

RO RA39,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 731
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
0 OF 0 RECORDS DISPLAYED
Chapter 5. Sysplex Distributor 145

Figure 5-26 NETSTAT VCRT from RA03 IP stack when there are several concurrent FTP sessions

Figure 5-27 NETSTAT VCRT from RA28 IP stack when there are several concurrent FTP sessions

RO RA03,D TCPIP,TCPIPC,N,VCRT,MAX=400
D TCPIP,TCPIPC,N,VCRT,MAX=400
EZZ2500I NETSTAT CS V2R10 TCPIPC 050
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
 1 2 3 4 5
172.16.251.3 00021 9.24.104.75 03445 172.16.233.3
172.16.251.3 00021 9.24.104.75 03448 172.16.233.3
172.16.251.3 00021 9.24.104.75 03451 172.16.233.3
.......
172.16.251.3 00020 9.24.104.75 03565 172.16.233.3
172.16.251.3 00020 9.24.104.75 03568 172.16.233.3
172.16.251.3 00020 9.24.104.75 03571 172.16.233.3
.......
172.16.251.3 00021 9.24.104.75 03443 172.16.233.28
172.16.251.3 00021 9.24.104.75 03446 172.16.233.28
172.16.251.3 00021 9.24.104.75 03449 172.16.233.28
.......
172.16.251.3 00020 9.24.104.75 03593 172.16.233.28
172.16.251.3 00020 9.24.104.75 03594 172.16.233.28
172.16.251.3 00020 9.24.104.75 03595 172.16.233.28
.......
172.16.251.3 00021 9.24.104.75 03536 172.16.233.39
172.16.251.3 00021 9.24.104.75 03539 172.16.233.39
172.16.251.3 00021 9.24.104.75 03542 172.16.233.39
.......
172.16.251.3 00020 9.24.104.75 03718 172.16.233.39
172.16.251.3 00020 9.24.104.75 03721 172.16.233.39
172.16.251.3 00020 9.24.104.75 03724 172.16.233.39
.......

RO RA28,D TCPIP,TCPIPC,N,VCRT,MAX=400
D TCPIP,TCPIPC,N,VCRT,MAX=400
EZZ2500I NETSTAT CS V2R10 TCPIPC 840
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
 1 2 3 4 5
172.16.251.3 00020 9.24.104.75 03609 172.16.233.28
172.16.251.3 00020 9.24.104.75 03610 172.16.233.28
172.16.251.3 00020 9.24.104.75 03611 172.16.233.28
172.16.251.3 00020 9.24.104.75 03612 172.16.233.28
.......
146 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-28 NETSTAT VCRT from RA39 IP stack when there are several concurrent FTP sessions

Figure 5-29 displays the output from the NETSTAT VDPT DET command on the RA03 IP
stack. In this figure we can appreciate how the WLM and W/Q weights have changed once
the connection requirements start arriving at the RA03 IP stack. You can see the difference
between the amount of FTP connections 1 for IP stacks RA03, RA28, and RA39. If you take
the different WLM weights 2 into account ,then the distribution of workload works correctly. In
this scenario no QoS policy was active.

Figure 5-29 NETSTAT VDPT DET from RA03 IP stack with multiple concurrent FTP sessions

Figure 5-30 on page 148 shows the output from NETSTAT VDPT after 100 concurrent FTP
sessions in which each session requested 80 data connections. The NETSTAT VDPT
command displays how these FTP sessions were distributed among the different IP stacks
participating in the sysplex cluster.

RO RA39,D TCPIP,TCPIPC,N,VCRT,MAX=400
D TCPIP,TCPIPC,N,VCRT,MAX=400
EZZ2500I NETSTAT CS V2R10 TCPIPC 991
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
 1 2 3 4 5
172.16.251.3 00020 9.24.104.75 03431 172.16.233.39
172.16.251.3 00020 9.24.104.75 03435 172.16.233.39
172.16.251.3 00020 9.24.104.75 03439 172.16.233.39
172.16.251.3 00020 9.24.104.75 03443 172.16.233.39
.......

RO RA03,D TCPIP,TCPIPC,N,VDPT,DET
D TCPIP,TCPIPC,N,VDPT,DET
EZZ2500I NETSTAT CS V2R10 TCPIPC 185
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000320
 WLM: 01 W/Q: 01
172.16.251.3 00020 172.16.233.28 000 0000001200
 WLM: 03 W/Q: 03
172.16.251.3 00020 172.16.233.39 000 0000001131
 WLM: 03 W/Q: 03
172.16.251.3 00021 172.16.233.3 001 0000000004 1
 WLM: 01 W/Q: 01 2
172.16.251.3 00021 172.16.233.28 001 0000000016 1
 WLM: 03 W/Q: 03 2
172.16.251.3 00021 172.16.233.39 001 0000000017 1
 WLM: 03 W/Q: 03 2
6 OF 6 RECORDS DISPLAYED
Chapter 5. Sysplex Distributor 147

Figure 5-30 NETSTAT VDPT from RA03 IP stack after 100 FTP sessions

Figure 5-31 shows how these connections are distributed taking the WLM weights into
account (as was done in Figure 5-29 on page 147). We start distributing the connections to
the stack on the highest WLM weight. In our case, assume we start with RA28. Then we
distribute the first three connections to RA28. We then choose RA39 for the next three
connections and then send one connection to RA03. At the eighth new connection, the
Distributor starts sending the connections to RA28 again.

WLM and QoS weights are refreshed by the Distributor stack after one minute or when we
add a new stack. After WLM weights are refreshed and the target stacks possibly reordered,
connection distribution resumes at the first target stack.

Figure 5-31 Using WLM/QoS data to select a target stack

5.6.2 Scenario 2: VIPA takeover and takeback with Sysplex Distributor
This second example, as shown in Figure 5-32 on page 149, illustrates the functionality of
automatic VIPA takeover and takeback. We use the same environment as before: three
LPARs, each running IBM Communications Server for OS/390 V2R10 IP and having only one
IP stack configured. There are three physical connections to an IBM 2216 router, one per IP
stack. The 2216 router connections have been configured as MPC+ and OSPF is the routing
protocol selected to work in this scenario. There is one FTP server running in each IP stack
using the ports 20 and 21.

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 499
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000001360
172.16.251.3 00020 172.16.233.28 000 0000003280
172.16.251.3 00020 172.16.233.39 000 0000003360
172.16.251.3 00021 172.16.233.3 001 0000000017
172.16.251.3 00021 172.16.233.28 001 0000000041
172.16.251.3 00021 172.16.233.39 001 0000000042
6 OF 6 RECORDS DISPLAYED

 RA28 RA39 RA03
Search order > WLM weight=3 WLM weight=3 WLM weight=1
 Qos Fraction=0 QoS Fraction=0 QoS Fraction=0

Effective limit > QoS weight=3 QoS weight=3 QoS weight=1

 First 3 connections Next 3 connections Next 1 connection

Sysplex Distributor

New connections coming in
148 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-32 RA28 IP stack takes over the distributing function of RA03

In this example, we monitor only one FTP session. We FTPed a large file from our FTP client
to the sysplex. We used a large file just to have enough time to take down the RA03 IP stack
and show how DVIPA is switched over to the RA28 IP stack. At the same time, the FTP
connection remains active. Some time later, we brought up the RA03 IP stack, which
subsequently caused the DVIPA to be taken back by the RA03 IP stack without any disruption
to the FTP session. Finally, after some minutes, the transfer completed successfully.

Figure 5-33 on page 150 displays the Dynamic VIPA distribution port table. We see three FTP
servers listening on port 20 and 21, one in each IP stack. There is one session currently
active, the large file FTP session (1). According to this output, the session has been
distributed to RA39 stack (2).

OMPROUTE (OSPF)

FTPD
Port 20,21

DVIPA 172.16.251.3
 255.255.255.0

DVIPA 172.16.251.3
 255.255.255.0

DVIPA 172.16.251.3
 255.255.255.0

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0

172.16.102.254
255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

SD Distributing Stack SD Target Stack/1.Backup SD Target Stack/2.Backup

FTPD
Port 20,21

FTPD
Port 20,21

OMPROUTE (OSPF) OMPROUTE (OSPF)

SD Distributing Stack died
on RA03
SD Target Stack on RA28 will
take over the distributing function

CF
Chapter 5. Sysplex Distributor 149

Figure 5-33 D TCPIP,TCPIPC,N,VDPT on RA03 IP stack after establishing one FTP session

Figure 5-34 displays the Dynamic VIPA connection routing table. We see that the connection
is being routed through the XCF link associated with RA39 (3). Please take note of the source
port number 4, since we later compare this value after takeover and takeback.

Figure 5-34 D TCPIP,TCPIPC,N,VCRT on RA03 IP stack after establishing one FTP session

Figure 5-35 shows the resulting messages at the moment when the RA03 stack was stopped
and all the links associated with this stack were terminated. We see message EZZ8301,
which tells us that the Dynamic VIPA has been taken over. This message 1 is displayed on the
stack’s joblog that takes over the Dynamic VIPA. In our case, this was RA28, since it was our
first backup.

Figure 5-35 Stopping RA03 IP stack

Because the FTP session was established with a target stack different from the distributing
one, the session is not lost. The Dynamic VIPA is switched over to the backup IP stack and
this DVIPA is recognized as the distributing VIPA. In our case, RA28 takes the ownership of
the DVIPA and becomes the distributing IP stack. The RA28 IP stack informs the RA39 IP
stack that it is now the distributing stack.

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 008
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000000
172.16.251.3 00020 172.16.233.28 000 0000000000
172.16.251.3 00020 172.16.233.39 2 000 0000000001 1
172.16.251.3 00021 172.16.233.3 001 0000000000
172.16.251.3 00021 172.16.233.28 001 0000000000
172.16.251.3 00021 172.16.233.39 2 001 0000000001 1
6 OF 6 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 010
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00020 9.24.104.75 01997 4 172.16.233.39 3
172.16.251.3 00021 9.24.104.75 01996 4 172.16.233.39 3
2 OF 2 RECORDS DISPLAYED

P TCPIPC
BPXF207I ROUTING INFORMATION HAS BEEN DELETED FOR TRANSPORT DRIVER
TCPIPC.
IUT5002I TASK FOR ULPID TCPIPC USING TRLE RA28M TERMINATING
IUT5002I TASK FOR ULPID TCPIPC USING TRLE RA39M TERMINATING
IUT5002I TASK FOR ULPID TCPIPC USING TRLE IUTSAMEH TERMINATING
IUT5002I TASK FOR ULPID TCPIPC USING TRLE M032216B TERMINATING
EZZ4201I TCP/IP TERMINATION COMPLETE FOR TCPIPC
.......
EZZ8301I VIPA 172.16.251.3 TAKEN OVER FROM TCPIPC ON RA03 1
150 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-36 displays the Dynamic VIPA distribution port table of RA28 after it has become the
distributing stack. This table was built based on saved information about RA03 and the
information it received from RA39.

Figure 5-36 D TCPIP,TCIPC,N,VDPT on RA28 IP stack after DVIPA takeover

Figure 5-37 displays the Dynamic VIPA connection routing table for stack RA28. We can see
that it is the same connection that has remained active even after the RA03 stack has failed.
The source port numbers here (1) can be compared with those in Figure 5-34 on page 150.

Figure 5-37 D TCPIP,TCPIPC,N,VCRT on RA28 IP stack after DVIPA takeover

Figure 5-38 shows the output of the SYSPLEX VIPADYN command and shows us that stack
RA28 is now distributor and destination 3. The DIST column was added in IBM
Communications Server for OS/390 V2R10 as expanded output to this display command.

Figure 5-38 D TCPIP,TCPIP,SYSPLEX VIPADYN on RA28 IP stack after DVIPA takeover

Figure 5-39 on page 152 displays the home list of stack RA28 and shows us that the I flag for
the Dynamic VIPA address defined on the RA03 stack has been removed because RA28 is
now the owner of this DVIPA.

RO RA28,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 334
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.28 000 0000000000
172.16.251.3 00020 172.16.233.39 000 0000000001
172.16.251.3 00021 172.16.233.28 001 0000000000
172.16.251.3 00021 172.16.233.39 001 0000000001
4 OF 4 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 332
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00020 9.24.104.75 01997 1 172.16.233.39
172.16.251.3 00021 9.24.104.75 01996 1 172.16.233.39
2 OF 2 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 339
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA28
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPABACKUP
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0 BOTH 3
 TCPIPC RA39 BACKUP 100 DEST
2 OF 2 RECORDS DISPLAYED
Chapter 5. Sysplex Distributor 151

Figure 5-39 D TCPIP,TCPIPC,N,HOME on RA28 IP stack after DVIPA takeover

Figure 5-40 shows the resulting messages at the moment the RA03 IP stack is started again.
Once the IP stack is active in RA03, the process of taking the DVIPA back is started.
Additionally, we see message EZZ8302, which indicates that the Dynamic VIPA has been
taken back to stack RA03. This message 1 is displayed on the stack’s joblog, which takes
back the Dynamic VIPA. In our case, this is stack RA03, which was our originally defined
distributor stack.

Figure 5-40 Starting RA03 IP stack

Because the VIPADEFINE is coded with MOVE IMMED in the PROFILE data set, as shown
in Figure 5-13 on page 135, the RA03 IP stack takes ownership of the DVIPA without waiting
for existing connections to finish. This process is nondisruptive for the FTP session because
the RA28 stack sends the connection routing table to the RA03 stack. The RA03 stack can
continue distributing the following packets to the proper target FTP server.

Figure 5-41 on page 153 shows the display of the Dynamic VIPA destination port table of the
RA03 stack once it has been re-activated. Note that RA03 updated the port table according to
the information it received from RA28 (1).

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 342
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED

S TCPIPC
IEF403I TCPIPC - STARTED - TIME=17.49.18
IEE252I MEMBER CTIEZB01 FOUND IN SYS1.PARMLIB
EZZ7450I FFST SUBSYSTEM IS NOT INSTALLED
EZZ0300I OPENED PROFILE FILE DD:PROFILE
EZZ0309I PROFILE PROCESSING BEGINNING FOR DD:PROFILE
EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE DD:PROFILE
EZZ0641I IP FORWARDING NOFWDMULTIPATH SUPPORT IS ENABLED
EZZ8302I VIPA 172.16.251.3 TAKEN FROM TCPIPC ON RA28
EZZ0335I ICMP WILL IGNORE REDIRECTS
EZZ0350I SYSPLEX ROUTING SUPPORT IS ENABLED
EZZ8303I VIPA 172.16.251.3 GIVEN TO TCPIPC ON RA03 1
EZZ0352I VARIABLE SUBNETTING SUPPORT IS ENABLED
EZZ0345I STOPONCLAWERROR IS ENABLED
EZZ0624I DYNAMIC XCF DEFINITIONS ARE ENABLED
.......
152 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-41 D TCPIP,TCPIPC,N,VDPT on RA03 IP stack after DVIPA takeback

Figure 5-42 shows the display of the Dynamic VIPA connection routing table for the RA03 IP
stack just started. Note that the FTP connection is still active and is still using the same port
numbers 2 since it has not been disrupted. After some minutes, the file transfer finished
successfully.

Figure 5-42 D TCPIP,TCPIP,N,VCRT on RA03 IP stack after DVIPA takeback

Finally, the SYSPLEX VIPADYN command shows us that the status of our participating
sysplex stacks is the same as when we started. See Figure 5-43.

Figure 5-43 D TCPIP,TCPIPC,SYSPLEX,VIPADYN on RA03 IP stack after DVIPA takeback

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 188
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000000
172.16.251.3 00020 172.16.233.28 000 0000000000
172.16.251.3 00020 172.16.233.39 000 0000000001 1
172.16.251.3 00021 172.16.233.3 001 0000000000
172.16.251.3 00021 172.16.233.28 001 0000000000
172.16.251.3 00021 172.16.233.39 001 0000000001 1
6 OF 6 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 190
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00020 9.24.104.75 01997 2 172.16.233.39
172.16.251.3 00021 9.24.104.75 01996 2 172.16.233.39
2 OF 2 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 184
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
 TCPIPC RA28 BACKUP 200 DEST
 TCPIPC RA39 BACKUP 100 DEST
3 OF 3 RECORDS DISPLAYED
Chapter 5. Sysplex Distributor 153

5.6.3 Scenario 3: Distributing multiple IP services
Figure 5-44 depicts our third scenario. We have three LPARs, each running IBM
Communications Server for OS/390 V2R10 IP and each having only one IP stack configured.
There are three physical connections to an IBM 2216 router, one per IP stack. The 2216
router connections have been configured as MPC+ and OSPF is the routing protocol selected
to work in this scenario. There is one FTP server running in each IP stack using ports 20 and
21. The TN3270E server is also running in each stack using port 23. In addition we have
implemented a server, RSSERVER, in RA28 and RA39 using port 1492. See Figure 5-44.

RSSERVER and RSCLIENT are a pair of programs that provide an example of how to use
REXX/SOCKETS to implement a service. These are provided by IBM and can be found in the
TCPIP.SEZAINST library. The RSSERVER program runs on a dedicated TSO user ID. It
returns a number of data lines as requested to the client. The RSCLIENT program is used to
request a number of arbitrary data lines from the server. One or more clients can access the
server until it is terminated.

Figure 5-44 Distributing multiple IP services

OMPROUTE (OSPF)

TN3270E
port 23

FTPD
port 20,21

DVIPA 172.16.251.3
 255.255.255.0

OMPROUTE (OSPF)

TN3270E
port 23

DVIPA 172.16.251.3
 255.255.255.0

RSSERVER
Port 1492

OMPROUE (OSPF)

TN3270E
port 23

DVIPA 172.16.251.3
 255.255.255.0

RSSERVER
Port 1492

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0

172.16.102.254
255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

SD Distributing Stack SD Target Stack/1.Backup SD Target Stack/2.Backup

FTPD
port 20,21

FTPD
port 20,21

DVIPA of SD Distributing Stack is
added to the home list of RA28
and RA39

CF
154 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-45 on page 156, Figure 5-46 on page 157, and Figure 5-47 on page 158 show the
PROFILE data set being used for this scenario. There are some differences from those
shown in Figure 5-13 on page 135, Figure 5-14 on page 136, and Figure 5-15 on page 137:

� In AUTOLOG we included T03CSM 11 (the name we assigned the RSSERVER) for RA28
and RA39 IP stacks.

� We added to the already existing VIPADISTRIBUTE statement for FTP the port 23 for
TN3270E 12. In addition we added a new VIPADISTRIBUTE 13 statement to reflect that
T03CSM (RSSERVER) instances are running on RA28 and RA39 IP stacks.

� We have included on each stack the TELNETPARMS/ENDTELNETPARMS 14 and
BEGINVTAM/ENDVTAM 15 blocks, as well as PORT 23 INTCLIEN (port reservation) to
support TN3270E server in these stacks.

The RSCLIENT and the FTP clients were executed from an OS/390 system attached to the
network with IP address 9.24.104.75. The TN3270E client was executed from a PC running
Windows NT with IP address 9.24.106.247.
Chapter 5. Sysplex Distributor 155

Figure 5-45 PROFILE data set for RA03 IP stack

; SYSPLEX DISTRIBUTOR: RA03 (DISTRIBUTOR) 1

IPCONFIG
 DATAGRAMFWD 6
 DYNAMICXCF 172.16.233.3 255.255.255.0 1 5
 SYSPLEXROUTING 4
 IGNOREREDIRECT
 VARSUBNETTING

PORT
 ...
 20 TCP OMVS NOAUTOLOG ; FTP SERVER
 21 TCP FTPDC1 ; FTP SERVER
 23 TCP INTCLIEN 10
 ...

TELNETPARMS 14
 PORT 23
 INACTIVE 0
ENDTELNETPARMS

AUTOLOG 5
 FTPDC JOBNAME FTPDC1
 OMPROUTC
 ENDAUTOLOG

 DEVICE M032216B MPCPTP AUTORESTART
 LINK M032216B MPCPTP M032216B

HOME
 172.16.100.3 M032216B

VIPADYNAMIC
 VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
 VIPADISTRIBUTE 172.16.251.3 PORT 20 21 23 DESTIP ALL 12
 VIPADISTRIBUTE 172.16.251.3 PORT 1492 13
 DESTIP 172.16.233.28 172.16.233.39
ENDVIPADYNAMIC

BEGINVTAM 15
 PORT 23
 DEFAULTLUS RA03TV21..RA03TV29 ENDDEFAULTLUS
 ALLOWAPPL *
 USSTCP USSVLAD1
ENDVTAM

START M032216B
156 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-46 PROFILE data set for RA28 IP stack

 SYSPLEX DISTRIBUTOR TARGET STACK: RA28 2

IPCONFIG
 DATAGRAMFWD 6
 DYNAMICXCF 172.16.233.28 255.255.255.0 1 5
 SYSPLEXROUTING 4
 IGNOREREDIRECT
 VARSUBNETTING

PORT
 ...
 20 TCP OMVS NOAUTOLOG ; FTP SERVER
 21 TCP FTPDC1 ; FTP SERVER
 23 TCP INTCLIEN 10
 ...

TELNETPARMS 14
 PORT 23
 INACTIVE 0
ENDTELNETPARMS

AUTOLOG 5
 FTPDC JOBNAME FTPDC1
 OMPROUTC
 T03CSM 11
ENDAUTOLOG

 DEVICE M282216B MPCPTP AUTORESTART
 LINK M282216B MPCPTP M282216B

HOME
 172.16.101.28 M282216B

VIPADYNAMIC
 VIPABACKUP 200 172.16.251.3
ENDVIPADYNAMIC

BEGINVTAM 15
 PORT 23
 DEFAULTLUS RA28TV21..RA28TV29 ENDDEFAULTLUS
 ALLOWAPPL *
 USSTCP USSVLAD1
ENDVTAM

START M282216B
Chapter 5. Sysplex Distributor 157

Figure 5-47 PROFILE data set for RA39 IP stack

Figure 5-48 on page 159 shows the NESTAT VIPADCFG output for all the IP stacks
participating in the sysplex cluster. Comparing this output with the one shown in Figure 5-19
on page 140, we see that only the information for the RA03 IP stack has changed. This is
because we did not modify Dynamic VIPA definitions for the PROFILE data sets for RA28 and
RA39.

;SYSPLEX DISTRIBUTOR : RA39 (2.BACKUP)

IPCONFIG
 DATAGRAMFWD 6
 DYNAMICXCF 172.16.233.39 255.255.255.0 1 5
 SYSPLEXROUTING 4
 IGNOREREDIRECT
 VARSUBNETTING

PORT
 ...
 20 TCP OMVS NOAUTOLOG ; FTP SERVER
 21 TCP FTPDC1 ; FTP SERVER
 23 TCP INTCLIEN 10
 ...

TELNETPARMS 14
 PORT 23
 INACTIVE 0
ENDTELNETPARMS

AUTOLOG 5
 FTPDC JOBNAME FTPDC1
 OMPROUTC
 T03CSM 11
ENDAUTOLOG

 DEVICE M392216B MPCPTP AUTORESTART
 LINK M392216B MPCPTP M392216B

HOME
 172.16.102.39 M392216B

VIPADYNAMIC
 VIPABACKUP 100 172.16.251.3
ENDVIPADYNAMIC

BEGINVTAM 15
 PORT 23
 DEFAULTLUS
 RA39TV31..RA39TV39
 ENDDEFAULTLUS
 ALLOWAPPL *
 USSTCP USSVLAD1
ENDVTAM

START M392216B
158 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The way that this new configuration will distribute the workload is displayed in Figure 5-48.
The three stacks RA03, RA28, and RA39 will be considered for FTP 1 and TN3270E 2
connection requests. The connection requests for RSSERVER 3 will be distributed only to
RA28 and RA39.

Figure 5-48 D TCPIP,TCPIPC,N,VIPACDFG for RA03, RA28 and RA39 IP stack

Figure 5-49 on page 160 displays the NETSTAT VDPT output for the distributing stack. The
output for the same command on target stacks does not give any information. Here we see
that the distributing IP stack already notices the existence of servers listening on ports 21, 23,
and 1492.

RO RA03,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 792
DYNAMIC VIPA INFORMATION:
 VIPA DEFINE:
 IP ADDRESS ADDRESSMASK MOVEABLE
 ---------- ----------- --------
 172.16.251.3 255.255.255.0 IMMEDIATE
 VIPA DISTRIBUTE:
 IP ADDRESS PORT XCF ADDRESS
 ---------- ---- -----------
 172.16.251.3 00020 ALL 1
 172.16.251.3 00021 ALL 1
 172.16.251.3 00023 ALL 2
 172.16.251.3 01492 172.16.233.39 3
 172.16.251.3 01492 172.16.233.28 3
..

RO RA28,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 785
DYNAMIC VIPA INFORMATION:
 VIPA BACKUP:
 IP ADDRESS RANK
 ---------- ----
 172.16.251.3 000200
..

RO RA39,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 674
DYNAMIC VIPA INFORMATION:
 VIPA BACKUP:
 IP ADDRESS RANK
 ---------- ----
 172.16.251.3 000100
Chapter 5. Sysplex Distributor 159

Figure 5-49 D TCPIP,TCPIP,N,VDPT for RA03 IP stack after distributing multiple IP services

After this configuration has been running for a while, we can use the NETSTAT VCRT
command to display the current Dynamic VIPA connection routing table. Figure 5-50 on
page 161 displays only a portion of this output for the distributing stack. Please remember
that this output can be very large, because it shows all active connections between the client
and the participating IP stacks.

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 425
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000000
172.16.251.3 00020 172.16.233.28 000 0000000000
172.16.251.3 00020 172.16.233.39 000 0000000000
172.16.251.3 00021 172.16.233.3 001 0000000000
172.16.251.3 00021 172.16.233.28 001 0000000000
172.16.251.3 00021 172.16.233.39 001 0000000000
172.16.251.3 00023 172.16.233.3 001 0000000000
172.16.251.3 00023 172.16.233.28 001 0000000000
172.16.251.3 00023 172.16.233.39 001 0000000000
172.16.251.3 01492 172.16.233.28 001 0000000000
172.16.251.3 01492 172.16.233.39 001 0000000000
11 OF 11 RECORDS DISPLAYED
160 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-50 D TCPIP,TCPIPC,N.VCRT for RA03 IP stack after distributing multiple IP services

While we were establishing connections using the Sysplex Distributor to balance the workload
in conjunction with Workload Manager, we did two displays of the distributing port table of
RA03, our distributing stack. Figure 5-51 on page 162 and Figure 5-52 on page 163 show the
resulting display. These displays show that the WLM/QoS weight for RA03 1 is always 01,
while the WLM/QoS weight of RA28 2 is always 02. The WLM/QoS weight for RA39 3
periodically switches from 02 to 01 and back. That actually explains why we have a
connection rate for RA03 of 21%, RA28 of 42%, and RA38 of 37%. When we compare these
values with the actual CPU load of these stacks, the distribution of the workload in
conjunction with WLM works very well.

 Finally, the number of connections that have been distributed since the Sysplex Distributor
function was started is also displayed with the NETSTAT VDPT command.

RO RA03,D TCPIP,TCPIPC,N,VCRT,MAX=500
D TCPIP,TCPIPC,N,VCRT,MAX=500
EZZ2500I NETSTAT CS V2R10 TCPIPC 397
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00020 9.24.104.75 03304 172.16.233.3
172.16.251.3 00020 9.24.104.75 03306 172.16.233.3
.......
172.16.251.3 00020 9.24.104.75 03251 172.16.233.28
172.16.251.3 00020 9.24.104.75 03252 172.16.233.28
.......
172.16.251.3 00020 9.24.104.75 03301 172.16.233.39
172.16.251.3 00020 9.24.104.75 03303 172.16.233.39
.......
172.16.251.3 00021 9.24.104.75 03809 172.16.233.3
172.16.251.3 00021 9.24.104.75 03976 172.16.233.3
.......
172.16.251.3 00021 9.24.104.75 03799 172.16.233.28
172.16.251.3 00021 9.24.104.75 03961 172.16.233.28
.......
172.16.251.3 00021 9.24.104.75 01868 172.16.233.39
172.16.251.3 00021 9.24.104.75 01909 172.16.233.39
.......
172.16.251.3 00023 9.24.106.247 04850 172.16.233.3
172.16.251.3 00023 9.24.106.247 04858 172.16.233.3
.......
172.16.251.3 00023 9.24.106.247 04847 172.16.233.28
172.16.251.3 00023 9.24.106.247 04848 172.16.233.28
.......
172.16.251.3 00023 9.24.106.247 04849 172.16.233.39
172.16.251.3 00023 9.24.106.247 04853 172.16.233.39
.......
172.16.251.3 01492 9.24.104.75 03501 172.16.233.28
172.16.251.3 01492 9.24.104.75 03502 172.16.233.28
.......
172.16.251.3 01492 9.24.104.75 03475 172.16.233.39
172.16.251.3 01492 9.24.104.75 03505 172.16.233.39
.......
Chapter 5. Sysplex Distributor 161

Figure 5-51 D TCPIP,TCPIPC,N,VDPT,DET on RA03 IP stack after running multiple IP services for
some time

RO RA03,D TCPIP,TCPIPC,N,VDPT,DET
D TCPIP,TCPIPC,N,VDPT,DET
EZZ2500I NETSTAT CS V2R10 TCPIPC 862
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000258
 WLM: 01 W/Q: 01 1
172.16.251.3 00020 172.16.233.28 000 0000000455
 WLM: 02 W/Q: 02 2
172.16.251.3 00020 172.16.233.39 000 0000000350
 WLM: 02 W/Q: 02 3
172.16.251.3 00021 172.16.233.3 001 0000000007
 WLM: 01 W/Q: 01 1
172.16.251.3 00021 172.16.233.28 001 0000000011
 WLM: 02 W/Q: 02 2
172.16.251.3 00021 172.16.233.39 001 0000000009
 WLM: 02 W/Q: 02 3
172.16.251.3 00023 172.16.233.3 001 0000000180
 WLM: 01 W/Q: 01 1
172.16.251.3 00023 172.16.233.28 001 0000000360
 WLM: 02 W/Q: 02 2
172.16.251.3 00023 172.16.233.39 001 0000000360
 WLM: 02 W/Q: 02 3
172.16.251.3 01492 172.16.233.28 001 0000000229
 WLM: 02 W/Q: 02 2
172.16.251.3 01492 172.16.233.39 001 0000000192
 WLM: 02 W/Q: 02 3
11 OF 11 RECORDS DISPLAYED
162 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-52 D TCPIP,TCPIPC,N,VDPT,DET on RA03 IP stack after running multiple IP services for
some time

5.6.4 Scenario 4: Deleting and adding a VIPADISTRIBUTE statement
With the DELETE parameter of the VIPADISTRIBUTE statement, we can delete a previous
designation of a dynamic VIPA as distributable. This gives you the ability to stop distribution
for a certain application/port. In this scenario (depicted in Figure 5-53 on page 164), we stop
the distribution of the RSSERVER on port 1492. After deleting the VIPADISTRIBUTE for this
port 1492, we add a VIPADISTRIBUTE statement for the Web server using port 80.

If the VIPADISTRIBUTE DELETE statement is defined with the keyword DESTIP ALL, then it
is not possible to use the VIPADISTRIBUTE with the DESTIP <dynxcfip> syntax. You must
use the VIPADISTRIBUTE DELETE with the keyword DESTIP ALL and then you can use
VIPADISTRIBUTE DEFINE with keyword DESTIP <dynxcfip> to specify the new specific
stacks for distribution consideration.

RO RA03,D TCPIP,TCPIPC,N,VDPT,DET
D TCPIP,TCPIPC,N,VDPT,DET
EZZ2500I NETSTAT CS V2R10 TCPIPC 273
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000001600
 WLM: 01 W/Q: 01
172.16.251.3 00020 172.16.233.28 000 0000003097
 WLM: 02 W/Q: 02
172.16.251.3 00020 172.16.233.39 000 0000002791
 WLM: 01 W/Q: 01 3
172.16.251.3 00021 172.16.233.3 001 0000000023
 WLM: 01 W/Q: 01
172.16.251.3 00021 172.16.233.28 001 0000000044
 WLM: 02 W/Q: 02
172.16.251.3 00021 172.16.233.39 001 0000000040
 WLM: 01 W/Q: 01 3
172.16.251.3 00023 172.16.233.3 001 0000000392
 WLM: 01 W/Q: 01
172.16.251.3 00023 172.16.233.28 001 0000000779
 WLM: 02 W/Q: 02
172.16.251.3 00023 172.16.233.39 001 0000000629
 WLM: 01 W/Q: 01 3
172.16.251.3 01492 172.16.233.28 001 0000000242
 WLM: 02 W/Q: 02
172.16.251.3 01492 172.16.233.39 001 0000000207
 WLM: 01 W/Q: 01 3
11 OF 11 RECORDS DISPLAYED
Chapter 5. Sysplex Distributor 163

Figure 5-53 Deleting RSSERVER distribution and adding Web Server distribution dynamically

We used the VARY OBEY file shown in Figure 5-54 to delete the RSSERVER from
distribution. In our case, we could use the VIPADISTRIBUTE DELETE statement with the
parameter DESTIP <dynxcfip>, since we were only distributing the port 1492 1 for the
RSSERVER to the RA28 IP stack 2 and the RA39 IP stack 2. Note that existing connections
are maintained even after processing the VIPADISTRIBUTE DELETE.

Figure 5-54 OBEY file for VIPADISTRIBUTE DELETE of port 1492

Figure 5-55 on page 165 displays the Dynamic VIPA destination port table of RA03 stack
after deleting the VIPADISTRIBUTE statement for the RSSERVER port 1492. At this point,
we see that the port 1492 is no longer being distributed.

VIPADYNAMIC
 VIPADISTRIBUTE DELETE 172.16.251.3 PORT 1492 1
 DESTIP 172.16.233.28 172.16.233.39 2
ENDVIPADYNAMIC

OMPROUTE (OSPF)

TN3270E
Port 23

FTPD
Port 20,21

DVIPA 172.16.251.3
 255.255.255.0

OMPROUTE (OSPF)

DVIPA 172.16.251.3
 255.255.255.0

RSSERVER
Port 1492

OMPROUE (OSPF)

DVIPA 172.16.251.3
 255.255.255.0

RSSERVER
Port 1492

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0

172.16.102.254
255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

SD Distributing Stack SD Target Stack/1.Backup SD Target Stack/2.Backup

FTPD
Port 20,21

FTPD
Port 20,21

WEB
Server
Port 80

WEB
Server
Port 80

RSSERVER is deleted from the
VIPADISTRIBUTE statement.

Web Server is added to the
VIPADISTRIBUTE statement.

TN3270E
Port 23

TN3270E
Port 23

CF
164 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-55 D TCPIP,TCPIPC,N,VDPT on RA03 IP stack after deleting port 1492 from distribution

We then started the Web server on stacks RA28 and RA39 and verified that the server was
listening on port 80. After that, we added the VIPADISTRIBUTE DEFINE statement for port
80 with the XCF IP addresses for RA28 and RA39 with the VARY OBEY file shown in
Figure 5-56.

Figure 5-56 VARY OBEY file to distribute the Web server on port 80

Figure 5-57 shows the Dynamic VIPA destination port table of RA03 stack after adding the
distribution of the Web server.

Figure 5-57 D TCPIP,TCPIPC,N,VDPT on RA03 after VIPADISTRIBUTE DEFINE for port 80

Figure 5-58 on page 166 shows only a part of the connection table after establishing
connections to the Web server using the Sysplex Distributor to balance the workload between
the IP stacks RA28 and RA39.

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 661
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000002240
172.16.251.3 00020 172.16.233.28 000 0000004480
172.16.251.3 00020 172.16.233.39 000 0000004080
172.16.251.3 00021 172.16.233.3 001 0000000031
172.16.251.3 00021 172.16.233.28 001 0000000061
172.16.251.3 00021 172.16.233.39 001 0000000055
172.16.251.3 00023 172.16.233.3 001 0000000452
172.16.251.3 00023 172.16.233.28 001 0000000899
172.16.251.3 00023 172.16.233.39 001 0000000749
9 OF 9 RECORDS DISPLAYED

VIPADYNAMIC
 VIPADISTRIBUTE 172.16.251.3 PORT 80
 DESTIP 172.16.233.28 172.16.233.39
ENDVIPADYNAMIC

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 736
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000002240
172.16.251.3 00020 172.16.233.28 000 0000004480
172.16.251.3 00020 172.16.233.39 000 0000004080
172.16.251.3 00021 172.16.233.3 001 0000000031
172.16.251.3 00021 172.16.233.28 001 0000000061
172.16.251.3 00021 172.16.233.39 001 0000000055
172.16.251.3 00023 172.16.233.3 001 0000000452
172.16.251.3 00023 172.16.233.28 001 0000000899
172.16.251.3 00023 172.16.233.39 001 0000000749
172.16.251.3 00080 172.16.233.28 001 0000000000
172.16.251.3 00080 172.16.233.39 001 0000000000
11 OF 11 RECORDS DISPLAYED
Chapter 5. Sysplex Distributor 165

Figure 5-58 D TCPIP,TCPIPC,N,VCRT on RA03 after establishing connection to Web server

Finally, to show the number of connections that have been distributed since the Sysplex
Distributor function was started, we issue the command as shown in Figure 5-59.

Figure 5-59 D TCPIP,TCPIPC,N,VDPT on RA03 after some time running the distribution

5.6.5 Scenario 5: Removing a target stack from distribution
There are a few reasons why an IP stack may need to be removed from distribution. One
example is the event of a planned maintenance update for this stack, which should affect the
least number of users as possible. Removing the stack from distribution will ensure that all
the new connections are sent to the other participating stacks in the sysplex. Existing
connections on the removed stack will still be maintained until their normal completion.

Let’s assume we still have the same environment as we had after 5.6.4, “Scenario 4: Deleting
and adding a VIPADISTRIBUTE statement” on page 163. In this case, we are running the
FTP and Telnet server on all three IP stacks (RA03,RA28, and RA39). The Web server is
running on IP stacks RA28 and RA39. Now we remove the target IP stack RA39 from
distribution. There is also new status information for the DVIPAs. We redefine the IP stack
RA39 just as a target stack and remove the VIPABACKUP definition.

Figure 5-60 on page 167 shows you all the participating IP stacks in the sysplex and their
status.

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 895
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
.......
172.16.251.3 00080 9.24.106.32 01083 172.16.233.28
172.16.251.3 00080 9.24.106.102 01182 172.16.233.28
172.16.251.3 00080 9.24.106.252 01130 172.16.233.28
172.16.251.3 00080 9.24.106.247 03550 172.16.233.39
172.16.251.3 00080 9.24.106.252 01131 172.16.233.39
.......

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 898
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000002240
172.16.251.3 00020 172.16.233.28 000 0000004480
172.16.251.3 00020 172.16.233.39 000 0000004080
172.16.251.3 00021 172.16.233.3 001 0000000031
172.16.251.3 00021 172.16.233.28 001 0000000061
172.16.251.3 00021 172.16.233.39 001 0000000055
172.16.251.3 00023 172.16.233.3 001 0000000452
172.16.251.3 00023 172.16.233.28 001 0000000899
172.16.251.3 00023 172.16.233.39 001 0000000749
172.16.251.3 00080 172.16.233.28 001 0000000032
172.16.251.3 00080 172.16.233.39 001 0000000024
11 OF 11 RECORDS DISPLAYED
166 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-60 D TCPIP,TCPIPC,SYSPLEX,VIPADYN

Now we change the IP stack RA39 to a target stack without any backup capabilities.
Remember that we have defined RA39 as our second backup for RA03. This change is
necessary because of the new status of the DVIPAs that were introduced with IBM
Communications Server for OS/390 V2R10. If RA39 would still be defined as backup, the
new DVIPA status is never displayed; it would show only the BACKUP status. We do this with
the VARY OBEY file on IP stack RA39 as shown in Figure 5-61. We also automatically delete
the VIPBACKUP definition on RA39 by deleting the RA03 DVIPA on RA39.

Figure 5-61 VARY OBEY file for deleting VIPABACKUP definition on RA39

Note: This will not remove the DVIPA entry from the home list of IP stack RA39, because we
are still a target for distribution.

Figure 5-62 shows you the participating IP stacks in the sysplex and their status after deleting
the VIPABACKUP definition on RA39. RA39 now shows the status of ACTIVE 1 and a
distribution status of DEST 2, which only shows target stacks without backup capabilities.

Figure 5-62 D TCPIP,TCPIPC,SYSPLEX,VIPADYN after deleting VIPABACKUP definition

Figure 5-63 on page 168 and Figure 5-64 on page 168 show us that we are distributing to all
three stacks for FTP 1 and Telnet 2. For the Web server 3 we are distributing to RA28 and
RA39. At the moment we have established only four Telnet connections: two active
connections to RA28 4 and two active connections to RA39 5.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 147
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
 TCPIPC RA28 BACKUP 200 DEST
 TCPIPC RA39 BACKUP 100 DEST
3 OF 3 RECORDS DISPLAYED

VIPADYNAMIC
 VIPADELETE 172.16.251.3
ENDVIPADYNAMIC

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 151
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
 TCPIPC RA28 BACKUP 200 DEST
 TCPIPC RA39 1 ACTIVE DEST 2
3 OF 3 RECORDS DISPLAYED
Chapter 5. Sysplex Distributor 167

Figure 5-63 D TCPIP,TCPIPC,N,VDPT before removing target stack RA39 from distribution

Figure 5-64 D TCPIP,TCPIPC,N,VCRT before removing target stack RA39 from distribution

At this point, we use the VIDISTRIBUTE DELETE statement in a VARY OBEY file to delete all
the ports defined for distribution to RA39. At the moment we are distributing ports 20, 21, 23
and 80 to IP stack RA39. Remember, ports 20, 21 and 23 were defined in the PROFILE using
the keyword DESTIP ALL. To remove distribution for these ports, we first have to use the
VIPADISTRIBUTE DELETE with DESTIP ALL 1 before we can use the VIPADISTRIBUTE
DEFINE 2 for the special XCF addresses (review explanation in 5.6.4, “Scenario 4: Deleting
and adding a VIPADISTRIBUTE statement” on page 163). Distribution for port 80 was done
with a VARY OBEY file and we used the XCF addresses in the DESTIP keyword. To remove
this distribution, we can use the VIPADISTRIBUTE DELETE 3 statement with the keyword
DESTIP <dynxcfip>. Please refer to Figure 5-65.

Figure 5-65 OBEY file to remove only the distribution to target IP stack RA39

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 154
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000001716
172.16.251.3 00020 172.16.233.28 000 0000003282
172.16.251.3 00020 172.16.233.39 000 0000003202
172.16.251.3 00021 172.16.233.3 001 0000000039 1
172.16.251.3 00021 172.16.233.28 001 0000000081 1
172.16.251.3 00021 172.16.233.39 001 0000000080 1
172.16.251.3 00023 172.16.233.3 001 0000000754 2
172.16.251.3 00023 172.16.233.28 001 0000000877 2
172.16.251.3 00023 172.16.233.39 001 0000000873 2
172.16.251.3 00080 172.16.233.28 001 0000000044 3
172.16.251.3 00080 172.16.233.39 001 0000000050 3
11 OF 11 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 157
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00023 9.24.106.247 01740 172.16.233.28 4
172.16.251.3 00023 9.24.106.247 01741 172.16.233.28 4
172.16.251.3 00023 9.24.106.247 01742 172.16.233.39 5
172.16.251.3 00023 9.24.106.247 01743 172.16.233.39 5
4 OF 4 RECORDS DISPLAYED

VIPADYNAMIC
 VIPADISTRIBUTE DELETE 172.16.251.3 PORT 20 21 23
 DESTIP ALL 1
 VIPADISTRIBUTE DELETE 172.16.251.3 PORT 80
 DESTIP 172.16.233.39 3
 VIPADISTRIBUTE 172.16.251.3 PORT 20 21 23
 DESTIP 172.16.233.3 172.16.233.28 2
ENDVIPADYNAMIC
168 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-66 and Figure 5-67 show us that the target IP stack RA39 is removed from
distribution. There is no entry in the destination port table for this stack as a distribution target.
But the existing 1 connections are still maintained (not broken).

Figure 5-66 D TCPIP,TCPIPC,N,VDPT after removing target IP stack RA39 from distribution

Figure 5-67 D TCPIP,TCPIPC,N,VCRT after removing target IP stack RA39 from distribution

We now show the current dynamic VIPA information after removing the target IP stack RA39
from distribution. The DVIPA shows a new status of QUIESCING 1, which was added in IBM
Communications Server for OS/390 V2R10. This state indicates that this DVIPA is no longer
a target for distribution. Existing connections are still kept active and functional. The
distribution status 2 is blank on the display, since we have actually removed the IP stack from
distribution. Please refer to Figure 5-68.

Figure 5-68 D TCPIP,TCPIPC,SYSPLEX,VIPADYN after removing target IP stack RA39 from
distribution

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 174
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000001716
172.16.251.3 00020 172.16.233.28 000 0000003282
172.16.251.3 00021 172.16.233.3 001 0000000039
172.16.251.3 00021 172.16.233.28 001 0000000081
172.16.251.3 00023 172.16.233.3 001 0000000754
172.16.251.3 00023 172.16.233.28 001 0000000877
172.16.251.3 00080 172.16.233.28 001 0000000044
7 OF 7 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 286
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00023 9.24.106.247 01740 172.16.233.28
172.16.251.3 00023 9.24.106.247 01741 172.16.233.28
172.16.251.3 00023 9.24.106.247 01742 172.16.233.39 1
172.16.251.3 00023 9.24.106.247 01743 172.16.233.39 1
4 OF 4 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 310
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
 TCPIPC RA28 BACKUP 200 DEST
 TCPIPC RA39 1 QUIESC 255.255.255.0 0.0.0.0 2
3 OF 3 RECORDS DISPLAYED
Chapter 5. Sysplex Distributor 169

Figure 5-69 shows the current Dynamic VIPA information after disconnecting the connections
to target IP stack RA39. The IP stack RA39 is no longer displayed on this command, since it
is now completely removed from distribution. Also, the DVIPA entry of RA03 in the home list of
RA39 is removed at this time. Please see Figure 5-70 for that display.

Figure 5-69 D TCPIP,TCPIPC,SYSPLEX,VIPADYN after disconnecting all connections to RA39

Figure 5-70 D TCPIP,TCPIPC,N,HOME after disconnecting all connections to RA39

5.6.6 Scenario 4 - Fast connection reset demonstration
CS for z/OS V1R2 IP enhances the Sysplex Distributor by adding a new feature called fast
connection reset. In the case of failure of any target stack, the distributor stack now has the
ability to reset all the connections made with the failure target stack, making the client
recovery faster. Now the clients will receive a reset packet (TCP layer) for each connection
they have with the failing target stack.

We created the scenario illustrated in Figure 5-71 on page 171 to demonstrate how this new
feature works.

Note: If the target IP stack RA39 would be defined as a backup for RA03, the display would
show the status BACKUP and not QUIESCING.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 316
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
 ORIGIN: VIPADEFINE
 TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
 -------- -------- ------ ---- --------------- --------------- ----
 TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
 TCPIPC RA28 BACKUP 200 DEST
2 OF 2 RECORDS DISPLAYED

RO RA39,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 416
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.102.39 M392216B P
172.16.233.39 EZASAMEMVS
172.16.233.39 EZAXCF28
172.16.233.39 EZAXCF03
127.0.0.1 LOOPBACK
5 OF 5 RECORDS DISPLAYED
170 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 5-71 Fast connect reset demonstration scenario

We have two stacks distributing connections to the same target stack. Two of them, the
system SC64 and SC65 are z/OS V1R2 systems with the fast connection reset feature and
the system SC63 is a z/OS V1R1 (using CS for OS/390 V2R10 IP) system without the fast
connection reset feature.

Each one of the distributing stacks distributes two applications: one is a TN3270E server on
two different ports and the other is a REXX program acting as a server for a REXX client
running on a workstation.

Note that the two distributed VIPA addresses belong to the same network subnet of the OSA
cards. We use this configuration to facilitate the implementation. By using the subnet of the
VIPA addresses on the same subnet of the OSA cards, you do not need to use a dynamic
routing protocol and implement the OMPROUTE. The disadvantage of this approach is that in
case of a failure in the OSA card, the z/OS image would no longer be reachable. Other
images using the XCF connection would not be able to route packets to it, since they belong
to the same network.

In order to simulate a stack failure, we issued a FORCE tcpipprocname,ARM command in the
target stack SC64.

For each one of the distributing stacks, we started a packet trace to check how the system
behaves in case of a failure in a target stack. We do not have another stack to distribute a
new connection (a reconnect) coming from the clients. But, in a production environment, we
should have more than one target stack to receive new connections

The profile configuration for system SC63 is as follows:

IPCONFIG DATAGRAMFWD

SC63 System - z/OS 1.1 SC64 System - z/OS 1.2 SC65 System - z/OS 1.2

9.12.6.67 10.1.1.3 10.1.1.2 9.12.6.6110.1.1.1

CF

Router WS

Home
9.12.6.67 OSAGbe

10.1.1.3 XCF
9.12.6.68 VIP AD

VipaD
9.12.6.68

Ports
2368
7777

Home
9.12.6.63 OSAGbe

10.1.1.2 XCF
9.12.6.68 VIP AD
9.12.6.62 VIP AD

Servers:
TN3270 9.12.6.68 2368
TN3270 9.12.6.68 2362
REXXS 9.12.6.62 7777
REXXS 9.12.6.68 7777

Home
9.12.6.61 OSAGbe

10.1.1.1 XCF
9.12.6.62 VIP AD

VipaD
9.12.6.62

Ports
2368
7777
Chapter 5. Sysplex Distributor 171

 DYNAMICXCF 10.1.1.3 255.255.255.252 1
TCPCONFIG RESTRICTLOWPORTS
UDPCONFIG RESTRICTLOWPORTS
DEVICE OSA22E0 MPCIPA
LINK OSA22E0 IPAQGNET OSA22E0
HOME
 9.12.6.67 OSA22E0
BEGINROUTES
 ROUTE 9.12.6.0 255.255.255.0 = OSA22E0 MTU 1492
 ROUTE DEFAULT 9.12.6.75 OSA22E0 MTU 1492
ENDROUTES
VIPADYNAMIC
 VIPADEFINE MOVEABLE IMMEDIATE 255.255.255.0 9.12.6.68
 VIPADISTRIBUTE DEFINE 9.12.6.68 PORT 2368 7777
 DESTIP 10.1.1.2
ENDVIPADYNAMIC
ITRACE OFF
START OSA22E0

For system SC65, we used the following profile:

DATASETPREFIX TCPIPB
IPCONFIG DATAGRAMFWD
 DYNAMICXCF 10.1.1.1 255.255.255.252 1
TCPCONFIG RESTRICTLOWPORTS
UDPCONFIG RESTRICTLOWPORTS
DEVICE OSA22E0 MPCIPA
LINK OSA22E0 IPAQGNET OSA22E0
HOME
 9.12.6.61 OSA22E0
BEGINROUTES
 ROUTE 9.12.6.0 255.255.255.0 = OSA22E0 MTU 1492
 ROUTE DEFAULT 9.12.6.75 OSA22E0 MTU 1492
ENDROUTES
VIPADYNAMIC
 VIPADEFINE MOVEABLE IMMEDIATE 255.255.255.0 9.12.6.62
 VIPADISTRIBUTE DEFINE 9.12.6.62 PORT 2362 7777
 DESTIP 10.1.1.2
ENDVIPADYNAMIC
ITRACE OFF
START OSA22E0

For system SC64, we used the following profile:

IPCONFIG DATAGRAMFWD
 DYNAMICXCF 10.1.1.2 255.255.255.252 1
TCPCONFIG RESTRICTLOWPORTS
UDPCONFIG RESTRICTLOWPORTS
DEVICE OSA22E0 MPCIPA
LINK OSA22E0 IPAQGNET OSA22E0
HOME
 9.12.6.63 OSA22E0
BEGINROUTES
 ROUTE 9.12.6.0 255.255.255.0 = OSA22E0 MTU 1492
 ROUTE DEFAULT 9.12.6.75 OSA22E0 MTU 1492
ENDROUTES
PORT
 2362 TCP INTCLIEN BIND 9.12.6.62
 2368 TCP INTCLIEN BIND 9.12.6.68
172 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

 7777 TCP * SHAREPORT
ITRACE OFF
TELNETPARMS
 PORT 2362
ENDTELNETPARMS
TELNETPARMS
 PORT 2368
ENDTELNETPARMS
BEGINVTAM
 PORT 2362 2368
 DEFAULTLUS
 TCP64B00..TCP64B99
 ENDDEFAULTLUS
 ALLOWAPPL *
ENDVTAM

START OSA22E0

Note the port definitions: we used two TN3270 servers in different IP ports and IP addresses
using the BIND option in the PORT statement. For the REXX server, we are sharing the
PORT with two servers. Each one of the servers will use a specific BIND to listen for
connections using different IP addresses.

The REXX server program is as follows:

/* REXX */
trace i
parse arg vipa .
if vipa="" then do say "Vipa ????"; exit; end
id=MvsVar(SysClone)
signal on syntax
signal on halt
port = '7777'

rc=Socket('Initialize','rodolfi',50)
parse var rc rc rest
if rc<>0 then call Error rc 'Init' rest

rc=Socket('Socket')
parse var rc rc s rest
if rc<>0 then call Error rc 'Socket' s rest

rc=Socket('Bind',s,'AF_INET' port vipa)
parse var rc rc rest
if rc<>0 then call Error rc 'Bind' rest

rc=Socket('Listen',s,10)
parse var rc rc rest
if rc<>0 then call Error rc 'Listen' rest

do forever
 rc=Socket('Accept',s)
 parse var rc rc ns rest
 if rc<>0 then call Error rc 'Accept' ns rest
 call Socket 'SetSockOpt',ns,'SOL_SOCKET','So_ASCII','On'
 rc=Socket('Read',ns)
 parse var rc rc nbytes data
 if rc<>0 then call Error rc 'Read' nbytes data
 say 'SERVER:' nbytes 'bytes received:' data
 rc=Socket('Read',ns)
 parse var rc rc nbytes data
Chapter 5. Sysplex Distributor 173

 if rc<>0 then call Error rc 'Read' nbytes data
 say 'SERVER:' nbytes 'bytes received:' data
 rc=Socket('Close',ns)
 if data='END' then leave
end

Flush:
call Socket 'Shutdown',s,'Both'
call Socket 'Terminate','Server'
exit

Error:
parse arg rc api rest
say 'Server: Return code' rc 'on api' api ':' rest
signal Flush

Syntax:
signal Flush

Halt:
say 'Server halted ...'
signal Flush

This program expects to receive an IP address as input and will issue the BIND on a specific
port. The JCL used to start both servers are shown here.

The JCL to start the SC63 server:

//SRV63G JOB NOTIFY=RODOLFI,CLASS=A,MSGCLASS=A
//SERVER EXEC PGM=IRXJCL,REGION=0M,PARM='SERVER 9.12.6.68'
//SYSTSPRT DD SYSOUT=*
//SYSEXEC DD DSN=RODOLFI.WORK,DISP=SHR
//SYSTCPD DD DSN=TCPIPB.SC64.TCPPARMS(TCPDATB),DISP=SHR

The JCL to start the SC65 server:

//SRV65G JOB NOTIFY=RODOLFI,CLASS=A,MSGCLASS=A
//SERVER EXEC PGM=IRXJCL,REGION=0M,PARM='SERVER 9.12.6.62'
//SYSTSPRT DD SYSOUT=*
//SYSEXEC DD DSN=RODOLFI.WORK,DISP=SHR
//SYSTCPD DD DSN=TCPIPB.SC65.TCPPARMS(TCPDATB),DISP=SHR

For the client side we used a TN3270 client (Personal Communication) and a REXX program
developed in Object REXX for Windows. The REXX client is shown here:

/* */
 trace ?i
 rc1 = RxFuncAdd("SockLoadFuncs","rxsock","SockLoadFuncs")
 rc2 = SockLoadFuncs()
 call time(r)
 say cab() "Initializing sockets ..." rc1 rc2 time(e)
 say cab() "Socket Version" SockVersion() time(e)

 rcinit = SockInit()
 if rcinit <> 0 then call Error "Error" rcinit "on sockinit function."
 socket = SockSocket("AF_INET","SOCK_STREAM","IPPROTO_TCP")
 if socket < 0 then call Error "Error on socksocket call" socket
 say cab() "Socket" socket "initialized ..." time(e)

174 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

 address.family = "AF_INET"
 address.port = "7777"
 address.addr = "9.12.6.68"
 rcconnect = SockConnect(socket,"address.")
 if rcconnect <> 0 then call Error "Error on connect" rcconnect
 say cab() "Connected to port" address.port "for socket" socket "to address" address.addr
"ok " rcconnect time(e)

 say cab() "Entre com os dados a serem enviados:"
 parse pull dados
 rcsend = SockSend(socket,dados)
 say cab() "Number of bytes sent on socket" socket":" rcsend
 rcreceive = SockRecv(socket,dados,1024)
 say rcreceive dados

 CLOSE:
 rcclose = SockSoClose(socket)
 say cab() "Closed socket" socket rcclose time(e)
 call SysDropFuncs
 exit 0

 ERROR:
 parse arg message
 errno = SockSock_Errno()
 call SockPSock_Errno
 say cab() "Error Number" errno
 say cab() message
 call SockPSock_Errno
 signal close

 CAB:
 return date() time()

We started the three stacks and the two servers in the SC64 system. After that, we started
four clients in the workstation: two PCOMMs, one with IP address 9.12.6.68 and port 2368
and one with IP address 9.12.6.62 and port 2362; two REXX clients, one with IP address
9.12.6.68 and port 7777 and one with IP address 9.12.6.62 and port 7777. The output from
the NETSTAT SOCKETS command in system SC64 is included here:

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCPIPB 15:51:17
Sockets interface status:
Type Bound to Connected to State Conn
==== ======== ============ ===== ====
Name: SRV63G Subtask: 008FF330
Stream 9.12.6.68..7777 9.24.106.46..4691 Establsh 00000029
Stream 9.12.6.68..7777 0.0.0.0..0 Listen 00000018
Name: SRV65G Subtask: 008FF330
Stream 9.12.6.62..7777 0.0.0.0..0 Listen 0000001A
Stream 9.12.6.62..7777 9.24.106.46..4692 Establsh 0000002A
Name: TCPIPB Subtask: 00000000
Stream 9.12.6.68..2368 9.24.106.46..4693 Establsh 0000002B
Stream 9.12.6.62..2362 9.24.106.46..4694 Establsh 0000002C
Name: TCPIPB Subtask: 008CAE78
Stream 9.12.6.62..2362 0.0.0.0..0 Listen 00000011
Name: TCPIPB Subtask: 008E01E0
Stream 9.12.6.68..2368 0.0.0.0..0 Listen 00000010
Name: TCPIPB Subtask: 008E0CF8
Stream 127.0.0.1..1026 127.0.0.1..1025 Establsh 0000000E
Name: TCPIPB Subtask: 008E1B50
Stream 127.0.0.1..1025 127.0.0.1..1026 Establsh 0000000F
Chapter 5. Sysplex Distributor 175

Stream 127.0.0.1..1025 0.0.0.0..0 Listen 0000000B

Note that we have four clients connected. After having all clients connected we started a
packet trace in both SC63 and SC65 systems to trace IP packets. With the trace, we see what
happens when stack SC64 goes down. We compare how the fast connection reset feature
from CS for z/OS V1R2 IP reacts to the target stack failure.

The commands to start the packet trace on the system console are:

v tcpip,tcpipb,pkt,on
trace ct,wtrstart=tcptrc (procedure to collect the trace records)
trace ct,on,comp=systcpda,sub=(tcpipb)
xxx,wtr=tcptrc,options=(internet,tcp),end (this is a reply from the previous command)

Now we start the applications to collect the trace packet records. In our test, we started the
packet trace, started all the clients, and then we issued a force TCPIPB, ARM in system
SC64. After all the client connections had terminated, we stopped the trace with the following
commands:

v tcpip,tcpipb,pkt,off
trace ct,on,comp=systcpda,sub=(tcpipb)
xxx,wtr=disconnect,end (a reply from the previous command)
trace ct,off,comp=systcpda,sub=(tcpipb)
trace ct,wtrstop=tcptrc

The procedure used to collect the trace packets was:

//TCPTRC PROC
//CTRACE EXEC PGM=ITTTRCWR
//SYSPRINT DD SYSOUT=A
//TRCOUT01 DD DSNAME=RODOLFI.&SYSNAME..CTRACE1,DISP=OLD

We ran this JCL in both systems, SC63 and SC65, to format both trace packets. Then we
formatted the output with the following IPCS JCL:

//TSOIPCS JOB NOTIFY=GIANCA,CLASS=A,MSGCLASS=A
//TSOBATCH EXEC PGM=IKJEFT01,REGION=0M
//STEPLIB DD DSN=TCPIP.SEZAMIG,DISP=SHR
//IPCSPARM DD DSN=SYS1.IBM.PARMLIB,DISP=SHR
//SYSPROC DD DSN=SYS1.SBLSCLI0,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//IPCSTOC DD SYSOUT=*
//IPCSPRNT DD SYSOUT=*
//SYSTSIN DD *
IPCS
CTRACE DSN('RODOLFI.SC65.CTRACE1') -
 COMP(SYSTCPDA) SUB((TCPIPB)) FULL
Y
END
/*

With both trace packets formatted, we see the following behavior in the SC65 (CS for z/OS
V1R2 IP) stack:

SC65 PACKET 00000001 15:53:04.896118 Packet Trace
 TO LINK = OSA22E0 DEV = QDIO Ethernet FULL
PKT 98
TCP SRC PORT = 2362 TCP DST PORT = 4694
 SEQ NUM = 0 ACK NUM = 0 FLAGS = ACK
176 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

This packet is a probe sent from the distributor stack to one of the clients to synchronize the
connection it has with the failing stack. After receiving the answer from the client, the server
sent the reset packet:

SC65 PACKET 00000001 15:53:05.017776 Packet Trace
TO LINK = OSA22E0 DEV = QDIO Ethernet FULL
TCP SRC PORT = 2362 TCP DST PORT = 4694

FLAGS = RST

This reset operation is done for all the connections with the failing target.

5.7 Diagnosing Sysplex Distributor problems
Using the already described NETSTAT and DISPLAY WLM commands, you can have a clear
picture of your sysplex environment. Diagnosing Sysplex Distributor problems may be
complex, since the DVIPA is associated with more than one IP stack within the sysplex
cluster.

Which command you use depends on the specific situation. If your Sysplex Distributor is not
working as you expected, we suggest you follow this sequence of steps:

1. Review the configuration, going through the implementations steps listed in 5.4.3,
“Implementation” on page 120.

2. Use the NETSTAT commands described in 5.6.1, “Scenario 1: Three IP stacks distributing
FTP services” on page 133 to display the actual configuration and compare it against your
expectations. A very good indication in regards to whether a connection can be distributed
is the NETSTAT,VDPT command. It shows you in the RDY output field which application is
ready to receive connections.

3. Verify that OSPF or RIP dynamic routing protocols have been implemented and the
DVIPA is being advertised through this. In addition, ensure that the downstream routers in
your network have learned from your OMPROUTE (or ORouteD) where to find the DVIPA.

4. For checking the distributing function, you could use the REXX samples we have added in
Appendix B, “REXX EXECs to gather connection statistics” on page 261. The REXX
program connects to a server on a given host name/port pair the specified number of
times. With that utility, you can easily check if the Sysplex Distributor is distributing as you
expect.

If this is not enough, we strongly suggest you refer to z/OS V1R2.0 CS: IP Configuration
Reference, SC31-8726 for further information.
Chapter 5. Sysplex Distributor 177

178 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Chapter 6. Sysplex Distributor with MNLB

This chapter introduces a load distribution solution using Communications Server for z/OS
Sysplex Distributor in cooperation with Cisco MultiNode Load Balancing (MNLB) functions in
routers. The load distribution process and the data flow are different from Sysplex Distributor
and standard MNLB because the tasks are performed the IBM Sysplex Distributor and Cisco
routers/switches operating cooperatively, rather than in Sysplex Distributor or MNLB
independently. This involves:

� Determination of the optimal application server
� Forwarding IP packets from clients to the selected application server

The following sections describe:

� TCP connection and distribution process

� The advantages of the combined IBM Sysplex Distributor/Cisco MNLB solution

� The IBM Sysplex Distributor/Cisco MNLB configuration used in our tests

� The IBM Sysplex Distributor Service Manager implementation

� Cisco Forwarding Agent definitions

� The data flow between the IBM Sysplex Distributor Service Manager and Cisco
Forwarding Agent

� Displays used to control the definitions

� The IBM Sysplex Distributor backup and recovery tasks and definitions

� The Cisco Forwarding Agent definitions and backup considerations

� The Generic Routing Encapsulation (GRE) Protocol, and why it is needed

6

© Copyright IBM Corp. 2002. All rights reserved. 179

6.1 Sysplex Distributor/MNLB joint solution overview
The MNLB/Sysplex Distributor distribution provides an attractive solution when clients need
high-speed access to such TCP/IP services as:

� Hypertext Transfer Protocol (HTTP) for Web services
� 3270 Telnet Server (TN3270 or TN3270E)
� File Transfer Protocol (FTP)

Multiple homogeneous application servers should be organized in a server cluster within a
sysplex. The IBM z/OS Sysplex Distributor uses information provided periodically by the z/OS
Workload Manager (WLM) to keep track of the current optimal server within the sysplex. This
information is used later to distribute TCP connection requests to the “best” server.

The Sysplex Distributor advertises the server cluster address for specific application services
to the network. Clients use this cluster address rather than directly addressing the desired
target server. This cluster address is an IP address known by the DNS. From the view of the
client, it looks as if the Sysplex Distributor runs the application. However, the Sysplex
Distributor only advises the router where to forward the packets for a specific connection. The
real server is located on another LPAR/system in the sysplex.

When the client sends the connection request to the network, it will arrive at the Cisco MNLB
Forwarding Agent. The Forwarding Agent sends the connection request directly to the
Sysplex Distributor. The Sysplex Distributor searches for the “best” target server and sends
the packet via the Cross Coupling Facility (XCF) link to the target system.

The target server processes the connection request, which is indicated by the synch (SYN) bit
in the TCP header coming from the client. The target server responds to the client also with a
SYN and an acknowledgment (ACK). This establishes the full-duplex TCP connection. The
response packet from the server to the client flows directly to the network without necessarily
having to traverse the XCF link to the Sysplex Distributor. The route used is calculated by the
routing daemon. In our test environment, we used OMPROUTE within the sysplex and
Cisco’s EIGRP within the router-controlled network.

The client now will respond to the SYN, previously sent from the application server, with an
ACK. Since the client has no destination IP address other than the one of the Sysplex
Distributor, it believes that the desired application server runs in the stack of the Sysplex
Distributor. Therefore it will continue sending the ACK packet and the following packets to the
Sysplex Distributor, which acts as the representative of the cluster IP address for the
application server.

But from now on when the client’s packets arrive at the Cisco router before entering the
sysplex, the router already knows the real location (IP address) of the target server. This
would enable direct routing to the target server without touching the Sysplex Distributor.

In order to provide the router or switch with knowledge about a shorter path to the target
systems, the Sysplex Distributor has to transfer the connection distribution information to the
router.

In a pure Cisco MNLB configuration, this information is provided by the Cisco Service
Manager, which runs in a Cisco LocalDirector unit, installed externally from the IBM sysplex.
The Cisco Service Manager communicates with the Cisco Forwarding Agent (implemented in
the Cisco router). A special communication protocol is used to exchange routing information
on accessible application servers in target systems. This protocol is called Cisco Appliance
Services Architecture (CASA).
180 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Hence, with CS for z/OS V1R2 IP, Sysplex Distributor provides the Service Manager
functionality. This enables the Sysplex Distributor to propagate the connection dispatching
information to the Cisco Forwarding Agent. As a result, the Cisco Forwarding Agent is able to
directly send all packets of an existing connection to the real target server.

6.2 Advantages of the solution
There are some significant advantages to implementing the Sysplex Distributor with the
Service Manager function in an MNLB environment. These include:

� The inbound path for all TCP data to the target server now goes directly from the
Forwarding Agent to the target server.

– The inbound data path used in a pure Sysplex Distributor environment always passed
through the distributing stack and XCF link to the target server.

– In some cases the Sysplex Distributor could become a bottleneck for high-speed
access used by Web services, regarding the load of traffic on links to the Sysplex
Distributor, the CPU load needed for each IP packet on the IP layer, and the load of the
traffic used for the XCF links.

� In a pure MNLB configuration, a separate Cisco LocalDirector unit (and a backup
LocalDirector) containing the Cisco Service Manager was used to make the connection
distribution. Now, with the Service Manager being in the Sysplex Distributor, the
LocalDirector is no longer needed.

� A separate Cisco OS/390 Workload Agent, running in each LPAR of all TCP/IP application
server target stacks, is no longer required. Also, using the Cisco Dynamic Feedback
Protocol (DFP) is unnecessary, and thus traffic load from the Workload Agent to the
Forwarding Agent is avoided.

� The Service Manager in the Sysplex Distributor provides load-balancing decisions based
on Quality of Service (QoS) from the Policy Agent (PAGENT) definitions in the z/OS
system, in addition to the WLM information.

� A backup distributing stack can provide for failure recovery of the Service Manager.

6.3 IP addresses used during our tests
Our test configuration consists of a sysplex with four logical partitions (LPARs) named as
follows:

� MVS001, which is the Sysplex Distributor (the Service Manager for the Cisco MNLB
configuration).

� MVS069, which is the backup Sysplex Distributor for MVS001.

� MVS062, which can be regarded as a target stack running TCP/IP application servers. For
our tests, we used mainly the TN3270E server to access TSO, a Web server, and the FTP
server. TCP connection requests are distributed to this host or to the MVS154 by the
Sysplex Distributor/Service Manager based on z/OS Workload Manager (WLM)
information.

� MVS154, which is another target stack like MVS062.

Each LPAR runs one TCP/IP stack. The LPARs are connected to each other via the Cross
Coupling Facility (XCF).
Chapter 6. Sysplex Distributor with MNLB 181

All LPARs have connections to two Cisco routers controlling the network:

� Via a shared OSA-Express Gigabit Ethernet (GbE) adapter.

� Via ESCON director to Cisco router using Common Link Access to Workstation (CLAW) or
the Multipath Channel Plus (MPC+) Protocol.

– The CLAW connection is to the Cisco router 7206VX.

– The MPC connection is to the Cisco 7507 router running Cisco MPC+ (CMPC+).

Our network is depicted in Figure 6-1 on page 183.
182 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 6-1 IBM z/OS Sysplex and Cisco MNLB network

IBM z/OS Sysplex

MVS069 MVS062 MVS154

7507 7206VXR

CA
D9

AD
AC

D1

F9

9.67.156.16/29

9.67.156.64/29

9.67.157.128/28

ESCON
Director

OSA-
Express

GbitE

.66 .17 .129 .69 .18 .130 .67 .20 .132 .68 .19 .131

6509

CMPC+

CMPC+
CLAW

c6/0 c6/1 c3/0
1/1

1/2

2/26

2/25

.65, .65

.65, .65
.21, .21
.21, .21

g1/0

fa0/0/1fa0/0/0

GRE
Tunnels

MVS062 MVS069 MVS154

Static VIPAs
9.67.156.1/30

Static VIPAs
9.67.156.161/30

Static VIPAs
9.67.156.5/30

Static VIPAs
9.67.156.165/30

MVS001

XCF

Dynamic VIPAs
9.67.156.25/29
9.67.156.26/29

Dynamic VIPAs
9.67.156.33/29
9.67.156.34/29

Dynamic VIPAs
9.67.156.49/29
9.67.156.50/29

Dynamic VIPAs
9.67.156.41/29
9.67.156.42/29

Distributed VIPAs
9.67.157.17/29
9.67.157.18/29

9.67.156.72/29.73 .74 .76 .75

R
E

A
D

W
R

IT
E

Sysplex Distributor
(Service Manager)

Backup Sysplex
Distributor

(Service Manager)

9.67.157.128/28 vlan 400.137

.136

GRE
Tunnels
Chapter 6. Sysplex Distributor with MNLB 183

XCF interface
Dynamic XCF links connect the four LPARs via the Cross Coupling Facility (XCF). The subnet
used is 9.67.156.72 with mask 255.255.255.248.

The TCPIP.PROFILE XCF definition for the system MVS001 for this link is:

IPCONFIG DYNAMICXCF 9.67.156.73 255.255.255.248 2

The XCF definition for MVS062 is:

IPCONFIG DYNAMICXCF 9.67.156.74 255.255.255.248 2

The XCF definitions for the remaining systems MVS069 and MVS154 are:

IPCONFIG DYNAMICXCF 9.67.156.76 255.255.255.248 2

IPCONFIG DYNAMICXCF 9.67.156.75 255.255.255.248 2

When the system MVS001 has XCF links to all other systems, the HOME list on MVS001
would look like the following screen.

Three HOME list statements with equal IP addresses but with different link names show the
existing XCF links to the other systems. These HOME statements are created dynamically
when the partner TCP/IP stack with its XCF interface is started. Also the DEVICE, LINK, and
START statements are created automatically.

An example of the dynamic XCF DEVICE and LINK definitions is shown in the following
screen.

Note: The format of the DYNAMICXCF statement shows the IP address of the XCF link, a
subnet mask and a metric value for the link. This metric value will be used only for the
Routing Information Protocol (RIP) in BSDROUTINGPARMS statements of the ORouteD
daemon. Since we used Open Shortest Path First (OSPF) as the routing protocol for the
sysplex with the OMPROUTE daemon, all definitions for the metric of each interface have
been made in the OMPROUTE configuration file. The metric values defined in the
DYNAMICXCF statement are therefore arbitrary and not used.

=> netstat home
 MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
 Home address list:
 Address Link Flg
 ------- ---- ---
 9.67.156.1 VLINK0 P
 9.67.157.129 GIGELINK
 9.67.156.66 CISCO1
 9.67.156.17 CISCO2
 9.67.157.42 TOLINUX
 9.67.156.2 TOVTAM
 9.67.156.25 VIPL09439C19
 9.67.156.26 VIPL09439C1A
 9.67.156.73 EZAXCFN7
 9.67.156.73 EZAXCFN5
 9.67.156.73 EZAXCFN6
 127.0.0.1 LOOPBACK
184 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The screen shows the definitions to system N7. The value N7 is taken from the &SYSCLONE
parameter of system MVS001. The DEVICE name is taken from the VTAM CP node name.
The following shows our system symbol values.

Static VIPA IP address
Usually, a static VIPA address is used for a device-independent destination endpoint that
remains on a single stack. Whenever an interface of a device, such as the Ethernet or
token-ring adapter, fails, a routing protocol would find an alternate path to the static VIPA
address.

In our configuration, we used the static VIPA address (for example: 9.67.156.1 with subnet
mask 255.255.255.252) as the endpoint for a tunnel between the Cisco routers 7507 and
7206VXR and the OSA-Express adapter. Tunnels are required only when the OSA-Express
adapter is shared by multiple stacks. In our case, there is one OSA-Express adapter that is
connected to all four LPARs - MVS001, MVS062, MVS069, and MVS154. The OSA-Express
adapter is defined in share mode.

The tunnel carries Generic Routing Encapsulation (GRE) packets over the Gigabit Ethernet
(GbE) to the OSA-Express adapter. More detailed information is found in 6.10, “Generic
Routing Encapsulation (GRE) protocol” on page 231.

Though we originally defined our static VIPA in system MVS001 for Enterprise Extender, we
re-used it for the tunnel, too. Its definition is given in Example 6-1 on page 186.

DevName: N07N DevType: MPC DevNum: 0000
 DevStatus: Ready
 LnkName: EZAXCFN7 LnkType: MPC LnkStatus: Ready
 NetNum: 0 QueSize: 0
 BytesIn: 41536 BytesOut: 40822
 BSD Routing Parameters:
 MTU Size: 04472 Metric: 200
 DestAddr: 0.0.0.0 SubnetMask: 255.255.255.248
 Multicast Specific:
 Multicast Capability: Yes
 Group RefCnt
 ----- ------
 224.0.0.5 0000000001
 224.0.0.1 0000000001

290 IEA007I STATIC SYSTEM SYMBOL VALUES 016
090 &SYSALVL. = "1"
090 &SYSCLONE. = "N7"
090 &SYSNAME. = "MVS069"
090 &SYSPLEX. = "LOCAL"
090 &SYSR1. = "OS120"
090 &CONSOLID. = "MVS069"
.....
090 &DOMAIN. = "N07NV"
……… VTAM-Start…
090 IST093I N07N ACTIVE
Chapter 6. Sysplex Distributor with MNLB 185

Example 6-1 Static VIPA definitions

DEVICE VIPA03 VIRTUAL 0
LINK VLINK0 VIRTUAL 0 VIPA03
HOME 9.67.156.1 VLINK0

OSA-Express adapter interfaces
In our network, one OSA-Express GbE adapter is shared by our four LPARs - MVS001,
MVS069, MVS062, and MVS154. The IP addresses of all stacks belong to the netid
9.67.157.128 with subnet mask 255.255.255.240. The TCPIP.PROFILE definitions for
MVS001 are given in Example 6-2.

Example 6-2 OSA-Express adapter definitions for primary router

DEVICE GIGE2F00 MPCIPA PRIR
LINK GIGELINK IPAQGNET GIGE2F00
START GIGE2F00

For MVS001, the OSA adapter interface is defined as the primary router (see parameter
PRIR in the DEVICE statement). This indicates to the OSA adapter that it should forward
packets with IP addresses not in the OSA Adapter Table (OAT) to this TCP/IP stack. The OAT
learns all IP addresses when the devices are started. These are IP addresses defined in the
HOME list either statically (such as the Ethernet or token-ring interfaces) or automatically
(such as the dynamic XCF address).

The primary router definition “PRIR” for the OSA adapter is enabled for the TCP/IP stack of
Sysplex Distributor. The definition of the OSA adapter interface for the TCP/IP stack of the
backup Sysplex Distributor is therefore defined as the secondary router. This means that, in
case of a failure of the TCP/IP stack on MVS001, the OSA adapter interface for the backup
Sysplex Distributor takes over the function of receiving all IP packets with known and
unknown IP addresses in the OAT.

The OSA-Express GbE definitions for MVS069 are shown in Example 6-3.

Example 6-3 OSA-Express adapter definitions for the secondary router

DEVICE GIGE2F00 MPCIPA SECR
LINK GIGELINK IPAQGNET GIGE2F00
START GIGE2F00

The interfaces of the remaining LPARs are defined as non-router “NONR”. This is because
these are target systems and do not route or forward IP packets. These systems are the
endpoints of the TCP connections. They are the real application server systems only. The
OSA device definitions are exactly the same as illustrated in Example 6-4.

Example 6-4 OSA-Express Adapter definitions for the target systems

DEVICE GIGE2F00 MPCIPA NONR
LINK GIGELINK IPAQGNET GIGE2F00
START GIGE2F00

The VTAM Transmission Resource Element (TRLE) defines the channel path for the
OSA-Express adapter. See the following definitions.

Example 6-5 VTAM TRLE entries for OSA-Express adapter

N04GIG1 TRLE LNCTL=MPC,
READ=(2F14),
WRITE=(2F15),
186 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

DATAPATH=(2F16,2F17),
PORTNAME=(GIGE2F00,0)

Common Link Access to Workstation (CLAW) Protocol
The CLAW interface provides channel attachment to a Cisco router or RS6000 through an
ESCON director. In our network, all of the LPARs have a channel path to the Cisco router. If
the OSA-Express fails, this might be an alternate path between the sysplex and the IP
network.

The TCPIP.PROFILE definitions shown in Example 6-6 are used.

Example 6-6 TCPIP.PROFILE definitions for CLAW device

DEVICE CIP1A CLAW D30 MVS001B C7507A PACKED 15 15 32768 32768
LINK CISCO1 IP 0 CIP1A
START CIP1A

Subchannel addresses D30 and D31 are used for the receive and the send path from the
MVS001 to the Cisco 7206 router. The host name is MVS001B. The workstation name is
C7202A.

The channel program uses packed mode, which means that more than 4 KB buffer sizes for
the channel-read or channel-write commands may be used. In packed mode, the size may be
32 KB or 60 KB. In our case we used 32768 bytes for the read and write buffer sizes, using 15
read buffers and 15 write buffers.

Multipath Channel (MPC) Protocol
In addition to CLAW, there is also an MPC channel attachment for all LPARs to a Cisco router.
This attachment is to our Cisco router 7507.

The TCPIP.PROFILE definitions in Example 6-7 illustrate the attachment.

Example 6-7 TCPIP.PROFILE definitions for MPC device

DEVICE N04CMPC MPCPTP
LINK CISCO2 MPCPTP N04CMPC
START N04CMPC

The device name N04CMPC has to match the VTAM TRLE name. The VTAM statement
carries the information about the channel addresses, as shown in Example 6-8.

Example 6-8 VTAM TRLE definition for MPC device

N04CMPC TRLE LNCTL=MPC,MAXBFRU=255,REPLYTO=25.5,MAXREADS=8,
 STORAGE=DS,MPCLEVEL=HPDT,
 READ=(D20),WRITE=(D21)

Dynamic VIPA addresses
There are some Dynamic VIPA (DVIPA) addresses defined in our test network that we did not
use for the tests illustrated in this chapter. These are shown in Example 6-9.

Example 6-9 dynamic VIPA definitions

VIPADYNAMIC
 VIPADEFINE 255.255.255.248 9.67.156.25 9.67.156.26
 VIPABACKUP 1 9.67.156.33 9.67.156.34
 VIPABACKUP 1 9.67.156.41 9.67.156.42
 VIPABACKUP 100 9.67.156.49 9.67.156.50
Chapter 6. Sysplex Distributor with MNLB 187

ENDVIPADYNAMIC

Distributed Dynamic VIPAs
There are also additional definitions for the distributed DVIPAs, which belong to the same
VIAPDYNAMIC/ENDVIPADYNAMIC block. They are defined in the TCPIP.PROFILE of the
Sysplex Distributor only. The backup Sysplex Distributor will take over these distributed
DVIPAs if the primary Sysplex Distributor fails. You may view the definitions for the backup
Sysplex Distributor in 6.9, “Sysplex Distributor backup” on page 220.

The TCPIP.PROFILE definitions for the target stacks with its real application servers may be
viewed in 6.6.1, “Basic TCPIP.PROFILE definitions” on page 198.

The Sysplex Distributor uses the DVIPAs shown in Example 6-10 for the distribution to the
target machines MVS062 and MVS154.

Example 6-10 Dynamic distributed VIPA definitions with no Service Manager

VIPADEFINE MOVEABLE IMMED 255.255.255.248
 9.67.157.17
 VIPADIST 9.67.157.17 PORT 80 443 23 523
 DESTIP 9.67.156.74
 9.67.156.75

VIPADEFINE MOVEABLE IMMED 255.255.255.248
 9.67.157.18
 VIPADIST 9.67.157.18 PORT 20 21
 DESTIP 9.67.156.73
 9.67.156.74

Three statements (or options as is the case with DESTIP) are used to define the distributed
DVIPAs:

1. VIPADEFINE is used to define the VIPA. It also implies that this IP address may be taken
over by another TCP/IP stack. This might occur when a backup Sysplex Distributor takes
over the DVIPA because the primary Sysplex Distributor fails. In this case a VIPABACKUP
statement has to be defined in the backup Sysplex Distributor’s TCPIP.PROFILE.

See an example in 6.9, “Sysplex Distributor backup” on page 220.

2. VIPADIST is used to specify which DVIPA is going to be distributed to TCP/IP target
stacks. This statement does not define to which stack it is distributed. It defines which
server ports are associated with this DVIPA.

In our example, the distributed DVIPA 9.67.157.17 will be the IP address for Web services
on port 80 and 443. Port 80 is used for the HTTP protocol. Port 443 is the secure port
used for the HTTPS protocol.

On the same IP address, TN3270E connections will be opened on port 23, and secure
TN3270 connections will be on port 523.

The distributed DVIPA 9.67.157.18 is defined for File Transfer Protocol (FTP) connections
on port 20 for the data transmission and on port 21 for the control connection.

3. DESTIP is used to specify to which TCP/IP stacks in other LPARs/systems within the
sysplex the DVIPA may be distributed. The IP addresses of the TCP/IP stacks are the
dynamic XCF addresses.

Whenever the TCP/IP stacks in the target systems are active, the XCF link to the Sysplex
Distributor’s XCF IP address will be used to exchange information between the stacks
telling them to implement and activate a distributed DVIPA on the target stack.
188 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

In our example TCP connection requests will be distributed for Web services and the
TN3270 services to TCP/IP stacks with XCF addresses 9.67.156.74 (MVS062) and
9.67.156.75 (MVS154).

The FTP services are distributed to 9.67.156.73 (MVS001) and to 9.67.156.74 (MVS062).

The following screen shows the dynamically created HOME statements on MVS062.

The screen shows the two inserted (flag I) distributed DVIPAs, 9.67.157.17 and 9.67.157.18,
along with special link names that are constructed from the hexadecimal values of each
distributed DVIPA.

6.4 Data flow: Service Manager and Forwarding Agent
The data flow between the Service Manager in the IBM Sysplex Distributor and the
Forwarding Agent in the Cisco router consists of two main messages. These are:

� Fixed affinity
� Wildcard affinity

Affinity
The term affinity describes the action of associating or coupling one thing with another.

In this context, information about the IP and TCP header is collected to build a unique
identifier to distinguish and associate IP packets to a certain TCP connection. This identifier is
used by Forwarding Agents to differentiate the IP packets from incoming TCP connection
requests and from packets belonging to existing TCP connections.

Fixed affinity
A fixed affinity is one that matches specific information within a TCP connection identifier.
This identifier is defined by its unique 5-tuple that spans the packet headers. These are:

� For the IP header:

– Protocol type (TCP only = value 6)

=> netstat home
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
 Home address list:
 Address Link Flg
------------ ------------- ---
9.67.156.161 VLINK0 P
9.67.157.130 GIGELINK
9.67.156.69 CISCO1
9.67.156.18 CISCO2
9.67.157.243 CISCO3
9.67.156.162 TOVTAM
9.67.156.74 EZAXCFN6
9.67.156.33 VIPL09439C21
9.67.156.34 VIPL09439C22
9.67.156.74 EZAXCFN7
9.67.156.74 EZAXCFN4
9.67.157.17 VIPL09439D11 I
9.67.157.18 VIPL09439D12 I
127.0.0.1 LOOPBACK

Chapter 6. Sysplex Distributor with MNLB 189

– Source IP address
– Destination IP address

� For the TCP header:

– Source port
– Destination port

This composed information is used by the Forwarding Agent to differentiate incoming IP
packets, and to associate the packets to a certain action. This may be, for example,
forwarding the packet to a predetermined target system selected for this specific TCP
connection.

In addition, a fixed affinity contains two other important pieces of information:

� The forward IP address, which specifies the real target server address for the specific TCP
connection. The Sysplex Distributor provides the dynamic XCF link address of the
selected target TCP/IP stack.

� A time-to-live (TTL) value telling what time the fixed affinity entry should be kept in the
Forwarding Agent’s cache so that the affinity expires and the resources it consumes can
be freed. This value is provided by the Sysplex Distributor. The value is 15 minutes.

Wildcard affinity
A wildcard affinity is a 5-tuple piece of information as well. Compared with fixed affinity, it has
different values in the source IP address and the source port.

� The source IP address contains a value of 0.0.0.0
� The source port contains a value of 0000

This allows the Forwarding Agent to accept all incoming packets from all IP addresses and
ports for further processing.

Wildcard affinity is mainly used to accept TCP connection requests with a SYN-bit set on in
the TCP header. This request will be forwarded by the Forwarding Agent to the Service
Manager, which will distribute it to one of the target systems running the application server.

Wildcard affinity is created by and sent from the Service Manager to the Forwarding Agent. It
also contains a forwarding IP address, which is the dynamic XCF link IP address of the
Sysplex Distributor.

6.4.1 Wildcard affinity and processing
Wildcard affinities are used by the Forwarding Agent to know which IP packets should be sent
to the Service Manager. Therefore it has to know which IP address and port are used as the
cluster for a specific application service.

When a Forwarding Agent receives an IP packet, it looks at the IP header searching for the
cluster address that is the destination IP address and the protocol value ‘6’, indicating the
TCP protocol. It also checks the destination port in the TCP header for the requested
application (for example 23, the Telnet port). The Forwarding Agent also checks the source IP
address and source port. In a wildcard definition, these two values are always set to zero.
This means the Forwarding Agent accepts TCP packets from any source. Only the
destination entries and the protocol are important.

The wildcard affinity information is provided by the Service Manager in multicast packets at
the initialization of the Sysplex Distributor stack and later periodically.
190 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The following screen, obtained from one of two Forwarding Agents, shows the wildcard
information sent from the Sysplex Distributor that we used in our tests.

The screen sample shows the information used by the Forwarding Agents:

� They accept IP packets from any client to two destination IP addresses (9,67,157.17 and
9.67.157.18). These IP addresses were defined previously in the TCPIP.PROFILE of
MVS001 under VIPADYNAMIC, VIPADEFINE, VIPADIST, DESTIP, and
ENDVIPADYNAMIC. See “Distributed Dynamic VIPAs” on page 188.

� They accept packets with TCP connection requests where the SYN bit in the TCP header
is set on for:

– Port 23 for normal TN3270 connections
– Port 523 for secure TN3270 connections
– Port 80 for HTTP to Web services
– Port 443 for HTTPS secure access to Web services
– Port 21 for FTP server control connections
– Port 20 for FTP server data connections

When the Forwarding Agent receives a TCP connection request from a client, it checks the
destination IP address, protocol and port number. If the destination IP address, port number
and TCP protocol match the wildcard affinity entry and the SYN bit is on, the request will be
encapsulated in a CASA packet and sent to the Service Manager. This also occurs for data
packets for which a wildcard affinity exists, but no fixed affinity does.

Further information may be obtained from “CASA information in the Forwarding Agent” on
page 210.

6.4.2 Service Manager processes TCP connection request
The incoming CASA request for the TCP connection is processed by the Sysplex Distributor
as follows:

� Unpacks the CASA packet.

� Checks the IP destination address, which is the cluster address of an application service.

� Selects the “best” target server, from a group defined under VIPADIST, PORT, and
DESTIP, based on load-balancing information and rules.

� Forwards the initial IP packet to the target server via the XCF link.

� Sends a unicast packet, called fixed affinity, to the Forwarding Agent that sent the CASA
packet with the SYN request. This unicast message contains the information about the
forwarding IP address of the real target server for this particular TCP connection. The
forwarding IP address is the XCF link IP address of the target stack.

NIVT7507#show ip casa wildcard
Source Address Source Mask Port Dest Address Dest Mask Port Prot
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 523 TCP
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 443 TCP
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 80 TCP
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 23 TCP
0.0.0.0 0.0.0.0 0 9.67.157.18 255.255.255.255 21 TCP
0.0.0.0 0.0.0.0 0 9.67.157.18 255.255.255.255 20 TCP
NIVT7507#
Chapter 6. Sysplex Distributor with MNLB 191

� The XCF link address will be used by the Forwarding Agent to build a fixed affinity for the
specific TCP connection. See “Fixed affinity” on page 189.

6.4.3 Continuation of the TCP connection establishment process
The connection establishment process continues between the application server and the
client. The application server sends a SYN, ACK to the client. The client also returns an ACK
to the application server. Since the Forwarding Agent sees all incoming packets, it is informed
about the connection establishment process and updates the state of the connection.

6.4.4 Fixed affinity processing
When the TCP connection is established, the Forwarding Agent knows all information
regarding the specific TCP connection. All TCP connections are kept in the Forwarding
Agent’s table for fixed affinities.

A sample of a fixed affinity table is shown in the following output taken from a Cisco router’s
Forwarding Agent.

A table entry for a fixed affinity is valid for one connection only. It is defined by its unique
5-tuple information taken from the IP header and TCP header. Only IP packets with matching
5-tuples will be recognized by the Forwarding Agent as packets belonging to an existing TCP
connection. These packets will be forwarded directly to the real application server without
traversing the path via the Sysplex Distributor and the XCF link. Therefore, the fixed affinity
entry also must contain a forward IP address for the real application server. This IP address
will be provided by the Sysplex Distributor via a unicast fixed affinity-update message. The
forwarding IP address is the dynamic XCF link address for the target stack.

In the screen above, the forwarding IP address is not shown. It is detailed information that is
obtained using the command show ip casa aff det.

For more information, see “CASA information in the Forwarding Agent” on page 210.

6.4.5 Prerequisites for the CASA protocol exchange
The communication between the Service Manager and the Forwarding Agents is done using
the Cisco Appliance Services Architecture (CASA) protocol. In order to send CASA multicast
packets, the following definitions are required:

� In the Sysplex Distributor:

– Define the Sysplex Distributor as the Service Manager.

– Determine the multicast IP address, which is a class D address, such as 224.0.1.2.
This address was used in our tests, as recommended in Cisco’s documentation. This is
the destination IP address to reach all Forwarding Agents.

– Determine the CASA port. This is the destination port to reach the CASA protocol in all
Forwarding Agents. We used the Cisco default recommendation port number 1637.

NIVT7507#show ip casa affinities
Source Address Port Dest Address Port Prot
9.67.156.104 4970 9.67.157.17 23 TCP
9.67.156.104 4971 9.67.157.18 21 TCP
NIVT7507#
192 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

� In the Forwarding Agents:

– Define the multicast IP address used by the Service Manager to address the
Forwarding Agent. In our configuration we used 224.0.1.2 as the multicast address.

– Define the listening port (1637 in our configuration) in the Forwarding Agent.

You will find the required definitions for the Sysplex Distributor in Example 6-11 on page 197
and for the Forwarding Agent in 6.7, “Forwarding Agent definitions” on page 199.

6.4.6 Message flow of wildcard and fixed affinities, SYN, ACK, data

Figure 6-2 Message flow of wildcard and fixed affinities, SYN, ACK, and data

Target StacksSysplex
Distributor
(Service
Manager)

Login TN3270
(Port 23 Cached
IP- Address
is 9.67.157.17)

Sysplex
Distributor
Backup

XCF
9.67.156.73

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

OSA Express
9.67.157.129

MVS001

XCF
9.67.156.74

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

OSA Express
9.67.157.130

MVS062

XCF
9.67.156.76

Backup DVIPA
FTP 9.67.157.18

Backup DVIPA
TN3270 9.67.157.17

OSA Express
9.67.157.132

MVS069

XCF
9.67.156.75

OSA Express
9.67.157.131

MVS154

DVIPA TN3270
9.67.157.17

Target
Stack
Target
Stack
Target
Stack

Target
Stack

Router
Forwarding
Agent

Switch

Affinity Table
Wildcard Affinities
Fixed Affinities

Router
Forwarding
Agent

Multicast
Wildcard
Affinities

1 2 SYN Packet

3 Interest Match
 with SYN Packet

XCF

4
Forw

arding

5
SYN ACK

 +
Connection

 Flow

Affinity Table
Wildcard Affinities
Fixed Affinities

Multicast
Wildcard
Affinities

1

Fixed Affinity
for Connection6
Chapter 6. Sysplex Distributor with MNLB 193

The following is an overview of the message flow needed to prepare the Forwarding Agent to
accept client TCP connection requests and IP packets, and indicate to the Forwarding Agent
where to send the received IP packets, as shown in Figure 6-2 on page 193:

1. The Sysplex Distributor configured as Service Manager multicasts a wildcard affinity
update specifying that all new connection requests and existing connection packets, for
which there is no fixed affinity entry available, should be sent to the Sysplex Distributor
stack.

2. A connection request, represented as a SYN packet, is received by the Forwarding Agent.

3. The Forwarding Agent encapsulates the SYN packet in an Interest Match CASA packet
and forwards it to the Service Manager in the Sysplex Distributor stack.

4. The Sysplex Distributor unpacks the SYN packet, makes the routing decision, and
forwards the SYN packet to the selected application server. The IP address for the real
target, running the application server, is the dynamic XCF link IP address.

5. The target server returns a SYN, ACK directly to the client without touching the Sysplex
Distributor stack.

6. The Service Manager in the Sysplex Distributor sends a fixed affinity for this particular
connection back to the Forwarding Agent that forwarded the SYN packet. The fixed affinity
instructs the Forwarding Agent to send data for this connection via the most efficient route
to the application server, identified by the dynamic XCF IP address of the target stack.

7. The subsequent data flow carrying the ACK from the client and data exchanged during the
connection are not shown here. These packets travel the direct path from the Forwarding
Agent to the target system known by the dynamic XCF link IP address, and no longer
touch the Sysplex Distributor.

6.4.7 Message flow for connection data with no fixed affinity
This situation might occur when a Forwarding Agent other than the one that received the prior
SYN request receives data. This might happen if the Forwarding Agent that has the fixed
affinity for a particular connection fails. It also might happen when the path from the client to
the application server target stack has changed and uses another Forwarding Agent. This
Forwarding Agent, however, does not possess a fixed affinity yet.

This second Forwarding Agent only has a wildcard affinity with a forwarding address to the
Sysplex Distributor. It is, of course, the dynamic XCF link IP address. If the Forwarding Agent
would have no wildcard affinity, it would not be able to communicate with the Service
Manager in the Sysplex Distributor’s stack.

The following flow description indicates how this case will be managed:

1. The Sysplex Distributor configured as Service Manager multicasts a wildcard affinity
update specifying that all new connection requests and existing connection packets, for
which there is no fixed affinity entry available, should be sent to the Sysplex Distributor
stack.

2. An IP packet for an existing TCP connection now arrives at a Forwarding Agent, but the
Forwarding Agent does not have a fixed affinity entry for this particular TCP connection.
This Forwarding Agent also did not receive the SYN request for this TCP connection. It
only has wildcard affinities.

3. If a matching fixed affinity is not found, the Forwarding Agent compares the packet against
the wildcard affinity.

– If there is an entry available for the destination IP address and the destination port in
the wildcard affinity table, then the Service Manager is known for the particular TCP
connection. The destination IP address should be the cluster address the Sysplex
194 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Distributor has multicast prior to all Forwarding Agents. The destination port should be
an application service associated to the cluster address multicast by the Sysplex
Distributor. A matching wildcard affinity causes the Forwarding Agent to create a CASA
packet.

– If there is no matching wildcard affinity entry (which might not occur because the
Service Manager multicasts wildcard affinities every 30 seconds to all Forwarding
Agents), the IP packet will be returned to the router. The router will send the packet to
the IP address named in the IP header. Since it is the cluster address, which is the
distributed DVIPA address, the packet will be received due to the routing mechanism
by the Sysplex Distributor stack, or if this stack is down, by the backup Sysplex
Distributor.

4. When a matching wildcard affinity is found, the Forwarding Agent encapsulates the IP
packet as an IP-only CASA message type, and sends it to the known forwarding IP
address, which is the dynamic XCF link address of the Service Manager in the Sysplex
Distributor stack.

5. The Sysplex Distributor unpacks this IP-only CASA packet and checks the DVIPA
connection routing table. If the 5-tuple information matches an existing TCP connection, it
forwards the IP packet to the application server running the current connection. The
forwarding IP address for the target running the application server is taken from the DVIPA
connection routing table. It is the dynamic XCF link IP address of the target stack.

6. The Service Manager in the Sysplex Distributor returns a fixed affinity update to the
Forwarding Agent that previously sent the CASA IP-only packet.

7. The Forwarding Agent updates its fixed affinity table. For subsequent packets, it now has
the information to forward IP packets directly to the correct target server without the
assistance of the Service Manager.

6.4.8 Message flow for closing a TCP connection
The client closes a TCP connection by sending a packet with a FIN-bit set on in the TCP
header. The connection closing procedure is similar compared to the connection
establishment viewing the TCP flow only.

The client's FIN is sent to the application server. The server is notified that the connection will
be closed. The server acknowledges the FIN with an ACK, and sends a FIN also to finish the
other half of the full-duplex TCP connection.

The data path, however, from the client to the application server differs completely from the
connection establishment path, because the Sysplex Distributor doesn't see the packets sent
from the client to the server and vice versa.
Chapter 6. Sysplex Distributor with MNLB 195

Figure 6-3 Message flow for shutting down a TCP connection

The following is the message flow needed to close a TCP connection with activities by the
client, the Forwarding Agent, the application server stack, and the Sysplex Distributor:

1. The client starts closing his TCP connection, for example by typing quit within the
application program. This creates an IP packet with a FIN-bit set on in the TCP header.
The FIN packet is sent towards the application server via the network. The Forwarding
Agent receives this packet and forwards it depending on the fixed affinity entry for this
particular TCP connection to the target server based on the forwarding IP address. This
forwarding IP address is the dynamic XCF link address of the target system. The path
from the Forwarding Agent to the target system goes directly upstream without touching
the Sysplex Distributor.

2. The TCP/IP stack of the target system receives the FIN request. It indicates that the client
wants to close the existing TCP connection. The target stack acknowledges the received
FIN with an ACK, and also sends a FIN to the client to close the second part of the
full-duplex connection.

3. The client responds to the second FIN with an ACK also using again the direct path to the
application server's stack.

Target StacksSysplex
Distributor
(Service
Manager)

Login TN3270
(Port 23 Cached
IP- Address
is 9.67.157.17)

XCF

Sysplex
Distributor
Backup

XCF
9.67.156.73

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

OSA Express
9.67.157.129

MVS001

XCF
9.67.156.74

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

OSA Express
9.67.157.130

MVS062

XCF
9.67.156.76

Backup DVIPA
FTP 9.67.157.18

Backup DVIPA
TN3270 9.67.157.17

OSA Express
9.67.157.132

MVS069

XCF
9.67.156.75

OSA Express
9.67.157.131

MVS154

DVIPA TN3270
9.67.157.17

Target
Stack
Target
Stack
Target
Stack

Target
Stack

Router
Forwarding
Agent

Switch

Affinity Table
Fixed Affinities

Router
Forwarding
Agent

Multicast
Fixed
Affinities

6

1 FIN

1 FIN

2 F
IN

, A
ck

3 ACK

Affinity Table
Fixed Affinities

Multicast
Fixed
Affinities

6

4 Update VCRT

5

7 7

Network
3 ACK

2 FIN, ACK
196 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

4. The application server’s TCP/IP stack informs the Sysplex Distributor about the closed
TCP connection via the dynamic XCF link.

5. The Sysplex Distributor updates its cache of the dynamic VIPA connection routing table
(VCRT) by deleting the entry for this connection. It recognizes the TCP connection by
comparing the 5-tuple information. Remember, the 5-tuple consists of the information
about the following information:

– Protocol used, which always is TCP (protocol number 6 in the IP header)
– Source IP address
– Destination IP address
– Source port
– Destination port

6. The Sysplex Distributor sends a multicast CASA message to all Forwarding Agents using
the IP address 224.0.1.2 and port 1637 as the destination, and its own dynamic XCF link
IP address and port 1637 as source. This message is an Affinity-Delete type message
with a time-to-live (TTL) value of 0 (zero). The TTL 0 causes all Forwarding Agents to
delete existing entries for the particular TCP connection.

7. When the Forwarding Agents receive the multicast packet, they delete the fixed affinity for
this TCP connection from their caches.

The process to close a TCP connection is now finished. The Sysplex Distributor will no longer
show the previous TCP connection in its VIPA connection routing table.

The show IP CASA affinities command, issued at the Forwarding Agent, may display the
previously existing TCP connection for a couple of seconds but the entry will soon disappear.

6.5 Service Manager implementation
As described in 6.4.5, “Prerequisites for the CASA protocol exchange” on page 192, the
Service Manager has to be defined:

� For the desired distributed DVIPAs
� Enabling the multicast support with:

– Multicast address
– Service Manager port

 These definitions have to be done in the TCPIP.PROFILE.

6.5.1 Service Manager new TCPIP.PROFILE definitions
In order to switch on Service Manager functions in the TCP/IP stack, in addition to Sysplex
Distributor functions, several statements had to be defined within the VIPADYNAMIC and
ENDVIPADYNAMIC scope.

The VIPADEFINE statement received a new parameter, called SERVICEMGR. This allows
the Service Manager to propagate the associated IP cluster address to MNLB Forwarding
Agents for further distribution by Cisco routers. Packets for a TCP connection with this
specific destination cluster IP address for an application are now distributed by an MNLB
Forwarding Agent according to the distribution information of the Sysplex Distributor’s Service
Manager.

Example 6-11 VIPADEFINE ... SERVICEMGR

VIPADEFINE MOVEABLE IMMED SERVICEMGR 255.255.255.248
 9.67.157.17
 VIPADIST 9.67.157.17 PORT 80 443 23 523
Chapter 6. Sysplex Distributor with MNLB 197

 DESTIP 9.67.156.74
 9.67.156.75

In our sample the Service Manager is switched on for the DVIPA 9.67.157.17. A TCP
connection with this cluster IP address will be distributed by the Forwarding Agent to the real
target server 9.67.156.74 or 9.67.156.75, depending on the decision the Service Manager
made when processing the SYN request.

The parameter SERVICEMGR is needed for each VIPADEFINE statement if the DVIPA
address has to be distributed using VIPADIST and DESTIP. The parameter SERVICEMGR is
valid only if VIPADIST and DESTIP statements follow. If no VIPADIST and DESTIP is defined
for DVIPA, the SERVICEMGR does not work.

An additional statement, the VIPASMPARMS statement, has to be added. The statement
(shown in Example 6-12) tells the Service Manager what multicast IP address and port has to
be used to send out CASA messages.

Example 6-12 VIPASMPARMS

VIPASMPARMS SMMCAST 224.0.1.2 SMPORT 1637

At the time of multicasting wildcard affinities, the Service Manager uses the VIPASMPARMS
parameter SMMCAST and SMPORT to address the Forwarding Agents.

A special authentication password may be defined as the parameter SMSPASSword. This
restricts communication between the Service Manager and Forwarding Agent with matching
values based on MD5 (message digest 5 protocol) only.

The sample used is based on Cisco router recommended values. The same multicast IP
address and the port have to be defined in the Forwarding Agents.

6.6 TCP/IP stack of the target systems
The TCPIP.PROFILE definitions for applications in the target stacks are the same as in a pure
Sysplex Distributor configuration.

6.6.1 Basic TCPIP.PROFILE definitions
Basically, the following IPCONFIG parameters have to be defined for the Sysplex Distributor
besides the DYNAMICXCF parameter already mentioned:

DATAGRAMFWD Enables rerouting IP packets to another TCP/IP stack.

IGNOREREDIRECT Enabled automatically when OMPROUTE is used.

VARSUBNETTING To use variable subnet masks.

MULTIPATH Enables multipath selection for outbound traffic.

PATHMTUDISCOVERY Discovers dynamically the minimum transfer unit of each hop to the
destination.

SYSPLEXROUTING Enables the TCP/IP stack to communicate with the WLM.

Other IPCONFIG parameters have to be considered, depending on the existing configuration.
198 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

6.7 Forwarding Agent definitions
The Forwarding Agent will accept multicast messages sent by the Service Manager with
destination IP address 224.0.1.2, and listen to messages on port 1637, which is reserved for
CASA UDP messages. These two definitions have to match the Service Manager. See 6.5.1,
“Service Manager new TCPIP.PROFILE definitions” on page 197.

Our network used two Forwarding Agents. The Forwarding Agent is implemented in Cisco
router 7507 and 7206VXR.

6.7.1 CASA definitions for Cisco 7507
There are three important lines only:

ip multicast-routing
ip casa 1.1.1.1 224.0.1.2
 forwarding-agent 1637

These lines indicate:

� Multicast routing is enabled.

� CASA is enabled using a device-independent IP address. In our implementation, we used
1.1.1.1 as the unicast IP address. The IP address for receiving multicast packets is
224.0.1.2.

� The Forwarding Agent listens on port 1637 for destined packets and uses the same port
number as the source port. Basically, CASA uses UDP packets only for port 1637.

6.7.2 CASA definitions for Cisco router 7206VXR
There are similar definitions for the Cisco router 7206VXR.

In order to address unicast packets, this router needs another device-independent IP
address. In our implementation for this router we used 1.1.1.2. Again it receives multicast
packets with the IP address 224.0.1.2 and the listening port is 1637, which is also a source
port.

6.8 Operations: control and displays
In order to control whether the Service Manager definitions are defined correctly and applied
as desired, there are a variety of displays, which are explained in the following sections.

During our tests, we checked the requested information using the following displays and trace
extracts. The displays are grouped as:

� CASA information in the Sysplex Distributor

� CASA information in the Cisco router

� Integrated CASA information for the Sysplex Distributor and Cisco router using a sample
of closing a TCP connection

ip multicast-routing
ip casa 1.1.1.2 224.0.1.2
 forwarding-agent 1637
Chapter 6. Sysplex Distributor with MNLB 199

6.8.1 CASA information in the Sysplex Distributor

Multicast address and packet distribution flow
The defined multicast IP address and the port address may be checked by displaying the
DVIPA configuration using the following commands:

netstat vipadyn

netstat vipadcfg

The display of the distributed VIPA port table shows which cluster addresses with associated
port addresses the Sysplex Distributor will distribute to available target hosts. This display will
be obtained using the command netstat vdpt.

The VIPA connection routing tables provides the information about currently distributed TCP
connections. You get the information using the command netstat vcrt.

Further, we used to check the data flow of the multicast messages and the distribution flow
through an IPCS trace. Excerpts of the trace follow.

Dynamic VIPA configuration, part 1

The last two entries contain the cluster IP addresses that may be distributed. To determine to
which available target system TCP connection requests may be distributed, use the netstat
vdpt command.

The current VIPA configuration including the Service Manager definitions for the multicast IP
address and the port number will be shown by using the command netstat vipadcfg (see
the following screen output).

The multicast address and the port number have to match the definitions in the Cisco routers
running the Forwarding Agent. See 6.5.1, “Service Manager new TCPIP.PROFILE definitions”
on page 197.

=> netstat vipadyn
 MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP 18:00:42
 IP Address AddressMask Status Origination DistStat
 ---------- ----------- ------ ----------- --------
9.67.156.25 255.255.255.248 Active VIPADefine
9.67.156.26 255.255.255.248 Active VIPADefine
9.67.156.33 255.255.255.248 Backup VIPABackup
9.67.156.34 255.255.255.248 Backup VIPABackup
9.67.156.41 255.255.255.248 Backup VIPABackup
9.67.156.42 255.255.255.248 Backup VIPABackup
9.67.156.49 255.255.255.248 Backup VIPABackup
9.67.156.50 255.255.255.248 Backup VIPABackup
9.67.157.17 255.255.255.248 Active VIPADefine Dist
9.67.157.18 255.255.255.248 Active VIPADefine Dist/Dest

200 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Dynamic VIPA configuration part 2

VIPA distribution port table
The VIPA distribution port table obtained using the netstat vdpt command lists cluster IP
addresses with the different port addresses the Sysplex Distributor is responsible for. Each
cluster address is defined in the TCPIP.PROFILE using the statements VIPADEFINE,
VIPADIST, and DESTIP.

=> netstat vipadcfg
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP 18:06:48
Dynamic VIPA Information:
VIPA Backup:
 IP Address Rank
 ---------- ----
 9.67.156.33 000001
 9.67.156.34 000001
 9.67.156.41 000001
 9.67.156.42 000001
 9.67.156.49 000100
 9.67.156.50 000100

VIPA Define:
 IP Address AddressMask Moveable SrvMgr
 ---------- ----------- -------- ------
 9.67.156.25 255.255.255.248 Immediate No
 9.67.156.26 255.255.255.248 Immediate No
 9.67.157.17 255.255.255.248 Immediate Yes
 9.67.157.18 255.255.255.248 Immediate Yes

VIPA Distribute:
 IP Address Port XCF Address
 ---------- ---- -----------
 9.67.157.17 00023 9.67.156.75
9.67.157.17 00023 9.67.156.74
9.67.157.17 00080 9.67.156.75
9.67.157.17 00080 9.67.156.74
9.67.157.17 00443 9.67.156.75
9.67.157.17 00443 9.67.156.74
9.67.157.17 00523 9.67.156.75
9.67.157.17 00523 9.67.156.74
9.67.157.18 00020 9.67.156.74
9.67.157.18 00020 9.67.156.73
9.67.157.18 00021 9.67.156.74
9.67.157.18 00021 9.67.156.73

VIPA Service Manager:
 McastGroup: 224.0.1.2 Port: 01637 Pwd: No
Chapter 6. Sysplex Distributor with MNLB 201

The following fields are included in the display:

Rdy Counts the number of applications ready to receive connection requests.

TotalConn Lists the total number of connection already routed to the stack identified by the
XCF link IP address.

WLM Is the WLM weight of the target stack. The lowest value is the first to be used for
distribution.

Detailed information about the VIPA distribution port table may be obtained using the
command netstat vdpt det.

==> netstat vdpt
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP 14:50:09
Dynamic VIPA Distribution Port Table:
Dest IPaddr DPort DestXCF Addr Rdy TotalConn WLM
----------- ----- ------------ --- --------- ---
9.67.157.17 00023 9.67.156.74 001 0000000000 01
9.67.157.17 00023 9.67.156.75 001 0000000000 01
9.67.157.17 00080 9.67.156.74 001 0000000000 01
9.67.157.17 00080 9.67.156.75 001 0000000000 01
9.67.157.17 00443 9.67.156.74 001 0000000000 01
9.67.157.17 00443 9.67.156.75 000 0000000000 01
9.67.157.17 00523 9.67.156.74 001 0000000000 01
9.67.157.17 00523 9.67.156.75 001 0000000000 01
9.67.157.18 00020 9.67.156.73 000 0000000001 01
9.67.157.18 00020 9.67.156.74 000 0000000000 01
9.67.157.18 00021 9.67.156.73 001 0000000001 01
9.67.157.18 00021 9.67.156.74 001 0000000000 01
202 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The following fields are included in the display:

W/Q Is the WLM weight after modification using QoS information provided by the
Policy Agent. This information is an indication of the network performance (TCP
retransmissions and timeouts) for the display of a QoSPolicyAction.

QoSPlcAct Is the QoS Policy name configured to the Policy Agent.

VIPA connection routing table

===> netstat vdpt detail
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP 20:17:50
Dynamic VIPA Distribution Port Table:
Dest IPaddr DPort DestXCF Addr Rdy TotalConn WLM
----------- ----- ------------ --- --------- ---
9.67.157.17 00023 9.67.156.74 001 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.17 00023 9.67.156.75 001 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.17 00080 9.67.156.74 001 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.17 00080 9.67.156.75 001 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.17 00443 9.67.156.74 001 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.17 00443 9.67.156.75 000 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.17 00523 9.67.156.74 001 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.17 00523 9.67.156.75 001 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.18 00020 9.67.156.73 000 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.18 00020 9.67.156.74 000 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.18 00021 9.67.156.73 001 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01
9.67.157.18 00021 9.67.156.74 001 0000000000 01
 QosPlcAct: *DEFAULT* W/Q: 01

=> netstat vcrt
 MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP 14:48:53
 Dynamic VIPA Connection Routing Table:
 Dest IPaddr DPort Src IPaddr SPort DestXCF Addr
 ----------- ----- ---------- ----- ------------
 9.67.157.18 00021 9.67.155.223 01034 9.67.156.73
 9.67.157.18 00021 9.67.156.104 03494 9.67.156.73
 9.67.157.17 00023 9.67.156.104 03395 9.67.156.74
 9.67.157.17 00023 9.67.156.104 03460 9.67.156.75
 9.67.157.17 00023 9.67.156.104 03472 9.67.156.74
 9.67.157.17 00080 9.67.156.104 03469 9.67.156.74
Chapter 6. Sysplex Distributor with MNLB 203

The netstat vcrt command shows current TCP connections distributed by Sysplex
Distributor to the target systems identified through their XCF link IP address. These
connections are addressed to the following:

� FTP server with its cluster address 9.67.157.18
� TN3270 server with its cluster address 9.67.157.17

TCP connections to FTP server
One connection was initiated by a client from a workstation with the IP address 9.67.155.223,
and the other connection from workstation 9.67.156.104. Both connections were distributed
to an FTP server running in the same TCP/IP stack as the Sysplex Distributor.

TCP connections to TN3270 server
All connections were initiated by a client from one workstation with IP address 9.67.156.104.
Three connections were distributed to the TN3270 server running in a TCP/IP stack with IP
address 9.67.156.74 and one connection to 9.67.156.75.

Detailed information may be obtained using the netstat vcrt detail command.

This display would also show Policy Agent information. In our test case, we did not define
policy rules.

Trace details
1. Multicast messages from the Sysplex Distributor Service Manager

Multicast of a wildcard affinity-update affinity:

This trace record shows multicast messages sent from the Service Manager to the
network on each defined interface shown in the HOME list. This includes XCF links and
IUTSAMEH links to stacks within the same LPAR.

Multicast messages will be sent in a cycle of 30 seconds. There is no statement in the
TCPIP.PROFILE to change the value nor to block the interface from sending multicast
packets.

=> netstat vcrt detail
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP 20:54:59
Dynamic VIPA Connection Routing Table:
Dest IPaddr DPort Src IPaddr SPort DestXCF Addr
----------- ----- ---------- ----- ------------
9.67.157.17 00023 211.1.2.14 11033 9.67.156.74
 PolicyRule: *NONE*
 PolicyAction: *NONE*

204 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Remarks on the trace record:

1 Source IP address 9.67.157.129 is the OSA-Express GbE interface with link name
GIGELINK.

2 Destination IP address 224.0.1.2 is the multicast IP address specified in the
TCPIP.PROFILE statement VIPASMPARMS parameter SMMCAST. This multicast
address has to match the definition in the Cisco router’s Forwarding Agent. See 6.7.1,
“CASA definitions for Cisco 7507” on page 199.

3 Port address for the CASA application. The same port address will be used in the
Sysplex Distributor’s Service Manager and in the Forwarding Agent. The port is defined
in the TCPIP.PROFILE statement VIPASMPARMS parameter SMPORT. It has to match
the definition in the Cisco router’s Forwarding Agent. See 6.7.1, “CASA definitions for
Cisco 7507” on page 199.

4 UDP is used for the port-to-port communication.

5 Trace Data of the wildcard affinity message:

Line 000000:

00010101 8101 Is a CASA packet, wildcard affinity update
00000006 Supported protocol is TCP (value in the IP header)
00000000 Is the source IP address
00000000 Is the source subnet mask

Line 000010:

09439D11 Is the destination IP address 9.67.157.17
FFFFFFFF Is the destination subnet mask 255.255.255.255
00000050 Is the destination port 80 for Web services

 238 MVS001 PACKET 00000001 14:31:59.255980 Packet Trace
 To Link : GIGELINK Device: QDIO Ethernet Full=96
 Tod Clock : 2001/07/24 14:31:59.255978
 Lost Records : 0 Flags: Pkt Ver2 Out
 Source Port : 1637 3 Dest Port: 1637 Asid: 0036 TCB:0000
 IpHeader: Version : 4 Header Length: 20
 Tos : 00 QOS: Routine Normal Service
 Packet Length : 96 ID Number: 626B
 Fragment : Offset: 0
 TTL : 1 Protocol: UDP CheckSum: CF5B
 Source : 9.67.157.129 1
 Destination : 224.0.1.2 2 SGI-Dogfight

 UDP 4
 Source Port : 1637 () 3 Destination Port: 1637 ()
 Datagram Length : 76 CheckSum: 049B FFFF

IP Header : 20 IP: 9.67.157.129, 224.0.1.2
000000 45000060 626B0000 0111CF5B 09439D81 E0000102
Protocol Header : 8 Port: 1637, 1637
000000 06650665 004C049B

Data 5 : 68 Data Length: 68
000000 00010101 81010024 00000006 00000000 !....a...........$..
000010 00000000 09439D11 FFFFFFFF 00000050 !...............&C.P!
000020 00000000 003C0000 05050008 05040000 !................<..!
000030 85040014 09439C49 06658100 81000000 !e.........a.a...C..!
000040 00000000 !.... !
Chapter 6. Sysplex Distributor with MNLB 205

Line 000020:

00000000 Is the forwarding destination IP address (not known yet by the
Sysplex Distributor)

003C Is the time-to-live (TTL) value for the wildcard affinity entry for the
Forwarding Agent’s table. It means: 60 seconds.

2. SYN sent from the Forwarding Agent to the Service Manager

This message is sent by the Forwarding Agent to the Service Manager or vice versa in
special situations, for example an IP packet matching the wildcard affinity entry. This is the
case when the Forwarding Agent received an IP packet from a client containing a SYN
request.

Trace data of the IP packet only:

1 Source and destination IP addresses are tunnel addresses that are used by the
Generic Routing Encapsulation (GRE) protocol. This will be discussed later in 6.10,
“Generic Routing Encapsulation (GRE) protocol” on page 231.

2 GRE header will be discussed later in 6.10, “Generic Routing Encapsulation (GRE)
protocol” on page 231.

3 The source address 1.1.1.2 is the IP address used by the Forwarding Agent to send
CASA packets to the Service Manager’s destination IP address 9.67.156.73. This is the
XCF link address provided in the multicast CASA wildcard packet to the Forwarding
Agent.

4 Source and destination port 1637 will be used for CASA communication.

5 Trace data of the CASA packet:

Line 000000:

00010601 0601 Is a CASA message of the type IP packet only

Line 000010:

09439C68 The packet comes from source IP address 9.67.156.104, a
client workstation

09439D11 Destination IP address is 9.67.157.17, the cluster IP address for
the application service

0AD3 Source port is 2771

0017 Destination port is 23 TN3270 services
206 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

299 MVS001 PACKET 00000001 17:54:26.608493 Packet Trace
 From Link : GIGELINK Device: QDIO Ethernet Full=108
 Tod Clock : 2001/07/16 17:54:26.608492
 Lost Records : 0 Flags: Pkt Ver2 Gre
 Source Port : 0 Dest Port: 0 Asid: 0025 TCB: 0000000
 IpHeader: Version : 4 Header Length: 20
 Tos : 00 QOS: Routine Normal Service
 Packet Length : 108 ID Number: B9EA
 Fragment : Offset: 0
 TTL : 254 Protocol: GRE CheckSum: B668
 Source : 9.67.157.136 1
 Destination : 9.67.156.1 1

 Generic Routing Encapsulation Header 2
 GRE Options :
 Version : 0 Protocol: IP
 Recursion : 0
 Gre header size : 4

IP Header : 20
000000 4500006C B9EA0000 FE2FB668 09439D88 09439C01

GRE Header : 4
000000 00000800
 IpHeader: Version : 4 Header Length: 20
 Tos : 00 QOS: Routine Normal Service
 Packet Length : 84 ID Number: 0275
 Fragment : Offset: 0
 TTL : 255 Protocol: UDP CheckSum: 1195
 Source : 1.1.1.2 3
 Destination : 9.67.156.73 3

 UDP
 Source Port : 1637 () Destination Port: 1637 () 4
 Datagram Length : 64 CheckSum: 0000 74FF

IP Header : 20 IP: 1.1.1.2, 9.67.156.73 3
000000 45000054 02750000 FF111195 01010102 09439C49
Protocol Header : 8 Port: 1637, 1637
000000 06650665 00400000

Data 5 : 56 Data Length: 64
000000 00010601 06010034 45300030 B66E4000 !.............>4E0.0.n§.!
000010 7F06F929 09439C68 09439D11 0AD30017 !".9..........L.. ...).C.h.C......!
000020 76748623 00000000 70024000 EF9D0000 !..f....... vt.#....p.§.....!
000030 020405B4 01010402 !........ !
Chapter 6. Sysplex Distributor with MNLB 207

3. SYN sent from Sysplex Distributor request to target system

4. Fixed affinity update sent from Sysplex Distributor to Forwarding Agent

A unicast message is used to send a CASA packet from XCF link address of the Sysplex
Distributor, which is 9.67.156.73, to the Forwarding Agent with its IP address 1.1.1.2. Only the
Forwarding Agent that sent the SYN to the Service Manager will receive the CASA affinity
update.

300 MVS001 PACKET 00000001 17:54:26.609824 PACKET TRACE
 TO LINK : EZAXCFN5 DEVICE: MPCPTP FULL=48
 TOD CLOCK : 2001/07/16 17:54:26.609824
 LOST RECORDS : 0 FLAGS: PKT VER2 OUT
 SOURCE PORT : 2771 DEST PORT: 23 ASID: 0025 TCB:000
 IPHEADER: VERSION : 4 HEADER LENGTH: 20
 TOS : 30 QOS: PRIORITY MINIMUMDELAY
 PACKET LENGTH : 48 ID NUMBER: B66E
 FRAGMENT : DONTFRAGMENT OFFSET: 0
 TTL : 126 PROTOCOL: TCP CHECKSUM: FA29
 SOURCE : 9.67.156.104
 DESTINATION : 9.67.157.17

 TCP
 SOURCE PORT : 2771 () DESTINATION PORT: 23 TELNET)
 SEQUENCE NUMBER : 1987348003 ACK NUMBER: 0
 HEADER LENGTH : 28 FLAGS: SYN
 WINDOW SIZE : 16384 CHECKSUM: EF9D FFFF URGENT DATA P
 OPTION : MAX SEG SIZE LEN: 4 MSS: 1460
 OPTION : NOP
 OPTION : NOP
 OPTION : SACK PERMITTED

 IP HEADER : 20 IP: 9.67.156.104, 9.67.157.17
 000000 45300030 B66E4000 7E06FA29 09439C68 09439D11
 PROTOCOL HEADER : 28 PORT: 2771, 23
 000000 0AD30017 76748623 00000000 70024000 EF9D0000 020405B4 01010402
208 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

.

Trace data of the CASA fixed affinity update packet:

Line 000000:

00010102 Defines a CASA message fixed affinity-update affinity

8102001C Specifies the message type

00020006 Specifies flags and the protocol, which is x’06’ = TCP in the IP header

09439C68 Defines the source IP address 9.67.156.104 which is the workstation
as sender of the SYN

Line 000010:

09439D11 Defines the destination IP address is 9.67.157.17, the distributed
DVIPA, the cluster IP address of the application service

0AD3 Source port of the client in the workstation

0017 Destination port for the TCP connection, port 23 = TN3270 services

09439C4A Forward IP address of the real target system running this specific TCP
connection; it is the XCF link IP address defined in TCPIP.PROFILE
statement VIPADEFINE, parameter VIPADIST, parameter DESTIP

0384 Defines the time-to-live (TTL) value of this fixed affinity-update affinity
for this TCP connection; the value is 15 minutes

301 MVS001 PACKET 00000001 17:54:26.610488 Packet Trace
 To Link : GIGELINK Device: QDIO Ethernet Full=80
 Tod Clock : 2001/07/16 17:54:26.610487
 Lost Records : 0 Flags: Pkt Ver2 Out
 Source Port : 1637 Dest Port: 1637 Asid: 0025 TCB:0000
 IpHeader: Version : 4 Header Length: 20
 Tos : 00 QOS: Routine Normal Service
 Packet Length : 80 ID Number: 512D
 Fragment : Offset: 0
 TTL : 1 Protocol: UDP CheckSum: C0E1
 Source : 9.67.156.73
 Destination : 1.1.1.2

 UDP
 Source Port : 1637 () Destination Port: 1637 ()
 Datagram Length : 60 CheckSum: 97E9 FFFF

IP Header : 20 IP: 9.67.156.73, 1.1.1.2
000000 45000050 512D0000 0111C0E1 09439C49 01010102
Protocol Header : 8 Port: 1637, 1637
000000 06650665 003C97E9

Data : 52 Data Length: 52
000000 00010102 8102001C 00020006 09439C68 !....a........C.h!
000010 09439D11 0AD30017 09439C4A 03840000 !.....L..Ä.d.. .C...C.J....!
000020 85040014 09439C49 06650002 00020000 !e............e......!
000030 00000000 !....
Chapter 6. Sysplex Distributor with MNLB 209

6.8.2 CASA information in the Forwarding Agent
Some displays help you to determine whether the Forwarding Agent is communicating with
the Sysplex Distributor Service Manager. During our tests we noticed that this communication
did not work as we thought it would. In certain cases, the Service Manager did not send
wildcard affinities. These displays allowed us to understand what was really happening.

You may control the Forwarding Agent by issuing several displays (show commands) at the
Cisco router. These are for example:

show ip casa ? Display what parameters are available

With no parameter To display a list of subfunctions named in the next lines

With parameter affinities To display fixed affinities, which are the current TCP
connections

With parameter oper To display operational information of CASA

With parameter stats To display statistical information about fixed affinities

With parameter wildcard To display information on wildcard blocks

Display of CASA operational information
This display shows that the CASA is defined with the corresponding multicast address and
the listen port number. These have to match the definitions of the Sysplex Distributor
TCPIP.PROFILE statement VIPASMPARMS with parameters SMMCAST and SMPORT.

In addition, a CASA control address has to be defined to be used as IP address for unicasts
to the Service Manager or vice versa. This address has to be unique for all Forwarding
Agents. We used IP address 1.1.1.1 for the Forwarding Agent in the router 7507 and 1.1.1.2
in router 720VXR.

This display also shows that CASA is operating in the Cisco router.

The next step should be to check if the Service Manager propagates wildcard affinities
correctly.

Display of wildcard affinities
We experienced a situation where the Service Manager did not function properly. When we
wanted to see the wildcard affinities propagated by the Service Manager, we received the
following display result.

NIVT7507>show ip casa ?
 affinities display info on fa affinities
 oper operational information for casa
 stats statistical information for fa
 wildcard display info on wildcard blocks

NIVT7507>show ip casa oper
Casa is active:
 Casa control address is 1.1.1.1/32
 Casa multicast address is 224.0.1.2
 Listening on ports:
 Forwarding Agent Listen Port: 1637
 Current passwd: NONE Pending passwd: NONE
 Passwd timeout: 180 sec (Default)
210 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

After fixing the problem we received the expected result. The following display shows the
wildcard affinities multicasted by the Service Manager to the Forwarding Agents as depicted
in the Cisco router 7507.

The source IP address of 0.0.0.0 allows the Forwarding Agent to accept any incoming IP
packet with any port number of the protocol TCP. The destination IP address represents the
cluster address for the application service defined by the port number, for example:

� Port 23 for TN3270E service
� 523 for secure TN3270E service
� 80 for Web services
� 443 for secure Web services
� 21 and 20 for FTP service

The subnet mask limits the match to the whole 32-bit IP address.

This wildcard affinity block is sent to the Forwarding Agents from the Service Manager every
30 seconds over each interface of the Sysplex Distributor.

Display of wildcard affinities detailed information
This display is an excerpt of the block displayed in the previous screen. It provides more
detailed information. For example:

� Interest address

The interest address is the IP address of the Sysplex Distributor’s XCF link address
9.67.156.73.

� Port

The port 1637 is the CASA listening port of the Sysplex Distributor.

� Interest packet

All packets including fragmented IP packets are accepted by the Forwarding Agent.

� Dispatch address

The dispatch address is the IP address for a target server running the desired application.
At the moment no dispatch address is known. A dispatch address will be determined after
processing a SYN request in the Sysplex Distributor. The dispatch address will be
determined based on load-balancing rules. This dispatch address is sent via unicast
messages by the Sysplex Distributor to the Forwarding Agent when the target system is
known.

NIVT7507>show ip casa affinities
No matching entries in affinity cache
NIVT7507>

NIVT7507>show ip casa wild
Source Address Source Mask Port Dest Address Dest Mask Port Prot
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 523 TCP
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 443 TCP
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 80 TCP
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 23 TCP
0.0.0.0 0.0.0.0 0 9.67.157.18 255.255.255.255 21 TCP
0.0.0.0 0.0.0.0 0 9.67.157.18 255.255.255.255 20 TCP
Chapter 6. Sysplex Distributor with MNLB 211

CASA fixed affinity
This display shows the TCP connections currently established and known by the Forwarding
Agent. As you can see, only the source and destination IP addresses and ports of the IP and
TCP header are shown, not the real target system’s IP address. If you want to see the target
system’s address, you have to use the show ip casa det (detail) command.

NIVT7507>show ip casa wild det
Source Address Source Mask Port Dest Address Dest Mask Port Prot
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 523 TCP
 Service Manager Details:
 Manager Addr: 9.67.156.17 Insert Time: 01:22:57 UTC 07/11/01
 Affinity Statistics:
 Affinity Count: 0 Interest Packet Timeouts: 0
 Packet Statistics:
 Packets: 0 Bytes: 0
 Advertise Dest Address: NO Match Fragments: YES
 Affinity TTL: 30
 Action Details:
 Interest Addr: 9.67.156.73 Interest Port: 1637
 Interest Packet: 0x8100 FRAG ALLPKTS
 Interest Tickle: 0x0000
 Dispatch (Layer 2): NO Dispatch Address: 0.0.0.0
Source Address Source Mask Port Dest Address Dest Mask Port Prot
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 443 TCP
 Service Manager Details:
 Manager Addr: 9.67.156.17 Insert Time: 01:22:57 UTC 07/11/01
 Affinity Statistics:
 Affinity Count: 0 Interest Packet Timeouts: 0
 Packet Statistics:
 Packets: 0 Bytes: 0
 Advertise Dest Address: NO Match Fragments: YES
 Affinity TTL: 30
 Action Details:
 Interest Addr: 9.67.156.73 Interest Port: 1637
 Interest Packet: 0x8100 FRAG ALLPKTS
 Interest Tickle: 0x0000
 Dispatch (Layer 2): NO Dispatch Address: 0.0.0.0

Source Address Source Mask Port Dest Address Dest Mask Port Prot
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 80 TCP
 Service Manager Details:
 Manager Addr: 9.67.156.17 Insert Time: 01:22:57 UTC 07/11/01
 Affinity Statistics:
 Affinity Count: 0 Interest Packet Timeouts: 0
 Packet Statistics:
............

NIVT7507>show ip casa aff
Source Address Port Dest Address Port Prot
9.67.156.104 3879 9.67.157.17 23 TCP
9.67.156.104 3890 9.67.157.18 21 TCP
NIVT7507>
212 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Our sample shows two established TCP connections:

1. A telnet connection from workstation 9.67.156.104 to the cluster address 9.67.157.17.
This connection is distributed to the target system with XCF link address (dispatch
address) 9.57.156.74.

2. An FTP connection from workstation 9.67.156.104 to the cluster address 9.67.157.18.
This connection is distributed to the target system with XCF link address (dispatch
address) 9.57.156.73.

The detailed fixed affinity information in the Forwarding Agent may be compared with the
information of the Sysplex Distributor obtained using the command netstat vcrt.

CASA statistics
The following screen provides information about the activities of the CASA protocol.

6.8.3 Integrated CASA information
This section provides information about the control of operations at the time a TCP
connection is closed. The displays are intentionally not separated as in the two previous
sections, where the focus was mainly on describing fundamentals of each system. This
section describes control situations viewed from a time aspect at both systems, the Sysplex
Distributor and the router, at one time.

NIVT7507>show ip casa aff det
Source Address Port Dest Address Port Prot
9.67.156.104 3879 9.67.157.17 23 TCP
 Action Details:
 Interest Addr: 9.67.156.73 Interest Port: 1637
 Interest Packet: 0x0002 SYN
 Interest Tickle: 0x0000
 Dispatch (Layer 2): YES Dispatch Address: 9.67.156.74
Source Address Port Dest Address Port Prot
9.67.156.104 3890 9.67.157.18 21 TCP
 Action Details:
 Interest Addr: 9.67.156.73 Interest Port: 1637
 Interest Packet: 0x0002 SYN
 Interest Tickle: 0x0000
 Dispatch (Layer 2): YES Dispatch Address: 9.67.156.73

NIVT7507>show ip casa stats
Casa is active:
 Wildcard Stats:
 Wildcards: 6 Max Wildcards: 6
 Wildcard Denies: 0 Wildcard Drops: 0
 Pkts Throughput: 0 Bytes Throughput: 0
 Affinity Stats:
 Affinities: 0 Max Affinities: 0
 Cache Hits: 0 Cache Misses: 0
 Affinity Drops: 0 Interest Packet Timeouts: 0
 Casa Stats:
 Int Packet: 0 Int Tickle: 0
 Casa Denies: 0 Drop Count: 0
 Security Drops: 0
Chapter 6. Sysplex Distributor with MNLB 213

The section includes displays issued at the Sysplex Distributor and at the router to control a
process over a time period. It also provides a trace flow to understand the activities. We
selected as a sample the process of finishing a TCP connection.

A sample connection
A TN3270 connection was established between a client on workstation 9.67.156.104 and
TN3270 server cluster address 9.67.157.17. The Sysplex Distributor on system MVS001
distributed the connection to target system 9.67.156.17 on system MVS154.

The following screens show the steps in closing the TN3270 connection:

� Display the connection via netstat con on MVS154

� Display the distributed VIPA connection routing table via netstat vcrt on Sysplex
Distributor on system MVS001

� Display the fixed affinity table in router 7206 using the show ip casa affinities det
command

� Analyze trace records obtained from system MVS154

– FIN sent from client to server, to signal the start of the connection process

– ACK sent from server to client, to acknowledge the reception of the FIN

– FIN sent from server to client, to signal that second part of closing the connection is
started

– ACK sent from client server, to finally finish the connection flow and thus the
connection is closed

� Check if the connection no longer exists using the netstat con command on MVS154

� Check if the VIPA connection routing table is cleared from the connection using the
netstat vcrt command

� Check if fixed affinity is deleted in the router using the show ip casa affinities det
command

Display the existing connection
The display shows the current connection in the target system MVS154. The information of
the TCP connection between client and server is highlighted.
214 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The VIPA connection routing table in the Sysplex Distributor stack of system MVS001 also
shows this connection.

The router has a fixed affinity for the connection pointing to the same IP address for the target
system, the MVS154.

The interest address points to the Sysplex Distributor’s Service Manager. The dispatch
address points to the target system MVS154.

=> netstat conn
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
BPXOINIT 0000001D 0.0.0.0..10007 0.0.0.0..0 Listen
ENDPT40 0000003C 0.0.0.0..10115 0.0.0.0..0 Listen
FTPMVS1 00000023 0.0.0.0..21 0.0.0.0..0 Listen
HODSERV5 0000002B 0.0.0.0..8999 0.0.0.0..0 Listen
................
OMPROUTE 00000022 127.0.0.1..1027 127.0.0.1..1028 Establsh
OSNMPD 00000021 0.0.0.0..1029 0.0.0.0..0 Listen
TCP 0000004E 9.67.157.17..23 9.67.156.104..4202 Establsh
TCP 00000010 0.0.0.0..523 0.0.0.0..0 Listen
TCP 0000000B 127.0.0.1..1025 0.0.0.0..0 Listen
TCP 0000000E 127.0.0.1..1026 127.0.0.1..1025 Establsh
TCP 00000011 0.0.0.0..23 0.0.0.0..0 Listen
TCP 0000001C 127.0.0.1..1028 127.0.0.1..1027 Establsh
TCP 0000000F 127.0.0.1..1025 127.0.0.1..1026 Establsh
WEBSDB2 00000019 0.0.0.0..80 0.0.0.0..0 Listen
ENDPT40 0000003B 0.0.0.0..10115 *..* UDP
INETD1 00000041 0.0.0.0..7 *..* UDP
INETD1 0000003F 0.0.0.0..19 *..* UDP
INETD1 00000040 0.0.0.0..9 *..* UDP
..............

===> netstat vcrt
 MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Connection Routing Table:
Dest IPaddr DPort Src IPaddr SPort DestXCF Addr
----------- ----- ---------- ----- ------------
9.67.157.17 00023 9.67.156.104 04202 9.67.156.75

7200-Z55>show ip casa aff det

Source Address Port Dest Address Port Prot
9.67.156.104 4202 9.67.157.17 23 TCP
 Action Details:
 Interest Addr: 9.67.156.73 Interest Port: 1637
 Interest Packet: 0x0002 SYN
 Interest Tickle: 0x0000
 Dispatch (Layer 2): YES Dispatch Address: 9.67.156.75
--More--
C7200-Z55>
Chapter 6. Sysplex Distributor with MNLB 215

Trace of closing the TN3270 connection
This trace shows the actions between the client and the target stack on system MVS154
when the client starts to finish the TCP connection with a TN3270 server.

The trace is recorded at system MVS154, at the endpoint of the TCP connection. All trace
records have record numbers starting with record 503. The direction of the data flow is
indicated as follows:

Inbound traffic to MVS154 From Link: GIGELINK

Outbound traffic to router To : GIGELINK

Inbound traffic records are shortened intentionally, in order to take some complexity from the
shown trace. Inbound traffic requires in addition a Generic Routing Encapsulation (GRE)
protocol between router and target stack. Trace data for this part is not shown here. You may
read more about GRE in 6.10, “Generic Routing Encapsulation (GRE) protocol” on page 231.

Trace record 503
The trace starts with record 503, listing a FIN sent from a client to the application server to
start closing the connection.

Client IP address Source address: 9.67.156.104

Client port number Port: 4202

TN3270 server IP address Destination address: 9.67.157.17 (cluster IP address)

TN3270 port Port: 23 (telnet)

Client sequence number 1118528899 for the FIN to server

ACK sequence number 1627793504 for the last data from server

Figure 6-4 Trace record 503: FIN sent from client

 503 MVS154 PACKET 00000001 16:31:46.482764 Packet Trace
From Link : GIGELINK Device: QDIO Ethernet Full=64
 Tod Clock : 2001/07/27 16:31:46.482763
--
GRE part is deleted here, to avoid the complexity of the trace
--
IpHeader: Version : 4 Header Length: 20
 Tos : 30 QOS: Priority MinimumDelay
 Packet Length : 40 ID Number: 1591
 Fragment : DontFragment Offset: 0
 TTL : 127 Protocol: TCP CheckSum: 9A0F
 Source : 9.67.156.104
 Destination : 9.67.157.17

TCP
 Source Port : 4202 () Destination Port: 23 (telnet)
 Sequence Number : 1118528899 Ack Number: 1627793504
 Header Length : 20 Flags: Ack Fin
 Window Size : 17149 CheckSum: DEC0 FFFF Urgent Data Pointer:

IP Header : 20 IP: 9.67.156.104, 9.67.157.17
000000 45300028 15914000 7F069A0F 09439C68 09439D11
Protocol Header : 20 Port: 4202, 23
000000 106A0017 42AB6583 61062860 501142FD DEC00000
216 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Trace record 504
Trace record 504 lists an acknowledgment (ACK) only from the server as response to the
previous FIN from the client. PSH means PUSH, to force the IP stack to send this packet
immediately to the network and not wait for other data to fill the output buffer before sending
the packet to the client.

TN3270 server IP address Source address: 9.67.157.17 (again cluster IP address)

TN3270 port Port: 23 (telnet)

Client IP address Destination address: 9.67.156.104

Client port number Port: 4202

Server sequence number 1627793504 (remains the same because no data was sent)

ACK sequence number 1118528900 for the ACK to client (1 byte higher than sent from
the client)

Figure 6-5 Trace record 504: ACK sent from server

Trace record 505
Trace record 505 lists a FIN from the server to close the second part of the TCP connection.
PSH means PUSH, to force the IP stack to send this packet immediately to the network and
not wait for other data to fill the output buffer before sending the packet to the client.

TN3270 server IP address Source address: 9.67.157.17 (again cluster IP address)

TN3270 port Port: 23 (telnet)

Client IP address Destination address: 9.67.156.104

Client port number Port: 4202

Server sequence number 1627793504 (remains the same because no data was sent)

ACK sequence number 1118528900 for the ACK to client (remains the same because
no data came from the other end of the connection)

504 MVS154 PACKET 00000001 16:31:46.482962 Packet Trace
 To Link : GIGELINK Device: QDIO Ethernet Full=40
 Tod Clock : 2001/07/27 16:31:46.482962
 Lost Records : 0 Flags: Pkt Ver2 Out
 Source Port : 23 Dest Port: 4202 Asid: 0034 TCB: 0000000
 IpHeader: Version : 4 Header Length: 20
 Tos : 30 QOS: Priority MinimumDelay
 Packet Length : 40 ID Number: 0B06
 Fragment : DontFragment Offset: 0
 TTL : 64 Protocol: TCP CheckSum: E39A
 Source : 9.67.157.17
 Destination : 9.67.156.104

 TCP
 Source Port : 23 (telnet) Destination Port: 4202 ()
 Sequence Number : 1627793504 Ack Number: 1118528900
 Header Length : 20 Flags: Ack Psh
 Window Size : 32760 CheckSum: A1BD FFFF Urgent Data Pointer:

 IP Header : 20 IP: 9.67.157.17, 9.67.156.104
 000000 45300028 0B064000 4006E39A 09439D11 09439C68
 Protocol Header : 20 Port: 23, 4202
 000000 0017106A 61062860 42AB6584 50187FF8 A1BD0000
Chapter 6. Sysplex Distributor with MNLB 217

Figure 6-6 Trace record 505: FIN sent from server

Trace record 506
Trace record 506 lists an ACK sent from the client to the application server to respond to the
FIN and thus the TCP connection is totally closed.

Client IP address Source address: 9.67.156.104

Client port number Port: 4202

TN3270 server IP address Destination address: 9.67.157.17 (cluster IP address)

TN3270 port Port: 23 (telnet)

Client sequence number 1118528900 for the ACK to server (remains the same, because
no data was sent)

ACK number 1627793505 (is increased by 1, caused by having received the
FIN from the server)

505 MVS154 PACKET 00000001 16:31:46.484090 Packet Trace
 To Link : GIGELINK Device: QDIO Ethernet Full=40
 Tod Clock : 2001/07/27 16:31:46.484089
 Lost Records : 0 Flags: Pkt Ver2 Out
 Source Port : 23 Dest Port: 4202 Asid: 0034 TCB: 007D42E
 IpHeader: Version : 4 Header Length: 20
 Tos : 30 QOS: Priority MinimumDelay
 Packet Length : 40 ID Number: 0B07
 Fragment : DontFragment Offset: 0
 TTL : 64 Protocol: TCP CheckSum: E399
 Source : 9.67.157.17
 Destination : 9.67.156.104

 TCP
 Source Port : 23 (telnet) Destination Port: 4202 ()
 Sequence Number : 1627793504 Ack Number: 1118528900
 Header Length : 20 Flags: Ack Psh Fin
 Window Size : 32760 CheckSum: A1BC FFFF Urgent Data Pointer:

 IP Header : 20 IP: 9.67.157.17, 9.67.156.104
 000000 45300028 0B074000 4006E399 09439D11 09439C68
 Protocol Header : 20 Port: 23, 4202
 000000 0017106A 61062860 42AB6584 50197FF8 A1BC0000
218 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 6-7 Trace record 506: ACK sent from client

Display target system, SD, and router after closing connection
There is no connection on MVS154.

506 MVS154 PACKET 00000001 16:31:46.489254 Packet Trace
 From Link : GIGELINK Device: QDIO Ethernet Full=64
 Tod Clock : 2001/07/27 16:31:46.489253
 Lost Records : 0 Flags: Pkt Ver2 Gre
 --
GRE part is deleted here, to avoid the complexity of the trace
--
 IpHeader: Version : 4 Header Length: 20
 Tos : 30 QOS: Priority MinimumDelay
 Packet Length : 40 ID Number: 1592
 Fragment : DontFragment Offset: 0
 TTL : 127 Protocol: TCP CheckSum: 9A0E
 Source : 9.67.156.104
 Destination : 9.67.157.17

 TCP
 Source Port : 4202 () Destination Port: 23 (telnet)
 Sequence Number : 1118528900 Ack Number: 1627793505
 Header Length : 20 Flags: Ack
 Window Size : 17149 CheckSum: DEBF FFFF Urgent Data Pointer:

 IP Header : 20 IP: 9.67.156.104, 9.67.157.17
 000000 45300028 15924000 7F069A0E 09439C68 09439D11
 Protocol Header : 20 Port: 4202, 23
 000000 106A0017 42AB6584 61062861 501042FD DEBF0000

 --
End of FIN trace

===> netstat conn

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
BPXOINIT 0000001D 0.0.0.0..10007 0.0.0.0..0 Listen
ENDPT40 0000003C 0.0.0.0..10115 0.0.0.0..0 Listen
FTPMVS1 00000023 0.0.0.0..21 0.0.0.0..0 Listen
HODSERV5 0000002B 0.0.0.0..8999 0.0.0.0..0 Listen
INETD1 0000004B 0.0.0.0..623 0.0.0.0..0 Listen
INETD1 00000044 0.0.0.0..19 0.0.0.0..0 Listen
OMPROUTE 00000022 127.0.0.1..1027 127.0.0.1..1028 Establsh
OSNMPD 00000021 0.0.0.0..1029 0.0.0.0..0 Listen
TCP 00000010 0.0.0.0..523 0.0.0.0..0 Listen
TCP 0000000B 127.0.0.1..1025 0.0.0.0..0 Listen
TCP 0000000E 127.0.0.1..1026 127.0.0.1..1025 Establsh
TCP 00000011 0.0.0.0..23 0.0.0.0..0 Listen
TCP 0000001C 127.0.0.1..1028 127.0.0.1..1027 Establsh
TCP 0000000F 127.0.0.1..1025 127.0.0.1..1026 Establsh
WEBSDB2 00000019 0.0.0.0..80 0.0.0.0..0 Listen
OSNMPD 00000020 0.0.0.0..161 *..* UDP
Chapter 6. Sysplex Distributor with MNLB 219

No entry is in the VIPA connection routing table in the Sysplex Distributor of MVS001.

The router has also cleared the fixed affinity table.

6.9 Sysplex Distributor backup
When the primary TCP/IP stack running the Sysplex Distributor fails, the backup stack with a
secondary Sysplex Distributor automatically takes over all defined DVIPAs, including the
distribution definitions such as VIPADIST and DESTIP. Prerequisite for this takeover process
is that VIPABackup is defined on the backup stack(s).

The stack with the highest defined rank automatically activates the DVIPA in a backup
situation. Ranks may be defined from 1 (default) to 254; 1 is the lowest order in a backup
chain.

6.9.1 TCPIP.PROFILE definitions
These definitions in Example 6-13 were used on MVS069.

Example 6-13 Sysplex Distributor DVIPA backup definitions

VIPADYNAMIC
;--
; DISTRIBUTED VIPA BACKUP FOR WEB AND TN3270
;--
 VIPABACKUP 200 9.67.157.17
;--
; DISTRIBUTED VIPA BACKUP FOR FTP
;--
 VIPABACKUP 200 9.67.157.18
;
ENDVIPADYNAMIC

The backup stack will distribute new TCP connection requests based on the
VIPADISTRIBUTE and DESTIP parameters of the original stack.

Additional IPCONFIG statements in the backup Sysplex Distributor have to be defined, as
shown in the Example 6-14.

Example 6-14 IPCONFIG statements in the backup Sysplex Distributor

DYNAMICXCF 9.67.156.76 255.255.255.248
DATAGRAMFWD
SYSPLEXROUTING

===> netstat vcrt

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Connection Routing Table:
Dest IPaddr DPort Src IPaddr SPort DestXCF Addr
----------- ----- ---------- ----- ------------

C7200-Z55>show ip casa aff
No matching entries in affinity cache
C7200-Z55>
220 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

VARSUBNETTING
PATHMTUDISCOVERY

6.9.2 Sysplex Distributor backup procedures
This section gives an overview of the following:

� Activities of the backup Sysplex Distributor in a backup sequence when the primary
Sysplex Distributor fails.

� Activities of the primary Sysplex Distributor in a recovery sequence when the primary
Sysplex Distributor is restarted.

Figure 6-8 shows our failure scenario.

Sysplex Distributor backup sequence

Figure 6-8 Sysplex Distributor takeover procedure

In our figure:

1. The Distribution Stack (MVS001) fails.

2. The backup Distribution Stack (MVS069) automatically activates DVIPAs for which it is
backup.

3. The backup Distribution Stack (MVS069) informs target stacks (MVS062 and MVS154).

Target StacksSysplex
Distributor
(Service
Manager)

Login TN3270
(Port 23 Cached
IP- Address
is 9.67.157.17)

XCF

Sysplex
Distributor
Backup

XCF
9.67.156.73

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

OSA Express
9.67.157.129

MVS001

XCF
9.67.156.74

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

OSA Express
9.67.157.130

MVS062

XCF
9.67.156.76

Backup DVIPA
FTP 9.67.157.18

Backup DVIPA
TN3270 9.67.157.17

OSA Express
9.67.157.132

MVS069

XCF
9.67.156.75

OSA Express
9.67.157.131

MVS154

DVIPA TN3270
9.67.157.17

Target
StackTarget

Stack

Router
Forwarding
Agent

Switch

Affinity Table
Fixed Affinities

Router
Forwarding
Agent

Multicast
Wildcard
Affinities

7

Affinity Table
Fixed Affinities

Multicast
Wildcard
Affinities

7

5 Update VCRT

1

2

4
3

4

6 DVIPAs
to Router

3

Network
Chapter 6. Sysplex Distributor with MNLB 221

4. Target stacks (MVS062 and MVS154) inform the backup Distribution Stack (MVS069)
about application server status on ports defined for distribution.

5. The backup Distribution Stack (MVS069) builds and maintains its destination port table
(DPT) and its current routing table (CRT).

6. The backup Distribution Stack (MVS069) advertises to the network DVIPAs that it took
over.

7. Wildcard affinities are multicasted to the Forwarding Agents propagating the new forward
IP address, which is now the dynamic XCF link address 9.67.156.76 of the backup
Sysplex Distributor (MVS069).

Fixed affinities need not to be updated in the Forwarding Agents.

Backup SD MVS069 displays before the primary SD MVS001 failed
The following display shows that the backup Sysplex Distributor has not activated yet the
DVIPAs 9.67.156.17 and 9.67.156.18 of the primary Sysplex Distributor.

The display of the VIPA configuration table of the primary Sysplex Distributor MVS001 shows
that this stack is still Service Manager.

===> netstat vipadcfg
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP 17:39:21
Dynamic VIPA Information:
 VIPA Backup:
 IP Address Rank
 ---------- ----
 9.67.156.25 000100
 9.67.156.26 000100
 9.67.156.33 000010
 9.67.156.34 000010
 9.67.156.41 000010
 9.67.156.42 000010

 VIPA Define:
 IP Address AddressMask Moveable SrvMgr
 ---------- ----------- -------- ------
 9.67.156.49 255.255.255.248 Immediate No
 9.67.156.50 255.255.255.248 Immediate No

222 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The following screen shows that the Sysplex Distributor MVS001 currently has two TCP
connections.

Because the backup Sysplex Distributor is not the current Sysplex Distributor, it does not have
a distributed VIPA port table as shown in the following screen.

===> netstat vipadcfg

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Information:
 VIPA Backup:
 IP Address Rank
 ---------- ----
 9.67.156.33 000001
 9.67.156.34 000001
 9.67.156.41 000001
 9.67.156.42 000001
 9.67.156.49 000100
 9.67.156.50 000100

 VIPA Define:
 IP Address AddressMask Moveable SrvMgr
 ---------- ----------- -------- ------
 9.67.156.25 255.255.255.248 Immediate No
 9.67.156.26 255.255.255.248 Immediate No
 9.67.157.17 255.255.255.248 Immediate Yes
 9.67.157.18 255.255.255.248 Immediate Yes

VIPA Distribute:
 IP Address Port XCF Address
 ---------- ---- -----------
 9.67.157.17 00023 9.67.156.75
 9.67.157.17 00023 9.67.156.74
 9.67.157.17 00080 9.67.156.75
 9.67.157.17 00080 9.67.156.74
 9.67.157.17 00443 9.67.156.75
 9.67.157.17 00443 9.67.156.74
 9.67.157.17 00523 9.67.156.75
 9.67.157.17 00523 9.67.156.74
 9.67.157.18 00020 9.67.156.74
 9.67.157.18 00020 9.67.156.73
 9.67.157.18 00021 9.67.156.74
 9.67.157.18 00021 9.67.156.73

 VIPA Service Manager:
 McastGroup: 224.0.1.2 Port: 01637 Pwd: No

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Connection Routing Table:
Dest IPaddr DPort Src IPaddr SPort DestXCF Addr
----------- ----- ---------- ----- ------------
9.67.157.17 00023 9.67.156.104 04219 9.67.156.74
9.67.157.17 00023 9.67.156.104 04220 9.67.156.75
Chapter 6. Sysplex Distributor with MNLB 223

The backup Sysplex Distributor does not have any TCP connections. The next screen shows
output of the dynamic VIPA connection routing table of MVS06.

The command netstat vipadyn issued at the backup Sysplex Distributor MVS069 also does
not show any distributed DVIPAs. The screen output has no distributed VIPAs 9.67.157.17
and 9.67.156.18.

Primary Sysplex Distributor fails
The backup Sysplex Distributor starts the takeover phase. It immediately activates the
DVIPAs that are defined as VIPABACKUP in the TCPIP.PROFILE. See the next screen
output, obtained using the netstat vipadyn command. The distributed DVIPAs 9.76.157.17
and 9.67.157.18 are taken over as VIPABACKUP DISTributed.

===> netstat vdpt

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Distribution Port Table:
Dest IPaddr DPort DestXCF Addr Rdy TotalConn WLM
---------- ----- ------------ --- --------- ---

===> netstat vcrt

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Connection Routing Table:
Dest IPaddr DPort Src IPaddr SPort DestXCF Addr
----------- ----- ---------- ----- ------------

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
IP Address AddressMask Status Origination DistStat
---------- ----------- ------ ----------- --------
9.67.156.25 255.255.255.248 Backup VIPABackup
9.67.156.26 255.255.255.248 Backup VIPABackup
9.67.156.33 255.255.255.248 Backup VIPABackup
9.67.156.34 255.255.255.248 Backup VIPABackup
9.67.156.41 255.255.255.248 Backup VIPABackup
9.67.156.42 255.255.255.248 Backup VIPABackup
9.67.156.49 255.255.255.248 Active VIPADefine
9.67.156.50 255.255.255.248 Active VIPADefine
9.67.157.17 255.255.255.248 Backup VIPABackup
9.67.157.18 255.255.255.248 Backup VIPABackup

224 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The command netstat vipadcfg command issued at the backup Sysplex Distributor shows
the following result.

Now the backup Sysplex Distributor is responsible for the taken-over distributed DVIPAs. All
ports and the dynamic XCF IP addresses of the available target stacks are displayed.

Backup SD informs the target stacks about DVIPAs and ports
The port table obtained with the netstat vdpt command is filled now.

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
---------- ----------- ------ ----------- --------
9.67.156.25 255.255.255.248 ACTIVE VIPABACKUP
9.67.156.26 255.255.255.248 ACTIVE VIPABACKUP
9.67.156.33 255.255.255.248 BACKUP VIPABACKUP
9.67.156.34 255.255.255.248 BACKUP VIPABACKUP
9.67.156.41 255.255.255.248 BACKUP VIPABACKUP
9.67.156.42 255.255.255.248 BACKUP VIPABACKUP
9.67.156.49 255.255.255.248 ACTIVE VIPADEFINE
9.67.156.50 255.255.255.248 ACTIVE VIPADEFINE
9.67.157.17 255.255.255.248 ACTIVE VIPABACKUP DIST
9.67.157.18 255.255.255.248 ACTIVE VIPABACKUP DIST

===> netstat vipadcfg
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP 17:49:26
Dynamic VIPA Information:
 VIPA Backup:
 IP Address Rank
 ---------- ----
 9.67.156.33 000010
 9.67.156.34 000010

 VIPA Define:
 IP Address AddressMask Moveable SrvMgr
 ---------- ----------- -------- ------
 9.67.156.49 255.255.255.248 Immediate No
 9.67.156.50 255.255.255.248 Immediate No
 9.67.157.17 255.255.255.248 Immediate Yes
 9.67.157.18 255.255.255.248 Immediate Yes
 VIPA Distribute:
 IP Address Port XCF Address
 ---------- ---- -----------
 9.67.157.17 00023 9.67.156.75
 9.67.157.17 00023 9.67.156.74

 9.67.157.18 00020 9.67.156.74
 9.67.157.18 00020 9.67.156.73
 9.67.157.18 00021 9.67.156.74
 9.67.157.18 00021 9.67.156.73
 VIPA Service Manager:
 McastGroup: 224.0.1.2 Port: 01637 Pwd: No
Chapter 6. Sysplex Distributor with MNLB 225

In the meantime, some more connections were established.

Target stacks provided connection information

Backup SD stack propagates to the network
A router display obtained through the show ip casa wildcard det command shows the
wildcard affinity table contents. It shows the new interest address of the backup Sysplex
Distributor. This address is 67.156.76. All packets, even fragmented packets, are accepted by
the Sysplex Distributor. The interest address is the dynamic XCF link IP address of the
backup Sysplex Distributor that was propagated to the network via a multicast CASA packet
on behalf of the takeover process. This means that, from now on, the Forwarding Agents have
to send CASA requests per unicast to the dynamic XCF link IP address 9.67.156.76 and port
1637. See the highlighted lines in the following display. A dispatch address is not available for
wildcard affinities.

Do not be confused by the Service Manager’s IP address 9.67.156.67. This is the IP address
of the CLAW interface.

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Distribution Port Table:
Dest IPaddr DPort DestXCF Addr Rdy TotalConn WLM
----------- ----- ------------ --- --------- ---
9.67.157.17 00023 9.67.156.74 001 0000000000 01
9.67.157.17 00023 9.67.156.75 001 0000000000 01
9.67.157.17 00080 9.67.156.74 001 0000000000 01
9.67.157.17 00080 9.67.156.75 001 0000000000 01
9.67.157.17 00443 9.67.156.74 001 0000000000 01
9.67.157.17 00443 9.67.156.75 000 0000000000 01
9.67.157.17 00523 9.67.156.74 001 0000000000 01
9.67.157.17 00523 9.67.156.75 001 0000000000 01
9.67.157.18 00020 9.67.156.74 000 0000000000 01
9.67.157.18 00021 9.67.156.74 001 0000000000 01

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Connection Routing Table:
Dest IPaddr DPort Src IPaddr SPort DestXCF Addr
----------- ----- ---------- ----- ------------
9.67.157.17 00023 9.67.156.104 04623 9.67.156.74
9.67.157.17 00023 9.67.156.104 04632 9.67.156.74
9.67.157.17 00023 9.67.156.104 04622 9.67.156.75
9.67.157.17 00023 9.67.156.104 04631 9.67.156.75

226 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

On router 7206, nothing has been changed concerning existing connections. The four TCP
connections may be viewed by issuing the command show ip affinities. This is the short
form for the display.

Source Address Source Mask Port Dest Address Dest Mask Port Prot
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 523 TCP
 Service Manager Details:
 Manager Addr: 9.67.156.67 Insert Time: 11:36:27 UTC 07/27/01
 Affinity Statistics:
 Affinity Count: 0 Interest Packet Timeouts: 0
 Packet Statistics:
 Packets: 0 Bytes: 0
Advertise Dest Address: NO Match Fragments: YES
Affinity TTL: 30
 Action Details:
 Interest Addr: 9.67.156.76 Interest Port: 1637
 Interest Packet: 0x8100 FRAG ALLPKTS
 Interest Tickle: 0x0000
 Dispatch (Layer 2): NO Dispatch Address: 0.0.0.0
Source Address Source Mask Port Dest Address Dest Mask Port Prot
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 443 TCP
 Service Manager Details:
 Manager Addr: 9.67.156.67 Insert Time: 11:36:27 UTC 07/27/01
 Affinity Statistics:
 Affinity Count: 0 Interest Packet Timeouts: 0
 Packet Statistics:
 Packets: 0 Bytes: 0
Advertise Dest Address: NO Match Fragments: YES
Affinity TTL: 30
 Action Details:
 Interest Addr: 9.67.156.76 Interest Port: 1637
 Interest Packet: 0x8100 FRAG ALLPKTS
 Interest Tickle: 0x0000
 Dispatch (Layer 2): NO Dispatch Address: 0.0.0.0

Source Address Source Mask Port Dest Address Dest Mask Port Prot
0.0.0.0 0.0.0.0 0 9.67.157.17 255.255.255.255 80 TCP
 Service Manager Details:
 Manager Addr: 9.67.156.67 Insert Time: 11:36:27 UTC 07/27/01
 Affinity Statistics:
 Affinity Count: 0 Interest Packet Timeouts: 0
Packets: 0 Bytes: 0
Advertise Dest Address: NO Match Fragments: YES
Affinity TTL: 30
 Action Details:
 Interest Addr: 9.67.156.76 Interest Port: 1637
 Interest Packet: 0x8100 FRAG ALLPKTS
...........

Source Address Port Dest Address Port Prot
9.67.156.104 4622 9.67.157.17 23 TCP
9.67.156.104 4623 9.67.157.17 23 TCP
9.67.156.104 4632 9.67.157.17 23 TCP
9.67.156.104 4631 9.67.157.17 23 TCP
C7200-Z55>
Chapter 6. Sysplex Distributor with MNLB 227

The command show ip affinities det will let you see that the backup Sysplex Distributor
now maintains this connection. This is indicated through the interest address. See the
highlighted line. Note, the following display is an excerpt only.

The takeover process also deposits footprints in the z/OS console log. See the following
display excerpt of the system MVS069, the backup Sysplex Distributor.

Sysplex Distributor recovery sequence
When the primary Sysplex Distributor is restarted, the recovery process defined for the
DVIPAs will take back the resources depending on the VIPADEFINE parameter, MOVEABLE
IMMEDIATE or MOVEABLE WHENIDLE.

MOVEABLE IMMEDIATE will enable the primary Sysplex Distributor to take back immediately
the current TCP connection maintenance previously taken over from the backup Sysplex
Distributor. This takeback happens without interruption of the TCP connection between the
client and the application running on a target system. After the takeback phase, the
connections are no longer viewed in the backup Sysplex Distributor’s distributed VIPA
connection routing table. They are now maintained in the recovered Sysplex Distributor.

All new connection requests are directed to the recovered Sysplex Distributor.

MOVEABLE WHENIDLE indicates that this DVIPA can be moved to another stack, when
there are no connections for this DVIPA on the current stack. While there are existing
connections, any new connection request continues to be directed to the current stack.

C7200-Z55> show ip casa aff det
Source Address Port Dest Address Port Prot
9.67.156.104 4622 9.67.157.17 23 TCP
Action Details:
 Interest Addr: 9.67.156.76 Interest Port: 1637
 Interest Packet: 0x0002 SYN
Interest Tickle: 0x0000
Dispatch (Layer 2): YES Dispatch Address: 9.67.156.75
Source Address Port Dest Address Port Prot
9.67.156.104 4623 9.67.157.17 23 TCP
Action Details:
 Interest Addr: 9.67.156.76 Interest Port: 1637
Interest Packet: 0x0002 SYN
Interest Tickle: 0x0000
Dispatch (Layer 2): YES Dispatch Address: 9.67.156.74

EZZ8301I VIPA 9.67.156.25 TAKEN OVER FROM TCP ON MVS001
EZZ8301I VIPA 9.67.156.26 TAKEN OVER FROM TCP ON MVS001
EZZ8301I VIPA 9.67.157.17 TAKEN OVER FROM TCP ON MVS001
EZZ8301I VIPA 9.67.157.18 TAKEN OVER FROM TCP ON MVS001
228 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 6-9 Sysplex Distributor recovery sequence

Figure 6-9 shows a recovery sequence:

1. The Distribution Stack (MVS001) is restarted.

2. The Distribution Stack (MVS001) activates DVIPAs.

3. The Distribution Stack (MVS001) informs the backup Distribution Stack (MVS069) and the
target stacks (MVS062 and MVS0154).

4. The target stacks (MVS062 and MVS0154) inform the Distribution Stack (MVS001) about
application server status on ports defined for distribution.

5. The backup Distribution Stack (MVS069) sends a table to the distribution stack (MVS001)
containing all connections currently routed.

6. The backup Distribution Stack (MVS069) cleans up its tables and deletes the DVIPAs
given back.

7. The Distribution Stack (MVS001) advertises DVIPAs to the network.

Target StacksSysplex
Distributor
(Service
Manager)

XCF

Sysplex
Distributor
Backup

XCF
9.67.156.73

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

OSA Express
9.67.157.129

MVS001

XCF
9.67.156.74

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

OSA Express
9.67.157.130

MVS062

XCF
9.67.156.76

Backup DVIPA
FTP 9.67.157.18

Backup DVIPA
TN3270 9.67.157.17

OSA Express
9.67.157.132

MVS069

XCF
9.67.156.75

OSA Express
9.67.157.131

MVS154

DVIPA TN3270
9.67.157.17

Target
Stack
Target
Stack
Target
Stack

Router
Forwarding
Agent

Switch

Affinity Table
Fixed Affinities

Router
Forwarding
Agent Affinity Table

Fixed Affinities

5 Update VCRT

1

2

3
3

3
4

4

6 Delete DVIPAs

7 DVIPAs
to Router

Multicast
Wildcard
Affinities

7

Multicast
Wildcard
Affinities

8

Login TN3270
(Port 23 Cached
IP- Address
is 9.67.157.17)

Target
Stack

Network

Note: This procedure only works if DVIPAs in MVS001 are defined as MOVEable
IMMEDiate (the default) on the VIPADefine statement.
Chapter 6. Sysplex Distributor with MNLB 229

Display documentation of the recovery sequence
The z/OS console of MVS069, the backup Sysplex Distributor, indicates the DVIPAs are
returned to the originator MVS001.

The z/OS console of MVS001, the primary Sysplex Distributor, indicates that the DVIPAs
returned.

DVIPAs are reactivated
DVIPAs are activated as shown in “Backup SD MVS069 displays before the primary SD
MVS001 failed” on page 222.

Target stacks provide connection state information
The recovered Sysplex Distributor takes back the maintenance of the four TCP connections.

Backup Sysplex Distributor stack cleans up port table
No ports are available because the backup stack is no longer the Service Manager. See the
display in “Backup SD MVS069 displays before the primary SD MVS001 failed” on page 222.

EZZ8303I VIPA 9.67.156.25 GIVEN TO TCP ON MVS001
EZZ8303I VIPA 9.67.156.26 GIVEN TO TCP ON MVS001
EZZ8303I VIPA 9.67.157.17 GIVEN TO TCP ON MVS001
EZZ8303I VIPA 9.67.157.18 GIVEN TO TCP ON MVS001

EZZ8302I VIPA 9.67.156.25 TAKEN FROM TCP ON MVS069
EZZ8302I VIPA 9.67.156.26 TAKEN FROM TCP ON MVS069
EZZ8302I VIPA 9.67.157.17 TAKEN FROM TCP ON MVS069
EZZ8302I VIPA 9.67.157.18 TAKEN FROM TCP ON MVS069

===> netstat vcrt
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Connection Routing Table:
Dest IPaddr DPort Src IPaddr SPort DestXCF Addr
----------- ----- ---------- ----- ------------
9.67.157.17 00023 9.67.156.104 04623 9.67.156.74
9.67.157.17 00023 9.67.156.104 04632 9.67.156.74
9.67.157.17 00023 9.67.156.104 04622 9.67.156.75
9.67.157.17 00023 9.67.156.104 04631 9.67.156.75

===> netstat vdpt

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Distribution Port Table:
Dest IPaddr DPort DestXCF Addr Rdy TotalConn WLM
----------- ----- ------------ --- --------- ---

230 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Backup Sysplex Distributor stack cleans up the VIPA connection routing table

Recovered SD stack advertises DVIPAs to the network
Fixed affinities are still viewable at the Forwarding Agent. In the detailed display, the new
interest address is shown.

The interest IP address of the recovered Sysplex Distributor is highlighted.

6.10 Generic Routing Encapsulation (GRE) protocol
There may be situations where IP packets have to be encapsulated with an additional IP
header before they are sent over the network. This situation is applicable, for example, when
there are multiple logical partitions (LPARs) in a z/OS sysplex environment, each running a
TCP/IP stack and sharing one OSA-Express adapter, and each TCP/IP stack has defined
distributed dynamic virtual IP addresses (DVIPAs). These DVIPAs are defined in the Sysplex
Distributor, and in the backup Sysplex Distributor, for target stacks running various application
services.

6.10.1 The need for GRE
Such a situation arises when multiple z/OS LPARs, each running a TCP/IP stack, share one
OSA-Express adapte, and a distributed dynamic virtual IP (DVIPA). An MNLB Forwarding
Agent distributes IP packets from clients of TCP connections to target application servers. For
each connection, a specific target server was selected by the Sysplex Distributor from a
group of servers within the sysplex based on load-balancing rules.

===> netstat vcrt

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
Dynamic VIPA Connection Routing Table:
Dest IPaddr DPort Src IPaddr SPort DestXCF Addr
----------- ----- ---------- ----- ------------

C7200-Z55>show ip casa aff
Source Address Port Dest Address Port Prot
9.67.156.104 4622 9.67.157.17 23 TCP
9.67.156.104 4623 9.67.157.17 23 TCP
9.67.156.104 4632 9.67.157.17 23 TCP
9.67.156.104 4631 9.67.157.17 23 TCP
C7200-Z55>

C7200-Z55>show ip casa aff det
Source Address Port Dest Address Port Prot
9.67.156.104 4631 9.67.157.17 23 TCP
 Action Details:
 Interest Addr: 9.67.156.73 Interest Port: 1637
 Interest Packet: 0x0002 SYN
 Interest Tickle: 0x0000
 Dispatch (Layer 2): YES Dispatch Address: 9.67.156.75
Chapter 6. Sysplex Distributor with MNLB 231

Remember, a route between the client and the server located in a z/OS sysplex will have a
destination IP address that is a distributed dynamic VIPA (DVIPA). The distributed DVIPA is
the cluster address representing the application server. The distributed DVIPA is dynamically
defined by the Sysplex Distributor also in other target stacks for load-balancing purposes.
Thus, there are multiple equal distributed DVIPAs known in TCP/IP stacks in a sysplex.

The following display is taken from the target system MVS062. It shows the dynamically
defined DVIPAs. For example, the IP address 9.67.157.17 for TN3270 and Web services also
appears in the HOME list of the application hosts in the target systems MVS062 and
MVS154.

A problem arises when a destination IP address, representing this DVIPA, has to be routed by
the OSA-Express GbE adapter to the real application server’s IP address. Although the
distributed DVIPAs, defined in the Sysplex Distributor with VIPADIST and DESTIP, also
appear in the HOME list of all target stacks, they are “hidden” from the network.

What does “hidden” mean? Distributed DVIPAs are not propagated by a router daemon and,
most importantly, they are not downloaded into the OSA-Express adapter’s address table
(OAT). Thus they cannot be mapped with the 48-bit ISO/OSI layer-2 medium access control
(MAC) address.

In our test environment, all LPARs use the OSA-Express adapter in a shared mode. Thus the
OSA-Express adapter knows the distributed DVIPAs, but is owned by the Sysplex Distributor
stack only. In our test case the Sysplex Distributor would be the receiver for packets with
cluster addresses 9.67.157.17, and 9.67.157.18. This means that, since all packets carrying
the cluster address for existing connections would always be sent to the Sysplex Distributor
and not the destination address of the real target server, there has to be some additional work
by the Forwarding Agent to address the real target server rather than the Sysplex Distributor.

Before we try to explain how the target addressing problem will be solved, we first review how
the OAT is created in the OSA-Express adapter. It differs completely from the procedure you
might follow when an OSA-2 OAT is defined.

=> netstat home
 MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCP
 Home address list:
 Address Link Flg
------- ---- ---
9.67.156.161 VLINK0 P
9.67.157.130 GIGELINK
9.67.156.69 CISCO1
9.67.156.18 CISCO2
9.67.157.243 CISCO3
9.67.156.162 TOVTAM
9.67.156.74 EZAXCFN6
9.67.156.33 VIPL09439C21
9.67.156.34 VIPL09439C22
9.67.156.74 EZAXCFN7
9.67.156.74 EZAXCFN4
9.67.157.17 VIPL09439D11 I
9.67.157.18 VIPL09439D12 I
127.0.0.1 LOOPBACK
232 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

When a START DEVICE command is executed by the TCP/IP stack for an OSA-Express
adapter that runs in MPCIPA mode (also known as IP assist mode), information is passed
from the TCP/IP stack to the adapter, including:

� HCD definitions (channel path ID, control unit, device address, and operation mode (shr)).

� TRLE definitions with a subchannel address to access the LPAR (read, write, data path,
and port name that maps the device name of the DEVICE statement guiding to the LINK
name).

� DEVICE and LINK statement information.

� HOME statements, which list all IP addresses with associated link names known to the
stack.

A sample of the OAT shows which IP addresses are downloaded from the TCP/IP stacks. You
will discover the differences in the entries for:

� MVS001 as the Sysplex Distributor stack
� MVS062 as one of the target stacks
� MVS069 as the backup Sysplex Distributor

The backup Sysplex Distributor will receive entries for the VIPABACKUP addresses when the
backup occurs. The entries for the other target stack MVS154 are not shown because they
are similar to MVS062.

We have edited the samples in Example 6-15 through Example 6-17 on page 234 for a better
understanding. Our additional text is shown in italics.

The OAT entries are also not shown in the real sequence. The real sequence is sorted by the
subchannel addresses of the read, write, and data path addresses defined in the TRLE.

OAT for MVS001 (Sysplex Distributor)
Example 6-15 OSA-Express adapter address table (OAT) of Sysplex Distributor

THERE IS DATA FOR 55 OAT(s) ON CHPID F5
START OF OSA ADDRESS TABLE
 UA(Dev) Mode Port Entry specific information Entry Valid
 LP 01 (RALVM9) is the VM system which carries the four
z/OS LPARs
 MVS001, MVS069, MVS062, MVS154
MVS001 Sysplex Distributor (node name: N04)
14(2F14) MPC n/a N04GIG1 (QDIO control) SIU ALL
15(2F15) MPC n/a N04GIG1 (QDIO control) SIU ALL
16(2F16) MPC 00 PRI N04GIG1 (QDIO data) SIU ALL
 9.67.156.17 -> MPC CISCO2 MVS001
 9.67.156.66 -> CLAW CISCO1
 9.67.156.2 -> TOVTAM
 9.67.156.73 -> DXCF
 9.67.157.129 -> GIGELINK
 9.67.156.1 -> static VIPA
 9.67.156.25 -> DVIPA
 9.67.156.26 -> DVIPA
 9.67.157.17 -> distributed DVIPA
 9.67.157.18 -> distributed DVIPA

This display shows that z/OS subchannel address 2F14 and 2F15 are the read and write
subchannel addresses for the QDIO control data. The real data transmission goes over the
channel path 2F16, defined in the TRLE. This line also shows that the path to MVS001 is
defined as the primary router (PRI). Compare the equivalent line for the backup Sysplex
Chapter 6. Sysplex Distributor with MNLB 233

Distributor. There the path is defined as the secondary router (SEC). You will also not find the
distributed DVIPAs 9.67.157.18 and 9.67.157.19 in the backup Sysplex Distributor, since they
are not displayed after using the netstat home command. Remember, the distributed DVIPAs
are activated in a backup case only.

The name between the router specification and the QDIO issues represents the OSA name. It
is the name of the TRLE entry. For example, N04GIG1 is the OAT entry that points to the
TRLE name (see “OSA-Express adapter interfaces” on page 186).

When you look at the subchannel addresses of all LPARs, you will notice that they are
unique. This is because the OSA-Express adapter is defined to one system only. This system
is a VM system, called RALVM9. The four z/OS systems are guest machines running under
VM.

In a pure z/OS environment, without VM, you have four independent LPARs. This allows you
to define three equal subchannel addresses for all LPARs. For example:

2F14 for the read control subchannel
2F15 for the write control subchannel
2F16 for the data path

If the port name of the TRLE maps the device name in the TCPIP.PROFILE, then one TRLE
may be defined, but copied to the VTAMLST of the four different systems.

OAT for MVS062 (target system)
Example 6-16 OSA-Express adapter address table (OAT) of target stack MVS062

MVS062 Target system (node name: N05)
04(2F04) MPC n/a N05GIG1 (QDIO control) SIU ALL
05(2F05) MPC n/a N05GIG1 (QDIO control) SIU ALL
06(2F06) MPC 00 No N05GIG1 (QDIO data) SIU ALL
 9.67.156.18 -> MPC CISCO2 MVS062
 9.67.157.243 -> CLAW CISCO3
 9.67.156.162 -> TOVTAM
 9.67.156.74 -> XCF
 9.67.157.130 -> GIGELINK
 9.67.156.161 -> static VIPA
 9.67.156.33 -> DVIPA
 9.67.156.34 -> DVIPA

OAT for MVS069 (backup Sysplex Distributor)
Example 6-17 OSA-Express adapter address table (OAT) of backup Sysplex Distributor

MVS069 Backup Sysplex Distributor (node name: N07)
18(2F18) MPC n/a N07GIG1 (QDIO control) SIU ALL
19(2F19) MPC n/a N07GIG1 (QDIO control) SIU ALL
1A(2F1A) MPC 00 SEC N07GIG1 (QDIO data) SIU ALL
 9.67.156.20 -> MPC CISCO2 MVS069
 9.67.157.245 -> CLAW CISCO3
 9.67.156.5 -> TOVTAM
 9.67.156.76 -> DXCF
 9.67.157.132 -> GIGELINK
 9.67.156.5 -> static VIPA
 9.67.156.49 -> DVIPA
 9.67.156.50 -> DVIPA

*** Legend for abbreviations ***
* Entry column Valid column
* ------------ ------------
234 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

* S - Started OSA - Does not exist in IOCDS, but is on OSA
* NS - Not started CSS - Exists only in Channel Subsystem (IOCDS)
* SIU - Started & in use ALL - Exists on the OSA and in IOCDS
* N/A - Not Applicable
* R - Rejected (see messages following this legend)
* Entry Specific Information
* -----------------------
* Passthru - Default entry, Home IP address & Netmask
* SNA - VTAM IDNUM (if port number is FF)
* MPC (IP or IPX) - OSA name
* MPC (QDIO Control) - OSA name
* MPC (QDIO Data) - Default entry & OSA name

CHPID F5 RETURNED THE FOLLOWING OAT REASON MESSAGES
 None
***************************** End of Query data ************************

IP assist uses the downloaded information to create the OSA Address Table (OAT). This
enables the OSA adapter to recognize IP addresses that are mapped to the MAC address of
the adapter.

IP assist will also use the referenced information such as all IP addresses of other TCP/IP
stack's HOME lists if the OSA-Express GbE adapter runs in a shared mode.

Now, we return to the addressing situation initiated by the fact that the destination IP for all
TCP connection data to the server is the cluster address. The only choice for the
OSA-Express could be to send the packet to the Sysplex Distributor, which would check the
5-tuple information and by scanning the VIPA connection routing table (VCRT) would
determine to which TCP connection this packet belongs, and forward it to the correct target
system. But this would end being the non-MNLB Sysplex Distributor solution. It is not the
preferred approach for a sysplex environment with MNLB. Therefore, another solution has to
be made available to overcome the shared OSA adapter, distributed DVIPA problem.

6.10.2 Search for a shared OSA-Express solution
One approach could be to encapsulate the IP packet received by the Forwarding Agent into
another IP packet with its destination IP address of the real target system. The true
destination address is known by the Forwarding Agent for every IP packet associated with the
TCP connection. The target IP address was provided by the Sysplex Distributor’s Service
Manager through a fixed affinity at connection establishment through the CASA packet
carrying the SYN sent to the Service Manager.

The protocol of encapsulating the original IP packet into a delivery IP packet is called the
Generic Routing Encapsulation (GRE) Protocol. This protocol is used for routing IP packets
from the Forwarding Agent to the correct target system in a z/OS sysplex with multiple LPARs
sharing one OSA-Express GbE adapter. Without using GRE, a packet arriving at the OSA
adapter would be forwarded to a default mapped IP address, which might not be the correct
target system.

Note: In our case, GRE is required only for inbound packets from the Forwarding Agent to
the target system. The path back to the client doesn't need GRE, since the route to the
client can be determined correctly because the destination address is the unique client.
Chapter 6. Sysplex Distributor with MNLB 235

6.10.3 Generic Routing Encapsulation (GRE) overview
A general description of GRE is found in RFC 1701. RFC 1702 is about using GRE over IPv4
networks.

GRE is used in cases where a system has a packet that needs to be encapsulated and
delivered to some destination. In our case, it is the MNLB Forwarding Agent that
encapsulates and delivers the packet to the real target system.

The original packet received by the Forwarding Agent is called a payload packet. The packet
around the payload packet is called the delivery packet.

Supported payload protocols
GRE was designed to encapsulate any protocol of the many networking protocols known as
the Ethernet protocol types shown in Table 6-1.

Table 6-1 List of supported protocol types (excerpt only)

Overall packet structure
An additional header, the GRE header, has to be added to let the receiver of the delivery
packet know what Ethernet type of protocol is encapsulated. The structure of the entire
encapsulated packet is shown in Figure 6-10.

Figure 6-10 Overall packet structure

The delivery header consists of the 20 bytes IPv4 header. The length of the GRE header is
dependent on the functions used. For our tests we used protocol type IP (0x0800) only. The
length of the payload packet depends on the data to be transmitted.

GRE header structure
Figure 6-11 on page 237 shows the structure of the GRE header.

Protocol Family Protocol Type

SNA 0004

OSI network layer 0FE

XNS 0600

IP 0800

RFC 826 ARP 806

Frame Relay ARP 808

VINES 0BAD

DECnet (Phase IV) 6003

Ethertalk (Appletalk) 809B

Novell IPX 8137

RFC 1144 TCP/IP compression 876B

Secure Data 876D

D e l iv e r y H e a d e r G R E H e a d e r P a y lo a d P a c k e t
236 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 6-11 GRE header structure

The descriptions of the GRE fields may be obtained from RFC 1701. The length of the GRE
depends on the functions used by switching on the flag bits. Functions are:

Checksum Calculated checksum of the GRE and payload packet

Key Used for authentication of the sender

Sequence number To control the sequence of incoming GRE and payload packets

Routing To determine a source route path

Payload packet structure
The payload packet structure is the usual IP packet containing the IPv4 header, TCP or UDP
header, and data. In our case, we used the TCP header only, since the Service Manager in
the Sysplex Distributor supports the TCP protocol only.

Forwarding and processing of GRE packets
The MNLB Forwarding Agent, in our test case implemented in Cisco routers 7507 and
7206VXR, implements RFC 1701 and RFC 1702 to encapsulate IP packets received from the
client and forwards an IPv4 delivery packet, if the path goes outbound over the Gigabit
Ethernet interfaces. This means that GRE tunnels have to be defined for the GbE interfaces in
both routers. The GRE tunnels have to be defined in the Cisco routers for outbound traffic to
the sysplex only. Within the sysplex there are no tunnel definitions required on any TCP/IP
stack, either in the Sysplex Distributor or in the target stacks. For definitions in the Cisco
routers, see 6.10.4, “Definitions in the Cisco routers 7507 and 7206” on page 240.

The payload packet has an Ethernet type 0x'0800'. In our case it is the IP packet received by
the Forwarding Agent, sent from the client. So GRE will be used to encapsulate an IP packet
by another IP packet according to RFC 1702.

When a GRE packet is received by a system, such as our z/OS system, it must recognize that
an encapsulated IP packet has been received. z/OS V1.2 supports GRE and is thus able to
unpack the delivery packet.

Once the delivery packet is recognized, the GRE contents is processed. For example:

� If the C-bit is set on, a checksum is recalculated and compared.
� If the R-bit is set on, the routing fields and the offset are available.
� If the K-bit is set on, the authentication key of the sender is checked.
� If the S-bit is set on, a sequence number field is present and may be checked with

previous sequence numbers.
� If the s-bit is set on, a strict source routing path is defined.

Further information may be obtained from the RFCs 1701 and 1702.

C R K S Recur Flagss Ver Protocol Type

Checksum (optional) Offset (optional)

Key (optional)

Sequence Number (optional)

Routing (optional)
Chapter 6. Sysplex Distributor with MNLB 237

As you will see later, all referenced bits in the GRE header were not switched on by the
Forwarding Agent in our test case.

What destination IP address in the delivery header?
This is a question that has to be answered before defining the tunnel in the two Cisco routers.
The tunnel end determines the destination IP address for the delivery header.

Figure 6-12 What destination IP address for the delivery packet?

Because the description in the current documentation does not indicate what IP address for
the tunnel end is most suitable, we had to find it out through tests. We tested:

� The IP address of the dynamic XCF link address. This did not work. A ping timed out.
OSPF has routes via the XCF to other stacks only.

� The IP address of any hardware interface showed the same characteristics. A ping timed
out.

� A DVIPA seems not to be suitable.

� A good choice was a static VIPA. The ping worked successfully.

Figure 6-13 Delivery packet

The test clarified that the tunnel end works with the static VIPA of the target system. This
means a tunnel has to be defined in each Cisco router with:

� Source IP address of the GbE interface of the router
� Destination IP address of the static VIPA of the system to be reached

This means that for our tests four tunnels were needed from router 7507 to each host in the
sysplex. Four tunnels are also needed from router 7206.

The delivery packet is sent via a tunnel from the router over the Gigabit Ethernet, a switch,
the OSA-Express adapter, to the TCP/IP stack containing the static VIPA address of the
desired host.

Figure 6-14 on page 239 shows the four tunnels from router 7507. The other four tunnels from
router 7206 are indicated only.

Delivery Packet

Payload Packet
Source IP addr. Dest. IP addr.

IP header

router IP address
 of GbE adapter

?????????????

GRE Header

Protocol Type

0x0800
Source IP addr. Dest.IP addr.

IP header

client IP address cluster IP address

Delivery Packet

Payload Packet
Source IP addr.

IP header

router IP address
 of GbE adapter

Dest. IP addr.
 static VIPA of
 target system

GRE Header

Protocol Type

0x0800
Source IP addr. Dest.IP addr.

IP header

client IP address cluster IP address
238 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 6-14 Tunnels over the shared OSA-Express

One question is still open. How does the Forwarding Agent know if it should take the
destination IP address of tunnel1, or tunnel62, or tunnel69, or tunnel154?

The answer could only be that the Forwarding Agent knows the forwarding address for the
TCP connection, which is the dynamic XCF link IP address. If a static route is defined in the
router pointing to the dynamic XCF link IP address using the tunnel name, such as tunnel1,
as the first hop, then the delivery packet will reach the correct destination.

Target StacksSysplex
Distributor
(Service
Manager)

XCF

Sysplex
Distributor
Backup

Switch

Router 7507
Forwarding
Agent

Router 7206
Forwarding
Agent

Login TN3270
(Port 23 Cached
IP- Address
is 9.67.157.17)

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

static VIPA
9.67.156.1

OSA Express
9.67.157.129

MVS001

XCF
9.67.156.73

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

OSA Express
9.67.157.130

XCF
9.67.156.74

MVS062

static VIPA
9.67.156.161

OSA Express
9.67.157.131

XCF
9.67.156.75

MVS154

DVIPA TN3270
9.67.157.17

static VIPA
9.67.156.165

Backup DVIPA
FTP 9.67.157.18

Backup DVIPA
TN3270 9.67.157.17

OSA Express
9.67.157.132

XCF
9.67.156.76

MVS069

static VIPA
9.67.156..5

Gigabit Ethernet

Tunnel1 Tunnel62 Tunnel69Tunnel154

Tunnel Source
9.67.157.137

Tunnel Source
9.67.157.136

4 Tunnels to
4 Hosts

Network
Chapter 6. Sysplex Distributor with MNLB 239

Figure 6-15 Static routes using GRE tunnels

Another question may arise: What destination IP address will be taken by the Forwarding
Agent when a SYN request is received or if there is no fixed affinity for an existing
connection? In both cases, the Forwarding Agent has the forwarding address of the Sysplex
Distributor, which is the dynamic XCF link IP address:

� In the wildcard affinity for the SYN
� In the wildcard affinity for cluster addresses and port numbers

Therefore, tunnels and static routes also have to be defined from each Forwarding Agent to
the Sysplex Distributor with Service Manager and the corresponding backup Sysplex
Distributor.

6.10.4 Definitions in the Cisco routers 7507 and 7206
� One tunnel is needed for each LPAR sharing the OSA adapter:

– The source IP address of the tunnel is the Cisco GbE adapter address

Target StacksSysplex
Distributor
(Service
Manager)

Network

XCF

Sysplex
Distributor
Backup

Switch

Router 7507
Forwarding
Agent

Router 7206
Forwarding
Agent

Login TN3270
(Port 23 Cached
IP- Address
is 9.67.157.17)

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

static VIPA
9.67.156.1

OSA Express
9.67.157.129

MVS001

XCF
9.67.156.73

DVIPA FTP
9.67.157.18

DVIPA TN3270
9.67.157.17

OSA Express
9.67.157.130

XCF
9.67.156.74

MVS062

static VIPA
9.67.156.161

OSA Express
9.67.157.131

XCF
9.67.156.75

MVS154

DVIPA TN3270
9.67.157.17

static VIPA
9.67.156.165

Backup DVIPA
FTP 9.67.157.18

Backup DVIPA
TN3270 9.67.157.17

OSA Express
9.67.157.132

XCF
9.67.156.76

MVS069

static VIPA
9.67.156..5

Gigabit Ethernet

4 Tunnels and 4 Static
Routes to 4 Hosts

Static Route
Using Tunnel1

Static Route
Using Tunnel62

Static Route
Using Tunnel154

Static Route
Using Tunnel69

Tunnel Source
9.67.157.137

Tunnel Source
9.67.157.136
240 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

– The destination IP address of the tunnel end is the static VIPA address of the z/OS
host

� For each dynamic XCF link IP address a static route is needed to the XCF link address
using the tunnel.

Figure 6-16 Complete delivery packet

Definitions in router 7507
Example 6-18 Tunnel definitions

interface Tunnel1
 description GRE tunnel to MVS001
 ip address 7.7.7.1 255.255.255.252
 no ip route-cache cef
 no ip route-cache
 no ip mroute-cache
 tunnel source 9.67.157.137
 tunnel destination 9.67.156.1
!
interface Tunnel62
 description GRE tunnel to MVS062
 ip address 8.8.8.1 255.255.255.252
 tunnel source 9.67.157.137
 tunnel destination 9.67.156.161
!
interface Tunnel69
 description GRE tunnel to MVS069
 ip address 11.11.11.1 255.255.255.252
 tunnel source 9.67.157.137
 tunnel destination 9.67.156.5
!
interface Tunnel154
 description GRE tunnel to MVS154
 ip address 12.12.12.1 255.255.255.252
 tunnel source 9.67.157.137
 tunnel destination 9.67.156.165

The tunnel is defined through an interface command with parameters shown in Table 6-2.
We did not use tunnel checksum, tunnel key, tunnel mode (GRE is default), and tunnel
sequence-datagrams, in order to keep the test simple.

Table 6-2 Tunnel definition through interface command

Delivery Packet

Payload Packet
Source IP addr. Dest. IP addr.

IP header

router IP address
 of GbE adapter

 static VIPA of
 target system

GRE Header

Protocol Type

0x0800
Source IP addr. Dest.IP addr.

IP header

client IP address cluster IP address

Command / Parameter Description

interface tunnel1 Describes a tunnel name, which we used later for the static
route. In our case it was tunnel1 from the router to MVS001.

description Allows text for documentation.
Chapter 6. Sysplex Distributor with MNLB 241

The tunnel source IP address will become the source IP address in the delivery packet. The
tunnel destination IP address will become the destination IP address in the delivery packet.

Example 6-19 Static routes in router 7507

ip route 9.67.156.73 255.255.255.255 Tunnel1
ip route 9.67.156.74 255.255.255.255 Tunnel62
ip route 9.67.156.75 255.255.255.255 Tunnel154
ip route 9.67.156.76 255.255.255.255 Tunnel69

The definition of the static routes from router 7507 to the dynamic XCF link addresses of the
four stacks use the tunnel names that have as the tunnel endpoint the static VIPA, defined in
each z/OS host stack.

Example 6-20 Routing table in router 7507

NIVT7507#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
 1.0.0.0/32 is subnetted, 1 subnets
C 1.1.1.1 is directly connected, CASA1
9.0.0.0/8 is variably subnetted, 51 subnets, 4 masks
C 9.67.156.144/28 is directly connected, Serial4/0/0
O E2 9.67.156.128/28 [110/20] via 9.67.156.149, 01:47:31, Serial4/0/0
C 9.67.157.128/28 is directly connected, Port-channel1
C 9.67.156.164/30 is directly connected, Tunnel154
O E1 9.67.156.165/32 [110/6] via 9.67.157.131, 01:47:31, Port-channel1

ip address This line is not used for this kind of tunnel to the z/OS hosts.
In other situations, for example for VPNs, it is required.

tunnel source Defines the IP address where the tunnel starts. This address
is used as the source address in the delivery packet.

tunnel destination Defines the host name or IP address of the end of the tunnel.
This address is used as the destination address in the
delivery packet.

tunnel checksum A checksum is created by the sender and transmitted in the
GRE header to the receiver at the other end of the tunnel.
The receiving IP stack recalculates the checksum and
compares it with the sender’s. If there is a transmission error,
the GRE header and the payload packet will not be
forwarded.

tunnel key Is a kind of password, consisting only of numbers from 0 to
429467295.

tunnel mode Describes the protocol used for the tunnel. In our case it was
GRE.

tunnel sequence-datagrams The sender sets sequence numbers in the GRE header. The
receiver may control out-of-order packets with this
information.

Command / Parameter Description
242 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

C 9.67.156.160/30 is directly connected, Tunnel62
O E1 9.67.156.161/32 [110/6] via 9.67.157.130, 01:47:32, Port-channel1
S 9.67.156.174/32 [1/0] via 9.67.156.174, Channel6/2
S 9.67.156.172/32 [1/0] via 9.67.156.172, Channel6/2
S 9.67.156.173/32 [1/0] via 9.67.156.173, Channel6/2
S 9.67.156.170/32 [1/0] via 9.67.156.170, Channel6/2
S 9.67.156.171/32 [1/0] via 9.67.156.171, Channel6/2
 9.67.156.68/32 [110/5] via 9.67.157.131, 01:52:32, Port-channel1
 9.67.156.69/32 [110/5] via 9.67.157.130, 01:52:32, Port-channel1
 9.67.156.66/32 [110/5] via 9.67.157.129, 01:52:33, Port-channel1
 9.67.156.67/32 [110/5] via 9.67.157.132, 01:52:33, Port-channel1
 9.67.156.65/32 [110/5] via 9.67.157.136, 01:52:34, Port-channel1
S 9.67.156.76/32 is directly connected, Tunnel69
S 9.67.156.74/32 is directly connected, Tunnel62
S 9.67.156.75/32 is directly connected, Tunnel154
O E1 9.67.156.72/29 [110/6] via 9.67.157.130, 01:52:36, Port-channel1
[110/6] via 9.67.157.131, 01:52:36, Port-channel1
[110/6] via 9.67.157.132, 01:52:37, Port-channel1
S 9.67.156.73/32 is directly connected, Tunnel1

The display shows that the static route, for example to 9.67.156.76, is directly connected,
using tunnel69. Tunnel69 is the name used for the tunnel definition.

Definitions in router 7206
These definitions are similar to the definitions in router 7507. The only difference is the source
IP address of the tunnel, which makes the source IP address of the delivery packet.

Example 6-21 Tunnel definitions of router 7206

interface Tunnel1
 description GRE tunnel to MVS001
 ip address 3.3.3.1 255.255.255.252
 tunnel source 9.67.157.136
 tunnel destination 9.67.156.1
!
interface Tunnel62
 description GRE tunnel to MVS062
 ip address 6.6.6.1 255.255.255.252
 tunnel source 9.67.157.136
 tunnel destination 9.67.156.161
!
interface Tunnel69
 description GRE tunnel to MVS069
 ip address 4.4.4.1 255.255.255.252
 tunnel source 9.67.157.136
 tunnel destination 9.67.156.5
!
interface Tunnel154
 description GRE tunnel to MVS154
 ip address 5.5.5.5 255.255.255.252
 tunnel source 9.67.157.136
 tunnel destination 9.67.156.165
!

The definitions in Example 6-22 do not differ from the ones in router 7507.

Example 6-22 Static routes in the router 7206

ip route 9.67.156.73 255.255.255.255 Tunnel1
ip route 9.67.156.74 255.255.255.255 Tunnel62
Chapter 6. Sysplex Distributor with MNLB 243

ip route 9.67.156.75 255.255.255.255 Tunnel154
ip route 9.67.156.76 255.255.255.255 Tunnel69

Trace examples
The following trace samples were taken from an IPCS packet trace of system MVS069. The
trace shows:

� First the GRE header
� Then the delivery header
� Finally all together including the payload packet

GRE header analysis

Figure 6-17 GRE header

In analyzing this header, you see that the Cisco router did not build a checksum for the GRE
header, no source routing was used, no authentication was provided by the router, etc.

The only information in this header is the definition of the payload protocol with its Ethernet
type value x'0800', which stands for IP.

Figure 6-18 GRE header analysis

 Generic Routing Encapsulation Header
 GRE Options :
 Version : 0 Protocol: IP
 Recursion : 0
 Gre header size : 4

GRE Header : 4
000000 00000800

Byte 0: 0 0
Bits: 0000 0000

Byte 1: 0 0
Bits: 0000 0000

Byte 2: and 3: 0 8 0 0
Bits: 0000 0000 1000 0000 0000
0000

This GRE packet sent by the Cisco router consists of 2 bytes:

Routing present
Checksum present

Key present
Sequence number present
strict source route
Recursion control

Flags
Version

Protocol type
244 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Delivery header

Figure 6-19 Delivery header

This delivery packet was received at host MVS154, a target system. The packet was sent
over the GbE link from router 7206.

� Tunnel source was 9.67.157.136, which is the IP address of the GbE interface of router
7206.

� Tunnel destination was 9.67.156 165, which is the static VIPA address of the z/OS host
MVS154.

� Protocol in the IP header is GRE (byte 10 in the IP header with value x'2f').

� The length of the payload packet is 64 bytes, consisting of:

– 20 bytes delivery header
– 4 bytes GRE header
– 40 bytes payload, consisting of:

• 20 bytes IP header
• 20 bytes TCP header
• No data, because only an ACK, FIN was transmitted to initiate closing a TCP

connection by the client

Entire delivery packet
The following trace record shows the IPCS output in a different order as provided by IPCS.

It shows in the first part the delivery header with its source address 9.67.157.136, which is the
router’s GbE adapter address, and the destination address 9.67.156.165, which is the static
VIPA address of the target system MVS154.

The next block is the GRE header indicating the IP protocol only, since we did not define
other GRE parameters.

The last part is the payload with:

IP header Source: 9.67.156.104, which is the client

Destination: 9.67.157.17, which is the cluster address for the application

TCP header Source port, which is the client port

Destination port, which is the port of the TN3270 server

 503 MVS154 PACKET 00000001 16:31:46.482764 Packet Trace
 From Link : GIGELINK Device: QDIO Ethernet Full=64
 Tod Clock : 2001/07/27 16:31:46.482763
 Lost Records : 0 Flags: Pkt Ver2 Gre
 Source Port : 0 Dest Port: 0 Asid: 0034 TCB: 0000000
 IpHeader: Version : 4 Header Length: 20
 Tos : 30 QOS: Priority MinimumDelay
 Packet Length : 64 ID Number: 4AC1
 Fragment : Offset: 0
 TTL : 254 Protocol: GRE CheckSum: 24EA
 Source : 9.67.157.136
 Destination : 9.67.156.165

 IP Header : 20
000000 45300040 4AC10000 FE2F24EA 09439D88 09439CA5

Chapter 6. Sysplex Distributor with MNLB 245

Figure 6-20 Entire delivery packet

 503 MVS154 PACKET 00000001 16:31:46.482764 Packet Trace
 From Link : GIGELINK Device: QDIO Ethernet Full=64
 Tod Clock : 2001/07/27 16:31:46.482763
 Lost Records : 0 Flags: Pkt Ver2 Gre
 Source Port : 0 Dest Port: 0 Asid: 0034 TCB: 0000000
 IpHeader: Version : 4 Header Length: 20
 Tos : 30 QOS: Priority MinimumDelay
 Packet Length : 64 ID Number: 4AC1
 Fragment : Offset: 0
 TTL : 254 Protocol: GRE CheckSum: 24EA
 Source : 9.67.157.136
 Destination : 9.67.156.165

 Generic Routing Encapsulation Header
 GRE Options :
 Version : 0 Protocol: IP
 Recursion : 0
 Gre header size : 4

IP Header : 20
000000 45300040 4AC10000 FE2F24EA 09439D88 09439CA5

GRE Header : 4
000000 00000800
 IpHeader: Version : 4 Header Length: 20
 Tos : 30 QOS: Priority MinimumDelay
 Packet Length : 40 ID Number: 1591
 Fragment : DontFragment Offset: 0
 TTL : 127 Protocol: TCP CheckSum: 9A0F
 Source : 9.67.156.104
 Destination : 9.67.157.17

 TCP
 Source Port : 4202 () Destination Port: 23 (telnet)
 Sequence Number : 1118528899 Ack Number: 1627793504
 Header Length : 20 Flags: Ack Fin
 Window Size : 17149 CheckSum: DEC0 FFFF Urgent Data Pointer:

IP Header : 20 IP: 9.67.156.104, 9.67.157.17
000000 45300028 15914000 7F069A0F 09439C68 09439D11
Protocol Header : 20 Port: 4202, 23
000000 106A0017 42AB6583 61062860 501142FD DEC00000
246 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Chapter 7. Performance and tuning

The performance of Communications Server for z/OS can be improved significantly by proper
tuning. TCP/IP performance is influenced by a number of parameters that can be tailored for
the specific operating environment. This includes not only TCP/IP stack performance that
benefits all applications using the stack, but also applications that Communications Server for
z/OS IP ships, such as TN3270 and FTP.

Because every TCP/IP environment is different, optimum performance can only be achieved
when the system is tuned to match its specific environment. This chapter highlights the most
important tuning parameters and recommends parameter values that have been found to
maximize performance in customer installations.

7

© Copyright IBM Corp. 2002. All rights reserved. 247

7.1 Tuning the stack for performance
This section introduces the configuration files commonly used to improve performance, and
describes some of the performance tuning options.

7.1.1 TCP/IP configuration files
The most important configuration files in Communications Server for z/OS IP from a
performance point of view are:

� PROFILE.TCPIP

The PROFILE.TCPIP file contains TCP buffer sizes, LAN controller definitions, server
ports, home IP addresses, gateway and route statements, VTAM LUs for Telnet use, etc.

TCP/IP in CS OS/390 V2R5 and later releases have been simplified by removing TCP/IP
buffer pool and control block definitions from PROFILE.TCPIP, that is, no tuning is needed
for TCP/IP buffers in the PROFILE.TCPIP. Buffers are dynamically allocated by the
Communications Storage Manager (CSM).

� FTP.DATA

The FTP.DATA file is used by the FTP server and FTP client to establish the initial
configuration options. FTP.DATA contains items such as LRECL, BLOCKSIZE, RECFM,
and CHKPTINT. Some parameters, such as EXTRATASKS, BUFNO, and NCP that were
used in TCP/IP V3R1/V3R2 are eliminated from FTP.DATA for CS OS/390 V2R5 and later
releases.

� TCPIP.DATA

TCPIP.DATA contains host name, domain origin, and nsinteraddr (name server)
definitions. The content of TCPIP.DATA is the same as for previous releases of TCP/IP for
MVS. For a sample TCPIP.DATA, please see z/OS V1R2.0 CS: IP Configuration
Reference, SC31-8776 or refer to the sample shipped with the product.

One important recommendation is to keep the statement TRACE RESOLVER commented
out to avoid complete tracing of all name server queries. This trace should be used for
debugging purposes only.

7.1.2 Setting the appropriate MTU for devices
The maximum transmission unit (MTU) specifies the largest sized packet that TCP/IP will
transmit over a given interface. Make sure that you specify a packet size explicitly instead of
using the word DEFAULTSIZE. The word DEFAULTSIZE requests that TCP/IP supply a
default value of 576 bytes, which might not be optimal in your configuration.

We recommend using the following sizes instead of DEFAULTSIZE as the packet size for the
specified networks:

� 1492 bytes for Ethernet 802.3
� 1500 bytes for Ethernet Version 2 IEEE
� 1500, 2000 or 4000 bytes (or greater if your environment permits) for token-ring
� 4000 or 2000 bytes for FDDI (use larger value as permitted by your environment)
� 65527 bytes for CTC
� 4096 bytes for CLAW
248 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Examples of static routing:

 GATEWAY
 ; Packet Subnet Subnet
 ; Network First hop Driver size mask value
 9 9.67.115.43 FDDI1 4000 255.255.255.0 0.67.115.0
 DEFAULTNET 9.67.115.1 FDDI1 4000 0

 BEGINROUTES
 ; Subnet
 ; Destination Mask First hop Link MTU
 ROUTE 9.67.115.0/24 9.67.115.43 FDDI1 4000
 ROUTE default 9.67.115.1 FDDI1 4000
 ENDROUTES

Example of ORouteD dynamic routing:

 BSDROUTINGPARMS TRUE
 ; Subnet Subnet
 ; Driver Packet size metric mask value
 FDDI1 4000 0 255.255.255.0 9.67.115.0
 ENDBSDROUTINGPARMS

Please note the true/false option on the BSDROUTINGPARMS statement. If you specify
FALSE, all IP packets that are sent to a destination that is more than one hop away will not
use the packet size of the interface, but will use a default packet size of 576 bytes. If you
specify TRUE, all IP packets that are sent over an interface will use the interface's packet
size, regardless of whether the destination is one or multiple hops away.

7.1.3 Devices and links
The DEVICE and LINK statements are used in the PROFILE.TCPIP. Other parameters, such
as Ack Length and Blk Timer, are specific to the device configuration.

� 2216 LCS

It is important to tune the 2216 LCS device parameters in the 2216 configuration - Blk
Timer to 5 msec and Ack length to 10 bytes. For details, please refer to the NWays
Multiprotocol Access Services Software User's Guide Version 3 Release 1,
SC30-3886-03. Performance recommendations are described in Chapter 33 "Configuring
and Monitoring ESCON Adapter".

� 3172 LCS

For the 3172 LCS controller, we recommend that you set the delay timer to 10 msec and
max response length to 500 for each LAN adapter in the 3172 configuration.

� CLAW devices

If you are using CLAW devices, we recommend setting the number of read and write
buffers to a value that is higher than the default of 20. In most situations you may be able
to use 26 for read and 26 for write buffers. Some CLAW devices may permit 50 or an even
higher number for read and write buffers. For example:

 DEVICE CLAWDEV CLAW 6B2 HOST PSCA NONE 26 26 4096 4096
 LINK CLAWLINK IP 0 CLAWDEV
Chapter 7. Performance and tuning 249

7.1.4 Tracing
From a performance perspective, turning off all tracing is recommended. Tracing does have
an impact on performance. To disable tracing, include the following in your TCPIP.PROFILE:

 ITRACE OFF

If tracing is to be used, change the parameters on the ITRACE statement. If, for example, you
want to trace the configuration component, specify the ITRACE parameters as follows:

 ITRACE ON CONFIG 1

7.2 z/OS UNIX System Services tuning
1. Follow the z/OS UNIX System Services performance tuning guidelines in z/OS V1R2.0

UNIX System Services Planning, GA22-7800 or at this URL:

 http://www.s390.ibm.com/oe/bpxa1tun.html

2. Make sure that the UNIXMAP RACF class is populated and cached.

3. Region size(s) and dispatching priority: It is highly recommended that you set the region
size to 0K or 0M for the TCP/IP stack address space and for started tasks such as the FTP
server, the SMTP/NJE server, the Web server, the ADSM server, etc. If your environment
permits, set the dispatching priority for TCP/IP and VTAM equivalent and keep servers,
such as FTP and ADSM, slightly lower than TCP/IP and VTAM. If you are using Workload
Manager, follow the above recommendations when your installation defines performance
goals in a service policy. Service policies are defined through an ISPF application and they
set goals for all types of MVS managed work.

4. Update your PROFILE.TCPIP, TCPIP.DATA and FTP.DATA files with the applicable
recommendations discussed in this chapter.

5. Estimate how many z/OS UNIX System Services users, processes, PTYs, sockets and
threads would be needed for your z/OS UNIX installation. Update your BPXPRMxx
member in SYS1.PARMLIB.

6. Spread z/OS UNIX user HFS data sets over more DASD volumes for optimal
performance.

7. Monitor your z/OS UNIX resources with RMF and/or system commands (DISPLAY
ACTIVE, and DISPLAY OMVS, etc.).

7.2.1 BPXPRMxx (SYS1.PARMLIB) tuning
1. Optimally set Max... parms.

– Make sure MAXPROCSYS, MAXPROCUSER, MAXUIDS, MAXFILEPROC,
MAXPTYS, MAXTHREADTASKS and MAXTHREADS are optimally set.

– If these parms are not optimally set, your z/OS UNIX performance may be degraded.
For more information, refer to z/OS V1R2.0 UNIX System Services Planning,
GA22-7800.

2. Set MAXSOCKETS(n) to a high number to avoid shortage.

– Make sure the MAXSOCKETS(n) parm for the AF_INET domain is set high enough to
avoid running out of z/OS UNIX sockets.

– As an example, each z/OS UNIX Telnet session would require one z/OS UNIX socket
and each FTP session would require one z/OS UNIX socket. Once the MAXSOCKETS
250 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

http://www.s390.ibm.com/oe/bpxa1tun.html

limit is reached, no more Telnet, FTP sessions or other applications that require z/OS
UNIX sockets would be allowed to start.

7.3 Storage requirements
You may need to estimate the storage requirement for your environment and tune CSM, CSA
and SQA accordingly. We have provided storage usage summaries for typical applications,
such as Telnet, FTP, CICS socket, and Web server. This may serve as a rule of thumb in
determining the CSA, SQA and CSM storage requirements.

7.3.1 TCP and UDP send/receive buffer sizes
When send/recv buffer size(s) are not specified in the PROFILE, a default size of 16 KB will
be used for send/recv buffers and a default of 32 KB will be used for the TCP window size. If
send/recv buffer size(s) are specified, they will be used as specified and the TCP window size
will be set to twice the TCP recv buffer size up to a maximum of 65535.

Customers can specify the send/recv buffer size(s) on the TCPCONFIG and UDPCONFIG
statements:

 TCPCONFIG TCPSENDBFRSIZE 65535
 TCPRCVBUFRSIZE 65535
 UDPCONFIG UDPSENDBFRSIZE 65535
 UDPRCVBUFRSIZE 65535

Socket applications can override these values for a specific socket by using the setsockopt
call:

 setsockopt(SO_SNDBUF) or
 setsockopt(SO_RCVBUF) in socket application.

7.3.2 CSM storage usage
Table 7-1 shows a summary of the CSM usage pf the performance benchmark data from
pre-GA measurements of CS for z/OS V1R2.

Table 7-1 CSM usage

Note: RFC 1323, which supports larger than 64 KB-1 TCP window sizes, is supported by
CS for z/OS IP.

Note: The FTP server and client application override the default settings and use 64 KB-1
as the TCP window size and 180 KB for send/recv buffers. Therefore there is no change
required in the TCPCONFIG statement for FTP server and client.

Workload # Users / Clients TPUT MAX CSM
(ECSA)

MAX CSM
(Data Space)

Max CSM
(FIXED)

Web Server 80 5425 c/s 2.97 MB 8.0 MB 11.2 MB

CICS Sockets 84 409 c/s 0.736 MB 1.96 MB 3.8 MB
Chapter 7. Performance and tuning 251

Based on the above application workload, we recommend the following definitions in
SYS1.PARMLIB(IVTPRM00):

� FIXED MAX(60M), which includes 23 MB of additional storage for expected growth in the
workloads.

� ECSA MAX(40M), which includes 18 MB of additional storage for expected growth in the
workloads.

The above information may help in providing a guideline for deriving CSM requirements for a
typical environment. With a different application mix, CSM requirements need to be adjusted
accordingly. Our benchmark data for Telnet, FTP, CICS socket, etc., may help you in deriving
your initial settings. You should monitor CSM and VTAM buffer usage using the following
commands and fine tune the CSA, SQA and CSM requirements for your environments.

You may use the following display commands for monitoring storage:

 D NET,BFRUSE,BUFFER=SHORT
 D NET,STORUSE

For CSM usage, you may use the following commands:

 D NET,CSM
 D NET,CSM,ownerid=all

7.3.3 VTAM buffer settings
For a large number of Telnet (TN3270) sessions, we recommend that users change the
default VTAM buffer settings using VTAM start options:

� IOBUF
� LFBUF
� CRPLBUF
� TIBUF
� CRA4BUF

Table 7-2 shows sample application buffer usage. We recommend using it as a guideline.

Table 7-2 VTAM buffer max usage

TN3270
(Echo's)

4000
8000
16000
32000
64000

399.1 tr/sec
 798.5 tr/sec
1591.5 tr/sec
3115.0 tr/sec
5732.5 tr/sec

0.85 MB
1.40 MB
1.34 MB
8.10 MB
17.90 MB

5.1 MB
11.1 MB
8.1 MB
12.6 MB
27.4 MB

12.5 MB
13.6 MB
17.5 MB
24.2 MB
50.0 MB

FTP Server 16 Inbound
16 Outbound

49.8 MB/S
 68.9 MB/S

4.5 MB
0.54 MB

6.8 MB
4.4 MB

9.6 MB
6.4 MB

Workload # Users / Clients TPUT MAX CSM
(ECSA)

MAX CSM
(Data Space)

Max CSM
(FIXED)

Workload # Users /
Clients

TPUT VTAM
Buffer
(IO00)

VTAM
Buffer
(LF00)

VTAM
Buffer
(CRPL)

VTAM
Buffer
(TI00)

VTAM
Buffer
(CRA4)

Web Server 80 5425 c/s 6 4 2 4 4

CICS
Sockets

84 409 c/s 26 5 54 29 6
252 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

To verify your settings, you may use the following display commands:

 D NET,BFRUSE,BUFFER=SHORT
 D NET,STORUSE
Telnet (TN3270) storage utilization

Table 7-3 shows benchmark data from the Telnet TN3270 performance test of 4000 to 64000
sessions using pre-GA level code for CS for z/OS V1R2. This data will be useful in deriving
the rule of thumb for CSA and SQA storage requirements.

Table 7-3 Telnet storage utilization

TN3270
(Echo's)

 4000
 8000
16000
32000
64000

399.1 tr/sec
798.5 tr/sec
1591.5 tr/sec
3115.0 tr/sec
5732.5 tr/sec

112
112
345
2005
11000

 4005
 8005
16005
32003
64005

 8007
16012
32019
64018
128018

5
5
5
5
5

25
41
49
65
170

FTP Server 16 Inbound
16 Outbound

49.8 MB/Sec
68.9 MB/Sec

5
5

4
4

2
2

3
3

4
4

Workload # Users /
Clients

TPUT VTAM
Buffer
(IO00)

VTAM
Buffer
(LF00)

VTAM
Buffer
(CRPL)

VTAM
Buffer
(TI00)

VTAM
Buffer
(CRA4)

of
Sessions

0 4000 8000 16000 32000 48000 64000

TCP/IP
Below

0.548 M 0.6 M 0.616 M 0.648 M 0.696 M 0.792 M 0.824 M

TCP/IP
Above

4.063 M 4.208 M 4.26 M 4.368 M 4.528 M 4.848 M 4.956 M

TCP/IP
LSQA
/SWA/229/
230 Below

0.200 M 0.212 M 0.228 M 0.276 M 0.276 M 0.296 M 0.296 M

TCP/IP
LSQA
/SWA/229/
230 Above

11.5 M 28.8 M 41.5 M 67.3 M 118 M 169 M 220 M

CSM Data
Space

1.56 M 4 M 10.2 M 8.08 M 12.5 M 26.1 M 26.1 M

System
CSA Below

1.14 M 1.14 M 1.15 M 1.15 M 1.15 M 1.15 M 1.15 M

System
CSA Above

43.6 M 56.5 M 69.3 M 89.2 M 141 M 197 M 252 M

System
SQA Below

0.756 M 0.836 M 0.836 M 0.836 M 0.836 M 0.836 M 0.836 M

System
SQA Above

10.4 M 12.1 M 12.5 M 12.9 M 14 M 15 M 16.1 M

Total Below 2.65 M 2.79 M 2.83 M 2.91 M 2.96 M 3.07 M 3.106 M

Total
Above

71.12 M 105.61M 138.7 M 181.85M 290.03M 411.95M 520.5M
Chapter 7. Performance and tuning 253

Delta Per User represents the storage (below+above) in addition to initial storage
requirements.

The above information will be useful for adjusting the CSA and SQA requirements for the
TN3270 workload discussed in this chapter. For example, for 16,000 Telnet sessions, you
need to adjust the CSA and SQA parameters in SYS1.PARMLIB such that 89.2 MB of CSA
above the line and 12.9 MB of SQA above the line are available for Telnet TN3270. Note,
however, that initial storage can be different for different environments.

7.4 Application performance and capacity
The following information provides the methodology for capacity planning for Telnet and FTP.

7.4.1 Telnet (TN3270)
The TCPIP.PROFILE is used for tuning Telnet parameters.

Telnet tuning
For best performance, use the following parameters in your TELNETPARMS section:

 TELNETPARMS
 INACTIVE 3600
 TIMEMARK 1200
 SCANINTERVAL 30
####### DISABLESGA
 ENDTELNETPARMS

Where:

SCANINTERVAL Specifies the periodic time (in seconds) that the Telnet Server will scan the
entire list of sessions. The default is 120 seconds.

TIMEMARK Specifies how often the Telnet Server will send a heartbeat to clients.
Clients that do not respond to three consecutive probes are labeled
inactive.

INACTIVE Specifies how long a client will remain in inactive state without
communication until it is completely disconnected.

DISABLESGA Permits the transmission of GO AHEAD by the Telnet Server. This is
negotiated by the client and server. Using this parameter increases the
overhead for a full-duplex terminal using a full-duplex connection. The
recommended default is to disable GO AHEAD.

Total 73.77 M 108.4M 141.53M 184.76M 293M 415.0 M 523.6M

Delta Per
User Total
(KB)

8.66 KB 8.47 KB 6.94 KB 6.85 KB 7.11 KB 7.03 KB

of
Sessions

0 4000 8000 16000 32000 48000 64000
254 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Telnet capacity
In order to determine the capacity planning requirements, one needs to determine the CPU
cost of performing a transaction of interest on a specific machine type. For example, we have
used the Telnet TN3270 workload where 100 bytes of data is sent from the Telnet client to the
Echo application running on z/OS Telnet TN3270 Server and 800 bytes of data is sent by the
Echo application as a reply to the Telnet client. From our benchmarks, we have derived CPU
cost in terms of milliseconds per Telnet TN3270 transaction using IBM 2064-108 (4 CP
LPAR).

For example, we want to determine the capacity planning requirements for 4000 users, each
performing six transactions per user per minute on an IBM 2064-108 (4 CP LPAR).

Figure 7-1 Sample Telnet CPU requirements

If the CPU secs/Elap sec ratio is greater than one, more than one CPU processor capacity
would be required to drive the workload.

Figure 7-2 Sample Telnet CPU utilization

Thus, the total CPU requirement for 4000 TN3270 users would require 2.63% of a
four-processor IBM 2064-108 machine. LSPR can be used to adjust for other processor
types. Consult your IBM marketing representative or systems engineer to get the correct
relationship in processing power between the different IBM processors.

7.4.2 FTP
The FTP.DATA file is used by the FTP server and client to establish the initial configuration
options for an FTP session. The search order for FTP.DATA varies depending on the
execution environment. For a detailed description of the search order, refer to z/OS V1R2.0
CS: IP Configuration Reference, SC31-8776.

 # trans/user x # users x CPU secs/tran CPU secs
 --------------------------------------- = ---------
 # of Elap secs Elap secs

 Example: CS/390 R12, 4000 users, 6 tr/min/user

 6 tr/u x 4000u x 0.000262 CPU secs/tr cpu sec
 ------------------------------------- = 0.105 --------
 60 elap. sec elap sec

 CPU secs/Elap Sec
 ----------------- * 100 % = CPU Util %
 # of processors

 # of processors: 4 (This will be equal to number of
 390 processors used for the LPAR)

 Example: Therefore, Percentage of CPU utilization on Four CP
 LPAR to drive 6 tran/user/minute for 4,000 users will be

 0.‘05 CPU secs/Elap sec
 ----------------------- * 100 % = 2.63 %
 4 processors
Chapter 7. Performance and tuning 255

FTP tuning
Several parameters can be changed during an FTP session by use of the SITE or LOCSITE
end-user commands.

Data set attributes play a significant role in FTP performance. If your environment permits it,
tune both BLOCKSIZE and LRECL according to the following recommendations.

We generally recommend using half a track as the block size. For IBM 3380 DASD, use
23424 as the block size with an LRECL of 64 bytes. For IBM 3390 or IBM 9334, use 27968 as
the block size with an LRECL of 64 bytes. Use FB as the data set allocation format. It is also
important to use cached DASD controllers. If your environment permits it, use a pre-allocated
data set for FTP transfer operations into MVS.

Sample definitions in FTP.DATA:

 PRIMARY 15
 SECONDARY 20
 LRECL 64
 BLKSIZE 23424
 RECFM FB
 CHKPTINT 0
 DIRECTORY 27
 SQLCOL ANY
 INACTIVE 0

If your installation supports System Determined Blocksize (SDB), you can leave the block
size determination to DFSMS by specifying the block size as zero:

 BLKSIZE 0

FTP capacity
The methodology for FTP capacity planning is very similar to Telnet. The key difference is that
you need to determine the average cost for transferring a kilobyte of data on a given setup,
that is machine type, channel attached device, type of workstation, type of transfer, etc.. You
can derive the CPU cost using the selected setup by repeating FTP transfers of large files.
CPU cost per kilobyte must include TCP/IP, VTAM and FTP address space usage.

Total (TCP/IP+VTAM+FTP) CPU requirements for FTP transfer:

Figure 7-3 General formula to calculate FTP CPU requirements

For example, if we are interested in driving aggregate effective FTP throughput of 10000
KBps for transferring data from workstations to MVS using 2216 as the channel-attached
device and FDDI as the LAN media on 2064-108 CP LPAR, from our FTP measurements of
binary PUT, 20 Mbps file transfer, we have determined that CPU cost per Kb is 0.0000347
CPU seconds.

 Max KB CPU secs CPU secs
 --------- * --------- = ----------
 Elap secs KB Elap secs
256 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure 7-4 Sample formula to calculate FTP CPU requirements

If the CPU secs/Elap sec ratio is 1 or greater, you would need more than one processor
capacity to drive the desired throughput.

Figure 7-5 FTP CPU requirements example

Thus, Total CPU (TCP/IP+VTAM+FTP) requirements for driving 10000 KBps throughput on
2064-108 (4 CP LPAR) will be 16.2%.

If you are using a different type of mainframe but keeping the other setup the same, you can
use the LSPR information to adjust the above CPU utilization. Consult your IBM marketing
representative or systems engineer to get the correct relationship in processing power
between the different IBM processors. The above methodology can be used for deriving the
capacity planning for different types of workload.

7.5 TCP/IP performance checklist
Here is a quick summary of a performance checklist, which may help in confirming
performance settings for your environment.

� MVS dispatching priority of TCP/IP, FTP or other servers. Recommendation: Set TCP/IP
equal to VTAM or one lower than VTAM. For other started tasks, such as FTP and ADSM,
set slightly lower than the TCP/IP task.

� Make sure client/server TCP Window size is set to the allowed maximum.
Recommendation: Set the TCP window size on MVS to the allowed maximum by setting
TCPRCVBUFRSIZE to 32 KB or larger and, if the client workstation permits, use 65535 as
the client window size. If the installation is storage constrained, however, use the default
TCPRCVBUFRSIZE of 16 KB.

 50995 KB .0000127 .648 CPU secs
 --------- * ------------ = ----------
 Elap secs KB Elap secs

 CPU secs/Elap Sec
 ----------------- * 100 % = CPU Util %
 # of processors

 # of processors: 4 (This will be equal to number of
 390 processors used for the LPAR)

 Example: For our example we are using ES9672-RX5 4 processor
 LPAR. Therefore, Total CPU utilization will be

 0.648 CPU secs/Elap sec
 ----------------------- * 100 % = 16.2 %
 4 processor
Chapter 7. Performance and tuning 257

� Make sure the client and server MTU/packet size are equal. Follow the recommendations
given in 7.1.1, “TCP/IP configuration files” on page 248.

� Routers: Make sure buffers are set appropriately so that packets are not being dropped.

� 3172: Make sure delay timer and maximum response length are set correctly for each
LAN adapter:

Recommendation: Delay timer = 10 ms
maximum response length = 500 bytes

� 2216: Make sure Blk timer and Ack length are set correctly for each LCS or MPC+
definition:

Recommendation: Blk Timer = 5 ms
Ack Length = 10 bytes

� RS/6000 ESCON: Use MPC instead of CLAW for attachment.

� FTP: Use large data set block sizes on MVS. Recommendation: Data set block size = 1/2
DASD track. Follow the recommendations discussed in 7.4.2, “FTP” on page 255.

� Telnet: Follow recommendations described in 7.4.1, “Telnet (TN3270)” on page 254.

� Sockets: Use large msg sizes (> 1 KB) for better performance.

� Follow BPXPRM recommended settings shown in 7.2.1, “BPXPRMxx (SYS1.PARMLIB)
tuning” on page 250.

� PTFs: Make sure you have the latest TCP/IP performance PTFs. We continually improve
performance of z/OS releases and it is recommended that you keep track of PSP buckets
for important PTFs.

� Make sure TCP/IP and all other traces are turned off for optimal performance. Trace
activity does create an extra processing overhead.

Note: RFC 1323, which supports larger than 64 KB-1 TCP window sizes, is available in
V2R7.
258 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Appendix A. Dump of T28ATCP name server -
single-path network

$ORIGIN itso.ral.ibm.com.
ralplex1INSOAmvs03a.ralplex1.itso.ral.ibm.com. garthm@mvs03a.ralplex1.itso.ral.ibm.com. (

1999040102 7200 3600 604800 3600);Cl=5
IN NS mvs03a.ralplex1.itso.ral.ibm.com.;Cl=5
IN A 172.16.250.3;Cl=5
IN A 172.16.252.28;Cl=5
IN A 172.16.232.39;Cl=5

$ORIGIN ralplex1.itso.ral.ibm.com.
FTPRAL IN A 172.16.232.39;Cl=5

IN A 172.16.250.3;Cl=5
TN28 IN A 172.16.252.28;Cl=5
mvs03a IN A 172.16.250.3;Cl=5
TN03 IN A 172.16.250.3;Cl=5
mvs03c IN A 172.16.251.5;Cl=5
mvs28a IN A 172.16.252.28;Cl=5
TNTSO IN A 172.16.250.3;Cl=5
TNRAL IN A 172.16.250.3;Cl=5

IN A 172.16.252.28;Cl=5
IN A 172.16.232.39;Cl=5

ralplex1INCNAMEralplex1.itso.ral.ibm.com.;Cl=5
TN39 IN A 172.16.232.39;Cl=5
mvs39a IN A 172.16.232.39;Cl=5
$ORIGIN FTPRAL.ralplex1.itso.ral.ibm.com.
MVS03A IN A 172.16.250.3;Cl=5
MVS39A IN A 172.16.232.39;Cl=5
$ORIGIN TN28.ralplex1.itso.ral.ibm.com.
MVS28A IN A 172.16.252.28;Cl=5
$ORIGIN TN03.ralplex1.itso.ral.ibm.com.
MVS03A IN A 172.16.250.3;Cl=5
$ORIGIN TNTSO.ralplex1.itso.ral.ibm.com.
MVS03A IN A 172.16.250.3;Cl=5
$ORIGIN TNRAL.ralplex1.itso.ral.ibm.com.
MVS39A IN A 172.16.232.39;Cl=5
MVS28A IN A 172.16.252.28;Cl=5
MVS03A IN A 172.16.250.3;Cl=5

A

© Copyright IBM Corp. 2002. All rights reserved. 259

$ORIGIN TN39.ralplex1.itso.ral.ibm.com.
MVS39A IN A 172.16.232.39;Cl=5
$ORIGIN 172.in-addr.arpa.
16 IN SOAmvs03a.ralplex1.itso.ral.ibm.com. garthm@mvs03a.16.172.in-addr.arpa. (

1999040101 7200 3600 604800 3600);Cl=4
IN NS mvs03a.ralplex1.itso.ral.ibm.com.;Cl=4

$ORIGIN 100.16.172.in-addr.arpa.
3 IN PTRmvs03a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 101.16.172.in-addr.arpa.
28 IN PTRmvs28a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 232.16.172.in-addr.arpa.
39 IN PTRmvs39a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 102.16.172.in-addr.arpa.
39 IN PTRmvs39a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 233.16.172.in-addr.arpa.
28 IN PTRmvs28a.ralplex1.itso.ral.ibm.com.;Cl=4
39 IN PTRmvs39a.ralplex1.itso.ral.ibm.com.;Cl=4
3 IN PTRmvs03a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 250.16.172.in-addr.arpa.
3 IN PTRmvs03a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 251.16.172.in-addr.arpa.
5 IN PTRmvs03c.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 252.16.172.in-addr.arpa.
28 IN PTRmvs28a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 0.127.in-addr.arpa.
0 IN SOAmvs03a.ralplex1.itso.ral.ibm.com. garthm@mvs03a.0.0.127.in-addr.arpa. (

1999040101 7200 3600 604800 3600);Cl=5
IN NS mvs03a.ralplex1.itso.ral.ibm.com.;Cl=5

$ORIGIN 0.0.127.in-addr.arpa.
1 IN PTRloopback.;Cl=5
$ORIGIN 24.9.in-addr.arpa.
104 IN SOAmvs03a.ralplex1.itso.ral.ibm.com. garthm@mvs03a.104.24.9.in-addr.arpa. (

1999040101 7200 3600 604800 3600);Cl=5
IN NS mvs03a.ralplex1.itso.ral.ibm.com.;Cl=5

$ORIGIN 104.24.9.in-addr.arpa.
42 IN PTRmvs28a.ralplex1.itso.ral.ibm.com.;Cl=5
149 IN PTRmvs39a.ralplex1.itso.ral.ibm.com.;Cl=5
113 IN PTRmvs03a.ralplex1.itso.ral.ibm.com.;Cl=5
; --- Hints ---
$ORIGIN .
. 3600IN NS mvs25o.buddha.ral.ibm.com.;Cl=0
$ORIGIN buddha.ral.ibm.com.
mvs25o3600INA9.24.104.125;Cl=0
260 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Appendix B. REXX EXECs to gather
connection statistics

In this appendix we show the three REXX EXECs used to invoke server functions in the
sysplex for the purpose of gathering statistics on load balancing.

B

© Copyright IBM Corp. 2002. All rights reserved. 261

32-Bit Windows EXEC to issue repeated pings
/*Rexx - Exec to perform TCP/IP Sysplex validation and tracing */
call RxFuncAdd 'SysLoadFuncs','rexxutil','SysLoadFuncs'
call SysLoadFuncs
'@ECHO OFF'
/* */
/* Syntax: SYSPLEXW appl_name num_pings ping_delay */
/* */
/* appl_name The name of the application as */
/* registered in WLM. */
/* */
/* num_pings How many times do you want to */
/* ping the application. */
/* default = 20 */
/* */
/* ping_delay How many seconds to wait between */
/* pings. default = 0 */
/* */
Parse Arg p1 p2 p3 .
/* */
/* Which application to ping */
/* */
If p1 <> '' À p1 = '?' Then pingname = p1
Else
 Do
 Say
 Say 'Syntax: SYSPLEXW appl_name num_pings ping_delay '
 Say ' '
 Say ' appl_name The name of the application as '
 Say ' registered in WLM. '
 Say ' '
 Say ' num_pings How many times do you want to '
 Say ' ping the application. '
 Say ' default = 20 '
 Say ' '
 Say ' ping_delay How many seconds to wait between '
 Say ' pings. default = 0 '
 Say ' '
 Exit
 End
If p2 <> '' Then pingloop = p2
Else pingloop = 10

If p3 <> '' Then sleeptime = p3
Else sleeptime = 0
/* */
/* Define some working files and variables and headings */
/* */
fred64 = time(L)
Parse Var fred64 hhv ':' mmv ':' ssv '.' therest
datafile = '\pf' ÀÀ mmv ÀÀ ssv ÀÀ Substr(therest,1,2) ÀÀ '.dat'
pingfile = '\pf' ÀÀ mmv ÀÀ ssv ÀÀ Substr(therest,1,2) ÀÀ '.wrk'
'Erase 'pingfile

Call disp_prt_null
dataline = Left('Application or Host Name',40) Left('IP Address',15) Left('Time',10)
Say dataline
fred = lineout(datafile,dataline,1)
Call disp_prt_null
262 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

goodpings = 0
lostpings = 0
maxaddrs = 0
/* */
/* Now for the main loop */
/* */
Do i = 1 to pingloop
 linectr = 0
 starttime = Time('R')
 fred2 = SysSleep(sleeptime)
 lostpingflag = 'NO'
 'Ping 'pingname ÀÀ ' -l 10 -n 1 > 'pingfile /* Send the PING and response to a
temp file */
 endtime = Time('E')

 pingline.linectr = Linein(pingfile,,0) /* Open the input file */
 pinglineend = 'NO'
 /* */
 Do until pinglineend = 'YES' /* Read lines into array */
 linectr = linectr + 1
 pingline.linectr = Linein(pingfile)
 If pingline.linectr = '' & linectr > 8 Then
 Do
 pinglineend = 'YES'
 linectr = linectr -1
 End
 End /* do */
 Call pingparse /* Parse the lines */
 fred = Lineout(pingfile) /* Closes the file */
End /* Do */
dataline = ' '
Call disp_prt
dataline = 'Summary of Ping responses'
Call disp_prt
dataline = ' '
Call disp_prt
dataline = 'Good Responses : 'goodpings
Call disp_prt
dataline = 'Lost Responses : 'lostpings
Call disp_prt
dataline = 'Total Responses: 'goodpings + lostpings
Call disp_prt
dataline = ' '
Call disp_prt
dataline = 'Hits by Canonical Addresses'
Call disp_prt
dataline = ' '
Call disp_prt
dataline = Left('Number ',10) Left('IP Address',15) Left('Application or Host Name',40)
Left('Time',10)
Call disp_prt
Do n = 1 to maxaddrs
 dataline = Left(canoncnt.n,10) Left(canon.n,15) Left(pingname.n,40) Left(rsptime.n /
canoncnt.n,10)
 Call disp_prt
End /* do */
fred = lineout(datafile) /* Close the file */
'erase 'pingfile
'Edit 'datafile
Appendix B. REXX EXECs to gather connection statistics 263

Say ''
Say '??'
Say ''
Say 'A report file, 'datafile' has been created on your hard disk.'
Say ''
Say " Reply 'y' to erase it"
Say " 'r' to rename it"
Say ' anything else to quit'
Say ''
Parse Upper Pull ans .
If ans = 'Y' Then 'erase 'datafile
If ans = 'R' Then
 Do
 Say 'Please enter new fn.ft for 'datafile'.'
 Parse Pull newname
 'rename 'datafile newname
 End
Exit
/* */
/* Now to parse and consolidate the output from PING */
/* Lines have already been read in */
/* */
pingparse:
Do j = 1 to linectr /* Last line is '' anyway */
 Parse Var pingline.j w1 w2 w3 w4 w5 w6 w7 w8 w9 w10
/* Say 'w1='w1 'w2='w2 'w3='w3 */
 Select
 When w1 = 'Pinging' Then
 Do
 thispingname = w2
 End
 When w1 = 'Reply' & w2 = 'from' Then
 Do
 thisaddr = Substr(w3,1,length(w3)-1)
 goodpings = goodpings + 1
 End
 When w1 w2 w3 = 'Request' 'timed' 'out.' Then
 Do
 lostpingflag = 'YES' h
 lostpings = lostpings + 1
 dataline = Left(pingname,40) Left('no response',15) Left(endtime,10)
 Call disp_prt
 End
 When w1 w2 w3 = 'Bad' 'IP' 'address' Then
 Do
 lostpingflag = 'YES' h
 lostpings = lostpings + 1
 dataline = Left(pingname,40) Left('no response',15) Left(endtime,10)
 Call disp_prt
 End
 Otherwise NOP /* lostpingflag = 'YES' */
 End /* select */
End /*Do*/
If lostpingflag = 'NO' Then
 Do
 dataline = Left(thispingname,40) Left(thisaddr,15) Left(endtime,10) /* create audit
record */
 Call disp_prt
 Call sortping
 End
264 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Return
/* */
/* Check if same onsolidate the output from PING */
/* */
/* There are 4 arrays */
/* */
/* canon.m : canonical address */
/* pingname.m : text name for this canonical addr */
/* canoncnt.m : number of times this addr used */
/* rsptime.m : total response time for this addr */
/* */
/* */
sortping:
If maxaddrs = 0 Then /*First time thru*/
 Do
 maxaddrs = 1
 canon.1 = thisaddr
 pingname.1 = pingname
 canoncnt.1 = 0
 rsptime.1 = 0
 End
newcanon = 'YES' /* assume it is a new canonical address */
Do m = 1 to maxaddrs
 If canon.m = thisaddr & pingname.m = pingname Then
 Do
 canoncnt.m = canoncnt.m + 1
 rsptime.m = rsptime.m + endtime
 newcanon = 'NO' /* flag we have it already */
 m = maxaddrs /* get out of loop */
 End
End /* do */
If newcanon = 'YES' Then
 Do
 maxaddrs = maxaddrs + 1
 canon.maxaddrs = thisaddr
 pingname.maxaddrs = pingname
 canoncnt.maxaddrs = 1
 rsptime.maxaddrs = endtime
 End
Return
/* */
/* Routine to display records on screen and also file data */
/* */
disp_prt_null:
dataline = ''
disp_prt:
Say dataline
fred = Lineout(datafile,dataline)
Return
Appendix B. REXX EXECs to gather connection statistics 265

EXEC to connect to server using TCP
/**/
/* sysplex2.cmd */
/* */
/* sysplex2 hostname port <-c num_connects> <-t conn_time> */
/* <-b betw_time> */
/* */
/* This Rexx program connects to a server on a given hostname/portname*/
/* pair the specified number of times. On each connection it will */
/* read 4 bytes from the server - this value is interpreted as the */
/* IP address of the server we have actually connected to */
/* (irrespective of the server we *requested* to connect to). */
/* */
/* conn_time is a specified time to stay connected to server over and */
/* above the time needed for exchange of data. This is measured in */
/* in seconds and defaults to 0. This option is required if you are */
/* connecting to the multi-tasking server. If you fail to specify -t */
/* when connecting to the multi-tasking server, the client program */
/* will appear to hang. */
/* */
/* num_connects is the number of time you wish to connect to the */
/* server. This defaults to a value of 10. */
/* */
/* betw_time is a specified time to pause between connections to the */
/* server. This is measured in seconds and defaults to 0. */
/* */
/* Overall statistics on the number of times the hostname was resolved*/
/* to a given IP address by the DNS server and the number of times we */
/* connected to a given TCP/IP stack are reported at the end of */
/* execution */
/* */
/**/

 parse arg arg1 arg2 '-'opt.3 arg.3 '-'opt.4 arg.4 '-'opt.5 arg.5

 if(arg1 = '' | arg1 = '?' | arg2 = '') then
 do
 say 'Usage: sysplex2 hostname port <-c num_connects> <-t conn_time> <-b betw_time>'
 return
 end

 connectToName = arg1 /* Hostname to connect to */
 connectToPort = arg2 /* Port to connect to */
 /* Set defaults: */
 numConns = 10 /* Default value for numConns */
 connTime = 0 /* Default value for connTime */
 betwTime = 0 /* Default value for betwTime */
 do a = 3 to 5
 select
 when opt.a = 'c' | opt.a = 'C' then numConns = arg.a
 when opt.a = 't' | opt.a = 'T' then
 do
 connTime = arg.a
 connTimeSpecified = true
 end
 when opt.a = 'b' | opt.a = 'B' then betwTime = arg.a
 otherwise
 end /* end of select select */
266 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

 end a

 printHeader = true /* Only print headers on the */
 /* first iteration of the loop */
/**/
/* Load the rexx sockets functions if not already loaded */
/**/
 rc = RxFuncQuery("SockLoadFuncs")
 if(rc <> 0) then
 do
 rc = RxFuncAdd("SockLoadFuncs","rxsock","SockLoadFuncs")
 rc = SockLoadFuncs()
 end

/**/
/* Loop around for numConns */
/**/
 do i = 1 to numConns

 call time('R') /* Reset timer */
/**/
/* Use DNS to resolve name to IP address */
/**/
 rc = SockGetHostByName(connectToname, "resolvedHost.!")

 resolvedTime = time('E') /* Record time taken to resolve */
 /* name to an IP address */
 if(rc = 0) then
 do
 say "Error resolving hostname: " errno
 return
 end

/**/
/* Create a socket */
/**/
 socket = SockSocket("AF_INET", "SOCK_STREAM", 0)
 if(socket = -1) then
 do
 say "Error creating socket: " errno
 return
 end

/**/
/* Wait for specified time before connecting to the server. */
/* If the pause is greater than or equal to 1 second, a CPU friendly */
/* sleep call is performed. If the pause is less than one second, a */
/* CPU intensive loop is entered. This is to be avoided. */
/**/
 if betwTime >= 1 then
 do
 rc = RxFuncAdd("SysLoadFuncs","RexxUtil","SysLoadFuncs")
 rc = SysLoadFuncs()
 betwTime = betwTime % 1; /* Discard fractional part */
 call SysSleep(betwTime)
 end
 else
 do
 call time('R') /* Reset timer */
 elapsedTime = time('E')
Appendix B. REXX EXECs to gather connection statistics 267

 do while elapsedTime < betwTime
 elapsedTime = time('E')
 end
 end

/**/
/* Connect to the server */
/**/
 server.!family = "AF_INET"
 server.!port = connectToPort
 server.!addr = resolvedHost.!addr

 call time('R') /* Reset timer */
 rc = SockConnect(socket, "server.!")
 if(rc = -1) then
 do
 say "Error on connecting socket to '" || server.!addr || "':" errno

/**/
/* If we failed to connect we should log the resolved name for */
/* statistics processing but the connected name isn't applicable */
/**/
 savedResName.i = resolvedHost.!addr
 savedConName.i = errno

/**/
/* Close the socket as the connect failed */
/**/
 rc = SockSoClose(socket)
 if(rc = -1) then
 do
 say "Error closing socket:" errno
 end
 iterate /* Go back to beginning of loop */
 end
/**/
/* Before we receive the IP address from the server, we send it the */
/* time specified by the user to stay connected. */
/**/
 if(connTimeSpecified = true) then
 do
 drop buffer
 buffer = d2c(connTime*10)
 rc = SockSend(socket, buffer, 4)
 end

/**/
/* The recv will block until the server has performed the sleep and */
/* sent some data through the socket. It should be a 4 byte IP addr. */
/* Since we use buffer each time we go round this loop we must 'drop' */
/* it so that it gets set correctly by recv */
/**/
 drop buffer
 rc = SockRecv(socket, buffer, 4)

 if(rc < 1) then
 do
 say "Error on receive:" errno
 return
 end
268 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

/**/
/* Convert the IP address to decimal and record who we really */
/* connected to */
/**/
 byte1 = c2d(substr(buffer,1,1))
 byte2 = c2d(substr(buffer,2,1))
 byte3 = c2d(substr(buffer,3,1))
 byte4 = c2d(substr(buffer,4,1))

 connectedTo = byte1 || '.' || byte2 || '.' || byte3 || '.' || byte4

/**/
/* Close the socket */
/**/
 rc = SockSoClose(socket)
 if(rc = -1) then
 do
 say "Error closing socket:" errno
 return
 end
 connectedTime = time('E') /* Record time spent connected */

 if(printheader = true) then
 do
 say '+----------------------+------------------+----------------+--------+--------+'
 say '| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |'
 say '+----------------------+------------------+----------------+--------+--------+'
 printheader = false /* Do not print header next time*/
 end

 say '|' left(connectToName, 20) '|' left(resolvedHost.!addr, 16),
 '|' left(connectedTo, 14) '|' left(resolvedTime, 6),
 '|' left(connectedTime, 6) '|'

/**/
/* Save the resolved and connected names for this run to allow */
/* processing of connection statistics */
/**/
 savedResName.i = resolvedHost.!addr
 savedConName.i = connectedTo

 end /* do i = 1 to numConns */

call sysstats numConns, savedResName., "Resolved "
call sysstats numConns, savedConName., "Connected"
Appendix B. REXX EXECs to gather connection statistics 269

REXX statistics subroutine
/**/
/* sysstats.cmd */
/* */
/* Called from sysplex2.cmd */
/* */
/* Overall statistics on the number of times we connected to a */
/* given TCP/IP stack are reported in this subroutine. */
/* */
/**/

 use arg numConns, savedAddr., Text

/**/
/* Loop around for numConns - this time for statistics processing. */
/* In here we scan through the array of saved addresses and each time */
/* we find a new (non-blank) one we stop and count how many more of */
/* this same address there subsequently are in the table, blanking */
/* them out as we count them so they won't be counted more than once */
/**/
 Count = 0 /* Set counter to 0 */
 do forever
 biggest = 0.0.0.0 /* Smallest possible IP address */
 do i = 1 to numConns /* Find biggest non-blank name */
 if(savedAddr.i <> '') then
 do /* Separate out domain levels */
 parse value biggest with b.1 '.' b.2 '.' b.3 '.' b.4
 parse value savedAddr.i with c.1 '.' c.2 '.' c.3 '.' c.4
 do n = 1 to 4
 select /* Compare one level at a time. */
 when c.n > b.n then
 do
 biggest = savedAddr.i
 leave
 end
 when c.n = b.n then iterate
 when c.n < b.n then leave
 end /* select */
 end n
 end
 end i
 if(biggest = 0.0.0.0) then leave /* No more left to sort */
 else /* Else: we found one */
 do
 Count = Count + 1 /* Increment counter */
 statsAddr.Count = biggest /* Store address away */
 statsTotal.Count = 0 /* Set count for this addr to 0 */
 do j = 1 to numConns /* and then count them up. */
 if(savedAddr.j = biggest) then
 do
 savedAddr.j = '' /* don't count this name again */
 statsTotal.Count = statsTotal.Count + 1
 end
 end j
 end /* if(biggest <> 0) */
 end /* do forever */

 say ''
 say '+----------------+----------------+'
270 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

 say '|' left(Text,9) 'Addr |' left(Text,9) 'Count|'
 say '+----------------+----------------+'
 do i = Count to 1 by -1
 say '|' left(statsAddr.i, 14) '|' left(statsTotal.i, 14) '|'
 end
Appendix B. REXX EXECs to gather connection statistics 271

272 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Appendix C. Sample applications and
programs

In Chapter 2, “DNS/WLM (connection optimization)” on page 17, we introduced a simple
REXX EXEC to enable us to determine how well load balancing was working across the
images in a sysplex. Using DNS/WLM in OS/390 V2R5 IP as we were, this EXEC was
perfectly adequate. However, with the increasing sophistication of later releases and the
Network Dispatcher, we need more than that. Indeed, newer functions such as dynamic
VIPA, sysplex sockets, and finally, Sysplex Distributor required more coding effort to
demonstrate their operation effectively.

In this appendix, therefore, we introduce some simple coding that we used to good effect in
subsequent tests:

� A WLM registration program, WLMREG.

This works with our new servers (or indeed, with any server) to register the address space
or process in which the server runs with WLM.

� A new REXX EXEC, SYSPLEX2.

The simple EXECs in Chapter 2, “DNS/WLM (connection optimization)” on page 17 used
ping to exchange data with their target servers. Network Dispatcher will not work with ping,
because it dispatches only TCP and UDP traffic. Ping is ICMP and is echoed by the
Network Dispatcher itself, proving nothing about its load-balancing abilities.

Our EXEC uses TCP to connect to a server; we have written two versions of this server (a
single-threading and a multithreading version). Our server provides the needed statistics
to our REXX EXEC, and also shows how to register an application to a dynamic VIPA
address.

� We have written a WLM query program to display what applications have registered and
their status. Using this program is somewhat easier than poring over a trace or a dump,
although it does not provide as much information.

� We have also written a program to utilize the sysplex sockets interface. This allows an
application to query the sysplex environment in which it runs, and to take appropriate
action depending on that environment.

C

© Copyright IBM Corp. 2002. All rights reserved. 273

WLMREG, a sample registration program
Telnet and FTP provide parameters that allow you to specify the group name that they will
register under to use DNS/WLM workload balancing. If you want your own TCP/IP
applications to benefit from connection workload balancing, then they must manually register
with WLM.

Fortunately this is a simple thing to do. All that is required is an address space to call the
IWMSRSRG macro or the IWMDNREG function from C. It is important to realize that it is the
MVS address space the application is running in that is registered with WLM, not the
application itself. This actually makes life a little easier, since we can simply call a generic
registration program before starting a server and benefit from DNS/WLM connection
balancing very easily.

The sample registration program has been designed to allow it to be used for almost any
TCP/IP application that runs in a single address space. You simply call this program with the
relevant parameters before you start your own application, and the address space will be
registered with WLM; thus, work destined for the WLM group name will be routed to it. If you
are running your programs in UNIX System Services, then it is the process, not the address
space, that is registered with WLM.

The program we have provided is based upon the sample shipped with TCP/IP and located in
/usr/lpp/tcpip/samples/wlmreg.c on HFS. The complete source for the sample is available in
“WLMREG registration sample” on page 287.

The following section shows how to set up and use a simple user TCP/IP server application
written in C.

The registration call
The IWMDNREG C function is documented in Communications Server for z/OS IP
Configuration, SC31-8513. It provides a simple way to register with WLM, associating the IP
addresses of the local TCP/IP stack with a given WLM group name. This association also
includes the address space that performed the registration call, allowing WLM to deregister
us automatically if our address space should terminate without manually deregistering.

Under the covers, the IWMDNREG C function calls the MVS Workload Manager's
IWMSRSRG service.

The C function is invoked as follows:

extern long IWMDNREG(char *group_name, char *host_name, char *server_name, char *netid,
char *wlm_user_data, long *diag_code);

The first parameter, group_name, should be the group name under which this application will
register. Effectively, this will become a virtual host name. For example, if we are running on
host ralplex1.buddha.ral.ibm.com and we register with group name fred, then users will be
able to connect to our application, or any other application registered with the same group
name, through the virtual host name of fred.ralplex1.buddha.ral.ibm.com.

The second parameter, host_name, should contain the TCP/IP host name of the stack our
application is listening on and should generally be obtained through the gethostname() call
from the registration program.

The third parameter, server_name, should be a name that will identify uniquely this instance of
the application and must be different for each server registering under a given group name.
274 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The next two parameters are not required and should be set to NULL.

The diag_code is a variable passed by reference to give us extra information, if the
registration call should fail.

If you make the IWMDNREG call from C, then you need to make sure you define the call with
OS linkage, as is done in the sample TCP/IP header file iwmwdnsh.h, and link edit with the
stub in your SYS1.CSSLIB data set.

If you are running a sockets program in UNIX System Services and cannot alter the program,
you can still use the WLMREG program to register the process in which the program runs.
This is achieved by using the execvp() system call after the IWMDNREG completes.
execvp() loads a program from an ordinary executable file into the current process, replacing
the current program. Since the process is still running, socket connections can be routed to
the newly loaded program.

To deregister, or not to deregister?
Once our address space is registered, we will have work for our group name routed to us until
either we manually deregister or our address space terminates. Typically, a long-running
server program will probably want to have work routed to it until it terminates, in which case
we do not strictly need to deregister manually unless some other program is going to run in
our address space after our server has terminated. However, it is worth being aware of a
potential scenario where we might want to deregister even though our server is still active.

Provided the TCP/IP stack registers itself with WLM, the status of its IP interfaces will be
communicated to WLM and thus to DNS. Therefore, if all the interfaces through which our
server can be reached are inactive, WLM will not route work to the server. However, if the
stack fails or is brought down, DNS loses track of the interface status and will continue to
route work to our server (which is still registered to WLM and therefore included in the data
sent by WLM to DNS). Our server program's TCP/IP calls will fail with return codes indicating
that the TCP/IP service is not available. Depending on how our server application has been
written, we might either terminate or wait for TCP/IP to return. If we quit then, WLM will be
informed and will no longer route work to us. If we hang around waiting for our TCP/IP stack
to restart (which could take some time), then we will remain registered and WLM will attempt
to route some work to us. WLM will have no way of knowing that the clients being routed to us
via the now inactive network interface are being rejected while other connection requests that
are routed to other members of our WLM group name are probably succeeding.

To prevent this, our application will need to deregister manually from WLM if a TCP/IP failure
(or indeed any other transient failure preventing us from being able to process clients'
requests) is detected. Obviously, once we are able to process work again we need to
reregister with WLM.

Unfortunately, this causes problems when we want to use our sample WLM/DNS registration
program to register an existing server application without having to modify it.

If you have a server application that does not terminate as the result of a temporary failure
then your best option, if available, is indeed to modify the server to manually register and
deregister from WLM as required.

If you cannot modify the server (it might be a third-party application), then you might have to
live with the potential consequences. These may be acceptable if, for example, the client
applications will continually try to reestablish a connection, since they will eventually be
routed to an available server.
Appendix C. Sample applications and programs 275

Another possibility to investigate might be the ability of the IWMSRSRG macro version of the
call to register on behalf of another address space. Thus, you might have some other
application that monitors resource availability on an MVS image and registers/deregisters the
applications for which it is responsible as necessary. This version of the WLM registration call
is available only if you use the macro call; it is not available from the C language version. We
do not explore this scenario in this redbook.

Waiting for WLM to Update DNS
While at any given moment WLM is aware of exactly what servers are registered for each
group name, this information is queried by the DNS only periodically (every 60 seconds by
default). This means that there are periods during which DNS may incorrectly resolve, or
even fail to resolve, group names to IP addresses.

This is most obvious when you start a server that is the first to register a particular group
name. For up to 60 seconds (or whatever your DNS/WLM refresh rate is), the DNS will be
unable to resolve this name. Conversely, where an application has deregistered (either
manually or automatically at MVS end-of-memory processing) there is a period where clients
will be routed to a server that is no longer available. You might like to consider this possibility
when designing a server application: instead of deregistering and not accepting any more
inbound connections, you might deregister and allow a grace period where clients can still
connect while you wait a reasonable period of time for the WLM to update DNS. While this is
far from ideal, it might alleviate some of the connection problems associated with a server
shutdown.

Collecting statistics using REXX
In 2.6.5, “Observing the effects of WLM and DNS” on page 47 we introduced a REXX EXEC
that repeatedly pings the sysplex and gathers up the number of successful pings made. We
want to gather similar statistics using the Network Dispatcher (ND). However, the ND
dispatches only TCP and UDP protocols and ping uses ICMP, so we provide a new client
application that uses TCP.

We have written a REXX client program to connect to the SOCSRVR program. This program
gathers statistics on the number of successful connects, and the IP address it was connected
to each time.

The SYSPLEX2 EXEC is executed by the following command:

REXX SYSPLEX2 hostname port -c num_connects -b between_time

where hostname and port are the pair you wish to connect to, num_connects is the number of
times you wish to connect to them and between_time is the time in seconds to pause
between connections to the server. It should be noted that if the pause is greater than or
equal to one second, a CPU-friendly SysSleep() call is performed. If the pause is less than
one second, a CPU-intensive loop is entered. This should be avoided if possible. You could
reimplement it in an alternative fashion if your need is great enough.

You can omit the parameters num_connects and between_time. They default to 10 and 0
respectively.

The client program starts by calling SockGetHostByName() to resolve the host name to an IP
address as shown in Figure C-1 on page 277:
276 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure C-1 Resolving host name in REXX sockets API

It then allocates a standard stream socket and connects to it as shown in the code excerpt in
Figure C-2:

Figure C-2 Allocate socket and connect to it

Then it receives the server's IP address from the server, and finally it closes the socket. This
is shown in Figure C-3:

Figure C-3 Receive data from server and close

This process is repeated for the number of connects specified and then the results are
counted and printed.

The complete source for the REXX client is in “EXEC to connect to server using TCP” on
page 266. The subroutine that is called at the end of the REXX program to sort and output the
statistics, sysstats, is in “REXX statistics subroutine” on page 270. This was done in a
separate file since it is less interesting from a socket programming point of view.

 rc = SockGetHostByName(connectToName, "resolvedHost.!")
 if(rc = 0) then
 do
 say "Error resolving hostname: " errno
 return
 end

 socket = SockSocket("AF_INET", "SOCK_STREAM", 0)
 if(socket = -1) then
 do
 say "Error creating socket: " errno
 return
 end
 server.!family = "AF_INET"
 server.!port = connectToPort
 server.!addr = resolvedHost.!addr

 rc = SockConnect(socket, "server.!")
 if(rc = -1) then
 do
 say "Error on connecting socket to '" || server.!addr || "':" errno
 end

 rc = SockRecv(socket, buffer, 4)
 if(rc < 1) then
 do
 say "Error on receive:" errno
 return
 end

 rc = SockSoClose(socket)
 if(rc = -1) then
 do
 say "Error closing socket:" errno
 return
 end
Appendix C. Sample applications and programs 277

If you wish to store the results in a file, then use the following command:

REXX SYSPLEX2 hostname port -c num_connects -b between_time > output.txt

where output.txt is the name of your output file.

WLMQ, a WLM query program
We have a program that allows us to query the server programs that have already been
registered to WLM. When called without parameters, a list of all registered server programs is
displayed. If parameters are present, only servers registered with groups named by the
parameters are shown.

The program uses the C function IWMDNGRP (which maps to the IWMSRDNS macro) to
obtain a list of groups and then calls IWMDNSRV (which maps to the IWMSRSRS macro) for
each group to obtain a list of registered servers.

The C function to query a list of group names is invoked as follows:

extern long IWMDNGRP(struct grpinfo_block *grp_array, long * entry_count, long *
diag_code);

The first parameter, grp_array, is an array of structures that can hold information on a group.
Currently, the only information in the structure is the name of the group. Due to the
asynchronous nature of deregistration, a group may still be present in the output list even
though all server programs using that group have deregistered. Conversely, some registered
servers may not appear for this same reason.

The second parameter, entry_count, is used on input to specify the maximum number of
entries that the program can receive safely (how much storage we chose to allocate). On
output it contains the number of currently registered groups, and hence how many
grpinfo_block structures have been filled in. The WLMQ program first calls IWMDNGRP with a
group_count of zero. This gives us the number of groups currently registered with WLM. We
then allocate space for two more groups than are currently registered and call IWMDNGRP
again. Having the extra two groups allows us to consider new groups being registered
between the two calls.

The diag_code is a variable passed by reference to provide additional diagnostic information
if the call does not complete successfully.

The C function to query information for a group of servers is invoked as follows:

extern long IWMDNSRV(char *group_name, struct sysinfo_block *sys_array, long
*entry_count, long *diag_code);

The first parameter, group_name, identifies the group we are querying.

The second parameter, sys_array, is an array of structures that can hold information on a
server program. The structure is defined as follows:

struct sysinfo_block { char netid[WLMSIZE_OF_NETID]; char server[WLMSIZE_OF_SERVER];
unsigned char weight; char user_data[64]; char host_nameid[WLMSIZE_OF_HOSTNAME]; };

For most server programs the netid and user_data fields will be blank. For the TCP/IP stack,
the user_data field contains the list of addresses for the active IP interfaces.

The weight field contains the relative weighting for each server. This value tells a caller the
relative number of requests to send to each server.
278 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

The third parameter to the IWMDNSRV call, entry_count, is again used on input to specify
the maximum number of entries that the program has storage to receive. On output it
contains the number of programs currently serving the group, and thus how many
sysinfo_block structures have been populated. This value is set to 10 on input. If your
environment has more programs serving a single group, edit the sample program and give
the #defined symbol WLMQ_MAX_SERVERS a larger value.

The diag_code is a variable passed by reference to provide additional diagnostic information
if the call does not complete successfully.

See Figure C-4 for some example output:

Figure C-4 Example output from the WLM query program

Note: The ability to query WLM registration status is planned for implementation in a future
release of CS for OS/390.

SOCSRVR, a simple socket server program
Here we introduce a simple TCP/IP server program, SOCSRVR, that we use throughout this
book to test workload balancing. The program is started with a single argument specifying the
TCP/IP port number on which it should listen. It begins by calling gethostname() and
gethostid() to find the host name and IP address of the TCP/IP stack it will use, as shown in
Figure C-5 on page 280:

Group Server HostName NetId Weight

1 TESTRAL SERVER28 MVS28A 32
1 TESTRAL SERVER03 MVS03A 31
2 TNRAL MVS03A MVS03A 21
2 TNRAL MVS28A MVS28A 21
2 TNRAL MVS39A MVS39A 21
3 TCPIP T03ATCP MVS03A MVS03A 10
UserData: 172.16.250.3 9.24.104.113 172.16.100.3 172.16.233.3
 172.16.233.3
3 TCPIP T03CTCP MVS03C MVS03C 10
UserData: 172.16.251.4 9.24.104.33 172.16.233.4 172.16.233.4
3 TCPIP T28CTCP MVS28C MVS28C 10
UserData: 172.16.100.99 9.24.104.43 172.16.253.29 172.16.233.29
 172.16.233.29 172.16.233.29
3 TCPIP T28ATCP MVS28A MVS28A 10
UserData: 172.16.252.28 9.24.104.42 172.16.101.28 172.16.104.28
 172.16.233.28 172.16.233.28 172.16.233.28 172.16.240.28
 172.16.240.193
3 TCPIP T39ATCP MVS39A MVS39A 21
UserData: 172.16.232.39 9.24.104.149 172.16.105.39 172.16.233.39
 172.16.240.39
Appendix C. Sample applications and programs 279

Figure C-5 Find hostname and IP address

It then allocates a standard stream socket and listens for inbound connections on the port
specified at startup as shown in Figure C-6:

Figure C-6 Allocate socket and listen

When a client connects we simply send it four bytes containing our IP address, close the
connection, and go back to waiting for the next client connection request. This is shown in
Figure C-7 on page 281.

 if(gethostname(hostName, 64) !=0)
 {
 tcperror("Gethostname()");
 exit(2);
 }

 if((hostId = gethostid()) == 0)
 {
 tcperror("Gethostid()");
 exit(2);
 }

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 tcperror("Socket()");
 exit(3);
 }

 server.sin_family = AF_INET;
 server.sin_port = htons(port);
 server.sin_addr.s_addr = INADDR_ANY;

 if (bind(s, (struct sockaddr *)&server, sizeof(server)) < 0)
 {
 tcperror("Bind()");
 exit(4);
 }

 if (listen(s, 255) != 0)
 {
 tcperror("Listen()");
 exit(5);
 }
280 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure C-7 Accept conversation, send data and close

The complete source for the sample is available in “SOCSRVR single threading server” on
page 294.

See Figure C-8 for some example JCL that runs the WLMREG and SOCSRVR programs in
the same address space:

Figure C-8 Sample JCL to run the WLMREG then the SOCSRVR programs

Modifying SOCSRVR for Dynamic VIPA
Modifying the SOCSRVR sample (see “SOCSRVR, a simple socket server program” on
page 279) to exploit dynamic VIPA is very simple. First, we change the parameter checking so
that two arguments are required, as shown in Figure C-9.

Figure C-9 Modifying the parameter checking on SOCSRVR for Dynamic VIPA

 while(1)
 {
 namelen = sizeof(client);
 if ((ns = accept(s, (struct sockaddr *)&client, &namelen)) == -1)
 {
 tcperror("Accept()");
 exit(6);
 }

 if (send(ns, (char*) &hostId, sizeof(hostId), 0) < 0)
 {
 tcperror("Send()");
 exit(7);
 }
 close(ns);
 }

 //GOWLMRG1 JOB (NEIL,D1111),'NEILJ',MSGCLASS=H
 //REG EXEC PGM=WLMREG,REGION=0M,
 // PARM='TESTRAL SERVER1'
 //STEPLIB DD DISP=SHR,DSN=NEIL.UTIL.LOAD
 // DD DISP=SHR,DSN=CEE.SCEERUN
 //SYSPRINT DD SYSOUT=*
 //SYSTCPD DD DISP=SHR,DSN=TCP.TCPPARMS(TDATA03A)
 //*
 //SRV EXEC PGM=SOCSRVR,REGION=0M,TIME=NOLIMIT,
 // PARM='1234'
 //STEPLIB DD DISP=SHR,DSN=NEIL.UTIL.LOAD
 // DD DISP=SHR,DSN=CEE.SCEERUN
 //SYSPRINT DD SYSOUT=*
 //SYSTCPD DD DISP=SHR,DSN=TCP.TCPPARMS(TDATA03A)

 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s port VIPA\n", argv[0]);
 exit(1);
 }
Appendix C. Sample applications and programs 281

Secondly, we change the sock_addr_in structure so that instead of using INADDR_ANY to
bind to all addresses we bind to the VIPA passed as the second argument, as shown in
Figure C-10.

Figure C-10 Binding to a specific VIPA

Sysplex sockets
Socket applications are written generally to communicate with a partner on any platform. This
means that the improved performance and scalability of the z/OS sysplex is not exploited,
unless some application-specific protocol is used; this is not always possible.

The sysplex sockets function provides a standard way to discover information about the
connected partner, which can then be used to make decisions that can exploit the value of the
z/OS sysplex where applicable.

Discovering partner information
This is done by way of a new option on the socket call getsockopt(), which is described in
more detail in Communications Server for z/OS IP Application Programming Interface Guide,
SC31-8516. This new option is SO_CLUSTERCONNTYPE and is coded as shown in Figure C-11.

Figure C-11 getsockopt() call

The call can return any of the values shown in Table C-1. In this context a cluster is a sysplex.

Table C-1 Returned values

 server.sin_addr.s_addr = inet_addr(argv[2]);

 if (bind(s, (struct sockaddr *)&server, sizeof(server)) < 0)
 {
 tcperror("Bind()");
 exit(4);
 }

 if (getsockopt(s, SOL_SOCKET, SO_CLUSTERCONNTYPE, (char *)&type, &typelen) < 0)
 {
 tcperror("GetSockOpt()");
 exit(5);
 }

Returned Value Description

SO_CLUSTERCONNTYPE_NOCONN No connection active.

SO_CLUSTERCONNTYPE_NONE Active connection and the partner is not in the
same cluster.

SO_CLUSTERCONNTYPE_SAME_CLUSTER Active connection and the partner is in the
cluster.

SO_CLUSTERCONNTYPE_SAME_IMAGE Active connection and the partner is in the
same (MVS) image.
282 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

These returned values are tested for as shown in the code excerpt in Figure C-12.

Figure C-12 getsockopt() call

SSOCCLNT, a sample sysplex sockets program
The sample sysplex sockets program very simply connects to the SOCSRVR program
introduced in “SOCSRVR, a simple socket server program” on page 279 and, before
receiving the data from the server, issues the getsockopt() call with the new option
SO_CLUSTER_CONNTYPE. It then prints out the type of the connection. The output will look
something like Figure C-13:

Figure C-13 Output from SSOCCLNT

The complete source for the sample is available in “SSOCCLNT sysplex sockets sample” on
page 296.

A useful application of the sysplex sockets function would be to make some decisions
regarding, for example, security or data conversion, depending on the information returned
about the partner.

SO_CLUSTERCONNTYPE_INTERNAL Active connection and the partner is in the
cluster and the link is either loopback,
MPCPTP, CTC or XCF.

Returned Value Description

 if (!(type & SO_CLUSTERCONNTYPE_NOCONN))
 {
 if (type & SO_CLUSTERCONNTYPE_NONE)
 {
 /* The connection is not in the same cluster */
 }
 if (type & SO_CLUSTERCONNTYPE_INTERNAL)
 {
 /* The connection is an internal type of connection */
 }
 if (type & SO_CLUSTERCONNTYPE_SAME_IMAGE)
 {
 /* The connection is in the same (MVS) image */
 }
 if (type & SO_CLUSTERCONNTYPE_SAME_CLUSTER)
 {
 /* The connection is in the same cluster */
 }
 }

 Connection Type :
 Same Image
 Same Cluster
 Server's IP address : 9.24.104.113
Appendix C. Sample applications and programs 283

Loading the system
For our more advanced tests, we needed to load our sysplex systems beyond what a single
client could provide by way of traffic. Therefore, we modified our server to handle multiple
clients. In other words, we converted it to a multi-threading server.

MTCSRVR, a multitasking socket program
Here we introduce our multitasking server, MTCSRVR, and the subtask program it schedules,
MTCSUBT. The server is the Multitasking C Socket Sample Program provided in the
Communications Server for z/OS IP Application Programming Interface Guide, SC31-8516,
with some minor changes so that it no longer handles the simplest case. These changes
remove a couple of lines that say:

 /*** do simplified situation first ***/

and add code to allow the number of subtasks to be specified as the second parameter. The
first parameter is the port on which to listen.

The source for this sample can be found in “MTCSRVR multitasking sockets program” on
page 298, with the lines that are changed from the original highlighted in bold.

We have written a new subtask program based upon the sample subtask provided to interact
with our REXX client program.

The subtask starts by using the information passed as parameters to fill in the clientid
structure and take the socket from the calling program as shown in Figure C-14.

Figure C-14 Obtaining the socket from the calling program

If the takesocket is successful, we receive data from the socket into a local byte. This
controls how long the server program sleeps before responding to the client. The value is the
number of tenths of a second to sleep. See Figure C-15 on page 285.

 memset(&cid, 0, sizeof(cid));
 memcpy(cid.name, tskname, 8);
 memcpy(cid.subtaskname, tsksname, 8);
 cid.domain = AF_INET;

 socket = takesocket(&cid, *clsock);
 if (socket < 0)
 {
 tcperror("Csub: Error from takesocket");
 }
284 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Figure C-15 Receiving data from the socket and sleeping for a time

The subtask then queries the local IP address and sends it back to the client program as
shown in Figure C-16.

Figure C-16 Querying the host ID and sending the value to the client

When getting the subtask to work, you must link-edit it correctly as described in the OS/390
C/C++ Programming Guide, SC09-2362, with the following linkage editor control statements:

INCLUDE SYSLIB(EDCMTFS)
ENTRY CEEESTART

The source for this sample can be found in “MTCSUBT subtask for the multitasking sockets
program” on page 304.

Extra option for the REXX client program
The REXX client program has an extra option that causes it to send the time to sleep to the
server program.

To connect to the multitasking server, SYSPLEX2 should be invoked in the following way:

REXX SYSPLEX2 hostname port -c num_connects -t time_connected -b between_conns

The -c and -b parameters are the same as in “Collecting statistics using REXX” on page 276.
The new parameter is -t. If the -t parameter is omitted, then the sleep time is not sent to the
server program. Care must be taken to ensure that the presence or absence of the -t
parameter matches the server program. If you are connecting to the simple server, you
should omit the -t parameter, since the simple server does not expect to receive any data.
Specifying -t will not do any harm, but the simple server will not perform a sleep. If you fail to
specify -t when connecting to the multitasking server, then your client program will appear to
hang. This is because the multitasking server program has called recv(), expecting to receive
a sleep time, but the client program has not sent a sleep time. The source for the REXX client
program can be found in “EXEC to connect to server using TCP” on page 266.

 recvbytes = recv(socket, data, sizeof(data), 0);
 if (recvbytes < 0)
 {
 tcperror("Csub: Recv()");
 }
 else
 {
 printf("Sleeping for %d seconds\n", (*data)/10);
 sleeptime = (*data) / 10;
 sleep(sleeptime);
 }

 if((hostId = gethostid()) == 0)
 {
 tcperror("Csub: Gethostid()");
 }
 sendbytes = send(socket, (char*) &hostId, sizeof(hostId), 0);
 if (sendbytes < 0)
 {
 tcperror("Csub: Send()");
 }
Appendix C. Sample applications and programs 285

286 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Appendix D. Sample C program source code

In this section we list the C programs we used to exercise the sysplex load balancing
functions, the dynamic VIPA and the sysplex sockets feature.

WLMREG registration sample
/**/
/* A program to register the address space with WLM. If this is to be */
/* used in Open Edition, execvp() is called to execute another */
/* program in the same process. */
/**/

/**/
/* If you are building the OE version, uncomment the next line */
/**/
/* #define BUILD_OE_VERSION */

#if defined(BUILD_OE_VERSION)
 #define MIN_PARAMETERS 3
#else
 #define MIN_PARAMETERS 2
 #include <manifest.h>
#endif

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <iwmwdnsh.h>

int main(int argc, char** argv)
{
 char *groupName;
 char *serverName;
 char hostName[64];
 long diagCode = 0;
 long rc = 0;

D

© Copyright IBM Corp. 2002. All rights reserved. 287

 if (argc < MIN_PARAMETERS)
 {
#if defined(BUILD_OE_VERSION)
 fprintf(stderr, "Usage: %s groupname servername "
 "program_to_start <program parameters>\n", argv[0]);
#else
 fprintf(stderr, "Usage: %s groupname servername\n", argv[0]);
#endif
 exit(1);
 }
/**/
/* Extract the groupname and servername from the command line */
/**/
 groupName = argv[1];
 serverName = argv[2];

 rc = gethostname(hostName, WLMSIZE_OF_HOSTNAME);
 if (rc != 0)
 {
 fprintf(stderr, "gethostname failure errno = %d \n", errno);
 exit(2);
 }
/**/
/* Register a server */
/**/
 rc = IWMDNREG(groupName
 ,hostName
 ,serverName
 ,NULL
 ,NULL
 ,&diagCode
);
 if (rc != 0)
 {
 fprintf(stderr, "IWMDNREG failure, error = %d \n", diagCode);
 exit(3);
 }
 printf("Registered a server successfully:\n");
 printf(" Groupname = %s\n", groupName);
 printf(" Hostname = %s\n", hostName);
 printf(" Servername = %s\n", serverName);

/**/
/* In Open Edition, start the sockets server program in the same */
/* process, as we're deregistered when the process ends */
/* If execvp() succeeds, the call never returns as the new program */
/* overwrites the old one. */
/**/
#if defined(BUILD_OE_VERSION)
 rc = execvp(argv[3], &argv[3]);
 /* if the execvp() call succeeds, the call never returns */
 fprintf(stderr, "execvp returned %d\n", rc);
 exit(rc);
#endif
 exit(0);
}

288 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

WLM query program
/**/
/* wlmq: A WLM Query Program */
/* */
/* When called without parameters, a list of all registered server */
/* programs is displayed. If you only want information on specific */
/* groups, supply those group names as parameters. */
/* */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <manifest.h> /* not required in Open Edition */
#include <bsdtypes.h> /* not required in Open Edition */
#include <socket.h>
#include <in.h>
#include <iwmwdnsh.h> /* in /usr/lpp/tcpip/samples in Open Edition */

/**/
/* Specify defined values */
/**/
#define CHARS_PER_LINE 16
#define WLMQ_MAX_SERVERS 10

/**/
/* Function prototypes for local fnctions */
/**/
static struct grpinfo_block * allocateGroupArray(int group_count);
static int userDataEmpty(char * user_data);
static int looksLikeIPAddresses(char * buffer);
static void showIPAddresses(char * buffer);
static void showTableHeader(void);
static void hexDumpBuffer(char * buffer, int length);

/* -- */
/* Start of program */
/* -- */
int main(int argc, char** argv)
{
 long diagCode = 0; /* Diagnostic code */
 long group_count; /* Num groups registered */
 long server_count = WLMQ_MAX_SERVERS; /* Max servers acceptable */
 int i, j; /* for loop counters */
 int alreadyShownHeader = 0; /* Flag used for output */
 long rc = 0; /* rc for IWMDN* calls */
 struct grpinfo_block * grp_array; /* Ptr to array of groups */
 char * currentGroup; /* Working group pointer */
 struct sysinfo_block * currentServer; /* Working server pointer */
 struct sysinfo_block sys_array[WLMQ_MAX_SERVERS]; /* Array of */
 /* structures describing server programs */

/**/
/* If present, extract the group names from the command line */
/**/
 if(argc > 1)
 {
 group_count = argc - 1;
 grp_array = allocateGroupArray(group_count);
Appendix D. Sample C program source code 289

 for(i = 1; i < argc; i++)
 {
 strcpy(grp_array[i-1].cluster, argv[i]);
 }
 }
/**/
/* Else find out how many groups there are and query the list */
/**/
 else
 {
 group_count = 0; /* Force the 0x040a diagCode */
 rc = IWMDNGRP(grp_array,
 &group_count,
 &diagCode
);

/**/
/* We expect a diagCode of 0x040a (IwmRsnCodeOutputAreaTooSmall) as */
/* we set group_count to 0 before the call. group_count will contain */
/* the number of registered groups after the call has completed */
/**/
 if(diagCode == 0x040a)
 {
/**/
/* Allocate space for 2 extra groups to allow for new groups */
/* registering between the IWMDNGRP calls */
/**/
 group_count += 2;
 grp_array = allocateGroupArray(group_count);

 rc = IWMDNGRP(grp_array,
 &group_count,
 &diagCode
);
 if(rc)
 {
 fprintf(stderr, "IWMDNGRP failure, error = %d \n",
 diagCode);
 exit(2);
 }
 }
/**/
/* Unexpected return from the first IWMDNGRP */
/**/
 else
 {
 fprintf(stderr, "IWMDNGRP failure, error = %d \n",
 diagCode);
 exit(3);
 }
 }

/**/
/* Query the servers that are available for each group */
/**/
 for(i = 0; i < group_count; i++)
 {
 server_count = WLMQ_MAX_SERVERS; /* Reset the input value */

 currentGroup = grp_array[i].cluster; /* Assign working pointer */
290 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

 rc = IWMDNSRV(currentGroup,
 sys_array,
 &server_count,
 &diagCode
);

 if(rc)
 {
/**/
/* IWMDNSRV returned IwmRsnCodeNoServersRegistered */
/**/
 if(diagCode == 0x040b)
 {
 fprintf(stderr, "No servers registered for group '%s'\n",
 currentGroup);
 continue; /* Process the next group */
 }
/**/
/* IWMDNSRV returned IwmRsnCodeOutputAreaTooSmall */
/**/
 else if(diagCode == 0x040a)
 {
 fprintf(stderr, "Too many servers registered for "
 "group %s\n", currentGroup);
 fprintf(stderr, "Increase value of WLMQ_MAX_SERVERS to "
 "at least %d and recompile\n", server_count);
 exit(4);
 }
/**/
/* IWMDNSRV returned something unexpected */
/**/
 else
 {
 fprintf(stderr, "IWMDNSRV failure, error = %d \n",
 diagCode);
 exit(5);
 }
 }

/**/
/* Display information on each server in each group */
/**/
 for(j = 0; j < server_count; j++)
 {
 if(alreadyShownHeader == 0)
 {
 showTableHeader(); /* Display the table header */
 alreadyShownHeader = 1; /* Only show the header once */
 }

 currentServer = &sys_array[j]; /* Assign working pointer */

 printf("%-2d %-12.12s %-8.8s %-8.8s %-8.8s %d\n",
 i+1,
 currentGroup,
 currentServer->server,
 currentServer->host_nameid,
 currentServer->netid,
 currentServer->weight
Appendix D. Sample C program source code 291

);

/**/
/* If user_data field is not empty, show the contents. */
/**/
 if(! userDataEmpty(currentServer->user_data))
 {
 printf("UserData: ");

 if(looksLikeIPAddresses(currentServer->user_data))
 {
 showIPAddresses(currentServer->user_data);
 }
 else
 {
 hexDumpBuffer(currentServer->user_data, 64);
 }
 printf("\n");
 }
 }
 }
 return 0;
}

/* -- */
/* Function to allocate space for the group array */
/* -- */
static struct grpinfo_block * allocateGroupArray(int group_count)
{
void * ptr;

 ptr = malloc(group_count * sizeof(struct grpinfo_block));
 if(ptr == NULL)
 {
 printf("Couldn't allocate space for %d groups\n",
 group_count);
 exit(1);
 }
 return (struct grpinfo_block *)ptr;

}

/* -- */
/* Function to see if there is anything in the user_data field */
/* -- */
static int userDataEmpty(char * user_data)
{
int k;

 for(k = 0; k < 64; k++)
 {
 if(user_data[k] != '\0')
 return 0;
 }
 return 1;
}

/* -- */
/* Function to see if the user_data contains IP addresses */
/* -- */
292 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

static int looksLikeIPAddresses(char * buffer)
{
 if(buffer[0] == '\0' &&
 buffer[1] < 16 && /* 15 IP addresses can fit in user_data */
 buffer[2] == '\0' &&
 buffer[3] == '\0')
 {
 return 1;
 }

 return 0;
}

/* -- */
/* Function to display a list of dotted decimal IP addresses */
/* -- */
static void showIPAddresses(char * buffer)
{
int i;
int numAddresses;
int * anAddress = (int *)(&(buffer[4]));

 numAddresses = buffer[1]; /* 2nd byte contains num of addresses */

 for(i = 0; i < numAddresses; i++)
 {
 printf("%-15.15s ", inet_ntoa(anAddress[i]));

 if(((i+1) % 4 == 0) && i < numAddresses -1)
 printf("\n ");
 }
}

/* -- */
/* Function to display the column headings for the table of servers */
/* -- */
static void showTableHeader(void)
{
 printf("--"
 "-----------------\n");
 printf("# Group Server HostName "
 "NetId Weight\n");
 printf("--"
 "-----------------\n");
}

/* -- */
/* Function to dump a buffer in hex and string format */
/* -- */
static void hexDumpBuffer(char * buffer, int buflen)
{
int i = 0; /* loop counter */
int j = 0; /* another loop counter */
int ch = 0, line_number = 0;
char line_text[CHARS_PER_LINE + 1];
int chars_this_line = 0;
int lines_printed = 0;
int page_number = 1;
Appendix D. Sample C program source code 293

 do
 {
 chars_this_line = 0;

 printf("\n%08X: ", line_number);

 while((chars_this_line < CHARS_PER_LINE) &&
 (ch < buflen))
 {
 if(ch % 2 == 0)
 printf(" ");

 printf("%02X", buffer[ch]);

 line_text[chars_this_line] =
 isprint(buffer[ch]) ? buffer[ch] : '.';

 chars_this_line++;

 ch++;
 line_number++;
 }

/**/
/* pad with blanks to format the last line correctly */
/**/
 if(chars_this_line < CHARS_PER_LINE)
 {
 for(; chars_this_line < CHARS_PER_LINE; chars_this_line++)
 {
 if(chars_this_line % 2 == 0)
 printf(" ");
 printf(" ");
 line_text[chars_this_line] = ' ';
 }
 }

 line_text[chars_this_line] = '\0';

 printf(" '%s'", line_text);

 lines_printed ++;

 if(lines_printed == 32)
 {
 lines_printed = 0;
 printf("\n ");
 }
 }
 while(ch < buflen);
 printf("\n");
}

SOCSRVR single threading server
#include <manifest.h> /* not required in Open Edition */
#include <bsdtypes.h> /* not required in Open Edition */
#include <socket.h>
#include <in.h>
294 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

#include <stdio.h>

int main(int argc, char** argv)
{
 unsigned short port; /* port server binds to */
 struct sockaddr_in client; /* client address information */
 struct sockaddr_in server; /* server address information */
 char buf[256]; /* buffer for sending & receiving data */
 char hostName[64]; /* space to discover our hostname */
 unsigned long hostId; /* For the server's IP address */
 int s; /* socket for accepting connections */
 int ns; /* socket connected to client */
 int namelen; /* length of client name */

 if (argc != 2)
 {
 fprintf(stderr, "Usage: %s port\n", argv[0]);
 exit(1);
 }

/**/
/* First argument should be the port. */
/**/
 port = (unsigned short) atoi(argv[1]);

/**/
/* Extract our hostname */
/**/
 if(gethostname(hostName, 64) !=0)
 {
 tcperror("Gethostname()");
 exit(2);
 }

/**/
/* Extract our IP address */
/**/
 if((hostId = gethostid()) == 0)
 {
 tcperror("Gethostid()");
 exit(2);
 }

/**/
/* Get a socket for accepting connections. */
/**/
 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 tcperror("Socket()");
 exit(3);
 }

/**/
/* Bind the socket to the server address. */
/**/
 server.sin_family = AF_INET;
 server.sin_port = htons(port);
 server.sin_addr.s_addr = INADDR_ANY;

 if (bind(s, (struct sockaddr *)&server, sizeof(server)) < 0)
Appendix D. Sample C program source code 295

 {
 tcperror("Bind()");
 exit(4);
 }

/**/
/* Listen for connection requests - backlog of 255 */
/**/
 if (listen(s, 255) != 0)
 {
 tcperror("Listen()");
 exit(5);
 }

/**/
/* This server will continually loop responding to inbound requests */
/**/
 while(1)
 {
/**/
/* Accept the conversation */
/**/
 namelen = sizeof(client);
 if ((ns = accept(s, (struct sockaddr *)&client,
 &namelen)) == -1)
 {
 tcperror("Accept()");
 exit(6);
 }
/**/
/* Send our IP address so the client knows who he connected to */
/**/
 if (send(ns, (char*) &hostId, sizeof(hostId), 0) < 0)
 {
 tcperror("Send()");
 exit(7);
 }
/**/
/* Close the connection to the client and loop back to accept the */
/* next one. */
/**/
 close(ns);
 }
}

SSOCCLNT sysplex sockets sample
#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <stdio.h>
#include <iwmwdnsh.h>
/*#include <netdb.h>*/

struct hostent /* This structure is in netdb.h */
{ /* Included here due to header file */
 /* problems. */
 char *h_name; /* official name of host */
296 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatiblity */
};
struct hostent *gethostbyname();

int main(int argc, char** argv)
{
 struct hostent *hostName; /* Server's IP address */
 unsigned short port; /* port server binds to */
 int s; /* socket for accepting connections */
 struct sockaddr_in server; /* server address information */
 int type; /* type of cluster connection */
 int typelen; /* length of connection type */
 char buf[256]; /* buffer for sending & receiving data */

 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s hostname port\n", argv[0]);
 exit(1);
 }

/**/
/* First argument should be hostname. Use it to get server address. */
/**/
 hostName = gethostbyname(argv[1]);
 if (hostName == (struct hostent *) 0)
 {
 tcperror("Gethostbyname()");
 exit(2);
 }

/**/
/* Second argument should be the port. */
/**/
 port = (unsigned short) atoi(argv[2]);

/**/
/* Create a socket. */
/**/
 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 tcperror("Socket()");
 exit(3);
 }

/**/
/* Connect to the server. */
/**/
 server.sin_family = AF_INET;
 server.sin_port = htons(port);
 server.sin_addr.s_addr = *((unsigned long *)hostName->h_addr);

 if (connect(s, (struct sockaddr *)&server, sizeof(server)) < 0)
 {
 tcperror("Connect()");
 exit(4);
 }
Appendix D. Sample C program source code 297

/**/
/* Discover our socket cluster connection type */
/**/
 if (getsockopt(s, SOL_SOCKET, SO_CLUSTERCONNTYPE,
 (char *)&type, &typelen) < 0)
 {
 tcperror("GetSockOpt()");
 exit(5);
 }
 if (!(type & SO_CLUSTERCONNTYPE_NOCONN))
 {
 printf("Connection Type : \n");
 if (type & SO_CLUSTERCONNTYPE_NONE)
 printf("\tNone\n");
 if (type & SO_CLUSTERCONNTYPE_INTERNAL)
 printf("\tInternal\n");
 if (type & SO_CLUSTERCONNTYPE_SAME_IMAGE)
 printf("\tSame Image\n");
 if (type & SO_CLUSTERCONNTYPE_SAME_CLUSTER)
 printf("\tSame Cluster\n");
 }

/**/
/* Recv IP address from the server. */
/**/
 if (recv(s, (char*) &buf, sizeof(buf), 0) < 0)
 {
 tcperror("Recv()");
 exit(6);
 }
 printf("Server's IP address : %d.%d.%d.%d\n",
 buf[0], buf[1], buf[2], buf[3]);

/**/
/* Close the connection to the server. */
/**/
 close(s);
}

MTCSRVR multitasking sockets program
/*** IBMCOPYR **/
/* */
/* Component Name: MTCSRVR (alias EZAEC047) */
/* */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
298 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

/* Status: CSV2R6 */
/* */
/* SMP/E Distribution Name: EZAEC049 */
/* */
/* */
/*** IBMCOPYR **/

/***/
/* C socket Server Program */
/* */
/* This code performs the server functions for multitasking, which */
/* include */
/* . creating subtasks */
/* . socket(), bind(), listen(), accept() */
/* . getclientid */
/* . givesocket() to TCP/IP in preparation for the subtask */
/* to do a takesocket() */
/* . select() */
/* */
/* There are three test tasks running: */
/* . server master */
/* . server subtask - separate TCB within server address space */
/* . client */
/* */
/***/

static char ibmcopyr()=
 "MTCSRVR - Licensed Materials - Property of IBM. "
 "This module is \"Restricted Materials of IBM\" "
 "5647-A01 (C) Copyright IBM Corp. 1994, 1996. "
 "See IBM Copyright Instructions.";

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
/* #include <netdb.h> */
#include <socket.h>
#include <inet.h>
#include <fcntl.h>
#include <errno.h>
#include <tcperrno.h>
#include <bsdtime.h>
#include <mtf.h>
#include <stdio.h>

int dotinit(int numsubs);
void getsock(int *s);
int dobind(int *s, unsigned short port);
int dolisten(int *s);
int getname(char *myname, char *mysname);
int doaccept(int *s);
int testgive(int *s);
int dogive(int *clsocket, char *myname);

/*
 * Server Main.
 */
int main(int argc, char **argv)
{
 unsigned short port; /* port server for bind */
Appendix D. Sample C program source code 299

 int s; /* socket for accepting connections */
 int rc; /* return code */
 int count; /* counter for number of sockets */
 int clsocket; /* client socket */
 char myname[8]; /* 8 char name of this address space */
 char mysname[8]; /* my subtask name
 int numsubtasks; /* Number of subtasks */

 /*
 * Check arguments. Should be only one: the port number to bind to.
 * Added another, the number of subtasks.
 */
 if (argc != 3) {
 fprintf(stderr, "Usage: %s port subtasks\n", argv[0]);
 exit(1);
 }

 /*
 * First argument should be the port.
 */
 port = (unsigned short) atoi(argv[1]);
 fprintf(stdout, "Server: port = %d \n", port);
 /*
 * Second argument should be the number of subtasks.
 */
 numsubtasks = atoi(argv[2]);
 fprintf(stdout, "Server: numsubtasks = %d \n", numsubtasks);
 /*
 * Create subtasks
 */
 rc = dotinit(numsubtasks);
 if (rc < 0)
 perror("Srvr: error for tinit");
 printf("rc from tinit is %d\n", rc);

 getsock(&s);
 printf("Srvr: socket = %d\n", s);

 rc = dobind(&s, port);
 if (rc < 0)
 tcperror("Srvr: error for bind");
 printf("Srvr: rc from bind is %d\n", rc);

 rc = dolisten(&s);
 if (rc < 0)
 tcperror("Srvr: error for listen");
 printf("Srvr: rc from listen is %d\n", rc);

 /***************************************
 * To do nonblocking mode,
 * uncomment out this code.
 *
 rc = fcntl(s, F_SETFL, FNDELAY);
 if (rc != 0)
 tcperror("Error for fcntl");
 printf("rc from fcntl is %d\n", rc);

 ***************************************/

 rc = getname(myname, mysname);
300 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

 if (rc < 0)
 tcperror("Srvr: error for getclientid");
 printf("Srvr: rc from getclientid is %d\n", rc);

 /*--*/
 /* . issue accept(), waiting for client connection */
 /* . issue givesocket() to pass client's socket to TCP/IP */
 /* . issue select(), waiting for subtask to complete takesocket() */
 /* . close our local socket associated with client's socket */
 /* . loop on accept(), waiting for another client connection */
 /*--*/
 rc = 0;
 count = 0; /* number of sockets */
 while (rc == 0) {
 clsocket = doaccept(&s);
 printf("Srvr: clsocket from accept is %d\n", clsocket);
 count = count + 1;
 printf("Srvr: ###number of sockets is %d\n", count);
 if (clsocket != 0) {
 rc = dogive(&clsocket, myname);
 if (rc < 0)
 tcperror("Srvr: error for dogive");
 printf("Srvr: rc from dogive is %d\n", rc);
 if (rc == 0) {
 rc = tsched(MTF_ANY,"csub", &clsocket,
 myname, mysname);
 if (rc < 0)
 perror("error for tsched");
 printf("Srvr: rc from tsched is %d\n", rc);

 rc = testgive(&clsocket);
 printf("Srvr: rc from testgive is %d\n", rc);
 /* sleep(60); *** do simplified situation first ***/
 printf("Srvr: closing client socket %d\n", clsocket);
 rc = close(clsocket); /* give back this socket */
 if (rc < 0)
 tcperror("error for close of clsocket");
 printf("Srvr: rc from close of clsocket is %d\n", rc);
 /**/
 /* exit(0); *** do this simplified situation first ***/
 /**/
 } /** end of if (rc == 0) ****/
 } /**** end of if (clsocket != 0) ****/
 } /******** end of while (rc == 0) ****/
} /************ end of main ********/

/*--*/
/* dotinit() */
/* Call tinit() to ATTACH subtask and fetch() subtask load module */
/*--*/
int dotinit(int numsubs)
{
 int rc;
 /* int numsubs = 1; */
 printf("Srvr: calling __tinit\n");
 rc = __tinit("mtccsub", numsubs);
 return rc;
}

/*--*/
Appendix D. Sample C program source code 301

/* getsock() */
/* Get a socket */
/*--*/
void getsock(int *s)
{
 int temp;
 temp = socket(AF_INET, SOCK_STREAM, 0);
 *s = temp;
 return;
}

/*--*/
/* dobind() */
/* Bind to all interfaces */
/*--*/
int dobind(int *s, unsigned short port)
{
 int rc;
 int temps;
 struct sockaddr_in tsock;
 memset(&tsock, 0, sizeof(tsock)); /* clear tsock to 0's */
 tsock.sin_family = AF_INET;
 tsock.sin_addr.s_addr = INADDR_ANY; /* bind to all interfaces */
 tsock.sin_port = htons(port);

 temps = *s;
 rc = bind(temps, (struct sockaddr *)&tsock, sizeof(tsock));
 return rc;
}

/*--*/
/* dolisten() */
/* Listen to prepare for client connections. */
/*--*/
int dolisten(int *s)
{
 int rc;
 int temps;
 temps = *s;
 rc = listen(temps, 10); /* backlog of 10 */
 return rc;
}

/*--*/
/* getname() */
/* Get the identifiers by which TCP/IP knows this server. */
/*--*/
int getname(char *myname, char *mysname)
{
 int rc;
 struct clientid cid;
 memset(&cid, 0, sizeof(cid));
 rc = getclientid(AF_INET, &cid);
 memcpy(myname, cid.name, 8);
 memcpy(mysname, cid.subtaskname, 8);
 return rc;
}

/*--*/
/* doaccept() */
302 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

/* Select() on this socket, waiting for another client connection. */
/* If connection is pending, issue accept() to get client's socket */
/*--*/
int doaccept(int *s)
{
 int temps;
 int clsocket;
 struct sockaddr clientaddress;
 int addrlen;
 int maxfdpl;
 struct fd_set readmask;
 struct fd_set writmask;
 struct fd_set excpmask;
 int rc;
 struct timeval time;

 temps = *s;
 time.tv_sec = 1000;
 time.tv_usec = 0;
 maxfdpl = temps + 1;

 FD_ZERO(&readmask);
 FD_ZERO(&writmask);
 FD_ZERO(&excpmask);

 FD_SET(temps, &readmask);

 rc = select(maxfdpl, &readmask, &writmask, &excpmask, &time);
 printf("Srvr: rc from select is %d\n", rc);
 if (rc < 0) {
 tcperror("error from select");
 return rc;
 }
 else if (rc == 0) { /* time limit expired */
 return rc;
 }
 else { /* this socket is ready */
 addrlen = sizeof(clientaddress);
 clsocket = accept(temps, &clientaddress, &addrlen);
 return clsocket;
 }
}

/*--*/
/* testgive() */
/* Issue select(), checking for an exception condition, which */
/* indicates that takesocket() by the subtask was successful. */
/*--*/
int testgive(int *s)
{
 int temps;
 struct sockaddr clientaddress;
 int addrlen;
 int maxfdpl;
 struct fd_set readmask;
 struct fd_set writmask;
 struct fd_set excpmask;
 int rc;
 struct timeval time;
Appendix D. Sample C program source code 303

 temps = *s;
 time.tv_sec = 1000;
 time.tv_usec = 0;
 maxfdpl = temps + 1;

 FD_ZERO(&readmask);
 FD_ZERO(&writmask);
 FD_ZERO(&excpmask);

 /* FD_SET(temps, &readmask); */
 /* FD_SET(temps, &writmask); */
 FD_SET(temps, &excpmask);

 rc = select(maxfdpl, &readmask, &writmask, &excpmask, &time);
 printf("Srvr: rc from select for testgive is %d\n", rc);
 if (rc < 0) {
 tcperror("Srvr: error from testgive");
 }
 else
 rc = 0;

 return rc;
}

/*--*/
/* dogive() */
/* Issue givesocket() for giving client's socket to subtask. */
/*--*/
int dogive(int *clsocket, char *myname)
{
 int rc;
 struct clientid cid;
 int temps;

 temps = *clsocket;
 memset(&cid, 0, sizeof(cid));
 cid.domain = AF_INET;

 memcpy(cid.name, myname, 8);
 memcpy(cid.subtaskname," ", 8);
 printf("Srvr: givesocket socket is %d\n", temps);
 printf("Srvr: givesocket name is %s\n", cid.name);

 rc = givesocket(temps, &cid);
 return rc;
}

MTCSUBT subtask for the multitasking sockets program
#pragma runopts(noargparse,plist(mvs),noexecops)

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <inet.h>
#include <fcntl.h>
#include <errno.h>
#include <tcperrno.h>
304 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

#include <bsdtime.h>
#include <stdio.h>

/*
 * Server subtask
 */
csub(int *clsock, /* address of socket passed */
 char *tskname, /* address of caller's name */
 char *tsksname) /* address of caller's sname */
{
 struct clientid cid; /* Information needed to take socket */
 int socket; /* socket taken */
 int sendbytes; /* # bytes sent */
 int recvbytes; /* # bytes received */
 unsigned long hostId; /* For the server's IP address */
 char data[1];
 int sleeptime;

/**/
/* Take the socket given by the server. */
/**/
 memset(&cid, 0, sizeof(cid));
 memcpy(cid.name, tskname, 8);
 memcpy(cid.subtaskname, tsksname, 8);
 cid.domain = AF_INET;

 socket = takesocket(&cid, *clsock);
 if (socket < 0)
 {
 tcperror("Csub: Error from takesocket");
 }
 else
 {
/**/
/* Receive data from the client. This will be a time in tenths of */
/* seconds to sleep before closing the socket. Perform the sleep. */
/**/
 recvbytes = recv(socket, data, sizeof(data), 0);
 if (recvbytes < 0)
 {
 tcperror("Csub: Recv()");
 }
 else
 {
 printf("Sleeping for %d seconds\n", (*data)/10);
 sleeptime = (*data) / 10;
 sleep(sleeptime);
 }
/**/
/* Extract our IP address */
/**/
 if((hostId = gethostid()) == 0)
 {
 tcperror("Csub: Gethostid()");
 }
/**/
/* Send our IP address so the client knows who he connected to */
/**/
 sendbytes = send(socket, (char*) &hostId, sizeof(hostId), 0);
 if (sendbytes < 0)
Appendix D. Sample C program source code 305

 {
 tcperror("Csub: Send()");
 }
/**/
/* Close the socket. */
/**/
 close(socket);
 }
 fflush(stdout);
}

306 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 308.

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base
and TN3270 Configuration, SG24-5227

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX
Applications, SG24-5228

� OS/390 eNetwork Communications Server for V2R7 TCP/IP Implementation Guide
Volume 3: MVS Applications, SG24-5229

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 4:
Connectivity and Routing, SG24-6516

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 6: Policy
and Network Management, SG24-6839

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security,
SG24-6840

� TCP/IP in a Sysplex, SG24-5235

� Managing OS/390 TCP/IP with SNMP, SG24-5866

� Secure e-business in TCP/IP Networks on OS/390 and z/OS, SG24-5383

� TCP/IP Tutorial and Technical Overview, GG24-3376

� Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender,
SG24-5957

� Networking with z/OS and Cisco Routers: An Interoperability Guide, SG24-6297

� zSeries HiperSockets, SG24-6816

Other resources
These publications are also relevant as further information sources:

� z/OS V1R2.0 UNIX System Services Planning, GA22-7800

� z/OS V1R2.0 UNIX System Services User’s Guide, GA22-7801

� z/OS V1R1.0-V1R2.0 MVS Initialization and Tuning Guide, SA22-7591

� z/OS V1R2.0 C/C++ Programming Guide, SC09-4765

� z/OS V1R2.0 C/C++ Run-Time Library Reference, SA22-7821

� z/OS V1R2.0 CS: IP Migration, GC31-8773

� z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775

� z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776

� z/OS V1R2.0 CS: IP User’s Guide and Commands, SC31-8780
© Copyright IBM Corp. 2002. All rights reserved. 307

� z/OS V1R2.0 CS: IP System Administrator’s Commands, SC31-8781

� z/OS V1R2.0 CS: IP Diagnosis, GC31-8782

� z/OS V1R2.0 CS: IP Messages Volume 1 (EZA), SC31-8783

� z/OS V1R2.0 CS: IP Messages Volume 2 (EZB), SC31-8784

� z/OS V1R2.0 CS: IP Messages Volume 3 (EZY), SC31-8785

� z/OS V1R2.0 CS: IP Messages Volume 4 (EZZ-SNM), SC31-8786

� z/OS V1R2.0 CS: IP Application Programming Interface Guide, SC31-8788

Referenced Web sites
These Web sites are also relevant as further information sources:

� z/OS UNIX Performance

http://www.s390.ibm.com/oe/bpxa1tun.html

� The z/OS Web pages

http://www-1.ibm.com/servers/eserver/zseries/zos/installation/installz12.html

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for Redbooks at the
following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM images) from
that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
site for information about all the CD-ROMs offered, as well as updates and formats.
308 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www-1.ibm.com/servers/eserver/zseries/zos/installation/installz12.html
http://www.s390.ibm.com/oe/bpxa1tun.html
http://www-1.ibm.com/servers/eserver/zseries/zos/installation/installz12.html

Index

Symbols
&SYSCLONE parameter 185
/etc/named.boot 20
/etc/pagent.env 127
/etc/profile 127
/etc/resolv.conf 31

A
A record 46
ACK 193
acknowledgment (ACK) 180
ADSM 250, 257
affinity 189
AIX 11
Asynchronous Transfer Mode (ATM) 4
ATM 4
AUTOLOG statement 32
Automatic Restart Manager (ARM) 62
automatic VIPA takeover 6

overview 110

B
base sysplex 3
BEGINROUTES statement 249
Berkeley Internet Name Domain (BIND) 20
BIND 4.9.3 17
BIND 9 17
BIND DNS server 9, 31
bind() 70
BLOCKSIZE 248, 256
BPXPRM 258
BSDROUTINGPARMS statement 184
BUFNO 248

C
cache file 21
Capacity planning 254
CASA 180
Channel Data Link Control (CDLC) 4
Channel to Channel (CTC) 4
CHKPTINT 248
CICS 252
CINET 31
Cisco

LocalDirector 181
MPC+ (CMPC+) 182

Cisco 7206 185
Cisco 7206VX 182
Cisco 7507

and CMPC 182
and GRE 185
CASA definitions 199
© Copyright IBM Corp. 2002. All rights reserved.
Cisco Appliance Services Architecture (CASA) 180
and multicast 192
incoming request 191
protocol exchange 192
UDP usage 199

Cisco OS/390 Workload Agent 181
CLAW 187

MTU 248
performance 249

cluster 1
clustering technique 1
CNAME record 31, 46
cold standby 6
Common Link Access to Workstation (CLAW) 4

configuration 187
in our network 182

Communications Server for z/OS 4
Communications Storage Manager (CSM) 248
connection dispatching 15
connection optimization (DNS/WLM) 17
coupling facility 3
CRA4BUF 252
Cross Coupling Facility (XCF) 181

configuration 184
in out network 180

cross-system coupling facility (XCF 5
CRPLBUF 252
CS for OS/390 IP

sysplex sockets 282
CSA 251
CSM

storage requirements 251
storage usage 251

CTC
MTU 248

D
DASD 256
DATAGRAMFWD 198
DDNS 17
DEFAULTSIZE 248
deregistration, DNS 23
DESTIP 188
DEVICE 249
DEVICE statement 89
DHCP 17
DISABLESGA 254
dispatching 5
distributed database system 19
distributed DVIPA 12
distributed Dynamic VIPAs 188
Distribution Status (DIST) 94
DNS

boot file 20
 309

cache file 21
default port 34
displaying active sockets 34
dumping server cache 35
finding an address 19
forward domain file 20
in-addr.arpa 20
introduction 18
iterative query 19
loopback file 21
motivation 18
operation 29
parent server 41
primary server 20
recursive query 19
reloading data 40
resolution of server name 22
resolvers 18
resource records (RRs) 10
reverse domain file 20
reverse lookup 20
root name server 19
secondary server 20
serial number 34
stack affinity 34
starting 31
statistics 36
stopping the server 40
time-to-live (TTL) 23
trace 50, 54
tracing 38
WLM interaction if server fails 58
zone transfer 20, 21
zones 19

DNS/WLM 2, 8, 17
address definition 24
advantages 9, 25
client/server affinity 31
drawbacks 9
implementing 40
limitations 26
overview 8
query interval 276
query to WLM 21
recommendations 24
round-robin 24
service 26
TCPDATA 30
TCPDATA consideration 30
time to live 56
under different distribution 53
with dynamic routing 24
with static routing 24
zone file 42

Domain Name System (DNS) 18
DVIPA

moving 71
Dynamic Domain Name System (DDNS) 21
Dynamic Feedback Protocol (DFP) 181
Dynamic VIPA 6, 62, 110

activation 62
conflicts 70
when to use what 6

Dynamic VIPA (DVIPA) 187
Dynamic XCF 184
DYNAMICXCF 117
DYNAMICXCF statement 184

E
ease of management 3
EIGRP 180
ENDVIPADYNAMIC 188
ENDWLMCLUSTERNAME 28
environment variable

LIBPATH 127
PAGENT_LOG_FILE 127
TZ 127

ESCON 5
ESCON director 187
Ethernet 185

MTU 248
EXEC PARM keyword 50
EXPIRE field 47
EXTRATASKS 248
EZANSNMD 35
EZZ6475I message 33

F
FDDI

MTU 248
File Transfer Protocol (FTP) 180
FIN 195
fixed affinity 189
forward file 21
Forwarding Agent 179, 180

configuration 199
FTP 204, 252

capacity 256
DNS/WLM support 27
performance 247
tuning 256

FTP.DATA 248

G
Generic Routing Encapsulation (GRE) 179

defining 185
need 235
trace 206

Gigabit Ethernet 182
goal mode WLM 29
GRE 179, 185

H
HFS 32
high availability 2

in a sysplex 7
Hipersockets 4
HOME 189
310 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

HOME statement 89
horizontal growth 3
host name 8
host name resolution 8
hot standby 6
HYPERchannel 4
Hypertext Transfer Protocol (HTTP) 180

I
IGNOREREDIRECT 198
INACTIVE 254
INADDR_ANY 63
IOBUF 252
IOCTL() 71
IP assist 233, 235
IPCONFIG 220

DATAGRAMFWD 92
IPCONFIG statement 21
IPSec 11, 13
ISHELL 38
IUTSAMEH 117
IVTPRM00 252
IWMDNGRP 278
IWMDNREG 26, 274
IWMDNSRV 278
IWMSRDNS 278
IWMSRSRG 26, 274
IWMSRSRS 278

J
jcs tool 68

L
LAN Channel Station (LCS) 4
LFBUF 252
LIBPATH environment variable 127
LINK 249
LINK statement 89
load balancing 2

in a sysplex 7
LocalDirector 180, 181
LOCSITE 256
long-lived connections 15
loopback file 21
LRECL 248, 256

M
MAXFILEPROC 250
maximum transmission unit (MTU) 248
MAXPROCSYS 250
MAXPROCUSER 250
MAXPTYS 250
MAXSOCKETS 250
MAXTHREADS 250
MAXTHREADTASKS 250
MAXUIDS 250
medium access control (MAC) 232
MINIMUM TTL field 47

MNLB
configuration 197

MODDVIPA 62
MOVEABLE

IMMEDIATE 92
WHENIDLE 92

MOVEable DISRUPTive 70
MOVEable NONDISRUPTive 70
MPC 187
MTU

settings 248
MultiNode Load Balancing (MNLB) 2, 179
MULTIPATH 198
Multipath Channel Plus (MPC+) 4, 182
MVS CANCEL command 40
MVS.SERVMGR.PAGENT RACF facility class 126

N
name servers 18
NAMED 32
NCP 248
netstat

vcrt 200, 204
vdpt 200
vipadcfg 200
vipadyn 200

Network Dispatcher 2
advantages 11
cluster address 10
drawbacks 11
high availability 10
incompatibility with IPSec and VPN 11

Network Dispatcher (ND) 10
NS record 46
NSINTERADDR 19
nslookup 24
NSSIG 38, 40

O
OAT 186, 233
OMPROUTE 180
onslookup 24
Open Shortest Path First (OSPF) 184
OpenEdition 20
ORIGIN statement 43
OS/390 UNIX System Services Tuning 250
OSA Adapter Table (OAT) 186
OSA-Express 5, 235

in our network 186
OSPF 110
OSPF routing table 98
owning stack 70

P
PAGENT 181
PAGENT_LOG_FILE environment variable 127
Parallel Sysplex 3
PATHMTUDISCOVERY 198
 Index 311

Performance 247
Performance checklist 257
PID

discovering 35
ping 48
Policy Agent 12

started procedure 126
PORT statement 32
PROFILE.TCPIP 34
programs and REXX EXECs

dynamic VIPA registration 281
EXEC to collect server statistics 266, 276
EXEC to ping a server 262
multitasking sockets server program 284, 298
sockets server program 279, 294
subtask for multitasking server 304
sysplex sockets program 283, 296
WLM query program 278, 289
WLM registration program 274, 287

PTR record 46

Q
Quality of Service (QoS) 109
Queued Direct I/O (QDIO) 4

R
RACF

MVS.SERVMGR.PAGENT facility class 126
RECFM 248
Red Hat Linux 11
Redbooks Web site 308

Contact us x
REFRESH field 46
registered addresses 23
registration, DNS 23
resolv.conf 31
resolver 34
RESOLVER_CONFIG 31
RETRY field 46
reverse file 21
RIP 110
root domain 18
root name server 19
round-robin 23
routing

with VIPA 25
Routing Information Protocol (RIP) 184

S
SAMEHOST 4
SCANINTERVAL 254
SERIAL field 46
Server Bind Control 66

configuration 66
Service Manager 181
setsockopt 251
shared DLCs 4
SIGINT signal 35

single network-visible IP address 109
single system-wide image 3
SITE 256
SO_SNDBUF 251
SOA record 43, 46
SOURCEVIPA 24
SQA 251
START DEVICE 233
static addresses 23
STDENV DD card 127
storage requirements 251
Sun Solaris 11
SYN 193
synch (SYN) 180
SYS1.PARMLIB

tuning 250
SYS1.TCPPARMS 31
sysplex 3
Sysplex Distributor 2, 12, 179

advantages 12, 111
and MNLB 179
and primary router 186
backup 220
DATAGRAMFWD 112
details 109
distributing stack 12
drawbacks 13
DYNAMICXCF 112
FTP support limitation 14
incompatibility with IPSec and VPN 13
operation 112
policies in LDAP server 131
QoS issues 111
QoS monitoring 128
recovery 228
SYSPLEXROUTING 112
using QoS information 12
VIPADISTRIBUTE 112
WLM 109

sysplex sockets 282
SYSPLEXROUTING 21

and Sysplex Distributor 117
configuring 198
stack registration 27

SYSPLEXW EXEC 54
sysplex-wide VIPA takeback 91
SYSTCPD DD card 31
System Determined Blocksize (SDB) 256

T
TCP

buffer sizes 251
window size 251

TCP exclusive DLCs 4
TCP/IP

addressing 18
host names 18
performance checklist 257
routing with VIPA 25

TCPCONFIG 251
312 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

TCPIP.DATA
performance 248

TCPRCVBUFRSIZE 251, 257
TCPSENDBFRSIZE 251
Telnet 180, 252

capacity 255
tuning 254

Telnet storage utilization 253
TELNETPARMS 254
TIBUF 252
TIMEMARK 254
Time-to-Live (TTL) 47
TN3270 204, 232, 252

and Dynamic VIPA 67
DNS/WLM support 27
performance 247

TN3270E 211
token-ring 185

MTU 248
TRACE RESOLVER 248
tracing

disabling 250
TRLE 186
TSO 32
TTL 47
Tuning 247
tuning 247
tunnel 185
TZ environment variable 127

U
UDP

buffer sizes 251
UDPCONFIG 251
UDPRCVBUFRSIZE 251
UDPSENDBFRSIZE 251
UNIX System Services 20

and DNS 20
WLM registration 274

UNIXMAP RACF 250

V
VARSUBNETTING 198
VIAPDYNAMIC 188
VIPA 110

automatic VIPA takeover 110
benefits of VIPA with DNS/WLM 25
configuring for dynamic VIPA 63
configuring VIPA takeover 91
definitions 97, 103
description 88
Dynamic VIPA 6

benefits 62
for application instance 110
takeover 89

enhancements 88
modifying application for Dynamic VIPA 65
monitoring 93
overview 6

program to register Dynamic VIPA 281
takeback

MOVE IMMED 96
MOVE WHENIDLE 102
overview 88

takeover 6, 88, 96
MOVE IMMED 96
MOVE WHENIDLE 102
overview 88

VIPA status
monitoring 93

VIPABACKUP 92, 120
format 63

VIPADEFINE 90, 120
format 63

VIPADELETE 92
format 63

VIPADIST 188
VIPADISTRIBUTE

format 63
sample 220
using 120

VIPADYNAMIC
format 62
sample 197
using 120

VIPARange 70
VIPASMPARMS 198
Virtual IP Address (VIPA) 61

static 88
VPN 13

incompatibility with ND 11
VTAM 5
VTAM Buffer Settings 252

W
Web 232
WebSphere Edge Server 10

availability 11
wildcard affinity 190
Windows NT 11
WLM 12, 109

configuration 29
deregistration 275
DNS query interval 276
goal mode 5, 29
registration of application 21, 26, 274
registration of stack 21, 275
weights 23

WLMCLUSTERNAME 28
Workload Manager (WLM) 5

and MNLB 180
and target stacks 181
introduction 5

X
XCF 4, 6

overview 5
XCF dynamics 5
 Index 313

314 Communications Server for z/OS V1R2 Implementation Guide Volume 5: Availability, Scalability, and Performance

(0.5” spine)
0.475”<->0.873”

250 <-> 459 pages

Com
m

unications Server for z/OS V1R2 TCP/IP Im
plem

entation Guide Volum
e 5: Availability, Scalability, and Perform

ance

®

SG24-6517-00 ISBN 0738424161

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Communications Server for
z/OS V1R2 TCP/IP
Implementation Guide
Volume 5: Availability, Scalability, and Performance

Covers load balancing
with DNS/WLM,
Sysplex Distributor
and MNLB

Describes high
availability with
dynamic VIPA
scenarios

Details z/OS TCP/IP
settings to increase
performance

The Internet and enterprise-based networks have led to a rapidly
increasing reliance upon TCP/IP implementations. The zSeries platform
provides an environment in which critical business applications flourish.
The demands placed on these systems are growing and require a solid,
scalable, highly available, and highly performing operating system and
TCP/IP component. z/OS and Communications Server for z/OS provide
for such a requirement with a TCP/IP stack that is robust and rich in
functionality. The Communications Server for z/OS TCP/IP
Implementation Guide series provides a comprehensive, in-depth
survey of CS for z/OS.

Volume 5 concentrates on the availability and scalability of z/OS TCP/IP.
We cover load-balancing solutions including DNS/WLM, Sysplex
Distributor, and the preferred Sysplex Distributor/MNLB joint solution.
We further describe mechanisms by which availability is increased on
z/OS systems with dynamic VIPA and Automatic VIPA Takeover. Finally,
we provide a survey of tuning exercises that can be employed to further
enhance the performance of your z/OS TCP/IP system.

Because of the varied scope of CS for z/OS, this volume is not intended
to cover all aspects of it. The main goal of this volume is to provide an
insight into the different functions available in CS for z/OS to increase
availability, scalability, and performance through the use of VIPAs,
load-balancing mechanisms, and performance tuning. For more
information, including applications available with CS for z/OS IP, please
refer to the other volumes in the series.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 The role of the sysplex
	1.1.1 High availability
	1.1.2 Load balancing

	1.2 Sysplex overview
	1.3 Communications Server for z/OS
	1.4 Network interfaces to the sysplex
	1.5 Workload Manager
	1.6 Cross-system coupling facility
	1.7 High availability with Virtual IP Addressing (VIPA)
	1.8 Providing load balancing and high availability simultaneously
	1.8.1 DNS/WLM solution
	1.8.2 Network Dispatcher
	1.8.3 Sysplex Distributor
	1.8.4 MultiNode Load Balancing and Sysplex Distributor
	1.8.5 Which solution is best?

	Chapter 2. DNS/WLM (connection optimization)
	2.1 Domain Name System (DNS) overview
	2.1.1 Why DNS?
	2.1.2 What is the Domain Name System?
	2.1.3 DNS implementation with CS for z/OS IP
	2.1.4 Files to support a DNS implementation

	2.2 How load distribution works using DNS/WLM
	2.2.1 Data returned by the name server
	2.2.2 Using VIPA and a dynamic routing protocol with DNS/WLM

	2.3 The pros and cons of DNS/WLM
	2.3.1 Benefits of DNS/WLM workload distribution
	2.3.2 DNS/WLM limitations

	2.4 Application and stack registration to WLM
	2.4.1 Stack registration with DNS/WLM
	2.4.2 Communications Server for z/OS V1R2 IP application support
	2.4.3 DNS/WLM registration results

	2.5 Working with DNS/WLM
	2.5.1 WLM configuration
	2.5.2 DNS/WLM TCPDATA consideration
	2.5.3 Client/server affinity
	2.5.4 Starting the DNS server
	2.5.5 Displaying the DNS active sockets
	2.5.6 Dumping the DNS server cache
	2.5.7 DNS statistics
	2.5.8 Discovering signals available for process
	2.5.9 Tracing the name server
	2.5.10 Reloading DNS data
	2.5.11 Stopping the DNS server

	2.6 Implementation scenario
	2.6.1 Primary DNS configuration on MVS03
	2.6.2 Secondary DNS configuration MVS28
	2.6.3 Parent DNS configuration
	2.6.4 BIND DNS resource records
	2.6.5 Observing the effects of WLM and DNS
	2.6.6 DNS DUMP of primary DNS server in the sysplex
	2.6.7 DNS trace of WLM data for the primary DNS in the sysplex
	2.6.8 Testing workload distribution with different CPU utilizations
	2.6.9 More on resource record TTL
	2.6.10 Test application
	2.6.11 Test application - server failure case

	Chapter 3. Dynamic VIPA (for application instance)
	3.1 Benefits of Dynamic VIPA
	3.2 Implementing Dynamic VIPA
	3.2.1 Dynamic VIPA configuration (for application instance)
	3.2.2 Solutions for applications that bind() to INADDR_ANY
	3.2.3 Examples of Dynamic VIPA

	3.3 Dynamic VIPA conflicts
	3.3.1 bind()
	3.3.2 IOCTL
	3.3.3 Scenarios

	Chapter 4. Automatic VIPA takeover and takeback
	4.1 Overview of VIPA takeover/takeback
	4.1.1 VIPA concept
	4.1.2 Dynamic VIPA enhancements
	4.1.3 VIPA takeover and VIPA takeback
	4.1.4 Benefits of sysplex-wide VIPA takeover
	4.1.5 Benefits of sysplex-wide VIPA takeback

	4.2 Implementing VIPA takeover and takeback
	4.2.1 Automatic VIPA takeover/takeback configuration

	4.3 Monitoring VIPA status
	4.3.1 Display Sysplex command
	4.3.2 NETSTAT commands

	4.4 Examples of VIPA takeover and takeback
	4.4.1 Automatic VIPA takeover/takeback - MOVE IMMED
	4.4.2 Automatic VIPA takeover/takeback - MOVE WHENIDLE

	Chapter 5. Sysplex Distributor
	5.1 Static VIPA and Dynamic VIPA overview
	5.2 What is Sysplex Distributor?
	5.2.1 Sysplex Distributor functionality
	5.2.2 Backup capability
	5.2.3 Recovery

	5.3 The role of dynamic routing with Sysplex Distributor
	5.4 Sysplex Distributor implementation
	5.4.1 Requirements
	5.4.2 Limitations
	5.4.3 Implementation

	5.5 Sysplex Distributor and policy
	5.5.1 Sysplex Distributor QoS policy in the PAGENT file
	5.5.2 Starting and stopping PAGENT
	5.5.3 Monitoring the Sysplex Distributor QoS
	5.5.4 Sysplex Distributor policies in the LDAP server

	5.6 Implementation examples
	5.6.1 Scenario 1: Three IP stacks distributing FTP services
	5.6.2 Scenario 2: VIPA takeover and takeback with Sysplex Distributor
	5.6.3 Scenario 3: Distributing multiple IP services
	5.6.4 Scenario 4: Deleting and adding a VIPADISTRIBUTE statement
	5.6.5 Scenario 5: Removing a target stack from distribution
	5.6.6 Scenario 4 - Fast connection reset demonstration

	5.7 Diagnosing Sysplex Distributor problems

	Chapter 6. Sysplex Distributor with MNLB
	6.1 Sysplex Distributor/MNLB joint solution overview
	6.2 Advantages of the solution
	6.3 IP addresses used during our tests
	6.4 Data flow: Service Manager and Forwarding Agent
	6.4.1 Wildcard affinity and processing
	6.4.2 Service Manager processes TCP connection request
	6.4.3 Continuation of the TCP connection establishment process
	6.4.4 Fixed affinity processing
	6.4.5 Prerequisites for the CASA protocol exchange
	6.4.6 Message flow of wildcard and fixed affinities, SYN, ACK, data
	6.4.7 Message flow for connection data with no fixed affinity
	6.4.8 Message flow for closing a TCP connection

	6.5 Service Manager implementation
	6.5.1 Service Manager new TCPIP.PROFILE definitions

	6.6 TCP/IP stack of the target systems
	6.6.1 Basic TCPIP.PROFILE definitions

	6.7 Forwarding Agent definitions
	6.7.1 CASA definitions for Cisco 7507
	6.7.2 CASA definitions for Cisco router 7206VXR

	6.8 Operations: control and displays
	6.8.1 CASA information in the Sysplex Distributor
	6.8.2 CASA information in the Forwarding Agent
	6.8.3 Integrated CASA information

	6.9 Sysplex Distributor backup
	6.9.1 TCPIP.PROFILE definitions
	6.9.2 Sysplex Distributor backup procedures

	6.10 Generic Routing Encapsulation (GRE) protocol
	6.10.1 The need for GRE
	6.10.2 Search for a shared OSA-Express solution
	6.10.3 Generic Routing Encapsulation (GRE) overview
	6.10.4 Definitions in the Cisco routers 7507 and 7206

	Chapter 7. Performance and tuning
	7.1 Tuning the stack for performance
	7.1.1 TCP/IP configuration files
	7.1.2 Setting the appropriate MTU for devices
	7.1.3 Devices and links
	7.1.4 Tracing

	7.2 z/OS UNIX System Services tuning
	7.2.1 BPXPRMxx (SYS1.PARMLIB) tuning

	7.3 Storage requirements
	7.3.1 TCP and UDP send/receive buffer sizes
	7.3.2 CSM storage usage
	7.3.3 VTAM buffer settings

	7.4 Application performance and capacity
	7.4.1 Telnet (TN3270)
	7.4.2 FTP

	7.5 TCP/IP performance checklist

	Appendix A. Dump of T28ATCP name server - single-path network
	Appendix B. REXX EXECs to gather connection statistics
	32-Bit Windows EXEC to issue repeated pings
	EXEC to connect to server using TCP
	REXX statistics subroutine

	Appendix C. Sample applications and programs
	WLMREG, a sample registration program
	The registration call
	To deregister, or not to deregister?
	Waiting for WLM to Update DNS

	Collecting statistics using REXX
	WLMQ, a WLM query program
	SOCSRVR, a simple socket server program
	Modifying SOCSRVR for Dynamic VIPA

	Sysplex sockets
	Discovering partner information
	SSOCCLNT, a sample sysplex sockets program

	Loading the system
	MTCSRVR, a multitasking socket program
	Extra option for the REXX client program

	Appendix D. Sample C program source code
	WLMREG registration sample
	WLM query program

	SOCSRVR single threading server
	SSOCCLNT sysplex sockets sample
	MTCSRVR multitasking sockets program
	MTCSUBT subtask for the multitasking sockets program

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

