

ibm.com/redbooks

TCP/IP in a Sysplex

Adolfo Rodriguez
Sandra Freitag

Fredy Pabst
Claudia Possebon

Implement load balancing and high
availability in your sysplex

Contains the latest technology,
including Sysplex Distributor

Includes useful configuration
details and scenarios

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization SG24-5235-02

TCP/IP in a Sysplex

March 2001

© Copyright International Business Machines Corporation 1998 2001. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

Third Edition (March 2001)

This edition applies to Version 2 Release 10 of IBM Communications Server for OS/390.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix F,
“Special notices” on page 315.

Take Note!

Contents

Preface . ix
The team that wrote this redbook . ix
Comments welcome . x

Chapter 1. Introduction to TCP/IP in a sysplex .1
1.1 Sysplex objectives .1

1.1.1 High availability .2
1.1.2 Load balancing .2

1.2 Sysplex overview .3
1.3 IBM Communications Server for OS/390 .3
1.4 Network interfaces to the sysplex .4
1.5 Workload Manager .4
1.6 Cross-system coupling facility .5
1.7 High availability with Virtual IP Addressing (VIPA) 5
1.8 Providing load balancing and high availability simultaneously7

1.8.1 DNS/WLM solution .8
1.8.2 Network Dispatcher .10
1.8.3 Sysplex Distributor .12
1.8.4 Which solution is best? .14

Chapter 2. DNS/WLM (connection optimization) .17
2.1 Domain Name System (DNS) overview .17

2.1.1 Why DNS? .17
2.1.2 What is the Domain Name System? .18
2.1.3 DNS implementation with CS for OS/390 IP 20
2.1.4 Files to support a DNS implementation .21

2.2 How load distribution works using DNS/WLM .21
2.2.1 Data returned by the name server .23
2.2.2 Using VIPA and a dynamic routing protocol with DNS/WLM 25

2.3 The pros and cons of DNS/WLM .26
2.3.1 Benefits of DNS/WLM workload distribution 26
2.3.2 DNS/WLM limitations .26

2.4 Application and stack registration to WLM. .27
2.4.1 Stack registration with DNS/WLM .28
2.4.2 CS for OS/390 V2R10 IP application support 28
2.4.3 DNS/WLM registration results .29

2.5 Working with DNS/WLM .30
2.5.1 WLM configuration .30
2.5.2 DNS/WLM TCPDATA consideration .30
2.5.3 Client/server affinity .31
2.5.4 Starting the DNS server .32
2.5.5 Displaying the DNS active sockets .35
2.5.6 Dumping the DNS server cache .36
2.5.7 DNS statistics .37
2.5.8 Discovering signals available for process .38
2.5.9 Tracing the name server .39
2.5.10 Reloading DNS data .41
2.5.11 Stopping the DNS server .41

2.6 Implementation scenario .41
2.6.1 Primary DNS configuration on MVS03. .43
2.6.2 Secondary DNS configuration MVS28 .45
© Copyright IBM Corp. 1998 2001 iii

2.6.3 Parent DNS configuration . 46
2.6.4 BIND DNS resource records . 47
2.6.5 Observing the effects of WLM and DNS. 48
2.6.6 DNS DUMP of primary DNS server in the sysplex 51
2.6.7 DNS trace of WLM data for the primary DNS in the sysplex 52
2.6.8 Testing workload distribution with different CPU utilizations. 55
2.6.9 More on resource record TTL. 57
2.6.10 Test application . 59
2.6.11 Test application - server failure case . 60

Chapter 3. Network Dispatcher . 63
3.1 Network Dispatcher overview . 63

3.1.1 Network Dispatcher components . 65
3.1.2 High availability for Network Dispatcher . 65

3.2 Windows NT Network Dispatcher configuration . 67
3.2.1 Windows NT executor configuration . 68
3.2.2 Windows NT manager configuration . 72
3.2.3 Windows NT MVS (WLM) advisor configuration 73
3.2.4 Windows NT high availability configuration 74

3.3 2216 Network Dispatcher configuration . 76
3.3.1 2216 NDR executor configuration . 76
3.3.2 2216 NDR manager configuration . 80
3.3.3 2216 NDR advisor configuration . 86
3.3.4 2216 NDR high availability . 93

Chapter 4. Dynamic VIPA (for application instance) 101
4.1 Benefits of Dynamic VIPA . 101
4.2 Implementing Dynamic VIPA . 102

4.2.1 Dynamic VIPA configuration (for application instance) 102
4.2.2 Solutions for applications that bind() to INADDR_ANY 103
4.2.3 Examples of Dynamic VIPA . 104

4.3 Dynamic VIPA conflicts . 109
4.3.1 bind() . 109
4.3.2 IOCTL . 110
4.3.3 Scenarios . 111

Chapter 5. Automatic VIPA takeover and takeback 127
5.1 Overview of VIPA takeover/takeback . 127

5.1.1 VIPA concept . 127
5.1.2 Dynamic VIPA enhancements . 128
5.1.3 VIPA takeover and VIPA takeback . 128
5.1.4 Benefits of sysplex-wide VIPA takeover . 130
5.1.5 Benefits of sysplex-wide VIPA takeback . 130

5.2 Implementing VIPA takeover and takeback . 131
5.2.1 Automatic VIPA takeover/takeback configuration 131

5.3 Monitoring VIPA status . 132
5.3.1 Display Sysplex command . 133
5.3.2 Netstat commands . 134

5.4 Examples of VIPA takeover and takeback . 136
5.4.1 Automatic VIPA takeover/takeback - MOVE IMMED 136
5.4.2 Automatic VIPA takeover/takeback - MOVE WHENIDLE 142

Chapter 6. Routing in a sysplex environment . 151
6.1 Shared OSA pre-routing . 152
iv TCP/IP in a Sysplex

6.2 IP routing overview .153
6.2.1 RIP .156
6.2.2 OSPF .156

6.3 VIPA considerations .157
6.3.1 VIPA address assignment .157
6.3.2 Fault tolerance with VIPA .157
6.3.3 Beware of ICMP redirection. .158
6.3.4 Using SOURCEVIPA. .158

6.4 Configuring ORouteD .159
6.5 Configuring OMPROUTE .161

6.5.1 Common OMPROUTE configuration .161
6.5.2 OMPROUTE with RIP .165
6.5.3 OMPROUTE with OSPF .167
6.5.4 OMPROUTE and automatic VIPA takeover174
6.5.5 Interface cost considerations. .176
6.5.6 Multipath considerations .178
6.5.7 VTAM and I/O definitions .178
6.5.8 2216 configuration. .180

Chapter 7. Sysplex Distributor .187
7.1 Static VIPA and Dynamic VIPA overview .187
7.2 What is Sysplex Distributor? .188

7.2.1 Sysplex Distributor functionality. .190
7.2.2 Backup capability .191
7.2.3 Recovery. .193

7.3 The role of dynamic routing with Sysplex Distributor193
7.4 Sysplex Distributor and policy .194

7.4.1 Sysplex Distributor QoS policy in the PAGENT file 196
7.4.2 Starting and stopping PAGENT .199
7.4.3 Monitoring the Sysplex Distributor QoS .201
7.4.4 Sysplex Distributor policies in the LDAP server204

7.5 Sysplex Distributor implementation .207
7.5.1 Requirements .207
7.5.2 Incompatibilities .207
7.5.3 Limitations. .208
7.5.4 Implementation .210

7.6 Monitoring Sysplex Distributor. .211
7.7 Implementation examples .212

7.7.1 Scenario 1: Three IP stacks distributing FTP services213
7.7.2 Scenario 2: VIPA takeover and takeback with Sysplex Distributor . .228
7.7.3 Scenario 3: Distributing multiple IP services 234
7.7.4 Scenario 4: Deleting and adding a VIPADISTRIBUTE statement . . .243
7.7.5 Scenario 5: Removing a target stack from distribution246

7.8 Diagnosing Sysplex Distributor problems .251

Appendix A. Sample applications and programs . 253
A.1 WLMREG, a sample registration program . 253

A.1.1 The registration call . 254
A.1.2 To deregister, or not to deregister?. 255
A.1.3 Waiting for WLM to Update DNS . 256

A.2 Collecting statistics using REXX . 256
A.3 WLMQ, a WLM query program . 258
A.4 SOCSRVR, a simple socket server program . 260
 v

A.4.1 Modifying SOCSRVR for Dynamic VIPA .261
A.5 Sysplex sockets .262

A.5.1 Discovering partner information .262
A.5.2 SSOCCLNT, a sample sysplex sockets program 263

A.6 Loading the system .264
A.6.1 MTCSRVR, a multitasking socket program .264
A.6.2 Extra option for the REXX client program .265

Appendix B. Sample C program source code. .267
B.1 WLMREG registration sample .267
B.2 WLM query program .268
B.3 SOCSRVR single threading server .274
B.4 SSOCCLNT sysplex sockets sample. .276
B.5 MTCSRVR multitasking sockets program .278
B.6 MTCSUBT subtask for the multitasking sockets program285

Appendix C. REXX EXECs to gather connection statistics 287
C.1 32-Bit Windows EXEC to issue repeated PINGs .287
C.2 EXEC to connect to server using TCP. .290
C.3 REXX statistics subroutine. .293

Appendix D. Profiles, data files and parameter files295
D.1 Configuration files for RIP examples .295

D.1.1 Profile for TCPIPC stack at RA03 image - PROF03C295
D.1.2 TCPIP.DATA File for TCPIPC stack at RA03 image - TCPD03C296
D.1.3 Telnet parameters for TCPIPC stack at image RA03 - TELN03A297
D.1.4 FTP data parameters for FTP server - FDATA03C and 39C.299
D.1.5 Profile for TCPIPC stack at RA39 image - PROF39C299
D.1.6 TCPIP.DATA file for TCPIPC stack at RA39 image - TCPD39C.301
D.1.7 Telnet parameters for TCPIPC stack on RA39 image - TELN39C 301

D.2 Configuration files for OSPF examples .302
D.2.1 Profile for TCPIPC stack at RA03 image - PROF03C302
D.2.2 TCPIP.DATA file for TCPIPC stack at RA03 image - TCPD03C.304
D.2.3 Telnet parameters for TCPIPC stack at image RA03 - TELN03A304
D.2.4 FTP data parameters for FTP server - FDATA03C and 39C.306
D.2.5 OMPROUTE configuration file for TCPIPC stack at RA03 image -
OM03CCFG .307
D.2.6 Profile for TCPIPC stack at RA39 image - PRO39C307
D.2.7 TCPIP.DATA file for TCPIPC stack at RA39 image - TCPD39C.309
D.2.8 Telnet parameters for TCPIPC stack on RA39 image - TELN39C 309
D.2.9 OMPROUTE configuration file for TCPIPC stack at RA39 image -
OM39CCFG .310

Appendix E. Dump of T28ATCP name server - single-path network313

Appendix F. Special notices .315

Appendix G. Related publications .317
G.1 IBM Redbooks .317
G.2 IBM Redbooks collections .317
G.3 Other resources .317
G.4 Referenced Web sites .318
vi TCP/IP in a Sysplex

How to get IBM Redbooks .319
IBM Redbooks fax order form. 320

Index .321

IBM Redbooks review .325
 vii

viii TCP/IP in a Sysplex

Preface

The sysplex environment provides a unique setting for the creation of high
performing application servers. Quite simply, the main goals of a sysplex are high
availability and load balancing. That is, the sysplex provides the ability to maintain
a service as highly available and the ability to add resources so that service
performance can scale with growing number of client requests. This redbook
demonstrates how these goals can be achieved in the particular environment of
IBM Communications Server for OS/390 and the TCP/IP applications that
function with it.

In this redbook, we describe the objectives of a sysplex and include a discussion
of three sysplex-specific solutions that help to meet these demands. All of these
three solutions make use, to some extent, of the MVS Workload Manager (WLM).
Because of this, we describe the benefits of WLM-aware solutions and include
source application code that can be used to work with WLM. Additionally,
because the sysplex notion of high availability is so closely tied together with the
Virtual IP Addressing (VIPA) concept, we discuss in detail the advantages of
VIPA and the necessary configuration that needs to take place when using VIPA.
This includes a detailed routing discussion as we deal with VIPAs in the sysplex.

We highlight the solution discussion with the description of Sysplex Distributor, a
new function available on the sysplex as of IBM Communications Server for
OS/390 V2R10 IP. Sysplex Distributor is the state-of-the-art technology of
achieving efficient load balancing and high availability within the sysplex. We
compare the issues associated with Sysplex Distributor with those of the Domain
Name System solution called DNS/WLM and the Network Dispatcher solution.
We provide detailed descriptions of these as well.

To this end, this redbook will help you design your OS/390-based IP network to
gain the maximum benefit from the features available within the sysplex to
achieve the stringent high availability and load balancing demands placed on your
OS/390 servers.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Adolfo Rodriguez is an Advisory I/T Specialist at the International Technical
Support Organization, Raleigh Center. He writes extensively and teaches IBM
classes worldwide on all areas of TCP/IP. Before joining the ITSO, Adolfo worked
in the design and development of Communications Server for OS/390, in RTP,
NC. He holds a B.A. degree in Mathematics and a B.S. degree in Computer
Science, both from Duke University, Durham, NC. He is currently pursuing the
Ph.D. degree in Computer Science at Duke University, with a concentration on
Networking Systems.

Claudia Possebon is a Services Specialist in IBM Brazil. She has seven years of
experience in the networking field in IBM. She holds a degree in Computer
Science from Pontifica Universidade Catolica in Sao Paulo. Her areas of
expertise include TCP/IP and VTAM.
© Copyright IBM Corp. 1998 2001 ix

Sandra Freitag is a Services Specialist in IBM Brazil. She has eight years of
experience in networking field. Her areas of expertise include SNA and TCP/IP in
OS/390 and VM environments.

Fredy Pabst is an Advisory IT Specialist with CS/390 in IBM Switzerland. He has
11 years of experience in the networking field. He has worked with IBM for 10
years. His areas of expertise include APPN, HPR, APPC and TCP/IP.

Thanks to the following people for their invaluable contributions to this project:

Shawn Walsh, Gail Christensen, Tatsuhiko Kakimoto, Linda Robinson, Juan
Rodriguez, George Baker, Byron Braswell
International Technical Support Organization, Raleigh Center

Tom Moore, Julie Krenzer, Dave Herr, Mike Law, Jay Aiken, Mac Devine, Alfred
Christensen, Jeff Haggar, Mike Fitzpatrick, Bebe Isrel
IBM CS for OS/390 Development

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

 • Fax the evaluation form found in “IBM Redbooks review” on page 325 to the
fax number shown on the form.

 • Use the online evaluation form found at ibm.com/redbooks

 • Send your comments in an Internet note to redbook@us.ibm.com
x TCP/IP in a Sysplex

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction to TCP/IP in a sysplex

The increasing demands of network servers, and in particular S/390 servers, has
led to the creation of different techniques to address performance requirements
when a single server is not capable of providing the availability and scalability
demands placed on it by its clients. Specifically, network solutions make use of
what is referred to as the clustering technique, whereby multiple servers are
associated together into a cluster to provide sufficient processing power and
availability characteristics to handle the demands of the clients.

Within the scope of this book, this cluster functionality is provided by the sysplex.
That is, the sysplex provides the necessary capability to cluster together a
number of S/390 servers that can cooperate with one another to deliver the
processing power and availability needed to service the demands required of a
particular service environment.

This redbook provides functional descriptions of solutions implementing various
forms of the clustering technique. We compare these approaches, noting the
advantages and disadvantages of each. Additionally, we describe the Virtual IP
Addressing (VIPA) concept and the high availability problems that it addresses.
We also make note of interesting issues regarding routing within the sysplex,
including the role of dynamic routing.

The previous edition of this redbook was based on a Communications Server for
OS/390 V2R8 environment. In this updated redbook, we have not made any
changes to some of the examples provided in the earlier edition. This applies to
the examples in Chapter 2, “DNS/WLM (connection optimization)” on page 17
and Chapter 3, “Network Dispatcher” on page 63. The examples are still valid, but
you should be aware that the details of the displays may have changed if you
implement a later release than V2R8.

1.1 Sysplex objectives

Solutions utilizing the clustering approach to increase server availability and
processing capability attempt to provide mechanisms by which they ensure the
viability of the cluster in an environment containing a large number of clients
generating a potentially high number of requests. To do so, the clustering
technique can provide for two main objectives, high availability and load
balancing. In some cases, clustering techniques address only high availability, as
is the case with Dynamic VIPA that provides for availability in spite of potential
TCP/IP stack or OS/390 image failures. In other cases, the intent is to provide for
both high availability and load balancing, as is done by the Domain Name
System/Workload Manager solution (DNS/WLM), Network Dispatcher, and
Sysplex Distributor.

In general, load balancing refers to the ability to utilize different systems within
the cluster simultaneously, thereby taking advantage of the additional
computational function of each. Further, clustering techniques addressing load
balancing lead to other system requirements, such as that of a single
system-wide image (one identity by which clients access the system), horizontal
growth, and ease of management.
© Copyright IBM Corp. 1998 2001 1

1.1.1 High availability
The traditional view of a single server has been primarily a single machine with
perhaps a few network interfaces (IP addresses). This tends to lead to many
potential points of failure within the server: the machine itself (hardware), the
operating system (including TCP/IP stack) kernel executing on the machine, or a
network interface (and the IP address associated with it). Static Virtual IP
Addresses (VIPAs) exclude the network interface as a point of failure while
Dynamic VIPAs additionally aid with server (image) or kernel failure. In this way,
high availability is seen as the availability of the entire server cluster and the
service it provides. Further, VIPAs can be used in conjunction with the three load
balancing solutions discussed in this book, DNS/WLM, Network Dispatcher, and
Sysplex Distributor.

Clustering techniques that address the load balancing of connections requests
also typically provide for some high availability. That is, these techniques dispatch
connections to target servers and can exclude failed servers from the list of target
servers that can receive connections. In this way, the dispatching function avoids
routing connections and requests to a server incapable of satisfying such
requests.

1.1.2 Load balancing
Load balancing is the ability for a cluster to spread workload evenly (or based on
some policy) to target servers comprising the cluster. Usually, this load balancing
is measured by some notion of perceived load on each of the target servers. This
book describes and compares three techniques that provide load balancing:
DNS/WLM, Network Dispatcher, and Sysplex Distributor. Each identifies the
target S/390 servers willing to receive client connections based on some
specification.

By providing load balancing, clustering techniques must also provide for other
system requirements in addition to the dispatching of connections. These include
the ability to advertise some single system-wide image or identity so that clients
can uniquely and easily identify the service. Additionally, clustering techniques
should also provide for horizontal growth of the system and ease of management.

1.1.2.1 Single system-wide image
Clients connecting to a cluster should not be aware of the internal make-up of a
cluster. More specifically, clients should not even be aware that the service they
are requesting is actually being serviced by a collection or cluster of servers.
Instead, clients must be provided with some single image identifier to be used
when connecting to the service. DNS/WLM uses some specific hostname to
identify a service within the cluster. In this manner, clients making requests of the
service use the hostname as the single system-wide identity. In Network
Dispatcher (NDR) and Sysplex Distributor, however, the identity is that of some IP
address associated with the cluster. In the case of Sysplex Distributor, this
address is a distributed Virtual IP Address (VIPA).

1.1.2.2 Horizontal growth
As the clients’ demands on the service increase, clusters must provide a way to
expand the cluster of servers to accommodate for such growing demand. Put in
another way, the cluster must provide a mechanism by which to add servers
without disrupting the operation of the cluster. To this end, the service is made
2 TCP/IP in a Sysplex

available to clients at all times and can grow horizontally to accommodate for
increased demand placed on the cluster by the clients.

1.1.2.3 Ease of management
The administrative burden associated with the cluster should not increase as we
add servers to the cluster. It is desirable to use the same configurations for many
systems in the cluster (sysplex). Within a sysplex, servers are homogenous,
since a sysplex is comprised solely of S/390 servers. As such, many of the
configurations can be shared among the different S/390 servers, thereby
reducing the administrative burden associated with the sysplex. Additionally, as
the size of the cluster increases, the administrative overhead in adding systems
to the cluster should be as low as possible.

1.2 Sysplex overview

Within this redbook, we use the term sysplex to refer to a group of loosely
coupled OS/390 (MVS) images. For example, a sysplex could be comprised of
several LPARs within a physical host, or it could be multiple physical hosts
connected via ESCON channels. In this way, the sysplex provides the basis for
implementations of the clustering technique. For the remainder of this book, we
use the terms cluster and sysplex interchangeably.

Sysplex systems can be distinguished between base sysplex and Parallel
Sysplex, the Parallel Sysplex having a coupling facility. The coupling facility is a
high-speed shared medium that improves availability and performance by
allowing vital data to be stored independently of any attached OS/390 system, yet
retrieved more quickly than if it were on disk. Although the SNA component of CS
for OS/390 makes use of the coupling facility to improve service to VTAM users,
the IP component does not. Therefore, all the functions described in this book
apply to a base sysplex as well as to a Parallel Sysplex.

Regardless of their physical connectivity, sysplex OS/390 hosts are able to
cooperate with each other to such a degree that they are able to share disks,
provide backup capabilities for availability, and distribute workload (load
balancing).

There is an excellent description of sysplexes in OS/390 Parallel Sysplex
Overview: Introducing Data Sharing and Parallelism in a Sysplex, GC28-1860.

1.3 IBM Communications Server for OS/390

IBM Communications Server for OS/390 (formerly known as SecureWay
Communications Server for OS/390 and OS/390 eNetwork Communications
Server) is the communications engine of OS/390. It is comprised of IP (TCP/IP),
SNA (VTAM), and AnyNet components. With CS for OS/390, TCP/IP and SNA are
very closely integrated in the OS/390 environment.

The performance of TCP/IP was greatly improved with the redesign of the stack
in CS for OS/390 V2R5, and further improved in subsequent releases. The
TCP/IP stack was made multiprocessor-capable in OS/390 Version 1 Release 3;
this reduces the advantage of running multiple stacks, although such a
configuration is still supported. Although the reasons for running with a multiple
stack environment are rapidly fading, we demonstrate multiple stack
Chapter 1. Introduction to TCP/IP in a sysplex 3

configurations to aid in the understanding of the concepts involved in doing so.
Additionally, in our environment, there are many different tests involved with CS
for OS/390 IP that require the exclusive use of a particular stack. Running a
multiple stack environment allows our LPARs to have more stacks on which to run
these tests.

For a complete list of changes in recent releases of the TCP/IP for MVS product,
see OS/390 IBM Communications Server: IP Migration, SC31-8512.

1.4 Network interfaces to the sysplex

One of the major ways in which the SNA and IP components of CS for OS/390
(formerly VTAM and TCP/IP for MVS respectively) are integrated is the use of a
common DLC connection manager to handle most of the network connections
available to CS for OS/390. The DLC connection manager implements the
following DLCs:

 • Multipath Channel Plus (MPC+)

 • Asynchronous Transfer Mode (ATM)

 • XCF (1.6, “Cross-system coupling facility” on page 5)

 • LAN Channel Station (LCS)

 • Channel Data Link Control (CDLC)

 • Channel to Channel (CTC)

 • HYPERchannel

 • Common Link Access to Workstations (CLAW)

 • SAMEHOST, providing connectivity between the stack and gateway
applications:

 • X.25

 • SNALINK

 • SNALINK LU 6.2

 • Queued Direct I/O (QDIO) providing direct memory access to the
OSA-Express for connectivity to Gigabit and Fast Ethernet

The first three of these (MPC+, ATM and XCF) are shared between VTAM and
TCP/IP; the remainder are used exclusively by TCP/IP. VTAM retains its own DLC
management for all SNA connections other than the three listed here.

In viewing the collection of S/390 images within a sysplex as a cluster, we can in
turn view network interfaces available on each of the images collectively as the
set of network interfaces available to the sysplex as a whole. That is, systems in
the sysplex may take advantage of network interfaces attached to other systems
in the sysplex. Potentially this may include high performing network interfaces,
such as the QDIO interface to the OSA-Express.

1.5 Workload Manager

The workload manager (WLM) is a component of OS/390 used to control work
scheduling, load balancing, and performance (goal) management. Additionally,
4 TCP/IP in a Sysplex

WLM can provide information regarding the current load on systems within the
sysplex. It is because of these features that WLM is the basis for operation within
DNS/WLM, Network Dispatcher, and Sysplex Distributor. That is, periodic
updates received from WLM tell the server which hosts in the sysplex have the
most processing resources available so that these systems can receive more of
the work load from the dispatching agent, the function that routes connections
requests based on feedback from WLM.

To take advantage of WLM-based sysplex load balancing (as opposed to
round-robin), TCP/IP requires that WLM be configured in goal mode, which is a
recent improvement to the way WLM operates. For more information on how WLM
functions, see OS/390 MVS Planning: Workload Management, GC28-1761. For
more information specific to CS for OS/390 IP, see OS/390 IBM Communications
Server: IP Configuration Guide, SC31-8725.

1.6 Cross-system coupling facility

The OS/390 systems in a sysplex have an additional communication path
between them that is denied to non-sysplex systems. This is the cross-system
coupling facility (XCF), not to be confused with the coupling facility that marks a
Parallel Sysplex. Data using XCF connections may travel over ESCON channels
or through the coupling facility, depending on the configuration. CS for OS/390
can use XCF for communication between sysplex members (for coordination
among them) and for the transfer of IP packets between them. The SNA
component (VTAM) requires no definitions to use the facility, but the earlier
releases of the IP component had to have them predefined.

Starting with OS/390 V2R7 IP, you have the option of defining IP connectivity
over XCF to other TCP/IP stacks dynamically. XCF dynamics provides
nondisruptive horizontal growth for TCP/IP in a sysplex, allowing you to add new
TCP/IP images without requiring the coordination of definitions for existing
sysplex members. Because only a single definition for each new TCP/IP image is
needed to establish IP connections between every system in the sysplex, it is
easier to scale to handle higher workloads without impacting existing systems
and their users. XCF dynamics automatically create device and link definitions
and you need to define only one new IP address per system.

Aside from transferring IP traffic, CS for OS/390 IP can use XCF signalling for
communication and coordination between the stacks themselves. The dynamic
VIPA function (see Chapter 4, “Dynamic VIPA (for application instance)” on page
101), for example, uses XCF signalling to coordinate the placement of VIPA
addresses within a sysplex.

1.7 High availability with Virtual IP Addressing (VIPA)

The original purpose of (static) VIPA was to eliminate a host application's
dependence on a particular network attachment. A client connecting to a server
would normally select one of several network interfaces (IP addresses) to reach
the server. If the chosen interface goes down, the connection also goes down and
has to be reestablished over another interface. Additionally, while the interface is
down, new connections to the failed interface (and IP address) cannot be
established.
Chapter 1. Introduction to TCP/IP in a sysplex 5

With VIPA, you define a virtual IP address that does not correspond to any
physical attachment or interface. CS for OS/390 IP then makes it appear to the IP
network that the VIPA address is on a separate subnetwork, and that CS for
OS/390 itself is the gateway to that subnetwork. A client selecting the VIPA
address to contact its server will have packets routed to the VIPA via any one of
the available real host interfaces. If that interface fails, the packets will be
rerouted nondisruptively to the VIPA address using another active interface.

CS for OS/390 V2R8 IP extended the availability coverage of the VIPA concept to
allow for the recovery of failed system images or entire TCP/IP stacks. In
particular, it introduced two enhancements to VIPA:

 • The automatic VIPA takeover function allows you to define the same VIPA
address on multiple TCP/IP stacks in a sysplex. One stack is defined as the
primary or owning stack and the others are defined as secondary or backup
stacks for the VIPA. Only the primary one is made known to the IP network. If
the owning stack fails, then one of the secondary stacks takes its place and
assumes ownership of the VIPA. The network simply sees a change in the
routing tables. In this case, applications associated with these DVIPAs are
active on the backup systems, thereby providing a hot standby for the
services.

 • Dynamic VIPA (for an application instance) allows an application to register to
the TCP/IP stack with its own VIPA address. This lets the application server
move around the sysplex images without affecting the clients that know it by
name or address; the name and address stay constant although the physical
location of the single application instance may move. In this way, the
application can dynamically activate the VIPA on the system image it wishes
to host the application. Because the application instance is only active on one
image in the sysplex at a time, the other images provide a cold standby of the
service.

These VIPA enhancements were enabled by the use of XCF to communicate
between the TCP/IP stacks.That is, XCF has become the basis for
communication regarding VIPAs within the sysplex. Because of the ease of
configuration provided by XCF dynamics, many of the newer VIPA functions in
turn are easily configurable.

Because of the different functions provided by each of the two flavors of Dynamic
VIPA, we recommend these general rules in regards to the applicability of each:

 • If load balancing is required, you should consider using DNS/WLM, Network
Dispatcher, or Sysplex Distributor as outlined in 1.8, “Providing load balancing
and high availability simultaneously” on page 7.

 • If more than one instance of the application can run simultaneously within the
sysplex and the flexibility to dynamically activate the DVIPA by starting the
application is not necessary, you should look toward automatic VIPA takeover.
Note that in this case, the DVIPA will not move unless the stack owning the
DVIPA has failed at which time the backup stack assumes ownership.

 • In the event that multiple applications cannot run simultaneously in the
sysplex, or the ability to activate the DVIPA when the application starts is
desired, we recommend the use of a Dynamic VIPA for an application
instance.
6 TCP/IP in a Sysplex

1.8 Providing load balancing and high availability simultaneously

The main objective of a sysplex is high availability without compromising
perceived client performance. High availability requires a number of servers
providing the same service to their clients so that these servers allow for the
recovery of the service in the presence failures. That is, servers perform some
sort of backup functionality for each other within the cluster.

In contrast, load balancing ensures that such a group or cluster of servers can
maintain optimum performance by serving client requests simultaneously.
Additionally, an evenly spread workload minimizes the number of users affected
by the failure of a single server. Thus, load balancing and availability are closely
linked; in this chapter, and throughout the book, we consider these two functions
together as they apply to TCP/IP in a sysplex.

The ultimate goal is, of course, to provide 100% perceived service availability and
at the same time provide top performance to end users when they request server
functions. The latter is achieved by implementing some sort of connection
dispatching technology such as DNS/WLM, Network Dispatcher, or Sysplex
Distributor. Because these solutions can exclude failed servers from connection
reception, they also inherently allow for increased service availability. Additionally,
all of these solutions can take advantage of increased availability associated with
Virtual IP Addresses.

In general, there are various ways of addressing load balancing within a cluster:

 • One technique is to let the users themselves choose a server at random from
a number of hostnames or addresses. When users try to connect to a server
they are not aware if the server is available, nor do the users know how well
the server will perform when they connect to it. This approach is quite common
but very inefficient. Web-based applications use this technique by creating
multiple copies of Web pages with different explicit HTTP links.

 • Another technique is round-robin, in which a function independent of the users
selects a server to handle requests. This approach is better, but it does not
take into consideration the current load on the target server or even whether
the target server is available.

 • A third approach is to use a simple advisor that checks availability (and,
perhaps, the number of connections) on different servers to some extent,
before selecting a server. With this approach, failed servers can be excluded
from server selection, thereby increasing availability of the service.

 • The most sophisticated technique is to have performance agents in all
application servers that feed managers with statistics; the absence of any
statistics also gives an indication of non-availability. The managers, armed
with this information, select servers based on the overall service levels that
they expect to be delivered.

 • A final approach could be to grow the size of a single server, avoiding the use
of a clustering technique altogether. This approach can be extremely costly
and not possible in some circumstances (if, for example, the current demand
on the service could overload even the most powerful of servers).

Additionally, all of these clustering techniques could be used together to some
extent. In this way, simplicity, accuracy, and performance are balanced somewhat.
Chapter 1. Introduction to TCP/IP in a sysplex 7

Availability in an IP network is also highly dependent, not so much on the
transport network between servers and clients (because IP can reroute packets),
but on the network adapters through which the servers access the network. By
using functions such as Virtual IP Addressing (VIPA), together with sophisticated
routing techniques such as OSPF equal-cost multipath, we can improve
availability even further. VIPA and IP routing are explained in detail later in this
book.

In this book we have used the three main approaches available to TCP/IP users
in a sysplex to perform load balancing and to accomplish high availability. These
techniques can (and usually do) make use of the MVS workload manager to
distribute IP traffic across a number of servers, but they are different in the
approach they take.

1.8.1 DNS/WLM solution
The DNS solution is based on the DNS name server and the OS/390 workload
manager. Intelligent sysplex distribution of connections is provided through
cooperation between WLM and DNS. For customers who elect to place a name
server in an OS/390 sysplex, the name server can utilize WLM to determine the
best system to service a given client request.

In general, DNS/WLM relies on the hostname to IP address resolution for the
mechanism by which to distribute load among target servers. Hence, the single
system image provided by DNS/WLM is that of a specific hostname. Note that the
system most suitable to receive an incoming client connection is determined only
at the time of hostname resolution. Once the connection is made, the system
being used cannot be changed without restarting the connection.

The DNS approach works only in a sysplex environment, because the workload
manager requires it. If the server applications are not all in the same sysplex,
then there can be no single WLM policy and no meaningful coordination between
WLM and DNS.

The operation of the DNS/WLM combination is described more fully in Chapter 2,
“DNS/WLM (connection optimization)” on page 17, but in essence it functions as
follows:

 • The servers register with WLM under a particular server group name for the
purpose of providing some service described by this name (for example,
TN3270).

 • At regular intervals, DNS asks WLM for its workload measurements.

 • The client requests a server by IP hostname via a process called hostname
resolution. This hostname is the server group name known to WLM.

 • The DNS name server in the sysplex checks its WLM information for details of
the servers registered under that host (server group) name.

 • DNS responds to the client with the IP address of the most suitable server
instance so that the client can connect to that specific server.

All BIND-based name servers use a simple sorting algorithm (by default) when
returning one of multiple addresses during hostname resolution, and addresses
obtained via WLM are no exception. This is more or less the basic round-robin
technique. However, WLM also has some additional notion of performance or
8 TCP/IP in a Sysplex

server load and can return addresses for the server with the least current load. As
a result, we get a lot more than just simple round-robin selection.

WLM will provide host and application weights that help the name server to load
balance the connections to the sysplex servers. If the application is registered to
WLM, the name server will resolve the client's name query for the application;
and if the application is de-registered, WLM will no longer provide its details to
DNS. This means that dead applications will not be selected by DNS.

The advantages of the DNS approach are:

 • Familiar technology

Most installations already utilize DNS in their organizations even though it may
not have been implemented on OS/390. Additionally, the technique of simply
modifying hostname to IP address mapping for load balancing is somewhat
easier to understand than other clustering techniques.

 • No additional software needed

The prerequisites are there when you have an OS/390 system; it is just a
matter of configuration. That is, the DNS server is included with the OS/390
operating system as part of CS for OS/390 IP.

 • Performance

Once the hostname is resolved to a server address, there is no more
involvement from the DNS/WLM load balancing function. No state needs to be
maintained to identify the current connection and its distribution.

 • High availability

Secondary name servers can be implemented in a sysplex to fulfill the
functions of the primary one should it fail. Further, the DNS/WLM function will
not distribute connections to failed application servers within the sysplex. In
this way, perceived client availability is increased.

 • Ease of use

Users (clients) are not aware of changes in the location or the IP address of an
application server. Clients simply resolve some hostname and use the IP
address returned on the hostname resolution request.

 • Ease of administration

Because applications register with DNS/WLM, adding servers as candidates
for connection requests is administratively simple and dynamic.

Possible drawbacks include:

 • Potential end-user configuration

The users may need to learn new names for the generic applications or
services, although the use of aliases can reduce or eliminate this work.
DNS/WLM creates these names dynamically as applications register for use
with the function.

 • Distribution available for sysplex systems only

Because of its inherent dependence on the sysplex, DNS/WLM can only be
used with applications running within the sysplex and cannot be used with
applications running on other servers.

 • Requires application support
Chapter 1. Introduction to TCP/IP in a sysplex 9

Because applications must register with DNS/WLM, application support is
necessary to take advantage of the function. Currently, this support is
somewhat limited.

 • Users can bypass load balancing

Users that know the real hostnames or IP addresses of the servers can
bypass the DNS/WLM load balancing algorithm altogether.

 • Stale WLM information

The name server queries WLM periodically for updated information, by default
every 60 seconds. This means that the name server's information may
become stale between intervals. Additionally, clients and intermediate name
servers can cache hostname-to-IP address mappings (even if they contain a
low TTL) and propagate stale mappings.

 • Increased network utilization

To avoid caching side effects, administrators can reduce the TTL field in DNS
resource records (RRs). This generally causes increased network utilization
because clients must resolve hostnames on every connection request.

1.8.2 Network Dispatcher
The Network Dispatcher is load balancing software that uses technology from
IBM's Research Division to determine the most appropriate server to receive
each new IP connection.

With the Network Dispatcher, it is possible to link many servers that provide
equivalent applications with common data into what appears to be a single virtual
server. Servers may have different hardware architectures and operating
systems, as long as the TCP/IP services are the same. The clients just reference
one special IP address (known as a cluster address), which is shared between
the cluster of servers and the Network Dispatcher. All client requests to the
shared IP address are sent to the Network Dispatcher. The Network Dispatcher
then selects the optimal server at that time and sends the connection request to
that server. The server sends a response back to the client directly, without any
involvement of the Network Dispatcher.

The Network Dispatcher also provides a high availability option, utilizing a
standby machine that remains ready to take over load balancing in case of failure
of the primary Network Dispatcher. Read Chapter 3, “Network Dispatcher” on
page 63 for a more detailed description of the Network Dispatcher.

The Network Dispatcher (NDR) technique does not depend on hostnames; rather
it provides an IP address (the cluster address) as the single system image
specification. Clients send connection requests to the cluster address. These
packets reach the Network Dispatcher, which then forwards them to the chosen
server. NDR has knowledge of the available servers through advisors that keep a
watch on various protocols (HTTP, Telnet, FTP) and an MVS advisor that
communicates with WLM regarding server load. NDR uses all the information
obtained from the advisors to select a server.

With NDR, all packets from the client to the server pass through the Network
Dispatcher, since the IP network knows only one address for the servers (the
cluster address) and that address belongs to NDR. From the server back to the
10 TCP/IP in a Sysplex

client, packets use normal IP routing because the client's IP address is given to
the server as the source of the packet.

Although the NDR solution will function with separate hosts (not part of the same
sysplex), the load balancing will not work correctly for the same reason as in the
DNS case: WLM instances in separate sysplexes do not communicate with each
other. In this case NDR will rely on its own perception of the workload, which is
confined to the inbound TCP/IP traffic.

Advantages of the Network Dispatcher approach include:

 • Ease of configuration

It is very easy to change the server configuration, for example, to add,
quiesce, stop and delete servers dynamically.

 • Comprehensive advisors

An MVS advisor that connects to WLM gets load metrics for connection
optimization, and also determines availability. Protocol advisors poll different
ports and measure response times. This ensures availability, functionality, and
high performance.

 • High availability

There is a built-in option to configure a standby NDR that remains ready to
take over if the primary fails.

 • Easy integration

The end users do not know that the NDR exists; they just connect to a new
server IP address (or hostname).

 • Flexibility

The NDR solution can be used with IP hosts other than a sysplex, although the
workload balancing functions will not be able to use WLM input.

 • Independence from DNS

NDR does not depend on hostname resolution for load balancing. Rather, the
workload distribution occurs at TCP connection setup. As a result, NDR is not
susceptible to hostname caching effects or increased network utilization
resulting from low TTL settings of DNS resource records.

Possible disadvantages of NDR may be:

 • Extra hardware costs

Currently, the Network Dispatcher is part of the WebSphere Edge Server,
which is available on AIX, Windows NT, Red Hat Linux, and Sun Solaris
operating systems. Hence, additional hardware running on these operating
systems is required. NDR is also implemented in discontinued IBM hardware,
such as the IBM 2216.

 • Performance and capacity

Advisors typically poll servers for information every five seconds. Together
with the fact that each packet may (depending on the configuration) require
one extra hop on the IP network, this can place additional loading on that
network. In addition, the NDR machine must maintain knowledge of the TCP
connections to the servers in the cluster and thus requires more capacity than
a simple router.
Chapter 1. Introduction to TCP/IP in a sysplex 11

 • Restricted design flexibility

The Network Dispatcher must be located precisely one hop away from the
target servers, although there is a way to cascade NDRs over a wide area.
Also, adding new images, which is normally possible without any new network
connections or definitions, will now require connections and definitions in the
Network Dispatcher. The one hop restriction is expected to be lifted with the
introduction of Generic Routing Encapsulation (GRE) into Network Dispatcher.

 • Incompatibility with shared OSA cards

The use of an OSA with EMIF requires the destination IP addresses and LPAR
numbers to be associated in the OSA configuration. If the destination address
is the same (the cluster address) in multiple LPARs, such an association is
impossible. Multiple OSA cards may be required. In general, sharing OSA
cards across multiple LPARs that are target servers causes challenging
problems. This problem, however, is expected to be resolved with GRE.

 • Incompatibility with IPSec and VPN

IPSec in tunnel mode encrypts the true destination IP address, so Network
Dispatcher cannot be an intermediate node on an IPSec connection. It must
itself be the endpoint (firewall). In the kinds of environments we are
describing, however, that is probably not an issue since the Network
Dispatcher will usually be in a secure environment.

 • FTP support limited

Because FTP connection flow is somewhat different from the traditional
client/server application flow, NDR must make special considerations for this
protocol. In general, FTP connections originating from the same client are
always directed to the same target server. This may be an issue when using
an FTP proxy in which a larger number of clients appear to be a single client.

1.8.3 Sysplex Distributor
Sysplex Distributor is the state of the art in connection dispatching technology
among S/390 IP servers. Essentially, Sysplex Distributor extends the notion of
Dynamic VIPA and Automatic VIPA Takeover to allow for load distribution among
target servers within the sysplex. It combines technology used with Network
Dispatcher for the distribution of incoming connections with that of Dynamic
VIPAs to ensure high availability of a particular service within the sysplex.

Technically speaking, the functionality of Sysplex Distributor is similar to that of
Network Dispatcher in that one IP entity advertises ownership of some IP address
by which a particular service is known. In this fashion, the single system image of
Sysplex Distributor is also that of a special IP address. However, in the case of
Sysplex Distributor, this IP address (known as the cluster address in Network
Dispatcher) is called a distributed DVIPA. Further, in Sysplex Distributor, the IP
entity advertising the distributed VIPA and dispatching connections destined for it
is itself a system image within the sysplex, referred to as the distributing stack.

Like Network Dispatcher and DNS/WLM, Sysplex Distributor also makes use of
workload manager (WLM) and its ability to gauge server load. In this paradigm,
WLM informs the distributing stacks of this server load so that the distributing
stack may make the most intelligent decision regarding where to send incoming
connection requests. Additionally, Sysplex Distributor has the ability to specify
certain policies within the Policy Agent so that it may use QoS information from
12 TCP/IP in a Sysplex

target stacks in addition to WLM server load. Further, these policies can specify
which target stacks are candidates for clients in particular subnetworks.

As with NDR, connection requests are directed to the distributed stack of Sysplex
Distributor. The stack selects which target server is the best candidates to
receive an individual request and routes the request to it. It maintains state so
that it can forward data packets associated with this connection to the correct
stack. Additionally, data sent from servers within the sysplex need not travel
through the distributing stack.

Sysplex Distributor also enhances the Dynamic VIPA and Automatic VIPA
Takeover functions introduced in SecureWay Communications Server for OS/390
V2R8 IP. The enhancements allow a VIPA to move non-disruptively to another
stack. That is, in the past, a VIPA was only allowed to be active on one single
stack in the sysplex. This led to potential disruptions in service when connections
existed on one stack, yet the intent was to move the VIPA to another stack. With
Sysplex Distributor, the movement of VIPAs can now occur without disrupting
existing connections on the original VIPA owning stack.

In summary, Sysplex Distributor offers the following advantages:

 • Ease of configuration

Sysplex Distributor takes ease of configuration to another level. The initial
configuration of a distribution is made extremely easy. Additionally, servers
can be added to a distribution without the need for any configuration.

 • More accurate measure of server load

Sysplex Distributor makes use of WLM-provided server load information. But it
can also use QoS performance metrics from target servers to guide in the
selection of target servers on incoming connections. Additionally, the set of
potential target stacks can be different depending on which client is requesting
the connection. This allows for the reservation of particular stacks to some
subset of clients in a straightforward manner.

 • The ultimate in availability

Sysplex Distributor can function with Automatic VIPA Takeover to ensure that
the distribution of connections associated with a particular service is made
available. Because every stack in the sysplex distribution can be a backup
distributing stack, the survival of just one system image ensures the
availability of the service. In this way, target servers can become backup
stacks for the distribution of incoming connections.

 • Easy integration

The end users are not aware of the distribution being performed by Sysplex
Distributor; they just connect to a new server IP address (or hostname).

 • Independence from DNS

Sysplex Distributor does not depend on hostname resolution for load
balancing. Rather, the workload distribution occurs at TCP connection setup,
as with NDR. As a result, Sysplex Distributor is not susceptible to hostname
caching effects or increased network utilization resulting from low TTL settings
of DNS resource records, as is the case with DNS/WLM.

 • No additional hardware required
Chapter 1. Introduction to TCP/IP in a sysplex 13

Because all of the Sysplex Distributor function is contained within the sysplex,
no additional hardware is necessary to take advantage of this function.

 • Performance

Again, because Sysplex Distributor is contained within the sysplex, CS for
OS/390 IP can take advantage of the homogeneity within the cluster. That is,
forwarding connection and data through the distributing stack is done
extremely fast. Additionally, extra communication occurs between the stacks
in the sysplex allowing for fast recognition of VIPA failure and enhanced
backup functions.

Possible disadvantages of Sysplex Distributor may be:

 • The cluster is the sysplex

In Sysplex Distributor, all target servers must be S/390 servers and resident
within a single sysplex. In some regards, this limits the flexibility in having
heterogeneity among servers within the cluster as is available with NDR.

 • Incompatibility with IPSec and VPN

As with NDR, the end of an IPSec tunnel mode must not be a target server.
This is hardly much of a limitation, but worth mentioning.

 • FTP support limited

Being exposed to the intricacies of the FTP protocol, as was Network
Dispatcher, Sysplex Distributor has limited support. The distribution of
non-passive mode FTP is fully supported, including the capability of
establishing data connections. Passive mode FTP, however, is currently not
supported.

1.8.4 Which solution is best?
The connection dispatching technologies described within this chapter all
implement some sort of clustering technique. All of these techniques can learn
the performance and availability characteristics of the target servers to which
traffic is directed. Sysplex Distributor provides a bit more functionality here by
taking into consideration QoS performance metrics in dispatching decisions.

Also, all of these techniques can be configured (by means of redundancy) to
provide very high availability. In the case of DNS/WLM and Network Dispatcher,
the entity making dispatching solutions can have a single backup. With Sysplex
Distributor, the dispatching function can be backed up by all systems within the
sysplex, yielding increased availability characteristics.

Because of these and the other benefits of Sysplex Distributor, we generally
recommend it as the dispatching solution of choice, although DNS/WLM and
Network Dispatcher should be considered in some cases. In general terms, the
circumstances under which the DNS/WLM solution and/or Network Dispatcher
should be considered are:

 • It is desired that hostname be the single system image rather than IP address

 • Passive mode FTP must be supported

 • Heterogeneity among target servers is desired
14 TCP/IP in a Sysplex

If any of these conditions are the case, then you might consider the use of either
DNS/WLM or Network Dispatcher depending on the type of application. In
general:

 • If the application tends to use a large number of short connections (UDP or
Web access), use Network Dispatcher because it does not require name
resolution on every connection. However, be aware that:

– OSA with EMIF will not work (this should be corrected with GRE).

– The Network Dispatcher must be just one hop from every server in the
cluster (this should also be corrected with GRE).

 • If connections are long-lived (Telnet and especially FTP), use DNS/WLM. The
overhead of name resolution is infrequent, and thus small compared with the
performance gained by not sending the traffic through the NDR function.
Chapter 1. Introduction to TCP/IP in a sysplex 15

16 TCP/IP in a Sysplex

Chapter 2. DNS/WLM (connection optimization)

Officially known as connection optimization, DNS/WLM provides intelligent
sysplex distribution of requests through cooperation between the WLM and the
DNS server. For customers who elect to place a DNS in an OS/390 sysplex, DNS
will invoke WLM sysplex routing services to determine the best system to service
a given client request.

WLM provides various workload related services: performance administration,
performance management and workload balancing, for example. WLM is capable
of dynamically assessing resource utilization on all participating hosts within a
sysplex.

A DNS server running on a host in the sysplex can take advantage of WLM's
knowledge and use it to control how often an address for a particular host in the
sysplex is returned on a DNS query. When a sysplex name server queries the
WLM for information, it is provided with a weight corresponding to the relative
resource availability of each participating host in the sysplex. These weights are
used by the name server to control the frequency with which an address will be
returned for a given host. If a host in the sysplex is relatively busy, its address will
not be returned by the server as often as a less busy host's address. As you
might have guessed, this means that you must use hostnames when accessing
an application in the sysplex. The name server is the only place where address
selection based upon resource availability can occur. If you use an IP address
directly, no workload balancing can occur with the DNS/WLM solution.

2.1 Domain Name System (DNS) overview

This section provides a very brief overview of the Domain Name System (DNS).
This subject is very complex and numerous books on DNS have been written.
One of the most popular books is DNS and BIND by Paul Albitz and Cricket Liu. If
you are going to implement a DNS, we strongly recommend you refer to such
texts on the subject for more complete descriptions.

2.1.1 Why DNS?
The TCP/IP applications refer to host computers by their IP addresses. IPv4
addresses are numeric, in the format nnn.nnn.nnn.nnn where nnn can range from 0
to 255 (with a few exceptions). The major drawback of this system is that, for
most people, numbers are difficult to remember. As a result, today's IP-based
networks use a mapping of hostnames to host numbers or addresses. The
obvious advantage of this name-to-IP address mapping is that we can assign
easily rememberable names to hosts in the network. For example, what if we map
the host Garth to the number 9.24.104.200? We no longer need to memorize the
numeric address; just use the name Garth instead. What happens, though, if
another Garth wants to use this name on the network too? The Domain Name
System not only handles the name to address (and vice versa) mapping, it also
encompasses a system that is capable of ensuring that names are unique
throughout all interconnected networks.
© Copyright IBM Corp. 1998 2001 17

2.1.2 What is the Domain Name System?
The Domain Name System (DNS) is a distributed database providing mappings
between hostnames and IP addresses. Essentially, the increased importance of
hostnames and the size of the Internet hosts file led to the creation of the DNS. It
is now the method of choice for resolving hostnames to IP addresses and vice
versa.

The DNS is a client/server model in which programs called name servers contain
information about host systems and IP addresses. Name servers provide this
information to clients called resolvers.

Logistically, it is best likened to a hierarchical file system. All levels of directories
in a file system begin with a root directory. All levels of a domain in the DNS also
begin with a root domain. Instead of separating each level of domain with a slash
("/"), the DNS uses a dot (".").

2.1.2.1 Controlling the names
The uniqueness of hostnames within a domain is managed in a similar fashion to
the way file names are used within a directory. For example, the files /bin/matt
and /sbin/matt are obviously different. The DNS uses the same principle, but the
root directory is listed on the far right, and successive subdomains (equivalent to
successive subdirectories) are listed from right to left. For example, if we have an
address such as:

buddha.ral.ibm.com

our highest (or closest to the root) domain is com. Note that the root domain is
represented by a dot, just as on a file system the root directory is a slash. The
same address could correctly be written as

buddha.ral.ibm.com.

Often we leave the final dot out of the address, but you will see situations later in
this text where it becomes very important. The next subdomain is ibm, and we
continue down to the lowest subdomain of buddha.

At this point, you might be wondering where the hosts are. Any domain name can
represent a host while at the same time it can represent the domain of a group of
hosts (or more subdomains even). In other words, we know the domain ibm.com
represents the domain of the IBM Corporation, but there could also be a host
called ibm.com out there as well.

So how does DNS get hold of these name-to-address mappings? The DNS is
essentially a distributed database system. A network administrator chooses a
host on the network as a DNS server. This server will usually have a zone for
which it is responsible for resolving names to addresses (and addresses to
names, called reverse mapping). A zone can describe an entire domain of
mappings, more than one domain, or only a subset of a domain. In each case, the
server will refer to a configuration file containing simple lists of address and name
records, often referred to as a data file. A host to address (and vice versa)
mapping is referred to as a resource record. For example:

mvs03a IN A 172.16.250.3

is the resource record that maps host mvs03a to the address 172.16.250.3.
18 TCP/IP in a Sysplex

The name server's job is to respond to queries by providing either an address for
a name, or a name for a supplied address. Initially, each server will know only
about the hosts within the zones for which it is configured to respond. Caching
allows the server to learn and remember data acquired from other name servers.
It should also be noted that the name-to-address mapping can be one-to-many
because a host can have more than one IP address.

2.1.2.2 Finding an address
Hosts on a network must be configured to look for a DNS server when a
hostname is used instead of an address. The request for name resolution is
handed to a resolver routine. The resolver routine will have an address or list of
addresses that point to hosts running a DNS server. In the MVS TCP/IP
environment this is controlled by the NSINTERADDR parameter. The resolver
routine will send the query to the host listed in NSINTERADDR, and the resolver
routine waits for a response and passes the answer back to the application that
requested the resolution. When a query is sent to a name server and the name
server is expected to find the answer, this is referred to as a recursive query.
Later, we discuss a situation where we simply want a name server to give us the
best answer it has (that is, the name and address of a more likely name server).
This is referred to as an iterative (or non-recursive) query.

It can happen that a name server does not know the mapping that is being
requested. When this happens, there are several courses of action the server can
take. Usually, there is a name server record pointed to by a data file that maps a
domain name to a specific server for resolution. This hard-coded record gives the
name server a mapping between a domain for which it does not have data and
the address of a name server that should have the mapping. That name server
will respond back to the original name server with its answer, and the original
name server will then respond back to the resolver routine on the host that
originated the request.

So what if we get a request for a domain that is completely separate from any
domain for which we have data files? This distributed database Domain Name
System contains something called a root name server. A root name server's
purpose in the DNS world is to provide other servers with information on where to
find the top-level domain server for a given domain. In other words, if a name
server gets a request for where.world.ca, and the name server knows nothing
about the ca domain, we can send the request to our root name server. The root
name server probably will not resolve the request, but it should return the
address of a name server more likely to be able to resolve the request (for
example, it could return the address for a name server responsible for a world.ca
zone). This process of sending the request to another name server and receiving
ever better responses is called iterative resolution.

Once we have the IP address of the host, the work of the DNS is done.

2.1.2.3 Reverse mappings
Sometimes, we might already know an IP address, but we want to find the
hostname associated with the address. When such a request comes to a name
server, it is referred to as a reverse lookup. Reverse mappings are considered to
be in a domain called in-addr.arpa. The term in-addr.arpa is associated with the
actual coding of the resource record for a reverse mapping. For example, the
reverse mapping for host mvs03a would look like:
Chapter 2. DNS/WLM (connection optimization) 19

3.250.16.172 IN PTR mvs03a.buddha.ral.ibm.com.

2.1.2.4 Primary (master) and secondary (slave) servers
As with any good distributed database system, we do not want to duplicate our
database entries, but we also want to have backup data available in the event of
a problem. When we implement a name server, we have the ability to load some
or all of our data file contents from another name server dynamically. If a name
server is running as the primary one within a zone, this indicates that we own our
data file resource records (forward and/or reverse mappings). The data physically
exists on the system where the name server is running.

Alternatively, a name server can indicate it wants to act as a secondary (also
referred to as a slave) server for a particular zone. To do this, we provide the
name of the zone and the address of the primary (also referred to as the master)
name server from which we want to transfer the data. When the name server
starts up, it will request a zone transfer from the primary name server, and will
load its data files dynamically with the received data.

There should be only one primary server for any given zone, but there can be
many secondaries.

2.1.3 DNS implementation with CS for OS/390 IP
The Domain Name System (DNS) server delivered with CS for OS/390 V2R5 and
later has been completely rewritten. This implementation is now a BIND (Berkeley
Internet Name Domain) 4.9.3-based name server. The requirement for DB2
tables has been completely removed, providing appeal to a wider range of
customers. In addition, a cache file (root name server data file) can now be
defined. The CS for OS/390 name server is also now able, in conjunction with
WLM, to provide workload balancing across a group of equivalent server
applications.

IBM Communications Server for OS/390 IP provides a Domain Name System
implementation based on Berkeley Internet Name Domain (BIND) 4.9.3 protocols.
DNS itself is not a new offering in the MVS TCP/IP environment; one that uses
DNS files stored as DB2 data has been available in prior releases of TCP/IP.
What is new with the BIND DNS is the ability to implement an OS/390-based DNS
that is similar to de facto standard UNIX implementations of DNS in configuration
and processing. The code for the BIND DNS has been ported from the BIND
4.9.3 level; for OS/390 systems the only additions required to the de facto
standard code have been as follows:

 • The provision of translate tables for ASCII-to-EBCDIC translation

 • The high availability and load balancing functions provided by the DNS's
cooperation with WLM in a sysplex environment

The BIND-based DNS was first made available as a kit with OS/390 Version 2
Release 4 and could be run as an OpenEdition (now UNIX System Services)
server on an OS/390 TCP/IP OpenEdition stack or an IBM TCP/IP Version 3
Release 2 for MVS stack. The BIND DNS has since been enhanced and is
available as part of IBM Communications Server for OS/390.

DNS/WLM provides intelligent sysplex distribution of requests through
cooperation between WLM and the DNS server. WLM provides sysplex services
to determine the best system to service a given client request. This support is
20 TCP/IP in a Sysplex

analogous to the support provided in SNA networks with VTAM Generic
Resources, but there are many differences in the implementation of the two
approaches. Nevertheless, the intent to provide connection (or session)
optimization is an inherent part of both implementations.

The BIND DNS of CS for OS/390 IP includes full dynamic IP function, which
allows the automatic registration of DNS clients. Dynamic IP involves cooperation
between the Dynamic Host Configuration Protocol (DHCP) and the name server
for the dynamic update of DNS tables, thus eliminating the labor-intensive
administrative task of manually updating those tables. However, a domain cannot
be configured as both a sysplex domain and a dynamic IP domain.

2.1.4 Files to support a DNS implementation
A DNS server usually contains at least three configuration files:

1. A startup file or boot file, by default /etc/named.boot.

2. A data file or zone file that maps hostnames to IP addresses for specific
domains. We refer to this zone file as the forward domain file, because it
conventionally uses a suffix of for, as in named.for. The file name is usually the
zone name, but it can be anything.

3. A data file or zone file that resolves IP addresses to hostnames for IP
networks. We refer to this zone file as the reverse domain file, or the
in-addr.arpa file; it conventionally uses a suffix of rev, as in named.rev. Again,
the file name is usually the zone name, but it can be anything.

Optionally a DNS server may have additional configuration files:

 • Extra forward files for additional zones that the name server may be servicing

 • Extra reverse files if the name server manages more than one IP network

 • A loopback file, which by convention uses the suffix lbk, to define the loopback
names and addresses

 • A cache file that references standard domains in the Internet

 • Forward and reverse zone files that are used to manage a name server that
cooperates with WLM

 • Forward and reverse zone files that are used in a network with DHCP and the
Dynamic Domain Name System (DDNS)

All of these files may be present at both primary and secondary name servers. A
secondary name server obtains most of its data from the primary name server
through a process called zone transfer. The secondary server uses its forward
and reverse files to store the data obtained from the primary name server.

2.2 How load distribution works using DNS/WLM

Before any application can take part in workload balancing (connection
optimization), the TCP/IP stack should register itself to WLM. It, and only it, can
correctly maintain the IP addresses that DNS/WLM will need to resolve a
hostname to an address. Once the stack has been registered, WLM knows its
name and its interface addresses. The SYSPLEXRouting keyword in the
IPCONFIG statement in the TCP/IP profile tells the stack to do this. As interfaces
are activated and deactivated, the stack keeps WLM informed of the status. Note
Chapter 2. DNS/WLM (connection optimization) 21

that if the stack does not register, DNS uses the defined interface addresses but
they are never checked for active status.

Note: For each TCP/IP stack within a sysplex, only the first 15 addresses listed in
the HOME statement of your profile will be registered to WLM (and passed on to
the name server when it requests the information). If an interface is not active, its
address will not be forwarded to WLM. When the name server receives these
active addresses from WLM, it will accept only the addresses that have a
matching address listed in its data file. This requirement for statically defined
addresses ensures full administrative control over the workload distribution.

Once the TCP/IP stacks have registered with WLM, the following occurs (see
Figure 1 on page 23):

1. When each application becomes active in the sysplex, it registers with WLM
using the appropriate group, server, and host (stack) name.

2. The sysplex-enabled name server will query WLM periodically for a list of
available applications. WLM returns the names of the applications within each
group, the active IP addresses associated with them (obtained from the
associated stack name), and a set of workload-related weights.

3. Resource records representing the application's group name are dynamically
(and not permanently) added to the name server's data files. These entries
will now be treated the same as any hard-coded entries read from the server's
data file.

4. When a request to resolve one of these group (server) names comes in, the
server will choose an address to return based upon the weighting factor
provided from WLM.

5. The next request for the same group name within the sysplex will be given the
next address according to the weighting. Depending on the relative resource
utilization of the hosts in the sysplex, this could be the same address as
retrieved in the previous query, it could be a different address for the same
host, or it could be an address for another host in the sysplex.

6. WLM is queried by the name server every 60 seconds (by default) for a new
set of addresses and host weights. This can be controlled by the -t parameter
at startup of the name server task (daemon).
22 TCP/IP in a Sysplex

Figure 1. WLM and name server working together

If you are familiar with DNS, you might have already noticed that we appear to
have crossed a boundary: an application registers with WLM, providing its service
name or identification, and then the name server picks up this information and
creates a hostname entry. The name server dynamically maps an application
(actually the group name representing the application) within the sysplex to a
host address. While this might be confusing at first, it makes great sense.

If an application goes down, either WLM will be notified by a deregistration
command, or else it will detect automatically that the address space has
terminated. Then WLM will remove the entry from its tables. When the name
server next queries WLM, it will no longer be given that application, group, and
hostname. Since we can have multiple applications within a single group, another
request for the same group will still succeed if another application registered with
the same group is active within the sysplex.

2.2.1 Data returned by the name server
When the sysplex DNS returns information to a DNS requesting data about WLM
resources, the sysplex DNS returns a time-to-live (TTL) of 0 so that the local DNS
does not cache the results. However, some resolver and name server
implementations do not honor a zero TTL, thus reducing the effect of connection
optimization during the time they preserve knowledge of cached resources. If you
find that there are too many queries on the network for sysplex resources and you
wish to choose reduced network traffic over completely optimized connections,
you may start the DNS/WLM with a longer TTL value by overriding the default of 0
with the -l option.

2.2.1.1 WLM weights
The DNS/WLM queries the WLM every 60 seconds by default for information
regarding resource usage (weights) and available resource addresses. Weights
are reflected in the server entries and represent available capacity. The highest
weight possible for a server is 64, which indicates the highest capacity available.

TCP/IP1Appl1 weight addr
Appl2 weight addr

WLM

Sysplex Host

Appl1
Appl2
Appl3

DNS Server

1. Registration

2. Query list of active APPLs

3. List of registered groups
and active addresses

4. DNS request
5. DNS response based on
the weight from WLM

hostname
groupname
servername
Chapter 2. DNS/WLM (connection optimization) 23

The weight 1 of a resource is only visible in a debug trace of the DNS as you see
can see below in Figure 2:

Figure 2. Partial output of debug trace with WLM weight for MVS images

2.2.1.2 Static addresses versus registered addresses
The static addresses are those that are defined to the DNS in the sysplex
(cluster) domain file. The registered addresses are those that have been defined
and are active within the TCP/IP protocol stack. In response to queries,
DNS/WLM sends a list of available addresses comprised of the intersection of
active addresses registered to the WLM and active addresses that have been
defined to the DNS zone files. The idea is to present a list of addresses that are
reachable by any host that needs to know. If you have VIPAs configured in your
TCP/IP stacks, only VIPA addresses should be statically defined in DNS data
files. For a TCP/IP stack within the sysplex, only the first 15 addresses listed in
the HOME statement of TCPIP.PROFILE will be registered to WLM (and passed
on to the name server when it requests the information). If an interface is not
active, its address will not be forwarded to WLM. When the name server receives
these active addresses from WLM, it will accept only the addresses that have
matching address listed in its data file. This requirement for statically defined
addresses ensures full administrative control over the workload distribution.

Figure 3. DNS addresses used in WLM distribution

The emphasis should be on the words reachable addresses. Whether you use
static or dynamic routing protocols, you must ensure that any address returned in
response to a DNS query can be reached.

If you are running static routing in your network without a comprehensive set of
static routing definitions on the appropriate platforms, many such addresses

Server info from WLM follows for group, TCPIP, with 3 entries:
Server # 1: Netid = MVS03A, Server = TCPIPA, Weight = 21, Num_addrs = 3
[172.16.250.3], [9.24.104.113], [9.24.105.126], 1
host_name = MVS03A
Server # 2: Netid = MVS28A, Server = TCPIPA, Weight = 21, Num_addrs = 3
[172.16.252.28], [9.24.104.42], [9.24.105.74], 1
host_name = MVS28A
Server # 3: Netid = MVS39A, Server = TCPIPA, Weight = 21, Num_addrs = 2
[172.16.232.39], [9.24.104.149], 1
host_name = MVS39A

End of WLM Server info

named.for

TN3270E

FTPD

TCPIP

Static Address Used Address Registered
Address
24 TCP/IP in a Sysplex

could be unreachable. A DNS extraction might present a list of addresses, some
of which would not be reachable by every host in the network.

2.2.1.3 Recommendation for DNS/WLM address definition
Based on the discussion so far, we have come to the following conclusions:

1. If you have implemented dynamic routing protocols in your network, limit your
statically defined addresses in the sysplex subdomain to the VIPA address
and use SOURCEVIPA.

2. If you use dynamic routing protocols throughout your network, but you do not
use VIPA at the OS/390 IP host, you may still successfully use multiple
addresses in your name server forward zone files.

3. If you use static routes in your network, limit the statically defined name server
addresses to those that are reachable throughout the network.

2.2.1.4 Round-robin technique and addresses returned
If the intersection of active addresses and DNS-defined addresses yields multiple
potential addresses for a query and if all systems have the same weights, you
would expect to see a rotation of the addresses being offered a client. Yet you
may test with DNS/WLM and never perceive the phenomenon. This is due to the
default for the -t option on the DNS startup. -t represents the amount of time
between queries to the WLM about sysplex names, addresses, and weights.
When the time specified in -t (default of 60 seconds) expires, DNS resets its list of
potential addresses to the order specified in the DNS definition sequence. The
default of 60 seconds has been deemed optimal for a production system,
because weights can change rapidly; DNS should refresh its knowledge of
weights frequently. A great number of connections occur in a production
environment in those 60 seconds, and these will receive the benefits of the
round-robin address offers. If you set -t to a value greater than 60 seconds, you
defeat the purpose of connection balancing by overriding refreshed knowledge
about sysplex weights.

However, if you want to see the round-robin effect in action during testing you can
temporarily set the value higher than 60 seconds. Multiple (o)nslookups in rapid
succession should deliver a list of addresses that rotate with each command.

2.2.2 Using VIPA and a dynamic routing protocol with DNS/WLM
From a purely DNS and WLM perspective, the use of VIPA does not alter the host
selection criteria for a sysplex application or WLM group. From a routing
perspective, there are benefits in using the VIPA address for a TCP/IP stack
rather than the physical address.

In general, access to the mainframe will traverse a router somewhere in the
network for most users. That router can make routing decisions based upon the
topology of the network. When an OS/390 TCP/IP stack has multiple physical
connections, a router can choose the most direct link and should that link fail, an
alternate may be transparently substituted.

There is enough evidence to suggest the most viable configuration is to use the
DNS/WLM sysplex functions with a VIPA address. This provides a very high
availability solution with a minimal configuration requirement at the workstation. If
a route fails, including a channel connection, the router can simply redirect the
traffic to an available route. If a stack fails, the user can reconnect immediately to
Chapter 2. DNS/WLM (connection optimization) 25

an alternate stack without changing the application destination. This means there
is no longer a requirement to define "backup icons" for sysplex-supported
services or for the user to have to choose between normal Telnet or backup
Telnet. DNS will automatically select what is available and will balance the load
when the failing system returns.

2.3 The pros and cons of DNS/WLM

The DNS/WLM solution provides for a nice workload distribution, particularly
when using an application with long-lived connections. Because of its
dependence on the DNS hostname to IP address mapping, this solution also has
some potential drawbacks. This section lists these advantages and
disadvantages.

2.3.1 Benefits of DNS/WLM workload distribution
Since the target TCP/IP stack is chosen by the DNS server using the workload
information provided by WLM, the workload is balanced in a sysplex based on the
current load and system capacity.

Clients use the sysplex name as a server’s hostname. In case of TCP/IP stack
failure, the connection can be re-established to an appropriate surviving TCP/IP
stack within the sysplex.

Summary of benefits

 • Distributes connections in a sysplex based on current load and capacity.

 • Distributes load across adapters on a single host.

 • Dynamically avoids crashed hosts and servers.

 • Dynamically avoids crashed TCP/IP stacks when using sysplex name.

 • Highly scalable - new servers may be added without DNS administration.

 • Inexpensive to deploy - uses existing technology. No special
software/hardware is required.

 • Provides for high performance since the distribution is done during hostname
resolution.

2.3.2 DNS/WLM limitations
Most of the DNS/WLM solution’s limitations arise from its inherent dependence
on the Domain Name System. The following lists some of these drawbacks:

 • To take advantage of DNS/WLM connection optimization, the clients must be
using DNS to resolve addresses.

 • Additionally, the DNS server must be implemented within the sysplex. Further,
the dynamic naming structure may require client re-configuration.

 • The DNS/WLM solution is not applicable to all applications, since application
software support is required.

 • The DNS/WLM implementation does not distinguish among multiple servers
on the same host but using a different port.

 • If caching is enabled at other name servers or at hosts and these name
servers or hosts ignore the TTL value, full connection optimization is defeated.
26 TCP/IP in a Sysplex

 • The DNS/WLM can optimize connections only within a single sysplex.

 • DNS/WLM is intended primarily for long-lived connections. Although
short-lived connections do exploit the potential of DNS/WLM, the added
network traffic they generate may outweigh the benefits.

2.4 Application and stack registration to WLM

In order for Workload Manager to become aware of an application, the application
must register with WLM. There is an assembler macro and a C function available
for doing this (IWMSRSRG and IWMDNREG, respectively). Although they have
different names, the C function is just a wrapper to call IWMSRSRG. When an
application registers, the following information must be passed to WLM:

 • Group (cluster) name

A generic name used to represent a group of applications running on the
sysplex. This can be considered the name of the service provided.

 • Server name

The name of the application running on that particular host in the sysplex.
Each application in a group must register with a different server name.
Essentially, this is the name of the application instance providing the service.

 • Hostname

The TCP/IP hostname of the stack associated with the application (server).
This can be obtained by issuing the gethostname() call.

When the name server requests a list of registered applications from WLM, the
above information is returned for each one, along with a list of active addresses
associated with the hostname; that is, all the interfaces that have been
successfully activated and have an address assigned via the HOME statement in
the TCP/IP profile.

Figure 4. Application and stack registration to WLM

SYSPLEX1

DNS

HOST1 HOST2

WLM REGISTRATION

FTPD1

CICS1

DDF1

APPL1

FTPD1

CICS1

DDF1

APPL1

TCPIPA

TN3270E1

FTPD2

CICS2

DDF2

APPL2

TCPIPB

TN3270E2

HOST3

FTPD3

CICS3

DDF3

APPL3

TCPIPC

TN3270E3

TNRAL : TN3270E1,TN3270E2,TN3270E3 CICS : CICS1,CICS2,CICS3 DDF : DDF1,DDF2,DDF3
FTPRAL : FTPD1,FTPD2,FTPD3 APPL1 : APPL1,APPL2,APPL3

GROUP NAMES
Chapter 2. DNS/WLM (connection optimization) 27

2.4.1 Stack registration with DNS/WLM
If you plan to use the connection optimization features of the BIND DNS server
that is exploiting WLM, then you need to be aware of several additions to your
TCP/IP Profile data set:

IPCONFig
SYSPLEXRouting 1

SYSPLEXRouting 1 indicates that this CS for OS/390 IP stack participates in a
sysplex and should notify the Workload Manager (WLM) of any changes in
interface definitions or statuses. This statement allows the stack to register itself
and its interfaces with the WLM for connection optimization purposes.
SYSPLEXRouting is part of the IPCONFig statements of the PROFILE.TCPIP.

2.4.2 CS for OS/390 V2R10 IP application support
Several applications shipped with CS for OS/390 IP are able to register with
WLM. For example, the TN3270 server and the FTP server can be configured to
register with WLM. Our scenarios used these two applications. Additionally, other
IBM applications for the OS/390 platform have the ability to register with WLM.

For CICS, you specify the group names in the listener definition. You may specify
up to three group names for a CICS listener. If you want to change the
registration, you have to stop and restart the listener. In DB2, registration
supported is available with APAR PQ07417.

2.4.2.1 TN3270 configuration
TELNETPARMS

WLMCLUSTERNAME 2
TN03 3
TNRAL 3
TNTSO 3

ENDWLMCLUSTERNAME 2
ENDTELNETPARMS

If you want Telnet to register with WLM, you need to add WLMCLUSTERNAME
and ENDWLMCLUSTERNAME 2 to the TELNETPARMS section of your profile
coding. Imbedded between WLMC and ENDWLMC you may specify the names
that you would like the TN3270 Server to register as with WLM. TNRAL 3 and the
other names in the WLMC list are known as group names. They represent a
cluster of equivalent server names in a sysplex environment that provide some
common service.

The TCP/IP stack and the Telnet server are registered at stack startup if the
appropriate definitions have been placed in the PROFILE.TCPIP. Re-registration
occurs after every OBEYFILE command. You may deregister by stopping the stack
or by issuing an OBEYFILE command against a PROFILE that has coded
NOSYSPLEXrouting or by changing the specifications in the PROFILE between
WLMC and ENDWLMC.

The Telnet server can also be deregistered with:

V TCPIP,procname,TELNET,QUIESCE and

V TCPIP,procname,TELNET,STOP

A re-registration is accomplished with:
28 TCP/IP in a Sysplex

V TCPIP,procname,TELNET,RESUME

You may specify up to 16 group names for a TN3270 server.

2.4.2.2 FTP configuration
If you want FTP to register with WLM, you need to add WLMCLUSTERNAME to
the FTP.DATA file.

WLMCLUSTERNAME FTPRAL

You may also specify up to 16 group names for the FTP server. If you want to
change the registration, you have to stop and restart the FTP server.

2.4.2.3 Registering your own applications
To register your own server application, use a C interface or an assembler
interface. For C language, the IWMDNREG and IWMDNDRG API is provided. For
assembler applications, use IWMSRSRG and IWMSRDRS macros. Appendix A,
“Sample applications and programs” on page 253 contains the description of a
sample application that is capable of registering with WLM. The source code for
this application is included in Appendix B, “Sample C program source code” on
page 267.

For information on how to code the assembler macro, see OS/390 MVS
Programming: Workload Management Services, GC28-1773.

2.4.3 DNS/WLM registration results
Unfortunately there is no generic query available to determine from OS/390 WLM
the names of resources registered with it. Some applications issue messages
about a successful registration like the FTP server:

Figure 5. FTP server registration with WLM

Other applications like Telnet have commands available to display the group
names registered with WLM (see Figure 6 on page 29):

Figure 6. Display Telnet group names registration with WLM

If there is no command or message available to check the registration with WLM,
you can use the nslookup or any other function that resolves hostnames to verify
the results. Another possibility to be certain if an application has registered is to

EZYFT57I FTP registering with WLM as group = FTPRAL host = MVS03A
EZY2702I Server-FTP: Initialization completed at 12:39:25 on 09/21/00.

D TCPIP,TCPIPA,T,WLM
EZZ6067I TELNET WLM DISPLAY 240
WLM CLUSTER NAME STATUS
------------------ ---------------------
----- PORT: 23 ACTIVE BASIC
TNTSO Registered
TNRAL Registered
TN03 Registered
4 OF 4 RECORDS DISPLAYED
Chapter 2. DNS/WLM (connection optimization) 29

dump the DNS database. Please review 2.5.6, “Dumping the DNS server cache”
on page 36 for a detailed explanation.

2.5 Working with DNS/WLM

The hosts, servers, and stacks register with workload manager (WLM), and
DNS/WLM retrieves its knowledge of system loads and available resources from
the WLM. DNS/WLM distributes connections in a sysplex based on currently
available system capacities. It also distributes the system load across active
adapters on a single host and, through dynamically updated awareness of
crashed stacks, servers, and adapters. It can avoid them in distributing traffic
across a sysplex. Since server registration is dynamic, no DNS administration is
required to recognize new resources in the network.

2.5.1 WLM configuration
Load balancing in the sysplex requires that all hosts participating in connection
optimization be operating in WLM goal mode. Without goal mode, all hosts are
treated equally and there is no WLM consideration of the different workloads they
may have. To set goal mode, you have two choices:

1. Omit the keyword IPS= from IEASYSxx in SYS1.PARMLIB

2. Dynamically configure goal mode by issuing the MVS console command: F
WLM,MODE=GOAL

You can discover whether your system is in goal mode or not with the command D
WLM,SYSTEM=sysname; you see the output of the command in Figure 7.

Figure 7. Display of WLM status

2.5.2 DNS/WLM TCPDATA consideration
The TCPDATA file (or resolver file) is used by clients to determine, among other
things, the stack name they should have affinity to and the domain name that will
automatically be appended to their name-based queries. The fully qualified name
for mvs03 could end up being mvs03.itso.ral.ibm.com. or
mvs03.ralplex1.itso.ral.ibm.com. even if all you entered at the client was ping
mvs03. This depends on the resolver file your client is using.

D WLM,SYSTEMS
IWM025I 11.33.23 WLM DISPLAY 295
ACTIVE WORKLOAD MANAGEMENT SERVICE POLICY NAME: EQUALESY
ACTIVATED: 2000/06/28 AT: 08:32:08 BY: LUNA FROM: RA03
DESCRIPTION: Policy for equal imp case
RELATED SERVICE DEFINITION NAME: CICSpol
INSTALLED: 1998/01/30 AT: 15:44:05 BY: WOZA FROM: SA28
WLM VERSION LEVEL: LEVEL011
WLM FUNCTIONALITY LEVEL: LEVEL004
WLM CDS FORMAT LEVEL: FORMAT 3
STRUCTURE SYSZWLM_WORKUNIT STATUS: DISCONNECTED
STRUCTURE SYSZWLM_61989672 STATUS: DISCONNECTED
SYSNAME *MODE* *POLICY* *WORKLOAD MANAGEMENT STATUS*
RA03 GOAL EQUALESY ACTIVE
RA28 GOAL EQUALESY ACTIVE
RA39 GOAL EQUALESY ACTIVE
30 TCP/IP in a Sysplex

If you are implementing the DNS server for a sysplex domain, you have a
decision to make about how you designate the domain name for the TSO or shell
client. If you leave the domain name as itso.ral.ibm.com., then every time your
client needs to have for example ftpral converted into a fully qualified name, it
will be resolved into ftpral.itso.ral.ibm.com. You may not find the group name
ftpral under these conditions; however, you would find the thousands of other
resources in the domain itso.ral.ibm.com and served by another name server
very easily by allowing the default domain to be appended.

Your network users who need to get to the few resources managed by the sysplex
domain simply need to change those requests to something like this: ftp
ftpral.ralplex1, ensuring that they do not append a period to the request. (The
period or dot would indicate that the fully qualified name has been specified and
the current domain name should not be appended.) Their client resolver process
will expand the two-part name into the fully qualified
ftpral.ralplex1.itso.ral.ibm.com. To avoid your network users having to
specify the long sysplex names, you can simply code CNAME records for your
sysplex resources as shown in Figure 28 on page 47.

On the other hand, if you make the domain name something like
ralplex1.itso.ral.ibm.com, then every time your TSO client needs to find the
group name ftpral, it will be correctly resolved into
ftpral.ralplex1.itso.ral.ibm.com. However, to reach the thousands of
resources by name that are actually in the itso.ral.ibm.com domain, the TSO
or shell client would have to specify the fully qualified name to begin with or would
have to rely on your CNAME coding in the name server. (The CNAME coding
would spell out the fully qualified name of the resource.)

You have probably figured out that the issue of what domain name to put into the
TCPDATA file is one of degree: how many host-based clients are there versus
workstation clients? If there are few OS/390-based clients trying to reach
resources that are based mostly in the sysplex, then you might decide to use the
sysplex subdomain as your TCPDATA domain. If the same clients are trying to
reach resources in a completely different domain, then you might decide to use
the domain name that represents the greater number of resources.

In our network, we left the TCPDATA file at the host with a domain of
itso.ral.ibm.com. for the clients to use and CNAME records to point to the
sysplex resources.

2.5.3 Client/server affinity
Some client/server applications require that the client connects to the same
server instance after an interruption. This is achieved in the following way:

1. The server uses the new ioctl() function SIOCGSPLXFQDN to get its fully
qualified name from the TCP/IP stack.

2. After the connection has been established using only the group name or the
sysplex name the server sends its fully qualified name
(server_instance.groupname.sysplex_subdomain.domain) to the client.

3. After an interruption, the client uses this fully qualified name to make sure he
connects to the same server he was connected to before the interruption.
Chapter 2. DNS/WLM (connection optimization) 31

To enable this function the following definition has to be added to the sysplex
name servers loopback file:

127.0.0.128 IN PTR ralplex1.itso.ral.ibm.com; Sysplex Loopback Address (SLA)

The loopback address range 127.0.0.128-127.0.0.255 has been reserved by IBM
for this purpose.

2.5.4 Starting the DNS server
The BIND DNS name server must be associated with a TCP/IP stack. This
process occurs by default if there is only one copy of CS for OS/390 V2R10 IP in
the OS/390 image. A single copy will probably be the more common
implementation since the reasons for running multiple stacks are rapidly
disappearing. The establishing of affinity to a particular stack then becomes an
issue only if you are running in a CINET configuration with multiple stacks. This
issue is easy to solve with a pointer to the correct TCPDATA file. The TCPDATA
file (also called the resolver file) is found according to the following search
sequence:

1. RESOLVER_CONFIG environment variable

2. /etc/resolv.conf

3. //SYSTCPD DD

4. jobname or userid.TCPIP.DATA

5. SYS1.TCPPARMS(TCPDATA)

6. TCPIP.TCPIP.DATA

There can be problems with some applications using the TCPDATA reference by
way of the //SYSTCPD DD card. (Forked tasks do not resolve correctly if the DD
card is used; for such forked tasks you must duplicate the contents of the
//SYSTCPD DD card in an HFS data set called /etc/resolv.conf.) Although the
BIND name server forks a new task, this task already has the information it needs
from the parent task; therefore, at the ITSO, we had no problems running with the
//SYSTCPD DD card.

If you have an /etc/resolv.conf in place, you can, of course, omit the //SYSTCPD
DD statement from your name server JCL. If you need to override the default
/etc/resolv.conf for a particular name server procedure, you may use //SYSTCPD
DD or you may reference an HFS resolver configuration file with the environment
variable RESOLVER_CONFIG. We used the //SYSTCPD DD 1 as you can see in
Figure 8.
32 TCP/IP in a Sysplex

Figure 8. DNS server startup procedure

2 The PORT value and the boot file parameter are not required in the example
above since it is the default, but are included for illustrative purposes.

For the DNS server you reserve the PORT in the PROFILE data set with the
name of the parent process. This varies from procedure to procedure, with some
procedures requiring that the child process be named. If you autolog a DNS
server procedure, then both the AUTOLOG and the PORT statement must
reference the parent process. This is in marked contrast to what occurs with FTP,
where the child process must be named on the PORT and AUTOLOG statements:

AUTOLOG
NAMED

;
PORT
53 TCP NAMED
53 UDP NAMED

The DNS server can also be started from the UNIX system services shell
environment, but starting it requires superuser authority or an authorized TSO
user ID. You cannot start the name server with the inetd daemon. The startup
must know either via default or via parameters what the boot file name is, so that
the correct data can be loaded. Figure 9 shows how you can start the DNS server
with a UNIX System Services shell environment. Note: If we had coded a default
/etc/resolv.conf, we would not have needed to specify the RESOLVER_CONFIG
parameter.

Figure 9. Start DNS server in UNIX System Services shell environment

//NAMED PROC B='/etc/named.boot',P='53' 2
//**
//NAMED EXEC PGM=EZANSNMD,REGION=0K,TIME=NOLIMIT,
// PARM='POSIX(ON) ALL31(ON)/ -b &B -p &P -d 11'
//*STEPLIB DD DISP=SHR,DSN=TCPIP.SEZALINK
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSTCPD DD DISP=SHR,DSN=TCPIP.TCPPARMS.R2611(TCPD&SYSCLONE.A) 1

export RESOLVER_CONFIG="//’TCPIP.TCPPARMS(TCPD03A)’"
_BPX_JOBNAME=’NAMED’ /usr/sbin/named -b /etc/named.boot
Chapter 2. DNS/WLM (connection optimization) 33

Table 1 lists additional startup parameter with a brief description:

Table 1. Additional start options for the DNS server

We have started the name server with a procedure from the MVS console. Figure
10 on page 34 shows the console log of the startup of the DNS server process on
our MVS03 system.

Note that procedure NAMED 1 has ended, but you will later see that it has
created a child process called NAMED1. The message EZZ6475I 2 actually tells
you that the domain name server finished loading its resources and is now ready
to respond to query requests.

Figure 10. Console log of DNS start

Depending on whether you have started the syslog daemon, you will see
additional messages about the files that DNS is loading either on the MVS
console or in the syslogd.log in HFS. Debugging is usually easier if you allow the
messages to be sent to syslogd. The messages you see at MVS03 from the
initialization with our boot file are:

Option Name Description

-d n Specifies a debugging option and causes the named daemon to write
debugging information to the file /tmp/named.run. Valid debug levels are one to
11, where 11 supplies the most information.

-p Reassigns the port that is used in queries to other name servers. (The default is
53.) The local / remote port number can be specified.

-b filename Specifies an alternate boot file to /etc/named.boot.

-q Enables the logging of queries received by the name server.

-r Disables recursive query processing.

-t nn Specifies the time (nn, in seconds) between refreshes of sysplex names and
addresses and of the weights associated with those names and addresses. The
default is sixty seconds.

-l nn Specifies the time-to-live (nn, in seconds) for sysplex names and addresses
after they are sent into the network. The default is zero seconds.

S NAMED
$HASP100 NAMED ON STCINRDR
IEF695I START NAMED WITH JOBNAME NAMED IS ASSIGNED TO USER
TCPIP3 , GROUP OMVSGRP
$HASP373 NAMED STARTED
IEF403I NAMED - STARTED - TIME=16.01.35
EZZ6452I NAMED STARTING. @(#) DDNS/NS/NS_MAIN.C, DNS_NS, DNS_R1.1 1.
239
62 9/23/97 10:57:21
- --TIMINGS (MINS.)--

----PAGING COUNTS---
-JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB CLOCK
SERV PG PAGE SWAP VIO SWAPS
-NAMED NAMED 00 731 31 .00 .00 .0
11841 0 0 0 0 0
IEF404I NAMED - ENDED - TIME=16.01.36
-NAMED ENDED. NAME- TOTAL TCB CPU TIME= .00
TOTAL ELAPSED TIME= .0
$HASP395 NAMED ENDED 1
+EZZ6475I NAMED: READY TO ANSWER QUERIES. 2
34 TCP/IP in a Sysplex

Figure 11. DNS messages in syslogd.log: file loading

You can see in Figure 11 (1) how our server has been associated via the resolver
process with the TCPIPA stack. You can also see which level of your
customization has been loaded (2) as shown by the displayed serial number. You
may want to maintain the serial number designation in the files as you customize
them in order to understand which version of a file has been loaded. The serial
number is also used at secondary name servers to determine whether data
needs to be reloaded after a zone transfer. If you discover a mismatch between
the data at a secondary name server and that at a primary, the discrepancy could
be due to one of the following:

 • A view of the secondary name server prior to its having pulled new data from
the primary

 • The failure of the secondary to pull new data from the primary because a
matching serial number at the primary signalled the secondary not to update
its data

We will get back to this in more detail when we review the configuration files of
the primary and secondary name server.

2.5.5 Displaying the DNS active sockets
Once the DNS server process has started, you can display the active sockets with
an onetstat -a display. Also, you can use the -c and the -s options of onetstat to
display the active sockets. Figure 12 shows the result of an onetstat display and
you can observe 1 how the port we reserved in the PROFILE.TCPIP and specified
(or defaulted) in the DNS startup is port 53.

Figure 12. Display of active sockets: onestat -a

EZZ6452I named starting. @(#) ddns/ns/ns_main.c, dns_ns, dns_r1.1 1.62 9/23/97
EZZ6701I named established affinity with 'TCPIPA' 1
EZZ6540I Static primary zone '104.24.9.in-addr.arpa' loaded (serial 1999040101) 2
EZZ6540I Static primary zone '16.172.in-addr.arpa' loaded (serial 1999040101)
EZZ6540I Static primary zone '0.0.127.in-addr.arpa' loaded (serial 1999040101)
EZZ6540I Static cache zone '' loaded (serial 0)
EZZ6475I named: ready to answer queries.

MVS TCP/IP onetstat CS V2R10 TCPIP Name: TCPIPA 13:49:51
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
BPXOINIT 0000000A 0.0.0.0..10007 0.0.0.0..0 Listen
FTPDA1 000000ED 0.0.0.0..21 0.0.0.0..0 Listen
NAMED 00000107 0.0.0.0..53 1 0.0.0.0..0 Listen
OMPROUTA 0000001B 127.0.0.1..1027 127.0.0.1..1028 Establsh
TCPIPA 0000000C 0.0.0.0..1025 0.0.0.0..0 Listen
TCPIPA 00000016 0.0.0.0..23 0.0.0.0..0 Listen
TCPIPA 000000F7 9.24.104.113..23 9.24.106.31..4906 Establsh
TCPIPA 00000011 127.0.0.1..1025 127.0.0.1..1026 Establsh
TCPIPA 00000010 127.0.0.1..1026 127.0.0.1..1025 Establsh
TCPIPA 000000F2 172.16.250.3..23 9.24.106.102..2889 Establsh
TCPIPA 00000014 127.0.0.1..1028 127.0.0.1..1027 Establsh
NAMED 00000108 0.0.0.0..53 1 *..* UDP
Chapter 2. DNS/WLM (connection optimization) 35

2.5.6 Dumping the DNS server cache
When you start the DNS server process, it will read all the zone files and place
the information in memory. This memory database will get updated with entries
that it learns from other DNS servers because of the recursive searching that may
go on between DNS servers.

You have the ability to dump this memory table by sending a signal to the DNS
server. The SIGINT signal dumps the name server memory database in the HFS
file /tmp/named_dump.db. You can issue the signal through the ISPF command
ISHELL or you can issue the command in the UNIX System Services shell by
entering:

kill -INT $(cat /etc/named.pid)

The process ID of the named daemon is stored in the /etc/named.pid file at the
named startup. Alternatively you might enter the PID directly:

kill -INT 402653187

You can obtain the PID 1 with a UNIX System Services shell command ps -e or
with the D OMVS,A=ALL console command, as you see in Figure 13. Note the name
of the executed program: EZANSMD 2.

Figure 13. Displaying process ID and DNS program

See Figure 14 for a partial copy of the /tmp/named_dump.db file that was created
when you issued signal #2 (-INT) against the DNS program, EZANSNMD. The
output shows you only the zone table and a few lines in the beginning of the
dump, but it should give only an idea how it looks. You will see a more detailed
dump later in 2.6.6, “DNS DUMP of primary DNS server in the sysplex” on page
51.

D OMVS,A=ALL
BPXO040I 17.58.45 DISPLAY OMVS 106
OMVS 000E ACTIVE OMVS=(03)
USER JOBNAME ASID PID PPID STATE START CT_SECS
OMVSKERN BPXOINIT 0022 1 0 MF 11.11.42 136.551
LATCHWAITPID= 0 CMD=BPXPINPR
SERVER=Init Process AF= 0 MF=00000 TYPE=FILE

......
TCPIP3 OMPROUTA 007D 67108935 1 HS 11.22.54 99.130
LATCHWAITPID= 0 CMD=/usr/lpp/tcpip/sbin/omproute

TCPIP3 TCPIPC 005F 50331738 1 1F 16.39.18 27.061
LATCHWAITPID= 0 CMD=EZASASUB

TCPIP2 SYSLOGD1 003C 50331805 1 1FI 16.03.05 6.437
LATCHWAITPID= 0 CMD=/usr/sbin/syslogd -c -u -f /etc/syslog.c

TCPIP3 FTPDC1 0062 83886238 1 1FI 16.39.18 .020
LATCHWAITPID= 0 CMD=FTPD

TCPIP3 TCPIPC 005F 50331862 1 1F 16.39.17 27.061
LATCHWAITPID= 0 CMD=EZACFALG

TCPIP3 NAMED1 004A 67109097 1 1 1F 16.01.36 3.959
LATCHWAITPID= 0 CMD=EZANSNMD 2

TCPIP3 TCPIPC 005F 67109098 1 MR 16.39.13 27.061
LATCHWAITPID= 0 CMD=EZBTCPIP

TCPIP3 TCPIPC 005F 83886356 1 1R 16.39.16 27.061
......
36 TCP/IP in a Sysplex

Figure 14. Partial copy of /tmp/named_dump.db (from a SIGINT to DNS process)

2.5.7 DNS statistics
You can obtain DNS statistics by using the signal #3 (ABRT), available either from
the ISHELL selection menus or by issuing kill -3 $(cat /etc/named.pid) from
the shell. The data is stored in /tmp/named.stats. See Figure 15 for a sample
output.

; Dumped at Tue Sep 19 14:36:12 2000
;; ++zone table++
; ralplex1.itso.ral.ibm.com (type 1, class 1, source ralplex1.for)
; time=969374208, lastupdate=937949821, serial=1999040102,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937949821, xaddr=[0.0.0.0], state=20041, pid=0
; 104.24.9.in-addr.arpa (type 1, class 1, source ralplex1.rev9)
; time=969378400, lastupdate=937951070, serial=1999040101,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937951070, xaddr=[0.0.0.0], state=0041, pid=0
; 16.172.in-addr.arpa (type 1, class 1, source ralplex1.rev)
; time=969379773, lastupdate=937949840, serial=1999040101,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937949840, xaddr=[0.0.0.0], state=0041, pid=0
; 0.0.127.in-addr.arpa (type 1, class 1, source mvs03a.lbk)
; time=969377837, lastupdate=937950997, serial=1999040101,
; refresh=7200, retry=3600, expire=604800, minimum=3600
; ftime=937950997, xaddr=[0.0.0.0], state=0041, pid=0
;; --zone table--
; Note: Cr=(auth,answer,addtnl,cache) tag only shown for non-auth RR's
; Note: NT=milliseconds for any A RR which we've used as a nameserver
; --- Cache & Data ---
$ORIGIN itso.ral.ibm.com.
ralplex1 IN SOA mvs03a.ralplex1.itso.ral.ibm.com.

1999040102 7200 3600 604800 3600) ;Cl=5
IN NS mvs03a.ralplex1.itso.ral.ibm.com.
IN A 172.16.250.3 ;Cl=5
IN A 172.16.252.28 ;Cl=5
IN A 172.16.232.39 ;Cl=5

$ORIGIN ralplex1.itso.ral.ibm.com.
Chapter 2. DNS/WLM (connection optimization) 37

Figure 15. Name server statistics

2.5.8 Discovering signals available for process
Most of the signal numbers are documented in OS/390 UNIX System Services
Command Reference, SC28-1892. If you want a list of the available signals in an
environment, you may issue a LIST 1 command, as in Figure 16.

Figure 16. kill -l: requesting a list of available process signals

+++ Statistics Dump +++ (969401611) Tue Sep 19 22:13:31 2000
7915.time since boot (secs)
7915.time since reset (secs)
0.Unknown query types
2.PTR queries
++ Name Server Statistics ++
(Legend)
.RQ.RR.RIQ.RNXD.RFwdQ
.RFwdR.RDupQ.RDupR.RFail.RFErr
.RErr.RTCP.RAXFR.RLame.ROpts
.SSysQ.SAns.SFwdQ.SFwdR.SDupQ
.SFail.SFErr.SErr.RNotNsQ.SNaAns
.SNXD
(Global)
.2 3 0 0 2 0 0 0 3 0 0 0 0 0 0 1 0 2 0 0 2 0 0 2 0 0
›9.24.104.125®
.0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0
›172.16.250.3®
.2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0
-- Name Server Statistics --
--- Statistics Dump --- (969401611) Tue Sep 19 22:13:31 2000

IBM
Licensed Material - Property of IBM
5647-A01 (C) Copyright IBM Corp. 1993, 2000
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

- -
- Improve performance by preventing the propagation -
- of TSO/E or ISPF STEPLIBs -
- -
@ RA03:/u/pabst>kill -l 1
NULL HUP INT ABRT ILL POLL URG STOP FPE KILL BUS SEGV SYS PIPE ALRM TERM USR1 U
SR2 ABND CONT CHLD TTIN TTOU IO QUIT TSTP TRAP IOERR WINCH XCPU XFSZ VTALRM PROF
DCE DUMP
38 TCP/IP in a Sysplex

Table 2 lists all the valid signals for the domain name server.

Table 2. Valid signals for the domain name server

A sample started procedure in TCPIP.SEZAINST named NSSIG allows you to
issue signals to the name server from the MVS console:

S NSSIG,SIG=SIGINT

By sending the signal SIGINT, you can dump the memory table into the HFS file
/tmp/named_dump.db. This is just another way to produce a dump, as was
mentioned in 2.5.6, “Dumping the DNS server cache” on page 36.

The documentation for issuing signals with the name server is in OS/390 IBM
Communications Server: IP Configuration Guide, SC31-8725. In Figure 17, you
see the a copy of the NSSIG JCL we used in ITSO Raleigh.

Figure 17. Running NSSIG procedure from ITSO Raleigh

2.5.9 Tracing the name server
As you can see in the screen output in Figure 18, there are other ways to send
the same signals. In this case we use the ISPF command ISHELL. We can select
the Work with Processes option by doing the following:

1. Select TOOLS

2. Select Work with Processes

3. Find process ID or use command EZANSNMD

4. Select process with S=SIGNAL

Signal Name Description

SIGHUP Reloads the boot file from the disk

SIGINT Dumps the name server's database and hints file into the
/tmp/named_dump.db file

SIGABRT Dumps the current statistics of the name server in the /tmp/named.stats file

SIGUSR1 Starts debug tracing for the name server, or increment the debug level by one if
the tracing has been activated already

SIGUSR2 Stops debug tracing

SIGWINCH Toggles query logging on and off

//NSSIG PROC SIG=''
//NSSIG EXEC PGM=BPXBATCH,REGION=30M,TIME=NOLIMIT,
// PARM='SH kill -s &SIG $(cat /etc/named.pid)'
//* STDIN and STDOUT are both defaulted to /dev/null
//STDERR DD PATH='/etc/log',PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
Chapter 2. DNS/WLM (connection optimization) 39

Figure 18. Another way to issue signals to the DNS server

Signal #16 (USR 1) 1 begins a trace of the DNS server process. Signal #17
(USR2) 2 terminates the trace. The data is written to /tmp/named.run. See Figure
19 for a partial trace output. A more detailed trace is included in 2.6.7, “DNS trace
of WLM data for the primary DNS in the sysplex” on page 52.

Figure 19. /tmp/named.run partial trace output

The debug level was raised to 9 in the trace because we issued the USR1 signal
(#16) multiple times. We really wanted a debug level of 11, the recommended
(and highest allowable) setting. Attempting to reach debug level 11 via the
ISHELL TOOLS menu can be tedious, as you see. We recommend instead

Work with Processes
+--

Enter Signal Number Command is not active

Process ID : 67109097
Command : EZANSNMD
Signal number __

Some of the common signal numbers are:
1 SIGHUP hangup 2 17 SIGUSR2 application defined
3 SIGABRT abnormal termination 19 SIGCONT continue
7 SIGSTOP stop 20 SIGCHLD child
9 SIGKILL kill 21 SIGTTIN ctty background read
13 SIGPIPE write with no readers 22 SIGTTOU ctty background write
14 SIGALRM alarm 23 SIGIO I/O completion
15 SIGTERM termination 24 SIGQUIT quit

1 16 SIGUSR1 application defined 25 SIGTSTP interactive stop

F1=Help F3=Exit F6=Keyshelp F12=Cancel
+--

Debug turned ON, Level 1
Debug turned ON, Level 2
Debug turned ON, Level 3
Debug turned ON, Level 4
Debug turned ON, Level 5
Debug turned ON, Level 6
Debug turned ON, Level 7
Debug turned ON, Level 8
Debug turned ON, Level 9
datagram from [172.16.250.3].1027, fd 5, len 43; now Tue Sep 19 15:37:15
2000
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5657
;; flags: rd; Ques: 1, Ans: 0, Auth: 0, Addit: 0
;; QUESTIONS:
;;102.106.24.9.in-addr.arpa, type = PTR, class = IN
;; ...truncated
ns_req(from=[172.16.250.3].1027)
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5657
;; flags: rd; Ques: 1, Ans: 0, Auth: 0, Addit: 0
;; QUESTIONS:
;;102.106.24.9.in-addr.arpa, type = PTR, class = IN
40 TCP/IP in a Sysplex

bypassing the ISHELL process and setting the debug trace level to 11 by one of
two methods:

1. Use -d 11 on the named start command or in your JCL.

2. Issue the kill -USR1 ($cat /etc/named.pid) multiple times from the shell
with the help of the retrieve key.

Resolver tracing is available with the name server and is enabled by default in the
TCPDATA file. The output goes to the MVS console or to the syslogd output if you
have started the syslog daemon.

2.5.10 Reloading DNS data
To reload data that you may have changed during a particular lifetime of the name
server, you can send a signal to the UNIX System Services shell asking the DNS
to reread its configuration files. Issue kill -HUP ($cat /etc/named.pid) or use
signal #1 from the ISHELL after you select Tools and Work with Processes.

This command works only at a primary name server. A secondary server
periodically returns to query the primary for new data, theoretically eliminating
the need to reload a secondary with a signal. (The refresh interval is one of the
settings in the SOA record. See 2.6.1, “Primary DNS configuration on MVS03” on
page 43 for further details on SOA records and their configuration.)

The reload process is not designed for dynamic domains, since these are
updated via the nsupdate command.

2.5.11 Stopping the DNS server
You can stop the DNS server with the MVS STOP command P T03DNS1. The
advantage of the STOP command is the graceful termination of the name server
and the issuing of messages in syslogd. Other alternatives are to use the MVS
CANCEL command or the OMVS KILL command. The OMVS KILL command can
be issued from OMVS or from the NSSIG procedure.

2.6 Implementation scenario

When implementing DNS/WLM, you can leave in place your primary name server,
which may reside on a platform other than OS/390, and still take advantage of the
DNS/WLM. The only changes to your standard DNS definitions are minimal
additions to allow for the specification of the S/390 DNS as the authoritative name
server for some subdomain. That is, the sysplex subdomain that is created within
your network’s domain will be serviced by the S/390, but that does not
necessarily force you to use the S/390 DNS as the authoritative server for your
entire network domain.

In our scenario, our existing domain, itso.ral.ibm.com, has been using a name
server built on an AIX platform (RSSERVER, an RS/6000). We leave that name
server in place, adding to it a subdomain definition for the new sysplex
subdomain. Within this new sysplex subdomain, we will place our authoritative
DNS server that will balance load among the different servers providing the same
service.

Figure 20 depicts the servers and groups running in our environment. You may be
wondering why we chose different group names for the TN3270 function.
Chapter 2. DNS/WLM (connection optimization) 41

Functionally each group name is not equivalent to every other group name.
TNRAL represents a group name that allows users to reach the same application
on all three MVS images. TN03 is a group name that allows you only to access
the MVS image MVS03. TN28 is a group name that allows you only to access the
MVS image MVS28, and so on for TN39.

Figure 20. Telnet and FTP distribution in a sysplex

Figure 21 shows the environment under which we have implemented our
scenario. We use a sysplex system that consists of three OS/390 images running
with IBM Communications Server for OS/390 V2R10 IP on each stack with
OMPROUTE routing daemon executing the OSPF routing protocol. On system
RA03, the primary DNS server for the sysplex domain ralplex1.itso.ral.ibm.com
has been configured. As a secondary DNS server for this sysplex subdomain, the
system RA28 is used. The parent DNS server, which is authoritative for the
parent domain itso.ral.ibm.com, is located on the local LAN.

MVS03

TN03
TNRAL

FTPRAL

DNS WLM

MVS28

TN28
TNRAL

DNS WLM

MVS39

TN39
TNRAL

FTPRAL

DNS WLM

RALPLEX1
42 TCP/IP in a Sysplex

Figure 21. Environment at ITSO Raleigh

This type of DNS solution may also be desirable if you have implemented a
firewall in your network. You may want only the primary name server (in our case,
RSSERVER) to be accessible by workstations in the network. The workstations
would not reference the sysplex name server in their configuration files but would
rather point to the parent name server RSSERVER. RSSERVER, on the other
hand, would be allowed to penetrate the firewall to reach the sysplex name
server.

2.6.1 Primary DNS configuration on MVS03
The boot file initializes the name server environment and points to the individual
name server definition files and to the options that the name server will provide
for each zone it supports. Figure 22 shows our /etc/named.boot file.

The following definitions can be specified in the BOOT file:

directory defines the location of the files that are listed within the boot file.

primary defines the domain name for the zone followed by the file to read for
the name-to-IP/IP-to-name address mapping called the forward file.
The mapping file to map the loopback address also has to be
specified.

cache corresponds to the root level domain, identified by a dot(.), and
indicates the file in which the IP address of the root DNS server can be
found. The cache file is also known as the hint file.

2216

TCPIPA

RA03

Primary
DNS

FTPD

OMPROUTE

VIPA:
172.16.250.3

TN3270
Server

RA39

OMPROUTE

TCPIPA

TN3270
Server

VIPA:
172.16.232.39

TCPIPA

RA28

OMPROUTE

TN3270
Server

VIPA:
172.16.252.28

Secondary
DNS

DNS Subdomain: itso.ral.ibm.com

Parent
DNS

9672

Sysplex Subdomain: ralplex1.itso.ral.ibm.com

FTPD

RSSERVER
Chapter 2. DNS/WLM (connection optimization) 43

Figure 22. /etc/named.boot file for DNS/WLM

This file looks similar to many other boot files, but there are two significant
differences:

 • 1 shows that our name server is primary for the sysplex subdomain called
ralpex1.itso.ral.ibm.com

 • 2 the cluster keyword indicates that this name server will communicate with
the Workload Manager to achieve connection optimization. The keyword is
used only once in the boot file for a DNS/WLM configuration.

Figure 23 shows you the forward file that we have pointed to in our boot file.
Notice in 1 how MVS03 is the authority for the sysplex domain called
ralplex1.itso.ral.ibm.com. If you have VIPAs 2 configured on your TCP/IP
stacks, only VIPAs should be specified in the forward file, so that only VIPAs are
returned to the DNS queries from clients. We have defined only VIPA addresses
as was shown in Figure 21 on page 43.

Figure 23. DNS/WLM forward file

The reverse file, which is also referred to as an in-addr.arpa file, is referenced in
the named.boot file as the primary DNS information for the in-addr.arpa domain
(for example, 16.172.in-addr.arpa domain as shown in Figure 24). Note the 1
inverse syntax used for referencing the in-addr.arpa file. The @ sign 2 on the start
of authority (SOA) record is a special character that indicates the SOA is for the

;
; /etc/named.boot for TCPIPA on RA03
;
; TYPE DOMAIN HOST FILE
;
directory /etc/dnsdata
;
primary ralplex1.itso.ral.ibm.com 1 ralplex1.for cluster 2
primary 104.24.9.in-addr.arpa ralplex1.rev9
primary 16.172.in-addr.arpa ralplex1.rev
primary 0.0.127.in-addr.arpa mvs03a.lbk
cache . ralplex1.ca

; /etc/dnsdata/ralplex1.for for TCPIPA on RA03
;
$ORIGIN ralplex1.itso.ral.ibm.com. 1
@ IN SOA mvs03a.ralplex1.itso.ral.ibm.com. garthm@mvs03a (

1999040102 ; Serial
7200 ; Refresh time after 2 hours
3600 ; Retry after 1 hour
604800 ; Expire after 1 week
3600) ; Minimum TTL of 1 hour

IN NS mvs03a
IN NS mvs28a

mvs03a IN A 172.16.250.3 2
mvs03c IN A 172.16.251.5 2
mvs28a IN A 172.16.252.28 2
mvs39a IN A 172.16.232.39 2
44 TCP/IP in a Sysplex

zone named in the named.boot file. It is used as a shorthand method, but it is
equally as valid to specify the ORIGIN statement in the configuration. See Figure
24 for details.

Figure 24. DNS/WLM reverse file

The loopback file is also referenced in the named.boot file as the primary name
server information for the domain 0.0.127.in-addr.arpa. Please refer to Figure 25.

Figure 25. DNS/WLM loopback file

2.6.2 Secondary DNS configuration MVS28
A secondary name server could be primary for some zones and secondary for
others. Its boot file indicates for which zones it is primary and for which it is
secondary. The cluster 1 keyword appears in the secondary name server’s boot
file, as it did in the primary name server. Again we identify the sysplex domain in
the domain record. Figure 26 shows the boot file for the secondary name server.

@ 2 IN SOA mvs03a.ralplex1.itso.ral.ibm.com. garthm@mvs03a (
1999040101 ; Serial
7200 ; Refresh time after 2 hours
3600 ; Retry after 1 hour
604800 ; Expire after 1 week
3600) ; Minimum TTL of 1 hour
IN NS mvs03a.ralplex1.itso.ral.ibm.com.
IN NS mvs28a.ralplex1.itso.ral.ibm.com.

3.250 1 IN PTR mvs03a.ralplex1.itso.ral.ibm.com.
3.251 1 IN PTR mvs03c.ralplex1.itso.ral.ibm.com.
28.252 1 IN PTR mvs28a.ralplex1.itso.ral.ibm.com.
39.232 1 IN PTR mvs39a.ralplex1.itso.ral.ibm.com.

;
; /etc/dnsdata/mvs03a.lbk for TCPIPA on RA03
;
@ IN SOA mvs03a.ralplex1.itso.ral.ibm.com. garthm@mvs03a (

1999040101 ; Serial
7200 ; Refresh time after 2 hours
3600 ; Retry after 1 hour
604800 ; Expire after 1 week
3600) ; Minimum TTL of 1 hour

IN NS mvs03a.ralplex1.itso.ral.ibm.com.
1 IN PTR loopback.
127 IN PTR ralplex1.itso.ral.ibm.com.
Chapter 2. DNS/WLM (connection optimization) 45

Figure 26. /etc/named.boot file for MVS28 (secondary DNS server)

Using the zone transfer process, the secondary server retrieves the files for
specified zones from the primary name server that it points to. The secondary
stores this information in its own files if the retrieved serial number is higher than
the current serial number stored in the secondary. The secondary obtains the
files from the primary name server based upon the refresh interval coded on the
SOA record or the resource record (RR) itself.

Figure 27 shows you the loopback file for the secondary DNS server that has to
be configured.

Figure 27. DNS/WLM loopback file of secondary DNS server

2.6.3 Parent DNS configuration
In this sample configuration, the parent name server is authoritative for the
domain itso.ral.ibm.com. Additional configurations for the parent name server
would be required if you want to use the resources in a sysplex without using fully
qualified domain names (FQDN). 1 NS records identify the name servers for the
sysplex subdomain, and two A 2 records identify the fully qualified domain names
and addresses of the DNS servers. CNAME records identify the fully qualified
names of resources that can be found by registering their short names, as in ping
tnral. CNAME 3 allows the tnral resource name to work as if it were in the
itso.ral.ibm.com domain. Clients that submit a query for tnral use their resolver
code to fully qualify the name so that the name server sees it as
tnral.itso.ral.ibm.com. The CNAME record for the tnral entry at the parent
name server resolves tnral.itso.ral.ibm.com into an alias called
tnral.ralplex1.itso.ral.ibm.com. The parent DNS server knows that the

;
; /etc/named.boot for TCPIPA on RA28
;
; TYPE DOMAIN FILE OR HOST
directory /etc/dnsdata
;
secondary ralplex1.itso.ral.ibm.com 172.16.250.3 fback cluster 1
secondary 104.24.9.in-addr.arpa 172.16.250.3 rback9
secondary 16.172.in-addr.arpa 172.16.250.3 rback
primary 0.0.127.in-addr.arpa mvs28a.lbk
cache . mvs28a.ca

;
; /etc/dnsdata/mvs28a.lbk for T28ATCP
;
@ IN SOA mvs28a.ralplex1.itso.ral.ibm.com. garthm@mvs03a (

1999040101 ; Serial
7200 ; Refresh time after 2 hours
3600 ; Retry after 1 hour
604800 ; Expire after 1 week
3600) ; Minimum TTL of 1 hour
IN NS mvs28a.ralplex1.itso.ral.ibm.com.

1 IN PTR loopback.
127 IN PTR ralplex1.itso.ral.ibm.com.
46 TCP/IP in a Sysplex

authoritative name server for ralplex1.itso.ral.ibm.com is either
mvs03.ralplex1.itso.ral.ibm.com or mvs28.ralplex1.itso.ral.ibm.com. The parent
DNS server sends the query to the sysplex name server, which then sends back a
list of usable addresses.

Figure 28. Additions to parent domain server to reflect sysplex subdomain resources

You would have to add the NS records for the sysplex name server in the parent
name server’s reverse file configuration, because some applications, such as
nslookup, rely on address to name resolution and will fail if your definitions are
not comprehensive. Additional application that also rely on address to name
resolution are NFS and the DDNS client.

2.6.4 BIND DNS resource records
The entries configured in DNS data files are defined using a special format
defined by RFC. Each resource record (RR) has the format shown below:

name ttl address_class record_type record_data

The record_type and record_data fields are the only required fields. The name, ttl
and address_class have defaults that may be set if they are not specified. The
record_type indicates the type of resource record that defines the record data
format. Valid resource record types include, but are not limited to, the following:

Table 3. DNS resource record types

2.6.4.1 Resource record details
The SOA record specifies the fully qualified name of the host that has the domain
name server authority for the zone. Note the period at the end of the resource
name, which means that this name is fully qualified and should be appended with
the ORIGIN. The SOA record includes a mailbox address of the user who is
responsible for the zone: for example karina@itso.ral.ibm.com.

Record Type Description

SOA Start of ZONE authority for the stated domain

A Name to IP address translation

PTR IP address to name translation

NS Name of the authoritative DNS server for the stated domain

CNAME Alias name

$ORIGIN ral.ibm.com.
itso IN SOA rsserver.itso.ral.ibm.com. karina@itso.ral.ibm.com. (
1 10800 3600 60 800 86 00)
$ORIGIN itso.ral.ibm.com.
ralplex1 IN NS mvs03.ralplex1.itso.ral.ibm.com. 1
ralplex1 IN NS mvs28.ralplex1.itso.ral.ibm.com. 1
mvs03.ralplex1.itso.ral.ibm.com. IN A 172.16.250.3 2
mvs28.ralplex1.itso.ral.ibm.com. IN A 172.16.252.28 2
tnral IN CNAME tnral.ralplex1.itso.ral.ibm.com. 3
tn03 IN CNAME mvs03a.tnral.ralplex1.itso.ral.ibm.com. 3
tn28 IN CNAME mvs28a.tnral.ralplex1.itso.ral.ibm.com. 3
:

Chapter 2. DNS/WLM (connection optimization) 47

The SOA record is continued into the following master data set records. A left
parenthesis signals that everything between here and a succeeding right
parenthesis should be considered as belonging to the same resource record,
despite record boundaries of the master data set.

You use the SERIAL field to keep track of your changes to the master data set. A
good practice is to enter the date when you last made changes to the data set. A
suggestion is to use YYMMDDx, where x is the number of updates per day. We were
making changes several times a day, so we used a simple sequence number
instead of the date. You must update the serial value every time you make
changes to the zone. The secondary name servers determine when to do a zone
transfer based on an increment in this value.

The REFRESH field is expressed in seconds. A secondary name server that has
transferred this zone from the primary name server should not wait more than this
number of seconds before it requests a refresh (a full zone transfer) from the
primary name server. Before requesting a zone transfer, the secondary name
server checks if the value of the serial field for the zone in question has changed
or not. If not, a zone transfer is not necessary.

The RETRY field is expressed in seconds. If a secondary name server fails to
refresh its copy of resource records, it should wait this number of seconds before
it retries the refresh from the primary name server.

The EXPIRE field is expressed in seconds. This is the maximum time a
secondary name server should consider its copy of resource data valid. If the
secondary name server does not succeed with a zone transfer from the primary
name server within this amount of time, it should consider its copy of the resource
data obsolete, and stop answering queries for this zone.

The MINIMUM TTL field is expressed in seconds. Every time a response from this
name server is sent out, it contains a time-to-live (TTL) field, which signifies how
long the receiver should be able to consider the response valid. In BIND name
servers, this MINIMUM TTL field really represents the DEFAULT if no TTL value
has been specified on an individual resource. With the BIND name server, the
TTL value on a resource takes precedence over the DEFAULT coded on the SOA
record.

Note: For dynamic WLM resources the TTL value defaults to 0 and can be
specified with the -l start option.

2.6.5 Observing the effects of WLM and DNS
Where are all these definitions leading? We are using the configuration as
documented earlier in this chapter. The configuration diagram is shown in Figure
21 on page 43. As you can see, we used VIPAs together with OMPROUTE.

The theory of sysplex operation indicates that we should be able to balance the
load between applications registered with the same group name on more than
one host in the sysplex. We have registered an application called TNRAL to each
WLM in the ralplex1 sysplex. TNRAL represents a TN3270E server application. All
the stacks are configured for TN3270E so each stack has registered TNRAL with its
respective Workload Manager using the VIPA address. We have also registered
an application called ftpral to WLM running on MVS03 and MVS39.
48 TCP/IP in a Sysplex

Earlier in this chapter, we described a configuration with two name servers. The
primary name server for the sysplex runs on MVS03 and a secondary sysplex
name server runs on MVS28. In many organizations the TCP/IP network was
established long before the sysplex. As a result, workstations have been
configured to use an existing name server for name resolution. In most cases this
happened before TCP/IP was installed on the mainframe. In our implementation,
this "existing" name server resides on a third system.

We execute our test using a small REXX EXEC that will send as many PINGs as
needed to a specified application and keeps a tally of the resource for each
address returned by the name server, and writes it to a file. The source is
provided in Appendix C, “REXX EXECs to gather connection statistics” on page
287 for Windows 95/98 and Windows NT workstations. By the way, REXX is not
provided as part of Windows 95/98/NT, so a separate REXX interpreter is
required.

The REXX EXEC is executed by the following line commands:

REXX SYSPLEXW WLM_registered_name number_of_pings extra_delay

The parameters are:

 • WLM_registered_name is the name used to define the application group to WLM
(for example tnral)

 • number_of_pings is how many PINGs you want to send (default 10)

 • extra_delay is an optional value that inserts a delay in seconds in the PING
loop (default 0)

This test of the balancing effect of DNS/WLM was run when the systems were
lightly loaded. In this environment we expected an even balance of system
selection. The workstation was connected directly to the sysplex. The following
command was issued:

REXX SYSPLEXW TNRAL 20

The results of running the REXX EXEC are shown in Figure 29.
Chapter 2. DNS/WLM (connection optimization) 49

Figure 29. Distribution test of telnet in the sysplex DNS/WLM environment

Examining the output of the EXEC, we can see the name tnral has been fully
qualified as tnral.ralplex1.itso.ral.ibm.com. This is the name reported by the
PING application. The address assigned is in the next column and we see that
the address provided by DNS started with 172.16.250.3, 172.16.252.28 and then
172.16.232.39 and then it repeats continuously. The time entry is the elapsed
time between PING iterations, not the response time reported by PING. The
summary of PING responses is used to check whether any PINGs were lost. Hits
by canonical addresses summarize how DNS distributed the workload requests
from this workstation. If there were other requests for the same application then
the results may well look different. Again, time shows the average elapsed time
between PINGs, including the DNS lookup time, the PING response time, and
any delays introduced.

The results from running the EXEC showed an evenly balanced workload
between applications running on all three MVS systems.

Application or Host Name IP Address Time

tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.590000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.701000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.590000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.591000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.581000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.581000

Summary of Ping responses

Good Responses : 20
Lost Responses : 0
Total Responses: 20

Hits by Canonical Addresses

Number IP Address Application or Host Name Time
7 172.16.250.3 tnral 0.58514285
7 172.16.252.28 tnral 0.58657142
6 172.16.232.39 tnral 0.60433333
50 TCP/IP in a Sysplex

2.6.6 DNS DUMP of primary DNS server in the sysplex
To confirm the number of instances of an application in a WLM group, we can
dump the information in the DNS to see what has been registered to WLM, since
WLM data is periodically retrieved by DNS. From the WLM information DNS
determines and then stores the current state of application availability. The dump
of DNS does not show the relative weighting of the host or application instances,
but only their registration. There are two ways to dump the DNS server. Please
refer to 2.5.6, “Dumping the DNS server cache” on page 36 for a detailed
description. We divided the dump in different parts to make it easier to go through
the dump and explain it. You will find the whole dump in Appendix E, “Dump of
T28ATCP name server - single-path network” on page 313.

Figure 30. Zone table of the primary DNS server in the sysplex

The first thing we see in the dump is the zone table (1) from the primary DNS on
MVS03. It defines the domain name, ralplex1.itso.ral.ibm.com, the time and
date of the dump and the zone information. The zone information has three
sections:

1. The sysplex domain

2. The in-addr.arpa

3. The loopback

These three sections refer to the three records defined in named.boot on MVS03.
Figure 22 on page 44 shows the corresponding boot records.

In Figure 31, we can see the information obtained from the primary DNS
concerning ralplex1. This information comes from the primary DNS forward
cluster file pointed to in the named.boot. The forward cluster file is shown in
Figure 23 on page 44.

The $ORIGIN and SOA records identify the source of the information,
mvs03a.ralplex1.itso.ral.ibm.com 4. The IN NS record 5 defines the primary DNS

; Dumped at Tue Sep 19 14:36:12 2000
;; ++zone table++ 1
; ralplex1.itso.ral.ibm.com (type 1, class 1, source ralplex1.for)
;time=969374208, lastupdate=937949821, serial=1999040102,
;refresh=7200, retry=3600, expire=604800, minimum=3600
;ftime=937949821, xaddr=[0.0.0.0], state=20041, pid=0
; 104.24.9.in-addr.arpa (type 1, class 1, source ralplex1.rev9)
;time=969378400, lastupdate=937951070, serial=1999040101,
;refresh=7200, retry=3600, expire=604800, minimum=3600
;ftime=937951070, xaddr=[0.0.0.0], state=0041, pid=0
; 16.172.in-addr.arpa (type 1, class 1, source ralplex1.rev)
;time=969379773, lastupdate=937949840, serial=1999040101,
;refresh=7200, retry=3600, expire=604800, minimum=3600
;ftime=937949840, xaddr=[0.0.0.0], state=0041, pid=0
; 0.0.127.in-addr.arpa (type 1, class 1, source mvs03a.lbk)
;time=969377837, lastupdate=937950997, serial=1999040101,
;refresh=7200, retry=3600, expire=604800, minimum=3600
;ftime=937950997, xaddr=[0.0.0.0], state=0041, pid=0
;; --zone table--
Chapter 2. DNS/WLM (connection optimization) 51

while the IN A records 6 define the IP home addresses available to the sysplex.
Each home address also identifies a separate IP stack.

Figure 31. More data from the primary DNS server

Figure 32 shows the domain statements for ralplex1.itso.ral.ibm.com. There we
can see entries for the WLM-managed applications: TNRAL, TN03,TN28,TN39, and
FTPRAL. TNRAL 7 is available on all three stacks 03,28 and 39, where FTPRAL 8 is only
available on stacks 03 and 39. TN03,TN28, and TN39 9 are only available on their
corresponding stacks as you can see in the dump. Even though we are looking at
the DNS entries for the sysplex domain, not all of the DNS entries necessarily
reflect applications that are sysplex capable. Host entries come either as part of a
zone transfer from primary name server or dynamically from WLM. Only those
defined to WLM will have multiple entries.

The information in this part of the dump will be updated dynamically to reflect the
application availability. Should one instance (for example FTPRAL) of a WLM
managed application be brought down, then this DNS record would accordingly
updated. Similarly, should an additional instance of the application be started, we
would then see the new application instance in this record. For information on
how applications can register to WLM, see 2.4, “Application and stack registration
to WLM” on page 27.

Figure 32. Servers defined in the sysplex domain

2.6.7 DNS trace of WLM data for the primary DNS in the sysplex
The DNS dump showed us which applications have multiple instances. How can
we determine the balance weights that DNS will use when building the application
selection table, based on CPU utilization of each system? There is no way to

$ORIGIN itso.ral.ibm.com.
ralplex1 4 IN SOA mvs03a.ralplex1.itso.ral.ibm.com. (

1999040102 7200 3600 604800 3600) ;Cl=5
5 IN NS mvs03a.ralplex1.itso.ral.ibm.com.
6 IN A 172.16.250.3 ;Cl=5
6 IN A 172.16.252.28 ;Cl=5
6 IN A 172.16.232.39 ;Cl=5

$ORIGIN ralplex1.itso.ral.ibm.com.
FTPRAL 8 IN A 172.16.232.39 ;Cl=5

8 IN A 172.16.250.3 ;Cl=5
TN28 9 IN A 172.16.252.28 ;Cl=5
mvs03a IN A 172.16.250.3 ;Cl=5
TN03 9 IN A 172.16.250.3 ;Cl=5
mvs03c IN A 172.16.251.5 ;Cl=5
mvs28a IN A 172.16.252.28 ;Cl=5
TNTSO IN A 172.16.250.3 ;Cl=5
TNRAL 7 IN A 172.16.250.3 ;Cl=5

7 IN A 172.16.252.28 ;Cl=5
7 IN A 172.16.232.39 ;Cl=5

ralplex1 IN CNAME ralplex1.itso.ral.ibm.com.
TN39 9 IN A 172.16.232.39 ;Cl=5
mvs39a IN A 172.16.232.39 ;Cl=5
52 TCP/IP in a Sysplex

directly generate queries to WLM, so the next best approach is to trace the
activity in DNS itself. When DNS is started, the parameter -d 11 can be passed
from the EXEC PARM keyword.

The DNS trace is much longer than the dump we showed earlier, so we will split
the trace into different parts for illustrative purposes.

The first area of interest comprises the applications managed by WLM. Note that
there are no static records for them. We have not defined them anywhere in DNS.
We have told DNS to query WLM to see what additional applications are
available.

We can see the WLM query 1 for ralplex1.itso.ral.ibm.com. We have listed here
only three entries returned by WLM: TCPIP 2, TNRAL 3 and FTPRAL 4. TCP/IP is
automatically generated by each stack when it starts up, but DNS will not respond
to this application name, and it will not be shown in a dump of DNS. Please
review Figure 33 for this trace output. Please note that some of the traces
included in this section are from an earlier release and have not been generated
again due to the small amount of change in the output.

Figure 33. WLM data from DNS trace part 1 (querying group names)

In Figure 34, we can see the entries for each of the stacks and the relative
weights associated with each system. The entry for the 6 processing group shows
the minimum weight available for a server to be 21. Once the processing group
parameters have been established, each of the servers is assigned a weight. The
assigned weights 7 of the servers are 21 for all three servers. As you can see the
hosts are fairly evenly balanced.

wlm_load ralplex1.itso.ral.ibm.com 1
group list retcode = -1 rsncode = 1034
group list retcode = 0 rsncode = 0
group list entry_count = 7
Group list from WLM follows:
Group number 1 = TCPIP
Group number 2 = TN03
Group number 3 = TNRAL
Group number 4 = TNTSO
Group number 5 = FTPRAL
Group number 6 = TN28
Group number 7 = TN39
End of Group list
.......
querying group = TCPIP 2
server list retcode = -1 rsncode = 1034
server list retcode = 0 rsncode = 0
querying group = TNRAL 3
server list retcode = -1 rsncode = 1034
server list retcode = 0 rsncode = 0
querying group = FTPRAL 4
server list retcode = -1 rsncode = 1034
server list retcode = 0 rsncode = 0
Chapter 2. DNS/WLM (connection optimization) 53

Figure 34. WLM data from DNS trace part2 (assigned WLM weight to OS/390 images)

In Figure 35 we can see that the minimum weight for the TNRAL application is 21 8
and that there are three instances of the application. All three applications have
the same minimum weight of 21 9 on each of the systems as you can see in the
trace. This would provide a fairly even load balance.

processing group = ralplex1.itso.ral.ibm.com count = 3
minimum weight = 21 6
processing server = TCPIPA weight = 21 host = MVS03A 7
adding MVS03A to list
db_update(ralplex1.itso.ral.ibm.com, 0x16154630, 0x16154630, 01, 0x16153970)
match(0x161539e0, 1, 6) 1, 6
match(0x161539e0, 1, 1) 1, 6
match(0x16153bf0, 1, 1) 1, 2
db_update: adding 16154630
processing server = TCPIPA weight = 21 host = MVS28A 7
adding MVS28A to list
db_update(ralplex1.itso.ral.ibm.com, 0x16154668, 0x16154668, 01, 0x16153970)
match(0x161539e0, 1, 6) 1, 6
match(0x161539e0, 1, 1) 1, 6
match(0x16153bf0, 1, 1) 1, 2
match(0x16154630, 1, 1) 1, 1
db_update: flags = 0x1, sizes = 4, 4 (cmp -1)
credibility for ralplex1.itso.ral.ibm.com is 4(5) from [0.0.0.0].0, is 4(5) in
db_update: adding 16154668
processing server = TCPIPA weight = 21 host = MVS39A 7
adding MVS39A to list
54 TCP/IP in a Sysplex

Figure 35. Application weights

2.6.8 Testing workload distribution with different CPU utilizations
We now looked at DNS/WLM distribution to target servers that had varying CPU
utilizations. During this test Telnet and FTP servers were running on the systems
MVS03 and MVS28 (we exclude MVS39 from this test). The application instances
have registered to WLM with the group names TNRAL and FTPRAL.

processing group = TNRAL.ralplex1.itso.ral.ibm.com count = 3
minimum weight = 21 8
processing server = MVS03A weight = 21 host = MVS03A 9
db_update(TNRAL.ralplex1.itso.ral.ibm.com, 0x161547f8, 0x161547f8, 01, 0x16153
match(0x161539e0, 1, 6) 1, 6
db_update: adding 161547f8
db_update(MVS03A.TNRAL.ralplex1.itso.ral.ibm.com, 0x16154868, 0x16154868, 01,
savehash GROWING to 2
match(0x161547f8, 1, 6) 1, 1
match(0x161547f8, 1, 2) 1, 1
match(0x161539e0, 1, 6) 1, 6
db_update: adding 16154868
processing server = MVS28A weight = 21 host = MVS28A 9
db_update(TNRAL.ralplex1.itso.ral.ibm.com, 0x161548f0, 0x161548f0, 01, 0x16153
match(0x161547f8, 1, 6) 1, 1
match(0x161547f8, 1, 2) 1, 1
match(0x161539e0, 1, 6) 1, 6
match(0x161547f8, 1, 1) 1, 1
db_update: flags = 0x1, sizes = 4, 4 (cmp -1)
credibility for TNRAL.ralplex1.itso.ral.ibm.com is 4(5) from [0.0.0.0].0, is 4
db_update: adding 161548f0
db_update(MVS28A.TNRAL.ralplex1.itso.ral.ibm.com, 0x16154928, 0x16154928, 01,
match(0x161547f8, 1, 6) 1, 1
match(0x161548f0, 1, 6) 1, 1
match(0x161547f8, 1, 2) 1, 1
match(0x161548f0, 1, 2) 1, 1
match(0x161539e0, 1, 6) 1, 6
db_update: adding 16154928
processing server = MVS39A weight = 21 host = MVS39A 9
db_update(TNRAL.ralplex1.itso.ral.ibm.com, 0x16154998, 0x16154998, 01, 0x16153
match(0x161547f8, 1, 6) 1, 1
match(0x161548f0, 1, 6) 1, 1
match(0x161547f8, 1, 2) 1, 1
match(0x161548f0, 1, 2) 1, 1
match(0x161539e0, 1, 6) 1, 6
match(0x161547f8, 1, 1) 1, 1
db_update: flags = 0x1, sizes = 4, 4 (cmp 1)
credibility for TNRAL.ralplex1.itso.ral.ibm.com is 4(5) from [0.0.0.0].0, is 4
match(0x161548f0, 1, 1) 1, 1
db_update: flags = 0x1, sizes = 4, 4 (cmp 1)
credibility for TNRAL.ralplex1.itso.ral.ibm.com is 4(5) from [0.0.0.0].0, is 4
db_update: adding 16154998
db_update(MVS39A.TNRAL.ralplex1.itso.ral.ibm.com, 0x161549d0, 0x161549d0, 01,
match(0x161547f8, 1, 6) 1, 1
match(0x161548f0, 1, 6) 1, 1
match(0x16154998, 1, 6) 1, 1
match(0x161547f8, 1, 2) 1, 1
match(0x161548f0, 1, 2) 1, 1
match(0x16154998, 1, 2) 1, 1
match(0x161539e0, 1, 6) 1, 6
db_update: adding 161549d0
Chapter 2. DNS/WLM (connection optimization) 55

Since all of our previous examples showed lightly loaded systems and even
balancing, we now show an unbalanced environment where one of the hosts has
a noticeably heavier workload than the other. When this test was running, we
introduced a job on the MVS28 system to increase CPU utilization to over 50%
while the MVS03 system was running around 20% CPU utilization. The load
observations are very rough in that they were taken from SDSF samples and
made no allowance for other resource utilization such as paging, I/O rate or
memory, but it gives you a general idea of the overall load on each of the
systems.

The output from the SYSPLEXW EXEC for this run is shown in Figure 36. The run
was for 50 samples at 0 delay, but only the first 20 entries are shown:

Figure 36. Workload distribution of DSN/WLM with different CPU utilizations

As can be seen from the results, the load was balanced 2 to 1 in favor of the
MVS03 system. How did DNS determine the appropriate load balance? To see

Application or Host Name IP Address Time

tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.156000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.156000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.140000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.141000
...........

Summary of Ping responses

Good Responses : 50
Lost Responses : 0
Total Responses: 50

Hits by Canonical Addresses

Occurrences IP Address Application or Host Name Time
34 172.16.250.3 tnral 0.14617647
16 172.16.252.28 tnral 0.1463125
56 TCP/IP in a Sysplex

this, it is again necessary to look at the DNS trace. Figure 37 shows us only a
part of the trace where the WLM weight is shown for the processing group TNRAL.

Figure 37. Application weights for test with different CPU utilizations

At 1 we see the minimum weight 21 that can be assigned to TNRAL. WLM assigns
a weight of 42 for the processing server MVS03A, while MVS28A was assigned a
weight of 21. As you may have noticed, the weight is identical for TNRAL and for
FTPRAL, because they are running on the same MVS images.

2.6.9 More on resource record TTL
We were running the SYSPLEXW EXEC from two different clients; one of them
was configured to use the external name server and the other one to use the
sysplex name server.

We started our external name server with a time-to-live of three seconds to
illustrate the difference in operation between our sysplex DNS (which always
returns TLL=0 to the client) and a typical name server (which is unlikely to return
TTL=0 even if the sysplex DNS is configured to do so).

First, we pointed our client to the external name server. We again used the
SYSPLEXW REXX EXEC. We issued the following command:

SYSPLEXW TNRAL 300

Figure 38 shows the resulting output.

wlm_load ralplex1.buddha.ral.ibm.com
querying group = FTPRAL
querying group = TNRAL
querying group = TCPIP
processing group = FTPRAL.ralplex1.buddha.ral.ibm.com count = 2
minimum weight = 21
processing server = MVS03A weight = 42 host = MVS03A
savehash GROWING to 2
processing server = MVS28A weight = 21 host = MVS28A
db_update(FTPRAL.ralplex1.buddha.ral.ibm.com, 0x14dce9f8, 0x14dce9f8, 01,
0x14dcd8b8)
credibility for FTPRAL.ralplex1.buddha.ral.ibm.com is 4(5) from 0.0.0.0 .0, is 4(5)
in cache
db_update(MVS28A.FTPRAL.ralplex1.buddha.ral.ibm.com, 0x14dcea30, 0x14dcea30, 01,
0x14dcd8b8)
processing group = TNRAL.ralplex1.buddha.ral.ibm.com count = 2
minimum weight = 21 1
processing server = MVS03A weight = 42 host = MVS03A 2
db_update(TNRAL.ralplex1.buddha.ral.ibm.com, 0x14dceaa0, 0x14dceaa0, 01, 0x14dcd8b8)
db_update(MVS03A.TNRAL.ralplex1.buddha.ral.ibm.com, 0x14dceb10, 0x14dceb10, 01,
0x14dcd8b8)
savehash GROWING to 2
processing server = MVS28A weight = 21 host = MVS28A 3
Chapter 2. DNS/WLM (connection optimization) 57

Figure 38. Distributing workload result - external name server

As you can see the client using the external name server received the same
name resolution from the name server for about three seconds. The external
name server responded with its cached entry during the TTL period. After the TTL
period the name server returned a new address and in the long run the returned
addresses seemed to be equally balanced among the three stacks in the sysplex.

Figure 39 shows the corresponding output on the client using the sysplex name
server. In this case the lines deleted looked like the first three repeated.

Application or Host Name IP Address Time

tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.094000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.125000
: deleted 35 rows to 172.16.252.28
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.125000
: deleted 35 rows to 172.16.232.39
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.125000
: deleted 35 rows to 172.16.250.3
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.172000
: deleted * rows

Summary of Ping responses

Good Responses : 330
Lost Responses : 0
Total Responses: 330

Hits by Canonical Addresses

Occurrences IP Address Application or Host Name Time
109 172.16.250.3 tnral 0.09606422
113 172.16.252.28 tnral 0.11131858
108 172.16.232.39 tnral 0.09563888
58 TCP/IP in a Sysplex

Figure 39. Distributing workload result - sysplex name server

The client configured to use the sysplex name server received a different
resolution on each query. The sysplex name server did not cache a single answer
for three seconds, as did the external name server; it returned exactly what WLM
indicated it should.

2.6.10 Test application
Next, we ran a job that registered our application to DNS with the name TESTRAL,
then started the socket server application. The application was set to listen on
port 1234. We ran this job on all of our sysplex hosts. Please refer to 2.4,
“Application and stack registration to WLM” on page 27 for how to register your
own application.

On the client side we used the client test program described in C.2, “EXEC to
connect to server using TCP” on page 290 to perform our tests. The EXEC will
connect to a server on a given hostname/port a specified number of times. On
each connection it will read 4 bytes from the server.

We executed sysplex2 testral 1234 -c 350 -b 0.1 from both of our clients, one at
a time. Figure 40 shows the results for the client with the external name server,
and Figure 41 on page 60 shows those for the other client.

Application or Host Name IP Address Time

tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.070000
tnral.ralplex1.itso.ral.ibm.com 172.16.252.28 0.071000
tnral.ralplex1.itso.ral.ibm.com 172.16.250.3 0.060000
tnral.ralplex1.itso.ral.ibm.com 172.16.232.39 0.060000
: deleted 296 rows

Summary of Ping responses

Good Responses : 300
Lost Responses : 0
Total Responses: 300

Hits by Canonical Addresses

Occurrences IP Address Application or Host Name Time
101 172.16.232.39 tnral 0.06396039
100 172.16.252.28 tnral 0.0642
99 172.16.250.3 tnral 0.06333333
Chapter 2. DNS/WLM (connection optimization) 59

Figure 40. Socket application client result - external name server

Figure 41. Socket application client result - sysplex name server

2.6.11 Test application - server failure case
Next, we simulated the failure of one of the socket application servers while the
socket application client was running. Figure 42 shows how the DNS/WLM dealt
with the failure in the external name server case; Figure 43 shows the sysplex
name server case.

+----------------------+------------------+----------------+--------+--------+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |
+----------------------+------------------+----------------+--------+--------+
| testral | 172.16.250.3 | 172.16.250.3 | 0.0630 | 0.0160 |
| : deleted 22 rows to 172.16.250.3
| testral | 172.16.252.28 | 172.16.252.28 | 0.0320 | 0.0160 |
| : deleted 27 rows to 172.16.252.28
| testral | 172.16.232.39 | 172.16.232.39 | 0.0310 | 0.0160 |
| : deleted 27 rows to 172.16.232.39
| testral | 172.16.250.3 | 172.16.250.3 | 0.0310 | 0.0160 |
| : deleted 28 rows to 172.16.250.3
:

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
172.16.250.3	115
172.16.252.28	112
172.16.232.39	123

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
| 172.16.250.3 | 115 |

+----------------------+------------------+----------------+--------+--------+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |
+----------------------+------------------+----------------+--------+--------+
testral	172.16.232.39	172.16.232.39	0.0200	0.0100
testral	172.16.250.3	172.16.250.3	0.0100	0.0100
testral	172.16.252.28	172.16.252.28	0.0100	0.0100

:

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
172.16.250.3	100
172.16.252.28	100
172.16.232.39	100

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.250.3	100
172.16.252.28	100
172.16.232.39	100
60 TCP/IP in a Sysplex

Figure 42. Socket application server failure case - external name server

After we stopped the application server on MVS03, the client tried to connect to
the failed server a few times. DNS on the sysplex continued to return the address
of the failed server according to its last communication with WLM, so the external
name server passed it on to the client for the defined three seconds. For those
three seconds the client tried and failed to connect. Eventually the sysplex DNS
received updated information from WLM, returned new information to the external
name server, and the client never saw the address 172.16.250.3 again.

Now for the sysplex name server client:

sysplex2 testral 1234 -c 100 -b 1.5

+----------------------+------------------+----------------+--------+--------+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec
|+----------------------+------------------+----------------+--------+--------+
| testral | 172.16.232.39 | 172.16.232.39 | 0.0630 | 0.0160 |
| : deleted 3 rows to 172.16.232.39
| testral | 172.16.252.28 | 172.16.252.28 | 0.0310 | 0.0160 |
| : deleted 2 rows to 172.16.252.28
| testral | 172.16.250.3 | 172.16.250.3 | 0.0320 | 0.0150 |
| : deleted 2 rows to 172.16.250.3
| testral | 172.16.252.28 | 172.16.252.28 | 0.0310 | 0.0310 |
| : deleted 2 rows to 172.16.252.28
| testral | 172.16.232.39 | 172.16.232.39 | 0.0310 | 0.0160 |
| : deleted 3 rows to 172.16.232.39
Error on connecting socket to '172.16.250.3': ECONNREFUSED
Error on connecting socket to '172.16.250.3': ECONNREFUSED
Error on connecting socket to '172.16.250.3': ECONNREFUSED
| testral | 172.16.232.39 | 172.16.232.39 | 0.0320 | 0.0150 |
| : deleted 3 rows to 172.16.232.39
| testral | 172.16.252.28 | 172.16.252.28 | 0.0310 | 0.0160 |
| : deleted 2 rows to 172.16.252.28
Error on connecting socket to '172.16.250.3': ECONNREFUSED
Error on connecting socket to '172.16.250.3': ECONNREFUSED
Error on connecting socket to '172.16.250.3': ECONNREFUSED
Error on connecting socket to '172.16.250.3': ECONNREFUSED
| testral | 172.16.232.39 | 172.16.232.39 | 0.0310 | 0.0160 |
| : deleted 5 rows to 172.16.232.39
| testral | 172.16.252.28 | 172.16.252.28 | 0.0310 | 0.0150 |
| : deleted 5 rows to 172.16.252.28
| testral | 172.16.232.39 | 172.16.232.39 | 0.0310 | 0.0160 |
| : deleted 5 rows to 172.16.232.39
| testral | 172.16.252.28 | 172.16.252.28 | 0.0310 | 0.0150 |
: deleted *

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
172.16.250.3	10
172.16.252.28	41
172.16.232.39	49

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.250.3	3
172.16.252.28	41
172.16.232.39	49
ECONNREFUSED	7
Chapter 2. DNS/WLM (connection optimization) 61

Figure 43. Socket application server failure case - sysplex name server

Here a similar thing occurs: DNS returns each server address in turn (they seem
to be equally weighted) until the first WLM call after the failure sets the record
straight.

sysplex2 testral 1234 -c 30 -b 3

+----------------------+------------------+----------------+--------+--------+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |
+----------------------+------------------+----------------+--------+--------+
testral	172.16.252.28	172.16.252.28	0.0300	0.0100
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
testral	172.16.250.3	172.16.250.3	0.0100	0.0200
testral	172.16.252.28	172.16.252.28	0.0100	0.0100
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
Error on connecting socket to '172.16.250.3': ECONNREFUSED				
testral	172.16.252.28	172.16.252.28	0.0100	0.0200
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
Error on connecting socket to '172.16.250.3': ECONNREFUSED				
testral	172.16.252.28	172.16.252.28	0.0200	0.0100
testral	172.16.232.39	172.16.232.39	0	0.0100
Error on connecting socket to '172.16.250.3': ECONNREFUSED				
testral	172.16.252.28	172.16.252.28	0.0200	0.0200
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
testral	172.16.252.28	172.16.252.28	0.0100	0.0200
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
testral	172.16.252.28	172.16.252.28	0.0100	0.0100
testral	172.16.232.39	172.16.232.39	0.0100	0.0200
testral	172.16.252.28	172.16.252.28	0.0100	0.0200
:

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
172.16.250.3	4
172.16.252.28	13
172.16.232.39	13

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.250.3	1
172.16.252.28	13
172.16.232.39	13
ECONNREFUSED	3
62 TCP/IP in a Sysplex

Chapter 3. Network Dispatcher

In this chapter, we first present an introduction to the Network Dispatcher feature.
We then provide some test configurations that we set up to demonstrate the load
balancing capabilities of the Network Dispatcher.

The Network Dispatcher (NDR) function was originally implemented in IBM
networking hardware such as the IBM 2216. These various networking hardware
machines have been discontinued from production. As a result, the Network
Dispatcher function is currently exclusively distributed as part of the IBM
WebSphere Edge Server. Currently, this is available on the AIX, Windows NT,
Solaris, and Red Hat Linux platforms.

Throughout this chapter, we show configuration examples for the IBM 2216 and
Windows NT running IBM WebSphere Edge Servers. Even though the choice of
platform for running Network Dispatcher has changed somewhat, the primary
functionality has remained the same for the most part. As a result, if you are
familiar with the Network Dispatcher function on the IBM 2216, implementing the
function on another platform will be trivial.

3.1 Network Dispatcher overview

Network Dispatcher is a feature that optimizes the performance of servers by
forwarding TCP/IP connection requests and datagrams to different servers within
a group or cluster. Thus, it attempts to balance the traffic across all the target
servers according to the load on them. The forwarding is transparent to the users
and to applications. Network Dispatcher may be used in conjunction with server
applications such as HTTP (Web), FTP, and Telnet; it can also be used for load
balancing UDP traffic across a server group.

Network Dispatcher can help maximize the potential of a site by providing a
flexible and scalable solution to peak-demand problems. During peak demand
periods, Network Dispatcher can automatically find the optimal server to handle
incoming requests.

The Network Dispatcher function does not use a DNS name server for load
balancing. As a result, the system-wide image of the cluster is based on the IP
address as opposed to the hostname. It balances traffic among servers through a
unique combination of load distribution and management software. Network
Dispatcher also can detect a failed server and forward traffic only to the
remaining available servers.

The clients send their packets to a special IP address that is defined as a cluster
address to the Network Dispatcher, but as a loopback address to the servers.
This address is externally advertised (via some dynamic routing protocol) by the
Network Dispatcher alone, never by the servers. The Network Dispatcher
inspects the destination address and the port number, and:

 • If the destination is not the cluster address, the packet is treated in the normal
IP manner.

 • If the destination address is the cluster address but the packet is not UDP or
TCP, it is treated in the normal IP manner.
© Copyright IBM Corp. 1998 2001 63

 • If the incoming datagram is a UDP packet or a TCP connection request, the
Network Dispatcher selects one of the servers and forwards the packet to the
appropriate port and cluster (now the loopback) address. For this to work, the
connection between Network Dispatcher and server must be direct; an
intermediate router would just reroute the packet back to the Network
Dispatcher since this is the only instance of the cluster address known to the
IP network.

 • If the incoming datagram is a packet on an existing TCP connection, the
Network Dispatcher forwards it in a similar manner to the server already
chosen for this TCP connection. Thus, the NDR must maintain a table of TCP
connections to the servers in its cluster(s).

The packet sent to the server from the Network Dispatcher has the original client
address as the source address; thus, the server responds directly to the client
instead of through the Network Dispatcher. In fact, the forwarded packet is
identical to the original packet received by the Network Dispatcher.

Network Dispatcher has special logic to enable it to handle FTP connections,
where multiple parallel TCP connections are needed between client and server. It
recognizes an FTP control connection (because it uses the special well-known
port of 21) and directs packets on the corresponding data connection to the same
server. With passive mode FTP, a connection from a client to an unknown port on
a cluster with an existing FTP control connection is directed to the same server
as the existing connection. This means that all FTP connections from the same
client are serviced by the same server, even if the client is an FTP client proxy.

All client requests sent to the Network Dispatcher machine are forwarded to the
server that is selected by the Network Dispatcher as the optimal server according
to certain dynamically set weights. You can use the default values for those
weights or change the values during the configuration process.

No additional software is required on the servers to use Network Dispatcher,
although (as we will see) it helps if the servers keep the Network Dispatcher
aware of their internal workload.

With Network Dispatcher, it is possible to combine many individual servers into
what appears to be a single generic server. The site thus appears as a single IP
address to the world. Network Dispatcher functions independently of a domain
name server; all requests are sent to the IP address of the Network Dispatcher
machine.

Network Dispatcher allows a management application that is SNMP based to
monitor Network Dispatcher status by receiving basic statistics and potential alert
situations.

The way that Network Dispatcher distributes the load across servers is very
efficient, but there are circumstances in which it does not work:

 • If you are using IP Security with a virtual private network, the destination IP
address is encrypted and cannot be read by Network Dispatcher. Thus the
IPSec tunnel must end at (or before) the Network Dispatcher and not the
server.

 • If you are using an OSA (or a 3172) with ESCON multiple image facility
(EMIF), the OSA must be able to distinguish to which LPAR each packet is to
64 TCP/IP in a Sysplex

be sent. Normally this is done by associating an IP address with an LPAR
number in the OSA configuration. If the address in question is the NDR cluster
address, it is associated with more than one LPAR and so the configuration
becomes impossible.

3.1.1 Network Dispatcher components
Network Dispatcher can load balance requests to different servers based on the
type of request, an analysis of the load on servers, or a configurable set of
assigned weights. To manage all this, Network Dispatcher has the following
components:

 • The executor load balances connections based on the type of request
received. Typical request types are HTTP, FTP, and Telnet. This component
always runs in a Network Dispatcher machine.

 • Advisors query the servers and analyze the results by protocol for each
server. The advisor passes this information to the manager to set the
appropriate weight. The advisor is an optional component. If you use an
advisor, you must also use the manager.

Network Dispatcher supports advisors for FTP, HTTP, SMTP, NNTP, POP3,
and Telnet, plus a TN3270 advisor that works with TN3270 servers and an
MVS advisor that works with WLM on OS/390 systems. WLM manages the
amount of workload on an individual OS/390 (MVS) address space. Network
Dispatcher can use WLM to help load balance requests to OS/390 servers.

There are no protocol advisors specifically for UDP-based protocols. If the
port is handling TCP and UDP traffic, the appropriate TCP protocol or MVS
system advisor can be used to provide advisor input for the port. Network
Dispatcher will use this input in load balancing both TCP and UDP traffic on
that port.

 • The manager sets weights for a server based on:

– Internal counters in the executor

– Feedback from the servers provided by the protocol advisors

– Feedback from a system monitor, such as the MVS advisor

The manager is an optional component. However, if you do not use the
manager, the Network Dispatcher will balance the load using a round-robin
scheduling method based on the current server weights.

When using Network Dispatcher to load balance stateless UDP traffic, you can
only use servers that use the supplied source IP address on received requests to
respond to the client.

3.1.2 High availability for Network Dispatcher
The base Network Dispatcher function has the following characteristics that make
it a single point of failure unless it is backed up in some way:

 • It examines all the traffic on the way in. If some of the packets for an existing
connection use a different path through a different Network Dispatcher to
reach a server, the server immediately resets the connection.

 • It keeps track of all established connections and although it does not terminate
them, entries lost from the Network Dispatcher connection table will result in
the resetting of a connection.
Chapter 3. Network Dispatcher 65

 • It appears to the previous router as the last hop in the route, and the
connection's termination.

All these characteristics make the following failures critical for the whole cluster:

 • If the Network Dispatcher fails for any reason, all the connection tables are
lost. Therefore, all existing connections from the client to the server are also
lost. Assuming there is a second Network Dispatcher that can direct a client to
the servers, new connections will be able to go through only after the usual
routing protocol delays, which could be several minutes.

 • If the configured Network Dispatcher interface to the previous IP router fails,
there must be another interface to get to the same Network Dispatcher (in
which case recovery is performed by the IP router using the ARP aging
mechanism with delays in the order of several minutes), or else all
connections will be lost.

 • If the Network Dispatcher interface to the servers fails, the previous hop router
assumes that the Network Dispatcher is the last hop, and therefore will not
reroute new connections. Existing connections will be lost and new
connections will not be established.

In all these failure cases, which are not only Network Dispatcher failures but also
Network Dispatcher neighborhood failures, all the existing connections are lost.
Even with a backup Network Dispatcher running standard IP recovery
mechanisms, recovery is, at best, slow and applies only to new connections. In
the worst case, there is no recovery of the connections.

To improve Network Dispatcher availability, the Network Dispatcher high
availability function uses the following mechanisms:

 • Two Network Dispatchers with connectivity to the same clients, to the same
cluster of servers, and between the Network Dispatchers themselves

 • A heartbeat mechanism between the two Network Dispatchers to detect the
failure of either of them

 • Reachability criteria, to identify which IP hosts can and cannot be reached
from each Network Dispatcher

 • Synchronization of the Network Dispatcher databases (that is, the connection
tables, reachability tables, and other databases)

 • Logic to elect the active Network Dispatcher, which is in charge of a given
cluster of servers, and the standby Network Dispatcher, which continuously
gets synchronized for that cluster of servers

 • A mechanism to perform fast IP takeover, when the logic or an operator
decides to switch from active to standby

3.1.2.1 Failure detection
Besides the basic methods of failure detection (the loss of connectivity between
active and standby Network Dispatchers, detected through the heartbeat
messages) there is another failure detection mechanism, namely reachability
criteria. When you configure the Network Dispatcher, you provide a list of hosts
that each of the Network Dispatchers should be able to reach in order to work
correctly. The hosts could be routers, servers or any other type of host. Host
reachability is determined by pinging the hosts in question.
66 TCP/IP in a Sysplex

Takeover takes place if the heartbeat messages cannot go through, or if the
reachability criteria are no longer met by the active Network Dispatcher but are
met by the standby Network Dispatcher. To make the decision based on all
available information, the active Network Dispatcher regularly sends the standby
Network Dispatcher its reachability capabilities. The standby Network Dispatcher
then compares the capabilities with its own and decides whether to initiate the
switch.

3.1.2.2 Database synchronization
The primary and backup Network Dispatchers keep their databases synchronized
through the heartbeat mechanism. The Network Dispatcher database includes
connection tables, reachability tables and other information. The Network
Dispatcher’s high availability function uses a database synchronization protocol
that ensures that both Network Dispatchers contain the same connection table
entries. This synchronization takes into account a known error margin for
transmission delays. The protocol performs an initial synchronization of
databases and then maintains synchronization through periodic updates.

3.1.2.3 Recovery strategy
In the case of a Network Dispatcher failure, the IP takeover mechanism will direct
all traffic toward the standby Network Dispatcher. The database synchronization
mechanism ensures that the standby has the same entries as the active Network
Dispatcher. When the failure occurs in the network (any intermediate piece of
hardware or software between the client and the server), and there is an alternate
path available through the standby Network Dispatcher, the takeover is performed
across the alternate path.

3.1.2.4 IP takeover
Cluster (generic) IP addresses are assumed to be on the same logical subnet as
the previous hop router (IP router). The IP router will resolve the cluster address
through the ARP protocol. To perform the IP takeover, the Network Dispatcher
(the standby becoming the active) will issue an ARP request to itself (also known
as a gratuitous ARP), that is broadcast to all directly attached networks belonging
to the logical subnet of the cluster. The previous hop IP router(s) will update their
ARP tables (according to RFC 826) to send all traffic for that cluster to the new
active (previously standby) Network Dispatcher.

3.2 Windows NT Network Dispatcher configuration

With the inclusion of Network Dispatcher in the WebSphere Edge Server,
Network Dispatcher can be implemented on the Windows NT, AIX, Solaris, and
Red Hat Linux platforms. Included with the Edge Server is the ability to use a
GUI-based configuration tool. For general configuration, the GUI tool works quite
well, allowing for quick configuration of the Network Dispatcher on these
platforms.

However, for advanced functions, we recommend text-mode configuration as was
supported in the IBM 2216. This allows for more complex configuration and the
use of more detailed displays. In this section, we review highlights of using the
GUI-based tool for configuration on the Windows NT platform. The configuration
of NDR on the other Edge Server platforms is similar. For a description of
text-mode commands, see 3.3, “2216 Network Dispatcher configuration” on page
76.
Chapter 3. Network Dispatcher 67

In this section, we show the necessary configuration for the scenario illustrated in
Figure 44. This includes the executor, manager, advisor, and high availability
portions. In this scenario, we have two Network Dispatchers servicing the cluster.
The first, labeled Primary, is the primary owner of the cluster address. It has a
backup Network Dispatcher, labeled Backup. Together they will provide the
connection dispatching the target servers, RA03 and RA28 for the TN3270
service. Note that the primary NDR will send connections to both target servers,
while the backup NDR, when active after a takeover, will only send requests to
server RA28. This is simply for illustrative purposes, the point being that the
group of target servers need not be the same for the primary and backup Network
Dispatchers.

Figure 44. Scenario for Windows NT NDR GUI configuration

3.2.1 Windows NT executor configuration
The GUI-based configuration tool can be used to configure remote Network
Dispatcher implementations. Because of this, we must first connect to the
Network Dispatcher to be configured. In our case, this machine was called
adolfo.itso.ral.ibm.com. We point the configuration tool to this machine as shown
in Figure 45. We use the right mouse button to bring up the menu from which we
choose to connect to the NDR host.

IP Networks

Windows NT
Server

WSES-NDR
Backup

9.24.105.146

Cluster address:
9.24.105.34

Port =23

Ethernet
Subnet: 9.24.105.0/24

TCPIPB
OMPROUTE

LCS 9.24.105.76

OS/390 RA03

TCPIPA
OMPROUTE

OS/390 RA28

Router

LCSLCS

LB 9.24.105.34

Loopback
address

LCS 9.24.105.74
LB 9.24.105.34

Loopback
address

Windows NT
Workstation
WSES-NDR

Primary
9.24.105.147

WLM
Port 10007

WLM
Port 10007

requests go to both
RA03 and RA28

requests go to
RA28 only
68 TCP/IP in a Sysplex

Figure 45. Connecting to the Network Dispatcher at adolfo.itso.ral.ibm.com

Once connected, we can begin the executor configuration. This is to involve the
creation of the cluster that will represent the group of servers servicing TN3270
connections. Further, we will indicate to our Network Dispatcher the port being
used by the service and the target servers that it should consider for connection
distribution. Although here we only show the configuration primary NDR’s
executor, that of the backup NDR is almost identical.

Figure 46 shows the creation of the cluster within the primary Network
Dispatcher. The most important aspect of this configuration is the indication of the
cluster address, 9.24.105.34. Additionally, we must indicate the primary owner for
this cluster. This is the Network Dispatcher that is considered the primary for this
cluster. In this case, it is adolfo.itso.ral.ibm.com and we include its IP address
here. This IP address is referred to as the non-forwarding address of this Network
Dispatcher. That is, it is the real address of this NDR and packets sent to this
address are not to be forwarded under any circumstances by the NDR. Of course,
the cluster address must be different from this address.
Chapter 3. Network Dispatcher 69

Figure 46. Adding the cluster to the executor

Most services have some well-known port that is associated with them. For
Telnet and TN3270, this port is 23 (although some installations have to use
non-standards ports at times due to port contention). Our TN3270 servers on the
RA03 and RA28 systems are configured to listen on the well-known port 23. As a
result, the cluster that we have just configured must be associated with port 23.

This association is illustrated in Figure 47. We simply add the port to the cluster
and indicate its value in the pop-up window.
70 TCP/IP in a Sysplex

Figure 47. Adding port 23 to the cluster

Once the port has been configured, we now must indicate to the Network
Dispatcher which target servers will be candidates for receiving connections. This
is done by adding servers to the port object in the NDR configuration.

Recall that the primary Network Dispatcher will be sending connections to both
the RA03 and RA28 servers. Figure 48 shows how we added server RA28 with IP
address 9.24.105.74. Although we don’t show it here, we add the RA03 server in
the same way.

At this point, we have done the minimal configuration necessary to have the
cluster function. The primary Network Dispatcher will now begin dispatching
connections to our target servers. Because we have not yet configured advisors
or the manager and we have not statically defined weights to each of the target
servers, the servers at this point will receive connections in a round-robin fashion.
Chapter 3. Network Dispatcher 71

Figure 48. Adding server 9.24.104.74 to the port

3.2.2 Windows NT manager configuration
In order to take advantage of protocol and system load advisors, we must enable
the manager. The manager is responsible for attaining feedback from advisors.
Based on current policy, it dynamically updates the weights of target servers. The
amount of importance given to the information provided by advisors is
configurable. Therefore, it is the responsibility of the manager to determine what
the correct weight values should be and update them accordingly. Once that is
done, the executor that forwards requests will respect the new weight values in
making its forwarding decisions.

Figure 49 shows the way we can start the manager with the configuration tool.
We simply choose the Start Manager option from the pop-up menu (which comes
up when we click the right mouse button on the NDR host).
72 TCP/IP in a Sysplex

Figure 49. Starting the manager

3.2.3 Windows NT MVS (WLM) advisor configuration
In order to have the manager dynamically update the weights associated with
target servers, an advisor must be configured. The role of advisors is to attain
some notion of target server performance and provide this information to the
manager.

In general, there are two types of advisors, protocol advisors and system
performance advisors. The protocol advisors interact with specific servers
running on the target server machines. They understand the protocol being
implemented by the servers and can gauge the servers’ performance based on
this. Examples of protocol advisors include HTTP and Telnet. These protocol
advisors connect and send some protocol-recognized request to each of the
servers. Based on the response time of the action (for example, the download of
a Web object), the protocol advisor infers a notion of target server performability
that is made available to the manager.

Another type of advisor is the system performance advisor. This advisor interacts
with some general performance measurement tool on the target servers. That is,
each platform has some software specific to that platform that can be used to
gauge a server’s performance. On the OS/390 system, this is done by Workload
Manager (WLM). When using the WLM or MVS advisor, the advisor contacts the
WLM software running on the target servers by connecting to the WLM
well-known port. The advisor then queries the target server for its current
performability metric and makes this information available to the manager. Figure
Chapter 3. Network Dispatcher 73

50 shows the configuration of the WLM advisor. The port of 10007 is the WLM
well-known port.

Figure 50. Adding MVS (WLM) advisor

Because the two types of advisors may yield different notions of performance,
one advisor from each type can function simultaneously with one of the other
type. In this fashion, the manager can receive the most accurate measure of
performance of the target servers.

3.2.4 Windows NT high availability configuration
One of the nice features of Network Dispatcher is the ability to create a high
availability configuration. That is, a second Network Dispatcher can be configured
to act as a backup of an active Network Dispatcher. If a problem occurs with the
active NDR, the backup NDR can take over the work of dispatching connections
to target servers.

IP takeover occurs when the backup NDR determines that the active NDR has
failed. The backup, or standby, Network Dispatcher marks the active NDR as
failed if it stop receiving heartbeat messages from it. Heartbeat messages are
sent periodically between Network Dispatchers that are working together in a
high availability configuration to indicate that each is still functioning properly.

An active Network Dispatcher can also inform its standby of its failure due to
some failed network or interface. An active NDR is configured with a list of IP
hosts that it needs to be able to reach in order to function properly. Periodically,
the active NDR attempts to ping these hosts. If the pings fail, the active NDR
transfers the ownership of the cluster to the backup NDR in hopes that its
reachability criteria is met.

Once a backup NDR takes over ownership of a cluster, it advertises ownership of
the cluster address by sending a gratuitous ARP on the connected media. The
first hop router must adjust its ARP cache entry so that it now sends data
destined for the cluster to the new active (previously, the backup) NDR. This
process is known as IP takeover.

Figure 51 shows how we add the backup NDR to the primary (active) NDR’s
configuration.
74 TCP/IP in a Sysplex

Figure 51. Adding backup (standby) NDR

Because our scenario shows the case of mutual availability in which each NDR
will be the backup of the other, we configure the role of the NDR to be Both,
meaning it can be both an active and a backup NDR. This is shown in Figure 52.

In addition to the role, we indicate the takeover is to occur automatically as
opposed to manually and indicate the port that will be used for communication
between the NDRs. The port of 3434 is not well-known, but simply one we chose
for this purpose. Finally, the heartbeat is also configured here.

Figure 52. Adding backup (standby) NDR, part 2
Chapter 3. Network Dispatcher 75

3.3 2216 Network Dispatcher configuration

In this section we describe an implementation of NDR using an IBM 2216 in our
sysplex. To make it easier to understand the effect of enabling each of the
following components, we performed the same tests against each configuration:

 • Executor component configuration

 • Manager component configuration

 • Advisor component configuration

We also show some of the 2216 console log files we produced during the tests.

We used the same network configuration as described in 6.5, “Configuring
OMPROUTE” on page 161 when we did our Network Dispatcher test. The
network diagram is shown in Figure 53. The Network Dispatcher was configured
on the channel-attached 2216.

Figure 53. Network Dispatcher configuration

3.3.1 2216 NDR executor configuration
We first configured the cluster using a Telnet session to the 2216; see Figure 54.

In our test environment we set up one cluster, 172.16.220.50. The cluster
address should be configured on the same subnet as the previous hop IP router.
Next we configured the ports associated with our cluster. Finally, the last step

.125External
DNS

Server

CF

Subnet Mask:
255.255.255.0

Subnet: 172.16.233.0S/390

XCF XCF

XCF

T03ATCP OMPROUTE
DNS Pri

VIPA

XCF

172.16.250.3

172.16.233.3

LCS 9.24.104.113

T28ATCP OMPROUTE
DNS Sec

VIPA

XCF

172.16.252.28

172.16.233.28

LCS 9.24.104.42

T39ATCP OMPROUTE
DNS Sec

VIPA

XCF

172.16.232.39

172.16.233.39

LCS 9.24.104.149

LCSLCS LCS

Subnet: 9.24.104.0

LPAR1 LPAR2 LPAR4

.200 .1

.254

.254

MPC 172.16.100.3 MPC 172.16.101.28 MPC 172.16.102.39

Subnet: 172.16.220.0

Subnet:
= 172.16.100.0
= 172.16.101.0
= 172.16.102.0

2216

MPC MPC
MPC

Router

Subnet: 9.24.106.0

A
B
C

A B C

.10
76 TCP/IP in a Sysplex

before enabling the executor was to define the servers associated with the ports
and cluster.

In general we kept the default values provided by the configuration process in the
2216 when we set the parameters for NDR.

Figure 54. 2216 NDR executor configuration console log

1 The FEATURE NDR command enables NDR configuration mode.

2 The ADD CLUSTER command defines a cluster address and its parameters.

3 The ADD PORT command defines a port number associated with a cluster. We
configured ports 23, 1234 and 2345 to be used. The first port is the well-known
Telnet port, and the last two were used by our test socket applications. Note that
if you will be using passive FTP you will need to define a pftp mode port to invoke
the NDR logic to handle this.

4 The ADD SERVER command defines the server address associated with a port and
cluster. In this example, we used the VIPA addresses of our sysplex servers, but

*TALK 6

Config>FEATURE NDR 1
NDR Config>ADD CLUSTER 2
Cluster Address [0.0.0.0]? 172.16.220.50
FIN count [4000]?
FIN time out [30]?
Stale timer [1500]?
NDR Config>ADD PORT 3
Cluster Address [0.0.0.0]? 172.16.220.50
Port number [80]? 23
Port type(tcp=1, udp=2, both=3) [3]? 1
Max. weight (0-100) [20]?
Only one pftp port per cluster allowed
Port mode (none=0, sticky=1 pftp=2 extcache=4) [0]?
NDR Config>ADD PORT 172.16.220.50 1234 1 20 0
Only one pftp port per cluster allowed
NDR Config>ADD PORT 172.16.220.50 2345 1 20 0
Only one pftp port per cluster allowed
NDR Config>ADD SERVER 4
Cluster Address [0.0.0.0]? 172.16.220.50
Port number [80]? 23
Server Address [0.0.0.0]? 172.16.250.3
Server weight [20]?
Server state (down=0, up=1) [1]?
NDR Config>ADD SERVER 172.16.220.50 23 172.16.252.28 20 1
NDR Config>ADD SERVER 172.16.220.50 23 172.16.232.39 20 1
NDR Config>ADD SERVER 172.16.220.50 1234 172.16.250.3 20 1
NDR Config>ADD SERVER 172.16.220.50 1234 172.16.252.28 20 1
NDR Config>ADD SERVER 172.16.220.50 1234 172.16.232.39 20 1
NDR Config>ADD SERVER 172.16.220.50 2345 172.16.250.3 20 1
NDR Config>ADD SERVER 172.16.220.50 2345 172.16.252.28 20 1
NDR Config>ADD SERVER 172.16.220.50 2345 172.16.232.39 20 1
NDR Config>ENABLE EXECUTOR 5
Chapter 3. Network Dispatcher 77

this is not recommended. The VIPA address is logically two hops away from the
NDR, so this breaks the rules although it worked in our example.

5 The ENABLE EXECUTOR command starts the executor immediately. It is possible to
monitor the executor under TALK 5; see Figure 56 on page 79.

3.3.1.1 NDR base sample executor test 1
Before we started the test we added a name server entry c50 in the ralplex1
subdomain for the cluster IP address 172.16.220.50.

We also started our test server described in A.4, “SOCSRVR, a simple socket
server program” on page 260 in all of our stacks. The servers were set to listen on
port 1234.

Then we ran our client test program described in A.2, “Collecting statistics using
REXX” on page 256. We issued sysplex2 c50 1234 -c 99 -b 0.1 on the client.

Figure 55. NDR base sample executor test 1

The result from this test shows that the connections were evenly distributed by
the executor. The executor used the default weight 20 for each server, which
explains the result. By modifying the weight for a server it is very easy to change
the distribution of the connections. Figure 56 shows the status of the 2216 NDR
as displayed from the operator prompt (use t 5 to get it).

+----------------------+------------------+----------------+--------+-------
-+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |
+----------------------+------------------+----------------+--------+-------
-+
c50	172.16.220.50	172.16.252.28	0.0200	0.0200
c50	172.16.220.50	172.16.232.39	0.0100	0.0100
c50	172.16.220.50	172.16.250.3	0.0100	0.0200
c50	172.16.220.50	172.16.252.28	0.0100	0.0100
c50	172.16.220.50	172.16.232.39	0.0100	0.0100
:

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
| 172.16.220.50 | 99 |

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.232.39	33
172.16.250.3	33
172.16.252.28	33
78 TCP/IP in a Sysplex

Figure 56. NDR base sample test 1 - 2216 status port console log

1 The TALK 5 command enables the operations console.

2 The FEATURE NDR command selects NDR monitor mode.

3 The STATUS PORT command displays the parameter values for the cluster and
port you select.

The output shows the server addresses providing service on the port, their
weights and connection counters.

3.3.1.2 NDR base sample executor test 2
In this test we stopped the server application in stack T03ATCP.

Then we executed: sysplex2 c50 1234 -c 99 -b 0.1 on the client. See Figure 57 for
the results.

*TALK 5 1

+FEATURE NDR 2
NDR >STATUS PORT 3
Cluster Address [0.0.0.0]? 172.16.220.50
Port number [0]? 1234

PORT 1234 INFORMATION:

Maximum weight.................. 20
Port Mode none
Port Type TCP
All up nodes are weight zero.... FALSE
Total target nodes.............. 3
Currently marked down........... 0
Servers providing service to this port:
Address: 172.16.232.39 Weight: 20 Count: 335 TCP Count: 335 UDP Count: 0
Active:
6 FIN 329 Complete 0 Status: up Saved Weight: -1
Address: 172.16.250.3 Weight: 20 Count: 336 TCP Count: 336 UDP Count: 0
Active:
3 FIN 333 Complete 0 Status: up Saved Weight: -1
Address: 172.16.252.28 Weight: 20 Count: 335 TCP Count: 335 UDP Count: 0
Active:
2 FIN 333 Complete 0 Status: up Saved Weight: -1
Chapter 3. Network Dispatcher 79

Figure 57. NDR base sample executor test 2

This time the executor continued to distribute the connections to the defined
server even though the server application was stopped. There is no parameter
provided to stop this from happening. The executor takes just the IP address and
weight into consideration when it distributes the connections in our current
implementation of NDR.

Even if the complete TCP/IP stack is stopped the executor will continue to
distribute connections to the defined server on that stack.

To change this behavior, we enabled the manager and the MVS advisor. Please
see 3.3.3.4, “NDR protocol advisors” on page 91 for more information about
protocol advisors and how they affect the distribution of the connections.

3.3.2 2216 NDR manager configuration
The next step was to configure the manager. The manager calculates server
weights and periodically sends the result to the executor. See Figure 58 for our
definitions.

Remember that the manager will overwrite the weights that were set when we
configured the ports and servers.

The manager uses the following external factors in its weighting decisions:

 • The number of active connections on each TCP server

 • The number of new connections on each TCP server

 • Input from protocol advisors

 • Input from the system monitor (MVS advisor)

+----------------------+------------------+----------------+--------+-------
-+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |
+----------------------+------------------+----------------+--------+-------
-+
| c50 | 172.16.220.50 | 172.16.232.39 | 0.0300 | 0.0100 |
Error on connecting socket to '172.16.220.50': ECONNREFUSED
| c50 | 172.16.220.50 | 172.16.252.28 | 0.0100 | 0.0200 |

:
| c50 | 172.16.220.50 | 172.16.232.39 | 0.0100 | 0.0200 |
Error on connecting socket to '172.16.220.50': ECONNREFUSED
| c50 | 172.16.220.50 | 172.16.252.28 | 0.0100 | 0.0100 |

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
| 172.16.220.50 | 99 |

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.232.39	33
172.16.252.28	33
ECONNREFUSED	33
80 TCP/IP in a Sysplex

The first two values are based on information that is generated and stored
internally in the executor.

Figure 58. 2216 NDR manager configuration console log

1 The SET MANAGER command, issued from the NDR configuration prompt, sets the
manager parameters.

2 The manager interval specifies how often the manager will update the server
weights that the executor uses in distributing connections.

3 The proportion parameters define how much weight is given to each of the four
inputs by the manager. The defaults, taken here, ignore the advisor and system
information when calculating weights.

4 The manager refresh cycle specifies how often the manager will ask the
executor for status information. The refresh cycle is based on the interval time.

5 The ENABLE MANAGER command starts the manager at once. It is possible to
monitor the manager and generate manager reports under TALK 5 (the operator
prompt).

3.3.2.1 NDR base sample manager test 1
By this time we had started the server application in stack T03ATCP again. We
issued sysplex2 c50 1234 -c 99 -b 0.1 on the client and saw the results shown in
Figure 59.

NDR Config>SET MANAGER 1
Interval (seconds) [2]? 2
Proportion: Active, New, Advisor, System must add up to 100
Proportion: Active [50]? 3
Proportion: New [50]? 3
Proportion: Advisor [0]? 3
Proportion: System [0]? 3
Refresh Cycle [2]? 4
Sensitivity (0-100) [5]?
Smoothing (> 1.00) [1.50]?
NDR Config>ENABLE MANAGER 5
Manager interval was set to 2.
Manager proportions were set to [50] [50] [0] [0]
Manager refresh cycle was set to 2
Manager sensitivity was set to 5.
Manager smoothing factor was set to 1.50.
NDR Config>
Chapter 3. Network Dispatcher 81

Figure 59. NDR base sample manager test 1

At this point we saw variations in the distribution of connections. The variations
were caused by the modifications of weights that the manager sent to the
executor.

This result is not really what we expected; we believed that the distribution would
be more even. However, we found that the smoothing parameter can cause this
type of behavior if it is set too low. We talk more about smoothing later in this
chapter.

To find out more, we issued REPORT MANAGER from the NDR operator prompt
(invoked by t 5 followed by feature ndr). See Figure 60.

+----------------------+------------------+----------------+--------+--------+

| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |

+----------------------+------------------+----------------+--------+--------+

| c50 | 172.16.220.50 | 172.16.252.28 | 0.0300 | 0.0200 |

| c50 | 172.16.220.50 | 172.16.232.39 | 0.0100 | 0.0100 |

| c50 | 172.16.220.50 | 172.16.250.3 | 0.0100 | 0.0200 |

| c50 | 172.16.220.50 | 172.16.252.28 | 0.0100 | 0.0100 |

| c50 | 172.16.220.50 | 172.16.232.39 | 0.0100 | 0.0100 |

| c50 | 172.16.220.50 | 172.16.250.3 | 0.0200 | 0.0100 |

:

| c50 | 172.16.220.50 | 172.16.252.28 | 0.0100 | 0.0100 |

| c50 | 172.16.220.50 | 172.16.232.39 | 0.0110 | 0.0100 |

| c50 | 172.16.220.50 | 172.16.252.28 | 0.0100 | 0.0100 |

| c50 | 172.16.220.50 | 172.16.232.39 | 0.0100 | 0.0100 |

| c50 | 172.16.220.50 | 172.16.252.28 | 0.0100 | 0.0100 |

:

+----------------+----------------+

| Resolved Addr | Resolved Count |

+----------------+----------------+

| 172.16.220.50 | 99 |

+----------------+----------------+

| Connected To | Connected Count|

+----------------+----------------+

| 172.16.232.39 | 41 |

| 172.16.250.3 | 21 |

| 172.16.252.28 | 37 |
82 TCP/IP in a Sysplex

Figure 60. 2216 report manager console log

1 The manager calculates the server weight dynamically. At this time the weight
for server 172.16.250.3 was set to 0 and no distribution to that server would be
performed during the current interval.

We found out that the smoothing factor (a configuration parameter in Figure 58)
was essential to stop the manager from providing wildly oscillating weights to the
executor. A higher smoothing factor will cause the server weights to change less
dramatically. The default value of 1.5 does not prevent the oscillating effect, so
we decided to set smoothing to 3 in our configuration.

There is also a way to prevent unnecessary updating of the weights when there is
little change in server status. The sensitivity factor is used for this purpose. When
the percentage weight change for all servers on a port is greater than the
sensitivity threshold, the manager will update the weights used by the executor to
distribute connections.

NDR >REPORT MANAGER

| HOST TABLE LIST | STATUS |

172.16.232.39	ACTIVE
172.16.250.3	ACTIVE
172.16.252.28	ACTIVE

172.16.220.50	WEIGHT	ACTIVE % 50	NEW % 50	PORT % 0	SYSTEM % 0					
PORT: 1234	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	9	9	9	0	9	19	0	0	0	0
172.16.250.3	9	9	9	1	9	19	0	0	0	0
172.16.252.28	9	9	9	0	9	10	0	0	0	0

PORT TOTALS:	27	27		0		0		0		0

| ADVISOR | PORT | TIMEOUT | STATUS |

No advisors currently running.
Manager report requested.

NDR >REPORT MANAGER
:

172.16.220.50	WEIGHT	ACTIVE % 50	NEW % 50	PORT % 0	SYSTEM % 0					
PORT: 1234	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	13	13	18	0	9	21	0	0	0	0
172.16.250.3	0	0	-8	0	9	2	0	0	0	0
172.16.252.28	14	14	19	0	9	25	0	0	0	0

PORT TOTALS:	27	27		1		0		0		0

:

Chapter 3. Network Dispatcher 83

3.3.2.2 NDR base sample manager test 2
In this test we stopped the server application in stack T03ATCP. Then we issued
sysplex2 c50 1234 -c 99 -b 0.1 on the client. Figure 61 was the result:

Figure 61. NDR base sample manager test 2

In this scenario we also perceived variations in the distribution of connections.
Again we used the REPORT MANAGER command to see what the counters looked like
during the test. Please refer to Figure 62.

+----------------------+------------------+----------------+--------+--------+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |
+----------------------+------------------+----------------+--------+--------+
| c50 | 172.16.220.50 | 172.16.232.39 | 0.0200 | 0.0200 |
Error on connecting socket to '172.16.220.50': ECONNREFUSED
| c50 | 172.16.220.50 | 172.16.252.28 | 0.0200 | 0.0200 |
| c50 | 172.16.220.50 | 172.16.232.39 | 0.0100 | 0.0100 |
:

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
| 172.16.220.50 | 99 |

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.232.39	41
172.16.252.28	40
ECONNREFUSED	18
84 TCP/IP in a Sysplex

Figure 62. 2216 report manager console log

The reports show that the executor registers active connections to the
unavailable server; the counter gradually increases since the connections are not
terminated at once.

The other two servers process and complete their connections. The client server
transactions are short and the number of active connections will stay low for the
two active servers. This results in a lower weight for the unavailable server and
fewer connections distributed to that server from the executor. However, there
should (eventually) be none at all.

Even if a complete TCP/IP stack is stopped, the manager will continue to send
weights to the executor based on executor connection counters. Therefore, the
executor will continue to distribute connections to the servers configured on the
unavailable stack.

We found that only the protocol advisors could stop the manager from distributing
connections to unavailable servers. For the Network Dispatcher to operate
correctly, all the relevant advisors must be configured, as we show in our last
example in 3.3.3.4, “NDR protocol advisors” on page 91.

NDR >REPORT MANAGER
:

172.16.220.50	WEIGHT	ACTIVE % 50	NEW % 50	PORT % 0	SYSTEM % 0					
PORT: 1234	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	9	9	9	0	9	1	0	0	0	0
172.16.250.3	9	9	9	1	9	1	0	0	0	0
172.16.252.28	9	9	9	0	9	0	0	0	0	0

PORT TOTALS:	27	27		0		0		0		0

:

172.16.220.50	WEIGHT	ACTIVE % 50	NEW % 50	PORT % 0	SYSTEM % 0					
PORT: 1234	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	11	11	13	0	9	3	0	0	0	0
172.16.250.3	5	5	1	10	9	3	0	0	0	0
172.16.252.28	11	11	13	0	9	3	0	0	0	0

PORT TOTALS:	27	27		7		0		0		0

:

172.16.220.50	WEIGHT	ACTIVE % 50	NEW % 50	PORT % 0	SYSTEM % 0					
PORT: 1234	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	11	11	14	0	9	8	0	0	0	0
172.16.250.3	5	5	1	18	9	3	0	0	0	0
172.16.252.28	11	11	13	0	9	7	0	0	0	0

PORT TOTALS:	27	27		15		0		0		0

:

Chapter 3. Network Dispatcher 85

3.3.3 2216 NDR advisor configuration
Now to the final configuration of the base example. We set up the NDR to use the
advisor for MVS.

Before we enabled the advisor we had to prepare the manager to take advisor
metrics into consideration when calculating weights. We changed the manager
configuration to use proportions 25/25/25/25 via the SET MANAGER command, as
used in Figure 58. After the configuration changes were made we disabled the
manager using DISABLE MANAGER, and re-enabled it by issuing ENABLE MANAGER, from
the NDR Config> prompt. The new manager parameters were now in use.

Figure 63 shows the configuration of the MVS advisor:

Figure 63. 2216 NDR MVS (WLM) advisor configuration console log

1 The ADD ADVISOR command adds an advisor and sets advisor parameters.

2 The advisor name prompt gives you the choice of available advisors.

3 WLM listens on port 10007.

4 The advisor interval specifies how often an advisor asks for status from the
servers on the port it is monitoring and then reports the result to the manager.

5 To make sure that out-of-date information is not used by the manager in its load
balancing decisions, the manager will not use records older than the time set in
the advisor timeout. By default, advisor reports do not time out.

6 We enable the MVS (WLM) advisor.

The following command display shows our final settings for the NDR in the base
sample:

NDR Config>ADD ADVISOR 1

Advisor name (0=ftp,1=http,2=MVS,3=TN3270,4=smtp,5=nntp,6=pop3,7=telnet) [1]? 2 2

Port number [10007]? 3

Interval (seconds) [5]? 4

Timeout (0=unlimited) [0]? 5

NDR Config>ENABLE ADVISOR 6

Advisor name (0=ftp,1=http,2=MVS,3=TN3270,4=smtp,5=nntp,6=pop3,7=telnet) [0]? 2
Port number [0]? 10007
Advisor MVS on port 10007 interval was set to 5.
Advisor MVS on port 10007 timeout was set to unlimited
This advisor is now enabled.
NDR Config>

NDR Config>ADD ADVISOR 1
Advisor name (0=ftp,1=http,2=MVS,3=TN3270,4=smtp,5=nntp,6=pop3,7=telnet) [1]? 2 2
Port number [10007]? 3
Interval (seconds) [5]? 4
Timeout (0=unlimited) [0]? 5
NDR Config>ENABLE ADVISOR 6
Advisor name (0=ftp,1=http,2=MVS,3=TN3270,4=smtp,5=nntp,6=pop3,7=telnet) [0]? 2
Port number [0]? 10007
Advisor MVS on port 10007 interval was set to 5.
Advisor MVS on port 10007 timeout was set to unlimited
This advisor is now enabled.
NDR Config>
86 TCP/IP in a Sysplex

Figure 64. 2216 NDR config list all command console log

3.3.3.1 NDR base sample advisor test 1
The server application on stack T03ATCP was started once more, and we issued
sysplex2 c50 1234 -c 99 -b 0.1 on the client. Figure 65 shows what we saw.

NDR Config>LIST ALL

Executor: Enabled

Manager: Enabled

Interval Refresh-Cycle Sensitivity Smoothing

2 2 5 % 3.00

Proportions: Active New Advisor System

25 % 25 % 25 % 25 %

Advisor:

Name Port Interval TimeOut State CommPort

MVS 10007 5 0 Enabled

Backup: Disabled

Role Strategy

Reachability: Address Mask Type

HeartBeat Configuration:

Clusters:

Cluster-Addr FIN-count FIN-timeout Stale-timer

172.16.220.50 4000 30 1500

Ports:

Cluster-Addr Port# Weight Port-Mode Port-Type

172.16.220.50 23 20 % none TCP

172.16.220.50 1234 20 % none TCP

172.16.220.50 2345 20 % none TCP

Servers:

Cluster-Addr Port# Server-Addr Weight State

172.16.220.50 23 172.16.232.39 20 % up

172.16.220.50 23 172.16.250.3 20 % up

172.16.220.50 23 172.16.252.28 20 % up

172.16.220.50 1234 172.16.232.39 20 % up

172.16.220.50 1234 172.16.250.3 20 % up

172.16.220.50 1234 172.16.252.28 20 % up

172.16.220.50 2345 172.16.232.39 20 % up

172.16.220.50 2345 172.16.250.3 20 % up

172.16.220.50 2345 172.16.252.28 20 % up
Chapter 3. Network Dispatcher 87

Figure 65. NDR base sample advisor test 1

This time we saw small differences in the distribution of connections. The output
from the REPORT MANAGER command is shown in Figure 66:

Figure 66. 2216 report manager console log

We noticed that the WLM load metrics had been imported by the MVS advisor.
The manager had calculated new weights, based on executor connections and
WLM metrics that favored the T03ATCP stack during this interval.

We also used the REPORT ADVISOR command (see Figure 67).

+----------------------+------------------+----------------+--------+--------+
| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |
+----------------------+------------------+----------------+--------+--------+
c50	172.16.220.50	172.16.250.3	0.0300	0.0200
c50	172.16.220.50	172.16.232.39	0.0100	0.0200
c50	172.16.220.50	172.16.250.3	0.0100	0.0100
c50	172.16.220.50	172.16.252.28	0.0100	0.0100
:

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
| 172.16.220.50 | 99 |

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.232.39	31
172.16.250.3	37
172.16.252.28	31

NDR >REPORT MANAGER
:

172.16.220.50	WEIGHT	ACTIVE % 25	NEW % 25	PORT % 25	SYSTEM % 25					
PORT: 1234	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	6	6	9	0	9	0	0	0	9	4309
172.16.250.3	7	7	9	0	9	0	0	0	10	4435
172.16.252.28	6	6	9	0	9	0	0	0	9	4391

PORT TOTALS:	19	19		0		0		0		13135

| ADVISOR | PORT | TIMEOUT | STATUS |

| MVS | 10007 | unlimited | ACTIVE |

88 TCP/IP in a Sysplex

Figure 67. 2216 report advisor console log

This command displays the current load metrics that the MVS advisor has
retrieved from WLM.

3.3.3.2 NDR base sample advisor test 2
In this test we stopped the server application in stack T03ATCP and issued
sysplex2 c50 1234 -c 99 -b 0.1 on the client. Figure 68 shows the test results:

Figure 68. NDR base sample advisor test 2

The outcome of this test was similar to the one in 3.3.2.2, “NDR base sample
manager test 2” on page 84.

3.3.3.3 NDR base sample advisor test 3
We performed an extra test with the advisor setup. In this test we stopped
OMPROUTE in stack T39ATCP. This meant that the VIPA address of that stack
was not advertised by OSPF.

The server application on stack T03ATCP was started again and the test program
was run. See Figure 69.

NDR >REPORT ADVISOR
Advisor name (0=ftp,1=http,2=MVS,3=TN3270,4=smtp,5=nntp,6=pop3,7=telnet) [1]? 2
Port number [0]? 10007

| ADVISOR: MVS |
PORT: 10007
172.16.232.39
172.16.250.3
172.16.252.28

+----------------+----------------+
| Resolved Addr | Resolved Count |
+----------------+----------------+
| 172.16.220.50 | 99 |

+----------------+----------------+
| Connected To | Connected Count|
+----------------+----------------+
172.16.232.39	43
172.16.252.28	30
ECONNREFUSED	26
Chapter 3. Network Dispatcher 89

Figure 69. NDR base sample advisor test 3

This time all our connections were distributed to the two servers whose
addresses were known to NDR. See Figure 70 for the output of the REPORT MANAGER
command.

Figure 70. 2216 report manager console log

This test showed that the MVS advisor put a -1 in the system load field (marked
down). Then the manager calculated new weights and the result was weight 0 for
the unavailable server.

If you run multiple TCP/IP stacks on OS/390 it is important to know that the WLM
advisor will listen on only one of the stacks. The stack that is available first will be
the one on which WLM will listen.

There are two other useful commands available with NDR: quiesce, which
prevents the executor from distributing connections to a certain server, and
unquiesce, to make the server available again. The current connections are not
affected by the quiesce command; they continue until finished. See Figure 71 for
an example.

+----------------------+------------------+----------------+--------+--------+

| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |

+----------------------+------------------+----------------+--------+--------+

| c50 | 172.16.220.50 | 172.16.250.3 | 0.0300 | 0.0200 |

| c50 | 172.16.220.50 | 172.16.252.28 | 0.0100 | 0.0100 |

| c50 | 172.16.220.50 | 172.16.250.3 | 0.0100 | 0.0100 |

| c50 | 172.16.220.50 | 172.16.252.28 | 0.0100 | 0.0100 |

| c50 | 172.16.220.50 | 172.16.250.3 | 0.0100 | 0.0100 |

:

+----------------+----------------+

| Resolved Addr | Resolved Count |

+----------------+----------------+

| 172.16.220.50 | 99 |

+----------------+----------------+

| Connected To | Connected Count|

+----------------+----------------+

| 172.16.250.3 | 43 |

| 172.16.252.28 | 56 |

NDR >REPORT MANAGER
:

172.16.220.50	WEIGHT	ACTIVE % 25	NEW % 25	PORT % 25	SYSTEM % 25					
PORT: 1234	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	0	0	10	0	10	0	0	0	-999	-1
172.16.250.3	6	6	6	25	10	15	0	0	9	4351
172.16.252.28	8	8	13	1	10	20	0	0	10	4067

PORT TOTALS:	14	14		26		0		0		8417

90 TCP/IP in a Sysplex

Figure 71. 2216 console log quiesce/unquiesce

3.3.3.4 NDR protocol advisors
There are some protocol advisors available that can prevent the executor from
distributing connections to unavailable servers. The protocol advisors also
provide load metrics to the manager. We configured three different protocol
advisors and tried out the Telnet advisor in an example where one of the Telnet
servers became unavailable.

Note that we configured the Telnet advisor to manage our TN3270 servers in our
sysplex TCP/IP stacks. The specific TN3270 advisor is just as suitable for use
with TN3270 servers in the IBM routers. See Figure 72 for the configuration
statements.

NDR >QUIESCE MANAGER
Server Address [0.0.0.0]? 172.16.252.28
172.16.252.28 has been marked to be quiesced.
NDR > REPORT MANAGER

| HOST TABLE LIST | STATUS |

172.16.232.39	ACTIVE
172.16.250.3	ACTIVE
172.16.252.28	QUIESCED

:
NDR >UNQUIESCE 172.16.252.28
172.16.252.28 has been marked to be active.
Chapter 3. Network Dispatcher 91

Figure 72. 2216 protocol advisor console log

We configured and enabled three protocol advisors: FTP, HTTP and Telnet. Then
we performed the following test. We stopped OMPROUTE in the RA28 stack and
started three TN3270 sessions to the cluster address. Figure 73 shows the output
of REPORT MANAGER on the 2216. So far, this should work the same way with or
without the Telnet advisor.

Figure 73. 2216 report manager console log

NDR Config> ADD ADVISOR

Advisor name (0=ftp,1=http,2=MVS,3=TN3270,4=smtp,5=nntp,6=pop3,7=telnet) [1]? 0

Port number [21]?

Interval (seconds) [5]?

Timeout (0=unlimited) [0]?

NDR Config>ADD ADVISOR 1 80 5 0

NDR Config>ADD ADVISOR 7 23 5 0

NDR Config>ENABLE ADVISOR

Advisor name (0=ftp,1=http,2=MVS,3=TN3270,4=smtp,5=nntp,6=pop3,7=telnet) [0]? 0

Port number [0]? 21

Advisor ftp on port 21 interval was set to 5.

Advisor ftp on port 21 timeout was set to unlimited

This advisor is now enabled.

NDR Config>ENABLE ADVISOR 1 80

Advisor http on port 80 interval was set to 5.

Advisor http on port 80 timeout was set to unlimited

This advisor is now enabled.

NDR Config>ENABLE ADVISOR 7 23

Advisor telnet on port 23 interval was set to 5.

Advisor telnet on port 23 timeout was set to unlimited

This advisor is now enabled.

NDR Config>LIST ADVISOR

Executor: Enabled

Advisor:

Name Port Interval TimeOut State CommPort

ftp 21 5 0 Enabled

http 80 5 0 Enabled

MVS 10007 5 0 Enabled

telnet 23 5 0 Enabled

NDR >REPORT MANAGER
:
NDR >REPORT MANAGER

172.16.220.50	WEIGHT	ACTIVE % 25	NEW % 25	PORT % 25	SYSTEM % 25					
PORT: 23	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	10	10	11	1	10	1	11	30	10	4220
172.16.250.3	8	9	8	2	10	1	10	30	9	4400
172.16.252.28	0	0	10	0	10	0	8	20	-999	-1

PORT TOTALS:	18	19		3		0		80		8619

92 TCP/IP in a Sysplex

In this report the MVS advisor has marked 172.16.252.28 as down because we
stopped OMPROUTE in the T28ATCP stack. The TN3270 sessions have been
distributed to the two available servers: two sessions to 172.16.250.3 and one
session to 172.16.232.39.

Next, we quiesced the Telnet server in the T39ATCP stack using the command v

tcpip,,t,quiesce. This command stops new connections to the server from being
established while the active ones continue to work. Then we started three more
TN3270 sessions to the cluster. Figure 74 shows the REPORT MANAGER output now:

Figure 74. 2216 report manager console log

All our sessions are now on the 172.16.250.3 server, which has five active
connections. The Telnet protocol advisor has marked the 172.16.232.39 server
as down, and the manager has calculated a 0 weight to that server.

3.3.4 2216 NDR high availability
In this chapter we set up an NDR high availability configuration. To achieve this
we installed a second 2216 as a backup in our network. We placed the backup
2216 in parallel to the original one. We connected the backup machine to the
same token-ring as the first 2216 and to the same LPARs via ESCON MPCs.
Figure 75 shows the network diagram with the second 2216 added.

NDR >REPORT MANAGER

172.16.220.50	WEIGHT	ACTIVE % 25	NEW % 25	PORT % 25	SYSTEM % 25					
PORT: 23	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	0	0	8	2	10	0	-999	-1	8	4244
172.16.250.3	10	10	11	5	10	3	11	30	11	4421
172.16.252.28	0	0	10	0	10	0	8	20	-999	-1

PORT TOTALS:	10	10		5		0		49		8664

Chapter 3. Network Dispatcher 93

Figure 75. High availability Network Dispatcher configuration

The TCP/IP definitions we made were very similar to those in 6.5, “Configuring
OMPROUTE” on page 161 as far as the following were concerned:

 • Devices: token-ring and ESCON MPCs

 • IP addresses

 • OSPF definitions

For NDR we used the same definitions as in the NDR base example. We
configured the same:

 • Cluster

 • Ports

 • Servers

 • Manager

 • Advisor

in the backup machine as in the primary.

3.3.4.1 2216 NDR high availability configuration
The two Network Dispatcher machines are configured, one as primary and one
as backup. At startup the primary machine sends all the connection data to the

.125External
DNS

Server

CF

5235\523511

Subnet Mask:
255.255.255.0

Subnet: 172.16.233.0S/390

XCF XCF
XCF

T03ATCP OMPROUTE
DNS Pri

VIPA

XCF

172.16.250.3

172.16.233.3

LCS 9.24.104.113

T28ATCP OMPROUTE
DNS Sec

VIPA

XCF

172.16.252.28

172.16.233.28

LCS 9.24.104.42

T39ATCP OMPROUTE
DNS Sec

VIPA

XCF

172.16.232.39

172.16.233.39

LCS 9.24.104.149

LCSLCS LCS

Subnet: 9.24.104.0

LPAR1 LPAR2 LPAR4

.200 .1

.254

.254

MPC 172.16.100.3 MPC 172.16.101.28 MPC 172.16.102.39

Subnet: 172.16.220.0

Subnet:
= 172.16.100.0
= 172.16.101.0
= 172.16.102.0

2216

MPC MPC
MPC

Router

Subnet: 9.24.106.0

A
B
C

A B C

.10
94 TCP/IP in a Sysplex

backup machine until that machine is synchronized. The primary machine
becomes active, that is, it begins to route packets. The backup machine,
meanwhile, monitors the status of the primary machine and is said to be in
standby state.

If the backup machine at any point detects that the primary machine has failed, it
performs takeover of the primary machine's routing functions and becomes the
active machine. After the primary machine has once again become operational,
the machines respond according to how the recovery takeback strategy has been
configured:

 • Automatic. The primary machine resumes routing packets as soon as it
becomes operational again.

 • Manual. The backup machine continues routing packets even after the primary
becomes operational. Manual intervention is required to return the primary
machine to active state and reset the backup machine to standby.

We configured backup for our 2216s as in Figure 76.

Figure 76. 2216 NDR high availability configuration console log

1 The ADD BACKUP command configures the high availability option and sets the
parameters.

2 We set the role to 0 in the primary 2216 and 1 in the backup 2216.

3 We configured the automatic backup strategy.

4 At least two heartbeat conversations should be configured (on different paths)
to avoid unnecessary takeover. We configured four pairs; the same address pairs
were defined on both machines but inverted in the one not shown.

5 The ENABLE BACKUP command starts the backup function at once.

In addition to the basic criteria of failure detection (heartbeat) there is another
failure detection mechanism named reachability. When configuring reachability
you provide a list of IP hosts that each of the Network Dispatchers must be able
to reach in order to work correctly. The reachability configuration is invoked by the
add reach command under the NDR Config> prompt. We did not configure any
reachability criteria in our test environment.

NDR Config>ADD BACKUP 1
Role (0=PRIMARY, 1=BACKUP) [0]? 1 2
Switch back strategy(0=AUTO, 1=MANUAL [0]? 3
NDR Config>ADD HEARTBEAT 4
Source Heartbeat address [0.0.0.0]? 172.16.220.253
Target Heartbeat Address [0.0.0.0]? 172.16.220.254
NDR Config>ADD HEARTBEAT 172.16.103.253 172.16.100.254 4
NDR Config>ADD HEARTBEAT 172.16.104.253 172.16.101.254 4
NDR Config>ADD HEARTBEAT 172.16.105.253 172.16.102.254 4
NDR Config>ENABLE BACKUP 5
NDR Config>
Chapter 3. Network Dispatcher 95

3.3.4.2 NDR high availability test results
First we checked the status of our backup configurations in the 2216s. We used
the STATUS BACKUP command to do this as in Figure 77 (primary) and Figure 78
(backup).

Figure 77. Primary 2216 status backup console log

The primary 2216 was in active state; the heartbeats were running and the
database synchronization was complete.

Figure 78. Secondary 2216 status backup console log

The secondary 2216 was in standby state; the heartbeats were running and the
database synchronization was complete. This machine was now fully qualified to
take over in case of failure of the primary.

We started a couple of TN3270 sessions and we also used the multitasking
version of our test socket application described in A.6, “Loading the system” on
page 264. This application was configured to listen on port 2345.

The client program syntax is described in A.2, “Collecting statistics using REXX”
on page 256. We issued the command sysplex2 c50 2345 -c 3 -t 120 -b 3 from
the client in 10 parallel sessions. The timer parameter (-t) was set so that the
server would not reply before 120 seconds had passed. The purpose of this was
to make sure that the active connections had been restored properly by the
backup Network Dispatcher before ending the connection.

Before breaking anything, we issued REPORT MANAGER on the primary, as in Figure
79.

NDR >STATUS BACKUP
Dumping status ...
Role : PRIMARY Strategy : AUTOMATIC State : ND_ACTIVE Sub-State : ND_SYNCHRON
IZED
<<<Prefered target : 172.16.103.253>>>

Dumping HeartBeat Status ...

Dumping Reachability Status ...

NDR >STATUS BACKUP
Dumping status ...
Role : BACKUP Strategy : AUTOMATIC State : ND_STANDBY Sub-State : ND_SYNCHRON
IZED
<<<Prefered target : 172.16.220.254>>>

Dumping HeartBeat Status ...

Dumping Reachability Status ...
96 TCP/IP in a Sysplex

Figure 79. Primary 2216 report manager console log

We noticed that the executor had registered several active connections on our
test ports.

Now we were prepared to test if theory works in practice. We stopped the
executor in the primary Network Dispatcher as you can see in Figure 80:

Figure 80. Primary 2216 disable executor console log

Our TN3270 sessions remained active and the test applications continued to
present valid results. We had a look at the secondary 2216, issuing STATUS BACKUP
and REPORT MANAGER as seen in Figure 81.

NDR >REPORT MANAGER
:

172.16.220.50	WEIGHT	ACTIVE % 25	NEW % 25	PORT % 25	SYSTEM % 25					
PORT: 23	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	8	8	13	1	9	1	0	0	10	4310
172.16.250.3	6	6	6	2	9	0	0	0	9	4402
172.16.252.28	6	6	9	1	9	0	0	0	9	4427

PORT TOTALS:	20	20		3		0		0		13139

:

172.16.220.50	WEIGHT	ACTIVE % 25	NEW % 25	PORT % 25	SYSTEM % 25					
PORT: 2345	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	7	7	9	17	9	0	0	0	10	4310
172.16.250.3	6	6	9	18	9	0	0	0	9	4402
172.16.252.28	6	6	9	15	9	0	0	0	9	4427

PORT TOTALS:	19	19		50		0		0		13139

NDR Config>DISABLE EXECUTOR
Cluster 172.16.220.50 has been removed.
Executor is now disabled.
Advisor MVS on port 10007 exiting
Manager stopping....
Manager exiting
Manager stopped
Chapter 3. Network Dispatcher 97

Figure 81. Secondary 2216 status backup/report manager console log

The secondary 2216 had done its job and was now in active state; no heartbeats
were running and the database was not synchronized.

The reports showed increased connection counters and the test application
connections were evenly distributed.

Then we tried to start the executor in the primary 2216 again. Since the takeback
strategy was set to automatic, we should be able to recover the dispatching to the
primary 2216 again, without any manual intervention except to start the executor.
See Figure 82.

NDR >STATUS BACKUP
Dumping status ...
Role : BACKUP Strategy : AUTOMATIC State : ND_ACTIVE Sub-State : ND_NOT_SYNCH
RONIZED

Dumping HeartBeat Status ...

Dumping Reachability Status ...
NDR >REPORT MANAGER

:

172.16.220.50	WEIGHT	ACTIVE % 25	NEW % 25	PORT % 25	SYSTEM % 25					
PORT: 23	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	7	7	11	7	9	1	0	0	10	4324
172.16.250.3	6	6	8	11	9	0	0	0	9	4430
172.16.252.28	7	7	10	9	9	1	0	0	9	4408

PORT TOTALS:	20	20		25		0		0		13162

:

172.16.220.50	WEIGHT	ACTIVE % 25	NEW % 25	PORT % 25	SYSTEM % 25					
PORT: 2345	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	6	6	9	21	9	0	0	0	9	4324
172.16.250.3	6	6	9	22	9	0	0	0	9	4430
172.16.252.28	7	7	10	18	9	0	0	0	10	4408

PORT TOTALS:	19	19		61		0		0		13162

98 TCP/IP in a Sysplex

Figure 82. Primary 2216 status backup/report manager console log

The STATUS BACKUP command showed that the primary 2216 was in charge again,
in active state. All our sessions continued to work and the reports showed that the
connection counters continued to change.

NDR Config>ENABLE EXECUTOR
NDR >STATUS BACKUP
Dumping status ...
Role : PRIMARY Strategy : AUTOMATIC State : ND_ACTIVE Sub-State : ND_SYNCHRON
IZED
<<<Prefered target : 172.16.103.253>>>

Dumping HeartBeat Status ...

Dumping Reachability Status ...
NDR >REPORT MANAGER

:

172.16.220.50	WEIGHT	ACTIVE % 25	NEW % 25	PORT % 25	SYSTEM % 25					
PORT: 23	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	7	7	10	6	9	0	0	0	10	4323
172.16.250.3	6	6	8	11	9	0	0	0	9	4431
172.16.252.28	7	7	10	8	9	0	0	0	9	4407

PORT TOTALS:	20	20		25		0		0		13161

:

172.16.220.50	WEIGHT	ACTIVE % 25	NEW % 25	PORT % 25	SYSTEM % 25					
PORT: 2345	NOW	NEW	WT	CONNECT	WT	CONNECT	WT	LOAD	WT	LOAD

172.16.232.39	7	7	10	21	9	0	0	0	10	4324
172.16.250.3	7	7	9	22	9	0	0	0	10	4430
172.16.252.28	5	6	9	19	9	0	0	0	9	4407

PORT TOTALS:	19	20		62		0		0		13161

Chapter 3. Network Dispatcher 99

100 TCP/IP in a Sysplex

Chapter 4. Dynamic VIPA (for application instance)

By providing IP addresses for the OS/390 applications that are not associated
with a specific physical network attachment or gateway, VIPA enables fault
tolerance against outages in the IP interfaces on the OS/390 host. However, in
previous releases, if the stack itself failed, you had to move the application
workload manually and activate a VIPA on another stack via the VARY OBEY
command. Since V2R8, VIPAs can be dynamically activated. Furthermore, a VIPA
can now be regarded as the private address of an application server in the
sysplex and can follow that server across sysplex images.

CS for OS/390 IP has two flavors of Dynamic VIPA, the application-specific
Dynamic VIPA (designed for single instance applications) and the automatic VIPA
takeover/takeback flavor (designed for sysplex-wide VIPA takeover). The former
is the subject of this chapter, while the latter is covered in Chapter 5, “Automatic
VIPA takeover and takeback” on page 127.

4.1 Benefits of Dynamic VIPA

In general, the application-specific Dynamic VIPA allows an application to
activate a VIPA dynamically. This allows the application instances to have control
of when the VIPA is active and in which stack in the sysplex the VIPA is active.
The Dynamic VIPA is usually only active in at most one stack in a sysplex. That
is, one stack owns the VIPA and advertises reachability to that stack (usually via
some dynamic routing protocol). We will see some cases in which a VIPA
appears active in more than one stack, but it is only advertised by one.

The application-specific Dynamic VIPA allows the VIPA address to be associated
with a particular application instance. VIPA activation is performed, without any
DEVICE, LINK or HOME definitions, either by the application issuing bind() to
that particular IP address, or by an APF-authorized program issuing an IOCTL to
the stack or by invoking the MODDVIPA utility. The stack must be configured
appropriately to permit activation of such a Dynamic VIPA, with a VIPA subnet
range defined to ensure that unwanted IP addresses are not created.

In this method, the failure of the application instance (or stack, or OS/390) means
that the application instance could be restarted elsewhere in a sysplex
environment. How this restart is accomplished is not determined by the stack
function. It could be by operator intervention, Automatic Restart Manager (ARM),
or other sysplex-wide mechanism.

The application-specific Dynamic VIPA function allows VIPA IP addresses to be
defined and activated by individual applications (with or without modifying the
applications), so that the VIPA IP address moves when the application is moved
to another OS/390 host image in the sysplex environment. In this regard, a VIPA
is typically associated with some application. The movement of this Dynamic
VIPA is done by the activation of the application instance or of the Dynamic VIPA
itself on some other system in the sysplex.

When some application fails in a sysplex environment, this application can be
restarted on another stack. If correctly defined, the application can bind() to the
same IP address without any intervention. The VIPA will be activated dynamically
at the second stack.
© Copyright IBM Corp. 1998 2001 101

Application-specific Dynamic VIPAs are intended for applications for which only
one instance of the application can be running simultaneously. If a second stack
activates the VIPA at the same time that a first stack has the VIPA active, the
resulting behavior may be confusing. Because of this, it is important to have a
good understanding of the behavior associated with multiple Dynamic VIPA
activations. With CS for OS/390 V2R8 IP, this behavior was considered
disruptive. CS for OS/390 V2R10 IP has alleviated this disruptiveness by allowing
a smooth transition in VIPA ownership.

4.2 Implementing Dynamic VIPA

It is inherently important to note that the application-specific Dynamic VIPA is
defined exclusively with the VIPARange statement within the VIPADynamic block
in the TCP/IP profile. The VIPADynamic block has other statements as shown in
Figure 83.

Figure 83. Definition format for Dynamic VIPA statement

VIPADEFine, VIPABackup, VIPADELete, and VIPADISTribute statements are
used in conjunction with the automatic takeover flavor of VIPA as discussed in
Chapter 5, “Automatic VIPA takeover and takeback” on page 127. The
VIPADEFine statement designates one or more VIPA IP addresses that a stack
should initially own. VIPADELete is used to delete one of these defined VIPA
addresses. The VIPADISTribute statement is used to configure the Sysplex
Distributor and is the subject of Chapter 7, “Sysplex Distributor” on page 187.

The VIPARange statement is used to define and delete IP subnets from which an
application can activate a Dynamic VIPA by issuing a bind() or IOCTL. That is, if
an application expects to activate a VIPA dynamically, it must be contained within
some subnet specification of an active VIPARange statement.

4.2.1 Dynamic VIPA configuration (for application instance)
Activation of an application-specific Dynamic VIPA IP address associated with a
specific application instance occurs only via an application program's API call, by
either of the following ways:

 • An application issues a bind() to that particular (specific) IP address

 • An application binds to INADDR_ANY instead of a specific IP address, but the
Server Bind Control function changes the generic bind() to a specific one. This
situation is discussed in 4.2.2, “Solutions for applications that bind() to
INADDR_ANY” on page 103.

 • An authorized application issues the SIOCSVIPA IOCTL() command. An
example of such an application is the MODDVIPA utility.

VIPADynamic ENDVIPADynamic

VIPABackup

VIPADEFine

VIPADELete

VIPADISTribute

VIPARange
102 TCP/IP in a Sysplex

Since the VIPA IP address is specified by the application, it need not be defined
in the TCP/IP profile. However, we must ensure that the addresses being used
the application corresponds to our IP addressing scheme. We use the
VIPARange statement in the TCP/IP profile to indicate the range of VIPAs that we
are willing to dynamically activate as shown in Figure 84.

Figure 84. Definition format for VIPARange

The VIPARange statement defines an IP subnetwork using the network address
(prefix) and the subnet mask. Since the same VIPA address may not be activated
by IOCTL/bind() while also participating in automatic takeover as defined by
VIPADEFine/VIPABackup, it is recommended that subnets for VIPADEFine be
different from subnets for VIPARange.

For our tests in 4.2.3, “Examples of Dynamic VIPA” on page 104, we use the
configuration in Figure 85.

Figure 85. VIPARange statement

Once activated on a stack via bind() or IOCTL, a Dynamic VIPA IP address
remains active unless the VIPA IP address is moved to another stack or it is
deleted. The system operator may delete an active application-specific Dynamic
VIPA IP address by using the MODDVIPA utility or by stopping the application
that issued the bind() to activate the VIPA. To remove an active VIPARange
statement, the VIPARange DELETE statement may be used.

4.2.2 Solutions for applications that bind() to INADDR_ANY
An application may issue a bind() to INADDR_ANY to accept connection requests
from any IP address associated with the stack. In that case, it is not possible to
determine which VIPA IP address should be associated with it. There are three
solutions for this situation:

 • Define the application to bind() to a specific address instead of INADDR_ANY
using the new function Server Bind Control, implemented by the BIND
keyword on the PORT statement. Note that the port must be known ahead of
time, since this will be coded in the TCPIP profile.

 • Modify the application to bind() to a specific address (however, sometimes this
is not possible without source code modifications).

 • Use the utility MODDVIPA or change the application to send the appropriate
IOCTL.

The most attractive solution is to use the new Server Bind Control function
because it does not require changing the application or the use of a manual utility.

VIPARange address_mask ipaddr

DEFINE

DELEte

MOVEable NONDISRUPTive

MOVEable DISRUPTive

VIPADYNAMIC
VIPARANGE DEFINE MOVEABLE NONDISRUPT 255.255.255.0 172.16.240.193

ENDVIPADYNAMIC
Chapter 4. Dynamic VIPA (for application instance) 103

Using this function, a generic server (such as the TN3270 Server) will bind to a
specific address instead of INADDR_ANY. When the application binds to
INADDR_ANY, the bind() is intercepted and converted to the specified IP
address. The process then continues as if the server had issued a bind() to that
specific address. If the application does not support the ability to specify a
specific local address to which to bind, the Server Bind Control function provides
an attractive alternative to changing application source code. In order to use this
function, however, the port used by the application must be known in advanced so
that it can be added to the PORT statement in the TCPIP profile.

If the Server Bind Control function cannot be used and the application can be
modified, change the target address for the bind() from INADDR_ANY to the
specific Dynamic VIPA IP address. In A.4.1, “Modifying SOCSRVR for Dynamic
VIPA” on page 261 we show how we did this for the sample sockets application
used in many of our tests.

To address the case in which the application cannot take advantage of the Server
Bind Control function and it cannot be modified, CS for OS/390 V2R10 provides a
utility MODDVIPA to create a Dynamic VIPA IP address using the IOCTL call. The
utility can be initiated via JCL, from the OMVS command line, or from a shell
script. MODDVIPA is the new name of utility EZBXFDVP, already available in CS
for OS/390 IP V2R8. The name EZBXFDVP can still be used to run the utility, but
this name is not mentioned in CS for OS/390 IP V2R10 documentation anymore.
See 4.2.3.1, “Using utility MODDVIPA” on page 104 for an example.

4.2.3 Examples of Dynamic VIPA
In this section, we give examples of Dynamic VIPAs activated in three different
ways:

 • Using the MODDVIPA utility

 • Server issues a bind() to INADDR_ANY which is converted to a specific
address via the Server Bind Control function

 • Application issues a bind() to a specific address directly

4.2.3.1 Using utility MODDVIPA
 Figure 86 shows our sample procedure to invoke the utility.

Figure 86. Sample JCL to run MODDVIPA

The utility expects a parameter specifying the VIPA IP address to be activated. It
may also be used to delete a VIPA IP address as an alternative to the VARY OBEY
command by a system operator. The parameter option field can be -c for create
or -d for delete. The example above will create a Dynamic VIPA with IP address

//TCPDVP PROC
//TCPDVP EXEC PGM=MODDVIPA,REGION=0K,TIME=1440,
// PARM='-p TCPIPC -c 172.16.240.193'
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//SYSERR DD SYSOUT=A
//SYSERROR DD SYSOUT=A
//SYSDEBUG DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
104 TCP/IP in a Sysplex

172.16.240.193. Activation of the Dynamic VIPA IP address will succeed as long
as the desired IP address is not claimed by any other stack, is not an IP address
of a physical interface or a static VIPA, and is not defined via VIPADEFine or
VIPABackup in a VIPADynamic block.

The following completion codes are expected when creating (-c) a DVIPA IP
address:

0 Success: The DVIPA was activated.

4 Warning: The required DVIPA was not activated because the specified IP
is already active on this stack.

8 Error: The IP address is not defined as a DVIPA on this TCP/IP

 The following completion codes are expected when deleting (-d) a DVIPA IP
address:

0 Success: The DVIPA was deleted.

8 The requested DVIPA was not deleted.

 Note that the issuer of this utility must be APF authorized and have root
authority. If the user is not APF authorized, the following message is issued:

Figure 87. Message for authorization error

After authorizing the user, the job was executed again. Figure 88 shows that the
DVIPA IP address 172.16.240.193 was added to this stack.

Figure 88. Display NETSTAT,HOME

Figure 89 shows the result of SYSPLEX,VIPADYN and how this address was
activated (IOCTL).

SIOCSVIPA IOCTL failed: EDC5111I Permission denied. errno2=74057209

D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 749
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED
Chapter 4. Dynamic VIPA (for application instance) 105

Figure 89. Display SYSPLEX,VIPADYN

4.2.3.2 Using Server Bind Control
Some servers can only bind to INADDR_ANY (0.0.0.0). For these servers, we
can use the Server Bind Control function to convert the bind to INADDR_ANY to
a bind to a specific IP address as defined in the PORT statement. Figure 90
shows the TCP/IP profile including the port reservation statement for port 23, the
Telnet well-known port.

Figure 90. Port definition

Refer to OS/390 IBM Communications Server: IP Configuration Reference,
SC31-8726 for a complete description of the PORT statement.

We established a TN3270 connection to the DVIPA IP address and issued some
display commands. Figure 91 shows that the DVIPA IP address 172.16.240.193
was added to stack TCPIPC.

D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 792
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
ORIGIN: VIPARANGE IOCTL
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 BACKUP 100

3 OF 3 RECORDS DISPLAYED

PORT
7 UDP MISCSERV
7 TCP MISCSERV
9 UDP MISCSERV
9 TCP MISCSERV
19 UDP MISCSERV
19 TCP MISCSERV
20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER
23 TCP INTCLIEN BIND 172.16.240.193 ;
23 TCP INETD1 BIND 9.24.105.74 ;
106 TCP/IP in a Sysplex

Figure 91. Display NETSTAT,HOME

Figure 92 shows the result of SYSPLEX,VIPADYN and how this IP address was
activated (bind).

Figure 92. Display SYSPLEX,NETSTAT

Our example shows how this function can allow multiple servers to bind to the
same port on different interfaces. Specifically, Telnet 3270 server and OE Telnet
server can both listen on the same port 23 simultaneously.

4.2.3.3 Application issues a bind() to a specific address
In this test, we used an application that binds a specific address and give some
displays. The application receives the port number and the IP address as
parameters to use on the bind() call. Figure 93 shows the invocation of the tool.

Figure 93. Application jcs

D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 580
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28
172.16.233.3 EZAXCF39
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED

D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 662
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
ORIGIN: VIPARANGE BIND
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 BACKUP 100

3 OF 3 RECORDS DISPLAYED

RA03:/u/claudia>jcs -s 1/0/0/0 -b 4343/172.16.240.193/0/0/0 -l -d 200
Chapter 4. Dynamic VIPA (for application instance) 107

With this invocation, the application binds to port 4343 and the specific IP
address 172.16.240.193. Figure 94 shows that the Dynamic VIPA IP address was
activated on TCPIPC stack.

Figure 94. Display NETSTAT,HOME

Figure 95 shows how the Dynamic VIPA IP address was activated (bind).

Figure 95. Display SYSPLEX,VIPAD

Figure 96 shows the application using port 4343 and the Dynamic VIPA IP
address added.

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 248
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28
172.16.233.3 EZAXCF39
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 252
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
ORIGIN: VIPARANGE BIND
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 BACKUP 100

3 OF 3 RECORDS DISPLAYED
108 TCP/IP in a Sysplex

Figure 96. Display NETSTAT,CONN

In this case, the Dynamic VIPA IP address is deleted when the application
finishes.

Figure 97 shows that the Dynamic VIPA IP address is not active anymore.

Figure 97. Display NETSTAT,HOME after the application ends

4.3 Dynamic VIPA conflicts

TCP/IP stacks have a mechanism for preventing conflicts when the same
Dynamic VIPA IP address is activated in more than one stack. Sometimes a
conflict can occur as a result of changes in the sysplex environment. For
example, a DVIPA could be activated due to a stack or application failure. To help
with these conflicts, only one TCP/IP stack advertises a Dynamic VIPA IP
address to routers. The stack that receives packets destined for the VIPA is
considered its owning stack.

The next section explains the behavior of a Dynamic VIPA IP address that is
activated and another application tries to activate the same Dynamic VIPA IP
address in another IP stack. As of CS for OS/390 V2R10 IP, the resulting
behavior depends on the VIPARange definition in the first stack.

4.3.1 bind()
Every time an application issues a bind() to a specific IP address, this IP address
is checked against IP addresses in the HOME list. If the IP address is already
active, the bind() is successful. If the IP address is not active on this stack, the

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 258
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA4 0000056A 172.16.240.193..4343 0.0.0.0..0 LISTEN
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 0000001A 127.0.0.1..1026 127.0.0.1..1027 ESTBLSH
TCPIPC 00000018 172.16.240.193..23 0.0.0.0..0 LISTEN

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 591
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28
172.16.233.3 EZAXCF39
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED
Chapter 4. Dynamic VIPA (for application instance) 109

VIPARange statement is checked. If there is no VIPARange statement
corresponding to the address requested in an application call, the call is rejected.

Otherwise, if this IP address is already active in another stack, the behavior will
be established by the options MOVEable DISRUPTive and MOVEable
NONDISRUPTive in the VIPARange statement corresponding to this VIPA.

The DVIPA IP address is immediately moved to the second stack if the
VIPARange is defined as MOVEable NONDISRUPTive. The DVIPA IP address is
added to the HOME list of a new stack and this stack notifies neighboring routers
that it is now the owner of this IP address. New connections will be directed to the
new owning stack and outstanding connections to the previously owning stack
will remain active and functional, despite its having lost the ownership of the
DVIPA. The new owning stack routes the data for these existing connections to
the old stack as shown in Figure 98. In this regard, the movement of the DVIPA is
non-disruptive. The DVIPA is eventually deleted on the old stack when all existing
connections to the old stack terminate.

Figure 98. With non-disruptive behavior, the new owning stack forwards data for old connections

If the VIPARange is defined as MOVEable DISRUPTive, the VIPA is not moved
and the bind() request for the application on the second stack fails. In this case,
the second application issuing the bind() is said to have been disrupted. This is
the only behavior allowed with CS for OS/390 V2R8 IP. NONDISRUPTive is the
default behavior for CS for OS/390 V2R10 IP. Both stacks should be at a V2R10
(or later) code level or the behavior will be DISRUPTive.

4.3.2 IOCTL
The TCP/IP configuration for the IOCTL() call is the same as for the bind(specific)
call, namely a VIPARange defining a subnet containing the desired VIPA IP
addresses. The same VIPARange may be used for both if desired. However, the
behavior when the IP address is already active in another stack is different.

new
owning
stack

advertises
DVIPA

old
owning
stack

does not
advertise
DVIPA

client

client's connection continues
to send data to the DVIPA

newstack forwards data for old
connections to the old stack
110 TCP/IP in a Sysplex

The DVIPA IP address is immediately transferred to the second stack in both
cases (MOVEable DISRUPTive and NONDISRUPTive).

When VIPARange is defined as NONDISRUPTive, the routers are notified about
the ownership change and the old connections are preserved on the old stack.
The new stack routes the old connections data to the old stack. The status for the
DVIPA IP address on the old stack will be moving until the existing connections
with the old stack terminate.

When VIPARange is defined as DISRUPTive, the routers are notified about the
new ownership and the DVIPA IP address is deleted from the HOME list on the
first stack. All existing connections on the first stack will be broken.

4.3.3 Scenarios
In this section we show four different scenarios:

 • Dynamic VIPA IP address activated via IOCTL and VIPARange defined as
MOVEable NONDISRUPTive

 • Dynamic VIPA IP address activated via IOCTL and VIPARange defined as
MOVEable DISRUPTive

 • Dynamic VIPA IP address activated via bind() and VIPARange defined as
MOVEable NONDISRUPTive

 • Dynamic VIPA IP address activated via bind() and VIPARange defined as
MOVEable DISRUPTive

In our tests, the following environment was used:

Figure 99. Test environment

For convenience, stack TCPIPC on RA39 was not used.

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

CF

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0 172.16.102.254

255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

DVIPA
172.16.251.3

255.255.255.0

TCPIPC
Chapter 4. Dynamic VIPA (for application instance) 111

4.3.3.1 IOCTL and VIPARange defined as MOVEable NONDISRuptive
In this test, we followed this sequence of actions:

1. Define Dynamic VIPA IP address in VIPARange as in Figure 85 on TCPIPC on
RA03.

2. Define Dynamic VIPA IP address in VIPARange as in Figure 85 on TCPIPC on
RA28.

3. Run MODDVIPA to activate Dynamic VIPA IP address 172.16.240.193 on
TCPIPC on RA03.

4. Verify the Dynamic VIPA IP address 172.16.240.193 is active on TCPIPC on
RA03. See Figure 100 and Figure 101.

Figure 100. Display NETSTAT,HOME on TCPIPC on RA03

Figure 101. Display SYSPLEX,VIPAD

5. Start an FTP server in both stacks.

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 768
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED

D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 770
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
ORIGIN: VIPARANGE IOCTL
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 100

5 OF 5 RECORDS DISPLAYED
112 TCP/IP in a Sysplex

6. Establish a connection to an FTP server using Dynamic VIPA 172.16.240.193
(activated on TCPIPC on RA03). The resulting connections are shown in
Figure 102.

7. Transfer a big file from a client to a server (TCPIPC on RA03).

Figure 102. Display NETSTAT,CONN

8. Run MODDVIPA to activate Dynamic VIPA 172.16.240.193 on TCPIPC on
RA28. Figure 103 shows the messages on the console log (the first one is
issued on RA28 and the second one on RA03) when the Dynamic VIPA IP
address is moved.

Figure 103. Console log

9. Verify the Dynamic VIPA 172.16.240.193 is active on TCPIPC on RA28. This
is shown in the displays in Figure 104 and Figure 105. Notice the status of
MOVING associated with the VIPA during this process.

Figure 104. Display NETSTAT,HOME

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 841
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 00002F15 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA 000044B6 172.16.240.193..20 9.24.104.75..3356 ESTBLSH
FTPDC1 000044B1 172.16.240.193..21 9.24.104.75..3355 ESTBLSH
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN

EZZ8302I VIPA 172.16.240.193 TAKEN FROM TCPIPC ON RA03
EZZ8303I VIPA 172.16.240.193 GIVEN TO TCPIPC ON RA28

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 820
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED
Chapter 4. Dynamic VIPA (for application instance) 113

Figure 105. Display SYSPLEX,VIPAD

10.Check if the FTP connections are still active on TCPIPC on RA03. Figure 106
shows that they are.

Figure 106. Display NETSTAT,CONN

Note: The FTP protocol makes use of two TCP ports, 21 for the control
connection and 20 for the data connections. When the session is established,
only port 21 is allocated. As data needs to be transferred, connections from port
20 are created by the server. If the Dynamic VIPA IP address is moved before the
port 20 connection is created, the information regarding that particular connection
cannot be moved (since it does not yet exist). As a result, when any additional
data is to be transferred, the data connection will not be established because the
second stack does not know to where the information should be routed. In this
case, the connection is hung. Figure 107 shows an example of this case, with a
status of SYNSENT for a data connection. Because of this type of problem, it is
very important to keep in mind the movement of a DVIPA, particularly when using
FTP.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 873
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193
ORIGIN: VIPARANGE IOCTL
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.240.0
TCPIPC RA03 MOVING 255.255.255.0 0.0.0.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 100

6 OF 6 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 844
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 00002F15 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA 000044B6 172.16.240.193..20 9.24.104.75..3356 ESTBLSH
FTPDC1 000044B1 172.16.240.193..21 9.24.104.75..3355 ESTBLSH
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
114 TCP/IP in a Sysplex

Figure 107. Display NETSTAT,CONN

4.3.3.2 IOCTL and VIPARange defined as MOVEable DISRUPTive
In this test, we followed this sequence of actions:

1. Define Dynamic VIPA in VIPARange as shown in Figure 108 on TCPIPC on
RA03.

2. Define Dynamic VIPA in VIPARange as shown in Figure 108 on TCPIPC on
RA28.

Figure 108. Definition VIPARange MOVEable DISRUPTive

3. Run MODDVIPA to activate Dynamic VIPA 172.16.240.193 on TCPIPC on
RA03.

4. Verify the Dynamic VIPA 172.16.240.193 is active on TCPIPC on RA03. This
is illustrated in the displays in Figure 109 and Figure 110.

Figure 109. Display NETSTAT,HOME on TCPIPC on RA03

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 088
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 00002F15 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA 00004B5C 172.16.240.193..20 9.24.106.64..1037 SYNSENT
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
FTPDC1 00004B55 172.16.240.193..21 9.24.106.64..1035 ESTBLSH

VIPADYNAMIC
VIPARANGE DEFINE MOVEABLE DISRUPT 255.255.255.0 172.16.240.193
ENDVIPADYNAMIC

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 718
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED
Chapter 4. Dynamic VIPA (for application instance) 115

Figure 110. Display SYSPLEX,VIPAD

5. Start the FTP server in both stacks.

6. Establish a connection to the FTP server using Dynamic VIPA 172.16.240.193
(activated on TCPIP on RA03). The resulting connection displays are shown in
Figure 111.

7. Transfer a file from the client to the server (TCPIPC on RA03).

Figure 111. Display NETSTAT,CONN

8. Run MODDVIPA to activate Dynamic VIPA 172.16.240.193 on TCPIPC on
RA28. Figure 112 shows the messages on the console log (the first one is
issued on RA28 and the second one on RA03) when the Dynamic VIPA IP
address is moved.

D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 720
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
ORIGIN: VIPARANGE IOCTL
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 100

5 OF 5 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 758
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA 00000067 172.16.240.193..20 9.24.104.75..3358 ESTBLSH
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
FTPDC1 00000065 172.16.240.193..21 9.24.104.75..3357 ESTBLSH
OMPROUTC 0000001C 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
TCPIPC 00000014 127.0.0.1..1025 127.0.0.1..1026 ESTBLSH
116 TCP/IP in a Sysplex

Figure 112. Console log

9. Verify the Dynamic VIPA 172.16.240.193 was deleted from stack TCPIPC on
RA03 (see Figure 113) and activated in stack TCPIPC on RA28 (see Figure
114).

Figure 113. Display NETSTAT,HOME on RA03

Figure 114. Display NETSTAT,HOME on RA28

10. Verify the status of Dynamic VIPA IP address on the sysplex as shown in
Figure 115.

EZZ8302I VIPA 172.16.240.193 TAKEN FROM TCPIPC ON RA03
EZZ8304I VIPA 172.16.240.193 SURRENDERED TO TCPIPC ON RA28

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 831
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 496
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
9.24.104.34 LOOPBACK
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
Chapter 4. Dynamic VIPA (for application instance) 117

Figure 115. Display SYSPLEX,VIPAD

11.Check that the FTP connection is not active on TCPIPC on RA03 anymore.
The connection was broken as can be seen in Figure 116.

Figure 116. Display NETSTAT,CONN

4.3.3.3 bind() and VIPARange defined as MOVEable NONDISRUPTive
In this test, we performed the following sequence of actions:

1. Define Dynamic VIPA in VIPARange as in Figure 85 on TCPIPC on RA03.

2. Define Dynamic VIPA in VIPARange as in Figure 85 on TCPIPC on RA28.

3. Start application to bind Dynamic VIPA 172.16.240.193 on RA03.

4. Verify the Dynamic VIPA 172.16.240.193 is active on TCPIPC on RA03. Figure
117 and Figure 118 show the Dynamic VIPA’s active state.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 838
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.240.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 100

5 OF 5 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 146
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 0000001C 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
TCPIPC 00000015 0.0.0.0..23 0.0.0.0..0 LISTEN
118 TCP/IP in a Sysplex

Figure 117. Display SYSPLEX,VIPAD

Figure 118. Display NETSTAT,HOME

5. Establish a connection to Dynamic VIPA 172.16.240.193 (TN3270). This
connection can be seen in Figure 119.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 662
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
ORIGIN: VIPARANGE BIND
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 100

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 664
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
9.24.105.76 EN103
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
Chapter 4. Dynamic VIPA (for application instance) 119

Figure 119. Display NETSTAT,CONN

6. Start the same application to bind to Dynamic VIPA 172.16.240.193 on RA28.
Figure 120 shows the messages on the console logs (the first one is issued on
RA28 and the second one on RA03) when the Dynamic VIPA IP address is
moved.

Figure 120. Console log

7. Verify the Dynamic VIPA 172.16.240.193 was activated on TCPIPC on RA28
as shown in Figure 121.

Figure 121. Display NETSTAT,HOME on TCPIPC on RA28

8. Verify the Dynamic VIPA 172.16.240.193 still exists on TCPIPC on RA03
because there are active connection on this stack. Figure 122 and Figure 123
show the moving state.

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 674
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA5 00000053 172.16.240.193..1500 0.0.0.0..0 LISTEN
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 00000019 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
TCPIPC 00000016 0.0.0.0..23 0.0.0.0..0 LISTEN
TCPIPC 0000005A 172.16.240.193..23 9.24.106.64..1126 ESTBLSH

EZZ8302I VIPA 172.16.240.193 TAKEN FROM TCPIPC ON RA03
EZZ8303I VIPA 172.16.240.193 GIVEN TO TCPIPC ON RA28

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 832
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
9.24.104.34 LOOPBACK
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK
120 TCP/IP in a Sysplex

Figure 122. Display NETSTAT,HOME on TCPIPC on RA03

Figure 123. Display SYSPLEX,VIPAD

9. Verify the connections status on TCPIPC on RA03 as illustrated in Figure 124.

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 830
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
9.24.105.76 EN103
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1 I
127.0.0.1 LOOPBACK

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 832
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193
ORIGIN: VIPARANGE BIND
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.240.0
TCPIPC RA03 MOVING 255.255.255.0 0.0.0.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 100
Chapter 4. Dynamic VIPA (for application instance) 121

Figure 124. Display NETSTAT,CONN

10.Start a new connection to Dynamic VIPA 172.16.240.193 and check the
connection is established to TCPIPC on RA28 as shown in Figure 125.

Figure 125. Display NETSTAT,CONN

4.3.3.4 bind() and VIPARange defined as MOVEable DISRUPTive
In this test, we performed the following sequence of actions:

1. Define Dynamic VIPA in VIPARange as in Figure 108 on TCPIPC on RA03.

2. Define Dynamic VIPA in VIPARange as in Figure 108 on TCPIPC on RA03.

3. Start application to bind Dynamic VIPA 172.16.240.193 on stack TCPIPC on
RA03. The resulting bind and listen can be displayed as in Figure 126.

Figure 126. Display NETSTAT,CONN

4. Verify the Dynamic VIPA 172.16.240.193 is activated on TCPIPC on RA03 as
illustrated in Figure 127 and Figure 128.

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 834
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA5 00000053 172.16.240.193..1500 0.0.0.0..0 LISTEN
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 00000019 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
TCPIPC 00000016 0.0.0.0..23 0.0.0.0..0 LISTEN
TCPIPC 0000005A 172.16.240.193..23 9.24.106.64..1126 ESTBLSH

RO RA28,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 838
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
FTPDC1 00000011 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 00000019 127.0.0.1..1026 127.0.0.1..1027 ESTBLSH
TCPIPC 00000018 0.0.0.0..23 0.0.0.0..0 LISTEN
TCPIPC 000000B9 172.16.240.193..23 9.24.106.64..1127 ESTBLSH

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 261
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA2 00000028 172.16.240.193..1500 0.0.0.0..0 LISTEN
FTPDC1 00000012 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 00000019 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
122 TCP/IP in a Sysplex

Figure 127. Display NETSTAT,HOME

Figure 128. Display SYSPLEX,VIPAD

5. Start the same application on TCPIPC on RA28 to bind to the same Dynamic
VIPA 172.16.240.193. The bind fails as shown in Figure 129.

Figure 129. Messages for application jcs

6. Verify the Dynamic VIPA 172.16.240.193 is still active on TCPIPC on RA03.
Figure 130 shows the home list display and Figure 131 shows the VIPAD
display.

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 819
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
9.24.105.76 EN103
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 821
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
ORIGIN: VIPARANGE BIND
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0

CLAUDIA @ RA28:/u/claudia>jcs -s 1/0/0/0 -b 1500/172.16.240.193/0/0/0 -l -d
1000
expected retval 0 from bind, got -1
expected retcode 0 from bind, got 1116 (EDC8116I Address not available.)
expected reason 00000000 from bind, got 744C7228
The bind call didn't work as expected.
Chapter 4. Dynamic VIPA (for application instance) 123

Figure 130. Display NETSTAT,HOME

Figure 131. Display SYSPLEX,VIPAD

7. The active connection to Dynamic VIPA 172.16.240.193 is not broken as is
shown in the connection display in Figure 131.

Figure 132. Display NETSTAT,CONN

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 115
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
9.24.105.76 EN103
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF39
172.16.233.3 EZAXCF28
172.16.251.3 VIPLAC10FB03
172.16.240.193 VIPLAC10F0C1
127.0.0.1 LOOPBACK

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 121
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.240.193 LINKNAME: VIPLAC10F0C1
ORIGIN: VIPARANGE BIND
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.240.0

IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 200

RO RA03,D TCPIP,TCPIPC,N,CONN
D TCPIP,TCPIPC,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPC 263
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
CLAUDIA2 00000028 172.16.240.193..1500 0.0.0.0..0 LISTEN
FTPDC1 00000012 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 00000019 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
124 TCP/IP in a Sysplex

For more information about the results of attempting to create a Dynamic VIPA IP
address when it already exists in the sysplex or when there is the same IP
address configured in a HOME statement can be found in OS/390 IBM
Communications Server: IP Configuration Guide, SC31-8725.
Chapter 4. Dynamic VIPA (for application instance) 125

126 TCP/IP in a Sysplex

Chapter 5. Automatic VIPA takeover and takeback

By providing IP addresses for the OS/390 applications that are not associated
with a specific physical network attachment or gateway, Virtual IP Addresses
(VIPAs) facilitate fault tolerance against outages of the IP interfaces on the
S/390. With static VIPAs, however, if the stack itself failed, the VIPA also failed.
To overcome such a failure, the VIPA IP address had to move to another stack via
the manual VARY OBEY command. Since CS for OS/390 IP V2R8, the following
improvements were provided to allow more systematic VIPA takeover operation:

 • VIPA can be taken over automatically by another stack.

 • VIPA can be taken back automatically by the original stack.

However, in CS for OS/390 IP V2R8, the VIPA IP address was not taken back by
the original stack while there were any active connections on the VIPA backup
stack. So, the takeback process could be delayed, potentially for a long period of
time.

CS for OS/390 V2R10 IP has solved this problem and has provided the following
improvements:

 • VIPA takeback can be immediate and nondisruptive.

 • A DVIPA can also be distributed for load balancing using the Sysplex
Distributor function. Sysplex Distributor will be covered in detail in Chapter 7,
“Sysplex Distributor” on page 187.

5.1 Overview of VIPA takeover/takeback

In this section, we explain the theory behind the VIPA concept. We discuss the
goals of Dynamic VIPA and VIPA takeover/takeback and how these goals are met
by CS for OS/390 IP.

5.1.1 VIPA concept
An IP network provides nondisruptive rerouting of traffic in the event of a failure,
but only within the routing network itself, not at the endpoint hosts. For most client
hosts (PCs or workstations), failure of the host, the network adapter, or the
connected link will just isolate the client application from the network, if it does
not take down the client application altogether. For servers, on the other hand,
particularly large-capacity and highly scalable servers such as OS/390, it is
extremely common to have more than one link into an OS/390 image and its
associated IP stack. While connections may be distributed among the various
links and adapters, failure of one such will mean loss of all TCP connections
associated with the failing device or link, because the TCP connection is in part
defined by the IP address of the failed adapter. In addition, no new data destined
for this address, regardless of whether it is TCP or UDP may be received.

CS for OS/390 addresses the requirement of nondisruptive rerouting around a
failing network adapter by allowing the customer to define a virtual adapter with
an associated Virtual IP Address (VIPA). A virtual adapter (interface) has no real
existence, and a VIPA is really associated with the stack as a whole. To the
routers attached to the stack via physical adapters, a VIPA appears to be on a
subnet on the other side of the OS/390 IP stack, and the TCP stack looks like
© Copyright IBM Corp. 1998 2001 127

another router that happens to have reachability to that IP address. On the
OS/390 IP stack, on the other hand, the VIPA acts somewhat like a loopback
address: incoming packets addressed to the VIPA are routed up the stack for
handling by TCP or UDP as with any other home IP interface. Dynamic routing
protocols can provide transparent rerouting around the failure of an adapter on
the endpoint stack, in that the VIPA still appears reachable to the routing network
via one of the other adapters on the OS/390.

5.1.2 Dynamic VIPA enhancements
While VIPA removes a single hardware interface and the associated transmission
medium as a single point of failure for a large number of connections, the
connectivity of the server can still be lost through a failure of a single stack or an
MVS image. Of course, we can move a VIPA manually to the other stack, but
customers require automatic recovery wherever possible, especially in a sysplex
environment.

Therefore, CS for OS/390 IP V2R8 and later provides improvements by adding
the VIPA takeover function. VIPA takeover builds on the VIPA concept, but
automates the movement of the VIPA to an appropriate surviving stack.
Automatic VIPA takeover allows a VIPA address to move automatically to a stack
where an existing suitable application instance already resides, allowing that
instance to serve clients formerly connecting to the failed stack. Automatic VIPA
takeback allows a VIPA address to move back automatically to the failed stack
once it is restored.

The VIPA takeover function is supported since CS for OS/390 IP V2R8, but VIPA
takeback was either disruptive or occurred only when all connections on the stack
that originally took over the VIPA terminated. In CS for OS/390 IP V2R10, VIPA
takeback can be immediate and nondisruptive. That is, the VIPA can be taken
back by its rightful owner immediately without disrupting existing connections to
the current owner.

A new type of DVIPA is provided in CS for OS/390 V2R10 IP called a distributed
DVIPA that is used for implementing the Sysplex Distributor function. This
function allows connections to be distributed among TCP/IP stacks in a sysplex
environment. The distributed DVIPA is defined with the VIPADISTribute statement
and is discussed in Chapter 7, “Sysplex Distributor” on page 187. This function is
new in CS for OS/390 IP V2R10.

Application-specific Dynamic VIPAs allow VIPAs to be defined and activated by
individual applications (with or without modifying the applications), so that the
VIPA moves when the application is moved. Dynamic VIPA is defined by the
VIPARANGE statement that is discussed in Chapter 4, “Dynamic VIPA (for
application instance)” on page 101. This function is available since CS for OS/390
IP V2R8.

5.1.3 VIPA takeover and VIPA takeback
Automatic VIPA takeover requires that dynamic VIPA IP addresses (as opposed
to traditional static VIPA IP addresses) be defined as having a normal "home"
stack, and optionally one or more backup stacks. All the stacks share information
regarding dynamic VIPAs using OS/390 XCF messaging (the same mechanism
as dynamic XCF and sysplex sockets), so that all stacks know, for each dynamic
VIPA:
128 TCP/IP in a Sysplex

 • Which stack has the VIPA active

 • Which stack(s), and in what order, will participate in backup if the active one
fails

When a failure of a stack owning an active dynamic VIPA is detected, the first
stack in the backup list automatically defines DEVICE, LINK, and HOME
statements for the same dynamic VIPA, and notifies its attached routing daemon
of the activation. This information is passed onto the routing network via dynamic
routing protocols and ultimately insures that the DVIPA is still reachable.

Figure 133 shows a sysplex with three TCPIP images. In this example, stack
RA03 fails and its DVIPA is subsequently taken over by RA28, which is providing
the backup capability for this address.

Figure 133. Automatic VIPA takeover of 172.16.251.03 by stack RA28

When the original "normal home" stack is reactivated, the dynamic VIPA may be
taken back from the backup stack to the original stack automatically as shown in
Figure 134. In this case, new connections are sent to the reactivated stack and
the connections with the backup stack are not necessarily broken. The data of the
old connections is forwarded to the backup stack. This is the default behavior for
CS for OS/390 V2R10 IP. If one of the stacks is running CS for OS/390 IP V2R8,
the dynamic VIPA remains on the current backup stack as long as there are active
connections to that dynamic VIPA on that stack. In CS for OS/390 IP V2R10, this
older behavior can be enabled by setting different parameters on the
VIPADEFINE statement.

DVIPA:172.16.251.03

TCPIPC
TN3270E

FTPD

TCPIPC
TN3270E

FTPD
TCPIPC
TN3270E

FTPD

DVIPA:172.16.251.03
DVIPA:172.16.251.28

RA39

RA28

RA03

DVIPA:172.16.251.39
Chapter 5. Automatic VIPA takeover and takeback 129

Figure 134. 172.16.251.03 is taken back by the restarted RA03 stack

5.1.4 Benefits of sysplex-wide VIPA takeover
When a stack or its underlying OS/390 fails, it is not necessary to restart the
stack with the same configuration profile on a different OS/390 image as is
needed with static VIPA.

After the stack failure, the VIPA address is automatically moved to another stack
without the need for human intervention. The new stack will receive information
regarding the connections from the original stack and will accept new
connections for the DVIPA. The routers are automatically informed about the
change. This increases availability because multiple server instances can be
started in different stacks.

VIPA takeover allows complete flexibility in the placement of servers within
sysplex nodes, not limited to traditional LAN interconnection with MAC
addresses. Building on the VIPA concept means that spare adapters do not have
to be provided, as long as the remaining adapters have enough capacity to
handle the increased load. Spare processing capacity may be distributed across
the sysplex rather than on a single node.

5.1.5 Benefits of sysplex-wide VIPA takeback
When a TCP/IP stack fails, its load may be assumed by another stack. As soon
as the failed stack is activated, this stack may take back the control of all
connections. No connections are lost, because only new connections will be
established with the original stack. The connections that were already
established in the backup stack are kept. However, the information about these
connections is sent by the backup stack to the original owning stack. Using this
information, the original stack routes data packets for connections terminating on
the backup stack to it.

In CS for OS/390 IP V2R8 the original stack could take back the VIPA only when
there were no more active connections on the backup stack. The takeback could
be delayed for a long time or the outstanding connections on the backup could be

DVIPA:172.16.251.39

DVIPA: 172.16.251.28

TCPIPC
TN3270E

FTPD

TCPIPC
TN3270E

FTPD

DVIPA:172.16.251.3

TCPIPC
TN3270E

FTPD

DVIPA:172.16.251.3

RA03

RA28

RA39

DVIPA moves
back to RA03

Data for
connections
with RA28 is
forwarded
130 TCP/IP in a Sysplex

broken. This behavior was viewed as being too restrictive and has been improved
in CS for OS/390 V2R10 IP.

If the original stack has defined a VIPA address supporting the Sysplex
Distributor function (see Chapter 7, “Sysplex Distributor” on page 187), this
function automatically will be taken back by the original distributing VIPA owner
immediately. That is, a distributed VIPA can be backed up and moved around
immediately and nondisruptively.

5.2 Implementing VIPA takeover and takeback

In this section we give an overview of how VIPA takeover and takeback can be
defined; 5.4, “Examples of VIPA takeover and takeback” on page 136 shows
practical examples.

5.2.1 Automatic VIPA takeover/takeback configuration
Each VIPA has a preferred home stack and set of backup stacks. Additionally, the
backup stacks have a preferred order. CS for OS/390 provides configuration
options that allow the administrator to define which stacks should start off owning
a VIPA, and which stacks should provide backup for that VIPA in the event of
failure of the primary stack.

Every Dynamic VIPA parameter is defined in the VIPADynamic block in the
TCP/IP profile, as shown in Figure 135.

Figure 135. Definition format for dynamic VIPA block

Automatic VIPA takeover/takeback requires you to define the primary and backup
VIPA addresses to each stack that will participate. Everything else is automatic.
The configuration options are illustrated in Figure 136.

Figure 136. Definition format for VIPA backup

The VIPADEFine statement designates one or more VIPAs that this stack should
initially own. Each is known throughout the IP network, so it requires an address

VIPADynamic ENDVIPADynamic

VIPABackup

VIPADEFine

VIPADELete

VIPADISTribute

VIPARange

VIPADEFine
MOVEable IMMEDiate

ip addressaddr_mask
MOVEable WHENIDLE

VIPABackup
1

rank

ipaddress
Chapter 5. Automatic VIPA takeover and takeback 131

and a subnet mask to determine how many of the bits of the IP address specify
the network.

More than one IP address can be defined within one VIPADEFine statement, but
every IP address defined should belong to the same network. It means that each
IP address in a subnet should be in the same range. To check if this rule is being
used, convert the subnet mask value to binary and verify the following points:

 • The most significant bit should be 1.

 • After the first 0 encountered (to the right of), all bits should be 0.

 • If every subnet mask is logically ANDed with all IP address in the list, the
result should be the same.

CS for OS/390 IP V2R10 introduces the parameters MOVEable IMMEDiate and
MOVEable WHENIDLE. MOVE IMMEDiate means that when an original stack
comes back up after it has failed, the VIPA addresses are taken back
immediately, independent of the existing connections on the backup stack. If
MOVE WHENIDLE is defined, the VIPA address will be owned by the backup
stack while there is at least one connection active managed by the backup stack.
This is the only possible situation in CS for OS/390 IP V2R8. So, if one of the
stacks is running CS for OS/390 IP V2R8, the MOVE IMMED definition will be
ignored and MOVE WHENIDLE will be used instead.

To preserve connections, the configuration option IPCONFIG DATAGRAMFWD
must be specified in TCP/IP profile.

The VIPABackup statement designates one or more VIPAs for which this stack
will provide automatic backup when the owing stack fails. It is not necessary to
define a subnet mask because it is the same as that on the primary stack for the
address in question. Valid values for the rank parameter are from 0 to 255. Larger
rank values move the respective stacks closer to the top of the backup chain,
which means a higher priority when the need for activating a backup stack arises.
That is, the higher the rank, the higher its backup priority.

There is also a statement to delete a VIPA that has been defined with
VIPADEFine or VIPABackup called VIPADELete. It is coded in the VIPADynamic
block and simply specifies the IP addresses to be deleted.

VIPADELete may also be used to delete a VIPA address that was defined in a
VIPARange subsequently created via BIND to a specific address or via IOCTL.
The VIPADELete command is executed immediately. If there are any connections
to the VIPA address, they will be lost.

5.3 Monitoring VIPA status

Several operator commands are provided to monitor dynamic VIPA and VIPA
backup configuration and status. We used some of them in our tests, but we
summarize them in this section for convenience. Figure 137 shows the base
network configuration used.
132 TCP/IP in a Sysplex

Figure 137. Base network configuration

5.3.1 Display Sysplex command
The command D TCPIP,<tcpipjobname>,SYSplex,VIPADyn is available to show you
the status of dynamic VIPAs (both application related as defined by VIPARange
and takeover flavor as defined by VIPADEFine) in the sysplex. Figure 138 shows
an example with VIPAs configured via VIPADEFine and VIPABackup. The origin
(configuration statement responsible for the VIPA) and status of each dynamic
VIPA on the stack (TCPNAME) and system (MVSNAME) in the sysplex are
shown. The RANK value indicates the order in which the backup stacks will be
chosen if the stack on which the dynamic VIPA is active is stopped. The active
system with the highest rank is the one that will take over the dynamic VIPA.

Figure 138. Display VIPA backup configuration in the sysplex

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

CF

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0 172.16.102.254

255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

DVIPA
172.16.251.3

255.255.255.0

TCPIPC

D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 779
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH 1
TCPIPC RA28 BACKUP 200 DEST 2
TCPIPC RA39 BACKUP 100 DEST 3

3 OF 3 RECORDS DISPLAYED
Chapter 5. Automatic VIPA takeover and takeback 133

The Distribution Status (DIST) field show how this stack is configured. It can be a
distributor stack and/or a destination stack. In our example,1 is a distributing and
destination stack (BOTH status), while 2 and 3 are destination stacks.

5.3.2 Netstat commands
In addition to the Display SYSplex command, there are several new parameters in
the netstat commands related to dynamic VIPA. The netstat commands include
the following:

 • NETSTAT for TSO

 • onetstat for UNIX System Services

 • D TCPIP,tcpname,Netstat for the MVS console

The output for all for all the commands have a new section in the CONFIG (-f)
report. Additionally, each is now able to generate a new VIPADYN (-v) report.
These reports show the dynamic VIPAs on a system basis, not a sysplex-wide
basis. The new global configuration information section (1) of the CONFIG report is
displayed whether there are any dynamic VIPAs known to this system (see 1 in
Figure 139).

Figure 139. Display NETSTAT, CONFIG command

The NETSTAT,CONFIG command was changed in CS for OS/390 IP V2R10 and a
new command NETSTAT,VIPADCFG is available to show the information about VIPA
related to the stack where the command is issued. An example is shown in Figure
140.

D TCPIP,TCPIPC,N,CONFIG
EZZ2500I NETSTAT CS V2R10 TCPIPC 124
TCP CONFIGURATION TABLE:
DEFAULTRCVBUFSIZE: 00016384 DEFAULTSNDBUFSIZE: 00016384
DEFLTMAXRCVBUFSIZE: 00262144
MAXRETRANSMITTIME: 120.000 MINRETRANSMITTIME: 0.500
ROUNDTRIPGAIN: 0.125 VARIANCEGAIN: 0.250
VARIANCEMULTIPLIER: 2.000 MAXSEGLIFETIME: 60.000
DEFAULTKEEPALIVE: 0.120 LOGPROTOERR: 00
TCPFLAGS: 90
UDP CONFIGURATION TABLE:
DEFAULTRCVBUFSIZE: 00016384 DEFAULTSNDBUFSIZE: 00016384
CHECKSUM: 00000001 LOGPROTOERR: 01
UDPFLAGS: 2C
IP CONFIGURATION TABLE:
FORWARDING: YES TIMETOLIVE: 00060 RSMTIMEOUT: 00060
FIREWALL: 00000 ARPTIMEOUT: 01200 MAXRSMSIZE: 65535
IGREDIRECT: 00001 SYSPLXROUT: 00001 DOUBLENOP: 00000
STOPCLAWER: 00001 SOURCEVIPA: 00001 VARSUBNET: 00001
MULTIPATH: NO PATHMTUDSC: 00000 DEVRTRYDUR: 0000000090
DYNAMICXCF: 00001
IPADDR: 172.16.233.3 SUBNET: 255.255.255.0 METRIC: 01

SMF PARAMETERS:
INITTYPE: 00 TERMTYPE: 00 CLIENTTYPE: 00 TCPIPSTATS: 00
GLOBAL CONFIGURATION INFORMATION: 1
TCPIPSTATS: 00
134 TCP/IP in a Sysplex

Figure 140. Display NETSTAT,VIPADFCG command

Figure 141 shows the results of a DISPLAY N,VIPADYN command. The same display
can be achieved using onetstat -v from a USS prompt.

Figure 141. Display NETSTAT,VIPADYN(-v) command

With the advent of Sysplex Distributor, the stack may need to keep track of a
VIPA Connection Routing Table (VCRT). Figure 142 shows the results of a
DISPLAY N,VCRT command.

RO RA03,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 190
DYNAMIC VIPA INFORMATION:
VIPA BACKUP:
IP ADDRESS RANK
---------- ----
172.16.251.28 000100
172.16.251.39 000200

VIPA DEFINE:
IP ADDRESS ADDRESSMASK MOVEABLE
---------- ----------- --------
172.16.251.3 255.255.255.0 IMMEDIATE

VIPA RANGE:
ADDRESSMASK IP ADDRESS MOVEABLE
----------- ---------- --------
255.255.255.0 172.16.251.193 NONDISR

VIPA DISTRIBUTE:
IP ADDRESS PORT XCF ADDRESS
---------- ---- -----------
172.16.251.3 00020 ALL
172.16.251.3 00021 ALL

RO RA03,D TCPIP,TCPIPC,N,VIPADYN
D TCPIP,TCPIPC,N,VIPADYN
EZZ2500I NETSTAT CS V2R10 TCPIPC 382
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 ACTIVE VIPADEFINE DIST/DEST
172.16.251.28 255.255.255.0 BACKUP VIPABACKUP
172.16.251.39 255.255.255.0 BACKUP VIPABACKUP
172.16.251.193 255.255.255.0 ACTIVE VIPARANGE IOCTL
4 OF 4 RECORDS DISPLAYED
Chapter 5. Automatic VIPA takeover and takeback 135

Figure 142. Display NETSTAT,VCRT command

5.4 Examples of VIPA takeover and takeback

In this section we demonstrate two examples of VIPA takeover and takeback
using different configurations. These are:

 • VIPA takeover/takeback when the VIPADEFine statement is defined with the
MOVE IMMED parameter. VIPA definitions are coded on multiple stacks, so
that the failure of one stack results in the takeover of its VIPA address by
another stack. When the original stack is recovered the VIPA address is taken
back immediately.

 • VIPA takeover/takeback when the VIPADEFine statement is defined with the
MOVE WHENIDLE parameter. After a failure of one stack, the backup stack
takes over the VIPA address. However, after recovering from the failure on the
original stack, the takeback is delayed until all connections are finished on
backup stack.

For this test, we used only two TCP/IP stacks: TCPIPC on RA28 and TCPIPC on
RA03. For convenience, TCPIPC on RA39 is not running.

5.4.1 Automatic VIPA takeover/takeback - MOVE IMMED
We configured on each stack a primary VIPA address and a backup address for
the other stack's primary VIPA. We performed the following sequence of actions:

1. Define the primary VIPA IP addresses: 172.16.251.3 on TCPIPC on RA03 and
172.16.251.28 on TCPIPC on RA28.

2. Define the backup VIPA IP addresses: 172.16.251.3 on TCPIPC on RA28 and
172.16.251.28 on TCPIPC on RA03.

3. Start our server applications on both of the stacks, and establish connections
from a client to the server on TCPIPC on RA03 using the VIPA 172.16.251.3.

4. Log on to the TN3270 server on TCPIPC on RA03 using the VIPA.

5. Stop the TCPIPC on RA03 stack.

6. Make sure the backup stack TCPIPC on RA28 takes over the VIPA
172.16.251.3.

7. Via dynamic routing (OSPF), the network is informed that the VIPA has moved
and all connection requests are routed to the stack owning the VIPA now.

8. Restart the TCPIPC on RA03 stack and the server application.

9. Check that the VIPA moves back to the original stack.

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 882
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00021 9.24.106.64 01105 172.16.233.39
172.16.251.3 00023 9.24.106.64 01106 172.16.233.39
2 OF 2 RECORDS DISPLAYED
136 TCP/IP in a Sysplex

Figure 143 shows our VIPA definitions on TCPIPC on RA03, and Figure 144
shows the corresponding definitions on TCPIPC on RA28.

Figure 143. Dynamic VIPA definition for TCPIPC on RA03

Figure 144. Dynamic VIPA definition for TCPIPC on RA28

Before stopping the TCPIPC stack on RA03, we used the DISPLAY SYSplex
command on TCPIPC on RA28 to see which dynamic VIPA was known to each
stack. Figure 145 shows the results that match our definitions.

Figure 145. Display VIPA definition for TCPIPC on RA28 before TCPIPC on RA03 stack failure

We also displayed the OSPF routing table on TCPIPC on RA28, as shown in
Figure 146. Note the presence of the local dynamic VIPA 1 with its
stack-generated link name, and the remote VIPA 2 belonging to TCPIPC on RA03.

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
VIPABACKUP 100 172.16.251.28
ENDVIPADYNAMIC

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.28
VIPABACKUP 100 172.16.251.3

ENDVIPADYNAMIC

D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 194
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 100

4 OF 4 RECORDS DISPLAYED
Chapter 5. Automatic VIPA takeover and takeback 137

Figure 146. Display OMPROUTE table before TCPIPC on RA03 stack failure

We then stopped the TCP/IP stack TCPIPC on RA03, which caused the servers
(TN3270 and FTP) to go down. All the other sysplex stacks were informed of the
failure through XCF and took steps to recover the failed VIPA. The stack with the
highest rank (indeed, the only stack) on the backup list for 172.16.251.3 was
TCPIPC on RA28. Therefore, TCPIPC on RA28 defined and activated this VIPA
address itself. The console log on RA28 confirmed this, as shown in Figure 147.

Figure 147. Console message on RA28 at VIPA takeover

We then issued some TCP/IP display commands on RA28 to check the new
status, as in Figure 148.

RO RA03,D TCPIP,TCPIPC,OMPROUTE,RTTABLE
D TCPIP,TCPIPC,OMPROUTE,RTTABLE
EZZ7847I ROUTING TABLE 370
TYPE DEST NET MASK COST AGE NEXT HOP(S)

SPE2 0.0.0.0 0 1 536 172.16.100.254
SPE2 9.0.0.0 FF000000 1 536 172.16.100.254
SPF 9.1.150.0 FFFFFE00 1814 1359 172.16.100.254
SPF 9.3.1.0 FFFFFF00 1814 1359 172.16.100.254
SPF 9.3.240.0 FFFFFF00 1814 1359 172.16.100.254
SPE2 9.12.0.0 FFFFFF00 1 536 172.16.100.254
SPF 9.12.2.0 FFFFFF00 14 1359 172.16.100.254
SPF 9.12.3.0 FFFFFFF0 1808 1359 172.16.100.254
SPF 9.12.3.16 FFFFFFF0 1808 1359 172.16.100.254
SPF 9.12.3.32 FFFFFFF0 1808 1359 172.16.100.254
SPF 9.12.3.48 FFFFFFF0 1808 1359 172.16.100.254
SPE2 9.12.6.0 FFFFFF00 1 536 172.16.100.254
SPE2 9.12.9.0 FFFFFF00 1 536 172.16.100.254
SPE2 9.12.13.0 FFFFFF00 1 536 172.16.100.254
SPF 9.12.14.0 FFFFFF00 14 1359 172.16.100.254
SPE2 9.12.15.0 FFFFFF00 1 536 172.16.100.254
SPF 9.24.104.0 FFFFFF00 7 1359 172.16.100.254
SPF 9.24.104.1 FFFFFFFF 7 1359 172.16.100.254
SPF 9.24.104.18 FFFFFFFF 1 1359 172.16.100.254
SPF 9.24.105.0 FFFFFF00 17 1359 172.16.100.254
SPF 9.24.106.0 FFFFFF00 7 1359 172.16.100.254
SPE2 9.32.41.40 FFFFFFFC 1 536 172.16.100.254
DIR* 172.16.233.0 FFFFFF00 1 568 172.16.233.3(2)
SPF 172.16.233.3 FFFFFFFF 0 1430 EZASAMEMVS
STAT* 172.16.233.28 FFFFFFFF 0 1431 172.16.233.3
SPF* 172.16.251.0 FFFFFF00 14 607 172.16.100.254
DIR* 172.16.251.3 FFFFFFFF 1 1430 VIPLAC10FB03 2
SPF 172.16.251.28 FFFFFFFF 14 1359 172.16.100.254 1
.

EZZ8301I VIPA 172.16.251.3 TAKEN OVER FROM TCPIPC ON RA03
EZZ4323I CONNECTION TO 172.16.233.3 CLEARED FOR DEVICE RA03M
138 TCP/IP in a Sysplex

Figure 148. Displays after VIPA takeover on TCPIPC on RA28

D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 121
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED 1

D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 124
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA28
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- ------- ------ ---- ------- ---- -------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0

IPADDR: 172.16.251.28 LINKNAME: VIPLAC10FB1C
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- ------- ------ ---- ------------ -------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0 2

2 OF 2 RECORDS DISPLAYED

D TCPIP,TCPIPC,N,CON
EZZ2500I NETSTAT CS V2R10 TCPIPC 209
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
BPXOINIT 00000F2C 0.0.0.0..10007 0.0.0.0..0 LISTEN
FTPDC1 00000012 0.0.0.0..21 0.0.0.0..0 LISTEN
OMPROUTC 0000001A 127.0.0.1..1026 127.0.0.1..1027 ESTBLSH
TCPIPC 000040AB 172.16.251.3..23 9.24.106.64..1092 ESTBLSH 3
TCPIPC 00000019 0.0.0.0..23 0.0.0.0..0 LISTEN
TCPIPC 000040A1 172.16.251.28..23 9.24.106.64..1091 ESTBLSH
.
.
D TCPIP,TCPIPC,N,SOCKETS
EZZ2500I NETSTAT CS V2R10 TCPIPC 219
SOCKETS INTERFACE STATUS:
TYPE BOUND TO CONNECTED TO STATE CONN
NAME: BPXOINIT SUBTASK: 006ECAE8
NAME: TCPIPC SUBTASK: 00000000
STREAM 172.16.251.3..23 9.24.106.64..1092 ESTBLSH 000040AB
STREAM 172.16.251.28..23 9.24.106.64..1091 ESTBLSH 000040A1
.

Chapter 5. Automatic VIPA takeover and takeback 139

In these displays:

1 shows the VIPA address 172.16.251.3 in TCPIPC on RA28's HOME list. This
stack now owns the address.

2 is a DISPLAY SYSplex command showing the status of the dynamic VIPA
addresses known to TCPIPC on RA28. The recovered address 172.16.251.3
was defined as VIPABackup but is now active.

3 shows that new connections to our server application are connected to the
instance on TCPIPC on RA28.

Figure 149 shows an FTP client connection to TCPIPC on RA03 (IP address
172.16.251.3). Even though stack TCPIPC on RA03 is not active, the connection
is established with TCPIPC on RA28C (MVS28C).

Figure 149. FTP connection using the VIPA 172.16.251.3 after stopping TCPIPC on RA03

Figure 150 shows that the connections with destination address to RA03 are
being connected through XCF address 172.16.233.28.

Figure 150. VIPA connection routing table after stopping TCPIPC on RA03

Some time later, we restarted the failed TCP/IP stack TCPIPC on RA03 and the
server application on TCPIPC on RA03. Figure 151 shows the console message
at RA03 system after restarting of stack TCPIPC on RA03.

Figure 151. Console message on RA03 after restarting TCPIPC on RA03

Although TCPIPC on RA28 had the VIPA 172.16.251.3 active and some active
connections through the dynamic VIPA, this address was taken back by RA03.
The old connections are not broken, however. TCPIPC on RA03 is now receiving
all new connections. Figure 152 shows the creation of a new FTP connection.

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS28C, 14:59:37 on 2000-09-12.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "CLAUDIA.".

RO RA28,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 403
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00021 9.24.106.64 01138 172.16.233.28
172.16.251.3 00023 9.24.106.64 01139 172.16.233.28
172.16.251.28 00023 9.24.106.64 01140 172.16.233.28
3 OF 3 RECORDS DISPLAYED

EZZ8302I VIPA 172.16.251.3 TAKEN FROM TCPIPC ON RA28
EZZ8303I VIPA 172.16.251.3 GIVEN TO TCPIPC ON RA03
140 TCP/IP in a Sysplex

Figure 152. FTP connection using the VIPA 172.16.251.3 after restarting TCPIPC on RA03

Figure 153 shows the VIPA Connection Routing Table (VCRT) in RA03 and RA28,
which include the old and new connections to 172.16.251.3.1, 2 and 3 are old
connections that are still active on RA28. 4 is the new FTP connection to RA03.

Figure 153. Display VCRT on RA03 and RA28 after takeback

Figure 154 shows the status of stacks TCPIPC on RA03 and TCPIPC on RA28 in
each system. The status MOVING for IP address 172.16.251.3 in the RA28
display means that another stack has activated the VIPA and has advertised
reachability to it.

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS03C, 15:45:38 on 2000-09-12.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "/u/claudia".

RO RA28,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 717
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00020 9.24.106.64 01181 172.16.233.28 1
172.16.251.3 00021 9.24.106.64 01180 172.16.233.28 2
172.16.251.3 00023 9.24.106.64 01179 172.16.233.28 3
172.16.251.28 00023 9.24.106.64 01178 172.16.233.28
4 OF 4 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 932
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00021 9.24.106.64 01182 172.16.233.3 4
172.16.251.3 00021 9.24.106.64 01180 172.16.233.28 2
172.16.251.3 00023 9.24.106.64 01179 172.16.233.28 3
3 OF 3 RECORDS DISPLAYED
Chapter 5. Automatic VIPA takeover and takeback 141

Figure 154. Display VIPAD after takeback

5.4.2 Automatic VIPA takeover/takeback - MOVE WHENIDLE
On each stack we configured a primary VIPA address and a backup address for
the other stack's primary VIPA. We performed the following sequence of actions:

1. Define the primary VIPA IP addresses: 172.16.251.3 on TCPIPC on RA03 and
172.16.251.28 on TCPIPC on RA28. This time, the primary VIPA 172.16.251.3
on TCPIPC on RA03 was defined with parameter MOVE WHENIDLE.

2. Define the backup VIPA IP addresses: 172.16.251.3 on TCPIPC on RA28 and
172.16.251.28 on TCPIPC on RA03.

3. Start our server applications on both of the stacks, and establish connections
from a client to the server on TCPIPC on RA03 using the VIPA 172.16.251.3.

4. Log on to the TN3270 server on TCPIPC on RA03 using the VIPA.

5. Stop the TCPIPC on the RA03 stack.

6. Make sure the backup stack TCPIPC on RA28 takes over the VIPA
172.16.251.3.

7. Via dynamic routing (OSPF) the network is informed that the VIPA has moved
and all connection requests are routed to the stack owning the VIPA now
(RA28).

8. Restart the TCPIPC and our server application at RA03.

9. Check that the VIPA is not moved back to the original stack.

10. Close all existing connections to VIPA address 172.16.251.3.

11. Make sure the original stack TCPIPC on RA03 takes back the VIPA
172.16.251.3.

12. Establish a new connection on TCPIPC on RA03 using VIPA 172.16.251.3.

Figure 155 shows our VIPA definitions on TCPIPC on RA28 and Figure 156
shows the corresponding definitions on TCPIPC on RA03.

RO RA03,D TCPIP,TCPIPC,N,VIPAD
D TCPIP,TCPIPC,N,VIPAD
EZZ2500I NETSTAT CS V2R10 TCPIPC 562
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 ACTIVE VIPADEFINE
172.16.251.28 255.255.255.0 BACKUP VIPABACKUP
2 OF 2 RECORDS DISPLAYED
RO RA28,D TCPIP,TCPIPC,N,VIPAD
D TCPIP,TCPIPC,N,VIPAD
EZZ2500I NETSTAT CS V2R10 TCPIPC 721
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 MOVING VIPABACKUP
172.16.251.28 255.255.255.0 ACTIVE VIPADEFINE
2 OF 2 RECORDS DISPLAYED
142 TCP/IP in a Sysplex

Figure 155. Dynamic VIPA definition for TCPIPC on RA03

Figure 156. Dynamic VIPA definition for TCPIPC on RA28

Before stopping the TCPIPC on RA03, we used the DISPLAY SYSplex command to
see our definitions. Figure 157 shows the resulting output.

Figure 157. Display VIPA definition for TCPIPC on RA03 before stack failure

We also displayed the OSPF routing table on TCPIPC on RA03 as shown in
Figure 158.

VIPADYNAMIC
VIPADEFINE MOVE WHENIDLE 255.255.255.0 172.16.251.3
VIPABACKUP 100 172.16.251.28
ENDVIPADYNAMIC

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.28
VIPABACKUP 100 172.16.251.3

ENDVIPADYNAMIC

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 173
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- ------- ------ ---- ------------ -------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- ------ ------ ---- ------------ -------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 100

4 OF 4 RECORDS DISPLAYED
Chapter 5. Automatic VIPA takeover and takeback 143

Figure 158. OMPROUTE table before TCPIPC on RA03 stack failure

We then stopped the TCP/IP stack TCPIPC on RA03, which caused the servers
(TN3270 and FTP) to terminate. The behavior in this case is exactly the same as
in the previous scenario. RA28 was informed of the failure through XCF and took
steps to recover the failed VIPA. TCPIPC on RA28 dynamically defined and
activated this VIPA address itself because it is the only backup. If more than one
backup is defined, the stack defined with the highest rank will receive the VIPA
address. The console log on RA28 confirmed this, as shown in Figure 159.

Figure 159. Console message on RA28 at VIPA takeover

Figure 160 shows an FTP client connection to TCPIPC on RA03 (address
172.16.251.3). Although stack TCPIPC on RA03 is not active, the connection is
established with TCPIPC on RA28 (MVS28C), the stack that took over ownership
of the VIPA.

Figure 160. FTP connection established after stopping TCPIPC stack on RA03

We then issued some TCP/IP display commands at RA28 to check the new
status. Figure 161 shows the VIPA address 172.16.251.3 is active on RA28.

RO RA03,D TCPIP,TCPIPC,OMPROUTE,RTTABLE
D TCPIP,TCPIPC,OMPROUTE,RTTABLE
EZZ7847I ROUTING TABLE 268
TYPE DEST NET MASK COST AGE NEXT HOP(S)
SPF 172.16.232.39 FFFFFFFF 8 1309 172.16.100.254
DIR* 172.16.233.0 FFFFFF00 1 313 172.16.233.3
SPF 172.16.233.3 FFFFFFFF 0 312 EZASAMEMVS
STAT* 172.16.233.28 FFFFFFFF 0 313 172.16.233.3
SPF* 172.16.251.0 FFFFFF00 14 1309 172.16.100.254
DIR* 172.16.251.3 FFFFFFFF 1 1304 VIPLAC10FB03
SPF 172.16.251.28 FFFFFFFF 14 1309 172.16.100.254
SPF 172.16.252.0 FFFFFF00 8 1309 172.16.100.254
SPF 172.16.252.28 FFFFFFFF 8 1309 172.16.100.254
.
.

EZZ8301I VIPA 172.16.251.3 TAKEN OVER FROM TCPIPC ON RA03
EZZ4323I CONNECTION TO 172.16.233.3 CLEARED FOR DEVICE RA03M

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS28C, 19:47:45 on 2000-09-15.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "CLAUDIA.".
ftp>

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS28C, 19:47:45 on 2000-09-15.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "CLAUDIA.".
ftp>
144 TCP/IP in a Sysplex

Figure 161. Display NETSTAT,VIPADYN after stopping TCPIPC on RA03

Figure 162 shows the VIPA address 172.16.251.3 was added to stack TCPIPC on
RA28.

Figure 162. Display NETSTAT,HOME after stopping TCPIPC on RA28

After some time, we restarted TCPIPC on RA03 and started a new connection to
VIPA address 172.16.251.3. Since we defined this VIPA as MOVE WHENIDLE,
this VIPA was not taken back for TCPIPC on RA03 because there were some
active connections to 172.16.251.3 on stack TCPIPC on RA28. Figure 163 shows
a new FTP connection to VIPA address 172.16.251.3 and shows that this
connection was established with RA28, since the VIPA has not yet been taken
back.

RO RA28,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 153
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA28
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- ------- ------ ---- ------------ -------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0

IPADDR: 172.16.251.28 LINKNAME: VIPLAC10FB1C
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- ------- ------ ---- ------------ -------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0

2 OF 2 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 161
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED
Chapter 5. Automatic VIPA takeover and takeback 145

Figure 163. FTP connection after restarting TCPIPC on RA03

Figure 164 shows active connections to VIPA address 172.16.251.3 on TCPIPC
on RA28.

Figure 164. Display NETSTAT,SOCKETS after restarting TCPIPC on RA03

Figure 165 shows the VIPA address 172.16.151.3 is still active on stack TCPIPC
on RA28.

Figure 165. Display SYSPLEX,VIPAD after restarting TCPIPC on RA03

Figure 166 shows that VIPA address 172.16.251.3 is not deleted from TCPIPC on
RA28 and is not added to TCPIPC on RA03.

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS28C, 20:06:39 on 2000-09-15.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "CLAUDIA.".
ftp>

RO RA28,D TCPIP,TCPIPC,N,SOCKETS
D TCPIP,TCPIPC,N,SOCKETS
EZZ2500I NETSTAT CS V2R10 TCPIPC 279
SOCKETS INTERFACE STATUS:
TYPE BOUND TO CONNECTED TO STATE CONN
NAME: BPXOINIT SUBTASK: 006ECB58
STREAM 172.16.251.3..21 9.24.106.64..1234 ESTBLSH 00000678
STREAM 172.16.251.3..23 9.24.106.64..1233 ESTBLSH 00000671
STREAM 172.16.251.28..23 9.24.106.64..1220 ESTBLSH 00000420

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 927
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3
ORIGIN: VIPADEFINE CONTENTION
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- ------- ------ ---- ------------ -------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 255

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- ------- ------ ---- ------------ -------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 100

4 OF 4 RECORDS DISPLAYED
146 TCP/IP in a Sysplex

Figure 166. Display NETSTAT,HOME after restarting TCPIPC on RA03

After these displays, we closed all connections to VIPA IP address 172.16.251.3,
which is active on TCPIPC on RA28. At this moment, the VIPA IP address
172.16.251.3 is taken back to the original stack TCPIPC on RA03 image. The
console log on RA28 and RA03 (the first message is issued on RA28 and the
second one is issued on RA03) confirmed this as shown in Figure 167.

Figure 167. Console message on RA28 and RA03 at VIPA takeback

Then, we issued the NETSTAT,HOME command and verified that the VIPA IP address
172.16.251.3 was added to TCPIPC on RA03 again and deleted from TCPIPC on
RA28 as shown in Figure 168.

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 161
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
7 OF 7 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 634
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28
172.16.233.3 EZAXCF39
127.0.0.1 LOOPBACK
5 OF 5 RECORDS DISPLAYED

EZZ8303I VIPA 172.16.251.3 GIVEN TO TCPIPC ON RA03
EZZ8301I VIPA 172.16.251.3 TAKEN OVER FROM TCPIPC ON RA28
Chapter 5. Automatic VIPA takeover and takeback 147

Figure 168. Display NETSTAT,HOME after takeback

Figure 169 shows the VIPA address 172.16.251.03 is active on TCPIPC on RA03
again.

Figure 169. Display SYSPLEX,VIPAD after takeback

Figure 170 shows a new connection to VIPA address 172.16.251.3, which is
established on TCPIPC on RA03.

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 120
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28
172.16.233.3 EZAXCF39
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 260
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.28 VIPLAC10FB1C
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPAD
D TCPIP,TCPIPC,SYSPLEX,VIPAD
EZZ8260I SYSPLEX CS V2R10 207
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- ------- ------ ---- ------------ -------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA28 BACKUP 200

IPADDR: 172.16.251.28
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- ------- ------ ---- ------------ -------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0
TCPIPC RA03 BACKUP 100

4 OF 4 RECORDS DISPLAYED
148 TCP/IP in a Sysplex

Figure 170. FTP connection after takeback

C:\>ftp 172.16.251.3
Connected to 172.16.251.3.
220-FTPDC1 IBM FTP CS V2R10 at MVS03C, 20:26:53 on 2000-09-15.
220 Connection will close if idle for more than 5 minutes.
User (172.16.251.3:(none)): claudia
331 Send password please.
Password:
230 CLAUDIA is logged on. Working directory is "/u/claudia".
ftp>
Chapter 5. Automatic VIPA takeover and takeback 149

150 TCP/IP in a Sysplex

Chapter 6. Routing in a sysplex environment

In this chapter we discuss some of the interesting issues related to routing in a
sysplex environment. Although this chapter concentrates primarily on the use of
dynamic IP routing, we also make mention of the pre-routing done by an OSA in a
shared configuration. The OSA family of adapters (including OSA-2 and
OSA-Express) allows the sharing of one single adapter among multiple sysplex
LPARs. As a result, a shared OSA must determine which sysplex LPAR a
particular incoming packet will be forwarded to based on the destination IP
address of the packet. When using Dynamic VIPA or Network Dispatcher,
problems may arise in making this pre-routing decision. Please see 6.1, “Shared
OSA pre-routing” on page 152 for additional information.

The bulk of this chapter deals with dynamic routing in the sysplex. Although one
can use static routing in a sysplex environment, exclusively using static routes is
limiting. In order to take full advantage of new functions in CS for OS/390 IP such
as Dynamic VIPA and Sysplex Distributor, static routes are not sufficient.

Dynamic routing protocols provide for the reactive behavior of hosts in an
environment in which networks, network adapters, and hosts come and go. A
dynamic routing protocol is implemented by a routing daemon, which is simply an
application running on a host that understands current routing and receives
information from neighboring routers regarding the state of the network. It
updates routes in the local routing table and informs other neighbors of any
changes that it has been made aware of. The routing daemon running in each of
the network hosts work together to collectively react to changes in the network
topology.

We elaborate on the differences between static and dynamic routing in 6.2, “IP
routing overview” on page 153. We discuss the routing issues involved with VIPA
in a sysplex. Additionally, we consider two main routing protocols in this chapter.
The first of these is the Routing Information Protocol (RIP), which is a
distance-vector routing algorithm. A more sophisticated routing algorithm is used
in the Open Shortest Path First (OSPF) routing protocol. We detail the
implementation of these protocols with the routing daemons provided by CS for
OS/390 IP, ORouteD and OMPROUTE.

For the remainder of this chapter, we will refer to the sample topology shown in
Figure 171. This topology includes two LPARs in a sysplex, each containing one
stack. Additionally, each LPAR has two links to the 2216 router in our network,
one MPC+ and one via a shared OSA adapter (LCS). In some scenarios in this
chapter, however, both links are not used. Within the sysplex, XCF links connect
the stacks.
© Copyright IBM Corp. 1998 2001 151

Figure 171. Sample network topology

6.1 Shared OSA pre-routing

Because multiple sysplex LPARs (and stacks) can simultaneously make use of an
OSA adapter, the card itself must make certain pre-routing decisions regarding
incoming packets. That is, when a packet arrives at the OSA adapter, the only
indication as to which LPAR (and stack) it should be forwarded is the IP
information contained within it. In particular, the ultimate destination of the IP
packet is used for this purpose. Each of the LPARs (stacks) owns a set of IP
addresses and will receive all IP packets destined for them. Additionally, exactly
one LPAR can be identified as the default LPAR, thereby receiving packets with IP
destination addresses not owned by any LPAR.

When making use of VIPA in a shared OSA environment, the OSA must be made
aware of the VIPA in the owning stack. The OSA simply treats the VIPA as
another IP address owned by the particular LPAR (stack). If the VIPA is active on
multiple LPARs (stacks) within the sysplex, however, the OSA might be confused
as to which LPAR (stack) it should direct packets. With CS for OS/390 V2R10 IP,
this is not yet a problem since all of this data must be forwarded via the
distributing stack anyway (please refer to Chapter 7, “Sysplex Distributor” on
page 187). With Network Dispatcher, however, the cluster address is active
multiple LPARs within the sysplex, meaning that a shared OSA configuration
would not function properly with Network Dispatcher. This restriction is corrected
with the expected introduction of Generic Routing Encapsulation (GRE) within CS
for OS/390 IP and Network Dispatcher.

The method in which the OSA adapter is informed of a particular LPAR’s (stack’s)
IP addresses is different depending on the type of adapter it is. With
OSA-Express, this is done dynamically via communication between CS for
OS/390 IP and the OSA adapter. In OSA-2 (which we are using in our topology),
this is done via manual configuration. The configuration is in the form of the OSA
Address Table (OAT) and we can simply include the VIPA address in this
configuration. We issued the IOACMD get OAT command to show you the RA03
entry in Figure 172. If the address is not in an OAT entry, the packet is forwarded

Dynamic XCF Network

MPC+ Links

TCPIPC on RA39

MPC+: 172.16.102.39

XCF: 172.16.233.39

TCPIPC on RA03

MPC+: 172.16.100.3

XCF: 172.16.233.3

9.24.105.0

VIPA: 172.16.251.3 VIPA: 172.16.251.39

IBM 2216

OSA: 9.24.105.76 OSA: 9.24.105.73
152 TCP/IP in a Sysplex

to the default image (stack). If there is no default, the OSA adapter discards the
packet.

Figure 172. OSA address table

1,2 We are using device 2064 for the RA03 host and defined both IP addresses in
the OAT: 9.24.105.76 (OSA card IP address) and 172.16.251.3 (VIPA address).

6.2 IP routing overview

One of the major functions of a network protocol such as TCP/IP is to connect
together a number of disparate networks efficiently. These networks may include
LANs and WANs, fast and slow, reliable and unreliable, inexpensive and
expensive connections. The simplest way to connect them all together is to bridge
them. However, this results in every part of the network receiving all traffic and
leads to slower links being overloaded and perhaps to network failure altogether.
What is needed, particularly when all these networks are joined together in the
worldwide Internet, is some form of intelligence at the boundaries of all these
networks, which can look at the packets flowing and make rational decisions as to
where and how they should be forwarded. This function is known as IP routing.
Routing allows you to create networks that can be managed separately but which
are still linked and can communicate with one another.

**
*** OSA/SF Get OAT output created 09:17:39 on 09/21/2000 ***
*** IOACMD APAR level - OW39984 ** sandra.sample(OATTABD8) ***
**
*** Start of OSA address table for CHPID D8 ***
**
* UA(Dev) Mode Port Entry specific information Entry Valid
**

LP 1 (A1)
00(2060) passthru 00 PRI 009.024.104.113 SIU ALL

172.016.250.003
01(2061) passthru 00 PRI 009.024.104.113 SIU ALL

172.016.250.003
02(2062) passthru 00 no 009.024.104.033 S ALL

172.016.251.004
03(2063) passthru 00 no 009.024.104.033 S ALL

172.016.251.004
04(2064) passthru 01 no 009.024.105.076 S ALL 1

172.016.251.003 2
05(2065) passthru 01 PRI 009.024.105.076 S ALL

172.016.250.003
06(2066) N/A N/A CSS
07(2067) N/A N/A CSS
08(2068) N/A N/A CSS
09(2069) N/A N/A CSS
0A(206A) N/A N/A CSS
0B(206B) SNA 00 S ALL
0C(206C) N/A N/A CSS
0D(206D) N/A N/A CSS
0E(206E) N/A N/A CSS
Chapter 6. Routing in a sysplex environment 153

IP is the de facto standard for most large routed networks. It is also the protocol
used on the global Internet. In order to route packets, each network interface on a
device (PC, UNIX workstation, router, mainframe, and so on) on the network has
a unique IP address. Whenever a packet is sent, the destination and source
addresses are included in the packet’s header information. Routers examine the
destination address to see if there is a matching address in their routing tables.
These tables are either created by the system administrator, or built dynamically
using information received from other routers, or (often) a combination of both.

Along with the IP address of each interface, a subnet mask is also defined, which
indicates to the network the distinction between the part of the address that
represents the subnetwork (a LAN or point-to-point connection, for example) and
the part that represents the host (the network interface on a device). The use of a
subnet mask allows flexibility in network design (LANs may be small or large), but
the proper use of routing tables requires that the subnetwork address and the
host portion of an IP address can be discerned.

Figure 173 on page 154 shows that the routing function in a TCP/IP network is
performed at the internetwork layer (layer 3) of the architectural model, whereas
the IP subnetworks are represented by the data link layers. Each node on the
connection path from client to server must:

 • Inspect the destination address of the packet (192.168.200.1)

 • Divide it into subnetwork and host addresses

 • Determine whether the subnetwork (represented by the DLC layer) is directly
attached to it

 • If not, forward the packet to the next router as defined by the routing tables

 • If so, forward the packet directly to the destination over the appropriate DLC

Figure 173. Network routing flow

The Internet is logically divided into autonomous systems, which are essentially
individual customers' networks. There are two classes of routing protocols used
in IP: exterior gateway protocols (EGPs) are used between autonomous systems
and interior gateway protocols (IGPs) are used within the autonomous systems.

IP Client
Address: 192.168.109.88

IP Server
Address: 192.168.200.1

Packet Addressed
to Server
IP Address

IP

Link

Physical

IP

Link

Physical

IP

Link

Physical

Router 3Router 1 Router 2

5235\523507
154 TCP/IP in a Sysplex

The two most common standard IGPs are the Routing Information Protocol (RIP)
and the Open Shortest Path First (OSPF) protocol.

Routing in the CS for OS/390 IP system can be set up to use dynamic or static
routing:

 • Static routes

With static routing, the paths to reach networks and hosts are hard coded in a
routing file, accessible to a TCP/IP host. Each host has its own set of
definitions. If something changes (a route, host or network is added or
deleted), then the static routes of some or all hosts in a network may need to
be updated. Static routing is suitable for small, stable networks, but quite
inadequate for large or changing scenarios. With static routing, however, one
has better administrative control over address allocation and resource access.

In CS for OS/390 IP, static routes are configured in the TCPIP profile by
coding either a BEGINROUTES/ENDROUTES block statement or by making
use of the GATEWAY statement. The BEGINROUTES block was created in CS
for OS/390 V2R10 IP to overcome inconsistencies and sometimes awkward
syntax of the GATEWAY statement. It defines static IP routing table entries in
standard BSD format. For more information, please consult OS/390 IBM
Communications Server: IP Configuration Reference, SC31-8726.

 • Dynamic routes

Dynamic routing removes the need for coding static routing tables. All router
addressing and path information is built dynamically. These tables are
automatically exchanged between all routers in a network. This information
sharing enables routers to calculate the best path through the network to any
given destination.

Whether static or dynamic routes are implemented, the basic routing mechanisms
are the same. Every IP host can route IP datagrams and maintains an IP routing
table. The table indicates the IP address of the next hop in order to route an IP
datagram. Each host or router along the way needs to know only the next hop IP
address in the path. Routing tables, of course, need to be maintained in both
directions.

When taking advantage of dynamic routing, an IP host employs the use of a
routing daemon. The routing daemon adds, deletes, or changes route entries
within the host’s routing table. Additionally, a routing daemon executing on a
particular host communicates with routing daemons on neighbor hosts to
exchange topological routing information. Ultimately, this information exchange
leads to the update of routing table entries.

CS for OS/390 IP implements both RIP and OSPF dynamic routing protocols.
Before CS for OS/390 V2R6, only RIP was available and was implemented by the
ORouteD server (in V2R5) and by RouteD (in previous releases). In V2R6 a new
server called OMPROUTE was introduced, which runs under UNIX System
Services and provides both RIP and OSPF functionality. ORouteD may be
withdrawn from CS for OS/390 in due course, leaving OMPROUTE as the only
routing daemon. Both ORouteD and OMPROUTE are UNIX System Services
applications and require the HFS

Often, you will come across the term RouteD meaning routing daemon. This is a
common term for a RIP server.
Chapter 6. Routing in a sysplex environment 155

ORouteD and its predecessor RouteD are so named because they are indeed
RIP servers. The expression GateD is also used, usually for a router with more
function such as OSPF or EGP capability.

6.2.1 RIP
RIP is an internal gateway protocol (IGP) designed to manage relatively small
networks. RIP uses a hop count (distance vector) to determine the best possible
route to a network or host. The hop count is also known as the routing metric. A
router is defined as being zero hops away from its directly connected networks,
one hop from networks that can be reached through one gateway (router), and so
on. In RIP, a hop count of 16 means infinity, or the destination cannot be reached.
Thus, very large networks with more than 15 hops between potential partners
cannot make use of RIP.

The RIP server broadcasts routing information (in other words, its own distance
vector tables) to the gateways of directly connected networks every 30 seconds.
The server receives updates from neighboring gateways periodically and updates
its routing tables. If an update is not received for three minutes, the gateway is
assumed down and all the routes through that gateway are set to a metric of 16
(infinity). The server can, for example, determine if a new route has been created,
if a route is temporarily unavailable, or if a more efficient route exists. A complete
definition of RIP Version 1 is documented in RFC 1058.

RIP Version 2 is compatible with existing RIP Version 1 implementations. It also
supports variable subnet masks. Variable subnet mask support means that an IP
device can use different subnet masks on each of its network interfaces. It
requires, in general, that both the TCP/IP stack and the dynamic update protocol
that is used by that stack support variable length subnet masks. The TCP/IP
stack from OS/390 V2R5 IP onward can be enabled for variable subnetting via the
VARSUBNETTING keyword on IPCONFIG, and the ORouteD server supports
both RIP Version 2 and Version 1 protocols.

Techniques such as immediate next hop for shorter paths and multicast
addressing are used in RIP Version 2 to reduce the load on hosts. A full
description of this protocol is detailed in RFCs 1721, 1722, 1723 and 1724.

In CS for OS/390, RIP servers (whether ORouteD or OMPROUTE) can run within
a multiple-stack IP environment. A copy of the server has to be started for each
stack. The server determines which TCP/IP stack it should connect to based on
the TCPIPJOBNAME keyword in the file pointed to by the environmental variable
RESOLVER_CONFIG.

The routing implementation we used is illustrated as part of the testing scenarios
later in this book.

6.2.2 OSPF
Where RIP is based on distance vectors (hop counts), OSPF is based on link
states. In other words, OSPF routing tables contain details of the connections
between routers, their status (active or inactive), their cost (desirability for
routing) and so on. Updates are broadcast whenever a link changes status, and
consist merely of a description of the changed status. This is in contrast with RIP
where broadcasts occur every 30 seconds and contain the complete distance
156 TCP/IP in a Sysplex

vector tables. Because of this difference, and for other reasons such as the lack
of the 16-hop limit, OSPF is more suitable for large networks than RIP.

In fact, OSPF is similar in concept to APPN, where the routers (network nodes)
maintain the network topology and broadcast any changes whenever they occur.
OSPF, like APPN, can divide its network into topology subnets (known as areas)
within which broadcasts are confined. The current version (V2) of OSPF is
described fully in RFC 2328.

The OMPROUTE server in CS for OS/390 makes use of advanced OSPF V2
techniques for improving availability and performance. For example, it can
balance the connection load among up to four alternative routes if the costs of the
routes are equal (equal cost multipath). It can also interact with VIPA (see “High
availability with Virtual IP Addressing (VIPA)” on page 5), whether using RIP or
OSPF, to ensure that an IP route is always available to host applications as long
as at least one interface to the network is active.

6.3 VIPA considerations

Because VIPAs are different from normal physical interface IP addresses, there
are some special considerations that must be taken when using them. When a
host owns a VIPA, it advertises reachability to it as if it were one hop away from it.
Dynamic VIPAs can come and go; the dynamic routing protocol must therefore
distribute this information to neighboring routers.

6.3.1 VIPA address assignment
It is strongly recommended that you define a subnet for VIPA separate from the
physical interfaces. We defined the same subnet for all VIPA IP addresses in our
sysplex environment. The routing daemon must therefore advertise the host and
subnet routes of each VIPA to downstream routers. ORouteD and OMPROUTE
have this capability.

In our network, shown in Figure 171, our 2216’s route table will include a host
route for each of the VIPAs (172.16.251.3 and172.16.251.39) through the local
token-ring and MPC+ interfaces. It will also have a subnet route for the
172.16.251.0 subnet through one of the interfaces. This subnet route is not a
concern because host routes take precedence over subnet routes; hence the
subnet route will not be used.

Note: You should make sure that your routers accept host routes. Otherwise,
each VIPA address must be in a separate subnetwork from each other.

6.3.2 Fault tolerance with VIPA
To improve fault tolerance beyond the use of VIPA, you can make use of
redundant hardware. In our environment, we have an OSA card and an
MPC-attached 2216 router connected to both hosts RA03 and RA39. The RA03
host is using the MPC+ link for outbound packets. If the interface goes down:

 • The routing daemon in the RA03 host will switch the outbound traffic from the
MPC+ interface to the OSA interface as soon as it detects the interface failure

 • The RA03 adjacent routers will update their route table in light of the new
information being provided by RA03
Chapter 6. Routing in a sysplex environment 157

In our sysplex environment, we also have the XCF link that can be used as a
backup interface in case of failure. We can use the RA39 host as a path from
RA03 to network 9.24.105.0 after an MPC+ interface failure instead of using the
OSA interface.

6.3.3 Beware of ICMP redirection
In general, we found that the alternate routing available when VIPA was
implemented allowed us to maintain sessions whenever one path failed and
alternates were available. However, there are a couple of issues:

1. Some workstations can dynamically add routes even when dynamic routing is
disabled on the workstation. With a Windows NT server on the same network
as the OSA card and the 2216 router, we found a route created dynamically on
the Windows NT server. We had set the 2216 router as the default router for
the Windows NT server. The 2216 router was aware of the existence of the MP
redirect message so that it would send data directly to a host owning the VIPA
via the OSA card.

We set up a TN3270 session from Windows NT to the VIPA and then killed the
OSA card link. Our session died. When we looked at the routes on the
Windows NT server, we found a host route for the VIPA via the OSA card IP
address. It took some time for this route to disappear.

This scenario would be uncommon for a user's workstation, but many
installations may well have Windows NT servers on the same network as their
OS/390 servers.

2. Routing protocols require time to converge whenever the status of a link
changes. If the session (TN3270, for example) times out before the routers
can converge, then the session will be lost. In the case of host links into the
OS/390 stack, then probably only one or two levels of routers need to change
routing tables to react to a network change. That will normally occur quickly,
but you should keep this in mind.

If the routing protocol were OSPF, the convergence time can be improved
because the OSPF protocol is based on the link state and not a distance
vector.

6.3.4 Using SOURCEVIPA
Coding SOURCEVIPA in the profile will make the TCP/IP stack insert a static
VIPA IP address as a source address on certain outbound packets. If
SOURCEVIPA is coded, the VIPA address will be used for UDP (and RAW) data
originating from this host and for new outbound connections in which the
application does not specify which local IP address should be used.

The VIPA address used is always the closest static VIPA configured above the
address of the outgoing interface in the home list. That is, once a packet’s
outgoing interface is determined, the local IP address corresponding to that
interface is located in the home list. The stack then chooses the lowest VIPA in
the home list above the local IP address found. Since this selection depends on
VIPAs higher in the home list, Dynamic VIPAs are never candidates for selection.
Only static VIPAs are used with SOURCEVIPA.

We usually code the VIPA IP address as the first in the home list and the physical
interface next will be used to transport outbound datagrams. If you do not want to
158 TCP/IP in a Sysplex

use the VIPA address as a source in packets through a particular link, you can
specify its IP address before the VIPA IP address in the home list.

6.4 Configuring ORouteD

ORouteD is a routing daemon that implements the RIP protocols described in
RFC 1058 (RIP Version 1) and RFC 1753 (RIP Version 2). In our environment, we
introduced RIP routing into the two TCPIPC stacks shown in Figure 171.

We added the following procedure and parameter files to enable RIP for our
testing. Figure 174 shows the JCL that runs the ORouteD server under UNIX
System Services.

Figure 174. Procedure for OROUTDC

We can use this start procedure by both TCPIPC stacks, in the RA03 host and
RA39 host, since we are using system variables (&SYSCLONE.). The -h
parameter allows ORouteD to handle host routes, which is necessary for
point-to-point connections to be broadcast. The -hv parameter enables host
virtual routing, which enables adjacent routers in the network to receive VIPA host
routes. We highly recommend that you assign a separate subnetwork for the
VIPA. The same subnetwork can be used for all VIPA addresses in the sysplex
environment.

Figure 175 shows the TCP/IP stack profile statements relevant to our ORouteD
discussion.

//OROUTEDC PROC MODULE='BPXBATCH'
//OROUTED EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM='PGM/usr/lpp/tcpip/sbin/orouted-h'
//STDOUT DD PATH='/tmp/orouted.&SYSCLONE.c.stdout',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//STDERR DD PATH='/tmp/orouted.&SYSCLONE.c.stderr',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDENV DD DSN=TCPIP.TCPPARMS(RD&SYSCLONE.CENV),DISP=SHR
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//SYSERR DD PATH='/tmp/orouted.&SYSCLONE.c.syserr',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
Chapter 6. Routing in a sysplex environment 159

Figure 175. Statements in profile for OROUTEDC (stack RA03)

1 VARSUBNETTING makes this stack support variable subnet since ORouteD is
going to work with RIP-2.

2 IGNOREREDIRECT parameter makes the stack ignore ICMP redirect packets.

3 DATAGRAMFWD parameter enables the forwarding of datagrams through this
stack.

4 The SOURCEVIPA parameter forces the TCP/IP stack to insert the VIPA
address as the source field in some outbound packets (see 6.3, “VIPA
considerations” on page 157). In this example, coding SOURCEVIPA has no
effect since we have no static VIPAs defined.

5 SYSPLEXROUTING parameter specifies that this host is a part of a sysplex
environment and will communicate the interface changes to WLM. The following
message will confirm that it is enabled: SysplexRouting support is enabled.

6 Dynamic XCF support is enabled by this parameter. 172.16.233.3 is the XCF IP
address used for home list. The subnet mask and the metric will be used for
BSDROUTINGPARMS.

7 The PORT statement is to reserve port 520 for ORouteD.

8 AUTOLOG statement starts the ORouteD server when the TCPIPC stack starts.

9 The VIPADYNAMIC block defines the Dynamic VIPAs used by this stack.

IPCONFIG
VARSUBNETTING 1
IGNOREREDIRECT 2
DATAGRAMFWD 3
SOURCEVIPA 4
SYSPLEXROUTING 5
DYNAMICXCF 172.16.233.3 255.255.255.0 1 6
;
PORT
520 UDP OROUTEDC 7
;
AUTOLOG
OROUTEDC 8
ENDAUTOLOG

VIPADYNAMIC 9
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
VIPABACKUP 100 172.16.251.39

ENDVIPADYNAMIC

;
BSDROUTINGPARMS FALSE
VIPA03C DEFAULTSIZE 0 255.255.255.0 0
EN103 1492 1 255.255.255.0 0
M032216B DEFAULTSIZE 0 255.255.255.0 0 10
ENDBSDROUTINGPARMS
160 TCP/IP in a Sysplex

10 BSDROUTINGPARMS statements are to define the interface information, MTU
value, and subnet mask. BEGINROUTES or GATEWAYS statements are not used
with ORouteD. If you need to define any static routes, you must code an ORouteD
gateway file.

Figure 176. STDENV parameter file RD03CENV

The contents of our standard environment file are listed in Figure 176. This file is
pointed to by the STDENV DD statement in the start procedure. This DD JCL
card is part of the BPXBATCH function, and is a mechanism for setting USS
environment variables. For details on how to define an environment, see the
OS/390 UNIX System Services User's Guide, SC28-1891.

The first variable controls where to find the TCPIP.DATA file, or the equivalent of
/etc/resolv.conf. You can also set TCPIP.DATA in the ENVAR parameter in your
EXEC JCL card.

Figure 177. RouteD profile

In Figure 177 we show the defined profile used by the RouteD daemon. We
enabled RIP Version 2 to supply control and RIP Version 1 and Version 2
receiving packets for our interfaces.

We did not define a static network and subnet route or static host route. If this is
needed, you can define it in the ORouteD GATEWAY file. In the GATEWAY file
you can also alter the default values for the RIP timers and define filters to the
interfaces.

Our procedures and data files were identical for the TCPIPC stacks on RA03 and
RA39 hosts. The only changes were the necessary (obvious) stack, file, and
address differences.

6.5 Configuring OMPROUTE

OMPROUTE implements the OSPF protocol, described in RFC 1583 (OSPF
Version 2) and RFC 1850 (OSPF subagent protocol), as well as the RIP protocol,
described in RFC 1058 (RIP Version 1) and RFC 1723 (RIP Version 2). The IBM
Communications Server for OS/390 IP running the OMPROUTE server becomes
an OSPF and RIP router. If both OSPF and RIP protocols are used
simultaneously, OSPF routes will be preferred over RIP routes to the same
destination.

6.5.1 Common OMPROUTE configuration
Some of the configuration of OMPROUTE is the same regardless of whether you
are implementing RIP, OSPF, or both in your network. This includes the creation
of the OMPROUTE started procedure and other global configuration steps. For

RESOLVER_CONFIG=//'TCPIP.TCPPARMS(TCPD03C)'
ROUTED_PROFILE=//'TCP.TCPPARMS(RD03CCFG)'

RIP_SUPPLY_CONTROL: RIP2
RIP_RECEIVE_CONTROL: ANY
Chapter 6. Routing in a sysplex environment 161

this section, we again use the same environment depicted in Figure 171 on page
152.

OMPROUTE can be started as a start procedure. OMPROUTE deletes all routes
when it is started and rebuilds your route table based on your configuration files.

Figure 178. OMPROUTED startup procedure

Unlike ORouteD, the OMPROUTE does not use the BSDROUTINGPARMS
statement to define its route table. It has its own configuration file pointed to by
the STDENV JCL card as shown in Figure 179.

Figure 179. STDENV file

RESOLVER_CONFIG points to the TCPIP.DATA data set or file. The resolver
uses the following search order to allocate the actual resolver configuration data
set or file to use:

1. The environment value of RESOLVER_CONFIG

 • The syntax for an MVS data set name is //'mvs.dataset.name'.

 • The syntax for an HFS file name is /dir/subdir/file.name.

2. /etc/resolv.conf

3. userid.TCPIP.DATA for TSO/E or jobname.TCPIP.DATA for a batch request

4. SYS1.TCPPARMS(TCPDATA)

OMPROUTE_FILE points to the OMPROUTE configuration file. A single
configuration file is used to define the OSPF and RIP environments. The following
search order is used to locate the OMPROUTE server configuration data set or
file:

1. The value of the OMPROUTE_FILE environment variable

 • The syntax rule is the same as for RESOLVER_CONFIG

//OMPROUTE PROC
//OMPROUTE EXEC PGM=OMPROUTE,REGION=4096K,TIME=NOLIMIT,
// PARM=('POSIX(ON)','CTRACE(CYIORA00)',
// 'ENVAR("_CEE_ENVFILE=DD:STDENV")/-t1')
//STDOUT DD PATH='/tmp/omproute.stdout',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDERR DD PATH='/tmp/omproute.stderr',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDENV DD DSN=TCPIP.TCPPARMS.R2617(OM&SYSCLONE.CENV),DISP=SHR
//CEEDUMP DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

RESOLVER_CONFIG=//'TCPIP.TCPPARMS(TCPD03C)'
OMPROUTE_FILE=//'TCPIP.TCPPARMS.R2617(OM03CFG)'
162 TCP/IP in a Sysplex

2. /etc/omproute.conf

3. hlq.ETC.OMPROUTE.CONF

We used CEE_ENVFILE with MVS data set pointing to STDENV. In this case the
data set must be allocated with RECFM=V, because RECFM=F enables padding
with blanks in environment variables.

The contents of TCPIP.DATA are shown in Figure 180.

Figure 180. TCPIP.DATA

1 The TCPIPJOBNAME statement is used by OMPROUTE to establish
connection with TCPIPC stack.

2 The value specified in this statement is used as a high-level qualifier in the
search order for the OMPROUTE configuration file.

Figure 181 on page 164 shows a part of the TCPIPC profile we used on the RA03
host.

TCPIPJOBNAME TCPIPC 1
HOSTNAME MVS03C
DOMAINORIGIN itso.ral.ibm.com
NSINTERADDR 9.24.106.15
NSPORTADDR 53
RESOLVEVIA UDP
RESOLVERTIMEOUT 10
RESOLVERUDPRETRIES 2
DATASETPREFIX TCPIP 2
MESSAGECASE MIXED
Chapter 6. Routing in a sysplex environment 163

Figure 181. TCPIPC profile

1 DATAGRAMFWD parameter enables the forwarding of datagrams through this
stack.

2 SYSPLEXROUTING parameter specifies that this host makes a part of a
sysplex environment and will communicate the interface changes to WLM. The
following message will confirm that it is enabled: SysplexRouting support is

enabled.

3 IGNOREREDIRECT parameter makes the stack ignore ICMP redirect packets.

4 Dynamic XCF support is enabled by this parameter. 172.16.233.3 is the XCF IP
address used for the home list. The subnet mask and metric will be defined in the
OMPROUTE configuration file.

;******************************** TOP OF DATA ********************
;*TCPIP.TCPPARMS.R2617(PROF03C) SYSPLEX DISTRIBUTOR RA03 - SANDRAEF
;***
IPCONFIG
DATAGRAMFWD 1
SYSPLEXROUTING 2
ARPTO 1200
IGNOREREDIRECT 3
DYNAMICXCF 172.16.233.3 255.255.255.0 1 4
STOPONCLAWERROR
TTL 60
VARSUBNETTING 5

PORT
520 UDP OMPROUTC 6
;520 UDP OMVS

AUTOLOG 5
OMPROUTC 7
ENDAUTOLOG

DEVICE M032216B MPCPTP AUTORESTART
LINK M032216B MPCPTP M032216B

DEVICE EN103 LCS 2064
LINK EN103 ETHEROR802.3 1 EN103

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
VIPABACKUP 100 172.16.251.39

ENDVIPADYNAMIC

HOME
172.16.100.3 M032216B
9.24.105.76 EN103

START M032216B
START EN103
164 TCP/IP in a Sysplex

5 VARSUBNETTING makes this stack support a variable subnet since this server
is going to work with RIP-2.

6 The PORT statement is to reserve port 520 for the OMPROUTC daemon. This
is only needed if RIP is being implemented. If OMPROUTE is started from the
UNIX System Services shell, the PORT statement should be used to reserve the
RIP as shown here:

PORT

520 UDP OMVS

7 AUTOLOG statement starts the OMPROUTC server when the TCPIPC stack
starts.

6.5.2 OMPROUTE with RIP
The OMPROUTE daemon can be used to implement RIP. Since it can also
implement OSPF, OMPROUTE can make it easier to migrate your network’s
routing protocol from RIP to OSPF.

The contents of the OMPROUTE configuration file are found in Figure 182 on
page 166. The OMPROUTE routing application reads the file to determine which
routing protocol it is going to use: RIP and/or OSPF protocols. If you want to
implement your CS for OS/390 IP as a RIP router, you must configure your
interfaces with the RIP_Interface statement. To implement OSPF protocol over an
interface, define this interface with the OSPF_Interface statement. OMPROUTE
can handle both routing protocols at the same time.

Instead of the BSD routing parameters, parameters such as maximum
transmission unit (MTU), subnet mask, and interface name are configured via the
OSPF_interface, RIP_interface, and Interface statements in the OMPROUTE
configuration file.
Chapter 6. Routing in a sysplex environment 165

Figure 182. OMPROUTC configuration file

1 This statement is coded to configure the OMPROUTE SNMP subagent to
communicate with the CS for OS/390 IP agent. The COMMUNITY parameter
must match the one defined in SNMP.

2 This statement sets the RIP parameters for the 2216 ESCON MPC+ interface.
The IP address and the name of the interface should match the ones on the
HOME statement in the TCP/IP profile. We configured a lower metric for the 2216
ESCON MPC+ than the other interfaces to ensure that this interface will take
precedence over others.

3 This statement sets the RIP parameters for the OSA card interface.

4 We configured DVIPA using the Interface statement. Because the stacks have
DVIPA and DVIPA ranges defined, this statement is coded with a wild card value.
By using a wild card, we ensure that all configured interfaces whose IP address
matches the wild card will be configured as an interface. A point-to-point interface
that is neither an OSPF nor a RIP interface should be configured to OMPROUTE
via the Interface statement.

5 This statement sets the OSPF parameters for the XCF links between the stacks
in the sysplex. This time we specified the IP address with a wild card (*):
172.16.233.* instead of 172.16.233.3.

ROUTESA_CONFIG ENABLED=YES 1
COMMUNITY="MVSsubagent";

RIP_Interface IP_Address=172.16.100.3 2
Name=M032216B
Subnet_mask=255.255.255.0
RIPV2=Yes
In_Metric=0
Out_Metric=0
MTU=32768;

RIP_Interface IP_Address=9.24.105.76 3
Name=EN103
Subnet_mask=255.255.255.0
RIPV2=Yes
In_Metric=1
Out_Metric=1
MTU=32768;

Interface IP_Address=172.16.251.* 4
Subnet_mask=255.255.255.0
In_Metric=2
Out_Metric=2
MTU=32768;

RIP_Interface IP_Address=172.16.233.* 5
Subnet_mask=255.255.255.0
RIPV2=Yes
In_Metric=2
Out_Metric=2
MTU=32768;
166 TCP/IP in a Sysplex

6.5.3 OMPROUTE with OSPF
Our next configuration was set up to perform some tests with the OSPF protocol.
Again we make use of the network configuration described in Figure 171 on page
152 which includes our two systems in separate LPARs, RA03 and RA39.

Dynamic routing was enabled by starting the OMPROUTE daemon on each
stack. We configured OMPROUTE to use the OSPF routing protocol. The two
external routers were also configured to run OSPF. Since we were connected to a
production network (the 9.0.0.0 IBM network), we also received some OSPF
information from other production routers.

The contents of the OMPROUTE configuration file are found in Figure 183 on
page 168. The OMPROUTE routing application reads the file to determine which
routing protocol to implement: OSPF and/or RIP protocols. If you want to
implement your CS for OS/390 IP as an OSPF router, you must configure the
interfaces with the OSPF_Interface statement. If there is an interface that
implements the RIP protocol, you define this interface with the RIP_Interface
statement. OMPROUTE can handle both routing protocols at the same time.

Instead of the BSDROUTINGPARMS block, parameters such as maximum
transmission unit (MTU), subnet mask, and interface name parameters are
configured in the OSPF_interface, RIP_interface, and Interface statements in the
OMPROUTE configuration file.
Chapter 6. Routing in a sysplex environment 167

Figure 183. OMPROUTE configuration file OM03CCFG

1 These parameters are set for an OSPF area. In our network the only area is
defined as the backbone area (Area_Number=0.0.0.0) and as a non-stub area
(Stub_Area=NO). If you specify Stub_Area=YES, the area will not receive any
inter-autonomous system (AS) routes. You cannot configure virtual links through
a stub area or a router within the stub area as an AS boundary router.

2 ROUTERID statement should be configured to assign every router a unique
router ID. It is highly recommended that the router ID be an IP address of a
physical interface or a static VIPA, not a Dynamic VIPA.

3 This statement is coded to configure the OMPROUTE SNMP subagent to
communicate with the CS for OS/390 IP agent. The COMMUNITY parameter
must match the one defined in SNMP.

4 This statement sets the OSPF parameters for the 2216 ESCON MPC+
interface. The IP address and the name of the interface should match the ones on
the HOME statement in the TCP/IP profile.

Area Area_Number=0.0.0.0 1
Stub_Area=NO

Authentication_type=None;
RouterID=172.16.100.3; 2
ROUTESA_CONFIG ENABLED=YES 3
COMMUNITY="MVSsubagent";

OSPF_Interface IP_Address=172.16.100.3 4
Name=M032216B
Cost0=3
Subnet_mask=255.255.255.0
MTU=32768;

OSPF_Interface IP_Address=9.24.105.73 5
Name=EN103
Cost0=6
Subnet_mask=255.255.255.0
MTU=32768;

OSPF_Interface IP_Address=172.16.251.* 6
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;

OSPF_Interface IP_Address=172.16.233.* 7
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;

OSPF_Interface IP_Address=172.16.252.*
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;

AS_Boundary_routing 8
Import_Direct_Routes=YES;
168 TCP/IP in a Sysplex

5 This statement sets the OSPF parameters for the OSA token-ring interface. We
configured a higher cost for this interface than the 2216 router interface.

6 We configured DVIPA using the Interface statement. Because the stacks have
DVIPA and DVIPA ranges defined, this statement is coded with a wild card value.
By using a wild card, we ensure that all configured interfaces whose IP address
matches will be configured as interfaces. A point-to-point interface that is neither
an OSPF nor a RIP interface should be configured to OMPROUTE via the
Interface statement.

7 This statement sets the OSPF parameters for the XCF links between the stacks
in the sysplex. This time we specified the IP address with a wild card (*):
172.16.233.* instead of 172.16.233.3.

8 This statement enables AS boundary routing capability. It allows OMPROUTE
to import routes learned from other methods such as the RIP protocol, static
routes, and direct routes from other ASs into this OSPF domain. Because we
have defined VIPA on the Interface statement, Import_Direct_Routes=YES is
necessary. This definition will import the direct routes to VIPA into the OSPF
routing domain and the routes will be advertised to the adjacent routers.

4, 5, 6, 7 The MTU size defined on each OSPF interface must not exceed the
MTU size defined on the IP interface in the partner OSPF router. The OSPF MTU
size is exchanged between routers, and some products (such as OS/390) check
that the largest possible OSPF packet can be received on the appropriate
interface. If not, OSPF is disabled on that interface.

Note: According to the Information APAR II11555, the OSPF_INTERFACE
statement is recommended for use when configuring VIPA interfaces to
OMPROUTE in an OSPF environment. There is no need to define
Import_Direct_Routes=YES in the AS_Boundary_routing statement for the VIPA
interface. If the OSPF protocol is not being used on any interfaces, then the
Interface statement is used to configure the VIPA to OMPROUTE. Please refer to
the text of APAR II11555 for details. We did not test this alternative form of
definition.

6.5.3.1 OMPROUTE commands
OMPROUTE is controlled from the MVS operator console using the MVS system
commands. We introduce some commands to display OSPF and RIP
configuration and state information, and MODIFY commands to control
OMPROUTE. You will find more details in OS/390 IBM Communications Server:
IP Configuration Guide, SC31-8725.

To display all OSPF configuration information, you can issue Display

TCPIP,<tcpipjobname>,OMPROUTE,OSPF,LIST,ALL. Sample results are shown in Figure
184 on page 170:
Chapter 6. Routing in a sysplex environment 169

Figure 184. Display command to list OSPF definitions

1 The stack on which OMPROUTE is running.

2 OSPF protocol enabled.

3 Comparison value defined at this server. OSPF supports two types of external
metrics (see 6.5.5, “Interface cost considerations” on page 176): Type 1 external
metrics are equivalent to the link state metric and Type 2 external metrics are
greater than the cost of any path internal to the AS.

4 Indicates whether the router will import external routes into the OSPF domain.

5 Displays the type of external routes that this OSPF domain will import. This is
displayed only when AS Boundary Capability is enabled.

6 Indicates whether the router will originate a default route into the OSPF domain.

7 Displays the default route cost.

RO RA39,D TCPIP,TCPIPC,OMP,OSPF,LIST,ALL
D TCPIP,TCPIPC,OMP,OSPF,LIST,ALL
EZZ7831I GLOBAL CONFIGURATION 610

TRACE: 1, DEBUG: 0, SADEBUG LEVEL: 0
STACK AFFINITY: TCPIPC 1
OSPF PROTOCOL: ENABLED 2
EXTERNAL COMPARISON: TYPE 2 3
AS BOUNDARY CAPABILITY: ENABLED 4
IMPORT EXTERNAL ROUTES: DIR SUB 5
ORIG. DEFAULT ROUTE: NO 6
DEFAULT ROUTE COST: (1, TYPE 2) 7
DEFAULT FORWARD. ADDR.: 0.0.0.0 8
DEMAND CIRCUITS: ENABLED 9

EZZ7832I AREA CONFIGURATION 10
AREA ID AUTYPE STUB? DEFAULT-COST IMPORT-SUMMARIES?
0.0.0.0 0=NONE NO N/A N/A

EZZ7833I INTERFACE CONFIGURATION 11
IP ADDRESS AREA COST RTRNS TRNSDLY PRI HELLO
DEAD
172.16.233.39 0.0.0.0 8 5 1 1 10 12
40
172.16.233.39 0.0.0.0 8 5 1 1 10
40
172.16.233.39 0.0.0.0 8 5 1 1 10
40
172.16.251.39 0.0.0.0 8 5 1 1 10
40
9.24.105.73 0.0.0.0 6 5 1 1 10
40
172.16.102.39 0.0.0.0 3 5 1 1 10
40
170 TCP/IP in a Sysplex

8 Displays the forwarding address, in our example the default forwarding address
is the backbone address. The forwarding address is displayed only when AS
Boundary is enabled.

9 Indicates the demand circuit support availability.

10 Displays information about configuration area(s); in our example only the
backbone area exists.

11 Displays information about the interface IP address and configured
parameters. OSPF dynamically obtains this address from the HOME statement in
the TCP/IP profile data set.

12 This is the DYNAMICXCF IP address that OSPF obtains dynamically from the
TCP/IP profile data set.

We issued the command from the RA03 host to the RA39 host through the ROUTE
command. You can issue the following modify command to OMPROUTE
F omproutejobname,OSPF,LIST,ALL to get the same display.

To display current run-time statistics related to the OSPF interface use Display

TCPIP,<tcpipjobname>,OMPROUTE,OSPF,InterFaces, NAME=<if_name>. Figure 185
shows a typical result:

Figure 185. Display command to display statistics for the OSPF interface

1 The interface type can be Brdcst (broadcast), P-P (a point-to-point), Multi
(non-broadcast), VLink (an OSPF virtual link), or P-2-MP (point-to-multipoint).

D TCPIP,TCPIPC,OMP,OSPF,IF,NAME=M032216B
EZZ7850I INTERFACE DETAILS 574

INTERFACE ADDRESS: 172.16.100.3
ATTACHED AREA: 0.0.0.0
PHYSICAL INTERFACE: M032216B
INTERFACE MASK: 255.255.255.0
INTERFACE TYPE: P-2-MP 1
STATE: 16 2
DESIGNATED ROUTER: 0.0.0.0 3
BACKUP DR: 0.0.0.0

DR PRIORITY: 1 HELLO INTERVAL: 104 RXMT INTERVAL: 5
DEAD INTERVAL: 405 TX DELAY: 1 POLL INTERVAL: 0 6
DEMAND CIRCUIT: OFF HELLO SUPPRESS: OFF SUPPRESS REQ: OFF
MAX PKT SIZE: 32768 TOS 0 COST: 3

NEIGHBORS: 17 # ADJACENCIES: 1 # FULL ADJS.: 1
MCAST FLOODS: 3258 # MCAST ACKS: 6319 DL UNICAST: OFF
MC FORWARDING: OFF

NETWORK CAPABILITIES: 10
POINT-TO-POINT
EMULATED-BROADCAST
DEMAND-CIRCUITS
Chapter 6. Routing in a sysplex environment 171

2 State values can be the following: 1 (down), 2 (backup), 4 (looped back), 8
(waiting), 16 (point-to-point), 32 (DR other), 64 (backup DR), or 128 (designated
router).

3 This specifies the designated router IP address.

4 Shows the current hello interval value used.

5 Displays the current dead interval value.

6 Displays the current poll interval value.

7 Specifies the number of routers whose hellos have been received, plus those
that have been configured.

8 Number of link state updates that were flooded out the interface (not counting
retransmissions).

9 Number of link state acknowledgments that were flooded out the interface (not
counting retransmissions).

10 Displays the capabilities of the interface

To display all of the routes in the OMPROUTE routing table, you can issue
Display TCPIP,<tcpipjobname>,OMPROUTE,RTTABLE as shown in Figure 186:
172 TCP/IP in a Sysplex

Figure 186. Display command to list OMPROUTE routes

If you want to see a specific route in the OMPROUTE, you can issue
D TCPIP,<tcpipjobname>,OMPROUTE,RTTABLE,DEST=<destipaddress> as shown in
Figure 187.

D TCPIP,TCPIPC,OMP,RTTABLE
EZZ7847I ROUTING TABLE 653
TYPE DEST NET MASK COST AGE NEXT HOP(S)

SPE2 0.0.0.0 0 1 65919 172.16.100.254
SPE2 9.0.0.0 FF000000 1 65916 172.16.100.254
SPF 9.1.150.0 FFFFFE00 1816 65922 172.16.100.254
SPF 9.3.1.0 FFFFFF00 1816 65920 172.16.100.254
SPF 9.3.240.0 FFFFFF00 1816 65920 172.16.100.254
SPE2 9.12.0.0 FFFFFF00 1 65919 172.16.100.254
SPF 9.12.2.0 FFFFFF00 16 65922 172.16.100.254
SPF 9.12.3.0 FFFFFFF0 1810 65922 172.16.100.254
SPF 9.12.3.16 FFFFFFF0 1810 65922 172.16.100.254
SPF 9.12.3.48 FFFFFFF0 1810 65922 172.16.100.254
SPE2 9.12.6.0 FFFFFF00 1 65919 172.16.100.254
SPE2 9.12.8.0 FFFFFF00 1 65919 172.16.100.254
SPE2 9.12.9.0 FFFFFF00 1 65919 172.16.100.254
SPE2 9.12.13.0 FFFFFF00 1 65919 172.16.100.254
SPF 9.12.14.0 FFFFFF00 16 65922 172.16.100.254
SPE2 9.12.15.0 FFFFFF00 1 65919 172.16.100.254
SPF 9.24.104.0 FFFFFF00 9 65967 172.16.100.254
SPF 9.24.104.1 FFFFFFFF 9 65967 172.16.100.254
SPF 9.24.104.18 FFFFFFFF 3 65967 172.16.100.254
SPF 9.24.105.0 FFFFFF00 19 65967 172.16.100.254
SPF 9.24.106.0 FFFFFF00 9 65967 172.16.100.254
SPE2 9.32.41.40 FFFFFFFC 1 65919 172.16.100.254
SBNT 172.16.0.0 FFFF0000 1 65976 NONE
DIR* 172.16.100.0 FFFFFF00 1 65978 172.16.100.3
SPF 172.16.100.3 FFFFFFFF 0 65977 M032216B
SPF* 172.16.100.254 FFFFFFFF 3 65967 172.16.100.254
SPE2 172.16.101.0 FFFFFF00 1 65919 172.16.100.254 (2)
SPF 172.16.101.28 FFFFFFFF 8 65967 172.16.100.254 (2)
SPF 172.16.101.254 FFFFFFFF 3 65967 172.16.100.254
SPE2 172.16.102.0 FFFFFF00 1 65919 172.16.100.254 (2)
SPF 172.16.102.39 FFFFFFFF 8 65967 172.16.100.254 (2)
SPF 172.16.102.254 FFFFFFFF 3 65967 172.16.100.254
SPF 172.16.232.0 FFFFFF00 10 65967 172.16.100.254
SPF 172.16.232.39 FFFFFFFF 10 65967 172.16.100.254
DIR* 172.16.233.0 FFFFFF00 1 66036 172.16.233.3 (3)
SPF 172.16.233.3 FFFFFFFF 0 66036 EZASAMEMVS
STAT* 172.16.233.28 FFFFFFFF 0 66037 172.16.233.3
STAT* 172.16.233.39 FFFFFFFF 0 66037 172.16.233.3
SPF* 172.16.251.0 FFFFFF00 16 65967 172.16.100.254 (2)
DIR* 172.16.251.3 FFFFFFFF 1 66036 VIPLAC10FB03
SPF 172.16.251.28 FFFFFFFF 16 65967 172.16.100.254 (2)
SPF 172.16.251.39 FFFFFFFF 16 65967 172.16.100.254 (2)
SPF 172.16.252.0 FFFFFF00 10 65967 172.16.100.254
SPF 172.16.252.28 FFFFFFFF 10 65967 172.16.100.254
SBNT 192.168.10.0 FFFFFF00 1 65916 NONE
SPF 192.168.10.1 FFFFFFFF 10 65922 172.16.100.254
SPE2 192.168.21.0 FFFFFF00 1 65916 172.16.100.254
SPF 192.168.21.1 FFFFFFFF 1811 65922 172.16.100.254
SPF 192.168.21.2 FFFFFFFF 1810 65922 172.16.100.254
SPF 192.168.21.12 FFFFFFFF 1810 65922 172.16.100.254
SPE2 192.168.31.0 FFFFFF00 1 65916 172.16.100.254
SPF 192.168.31.1 FFFFFFFF 1811 65920 172.16.100.254
SPF 192.168.31.2 FFFFFFFF 1810 65922 172.16.100.254
SPF 192.168.31.12 FFFFFFFF 1810 65920 172.16.100.254
SPE2 192.168.41.0 FFFFFF00 1 65916 172.16.100.254
SPF 192.168.41.1 FFFFFFFF 10 65922 172.16.100.254
SPF 192.168.41.12 FFFFFFFF 9 65967 172.16.100.254
SPF 192.168.64.0 FFFFFF00 69 65967 172.16.100.254
STAT* 192.168.64.2 FFFFFFFF 0 66037 172.16.233.3
SPF 192.168.192.0 FFFFFF00 69 65967 172.16.100.254

DEFAULT GATEWAY IN USE.

TYPE COST AGE NEXT HOP
SPE2 1 65919 172.16.100.254

0 NETS DELETED, 0 NETS INACTIVE
Chapter 6. Routing in a sysplex environment 173

Figure 187. Display command to list OMPROUTE route for a specific destination

To stop OMPROUTE, use the d <procname> or F <procname>,KILL. command.

To reread the configuration file, issue the F <procname>,RECONFIG command.

6.5.4 OMPROUTE and automatic VIPA takeover
One of the functions supported by Dynamic VIPA is automatic VIPA takeover. This
function is discussed in detail in Chapter 5, “Automatic VIPA takeover and
takeback” on page 127. It provides VIPA IP address backup capability in another
stack in the sysplex environment in the event the stack fails.

We implemented automatic VIPA takeover in our environment. The DVIPA IP
address in the RA03 host is 172.16.251.3. RA03 provides VIPA backup for
172.16.251.39 owned by RA39. Figure 188 shows a portion of the profile.

Figure 188. VIPADYNAMIC block on RA03 host

In case of failure of the TCPIPC stack in RA03, the VIPA IP address 172.16.251.3
will continue to be reachable and will move to the RA39 host (which is configured
to provide backup capability).

D TCPIP,TCPIPC,OMP,RTTABLE,DES=9.24.105.0
EZZ7857I SYNTAX ERROR (DES) ON OMPROUTE CONSOLE COMMAND
D TCPIP,TCPIPC,OMP,RTTABLE,DEST=9.24.105.0
EZZ7874I ROUTE EXPANSION 650
DESTINATION: 9.24.105.0
MASK: 255.255.255.0
ROUTE TYPE: SPF
DISTANCE: 19
AGE: 76351
NEXT HOP(S): 172.16.100.254 (M032216B)

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
VIPABACKUP 100 172.16.251.39
VIPARANGE DEFINE MOVEABLE NONDISRUPT 255.255.255.0 172.16.240.193

ENDVIPADYNAMIC
174 TCP/IP in a Sysplex

Figure 189. Dynamic VIPA

Figure 189 shows the host route to the DVIPA IP address of RA03 in the 2216
during normal operation.

Figure 190. Display route command on RA39 host

The result of the command D TCPIP,TPCIPC,NETSTAT,ROUTE issued to the TCPIPC
stack in the RA39 host is illustrated in Figure 190. It shows the host route to
DVIPA 172.16.251.3. If the TCPIPC stack on the RA03 host fails, its DVIPA IP
address moves to the TCPIPC stack on the RA39 host as shown in Figure 191.

DESTINATION VIA
172.16.251.3 172.16.100.3

Dynamic XCF Network

MPC+ Links

TCPIPC - RA39

IBM 2216

2216: 172.16.102.39

XCF: 172.16.233.39

OMPROUTC

2216: 172.16.100.3

XCF: 172.16.233.3

OMPROUTC

TCPIPC - RA03

VIPA: 172.16.251.39VIPA: 172.16.251.3

D TCPIP,TCPIPC,N,ROUTE
EZZ2500I NETSTAT CS V2R10 TCPIPC 189
DESTINATION GATEWAY FLAGS REFCNT INTERFACE
172.16.251.0 172.16.102.254 UG 000000 M392216B
172.16.251.3 172.16.233.3 UGH 000000 EZAXCF03
172.16.251.39 0.0.0.0 UH 000000 VIPLAC10FB1C
Chapter 6. Routing in a sysplex environment 175

Figure 191. Backup dynamic VIPA

In Figure 191 we can see the host route to DVIPA 172.16.251.3 in the 2216 router
after a TCPIPC stack failure on RA03. Figure 192 shows the result of the
command D TCPIP,TPCIPC,NETSTAT,ROUTE issued to the TCPIPC stack in the RA39
host. It shows the host route to of DVIPA 172.16.251.3 after the TCPIPC stack on
RA03 host failure.

Figure 192. Display route in RA39 host after RA03 host failure

6.5.5 Interface cost considerations
All interfaces have a cost value associated with them in both the OSPF and RIP
routing protocols. The value of a route to reach a destination is calculated by the
sum of the costs of each link that will be traversed on the way to the destination.

The method for defining cost values for each interface differs between the OSPF
and RIP protocols. In the OSPF_Interface statement we use the Cost0 parameter,
which can be from 0 to 65535. In the RIP_Interface statement, we use the
IN_Metric parameter to define a value from 1 to 15 to be added to every route
received over the interface, and the Out_Metric parameter to define a value from
0 to 15 to be added to every route advertised over the interface. Please see
OS/390 IBM Communications Server: IP Configuration Reference, SC31-8726
for more detailed information.

As you can see, it is quite complicated to set route precedence for both protocols.
If you use only one of the routing protocols, route precedence is not a concern,

DESTINATION VIA
172.16.251.3 172.16.102.39

Dynamic XCF Network

MPC+ Links

TCPIPC -MVS39C

IBM 2216

2216: 172.16.102.39

XCF: 172.16.233.39

OMPROUTC

2216: 172.16.100.3

XCF: 172.16.233.3

OMPROUTC

TCPIPC - MVS03C

DVIPA: 172.16.251.3
DVIPA: 172.16.251.3

DVIPA: 172.16.251.39

D TCPIP,TCPIPC,N,ROUTE
EZZ2500I NETSTAT CS V2R10 TCPIPC 168
DESTINATION GATEWAY FLAGS REFCNT INTERFACE
DEFAULT 172.16.102.254 UG 000000 M392216B
172.16.251.0 172.16.102.254 UG 000000 M392216B
172.16.251.3 0.0.0.0 UH 000000 VIPLAC10FB03
172.16.251.39 0.0.0.0 UH 000000 VIPLAC10FB1C
176 TCP/IP in a Sysplex

but if you use a multiple protocol or AS Boundary Routers in your network, you
should take care with this topic.

The COMPARISON statement is set to make OMPROUTE know if the cost value
received from another AS or from another routing protocol can be comparable
and useful. You can configure the COMPARISON value as Type1 or Type2.

When COMPARISON=Type1 is set, the cost value received from other routing
protocols or exchanged between AS Boundary Routers is to be used because
they are comparable. Note that if you use the OSPF and RIP protocols and set
COMPARISON=Type1, your cost values in the OSPF interfaces must be low
because the OSPF AS must be reached from the RIP AS with a cost value less
than 16.

A COMPARISON value configured as Type2 indicates that cost values are
non-comparable. In this case there are some rules to set cost values in an RIP
AS and/or OSPF AS.

Table 4 shows the order of precedence used by routers that must learn routing
information in a network with multiple routing protocols or when there is an OSPF
Boundary Router.

Table 4. Route precedence.

Source Comparison is the value to which COMPARISON is set. Route A and
Route B are two possible routes from one source to the same destinations that
can be chosen.

The following terms are used in the table:

 • RIP Route - a route learned from the RIP protocol.

 • OSPF Internal Route - a route learned from the OSPF protocol where the
entire path lies within the same OSPF AS.

Source
Comparison

Route A - Type Route B -Type Route chosen

Type 1 OSPF Internal RIP OSPF Internal

Type 1 OSPF Internal OSPF Type 1 External OSPF Internal

Type 1 OSPF Internal OSPF Type 2 External OSPF Internal

Type 1 RIP OSPF Type 1 External Lowest Cost Route

Type 1 RIP OSPF Type 2 External RIP Route

Type 1 OSPF Type 1 External OSPF Type 2 External OSPF Type 1 External

Type 2 OSPF Internal RIP OSPF Internal

Type 2 OSPF Internal OSPF Type 1 External OSPF Internal

Type 2 OSPF Internal OSPF Type 2 External OSPF Internal

Type 2 RIP OSPF Type 1 External OSPF Type 1 External

Type 2 RIP OSPF Type 2 External Lowest Cost Route

Type 2 OSPF Type1 External OSPF Type 2 External OSPF Type 1 External
Chapter 6. Routing in a sysplex environment 177

 • OSPF External Route - a route learned from the OSPF protocol whose path
traverses another AS. There are two categories of OSPF external routes:
OSPF external route type 1, when COMPARISON Type 1 is set and OSPF
External routes are imported from another AS, and OSPF External routes type
2, when COMPARISON Type 2 is set and OSPF External routes are imported
from another AS.

6.5.6 Multipath considerations
The OMPROUTE daemon enables multipath equal-cost routes for each source
and destination pair. To enable the multipath function, code the MULTIPATH
parameter in the IPCONFIG statement in the TCP/IP profile. Using the multipath
function enables outbound connections to be spread over existing routes. Up to
four equal-cost routes can be used for multipath in OSPF routes. For RIP, multiple
equal-cost routes will be added only to directly connected destinations over
redundant interfaces. The traffic spread over these routes depends on the
parameter coded; it can be done on a connection basis or packet-basis.

By specifying the PERCONNECTION parameter, TCP/IP will select a route on a
round-robin basis from a multipath routing list to the destination and will use this
route for all IP packets that use this connection. This is independent of whether
the data is connection or connectionless oriented. All other associations will be
spread over the multiple equal-cost routes.

If the PERPACKET parameter is specified and there are IP packets to be
delivered over a multipath route, a route will be selected on a round-robin basis to
send this IP packet to its destination, and connection or connectionless-oriented
IP packets using the same source and destination pair will not always use the
same route.

You should pay attention if you choose the PERPACKET option, because it may
consume additional CPU cycles on the final destination to reassemble packets if
they arrive out of order. Fragmented IP datagrams are restricted from using the
PERPACKET option.

The subparameter FWDMULTIPATH PERPACKET in the DATAGRAMFWD
parameter is used for transferring data between networks if there are multipath
equal-cost routes. It is coded in the IPCONFIG statement and indicates that the
connection or connectionless-oriented IP packets using the same destination
address do not always use the same route.

When there is more than one route to the same subnet you can select one as a
primary and another as backup for the OSPF protocol traffic by coding
Parallel_OSPF values in the OSPF_Interface statement.

6.5.7 VTAM and I/O definitions
We set up the 2216 MPC+ connection for our host stacks using a unique control
unit address (CUADD) for each LPAR. In the latest release of MAS, this is not
necessary and the same address can be used on each LPAR.

Figure 192 contains the I/O definitions we used to define the ESCON connections
for our 2216:
178 TCP/IP in a Sysplex

Figure 193. I/O definitions for 2216 ESCON channel

Since this is an MPC+ connection we needed to configure it using VTAM
definitions. MPC+ is one of the three DLCs that the SNA and IP portions of CS for
OS/390 share, and it is the SNA component that owns the connection manager.

Configuring VTAM for MPC+ requires an entry in the VTAM transport resource list
(TRL). A TRL entry (TRLE) corresponds to an MPC+ group. Figure 194 contains
the VTAM TRL definition on RA03, which was to be used by the TCPIPC stack:

Figure 194. VTAM TRL major node for 2216 MPC+ on T03ATCP

Notes to Figure 194:

1 The TRLE name (M032216B) in the TRL definition must match the name on
the corresponding DEVICE statement in the TCP/IP profile.

2 MPC+ allows multiple subchannels in each direction for maximum
availability; you need to define at least one read and one write subchannel for
each connection. Note that the read subchannel defined here corresponds to
the write subchannel on the 2216, and vice versa.

The TRLE definitions for the rest of the MPC links can be modeled on Figure 194.
The only differences are the TRLE name and the READ and WRITE addresses.

You need to activate the associated TRL major node prior to activating the MPC+
device. Then you can display the status of the TRLE as follows:

--- SWITCH ---- UNIT ADDR UNIT
ID PR CU DYN --- CONTROL UNIT --- CU- RANGE -- DEVICE --

ADDR DEVICE
CHPID TYPE SIDE MODE PN PN ID NUMBER TYPE-MODEL ADD PROTOCOL FROM TO NUMBER,RANGE

START TYPE-MODEL
A8 CNC SHR E1 D0 C2 E1 0380 3172 1 00 1F 0380,32

00 3172
A8 CNC SHR E1 D0 C2 E1 03A0 3172 2 00 1F 03A0,32

00 3172
A8 CNC SHR E1 D0 C2 E1 03C0 3172 4 00 1F 03C0,32

00 3172

VBUILD TYPE=TRL
M032216B TRLE LNCTL=MPC, 1

MAXBFRU=9,
READ=381, 2

WRITE=380, 2

MPCLEVEL=HPDT,
REPLYTO=3.0
Chapter 6. Routing in a sysplex environment 179

Figure 195. Displaying VTAM TRL definition for 2216 MPC+ on T03ATCP

Note that the status of the TRLE will not be ACTIVE until either VTAM or TCP/IP
activates the underlying connection (TCP/IP starts the device or VTAM activates
the link station).

6.5.8 2216 configuration
The 2216 is an APPN and IP router that provides mainframe access using either
ESCON or a parallel channel adapter. It supports a wide range of LAN, WAN and
ATM adapters.

Multiprotocol Access Services (MAS) is the operational code for the 2216. MAS
provides a comprehensive set of multiprotocol routing protocols, transport code,
and features.

6.5.8.1 Hardware configuration
In our network we used a 2216 Model 400 that was equipped with one two-port
token-ring adapter in slot 1 and one ESCON adapter in slot 8.

First we connected an ASCII terminal to the 2216's service port. We used the
console interface to configure the hardware adapter. Alternatively, we could have
configured the 2216 by connecting via Telnet, or by using a GUI on a PC and
uploading the resulting file.

When configuring the 2216, most commands can be abbreviated to one or two
characters.

It is also important to notice that the prompt may change after you have entered a
command. Not all commands are valid under every prompt and the
syntax/parameters may change for the same command under different prompts.

D NET,TRL,TRLE=M032216B
IST097I DISPLAY ACCEPTED
IST075I NAME = M032216B, TYPE = TRLE
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV
IST087I TYPE = LEASED , CONTROL = MPC , HPDT = YES
IST1715I MPCLEVEL = HPDT MPCUSAGE = SHARE
IST1577I HEADER SIZE = 4096 DATA SIZE = 32 STORAGE = ***NA***
IST1221I WRITE DEV = 0380 STATUS = ACTIVE STATE = ONLINE
IST1577I HEADER SIZE = 4092 DATA SIZE = 32 STORAGE = DATASPACE
IST1221I READ DEV = 0381 STATUS = ACTIVE STATE = ONLINE
IST314I END
180 TCP/IP in a Sysplex

Figure 196. 2216 device configuration console log, part 1

MOS Operator Console

*talk 6 1

Config>add device token-ring
Device Slot #(1-8) [1]? 2
Device Port #(1-2) [1]?
Adding Token Ring device in slot 1 port 1 as interface #0
Use "net 0" to configure Token Ring parameters
Config>add device escon
Device Slot #(1-8) [1]? 8
Adding ESCON Channel device in slot 8 port 1 as interface #1
Use "net 1" to configure ESCON Channel parameters
Config>network 0 3
Token-Ring interface configuration
TKR config>speed 16
TKR config>packet-size 4399
TKR config>exit
Config>network 1
ESCON Config>add mpc 4
ESCON Add Virtual>sub addr
ESCON Add MPC+ Read Subchannel>link d0
ESCON Add MPC+ Read Subchannel>lpar 1
ESCON Add MPC+ Read Subchannel>cu 1
ESCON Add MPC+ Read Subchannel>dev 0
ESCON Add MPC+ Read Subchannel>ex
ESCON Add Virtual>sub addw
ESCON Add MPC+ Write Subchannel>dev 1
ESCON Add MPC+ Write Subchannel>ex
ESCON Add Virtual>exit
ESCON Config>add mpc
ESCON Add Virtual>sub addr
ESCON Add MPC+ Read Subchannel>link d0
ESCON Add MPC+ Read Subchannel>lpar 2
ESCON Add MPC+ Read Subchannel>cu 2
ESCON Add MPC+ Read Subchannel>dev 0
ESCON Add MPC+ Read Subchannel>ex
ESCON Add Virtual>sub addw
ESCON Add MPC+ Write Subchannel>dev 1
ESCON Add MPC+ Write Subchannel>ex
ESCON Add Virtual>ex
ESCON Config>add mpc
ESCON Add Virtual>sub addr
ESCON Add MPC+ Read Subchannel>link d0
ESCON Add MPC+ Read Subchannel>lpar 4
ESCON Add MPC+ Read Subchannel>cu 4
ESCON Add MPC+ Read Subchannel>dev 0
ESCON Add MPC+ Read Subchannel>ex
ESCON Add Virtual>sub addw
ESCON Add MPC+ Write Subchannel>dev 1
ESCON Add MPC+ Write Subchannel>ex
ESCON Add Virtual>ex
Chapter 6. Routing in a sysplex environment 181

Figure 197. 2216 device configuration console log, part 2

In the figures:

1 The talk 6 command enables configuration mode.

ESCON Config>modify 2 5
ESCON Config Virtual>max 32768
ESCON Config Virtual>ex
ESCON Config>mod 3
ESCON Config Virtual>max 32768
ESCON Config Virtual>ex
ESCON Config>mod 4
ESCON Config Virtual>max 32768
ESCON Config Virtual>ex
ESCON Config>list all 6
Net: 2 Protocol: MPC+ LAN type: MPC+ LAN number: 0

Maxdata: 32768
Reply TO: 45000 Sequencing Interval Timer: 3000
Outbound protocol data blocking is enabled
Block Timer: 5 ms ACK length: 10 bytes
Read Subchannels:
Sub 0 Dev addr: 0 LPAR: 1 Link addr: D0 CU addr: 1
Write Subchannels:
Sub 1 Dev addr: 1 LPAR: 1 Link addr: D0 CU addr: 1

Net: 3 Protocol: MPC+ LAN type: MPC+ LAN number: 1
Maxdata: 32768
Reply TO: 45000 Sequencing Interval Timer: 3000
Outbound protocol data blocking is enabled
Block Timer: 5 ms ACK length: 10 bytes
Read Subchannels:
Sub 0 Dev addr: 0 LPAR: 2 Link addr: D0 CU addr: 2
Write Subchannels:
Sub 1 Dev addr: 1 LPAR: 2 Link addr: D0 CU addr: 2

Net: 4 Protocol: MPC+ LAN type: MPC+ LAN number: 2
Maxdata: 32768
Reply TO: 45000 Sequencing Interval Timer: 3000
Outbound protocol data blocking is enabled
Block Timer: 5 ms ACK length: 10 bytes
Read Subchannels:
Sub 0 Dev addr: 0 LPAR: 4 Link addr: D0 CU addr: 4
Write Subchannels:
Sub 1 Dev addr: 1 LPAR: 4 Link addr: D0 CU addr: 4

ESCON Config>ex
ESCON configuration has been changed.
Do you wish to keep the changes? [Yes]: y
Config>
Config>list devices 7
Ifc 0 Token Ring Slot: 1 Port: 1
Ifc 1 ESCON Channel Slot: 8 Port: 1
Ifc 2 MPC - ESCON Channel Base Net: 1
Ifc 3 MPC - ESCON Channel Base Net: 1
Ifc 4 MPC - ESCON Channel Base Net: 1
182 TCP/IP in a Sysplex

2 The values within [] are the defaults. You can confirm the default by pressing
Enter, or change it.

3 The network command gives you the opportunity to change the parameters
for the specified interface.

4 The add mpc command adds and configures MPC interfaces for the ESCON
adapter.

5 The modify command changes parameters on the MPC interface. After the
MPC interfaces were defined, the 2216 assigned the three host connections
the numbers 2, 3 and 4, so modify 2 refers to the first one defined (LPAR 1, or
RA03).

6 The list command used under the ESCON configuration prompt displays
the ESCON configuration being defined.

7 The list devices command used under the base configuration prompt
displays the defined devices. Note the confusing use of the terms port,
interface and network. Here interfaces 2, 3 and 4 are actually connections
within the physical ESCON port called interface 1.

6.5.8.2 2216 IP configuration
After the device configuration we configured the IP protocol via the 2216 console,
as shown in Figure 198:

Figure 198. 2216 IP configuration console log

1 The add address command adds an IP address to the specified interface (0, the
token-ring in this case).

Config>protocol ip
Internet protocol user configuration
IP config>add address 0
1
New address []? 172.16.220.254
Address mask [255.255.0.0]? 255.255.255.0
IP config>ad ad 2
New address []? 172.16.100.254
Address mask [255.255.0.0]? 255.255.255.0
IP config>ad ad 3
New address []? 172.16.101.254
Address mask [255.255.0.0]? 255.255.255.0
IP config>ad ad 4
New address []? 172.16.102.254
Address mask [255.255.0.0]? 255.255.255.0
IP config>set internal 172.16.220.254
2
IP config>list addresses
IP addresses for each interface:

intf 0 172.16.220.254 255.255.255.0 Local wire broadcast, fill 1
intf 1 IP disabled on this interface
intf 2 172.16.100.254 255.255.255.0 Local wire broadcast, fill 1
intf 3 172.16.101.254 255.255.255.0 Local wire broadcast, fill 1
intf 4 172.16.102.254 255.255.255.0 Local wire broadcast, fill 1

Internal IP address: 172.16.220.254
IP config>ex
Chapter 6. Routing in a sysplex environment 183

2 The set internal-ip-address command adds the internal IP address for the
router. This address acts rather like a VIPA address in that it can be reached
independently of the active real interfaces. In fact, it is usual (as with a VIPA
address) to have the internal address on a unique subnetwork.

6.5.8.3 2216 OSPF configuration
Next, we configured OSPF on the router as shown in Figure 199:

Figure 199. 2216 OSPF configuration console log

1 The protocol command enters configuration mode for the selected protocol.

2 The set interface command sets the OSPF parameters for the desired
interface.

Config>protocol ospf 1
Open SPF-Based Routing Protocol configuration console
OSPF Config>enable ospf
Estimated # external routes [100]?
Estimated # OSPF routers [50]?
Maximum Size LSA [2048]?
OSPF Config>set interface 172.16.220.254 2
Attaches to area [0.0.0.0]?
Retransmission Interval (in seconds) [5]?
Transmission Delay (in seconds) [1]?
Router Priority [1]?
Hello Interval (in seconds) [10]?
Dead Router Interval (in seconds) [40]?
TOS 0 cost [1]?
Demand Circuit (Yes or No)? [No]:
Authentication Type (0 - None, 1 - Simple) [0]?
OSPF Config>se in 172.16.100.254
*** 9 rows deleted ***
OSPF Config>se in 172.16.101.254
*** 9 rows deleted ***
OSPF Config>se in 172.16.102.254
*** 9 rows deleted ***
OSPF Config>list all

--Global configuration--
OSPF Protocol: Enabled
AS ext. routes: 100
Estimated # routers: 50
Maximum LSA size: : 2048
External comparison: Type 2
RFC 1583 compatibility: Enabled
AS boundary capability: Disabled
Multicast forwarding: Disabled
Demand Circuits: Enabled
Least Cost Area Ranges: Disabled
Maximum Random LSA Age: 0

--Area configuration--
Area ID Stub? Default-cost Import-summaries?
0.0.0.0(Implicit) No N/A N/A

--Interface configuration--
IP address Area Auth Cost Rtrns Delay Pri Hello Dead
172.16.220.254 0.0.0.0 0 1 5 1 1 10 40
172.16.100.254 0.0.0.0 0 1 5 1 1 10 40
172.16.101.254 0.0.0.0 0 1 5 1 1 10 40
172.16.102.254 0.0.0.0 0 1 5 1 1 10 40
OSPF Config>ex
Config>write 3
Config Save: Using bank A and config number 1
Config>
4
*reload
Are you sure you want to reload the gateway? (Yes or [No]): y
184 TCP/IP in a Sysplex

After defining the OSPF parameters for all the interface, we exited the OSPF
configuration prompt and used the write command 3 to save the configuration
data in the 2216's bank.

4 Ctrl-P exits configuration mode.
Chapter 6. Routing in a sysplex environment 185

186 TCP/IP in a Sysplex

Chapter 7. Sysplex Distributor

Sysplex Distributor is a new function for IBM Communications Server for OS/390
V2R10 IP that takes the XCF dynamics and Dynamic VIPA support to a whole
new level in terms of availability and workload balancing in a sysplex. Workload
can be distributed to multiple server instances within the sysplex without requiring
changes to clients or networking hardware and without delays in connection
setup. IBM Communications Server for OS/390 V2R10 provides the way to
implement a dynamic VIPA as a single network-visible IP address for a set of
hosts that belong to the same sysplex cluster. Any client located anywhere in the
IP network is able to see the sysplex cluster as one IP address regardless of the
number of hosts that it includes.

With Sysplex Distributor, clients receive the benefits of workload distribution
provided by both Workload Manager (WLM) and Quality of Service (QoS) Policy
Agent. In addition, Sysplex Distributor ensures high availability of the IP
applications running on the sysplex cluster, no matter if one physical network
interface fails or an entire IP stack or OS/390 is lost.

This chapter includes:

 • 7.1, “Static VIPA and Dynamic VIPA overview” on page 187

 • 7.2, “What is Sysplex Distributor?” on page 188

 • 7.3, “The role of dynamic routing with Sysplex Distributor” on page 193

 • 7.4, “Sysplex Distributor and policy” on page 194"

 • 7.5, “Sysplex Distributor implementation” on page 207

 • 7.6, “Monitoring Sysplex Distributor” on page 211

 • 7.7, “Implementation examples” on page 212

 • 7.8, “Diagnosing Sysplex Distributor problems” on page 251

7.1 Static VIPA and Dynamic VIPA overview

The concept of virtual IP address (VIPA) was introduced by IBM to remove the
dependencies of other hosts on particular network attachments to CS for OS/390
IP. Prior to VIPA, other hosts were bound to one of the home IP addresses and,
therefore, to a particular network interface. If the physical network interface failed,
the home IP address became unreachable and all the connections already
established with this IP address also failed. VIPA provides a virtual network
interface with a virtual IP address that other TCP/IP hosts can use to select an
OS/390 IP stack without choosing a specific network interface on that stack. If a
specific physical network interface fails, the VIPA address remains reachable by
other physical network interfaces. Hosts that connect to OS/390 IP applications
can send data to a VIPA address via whatever path is selected by the dynamic
routing protocol (such as RIP or OSPF).

A VIPA is configured the same as a normal IP address for a physical adapter,
except that it is not associated with any particular interface. VIPA uses a virtual
device and a virtual IP address. The virtual IP address is added to the home
address list. The virtual device defined for the VIPA using DEVICE, LINK and
HOME statements is always active and never fails. Moreover, the OS/390 IP stack
© Copyright IBM Corp. 1998 2001 187

advertises routes to the VIPA address as if it were one hop away and has
reachability to it.

To an attached router, the IP stack in OS/390 simply looks like another router.
When the IP stack receives a packet destined for the VIPA, the inbound IP
function of the stack notes that the IP address of the packet is in the stack’s home
list and forward the packet up the stack. Assuming that the IP stack has more
than one network interface, if a particular network interface fails, the downstream
router will simply route VIPA-targeted packets to the stack via an alternate route.
In other words, the destination IP stack on OS/390 is still reachable and it looks
like another intermediate node. The VIPA may thus be thought of as an address
of the stack and not of any particular network interface associated with the stack.

While VIPA certainly removes the dependency on any particular network interface
as a single point of failure, the connectivity of a server can still be lost when a
single stack or an OS/390 image fails. When this occurs, we could manually move
a VIPA to another stack using the OBEY command (or semi-automatically using any
system management automation of the manual process). This type of VIPA is not
viewed as attractive since the process is inherently manual. As a result, an
automatic VIPA movement and activation mechanism were added.

Dynamic VIPA was introduced by SecureWay Communications Server for OS/390
V2R8 IP to enable the dynamic activation of a VIPA as well as the automatic
movement of a VIPA to another surviving OS/390 image after an OS/390 stack
failure. There are two forms of Dynamic VIPA, both of which can be used for
takeover functionality:

 • Automatic VIPA takeover allows a VIPA address to move automatically to a
stack (called a backup stack) where an existing suitable application
instance is already active and allows the application to serve the client
formerly going to the failed stack.

 • Dynamic VIPA activation for an application server allows an application to
create and activate VIPA so that the VIPA moves when the application
moves.

Non-disruptive, immediate, automatic VIPA takeback was introduced by IBM
Communications Server for OS/390 V2R10 to move the VIPA back to where it
originally belongs once the failed stack has been restored. This takeback is
non-disruptive to existing connections with the backup stack and the takeback is
not delayed until all connections with the backup stack have terminated (as was
the case with CS for OS/390 V2R8 IP). New connections will be handled by the
new (original) primary owner, thereby allowing the workload to move back to the
original stack.

7.2 What is Sysplex Distributor?

Sysplex Distributor was designed to address the requirement of one single
network-visible IP address for the sysplex cluster and let the clients in the
network receive the benefits of workload distribution and high availability within
the sysplex cluster. With Sysplex Distributor, client connections seem to be
connected to a single IP host even if the connections are established with
different servers in the same sysplex cluster.
188 TCP/IP in a Sysplex

Because the Sysplex Distributor function resides on a system in the sysplex itself,
it has the ability to factor "real-time" information concerning the multiple server
instances including server status as well as QoS and Policy information provided
by CS for OS/390 IP’s Service Policy Agent. By combining these "real-time"
factors with the information from WLM, the Sysplex Distributor has the unique
ability to ensure that the best destination server instance is chosen for a
particular client connection. The Sysplex Distributor has more benefits than other
load-balancing implementations, such as the Network Dispatcher or DNS/WLM.
Their limitations are removed with Sysplex Distributor.

In summary, the benefits of Sysplex Distributor include:

1. Removes configuration limitations of Network Dispatcher

Target servers can use XCF links between the distributing stack and target
servers as opposed to LAN connections such as an OSA

2. Removes dependency of specific hardware in WAN

Provides total CS for OS/390 IP solution for workload distribution

3. Provides real-time workload balancing for TCP/IP applications

Even if clients cache the IP address of the server (a common problem for
DNS/WLM)

4. Enhances VIPA takeover and takeback support

Allows for non-disruptive takeback of VIPA original owner to get workload
where it belongs

Distributing function can be backed up and taken over

5. Enhances Dynamic VIPA support

Non-disruptive application server instance movement

In summary, Sysplex Distributor provides:

1. Single network-visible IP address of a sysplex cluster service. One IP address
can be assigned to the entire sysplex cluster (usually for each service
provided, such as Telnet):

Sysplex Distributor will query the Policy Agent to find if there exists any policy
defined for routing the incoming connection requests.

WLM and QoS policy can be specified for workload balancing in real-time on
every new connection request.

2. It raises the limit of 64 DVIPAs on a stack to 256.

3. Backup capability is enhanced. In case of failure of the distributing IP stack,
the connections distributed to other IP stacks in the sysplex will not be
disrupted.

4. Dynamic VIPA takeback without any disruption in the connections already
established.

5. New commands are added to display both the connection routing table and
destination port table information, showing information of configuration and
current connection distribution.
Chapter 7. Sysplex Distributor 189

The specific profile statements that should be used to configure Sysplex
Distributor will be detailed later in 7.5, “Sysplex Distributor implementation” on
page 207.

7.2.1 Sysplex Distributor functionality
Let us consider the scenario depicted in Figure 200 on page 191. This includes
four CS for OS/390 V2R10 IP stacks running in the same sysplex cluster in GOAL
mode (WLM goal mode). All of them have SYSPLEXROUTING, DATAGRAMFWD,
and DYNAMICXCF configured. Let us assume that:

 • H1 is configured as the distributing IP stack with V1 as the Dynamic VIPA
(DVIPA) assigned to the sysplex cluster.

 • H2 is configured as backup for V1.

 • H3 and H4 are configured as secondary backups for V1.

 • Let us suppose that APPL1 is running in all the hosts that are members of the
same sysplex cluster. Note that the application could also be running in two or
three of the hosts or in all of them at the same time.

With this in mind, we describe how Sysplex Distributor works:

1. When IP stack H1 is activated, the definitions for the local XCF1 link are
created dynamically due to DYNAMICXCF being coded in the H1 profile.
Through this new link, H1 recognizes the other IP stacks that belong to the
same sysplex cluster and their XCF associated links: XCF2, XCF3, and XCF4.

2. The DVIPA assigned to the sysplex cluster and the application ports that this
DVIPA serves are read from the VIPADISTRIBUTE statement in the profile
data set. An entry in the home list is added with the distributed IP address in
all the IP stacks. The home list entry on the target stacks is actually done with
a message that H1 sends to all the stacks read from the VIPADISTRIBUTE
statement. Only one stack advertises the DVIPA through the RIP or OSPF
routing protocol. In this case it is the one that resides in H1, the host in charge
of load distribution.

3. H1 monitors whether there is at least one application (APPL1 in Figure 200 on
page 191) with a listening socket for the designated port and DVIPA. Actually
H2, H3, and H4 will send a message to H1 when a server (in our case APPL1)
is bound to either INADDR_ANY or specifically to the DVIPA (and, of course,
the designated port). With that information H1 builds a table with the name of
the application and the IP stacks that could serve any connection request for
it. The table matches the application server listening port with the target XCF
IP address.

4. When a client in the network requests a service from APPL1, the DNS
resolves the IP address for the application with the DVIPA address. This DNS
could be any DNS in the IP network and does not need to register with WLM.

5. As soon as H1 receives the connection request (TCP segment with the SYN
flag), it queries WLM and/or QoS to select the best target stack for APPL1 and
forwards the SYN segment to the chosen target stack. In our example, it is
APPL1 in H4 that best fits the request.

6. One entry is created in the connection routing table (CRT) in H1 for this new
connection with XCF4 as the target IP address. H4 also adds the connection
to its connection routing table.
190 TCP/IP in a Sysplex

Note: If a program binds to DVIPA on H4 and initiates a connection, H4 needs
to send a message to H1, so H1 can update its connection routing table
accordingly. As an example, this is used when the FTP server on H4 would
initiate a data connection (port 20) to a client.

7. The H1 IP stack will forward subsequent incoming data for this connection to
the correct target stack.

8. When the H4 IP stack decides that the connection no longer exists, it informs
the H1 IP stack with a message so H1 can remove the connection from its
connection routing table.

Figure 200. Sysplex Distributor functionality

7.2.2 Backup capability
Let us say that the scenario depicted has been running for some time without
problems. The new APPL1 connections have been distributed according to WLM
and/or QoS to H1, H2, H3, and H4. Suppose that a considerable amount of
connections are currently established between several APPL1 server images and
clients in the IP network. What would happen if we had a major failure in our
distributing IP stack, H1?

Automatic Dynamic VIPA takeover was introduced in SecureWay
Communications Server for OS/390 V2R8 IP. This function allows a VIPA address
to automatically move from one IP stack where it was defined to another one in
the event of the failure of the first. The VIPA address remains active in the IP
network, allowing clients to access the services associated with it.

WLM/QOS

CF

Dest=V1
Src=a.b.c.d

Dest=V1
Src=a.b.c.d

Unadvertised V1

Unadvertised V1

Unadvertised V1
XCF2

XCF3

XCF4XCF1

DVIPA: V1 H1 APPL1

H4 APPL1

H3 APPL1

H2 APPL1

CRT

DPT : Destination port table
CRT : Connection routing table

SYN?
Select server
Add conn to table

RST/FIN?
Find conn table
Remove table

Otherwise?
Find conn table

Forward to server (x)

DPT CRT

CRT

CRT
Chapter 7. Sysplex Distributor 191

In IBM Communication Server for OS/390 V2R10, this VIPA takeover functionality
has been enhanced to support Sysplex Distributor. Consider the scenario
described in Figure 201.

H1 is the distributing IP stack and H2 is the primary VIPABACKUP IP stack. When
H1 fails (Figure 201):

1. All the IP connections terminating at H1 are lost.

2. The Sysplex Distributor connection routing table (CRT) is also lost.

Figure 201. Sysplex Distributor and VIPA takeover

3. H2 detects that H1 is down and defines itself as the distributing IP stack for the
VIPA.

4. Because H2 saved information about H1, it informs the other target stacks that
it knows V1 is distributable.

5. H3 and H4 find out that H2 is the chosen backup for V1 and immediately send
connection information regarding V1 to IP stack H2.

6. H2 advertises V1(DVIPA) through the dynamic routing protocol (RIP or OSPF).
Retransmitted TCP segments for already existing connections or SYN
segments for new connections are hereafter processed by IP stack H2 and
routed by H2 to the appropriate target stacks.

Note: Only the IP connections with the failing IP stack were lost. All other
connections remain allocated and function properly.

CF

Dest=V1
Src=a.b.c.d

Unadvertised V1

Unadvertised V1

XCF2
XCF3

XCF4XCF1

DVIPA: V1 H1 APPL1

H4 APPL1

H3 APPL1

H2 APPL1

Same algorithm as in
original Distributor Dest=V1

Src=a.b.c.d

WLM/QOS

V1
TakeOver

DPT CRT

CRT

SYN ?
Select server
Add conn to table

RST/FIN ?
Find conn table
Remove table

Otherwise ?
Find conn table

Forward to server (x)

DPT CRT

CRT

DPT : Destination port table
CRT : Connection routing table
192 TCP/IP in a Sysplex

7.2.3 Recovery
Once the H1 IP stack is activated again the process of taking back V1 to H1 is
started. This process is non-disruptive for the IP connections already established
with V1 regardless of which host is the owner at that time (in our example H2). In
our example, connection information is maintained by H2. When H1 is
re-activated, H2 sends its connection information to H1. This gives H1 the
information it needs to once again distribute packets for existing connections to
the correct stacks in the sysplex.

Connections with the backup host are not broken when the V1 address is taken
back to H1, and takeback is not delayed until all connections with the backup host
have terminated (Figure 202).

Figure 202. Sysplex Distributor and VIPA takeback

7.3 The role of dynamic routing with Sysplex Distributor

Routing IP packets for Sysplex Distributor can be divided into two cases: routing
inside the sysplex cluster and routing through the IP network. Routing inside the
sysplex cluster is accomplished by the distributing host. All incoming traffic (new
connection requests and connection data) arrives first to the distributing stack. It
forwards the traffic to the target applications, wherever they are in the sysplex
cluster, through the XCF links. Here the routing process is done without
considering any IP routing table. The WLM and QoS weights are the factors
considered in target selection for new requests and the CRT is the consulted data

WLM/QOS

CF

Dest=V1
Src=a.b.c.d

Dest=V1
Src=a.b.c.d

Unadvertised V1

Unadvertised V1

Unadvertised V1
XCF2

XCF3

XCF4XCF1

DVIPA: V1 H1 APPL1

H4 APPL1

H3 APPL1

H2 APPL1

V1
TakeBack

Same algorithm
as in original
Distributor

DPT CRT

CRT

DPT CRT

CRT

DPT : Destination port table
CRT : Connection routing table
Chapter 7. Sysplex Distributor 193

structure for connection data. On the other hand, the outgoing traffic generated
by the applications is routed considering the destination IP address and the
routing table in each stack.

Routing outside the sysplex through the IP network is done by the downstream
routers. Those routers learn about the DVIPA assigned to the sysplex dynamically
using OSPF or RIP routing protocols. As a result, it is necessary to implement
either one of these routing protocols in all the IP stacks of the sysplex cluster.

The distributing VIPA address is dynamically added to the home list of each IP
stack participating in the Sysplex Distributor, but only one IP stack advertises the
sysplex VIPA address to the routers: the one defined as the distributing IP stack.
The other stacks do not advertise it and only the backup IP stack will do so if the
distributing IP stack fails.

If ORouteD is being used, then the Dynamic VIPA support generates the
appropriate BSDROUTINGPARMS statement.

If you are using OMPROUTE, you should consider the following as referenced in
Figure 203:

 • The names 2 of Dynamic VIPA interfaces are assigned dynamically by the
stack when they are created. Therefore, the name coded for the
OSPF_Interface statement in the Name 2 field will be ignored by OMPROUTE.

 • It is recommended that each OMPROUTE server have an OSPF_Interface
defined for each Dynamic VIPA address that the IP stack might own or, if the
number of DVIPAs addresses is large, a wildcard should be used.

It is also possible to define ranges of dynamic VIPA interfaces using the subnet
mask and the IP address on the OSPF_Interface statement. The range defined
will be all the IP addresses that fall within the subnet defined by the mask and the
IP address. The following example 1 defines a range of Dynamic VIPA addresses
from 10.138.165.80 to 10.138.165.95:

Figure 203. Dynamic VIPA OSPF definition

For consistency with the VIPARANGE statement in the TCPIP.PROFILE, any
value that may fall within this range can be used with the mask to define a range
of dynamic VIPAs.

7.4 Sysplex Distributor and policy

Policies are an administrative means to define controls for a network, in order to
achieve the QoS levels promised by a given SLA or to implement security or
resource balancing decisions. Quality of Service Policy allows classification of IP
traffic by application, user group, time of day, and assignment of relative priority.
The Policy Agent reads policy entries from a flat file called pagent.conf that can
be located in any MVS or HFS file or from an LDAP server or both. The Sysplex
Distributor uses these policies to limit the target stack to route its work in

OSPF_Interface
IP_address = 10.138.165.80 1
Name = dummy_name 2
Subnet_mask = 255.255.255.240
194 TCP/IP in a Sysplex

conjunction with the WLM weights. Note that the WLM has to run in GOAL mode
at the target stacks, or the QoS weights will have no effect and the distribution of
the work is random.

The following types of policies are supported in IBM Communications Server for
OS/390 V2R10 IP:

Integrated Services: Type of service that provides end-to-end QoS using
resource reservations along a network path from
sender to receiver. This service is provided by the
RSVP Agent.

Differentiated Services: Type of services that provides aggregate QoS to broad
classes of traffic. (for example, all FTP traffic).

Sysplex Distribution: Policies specify to which target stack the Sysplex
Distributor may route incoming connection requests.

Traffic Regulation Mgmt: Policies define the maximum number of connections to
a TCP port and control the number from a single host
to this port.

The Policy Agent performs two distinct functions to assist the Sysplex Distributor:

1. Policies can be defined to control which stack the sysplex distributor routes
traffic to. The definition of the outbound Interface on the PolicyAction
statement can limit the stacks to which work is distributed to a subset of
those defined on the VIPADISTRIBUTE statement in the TCPIP.PROFILE.
Using a policy, the stack to which work is distributed can vary, for example,
based on time periods. Another possibility is to limit the number of SD
target stacks for inbound traffic from a given subnet (Figure 204 on page
196).

2. The PolicyPerfMonitorForSDR statement in the pagent.conf file will activate
the Policy Agent QoS performance monitor function. When activated, the
Policy Agent will use data about packet loss and timeouts that exceeds
defined thresholds and derive a QoS weight fraction for that target stack.
This weight fraction is then used to reduce the WLM weight assigned to the
target stacks, so that the Sysplex Distributor stack can use this information
to better direct workload to where network traffic is best being handled. This
policy is activated on SD target stacks (Figure 204 on page 196).

To exclude stale data from target stacks where the Policy Agent has terminated,
the Policy Agent sends a “heartbeat” to the SD distributing stack at certain
intervals. The SD distributing stack deletes QoS weight fraction data from a target
stack when the “heartbeat” has not been received within a certain amount of time.

At ITSO Raleigh, we configured SD policies in two ways. In one scenario, the
Policy Agent extracts the policy information from a static configured HFS file
(PAGENT file), and in another case, an LDAP server running in OS/390 provides
all policy information in the network.

The sysplex consists of three OS/390 systems, RA03, RA28, and RA39. On each
system, there is a TCP/IP stack named TCPIPC, which participates in Sysplex
Distributor. The TCPIPC stack on RA03 takes the role of the distributing stack,
and the stacks on RA39 and RA28 act as the primary and secondary backup
respectively. An FTP server has been configured on each SD stack as an
application served by SD.
Chapter 7. Sysplex Distributor 195

We have defined an SD policy for FTP connections to install into the SD
distributing stack, which is TCPIPC on RA03, and have defined an SD
performance monitoring policy for the SD target stacks, which are TCPIPC on
RA28 and RA39. Figure 204 illustrates the system environment at ITSO Raleigh.

Figure 204. Sysplex Distributor policy implementation at ITSO Raleigh

7.4.1 Sysplex Distributor QoS policy in the PAGENT file
Please review the definition of the TCPIP.PROFILE for the stacks RA03, RA28
and RA39 in 7.5, “Sysplex Distributor implementation” on page 207. We did not
change anything in the TCPIP.PROFILE to run the QoS policy for Sysplex
Distributor.

We defined the SD policies that limit the number of SD target stacks for inbound
traffic on the SD target stack, and the SD performance monitoring policies on all
the participating stacks. For SD performance monitoring, the traffic to be
monitored has to be represented by at least one Differentiated Services policy
defined for the target application.

All policies have been configured in the image configuration file, which is the
second level PAGENT configuration file, namely /etc/pagent.r2615c.conf.

You will find further information about SD policy and SD performance monitor
policy in IBM Communications Server for OS/390 IP Configuration Guide,
SC31-8725 and IBM Communications Server for OS/390 IP Configuration
Reference, SC31-8726. More detailed information is also found in the redbook
IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide
Volume 2: UNIX Applications, SG24-5228.

We have the following SD policies configured in the SD distributing stack
(TCPIPC on RA03):

SD Target Stack TCPIPC

SD

QoS Weight
Fraction

PAGENT
Policy Agent

Statistics

SD Target Stack TCPIPC

SD

QoS Weight
Fraction

PAGENT
Policy Agent

Statistics

CF

List of Target XCF addresses for
inbound traffic to target port.

- TCP Timeouts and
retransmissions for source
port.

- TRM constrained destination
port.

QoS Weight
Fraction

SD Distributing Stack TCPIPC

SD / WLM
Interface

PAGENT
Policy Agent

Policies
TCPIPA

LDAP
FTPD

FTPD FTPD

RA03

RA28 RA39
196 TCP/IP in a Sysplex

#
IBM Communications Server for OS/390
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAPAGCO
#
LogLevel Statement
Loglevel 511

PolicyPerfMonitorForSDR Statement
PolicyPerfMonitorForSDR enable
{
samplinginterval 60
LossRatioAndWeightFr 20 25
TimeoutRatioAndWeightFr 50 50
LossMaxWeightFr 95
TimeoutMaxWeightFr 100

}

Policy Action statement
policyAction ftpaction
{

policyScope DataTraffic
outboundinterface 172.16.233.28 1
outboundinterface 172.16.233.39 1

outboundinterface 0.0.0.0 2
}

Policy Rule statement
policyRule ftprule
{

ProtocolNumberRange 6
DestinationPortRange 20 21 3
SourceAddressRange 9.24.106.0 9.24.106.255 4
policyactionreference ftpaction 5

}

The policies are identified as SD policies by the presence of the
Outboundinterface 1 attribute in the PolicyAction statement. You have to define to
which SD target stacks incoming connection requests that map to this rule should
be distributed. The target stacks are identified by the IP address of the dynamic
XCF link. Up to 32 instances of this attribute can be specified. See 7.5, “Sysplex
Distributor implementation” on page 207 for the DESTIP 1 address of the dynamic
XCF link participating in Sysplex Distributor.

2 A value of zero can be specified for the interface, which indicates to the SD
distributing stack that if it cannot distribute the request to a target stack on one of
the other specified interfaces, then the request can be distributed to any of the
other eligible target stacks.

Because we commented out the Outboundinterface 0.0.0.0 definition, SD will
reject the request when neither of the target stacks is available.

In our implementation, the incoming FTP connection requests will be forwarded to
either RA28 or RA39 for inbound traffic from a given 4 subnet, even though there
is an FTP server running on RA03. For FTP and other applications that use a
3control port and a data port, you always have to define both. Note that without
this SD policy activated, an incoming FTP connection will be forwarded to either
of three systems.
Chapter 7. Sysplex Distributor 197

5 You always match the policyRule to the policyAction by the
policyActionReference statement.

An additional possibility would be to activate this policy only at certain times, let’s
say during normal working hours from Monday to Friday between 08:00 and
17:00, which we didn’t do in our implementation. But you would have to add only
two statements to the policyRule definitions. Check the sample file
/usr/lpp/tcpip/samples/pagent.conf for the correct syntax and explanation.

DayOfWeekMask 0111110
TimeOfDayRange 08:00-17:00

On the SD target stacks, the following policies have been activated:

#
IBM Communications Server for OS/390
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAPAGCO
#
LogLevel Statement
Loglevel 511

PolicyPerfMonitorForSDR Statement
PolicyPerfMonitorForSDR enable 1
{
samplinginterval 60 2
LossRatioAndWeightFr 20 25 3
TimeoutRatioAndWeightFr 50 50 4
LossMaxWeightFr 95 5
TimeoutMaxWeightFr 100 6

}

Policy Action statement
policyAction ftpaction 7
{

policyScope DataTraffic 8
MaxConnections 50 # Limit FTP concurrent connections to 50.
MaxRate 400 # Limit FTP connection throughput to 400
OutgoingTOS 01000000 # the TOS value of outgoing FTP packets.

}

Policy Rule statement
policyRule ftprule 9
{

ProtocolNumberRange 6
DestinationPortRange 20 21
SourceAddressRange 9.24.106.0 9.24.106.255
policyactionreference ftpaction

}

1 Enables the policy performance monitor function, which assigns a weight
fraction to the monitored policy performance data and sends them to the SD
distributing stack as the monitored data crosses defined thresholds. The SD
distributing stack uses this weight fraction for its routing decisions for incoming
connection requests.

2 With the samplingInterval we specify how often we want to sample the policy
information for changes.
198 TCP/IP in a Sysplex

3 The LossRatioAndWeightFr has two values: the ratio of retransmitted bytes over
transmitted bytes in tenths of a percent, and the weight fraction to be assigned in
percentage. In our implementation, if a loss ratio rate of 2% occurs, the loss
fraction will be 25%. If a loss ratio rate above 4% occurs, the loss weight fraction
will be 50%. Let’s assume we have a loss ratio rate of 3%, which means a loss
weight fraction of 25%.

4 The TimeoutRatioAndWeightFr has two values: the timeout ratio in tenths of a
percent, and the weight fraction to be assigned in percentage. In our
implementation, if a timeout ratio rate of 5% occurs, the timeout fraction weight
would be 50%. If the timeout ratio rate is above 10%, the timeout weight fraction
would be 100%. Let’s assume we have a timeout ratio of 6%, which means we
have a timeout weight fraction of 50%.

The two weight fractions LossRatioAndWeightFr and TimeoutRatioWeightFr will
then be added. In our case, we would have a QoS weight fraction value of 75%,
which this target stack sends to the Sysplex Distributor. This value will be used by
the Sysplex Distributor stack to reduce the WLM weight given to this stack. So if
the WLM weight assigned to this target stack is 50, the QoS weight fraction of
75% will give an effective WLM weight fraction of 37.5.

5 LossMaxWeightFr defines the maximum loss weight fraction.

6 TimeoutMaxWeightFr defines the maximum timeout weight fraction.

The Policy Agent monitors the traffic for which one or more service policy
statements have been defined 7, 9. The policyScope attribute for the monitored
policy has to be either DataTraffic 8 or Both. We monitored the FTP traffic
originated from the 9.24.106 IP subnetwork.

7.4.2 Starting and stopping PAGENT
The Policy Agent can be started from the UNIX System Services shell or as a
started task. At ITSO Raleigh, we used a started task procedure to start Policy
Agent.

Although the etc/pagent.conf file is the default configuration file, a specific search
order is used when starting the Policy Agent. The following order is used:

1. File or data set specified with the -c startup option

2. File or data set specified with the PAGENT_CONF_FILE environment variable

3. /etc/pagent.conf

4. hlq.PAGENT.CONF

Note: Security product (for example, RACF) authority is required to start the
Policy Agent. The following commands can be used to create the necessary
profile and permit users to use it:

RDEFINE OPERCMDS (MVS.SERVMGR.PAGENT) UACC(NONE)
PERMIT MVS.SERVMGR.PAGENT ACCESS(CONTROL) CLASS(OPERCMDS)
ID(userid)SETROPTS RACLIST(OPERCMDS) REFRESH i

For example, the following command could be used to start PAGENT in the shell:

pagent -c /etc.pagent.r2615.conf
Chapter 7. Sysplex Distributor 199

The following is a Policy Agent started task procedure that we used in our
system:

//PAGENT PROC
//*
//* SecureWay Communications Server IP
//* SMP/E distribution name: EZAPAGSP
//*
//* 5647-A01 (C) Copyright IBM Corp. 1999.
//* Licensed Materials - Property of IBM
//*
//PAGENT EXEC PGM=PAGENT,REGION=0K,TIME=NOLIMIT,
// PARM='POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/'
//*
//* PARM='POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/-c /
//* etc/pagent.r2615.conf -d' 1
//* PARM='POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/-d'
//*
//* Example of passing parameters to the program (parameters must
//* extend to column 71 and be continued in column 16):
//*
//*STDENV DD DSN=TCPIP.TCPPARMS.R2615(PAG&SYSCLONE.ENV),DISP=SHR
//STDENV DD PATH='/etc/pagent.r2615.env',PATHOPTS=(ORDONLY) 2
//*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

You can use environment variables, either configured in an MVS data set or HFS
file, specified by the STDENV DD (1) to run with the desired configuration. We
have configured environment variables in an HFS file(2), /etc/pagent.r2615.env
which contains:

Figure 205. Environment variables for Policy Agent

We have configured four environment variables for the Policy Agent to run
successfully. The first variable, LIBPATH, enables PAGENT to search the dynamic
link libraries needed to act as an LDAP client (3). The PAGENT_CONFIG_FILE
specifies the PAGENT configuration file to use (4). The PAGENT_LOG_FILE
specifies the log file name used by PAGENT (5), and the
PAGENT_LOG_FILE_CONTROL (6) defines how many PAGENT log files are
used in round robin and the size of the file; we use the default value.

If you define the PAGENT to use a syslogd to log messages, which means you
define PAGENT_LOG_FILE=SYSLOGD, then the
PAGENT_LOG_FILE_CONTROL has no meaning.

BROWSE -- /etc/pagent.r2615.env --------------------
Command ===>
********************************* Top of Data *******
LIBPATH=/lib:/usr/lib:/usr/lpp/ldapclient/lib:. 3
PAGENT_CONFIG_FILE=/etc/pagent.r2615.conf 4
PAGENT_LOG_FILE=/tmp/pagent.r2615.log 5
PAGENT_LOG_FILE_CONTROL=300,3 6
TZ=EST5EDT 7
******************************** Bottom of Data *****
200 TCP/IP in a Sysplex

For the Policy Agent to run in your local time zone, you might have to specify the
time zone in your working location using the TZ environment variable (7) even if
you have the TZ environment variable configured in /etc/profile. Note that most
OS/390 UNIX applications that start as MVS started tasks cannot use
environment variables that have been configured in /etc/profile.

Note that while we do not have the RESOLVER_CONFIG variable configured,
PAGENT can establish an affinity to a proper TCP/IP stack. The Policy Agent will
use the TCP/IP image name configured in the TcpImage statement in the Policy
Agent configuration file to determine to which TCP/IP it shall install the policies.

We used the following statement in /etc/pagent.r2615.conf to do that:

TcpImage TCPIPC /pagent.r2615c.conf FLUSH 600

The Pagent Server can be stopped by:

 • Using the cancel command; for example C PAGENT

 • Using the kill command in the OS/390 shell

 • Using the operator command STOP

The following command with the TERM signal will enable PAGENT to clean up
resources properly before terminating:

kill -s TERM pid

The PAGENT process ID can be obtained using the following OS/390 UNIX
command:

ps -A

7.4.3 Monitoring the Sysplex Distributor QoS
You can use the NETSTAT command to display Sysplex Distributor information as
shown in Figure 206.

Figure 206. Sysplex Distributor VPDT detail display

ı DEST IPADDR: the distributing VIPA address of our sysplex complex.

2 DPORT: the port number to distribute workload in the sysplex.

D TCPIP,TCPIPC,N,VDPT,DETAIL
EZZ2500I NETSTAT CS V2R10 TCPIPC 606
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR 1 2 DPORT DESTXCF ADDR 3 RDY TOTALCONN 4
172.16.251.3 00020 172.16.233.3 000 0000000000
WLM: 01 5 W/Q: 01 6

172.16.251.3 00020 172.16.233.28 000 0000000005
WLM: 01 W/Q: 01

172.16.251.3 00020 172.16.233.39 000 0000000007
WLM: 01 W/Q: 01

172.16.251.3 00021 172.16.233.3 001 0000000000
WLM: 01 W/Q: 01

172.16.251.3 00021 172.16.233.28 001 0000000005
WLM: 01 W/Q: 01

172.16.251.3 00021 172.16.233.39 001 0000000006
WLM: 01 W/Q: 01

6 OF 6 RECORDS DISPLAYED
COMMAND INPUT ===>
Chapter 7. Sysplex Distributor 201

3 DESTXCF ADDR: IP address of the SD target stacks. This address is
configured for the dynamic XCF link in the IPCONFIG statement.

4 TOTALCONN: counter of connections distributed.

5 WLM: Work Load Manager weight.

6 W/Q: QoS weight.

As you can see, all FTP connection requests were forwarded to two of three SD
target stacks in our sysplex.

To verify that Sysplex Distributor policy has been successfully enabled, we can
check the active policies using the pasearch command; the command require a
superuser authority. Figure 207 shows the pasearch policies.
202 TCP/IP in a Sysplex

Figure 207. Display policies with pasearch command

The pasearch report shows all attributes of the policy installed, such as version 1
of this policy and the policy status 2.

The Routing Interfaces attribute 3 indicate whether this policy is the SD policy or
not. Two interface attributes have been defined for this policy. The value has to be
an IP address of the dynamic XCF link that has been defined for the SD target
stack 4. Those dynamic XCF links are used to route the incoming connection

MVS TCP/IP pasearch CS V2R10 TCP/IP Image: TCPIPC
Date: 08/10/2000 Time: 14:42:26

policyRule: ftprule
Version: 2 1 Status: Active 2
Priority: 0 Sequence Actions: Don't Care
ConditionListType: DNF No. Policy Action: 1
policyAction: ftpaction
ActionType: QOS Action Sequence: 0
Time Periods:
Day of Month Mask: 1111111111111111111111111111111
Month of Year Mask: 111111111111
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
From TimeOfDay: 00:00 To TimeOfDay: 24:00
From TimeOfDay UTC: 04:00 To TimeOfDay UTC: 04:00
TimeZone: Local
Condition Summary: Negative Indicator: OFF
RouteCondition:
InInterface: 0.0.0.0 OutInterface: 0.0.0.0
HostCondition:
SourceIpFrom: 9.24.106.0 SourceIpTo: 9.24.106.255
DestIpFrom: 0.0.0.0 DestIpTo: 0.0.0.0
ApplicationCondition:
ProtocolNumFrom: 6 ProtocolNumTo: 6
SourcePortFrom: 0 SourcePortTo: 0
DestPortFrom: 20 DestPortTo: 21
ApplicationName:
ApplicationData:

Qos Action: ftpaction
Version: 2 1 Status: Active 2
Scope: DataTraffic 5 OutgoingTOS: 00000000
Permission: Allowed
MaxRate: 0 MinRate: 0
MaxDelay: 0 MaxConn: 0
Routing Interfaces: 2 3
Interface Number: 1 Interface: 172.16.233.28 4
Interface Number: 2 Interface: 172.16.233.39 4

RSVP Attributes
ServiceType: 0 MaxRatePerFlow: 0
MaxTokBuckPerFlw: 0 MaxFlows: 0
DiffServ Attributes
InProfRate: 0 InProfPeakRate: 0
InProfTokBuck: 0 InProfMaxPackSz: 0
OutProfXmtTOSByte: 00000000 ExcessTrafficTr: BestEffort
TR Attributes
TotalConnections: 0 LoggingLevel: 0
Percentage: 0 TimeInterval: 0
TypeActions: 0
Chapter 7. Sysplex Distributor 203

requests. The PolicyScope attribute 5 must specify either DataTraffic or Both to
define interfaces using this attribute.

7.4.4 Sysplex Distributor policies in the LDAP server
In this scenario, the SD policies have been stored in the OS/390 LDAP server,
and is retrieved by the Policy Agent running on the SD distributing stack.

We configured the following policies as LDAP objects:

dn: pg=SDpolicy, g=policy, o=IBM_US, c= US 1
objectclass:ibm-policyGroup
ibm-policyGroupName:SDpolicy
ibm-policyRulesAuxContainedSet:pr=SDftprule, pg=SDpolicy, g=policy, o=IBM_US, c=US
description:SD policy for the SD distributing stack

dn:pr=SDftprule, pg=SDpolicy, g=policy, o=IBM_US, c= US
objectclass:ibm-policyRule
ibm-policyRuleName:SDftprule
cn:ftp application - rule
ibm-policyRuleEnabled:1
ibm-policyRuleConditionList:1:+:pc=ftpcond, pg=SDpolicy, g=policy, o=IBM_US, c=US
ibm-policyRuleActionList:1:pa=ftpaction, pg=SDpolicy, g=policy, o=IBM_US, c=US
ibm-policyRuleValidityPeriodList:pc=period1, pg=SDpolicy, g=policy, o=IBM_US, c=US
ibm-policyRuleKeywords:SDPolicyRules
ibm-policyRulePriority:2
ibm-policyRuleMandatory:TRUE
ibm-policyRuleSequencedActions:1

dn: pa=ftpaction, pg=SDpolicy, g=policy, o=IBM_US, c=US
objectclass:ibm-policyAction
objectclass:ibm-serviceCategories
ibm-policyActionName:ftpaction
cn:ftp-cos-1
ibm-PolicyScope:DataTraffic
ibm-MaxRate:400
ibm-MaxConnections:50
ibm-OutgoingTOS:01000000
ibm-interface:1--172.16.233.28 2
ibm-interface:1--172.16.233.39 2
ibm-interface:1--0.0.0.0 2

dn:pc=period1, pg=SDpolicy, g=policy, o=IBM_US, c= US
objectclass:ibm-policyTimePeriodCondition
ibm-policyConditionName:timeperiod1
cn:active time period 1
ibm-ptpConditionTime:19990713000000:20021030200000
ibm-ptpConditionMonthOfYearMask:111100111100
ibm-ptpConditionDayOfMonthMask:1111111111111111111111111111111
ibm-ptpConditionDayOfWeekMask:1111111
ibm-ptpConditionTimeOfDayMask:020000:230000
ibm-ptpConditionTimeZone:Z
description:time period 1

dn:pc=ftpcond, pg=SDpolicy, g=policy, o=IBM_US, c= US
objectclass:ibm-networkingPolicyCondition
objectclass:ibm-hostConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
ibm-policyConditionName:hostftpapplcondition1
cn:ftp host and application condition 1
ibm-ProtocolNumberRange:6
ibm-SourceIPAddressRange:2-9.24.106.0-24
ibm-DestinationPortRange:20:21

We defined a new PolicyGroup 1 for the SD policy objects.The policies are
identified as SD policies by the presence of the ibm-Interface attribute 2 in the
ibm_policyAction object class. Here, we have defined ibm-interface 0.0.0.0, so
that when neither RA28 nor RA39 can handle an FTP connection request, it will
be forwarded to RA03 if an FTP server is running there.
204 TCP/IP in a Sysplex

The second-level PAGENT configuration file also has been updated to
communicate with the OS/390 LDAP server as shown below:

ReadFromDirectory
{
LDAP_Server 172.16.250.3
LDAP_ProtocolVersion 3
LDAP_SchemaVersion 2
SearchPolicyBaseDN pg=SDpolicy, g=policy, o=IBM_US, c=US 1

}

PolicyPerfMonitorForSDR Statement
PolicyPerfMonitorForSDR enable 2
{
samplinginterval 60
LossRatioAndWeightFr 20 25
TimeoutRatioAndWeightFr 50 50
LossMaxWeightFr 95
TimeoutMaxWeightFr 100

}

1 PAGENT will download all objects under this tree. Note that all SD policy-related
objects defined belong to this group.

2 Because the SD performance monitor policy is not supported by the LDAP
server, it has to be defined in the PAGENT configuration file if necessary.

Using the pasearch OS/390 UNIX command, you will see the SD policies installed
into the SD distributing stack:
Chapter 7. Sysplex Distributor 205

1 The Distinguish Names defined for the LDAP objects.

2 The Routing Interfaces attribute, which indicates that this policy is an SD policy,
is defined in the same way when the SD policies are defined in the PAGENT
configuration file.

MVS TCP/IP pasearch CS V2R10 TCP/IP Image: TCPIPC
Date: 08/10/2000 Time: 16:04:37

policyRule: SDftprule
Version: 2 Status: Active
Distinguish Name: pr=SDftprule,pg=SDpolicy,g=policy,o=IBM_US,c=US 1
Group Distinguish Nm: pg=SDpolicy,g=policy,o=IBM_US,c=US
Priority: 2 Sequence Actions: Mandatory
ConditionListType: DNF No. Policy Action: 1
policyAction: ftpaction
ActionType: QOS Action Sequence: 1
Time Periods:
Day of Month Mask: 1111111111111111111111111111111
Month of Year Mask: 111100111100
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time UTC: Tue Jul 13 00:00:00 1999
End Date Time UTC: Wed Oct 30 20:00:00 2002
From TimeOfDay UTC: 02:00 To TimeOfDay UTC: 23:00
TimeZone: UTC
Condition Summary: Negative Indicator: OFF
RouteCondition:
InInterface: 0.0.0.0 OutInterface: 0.0.0.0
HostCondition:
SourceIpFrom: 9.24.106.0 SourceIpTo: 9.24.106.255
DestIpFrom: 0.0.0.0 DestIpTo: 0.0.0.0
ApplicationCondition:
ProtocolNumFrom: 6 ProtocolNumTo: 6
SourcePortFrom: 0 SourcePortTo: 0
DestPortFrom: 20 DestPortTo: 21
ApplicationName:
ApplicationData:

Qos Action: ftpaction
Version: 2 Status: Active
Distinguish Name: pa=ftpaction,pg=SDpolicy,g=policy,o=IBM_US,c=US 1
Scope: DataTraffic OutgoingTOS: 01000000
Permission: Allowed
MaxRate: 400 MinRate: 0
MaxDelay: 0 MaxConn: 50
Routing Interfaces: 3
Interface Number: 1 Interface: 172.16.233.28 2
Interface Number: 2 Interface: 172.16.233.39 2
Interface Number: 3 Interface: 0.0.0.0 2

RSVP Attributes
ServiceType: 0 MaxRatePerFlow: 0
MaxTokBuckPerFlw: 0 MaxFlows: 0
DiffServ Attributes
InProfRate: 0 InProfPeakRate: 0
InProfTokBuck: 0 InProfMaxPackSz: 0
OutProfXmtTOSByte: 00000000 ExcessTrafficTr: BestEffort
TR Attributes
TotalConnections: 0 LoggingLevel: 0
Percentage: 0 TimeInterval: 0
TypeActions: 0
206 TCP/IP in a Sysplex

You will find further information about the SD policy and SD performance monitor
policy in conjunction with an LDAP server in OS/390 IBM Communications
Server: IP Configuration Guide, SC31-8725 and OS/390 IBM Communications
Server: IP Configuration Reference, SC31-8726. More detailed information is
also found in IBM Communications Server for OS/390 V2R10 TCP/IP
Implementation Guide Volume 2: UNIX Applications, SG24-5228.

7.5 Sysplex Distributor implementation

The implementation of Sysplex Distributor is very straightforward. The TCP/IP
configuration that needs to take place is minimal compared to other connection
dispatching technologies. For the most part, the sysplex environment enables the
dynamic establishment of links and the dynamic coordination between stacks in
the cluster.

7.5.1 Requirements
The IPCONFIG DATAGRAMFWD and DYNAMICXCF statement must be coded in
the TCPIP.PROFILE data set in all the IP stacks of the sysplex cluster.

If you want to implement a WLM-based distribution, you have to register all IP
stacks participating in the sysplex with WLM coding SYSPLEXROUTING in each
IP stack. Also verify that all the participating CS for OS/390 V2R10 IP images are
configured for WLM GOAL mode.

To enable the distributing IP stack to forward connections based upon a
combination of workload information and network performance information,
configure all the participating stacks for WLM GOAL mode. Specify
SYSPLEXROUTING in the IPCONFIG statement in all the participating stacks
and also define a Sysplex Distributor Performance Policy on the target stack with
the Policy Agent. Otherwise, If SYSPLEXROUTING is not coded in any IP stack,
the distribution for incoming connections to the target applications will be random.

For those OS/390 images that are running more than one IP stack, the
recommended way to define XCF and IUTSAMEH links is to use the IPCONFIG
DYNAMICXCF. In fact, IUTSAMEH links should not be specified if the IP stack is
participating in Sysplex Distributor.

For any IP application that uses both control and data ports, both port numbers
must be distributed by the same Dynamic VIPA address (for example FTP).

7.5.2 Incompatibilities
As specified in the OS/390 IBM Communications Server: IP Migration,
SC31-8512, IBM recommends that all the IP stacks that may be participants in a
Sysplex Distributor environment be at V2R10 because of the following
restrictions:

 • Workload distribution through Sysplex Distributor is available only when
both the distributing and target stacks are at V2R10.

 • IP stacks at V2R7 and previous releases do not support automatic VIPA
backup.
Chapter 7. Sysplex Distributor 207

 • IP stacks at V2R8 may back up a distributing Dynamic VIPA but would be
unable to distribute workload if the distributing stack were brought down.
Moreover, VIPA takeback is disruptive in IP V2R8.

If any IP stack (different from the distributing one) is on the path from the client to
the distributing IP stack and if this intermediate IP stack is a target stack within
the sysplex cluster, new connection requests passing through this intermediate IP
stack might be routed to the local application and the service is not subject to
distribution.

7.5.3 Limitations
FTP passive mode should not be used with Sysplex Distributor, as documented in
OS/390 IBM Communications Server: IP User’s Guide, GC31-8514. If the host for
the secondary FTP server has the Sysplex Distributor function distributing FTP
server workload, then the client should not use the proxy subcommand. The
PASV command that is used by the proxy subcommand to allow the secondary
FTP server to be the passive side of a data connection cannot be handled
properly at the secondary FTP server host. Note that Sysplex Distributor cannot
work with FTP passive mode, because the FTP server uses ephemeral ports for
the passive connection and ephemeral ports cannot be distributed by Sysplex
Distributor function.

 Figure 208 on page 209 and the steps below show a short example.

1. The client that requests the passive mode connection to allow the FTP server
to be the passive side of the data connection is using the DVIPA V1 of the
Sysplex Distributor.

2. Sysplex Distributor in conjunction with WLM selects the target stack.

3. Sysplex Distributor forwards this control connection request to port 21 on the
target stack. The FTP server recognizes the request for passive mode and
selects an ephemeral port 1428 for the data connection.

4. This information of the ephemeral port is sent to the client over the control
connection.

5. The client will use this ephemeral port (1428) to establish the data connection
using the DVIPA V1 of the Sysplex Distributor.

6. But the Sysplex Distributor will reject that request, since it is not aware of such
a port number. Remember that we have to define on the VIPADISTRibute
statement the ports for which we are to distribute workload.
208 TCP/IP in a Sysplex

Figure 208. FTP passive mode limitations for Sysplex Distributor

During our tests we found another limitation that should be mentioned. If the
Sysplex Distributor distributing stack is distributing workload for one port and not
for some other (no VIPADISTribute statement for it is defined), the Sysplex
Distributor stack will not allow the connection to that port even if a local
application is listening on it.

Consider the example shown in Figure 209 on page 210:

 • Assume that we want to distribute only TN3270E services to the participating
stacks RA03,RA28, and RA39. For that we code the following statements:

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
VIPADISTRIBUTE 172.16.251.3 PORT 23 DESTIP ALL
ENDVIPADYNAMIC

 • We have only defined one DVIPA to distribute the workload.

 • If we now try to connect to the FTP or the Web server on the distributing stack
RA03 using the same DVIPA, the Sysplex Distributor stack disallows access
to these ports even though the distributing stack has these applications
currently active. The connection requests for these applications time out.

RA03 RA28

DVIPA V1
DISTRIBUTOR
STACK

DVIPA V1
TARGET
STACK

FTPD
21,20

D/T 2216

NETWORK

FTP Client requesting passive mode

SYN ?
Select sever
forward to server

WLM

1

2

3

4

5

6

selects ephemeral port 1428
for data connection

CF
Chapter 7. Sysplex Distributor 209

Figure 209. Sysplex Distributor limitation

There are actually two bypasses to solve this limitation:

1. We could code another VIPADISTribute statement for the IP service (port) in
question (FTP in our case) and explicitly define on the DESTIP keyword the
<dynxcfip> address to which target stack it should be distributed (the local,
distributing stack). However, note that you can only define four distributed
ports per DVIPA. In our case, we would define this for the Web server using
the following VIPADISTribute statement:

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
VIPADISTRIBUTE 172.16.251.3 PORT 23 DESTIP ALL
VIPADISTRIBUTE 172.16.251.3 PORT 80 DESTIP 172.16.233.3
ENDVIPADYNAMIC

The configuration for the FTP server would be similar.

2. An alternative is to code one DVIPA for every different IP service (port). The
limit of DVIPAs per stack has been raised to 256, thereby effectively
eliminating this concern. However, you would have to use different
hostnames/IP addresses to connect to the applications, which may pose a
problem in already implemented environments in which the same DVIPA is
already being used for multiple services.

7.5.4 Implementation
The following list shows what is needed to implement Sysplex Distributor:

1. Choose which IP stack is going to execute the Sysplex Distributor distributing
function.

D /T 2 2 1 6

N E T W O R K

C F

R A 0 3

D V IP A
1 7 2 .1 6 .2 5 1 .3
D IS TR IB U T O R
S T A C K

F T P 2 0 , 2 1

T N 3 2 7 0 E 2 3

W e b se rve r 8 0

R A 2 8

D V IP A
1 7 2 .1 6 .2 5 1 .3
T A R G E T S T A C K

T N 3 2 7 0 E 2 3

R A 3 9

D V IP A
1 7 2 .1 6 .2 5 1 .3
T A R G E T S T A C K

T N 3 2 7 0 E 2 3

1 7 2 .1 6 .2 3 3 .3 1 7 2 .1 6 .2 3 3 .3 9
1 7 2 .1 6 .2 3 3 .2 8
210 TCP/IP in a Sysplex

2. Select which IP stacks are going to be the backup stack for the Sysplex
Distributor stack and in which order.

3. Ensure that WLM GOAL mode is enabled in all the LPARs participating in the
Sysplex Distributor.

4. Enable sysplex routing in all the IP stack participating in the Sysplex
Distributor with the SYSPLEXROUTING statement.

5. For those IP stack that are active under a multi-stack environment, the
samehost links have to be created dynamically. In general, code
DYNAMICXCF in all the IP stacks participating in the Sysplex Distributor.

Note: For Sysplex Distributor you cannot specify the XCF address using the
IUTSAMEH DEVICE, LINK, and HOME statements. XCF addresses have to
be defined through IPCONFIG DYNAMICXCF.

6. Code DATAGRAMFWD in all IP stacks participating in the Sysplex Distributor.

7. Select, by port numbers, the applications that are going to be distributed using
the Sysplex Distributor function. Note that if the application chosen requires
data and control ports, both ports have to be considered.

8. Code the VIPADYNAMIC/ENDVIPADYNAMIC block for the distributing IP
stack:

 • Define the dynamic VIPA associated to the distributing IP stack with
VIPADEFINE statement.

 • Associate the sysplex Dynamic VIPA to the application’s port number with
the VIPADISTRIBUTE statement.

9. Code VIPADYNAMIC/ENDVIPADYNAMIC block for the distributor’s backup IP
stack:

 • Define the IP stack as backup for the sysplex DVIPA address with the
VIPABACKUP statement.

The way that Sysplex Distributor distributes the workload can be modified using
the Policy Agent. Please refer to 7.4, “Sysplex Distributor and policy” on page
194. For a detailed description about Policy-based network management refer to
IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide
Volume 2: UNIX Applications, SG24-5228.

7.6 Monitoring Sysplex Distributor

Three new parameters have been added to the NETSTAT command (or the onetstat
command) and output for three already existing parameters have been modified
in order to monitor the SYSPLEX DISTRIBUTOR activity. Table 5 briefly
describes those new and changed parameters:

Table 5. New and modified NETSTAT/onetstat parameter to monitor Sysplex Distributor

Type of
Command

Command Parameter Description

NEW NETSTAT VIPADCFG Display Dynamic VIPA configuration data.

NEW onetstat -F Display Dynamic VIPA configuration data.

NEW NETSTAT VDPT Display DVIPA port distribution table.
Chapter 7. Sysplex Distributor 211

Refer to OS/390 IBM Communications Server: IP User’s Guide, GC31-8514 for
more information on those commands.

7.7 Implementation examples

In this section, we cover a number of scenarios to illustrate the way in which
Sysplex Distributor is implemented. We make use of the VIPA configuration
statements shown in Figure 210. We show the syntax of the VIPADEFINE,
VIPABACKUP, and VIPADISTRIBUTE statements. VIPADYNAMIC and
ENDVIPADYNAMIC define the block of statements related to Dynamic VIPAs and
Sysplex Distributor. For a complete description of these statements, please refer
to OS/390 IBM Communications Server: IP Configuration Reference,
SC31-8726.

Figure 210. VIPADEFINE, VIPABACKUP, and VIPADISTRIBUTE syntax

NEW onetstat -O Display DVIPA port distribution table.

NEW NETSTAT VCRT Display DVIPA connection routing table.

NEW onetstat -V Display DVIPA connection routing table

CHANGED NETSTAT CONFIG Dynamic VIPA information removed.

CHANGED onetstat -f Dynamic VIPA information removed.

CHANGED NETSTAT VIPADYN Expanded OUTPUT

CHANGED onetstat -v Expanded OUTPUT

CHANGED SYSPLEX VIPADyn Expanded OUTPUT

Type of
Command

Command Parameter Description

VIPADEFine

M OVEable W HEN ID LE

ipaddr

V IPAD ISTribute

ipaddr

DELETE

D EFINE

PORT num

DESTIP

ALL

dynxcfip

VIPABackup 1 ipaddr

address_mask

MOVEable IMM EDiate

rank
212 TCP/IP in a Sysplex

VIPADEFINE designates one or more Dynamic VIPAs that this IP stack should
initially own and support. The parameter MOVEable IMMEDiate indicates that
this Dynamic VIPA can be moved to the original owning stack as soon as it
re-initializes after a failure. On the other hand, MOVEable WHENIDLE indicates
that this Dynamic VIPA can be moved back to the original owning stack only after
the backup has no outstanding connections. In this case, new connection
requests will continue to be directed to the current owning stack (the backup).

VIPABACKUP designates one or more Dynamic VIPAs for which this IP stack will
provide automatic backup if the owning stack fails. The option rank specifies the
intended backup order; the stack with the highest rank will be used first.

VIPADISTRIBUTE enables (VIPADISTRIBUTE DEFINE) or disables
(VIPADISTRIBUTE DELETE) the Sysplex Distributor function on a Dynamic
VIPA. PORT limits the scope of this VIPADISTRIBUTE to the specified port
number (up to four ports can be coded for the same Dynamic VIPA).

DESTIP specifies the Dynamic XCF addresses that are candidates to receive
new incoming connection requests. DESTIP ALL means that all IP stacks in the
sysplex that have defined a Dynamic XCF address are candidates for incoming
connection requests for this DVIPA, including future stacks that are currently not
active and running. Stacks are eligible to receive connections if they have at least
one application instance listening on the specified port.

7.7.1 Scenario 1: Three IP stacks distributing FTP services
Let us consider the scenario depicted in Figure 211. We have three LPARs, each
running IBM Communications Server for OS/390 IP. Each LPAR has only one IP
stack configured. There are three physical connections to a 2216 router, one per
IP stack. The 2216 router connections have been configured as MPC+ and OSPF
is the routing protocol selected to work in this scenario. There is one FTP server
running in each IP stack using the port numbers 20 and 21.

We will go through the steps listed in 7.5.4, “Implementation” on page 210 to set
up our Sysplex Distributor configuration properly.
Chapter 7. Sysplex Distributor 213

Figure 211. Scenario 1: Three IP stack in the Sysplex Distributor for FTP services

First, we have to decide which IP stack will be the distributor and which will be the
backup. In our case, we have chosen RA03 as the distributing IP stack (1) and
RA28 as primary backup (2) and RA39 as secondary backup (2). Please refer to
Figure 212, Figure 213, and Figure 214.

We can use the command D WLM,SYSTEMS to ensure that all the LPARs participating
in the Sysplex Distributor are running in GOAL mode.

We have coded SYSPLEXROUTING (4), DYNAMIXCF (5), and DATAGRAMFWD
(6) in each participating IP stack. Remember that the XCF device/link has to be
defined dynamically. Sysplex Distributor will not work for an IP stack that has an
IUTSAMEH device explicitly coded.

In this scenario, we describe FTP services being distributed by the RA03 IP
stack. We will see later how we can distribute other services (such as TN3270,
etc.) as long as we code the proper port number in the VIPADISTRIBUTE
statement. For our example we select the ports 20 and 21, which are the default
values for FTP server (8). Note that if the application requires more than one port,
these ports have to be coded in the same VIPADISTRIBUTE statement.

OMPROUTE (OSPF)

FTPD
port 20,21

DVIPA 172.16.251.3
255.255.255.0

DVIPA 172.16.251.3
255.255.255.0

DVIPA 172.16.251.3
255.255.255.0

CF

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0

172.16.102.254
255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

SD Distributing Stack SD Target Stack/1.Backup SD Target Stack/2.Backup

FTPD
port 20,21

FTPD
port 20,21

OMPROUTE (OSPF) OMPROUTE (OSPF)

DVIPA of SD Distributing Stack
is added to the Home list of RA28
and RA39
214 TCP/IP in a Sysplex

In the distributing IP stack (RA03 in our example), we have to define the dynamic
VIPA that will be associated with the sysplex cluster to distribute the FTP
services. In order to do that, we use two statements: VIPADEFINE and
VIPADISTRIBUTE. With the VIPADEFINE statement we are designating a set of
Dynamic VIPAs that the stack initially owns and supports. We have chosen
172.16.251.3 as the Dynamic VIPA address assigned to the sysplex cluster for
distributing FTP services (9). Once we have defined which Dynamic VIPA is going
to be used for distributing, we have to assign the port numbers for this Dynamic
VIPA using the VIPADISTRIBUTE statement. Finally, for those IP stacks that will
serve as backup, it is necessary to code a VIPABACKUP statement with the
proper rank number and ip-address to back up (10).

Figure 212. Scenario 1: PROFILE data set used for RA03

; SYSPLEX DISTRIBUTOR: RA03 (DISTRIBUTOR) 1
IPCONFIG

DATAGRAMFWD 6
DYNAMICXCF 172.16.233.3 255.255.255.0 1 5
SYSPLEXROUTING 4
IGNOREREDIRECT
VARSUBNETTING

...
PORT

...
20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER
...

AUTOLOG 5
FTPDC JOBNAME FTPDC1
OMPROUTC

ENDAUTOLOG

DEVICE M032216B MPCPTP AUTORESTART
LINK M032216B MPCPTP M032216B

HOME
172.16.100.3 M032216B

VIPADYNAMIC 9
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
VIPADISTRIBUTE 172.16.251.3 PORT 20 21 DESTIP ALL

ENDVIPADYNAMIC 8

START M032216B
Chapter 7. Sysplex Distributor 215

Figure 213. Scenario 1: PROFILE data set for RA28

; SYSPLEX DISTRIBUTOR: RA28 (BACKUP) 2
IPCONFIG

DATAGRAMFWD 6
DYNAMICXCF 172.16.233.28 255.255.255.0 1 5
SYSPLEXROUTING 4
IGNOREREDIRECT
VARSUBNETTING

...
PORT

20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER

...
AUTOLOG 5

FTPDC JOBNAME FTPDC1
OMPROUTC

ENDAUTOLOG

DEVICE M282216B MPCPTP AUTORESTART
LINK M282216B MPCPTP M282216B

HOME
172.16.101.28 M282216B

VIPADYNAMIC 10
VIPABACKUP 200 172.16.251.3

ENDVIPADYNAMIC

START M282216B
216 TCP/IP in a Sysplex

Figure 214. Scenario 1: PROFILE data set for RA39

In our example, we decided to use all of the XCF links (DESTIP ALL). In addition,
we wanted the Dynamic VIPA to be taken back as soon the original IP stack is
restarted (MOVE IMMED) in the event of a failure.

Because any one of the three IP stacks in our example can eventually be the
Dynamic VIPA owner, we had to code the following entry in the OMPROUTE
configuration file:

OSPF_Interface IP_Address=172.16.251.*
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;

Figure 215, Figure 216, and Figure 217 display the OMPROUTE configuration file
used for each stack. Note that we have not coded the name parameter for these
OSPF_Interface statements that define the generic interfaces because this is
assigned dynamically. OMPROUTE would ignore any name for these
OSPF_Interface statements.

11 represents the Dynamic VIPA definitions while 12 represents the XCF
definitions.

; SYSPLEX DISTRIBUTOR: RA39 (BACKUP) 2

IPCONFIG
DATAGRAMFWD 6
DYNAMICXCF 172.16.233.39 255.255.255.0 1 5
SYSPLEXROUTING 4
IGNOREREDIRECT
VARSUBNETTING

...
PORT

20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER

...
AUTOLOG 5

FTPDC JOBNAME FTPDC1
OMPROUTC

ENDAUTOLOG

DEVICE M282216B MPCPTP AUTORESTART
LINK M282216B MPCPTP M282216B

HOME
172.16.102.39 M282216B

VIPADYNAMIC 10
VIPABACKUP 100 172.16.251.3

ENDVIPADYNAMIC

START M282216B
Chapter 7. Sysplex Distributor 217

Figure 215. OMPROUTE configuration file for RA03

Figure 216. OMPROUTE configuration file for RA28

; RA03 omproute
;
Area Area_Number=0.0.0.0

Stub_Area=NO
Authentication_type=None;

OSPF_Interface IP_Address=172.16.100.3
Name=M032216B
Cost0=1
Subnet_mask=255.255.255.0 11
MTU=32768;

OSPF_Interface IP_Address=172.16.251.*
Subnet_mask=255.255.255.0 12
Cost0=8
Non_Broadcast=Yes
MTU=32768;

OSPF_Interface IP_Address=172.16.233.*
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;

; RA28 omproute
;
Area Area_Number=0.0.0.0

Stub_Area=NO
Authentication_type=None;

OSPF_Interface IP_Address=172.16.101.28
Name=M032216B
Cost0=1
Subnet_mask=255.255.255.0 11
MTU=32768;

OSPF_Interface IP_Address=172.16.251.*
Subnet_mask=255.255.255.0 12
Cost0=8
Non_Broadcast=Yes
MTU=32768;

OSPF_Interface IP_Address=172.16.233.*
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;
218 TCP/IP in a Sysplex

Figure 217. OMPROUTE configuration file for RA39

We now describe how this scenario works once all the IP stacks are active. We
use the commands described in 7.6, “Monitoring Sysplex Distributor” on page 211
to illustrate the state of the system during operation.

Figure 218 shows the output from the NETSTAT VIPADCFG command in all the IP
stacks participating in the sysplex cluster. As you can see, only the distributing IP
stack (TCPIPC on RA03) shows the VIPA DEFINE (1) and VIPA DISTRIBUTE (2)
configuration with the port numbers (3) and the XCF IP addresses (4) assigned.

The output from the IP stack in RA28 shows that this stack is the primary backup
(5) with rank 200, and the output from the IP stack in RA39 is the secondary
backup (6) with rank 100.

; RA39 omproute
;
Area Area_Number=0.0.0.0

Stub_Area=NO
Authentication_type=None;

OSPF_Interface IP_Address=172.16.102.39
Name=M032216B
Cost0=1
Subnet_mask=255.255.255.0 11
MTU=32768;

OSPF_Interface IP_Address=172.16.251.*
Subnet_mask=255.255.255.0
Cost0=8 12
Non_Broadcast=Yes
MTU=32768;

OSPF_Interface IP_Address=172.16.233.*
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;
Chapter 7. Sysplex Distributor 219

Figure 218. NETSTAT VIPADCFG for RA03, RA28, and RA39 IP stacks

Figure 219 shows the output from the NETSTAT HOME command for all the IP stacks
participating in the sysplex cluster. Note that only one address is coded below the
actual home statement in the PROFILE data set (1). The following three IP
addresses are one and the same DYNAMICXCF (2). The next one is the DVIPA
assigned to the Sysplex Distributor function (3). Note the flag I in the
non-distributing IP stacks. Remember that this DVIPA is learned dynamically for
all stacks participating in the Sysplex Distributor but only one stack advertises
this IP address (with OSPF in our example).

RO RA03,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 912
DYNAMIC VIPA INFORMATION:
VIPA DEFINE: 1
IP ADDRESS ADDRESSMASK MOVEABLE
---------- ----------- --------
172.16.251.3 255.255.255.0 IMMEDIATE

VIPA DISTRIBUTE: 2
IP ADDRESS PORT XCF ADDRESS
---------- ---- -----------
172.16.251.3 00020 ALL
172.16.251.3 3 00021 ALL 4

RO RA28,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 831
DYNAMIC VIPA INFORMATION:
VIPA BACKUP:
IP ADDRESS RANK
---------- ----
172.16.251.3 000200 5

RO RA39,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
RO RA39,D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 719
DYNAMIC VIPA INFORMATION:
VIPA BACKUP:
IP ADDRESS RANK
---------- ----
172.16.251.3 000100 6
220 TCP/IP in a Sysplex

Figure 219. NETSTAT HOME command for RA03, RA28, and RA39 IP stacks

Figure 220 shows the output from the NETSTAT VDPT command for all the IP stacks
participating in the sysplex cluster. The output for this command shows the
Dynamic VIPA destination port table. You can see the destination IP address (1)
which is the Sysplex Distributor IP address, the port numbers to which
connections are being distributed (2), the destination XCF address (3), the
number of applications listening on the port number selected (4), and the total
number of connections that have been forwarded by the Sysplex Distributor (5).

Note that the output for the stacks in RA28 and RA39 does not show any record
because these stacks are not distributing workload. They are considered the
target stacks by the distributing IP stack.

RO RA03,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 982
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.100.3 M032216B P 1
172.16.233.3 EZASAMEMVS
172.16.233.3 EZAXCF28 2
172.16.233.3 EZAXCF39
172.16.251.3 VIPLAC10FB03 3
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 840
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P 1
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39 2
172.16.233.28 EZAXCF03
172.16.251.3 VIPLAC10FB03 I 3
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED

RO RA39,D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 723
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.102.39 M392216B P 1
172.16.233.39 EZASAMEMVS
172.16.233.39 EZAXCF28 2
172.16.233.39 EZAXCF03
172.16.251.3 VIPLAC10FB03 I 3
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED
Chapter 7. Sysplex Distributor 221

Figure 220. NETSTAT VDPT command for RA03, RA28, and RA39 IP stacks

Figure 221 shows the output from the NETSTAT VDPT DET command for the
distributing IP stack only. This command provides additional information
regarding the Workload Manager weight values (1) for the target IP stacks and
the value assigned after modification using QoS information provided by the
Policy Agent (2). These values are used by the distributing IP stack to determine
the quantity of connections that should be forwarded to each target IP stack. Note
that in this scenario no Policy Agent was used.

If all target stacks for a particular destination address and port have zero W/Q
values, the connection forwarding will be done randomly rather than based upon
WLM/QoS information.

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 989
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN

1 2 3 4 5
172.16.251.3 00020 172.16.233.3 000 0000000000
172.16.251.3 00020 172.16.233.28 000 0000000000
172.16.251.3 00020 172.16.233.39 000 0000000000
172.16.251.3 00021 172.16.233.3 001 0000000000
172.16.251.3 00021 172.16.233.28 001 0000000000
172.16.251.3 00021 172.16.233.39 001 0000000000
6 OF 6 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 846
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
0 OF 0 RECORDS DISPLAYED

RO RA39,D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 727
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
0 OF 0 RECORDS DISPLAYED
222 TCP/IP in a Sysplex

Figure 221. NETSTAT VDPT,DET for RA03, RA28 and RA39 IP stacks

Figure 222 and Figure 223 actually show the same information with a slight
difference. The SYSPLEX VIPADYN command displays the information for all the
stacks participating in the sysplex at once. The command shows the MVS
(system) name 1 and the actual status 2 of each stack. If the stack is defined as a
backup you also can see the rank 3 value defined for it. The display also indicates
whether each stack is defined as the distributor or a destination 4 or both.

Figure 222. SYSPLEX VIPADYN for all the stacks participating in the sysplex

Figure 223 shows the output from the NETSTAT VIPADYN command for the IP stacks
participating in the sysplex cluster. The output for this command shows the actual
dynamic VIPA information for the local host. With this command, you can see if
the DVIPA is active (1) or a backup (2) for the local stack. In addition it is shown if
the DVIPA is being used as the distributing DVIPA (3) or destination DVIPA (4).

RO RA03,D TCPIP,TCPIPC,N,VDPT,DET
D TCPIP,TCPIPC,N,VDPT,DET
EZZ2500I NETSTAT CS V2R10 TCPIPC 515
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000000
WLM: 00 1 W/Q: 00 2

172.16.251.3 00020 172.16.233.28 000 0000000000
WLM: 00 W/Q: 00

172.16.251.3 00020 172.16.233.39 000 0000000000
WLM: 00 W/Q: 00

172.16.251.3 00021 172.16.233.3 001 0000000000
WLM: 00 W/Q: 00

172.16.251.3 00021 172.16.233.28 001 0000000000
WLM: 00 W/Q: 00

172.16.251.3 00021 172.16.233.39 001 0000000000
WLM: 00 W/Q: 00

6 OF 6 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 027
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- --1----- --2--- -3-- --------------- --------------- -4--
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
TCPIPC RA28 BACKUP 200 DEST
TCPIPC RA39 BACKUP 100 DEST

3 OF 3 RECORDS DISPLAYED
Chapter 7. Sysplex Distributor 223

Figure 223. NETSTAT VIPADYN for RA03, RA28 and RA39 IP stacks

Figure 224 shows the output from the NETSTAT VCRT command for all the IP stacks
participating in the sysplex cluster.The output of this command displays the
dynamic VIPA connection routing table (CRT). During Sysplex Distributor normal
operation, this table could be quite large. It contains one entry for each
connection being distributed. Figure 224 shows the initial status just after the IP
stacks have been started and no connection requests have been received yet.

RO RA03,D TCPIP,TCPIPC,N,VIPADYN
D TCPIP,TCPIPC,N,VIPADYN
EZZ2500I NETSTAT CS V2R10 TCPIPC 999
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 ACTIVE VIPADEFINE DIST/DEST
1 OF 1 RECORDS DISPLAYED 1 3

RO RA28,D TCPIP,TCPIPC,N,VIPADYN
D TCPIP,TCPIPC,N,VIPADYN
EZZ2500I NETSTAT CS V2R10 TCPIPC 856
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 BACKUP VIPABACKUP DEST
1 OF 1 RECORDS DISPLAYED 2 4

RO RA39,D TCPIP,TCPIPC,N,VIPADYN
D TCPIP,TCPIPC,N,VIPADYN
EZZ2500I NETSTAT CS V2R10 TCPIPC 729
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
172.16.251.3 255.255.255.0 BACKUP VIPABACKUP DEST
1 OF 1 RECORDS DISPLAYED 2 4
224 TCP/IP in a Sysplex

Figure 224. NETSTAT VCRT for RA03, RA28 and RA39 IP stacks

Figure 225 on page 226 shows a portion of the output from the NETSTAT VCRT
command for the distributing IP stack during normal operation. The output of this
command displays the dynamic VIPA CRT for the local stack. Because this is the
distributing IP stack, it shows all the connections between the clients and the
participating IP stacks. It includes all the XCF addresses(1). During Sysplex
Distributor normal operation, this table could be very large. It contains one entry
for each one connection being distributed.

While NETSTAT VCRT on the distributing IP stack displays all the distributed
connections, the same command on the other stacks will show only those
connections established with the local server instance. Figure 226 and Figure
227 show the VCRT on RA28 and RA39. They show the destination IP address
(2), the port destination (3), the source IP address (4), the source port (5), and the
Dynamic XCF address of the stack processing this connection (1).

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 068
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
0 OF 0 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 862
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
0 OF 0 RECORDS DISPLAYED

RO RA39,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 731
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
0 OF 0 RECORDS DISPLAYED
Chapter 7. Sysplex Distributor 225

Figure 225. NETSTAT VCRT from RA03 IP stack when there are several concurrent FTP sessions

Figure 226. NETSTAT VCRT from RA28 IP stack when there are several concurrent FTP sessions

RO RA03,D TCPIP,TCPIPC,N,VCRT,MAX=400
D TCPIP,TCPIPC,N,VCRT,MAX=400
EZZ2500I NETSTAT CS V2R10 TCPIPC 050
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR

1 2 3 4 5
172.16.251.3 00021 9.24.104.75 03445 172.16.233.3
172.16.251.3 00021 9.24.104.75 03448 172.16.233.3
172.16.251.3 00021 9.24.104.75 03451 172.16.233.3
.......
172.16.251.3 00020 9.24.104.75 03565 172.16.233.3
172.16.251.3 00020 9.24.104.75 03568 172.16.233.3
172.16.251.3 00020 9.24.104.75 03571 172.16.233.3
.......
172.16.251.3 00021 9.24.104.75 03443 172.16.233.28
172.16.251.3 00021 9.24.104.75 03446 172.16.233.28
172.16.251.3 00021 9.24.104.75 03449 172.16.233.28
.......
172.16.251.3 00020 9.24.104.75 03593 172.16.233.28
172.16.251.3 00020 9.24.104.75 03594 172.16.233.28
172.16.251.3 00020 9.24.104.75 03595 172.16.233.28
.......
172.16.251.3 00021 9.24.104.75 03536 172.16.233.39
172.16.251.3 00021 9.24.104.75 03539 172.16.233.39
172.16.251.3 00021 9.24.104.75 03542 172.16.233.39
.......
172.16.251.3 00020 9.24.104.75 03718 172.16.233.39
172.16.251.3 00020 9.24.104.75 03721 172.16.233.39
172.16.251.3 00020 9.24.104.75 03724 172.16.233.39
.......

RO RA28,D TCPIP,TCPIPC,N,VCRT,MAX=400
D TCPIP,TCPIPC,N,VCRT,MAX=400
EZZ2500I NETSTAT CS V2R10 TCPIPC 840
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR

1 2 3 4 5
172.16.251.3 00020 9.24.104.75 03609 172.16.233.28
172.16.251.3 00020 9.24.104.75 03610 172.16.233.28
172.16.251.3 00020 9.24.104.75 03611 172.16.233.28
172.16.251.3 00020 9.24.104.75 03612 172.16.233.28
.......
226 TCP/IP in a Sysplex

Figure 227. NETSTAT VCRT from RA39 IP stack when there are several concurrent FTP sessions

Figure 228 displays the output from the NETSTAT VDPT DET command on the RA03
IP stack. In this figure we can appreciate how the WLM and W/Q weights have
changed once the connection requirements start arriving at the RA03 IP stack.
You can see the difference between the amount of FTP connections 1 for IP
stacks RA03, RA28, and RA39. If you take the different WLM weights 2 into
account then the distribution of workload works correctly. In this scenario no QoS
policy was active.

Figure 228. NETSTAT VDPT DET from RA03 IP stack with multiple concurrent FTP sessions

Figure 229 shows the output from NETSTAT VDPT after 100 concurrent FTP
sessions in which each session requested 80 data connections. The NETSTAT VDPT
command displays how these FTP sessions were distributed among the different
IP stacks participating in the sysplex cluster.

RO RA39,D TCPIP,TCPIPC,N,VCRT,MAX=400
D TCPIP,TCPIPC,N,VCRT,MAX=400
EZZ2500I NETSTAT CS V2R10 TCPIPC 991
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR

1 2 3 4 5
172.16.251.3 00020 9.24.104.75 03431 172.16.233.39
172.16.251.3 00020 9.24.104.75 03435 172.16.233.39
172.16.251.3 00020 9.24.104.75 03439 172.16.233.39
172.16.251.3 00020 9.24.104.75 03443 172.16.233.39
.......

RO RA03,D TCPIP,TCPIPC,N,VDPT,DET
D TCPIP,TCPIPC,N,VDPT,DET
EZZ2500I NETSTAT CS V2R10 TCPIPC 185
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000320
WLM: 01 W/Q: 01

172.16.251.3 00020 172.16.233.28 000 0000001200
WLM: 03 W/Q: 03

172.16.251.3 00020 172.16.233.39 000 0000001131
WLM: 03 W/Q: 03

172.16.251.3 00021 172.16.233.3 001 0000000004 1
WLM: 01 W/Q: 01 2

172.16.251.3 00021 172.16.233.28 001 0000000016 1
WLM: 03 W/Q: 03 2

172.16.251.3 00021 172.16.233.39 001 0000000017 1
WLM: 03 W/Q: 03 2

6 OF 6 RECORDS DISPLAYED
Chapter 7. Sysplex Distributor 227

Figure 229. NETSTAT VDPT from RA03 IP stack after 100 FTP sessions

Figure 230 shows how these connections are distributed taking the WLM weights
into account (as was done in Figure 228). We start distributing the connections to
the stack on the highest WLM weight. In our case, assume we start with RA28.
Then we distribute the first three connections to RA28. We then choose RA39 for
the next three connections and then send one connection to RA03. At the eighth
new connection, the Distributor starts sending the connections to RA28 again.

WLM and QoS weights are refreshed by the Distributor stack after one minute or
when we add a new stack. After WLM weights are refreshed and the target stacks
possibly reordered, connection distribution resumes at the first target stack.

Figure 230. Using WLM/QoS data to select a target stack

7.7.2 Scenario 2: VIPA takeover and takeback with Sysplex Distributor
This second example, as shown in Figure 231, illustrates the functionality of
automatic VIPA takeover and takeback. We use the same environment as before:
three LPARs, each running IBM Communications Server for OS/390 V2R10 IP
and having only one IP stack configured. There are three physical connections to
an IBM 2216 router, one per IP stack. The 2216 router connections have been
configured as MPC+ and OSPF is the routing protocol selected to work in this
scenario. There is one FTP server running in each IP stack using the ports 20
and 21.

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 499
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000001360
172.16.251.3 00020 172.16.233.28 000 0000003280
172.16.251.3 00020 172.16.233.39 000 0000003360
172.16.251.3 00021 172.16.233.3 001 0000000017
172.16.251.3 00021 172.16.233.28 001 0000000041
172.16.251.3 00021 172.16.233.39 001 0000000042
6 OF 6 RECORDS DISPLAYED

RA28 RA39 RA03
search order > WLMweight=3 WLMweight=3 WLMweight=1

Qos Fraction=0 QoS Fraction=0 QoSFraction=0

effective limit > QoS weight=3 QoS weight=3 QoS weight=1

first 3connections next 3 connections next 1connections

Sysplex Distributor

Newconnections coming in
228 TCP/IP in a Sysplex

Figure 231. RA28 IP stack will take over the distributing function of RA03

In this example, we will monitor only one FTP session. We FTPed a large file from
our FTP client to the sysplex. We used a large file just to have enough time to
take down the RA03 IP stack and show how DVIPA is switched over to the RA28
IP stack. At the same time, the FTP connection remains active. Some time later,
we brought up the RA03 IP stack, which subsequently caused the DVIPA to be
taken back by the RA03 IP stack without any disruption to the FTP session.
Finally, after some minutes, the transfer completed successfully.

Figure 232 on page 230 displays the Dynamic VIPA distribution port table. We
see three FTP servers listening on port 20 and 21, one in each IP stack. There is
one session currently active, the large file FTP session (1). According to this
output, the session has been distributed to RA39 stack (2).

OMPROUTE (OSPF)

FTPD
port 20,21

DVIPA 172.16.251.3
255.255.255.0

DVIPA 172.16.251.3
255.255.255.0

DVIPA 172.16.251.3
255.255.255.0

CF

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0

172.16.102.254
255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

SD Distributing Stack SD Target Stack/1.Backup SD Target Stack/2.Backup

FTPD
port 20,21

FTPD
port 20,21

OMPROUTE (OSPF) OMPROUTE (OSPF)

SD Distributing Stack died
on RA03
SD Target Stack on RA28 will
take over the distributing function
Chapter 7. Sysplex Distributor 229

Figure 232. D TCPIP,TCPIPC,N,VDPT on RA03 IP stack after establishing one FTP session

Figure 233 displays the Dynamic VIPA connection routing table. We see that the
connection is being routed through the XCF link associated with RA39 (3). Please
take note of the source port number 4, since we later compare this value after
takeover and takeback.

Figure 233. D TCPIP,TCPIPC,N,VCRT on RA03 IP stack after establishing one FTP session

Figure 234 shows the resulting messages at the moment when the RA03 stack
was stopped and all the links associated with this stack were terminated. We see
message EZZ8301, which tells us that the Dynamic VIPA has been taken over.
This message 1 is displayed on the stack’s joblog that takes over the Dynamic
VIPA. In our case, this was RA28, since it was our first backup.

Figure 234. Stopping RA03 IP stack

Because the FTP session was established with a target stack different from the
distributing one, the session is not lost. The Dynamic VIPA is switched over to the
backup IP stack and this DVIPA is recognized as the distributing VIPA. In our

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 008
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000000
172.16.251.3 00020 172.16.233.28 000 0000000000
172.16.251.3 00020 172.16.233.39 2 000 0000000001 1
172.16.251.3 00021 172.16.233.3 001 0000000000
172.16.251.3 00021 172.16.233.28 001 0000000000
172.16.251.3 00021 172.16.233.39 2 001 0000000001 1
6 OF 6 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 010
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00020 9.24.104.75 01997 4 172.16.233.39 3
172.16.251.3 00021 9.24.104.75 01996 4 172.16.233.39 3
2 OF 2 RECORDS DISPLAYED

P TCPIPC
BPXF207I ROUTING INFORMATION HAS BEEN DELETED FOR TRANSPORT DRIVER
TCPIPC.
IUT5002I TASK FOR ULPID TCPIPC USING TRLE RA28M TERMINATING
IUT5002I TASK FOR ULPID TCPIPC USING TRLE RA39M TERMINATING
IUT5002I TASK FOR ULPID TCPIPC USING TRLE IUTSAMEH TERMINATING
IUT5002I TASK FOR ULPID TCPIPC USING TRLE M032216B TERMINATING
EZZ4201I TCP/IP TERMINATION COMPLETE FOR TCPIPC
.......
EZZ8301I VIPA 172.16.251.3 TAKEN OVER FROM TCPIPC ON RA03 1
230 TCP/IP in a Sysplex

case, RA28 takes the ownership of the DVIPA and becomes the distributing IP
stack. The RA28 IP stack informs the RA39 IP stack that it is now the distributing
stack.

Figure 235 displays the Dynamic VIPA distribution port table of RA28 after it has
become the distributing stack. This table was built based on saved information
about RA03 and the information it received from RA39.

Figure 235. D TCPIP,TCIPC,N,VDPT on RA28 IP stack after DVIPA takeover

Figure 236 displays the Dynamic VIPA connection routing table for stack RA28.
We can see that it is the same connection that has remained active even after the
RA03 stack has failed. The source port numbers here (1) can be compared with
those in Figure 233 on page 230.

Figure 236. D TCPIP,TCPIPC,N,VCRT on RA28 IP stack after DVIPA takeover

Figure 237 shows the output of the SYSPLEX VIPADYN command and shows us that
stack RA28 is now distributor and destination 3. The DIST column was added in
IBM Communications Server for OS/390 V2R10 as expanded output to this
display command.

RO RA28,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 334
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.28 000 0000000000
172.16.251.3 00020 172.16.233.39 000 0000000001
172.16.251.3 00021 172.16.233.28 001 0000000000
172.16.251.3 00021 172.16.233.39 001 0000000001
4 OF 4 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 332
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00020 9.24.104.75 01997 1 172.16.233.39
172.16.251.3 00021 9.24.104.75 01996 1 172.16.233.39
2 OF 2 RECORDS DISPLAYED
Chapter 7. Sysplex Distributor 231

Figure 237. D TCPIP,TCPIP,SYSPLEX VIPADYN on RA28 IP stack after DVIPA takeover

Figure 238 displays the home list of stack RA28 and shows us that the I flag for
the Dynamic VIPA address defined on the RA03 stack has been removed
because RA28 is now the owner of this DVIPA.

Figure 238. D TCPIP,TCPIPC,N,HOME on RA28 IP stack after DVIPA takeover

Figure 239 shows the resulting messages at the moment the RA03 IP stack is
started again. Once the IP stack is active in RA03, the process of taking the
DVIPA back is started. Additionally, we see message EZZ8302, which indicates
that the Dynamic VIPA has been taken back to stack RA03. This message 1 is
displayed on the stack’s joblog, which takes back the Dynamic VIPA. In our case,
this is stack RA03, which was our originally defined distributor stack.

RO RA28,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 339
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA28
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA28 ACTIVE 255.255.255.0 172.16.251.0 BOTH 3
TCPIPC RA39 BACKUP 100 DEST

2 OF 2 RECORDS DISPLAYED

RO RA28,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 342
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.101.28 M282216B P
172.16.233.28 EZASAMEMVS
172.16.233.28 EZAXCF39
172.16.233.28 EZAXCF03
172.16.251.3 VIPLAC10FB03
127.0.0.1 LOOPBACK
6 OF 6 RECORDS DISPLAYED
232 TCP/IP in a Sysplex

Figure 239. Starting RA03 IP stack

Because the VIPADEFINE is coded with MOVE IMMED in the PROFILE data set,
as shown in Figure 212 on page 215, the RA03 IP stack takes ownership of the
DVIPA without waiting for existing connections to finish. This process is non-
disruptive for the FTP session because the RA28 stack sends the connection
routing table to the RA03 stack. The RA03 stack can continue distributing the
following packets to the proper target FTP server.

Figure 240 shows the display of the Dynamic VIPA destination port table of the
RA03 stack once it has been re-activated. Note that RA03 updated the port table
according to the information it received from RA28. (1).

Figure 240. D TCPIP,TCPIPC,N,VDPT on RA03 IP stack after DVIPA takeback

Figure 241 shows the display of the Dynamic VIPA connection routing table for
the RA03 IP stack just started. Note that the FTP connection is still active and is
still using the same port numbers 2 since it has not been disrupted. After some
minutes, the file transfer finished successfully.

S TCPIPC
IEF403I TCPIPC - STARTED - TIME=17.49.18
IEE252I MEMBER CTIEZB01 FOUND IN SYS1.PARMLIB
EZZ7450I FFST SUBSYSTEM IS NOT INSTALLED
EZZ0300I OPENED PROFILE FILE DD:PROFILE
EZZ0309I PROFILE PROCESSING BEGINNING FOR DD:PROFILE
EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE DD:PROFILE
EZZ0641I IP FORWARDING NOFWDMULTIPATH SUPPORT IS ENABLED
EZZ8302I VIPA 172.16.251.3 TAKEN FROM TCPIPC ON RA28
EZZ0335I ICMP WILL IGNORE REDIRECTS
EZZ0350I SYSPLEX ROUTING SUPPORT IS ENABLED
EZZ8303I VIPA 172.16.251.3 GIVEN TO TCPIPC ON RA03 1
EZZ0352I VARIABLE SUBNETTING SUPPORT IS ENABLED
EZZ0345I STOPONCLAWERROR IS ENABLED
EZZ0624I DYNAMIC XCF DEFINITIONS ARE ENABLED
.......

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 188
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000000
172.16.251.3 00020 172.16.233.28 000 0000000000
172.16.251.3 00020 172.16.233.39 000 0000000001 1
172.16.251.3 00021 172.16.233.3 001 0000000000
172.16.251.3 00021 172.16.233.28 001 0000000000
172.16.251.3 00021 172.16.233.39 001 0000000001 1
6 OF 6 RECORDS DISPLAYED
Chapter 7. Sysplex Distributor 233

Figure 241. D TCPIP,TCPIP,N,VCRT on RA03 IP stack after DVIPA takeback

Finally, the SYSPLEX VIPADYN command shows us that the status of our participating
sysplex stacks is the same as when we started. See Figure 242.

Figure 242. D TCPIP,TCPIPC,SYSPLEX,VIPADYN on RA03 IP stack after DVIPA takeback

7.7.3 Scenario 3: Distributing multiple IP services
Figure 243 depicts our third scenario. We have three LPARs, each running IBM
Communications Server for OS/390 V2R10 IP and each having only one IP stack
configured. There are three physical connections to an IBM 2216 router, one per
IP stack. The 2216 router connections have been configured as MPC+ and OSPF
is the routing protocol selected to work in this scenario. There is one FTP server
running in each IP stack using the ports 20 and 21. The TN3270E server is also
running in each stack using port 23. In addition we have implemented a server,
RSSERVER, in RA28 and RA39 using port number 1492. Please refer to Figure
243.

RSSERVER and RSCLIENT are a pair of programs that provide an example of
how to use REXX/SOCKETS to implement a service. These are provided by IBM
and can be found in the TCPIP.SEZAINST library. The RSSERVER program runs
on a dedicated TSO user ID. It returns a number of data lines as requested to the
client. The RSCLIENT program is used to request a number of arbitrary data lines
from the server. One or more clients can access the server until it is terminated.

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 190
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00020 9.24.104.75 01997 2 172.16.233.39
172.16.251.3 00021 9.24.104.75 01996 2 172.16.233.39
2 OF 2 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 184
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
TCPIPC RA28 BACKUP 200 DEST
TCPIPC RA39 BACKUP 100 DEST

3 OF 3 RECORDS DISPLAYED
234 TCP/IP in a Sysplex

Figure 243. Distributing multiple IP services

Figure 244, Figure 245, and Figure 246 show the PROFILE data set being used
for this scenario. There are some differences from those shown in Figure 212 on
page 215, Figure 213 on page 216, and Figure 214 on page 217:

 • In AUTOLOG we included T03CSM 11 (the name we assigned the
RSSERVER) for RA28 and RA39 IP stacks.

 • We added to the already existing VIPADISTRIBUTE statement for FTP the
port 23 for TN3270E 12. In addition we added a new VIPADISTRIBUTE 13
statement to reflect that T03CSM (RSSERVER) instances are running on
RA28 and RA39 IP stacks.

 • We have included on each stack the TELNETPARMS/ENDTELNETPARMS
14 and BEGINVTAM/ENDVTAM 15 blocks, as well as PORT 23 INTCLIEN
(port reservation) to support TN3270E server in these stacks.

The RSCLIENT and the FTP clients were executed from an OS/390 system
attached to the network with IP address 9.24.104.75. The TN3270E client was
executed from a PC running Windows NT with IP address 9.24.106.247.

OMPROUTE (OSPF)

TN3270E
port 23

FTPD
port 20,21

DVIPA 172.16.251.3
255.255.255.0

OMPROUTE (OSPF)

TN3270E
port 23

DVIPA 172.16.251.3
255.255.255.0

RSSERVER
port 1492

OMPROUE (OSPF)

TN3270E
port 23

DVIPA 172.16.251.3
255.255.255.0

RSSERVER
port 1492

CF

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0

172.16.102.254
255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

SD Distributing Stack SD Target Stack/1.Backup SD Target Stack/2.Backup

FTPD
port 20,21

FTPD
port 20,21

DVIPA of SD Distributing Stack is
added to the Home list of RA28
and RA39
Chapter 7. Sysplex Distributor 235

Figure 244. PROFILE data set for RA03 IP stack

; SYSPLEX DISTRIBUTOR: RA03 (DISTRIBUTOR) 1

IPCONFIG
DATAGRAMFWD 6
DYNAMICXCF 172.16.233.3 255.255.255.0 1 5
SYSPLEXROUTING 4
IGNOREREDIRECT
VARSUBNETTING

PORT
...
20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER
23 TCP INTCLIEN 10
...

TELNETPARMS 14
PORT 23
INACTIVE 0

ENDTELNETPARMS

AUTOLOG 5
FTPDC JOBNAME FTPDC1
OMPROUTC
ENDAUTOLOG

DEVICE M032216B MPCPTP AUTORESTART
LINK M032216B MPCPTP M032216B

HOME
172.16.100.3 M032216B

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
VIPADISTRIBUTE 172.16.251.3 PORT 20 21 23 DESTIP ALL 12
VIPADISTRIBUTE 172.16.251.3 PORT 1492 13

DESTIP 172.16.233.28 172.16.233.39
ENDVIPADYNAMIC

BEGINVTAM 15
PORT 23
DEFAULTLUS RA03TV21..RA03TV29 ENDDEFAULTLUS
ALLOWAPPL *
USSTCP USSVLAD1

ENDVTAM

START M032216B
236 TCP/IP in a Sysplex

Figure 245. PROFILE data set for RA28 IP stack

; SYSPLEX DISTRIBUTOR TARGET STACK: RA28 2

IPCONFIG
DATAGRAMFWD 6
DYNAMICXCF 172.16.233.28 255.255.255.0 1 5
SYSPLEXROUTING 4
IGNOREREDIRECT
VARSUBNETTING

PORT
...
20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER
23 TCP INTCLIEN 10
...

TELNETPARMS 14
PORT 23
INACTIVE 0

ENDTELNETPARMS

AUTOLOG 5
FTPDC JOBNAME FTPDC1
OMPROUTC
T03CSM 11

ENDAUTOLOG

DEVICE M282216B MPCPTP AUTORESTART
LINK M282216B MPCPTP M282216B

HOME
172.16.101.28 M282216B

VIPADYNAMIC
VIPABACKUP 200 172.16.251.3

ENDVIPADYNAMIC

BEGINVTAM 15
PORT 23
DEFAULTLUS RA28TV21..RA28TV29 ENDDEFAULTLUS
ALLOWAPPL *
USSTCP USSVLAD1

ENDVTAM

START M282216B
Chapter 7. Sysplex Distributor 237

Figure 246. PROFILE data set for RA39 IP stack

Figure 247 shows the NESTAT VIPADCFG output for all the IP stacks participating in
the sysplex cluster. Comparing this output with the one shown in Figure 218 on
page 220, we see that only the information for the RA03 IP stack has changed.
This is because we did not modify Dynamic VIPA definitions for the PROFILE
data sets for RA28 and RA39.

;SYSPLEX DISTRIBUTOR : RA39 (2.BACKUP)

IPCONFIG
DATAGRAMFWD 6
DYNAMICXCF 172.16.233.39 255.255.255.0 1 5
SYSPLEXROUTING 4
IGNOREREDIRECT
VARSUBNETTING

PORT
...
20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER
23 TCP INTCLIEN 10
...

TELNETPARMS 14
PORT 23
INACTIVE 0
ENDTELNETPARMS

AUTOLOG 5
FTPDC JOBNAME FTPDC1
OMPROUTC
T03CSM 11
ENDAUTOLOG

DEVICE M392216B MPCPTP AUTORESTART
LINK M392216B MPCPTP M392216B

HOME
172.16.102.39 M392216B

VIPADYNAMIC
VIPABACKUP 100 172.16.251.3
ENDVIPADYNAMIC

BEGINVTAM 15
PORT 23
DEFAULTLUS

RA39TV31..RA39TV39
ENDDEFAULTLUS
ALLOWAPPL *
USSTCP USSVLAD1
ENDVTAM

START M392216B
238 TCP/IP in a Sysplex

The way that this new configuration will distribute the workload is displayed in
Figure 247. The three stacks RA03, RA28, and RA39 will be considered for FTP 1
and TN3270E 2 connection request. The connection requests for RSSERVER 3
will be distributed only to RA28 and RA39.

Figure 247. D TCPIP,TCPIPC,N,VIPACDFG for RA03, RA28 and RA39 IP stack

Figure 248 displays the NETSTAT VDPT output for the distributing stack. The output
for the same command on target stacks does not give any information. Here we
see that the distributing IP stack already notices the existence of servers listening
on ports 21, 23, and 1492.

RO RA03,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 792
DYNAMIC VIPA INFORMATION:
VIPA DEFINE:
IP ADDRESS ADDRESSMASK MOVEABLE
---------- ----------- --------
172.16.251.3 255.255.255.0 IMMEDIATE

VIPA DISTRIBUTE:
IP ADDRESS PORT XCF ADDRESS
---------- ---- -----------
172.16.251.3 00020 ALL 1
172.16.251.3 00021 ALL 1
172.16.251.3 00023 ALL 2
172.16.251.3 01492 172.16.233.39 3
172.16.251.3 01492 172.16.233.28 3

..

RO RA28,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 785
DYNAMIC VIPA INFORMATION:
VIPA BACKUP:
IP ADDRESS RANK
---------- ----
172.16.251.3 000200

..

RO RA39,D TCPIP,TCPIPC,N,VIPADCFG
D TCPIP,TCPIPC,N,VIPADCFG
EZZ2500I NETSTAT CS V2R10 TCPIPC 674
DYNAMIC VIPA INFORMATION:
VIPA BACKUP:
IP ADDRESS RANK
---------- ----
172.16.251.3 000100
Chapter 7. Sysplex Distributor 239

Figure 248. D TCPIP,TCPIP,N,VDPT for RA03 IP stack after distributing multiple IP services

After this configuration has been running for a while, we can use the NETSTAT VCRT
command to display the current Dynamic VIPA connection routing table. Figure
249 displays only a portion of this output for the distributing stack. Please
remember that this output can be very large, because it shows all active
connections between the client and the participating IP stacks.

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 425
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000000
172.16.251.3 00020 172.16.233.28 000 0000000000
172.16.251.3 00020 172.16.233.39 000 0000000000
172.16.251.3 00021 172.16.233.3 001 0000000000
172.16.251.3 00021 172.16.233.28 001 0000000000
172.16.251.3 00021 172.16.233.39 001 0000000000
172.16.251.3 00023 172.16.233.3 001 0000000000
172.16.251.3 00023 172.16.233.28 001 0000000000
172.16.251.3 00023 172.16.233.39 001 0000000000
172.16.251.3 01492 172.16.233.28 001 0000000000
172.16.251.3 01492 172.16.233.39 001 0000000000
11 OF 11 RECORDS DISPLAYED
240 TCP/IP in a Sysplex

Figure 249. D TCPIP,TCPIPC,N.VCRT for RA03 IP stack after distributing multiple IP services

While we were establishing connections using the Sysplex Distributor to balance
the workload in conjunction with Workload Manager, we did two displays of the
distributing port table of RA03, our distributing stack. Figure 250 and Figure 251
show the resulting display. These displays show that the WLM/QoS weight for
RA03 1 is always 01, while the WLM/QoS weight of RA28 2 is always 02. The
WLM/QoS weight for RA39 3 periodically switches from 02 to 01 and back. That
actually explains why we have a connection rate for RA03 of 21%, RA28 of 42%,
and RA38 of 37%. When we compare these values with the actual CPU load of
these stacks, the distribution of the workload in conjunction with WLM works very
well.

 Finally, the number of connections that have been distributed since the Sysplex
Distributor function was started is also displayed with the NETSTAT VDPT command.

RO RA03,D TCPIP,TCPIPC,N,VCRT,MAX=500
D TCPIP,TCPIPC,N,VCRT,MAX=500
EZZ2500I NETSTAT CS V2R10 TCPIPC 397
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00020 9.24.104.75 03304 172.16.233.3
172.16.251.3 00020 9.24.104.75 03306 172.16.233.3
.......
172.16.251.3 00020 9.24.104.75 03251 172.16.233.28
172.16.251.3 00020 9.24.104.75 03252 172.16.233.28
.......
172.16.251.3 00020 9.24.104.75 03301 172.16.233.39
172.16.251.3 00020 9.24.104.75 03303 172.16.233.39
.......
172.16.251.3 00021 9.24.104.75 03809 172.16.233.3
172.16.251.3 00021 9.24.104.75 03976 172.16.233.3
.......
172.16.251.3 00021 9.24.104.75 03799 172.16.233.28
172.16.251.3 00021 9.24.104.75 03961 172.16.233.28
.......
172.16.251.3 00021 9.24.104.75 01868 172.16.233.39
172.16.251.3 00021 9.24.104.75 01909 172.16.233.39
.......
172.16.251.3 00023 9.24.106.247 04850 172.16.233.3
172.16.251.3 00023 9.24.106.247 04858 172.16.233.3
.......
172.16.251.3 00023 9.24.106.247 04847 172.16.233.28
172.16.251.3 00023 9.24.106.247 04848 172.16.233.28
.......
172.16.251.3 00023 9.24.106.247 04849 172.16.233.39
172.16.251.3 00023 9.24.106.247 04853 172.16.233.39
.......
172.16.251.3 01492 9.24.104.75 03501 172.16.233.28
172.16.251.3 01492 9.24.104.75 03502 172.16.233.28
.......
172.16.251.3 01492 9.24.104.75 03475 172.16.233.39
172.16.251.3 01492 9.24.104.75 03505 172.16.233.39
.......
Chapter 7. Sysplex Distributor 241

Figure 250. D TCPIP,TCPIPC,N,VDPT,DET on RA03 IP stack after running multiple IP services for
some time

RO RA03,D TCPIP,TCPIPC,N,VDPT,DET
D TCPIP,TCPIPC,N,VDPT,DET
EZZ2500I NETSTAT CS V2R10 TCPIPC 862
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000000258
WLM: 01 W/Q: 01 1

172.16.251.3 00020 172.16.233.28 000 0000000455
WLM: 02 W/Q: 02 2

172.16.251.3 00020 172.16.233.39 000 0000000350
WLM: 02 W/Q: 02 3

172.16.251.3 00021 172.16.233.3 001 0000000007
WLM: 01 W/Q: 01 1

172.16.251.3 00021 172.16.233.28 001 0000000011
WLM: 02 W/Q: 02 2

172.16.251.3 00021 172.16.233.39 001 0000000009
WLM: 02 W/Q: 02 3

172.16.251.3 00023 172.16.233.3 001 0000000180
WLM: 01 W/Q: 01 1

172.16.251.3 00023 172.16.233.28 001 0000000360
WLM: 02 W/Q: 02 2

172.16.251.3 00023 172.16.233.39 001 0000000360
WLM: 02 W/Q: 02 3

172.16.251.3 01492 172.16.233.28 001 0000000229
WLM: 02 W/Q: 02 2

172.16.251.3 01492 172.16.233.39 001 0000000192
WLM: 02 W/Q: 02 3

11 OF 11 RECORDS DISPLAYED
242 TCP/IP in a Sysplex

Figure 251. D TCPIP,TCPIPC,N,VDPT,DET on RA03 IP stack after running multiple IP services for
some time

7.7.4 Scenario 4: Deleting and adding a VIPADISTRIBUTE statement
With the DELETE parameter of the VIPADISTRIBUTE statement, we can delete a
previous designation of a dynamic VIPA as distributable. This gives you the ability
to stop distribution for a certain application/port. In this scenario (depicted in
Figure 252), we stop the distribution of the RSSERVER on port 1492. After
deleting the VIPADISTRIBUTE for this port 1492, we add a VIPADISTRIBUTE
statement for the Web server using port 80.

If the VIPADISTRIBUTE DELETE statement is defined with the keyword DESTIP
ALL, then it is not possible to use the VIPADISTRIBUTE with the DESTIP
<dynxcfip> keyword. You must use the VIPADISTRIBUTE DELETE with the
keyword DISTIP ALL and then you can use VIPADISTRIBUTE DEFINE with
keyword DESTIP <dynxcfip> to specify the new specific stacks for distribution
consideration.

RO RA03,D TCPIP,TCPIPC,N,VDPT,DET
D TCPIP,TCPIPC,N,VDPT,DET
EZZ2500I NETSTAT CS V2R10 TCPIPC 273
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000001600
WLM: 01 W/Q: 01

172.16.251.3 00020 172.16.233.28 000 0000003097
WLM: 02 W/Q: 02

172.16.251.3 00020 172.16.233.39 000 0000002791
WLM: 01 W/Q: 01 3

172.16.251.3 00021 172.16.233.3 001 0000000023
WLM: 01 W/Q: 01

172.16.251.3 00021 172.16.233.28 001 0000000044
WLM: 02 W/Q: 02

172.16.251.3 00021 172.16.233.39 001 0000000040
WLM: 01 W/Q: 01 3

172.16.251.3 00023 172.16.233.3 001 0000000392
WLM: 01 W/Q: 01

172.16.251.3 00023 172.16.233.28 001 0000000779
WLM: 02 W/Q: 02

172.16.251.3 00023 172.16.233.39 001 0000000629
WLM: 01 W/Q: 01 3

172.16.251.3 01492 172.16.233.28 001 0000000242
WLM: 02 W/Q: 02

172.16.251.3 01492 172.16.233.39 001 0000000207
WLM: 01 W/Q: 01 3

11 OF 11 RECORDS DISPLAYED
Chapter 7. Sysplex Distributor 243

Figure 252. Deleting RSSERVER distribution and adding Web Server distribution dynamically

We used the VARY OBEY file shown in Figure 253 to delete the RSSERVER from
distribution. In our case, we could use the VIPADISTRIBUTE DELETE statement
with the parameter DESTIP <dynxcfip>, since we were only distributing the port
1492 1 for the RSSERVER to the RA28 IP stack 2 and the RA39 IP stack 2.

Figure 253. OBEY file for VIPADISTRIBUTE DELETE of port 1492

Figure 254 displays the Dynamic VIPA destination port table of RA03 stack after
deleting the VIPADISTRIBUTE statement for the RSSERVER port 1492. At this
point, we see that the port 1492 is no longer being distributed.

OMPROUTE (OSPF)

TN3270E
port 23

FTPD
port 20,21

DVIPA 172.16.251.3
255.255.255.0

OMPROUTE (OSPF)

DVIPA 172.16.251.3
255.255.255.0

RSSERVER
port 1492

OMPROUE (OSPF)

DVIPA 172.16.251.3
255.255.255.0

RSSERVER
port 1492

CF

D/T2216

172.16.100.3
255.255.255.0

172.16.101.28
255.255.255.0

172.16.102.39
255.255.255.0

172.16.100.254
255.255.255.0

172.16.101.254
255.255.255.0

172.16.102.254
255.255.255.0

9.24.106.118 255.255.255.0

XCF1
172.16.233.3
255.255.255.0 XCF2

172.16.233.28
255.255.255.0

XCF3
172.16.233.39
255.255.255.0

RA03 RA28 RA39

SD Distributing Stack SD Target Stack/1.Backup SD Target Stack/2.Backup

FTPD
port 20,21

FTPD
port 20,21

WEB
Server
port 80

WEB
Server
port 80

RSSERVER is deleted from the
VIPADISTRIBUTE statement.

Web Server is added to the
VIPADISTRIBUTE statement.

TN3270E
port 23

TN3270E
port 23

VIPADYNAMIC
VIPADISTRIBUTE DELETE 172.16.251.3 PORT 1492 1

DESTIP 172.16.233.28 172.16.233.39 2
ENDVIPADYNAMIC
244 TCP/IP in a Sysplex

Figure 254. D TCPIP,TCPIPC,N,VDPT on RA03 IP stack after deleting port 1492 from distribution

We then started the Web server on stacks RA28 and RA39 and verified that the
server was listening on port 80. After that, we added the VIPADISTRIBUTE
DEFINE statement for port 80 with the XCF IP addresses for RA28 and RA39
with the VARY OBEY file shown in Figure 255.

Figure 255. VARY OBEY file to distribute the Web server on port 80

Figure 256 shows the Dynamic VIPA destination port table of RA03 stack after
adding the distribution of the Web server.

Figure 256. D TCPIP,TCPIPC,N,VDPT on RA03 after VIPADISTRIBUTE DEFINE for port 80

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 661
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000002240
172.16.251.3 00020 172.16.233.28 000 0000004480
172.16.251.3 00020 172.16.233.39 000 0000004080
172.16.251.3 00021 172.16.233.3 001 0000000031
172.16.251.3 00021 172.16.233.28 001 0000000061
172.16.251.3 00021 172.16.233.39 001 0000000055
172.16.251.3 00023 172.16.233.3 001 0000000452
172.16.251.3 00023 172.16.233.28 001 0000000899
172.16.251.3 00023 172.16.233.39 001 0000000749
9 OF 9 RECORDS DISPLAYED

VIPADYNAMIC
VIPADISTRIBUTE 172.16.251.3 PORT 80

DESTIP 172.16.233.28 172.16.233.39
ENDVIPADYNAMIC

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 736
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000002240
172.16.251.3 00020 172.16.233.28 000 0000004480
172.16.251.3 00020 172.16.233.39 000 0000004080
172.16.251.3 00021 172.16.233.3 001 0000000031
172.16.251.3 00021 172.16.233.28 001 0000000061
172.16.251.3 00021 172.16.233.39 001 0000000055
172.16.251.3 00023 172.16.233.3 001 0000000452
172.16.251.3 00023 172.16.233.28 001 0000000899
172.16.251.3 00023 172.16.233.39 001 0000000749
172.16.251.3 00080 172.16.233.28 001 0000000000
172.16.251.3 00080 172.16.233.39 001 0000000000
11 OF 11 RECORDS DISPLAYED
Chapter 7. Sysplex Distributor 245

Figure 257 shows only a part of the connection table after establishing
connections to the Web server using the Sysplex Distributor to balance the
workload between the IP stacks RA28 and RA39.

Figure 257. D TCPIP,TCPIPC,N,VCRT on RA03 after establishing connection to Web server

Finally, to show the number of connections that have been distributed since the
Sysplex Distributor function was started, we issue the command as shown in
Figure 258.

Figure 258. D TCPIP,TCPIPC,N,VDPT on RA03 after some time running the distribution

7.7.5 Scenario 5: Removing a target stack from distribution
There are a few reasons why an IP stack may need to be removed from
distribution. One example is the event of a planned maintenance update for this
stack, which should affect the least number of users as possible. Removing the
stack from distribution will ensure that all the new connections are sent to the
other participating stacks in the sysplex. Existing connections on the removed
stack will still be maintained until their normal completion.

Assume we still have the same environment as we had after 7.7.4, “Scenario 4:
Deleting and adding a VIPADISTRIBUTE statement” on page 243. In this case,
we are running the FTP and Telnet server on all three IP stacks (RA03,RA28, and

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 895
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
.......
172.16.251.3 00080 9.24.106.32 01083 172.16.233.28
172.16.251.3 00080 9.24.106.102 01182 172.16.233.28
172.16.251.3 00080 9.24.106.252 01130 172.16.233.28
172.16.251.3 00080 9.24.106.247 03550 172.16.233.39
172.16.251.3 00080 9.24.106.252 01131 172.16.233.39
.......

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 898
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000002240
172.16.251.3 00020 172.16.233.28 000 0000004480
172.16.251.3 00020 172.16.233.39 000 0000004080
172.16.251.3 00021 172.16.233.3 001 0000000031
172.16.251.3 00021 172.16.233.28 001 0000000061
172.16.251.3 00021 172.16.233.39 001 0000000055
172.16.251.3 00023 172.16.233.3 001 0000000452
172.16.251.3 00023 172.16.233.28 001 0000000899
172.16.251.3 00023 172.16.233.39 001 0000000749
172.16.251.3 00080 172.16.233.28 001 0000000032
172.16.251.3 00080 172.16.233.39 001 0000000024
11 OF 11 RECORDS DISPLAYED
246 TCP/IP in a Sysplex

RA39). The Web server is running on IP stacks RA28 and RA39. Now we remove
the target IP stack RA39 from distribution. There is also new status information
for the DVIPAs. We redefine the IP stack RA39 just as a target stack and remove
the VIPABACKUP definition.

Figure 259 shows you all the participating IP stacks in the sysplex and their
status.

Figure 259. D TCPIP,TCPIPC,SYSPLEX,VIPADYN

Now we change the IP stack RA39 to a target stack without any backup
capabilities. Remember that we have defined RA39 as our second backup for
RA03. This change is necessary because of the new status of the DVIPAs that
were introduced with IBM Communications Server for OS/390 V2R10. If RA39
would still be defined as backup, the new DVIPA status is never displayed, it
would show only the BACKUP status. We do this with the VARY OBEY file on IP
stack RA39 as shown in Figure 260. We also automatically delete the
VIPBACKUP definition on RA39 by deleting the RA03 DVIPA on RA39.

Figure 260. VARY OBEY file for deleting VIPABACKUP definition on RA39

Note: This will not remove the DVIPA entry from the home list of IP stack RA39,
because we are still a target for distribution.

Figure 261 shows you the participating IP stacks in the sysplex and their status
after deleting the VIPABACKUP definition on RA39. RA39 now shows the status
of ACTIVE 1 and a distribution status of DEST 2, which only shows target stacks
without backup capabilities.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 147
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
TCPIPC RA28 BACKUP 200 DEST
TCPIPC RA39 BACKUP 100 DEST

3 OF 3 RECORDS DISPLAYED

VIPADYNAMIC
VIPADELETE 172.16.251.3
ENDVIPADYNAMIC
Chapter 7. Sysplex Distributor 247

Figure 261. D TCPIP,TCPIPC,SYSPLEX,VIPADYN after deleting VIPABACKUP definition

Figure 262 and Figure 263 shows us that we are distributing to all three stacks for
FTP 1 and Telnet 2. For the Web server 3 we are distributing to RA28 and RA39.
At the moment we have established only four Telnet connections: two active
connections to RA28 4 and two active connections to RA39 5.

Figure 262. D TCPIP,TCPIPC,N,VDPT before removing target stack RA39 from distribution

Figure 263. D TCPIP,TCPIPC,N,VCRT before removing target stack RA39 from distribution

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 151
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
TCPIPC RA28 BACKUP 200 DEST
TCPIPC RA39 1 ACTIVE DEST 2

3 OF 3 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 154
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000001716
172.16.251.3 00020 172.16.233.28 000 0000003282
172.16.251.3 00020 172.16.233.39 000 0000003202
172.16.251.3 00021 172.16.233.3 001 0000000039 1
172.16.251.3 00021 172.16.233.28 001 0000000081 1
172.16.251.3 00021 172.16.233.39 001 0000000080 1
172.16.251.3 00023 172.16.233.3 001 0000000754 2
172.16.251.3 00023 172.16.233.28 001 0000000877 2
172.16.251.3 00023 172.16.233.39 001 0000000873 2
172.16.251.3 00080 172.16.233.28 001 0000000044 3
172.16.251.3 00080 172.16.233.39 001 0000000050 3
11 OF 11 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 157
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00023 9.24.106.247 01740 172.16.233.28 4
172.16.251.3 00023 9.24.106.247 01741 172.16.233.28 4
172.16.251.3 00023 9.24.106.247 01742 172.16.233.39 5
172.16.251.3 00023 9.24.106.247 01743 172.16.233.39 5
4 OF 4 RECORDS DISPLAYED
248 TCP/IP in a Sysplex

At this point, we use the VIDISTRIBUTE DELETE statement in a VARY OBEY file
to delete all the ports defined for distribution to RA39. At the moment we are
distributing ports 20, 21, 23 and 80 to IP stack RA39. Remember, ports 20, 21
and 23 were defined in the PROFILE using the keyword DESTIP ALL. To remove
distribution for these ports, we first have to use the VIPADISTRIBUTE DELETE
with DESTIP ALL 1 before we can use the VIPADISTRIBUTE DEFINE 2 for the
special XCF addresses (review explanation in 7.7.4, “Scenario 4: Deleting and
adding a VIPADISTRIBUTE statement” on page 243). Distribution for port 80 was
done with a VARY OBEY file and we used the XCF addresses in the DESTIP
keyword. To remove this distribution, we can use the VIPADISTRIBUTE DELETE
3 statement with the keyword DESTIP <dynxcfip>. Please refer to Figure 264.

Figure 264. OBEY file to remove only the distribution to target IP stack RA39

Figure 265 and Figure 266 show us that the target IP stack RA39 is removed from
distribution. There is no entry in the destination port table for this stack as a
distribution target. But the existing 1 connections are still maintained (not broken).

Figure 265. D TCPIP,TCPIPC,N,VDPT after removing target IP stack RA39 from distribution

VIPADYNAMIC
VIPADISTRIBUTE DELETE 172.16.251.3 PORT 20 21 23

DESTIP ALL 1
VIPADISTRIBUTE DELETE 172.16.251.3 PORT 80

DESTIP 172.16.233.39 3
ENDVIPADYNAMIC
VIPADYNAMIC
VIPADISTRIBUTE 172.16.251.3 PORT 20 21 23

DESTIP 172.16.233.3 172.16.233.28 2
ENDVIPADYNAMIC

RO RA03,D TCPIP,TCPIPC,N,VDPT
D TCPIP,TCPIPC,N,VDPT
EZZ2500I NETSTAT CS V2R10 TCPIPC 174
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
172.16.251.3 00020 172.16.233.3 000 0000001716
172.16.251.3 00020 172.16.233.28 000 0000003282
172.16.251.3 00021 172.16.233.3 001 0000000039
172.16.251.3 00021 172.16.233.28 001 0000000081
172.16.251.3 00023 172.16.233.3 001 0000000754
172.16.251.3 00023 172.16.233.28 001 0000000877
172.16.251.3 00080 172.16.233.28 001 0000000044
7 OF 7 RECORDS DISPLAYED
Chapter 7. Sysplex Distributor 249

Figure 266. D TCPIP,TCPIPC,N,VCRT after removing target IP stack RA39 from distribution

We now show the current dynamic VIPA information after removing the target IP
stack RA39 from distribution. The DVIPA shows a new status of QUIESCING 1,
which is new in IBM Communications Server for OS/390 V2R10. This state
indicates that this DVIPA is no longer a target for distribution. Existing
connections are still kept active and functional. The distribution status 2 is blank
on the display, since we have actually removed the IP stack from distribution.
Please refer to Figure 267.

Figure 267. D TCPIP,TCPIPC,SYSPLEX,VIPADYN after removing target IP stack RA39 from
distribution

Note: If the target IP stack RA39 would be defined as a backup for RA03, the
display would show the status BACKUP and not QUIESCING.

Figure 268 shows the current Dynamic VIPA information after disconnecting the
connections to target IP stack RA39. The IP stack RA39 is no longer displayed on
this command, since it is now completely removed from distribution. Also, the
DVIPA entry of RA03 in the home list of RA39 is removed at this time. Please see
Figure 269 for that display.

RO RA03,D TCPIP,TCPIPC,N,VCRT
D TCPIP,TCPIPC,N,VCRT
EZZ2500I NETSTAT CS V2R10 TCPIPC 286
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
172.16.251.3 00023 9.24.106.247 01740 172.16.233.28
172.16.251.3 00023 9.24.106.247 01741 172.16.233.28
172.16.251.3 00023 9.24.106.247 01742 172.16.233.39 1
172.16.251.3 00023 9.24.106.247 01743 172.16.233.39 1
4 OF 4 RECORDS DISPLAYED

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 310
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
TCPIPC RA28 BACKUP 200 DEST
TCPIPC RA39 1 QUIESC 255.255.255.0 0.0.0.0 2

3 OF 3 RECORDS DISPLAYED
250 TCP/IP in a Sysplex

Figure 268. D TCPIP,TCPIPC,SYSPLEX,VIPADYN after disconnecting all connections to RA39

Figure 269. D TCPIP,TCPIPC,N,HOME after disconnecting all connections to RA39

7.8 Diagnosing Sysplex Distributor problems

Using the already described NETSTAT and DISPLAY WLM commands, you can have a
clear picture of your sysplex environment. Diagnosing Sysplex Distributor
problems may be complex since the DVIPA is associated with more than one IP
stack within the sysplex cluster.

Which command you use depends on the specific situation. If your Sysplex
Distributor is not working as you expected, we suggest you follow this sequence
of steps:

1. Review the configuration, going through the implementations steps listed in
7.5.4, “Implementation” on page 210.

2. Use the NETSTAT commands described in 7.7.1, “Scenario 1: Three IP
stacks distributing FTP services” on page 213 to display the actual
configuration and compare it against your expectations. A very good
indication in regards to whether a connection can be distributed is the
NETSTAT,VDPT command. It shows you in the RDY output field which
application is ready to receive connections.

3. Verify that OSPF or RIP dynamic routing protocols have been implemented
and the DVIPA is being advertised through this. In addition, ensure that the
downstream routers in your network have learned from your OMPROUTE
(or ORouteD) where to find the DVIPA.

RO RA03,D TCPIP,TCPIPC,SYSPLEX,VIPADYN
D TCPIP,TCPIPC,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V2R10 316
VIPA DYNAMIC DISPLAY FROM TCPIPC AT RA03
IPADDR: 172.16.251.3 LINKNAME: VIPLAC10FB03
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPIPC RA03 ACTIVE 255.255.255.0 172.16.251.0 BOTH
TCPIPC RA28 BACKUP 200 DEST

2 OF 2 RECORDS DISPLAYED

RO RA39,D TCPIP,TCPIPC,N,HOME
D TCPIP,TCPIPC,N,HOME
EZZ2500I NETSTAT CS V2R10 TCPIPC 416
HOME ADDRESS LIST:
ADDRESS LINK FLG
172.16.102.39 M392216B P
172.16.233.39 EZASAMEMVS
172.16.233.39 EZAXCF28
172.16.233.39 EZAXCF03
127.0.0.1 LOOPBACK
5 OF 5 RECORDS DISPLAYED
Chapter 7. Sysplex Distributor 251

4. For checking the distributing function you could use the REXX samples we
have added in Appendix C, “REXX EXECs to gather connection statistics”
on page 287. The REXX program connects to a server on a given
hostname/port pair the specified number of times. With that utility you can
easily check if the Sysplex Distributor is distributing as you expect.

If this is not enough, we strongly suggest you refer to OS/390 IBM
Communications Server: IP Configuration Reference, SC31-8726 for further
information.
252 TCP/IP in a Sysplex

Appendix A. Sample applications and programs

In Chapter 2, “DNS/WLM (connection optimization)” on page 17, we introduced a
simple REXX EXEC to enable us to determine how well load balancing was
working across the images in a sysplex. Using DNS/WLM in OS/390 V2R5 IP as
we were, this EXEC was perfectly adequate. However, with the increasing
sophistication of later releases and the Network Dispatcher, we need more than
that. Indeed, newer functions such as dynamic VIPA, sysplex sockets and finally,
Sysplex Distributor required more coding effort to demonstrate their operation
effectively.

In this appendix, therefore, we introduce some simple coding that we used to
good effect in subsequent tests:

 • A WLM registration program, WLMREG.

This works with our new servers (or indeed, with any server) to register the
address space or process in which the server runs with WLM.

 • A new REXX EXEC, SYSPLEX2.

The simple EXECs in Chapter 2, “DNS/WLM (connection optimization)” on
page 17 used ping to exchange data with their target servers. Network
Dispatcher will not work with ping, because it dispatches only TCP and UDP
traffic. Ping is ICMP and is echoed by the Network Dispatcher itself, proving
nothing about its load-balancing abilities.

 • Our EXEC uses TCP to connect to a server; we have written two versions of
this server (a single-threading and a multithreading version). Our server
provides the needed statistics to our REXX EXEC, and also shows how to
register an application to a dynamic VIPA address.

 • We have written a WLM query program to display what applications have
registered and their status. Using this program is somewhat easier than poring
over a trace or a dump, although it does not provide as much information.

 • We have also written a program to utilize the sysplex sockets interface. This
allows an application to query the sysplex environment in which it runs, and to
take appropriate action depending on that environment.

A.1 WLMREG, a sample registration program

Telnet and FTP provide parameters that allow you to specify the group name that
they will register under to use DNS/WLM workload balancing. If you want your
own TCP/IP applications to benefit from connection workload balancing, then
they must manually register with WLM.

Fortunately this is a simple thing to do. All that is required is an address space to
call the IWMSRSRG macro or the IWMDNREG function from C. It is important to
realize that it is the MVS address space the application is running in that is
registered with WLM, not the application itself. This actually makes life a little
easier, since we can simply call a generic registration program before starting a
server and benefit from DNS/WLM connection balancing very easily.

The sample registration program has been designed to allow it to be used for
almost any TCP/IP application that runs in a single address space. You simply
call this program with the relevant parameters before you start your own
© Copyright IBM Corp. 1998 2001 253

application, and the address space will be registered with WLM; thus, work
destined for the WLM group name will be routed to it. If you are running your
programs in UNIX System Services, then it is the process, not the address space,
that is registered with WLM.

The program we have provided is based upon the sample shipped with TCP/IP
and located in /usr/lpp/tcpip/samples/wlmreg.c on HFS. The complete source for
the sample is available in B.1, “WLMREG registration sample” on page 267.

We will now show how to set up and use a simple user TCP/IP server application
written in C.

A.1.1 The registration call

The IWMDNREG C function is documented in IBM Communications Server for
OS/390 IP Configuration, SC31-8513. It provides a simple way to register with
WLM, associating the IP addresses of the local TCP/IP stack with a given WLM
group name. This association also includes the address space that performed the
registration call, allowing WLM to deregister us automatically if our address space
should terminate without manually deregistering.

Under the covers, the IWMDNREG C function calls the MVS Workload Manager's
IWMSRSRG service. See OS/390 MVS Programming: Workload Management
Services, GC28-1773, for more information.

The C function is invoked as follows:

extern long IWMDNREG(char *group_name, char *host_name, char *server_name,

char *netid, char *wlm_user_data, long *diag_code);

The first parameter, group_name, should be the group name under which this
application will register. Effectively, this will become a virtual host name. For
example, if we are running on host ralplex1.buddha.ral.ibm.com and we register
with group name fred, then users will be able to connect to our application, or
any other application registered with the same group name, through the virtual
host name of fred.ralplex1.buddha.ral.ibm.com.

The second parameter, host_name, should contain the TCP/IP host name of the
stack our application is listening on and should generally be obtained through the
gethostname() call from the registration program.

The third parameter, server_name, should be a name that will identify uniquely this
instance of the application and must be different for each server registering under
a given group name.

The next two parameters are not required and should be set to NULL.

The diag_code is a variable passed by reference to give us extra information, if the
registration call should fail.

If you make the IWMDNREG call from C, then you need to make sure you define
the call with OS linkage, as is done in the sample TCP/IP header file
iwmwdnsh.h, and link edit with the stub in your SYS1.CSSLIB data set.

If you are running a sockets program in UNIX System Services and cannot alter
the program, you can still use the WLMREG program to register the process in
254 TCP/IP in a Sysplex

which the program runs. This is achieved by using the execvp() system call after
the IWMDNREG completes. execvp() loads a program from an ordinary
executable file into the current process, replacing the current program. Since the
process is still running, socket connections can be routed to the newly loaded
program.

A.1.2 To deregister, or not to deregister?

Once our address space is registered, we will have work for our group name
routed to us until either we manually deregister or our address space terminates.
Typically, a long-running server program will probably want to have work routed to
it until it terminates, in which case we do not strictly need to deregister manually
unless some other program is going to run in our address space after our server
has terminated. However, it is worth being aware of a potential scenario where we
might want to deregister even though our server is still active.

Provided the TCP/IP stack registers itself with WLM, the status of its IP interfaces
will be communicated to WLM and thus to DNS. Therefore, if all the interfaces
through which our server can be reached are inactive, WLM will not route work to
the server. However, if the stack fails or is brought down, DNS loses track of the
interface status and will continue to route work to our server (which is still
registered to WLM and therefore included in the data sent by WLM to DNS). Our
server program's TCP/IP calls will fail with return codes indicating that the TCP/IP
service is not available. Depending on how our server application has been
written, we might either terminate or wait for TCP/IP to return. If we quit then,
WLM will be informed and will no longer route work to us. If we hang around
waiting for our TCP/IP stack to restart (which could take some time), then we will
remain registered and WLM will attempt to route some work to us. WLM will have
no way of knowing that the clients being routed to us via the now inactive network
interface are being rejected while other connection requests that are routed to
other members of our WLM group name are probably succeeding.

To prevent this, our application will need to deregister manually from WLM if a
TCP/IP failure (or indeed any other transient failure preventing us from being able
to process clients' requests) is detected. Obviously, once we are able to process
work again we need to reregister with WLM.

Unfortunately, this causes problems when we want to use our sample WLM/DNS
registration program to register an existing server application without having to
modify it.

If you have a server application that does not terminate as the result of a
temporary failure then your best option, if available, is indeed to modify the server
to manually register and deregister from WLM as required.

If you cannot modify the server (it might be a third-party application), then you
might have to live with the potential consequences. These may be acceptable if,
for example, the client applications will continually try to reestablish a connection,
since they will eventually be routed to an available server.

Another possibility to investigate might be the ability of the IWMSRSRG macro
version of the call to register on behalf of another address space. Thus, you might
have some other application that monitors resource availability on an MVS image
and registers/deregisters the applications for which it is responsible as necessary.
This version of the WLM registration call is available only if you use the macro
Appendix A. Sample applications and programs 255

call; it is not available from the C language version. We do not explore this
scenario in this redbook.

A.1.3 Waiting for WLM to Update DNS

While at any given moment WLM is aware of exactly what servers are registered
for each group name, this information is queried by the DNS only periodically
(every 60 seconds by default). This means that there are periods during which
DNS may incorrectly resolve, or even fail to resolve, group names to IP
addresses.

This is most obvious when you start a server that is the first to register a
particular group name. For up to 60 seconds (or whatever your DNS/WLM refresh
rate is), the DNS will be unable to resolve this name. Conversely, where an
application has deregistered (either manually or automatically at MVS
end-of-memory processing) there is a period where clients will be routed to a
server that is no longer available. You might like to consider this possibility when
designing a server application: instead of deregistering and not accepting any
more inbound connections, you might deregister and allow a grace period where
clients can still connect while you wait for a reasonable period of time for the
WLM to update DNS. While this is far from ideal, it might alleviate some of the
connection problems associated with a server shutdown.

A.2 Collecting statistics using REXX

In 2.6.5, “Observing the effects of WLM and DNS” on page 48 we introduced a
REXX EXEC that repeatedly pings the sysplex and gathers up the number of
successful pings made. We want to gather similar statistics using the Network
Dispatcher (NDR). However, the NDR dispatches only TCP and UDP protocols
and ping uses ICMP, so we provide a new client application that uses TCP.

We have written a REXX client program to connect to the SOCSRVR program.
This program gathers statistics of the number of successful connects, and the IP
address it was connected to each time.

The SYSPLEX2 EXEC is executed by the following command:

REXX SYSPLEX2 hostname port -c num_connects -b between_time

where hostname and port are the pair you wish to connect to, num_connects is the
number of times you wish to connect to them and between_time is the time in
seconds to pause between connections to the server. It should be noted that if
the pause is greater than or equal to one second, a CPU-friendly SysSleep() call
is performed. If the pause is less than one second, a CPU-intensive loop is
entered. This should be avoided if possible. You could reimplement it in an
alternative fashion if your need is great enough.

You can omit the parameters num_connects and between_time. They default to 10
and 0 respectively.

The client program starts by calling SockGetHostByName() to resolve the host name
to an IP address as shown in Figure 270:
256 TCP/IP in a Sysplex

Figure 270. Resolving hostname in REXX sockets API

It then allocates a standard stream socket and connects to it as shown in the
code excerpt in Figure 271:

Figure 271. Allocate socket and connect to it

Then it receives the server's IP address from the server, and finally it closes the
socket. This is shown in Figure 272:

Figure 272. Receive data from server and close

This process is repeated for the number of connects specified and then the
results are counted and printed.

The complete source for the REXX client is in C.2, “EXEC to connect to server
using TCP” on page 290. The subroutine that is called at the end of the REXX
program to sort and output the statistics, sysstats, is in C.3, “REXX statistics

rc = SockGetHostByName(connectToName, "resolvedHost.!")
if(rc = 0) then
do
say "Error resolving hostname: " errno
return

end

socket = SockSocket("AF_INET", "SOCK_STREAM", 0)
if(socket = -1) then
do
say "Error creating socket: " errno
return

end
server.!family = "AF_INET"
server.!port = connectToPort
server.!addr = resolvedHost.!addr

rc = SockConnect(socket, "server.!")
if(rc = -1) then
do
say "Error on connecting socket to '" || server.!addr || "':" errno

end

rc = SockRecv(socket, buffer, 4)
if(rc < 1) then
do
say "Error on receive:" errno
return

end

rc = SockSoClose(socket)
if(rc = -1) then
do
say "Error closing socket:" errno
return

end
Appendix A. Sample applications and programs 257

subroutine” on page 293. This was done in a separate file since it is less
interesting from a socket programming point of view.

If you wish to store the results in a file, then use the following command:

REXX SYSPLEX2 hostname port -c num_connects -b between_time > output.txt

where output.txt is the name of your output file.

A.3 WLMQ, a WLM query program

We have a program that allows us to query the server programs that have already
been registered to WLM. When called without parameters, a list of all registered
server programs is displayed. If parameters are present, only servers registered
with groups named by the parameters are shown.

The program uses the C function IWMDNGRP (which maps to the IWMSRDNS
macro) to obtain a list of groups and then calls IWMDNSRV (which maps to the
IWMSRSRS macro) for each group to obtain a list of registered servers.

The C function to query a list of group names is invoked as follows:

extern long IWMDNGRP(struct grpinfo_block *grp_array, long * entry_count,

long * diag_code);

The first parameter, grp_array, is an array of structures that can hold information
on a group. Currently, the only information in the structure is the name of the
group. Due to the asynchronous nature of deregistration, a group may still be
present in the output list even though all server programs using that group have
deregistered. Conversely, some registered servers may not appear for this same
reason.

The second parameter, entry_count, is used on input to specify the maximum
number of entries that the program can receive safely (how much storage we
chose to allocate). On output it contains the number of currently registered
groups, and hence how many grpinfo_block structures have been filled in. The
WLMQ program first calls IWMDNGRP with a group_count of zero. This gives us
the number of groups currently registered with WLM. We then allocate space for
two more groups than are currently registered and call IWMDNGRP again. The
extra two groups allows us to consider new groups being registered between the
two calls.

The diag_code is a variable passed by reference to provide additional diagnostic
information if the call does not complete successfully.

The C function to query information for a group of servers is invoked as follows:

extern long IWMDNSRV(char *group_name, struct sysinfo_block *sys_array, long

*entry_count, long *diag_code);

The first parameter, group_name, identifies the group we are querying.

The second parameter, sys_array, is an array of structures that can hold
information on a server program. The structure is defined as follows:
258 TCP/IP in a Sysplex

struct sysinfo_block { char netid[WLMSIZE_OF_NETID]; char

server[WLMSIZE_OF_SERVER]; unsigned char weight; char user_data[64]; char

host_nameid[WLMSIZE_OF_HOSTNAME]; };

For most server programs the netid and user_data fields will be blank. For the
TCP/IP stack, the user_data field contains the list of addresses for the active IP
interfaces.

The weight field contains the relative weighting for each server. This value tells a
caller the relative number of requests to send to each server.

The third parameter to the IWMDNSRV call, entry_count, is again used on input to
specify the maximum number of entries that the program has storage to receive.
On output it contains the number of programs currently serving the group, and
thus how many sysinfo_block structures have been populated. This value is set to
10 on input. If your environment has more programs serving a single group, edit
the sample program and give the #defined symbol WLMQ_MAX_SERVERS a larger
value.

The diag_code is a variable passed by reference to provide additional diagnostic
information if the call does not complete successfully.

See Figure 273 for some example output:

Figure 273. Example output from the WLM query program

Note: The ability to query WLM registration status is planned for implementation
in a future release of CS for OS/390.

Group Server HostName NetId Weight

1 TESTRAL SERVER28 MVS28A 32
1 TESTRAL SERVER03 MVS03A 31
2 TNRAL MVS03A MVS03A 21
2 TNRAL MVS28A MVS28A 21
2 TNRAL MVS39A MVS39A 21
3 TCPIP T03ATCP MVS03A MVS03A 10
UserData: 172.16.250.3 9.24.104.113 172.16.100.3 172.16.233.3

172.16.233.3
3 TCPIP T03CTCP MVS03C MVS03C 10
UserData: 172.16.251.4 9.24.104.33 172.16.233.4 172.16.233.4
3 TCPIP T28CTCP MVS28C MVS28C 10
UserData: 172.16.100.99 9.24.104.43 172.16.253.29 172.16.233.29

172.16.233.29 172.16.233.29
3 TCPIP T28ATCP MVS28A MVS28A 10
UserData: 172.16.252.28 9.24.104.42 172.16.101.28 172.16.104.28

172.16.233.28 172.16.233.28 172.16.233.28 172.16.240.28
172.16.240.193

3 TCPIP T39ATCP MVS39A MVS39A 21
UserData: 172.16.232.39 9.24.104.149 172.16.105.39 172.16.233.39

172.16.240.39
Appendix A. Sample applications and programs 259

A.4 SOCSRVR, a simple socket server program

Here we introduce a simple TCP/IP server program, SOCSRVR, that we use
throughout this book to test workload balancing. The program is started with a
single argument specifying the TCP/IP port number on which it should listen. It
begins by calling gethostname() and gethostid() to find the host name and IP
address of the TCP/IP stack it will use, as shown in Figure 274:

Figure 274. Find hostname and IP address

It then allocates a standard stream socket and listens for inbound connections on
the port specified at startup as shown in Figure 275:

Figure 275. Allocate socket and listen

When a client connects we simply send it four bytes containing our IP address,
close the connection and go back to waiting for the next client connection
request. This is shown in Figure 276:

if(gethostname(hostName, 64) !=0)
{

tcperror("Gethostname()");
exit(2);

}

if((hostId = gethostid()) == 0)
{

tcperror("Gethostid()");
exit(2);

}

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{

tcperror("Socket()");
exit(3);

}

server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = INADDR_ANY;

if (bind(s, (struct sockaddr *)&server, sizeof(server)) < 0)
{

tcperror("Bind()");
exit(4);

}

if (listen(s, 255) != 0)
{

tcperror("Listen()");
exit(5);

}

260 TCP/IP in a Sysplex

Figure 276. Accept conversation, send data and close

The complete source for the sample is available in B.3, “SOCSRVR single
threading server” on page 274.

See Figure 277 for some example JCL that runs the WLMREG and SOCSRVR
programs in the same address space:

Figure 277. Sample JCL to run the WLMREG then the SOCSRVR programs

A.4.1 Modifying SOCSRVR for Dynamic VIPA

To modify the SOCSRVR (see A.4, “SOCSRVR, a simple socket server program”
on page 260) sample to exploit dynamic VIPA is very simple. First we change the
parameter checking so that two arguments are required as in Figure 278:

Figure 278. Modifying the parameter checking on SOCSRVR for Dynamic VIPA

while(1)
{

namelen = sizeof(client);
if ((ns = accept(s, (struct sockaddr *)&client, &namelen)) == -1)
{

tcperror("Accept()");
exit(6);

}

if (send(ns, (char*) &hostId, sizeof(hostId), 0) < 0)
{

tcperror("Send()");
exit(7);

}
close(ns);

}

//GOWLMRG1 JOB (NEIL,D1111),'NEILJ',MSGCLASS=H
//REG EXEC PGM=WLMREG,REGION=0M,
// PARM='TESTRAL SERVER1'
//STEPLIB DD DISP=SHR,DSN=NEIL.UTIL.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
//SYSPRINT DD SYSOUT=*
//SYSTCPD DD DISP=SHR,DSN=TCP.TCPPARMS(TDATA03A)
//*
//SRV EXEC PGM=SOCSRVR,REGION=0M,TIME=NOLIMIT,
// PARM='1234'
//STEPLIB DD DISP=SHR,DSN=NEIL.UTIL.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
//SYSPRINT DD SYSOUT=*
//SYSTCPD DD DISP=SHR,DSN=TCP.TCPPARMS(TDATA03A)

if (argc != 3)
{
fprintf(stderr, "Usage: %s port VIPA\n", argv[0]);
exit(1);

}

Appendix A. Sample applications and programs 261

Secondly, we change the sock_addr_in structure so that instead of using
INADDR_ANY to bind to all addresses we bind to the VIPA passed as the second
argument as shown in Figure 279:

Figure 279. Binding to a specific VIPA

A.5 Sysplex sockets

Socket applications are written generally to communicate with a partner on any
platform. This means that the improved performance and scalability of the
OS/390 sysplex is not exploited, unless some application-specific protocol is
used; this is not always possible.

The sysplex sockets function provides a standard way to discover information
about the connected partner which can then be used to make decisions that can
exploit the value of the OS/390 sysplex where applicable.

A.5.1 Discovering partner information

This is done by way of a new option on the socket call getsockopt(), which is
described in more detail in IBM Communications Server for OS/390 IP
Application Programming Interface Guide, SC31-8516. This new option is
SO_CLUSTERCONNTYPE and is coded as shown in Figure 280:

Figure 280. getsockopt() call

The call can return any of the values shown in Table 6. In this context a cluster is
a sysplex:

Table 6. Returned values

Returned Value Description

SO_CLUSTERCONNTYPE_NOCONN No connection active.

SO_CLUSTERCONNTYPE_NONE Active Connection and the partner is not in the
same cluster.

SO_CLUSTERCONNTYPE_SAME_CLU
STER

Active connection and the partner is in the
cluster.

SO_CLUSTERCONNTYPE_SAME_IMAG
E

Active connection and the partner is in the
same (MVS) image.

server.sin_addr.s_addr = inet_addr(argv[2]);

if (bind(s, (struct sockaddr *)&server, sizeof(server)) < 0)
{

tcperror("Bind()");
exit(4);

}

if (getsockopt(s, SOL_SOCKET, SO_CLUSTERCONNTYPE, (char *)&type,
&typelen) < 0)

{
tcperror("GetSockOpt()");
exit(5);
262 TCP/IP in a Sysplex

These returned values are tested for as in the code excerpt in Figure 281:

Figure 281. getsockopt() call

A.5.2 SSOCCLNT, a sample sysplex sockets program

The sample sysplex sockets program very simply connects to the SOCSRVR
program introduced in A.4, “SOCSRVR, a simple socket server program” on page
260 and, before receiving the data from the server, issues the getsockopt() call
with the new option SO_CLUSTER_CONNTYPE. It then prints out the type of the
connection. The output will look something like Figure 282:

Figure 282. Output from SSOCCLNT

The complete source for the sample is available in B.4, “SSOCCLNT sysplex
sockets sample” on page 276.

A useful application of the sysplex sockets function would be to make some
decisions regarding, for example, security or data conversion, depending on the
information returned about the partner.

SO_CLUSTERCONNTYPE_INTERNAL Active connection and the partner is in the
cluster and the link is either loopback,
MPCPTP, CTC or XCF.

Returned Value Description

if (!(type & SO_CLUSTERCONNTYPE_NOCONN))
{

if (type & SO_CLUSTERCONNTYPE_NONE)
{

/* The connection is not in the same cluster */
}
if (type & SO_CLUSTERCONNTYPE_INTERNAL)
{

/* The connection is an internal type of connection */
}
if (type & SO_CLUSTERCONNTYPE_SAME_IMAGE)
{

/* The connection is in the same (MVS) image */
}
if (type & SO_CLUSTERCONNTYPE_SAME_CLUSTER)
{

/* The connection is in the same cluster */
}

}

Connection Type :
Same Image
Same Cluster
Server's IP address : 9.24.104.113
Appendix A. Sample applications and programs 263

A.6 Loading the system

For our more advanced tests, we needed to load our sysplex systems beyond
what a single client could provide by way of traffic. Therefore, we modified our
server to handle multiple clients. In other words, we converted it to a
multi-threading server.

A.6.1 MTCSRVR, a multitasking socket program

Here we introduce our multitasking server, MTCSRVR, and the subtask program
it schedules, MTCSUBT. The server is the Multitasking C Socket Sample Program
provided in the IBM Communications Server for OS/390 IP Application
Programming Interface Guide, SC31-8516, with some minor changes so that it no
longer handles the simplest case. These changes remove a couple of lines that
say

/*** do simplified situation first ***/

and add code to allow the number of subtasks to be specified as the second
parameter. The first parameter is the port on which to listen.

The source for this sample can be found in B.5, “MTCSRVR multitasking sockets
program” on page 278, with the lines that are changed from the original
highlighted in bold.

We have written a new subtask program based upon the sample subtask
provided to interact with our REXX client program.

The subtask starts by using the information passed as parameters to fill in the
clientid structure and take the socket from the calling program as shown in
Figure 283.

Figure 283. Obtaining the socket from the calling program

If the takesocket is successful, we receive data from the socket into a local byte.
This controls how long the server program sleeps before responding to the client.
The value is the number of tenths of a second to sleep. See Figure 284.

memset(&cid, 0, sizeof(cid));
memcpy(cid.name, tskname, 8);
memcpy(cid.subtaskname, tsksname, 8);
cid.domain = AF_INET;

socket = takesocket(&cid, *clsock);
if (socket < 0)
{
tcperror("Csub: Error from takesocket");

}

264 TCP/IP in a Sysplex

Figure 284. Receiving data from the socket and sleeping for a time

The subtask then queries the local IP address and sends it back to the client
program as shown in Figure 285.

Figure 285. Querying the host ID and sending the value to the client

One thing to note when getting the subtask to work is that you must link-edit it
correctly as described in the OS/390 C/C++ Programming Guide, SC09-2362,
with the following linkage editor control statements:

INCLUDE SYSLIB(EDCMTFS)
ENTRY CEEESTART

The source for this sample can be found in B.6, “MTCSUBT subtask for the
multitasking sockets program” on page 285.

A.6.2 Extra option for the REXX client program

The REXX client program has an extra option that causes it to send the time to
sleep to the server program.

To connect to the multitasking server, SYSPLEX2 should be invoked in the
following way:

REXX SYSPLEX2 hostname port -c num_connects -t time_connected -b
between_conns

The -c and -b parameters are the same as in A.2, “Collecting statistics using
REXX” on page 256. The new parameter is -t. If the -t parameter is omitted then
the sleep time is not sent to the server program. Care must be taken to ensure

recvbytes = recv(socket, data, sizeof(data), 0);
if (recvbytes < 0)
{
tcperror("Csub: Recv()");

}
else
{
printf("Sleeping for %d seconds\n", (*data)/10);
sleeptime = (*data) / 10;
sleep(sleeptime);

}

if((hostId = gethostid()) == 0)
{
tcperror("Csub: Gethostid()");

}
sendbytes = send(socket, (char*) &hostId, sizeof(hostId), 0);
if (sendbytes < 0)
{
tcperror("Csub: Send()");

}

Appendix A. Sample applications and programs 265

that the presence or absence of the -t parameter matches the server program. If
you are connecting to the simple server, you should omit the -t parameter since
the simple server does not expect to receive any data. Specifying -t will not do
any harm, but the simple server will not perform a sleep. If you fail to specify -t
when connecting to the multitasking server then your client program will appear to
hang. This is because the multitasking server program has called recv(),
expecting to receive a sleep time, but the client program has not sent a sleep
time.

The source for the REXX client program can be found in C.2, “EXEC to connect to
server using TCP” on page 290.
266 TCP/IP in a Sysplex

Appendix B. Sample C program source code

In this section we list the C programs we used to exercise the sysplex load
balancing functions, the dynamic VIPA and the sysplex sockets feature.

B.1 WLMREG registration sample
/**/
/* A program to register the address space with WLM. If this is to be */
/* used in Open Edition, execvp() is called to execute another */
/* program in the same process. */
/**/

/**/
/* If you are building the OE version, uncomment the next line */
/**/
/* #define BUILD_OE_VERSION */

#if defined(BUILD_OE_VERSION)
#define MIN_PARAMETERS 3

#else
#define MIN_PARAMETERS 2
#include <manifest.h>

#endif

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <iwmwdnsh.h>

int main(int argc, char** argv)
{

char *groupName;
char *serverName;
char hostName[64];
long diagCode = 0;
long rc = 0;

if (argc < MIN_PARAMETERS)
{

#if defined(BUILD_OE_VERSION)
fprintf(stderr, "Usage: %s groupname servername "

"program_to_start <program parameters>\n", argv[0]);
#else

fprintf(stderr, "Usage: %s groupname servername\n", argv[0]);
#endif

exit(1);
}

/**/
/* Extract the groupname and servername from the command line */
/**/

groupName = argv[1];
serverName = argv[2];

rc = gethostname(hostName, WLMSIZE_OF_HOSTNAME);
if (rc != 0)
© Copyright IBM Corp. 1998 2001 267

{
fprintf(stderr, "gethostname failure errno = %d \n", errno);
exit(2);

}
/**/
/* Register a server */
/**/

rc = IWMDNREG(groupName
,hostName
,serverName
,NULL
,NULL
,&diagCode
);

if (rc != 0)
{

fprintf(stderr, "IWMDNREG failure, error = %d \n", diagCode);
exit(3);

}
printf("Registered a server successfully:\n");
printf(" Groupname = %s\n", groupName);
printf(" Hostname = %s\n", hostName);
printf(" Servername = %s\n", serverName);

/**/
/* In Open Edition, start the sockets server program in the same */
/* process, as we're deregistered when the process ends */
/* If execvp() succeeds, the call never returns as the new program */
/* overwrites the old one. */
/**/
#if defined(BUILD_OE_VERSION)

rc = execvp(argv[3], &argv[3]);
/* if the execvp() call succeeds, the call never returns */
fprintf(stderr, "execvp returned %d\n", rc);
exit(rc);

#endif
exit(0);

}

B.2 WLM query program
/**/
/* wlmq: A WLM Query Program */
/* */
/* When called without parameters, a list of all registered server */
/* programs is displayed. If you only want information on specific */
/* groups, supply those group names as parameters. */
/* */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <manifest.h> /* not required in Open Edition */
#include <bsdtypes.h> /* not required in Open Edition */
#include <socket.h>
#include <in.h>
#include <iwmwdnsh.h> /* in /usr/lpp/tcpip/samples in Open Edition */
268 TCP/IP in a Sysplex

/**/
/* Specify defined values */
/**/
#define CHARS_PER_LINE 16
#define WLMQ_MAX_SERVERS 10

/**/
/* Function prototypes for local fnctions */
/**/
static struct grpinfo_block * allocateGroupArray(int group_count);
static int userDataEmpty(char * user_data);
static int looksLikeIPAddresses(char * buffer);
static void showIPAddresses(char * buffer);
static void showTableHeader(void);
static void hexDumpBuffer(char * buffer, int length);

/* -- */
/* Start of program */
/* -- */
int main(int argc, char** argv)
{

long diagCode = 0; /* Diagnostic code */
long group_count; /* Num groups registered */
long server_count = WLMQ_MAX_SERVERS; /* Max servers acceptable */
int i, j; /* for loop counters */
int alreadyShownHeader = 0; /* Flag used for output */
long rc = 0; /* rc for IWMDN* calls */
struct grpinfo_block * grp_array; /* Ptr to array of groups */
char * currentGroup; /* Working group pointer */
struct sysinfo_block * currentServer; /* Working server pointer */
struct sysinfo_block sys_array[WLMQ_MAX_SERVERS]; /* Array of */

/* structures describing server programs */

/**/
/* If present, extract the group names from the command line */
/**/

if(argc > 1)
{
group_count = argc - 1;
grp_array = allocateGroupArray(group_count);

for(i = 1; i < argc; i++)
{
strcpy(grp_array[i-1].cluster, argv[i]);

}
}

/**/
/* Else find out how many groups there are and query the list */
/**/

else
{
group_count = 0; /* Force the 0x040a diagCode */
rc = IWMDNGRP(grp_array,

&group_count,
&diagCode
);
Appendix B. Sample C program source code 269

/**/
/* We expect a diagCode of 0x040a (IwmRsnCodeOutputAreaTooSmall) as */
/* we set group_count to 0 before the call. group_count will contain */
/* the number of registered groups after the call has completed */
/**/

if(diagCode == 0x040a)
{

/**/
/* Allocate space for 2 extra groups to allow for new groups */
/* registering between the IWMDNGRP calls */
/**/

group_count += 2;
grp_array = allocateGroupArray(group_count);

rc = IWMDNGRP(grp_array,
&group_count,
&diagCode

);
if(rc)
{
fprintf(stderr, "IWMDNGRP failure, error = %d \n",

diagCode);
exit(2);

}
}

/**/
/* Unexpected return from the first IWMDNGRP */
/**/

else
{
fprintf(stderr, "IWMDNGRP failure, error = %d \n",

diagCode);
exit(3);

}
}

/**/
/* Query the servers that are available for each group */
/**/

for(i = 0; i < group_count; i++)
{
server_count = WLMQ_MAX_SERVERS; /* Reset the input value */

currentGroup = grp_array[i].cluster; /* Assign working pointer */

rc = IWMDNSRV(currentGroup,
sys_array,
&server_count,
&diagCode

);

if(rc)
{

/**/
/* IWMDNSRV returned IwmRsnCodeNoServersRegistered */
/**/

if(diagCode == 0x040b)
{

270 TCP/IP in a Sysplex

fprintf(stderr, "No servers registered for group '%s'\n",
currentGroup);

continue; /* Process the next group */
}

/**/
/* IWMDNSRV returned IwmRsnCodeOutputAreaTooSmall */
/**/

else if(diagCode == 0x040a)
{
fprintf(stderr, "Too many servers registered for "

"group %s\n", currentGroup);
fprintf(stderr, "Increase value of WLMQ_MAX_SERVERS to "

"at least %d and recompile\n", server_count);
exit(4);

}
/**/
/* IWMDNSRV returned something unexpected */
/**/

else
{
fprintf(stderr, "IWMDNSRV failure, error = %d \n",

diagCode);
exit(5);

}
}

/**/
/* Display information on each server in each group */
/**/

for(j = 0; j < server_count; j++)
{
if(alreadyShownHeader == 0)
{
showTableHeader(); /* Display the table header */
alreadyShownHeader = 1; /* Only show the header once */

}

currentServer = &sys_array[j]; /* Assign working pointer */

printf("%-2d %-12.12s %-8.8s %-8.8s %-8.8s %d\n",
i+1,
currentGroup,
currentServer->server,
currentServer->host_nameid,
currentServer->netid,
currentServer->weight

);

/**/
/* If user_data field is not empty, show the contents. */
/**/

if(! userDataEmpty(currentServer->user_data))
{
printf("UserData: ");

if(looksLikeIPAddresses(currentServer->user_data))
{
showIPAddresses(currentServer->user_data);
Appendix B. Sample C program source code 271

}
else
{
hexDumpBuffer(currentServer->user_data, 64);

}
printf("\n");

}
}

}
return 0;

}

/* -- */
/* Function to allocate space for the group array */
/* -- */
static struct grpinfo_block * allocateGroupArray(int group_count)
{
void * ptr;

ptr = malloc(group_count * sizeof(struct grpinfo_block));
if(ptr == NULL)
{
printf("Couldn't allocate space for %d groups\n",

group_count);
exit(1);

}
return (struct grpinfo_block *)ptr;

}

/* -- */
/* Function to see if there is anything in the user_data field */
/* -- */
static int userDataEmpty(char * user_data)
{
int k;

for(k = 0; k < 64; k++)
{
if(user_data[k] != '\0')
return 0;

}
return 1;

}

/* -- */
/* Function to see if the user_data contains IP addresses */
/* -- */
static int looksLikeIPAddresses(char * buffer)
{
if(buffer[0] == '\0' &&

buffer[1] < 16 && /* 15 IP addresses can fit in user_data */
buffer[2] == '\0' &&
buffer[3] == '\0')

{
return 1;

}

272 TCP/IP in a Sysplex

return 0;
}

/* -- */
/* Function to display a list of dotted decimal IP addresses */
/* -- */
static void showIPAddresses(char * buffer)
{
int i;
int numAddresses;
int * anAddress = (int *)(&(buffer[4]));

numAddresses = buffer[1]; /* 2nd byte contains num of addresses */

for(i = 0; i < numAddresses; i++)
{
printf("%-15.15s ", inet_ntoa(anAddress[i]));

if(((i+1) % 4 == 0) && i < numAddresses -1)
printf("\n ");

}
}

/* -- */
/* Function to display the column headings for the table of servers */
/* -- */
static void showTableHeader(void)
{
printf("--"

"-----------------\n");
printf("# Group Server HostName "

"NetId Weight\n");
printf("--"

"-----------------\n");
}

/* -- */
/* Function to dump a buffer in hex and string format */
/* -- */
static void hexDumpBuffer(char * buffer, int buflen)
{
int i = 0; /* loop counter */
int j = 0; /* another loop counter */
int ch = 0, line_number = 0;
char line_text[CHARS_PER_LINE + 1];
int chars_this_line = 0;
int lines_printed = 0;
int page_number = 1;

do
{
chars_this_line = 0;

printf("\n%08X: ", line_number);

while((chars_this_line < CHARS_PER_LINE) &&
(ch < buflen))
Appendix B. Sample C program source code 273

{
if(ch % 2 == 0)
printf(" ");

printf("%02X", buffer[ch]);

line_text[chars_this_line] =
isprint(buffer[ch]) ? buffer[ch] : '.';

chars_this_line++;

ch++;
line_number++;

}

/**/
/* pad with blanks to format the last line correctly */
/**/

if(chars_this_line < CHARS_PER_LINE)
{
for(; chars_this_line < CHARS_PER_LINE; chars_this_line++)
{
if(chars_this_line % 2 == 0)
printf(" ");

printf(" ");
line_text[chars_this_line] = ' ';

}
}

line_text[chars_this_line] = '\0';

printf(" '%s'", line_text);

lines_printed ++;

if(lines_printed == 32)
{
lines_printed = 0;
printf("\n ");

}
}
while(ch < buflen);
printf("\n");

}

B.3 SOCSRVR single threading server
#include <manifest.h> /* not required in Open Edition */
#include <bsdtypes.h> /* not required in Open Edition */
#include <socket.h>
#include <in.h>
#include <stdio.h>

int main(int argc, char** argv)
{

unsigned short port; /* port server binds to */
struct sockaddr_in client; /* client address information */
274 TCP/IP in a Sysplex

struct sockaddr_in server; /* server address information */
char buf[256]; /* buffer for sending & receiving data */
char hostName[64]; /* space to discover our hostname */
unsigned long hostId; /* For the server's IP address */
int s; /* socket for accepting connections */
int ns; /* socket connected to client */
int namelen; /* length of client name */

if (argc != 2)
{

fprintf(stderr, "Usage: %s port\n", argv[0]);
exit(1);

}

/**/
/* First argument should be the port. */
/**/

port = (unsigned short) atoi(argv[1]);

/**/
/* Extract our hostname */
/**/

if(gethostname(hostName, 64) !=0)
{

tcperror("Gethostname()");
exit(2);

}

/**/
/* Extract our IP address */
/**/

if((hostId = gethostid()) == 0)
{

tcperror("Gethostid()");
exit(2);

}

/**/
/* Get a socket for accepting connections. */
/**/

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{

tcperror("Socket()");
exit(3);

}

/**/
/* Bind the socket to the server address. */
/**/

server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = INADDR_ANY;

if (bind(s, (struct sockaddr *)&server, sizeof(server)) < 0)
{

tcperror("Bind()");
exit(4);

}

Appendix B. Sample C program source code 275

/**/
/* Listen for connection requests - backlog of 255 */
/**/

if (listen(s, 255) != 0)
{

tcperror("Listen()");
exit(5);

}

/**/
/* This server will continually loop responding to inbound requests */
/**/

while(1)
{

/**/
/* Accept the conversation */
/**/

namelen = sizeof(client);
if ((ns = accept(s, (struct sockaddr *)&client,

&namelen)) == -1)
{

tcperror("Accept()");
exit(6);

}
/**/
/* Send our IP address so the client knows who he connected to */
/**/

if (send(ns, (char*) &hostId, sizeof(hostId), 0) < 0)
{

tcperror("Send()");
exit(7);

}
/**/
/* Close the connection to the client and loop back to accept the */
/* next one. */
/**/

close(ns);
}

}

B.4 SSOCCLNT sysplex sockets sample
#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <stdio.h>
#include <iwmwdnsh.h>
/*#include <netdb.h>*/

struct hostent /* This structure is in netdb.h */
{ /* Included here due to header file */

/* problems. */
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
276 TCP/IP in a Sysplex

int h_length; /* length of address */
char **h_addr_list; /* list of addresses from name server */

#define h_addr h_addr_list[0] /* address, for backward compatiblity */
};
struct hostent *gethostbyname();

int main(int argc, char** argv)
{

struct hostent *hostName; /* Server's IP address */
unsigned short port; /* port server binds to */
int s; /* socket for accepting connections */
struct sockaddr_in server; /* server address information */
int type; /* type of cluster connection */
int typelen; /* length of connection type */
char buf[256]; /* buffer for sending & receiving data */

if (argc != 3)
{

fprintf(stderr, "Usage: %s hostname port\n", argv[0]);
exit(1);

}

/**/
/* First argument should be hostname. Use it to get server address. */
/**/

hostName = gethostbyname(argv[1]);
if (hostName == (struct hostent *) 0)
{

tcperror("Gethostbyname()");
exit(2);

}

/**/
/* Second argument should be the port. */
/**/

port = (unsigned short) atoi(argv[2]);

/**/
/* Create a socket. */
/**/

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{

tcperror("Socket()");
exit(3);

}

/**/
/* Connect to the server. */
/**/

server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = *((unsigned long *)hostName->h_addr);

if (connect(s, (struct sockaddr *)&server, sizeof(server)) < 0)
{

tcperror("Connect()");
exit(4);

}

Appendix B. Sample C program source code 277

/**/
/* Discover our socket cluster connection type */
/**/

if (getsockopt(s, SOL_SOCKET, SO_CLUSTERCONNTYPE,
(char *)&type, &typelen) < 0)

{
tcperror("GetSockOpt()");
exit(5);

}
if (!(type & SO_CLUSTERCONNTYPE_NOCONN))
{

printf("Connection Type : \n");
if (type & SO_CLUSTERCONNTYPE_NONE)
printf("\tNone\n");

if (type & SO_CLUSTERCONNTYPE_INTERNAL)
printf("\tInternal\n");

if (type & SO_CLUSTERCONNTYPE_SAME_IMAGE)
printf("\tSame Image\n");

if (type & SO_CLUSTERCONNTYPE_SAME_CLUSTER)
printf("\tSame Cluster\n");

}

/**/
/* Recv IP address from the server. */
/**/

if (recv(s, (char*) &buf, sizeof(buf), 0) < 0)
{

tcperror("Recv()");
exit(6);

}
printf("Server's IP address : %d.%d.%d.%d\n",

buf[0], buf[1], buf[2], buf[3]);

/**/
/* Close the connection to the server. */
/**/

close(s);
}

B.5 MTCSRVR multitasking sockets program
/*** IBMCOPYR **/
/* */
/* Component Name: MTCSRVR (alias EZAEC047) */
/* */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
278 TCP/IP in a Sysplex

/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* SMP/E Distribution Name: EZAEC049 */
/* */
/* */
/*** IBMCOPYR **/

/***/
/* C socket Server Program */
/* */
/* This code performs the server functions for multitasking, which */
/* include */
/* . creating subtasks */
/* . socket(), bind(), listen(), accept() */
/* . getclientid */
/* . givesocket() to TCP/IP in preparation for the subtask */
/* to do a takesocket() */
/* . select() */
/* */
/* There are three test tasks running: */
/* . server master */
/* . server subtask - separate TCB within server address space */
/* . client */
/* */
/***/

static char ibmcopyr()=
"MTCSRVR - Licensed Materials - Property of IBM. "
"This module is \"Restricted Materials of IBM\" "
"5647-A01 (C) Copyright IBM Corp. 1994, 1996. "
"See IBM Copyright Instructions.";

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
/* #include <netdb.h> */
#include <socket.h>
#include <inet.h>
#include <fcntl.h>
#include <errno.h>
#include <tcperrno.h>
#include <bsdtime.h>
#include <mtf.h>
#include <stdio.h>

int dotinit(int numsubs);
void getsock(int *s);
int dobind(int *s, unsigned short port);
int dolisten(int *s);
int getname(char *myname, char *mysname);
int doaccept(int *s);
int testgive(int *s);
int dogive(int *clsocket, char *myname);

/*
* Server Main.
Appendix B. Sample C program source code 279

*/
int main(int argc, char **argv)
{

unsigned short port; /* port server for bind */
int s; /* socket for accepting connections */
int rc; /* return code */
int count; /* counter for number of sockets */
int clsocket; /* client socket */
char myname[8]; /* 8 char name of this address space */
char mysname[8]; /* my subtask name
int numsubtasks; /* Number of subtasks */

/*
* Check arguments. Should be only one: the port number to bind to.
* Added another, the number of subtasks.
*/
if (argc != 3) {

fprintf(stderr, "Usage: %s port subtasks\n", argv[0]);
exit(1);

}

/*
* First argument should be the port.
*/
port = (unsigned short) atoi(argv[1]);
fprintf(stdout, "Server: port = %d \n", port);
/*
* Second argument should be the number of subtasks.
*/
numsubtasks = atoi(argv[2]);
fprintf(stdout, "Server: numsubtasks = %d \n", numsubtasks);
/*
* Create subtasks
*/
rc = dotinit(numsubtasks);
if (rc < 0)

perror("Srvr: error for tinit");
printf("rc from tinit is %d\n", rc);

getsock(&s);
printf("Srvr: socket = %d\n", s);

rc = dobind(&s, port);
if (rc < 0)

tcperror("Srvr: error for bind");
printf("Srvr: rc from bind is %d\n", rc);

rc = dolisten(&s);
if (rc < 0)

tcperror("Srvr: error for listen");
printf("Srvr: rc from listen is %d\n", rc);

/***************************************
* To do nonblocking mode,
* uncomment out this code.
*
rc = fcntl(s, F_SETFL, FNDELAY);
if (rc != 0)
280 TCP/IP in a Sysplex

tcperror("Error for fcntl");
printf("rc from fcntl is %d\n", rc);

***************************************/

rc = getname(myname, mysname);
if (rc < 0)

tcperror("Srvr: error for getclientid");
printf("Srvr: rc from getclientid is %d\n", rc);

/*--*/
/* . issue accept(), waiting for client connection */
/* . issue givesocket() to pass client's socket to TCP/IP */
/* . issue select(), waiting for subtask to complete takesocket() */
/* . close our local socket associated with client's socket */
/* . loop on accept(), waiting for another client connection */
/*--*/
rc = 0;
count = 0; /* number of sockets */
while (rc == 0) {

clsocket = doaccept(&s);
printf("Srvr: clsocket from accept is %d\n", clsocket);
count = count + 1;
printf("Srvr: ###number of sockets is %d\n", count);
if (clsocket != 0) {

rc = dogive(&clsocket, myname);
if (rc < 0)

tcperror("Srvr: error for dogive");
printf("Srvr: rc from dogive is %d\n", rc);
if (rc == 0) {

rc = tsched(MTF_ANY,"csub", &clsocket,
myname, mysname);

if (rc < 0)
perror("error for tsched");

printf("Srvr: rc from tsched is %d\n", rc);

rc = testgive(&clsocket);
printf("Srvr: rc from testgive is %d\n", rc);

/* sleep(60); *** do simplified situation first ***/
printf("Srvr: closing client socket %d\n", clsocket);
rc = close(clsocket); /* give back this socket */
if (rc < 0)

tcperror("error for close of clsocket");
printf("Srvr: rc from close of clsocket is %d\n", rc);
/**/

/* exit(0); *** do this simplified situation first ***/
/**/

} /** end of if (rc == 0) ****/
} /**** end of if (clsocket != 0) ****/

} /******** end of while (rc == 0) ****/
} /************ end of main ********/

/*--*/
/* dotinit() */
/* Call tinit() to ATTACH subtask and fetch() subtask load module */
/*--*/
int dotinit(int numsubs)
{

Appendix B. Sample C program source code 281

int rc;
/* int numsubs = 1; */

printf("Srvr: calling __tinit\n");
rc = __tinit("mtccsub", numsubs);
return rc;

}

/*--*/
/* getsock() */
/* Get a socket */
/*--*/
void getsock(int *s)
{

int temp;
temp = socket(AF_INET, SOCK_STREAM, 0);
*s = temp;
return;

}

/*--*/
/* dobind() */
/* Bind to all interfaces */
/*--*/
int dobind(int *s, unsigned short port)
{

int rc;
int temps;
struct sockaddr_in tsock;
memset(&tsock, 0, sizeof(tsock)); /* clear tsock to 0's */
tsock.sin_family = AF_INET;
tsock.sin_addr.s_addr = INADDR_ANY; /* bind to all interfaces */
tsock.sin_port = htons(port);

temps = *s;
rc = bind(temps, (struct sockaddr *)&tsock, sizeof(tsock));
return rc;

}

/*--*/
/* dolisten() */
/* Listen to prepare for client connections. */
/*--*/
int dolisten(int *s)
{

int rc;
int temps;
temps = *s;
rc = listen(temps, 10); /* backlog of 10 */
return rc;

}

/*--*/
/* getname() */
/* Get the identifiers by which TCP/IP knows this server. */
/*--*/
int getname(char *myname, char *mysname)
{

int rc;
282 TCP/IP in a Sysplex

struct clientid cid;
memset(&cid, 0, sizeof(cid));
rc = getclientid(AF_INET, &cid);
memcpy(myname, cid.name, 8);
memcpy(mysname, cid.subtaskname, 8);
return rc;

}

/*--*/
/* doaccept() */
/* Select() on this socket, waiting for another client connection. */
/* If connection is pending, issue accept() to get client's socket */
/*--*/
int doaccept(int *s)
{

int temps;
int clsocket;
struct sockaddr clientaddress;
int addrlen;
int maxfdpl;
struct fd_set readmask;
struct fd_set writmask;
struct fd_set excpmask;
int rc;
struct timeval time;

temps = *s;
time.tv_sec = 1000;
time.tv_usec = 0;
maxfdpl = temps + 1;

FD_ZERO(&readmask);
FD_ZERO(&writmask);
FD_ZERO(&excpmask);

FD_SET(temps, &readmask);

rc = select(maxfdpl, &readmask, &writmask, &excpmask, &time);
printf("Srvr: rc from select is %d\n", rc);
if (rc < 0) {

tcperror("error from select");
return rc;

}
else if (rc == 0) { /* time limit expired */

return rc;
}
else { /* this socket is ready */

addrlen = sizeof(clientaddress);
clsocket = accept(temps, &clientaddress, &addrlen);
return clsocket;

}
}

/*--*/
/* testgive() */
/* Issue select(), checking for an exception condition, which */
/* indicates that takesocket() by the subtask was successful. */
/*--*/
Appendix B. Sample C program source code 283

int testgive(int *s)
{

int temps;
struct sockaddr clientaddress;
int addrlen;
int maxfdpl;
struct fd_set readmask;
struct fd_set writmask;
struct fd_set excpmask;
int rc;
struct timeval time;

temps = *s;
time.tv_sec = 1000;
time.tv_usec = 0;
maxfdpl = temps + 1;

FD_ZERO(&readmask);
FD_ZERO(&writmask);
FD_ZERO(&excpmask);

/* FD_SET(temps, &readmask); */
/* FD_SET(temps, &writmask); */

FD_SET(temps, &excpmask);

rc = select(maxfdpl, &readmask, &writmask, &excpmask, &time);
printf("Srvr: rc from select for testgive is %d\n", rc);
if (rc < 0) {

tcperror("Srvr: error from testgive");
}
else

rc = 0;

return rc;
}

/*--*/
/* dogive() */
/* Issue givesocket() for giving client's socket to subtask. */
/*--*/
int dogive(int *clsocket, char *myname)
{

int rc;
struct clientid cid;
int temps;

temps = *clsocket;
memset(&cid, 0, sizeof(cid));
cid.domain = AF_INET;

memcpy(cid.name, myname, 8);
memcpy(cid.subtaskname," ", 8);
printf("Srvr: givesocket socket is %d\n", temps);
printf("Srvr: givesocket name is %s\n", cid.name);

rc = givesocket(temps, &cid);
return rc;

}

284 TCP/IP in a Sysplex

B.6 MTCSUBT subtask for the multitasking sockets program
#pragma runopts(noargparse,plist(mvs),noexecops)

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <inet.h>
#include <fcntl.h>
#include <errno.h>
#include <tcperrno.h>
#include <bsdtime.h>
#include <stdio.h>

/*
* Server subtask
*/
csub(int *clsock, /* address of socket passed */

char *tskname, /* address of caller's name */
char *tsksname) /* address of caller's sname */

{
struct clientid cid; /* Information needed to take socket */
int socket; /* socket taken */
int sendbytes; /* # bytes sent */
int recvbytes; /* # bytes received */
unsigned long hostId; /* For the server's IP address */
char data[1];
int sleeptime;

/**/
/* Take the socket given by the server. */
/**/

memset(&cid, 0, sizeof(cid));
memcpy(cid.name, tskname, 8);
memcpy(cid.subtaskname, tsksname, 8);
cid.domain = AF_INET;

socket = takesocket(&cid, *clsock);
if (socket < 0)
{

tcperror("Csub: Error from takesocket");
}
else
{

/**/
/* Receive data from the client. This will be a time in tenths of */
/* seconds to sleep before closing the socket. Perform the sleep. */
/**/

recvbytes = recv(socket, data, sizeof(data), 0);
if (recvbytes < 0)
{

tcperror("Csub: Recv()");
}
else
{

printf("Sleeping for %d seconds\n", (*data)/10);
Appendix B. Sample C program source code 285

sleeptime = (*data) / 10;
sleep(sleeptime);

}
/**/
/* Extract our IP address */
/**/

if((hostId = gethostid()) == 0)
{

tcperror("Csub: Gethostid()");
}

/**/
/* Send our IP address so the client knows who he connected to */
/**/

sendbytes = send(socket, (char*) &hostId, sizeof(hostId), 0);
if (sendbytes < 0)
{

tcperror("Csub: Send()");
}

/**/
/* Close the socket. */
/**/

close(socket);
}
fflush(stdout);

}

286 TCP/IP in a Sysplex

Appendix C. REXX EXECs to gather connection statistics

In this section we show the three REXX EXECs used to invoke server functions in
the sysplex for the purpose of gathering statistics on load balancing.

C.1 32-Bit Windows EXEC to issue repeated PINGs
/*Rexx - Exec to perform TCP/IP Sysplex validation and tracing */
call RxFuncAdd 'SysLoadFuncs','rexxutil','SysLoadFuncs'
call SysLoadFuncs
'@ECHO OFF'
/* */
/* Syntax: SYSPLEXW appl_name num_pings ping_delay */
/* */
/* appl_name The name of the application as */
/* registered in WLM. */
/* */
/* num_pings How many times do you want to */
/* ping the application. */
/* default = 20 */
/* */
/* ping_delay How many seconds to wait between */
/* pings. default = 0 */
/* */
Parse Arg p1 p2 p3 .
/* */
/* Which application to ping */
/* */
If p1 <> '' À p1 = '?' Then pingname = p1
Else
Do
Say
Say 'Syntax: SYSPLEXW appl_name num_pings ping_delay '
Say ' '
Say ' appl_name The name of the application as '
Say ' registered in WLM. '
Say ' '
Say ' num_pings How many times do you want to '
Say ' ping the application. '
Say ' default = 20 '
Say ' '
Say ' ping_delay How many seconds to wait between '
Say ' pings. default = 0 '
Say ' '
Exit

End
If p2 <> '' Then pingloop = p2
Else pingloop = 10

If p3 <> '' Then sleeptime = p3
Else sleeptime = 0
/* */
/* Define some working files and variables and headings */
/* */
fred64 = time(L)
Parse Var fred64 hhv ':' mmv ':' ssv '.' therest
datafile = '\pf' ÀÀ mmv ÀÀ ssv ÀÀ Substr(therest,1,2) ÀÀ '.dat'
pingfile = '\pf' ÀÀ mmv ÀÀ ssv ÀÀ Substr(therest,1,2) ÀÀ '.wrk'
'Erase 'pingfile

Call disp_prt_null
dataline = Left('Application or Host Name',40) Left('IP Address',15) Left('Time',10)
Say dataline
fred = lineout(datafile,dataline,1)
Call disp_prt_null

goodpings = 0
lostpings = 0
maxaddrs = 0
/* */
/* Now for the main loop */
/* */
Do i = 1 to pingloop
© Copyright IBM Corp. 1998 2001 287

linectr = 0
starttime = Time('R')
fred2 = SysSleep(sleeptime)
lostpingflag = 'NO'
'Ping 'pingname ÀÀ ' -l 10 -n 1 > 'pingfile /* Send the PING and response to a temp

file */
endtime = Time('E')

pingline.linectr = Linein(pingfile,,0) /* Open the input file */
pinglineend = 'NO'
/* */
Do until pinglineend = 'YES' /* Read lines into array */
linectr = linectr + 1
pingline.linectr = Linein(pingfile)
If pingline.linectr = '' & linectr > 8 Then
Do
pinglineend = 'YES'
linectr = linectr -1

End
End /* do */
Call pingparse /* Parse the lines */
fred = Lineout(pingfile) /* Closes the file */

End /* Do */
dataline = ' '
Call disp_prt
dataline = 'Summary of Ping responses'
Call disp_prt
dataline = ' '
Call disp_prt
dataline = 'Good Responses : 'goodpings
Call disp_prt
dataline = 'Lost Responses : 'lostpings
Call disp_prt
dataline = 'Total Responses: 'goodpings + lostpings
Call disp_prt
dataline = ' '
Call disp_prt
dataline = 'Hits by Canonical Addresses'
Call disp_prt
dataline = ' '
Call disp_prt
dataline = Left('Number ',10) Left('IP Address',15) Left('Application or Host Name',40)
Left('Time',10)
Call disp_prt
Do n = 1 to maxaddrs
dataline = Left(canoncnt.n,10) Left(canon.n,15) Left(pingname.n,40) Left(rsptime.n /

canoncnt.n,10)
Call disp_prt

End /* do */
fred = lineout(datafile) /* Close the file */
'erase 'pingfile
'Edit 'datafile
Say ''
Say '??'
Say ''
Say 'A report file, 'datafile' has been created on your hard disk.'
Say ''
Say " Reply 'y' to erase it"
Say " 'r' to rename it"
Say ' anything else to quit'
Say ''
Parse Upper Pull ans .
If ans = 'Y' Then 'erase 'datafile
If ans = 'R' Then
Do
Say 'Please enter new fn.ft for 'datafile'.'
Parse Pull newname
'rename 'datafile newname

End
Exit
/* */
/* Now to parse and consolidate the output from PING */
/* Lines have already been read in */
/* */
pingparse:
Do j = 1 to linectr /* Last line is '' anyway */
Parse Var pingline.j w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

/* Say 'w1='w1 'w2='w2 'w3='w3 */
288 TCP/IP in a Sysplex

Select
When w1 = 'Pinging' Then
Do
thispingname = w2

End
When w1 = 'Reply' & w2 = 'from' Then
Do
thisaddr = Substr(w3,1,length(w3)-1)
goodpings = goodpings + 1

End
When w1 w2 w3 = 'Request' 'timed' 'out.' Then
Do
lostpingflag = 'YES' h
lostpings = lostpings + 1
dataline = Left(pingname,40) Left('no response',15) Left(endtime,10)
Call disp_prt

End
When w1 w2 w3 = 'Bad' 'IP' 'address' Then
Do
lostpingflag = 'YES' h
lostpings = lostpings + 1
dataline = Left(pingname,40) Left('no response',15) Left(endtime,10)
Call disp_prt

End
Otherwise NOP /* lostpingflag = 'YES' */

End /* select */
End /*Do*/
If lostpingflag = 'NO' Then
Do
dataline = Left(thispingname,40) Left(thisaddr,15) Left(endtime,10) /* create audit record

*/
Call disp_prt
Call sortping

End
Return
/* */
/* Check if same onsolidate the output from PING */
/* */
/* There are 4 arrays */
/* */
/* canon.m : canonical address */
/* pingname.m : text name for this canonical addr */
/* canoncnt.m : number of times this addr used */
/* rsptime.m : total response time for this addr */
/* */
/* */
sortping:
If maxaddrs = 0 Then /*First time thru*/
Do
maxaddrs = 1
canon.1 = thisaddr
pingname.1 = pingname
canoncnt.1 = 0
rsptime.1 = 0

End
newcanon = 'YES' /* assume it is a new canonical address */
Do m = 1 to maxaddrs
If canon.m = thisaddr & pingname.m = pingname Then
Do
canoncnt.m = canoncnt.m + 1
rsptime.m = rsptime.m + endtime
newcanon = 'NO' /* flag we have it already */
m = maxaddrs /* get out of loop */

End
End /* do */
If newcanon = 'YES' Then
Do
maxaddrs = maxaddrs + 1
canon.maxaddrs = thisaddr
pingname.maxaddrs = pingname
canoncnt.maxaddrs = 1
rsptime.maxaddrs = endtime

End
Return
/* */
/* Routine to display records on screen and also file data */
/* */
disp_prt_null:
Appendix C. REXX EXECs to gather connection statistics 289

dataline = ''
disp_prt:
Say dataline
fred = Lineout(datafile,dataline)
Return

C.2 EXEC to connect to server using TCP
/**/
/* sysplex2.cmd */
/* */
/* sysplex2 hostname port <-c num_connects> <-t conn_time> */
/* <-b betw_time> */
/* */
/* This Rexx program connects to a server on a given hostname/portname*/
/* pair the specified number of times. On each connection it will */
/* read 4 bytes from the server - this value is interpreted as the */
/* IP address of the server we have actually connected to */
/* (irrespective of the server we *requested* to connect to). */
/* */
/* conn_time is a specified time to stay connected to server over and */
/* above the time needed for exchange of data. This is measured in */
/* in seconds and defaults to 0. This option is required if you are */
/* connecting to the multi-tasking server. If you fail to specify -t */
/* when connecting to the multi-tasking server, the client program */
/* will appear to hang. */
/* */
/* num_connects is the number of time you wish to connect to the */
/* server. This defaults to a value of 10. */
/* */
/* betw_time is a specified time to pause between connections to the */
/* server. This is measured in seconds and defaults to 0. */
/* */
/* Overall statistics on the number of times the hostname was resolved*/
/* to a given IP address by the DNS server and the number of times we */
/* connected to a given TCP/IP stack are reported at the end of */
/* execution */
/* */
/**/

parse arg arg1 arg2 '-'opt.3 arg.3 '-'opt.4 arg.4 '-'opt.5 arg.5

if(arg1 = '' | arg1 = '?' | arg2 = '') then
do
say 'Usage: sysplex2 hostname port <-c num_connects> <-t conn_time> <-b betw_time>'
return

end

connectToName = arg1 /* Hostname to connect to */
connectToPort = arg2 /* Port to connect to */

/* Set defaults: */
numConns = 10 /* Default value for numConns */
connTime = 0 /* Default value for connTime */
betwTime = 0 /* Default value for betwTime */
do a = 3 to 5
select
when opt.a = 'c' | opt.a = 'C' then numConns = arg.a
when opt.a = 't' | opt.a = 'T' then
do
connTime = arg.a
connTimeSpecified = true

end
when opt.a = 'b' | opt.a = 'B' then betwTime = arg.a
otherwise

end /* end of select select */
end a

printHeader = true /* Only print headers on the */
/* first iteration of the loop */

/**/
/* Load the rexx sockets functions if not already loaded */
/**/
rc = RxFuncQuery("SockLoadFuncs")
if(rc <> 0) then
do
290 TCP/IP in a Sysplex

rc = RxFuncAdd("SockLoadFuncs","rxsock","SockLoadFuncs")
rc = SockLoadFuncs()

end

/**/
/* Loop around for numConns */
/**/
do i = 1 to numConns

call time('R') /* Reset timer */
/**/
/* Use DNS to resolve name to IP address */
/**/

rc = SockGetHostByName(connectToname, "resolvedHost.!")

resolvedTime = time('E') /* Record time taken to resolve */
/* name to an IP address */

if(rc = 0) then
do
say "Error resolving hostname: " errno
return

end

/**/
/* Create a socket */
/**/

socket = SockSocket("AF_INET", "SOCK_STREAM", 0)
if(socket = -1) then
do
say "Error creating socket: " errno
return

end

/**/
/* Wait for specified time before connecting to the server. */
/* If the pause is greater than or equal to 1 second, a CPU friendly */
/* sleep call is performed. If the pause is less than one second, a */
/* CPU intensive loop is entered. This is to be avoided. */
/**/

if betwTime >= 1 then
do
rc = RxFuncAdd("SysLoadFuncs","RexxUtil","SysLoadFuncs")
rc = SysLoadFuncs()
betwTime = betwTime % 1; /* Discard fractional part */
call SysSleep(betwTime)

end
else
do
call time('R') /* Reset timer */
elapsedTime = time('E')
do while elapsedTime < betwTime
elapsedTime = time('E')

end
end

/**/
/* Connect to the server */
/**/

server.!family = "AF_INET"
server.!port = connectToPort
server.!addr = resolvedHost.!addr

call time('R') /* Reset timer */
rc = SockConnect(socket, "server.!")
if(rc = -1) then
do
say "Error on connecting socket to '" || server.!addr || "':" errno

/**/
/* If we failed to connect we should log the resolved name for */
/* statistics processing but the connected name isn't applicable */
/**/

savedResName.i = resolvedHost.!addr
savedConName.i = errno

/**/
/* Close the socket as the connect failed */
/**/
Appendix C. REXX EXECs to gather connection statistics 291

rc = SockSoClose(socket)
if(rc = -1) then
do
say "Error closing socket:" errno

end
iterate /* Go back to beginning of loop */

end
/**/
/* Before we receive the IP address from the server, we send it the */
/* time specified by the user to stay connected. */
/**/

if(connTimeSpecified = true) then
do
drop buffer
buffer = d2c(connTime*10)
rc = SockSend(socket, buffer, 4)

end

/**/
/* The recv will block until the server has performed the sleep and */
/* sent some data through the socket. It should be a 4 byte IP addr. */
/* Since we use buffer each time we go round this loop we must 'drop' */
/* it so that it gets set correctly by recv */
/**/

drop buffer
rc = SockRecv(socket, buffer, 4)

if(rc < 1) then
do
say "Error on receive:" errno
return

end

/**/
/* Convert the IP address to decimal and record who we really */
/* connected to */
/**/

byte1 = c2d(substr(buffer,1,1))
byte2 = c2d(substr(buffer,2,1))
byte3 = c2d(substr(buffer,3,1))
byte4 = c2d(substr(buffer,4,1))

connectedTo = byte1 || '.' || byte2 || '.' || byte3 || '.' || byte4

/**/
/* Close the socket */
/**/

rc = SockSoClose(socket)
if(rc = -1) then
do
say "Error closing socket:" errno
return

end
connectedTime = time('E') /* Record time spent connected */

if(printheader = true) then
do
say '+----------------------+------------------+----------------+--------+--------+'
say '| Hostname | Resolved Addr | Connected Addr | Resolv | Connec |'
say '+----------------------+------------------+----------------+--------+--------+'
printheader = false /* Do not print header next time*/

end

say '|' left(connectToName, 20) '|' left(resolvedHost.!addr, 16),
'|' left(connectedTo, 14) '|' left(resolvedTime, 6),
'|' left(connectedTime, 6) '|'

/**/
/* Save the resolved and connected names for this run to allow */
/* processing of connection statistics */
/**/

savedResName.i = resolvedHost.!addr
savedConName.i = connectedTo

end /* do i = 1 to numConns */
292 TCP/IP in a Sysplex

call sysstats numConns, savedResName., "Resolved "
call sysstats numConns, savedConName., "Connected"

C.3 REXX statistics subroutine
/**/
/* sysstats.cmd */
/* */
/* Called from sysplex2.cmd */
/* */
/* Overall statistics on the number of times we connected to a */
/* given TCP/IP stack are reported in this subroutine. */
/* */
/**/

use arg numConns, savedAddr., Text

/**/
/* Loop around for numConns - this time for statistics processing. */
/* In here we scan through the array of saved addresses and each time */
/* we find a new (non-blank) one we stop and count how many more of */
/* this same address there subsequently are in the table, blanking */
/* them out as we count them so they won't be counted more than once */
/**/
Count = 0 /* Set counter to 0 */
do forever
biggest = 0.0.0.0 /* Smallest possible IP address */
do i = 1 to numConns /* Find biggest non-blank name */
if(savedAddr.i <> '') then
do /* Separate out domain levels */
parse value biggest with b.1 '.' b.2 '.' b.3 '.' b.4
parse value savedAddr.i with c.1 '.' c.2 '.' c.3 '.' c.4
do n = 1 to 4
select /* Compare one level at a time. */
when c.n > b.n then
do
biggest = savedAddr.i
leave

end
when c.n = b.n then iterate
when c.n < b.n then leave

end /* select */
end n

end
end i
if(biggest = 0.0.0.0) then leave /* No more left to sort */
else /* Else: we found one */
do
Count = Count + 1 /* Increment counter */
statsAddr.Count = biggest /* Store address away */
statsTotal.Count = 0 /* Set count for this addr to 0 */
do j = 1 to numConns /* and then count them up. */
if(savedAddr.j = biggest) then
do
savedAddr.j = '' /* don't count this name again */
statsTotal.Count = statsTotal.Count + 1

end
end j

end /* if(biggest <> 0) */
end /* do forever */

say ''
say '+----------------+----------------+'
say '|' left(Text,9) 'Addr |' left(Text,9) 'Count|'
say '+----------------+----------------+'
do i = Count to 1 by -1
say '|' left(statsAddr.i, 14) '|' left(statsTotal.i, 14) '|'

end
Appendix C. REXX EXECs to gather connection statistics 293

294 TCP/IP in a Sysplex

Appendix D. Profiles, data files and parameter files

This appendix shows the profiles and configuration files used in our tests
described in Chapters 2 through 7.

D.1 Configuration files for RIP examples

This section shows the profiles and configuration files used in ORouteD with
RIPF protocol tests described in 6.5.2, “OMPROUTE with RIP” on page 165.

D.1.1 Profile for TCPIPC stack at RA03 image - PROF03C

;---
;TCPIP.TCPPARMS.R2617(PROF03C) SYSPLEX DISTRIBUTOR RA03 - SANDRAEF
;---
IPCONFIG
DATAGRAMFWD
DYNAMICXCF 172.16.233.3 255.255.255.0 1
SYSPLEXROUTING
ARPTO 1200
IGNOREREDIRECT
SOURCEVIPA
STOPONCLAWERROR
TTL 60
VARSUBNETTING

TCPCONFIG
UNRESTRICTLOWPORTS
TCPSENDBFRSIZE 16384
TCPRCVBUFRSIZE 16384
SENDGARBAGE FALSE

UDPCONFIG
UNRESTRICTLOWPORTS
UDPCHKSUM
UDPSENDBFRSIZE 16384
UDPRCVBUFRSIZE 16384

PORT
7 UDP MISCSERV
7 TCP MISCSERV
9 UDP MISCSERV
9 TCP MISCSERV
19 UDP MISCSERV
19 TCP MISCSERV
20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER
23 TCP INTCLIEN
25 TCP OMVS
53 TCP OMVS
53 UDP OMVS
80 TCP WEBSRV SHAREPORT
80 TCP WEBSRVC
111 TCP OMVS
111 UDP OMVS
135 UDP LLBD
© Copyright IBM Corp. 1998 2001 295

161 UDP OSNMPD
162 UDP OMVS
443 TCP OMVS
512 TCP RSHDA
514 TCP RSHDA
514 UDP OMVS
515 TCP T03ALPD
520 UDP OROUTEDC
;520 UDP OMVS

TELNETPARMS
PORT 23
INACTIVE 0
ENDTELNETPARMS

AUTOLOG 5
FTPDC JOBNAME FTPDC1
OROUTEDC
ENDAUTOLOG

DEVICE VIPA03C VIRTUAL 0
LINK VIPA03C VIRTUAL 0 VIPA03C

DEVICE M032216B MPCPTP AUTORESTART
LINK M032216B MPCPTP M032216B

DEVICE EN103 LCS 2064
LINK EN103 ETHEROR802.3 1 EN103

HOME
172.16.251.3 VIPA03C
172.16.100.3 M032216B
9.24.105.75 EN103

BSDROUTINGPARMS FALSE
VIPA03C DEFAULTSIZE 0 255.255.255.0 0
EN103 1492 1 255.255.255.0 0
M032216B 32768 0 255.255.255.0 0
ENDBSDROUTINGPARMS

BEGINVTAM
PORT 23
DEFAULTLUS

RA03TN11..RA03TN19
ENDDEFAULTLUS
ALLOWAPPL *
USSTCP TELNUST
ENDVTAM

INCLUDE TCPIP.TCPPARMS.R2617(TELN03C)

START M032216B
START EN103

D.1.2 TCPIP.DATA File for TCPIPC stack at RA03 image - TCPD03C

;---
;TCPIP.TCPPARMS(TCPD03C) SYSPLEX DISTRIBUTOR RA03 - SANDRAEF
296 TCP/IP in a Sysplex

;---
TCPIPJOBNAME TCPIPC
HOSTNAME MVS03C
DOMAINORIGIN itso.ral.ibm.com
NSINTERADDR 9.24.106.15
NSPORTADDR 53
RESOLVEVIA UDP
RESOLVERTIMEOUT 10
RESOLVERUDPRETRIES 2
DATASETPREFIX TCPIP
MESSAGECASE MIXED

D.1.3 Telnet parameters for TCPIPC stack at image RA03 - TELN03A

;---
;TCPIP.TCPPPARMS.R2617(TELN03C) SYSPLEX DISTRIBUTOR RA03 - SANDRAEF
;---
TELNETGLOBALS

KEYRING HFS /u/iwan/security/ssl/hostsec.kdb
ENDTELNETGLOBALS
TELNETPARMS

SECUREPORT 23
CONNTYPE SECURE
DEBUG DETAIL

ENDTELNETPARMS
TELNETPARMS

TKOSPECLU 0
PORT 23
WLMCLUSTERNAME TN03 TNRAL TNTSO ENDWLMCLUSTERNAME

ENDTELNETPARMS

TELNETPARMS
SECUREPORT 6623 KEYRING HFS /u/sandra/ssl/server/r2612.kdb
CLIENTAUTH SAFCERT
TKOSPECLU 3

ENDTELNETPARMS

TELNETPARMS
SECUREPORT 7723 KEYRING HFS /u/sandra/ssl/server/r2612.kdb
CLIENTAUTH NONE
TKOSPECLU 3

ENDTELNETPARMS

TELNETPARMS
SECUREPORT 8823 KEYRING HFS /u/sandra/ssl/server/r2612.kdb
CLIENTAUTH SSLCERT
TKOSPECLU 3

ENDTELNETPARMS

TELNETPARMS
SECUREPORT 9923 KEYRING HFS /u/sandra/ssl/server/r2612.kdb
CLIENTAUTH SAFCERT
TKOSPECLU 3

ENDTELNETPARMS

BEGINVTAM
PORT 23 6623 7723 8823 9923
ALLOWAPPL *
Appendix D. Profiles, data files and parameter files 297

MSG07
IPGROUP IP1 0.0.0.0:0.0.0.0 ENDIPGROUP
LUGROUP LU1 RA03TN01..RA03TN20 ENDLUGROUP
PRTGROUP PR1 RA03TP01..RA03TP20 ENDPRTGROUP
LUMAP LU1 IP1 GENERIC PR1
PRTMAP PR1 IP1 GENERIC

IPGROUP IP2
9.24.105.220 9.24.106.165 9.24.106.31

ENDIPGROUP
LUGROUP LU3 RA03TN50 RA03TN51 ENDLUGROUP
PRTGROUP PR3 RA03TP50 RA03TP51 ENDPRTGROUP
PRTMAP PR3 IP2 SPECIFIC
LUMAP LU3 IP2 SPECIFIC PR3

; LUTSO group includes lus from RA03TN70 to RA03TN75
LUGROUP LUTSO

RA03TN70..RA03TN75
ENDLUGROUP

; LUNETV group includes RA03TN78 lu
LUGROUP LUNETV

RA03TN78
ENDLUGROUP

; LUNVAS group includes RA03TN79 lu
LUGROUP LUNVAS

RA03TN79
ENDLUGROUP

; TSOPRT group includes PRINTERS from RA03TP70 to RA03TP75
PRTGROUP TSOPRT

RA03TP70..RA03TP75
ENDPRTGROUP

USSTCP TELNUST IP2
USSTCP TELNUST
TELNETDEVICE 3287-1 ,SCS
TELNETDEVICE 3277 DSILGMOD ; 24 x 80 old model 2
TELNETDEVICE 3278-2 D4B32782,SNX32702 ; 24 x 80
TELNETDEVICE 3278-2-e NSX32702,SNX32702 ; 24 x 80
TELNETDEVICE 3278-3 D4B32783,SNX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3278-3-e NSX32703,SNX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3278-4 D4B32784,SNX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3278-4-e NSX32704,SNX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3278-5 D4B32785,SNX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3278-5-e NSX32705,SNX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3279-2 D4B32782 ; 24 x 80
TELNETDEVICE 3279-2-e NSX32702 ; 24 x 80
TELNETDEVICE 3279-3 D4B32783 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3279-3-e NSX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3279-4 D4B32784 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3279-4-e NSX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3279-5 D4B32785 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3279-5-e NSX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE LINEMODE INTERACT ; linemode terminals

ENDVTAM
298 TCP/IP in a Sysplex

D.1.4 FTP data parameters for FTP server - FDATA03C and 39C

;---
;TCPIP.TCPPARMS(FTPD03C) SYSPLEX DISTRIBUTOR RA03 - SANDRAEF
;---
AUTOMOUNT TRUE ; automatic mount of unmounted volume
AUTORECALL TRUE ; automatic recall of migrated data sets
BLOCKSIZE 6233 ; new data set allocation blocksize
BUFNO 5 ; number of access method buffers
CHKPTINT 0 ; checkpoint interval
CONDDISP CATLG ; data sets catalogued if transfer fails
CTRLCONN IBM-850 ; ascii code set for control connection
DIRECTORY 27 ; new data set allocation directory blocks
DIRECTORYMODE FALSE ; directorymode vs. data set mode
FILETYPE SEQ ; file transfer mode
INACTIVE 300 ; inactive time out
JESLRECL 80 ; lrecl of jes jobs
JESPUTGETTO 600 ; timeout for remote job submission put/ge
JESRECFM F ; recfm of jes jobs
LRECL 256 ; new data set allocation lrecl
PRIMARY 1 ; new data set allocation primary space
RDW false ; if RDWs are treated as a part of record
RECFM VB ; new data set allocation record format
SBDATACONN (IBM-1047,IBM-850) ; ebcdic/ascii code sets for data conn.
SECONDARY 1 ; new data set allocation secondary space
SPACETYPE TRACK ; new data set allocation space type
SPREAD FALSE ; sql output format
SQLCOL NAMES ; sql output uses column names as headings
STARTDIR HFS ; use MVS directory at connect time
UCSHOSTCS IBM-939 ; the EDCDIC code page from/to UCS-2
UCSSUB FALSE ; whether substitution is permitted.
UCSTRUNC FALSE ; whether truncation is permitted.
WLMCLUSTERNAME FTPOERAL ; group name registered in DNS/WLM sysplex
WRAPRECORD FALSE ; data is NOT wrapped to next record

D.1.5 Profile for TCPIPC stack at RA39 image - PROF39C

;---
;TCPIP.TCPPARMS.R2617(PROF39C) SYSPLEX DISTRIBUTOR RA39 - SANDRAEF
;---
IPCONFIG
DATAGRAMFWD
DYNAMICXCF 172.16.233.39 255.255.255.0 1
SYSPLEXROUTING
ARPTO 1200
IGNOREREDIRECT
SOURCEVIPA
STOPONCLAWERROR
TTL 60
VARSUBNETTING

TCPCONFIG
UNRESTRICTLOWPORTS
TCPSENDBFRSIZE 16384
TCPRCVBUFRSIZE 16384
SENDGARBAGE FALSE

UDPCONFIG
UNRESTRICTLOWPORTS
Appendix D. Profiles, data files and parameter files 299

UDPCHKSUM
UDPSENDBFRSIZE 16384
UDPRCVBUFRSIZE 16384

PORT
7 UDP MISCSERV
7 TCP MISCSERV
9 UDP MISCSERV
9 TCP MISCSERV
19 UDP MISCSERV
19 TCP MISCSERV
20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER
23 TCP INTCLIEN
25 TCP OMVS
53 TCP OMVS
53 UDP OMVS
80 TCP WEBSRV SHAREPORT
80 TCP WEBSRVC
111 TCP OMVS
111 UDP OMVS
135 UDP LLBD
161 UDP OSNMPD
162 UDP OMVS
443 TCP OMVS
512 TCP RSHDA
514 TCP RSHDA
514 UDP OMVS
515 TCP T39ALPD
520 UDP OROUTEDC
;520 UDP OMVS

TELNETPARMS
PORT 23
INACTIVE 0
ENDTELNETPARMS

AUTOLOG 5
FTPDC JOBNAME FTPDC1
OROUTEDC
ENDAUTOLOG

DEVICE VIPA39C VIRTUAL 0
LINK VIPA39C VIRTUAL 0 VIPA39C

DEVICE M392216B MPCPTP AUTORESTART
LINK M392216B MPCPTP M392216B

DEVICE EN139 LCS 2064
LINK EN139 ETHEROR802.3 1 EN139

HOME
172.16.251.39 VIPA39C
172.16.102.39 M392216B
9.24.105.73 EN139

BSDROUTINGPARMS FALSE
VIPA39C DEFAULTSIZE 0 255.255.255.0 0
300 TCP/IP in a Sysplex

EN139 1492 1 255.255.255.0 0
M392216B 32768 0 255.255.255.0 0
ENDBSDROUTINGPARMS

BEGINVTAM
PORT 23
DEFAULTLUS

RA39TN11..RA39TN19
ENDDEFAULTLUS
ALLOWAPPL *
USSTCP TELNUST
ENDVTAM

INCLUDE TCPIP.TCPPARMS.R2617(TELN39C)

START M392216B
START EN139

D.1.6 TCPIP.DATA file for TCPIPC stack at RA39 image - TCPD39C

;--
; TCPIP.TCPPARMS(TCPD39C) SYSPLEX DISTRIBUTOR RA39 - SANDRAEF
;--
TCPIPJOBNAME TCPIPC
HOSTNAME MVS39C
DOMAINORIGIN itso.ral.ibm.com
NSINTERADDR 9.24.106.15
NSPORTADDR 53
RESOLVEVIA UDP
RESOLVERTIMEOUT 10
RESOLVERUDPRETRIES 1
DATASETPREFIX TCPIP
MESSAGECASE MIXED

D.1.7 Telnet parameters for TCPIPC stack on RA39 image - TELN39C

;--
;TCPIP.TCPPARMS.R2617(TELN39C) SYSPLEX DISTRIBUTOR RA39 - SANDRAEF
;--
TELNETPARMS

PORT 23
INACTIVE 0
TIMEMARK 7200
SCANINTERVAL 300
SMFINIT STD
SMFTERM STD
WLMCLUSTERNAME TNRAL ENDWLMCLUSTERNAME

ENDTELNETPARMS
;
BEGINVTAM
TELNETDEVICE 3277 DSILGMOD ; 24 x 80 old model 2
TELNETDEVICE 3278-2 D4B32782,SNX32702 ; 24 x 80
TELNETDEVICE 3278-2-e NSX32702,SNX32702 ; 24 x 80
TELNETDEVICE 3278-3 D4B32783,SNX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3278-3-e NSX32703,SNX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3278-4 D4B32784,SNX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3278-4-e NSX32704,SNX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3278-5 D4B32785,SNX32705 ; 27 x 132, primary 24 x 80
Appendix D. Profiles, data files and parameter files 301

TELNETDEVICE 3278-5-e NSX32705,SNX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3279-2 D4B32782 ; 24 x 80
TELNETDEVICE 3279-2-e NSX32702 ; 24 x 80
TELNETDEVICE 3279-3 D4B32783 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3279-3-e NSX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3279-4 D4B32784 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3279-4-e NSX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3279-5 D4B32785 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3279-5-e NSX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE LINEMODE INTERACT ; linemode terminals
TELNETDEVICE DYNAMIC ,D4C32XX3 ; tbd by application (QUERY)
TELNETDEVICE 3287-1 ,SCS ; printer LU1
DEFAULTLUS

RA39TN31..RA39TN50
RA39TP31..RA39TP50 ; printers

ENDDEFAULTLUS
;
LUGROUP SPECLU

RA39TN90..RA39TN99 ; specials
ENDLUGROUP

;
PRTGROUP PRINTERS

RA39TPR8..RA39TPR9 ; printers
ENDPRTGROUP

;
LUMAP SPECLU 9.170.3.123

;
MSG07 ; Error messages will be issued
LUSESSIONPEND ; On termination of a Telnet server connection,

; ; the user will revert to the DEFAULTAPPL
USSTCP TELNUST
LINEMODEAPPL RA03T ; Send all line-mode terminals directly to TSO.
ALLOWAPPL RA* ;* DISCONNECTABLE Allow all users access to TSO
ALLOWAPPL AD*
ALLOWAPPL A2*
ALLOWAPPL FD*
ALLOWAPPL X6*
ALLOWAPPL X7*

;
ENDVTAM

D.2 Configuration files for OSPF examples

This section shows the profiles and configuration files used in OMPROUTED with
OSPF protocol tests described in 6.5.3, “OMPROUTE with OSPF” on page 167.

D.2.1 Profile for TCPIPC stack at RA03 image - PROF03C

;**
;TCPIP.TCPPARMS.R2617(OM39CCFG) SYSPLEX DISTRIBUTOR RA03 - SANDRAEF
;**
IPCONFIG
DATAGRAMFWD
DYNAMICXCF 172.16.233.3 255.255.255.0 1
SYSPLEXROUTING
ARPTO 1200
IGNOREREDIRECT
302 TCP/IP in a Sysplex

SOURCEVIPA
STOPONCLAWERROR
TTL 60
VARSUBNETTING

TCPCONFIG
UNRESTRICTLOWPORTS
TCPSENDBFRSIZE 16384
TCPRCVBUFRSIZE 16384
SENDGARBAGE FALSE

UDPCONFIG
UNRESTRICTLOWPORTS
UDPCHKSUM
UDPSENDBFRSIZE 16384
UDPRCVBUFRSIZE 16384

PORT
7 UDP MISCSERV
7 TCP MISCSERV
9 UDP MISCSERV
9 TCP MISCSERV
19 UDP MISCSERV
19 TCP MISCSERV
20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER
23 TCP INTCLIEN
25 TCP OMVS
53 TCP OMVS
53 UDP OMVS
80 TCP WEBSRV SHAREPORT
80 TCP WEBSRVC
111 TCP OMVS
111 UDP OMVS
135 UDP LLBD
161 UDP OSNMPD
162 UDP OMVS
443 TCP OMVS
512 TCP RSHDA
514 TCP RSHDA
514 UDP OMVS
515 TCP T03ALPD
520 UDP OMPROUTC
;520 UDP OMVS

TELNETPARMS
PORT 23
INACTIVE 0
ENDTELNETPARMS

AUTOLOG 5
FTPDC JOBNAME FTPDC1
OMPROUTC
ENDAUTOLOG

DEVICE M032216B MPCPTP AUTORESTART
LINK M032216B MPCPTP M032216B
Appendix D. Profiles, data files and parameter files 303

DEVICE EN103 LCS 2064
LINK EN103 ETHEROR802.3 1 EN103

HOME
172.16.100.3 M032216B
9.24.105.76 EN103

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.3
VIPABACKUP 100 172.16.251.39
VIPARANGE DEFINE MOVEABLE DISRUPT 255.255.255.0 172.16.240.193

ENDVIPADYNAMIC

BEGINVTAM
PORT 23
DEFAULTLUS

RA03TN11..RA03TN19
ENDDEFAULTLUS
ALLOWAPPL *
USSTCP TELNUST
ENDVTAM

INCLUDE TCPIP.TCPPARMS.R2617(TELN03C)

START M032216B
START EN103

D.2.2 TCPIP.DATA file for TCPIPC stack at RA03 image - TCPD03C

;***
;TCPIP.TCPPARMS(TCPD03C) SYSPLEX DISTRIBUTOR RA03 - SANDRAEF
;***
TCPIPJOBNAME TCPIPC
HOSTNAME MVS03C
DOMAINORIGIN itso.ral.ibm.com
NSINTERADDR 9.24.106.15
NSPORTADDR 53
RESOLVEVIA UDP
RESOLVERTIMEOUT 10
RESOLVERUDPRETRIES 2
DATASETPREFIX TCPIP
MESSAGECASE MIXED

D.2.3 Telnet parameters for TCPIPC stack at image RA03 - TELN03A

;**
;TCPIP.TCPPPARMS.R2617(TELN03C) SYSPLEX DISTRIBUTOR RA03 - SANDRAEF
;**

TELNETGLOBALS
KEYRING HFS /u/iwan/security/ssl/hostsec.kdb

ENDTELNETGLOBALS
TELNETPARMS

SECUREPORT 23
CONNTYPE SECURE
DEBUG DETAIL

ENDTELNETPARMS
304 TCP/IP in a Sysplex

TELNETPARMS
TKOSPECLU 0
PORT 23
WLMCLUSTERNAME TN03 TNRAL TNTSO ENDWLMCLUSTERNAME

ENDTELNETPARMS

TELNETPARMS
SECUREPORT 6623 KEYRING HFS /u/sandra/ssl/server/r2612.kdb
CLIENTAUTH SAFCERT
TKOSPECLU 3

ENDTELNETPARMS

TELNETPARMS
SECUREPORT 7723 KEYRING HFS /u/sandra/ssl/server/r2612.kdb
CLIENTAUTH NONE
TKOSPECLU 3

ENDTELNETPARMS

TELNETPARMS
SECUREPORT 8823 KEYRING HFS /u/sandra/ssl/server/r2612.kdb
CLIENTAUTH SSLCERT
TKOSPECLU 3

ENDTELNETPARMS

TELNETPARMS
SECUREPORT 9923 KEYRING HFS /u/sandra/ssl/server/r2612.kdb
CLIENTAUTH SAFCERT
TKOSPECLU 3

ENDTELNETPARMS

BEGINVTAM
PORT 23 6623 7723 8823 9923
ALLOWAPPL *
MSG07
IPGROUP IP1 0.0.0.0:0.0.0.0 ENDIPGROUP
LUGROUP LU1 RA03TN01..RA03TN20 ENDLUGROUP
PRTGROUP PR1 RA03TP01..RA03TP20 ENDPRTGROUP
LUMAP LU1 IP1 GENERIC PR1
PRTMAP PR1 IP1 GENERIC

IPGROUP IP2
9.24.105.220 9.24.106.165 9.24.106.31

ENDIPGROUP
LUGROUP LU3 RA03TN50 RA03TN51 ENDLUGROUP
PRTGROUP PR3 RA03TP50 RA03TP51 ENDPRTGROUP
PRTMAP PR3 IP2 SPECIFIC
LUMAP LU3 IP2 SPECIFIC PR3

; LUTSO group includes lus from RA03TN70 to RA03TN75
LUGROUP LUTSO

RA03TN70..RA03TN75
ENDLUGROUP

; LUNETV group includes RA03TN78 lu
LUGROUP LUNETV

RA03TN78
ENDLUGROUP
Appendix D. Profiles, data files and parameter files 305

; LUNVAS group includes RA03TN79 lu
LUGROUP LUNVAS

RA03TN79
ENDLUGROUP

; TSOPRT group includes PRINTERS from RA03TP70 to RA03TP75
PRTGROUP TSOPRT

RA03TP70..RA03TP75
ENDPRTGROUP

USSTCP TELNUST IP2
USSTCP TELNUST
TELNETDEVICE 3287-1 ,SCS
TELNETDEVICE 3277 DSILGMOD ; 24 x 80 old model 2
TELNETDEVICE 3278-2 D4B32782,SNX32702 ; 24 x 80
TELNETDEVICE 3278-2-e NSX32702,SNX32702 ; 24 x 80
TELNETDEVICE 3278-3 D4B32783,SNX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3278-3-e NSX32703,SNX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3278-4 D4B32784,SNX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3278-4-e NSX32704,SNX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3278-5 D4B32785,SNX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3278-5-e NSX32705,SNX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3279-2 D4B32782 ; 24 x 80
TELNETDEVICE 3279-2-e NSX32702 ; 24 x 80
TELNETDEVICE 3279-3 D4B32783 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3279-3-e NSX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3279-4 D4B32784 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3279-4-e NSX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3279-5 D4B32785 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3279-5-e NSX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE LINEMODE INTERACT ; linemode terminals

ENDVTAM

D.2.4 FTP data parameters for FTP server - FDATA03C and 39C

;TCPIP.TCPPARMS(FTPD03C) SYSPLEX DISTRIBUTOR RA03 - SANDRAEF
;***
AUTOMOUNT TRUE ; automatic mount of unmounted volume
AUTORECALL TRUE ; automatic recall of migrated data sets
BLOCKSIZE 6233 ; new data set allocation blocksize
BUFNO 5 ; number of access method buffers
CHKPTINT 0 ; checkpoint interval
CONDDISP CATLG ; data sets catalogued if transfer fails
CTRLCONN IBM-850 ; ascii code set for control connection
DIRECTORY 27 ; new data set allocation directory blocks
DIRECTORYMODE FALSE ; directorymode vs. data set mode
FILETYPE SEQ ; file transfer mode
INACTIVE 300 ; inactive time out
JESLRECL 80 ; lrecl of jes jobs
JESPUTGETTO 600 ; timeout for remote job submission put/ge
JESRECFM F ; recfm of jes jobs
LRECL 256 ; new data set allocation lrecl
PRIMARY 1 ; new data set allocation primary space
RDW false ; if RDWs are treated as a part of record
RECFM VB ; new data set allocation record format
SBDATACONN (IBM-1047,IBM-850) ; ebcdic/ascii code sets for data conn.
SECONDARY 1 ; new data set allocation secondary space
SPACETYPE TRACK ; new data set allocation space type
306 TCP/IP in a Sysplex

SPREAD FALSE ; sql output format
SQLCOL NAMES ; sql output uses column names as headings
STARTDIR HFS ; use MVS directory at connect time
UCSHOSTCS IBM-939 ; the EDCDIC code page from/to UCS-2
UCSSUB FALSE ; whether substitution is permitted.
UCSTRUNC FALSE ; whether truncation is permitted.
WLMCLUSTERNAME FTPOERAL ; group name registered in DNS/WLM sysplex
WRAPRECORD FALSE ; data is NOT wrapped to next record

D.2.5 OMPROUTE configuration file for TCPIPC stack at RA03 image - OM03CCFG

;**
;TCPIP.TCPPARMS.R2617(OM39CCFG) SYSPLEX DISTRIBUTOR RA39 - SANDRAEF
;**
Area Area_Number=0.0.0.0

Stub_Area=NO
Authentication_type=None;

RouterID=172.16.100.3;
ROUTESA_CONFIG ENABLED=YES

COMMUNITY="MVSsubagent";
OSPF_Interface IP_Address=172.16.100.3

Name=M032216B
Cost0=3
Subnet_mask=255.255.255.0
MTU=32768;

OSPF_Interface IP_Address=9.24.105.76
Name=EN103
Cost0=6
Subnet_mask=255.255.255.0
MTU=32768;

OSPF_Interface IP_Address=172.16.251.*
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;

OSPF_Interface IP_Address=172.16.233.*
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;

AS_Boundary_routing
Import_Direct_Routes=YES; ;

D.2.6 Profile for TCPIPC stack at RA39 image - PRO39C

;--
;TCPIP.TCPPARMS.R2617(PROF39C) SYSPLEX DISTRIBUTOR RA39 - SANDRAEF
;--
IPCONFIG
DATAGRAMFWD
DYNAMICXCF 172.16.233.39 255.255.255.0 1
SYSPLEXROUTING
ARPTO 1200
IGNOREREDIRECT
SOURCEVIPA
STOPONCLAWERROR
TTL 60
VARSUBNETTING
Appendix D. Profiles, data files and parameter files 307

TCPCONFIG
UNRESTRICTLOWPORTS
TCPSENDBFRSIZE 16384
TCPRCVBUFRSIZE 16384
SENDGARBAGE FALSE

UDPCONFIG
UNRESTRICTLOWPORTS
UDPCHKSUM
UDPSENDBFRSIZE 16384
UDPRCVBUFRSIZE 16384

PORT
7 UDP MISCSERV
7 TCP MISCSERV
9 UDP MISCSERV
9 TCP MISCSERV
19 UDP MISCSERV
19 TCP MISCSERV
20 TCP OMVS NOAUTOLOG ; FTP SERVER
21 TCP FTPDC1 ; FTP SERVER
23 TCP INTCLIEN
25 TCP OMVS
53 TCP OMVS
53 UDP OMVS
80 TCP WEBSRV
111 TCP OMVS
111 UDP OMVS
135 UDP LLBD
161 UDP OSNMPD
162 UDP OMVS
443 TCP OMVS
512 TCP RSHDA
514 TCP RSHDA
514 UDP OMVS
515 TCP T03ALPD
520 UDP OMPROUTC
;520 UDP OMVS

TELNETPARMS
PORT 23
INACTIVE 0
ENDTELNETPARMS

AUTOLOG 5
FTPDC JOBNAME FTPDC1
OMPROUTC
ENDAUTOLOG

DEVICE M392216B MPCPTP AUTORESTART
LINK M392216B MPCPTP M392216B

DEVICE EN139 LCS 2064
LINK EN139 ETHEROR802.3 1 EN139

HOME
172.16.102.39 M392216B
308 TCP/IP in a Sysplex

9.24.105.73 EN139

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.0 172.16.251.39
VIPABACKUP 200 172.16.251.3
VIPARANGE DEFINE MOVEABLE NONDISRUPT 255.255.255.0 172.16.240.193

ENDVIPADYNAMIC

BEGINVTAM
PORT 23
DEFAULTLUS

RA39TN31..RA39TN39
ENDDEFAULTLUS
ALLOWAPPL *
USSTCP TELNUST
ENDVTAM

START M392216B
START EN139

D.2.7 TCPIP.DATA file for TCPIPC stack at RA39 image - TCPD39C

;--
; TCPIP.TCPPARMS(TCPD39C) SYSPLEX DISTRIBUTOR RA39 - SANDRAEF
;--
TCPIPJOBNAME TCPIPC
HOSTNAME MVS39C
DOMAINORIGIN itso.ral.ibm.com
NSINTERADDR 9.24.106.15
NSPORTADDR 53
RESOLVEVIA UDP
RESOLVERTIMEOUT 10
RESOLVERUDPRETRIES 1
DATASETPREFIX TCPIP
MESSAGECASE MIXED

D.2.8 Telnet parameters for TCPIPC stack on RA39 image - TELN39C

;--
;TCPIP.TCPPARMS.R2617(TELN39C) SYSPLEX DISTRIBUTOR RA39 - SANDRAEF
;--
TELNETPARMS

PORT 23
INACTIVE 0
TIMEMARK 7200
SCANINTERVAL 300
SMFINIT STD
SMFTERM STD
WLMCLUSTERNAME TNRAL ENDWLMCLUSTERNAME

ENDTELNETPARMS
;
BEGINVTAM
TELNETDEVICE 3277 DSILGMOD ; 24 x 80 old model 2
TELNETDEVICE 3278-2 D4B32782,SNX32702 ; 24 x 80
TELNETDEVICE 3278-2-e NSX32702,SNX32702 ; 24 x 80
TELNETDEVICE 3278-3 D4B32783,SNX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3278-3-e NSX32703,SNX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3278-4 D4B32784,SNX32704 ; 43 x 80, primary 24 x 80
Appendix D. Profiles, data files and parameter files 309

TELNETDEVICE 3278-4-e NSX32704,SNX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3278-5 D4B32785,SNX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3278-5-e NSX32705,SNX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3279-2 D4B32782 ; 24 x 80
TELNETDEVICE 3279-2-e NSX32702 ; 24 x 80
TELNETDEVICE 3279-3 D4B32783 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3279-3-e NSX32703 ; 32 x 80, primary 24 x 80
TELNETDEVICE 3279-4 D4B32784 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3279-4-e NSX32704 ; 43 x 80, primary 24 x 80
TELNETDEVICE 3279-5 D4B32785 ; 27 x 132, primary 24 x 80
TELNETDEVICE 3279-5-e NSX32705 ; 27 x 132, primary 24 x 80
TELNETDEVICE LINEMODE INTERACT ; linemode terminals
TELNETDEVICE DYNAMIC ,D4C32XX3 ; tbd by application (QUERY)
TELNETDEVICE 3287-1 ,SCS ; printer LU1
DEFAULTLUS

RA39TN31..RA39TN50
RA39TP31..RA39TP50 ; printers

ENDDEFAULTLUS
;
LUGROUP SPECLU

RA39TN90..RA39TN99 ; specials
ENDLUGROUP

;
PRTGROUP PRINTERS

RA39TPR8..RA39TPR9 ; printers
ENDPRTGROUP

;
LUMAP SPECLU 9.170.3.123

;
MSG07 ; Error messages will be issued
LUSESSIONPEND ; On termination of a Telnet server connection,

; ; the user will revert to the DEFAULTAPPL
USSTCP TELNUST
LINEMODEAPPL RA03T ; Send all line-mode terminals directly to TSO.
ALLOWAPPL RA* ;* DISCONNECTABLE Allow all users access to TSO
ALLOWAPPL AD*
ALLOWAPPL A2*
ALLOWAPPL FD*
ALLOWAPPL X6*
ALLOWAPPL X7*

;
ENDVTAM

D.2.9 OMPROUTE configuration file for TCPIPC stack at RA39 image - OM39CCFG

;--
;TCPIP.TCPPARMS.R2617(OM39CCFG) SYSPLEX DISTRIBUTOR RA39 - SANDRAEF
;--
Area Area_Number=0.0.0.0

Stub_Area=NO
Authentication_type=None;

RouterID=172.16.102.39;
ROUTESA_CONFIG ENABLED=YES

COMMUNITY="MVSsubagent";
OSPF_Interface IP_Address=172.16.102.39

Name=M392216B
Cost0=3
Subnet_mask=255.255.255.0
310 TCP/IP in a Sysplex

MTU=32768;
OSPF_Interface IP_Address=9.24.105.73

Name=EN139
Cost0=6
Subnet_mask=255.255.255.0
MTU=32768;

OSPF_Interface IP_Address=172.16.251.*
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;

OSPF_Interface IP_Address=172.16.233.*
Subnet_mask=255.255.255.0
Cost0=8
Non_Broadcast=Yes
MTU=32768;

AS_Boundary_routing
Import_Direct_Routes=YES;
Appendix D. Profiles, data files and parameter files 311

312 TCP/IP in a Sysplex

Appendix E. Dump of T28ATCP name server - single-path network

$ORIGIN itso.ral.ibm.com.
ralplex1 IN SOA mvs03a.ralplex1.itso.ral.ibm.com.
garthm@mvs03a.ralplex1.itso.ral.ibm.com. (

1999040102 7200 3600 604800 3600);Cl=5
IN NS mvs03a.ralplex1.itso.ral.ibm.com.;Cl=5
IN A 172.16.250.3;Cl=5
IN A 172.16.252.28;Cl=5
IN A 172.16.232.39;Cl=5

$ORIGIN ralplex1.itso.ral.ibm.com.
FTPRAL IN A 172.16.232.39;Cl=5

IN A 172.16.250.3;Cl=5
TN28 IN A 172.16.252.28;Cl=5
mvs03a IN A 172.16.250.3;Cl=5
TN03 IN A 172.16.250.3;Cl=5
mvs03c IN A 172.16.251.5;Cl=5
mvs28a IN A 172.16.252.28;Cl=5
TNTSO IN A 172.16.250.3;Cl=5
TNRAL IN A 172.16.250.3;Cl=5

IN A 172.16.252.28;Cl=5
IN A 172.16.232.39;Cl=5

ralplex1 IN CNAME ralplex1.itso.ral.ibm.com.;Cl=5
TN39 IN A 172.16.232.39;Cl=5
mvs39a IN A 172.16.232.39;Cl=5
$ORIGIN FTPRAL.ralplex1.itso.ral.ibm.com.
MVS03A IN A 172.16.250.3;Cl=5
MVS39A IN A 172.16.232.39;Cl=5
$ORIGIN TN28.ralplex1.itso.ral.ibm.com.
MVS28A IN A 172.16.252.28;Cl=5
$ORIGIN TN03.ralplex1.itso.ral.ibm.com.
MVS03A IN A 172.16.250.3;Cl=5
$ORIGIN TNTSO.ralplex1.itso.ral.ibm.com.
MVS03A IN A 172.16.250.3;Cl=5
$ORIGIN TNRAL.ralplex1.itso.ral.ibm.com.
MVS39A IN A 172.16.232.39;Cl=5
MVS28A IN A 172.16.252.28;Cl=5
MVS03A IN A 172.16.250.3;Cl=5
$ORIGIN TN39.ralplex1.itso.ral.ibm.com.
MVS39A IN A 172.16.232.39;Cl=5
$ORIGIN 172.in-addr.arpa.
16 IN SOA mvs03a.ralplex1.itso.ral.ibm.com.
garthm@mvs03a.16.172.in-addr.arpa. (

1999040101 7200 3600 604800 3600);Cl=4
IN NS mvs03a.ralplex1.itso.ral.ibm.com.;Cl=4

$ORIGIN 100.16.172.in-addr.arpa.
3 IN PTR mvs03a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 101.16.172.in-addr.arpa.
28 IN PTR mvs28a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 232.16.172.in-addr.arpa.
39 IN PTR mvs39a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 102.16.172.in-addr.arpa.
39 IN PTR mvs39a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 233.16.172.in-addr.arpa.
28 IN PTR mvs28a.ralplex1.itso.ral.ibm.com.;Cl=4
39 IN PTR mvs39a.ralplex1.itso.ral.ibm.com.;Cl=4
3 IN PTR mvs03a.ralplex1.itso.ral.ibm.com.;Cl=4
© Copyright IBM Corp. 1998 2001 313

$ORIGIN 250.16.172.in-addr.arpa.
3 IN PTR mvs03a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 251.16.172.in-addr.arpa.
5 IN PTR mvs03c.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 252.16.172.in-addr.arpa.
28 IN PTR mvs28a.ralplex1.itso.ral.ibm.com.;Cl=4
$ORIGIN 0.127.in-addr.arpa.
0 IN SOA mvs03a.ralplex1.itso.ral.ibm.com.
garthm@mvs03a.0.0.127.in-addr.arpa. (

1999040101 7200 3600 604800 3600);Cl=5
IN NS mvs03a.ralplex1.itso.ral.ibm.com.;Cl=5

$ORIGIN 0.0.127.in-addr.arpa.
1 IN PTR loopback.;Cl=5
$ORIGIN 24.9.in-addr.arpa.
104 IN SOA mvs03a.ralplex1.itso.ral.ibm.com.
garthm@mvs03a.104.24.9.in-addr.arpa. (

1999040101 7200 3600 604800 3600);Cl=5
IN NS mvs03a.ralplex1.itso.ral.ibm.com.;Cl=5

$ORIGIN 104.24.9.in-addr.arpa.
42 IN PTR mvs28a.ralplex1.itso.ral.ibm.com.;Cl=5
149 IN PTR mvs39a.ralplex1.itso.ral.ibm.com.;Cl=5
113 IN PTR mvs03a.ralplex1.itso.ral.ibm.com.;Cl=5
; --- Hints ---
$ORIGIN .
. 3600 IN NS mvs25o.buddha.ral.ibm.com.;Cl=0
$ORIGIN buddha.ral.ibm.com.
mvs25o 3600 IN A 9.24.104.125;Cl=0
314 TCP/IP in a Sysplex

Appendix F. Special notices

This publication is intended to help system administrators to understand and
implement TCP/IP solutions within a sysplex. The information in this publication
is not intended as the specification of any programming interfaces that are
provided by IBM Communications Server for OS/390 IP. See the PUBLICATIONS
section of the IBM Programming Announcement for IBM Communications Server
for OS/390 for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 1998 2001 315

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In Denmark,
Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned
by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

IBM �
DB2
eNetwork
ESCON
FFST
IBM
MQ
NetView
OpenEdition
OS/390
Parallel Sysplex

RACF
Redbooks
Redbooks Logo
RS/6000
S/390
SecureWay
SP
SP1
VTAM
WebSphere
XT
316 TCP/IP in a Sysplex

Appendix G. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

G.1 IBM Redbooks

For information on ordering these publications see “How to get IBM Redbooks” on
page 319.

 • IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide
Volume 1: Configuration and Routing, SG24-5227

 • IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide
Volume 2: UNIX Applications, SG24-5228

 • OS/390 eNetwork Communications Server V2R7 TCP/IP Implementation
Guide Volume 3: MVS Applications, SG24-5229

 • Accessing OpenEdition from the Internet, SG24-4721

 • TCP/IP Tutorial and Technical Overview, GG24-3376

 • IP Network Design Guide, SG24-2580

 • Stay Cool on OS/390: Installing Firewall Technology, SG24-2046

 • Secureway Communications Server for OS/390 V2R8 TCP/IP: Guide to
Enhancements, SG24-5631

 • Security in OS/390-based TCP/IP Networks, SG24-5383

G.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

G.3 Other resources

These publications are also relevant as further information sources:

 • OS/390 UNIX System Services Command Reference, SC28-1892

 • OS/390 C/C++ Programming Guide, SC09-2362

 • OS/390 MVS Programming: Workload Management Services, GC28-1773

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 1998 2001 317

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

 • OS/390 Parallel Sysplex Overview: Introducing Data Sharing and Parallelism
in a Sysplex, GC28-1860

 • OS/390 MVS Planning: Workload Management, GC28-1761

 • OS/390 UNIX System Services Planning, SC28-1890

 • OS/390 IBM Communications Server: IP User’s Guide, GC31-8514

 • OS/390 IBM Communications Server: IP Migration, SC31-8512

 • OS/390 IBM Communications Server: IP Configuration Guide, SC31-8725

 • OS/390 IBM Communications Server: IP Configuration Reference,
SC31-8726

 • OS/390 IBM Communications Server: IP Messages Volume 1 (EZA),
SC31-8517

 • OS/390 IBM Communications Server: IP Messages Volume 2 (EZB),
SC31-8570

 • OS/390 IBM Communications Server: IP Messages Volume 3
(EZY-EZZ-SNM), SC31-8674

 • OS/390 IBM Communications Server: Application Programming Interface
Guide, SC31-8516

 • OS/390 UNIX System Services Planning, SC28-1890

 • OS/390 IBM Communications Server: IP and SNA Codes, SC31-8571

 • OS/390 UNIX System Services Planning, SC28-1890

 • OS/390 UNIX System Services User's Guide, SC28-1891

 • OS/390 UNIX System Services Messages and Codes, SC28-1908

 • OS/390 MVS System Messages, Vol. 1 (ABA-ASA), GC28-1784

 • OS/390 MVS System Messages, Vol. 2 (ASB-ERB), GC28-1785

 • OS/390 MVS System Messages, Vol. 3 (EWX-IEB), GC28-1786

 • OS/390 MVS System Messages, Vol. 4 (IEC-IFD), GC28-1787

 • OS/390 MVS System Messages, Vol. 5 (IGD-IZP), GC28-1788

 • X/Open Portability Guides (XPG), http://www.xopen.org/

 • UNIX for Dummies, 3rd Edition, SR23-8083

 • S/390 ESCON Channel PCI Adapter User's Guide and Service Information,
SC23-4232

 • DNS and BIND by Paul Albitz and Cricket Liu, O'Reilly & Associates, Inc.,
1997, SR23-8771

G.4 Referenced Web sites

These Web sites are also relevant as further information sources:

•http://www.s390.ibm.com

•http://www.ietf.org
318 TCP/IP in a Sysplex

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks
site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

 • E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1998 2001 319

http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto: pubscan@us.ibm.com
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
320 TCP/IP in a Sysplex

Index

Symbols
/etc/named.boot 21
/etc/pagent.env 200
/etc/profile 201
/etc/resolv.conf 32

Numerics
2216 180
2216 OSPF configuration 184

A
AIX 11
ASCII 20
Asynchronous Transfer Mode (ATM) 4
ATM 4
automatic VIPA takeover 6, 188
autonomous system 154

B
base sysplex 3
BIND DNS server 8, 20

C
Channel Data Link Control (CDLC) 4
Channel to Channel (CTC) 4
cluster 1
clustering technique 1
cold standby 6
Common Link Access to Workstations (CLAW) 4
CONFIG 212
connection dispatching 14
connection optimization (DNS/WLM) 17
coupling facility 3
CS for OS/390 IP

DNS implementation 20
IOCP definitions for MPC+ 178
IP routing implementations 155
OMPROUTE commands 169
OROUTED start procedure 159
OSPF implementation 157
RIP implementation 156
sysplex sockets 262
VTAM definitions for MPC+ 179

D
DDNS 17
deregistration, DNS 24
DHCP 17, 21
dispatching 5
distributed database system 18
distributed DVIPA 12, 128
DNS

boot file 21
cache file 21
© Copyright IBM Corp. 1998 2001
dumping server cache 36
finding an address 19
forward domain file 21
implementation in CS for OS/390 20
in-addr.arpa 19
introduction 17
iterative query 19
loopback file 21
motivation 17
operation 30
primary server 20
recursive query 19
reloading data 41
resolution of server name 22
resolvers 18
resource records (RRs) 10
reverse domain file 21
reverse lookup 19
root name server 19
secondary server 20
serial number 35
stack affinity 35
starting 32
statistics 37
stopping the server 41
trace 53, 57
tracing 39
WLM interaction if server fails 60
zone transfer 20, 21
zones 18

DNS/WLM 1, 8, 17
address definition 25
advantages 9
drawbacks 9
implementing 41
query interval 256
query to WLM 22
recommendations 25
round-robin 25
service 27
TCPDATA 30
time to live 58
with dynamic routing 24
with static routing 24
zone file 43

Domain Name System (DNS) 17, 18
Dynamic Domain Name System (DDNS) 21
Dynamic Host Configuration Protocol (DHCP) 21
dynamic routes 155
Dynamic VIPA 6, 101, 188

activation 101
when to use what 6

DYNAMICXCF 207

E
ease of management 3
EBCDIC 20
321

EGP 155
environment variable

LIBPATH 200
PAGENT_LOG_FILE 200
TZ 201

exterior gateway protocol (EGP) 155

G
gateway 156
Generic Routing Encapsulation (GRE) 12
goal mode WLM 30
GRE 152

H
high availability 2

in a sysplex 7
horizontal growth 2
hostname 8

resolution 8
hot standby 6
HPDT 179
HYPERchannel 4

I
IBM Communications Server for OS/390 3
IGP 155
internal gateway protocol (IGP) 156
IOACMD command 152
IPCONFIG 156

DATAGRAMFWD 132
IPSec 12, 14
IUTSAMEH 207
IWMDNGRP 258
IWMDNREG 27, 253
IWMDNSRV 258
IWMSRDNS 258
IWMSRSRG 27, 253
IWMSRSRS 258

J
jcs tool 107

L
LAN Channel Station (LCS) 4
LIBPATH environment variable 200
load balancing 2

in a sysplex 7
long-lived connections 15

M
metric 156
MOVEABLE

IMMEDIATE 132
WHENIDLE 132

Multipath Channel Plus (MPC+) 4
Multiprotocol Access Services 180

MVS.SERVMGR.PAGENT RACF facility class 199

N
name servers 18
NETSTAT 211
Network Dispatcher 1, 63

2216 configuration 77
advantages 11
advisor configuration 86
advisors 65
cluster 63
cluster address 10, 63
components 65
description 63
drawbacks 11
examples of operation 78, 79, 81, 84, 87, 89, 93, 96
executor 65
executor configuration 76
failure detection 66
FTP considerations 64
heartbeat 66
high availability 10, 65, 93
incompatibility with IPSec and VPN 12
incompatibility with OSA 12
IPsec considerations 64
loopback address 63
manager 65
manager configuration 80
MVS advisor 90
passive FTP 77
protocol advisors 91
reachability 66, 95
recovery 67
requirement for advisors 85
restrictions 64
sharing an OSA 65
smoothing 82, 83
synchronization 67
takeover 66
target servers 63
VIPA configuration 78
with IPSec 64

Network Dispatcher (NDR) 10
NSINTERADDR 19
nslookup 25

O
OMPROUTE 155
onslookup 25
Open Shortest Path First (OSPF) 155
OpenEdition 20
ORouteD 155
OSA Address Table (OAT) 152
OSA-2 152
OSA-Express 4, 152
OSPF 187

configuration on 2216 184
equal cost multipath 157
MTU sizes 169
322 TCP/IP in a Sysplex

OMPROUTE configuration 165, 167
overview 156
stub area 168

P
PAGENT_LOG_FILE environment variable 200
Parallel Sysplex 3
PID

discovering 36
Policy Agent 12

started procedure 200
pre-routing 151
PROFILE.TCPIP 35
programs and REXX EXECs

dynamic VIPA registration 261
EXEC to collect server statistics 256, 290
EXEC to PING a server 287
multitasking sockets server program 264, 278
sockets server program 260, 274
subtask for multitasking server 285
sysplex sockets program 263, 276
WLM query program 258, 268
WLM registration program 253, 267

Q
Quality of Service (QoS) 187
Queued Direct I/O (QDIO) 4

R
RACF

MVS.SERVMGR.PAGENT facility class 199
Red Hat Linux 11
registration, DNS 24
resolv.conf 32
resolver 35
RESOLVER_CONFIG 32, 161, 162
RFC

1058 156
1721-1724 156
2328 157

RIP 187
hop count 156
metric 156
OROUTED configuration 159

RIP Version 2 156
root domain 18
root name server 19
round-robin 24
RouteD 155
routing 153

autonomous system 154
with VIPA 25

Routing Information Protocol (RIP) 155
routing metric 156
routing table 155

S
SAMEHOST 4

Server Bind Control 106
shared DLCs 4
single network-visible IP address 187
single system-wide image 2
SOURCEVIPA 160
static routes 155
STDENV DD card 200
Sun Solaris 11
sysplex 3
Sysplex Distributor 1, 12, 128, 187

advantages 13, 189
DATAGRAMFWD 190
distributing stack 12
drawbacks 14
DYNAMICXCF 190
FTP support limitation 14
incompatibility with IPSec and VPN 14
monitoring 211
operation 190
policies in LDAP server 204
QoS issues 189
QoS monitoring 201
SYSPLEXROUTING 190
using QoS information 12
VIPADISTRIBUTE 190
WLM 187

sysplex sockets 262
SYSPLEXROUTING 21, 28, 207
SYSTCPD DD card 32

T
TCP exclusive DLCs 4
TCP/IP

addressing 17, 154
DLC layer 154
hostnames 17
routing overview 153
routing with VIPA 25
subnet mask 154
variable subnet mask 156

Time-to-Live (TTL) 48
transport resource list 179
TTL 48
TZ environment variable 201

U
UNIX System Services 20, 155

and DNS 20
WLM registration of USS application 254

V
VARSUBNETTING 156
VCRT 212
VDPT 211
VIPA 187

automatic VIPA takeover 188
benefits of VIPA with DNS/WLM 25
configuring for dynamic VIPA 102
 323

configuring VIPA takeover 131
definitions 137, 143
description 127
Dynamic VIPA 6, 101, 128, 188
enhancements 128
modifying application for Dynamic VIPA 104
monitoring 132
overview 5
program to register Dynamic VIPA 261
takeback 128, 136, 142
takeover 6, 128, 136, 142
with Network Dispatcher 78

VIPABACKUP 102, 132, 211
VIPADCFG 211
VIPADEFINE 102, 211
VIPADELETE 102, 132
VIPADISTRIBUTE 102, 211
VIPADYN 212
VIPADYNAMIC 102, 211
Virtual IP Addressing (VIPA) 127
VPN 12, 14
VTAM

Generic Resources 21

W
WebSphere Edge Server 11
Windows NT 11
WLM 12, 73, 187

deregistration 255
DNS query interval 256
goal mode 5, 30
MVS advisor for network dispatcher 90
registration of application 22, 27, 253
registration of stack 21, 255

Workload Manager (WLM) 4
introduction 4

X
XCF 4, 5, 6, 166, 169
XCF dynamics 5
324 TCP/IP in a Sysplex

© Copyright IBM Corp. 1998 2001 325

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a Redbook
"made the difference" in a task or problem you encountered. Using one of the following methods, please review the
Redbook, addressing value, subject matter, structure, depth and quality as appropriate.

 • Use the online Contact us review redbook form found at ibm.com/redbooks
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5235-02
TCP/IP in a Sysplex

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the following
groups:

O Customer
O Business Partner
O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may be
used to provide you with information
from IBM or our business partners
about our products, services or
activities.

O Please do not use the information collected here for future marketing or
promotional contacts or other communications beyond the scope of this
transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/

(0.5” spine)
0.475”<->0.873”

250 <-> 459 pages

TCP/IP in a Sysplex

®

SG24-5235-02 ISBN 0738421219

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

TCP/IP in a Sysplex

Implement load
balancing and high
availability in your
sysplex

Contains the latest
technology, including
Sysplex Distributor

Includes useful
configuration details
and scenarios

The sysplex environment provides a unique setting for the creation of
high performing application servers. Quite simply, the main goals of a
sysplex are high availability and load balancing. That is, the sysplex
provides the ability to maintain a service as highly available and the
ability to add resources so that service performance can scale with a
growing number of client requests.

In this redbook, we include a discussion of three sysplex-specific
solutions that help to meet these demands, Sysplex Distributor, Domain
Name Service/Workload Manager, and Network Dispatcher. All of these
solutions make use of, to some extent, the MVS Workload Manager
(WLM). Because of this, we describe the benefits of WLM-aware system
solutions and include mechanisms by which we can work with WLM.
Additionally, because the sysplex notion of high availability is so closely
tied together with the Virtual IP Addressing (VIPA) concept, we discuss
the advantages of VIPA and the necessary steps that need to take place
when using VIPA. This includes a detailed routing discussion as we deal
with VIPAs in the sysplex.

The main focus of this book is Sysplex Distributor, a new function
available on sysplex systems as of IBM Communications Server for
OS/390 V2R10 IP. Sysplex Distributor is the state of the art technology
of achieving efficient load balancing and high availability within the
sysplex.

In summary, this redbook will help you design your OS/390-based IP
network to gain the maximum benefit from the features available with
the sysplex to achieve the high availability and load balancing demands
placed on your OS/390 servers.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction to TCP/IP in a sysplex
	1.1 Sysplex objectives
	1.1.1 High availability
	1.1.2 Load balancing

	1.2 Sysplex overview
	1.3 IBM Communications Server for OS/390
	1.4 Network interfaces to the sysplex
	1.5 Workload Manager
	1.6 Cross-system coupling facility
	1.7 High availability with Virtual IP Addressing (VIPA)
	1.8 Providing load balancing and high availability simultaneously
	1.8.1 DNS/WLM solution
	1.8.2 Network Dispatcher
	1.8.3 Sysplex Distributor
	1.8.4 Which solution is best?

	Chapter 2. DNS/WLM (connection optimization)
	2.1 Domain Name System (DNS) overview
	2.1.1 Why DNS?
	2.1.2 What is the Domain Name System?
	2.1.3 DNS implementation with CS for OS/390 IP
	2.1.4 Files to support a DNS implementation

	2.2 How load distribution works using DNS/WLM
	2.2.1 Data returned by the name server
	2.2.2 Using VIPA and a dynamic routing protocol with DNS/WLM

	2.3 The pros and cons of DNS/WLM
	2.3.1 Benefits of DNS/WLM workload distribution
	2.3.2 DNS/WLM limitations

	2.4 Application and stack registration to WLM
	2.4.1 Stack registration with DNS/WLM
	2.4.2 CS for OS/390 V2R10 IP application support
	2.4.3 DNS/WLM registration results

	2.5 Working with DNS/WLM
	2.5.1 WLM configuration
	2.5.2 DNS/WLM TCPDATA consideration
	2.5.3 Client/server affinity
	2.5.4 Starting the DNS server
	2.5.5 Displaying the DNS active sockets
	2.5.6 Dumping the DNS server cache
	2.5.7 DNS statistics
	2.5.8 Discovering signals available for process
	2.5.9 Tracing the name server
	2.5.10 Reloading DNS data
	2.5.11 Stopping the DNS server

	2.6 Implementation scenario
	2.6.1 Primary DNS configuration on MVS03
	2.6.2 Secondary DNS configuration MVS28
	2.6.3 Parent DNS configuration
	2.6.4 BIND DNS resource records
	2.6.5 Observing the effects of WLM and DNS
	2.6.6 DNS DUMP of primary DNS server in the sysplex
	2.6.7 DNS trace of WLM data for the primary DNS in the sysplex
	2.6.8 Testing workload distribution with different CPU utilizations
	2.6.9 More on resource record TTL
	2.6.10 Test application
	2.6.11 Test application - server failure case

	Chapter 3. Network Dispatcher
	3.1 Network Dispatcher overview
	3.1.1 Network Dispatcher components
	3.1.2 High availability for Network Dispatcher

	3.2 Windows NT Network Dispatcher configuration
	3.2.1 Windows NT executor configuration
	3.2.2 Windows NT manager configuration
	3.2.3 Windows NT MVS (WLM) advisor configuration
	3.2.4 Windows NT high availability configuration

	3.3 2216 Network Dispatcher configuration
	3.3.1 2216 NDR executor configuration
	3.3.2 2216 NDR manager configuration
	3.3.3 2216 NDR advisor configuration
	3.3.4 2216 NDR high availability

	Chapter 4. Dynamic VIPA (for application instance)
	4.1 Benefits of Dynamic VIPA
	4.2 Implementing Dynamic VIPA
	4.2.1 Dynamic VIPA configuration (for application instance)
	4.2.2 Solutions for applications that bind() to INADDR_ANY
	4.2.3 Examples of Dynamic VIPA

	4.3 Dynamic VIPA conflicts
	4.3.1 bind()
	4.3.2 IOCTL
	4.3.3 Scenarios

	Chapter 5. Automatic VIPA takeover and takeback
	5.1 Overview of VIPA takeover/takeback
	5.1.1 VIPA concept
	5.1.2 Dynamic VIPA enhancements
	5.1.3 VIPA takeover and VIPA takeback
	5.1.4 Benefits of sysplex-wide VIPA takeover
	5.1.5 Benefits of sysplex-wide VIPA takeback

	5.2 Implementing VIPA takeover and takeback
	5.2.1 Automatic VIPA takeover/takeback configuration

	5.3 Monitoring VIPA status
	5.3.1 Display Sysplex command
	5.3.2 Netstat commands

	5.4 Examples of VIPA takeover and takeback
	5.4.1 Automatic VIPA takeover/takeback - MOVE IMMED
	5.4.2 Automatic VIPA takeover/takeback - MOVE WHENIDLE

	Chapter 6. Routing in a sysplex environment
	6.1 Shared OSA pre-routing
	6.2 IP routing overview
	6.2.1 RIP
	6.2.2 OSPF

	6.3 VIPA considerations
	6.3.1 VIPA address assignment
	6.3.2 Fault tolerance with VIPA
	6.3.3 Beware of ICMP redirection
	6.3.4 Using SOURCEVIPA

	6.4 Configuring ORouteD
	6.5 Configuring OMPROUTE
	6.5.1 Common OMPROUTE configuration
	6.5.2 OMPROUTE with RIP
	6.5.3 OMPROUTE with OSPF
	6.5.4 OMPROUTE and automatic VIPA takeover
	6.5.5 Interface cost considerations
	6.5.6 Multipath considerations
	6.5.7 VTAM and I/O definitions
	6.5.8 2216 configuration

	Chapter 7. Sysplex Distributor
	7.1 Static VIPA and Dynamic VIPA overview
	7.2 What is Sysplex Distributor?
	7.2.1 Sysplex Distributor functionality
	7.2.2 Backup capability
	7.2.3 Recovery

	7.3 The role of dynamic routing with Sysplex Distributor
	7.4 Sysplex Distributor and policy
	7.4.1 Sysplex Distributor QoS policy in the PAGENT file
	7.4.2 Starting and stopping PAGENT
	7.4.3 Monitoring the Sysplex Distributor QoS
	7.4.4 Sysplex Distributor policies in the LDAP server

	7.5 Sysplex Distributor implementation
	7.5.1 Requirements
	7.5.2 Incompatibilities
	7.5.3 Limitations
	7.5.4 Implementation

	7.6 Monitoring Sysplex Distributor
	7.7 Implementation examples
	7.7.1 Scenario 1: Three IP stacks distributing FTP services
	7.7.2 Scenario 2: VIPA takeover and takeback with Sysplex Distributor
	7.7.3 Scenario 3: Distributing multiple IP services
	7.7.4 Scenario 4: Deleting and adding a VIPADISTRIBUTE statement
	7.7.5 Scenario 5: Removing a target stack from distribution

	7.8 Diagnosing Sysplex Distributor problems

	Appendix A. Sample applications and programs
	A.1 WLMREG, a sample registration program
	A.1.1 The registration call
	A.1.2 To deregister, or not to deregister?
	A.1.3 Waiting for WLM to Update DNS

	A.2 Collecting statistics using REXX
	A.3 WLMQ, a WLM query program
	A.4 SOCSRVR, a simple socket server program
	A.4.1 Modifying SOCSRVR for Dynamic VIPA

	A.5 Sysplex sockets
	A.5.1 Discovering partner information
	A.5.2 SSOCCLNT, a sample sysplex sockets program

	A.6 Loading the system
	A.6.1 MTCSRVR, a multitasking socket program
	A.6.2 Extra option for the REXX client program

	Appendix B. Sample C program source code
	B.1 WLMREG registration sample
	B.2 WLM query program
	B.3 SOCSRVR single threading server
	B.4 SSOCCLNT sysplex sockets sample
	B.5 MTCSRVR multitasking sockets program
	B.6 MTCSUBT subtask for the multitasking sockets program

	Appendix C. REXX EXECs to gather connection statistics
	C.1 32-Bit Windows EXEC to issue repeated PINGs
	C.2 EXEC to connect to server using TCP
	C.3 REXX statistics subroutine

	Appendix D. Profiles, data files and parameter files
	D.1 Configuration files for RIP examples
	D.1.1 Profile for TCPIPC stack at RA03 image - PROF03C
	D.1.2 TCPIP.DATA File for TCPIPC stack at RA03 image - TCPD03C
	D.1.3 Telnet parameters for TCPIPC stack at image RA03 - TELN03A
	D.1.4 FTP data parameters for FTP server - FDATA03C and 39C
	D.1.5 Profile for TCPIPC stack at RA39 image - PROF39C
	D.1.6 TCPIP.DATA file for TCPIPC stack at RA39 image - TCPD39C
	D.1.7 Telnet parameters for TCPIPC stack on RA39 image - TELN39C

	D.2 Configuration files for OSPF examples
	D.2.1 Profile for TCPIPC stack at RA03 image - PROF03C
	D.2.2 TCPIP.DATA file for TCPIPC stack at RA03 image - TCPD03C
	D.2.3 Telnet parameters for TCPIPC stack at image RA03 - TELN03A
	D.2.4 FTP data parameters for FTP server - FDATA03C and 39C
	D.2.5 OMPROUTE configuration file for TCPIPC stack at RA03 image - OM03CCFG
	D.2.6 Profile for TCPIPC stack at RA39 image - PRO39C
	D.2.7 TCPIP.DATA file for TCPIPC stack at RA39 image - TCPD39C
	D.2.8 Telnet parameters for TCPIPC stack on RA39 image - TELN39C
	D.2.9 OMPROUTE configuration file for TCPIPC stack at RA39 image - OM39CCFG

	Appendix E. Dump of T28ATCP name server - single-path network
	Appendix F. Special notices
	Appendix G. Related publications
	G.1 IBM Redbooks
	G.2 IBM Redbooks collections
	G.3 Other resources
	G.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

