
ibm.com/redbooks

Front cover

Communications Server for
z/OS V1R2 TCP/IP
Implementation Guide
Volume 2: UNIX Applications

Adolfo Rodriguez
Octavio Ferreira

Peter Focas
Garth Madella

Barry Mosakowski
Alan Nichols

Steve Zammit

Provides a detailed survey of CS for
z/OS applications and APIs

Covers DNS, FTP, syslogd, otelnet,
sendmail, and much more

Uses scenarios to ease your
application deployment

International Technical Support Organization

Communications Server for z/OS V1R2 TCP/IP
Implementation Guide Volume 2: UNIX Applications

October 2002

SG24-5228-03

© Copyright International Business Machines Corporation 1998 2002. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

Fourth Edition (October 2002)

This edition applies to Version 1 Release 2 of Communications Server for z/OS.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the general
information in “Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Notice . xiv
Comments welcome. .xv

Part 1. Introduction . 1

Chapter 1. z/OS UNIX application programming interfaces . 3
1.1 UNIX System Services APIs . 4
1.2 Remote procedure APIs . 5

1.2.1 ONC/RPC files and libraries . 7
1.3 X-Windows programming interfaces . 7

1.3.1 X-Windows dynamic linkage libraries . 8
1.4 SNMP agent distributed programming interface (DPI) . 9
1.5 Resource Reservation Protocol API (RAPI) . 9

1.5.1 RAPI overview . 10
1.5.2 Compiling and linking RAPI applications . 11
1.5.3 Running RAPI applications . 12

Part 2. Productivity applications . 13

Chapter 2. z/OS UNIX telnet server . 15
2.1 z/OS UNIX telnet server overview. 16
2.2 Pseudoterminals . 17
2.3 Starting the z/OS UNIX telnet server . 18
2.4 Termcap and terminfo . 20

2.4.1 TERMINFO environment variable . 22
2.4.2 z/OS UNIX otelnetd logging . 22

Chapter 3. X-Window system . 25
3.1 Creating X-Window applications . 26
3.2 Running X-Window applications . 28

Chapter 4. z/OS UNIX remote command execution . 31
4.1 z/OS UNIX remote command execution overview . 32
4.2 Starting the REXECD and RSHD servers. 33
4.3 Trusted host concept with RSHD server . 35
4.4 REXEC client in the z/OS UNIX environment . 38

Chapter 5. z/OS UNIX sendmail . 39
5.1 Overview and terms . 40

5.1.1 Configuration of our basic tests . 40
5.1.2 Configuration of our extended tests . 41

5.2 Configuration of sendmail . 42
5.2.1 Alias file. 44
5.2.2 Queue directory . 45
5.2.3 The sendmail.st file . 49
© Copyright IBM Corp. 1998 2002 iii

5.2.4 The sendmail.hf file . 50
5.2.5 The sendmail.cf file . 50
5.2.6 M4 preprocessor . 53

5.3 Running sendmail . 60
5.3.1 sendmail's client mode . 60
5.3.2 sendmail's server/daemon role . 61
5.3.3 Some considerations about sendmail client and server roles 65
5.3.4 sendmail's tasks to get mail transmitted . 66
5.3.5 sendmail extended modes . 67
5.3.6 Logging . 71

5.4 The popper server . 75
5.4.1 Introduction . 75
5.4.2 z/OS popper implementation . 76
5.4.3 POP3 definitions for the MUA . 78
5.4.4 Using the popper. 83
5.4.5 Using Netscape to send files . 84
5.4.6 popper debugging samples. 85

5.5 Bind-based Domain Name Server and sendmail . 87
5.5.1 MX records . 88
5.5.2 Configuration. 89
5.5.3 Files in the BIND-based DNS server. 91
5.5.4 Startup . 95
5.5.5 Operation of DNS server with sendmail . 96

5.6 sendmail and SMTP . 102
5.6.1 Configuration of SMTPPROC . 103
5.6.2 Mail from sendmail to SMTPPROC. 107
5.6.3 Mail from SMTP to sendmail . 108
5.6.4 Mail from sendmail to NJE/RSCS . 110
5.6.5 Mail from NJE/RSCS nodes to sendmail . 113

5.7 sendmail and Lotus Notes. 116
5.7.1 Submit a job to send a mail. 119

Part 3. File-related applications. 121

Chapter 6. File Transfer Protocol (FTP). 123
6.1 Introduction to FTP . 124
6.2 CS for z/OS IP: FTP overview. 124

6.2.1 Server and client overview . 124
6.2.2 Process flow of UNIX System Services FTP. 125
6.2.3 SITE and LOCSITE parameters . 127
6.2.4 Specification of FTP default values. 128
6.2.5 FTP translate tables . 130
6.2.6 Supported translations . 130
6.2.7 Translation tables search order. 132
6.2.8 Selecting translation tables . 136
6.2.9 Directory mode or data set mode . 142
6.2.10 Transfer mode, data type and data structure . 145
6.2.11 Stream-oriented or record-oriented. 149
6.2.12 Using the RDW option . 151
6.2.13 Using the FTP record structure option . 152
6.2.14 New features introduced with CS for z/OS V1R2 IP . 153

6.3 z/OS FTP server configuration and implementation . 155
6.3.1 Configuring the FTP server . 155
iv Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

6.3.2 Setting up the syslog daemon. 156
6.3.3 Security environment for FTP servers. 156
6.3.4 The catalogued procedure for FTP servers . 157
6.3.5 Starting FTP servers from the z/OS UNIX shell . 161
6.3.6 PROFILE.TCPIP for FTP servers . 162
6.3.7 SMF records . 164

6.4 Server customization and usage. 167
6.4.1 Users of the FTP server . 167
6.4.2 MVS datasets and HFS files . 169
6.4.3 Restartability . 171
6.4.4 Using a socks server. 174
6.4.5 FTP Tracing . 177
6.4.6 Using the latest FTP features (RFC2389 and 2640). 179
6.4.7 FTP from a Web browser . 181
6.4.8 Transferring load modules . 184
6.4.9 Setting up a welcome page. 187
6.4.10 Using the SIZE and MDTM commands. 192
6.4.11 Using the STAT and SITE commands . 194
6.4.12 JES interface. 195
6.4.13 User exits . 198
6.4.14 Using the directory command . 201

6.5 Client customization and usage . 202
6.5.1 Using FTP client in z/OS . 202
6.5.2 FTP client NETRC data set. 203
6.5.3 Setting USER level FTP Server options . 204
6.5.4 LOCSTAT and LOCSITE commands . 205
6.5.5 FTP SUNIQUE command . 207
6.5.6 Using FTP client in the z/OS UNIX shell environment . 209
6.5.7 FTP client in a batch job . 212
6.5.8 FTP server DDNAME and batch job comment support 214
6.5.9 FTP client in REXX . 216
6.5.10 Proxy FTP . 217
6.5.11 FTP server interface to JES . 221
6.5.12 Use NJE network to forward files . 224
6.5.13 FTP and use of tape data sets . 226
6.5.14 DB2 SQL queries with FTP. 226
6.5.15 Using the FTP SQL query function from a remote FTP client. 231
6.5.16 Using the FTP SQL query function from a local TSO FTP client 231
6.5.17 FTP SQL query output . 233

6.6 Security in the FTP environment . 234
6.6.1 FTP server RACF definition . 235
6.6.2 Signing on to the z/OS FTP server . 236
6.6.3 Implementing an anonymous user . 237
6.6.4 FTPD server security user exit routines . 246
6.6.5 Using a SURROGATE user . 249
6.6.6 Guarding against bounce attacks . 250
6.6.7 Transport Layer Security (TLS) and Kerberos . 252

Chapter 7. Network File System (NFS) . 253
7.1 Introduction to NFS . 254

7.1.1 Accessing data sets . 255
7.2 Configuring the Network File System (NFS) . 256

7.2.1 The NFS file system model . 257
 Contents v

7.2.2 Byte stream and record mapping considerations . 260
7.2.3 Accessing EBCDIC data sets from ASCII hosts . 260
7.2.4 Access serialization to data sets . 261
7.2.5 Preparing to use the z/OS NFS server . 261
7.2.6 Using the DFP Network File System server from AIX. 264
7.2.7 Using the DFP Network File System server from OS/2 268

7.3 Configuring NFS as a client . 271
7.3.1 Changes to SYS1.PARMLIB and SYS1.PROCLIB. 271
7.3.2 Using the NFS client . 271

7.4 Performance . 274

Chapter 8. Trivial File Transfer Protocol (TFTP) . 275
8.1 tftpd command syntax . 276
8.2 Starting the z/OS TFTP server . 277
8.3 z/OS TFTP server security . 277

Part 4. Bootstrapping functions . 279

Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS . 281
9.1 Overview of Dynamic IP . 282
9.2 Dynamic Host Configuration Protocol (DHCP) . 283

9.2.1 How does DHCP work? . 283
9.2.2 Implementing DHCP . 285
9.2.3 Configuring DHCP for dynamic IP (DDNS client) . 288
9.2.4 Generating keys for DDNS updates by the DHCP server. 290
9.2.5 Start the DHCP server . 290
9.2.6 DADMIN utility. 291

9.3 Dynamic Domain Name System (DDNS) . 293
9.3.1 Generating zone keys . 295
9.3.2 MVS03 DDNS boot file . 297
9.3.3 MVS03 DDNS domain file. 298
9.3.4 MVS03 DDNS reverse file. 299
9.3.5 Starting the DDNS . 300
9.3.6 A DDNS client requesting dynamic update . 300

9.4 Pre-Boot eXecution Environment (PXE) . 303
9.4.1 Current state of Dynamic IP . 303
9.4.2 New requirements. 303
9.4.3 Common solution . 304
9.4.4 IBM's solution . 305
9.4.5 The overall DHCP, DDNS, PXE, BINL, boot server environment 306
9.4.6 DHCP/PXE protocol flow overview . 308
9.4.7 Location of the DHCP/PXE/BINL servers . 310
9.4.8 Definition of the DHCP/PXE/BINL servers . 311

Chapter 10. BIND Domain Name System (DNS) . 315
10.1 Domain Name System overview . 316

10.1.1 Why DNS? . 316
10.1.2 What is the Domain Name System? . 317
10.1.3 Files to support a DNS implementation. 322

10.2 Setting up a BIND 4.9.3-based Domain Name Server . 323
10.2.1 Define your zone . 323
10.2.2 Create a configuration file for your environment (named.boot). 325
10.2.3 Specify stack affinity (multiple stack environment) . 325
10.2.4 Specify port ownership . 326
vi Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

10.2.5 Update the name server start procedure (optional) . 327
10.2.6 Create the domain data files . 327
10.2.7 Create the loopback file . 331
10.2.8 Create the cache file (hints file). 332
10.2.9 Starting the DNS server . 332
10.2.10 Verifying if the name server has started correctly . 335
10.2.11 Reloading the Domain Name Server V4.9.3 . 336
10.2.12 Stopping the DNS server . 337
10.2.13 Implementing a secondary name server DNS64 . 338

10.3 DNS/WLM - Connection Optimization in a sysplex domain 340
10.3.1 How load distribution works using DNS/WLM. 340
10.3.2 Data returned by the name server . 342
10.3.3 WLM weights . 342
10.3.4 Static addresses versus registered addresses . 342
10.3.5 Benefits of DNS/WLM workload distribution . 343
10.3.6 DNS/WLM limitations . 343
10.3.7 Application and stack registration to WLM . 344
10.3.8 DNS/WLM registration . 345
10.3.9 DNS/WLM registration results. 347
10.3.10 Data returned by the name server . 348
10.3.11 Recommendation for DNS/WLM address definition . 348
10.3.12 Round-robin technique and addresses returned. 348
10.3.13 DNS/WLM TCPDATA considerations . 350
10.3.14 Client/server affinity . 350
10.3.15 Configuring the DNS server for WLM . 351

10.4 Setting up a BIND 9-based Domain Name Server . 355
10.4.1 Migrating from a BIND V4.9.3 DNS environment . 356
10.4.2 Define your zone . 356
10.4.3 Create a configuration file for your environment (named.conf) 357
10.4.4 Specify port ownership . 359
10.4.5 Update the name server start procedure (optional) . 359
10.4.6 Create the domain data files . 360
10.4.7 Create the loopback file . 364
10.4.8 Create the cache file (hints file). 365
10.4.9 Configuring logging . 366
10.4.10 Starting the DNS server . 368
10.4.11 Verifying that the name server has started correctly. 370
10.4.12 Reloading BIND V9 . 371
10.4.13 Stopping the DNS server . 372
10.4.14 Implementing a secondary name server DNS64 . 373
10.4.15 BIND 9 name server advanced topics. 376

10.5 Securing your DNS environment. 385
10.5.1 Restricting queries . 386
10.5.2 Preventing unauthorized zone transfers . 386
10.5.3 Creating a transaction signature between master and slave 387
10.5.4 Signing your zone . 388

10.6 Running DNS in BIND 9 and BIND 4.9.3 simultaneously . 393
10.6.1 Compatibility considerations . 393
10.6.2 Implementation procedure . 394

10.7 DNS tools . 397
10.7.1 Administrative tools . 398
10.7.2 DNS diagnostic tools. 402
 Contents vii

Part 5. Utility applications . 415

Chapter 11. InetD. 417
11.1 InetD configuration . 418
11.2 Internet services supported internally by InetD . 420

Chapter 12. Netstat . 423
12.1 TSO Netstat . 424
12.2 USS onetstat . 424
12.3 MVS netstat console command . 425
12.4 Netstat enhancements in z/OS V1R2.0 . 426

12.4.1 Filter enhancements . 426
12.4.2 Performance counters. 426
12.4.3 Restricting access to Netstat commands . 426

Chapter 13. ONC/RPC port mapper . 429
13.1 The z/OS port mapper. 430

13.1.1 Starting the port mapper from the z/OS UNIX shell . 430
13.1.2 Starting the port mapper from a started task. 431

13.2 The non-z/OS UNOIX port mapper . 433

Chapter 14. syslogd . 435
14.1 z/OS UNIX syslogd overview . 436
14.2 syslogd features . 436

14.2.1 Management: syslogd isolation. 437
14.3 syslogd configuration . 439

14.3.1 syslogd configuration recommendations. 443
14.3.2 syslog.h . 443
14.3.3 File syslog.pid . 444
14.3.4 TCPIP.PROFILE . 444

14.4 Starting syslogd. 444
14.5 Switching between two log files . 445
14.6 Centralized logging . 446

Chapter 15. Time server (TIMED) . 449

Chapter 16. Web server performance . 451
16.1 Overview . 452
16.2 Fast Response Cache Accelerator . 452
16.3 Starting the HTTP server . 453
16.4 Configuring the HTTP server . 455

16.4.1 Accessing the configuration and administration forms 455
16.4.2 Configuring the Fast Response Cache Accelerator . 457
16.4.3 Monitoring the Fast Response Cache Accelerator . 461

Part 6. Appendixes . 465

Appendix A. BIND DNS sample configuration . 467
A.1 BIND 4.9.3-based DNS implementation . 468

A.1.1 Basic scenario (no WLM) . 468
A.1.2 BIND 4-based DNS/WLM scenario. 472

A.2 DHCP + DDNS on MVS03 . 477
A.2.1 MVS03 DHCP configuration file . 477
A.2.2 MVS03 DDNS definitions . 479

A.3 BIND 9-based DNS implementation . 480
viii Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

A.3.1 BIND 9 basic scenario . 480
A.3.2 Transaction Signature (TSiG) - key and configuration files 486
A.3.3 BIND 9-based DNSSEC - primary DNS related files . 490

Appendix B. Dump of BIND DNS table (SIGINT). 497

Appendix C. Sample DHCP configuration file . 503

Appendix D. The DHCP log data set . 519

Appendix E. FTP user exits and sample code . 525
E.1 FTCHKIP security exit . 525
E.2 FTCHKPWD security exit . 527
E.3 FTCHKCMD security exit . 528
E.4 FTCHKJES security exit . 531
E.5 FTP RDW post process sample program . 536
E.6 assembler entry code (INIT MACRO). 541
E.7 assembler exit code (INIT MACRO) . 544
E.8 FTPOSTPR user exit . 545
E.9 Sample JCL to compile and link-edit the FTPOSTPR user exit 546

Appendix F. FTP client sample REXX program . 549

Related publications . 551
IBM Redbooks . 551

Other resources . 551
Referenced Web sites . 552
How to get IBM Redbooks . 552

IBM Redbooks collections. 552

Index . 553
 Contents ix

x Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 1998 2002 xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

IBM eServer™
Redbooks(logo)™
AIX®
AnyNet®
APPN®
CICS®
DB2®
DFS™
DFSMS/MVS®
DPI®
FFST™
IBM®
IBM.COM™

Language Environment®
MVS™
MVS/DFP™
MVS/ESA™
Network Station™
OpenEdition®
OS/2®
OS/390®
RAA®
RACF®
Redbooks™
S/370™
S/390®

Sequent®
SP™
SP1®
SP2®
System/390®
TCS®
Tivoli®
VTAM®
WebSphere®
z/OS™
zSeries™

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus®
Word Pro®

Lotus Notes®
Notes®

Domino™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xii Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Preface

The Internet and enterprise-based networks have led to the rapidly increasing reliance upon
TCP/IP implementations. The zSeries platform provides an environment in which critical
business applications flourish. The demands placed on these systems is ever-increasing and
such demands require a solid, scalable, highly available, and high-performance Operating
System and TCP/IP component. z/OS and Communications Server for z/OS provide for such
a requirement with a TCP/IP stack that is robust and rich in functionality. The
Communications Server for z/OS TCP/IP Implementation Guide series provides a
comprehensive, in-depth survey of CS for z/OS.

Volume 2 covers the UNIX applications shipped as part of Communications Server for z/OS
IP. In this volume, we classify z/OS applications and provide a detailed survey of the
protocols and implementation issues associated with each. These applications provide a rich
set of functionality, including remote execution with otelnet and file transfers with FTP and
TFTP. In addition, we cover important network functions such as DNS, Dynamic IP, syslogd,
and NFS. We provide scenario-based discussions to aid in application deployment.

Because of the varied scope of CS for z/OS, this volume is not intended to cover all aspects
of the topic. The main goal of this volume is to provide an insight into the different applications
provided by CS for z/OS and, more specifically, into the protocols they use and the
mechanisms to deploy them. For more information, including applications available with CS
for z/OS IP, please reference the other volumes in the series. These are:

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base
and TN3270 Configuration, SG24-5227

� OS/390 eNetwork Communications Server for V2R7 TCP/IP Implementation Guide
Volume 3: MVS Applications, SG24-5229

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 4:
Connectivity and Routing, SG24-6516

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 5:
Availability, Scalability, and Performance, SG24-6517

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 6: Policy
and Network Management, SG24-6839

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security,
SG24-6840

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Adolfo Rodriguez is a Senior I/T Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively and teaches IBM classes worldwide on
all areas of TCP/IP. Before joining the ITSO, Adolfo worked in the design and development of
CS for z/OS, in RTP, NC. He holds a B.A. degree in Mathematics and B.S. and M.S. degrees
in Computer Science from Duke University. He is currently pursuing the Ph.D. degree in
Computer Science at Duke University, with a concentration on Networking Systems.
© Copyright IBM Corp. 1998 2002 xiii

Octavio Ferreira is a Senior I/T Specialist in IBM Brazil. He has 17 years of experience in
IBM software support. His areas of expertise include z/OS, VM, SNA, TCP/IP, LAN and WAN.
For the last eight years, he has worked at the Area Program Support Group providing
guidance and support to customers and designing networking solutions such as SNA to
APPN migration and e-business solutions.

Peter Focas is a Network Systems Programmer in New Zealand. He has 12 years of
experience in the SNA and TCP/IP networking field. His areas of expertise include the design
and setup of SNA/SNI networks, configuration of secure TCP/IP servers using SSL/TLS, and
digital certificate management.

Garth Madella is an Information Technology Specialist with IBM South Africa. He has 17
years of experience in the System/390 networking software field. He has worked with IBM for
six years. His areas of expertise include VTAM, SNA, TCP/IP, and sysplex. He has written
extensively on TCP/IP, sysplex, and Enterprise Extender issues.

Barry Mosakowski is a Software Engineer working in Raleigh, North Carolina at IBM's RTP
site. He has eight years of experience in TCP/IP and SNA networking. He holds an MSE from
Rensselaer Polytechnic Institute in Troy, NY. His areas of expertise include design, setup, and
debugging of the Communication Server for z/OS TCP/IP to include the Telnet server, device
drivers, socket applications, and Policy Agent.

Alan Nichols is an Independent Consultant living in Germany. He has 20 years of experience
in MVS and z/OS and 10 years in UNIX and IP. He is currently working with last level IP/USS
support in T-Systems.

Steve Zammit is an Advisory I/T specialist with the IBM Software Support Center based in
Vancouver, Canada. Steve has 17 years of experience with IBM systems and networking,
currently specializing in CS for z/OS TCP/IP. He holds a BSc degree in Applied Physics from
Portsmouth Polytechnic, UK.

Thanks to the following people for their contributions to this project:

Bob Haimowitz, Jeanne Tucker, Margaret Ticknor, Tamikia Barrow, Gail Christensen, Linda
Robinson
International Technical Support Organization, Raleigh Center

Jeff Haggar, Bebe Isrel, Van Zimmerman, Jerry Stevens, Tom Moore, Robert Perrone,
Michael Fitzpatrick, Gus Kassimis, Dinakaran Joseph
Communications Server for z/OS Development, Raleigh, NC

Notice
This publication is intended to help customers implement and configure Communications
Server for z/OS IP. The information in this publication is not intended as the specification of
any programming interfaces that are provided by Communications Server for z/OS. See the
PUBLICATIONS section of the IBM Programming Announcement for Communications Server
for z/OS for more information about what publications are considered to be product
documentation.
xiv Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
 Preface xv

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xvi Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Part 1 Introduction

Beyond the functionality required of a TCP/IP stack implementation, Communications Server
for z/OS IP provides a number of application implementations. These are largely classified
into two broad categories:

� MVS applications, described in OS/390 eNetwork Communications Server for V2R7
TCP/IP Implementation Guide Volume 3: MVS Applications, SG24-5229

� UNIX applications, the subject of this book

In this book, we further classify the CS for z/OS IP UNIX applications. These include
productivity applications such as otelnetd, X-Windows, remote execution, and sendmail. We
also describe file related protocols and applications such as FTP, NFS, and TFP, and
boostrapping functions such as DHCP and DNS. Finally, we complete our survey of UNIX
applications with a discussion of utility applications such InetD and syslogd. While CS for
z/OS IP provides a number of applications for policy and network management, we include a
discussion of these in Communications Server for z/OS V1R2 TCP/IP Implementation Guide
Volume 6: Policy and Network Management, SG24-6839.

Part 1
© Copyright IBM Corp. 1998 2002 1

2 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 1. z/OS UNIX application
programming interfaces

This chapter is a short introduction to the application programming interfaces that are
delivered with Communications Server for z/OS IP.

1

© Copyright IBM Corp. 1998 2002 3

1.1 UNIX System Services APIs
There is one physical file system for the AF_UNIX addressing family and there is another for
the AF_INET addressing family. Communications Server for z/OS V1R2 IP has IPv6 API
support for IPv6 application development and allows coexistence with IPv4. In a UNIX
System Services environment, the following addressing families exist:

Family Description

AF_INET The Internet addressing family, also referred to as the Internet domain
(IPv4).

This addressing family is used within the TCP/IP domain to identify sockets on IP hosts. A
socket address in AF_INET consists of the following:

Family Half-word binary with a value of 2, which identifies the socket
address as belonging to the AF_INET addressing family.

Port Half-word binary with port number that identifies the process.

IP address Full-word binary with IP address of IP host in network byte order
format.

Reserved Eight reserved bytes.

The following is an example of an AF_INET address that represents the Telnet Server
(port number 23) on an IP host with the IP address of 9.24.104.126:

{AF_INET 23 9.24.104.126}

AF_INET6 The Internet addressing family, also referred to as the Internet domain
(IPv6).

This addressing family is used within the TCP/IP domain to identify sockets on IP hosts. A
socket address in AF_INET6 has a very similar structure to AF_INET except for the size of
the IP address, which is 128 bits (16 bytes) versus only 32 bits (4 bytes). AF_INET6
sockets communicate over an IPv4 network after a special form of address map
processing concludes. The result is called an IPv4-mapped IPv6 address. An
IPv4-mapped IPv6 address has 10 bytes of zeros then ’FFFF’X followed by the IPv4
address in the low-order four bytes. The TCP/IP stack does not track AF_INET and
AF_INET6 sockets separately. There is one socket table where all sockets are essentially
treated the same.

The AF_INET physical file system does rely on other products to provide the AF_INET
transport services. The IBM products that you can use as AF_INET transport providers in the
UNIX System Services environment are:

� Communications Server for z/OS IP
� z/OS AnyNet

Note: AF_INET6 is not supported in a Common INET environment (CINET). The
supported IPv6 address formats are IPv4-mapped IPv6, IN6ADDR_LOOPBACK, and
IN6ADDR_ANY. Other IPv6 address formats are not supported.
4 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

AF_UNIX The UNIX addressing family; also referred to as the UNIX domain.

You can use AF_UNIX with UNIX System Services sockets, where this addressing family
is used for interprocess communication between UNIX System Services processes within
one MVS operating system. The syntax of an AF_UNIX address family is shown below:

Family Half-word binary with a value of 1, which identifies the socket
address as belonging to the AF_UNIX addressing family.

Path 108 characters defining a path name (similar to a hierarchical file
system path name) by which this local process wants to be known
by other local processes.

The following is an example of an address in the AF_UNIX addressing family:

AF_UNIX /u/xyz/testsrv

The UDS physical file system is used to handle socket requests for the AF_UNIX address
family of sockets.

UNIX System Services implements support for a given addressing family through different
physical file systems. The UDS physical file system is self-contained within UNIX System
Services and does not rely on other products to implement the required functions. AF_UNIX
includes security enhancements with CS for OS/390 V2R10 IP. Refer to z/OS V1R2.0 UNIX
System Services Planning, GA22-7800 for more information. The following statements
illustrate coding of BPXPRMxx member in SYS1.PARMLIB for the addressing families:

Figure 1-1 Address family configurations in BPXPRMxx

Since the AF_INET6 address family is not supported in a Common INET environment, we
configured the INET physical file system.

1.2 Remote procedure APIs
Remote procedure APIs are located at a higher level in the protocol stack than socket-based
APIs. The socket API is used underneath the RPC interface, but the details of the socket
interface are hidden for the application programmer who uses the RPC programming
interface.

FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
NETWORK DOMAINNAME(AF_UNIX)
 DOMAINNUMBER(1)
 MAXSOCKETS(1000)
 TYPE(UDS)
FILESYSTYPE TYPE(INET)
 ENTRYPOINT(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)
 DOMAINNUMBER(2)
 MAXSOCKETS(64000)
 TYPE(INET)
NETWORK DOMAINNAME(AF_INET6)
 DOMAINNUMBER(19)
 MAXSOCKETS(2000)
 TYPE(INET)
Chapter 1. z/OS UNIX application programming interfaces 5

Figure 1-2 RPC programming interface and protocol layers

The RPC programming interfaces offer more functions to the application programmer than
the socket programming interfaces do, and make the network programming job somewhat
easier to accomplish. The RPC programming interfaces generally deal with such things as
different data representation and some kind of state control over the dialog. On the other
hand this also implies some restrictions; a dialog is normally limited to one procedure call.
Each remote procedure call is stateless and independent of either preceding or succeeding
calls. If an RPC client program requires more interactions with the server program, the state
data has to be carried back and forth as user data in the parameters passed on each remote
procedure call, or the server program has to implement some kind of scratch pad area (SPA)
implementation, where state data per client is saved from call to call.

If you develop RPC programs, your only programming language choice is C. The source
code for a sample client/server RPC program can be found in hlq.SEZAINST(GENESEND)
and hlq.SEZAINST(GENESERV).

In OS/390 V2R7 IP and later, you have two RPC implementations:

� Sun Microsystems Remote Procedure Call (RPC)

� Hewlett Packard Remote Procedure Call, which is called Apollo Network Computing
System (NCS)

NCS
RPC

SUN
RPC

TCP and UDP

IP and ICMP

Network Interface

RPC
Programming
Interface

Socket
Programming
Interface
6 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

1.2.1 ONC/RPC files and libraries
The HFS files used by z/OS UNIX system services and their location in the HFS are as
follows:

� /usr/include/rpc - all header files are contained here

� orpcgen - ONC RPC protocol compiler

� orpcinfo - utility program for looking at portmaps of networked machines

� oportmap - network service program that maps ONC RPC program and version numbers
to transport-specific port numbers.

1.3 X-Windows programming interfaces
If you want to develop distributed presentation programs, where your application program is
running in MVS and the user interface is implemented on an X-Windows server in your IP
network, you can use the X-Windows application programming interfaces that are supplied
with OS/390 V2R7 IP and later to develop X-Windows z/OS client programs.

Two versions of X-windows and the corresponding OSF/Motif were introduced in OS/390
V2R5 IP. For the UNIX System Services environment, OS/390 V2R5 IP and later supports
X-Windows System Version 11 Release 6 and OSF/Motif Version 1.2.4 as part of the base IP
support. Support for X-Windows System Version 11 Release 4 and OSF/Motif Version 1.1 is
available as a separate feature.

The X-Windows System support in UNIX System Services environment includes the following
APIs based on the X11.6 specification:

� X11 Core distribution routines (X11)

� Inter-Client Exchange routines (ICE)

� Session Manager routines (SM)

� X-Windows System extended routines (Xert)

� Authentication functions (Xau)

� X10 compatibility routines (oldX)

� X Toolkit (Xt)

� Athena Widget set (Xaw)

� Utility functions used by Xaw (Xmu)

� PEX (PEX5) 3D Graphics

� Standard MIT X clients

� Sample X daemons

The X-Windows System support also provides the APIs based on OSF/Motif Release 1.2.4:

� OSF/Motif-based widget set (Xm library)

� OSF/Motif Resource Manager (Mrm library)

� OSF/Motif User Interface Language (Uil library) and compiler

CS for z/OS IP provides several examples to do a simple installation verification test. They
are distributed in several subdirectories that are located under the
/usr/lpp/tcpip/X11R6/Xamples/demos/ directory. We used an AIX Version 4.3.3.0 machine as
an X-Windows server.
Chapter 1. z/OS UNIX application programming interfaces 7

Before starting any X-Windows applications, you need to set your DISPLAY environment
variable to point to your X-Windows server host:

DISPLAY=9.24.104.208:0
export DISPLAY

Then start the sample client application by entering xsamp3 from the UNIX System Services
command line. You will see a new window displayed on the server’s screen as shown in
Figure 1-3.

Figure 1-3 X Windows output from xsamp3

You should observe the following output from xsamp3 in your UNIX System Services session.

Figure 1-4 Shell output when running xsamp3

1.3.1 X-Windows dynamic linkage libraries
Since OS/390 V2R6 IP applications can use the set of dynamic linkage libraries (DLLs)
provided for the X-Windows system and OSF/Motif for z/OS UNIX. The advantage of this
support is reduction in the size of application load modules. In addition, the X-Windows
system and OSF/Motif archive files contain DLL-enabled modules. Any X-Windows system
and OSF/Motif applications linked with these archive files must be compiled with the DLL
option. For details on compiling and executing applications with DLL support, refer to z/OS
V1R2.0 CS: IP Application Programming Interface Guide, SC31-8788.

The X-Windows component uses several library archives and you may have to rebuild one or
more of these library archives when you apply maintenance to the X-Windows component. If
this is the case, the PTF will include a ++HOLD ACT entry that will identify which commands
or shell scripts you need to execute after having run your SMP/E job.

pwd = /usr/lpp/tcpip/X11R6/Xamples/demos/xsamp3: >xsamp3
xsamp3 entered.
XtToolkitInitialize done.
XtCreateApplicationContext done.
Display opened.
XmNwidth set.
XmNheight set.
XmNallowShellResize set.
XtAppCreateShell call done.
XtRealizeWidget call done.
XmCreatePushButton call done.
XtManageChild call done.
XtAddCallback call done.
8 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

1.4 SNMP agent distributed programming interface (DPI)
This is a special-purpose programming interface that you can use if you want to implement
dynamic management information base (MIB) variables. In an SNMP environment the MIB
variables are defined in the MIBDESC.DATA data set. If you want to dynamically add, replace
or delete MIB variables, you can develop an SNMP subagent program that uses the DPI
programming interface to interact with the SNMP agent address space (SNMPD) to perform
such functions.

If you develop an SNMP subagent, you can define your own MIB variables and your own
SNMP traps.

The connection between the subagent address space and the SNMP agent is established as
a TCP socket connection, so the DPI programming interface is again a higher-level
programming interface to the socket interface. The DPI programming interface is only
supported for programs written in C. For the specifics on the DPI programming interface you
can find useful information in z/OS V1R2.0 CS: IP Application Programming Interface Guide,
SC31-8788 where there is a good example of a C-based SNMP subagent.

Since OS/390 V2R5 IP, two versions of DPI interfaces are supported; they are DPI Version 1
Release 1 and Version 2 Release 0. DPI V2.0 is provided for z/OS UNIX C socket users and
DPI V1.1 for traditional C socket users. DPI V2.0 gives you additional function, making it
easier to write subagents and simplifying the task of developing and administering your
application.

The following RFCs are related to SNMP and will be helpful when you are writing programs
using the SNMP DPI:

� RFC1228, SNMP DPI Version 1 Release 1

� RFC1592, SNMP DPI Version 2 Release 0

� RFC 1901 - 1908, SNMP V2

SNMP DPI V2.0 protocol which is specified in RFC1592 provides the ability to connect agents
via AF_UNIX or AF_INET sockets.

1.5 Resource Reservation Protocol API (RAPI)
The Resource Reservation Protocol Application Programming Interface (RAPI) is included
with the z/OS UNIX Resource Reservation Protocol (RSVP) agent. The RSVP agent is
integrated in CS for OS/390 V2R8 IP and later. RSVP is a receiver-oriented signalling Internet
protocol that enables applications to request Quality of Service. RSVP requests resources for
simple data flow in only one direction to receive or send network data, usually for a multicast
or unicast session.

A Quality of Service (QoS) is the overall service that a user of an application receives from a
network, in terms of availability, throughput, delay, etc. Refer to TCP/IP Tutorial and Technical
Overview, GG24-3376 for more details on QoS.

The basic IP protocol stack provides only one QoS which is called best-effort. A packet is
routed from point to point without any guarantee for a specific bandwidth or minimum time
delay. Based on the best-effort traffic model Internet requests are handled on a first come,
first serve basis. This means that all requests have the same priority and are handled one
after the other.
Chapter 1. z/OS UNIX application programming interfaces 9

In the next section, we discuss the RSVP API, which allows you to create an application to
request networking resources explicitly. Note that applications that were written to use the
previous Web version of the RSVP agent have to be rebuilt because the RSVP API (RAPI)
has changed from being statically linked to being shipped as a DLL.

1.5.1 RAPI overview
The RAPI interface is one realization of the generic API contained in the RSVP functional
specification (refer to RFC 2205). The RAPI interface is a set of C language routines. With
these APIs, you can create a custom application that requests enhanced Quality of Service
(QoS). The RSVP agent then uses the RSVP protocol to propagate the QoS request through
the routers along the paths for the data flow. Each router may accept or deny the request,
depending upon the availability of resources. In the case of failure, the RSVP agent will return
the decision to the requesting application using RAPI.

RSVP assigns QoS to specific IP data flows which can be either multipoint-to-multipoint or
point-to-point data flows, known as sessions. A session is defined by a particular transport
protocol, IP destination address, and destination port. To receive data packets for a particular
multicast session, an application must join the corresponding IP multicast group.

Under RSVP, QoS requests are made by the data receivers. A QoS request contains a
flowspec, together with a filter spec. The flowspec includes an Rspec (resource specification),
which defines the desired QoS and is used to control the packet scheduling mechanism in the
router or host, and also a Tspec (traffic specification), which defines the traffic expected by
the receiver. The filter spec controls packet classification to determine which sender data
packets receive the corresponding QoS.

The Tspec is composed of:

� r: Token bucket rate, which is the average data rate in bytes per second.
� b: Token bucket depth, which is the sending buffer in bytes.
� p: Peak data rate, in bytes per second.
� m: Nominal minimum packet size in bytes.
� M: Maximum packet size (MTU) in bytes.

The Rspec consists of the following values:

� R: The rate in bytes per second.
� S: The slack term in microseconds.

The following API calls are shipped with CS for OS/390 V2R8 IP:

� rapi_session: Establish an API session with the RSVP agent.

� rapi_release: Release an API session.

� rapi_sender: Indicate sender application. This call results in RSVP sending a PATH packet
to the destination.

� rapi_reserve: Make a QoS reservation as a data receiver.

� rapi_dispatch, rapi_getfd: Support asynchronous upcall mechanism.

The following routines are standard routines for displaying the contents of RAPI objects.

� rapi_fmt_adspec: Formats a given RAPI Adspec into a buffer.

� rapi_fmt_filtspec: Formats a RAPI filter spec into a buffer.

� rapi_fmt_flowspec: Formats a given RAPI flowspec into a buffer.

� rapi_fmt_tspec: Formats a given RAPI Tspec into a buffer.
10 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

One or more RAPI sessions exist for a given RSVP session, each established with the
rapi_session() call. Each sender within an RSVP session issues rapi_sender(), primarily to
provide the sender Tspec. Each rapi_sender() call results in RSVP sending a PATH packet to
the destination. The PATH packet is intercepted at each router along the data path and is
used to install path state (the Tspec and other parameters).

When the PATH arrives at the destination, it is presented to the receiver application using the
asynchronous upcall mechanism. The receiver uses the Tspec and other information to arrive
at a reservation request, which is composed of one or more filter specs (which select one or
more senders), and one or more flowspecs (which contain reservation parameters), based on
the reservation style. These styles are supported:

� Wildcard style (WF): A single flowspec is shared among all current and future senders.

� Fixed style (FF): A specific flowspec is paired with a specific filter spec for a specific
sender. One or more pairs may be specified.

� Shared Explicit style (SE): A single flowspec is shared among a named set of senders.

The reservation parameters take two forms, depending on the service type being used. The
following service types are supported:

� Controlled Load (CL): The reservation parameters take the same form as the Tspec (r, b,
p, m, M). The goal of CL service is to provide what appears to be unloaded service
response characteristics even when one or more hosts or routers along the path are
heavily loaded.

� Guaranteed (GUAR): The reservation parameters take the form of the Tspec (r, b, p, m, M)
followed by an Rspec (R, S). The additional Rspec parameters provide a requested rate in
bytes per second, and a slack term in microseconds. The goal of GUAR service is to use
the various parameters in specific equations to produce the maximum delay that will be
experienced when sending data. By changing certain parameters, the application can
control, to a certain extent, the value of that delay.

The receiver application makes the reservation request using the rapi_reserve() call. This
causes RSVP to send an RESV packet hop-by-hop back along the same path traveled by the
PATH packet. Each host or router along the path installs the appropriate reservation on the
appropriate interface.

When the RESV arrives at the sender, it is presented asynchronously to the sender
application. The application may or may not choose to wait for the RESV before commencing
data transmission. However, all data sent before the reservation is in place is delivered best
effort.

The upcall mechanism requires the application to use a listener thread, which gets a socket
descriptor to use via the rapi_getfd() call, then uses this socket descriptor in a select() call.
When an RSVP packet arrives, the select() will return, at which point the application uses
rapi_dispatch() to cause the asynchronous function registered on the rapi_session() call to
receive control. All RAPI/RSVP objects, such as Tspecs and flowspecs, are delivered to this
function as parameters.

1.5.2 Compiling and linking RAPI applications
To use the RAPI interface, an application must perform the following

1. Include the <rapi.h> header file, which is available in the /usr/include directory.

2. Compile the application with the DLL compiler option. Refer to the z/OS C/C++ User’s
Guide for more information on how to specify compiler options.
Chapter 1. z/OS UNIX application programming interfaces 11

3. Include the RAPI definition side deck (rapi.x), which is available in the /usr/lib directory,
when prelinking or binding the application.

4. If the Binder is used instead of the C Prelinker, specify the Binder DYNAM=DLL option.
Refer to DFSMS/MVS Program Management for information on specifying Binder options.

1.5.3 Running RAPI applications
At execution time, the RAPI application must have access to the RAPI DLL (rapi.dll), which is
available in the /usr/lib directory. Ensure that the LIBPATH environment variable includes this
directory when running the application. The RAPI application must run with superuser
authority to use RAPI.
12 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Part 2 Productivity
applications

In this part, we introduce the productivity applications included with Communications Server
for z/OS IP.

Part 2
© Copyright IBM Corp. 1998 2002 13

14 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 2. z/OS UNIX telnet server

The TelnetD server is used to enable remote telnet clients to log on the UNIX System
Services shell environment in either raw mode (also called character mode) or line mode.

This chapter contains the following sections:

� 2.1, “z/OS UNIX telnet server overview” on page 16

� 2.2, “Pseudoterminals” on page 17

� 2.3, “Starting the z/OS UNIX telnet server” on page 18

� 2.4, “Termcap and terminfo” on page 20

2

© Copyright IBM Corp. 1998 2002 15

2.1 z/OS UNIX telnet server overview
See Figure 2-1 for an overview of how the TelnetD server is implemented in UNIX System
Services.

Figure 2-1 TelnetD overview

ASCII/EBCDIC translation is done by the otelnetd process. The z/OS UNIX Telnet Server
relies on the chcp shell command to provide code page conversions. Therefore, if the Telnet
client wants to use a code page other than the default IBM-1047 code page, it has to make
use of the chcp command.

Figure 2-2 Telnet code page change

1 Sets the ASCII and EBCDIC code pages to be used.

2 Queries the current settings of code pages.

When a chcp shell command is executed, the TelnetD process is informed about the code
page change via urgent data over the pseudo terminal connection (the master/slave pty
interface). A user may select to have a chcp command executed as part of the user's login
process, for example, via the user's $HOME/.profile or $HOME/.setup shell scripts.

HIRAYAM @ RA39:/u/hirayam>chcp -a IBM-932C -e IBM-939 1
HIRAYAM @ RA39:/u/hirayam>chcp -q 2
 ASCII code page : IBM-932C
EBCDIC code page : IBM-939
HIRAYAM @ RA39:/u/hirayam>export LANG=Ja_JP

If -m option, shell will run in the same
address space as the telnetd process

Fork() and
exec() to otelnetd

AF_INET
socketfd

Master pty

masterfd (/dev/ptypxxxx) slavefd (/dev/ttypxxxx)

Commands

Spawn
a shell

Slave pty

Commands

The Shellotelnetd
Inetd

AF_INET PFS

Telnet
client
16 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The z/OS UNIX Telnet Server also supports DBCS translation. In this example, IBM-932C
and IBM-939 represent Japanese ASCII and EBCDIC DBCS code pages respectively. Since
code page setting has been updated, you may change the LANG environment variable to the
appropriate one.

An environment-specific banner page can be created in the file /etc/banner using standard
edit functions. It will be displayed at the client workstation after the user ID and password
have been entered.

Figure 2-3 File containing the banner page

With the /etc/banner file above, the following welcome page was displayed on our terminal:

Figure 2-4 Telnet welcome page

2.2 Pseudoterminals
In preparing for the TelnetD Server you need to ensure that during UNIX System Services
installation and customization you created a sufficient number of pseudoterminal files. The
pseudoterminal files are created in the hierarchical file system, in the /dev directory. The file
names are ptypnnnn and ttypnnnn, where nnnn is a number from 0000 to 9999. These files
are used in pairs by the TelnetD server and the RloginD server.

* *
* Welcome to OS/390 V2R10 UNIX System Services on ITSO Raleigh RA28 *
* You accessed this system via CS for OS/390 V2R10 *
* *
* This is the /etc/banner page for Telnet server use. *
* *

* *
* Welcome to OS/390 V2R10 UNIX System Services on ITSO Raleigh RA28 *
* You accessed this system via CS for OS/390 V2R10 *
* *
* This is the /etc/banner page for Telnet server use. *
* *

IBM
Licensed Material - Property of IBM
5647-A01 (C) Copyright IBM Corp. 1993, 2000
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
(C) Copyright Software Development Group, University of Waterloo, 1989..

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

BTHOMPS:/u/bthomps: >
Chapter 2. z/OS UNIX telnet server 17

During the UNIX System Services installation you executed the sample JCL BPXISMKD and
internally invoked sample REXX program BPXMKDIR from SYS1.SAMPLIB to create a
number of directories and files in your hierarchical file system. One section of this REXX
program creates a certain number of pseudoterminal pairs. You may have increased that by
customizing the BPXMKDIR REXX program before executing it. To verify how many
pseudoterminal pairs you have defined in your system, list the /dev directory and locate the
highest numbered ptypnnnn entry you find. If that is ptyp0050, and you want to increase the
number of pseudoterminals to, for example, 75, you can either issue individual mknod
commands (which probably is going to be a bit cumbersome), or you can create a small
REXX program like the following:

Figure 2-5 Increasing the number of pseudoterminals

The above REXX program will increase your pseudoterminal pairs from 50 to 75. Please note
that the REXX program must be executed from a superuser.

After you have increased the number of pseudoterminals in your hierarchical file system, you
need to let UNIX System Services know that more pseudoterminals are now available. You
do so by updating the MAXPTYS statement in your BPXPRMxx parmlib member:

MAXPTYS(76)

The MAXPTYS value is specified as one above the highest pseudoterminal number you
created. In the above setup, you have from pseudoterminal 0000 to pseudoterminal 0075,
which gives 76 pairs total.

2.3 Starting the z/OS UNIX telnet server
The TelnetD Server is started via InetD.

The default port number for the TelnetD Server is 23. This is a well-known port number, and
you can reserve the port to CS for z/OS IP in the PROFILE data set:

 23 TCP OMVS ; UNIX System Services Telnet Server

If the default port number 23 is used, a client has to know only the name or IP address of the
server to establish a connection and can use a command such as:

 telnet 9.24.104.43

/* REXX */
ptystart = 51 /*First new ptyp and ttyp number*/
ptylast = 75 /*New maximum number */
call syscalls('ON')
Do pty = ptystart to ptylast
 ptyname = '/dev/ptyp'||right(pty,4,0)
 ttyname = '/dev/ttyp'||right(pty,4,0)
 say 'Creating 'ptyname' and 'ttyname
 address syscall "mknod" ptyname "666 1 0"
 address syscall "mknod" ttyname "666 2 0"
End
exit(0)

Note: The installation process is different in OS/390 V2R7 UNIX System Services and
later. The BPXMKDIR REXX program no longer creates pseudoterminal pairs at
installation time, but the nodes will be generated dynamically when you request the
connection. You can still use the mknod command to add pseudoterminals beforehand.
18 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

It is also possible to reserve a different port to the UNIX Telnet Server in the PROFILE data
set of CS for z/OS IP, for example:

 2023 TCP OMVS ; UNIX System Services Telnet Server

In this case, a client has to specify both the host name (or IP address) and the port number of
the server with the Telnet login command:

 telnet 9.24.104.43 2023

If you assign an alternate port number to your UNIX System Services TelnetD Server, you
also need to update your /etc/services configuration file with the chosen port number in order
for InetD to listen for Telnet client requests on the chosen port:

 telnet 2023/tcp

If your configuration has more than one CS for z/OS IP stack running on one z/OS image, all
of these stacks must have identical port reservations for the UNIX Telnet Server. The chosen
port number is a system wide value in the UNIX System Services environment. For more
information on running multiple stacks see Communications Server for z/OS V1R2 TCP/IP
Implementation Guide Volume 1: Base and TN3270 Configuration, SG24-5227.

A TelnetD Server process is forked from InetD whenever a telnet client connects to UNIX
System Services. See Figure 2-1 for an overview of how TelnetD operates in the UNIX
System Services environment.

The TelnetD Server supports the following server options to be specified in the /etc/inetd.conf
file:

b This option forces the server to DO BINARY in the first

c Specifies a inactivity time-out value for the connection pass during
negotiations with the client.

C Output messages will be in uppercase letters.

D Various debugging options.

h Prevent display of host-specific banner page (from /etc/banner).

k Prevent raw-mode initialization.

l Set default mode for login to line mode.

m Run all forked or spawned processes in the same address space,
recommended for performance improvement.

n Disable TCP keep-alive packets.

t Activate internal tracing information.

U Refuse connections from any address that cannot be resolved into a
host name via a gethostbyaddr() call.
Chapter 2. z/OS UNIX telnet server 19

Any of these parameters can be changed dynamically by modifying the configuration file
/etc/inetd.conf and issuing a kill -SIGHUP command to force InetD to re-read the
configuration file. All new telnet connections that are established after the configuration file
has been re-read will use the new options. The following is a sample /etc/inetd.conf file:

Figure 2-6 InetD configuration for TelnetD

All messages from the TelnetD Server are logged by syslogd according to the syslogd
configuration file settings. The TelnetD Server uses a facility name of local1 for all its
messages.

2.4 Termcap and terminfo
For telnet sessions, you may need some definitions of terminal capabilities in order to let
UNIX System Services application programs manipulate the terminal output correctly. These
definitions are kept in the terminfo database.

A UNIX system, like other operating systems, must have at least one terminal attached to it.
In very early days these were typewriters having keyboard input and a paper output. These
terminals were later replaced by video display units (VDU) which actually behave like the
typewriter did earlier; the paper is just replaced by the screen. All VDUs understand a data
stream, which contains ASCII characters to be printed, including control characters, such as
carriage return, or new line. Differences showed up when individual manufacturers started to
add specific commands to their terminals. Specific commands may be cursor up, and cursor
left, to name a few.

As long as one uses simple printing commands such as cat, there is no obvious difference
among all terminals. But these differences have to be taken into account as soon as one runs
a program that uses special commands. This is mostly the case with editors, such as vi, or
emacs. These programs need to know, for example, how to move the cursor to a specific
location.

As usual, there is more than one approach to solve this problem. The first is to write specific
drivers for each terminal. Another solution is to create a database that contains definitions of
all capabilities each terminal has and a subroutine library, which gives access to the
database.

The first approach would have been a typical UNIX solution. Writing a device driver is not an
unusual task in this environment. But, the latter solution was chosen and is today a somewhat
agreed-upon standard in the world of UNIX. This is what the termcap database provides. It is
actually a readable text file. It has its roots in the Berkley Software Distribution (BSD). In
UNIX systems that have their roots in System V UNIX, the equivalent implementation of
termcap is the terminfo database. The most important difference is that terminfo is a compiled
database. For that reason you need a compiler (tic) to create the terminfo database. While
termcap contains all definitions in one file, terminfo organizes the information into a directory
structure.

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
#
 :
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -l
 :
20 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Since OS/390 V2R6, the terminfo database is shipped as part of z/OS. The database is
populated with the terminal types defined by ibm.ti, dec.ti, wyse.ti, and dtterm.ti. dtterm.ti is
new for OS/390 V2R6 and later. The database is in the directory /usr/share/lib/terminfo and
the source files are in /samples.

Because the database exists already, you can comment out the tic commands from your
customized copy of /etc/rc. If for some reason you need to re-create the terminfo database,
run the tic utility. Each type of terminal that is defined has a corresponding file with the suffix
.ti. For example, to define an IBM terminal for the terminfo database, specify from the shell
environment:

 tic /samples/ibm.ti

To define terminal types such as VT100 and VT220, specify from the shell environment:

 tic /samples/dec.ti

Whenever a shell environment is created, the terminal type of the client user is registered in
the environment variable TERM. The TSO OMVS command environment handles TERM as if
it were set to TERM=dumb. In a telnet or rlogin session the TERM environment variable is set
to the terminal type that the telnet client uses or emulates. In our case we used an OS/2 telnet
client with a terminal type specification of vt220, which results in a TERM=vt220 setting in the
shell. Table 2-1 on page 21 shows the directories and files shipped as part of UNIX System
Services or created by the tic command.

Table 2-1 Terminfo directory structure and contents

Directory Terminal Definition Files

 a aixterm, aixterm-m, aixterm-m-old, aixterm-old

 c cdef

 d dtterm, dumb

 h hft, hft-c-old, hft-m-old, hft-nam-old, hft-c, hft-m, hft-nam, hft-old

 i ibmpc, ibmpcc, ibmpdp, ibm3101, ibm3151, ibm3151-noc, ibm3151-S, ibm3151-132,
ibm3151-25, ibm3151-51, ibm3151-61, ibm3152, ibm3152-PS2, ibm3152-132,
ibm3152-25, ibm3161, ibm3161-C, ibm3162, ibm3162-132, ibm3163, ibm3164,
ibm5081, ibm5081-old, ibm5081-113, ibm5081-56, ibm5151, ibm5154, ibm5550,
ibm5570, ibm6153, ibm6153-40, ibm6153-90, ibm6154, ibm6154-40, ibm6154-90,
ibm6155, ibm6155-113, ibm6155-56, ibm8503, ibm8507, ibm8512, ibm8513, ibm8514,
ibm8515, ibm8604

 j jaixterm, jaixterm-m

 l lft, lft-pc850

 L LFT, LFT-PC850

 v vs100, vs100s, vt100, vt100-am, vt100-nam, vt100x, vt200, vt200-8, vt320, vt320,
vt320-8, vt330,vt330-8, vt340

 w wyse100, wyse30, wyse350, wyse50, wyse50-2, wyse60, wyse60-AT, wyse60-PC,
wyse60-316X, wy100, wy30, wy350, wy50, wy50-2, wy60, wy60-AT, wy60-PC,
wy60-316X

 x xterm, xterms
Chapter 2. z/OS UNIX telnet server 21

If you are interested in more information on termcap and terminfo, refer to Termcap &
Terminfo, published by O‘Reilly & Associates.

2.4.1 TERMINFO environment variable
In order to use terminal types that are not supported by CS for z/OS IP you can now create a
directory to store local terminal definitions and use the TERMINFO environment variable to
define the location of that directory. This environment variable was implemented to allow
typical UNIX clients with GUI windowed command line prompts access to the UNIX System
Services telnet server. This variable should be used if there are installation defined terminfo
definitions. See the z/OS V1R2.0 UNIX System Services Planning, GA22-7800 for more
information on terminal definitions.

The UNIX System Services telnet server is started by inetd, the listener for the server. Since
inetd does not pass the environment variables (other than PATH and TZ) to it’s child
processes, the UNIX System Services telnet server had to be enhanced to support a new
environment variable. The "-T" option can be used when otelnetd is started to allow otelnetd
to set the TERMINFO environment variable to the specified value prior to searching for the
terminfo definitions for the terminal type specified by the telnet client. The following line is a
sample from the /etc/inetd.conf file, which starts otelnetd used at ITSO:

otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -l -T

Using "-T" only tells otelnetd what TERMINFO should be set to. TERMINFO should also be
defined in /etc/profile as well so that it is set in the user’s login shell. Otherwise, the vi editor
and other applications may not be able to find the terminal definitions. We issued a kill
-SIGHUP <inetd pid> to have inetd read it’s configuration file again. Then displayed the
environment variables after logging in UNIX System Services telnet.

2.4.2 z/OS UNIX otelnetd logging
UNIX System Services telnet also has a start parameter for the -D option that enhances
recording to the log file defined in /etc/syslog.conf. The new "-D login" option records log in
and logout activities to syslogd facility auth using message EZYTU36I. To test the new
parameter we set up the InetD configuration files as follows:

otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -l -D login

and the following statement in the syslogd configuration file:

local1.*;auth.* /var/telnetlogin.log

The otelnetd server uses the local1 and auth facility for recording to syslogd. We chose to let
both facilities log in to the same log file to capture all the messages to a single file. The
following shows the content of the log file (/etc/telnetlogin.log). It shows normal otelnetd log
messages and the new message captured by the -D login option.

env
 :
 :
TZ=EST5EDT
RESOLVER_CONFIG=/etc/resolv.conf.28b
MANPATH=/usr/man/%L
NLSPATH=/usr/lib/nls/msg/%L/%N
TERMINFO=/var/terminfo
22 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The letter after the EZYTU36I message has the following meaning:

– P - the user provided an invalid password

– L - the user successfully logged in

– O - the user logged off

– U - the user provided an invalid user ID

– C - the user needed to change their password but was unsuccessful

The field after the letter is the user ID specified by the user. The next two fields are the IP
address and port to which the user is connected. That is followed by the remote (telnet client)
workstation’s IP address and port. The telnet client’s port number is normally not significant,
but it is theoretically possible to determine the user ID on that machine if it is a multiuser
system supporting the IDENT protocol. The last field is the DNS hostname of the client
machine, or a hyphen 1 if that information is not available.

EZYTE52E Couldn't resolve your address into a host name.
IP address is 9.24.106.54
EZYTU34I id 3000F pri 7 call getpwnam(ads) code A3 reason 0B490800 h_errno N/A
EZYTE32W You entered an invalid login name or password.
EZYTE32W You entered an invalid login name or password.
EDC5163I SAF/RACF extract error. rsn = 0B490800
EZYTE52E Couldn't resolve your address into a host name.
IP address is 9.24.106.54
verify_password: __Passwd failed EDC5111I Permission denied. rsn = 090C0000
EZYTU36I P bthomps 9.24.104.43 2023 9.24.106.54 4917 -
EZYTE32W You entered an invalid login name or password.
EZYTE32W You entered an invalid login name or password.
EDC5111I Permission denied. rsn = 090C0000
EZYTU36I L bthomps 9.24.104.43 2023 9.24.106.54 4917 - 1
EZYTU36I O bthomps 9.24.104.43 2023 9.24.106.54 4917 - 1
EZYTE52E Couldn't resolve your address into a host name.
IP address is 9.24.106.54
EZYTU34I id 3000F pri 7 call getpwnam(thompson) code A3 reason 0B490800 h_errno N/A
EZYTU36I U thompson 9.24.104.43 2023 9.24.106.54 4918 - 1
EZYTE32W You entered an invalid login name or password.
EZYTE32W You entered an invalid login name or password.
EDC5163I SAF/RACF extract error. rsn = 0B490800
EZYTU36I C bthomps 9.24.104.43 2023 9.24.106.54 4918 - 1
Chapter 2. z/OS UNIX telnet server 23

24 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 3. X-Window system

The X-Window system is a network-transparent protocol that supports windowing and
graphics. The protocol is communicated between an X client or application and an X server
over a TCP/IP network.

In an X-Window system environment, the X server is generally located on the workstation,
and distributes user input to and accepts requests from various X client programs located
either on the same system or elsewhere on a network. This seemingly reverse terminology
sometimes confuses the user since we usually associate anything that runs on the host as
the server and any application on our workstation as the client.

One X server may be connected to many X clients, sharing the physical display and input
devices among many application programs. The clients may be located on different hosts. If
you are planning to use the X-Window system in CS for z/OS IP, be aware that your z/OS
system could not be an X-Window Server. You may, however, create and run X-clients in
z/OS.

CS for z/OS IP provides two versions of the X-Window system and OSF/Motif which is used
for creating X-Window applications:

� X-Window system, Version 11, Release 4 and OSF/Motif 1.1 for Open Sockets and the
TSO environment. This version is shipped as a separate feature (FMID HTCP38X).

� X-Window system, Version 11, Release 6 and OSF/Motif 1.2.4 which is installed as part of
the CS for z/OS IP base. This is the recommended X-Window system version that you
should use.

The following sections are included in this chapter:

� 3.1, “Creating X-Window applications” on page 26

� 3.2, “Running X-Window applications” on page 28

For more information about OSF/Motif and X-Window system libraries, refer to z/OS V1R2.0
Communications Server IP Programmer’s Reference, SC31-8787 and z/OS V1R2.0 UNIX
System Services Planning, GA22-7800.

3

© Copyright IBM Corp. 1998 2002 25

3.1 Creating X-Window applications
CS for z/OS IP provides you with a set of X-Window system application program interfaces
(API) which allows you to write applications in the z/OS UNIX System Services environment.
Together with APIs from X-Window system V11R6, CS for z/OS IP also includes APIs based
on OSF/Motif Release 1.2.4. OSF/Motif is an X-Window System toolkit defined by the Open
Software Foundation Inc. (OSF) and is a set of basic C language routines for developing
applications in a variety of application environments.

An X-Window system toolkit is a set of library functions layered on top of the X-Window
system functions that allows you to simplify the design of applications by providing an
underlying set of common user interface functions. Included are mechanisms for defining and
expanding interclient and intracomponent interaction independently, masking implementation
details from both the application and component implementer.

An X-Window system toolkit consists of the following:

1. A set of programming mechanisms, called Intrinsics, that are used to build widgets.

2. An architectural model to help programmers design new widgets with enough flexibility to
accommodate different application interface layers.

3. A consistent interface, in the form of a coordinated set of widgets and composition
policies, some of which are application domain-specific, while others are common across
several application domains.

The fundamental data type of the X-Window system toolkit is the widget. A widget is allocated
dynamically and contains state information. Every widget belongs to one widget class that is
allocated statically and initialized. The widget class contains the operations allowed on
widgets of that class.

An X-Window system toolkit manages the following functions:

� Toolkit initialization

� Widgets and widget geometry

� Memory

� Window, data set, and timer events

� Input focus

� Selections

� Resources and resource conversion

� Translation of events

� Graphics contexts

� Pixmaps

� Errors and warnings

Starting with OS/390 V2R6 IP you could use the set of dynamic link libraries (DLLs) provided
for the X-Window system and OSF/Motif for z/OS UNIX. A dynamic link library (DLL) is a
collection of one or more functions or variables in an executable module that is executable or
accessible from a separate application module. This means that your X-Window application
does not need to have all of the modules from the X-Window library included with it since all
external function and variable references are resolved dynamically at run time. The result is a
reduction in the size of the load module.
26 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Since the X-Window system and OSF/Motif archive files contain DLL-enabled modules, any
X-Window system and OSF/Motif applications linked with these archive files must be
compiled with the DLL option or else the link-edit phase will fail. Figure 3-1 on page 27 shows
a sample makefile that has the DLL compile option 1:

Figure 3-1 Sample makefile for an X-Window application

When we did not compile the application with the DLL option, we received the following error
messages:

Figure 3-2 Using the makefile

There are several X-Window sample codes in /usr/lpp/tcpip/X11R6/Xamples that you could
use as a guide if you are planning to port your X-Window application to the z/OS UNIX
Systems Services environment. Since most of the UNIX applications are written for
ASCII-based systems, you may also want to visit this Web site:

http://www.s390.ibm.com/products/oe/bpxa1p03.html

for information on how to handle the ASCII-EBCDIC dependencies of your UNIX code.
Please remember that the source codes available on the Internet for UNIX are all in ASCII
format. You need to make sure that the source codes are all properly converted from ASCII to
EBCDIC.

OBJS = xclock.o Clock.o
#SYSLIBS = -lXaw -lXmu -lXt -lSM -lICE -lXext -lX11
SYSLIBS = /usr/lib/Xaw.x /usr/lib/SM.x \
 /usr/lib/ICE.x /usr/lib/X11.x
CFLAGS = -D_ALL_SOURCE -W c,dll 1
CC = c89
PGM = xclock

.c.o:
 $(CC) -c $(CFLAGS) $<

$(PGM): $(OBJS)
 $(CC) -o $@ $(OBJS) $(SYSLIBS)

clean:
 rm -f $(PGM) *.o core

USER1 @ RA03:/u//user1>make
c89 -c -D_ALL_SOURCE xclock.c
c89 -c -D_ALL_SOURCE Clock.c
c89 -o xclock xclock.o Clock.o /usr/lib/Xaw.x /usr/lib/SM.x /usr/lib/ICE.x
IEW2456E 9207 SYMBOL sessionShellWidgetClass UNRESOLVED. MEMBER COULD NOT BE
 INCLUDED FROM THE DESIGNATED CALL LIBRARY. NAME SPACE = 3
 ...
IEW2456E 9207 SYMBOL _XtInherit UNRESOLVED. MEMBER COULD NOT BE
 INCLUDED FROM THE DESIGNATED CALL LIBRARY.

FSUM3065 The LINKEDIT step ended with return code 8.
FSUM8226 make: Error code 3
make: 'xclock' removed.
Chapter 3. X-Window system 27

http://www.s390.ibm.com/products/oe/bpxa1p03.html

Aside from the demo codes that are shipped with CS for z/OS IP, there are also several
standard X-Clients that you may find in /usr/lpp/tcpip/X11R6/Xamples/clients:

Client Description

appres Lists application resource database

bitmap Bitmap editor

editres Resource editor

iceauth ICE authority file utility

oclock Displays time of day

xauth X authority file utility

xclipboard Clipboard utility

xclock Analog/digital clock for X

xdpyinfo Display information utility for X

xfd X font display utility

xlogo Displays X logo

xlsatoms Lists interned atoms defined on server

xlsclients Lists client applications running on a display

xmag Magnifies part of screen

xlsfonts Lists server fonts

xprop Property displayer for X

xwininfo Window information utility for X

xwd Dumps an image of an X-Window

xwud Displays dumped image for X

These X-clients will provide you with more examples on creating X-Window applications in
the z/OS UNIX Systems Services environment.

3.2 Running X-Window applications
Before you can successfully run your X-Window applications, you need to do the following:

� Ensure that the workstation with an X-Window system server that supports X11R6 is
properly configured and reachable by the z/OS system. You can test this by doing a PING
to the workstation.

� From the workstation, use telnet to access the z/OS system, and open an z/OS UNIX shell
on the z/OS system.

� From the z/OS UNIX shell, export the DISPLAY environment variable using either the
network name or the qualified IP address of the workstation as shown in the following
example:

export DISPLAY=9.24.104.182:0.0

In this example, 9.24.104.182 is the IP address of the workstation running the X-Window
server. :0.0 indicates the number of the X server and the number of the screen to be used
in that X server. This is usually specified this way in almost all cases unless you have
multiple X servers running in your workstation.
28 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

� Since we are running an X-Window system DLL-enabled application, we have to ensure
that the LIBPATH environment variable contains the value /usr/lib.

� Depending on the operating system of your workstation where you are running your X
server, you may need to authorize the z/OS system to access the workstation. This is
done by executing the command

xhost +

where you can specify either the name of the z/OS system or + which will turn off security
for this workstation and allow any X client to display at the X server.

� The X-Window system also allows you to optionally modify certain characteristics of an
application at run time using application resources. Typically, application resources are set
to tailor the appearance and possibly the behavior of an application. The application
resources can specify information about an application's window sizes, placement,
coloring, font usage, and other functional details. This is specified in the
/u/user_id/.Xdefaults file.

� You may now run your X-Window application. As an example, we compiled and linked the
XCLOCK program that is included with CS for z/OS IP. The source code is located in
/usr/lpp/tcpip/X11R6/Xamples/client/xclock. The application is then invoked and run as a
background process by xclock & and this is what appeared on our X server screen:

Figure 3-3 X server display for the XCLOCK program
Chapter 3. X-Window system 29

30 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 4. z/OS UNIX remote command
execution

OS/390 V2R5 IP also provides REXEC and RSH server functions which allow remote clients
to run UNIX System Services shell commands.

� UNIX System Services REXECD server

Provides server functions in the UNIX System Services environment for remote
commands based on the remote execution (REXEC) protocol. Commands are executed
as OpenEdition shell commands.

� UNIX System Services RSHD server

Provides server functions in the UNIX System Services environment for remote shell
clients based on the remote shell (RSH) protocol. Commands are executed as UNIX
System Services shell commands.

The sections in this chapter are:

� 4.1, “z/OS UNIX remote command execution overview” on page 32

� 4.2, “Starting the REXECD and RSHD servers” on page 33

� 4.3, “Trusted host concept with RSHD server” on page 35

� 4.4, “REXEC client in the z/OS UNIX environment” on page 38

4

© Copyright IBM Corp. 1998 2002 31

4.1 z/OS UNIX remote command execution overview
The UNIX System Services REXECD and RSHD server are installed into both the
hierarchical file system and OS/390 V2R5 IP and later product libraries. In most installations,
these modules are installed into the /usr/lpp/tcpip/sbin directory with the sticky bit, named
orexecd and orshd respectively. The corresponding symbolic links are created in /usr/sbin
directory for both modules. However, since these modules have the sticky bit, the executable
modules are loaded from the SEZALINK library data set. Note that there are options to
change the mount point for the TCP/IP filesystem in a hierarchical file system environment,
so the modules orexecd and orshd might be installed in another directory.

Both the REXECD server and the RSHD server are used to execute UNIX System Services
shell commands from remote users. See Figure 4-1 for an overview of how both the REXECD
server and the RSHD server are implemented in the UNIX System Services environment.

Figure 4-1 z/OS REXECD and RSHD implementation overview

For each remote request, InetD forks a new process with either REXECD or RSHD. The
REXECD or RSHD server in turn forks a shell process with which they communicate via
pipes.

The REXEC protocol requires a remote user to explicitly enter both a user ID and a password
on the REXEC command line invocation:

rexec mvs03 -l userid -p password ls -al

The RSH protocol does not require an end user to enter a user ID and a password. If the user
does not enter a user ID, the local user ID will be sent to the remote RSHD server as the
remote user ID, but the protocol and RSH command syntax does not support a password
parameter, like the REXEC command does. Some RSHD servers implement an rhosts.data file
on the RSHD server host to authorize certain client users on certain remote hosts to execute
commands on the RSHD server without authentication in terms of verifying a password.

Rexec or
RSH Client

The
Shell

RexecD
or RSHD

InetD

AF_INET PFS

fork()

IPC

connect()

AF_INET
socketfd
32 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

However, the rhosts.data technique has been determined to be too much out of line with
traditional MVS security policy and has not been implemented in the UNIX System Services
orshd server. This also means that the RCOPY command is not supported in an UNIX System
Services environment.

The RSHD server in UNIX System Services does not process any remote commands without
a valid MVS user ID and password. So in order to access the RSHD server in UNIX System
Services, you have to issue the RSH command in the syntax as follows:

rsh mvs03 -l userid/password ls -al

On the -l parameter, the end user has to enter both an MVS user ID and the password with
the user ID and password separated by a slash (/).

The RSH server in OS/390 V2R5 IP and later provides an alternative method for
authentication to allow the RSH client without a password to access UNIX System Services
resources. This method is provided by the user security exit, named /usr/sbin/ruserok. This is
discussed in more detail in “Trusted host concept with RSHD server” on page 35.

4.2 Starting the REXECD and RSHD servers
Both the REXECD and the RSHD servers are started from InetD.

The default port numbers for the two servers are 512 and 514, and both must be reserved in
the PROFILE data sets of the TCP/IP stacks that act as UNIX System Services AF_INET
transport providers:

Most REXEC and RSH client implementations do not allow the end user to specify an
alternate port number, so we do not recommend that you try to start these servers on
alternate port numbers.

Note, however, that REXEC and RSH servers in UNIX System Services cannot share a TCP
port with the MVS REXECD server. Therefore in most situations, you might have to decide
which REXEC and RSH server you use depending on your requirement. If the REXEC and/or
RSH server is the first server controlled by InetD, you have to create an InetD configuration
file, named /etc/inetd.conf. The sample file is stored in /samples directory, but you have to
modify it to meet your UNIX System Services environment. The following is a part of
/etc/inetd.conf file in our test system:

Figure 4-2 Sample /etc/inetd.conf for REXECD and RSHD servers

PORT
 512 TCP OMVS ;REMOTE EXECUTION SERVER
 514 TCP OMVS ;REMOTE SHELL SERVER

#
#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -LV
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -l -v
#

Chapter 4. z/OS UNIX remote command execution 33

You will have to modify the sample inetd.conf file, because it points to the invalid module
names /usr/sbin/rexecd and /usr/sbin/rshd. Since the module name has to contain the correct
hierarchical file system file name to the server modules, you would have to change them to
/usr/sbin/orexecd and /usr/sbin/orshd.

Instead of customizing inetd.conf, you may create symbolic links associated with these server
modules, named /usr/sbin/rexecd and /usr/sbin/rshd. You can use the ln command to make
symbolic links as follows:

ln -s /usr/lpp/tcpip/sbin/orexecd /usr/sbin/rexecd

The file named /usr/lpp/tcpip/sbin/orexecd is the executable module for REXECD server, and
/usr/sbin/orexecd is the symbolic link that was created at the installation phase. If you decide
to create a new symbolic link for REXECD server in UNIX System Services environment, you
should use /usr/lpp/tcpip/sbin/orexecd as a source file.

However, we recommend that to avoid confusion you update the /etc/inetd.conf configuration
file rather than create new links.

If the InetD is started with the sample configuration as it was, when you run REXEC and/or
RSH client, these clients do not display any messages and you will see the error message
below in the syslogd's message file or MVS console in the z/OS server system. Therefore,
when you do not receive proper answers from clients, check on the server side.

The REXECD server accepts the following arguments in the /etc/inetd.conf file: c.

-d Write debug information to syslogd. The facility name is daemon.

-c Translate all output messages in uppercase.

-l Write each successful login to syslogd with user ID and command
content. The facility name is auth.

-v Write name and PTF level information to syslogd. The facility name is
daemon.

The RSHD server accepts the following arguments in the /etc/inetd.conf file: c.

-d Write debug information to syslogd. The facility name is daemon.

-c Translate all output messages in uppercase.

-l Write each successful login to syslogd with user ID and command
content. The facility name is auth.

-v Write name and PTF level information to syslogd. The facility name is
daemon.

Note: You may use rshd or rexecd as the first entry for the server program argument
instead of orshd or orexecd respectively. During the ITSO-Raleigh testing, we could use
both uppercase or lowercase characters for some options. Since this is not documented
yet, you would have to verify these configuration parameters in your own system.

Note: Depending on your installation option, the executable modules may be installed in a
different directory.

INETD[pid[: execv /usr/sbin/rexecd: EDC5129I No such file or directory.
34 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

-a Double-check the client IP address and host name correlation. The
RSHD server will first do a gethostbyaddr() to obtain the host name of
the client host. It will then do a gethostbyname() and verify that the IP
address of the client is the same as that returned from the name
server.

-r If a client passes a null password, invoke /usr/sbin/ruserok user exit to
authenticate the user ID.

The RSHD server will not execute a command if the client host IP address cannot be
resolved to a host name.

There are a few situations where the RSHD server may encounter an error so early in the
processing of a command that the server has not established a proper EBCDIC-to-ASCII
translation yet. In such a situation, the client end user may see "garbage" data returned to his
or her terminal. A packet trace will reveal that the response is in fact returned in EBCDIC,
which is the reason for the garbage look on an ASCII workstation. We have seen this happen
if the UNIX System Services name resolution has not been configured correctly, so the RSHD
server, for example, was not able to resolve IP addresses and host names correctly. If your
RSH clients encounter such a problem, please go back and check your name resolution
setup. If you are using a local hosts table, make sure that the syntax of the entries in your
hosts file is correct.

We also had seen an authentication error during our tests at ITSO-Raleigh. The REXEC
server, for example, needs to be associated with a user who has READ authority to the
BPX.DAEMON facility class. Otherwise your REXEC client's request will fail. For more
information on BPX.DAEMON facility, refer to Communications Server for z/OS V1R2 TCP/IP
Implementation Guide Volume 1: Base and TN3270 Configuration, SG24-5227.

4.3 Trusted host concept with RSHD server
By APAR PN89720, the support of the trusted host concept wad added to the RSH server in
UNIX System Services environment. The RSH server can accept the request from the remote
client with a null password.

When the -r option for RSH server is enabled, if there is no password specified on the RSH
command from the client, it will invoke the optional user exit, which is a program named
/usr/sbin/ruserok. The name was hardcoded so you have to create your security user exit
using exactly the same name. The RSHD will then pass a string to the program as
parameters. These are passed in the following order:

1. Program name: /usr/sbin/ruserok

2. Host name: char array

3. Local user's UID: integer

4. Remote user ID: char array

5. Local user ID: char array

If RSHD receives a return code of zero (0) from the exit, RSHD continues. Any non-zero
return code from the exit will cause RSHD to issue the message EZYRS25E to the client and
terminate all connections.

If the user ID passed to the RSH server is not registered to the RACF database, RSHD does
not invoke the user security exit but returns the following EZYRS25E message to the RSH
client.
Chapter 4. z/OS UNIX remote command execution 35

The following code can be used as an example to begin building a working /usr/sbin/ruserok
user exit. Note that in this sample exit, RSH server checks only the user ID that is used by the
RSH client to log on to the server's system. In most situations you would need more logic to
provide a secure RSH server on a OS/390 V2R5 and later systems.

Figure 4-3 Sample exit source code for /usr/sbin/ruserok

Rshd: EZYRS25E Unknown login.

 /***/
 /* ruserok.c This is an example RSHD installation exit. Place */
 /* executable in /usr/sbin/ruserok. */
 /***/
 #include <stdio.h>
 #include <string.h>
 #include <fcntl.h>

 int main(int argc, char** argv)
 {

 char *rhost1; /* "hostname" or "hostname.domain" of client
 obtained by caller:
 gethostbyaddr(getpeername()) */
 int cliuid; /* uid of user name on this systems */
 char *cliuname; /* user name on client's system */
 char *servuname; /* user name on this (server's) system */
 /* the list of trusted users */
 char *u_trusted[] ={ "woza", "gdente", "silviar",
 "eikens", "kakky" };
 int cnt;

 rhost1 = *(argv+1);
 cliuid = atoi(*(argv+2));
 cliuname = *(argv+3);
 servuname =*(argv+4);

 { /* write logging information to a file. */
 int fdes;
 char buf[80];

 memset(buf,'\0',sizeof(buf));
 fdes=open("/tmp/rulog", O_WRONLY | O_CREAT | O_APPEND, 0666);
 if(fdes!=EOF){
 sprintf(buf,"rhosts = %s, uid=%d, cliname=%s, srvname=%s\n",
 rhost1, cliuid, cliuname, servuname);
 write(fdes,buf,strlen(buf));
 close(fdes);
 }
 }
 /* check if the userid is trusted. */
 for(cnt=0; cnt<5; cnt++){
 if((strcmp(servuname,*(u_trusted+cnt))==0))
 return(0); /* the userid is trusted. */
 }
 return(1); /* reject this client */
}

36 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

To compile the user exit, you can use the Makefile utility which is a very useful tool in a UNIX
system for building user-written applications, or just run the c89 command as follows:

c89 -o ruserok ruserok.c

The following is the sample Makefile that was used at the ITSO-Raleigh to compile and link
the user exit program above.

Figure 4-4 Sample makefile

To allow the RSHD server to invoke the exit program, you need to configure the UNIX System
Services name resolver to be able to resolve the IP address and host name correctly. If the
RSH server cannot get the RSH client's host name from its IP address, you will receive an
unreadable message and your request will fail. Therefore, all RSH clients need to be
registered to your domain name server or local hosts file. Issuing the PING or oping command
with a client's host name on an z/OS system, you may make sure the name resolution
procedure works correctly.

Since the InetD forks a new process with RSHD server for each remote client's request, you
can update the user exit dynamically.

The following are the RSHD server's output messages to the syslogd daemon, which is
written when the RSHD server invokes the user exit.

Figure 4-5 Message when RSHD server received zero return

Figure 4-6 Message when RSHD server received non-zero return

SRCS = ruserok.c
OBJS = ruserok.o
SYSLIBS =
CFLAGS = -D_ALL_SOURCE
CC = c89
PGM = ruserok

.c.o:
 $(CC) -c $(CFLAGS) $<

$(PGM): $(OBJS)
 $(CC) -o $@ $(OBJS) $(SYSLIBS)

clean:
 rm -f $(PGM) *.o core

EZYRS01I MVS OE RSHD PN89720
EZYRS48I Trusted host activated
EZYRS36I kakky@WTR05118.itso.ral.ibm.com as kakky: cmd = 'pwd'

EZYRS01I MVS OE RSHD PN89720
EZYRS48I Trusted host activated
EZYRS49E Trusted host authentication failed
EZYRS36I alfredc@WTR05118.itso.ral.ibm.com as alfredc: cmd = 'pwd'
Chapter 4. z/OS UNIX remote command execution 37

4.4 REXEC client in the z/OS UNIX environment
The REXEC client component of the OS/390 V2R5 IP and later allows you, from the UNIX
System Services shell environment, to execute commands on remote hosts.

The syntax of the REXEC client command is as shown in Figure 4-7.

Figure 4-7 REXEC client command syntax in OS/390 UNIX

The REXEC command in UNIX System Services is orexec.

A sample invocation of the orexec command from UNIX System Services to a REXEC server
on an OS/2 host looks like the following:

Usage: orexec -V -d -n -l <user> -p <pwd>
 -s <port> fhost command
 options: -
 -? display this message
 -d turn on debug tracing
 -n prevents automatic login
 -l <usr> specifies remote login id
 -p <pwd> specifies remote password
 -s <port> specifies server port
 -C Uppercase messages
 -V display APAR level

Example: orexec -d -l guest -p guest hostname ls -l

/u/alfredc: >orexec -l alfredc -p nosecret alfred dir config.sys

The volume label in drive C is C_DRIVE.
The Volume Serial Number is E6C3:0014.
Directory of C:\

 5-20-96 1:17p 5138 0 CONFIG.SYS
 1 file(s) 5138 bytes used
 2591744 bytes free
/u/alfredc: >

Note: Since CS for OS/390 V2R8 IP, synonyms for UNIX commands are available to make
it easier for users accustomed to a UNIX environment. You can use the rexec UNIX
command instead of orexec.
38 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 5. z/OS UNIX sendmail

z/OS UNIX sendmail is a mail program running in an UNIX System Services shell. It replaces
the SMTPROC known in previous MVS TCP/IP versions. However, if you intend to use the
mail server also as a gateway to an NJE/RSCS network the SMTPROC server has to be
used instead of the sendmail daemon because of rewriting the mail header for NJE/RSCS
networks or vice versa. The sendmail program Version 8.8.7 is based on the Berkeley UNIX
4.1c BSD code.

This chapter describes briefly how to organize, configure and use a mail system with the z/OS
UNIX sendmail program. It will also show the cooperation between the z/OS SMTP server
and NJE gateway including the integration of the z/OS UNIX popper as mail server. The
popper is a mail server running the Post Office Protocol (POP3).

This book is well known as the bat book, because of the bat on the cover, by people
responsible for mailing questions.

5

Note: Because of the complexity of sendmail, we recommend you become familiar with
the industry-accepted publication about sendmail: sendmail published by O'Reilly &
Associates, Inc..
© Copyright IBM Corp. 1998 2002 39

5.1 Overview and terms
The simple mail architecture defines Mail User Agent (MUA), Mail Transfer Agent (MTA) and
Mail Delivery Agent (MDA).

� The MUA is any of various offered programs like the original UNIX mail program (/bin/mail)
or the Berkeley MAIL program or the Netscape Communicator, etc. which a user runs to
compose, dispose, read and reply to e-mail notes.

� The MTA is software which sends the prepared note by the MUA to a remote MTA
responsible for the recipient using an SMTP connection.

The sendmail program is an MTA on the sending and on the receiving side.

� Finally, the sendmail server uses a local mailer program (for example /bin/mail) to deliver
the note to a mail spool file by appending the note to this file. sendmail now has finished
its work.

� The user (MUA) may now retrieve his mail from the spool file.

� Another approach, more common today, is that a separate server, a popper server running
the POP3 protocol, is used to retrieve notes from the mail spool file. This can be done for
example through a Netscape Communicator working as a POP3 client invoking the
popper server. A prerequisite however, is that the MUA supports the POP3 protocol.

The popper is an MDA using the POP3 protocol for the transport between MDA and MUA.

5.1.1 Configuration of our basic tests
The following figure shows the relationship between MUA, MTA and MDA:
40 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-1 Relationship between MUA, MTA and MDA

For our basic tests we had two choices:

1. We used the client function of sendmail in an UNIX System Services system to transmit a
file which contained the prepared message. The client function established the SMTP
connection to the sendmail daemon at the recipient's machine. In this case we didn't need
an MUA.

2. We used an MUA, the Netscape Communicator, on a PC to compose the message and to
set up an SMTP connection as client to a MTA acting as mail server.

5.1.2 Configuration of our extended tests
In addition to our basic tests with sendmail and popper we also tested sendmail cooperating
with the SMTP gateway transmitting messages to recipients in an NJE network and also to a
Lotus Notes partner.

MVS39A

SMTP

Name
Server

Read
File System

User PC/Workstation

MVS28A

Local
Mailer

Receiver's
MUA

Sender's

Sendmail
Client

Sendmail
Daemon

MTA

Receiver's
MUA

Browser

POP3 Server

Read
File

System
Popper
Daemon

MDA

POP3

Mail
Spool
File

or

PC

Sender's
MUA

Client
Chapter 5. z/OS UNIX sendmail 41

Figure 5-2 Relationship between MUA, MTA and MDA in an extended environment

5.2 Configuration of sendmail
Before we describe the configuration of sendmail we should look at the tasks of sendmail to
understand the requirements of the configuration.

sendmail transports mail messages to other machines, listens to the network for incoming
mail and hands local mail to a local mailer program for local delivery. It may queue mail for
later delivery and alias the recipients’ names to other users’ names.

MVS39A SMTP

Name
Server

Read
File System

User PC/Workstation

MVS39A

Local
Mailer

Receiver's
MUA

Sender's

Sendmail
Client

Sendmail
Daemon

MTA

Receiver's
MUA

Browser

POP3 Server

Popper
Daemon

MDA

POP3

SMTP
PROC
NJE

Gateway

MVS03A

NJE/RSCS Mail Partners

Lotus Notes Mail Partners

MVS28A

Mail
Spool
File

Read
File

System
42 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

For these tasks, sendmail needs information in files that, for example, define the local mailer
program, which file system is responsible for deferred delivery and which file contains
information about alias names and real names.

When sendmail is run, it first reads the /etc/sendmail.cf configuration file. Among the many
items contained in that file are locations of all files and directories which sendmail needs. The
following figure shows the files and directory needed by sendmail:

Figure 5-3 sendmail file structure

The sendmail code is located in the directory /usr/lpp/tcpip You will find samples in the
directory /usr/lpp/tcpip/samples/sendmail/cf.

You will miss a sample of the aliases file and the queue directory. The queue file system will
be created by the sendmail program itself. Both have to be created before you run sendmail.

The default queue directory entry may be defined under:

/usr/spool/mqueue

The default alias file may be defined under:

/etc/aliases

Later we will describe the contents of the most important directories and files.

We will first describe the needed directories and files used by sendmail before we talk about
how to create the sendmail.cf configuration file.

PESCHKE @ RA28:/>cd /usr/lpp/tcpip/samples/sendmail
PESCHKE @ RA28:/usr/lpp/tcpip/samples/sendmail>ls
README.m4 feature m4 sh
cf hack mailer siteconfig
domain inetd.conf.pop ostype

sendmail.st sendmail.hf

:include file

qf file

df file

queue directoryaliases

sendmail

sendmail.cf
Chapter 5. z/OS UNIX sendmail 43

The required files are:

� Aliases file for converting recipient's name and to address the postmaster

� Queue directory for deferred messages

� Sendmail statistic file

� Sendmail help file

The grep command may help you to check the location of available files. Please see the
following example:

Figure 5-4 Location of sendmail files as defined in /etc/sendmail.cf

5.2.1 Alias file
The alias file is used to convert the alias name to another recipient's name. There is no
sample available in the samples directory. We used the following content for our tests taken
from the general publication.

Figure 5-5 Alias file

The postmaster entry is for undeliverable mail into the file /u/peschke/postmaster with
reference that the user PESCHKE@MVS03A will be notified on another machine.

grep =/ /etc/sendmail.cf
********************************* Top of Data **********************
O AliasFile=/etc/aliases
#O ErrorHeader=/etc/sendmail.oE
O HelpFile=/usr/lib/sendmail.hf
O QueueDirectory=/usr/spool/mqueue
O StatusFile=/etc/sendmail.st
#O UserDatabaseSpec=/etc/userdb
#O ServiceSwitchFile=/etc/service.switch
#O HostsFile=/etc/hosts
#O SafeFileEnvironment=/arch
Mlocal,..P=/usr/lib/tsmail, F=lsDFMAw5:/|@quUbE, S=10/30, R=20/40,
Mprog,..P=/bin/sh, F=lsDFMoqeu9, S=10/30, R=20/40, D=$z:/,
******************************** Bottom of Data ********************

PESCHKE @ RA28:/>cat etc/aliases
Mandatory aliases
postmaster: PESCHKE, /u/peschke/postmaster'
 "|/usr/local/bin/notify PESCHKE@MVS03A
MAILER-DAEMON: VANDEKE@MVS03A
Other
Chris03a: VANDEKE@MVS03A
Chris28a: VANDEKE@MVS28A
Chris39a: VANDEKE@MVS39A
Chrisvm: VANDEKER%WTSCPOK@MVS03A
Rolandvm: PESCHKER%WTSCPOK@MVS03A
Roland3a: PESCHKE@MVS03A
Rolan28a: PESCHKE@MVS28A
rolan39a: PESCHKE@MVS39A
44 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Aliases database
Because sendmail may have to search through a huge list of names in the aliases file, the
use of a database would significantly improve the lookup speed. Therefore, run one of the
following commands:

 /usr/sbin/newaliases

or

 /usr/sbin/sendmail -bi

After sendmail has built/rebuilt the database you will see the result on your screen.

You may also check a specific entry. For example:

5.2.2 Queue directory
If a mail message cannot be transmitted because of certain reasons, sendmail stores it in this
queue directory until it can be sent successfully. Possible reasons for queuing a message
may be:

� The remote machine is down

� Temporary disk problems

� Sendmail on the other machine is not startable

� TCP has problems to set up the connection

Displaying queue information
If you have the permission to look at the queue directory, you may find it empty (all messages
are sent) or find some dfxxxxxxxx and qfxxxxxxxx files which still have to be sent.

Figure 5-6 Files in the queue directory

PESCHKE @ RA39:/u/peschke>/usr/sbin/newaliases
/etc/aliases: 15 aliases, longest 32 bytes, 333 bytes total

PESCHKE @ RA28:/>/usr/sbin/sendmail -bv rolan28a
PESCHKE@MVS28A... deliverable: mailer local, user PESCHKE

PESCHKE @ RA39:/u/peschke>ls /usr/spool/mqueue
dfIAA402653203 dfPAA100663311 qfJAA1090519058 qfPAA1476395014
dfJAA1090519058 dfPAA1476395014 qfJAA234881032 qfPAA251658251
dfJAA234881032 dfPAA251658251 qfJAA335544328 qfPAA822083602
dfJAA335544328 dfPAA822083602 qfJAA402653198 qfPAA83886093
dfJAA402653198 dfPAA83886093 qfJAA536870926 qfQAA117440537
dfJAA536870926 dfQAA117440537 qfJAA570425351 qfQAA167772175
dfJAA570425351 dfQAA167772175 qfJAA754974734 qfQAA1962934278
dfJAA754974734 dfQAA1962934278 qfJAA989855751 qfQAA637534211
dfJAA989855751 dfQAA637534211 qfLAA1140850706 qfQAA83886105
dfLAA1140850706 dfQAA83886105 qfLAA218103813 qfQAA83886107
dfLAA218103813 dfQAA83886107 qfMAA301989894 qfRAA1979711494
Chapter 5. z/OS UNIX sendmail 45

When a message is queued, it is split into two parts. Each part is saved in a separate file.

1. qf... files contain header information

2. df... files contain the body

A sample of a qf... file with the header part is shown in Figure 5-7 on page 46.

The obrowse command was used in the TSO ISHELL. The superuser permission is required
to view this file.

Figure 5-7 Queue file

Following is a description of the header lines:

1 Version of the qf file: V2 means above the V8.8 sendmail version

2 Time created in seconds to limit the message to remain in the queue

3 Determines the time to wait before retry delivery

4 Number of attempts for each delivery

5 Priority when processed from the queue

6 After a system crash the message is stored in lost+found under the referenced number in
case the qf file lost its directory entry

7 Reason why the message was stored in the queue (= deferred)

8 Full canonical name of the sender's machine

9 Sender's address

10 For security reasons, this is the real recipient of the message

11 Recipient's address

12 Header information for the return path in case the message cannot be delivered

13 HReceived: where the message came from

14 Header information when the message was received by the MTA

 BROWSE -- /usr/spool/mqueue/qfIAA402653203 --------- Line 00000000 Col 0
********************************* Top of Data ***************************
V2 1
T918568591 2
K918568681 3
N1 4
P30226 5
I0/1/604111 6
Mhost map: lookup (MVS28A): deferred 7
$_OMVSKERN@localhost 8
SPESCHKE 9
C:rolan28a 10
RPFD:PESCHKE@MVS28A 11
H?P?Return-Path: <PESCHKE> 12
HReceived: (from OMVSKERN@localhost) 13
 .by MVS39A.itso.ibm.com (8.8.7/8.8.7) id IAA402653203
 .for rolan28a; Tue, 9 Feb 1999 08:56:31 -0500
H?D?Date: Tue, 9 Feb 1999 08:56:31 -0500 14
H?F?From: PESCHKE <PESCHKE> 15
H?x?Full-Name: PESCHKE 16
H?M?Message-Id: <199902091356.IAA402653203@MVS39A.itso.ibm.com> A
46 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

15 Header information about the sender

16 Header information about the full name of the sender

A Header information about the queue file numbers

All header information is based on entries in sendmail's configuration file /etc/sendmail.cf.

A sample of a df... file with the body of the mail is shown in Figure 5-8.

The obrowse command was used in the TSO ISHELL. The superuser permission is required
to view this file.

Figure 5-8 sendmail data file

Another way to get queue information
You will get queue information for all messages in the queue by running the sendmail
command with the -bp command-line switch (printing the queue). In this case we used the
ISHELL instead of OMVS to enter the command.

Figure 5-9 sendmail -bp command from the ISHELL

 BROWSE -- /usr/spool/mqueue/dfIAA402653203 --------- Line 00000000 Col 0
 Command ===> Scroll ===
********************************* Top of Data ***************************
This message was sent from system RA39 to RA28 using the sendmail
client to a sendmail daemon, started with
 /usr/sbin/sendmail -bd
The messages was sent with
/usr/sbin/sendmail -v Rolan28a </u/peschke/mailto28
******************************** Bottom of Data *************************

 Enter a Shell Command

 Enter a shell command and press Enter.

 Standard output and standard error are redirected to a temporary
 file. If there is any data in the file when the shell command
 completes, the file is displayed.
 /usr/sbin/sendmail -bp___

 F1=Help F3=Exit F6=Keyshelp F12=Cancel
Chapter 5. z/OS UNIX sendmail 47

Figure 5-10 sendmail queue display

Processing the queue
The sendmail program offers two different methods for processing the queue:

1. Process the queue periodically.

– Process the queue periodically with the -q command line switch:

A typical invocation for the sendmail daemon looks like this:

/usr/sbin/sendmail -bd -q1h

which means: process the queue every hour (-q1h) by sendmail running as daemon in
the background (-bd) in the listening mode for incoming SMTP connections.

2. Process the queue once and then exit.

For this case, only the -q command line switch has to be used. For example:

/usr/sbin/sendmail -q

This command tells sendmail to process the queue only once and then exit. The
command can also be used to force processing the queue even if you run the periodically
processing mode and you want to get the messages out immediately.

The -q switch, without an argument, prevents sendmail from running in the background
and detaching from its controlling workstation.

You may also combine -q with -v to view more information about the queue.

/usr/sbin/sendmail -qv

For more detailed information about queueing, we recommend reading sendmail, published
by O'Reilly & Associates, Inc..

 BROWSE -- /tmp/PESCHKE.11:07:02.633773.ishell ------ Line 00000000 Col 0
 Command ===> Scroll ===
********************************* Top of Data ***************************
--Q-ID-- --Size-- -----Q-Time----- ------------Sender/Recipient----------
NAA335544336 51 Fri Feb 19 13:45 VANDEKE
 (host map: lookup (mvs03a): deferred)
MAA1728053273 51 Tue Feb 23 12:52 VANDEKE
 (dbm map "Alias0": unsafe map file /etc/aliases)
NAA251658256 51 Fri Feb 19 13:36 VANDEKE
 (host map: lookup (MVS03A): deferred)
OAA218103822 95 Thu Feb 18 14:50 PESCHKE
 (Deferred: Connection refused by mvs03a.itso.ral.ibm.com.)
OAA100663310 95 Thu Feb 18 14:11 PESCHKE
 (host map: lookup (MVS39A): deferred)
OAA117440526 95 Thu Feb 18 14:13 PESCHKE
 (host map: lookup (MVS39A): deferred)
KAA855638018 (no control file)
******************************** Bottom of Data ***********
48 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

5.2.3 The sendmail.st file
This is a statistics file which will be used by sendmail to record the number and sizes of all
incoming and outgoing mail messages handled by each delivery agent. Delivery agents are:

� Local delivery agent

� SMTP delivery agent

� UUCP delivery agent

Statistical information is collected if the option (O) is defined in the sendmail.cf file:

status file
O StatusFile=/etc/sendmail.st

Later we will give more details about the creation of the sendmail.cf file in 5.2.5, “The
sendmail.cf file” on page 50.

Since sendmail does not create this statistics file, you have to do this first, before using the
statistics option. The following example shows how to create the sendmail.st file.

Be aware that you are a superuser.

The collecting of statistics may be turned off by deleting or renaming this file.

You may view the statistics file using the commands:

mailstats -C </etc/sendmail.cf>

or

mailstats -s </etc/sendmail.st>

The configuration file and the statistics file have to be defined explicitly only if other file names
in the sendmail.cf file are used than the referenced default file names shown in the previous
command sample.

We used the mailstats command without arguments using the default names.

After issuing the touch command, the sendmail.st file is of course empty; therefore, you don't
see any collected data. Now, we sent one message and received five messages. After
processing the mailstats command, you see the following result.

PESCHKE @ RA39:/u/peschke>touch /etc/sendmail.st
PESCHKE @ RA39:/u/peschke>ls -l /etc/sendmail.st
-rw-r--r-- 1 OMVSKERN DCEGRP 0 Feb 15 16:12 /etc/sendmail.st

PESCHKE @ RA39:/u/peschke> /usr/sbin/mailstats
Statistics from Mon Feb 15 16:18:48 1999
 M msgsfr bytes_from msgsto bytes_to Mailer
==
 T 0 0K 0 0K
Chapter 5. z/OS UNIX sendmail 49

After sending and receiving new messages, mailstats was issued again. The total counters
(see line T) from msgsfr (message from) and bytes_from (received bytes) were updated and
also the ones for msgsto (sent messages) and bytes_to (sent bytes).

The lines above the total line show the values for each mailer. The top line gives information
from when mailstats started collecting data.

5.2.4 The sendmail.hf file
This is the HELP file implemented for SMTP (and ESMTP) which the sendmail program is
looking up to build help messages. You should find this file in the /usr/lpp/tcpip/lib directory.

If you want to view this file, you can issue the following command:

obrowse /usr/lpp/tcpip/lib/sendmail.hf

We have discussed all the important files the sendmail.cf file points to when sendmail is run.
We will now look at the sendmail.cf file itself.

5.2.5 The sendmail.cf file
This file is read and parsed by the sendmail program every time sendmail starts. It lists
locations of important files and specifies the default values sendmail is working with. It
describes sendmail's behavior and contains rules and rule sets (for example, for rewriting of
mailing addresses). This information is defined through configuration commands.

Examples of configuration commands are:

M Define a mail delivery agent

R Define rewriting rules

H Define a header

P Define delivery priorities

T Define a trusted user

PESCHKE @ RA39:/u/peschke>/usr/sbin/mailstats
Statistics from Tue Feb 16 09:10:49 1999
 M msgsfr bytes_from msgsto bytes_to Mailer
 3 3 3K 0 0K local
 5 0 0K 1 1K esmtp
==
 T 3 3K 1 1K

PESCHKE @ RA39:/u/peschke>/usr/sbin/mailstats
Statistics from Tue Feb 16 09:10:49 1999
 M msgsfr bytes_from msgsto bytes_to Mailer
 3 4 4K 0 0K local
 5 0 0K 2 2K esmtp
==
 T 4 4K 2 2K
50 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

D Define a macro

O Define an option

S Declare a rule-set start

The definition of a configuration file may be very simple if you use an empty configuration file
as a base. You get this empty configuration file by using the following copy command:

cp /dev/null/ /etc/client.cf

Our new configuration file is called client.cf because we don't want to overwrite the currently
existing sendmail.cf file. In the next step, the bat book recommends that you run the sendmail
program using the new client.cf file with the switch -bt, which means execution is done in test
mode. The -C command-line switch tells sendmail to use our new client.cf file. The result
was:

Chapter 5.2 in the bat book says that this should run with an empty configuration file without
any problems.

In our case, the sendmail showed a bad file descriptor. We got the message that a local
mailer had to be defined. So we defined a local mailer by copying the Mlocal line of the
/etc/sendmail.cf file into our /etc/client.cf file and changed the S=10/10 rule-set parameter.
The rerun showed the result as expected:

Contents of our new configuration file client.cf are as follows:

As you remember:

� The M command defines a delivery agent; in this case the local mailer using the program
P=/usr/lib/tsmail.

� F= Its flags tell sendmail more about the delivery agent.

� S= Tells which rule-set has to be used for the sender for rewriting the sender's address to
user@host.domain while other rules for a UUCP agent have to be converted to host!user.

� R= Specifies the rule-set to be used for the receiver for rewriting the address. Rule 20
means rewriting an envelope address, rule 40 means rewriting a header address.

PESCHKE @ RA39:/u/peschke>/usr/sbin/sendmail -Cclient.cf -bt < /dev/null
EZZ7575I No local mailer defined: EDC5113I Bad file descriptor.
ADDRESS TEST MODE (rule-set 3 NOT automatically invoked)
Enter <rule-set> <address>

PESCHKE @ RA39:/u/peschke>/usr/sbin/sendmail -Cclient.cf -bt < /dev/null
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>

EDIT /etc/client.cf Columns 00001
****** ***************************** Top of Data ************************
000001 Mlocal, P=/usr/lib/tsmail, F=lsDFMAw5:/|@quUbE, S=10/10, R=20/40,
000002 T=DNS/RFC822/X-Unix,
000003 A=tsmail $u
****** **************************** Bottom of Data **********************
Chapter 5. z/OS UNIX sendmail 51

� T= Specifies the lookup of the sender's and receiver's addresses.

� A= Specifies the command-line arguments to be supplied to each mail delivery program.

There are many more definitions in the sendmail.cf file, so this file can be very complex. If you
browse through the configuration file found in:

 /usr/lpp/tcpip/samples/sendmail/cf/sample.cf

you will find very complex commands which you have to learn and type in accurately. See the
following sample, which is an excerpt only, to show you the syntax of some definitions.

Figure 5-11 Part of the sample sendmail.cf file

In order to make it easier to test sendmail, you only have to copy the
/usr/lpp/tcpip/samples/sendmail/cf/sample.cf file as /etc/sendmail.cf and use this. This
sample.cf file was also used for all our tests.

Later, when you are more familiar with creating your own configuration file, we recommend
you use your own sendmail.cf file. We will discuss this procedure in “M4 preprocessor” on
page 53.

The sample.cf file we used was created automatically running an m4 macro preprocessor
with a master file as an input file which you will find as sample.mc in the same directory:

/usr/lpp/tcpip/samples/sendmail/cf

##
##
#####
#####...REWRITING RULES
#####
##
##

##
Ruleset 3 -- Name Canonicalization
##
S3

handle null input (translate to <@> special case)
R$@...$@ <@>

strip group: syntax (not inside angle brackets!) and trailing semicolon
R$*...$: $1 <@>...mark addresses
R$* < $* > $* <@>.$: $1 < $2 > $3...unmark <addr>

52 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

If you browse through this sample.mc file, you will notice that the main information is defined,
which helps you run sendmail without the m4 macro preprocessor run. All of the following
described tests have been run with the sample.cf configuration file which was created using
the following sample.mc file:

Figure 5-12 sample.mc file

If you want to learn this configuration language or need more information about the
configuration parameter refer to sendmail, published by O'Reilly & Associates, Inc..

In order to give you an overview of the m4 preprocessor run the following section will guide
you through the steps needed for the sendmail configuration process with m4.

5.2.6 M4 preprocessor
The m4 macro processor is a front-end processor for any programming language being used
in the operating system environment. Besides replacing one string of text with another, the
m4 macro processor provides the following features:

� Arithmetic capabilities

� File manipulation

� Conditional macro expansion

� String and substring functions

The m4 macro preprocessor can be given input that will generate a z/OS UNIX sendmail
configuration file. It takes as input a user-defined master configuration source file (.mc file)
that can define mail delivery mechanisms using files provided in the samples directory.

M4 preprocessor requirements
When you run the m4 preprocessor, you need some files that contain input definitions and an
output file which will be your sendmail configuration file. The input files are:

� /m4/cf.m4 - which provides support for different include files such as cfhead.m4 pointing
also to proto.m4.

� /cf/sample.mc - which points with its parameters to different files and their locations. We
will describe these pointers later.

The cf.m4 file is located in the directory:

/usr/lpp/tcpip/samples/sendmail/m4

 BROWSE -- /usr/lpp/tcpip/samples/sendmail/cf/sample.mc
 Command ===>
********************************* Top of Data **********************
divert(-1)
divert(0)dnl
VERSIONID(`OS/390 sample configuration 12/4/97')
OSTYPE(os390)dnl
DOMAIN(generic)dnl
MAILER(local)dnl
MAILER(smtp)dnl
******************************** Bottom of Data ********************

Note: dnl means delete through new line.
Chapter 5. z/OS UNIX sendmail 53

The sample.mc file is located in the directory:

/usr/lpp/tcpip/samples/sendmail/cf

Building your own sendmail configuration environment
You may use the above referenced input files in the m4 preprocessor run to create your own
sendmail.cf output file. You may also customize these input files.

However, we recommend that you create your own configuration directory and copy the later
described directories and files to your own directory keeping the same directory structure.
This will keep you independent from the license product samples. It will also protect you from
any license product updates which might overwrite your definitions in the sample files.

� First step: create a private configuration directory.

PESCHKE @ RA28:/u/peschke>mkdir /u/peschke/smconfig

� Second step: list all directories and files to copy to your private configuration directory.

Figure 5-13 Directories containing files needed for M4

� Third step: copy the listed files and directories to your private configuration directory.

Below is an example for copying directories with containing files:

PESCHKE @ RA28:/u/peschke>cp -R /usr/lpp/tcpip/samples/sendmail/m4 /u/peschke/sm
config

Note: Be aware that you are a superuser.

PESCHKE @ RA28:/u/peschke/smconfig>ls -la /usr/lpp/tcpip/samples/sendmail
total 480
drwxr-xr-x 11 15069172 2736 8192 Nov 13 18:52 .
drwxr-xr-x 4 15069172 2736 8192 Feb 18 07:46 ..
-rw-r--r-- 2 OMVSKERN 2736 150417 Nov 13 18:52 README.m4
drwxr-xr-x 2 15069172 2736 8192 Nov 13 18:52 cf
drwxr-xr-x 2 15069172 2736 8192 Nov 13 18:52 domain
drwxr-xr-x 2 15069172 2736 8192 Nov 13 18:52 feature
drwxr-xr-x 2 15069172 2736 8192 Nov 13 18:51 hack
-rw-r--r-- 2 OMVSKERN 2736 567 Nov 13 18:51 inetd.conf.pop
drwxr-xr-x 2 15069172 2736 8192 Nov 13 18:52 m4
drwxr-xr-x 2 15069172 2736 8192 Nov 13 18:52 mailer
drwxr-xr-x 2 15069172 2736 8192 Nov 13 18:52 ostype
drwxr-xr-x 2 15069172 2736 8192 Nov 13 18:51 sh
drwxr-xr-x 2 15069172 2736 8192 Nov 13 18:52 siteconfig

Note: The inetd.conf.pop file will not be needed. It will be used only for the dedicated
z/OS UNIX System Services popper server implementation. See 5.4, “The popper
server” on page 75.
54 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

After copying the /m4 directory, your private sendmail configuration directory should look
like this:

Now copy the /cf directory.

Rename the sample.cf file and use it for your own customization.

Copy the remaining directories and files from the sendmail directory. At the end of this
process, your private configuration directory should have the following listed members:

PESCHKE @ RA28:/u/peschke>ls -la /u/peschke/smconfig/m4
total 184
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 9 10:42 .
drwxr-xr-x 3 OMVSKERN OMVSGRP 8192 Mar 9 10:42 ..
-rw-r--r-- 1 OMVSKERN OMVSGRP 4050 Mar 9 10:42 cf.m4
-rw-r--r-- 1 OMVSKERN OMVSGRP 6078 Mar 9 10:42 cfhead.m4
-rw-r--r-- 1 OMVSKERN OMVSGRP 10935 Mar 9 10:42 nullrelay.m4
-rw-r--r-- 1 OMVSKERN OMVSGRP 31714 Mar 9 10:42 proto.m4
-rw-r--r-- 1 OMVSKERN OMVSGRP 3159 Mar 9 10:42 version.m4
PESCHKE @ RA28:/u/peschke>

PESCHKE @ RA28:/u/peschke>cp -R /usr/lpp/tcpip/samples/sendmail/cf /u/peschke/sm
config
PESCHKE @ RA28:/u/peschke>ls -la /u/peschke/smconfig/cf
total 240
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 9 10:51 .
drwxr-xr-x 4 OMVSKERN OMVSGRP 8192 Mar 9 10:51 ..
-rw-r--r-- 1 OMVSKERN OMVSGRP 26542 Mar 9 10:51 sample.cf
-rw-r--r-- 1 OMVSKERN OMVSGRP 648 Mar 9 10:51 sample.mc

PESCHKE @ RA28:/u/peschke>cd smconfig/cf
PESCHKE @ RA28:/u/peschke/smconfig/cf>ls
sample.cf sample.mc
PESCHKE @ RA28:/u/peschke/smconfig/cf>mv sample.mc peschke.mc
PESCHKE @ RA28:/u/peschke/smconfig/cf>ls
peschke.mc sample.cf

PESCHKE @ RA28:/u/peschke/smconfig>ls -la
total 640
drwxrwxrwx 11 PESCHKE OMVSGRP 8192 Mar 8 12:30 .
drwxr-xr-x 3 PESCHKE OMVSGRP 8192 Mar 8 14:47 ..
-rw-r--r-- 1 OMVSKERN OMVSGRP 150417 Mar 8 12:26 README.m4
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 8 15:58 cf
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 8 12:28 domain
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 8 12:29 feature
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 8 12:28 hack
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 8 12:30 m4
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 8 12:28 mailer
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 8 12:30 ostype
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 8 12:29 sh
drwxr-xr-x 2 OMVSKERN OMVSGRP 8192 Mar 8 12:30 siteconfig
PESCHKE @ RA28:/u/peschke/smconfig>
Chapter 5. z/OS UNIX sendmail 55

M4 preprocessor run
You now know which directories and files are needed to run the m4 preprocessor. In order to
run the m4 program you have to download the compiled code from the Web server and locate
it in the directory /usr/sbin or your private directory.

You will find a compiled version of the code using:

http://www.s390.ibm.com/oe/bpxa1toy.html

This URL leads you to the OS/390 Tools & Toys Web page. Now select Related Link ->
Ported Tools; search for the m4 package, select and download the compiled code.

We were able to download the m4 code with a PC running under OS/2 and the Netscape
Navigator browser. Running the same procedure on a PC under Windows NT 4.0 and
Netscape Communicator brought the following error message when clicking the package m4:

Figure 5-14 Error when using Windows NT 4.0 and Netscape Communicator

Relationship of the files used during the m4 run
The following figure shows an overview of the relationship of the files' statements and what
impact they have on the configuration process.

IMW0254E

Error 406

IMW0326E Not Acceptable - No file exists which can satisfy the accept headers
sent with the request.

Lotus Domino Go Webserver - North American Edition for OS/390 V5R0M0
56 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-15 Relationship of m4 files/parameters

As you see, there are two main input files which are first read by the m4 program.

� The /m4/cf.m4 file

� Your private configuration .mc file.

The output file will be your private .cf file.

These files have to be defined with their paths for the m4 run.

For example:

/u/peschke/smconfig/cf>/usr/sbin/m4 /u/peschke/smconfig/m4/cf.m4 peschke.mc >peschke.cf

yyyy.m4

xxxx.m4

support
for include
files like

cfhead.m4

proto.m4

/smconfig/cf/peschke.mc/smconfig/m4/df.m4 peschke.cf

local.m4

smtp.m4

VERSION ("text only"

generic.m4
 FEATURE (redirect)

DOMAIN (generic)

alias file

queue file

help file

status file

OSTYPE (OS/390)

MAILER (local)

MAILER (smtp)

/feature/redirect.m4

input files output file

/usr/sbin/m4
Chapter 5. z/OS UNIX sendmail 57

Figure 5-16 m4 run command line

m4 run
Using the command line shown above, m4 reads the .mc file. It also finds, through the
definition of the path to the m4 directory, the cf.m4 file which can be seen as an include file for
the cfhead.m4 file and other .m4 files like the file proto.m4.

The .mc file is scanned through and the different statements with their parameters lead to
other .m4 files which should be customized before you run the m4 preprocessor.

You need to customize only the .m4 files if you don't agree to the provided definitions. For
example: if you want to have the alias file in another directory, you have to change the path in
the os390.m4 file. The best way is to leave the definitions as they are and take the defaults.

Pointers to .m4 files from the .mc file
When the .mc file is read by the m4 program, most statements point to the .m4 files. Only the
VERSION statement doesn't point to an .m4 file.

� DOMAIN which points with its parameter generic to the generic.m4 file. The generic
domain may be used by all clients sending this sendmail server their messages to forward
to the recipients. If the m4 macro MASQUERADE_AS the server is set, all clients of this
server will get the server's host and domain name. The recipients will see the messages
coming from the client's server and not from the client's host and domain name.

The generic.m4 file also has a statement FEATURE with a parameter redirect which
points to the file redirect.m4.

The redirect function refers to an entry in the alias file. It is used, for example, for retired
users to redirect messages from the local system to another remote system. Look at the
following entry in an alias file.

entry of an alias file

roland: rpeschke@csi.com.REDIRECT

In this case, the sender would be informed with the following message to redirect e-mail:

551 user not local; please try <rpeschke@csi.com>

� OSTYPE points to the file os390 which has the default addresses for

– Alias file

– Queue files

– Help file

– Status file

– Local mailer path (/bin/mail)

directory of
the .mc file

/u/peschke/smconfig/cf>

location
of the

m4 exec

 /usr/sbin/m4

path to m4
directory with

cf.m4 file

/u/peschke/smconfig/m4/cf.m4

current
.mc file

peschke.mc

name of
the .cf file

>peschke.cf
58 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

� MAILER with the parameter local points to the local.m4 file. This file defines the local
mailer program plus envelope sender/recipient rewriting and domain name adding
information.

The line in the .cf file

Mlocal,..P=/usr/lib/tsmail

points to the local mailer program tsmail.

� MAILER with the parameter smtp points to the smtp.m4 file. This file defines the smtp
characteristics between the mail delivery agents.

There are also other MAILERs possible. Please see the directory mailer in your private
configuration file.

For more detailed information we recommend to look at sendmail, published by O'Reilly &
Associates, Inc. and the README.m4 file in your configuration directory.

M4 special file definition rules
If you look at the .mc file, you will discover some commands you are not familiar with, for
example, divert or dnl. You will find these commands in the .mc file.

dnl
Means delete through new line. It is a special method of m4. If you did not use dnl then m4
would create a blank line for each command line. For example in the .mc file:

divert(-1)
divert(0)dnl
VERSIONID(`OS/390 sample configuration 03/08/99')
OSTYPE(os390)dnl
DOMAIN(generic)dnl
MAILER(local)dnl
MAILER(smtp)dnl

The output of m4 without dnl:

<--- blank line
<--- blank line
<--- blank line
<--- blank line
<--- blank line
OS/390 sample configuration 03/08/99
$Id: OS390.m4 0.2 1996/12/20 04:32:47 gmalet Exp $
##
Local and Program Mailer specification
##

@(#)local.m4.8.23 (Berkeley) 5/31/96

Mlocal,..P=/usr/lib/tsmail, F=lsDFMAw5:/|@quUbE, S=10/30, R=20/40,
Mprog,..P=/bin/sh, F=lsDFMoqeu9, S=10/30, R=20/40, D=$z:/,
#####################################
SMTP Mailer specification
#####################################

@(#)smtp.m4.8.33 (Berkeley) 7/9/96

Msmtp,..P=IPC , F=mDFMuX, S=11/31, R=21, E=\r\n, L=990,
Chapter 5. z/OS UNIX sendmail 59

Mesmtp,..P=IPC , F=mDFMuXa, S=11/31, R=21, E=\r\n, L=990,
Msmtp8,..P=IPC , F=mDFMuX8, S=11/31, R=21, E=\r\n, L=990,
Mrelay,..P=IPC , F=mDFMuXa8, S=11/31, R=61, E=\r\n, L=2040,

To suppress this insertion of blank lines use the special m4 command dnl.

divert
When defining divert, m4 uses a technique to divide its input into different parts in order to
later reassemble them in a more logical fashion. For example, all options should be put
together for the output.

The following m4 default diversions are used by sendmail:

(-1) Tells m4 to ignore all lines that follow

(0) Tells m4 to stop diverting and to output immediately

(1) Local host detection and resolution

(2) Rule set 3

(3) Rule set 0

(4) Rule set 0 with UUCP (UNIX to UNIX

(5)

For more information see sendmail, published by O'Reilly & Associates, Inc..

5.3 Running sendmail
Sendmail can run as a client or as a server/daemon.

5.3.1 sendmail's client mode
The simplest way to send messages to other recipients is to create a file and direct this file
and the recipient's name to the sendmail program. See the following sample.

After logging on to the recipient's system RA28 the following information appears:

You may retrieve your mail using the command mail or mailx or any other program.

PESCHKE @ RA39:>/usr/sbin/sendmail rolan28a </u/peschke/mailto28

you have mail in /usr/mail/PESCHKE.
60 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-17 Output from the mail command

In this sample we didn't use an MUA on the sender's site. However, MUAs, like Netscape
Communicator, will provide better support to compose a mail message.

5.3.2 sendmail's server/daemon role
In our case, we invoked the sendmail program in system RA39 to execute the transmission
via SMTP to another sendmail program in system RA28 which was listening to incoming
SMTP connections. The sending of sendmail in RA39 was not started as a daemon. It was
invoked only one time for the sending process and exited after the execution. It acted as a
client to establish the connection with the remote sendmail program in RA28 which was
started as a daemon running in the background. We used the following command to start the
sendmail daemon in RA28 from the OMVS shell.

A quick check with ps -ef will show if the sendmail daemon has been started.

PESCHKE @ RA28:/u/peschke>mail

Message 1:
From PESCHKE@MVS39A.itso.ral.ibm.com Tue Feb 16 14:40:04 1999
Received: from MVS39A.itso.ral.ibm.com (mvs39a.itso.ral.ibm.com 9.24.104
 by MVS28A.itso.ral.ibm.com (8.8.7/8.8.7) with ESMTP id OAA5033168
 for <PESCHKE@MVS28A.itso.ral.ibm.com>; Tue, 16 Feb 1999 14:40:03
Received: (from OMVSKERN@localhost)
 by MVS39A.itso.ral.ibm.com (8.8.7/8.8.7) id OAA50331674
 for rolan28a; Tue, 16 Feb 1999 14:39:57 -0500
Date: Tue, 16 Feb 1999 14:39:57 -0500
From: PESCHKE <PESCHKE@MVS39A.itso.ral.ibm.com>
Message-Id: <199902161939.OAA50331674@MVS39A.itso.ral.ibm.com>

This message was sent from system RA39 to RA28 using the sendmail
client to a sendmail daemon, started with
 /usr/sbin/sendmail -bd
The messages was sent with
/usr/sbin/sendmail rolan28a </u/peschke/mailto28

PESCHKE @ RA28:/u/peschke>/usr/sbin/sendmail -bd
PESCHKE @ RA28:/u/peschke>ps -ef
Chapter 5. z/OS UNIX sendmail 61

You will get more information in case of error situations if you look at the syslog or syslog
daemon. For example:

The way we started the sendmail daemon is, for test purposes, a quick solution. If, however,
you want to have an automatic start of the sendmail daemon, perhaps together with the
TCP/IP start, we recommend:

� Creating a procedure for your PROCLIB

� Adding the procedure's name to the AUTOLOG/ENDAUTOLOG statement in the TCP/IP
profile

USER.PROCLIB samples
You have two choices to invoke the sendmail daemon:

1. Via the symbolic link smtpd

2. Via the symbolic link sendmail and the -bd option

Both invocations lead to the same program:

 ../../usr/lpp/tcpip/sbin/sendmail

 UID PID PPID C STIME TTY TIME CMD
OMVSKERN 1 0 - Feb 15 0:00 BPXPINPR
OMVSKERN 201326594 1 - 11:20:13 0:00 ICADCT
 PESCHKE 150994947 1 - 09:04:55 0:01 OMVS
OMVSKERN 335544324 1 - 18:11:29 12:17 /usr/lpp/tcpip/
proute -t1
OMVSKERN 301989893 1 - 11:20:24 0:00 ICADDCT
OMVSKERN 251658246 1 - 17:13:26 4:16 EZBTMCTL
OMVSKERN 134217735 134217747 - 15:26:18 ttyp0000 0:00 sh -i
OMVSKERN 16777224 1 - Feb 15 4:45 EZACFALG
OMVSKERN 33554441 1 - Feb 15 4:45 EZASASUB
OMVSKERN 184549386 1 - 09:21:22 0:00 /usr/sbin/sendmail -bd
OMVSKERN 11 1 - Feb 15 4:45 EZBTCPIP
 CAMILUC 16777228 1 - Feb 15 0:29 OMVS
OMVSKERN 13 1 - Feb 15 0:00 OPORTMAP

sendmail 620756996 : EZZ751 I: sendmail starting
sendmail 620756996 : gethostbyaddr(192.168.221.28) failed: 0
sendmail 620756996 : gethostbyaddr(192.168.233.28) failed: 0
sendmail 620756996 : gethostbyaddr(192.168.233.28) failed: 0
sendmail 620756996 : gethostbyaddr(192.168.233.29) failed: 0
sendmail 620756996 : gethostbyaddr(192.168.233.29) failed: 0
sendmail 620756996 : EZZ7511I daemon invoked without full pathname; ill -1 won't work
62 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Please compare the following symbolic link attributes:

Figure 5-18 Symbolic link attributes of smtpd

Figure 5-19 Symbolic link attributes of sendmail

 Symbolic Link Attributes

 Pathname : /usr/sbin/smtpd

 External link . . : 0
 File size : 33
 File owner : OMVSKERN(0)
 Group owner . . . : (2736)
 Last modified . . : 11/13/1998 16:24 GMT
 Last changed . . . : 11/13/1998 16:24 GMT
 Last accessed . . : 11/13/1998 16:24 GMT
 Created : 11/13/1998 16:24 GMT
 Link count : 1
 Device number . . : 1
 Inode number . . . : 914B6
 Symbolic link contents:

 ../../usr/lpp/tcpip/sbin/sendmail

 Symbolic Link Attributes

 Pathname : /usr/sbin/sendmail

 External link . . : 0
 File size : 33
 File owner : OMVSKERN(0)
 Group owner . . . : (2736)
 Last modified . . : 11/13/1998 16:24 GMT
 Last changed . . . : 11/13/1998 16:24 GMT
 Last accessed . . : 11/13/1998 16:24 GMT
 Created : 11/13/1998 16:24 GMT
 Link count : 1
 Device number . . : 1
 Inode number . . . : 914B7
 Symbolic link contents:

 ../../usr/lpp/tcpip/sbin/sendmail
Chapter 5. z/OS UNIX sendmail 63

Start procedure with smtpd
When sendmail is invoked with smtp it will run as a daemon.

Figure 5-20 Start procedure with smtpd

The sendmail daemon was invoked using the smtpd symbolic link:

PARM='PGM /usr/sbin/smtpd -v -d'

Additional command line switches:

-v Run in verbose mode

-d Run in debugging mode using debugging switches where sendmail
uses its default category and level which are from category 0 to
category 99 level 1 (0-99.1)

The debug expression that provides the maximum debugging output is:

-d0-99.127

The debugging mode is described in “Debugging mode” on page 67.

 BROWSE USER.PROCLIB(T28ASM) - 01.00 Line 0000
********************************* Top of Data *****************
//T28ASM PROC MODULE='BPXBATCH'
//SMTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM='PGM /usr/sbin/smtpd -v -d'
//STDOUT DD PATH='/tmp/smtpd.stdout',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDERR DD PATH='/tmp/smtpd.stderr',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDENV DD DSN=TCP.TCPPARMS(SM28AENV),DISP=SHR
//SYSERR DD PATH='/tmp/smtpd.syserr',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//CEEDUMP DD DUMMY
******************************** Bottom of Data ***************
64 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Start procedure with sendmail

Figure 5-21 Start procedure with sendmail

The sendmail daemon was invoked using the sendmail symbolic link:

 PARM='PGM /usr/sbin/sendmail -bd'

and the command line switch -bd to run sendmail as daemon in listening mode and in the
background.

5.3.3 Some considerations about sendmail client and server roles
What happens when we try to send mail but the sendmail daemon is not started? For
example, a user tries to send mail from system RA28 to RA39 under the previously
introduced configuration. Will it work? Of course not. The following message on the console is
the proof:

Why was the message not sent? RA28 started processing the message with aliasing the
name. But when sendmail, acting in this case now as a client, tried to set up the TCP
connection to the sendmail in RA39 which should act as a server, it found no server listening
to receive connection requests. Therefore, the message was queued for future delivery.

So be aware of what state sendmail should run in. The client program always does the setup
for the TCP connection while the server or daemon is the program listening for incoming
connection requests.

 BROWSE USER.PROCLIB(T28ASM) - 01.05 Line 00
********************************* Top of Data ***************
//T28ASM PROC MODULE='BPXBATCH'
//SMTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM='PGM /usr/sbin/sendmail -bd'
//STDOUT DD PATH='/tmp/smtpd.stdout',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDERR DD PATH='/tmp/smtpd.stderr',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDENV DD DSN=TCP.TCPPARMS(SM28AENV),DISP=SHR
//SYSERR DD PATH='/tmp/smtpd.syserr',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//CEEDUMP DD DUMMY
******************************** Bottom of Data *************

PESCHKE @ RA28:/u/peschke>/usr/sbin/sendmail -v rolan39a </u/peschke/mailo
rolan39a... aliased to PESCHKE@MVS39A
PESCHKE@MVS39A... Connecting to mvs39a.itso.ral.ibm.com. via esmtp...
PESCHKE@MVS39A... Deferred: Connection refused by mvs39a.itso.ral.ibm.com.
Chapter 5. z/OS UNIX sendmail 65

5.3.4 sendmail's tasks to get mail transmitted
As you saw in our first sample:

1. The sendmail client searches the aliases database for the alias of rolan28a and converted
it into the address PESCHKE@MVS28A.

2. The domain itso.ral.ibm.com is added to the address.

3. The resolver program now searches for the name server with its defined IP address in the
nsinteraddr statement in the TCP.TCPPARMS data set for the member TDATA or in the
/etc/resolv.conf HFS file depending on the current valid OpenEdition environment variable.
You will find the value of this variable in the PROCLIB member of the TCP/IP start
procedure.

Example for pointing to the environment variable:

//T03ATCP PROC PRM='CTRACE(CTIEZB01)'
//TCPIP EXEC PGM=EZBTCPIP,REGION=7500K,TIME=1440,
// PARM=(&PRM,
// 'ENVAR("RESOLVER_CONFIG=//''TCP.TCPPARMS(TDATA03A)''")',
// '/')

4. The resolver program asks for the IP addresses of the sender and the receiver. It also
requests for IP addresses of alternate mailboxes on other machines if the MX records are
defined for that user in the name server's forward file.

5. If the name server is able to provide the requested IP addresses - in our case for host
MVS28A in the domain itso.ral.ibm.com and for MVS39A within the same domain - it
returns this information to the resolver.

6. The resolver hands the IP addresses to the sendmail program.

7. Now the sendmail program has all the information to forward to the TCP layer to set up the
TCP header and to forward to the IP layer to set up the IP header which ends up trying to
set up the TCP connection.

8. If the connection setup was successful the two sendmail programs exchange a certain
command flow, like 220 with the receiver's domain name followed by an EHLO
propagating that the sender is able to understand extended SMTP (ESTMP), and a 250
from MVS28A with a HELO to MVS39A which says that it is pleased to meet you.

The following 250 messages tell the MVS39A what the receiver is able to support. For
example:

250-EXPN, which indicates support of extended mailing lists.

250-8BITMIME, which indicates MIME transport.

250-DSN, which indicates delivery status notification.

The mail header information follow with the data until the closing of the connection.

9. Now the remote sendmail program on system MVS28A starts the local mailer program
which appends the message to the recipient's mail spool file /usr/mail/PESCHKE.

10.The recipient is informed after logon to his machine that mail is in his mail file. The
recipient will issue a command such as mail or mailx to retrieve the message.

Note: Be aware that your data set or file names may be different.
66 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

5.3.5 sendmail extended modes
The sendmail command-line switch allows sendmail to run three groups of mode:

sendmail -v Run in verbose mode

sendmail -d Run in debugging mode

sendmail -b Set operation mode

Sample of verbose mode
As you can see, it shows the process and the command flow between client and daemon.

Figure 5-22 Sendmail client output in verbose mode

Debugging mode
There are many debug flags that allow you very good error analysis. Each debug flag has a
number, also called a category, and a level. A higher level means to print out more detailed
information. Debug flags are set using the -d option.

The syntax is:

debug-flag: -d debug-list

debug-list: debug-option {,debug-option}

PESCHKE @ RA39:/u/peschke>/usr/sbin/sendmail -v rolan28a </u/pesch e/mailto28
rolan28a... aliased to PESCHKE@MVS28A
PESCHKE@MVS28A... Connecting to mvs28a.itso.ral.ibm.com. via esmtp...
220 MVS28A.itso.ral.ibm.com ESMTP Sendmail 8.8.7/8.8.7; Tue, 16 Feb 1999 15:18:13 -0500
>>> EHLO MVS39A.itso.ral.ibm.com
250-MVS28A.itso.ral.ibm.com Hello mvs39a.itso.ral.ibm.com 9.24.104.149 , pleased
to meet you
250-EXPN
250-VERB
250-8BITMIME
250-SIZE
250-DSN
250-ONEX
250-ETRN
250-XUSR
250 HELP
>>> MAIL From:<PESCHKE@MVS39A.itso.ral.ibm.com> SIZE=226
250 <PESCHKE@MVS39A.itso.ral.ibm.com>... Sender ok
>>> RCPT To:<PESCHKE@MVS28A.itso.ral.ibm.com>
250 <PESCHKE@MVS28A.itso.ral.ibm.com>... Recipient ok
>>> DATA
35 Enter mail, end with "." on a line by itself
>>> .
250 PAA33554472 Message accepted for delivery
PESCHKE@MVS28A... Sent (PAA33554472 Message accepted for delivery)
Closing connection to mvs28a.itso.ral.ibm.com.
>>> QUIT
221 MVS28A.itso.ral.ibm.com closing connection
PESCHKE @ RA39:/u/peschke>
Chapter 5. z/OS UNIX sendmail 67

debug-option debug-range {.debug-level}

debug-range integer | integer-integer

debug-level integer

For example:

-d12 Set flag 12 to level 1

-d12.3 Set flag 12 to level 3

-d3-17 Set flags 3 through 17 to level 1

-d3-17.4 Set flags 3 through 17 to level 4

Do not run the debugging mode without defining the category; for example:

/usr/sbin/sendmail -d rolan28a </u/peschke/mailto28

You will get a huge output of information because this -d command line switch defaults to
-d0-99.1. Therefore, we recommend selecting from the more than 180 debugging options (the
appropriate category and level for the -d debugging command-line switch). For example, to
show sender information, use:

or if you want to know which host names have been tried, use:

Also, you may combine categories and determine your desired level. Regard the following
sample where we also added the verbose mode in order to get process information about the
proper execution of the sendmail task.

PESCHKE @ RA39:/u/peschke>/usr/sbin/sendmail -d1.1 rolan28a </u/peschke/mailto28
From person = "PESCHKE"
PESCHKE @ RA39:/u/peschke>

PESCHKE @ RA39:/u/peschke>/usr/sbin/sendmail -d8.5 rolan28a </u/peschke/mailto28
dns_getcanonname(MVS28A, trymx=1)
dns_getcanonname: trying MVS28A.itso.ral.ibm.com (ANY)
dns_getcanonname: MVS28A.itso.ral.ibm.com
PESCHKE @ RA39:/u/peschke>
68 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-23 sendmail client output in debugging mode (part 1 of 2)

Screen output is continued on the following page.

PESCHKE @ RA03:/u/peschke>/usr/sbin/sendmail -v -d0-1.5 rolan28a </u/peschke/mail
Version 8.8.7 1s
 Compiled with: LOG MIME7TO8 MIME8TO7 NAMED_BIND NDBM NETINET NETUNIX
 QUEUE SCANF SMTP XDEBUG
canonical name: MVS03A.itso.ral.ibm.com 3
 a.k.a.: MVS03A
 a.k.a.: MVS03A.itso
 a.k.a.: MVS03A.itso.ral
 UUCP nodename: RA03
 a.k.a.: 9.24.104.113
 a.k.a.: 192.168.250.3
 a.k.a.: 192.168.233.3
 a.k.a.: 192.168.20.3
 a.k.a.: 192.168.210.1
 a.k.a.: 192.168.213.1
 a.k.a.: 192.168.221.3
 a.k.a.: 192.168.235.3
 a.k.a.: 192.168.251.4
 a.k.a.: mvs03c.itso.ral.ibm.com
 a.k.a.: 9.24.104.33
 a.k.a.: 192.168.233.4

============ SYSTEM IDENTITY (after readcf) ====
 (short domain name) $w = MVS03A
 (canonical domain name) $j = MVS03A.itso.ral.ibm.com
 (subdomain name) $m = itso.ral.ibm.com
 (node name) $k = RA03 1e
==
Chapter 5. z/OS UNIX sendmail 69

Figure 5-24 sendmail client output in debugging mode (part 2 of 2)

The following is an explanation of the provided debugging and verbose mode information
shown above:

Explanation of the following remarks:

� Remark valid for one line only 3.

� Remarks valid for a group of lines.

1s = start of the group

1e = end of the group

Description of the remarks:

1s/1e Provided through -d0.1 = print version information

2s/2e Provided through -v = verbose switch

3 Provided through -d0.4 = our name and aliases

rolan28a... aliased to PESCHKE@MVS28A 2
From person = "PESCHKE" 4
main: QDONTSEND 152c2df8=PESCHKE: 5s
 mailer 3 (local), host `'
 user `PESCHKE', ruser `<null>'
 next=0, alias 0, uid 4029, gid 1
 flags=6005<QDONTSEND,QGOODUID,QPINGONFAILURE,QPINGONDELAY>
 owner=(none), home="/u/peschke", fullname="(none)"
 orcpt="(none)", statmta=(none), status=(none)
 rstatus="(none)"
 specificity=0, statdate=Wed Dec 31 19:00:00 1969 5e
PESCHKE@MVS28A... Connecting to mvs28a.itso.ral.ibm.com. via esmtp... 2s
220 MVS28A.itso.ral.ibm.com ESMTP Sendmail 8.8.7/8.8.7; Thu, 25 Feb 1999 21:12:1
3 GMT
>>> EHLO MVS03A.itso.ral.ibm.com
250-MVS28A.itso.ral.ibm.com Hello mvs03a.itso.ral.ibm.com 9.24.104.113 ,please
d to meet you
250-EXPN
250-VERB
250-8BITMIME
250-SIZE
250-DSN
250-ONEX
250-ETRN
250-XUSR
250 HELP
>>> MAIL From:<PESCHKE@MVS03A.itso.ral.ibm.com> SIZE=80
250 <PESCHKE@MVS03A.itso.ral.ibm.com>... Sender ok
>>> RCPT To:<PESCHKE@MVS28A.itso.ral.ibm.com>
250 <PESCHKE@MVS28A.itso.ral.ibm.com>... Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself
>>> .
250 VAA352321560 Message accepted for delivery
PESCHKE@MVS28A... Sent (VAA352321560 Message accepted for delivery)
Closing connection to mvs28a.itso.ral.ibm.com.
>>> QUIT
221 MVS28A.itso.ral.ibm.com closing connection 2e
70 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

4 Provided through -d1.1 = show sender information

5s/5e Provided through -d1.5 = dump the sender address

Become a sendmail -b mode
You will notice that the following modes have been used in previous sections:

-bd Run sendmail as daemon

-bi Run initialize alias database

-bp Print the message queue of deferred mail

-bt Rule testing mode

5.3.6 Logging
sendmail is able to provide the system administrator with a variety of information concerning
mail delivery and forwarding. This is done through the syslog facility. Based on information in
the /etc/syslog.conf file, a warning is issued to a device /dev/console, appended to a file,
forwarded to another host, or displayed on a logged-in user's screen. We used for our tests
the facility to append a file and forward the information to another host. This is described in
detail in Chapter 14, “syslogd” on page 435.

Log level
Syslogd uses two items of information to determine how to handle messages:

1. Facility (syslogd is able to handle many categories, but sendmail uses only one, which is
called mail)

2. Level (describes the degree of severity of warnings)

Just before sendmail issues a warning, it looks at the logging level defined by its LogLevel in
the /etc/sendmail.cf configuration file. We used the log level pre-built through the m4 process,
which shows the entry O LogLevel=9.

You may define a log level from 0 to 98. Following is an overview of the different values:

0 Minimal logging

1 Serious system failures and security problems

2 Communications failures (for example, lost connection)

3 Malformed addresses

4 Malformed qf file names and minor errors

5 A record of each message received

6 SMTP VRFY attempts and messages returned to the original sender

7 Delivery failures, excluding mail deferred because of a lack of
resources

8 Successful delivery

9 Mail deferred because of lack of resources

10 Each key is looked up in a database

11 All nis errors logged

12 SMTP connections

13 Bad user
Chapter 5. z/OS UNIX sendmail 71

14 Connection refusals

15 All incoming and outgoing SMTP commands

16-98 Debugging information

If the severity of the warning is greater than the logging level, nothing is directed to the output.
If the severity of the warning to issue is less or equal to the logging level (lower is more
serious), sendmail issues a message like this:

syslog(pri, message)

Where pri means syslog logging priority, and msg is the text of the warning message.

The following list shows the relationship between log level and syslog priority:

Level Priority

1 LOG_CRIT and LOG_ALERT

2-8 LOG_NOTICE

9-10 LOG_INFO

11+ LOG_DEBUG

Tuning syslog.conf
The syslog.conf file is composed of lines of text that each have the form:

facility.level target

The facility is the type of program that may produce a message. The facility called mail is the
one that sendmail uses.

The level indicates the severity at or above which messages should be handled. These levels
correspond to the LogLevel option levels shown in the previous table. A complete list of
syslog.conf levels used by sendmail follows:

Level Severity (highest to lowest)

alert Conditions requiring immediate correction

crit Critical conditions for which action may be deferred

err0 Other errors

warning Warning messages

notice Non-errors that may require special handling

info Statistical and informational messages

debug Messages used only in a debugging program

The target is one of the four possibilities shown below:

Target Description

@host Forward message to the named host

/file Append message to the named file

user,user Write to user's screens; if logged in

* Write to all logged-in user's screens

Note: You have to distinguish between log level and syslogd priority.
72 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

You have to define in the syslog.conf configuration file

1. What facility has to be logged

2. What level should be logged

3. Where the logged information have to be directed to view

We used the following example in our configuration file:

Figure 5-25 Syslogd configuration for sendmail

 BROWSE -- /etc/syslog.conf.peschke ----------------- Line 00000000
 Command ===> Scrol
********************************* Top of Data **********************
(C) COPYRIGHT International Business Machines Corp. 1995
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
/etc/syslog.conf - control output of syslogd
#
A # sign denotes a comment.
A blank line is ignored.
#
Each line of this file must contain at least two parts:
#
A message source list and a destination
#
The message source list consists of two parts:
#
Part 1. The facility argument
The acceptable entries for facility are:
kern
user
mail
news
uucp
daemon
auth/authpriv
 continued
Part 2. A priority to determine the levels the line applies to
The acceptable entries for priority are:
emerg/panic
alert
crit
err(or)
warn(ing)
notice
info
debug
none
* (All of the above)
#
 continued
mail.info /u/peschke/log
mail.notice peschke
mail.debug /u/peschke/deb
******************************** Bottom of Data *******
Chapter 5. z/OS UNIX sendmail 73

We selected the mail facility.

In the first line we selected the level info and as the target the file /u/peschke/log.

In the second line we selected the level notice and as the target we chose the user peschke
to be informed.

In the third line we selected the level debug and as the target we chose the file
/u/peschke/deb.

The configuration file is defined in the syslogd start procedure. See the following sample:

Figure 5-26 Syslogd start with special configuration file for sendmail

Syslog output
We used the following sendmail command to produce the contents of the debugging file:

/usr/sbin/sendmail -v -d0-1.5 rolan28a </u/peschke/mailo

Figure 5-27 Truncated debugging recording sample

Since this file has a record length of 194 bytes, you don't see the truncated end. We therefore
have prepared the file with its entire contents in multiple lines per entry.

 BROWSE -- /etc/syslogd.start.peschke --------------- Li
 Command ===>
********************************* Top of Data **********
Start the syslog Daemon
export _BPX_JOBNAME='SYSLOGD'
/usr/sbin/syslogd -f /etc/syslog.conf.peschke &
echo -- /etc/syslogd.start script executed
******************************** Bottom of Data ********

 BROWSE -- /u/peschke/deb --------------------------- Line 00000000 Col 0
 Command ===> Scroll ===
********************************* Top of Data ***************************
Mar 1 16:47:51 MVS28A sendmail 318767108 : gethostbyaddr(192.168.221.28)
Mar 1 16:47:51 MVS28A sendmail 318767108 : gethostbyaddr(192.168.233.28)
Mar 1 16:47:51 MVS28A last message repeated 2 times
Mar 1 16:47:51 MVS28A sendmail 318767108 : gethostbyaddr(192.168.233.29)
Mar 1 16:47:51 MVS28A last message repeated 2 times
Mar 1 16:47:57 MVS28A sendmail 318767108 : QAA318767108: from=PESCHKE, s
Mar 1 16:47:57 MVS28A sendmail 318767108 : QAA318767108: to=PESCHKE@MVS2
Mar 1 16:48:11 MVS28A sendmail 402653188 : gethostbyaddr(192.168.221.28)
Mar 1 16:48:11 MVS28A sendmail 402653188 : gethostbyaddr(192.168.233.28)
Mar 1 16:48:11 MVS28A last message repeated 2 times
Mar 1 16:48:11 MVS28A sendmail 402653188 : gethostbyaddr(192.168.233.29)
Mar 1 16:48:11 MVS28A last message repeated 2 times
Mar 1 16:48:16 MVS28A sendmail 402653188 : QAA402653188: from=PESCHKE, s
Mar 1 16:48:16 MVS28A sendmail 402653188 : QAA402653188: to=PESCHKE@MVS2
Mar 1 16:48:38 MVS28A sendmail 486539268 : gethostbyaddr(192.168.221.28)
Mar 1 16:48:38 MVS28A sendmail 486539268 : gethostbyaddr(192.168.233.28)
Mar 1 16:48:38 MVS28A last message repeated 2 times
Mar 1 16:48:38 MVS28A sendmail 486539268 : gethostbyaddr(192.168.233.29)
Mar 1 16:48:38 MVS28A last message repeated 2 times
Mar 1 16:48:44 MVS28A sendmail 486539268 : QAA486539268: from=PESCHKE, s
Mar 1 16:48:44 MVS28A sendmail 486539268 : QAA486539268: to=PESCHKE@MVS2
******************************** Bottom of Data *************************
74 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-28 Edited debugging recording sample

5.4 The popper server
The Qualcomm popper is a mail-delivery agent that uses Post Office Protocol Version 3
(POP3).

5.4.1 Introduction
We discussed the receiving sendmail daemon that appends receiving mail to the user's spool
file. For example:

/usr/mail/PESCHKE

Mar 1 16:47:51 MVS28A sendmail 318767108 : gethostbyaddr(192.168.221.28)
failed: 0
Mar 1 16:47:51 MVS28A sendmail 318767108 : gethostbyaddr(192.168.233.28)
failed: 0
Mar 1 16:47:51 MVS28A last message repeated 2 times
Mar 1 16:47:51 MVS28A sendmail 318767108 : gethostbyaddr(192.168.233.29)
failed: 0
Mar 1 16:47:51 MVS28A last message repeated 2 times
Mar 1 16:47:57 MVS28A sendmail 318767108 : QAA318767108: from=PESCHKE,
size=95, class=0, pri=30095, nrcpts=1, msgid=<199903012147.QAA318767108@
MVS28A.itso.ral.ibm.com>, relay=PESCHKE@localhost
Mar 1 16:47:57 MVS28A sendmail 318767108 : QAA318767108: to=PESCHKE@MVS
28A, delay=00:00:06, mailer=local, stat=queued
Mar 1 16:48:11 MVS28A sendmail 402653188 : gethostbyaddr(192.168.221.28)
failed: 0
Mar 1 16:48:11 MVS28A sendmail 402653188 : gethostbyaddr(192.168.233.28)
failed: 0
Mar 1 16:48:11 MVS28A last message repeated 2 times
Mar 1 16:48:11 MVS28A sendmail 402653188 : gethostbyaddr(192.168.233.29)
failed: 0
Mar 1 16:48:11 MVS28A last message repeated 2 times
Mar 1 16:48:16 MVS28A sendmail 402653188 : QAA402653188: from=PESCHKE,
size=95, class=0, pri=30095, nrcpts=1, msgid=<199903012148.QAA402653188@
MVS28A.itso.ral.ibm.com>, relay=PESCHKE@localhost
Mar 1 16:48:16 MVS28A sendmail 402653188 : QAA402653188:
to=PESCHKE@MVS28A, delay=00:00:05, mailer=local, stat=queued
Mar 1 16:48:38 MVS28A sendmail 486539268 : gethostbyaddr(192.168.221.28)
failed: 0
Mar 1 16:48:38 MVS28A sendmail 486539268 : gethostbyaddr(192.168.233.28)
failed: 0
Mar 1 16:48:38 MVS28A last message repeated 2 times
Mar 1 16:48:38 MVS28A sendmail 486539268 : gethostbyaddr(192.168.233.29)
failed: 0
Mar 1 16:48:38 MVS28A last message repeated 2 times
Mar 1 16:48:44 MVS28A sendmail 486539268 : QAA486539268: from=PESCHKE,
size=95, class=0, pri=30095, nrcpts=1, msgid=<199903012148.QAA486539268@
MVS28A.itso.ral.ibm.com>, relay=PESCHKE@localhost
Mar 1 16:48:44 MVS28A sendmail 486539268 : QAA486539268:
to=PESCHKE@MVS28A, delay=00:00:06, mailer=local, stat=queued
**************************** Bottom of Data ****************************

Note: The directory and file names are case-sensitive.
Chapter 5. z/OS UNIX sendmail 75

This kind of technology allows access to the mail file system for local users only. But today,
many users with laptops need access to their mailing system from remote sites. They also
use such mail programs as Netscape Communicator or Microsoft's Outlook Express instead
of the simple mail program we used in our tests. This means that another technology has to
be used to access the mail spool file from the remote site.

The z/OS popper will allow remote users to access the mail spool file. The z/OS popper is a
server for remote users running POP3 (Post Office Protocol). This also means for the user's
MUA that POP3 is required. Netscape Navigator/Communicator does support POP3.

The popper acts as a mail delivery agent (MDA) which retrieves mail on request from the
MUA from its mail spool file.

5.4.2 z/OS popper implementation
The popper implementation can be divided into four steps:

1. Update /etc/services file.

2. Update /etc/inetd.conf file.

3. Create the directory for the temporary maildrop file.

4. Start inetd.

Update /etc/services file
You need a port for the POP3 defined in /etc/services. We used for our tests the well-known
port 110.

Figure 5-29 /etc/services updated for popper

Update /etc/inetd.conf file
Since the popper will be invoked by INETD you need to add the following information to your
/etc/inetd.conf file:

pop3 stream tcp nowait bpxroot /usr/sbin/popper popper -d

 BROWSE -- /etc/services ---------------------------- Line 00000028 Col
 Command ===> Scroll =
nameserver 42/tcp name # IEN 116
whois 43/tcp nicname
domain 53/tcp nameserver # name-domain server
domain 53/udp nameserver
mtp 57/tcp # deprecated
tftp 69/udp
rje 77/tcp netrjs
finger 79/tcp
link 87/tcp ttylink
supdup 95/tcp
hostnames 101/tcp hostname # usually from sri-nic
pop3 110/tcp popper
sunrpc 111/tcp
sunrpc 111/udp
auth 113/tcp authentication
76 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The description of this entry is:

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
-d means running popper in debugging mode.

Create the directory for the temporary maildrop file
When the popper is invoked through an MUA client request, for example, GET NEW
MESSAGES, popper starts a read of the user's mail file system (/usr/mail/username) where
sendmail has stored the data and puts this data (if there are messages) to a temporary
maildrop file /usr/mail/popper/.username.pop. The contents of this file are transmitted to the
remote client using the existing POP3 TCP connection.

Since the directory doesn't exist, you have to create it, as follows:

/usr/mail/popper/

The popper uses this directory to create and fill the maildrop file.

If you do not specify this directory, you will get an error message:

Start INETD
After updating the inetd.conf file, INETD has to be started:

_BPX_JOBNAME='INETD' /usr/sbin/inetd/ /etc/inetd.conf &

You will get the following message:

A look into the system shows that INETD is running. You also identify the name of the
inetd.conf file.

You may also check with onetstat -a if INETD is running. onetstat will show you the ports used
and the state LISTEN. Port 110 is used for the popper.

EZZ7605I: Unable to open temporary maildrop '/usr/mail/popper/.PESCHKE.pop': m
PESCHKE@ 9.24.106.64 : -ERR System error, can't open temporary file, do you own
Sending line "-ERR System error, can't open temporary file, do you own it?"
+OK Pop server at MVS28A.itso.ral.ibm.com signing off.
Sending line "+OK Pop server at MVS28A.itso.ral.ibm.com signing off."
(v2.3) Ending request from "PESCHKE" at (9.24.106.64) 9.24.106.64

PESCHKE @ RA28:/u/peschke> _BPX_JOBNAME='INETD' /usr/sbin/inetd
/etc/inetd.conf &
 1 452984837
PESCHKE @ RA28:/u/peschke>
 1 + Done _BPX_JOBNAME='INETD' /usr/sbin/inetd /etc/inetd.conf &

OMVSKERN 318767126 1 - Feb 15 8:58 EZBTCPIP
PESCHKE 402653208 1 - 09:48:51 0:03 OMVS
OMVSKERN 50331673 1 - Feb 15 /usr/lpp/tcpip/sbin/omproute -t1
OMVSKERN 369098778 - 14:09:16 0:00 /usr/sbin/inetd /etc/inetd.conf
OMVSKERN 201326620 1 - Feb 15 8:58 EZASASUB
Chapter 5. z/OS UNIX sendmail 77

Figure 5-30 onetstat -a output

Another way to start INETD is through a BPXBATCH job.

All preparations are done on the server side. The popper can be invoked now.

5.4.3 POP3 definitions for the MUA
In our sample, we used Netscape Communicator as the POP3 client to create mail and
retrieve mail from the MVS28A popper Server. The Netscape Communicator was running
under Windows NT 4.0 on a PC which was connected via a token-ring to the system z/OS
MVS28A.

PESCHKE @ RA28:/u/peschke>onetstat -a
MVS TCP/IP onetstat CS V2R7 TCPIP Name: T28ATCP 14:22:41
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
ICAPCFGS 079EE 0.0.0.0..1014 0.0.0.0..0 Listen
PORTMAP1 046D6 0.0.0.0..111 0.0.0.0..0 Listen
T28AFTP1 046F5 0.0.0.0..21 0.0.0.0..0 Listen
T28ANFSS 09A22 0.0.0.0..4007 0.0.0.0..0 Listen
T28ANFSS 09A19 0.0.0.0..4004 0.0.0.0..0 Listen
T28ANFSS 09A25 0.0.0.0..2049 0.0.0.0..0 Listen
T28ANFSS 09A1C 0.0.0.0..4005 0.0.0.0..0 Listen
T28ANFSS 09A1F 0.0.0.0..4006 0.0.0.0..0 Listen
T28ATCP 08C94 192.168.230.1..1074 192.168.230.1..1075 Establsh
T28ATCP 08C92 0.0.0.0..1074 0.0.0.0..0 Listen
T28ATCP 08C93 192.168.230.1..1075 192.168.230.1..1074 Establsh
T28ATCP 046DB 0.0.0.0..23 0.0.0.0..0 Listen
T28INETD 09C85 9.24.104.42..110 9.24.104.111..3862 TimeWait
T28INETD 04704 0.0.0.0..2023 0.0.0.0..0 Listen
T28INETD 04703 0.0.0.0..110 0.0.0.0..0 Listen
T28INETD 04702 0.0.0.0..109 0.0.0.0..0 Listen
VANDEKE9 05E42 0.0.0.0..25 0.0.0.0..0 Listen
ICAPSLOG 079EC 0.0.0.0..514 *..* UDP
PORTMAP1 046D5 0.0.0.0..111 *..* UDP
T28ANFSS 09A0C 0.0.0.0..4006 *..* UDP
T28ANFSS 09A11 0.0.0.0..4007 *..* UDP
T28ANFSS 09A14 0.0.0.0..2049 *..* UDP
T28ANFSS 09A07 0.0.0.0..4005 *..* UDP
T28ANFSS 09A02 0.0.0.0..4004 *..* UDP
PESCHKE @ RA28:/u/peschke>

 BROWSE USER.PROCLIB(T28INETD) - 01.04 Line 0000
********************************* Top of Data *****************
//T28INETD EXEC PGM=BPXBATCH,REGION=4096K,TIME=NOLIMIT,
// PARM='PGM /usr/sbin/inetd'
//STDENV DD DSN=TCP.TCPPARMS(IN28AENV),DISP=SHR
******************************** Bottom of Data ***************
78 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The MUA needs definitions:

1. To identify yourself to the mail world

2. To select the required mail servers and the server type

a. For incoming mail

b. For outgoing mail

All definitions are implemented under the Netscape pop-up list Mail & Newsgroups.

The way to find the Mail & Newsgroups pop-up list
1. Select Edit on the Netscape invitation panel.

2. Select Preferences on Edit's pop-up list.

3. The Preferences will now be shown.

4. Select Mails & Newgroups.

5. The following two lines are important to you:

a. Identity

b. Mail Servers

Figure 5-31 Preferences: Mail & Newsgroups
Chapter 5. z/OS UNIX sendmail 79

Identity
You define here your identification to the mail world.

Figure 5-32 Preferences: Identity

The minimum requirement is the definition of your name and your e-mail address so you can
be reached from the network. In our case, peschke is the user name and nspeschke is the
host name of the PC which is located in the domain itso.ral.ibm.com.

Mail servers
You have to specify the Incoming Mail Server and the Outgoing Mail Server.
80 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-33 Preferences: Mail Servers

Incoming mail server
You define the following on the Mail Server Properties Panel (see Figure 5-34 on page 82):

� Incoming server

� Server type

� User name

In our sample user PESCHKE will receive mail from the server on system MVS28A. There is
only one mail server defined. It is the popper which runs on MVS28A. The server type is
POP3. The user name is PESCHKE, known as the local user in the system MVS28A. This
name is used by the popper to retrieve messages from PESCHKE's mail spool file and to
create the temporary maildrop file with the user name PESCHKE. If there is no incoming mail
server defined you have to select the Add button or if already defined select the Edit button.
Chapter 5. z/OS UNIX sendmail 81

Figure 5-34 Mail Server Properties (General)

This screen allows you to define the:

� Server name

� Server type

� User name

You may define only one POP3 server.

If you don't use the OS/390 popper server you may use the IMAP server type for incoming
mail. For example, mailboxes are used from Internet service providers. In this case multiple
IMAP servers may be defined. IMAP doesn't use the POP3 protocol; it uses SMTP.

On the POP panel, which is not shown here, you can define when to delete the message on
the server.

Outgoing mail server
The client function of your PC establishes an SMTP connection to the defined outgoing mail
server, which is defined here as MVS28A.itso.ral.ibm.com. Within the system MVS28A the
user PESCHKE has to be defined also as local user. Therefore, you need the user's name in
the Netscape definition to identify to the user in the server.
82 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-35 Preferences: Outgoing mail

The minimum definitions are done now. You may use the popper.

5.4.4 Using the popper
Since the popper runs the POP3 protocol you have to use an MUA application working as a
POP3 client. In our case we used the Netscape Communicator. The Netscape Communicator
Messenger allows all notes for the user PESCHKE from the server on MVS28A to be
retrieved by clicking the Get Message button.
Chapter 5. z/OS UNIX sendmail 83

Figure 5-36 Inbox Netscape folder

In our sample you may discover incoming mail with or without attachments.

5.4.5 Using Netscape to send files
While the popper is for incoming mail only you may also use a mail server on another system
(may be installed on another system than the popper, for example on system MVS03A) for
outgoing mail. You invoke the Netscape Communicator Messenger as done before and select
the New Message button and finally create your message. When you have finished
composing the mail, click the Send button. The message will now be transmitted to the server
defined in Preferences for outgoing mail.
84 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-37 Creating a new mail message

5.4.6 popper debugging samples
During our tests we ran into several error situations.

Failed connection to the popper server
The user name was not defined correctly to the Netscape Communicator.

Figure 5-38 Failed connection to the popper server

Debugging turned on
EZZ7608 Unable to get canonical name of client: m
(v2.3) Servicing request from "9.24.106.64" at 9.24.106.64
+OK QPOP (version 2.3) at MVS28A.itso.ral.ibm.com starting.
Sending line "+OK QPOP (version 2.3) at MVS28A.itso.ral.ibm.com starting.
Received: "USER default"
@ 9.24.106.64 : -ERR Unknown username: default
Sending line "-ERR Unknown username: default"
@ 9.24.106.64 : -ERR POP EOF received
Sending line "-ERR POP EOF received"
+OK Pop server at MVS28A.itso.ral.ibm.com signing off.
Sending line "+OK Pop server at MVS28A.itso.ral.ibm.com signing off."
(v2.3) Ending request from "" at (9.24.106.64) 9.24.106.64
Chapter 5. z/OS UNIX sendmail 85

Correct connection

Figure 5-39 Working connection to the popper server

Debugging turned on
(v2.3) Servicing request from "nspeschke.itso.ral.ibm.com" at 9.24.104.11
1
+OK QPOP (version 2.3) at MVS28A.itso.ral.ibm.com starting.
Sending line "+OK QPOP (version 2.3) at MVS28A.itso.ral.ibm.com starting. "
Received: "USER PESCHKE"
+OK Password required for PESCHKE.
Sending line "+OK Password required for PESCHKE."
Received: "pass xxxxxxxxx"
Creating temporary maildrop '/usr/mail/popper/.PESCHKE.pop'
uid = 4029, gid = 1
Checking for old .PESCHKE.pop file
Old .PESCHKE.pop file not found, errno (0)
Msg 1 being added to list
Msg 1 uidl c313e341d7a5167b833153eb4bbfea25 at offset 0 is 700 octets long and h
Msg 2 being added to list
Msg 2 uidl c50b65c95f934fb6c22dc23573be88a1 at offset 748 is 2072 octets long an
Msg 3 being added to list
Msg 3 uidl 91c0636d1513127489f49995e6d8f1e5 at offset 2842 is 3998 octets long a
Msg 4 uidl 61021c4ea6471f83f518d8c64d8c1740 at offset 6772 is 453814 octets long
Msg 5 being added to list
Msg 5 uidl da701c81e2b2df3a60121a5ca1cdd76b at offset 454502 is 928 octets long
Msg 6 being added to list
Msg 1 uidl c313e341d7a5167b833153eb4bbfea25 at offset 0 is 700 octets long and h
Msg 2 uidl c50b65c95f934fb6c22dc23573be88a1 at offset 748 is 2072 octets long an
Msg 3 uidl 91c0636d1513127489f49995e6d8f1e5 at offset 2842 is 3998 octets long a
Msg 4 uidl 61021c4ea6471f83f518d8c64d8c1740 at offset 6772 is 453814 octets long
Msg 5 uidl da701c81e2b2df3a60121a5ca1cdd76b at offset 454502 is 928 octets long
Msg 6 uidl 0a48082f727723c8f47b306e26b49652 at offset 455469 is 691 octets long
+OK PESCHKE has 6 messages (462203 octets).
Sending line "+OK PESCHKE has 6 messages (462203 octets)."
Received: "STAT"
6 message(s) (462203 octets).
+OK 6 462203
Sending line "+OK 6 462203"
Received: "LIST"
+OK 6 messages (462203 octets)
Received: "UIDL"
+OK uidl command accepted.
Sending line "+OK uidl command accepted."
Sending line "1 c313e341d7a5167b833153eb4bbfea25"
Sending line "2 c50b65c95f934fb6c22dc23573be88a1"
Sending line "3 91c0636d1513127489f49995e6d8f1e5"
Sending line "4 61021c4ea6471f83f518d8c64d8c1740"
Sending line "5 da701c81e2b2df3a60121a5ca1cdd76b"
Sending line "6 0a48082f727723c8f47b306e26b49652"
Received: "QUIT"
Performing maildrop update...
Checking to see if all messages were deleted
Opening mail drop "/usr/mail/PESCHKE"
Creating new maildrop "/usr/mail/PESCHKE" from "/usr/mail/popper/.PESCHKE.pop"
Copying message 1.
Copying message 2.
Copying message 3.
Copying message 4.
Copying message 5.
Copying message 6.
+OK Pop server at MVS28A.itso.ral.ibm.com signing off.
Sending line "+OK Pop server at MVS28A.itso.ral.ibm.com signing off."
(v2.3) Ending request from "PESCHKE" at (nspeschke.itso.ral.ibm.com) 9.24.104.111
******************************** Bottom of Data *********************************
86 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Temporary maildrop file cannot be opened
The /usr/mail/popper directory was not defined.

Figure 5-40 Missing /usr/mail/popper directory

5.5 Bind-based Domain Name Server and sendmail
TCCP/IP applications refer to host computers by their IP addresses, but human beings find it
easier to use and remember better host names. Host tables can be used to translate the host
name into an IP address.

The file etc/hosts contains the IP addresses and their correspondent host names. In MVS
TCP/IP, the host tables are built with the hlq.HOSTS.LOCAL data set. After makesite is run
the data sets hlq.HOSTS.ADDRINFO and hlq.HOSTS.SITEINFO are created and contain the
host tables. But when testing the sendmail we disabled the route to the DNSD server. When
the DNS server is unreachable, the name of the destination host cannot be resolved even if
that host name is in the /etc/hosts or in the hql.HOSTS.ADDRINFO and hql.HOST.SITEINFO
and the mail to be sent is queued.

The domain name server resolves the names of the hosts but also supports an advanced
mail routing. Backup hosts can be specified to handle the mail for a destination host that
cannot be reached at a certain time for whatever reason. They can assume mail handling
responsibilities for other hosts.

The complete name of a host, also known as the fully qualified domain name (FQDN), is a
series of labels separated by dots or periods. Each label represents an increasingly higher
domain level within a network. The complete name of a host connected to one of the larger
networks generally has more than one subdomain as shown in these examples:

host.subdomain1.subdomain2.subdomain3.rootdomain
mvs03a.itso.ral.ibm.com

The resolver combines the host name with the domain name to create the FQDN before
sending the name resolution request to the domain name server.

Debugging turned on
EZZ7608 Unable to get canonical name of client: m
(v2.3) Servicing request from "9.24.104.96" at 9.24.104.96
+OK QPOP (version 2.3) at MVS03C.itso.ral.ibm.com starting.
Sending line "+OK QPOP (version 2.3) at MVS03C.itso.ral.ibm.com starting. "
Received: "USER karl"
+OK Password required for KARL.
Sending line "+OK Password required for KARL."
Received: "pass xxxxxxxxx"
Creating temporary maildrop '/usr/mail/popper/.KARL.pop'
uid = 4019, gid = 1
EZZ7605I: Unable to open temporary maildrop '/usr/mail/popper/.KARL.pop':
KARL@ 9.24.104.96 : -ERR System error, can't open temporary file, do you own it?
Sending line "-ERR System error, can't open temporary file, do you own it?
+OK Pop server at MVS03C.itso.ral.ibm.com signing off.
Sending line "+OK Pop server at MVS03C.itso.ral.ibm.com signing off."
(v2.3) Ending request from "KARL" at (9.24.104.96) 9.24.104.96
: gethostbyaddr(192.168.233.4) failed: 0
Chapter 5. z/OS UNIX sendmail 87

The domain name server also provides IP-to-host name mapping using a special domain
called in-addr.arpa. This kind of mapping is useful for producing output (host names) that is
easy to read. The format of an in-addr.arpa name is the reverse octet of an IP address
concatenated with the in-addr.arpa. For example the address 9.24.104.113 has an
in-addr.arpa name of 113.104.24.9 in-addr.arpa.

5.5.1 MX records
The basic idea behind MX records is to send the mail as closely as possible to the final
destination. The domain name server uses this single type of record to provide advanced mail
routing. Originally two records were needed. The MD record (mail destination) and the MF
record (mail forwarder) used in case the destination was unreachable.

The mail server had to do two queries, one for the MD and one for the MF data. The overhead
of running the mail server was higher than running other servers.

The two records were merged into a single record type: MX.

The general format of a resource record in the domain name server is

{name}{ttl}{address_class} record_type record_data

name Specifies the name of the zone or the host system associated with the
record. This field is optional. If the field is blank, the name server uses
the name of the zone or host system from the preceding resource
record. You can use the special character @ in place of a zone name if
the zone name is the same as the zone defined in the boot file.

ttl Specifies the time-to-live value, in number of seconds, which is the
amount of time this record is valid in a cache. This field is optional. The
default is the time-to-live value contained in the minimum field in the
file's start of authority (SOA) record.

address_class Specifies the address class of the entry. The allowable values are HS
(specifies HESIOD class), IN (specifies the TCP/IP-based Internet).
This field is optional. The default is IN.

record_type Should be MX for a record defining a mail exchanger, which identifies
a host capable of acting as a mail exchanger for the domain specified
in the name field.

record_data Contains the preference and the exchanger name. The MX record
type is followed by the mail preference, which is the priority number
used to rank the mail exchangers. Mailers attempt delivery first to the
mail exchangers with the lowest preference value. If delivery fails, the
host with the next to the highest value is tried. The highest possible
preference value is 0, the next highest preference value is 1, and so
on. Hosts with identical preference values are selected randomly. The
exchanger name is the host name running the mail server. Create an
MX record for every host that receives mail.

SeeFigure 5-41 on page 89 for an example of MX record entries.
88 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-41 MX records in the DNS

1 The host with the name MVS03A has the highest preference. Mailers
should attempt to deliver mail first to this mail exchanger.

2 The host with the name MVS28A has the second highest preference.
Mailers should deliver mail to this mail exchanger if the first is not
reachable.

3 The host with name MVS39A has the third priority and mailers should
deliver to this mail exchanger if the two previous servers are not
reachable.

In the figure above we see preferences specified of 0, 5 and 10. Preferences of 0, 50, 100 do
exactly the same as 0, 5, 10. The preferences specified in the MX records also prevent mail
routing loops.

5.5.2 Configuration
The configuration we are using is a Sysplex with three systems running in it, System RA03,
System RA28 and System RA39.

See the configuration with token-ring in Figure 5-42. The other links, 2216, 3746-MAE, 3172,
Ethernet via OSA and dynamic XCF are not shown here. The VIPA address has for now been
put in the HOME statement just after the token-ring addresses. The token-ring addresses are
independent from the VIPA.

mvs03a IN A 9.24.104.113

 IN MX 0 mvs03a 1

 IN MX 5 mvs28a 2

 IN MX 10 mvs39a 3
Chapter 5. z/OS UNIX sendmail 89

Figure 5-42 Configuration with token-ring

Each system runs two TCP/IP stacks:

� System RA03:

First TCP/IP stack:
 TCP/IP jobname : T03ATCP
 host name : MVS03A
 ip address : 9.24.104.113
Second TCP/IP stack:
 TCP/IP jobname : T03CTCP
 host name : MVS03C
 ip address : 9.24.104.33

� System RA28:

First TCP/IP stack:
 TCP/IP jobname : T28ATCP
 host name : MVS28A
 ip address : 9.24.104.42
Second TCP/IP stack:
 TCP/IP jobname : T28CTCP
 host name : MVS28C
 ip address : 9.24.104.43

� System RA39:

First TCP/IP stack:
 TCP/IP jobname : T39ATCP
 host name : MVS39A
 ip address : 9.24.104.149
Second TCP/IP stack:
 TCP/IP jobname : T39BTCP
 host name : MVS39B
 ip address : 9.24.104.38

CF

9.24.104 via O SA
CHPID 78

RA03

M VS03A
T 03AT CP

9.24.104.113

M VS03C
T 03CT CP

9.24.104 .33

RA28

M VS28A
T 28AT CP

9.24.104 .42

M VS28C
T 28CT CP

9.24.104 .43

RA39

M VS39A
T 39AT CP

9.24 .104.149

M VS39B
T 39BT CP

9.24.104.38
90 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Tests have been run with DNS server, SMTPPROC and sendmail on the different systems.

� DNS server on T03ATCP

� SMTPPROC on T03ATCP

� sendmail on T03CTCP

� sendmail on T28ATCP

� sendmail on T28CTCP

� sendmail on T39ATCP

� sendmail on T39BTCP

5.5.3 Files in the BIND-based DNS server
In this section we discuss the files necessary to configure the domain name server. For
detailed information about the Domain Name System you may refer to Chapter 10, “BIND
Domain Name System (DNS)” on page 315. The files are listed below:

� The boot file

� The forward file

� The reverse file

� The loopback file

� The Cache file

The boot file
The default boot file is named.boot and can be found in the /etc directory. We changed the
name to /etc/t03dns.boot. This file is referenced in the start procedure used from the MVS
console or the autolog definition in the TCP/IP profile or in the z/OS UNIX command used to
start the domain name server.

Figure 5-43 DNS boot file /etc/t03dns.boot

1 This entry indicates the directory in which the other files reside; /etc/dnsdata in this case.

2 This entry tells us where the forward file can be found in the /etc/dnsdata directory:
t03dns.for.

;
; /etc/named.boot for T03ATCP
;
; TYPE DOMAIN HOST FILE
;
directory /etc/dnsdata 1
;
primary itso.ral.ibm.com 2 t03dns.for
primary 104.24.9.in-addr.arpa 3 t03dns.rev
primary 105.24.9.in-addr.arpa 4 t03dns.rev.105.24.9
primary 168.192.in-addr.arpa 5 t03dns.rev.168.192
primary 0.0.127.in-addr.arpa 6 t03dns.lbk
cache . 7 t03dns.ca
forwarders 9.24.104.108
options query-log
Chapter 5. z/OS UNIX sendmail 91

3 The reverse file is located in /etc/dnsdata/t03dns.rev for the addresses in the shape of
104.24.9.in-addr.arpa. This means for the address range from 9.24.104.1 to 9.24.104.254,
the domain name server should scan this file.

4 The reverse file /etc/dsndata/t03dns.rev.105.24.9 should be scanned for the address range
from 9.24.105.1 to 9.24.105.254.

5 The reverse file /etc/dnsdata/t03dns.rev.168.192 should be scanned for the address range
from 192.168.0.1 to 192.168.255.254.

6 The file /etc/dnsdata/t03dns.lbk should be consulted for loopback addresses in the range of
127.0.0.1 to shape 127.0.0.254.

7 Points to the cache file /etc/dnsdata/t03dns.ca.

The forward file
The forward file contains the host names the domain name server will be able to translate in
IP addresses and the MX records indicating the names and IP addresses of the mail
exchangers and their preferences. See Figure 5-44 on page 93 for an example.
92 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-44 Forward file /etc/dnsdata/t03dns.for

 ;
 ; /etc/dnsdata/t03dns.for for T03ATCP
 ;
 $ORIGIN itso.ral.ibm.com.
 @ IN SOA mvs03a.itso.ral.ibm.com. vandeke@mvs03a (
 1998051904 ; Serial
 7200 ; Refresh time after 2 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 3600) ; Minimum TTL of 1 hour
 IN NS mvs03a
localhost IN A 127.0.0.1
mvs03a IN A 192.168.250.3
mvs03a IN A 9.24.104.113
 IN MX 0 mvs03a
 IN MX 5 mvs28a
 IN MX 10 mvs39a
ra3anje IN CNAME mvs03a
mvs03c IN A 9.24.104.33
mvs03c IN A 192.168.251.4
mvs03e IN A 9.24.105.76
mvs28a IN A 192.168.252.28
mvs28a IN A 9.24.104.42
 IN MX 0 mvs28a
 IN MX 5 mvs03a
 IN MX 10 mvs39a
mvs28c IN A 9.24.104.43
mvs28c IN A 192.168.253.29
mvs28e IN A 9.24.105.77
mvs39a IN A 192.168.232.39
mvs39a IN A 9.24.104.149
 IN MX 0 mvs39a
 IN MX 5 mvs03a
 IN MX 10 mvs28a
mvs39b IN A 9.24.104.38
mvs39b IN A 192.168.233.40
mvs39e IN A 9.24.105.73
wtr05246 IN A 9.24.104.183
ourmvs IN CNAME mvs03a
Chapter 5. z/OS UNIX sendmail 93

The reverse file

Figure 5-45 Reverse files

8 When the domain name server has to translate an IP address, for example 9.24.104.113, it
looks in the boot file and finds the entry 3 in Figure 5-43 on page 91 104.24.9.in-addr.arpa is
to be found in file /etc/dnsdata/t03dns.rev where the entry 113 is the address we are looking
for and the name is mvs03a.itso.ral.ibm.com.

File /etc/dnsdata/t03dns.rev

@ IN SOA mvs03a.itso.ral.ibm.com. vande e@mvs03a (
 199805190 ; Serial
 7200 ; Refresh time after 2 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 wee
 3600) ; Minimum TTL of 1 hour
 IN NS mvs03a.itso.ral.ibm.com.
113 8 IN PTR mvs03a.itso.ral.ibm.com.
33 IN PTR mvs03c.itso.ral.ibm.com.
2 IN PTR mvs28a.itso.ral.ibm.com.
3 IN PTR mvs28c.itso.ral.ibm.com.
149 IN PTR mvs39a.itso.ral.ibm.com.
38 IN PTR mvs39b.itso.ral.ibm.com.
183 IN PTR wtr05246.itso.ral.ibm.com.

File /etc/dnsdata/t03dns.rev.105.24.9

@ IN SOA mvs03a.itso.ral.ibm.com. vande e@mvs03a (
 199805190 ; Serial
 7200 ; Refresh time after 2 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 wee
 3600) ; Minimum TTL of 1 hour
 IN NS mvs03a.itso.ral.ibm.com.
76 9 IN PTR mvs03e.itso.ral.ibm.com.
77 IN PTR mvs28e.itso.ral.ibm.com.
73 IN PTR mvs39e.itso.ral.ibm.com.

File /etc/dnsdata/t03dns.rev.168.192

@ IN SOA mvs03a.itso.ral.ibm.com. vande e@mvs03a (
 199805190 ; Serial
 7200 ; Refresh time after 2 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 wee
 3600) ; Minimum TTL of 1 hour
 IN NS mvs03a.itso.ral.ibm.com.
3.250 10 IN PTR mvs03a.itso.ral.ibm.com.
4.251 IN PTR mvs03c.itso.ral.ibm.com.
4.221 IN PTR mvs03c.itso.ral.ibm.com.
28.252 IN PTR mvs28a.itso.ral.ibm.com.
29.253 IN PTR mvs28c.itso.ral.ibm.com.
39.232 IN PTR mvs39a.itso.ral.ibm.com.
40.233 IN PTR mvs39b.itso.ral.ibm.com.
94 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

9 When the domain name server has to translate an ip address, for example 9.24.105.76, it
looks in the boot file and finds the entry 4 in Figure 5-43 105.24.9.in-addr.arpa is found in file
/etc/dnsdata/t03dns.rev.105.24.9 where the entry 76 is the address we are looking for and the
name is mvs03e.itso.ral.ibm.com.

10 When the domain name server has to translate an ip address for example 192.168.250.3 it
looks in the boot file and finds the entry 5 in Figure 5-43 168.192.in-addr.arpa is found in file
/etc/dnsdata/t03dns.rev.168.192 where the entry 3.250 is the address we are looking for and
the name is mvs03a.itso.ral.ibm.com.

The loopback file
The loopback file contains the loopback address. This is the address that the host uses to
route queries to itself. The default is 127.0.0.1, but you can configure additional loopback
addresses. In Figure 5-46 the loopback address contains only a 1. This has to added in
reverse order to 0.0.127.in-addr.arpa.

Figure 5-46 The loopback file /etc/dnsdata/t03dns.lbk

The cache file
Figure 5-47 shows the cache or hints file containing the IP addresses of the authoritative root
domain server. The name servers contain the names of name servers in the top-level such as
com, edu,and mil.

Figure 5-47 The cache file /etc/dnsdata/t03dns.ca

5.5.4 Startup
In the profile of TCP/IP we have put the autolog on for the domain name server.

The start procedure USER.PROCLIB(T03DNS) in Figure 5-48 on page 96. points to the
/etc/t03dns.boot file and requests port 53 to be used for the domain name server.

@ IN SOA mvs03a.itso.ral.ibm.com vandeke@mvs03a (
 1998051901 ; Serial
 7200 ; Refresh time after 2 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 3600) ; Minimum TTL of 1 hour
 IN NS mvs03a.itso.ral.ibm.com.
1 IN PTR loopback.

 . IN NS A.ROOT-SERVERS.NET.
 A.ROOT-SERVERS.NET. IN A 9.24.104.109

 AUTOLOG 1
 T03DNS JOBNAME T03DNS1 ; Domain Name Server
Chapter 5. z/OS UNIX sendmail 95

Figure 5-48 Procedure USER.PROCLIB(T03DNS)

The TCPIP.DATA files for the TCP/IP stacks that can be seen in Figure 5-42 contain all the
NSINTERADDR of the TCPIP stack with host name MVS03A and IP address 9.24.104.113.
See Figure 5-49 for the TCPIP.DATA file for TCP/IP stack MVS03A.

Figure 5-49 TCPIP.DATA file in MVS03A

The entry TRACE RESOLVER will produce messages of question and answers from, in our
case, the sendmail to the domain name server.

5.5.5 Operation of DNS server with sendmail
Once the domain name server is running, the sendmail on any of the MVS TCP/IP stacks can
request the translation of a host name or the vice versa. This means the IP address is sent to
the domain name server and the host name is returned. In Figure 5-50 we issued the
sendmail command.

//T03DNS PROC B='/etc/t03dns.boot',P='53'
//***
//T03DNS EXEC PGM=EZANSNMD,REGION=0K,TIME=NOLIMIT,
// PARM='POSIX(ON) ALL31(ON)/ -b &B -p &P'
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSTCPD DD DISP=SHR,DSN=TCP.TCPPARMS(TDATA03A)

TCPIPJOBNAME T03ATCP
RA3ANJE: HOSTNAME MVS03A
DOMAINORIGIN itso.ral.ibm.com
NSINTERADDR 9.24.104.113 ;RA03 nameserver..
NSPORTADDR 53
RESOLVEVIA UDP
RESOLVERTIMEOUT 10
RESOLVERUDPRETRIES 2
TRACE RESOLVER
DATASETPREFIX TCP
MESSAGECASE MIXED
96 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-50 sendmail command in OS/390 UNIX ISHELL

11 Sendmail command is in fact the client. The user wants to send a mail, issues the
command and uses the running daemon.

12 -v activates the verbose mode and creates a lot of output.

13 chris03a is an entry in the alias file of the sendmail daemon of the system where a user
wants to send mail. Here the alias is translated to vandeke@MVS03A.

14 The file /u/vandeke/test6, due to the < sign will be put in a queue, ready to transmit.

 Enter a Shell Command

 Enter a shell command and press Enter.

 Standard output and standard error are redirected to a temporary
 file. If there is any data in the file when the shell command
 completes, the file is displayed.
 sendmail -v chris03a < /u/vandeke/test6
 11 12 13 14________________________________
 __
 __

 F1=Help F3=Exit F6=Keyshelp F12=Cancel
Chapter 5. z/OS UNIX sendmail 97

Figure 5-51 Forward resolution of sendmail's host name

After the forward resolution comes the reverse resolution.

res_querydomain(MVS03A, itso.ral.ibm.com, 1, 1)
res_query(MVS03A.itso.ral.ibm.com, 1, 1)
res_m query(0, MVS03A.itso.ral.ibm.com, 1, 1)
res_send()
HEADER:
.opcode = QUERY, id = 1, rcode = NOERROR
.header flags: rd
.qdcount = 1, ancount = 0, nscount = 0, arcount = 0
QUESTIONS:
.MVS03A.itso.ral.ibm.com, type = A, class = IN
Querying server (# 1) address = 9.24.104.113
got answer:
HEADER:
.opcode = QUERY, id = 1, rcode = NOERROR
.header flags: qr aa rd ra
.qdcount = 1, ancount = 2, nscount = 1, arcount = 2
QUESTIONS:
.MVS03A.itso.ral.ibm.com, type = A, class = IN
ANSWERS:
.MVS03A.itso.ral.ibm.com
.type = A, class = IN, ttl = 1 hour, dlen = 4
.internet address = 9.24.104.113
.MVS03A.itso.ral.ibm.com
.type = A, class = IN, ttl = 1 hour, dlen = 4
.internet address = 192.168.250.3
NAME SERVERS:
.itso.ral.ibm.com
.type = NS, class = IN, ttl = 1 hour, dlen = 9
.domain name = mvs03a.itso.ral.ibm.com
ADDITIONAL RECORDS:
.mvs03a.itso.ral.ibm.com
.type = A, class = IN, ttl = 1 hour, dlen = 4
.internet address = 9.24.104.113
.mvs03a.itso.ral.ibm.com
.type = A, class = IN, ttl = 1 hour, dlen = 4
.internet address = 192.168.250.3
98 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-52 Reverse IP address resolution of primary interface

Several IP addresses are defined in the domain name server for MVS03A. There is an
information exchange between the sendmail and the domain name server.

res_query(113.10 .2 .9.in-addr.arpa, 1, 12)
res_m query(0, 113.104.24.9.in-addr.arpa, 1, 12)
res_send()
HEADER:
.opcode = QUERY, id = 2, rcode = NOERROR
.header flags: rd
.qdcount = 1, ancount = 0, nscount = 0, arcount = 0
QUESTIONS:
.113.104.24.9.in-addr.arpa, type = PTR, class = IN
Querying server (# 1) address = 9.24.104.113
got answer:
HEADER:
.opcode = QUERY, id = 2, rcode = NOERROR
.header flags: qr aa rd ra
.qdcount = 1, ancount = 1, nscount = 1, arcount = 2
QUESTIONS:
.113.104.24.9.in-addr.arpa, type = PTR, class = IN
ANSWERS:
.113.104.24.9.in-addr.arpa
.type = PTR, class = IN, ttl = 1 hour, dlen = 25
.domain name = mvs03a.itso.ral.ibm.com
NAME SERVERS:
.104.24.9.in-addr.arpa
.type = NS, class = IN, ttl = 1 hour, dlen = 2
.domain name = mvs03a.itso.ral.ibm.com
ADDITIONAL RECORDS:
.mvs03a.itso.ral.ibm.com
.type = A, class = IN, ttl = 1 hour, dlen = 4
.internet address = 9.24.104.113
.mvs03a.itso.ral.ibm.com
.type = A, class = IN, ttl = 1 hour, dlen = 4
.internet address = 192.168.250.3
Chapter 5. z/OS UNIX sendmail 99

Figure 5-53 Resolution of all IP addresses of the sendmail host

About 400 entries follow with questions and answers between the sendmail daemon and the
domain name server

res_query(3.250.168.192.in-addr.arpa, 1, 12)
res_m query(0, 3.250.168.192.in-addr.arpa, 1, 12)
res_send()
HEADER:
.opcode = QUERY, id = 3, rcode = NOERROR
.header flags: rd
.qdcount = 1, ancount = 0, nscount = 0, arcount = 0
QUESTIONS:
.3.250.168.192.in-addr.arpa, type = PTR, class = IN
Querying server (# 1) address = 9.24.104.113
got answer:
HEADER:
.opcode = QUERY, id = 3, rcode = NOERROR
.header flags: qr aa rd ra
.qdcount = 1, ancount = 1, nscount = 1, arcount = 2
QUESTIONS:
.3.250.168.192.in-addr.arpa, type = PTR, class = IN
ANSWERS:
.3.250.168.192.in-addr.arpa
.type = PTR, class = IN, ttl = 1 hour, dlen = 25
.domain name = mvs03a.itso.ral.ibm.com
NAME SERVERS:
.168.192.in-addr.arpa
.type = NS, class = IN, ttl = 1 hour, dlen = 2
.domain name = mvs03a.itso.ral.ibm.com
ADDITIONAL RECORDS:
.mvs03a.itso.ral.ibm.com
.type = A, class = IN, ttl = 1 hour, dlen = 4
.internet address = 9.24.104.113
.mvs03a.itso.ral.ibm.com
.type = A, class = IN, ttl = 1 hour, dlen = 4
.internet address = 192.168.250.3
res_query(3.20.168.192.in-addr.arpa, 1, 12)
res_m query(0, 3.20.168.192.in-addr.arpa, 1, 12)
res_send()
HEADER:
.opcode = QUERY, id = 4, rcode = NOERROR
.header flags: rd
.qdcount = 1, ancount = 0, nscount = 0, arcount = 0
QUESTIONS:
.3.20.168.192.in-addr.arpa, type = PTR, class = IN
Querying server (# 1) address = 9.24.104.113
got answer:
HEADER:
.opcode = QUERY, id = 4, rcode = NXDOMAIN
.header flags: qr aa rd ra
.qdcount = 1, ancount = 0, nscount = 1, arcount = 0
QUESTIONS:
.3.20.168.192.in-addr.arpa, type = PTR, class = IN
NAME SERVERS:
.168.192.in-addr.arpa
.type = SOA, class = IN, ttl = 1 hour, dlen = 62
.origin = mvs03a.itso.ral.ibm.com
.mail addr = vande e@mvs03a.168.192.in-addr.arpa
.serial=199805190 , refresh=2 days 17 hours 41 mins 29 secs, retry=2 d
rcode = 3, ancount=0
\es_search failed, errno = 1105
. . .
. . .
100 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

After the domain name server has resolved the name of the sendmail daemon with a large
number of exchanges containing questions and answers, the resolution of the alias is started.

Figure 5-54 Alias resolution

15 The MX records in the domain name server are sent to sendmail.

16 Mail is delivered.

chris03a... aliased to VANDEKE@MVS03A
;; res_querydomain(MVS03A, itso.ral.ibm.com, 1, 255)
;; res_query(MVS03A.itso.ral.ibm.com, 1, 255)
;; res_mkquery(0, MVS03A.itso.ral.ibm.com, 1, 255)
;; res_send()
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65425
;; flags: rd; Ques: 1, Ans: 0, Auth: 0, Addit: 0
;; QUESTIONS:
;;.MVS03A.itso.ral.ibm.com, type = ANY, class = IN

;; ...truncated
;; Querying server (# 1) address = 9.24.104.113
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65425
;; flags: qr aa rd ra; Ques: 1, Ans: 5, Auth: 1, Addit: 6
;; QUESTIONS:
;;.MVS03A.itso.ral.ibm.com, type = ANY, class = IN

;; ANSWERS:
MVS03A.itso.ral.ibm.com..3600.IN.MX.0 mvs03a.itso.ral.ibm.com.
mvs03a.itso.ral.ibm.com..3600.IN.MX.5 mvs28a.itso.ral.ibm.com. 15
mvs03a.itso.ral.ibm.com..3600.IN.MX.10 mvs39a.itso.ral.ibm.com
mvs03a.itso.ral.ibm.com..3600.IN.A.9.24.104.113
mvs03a.itso.ral.ibm.com..3600.IN.A.192.168.250.3

;; AUTHORITY RECORDS:
itso.ral.ibm.com..3600.IN.NS.mvs03a.itso.ral.ibm.com.

;; AUTHORITY RECORDS:
itso.ral.ibm.com..3600.IN.NS.mvs03a.itso.ral.ibm.com.

;; ADDITIONAL RECORDS:
mvs03a.itso.ral.ibm.com..3600.IN.A.9.24.104.113
mvs03a.itso.ral.ibm.com..3600.IN.A.192.168.250.3
mvs28a.itso.ral.ibm.com..3600.IN.A.9.24.104.42
mvs28a.itso.ral.ibm.com..3600.IN.A.192.168.252.28
mvs39a.itso.ral.ibm.com..3600.IN.A.192.168.232.39
mvs39a.itso.ral.ibm.com..3600.IN.A.9.24.104.149

VANDEKE@MVS03A... Connecting to local...
VANDEKE@MVS03A... Sent 16
Chapter 5. z/OS UNIX sendmail 101

5.6 sendmail and SMTP
In this section we describe the tests executed with several sendmail servers and an SMTP
server that has the gateway parameter defined and allows mail to be sent via NJE/RSCS to
our VM system.

Figure 5-55 Configuration of the TCP/IP and NJE/RSCS network

Figure 5-55 shows the configuration during the tests. Three systems are used; systems
RA03, RA28 and RA39. Each system runs two TCP/IP stacks and all are interconnected via
several adapters as explained in the routing chapter in Communications Server for z/OS
V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration, SG24-5227.

1 In System RA28 the TCP/IP stack T28ATCP runs sendmail and the
POP3.

2 In System RA28 the TCP/IP stack T28CTCP runs only sendmail.

3 In System RA03 the TCP/IP stack T03CTCP runs only sendmail.

4 Only system RA03 with TCP/IP stack T03ATCP runs SMTPPROC.

SMTP can also use MX records, in conjunction with the name server, to direct the server
to deliver mail to an alternate host.

With the mail header customization, users can change the rules used to rewrite header
addresses and specify desired header address transformations.

The SMTP server accepts SMSG commands from TSO users. This allows the querying of
SMTP mail delivery queues and statistics, and provides a set of privileged commands for
system administration tasks.

5 System RA39 runs TCP/IP stack T39ATCP with sendmail.

6 System RA39 runs TCP/IP stack T39BTCP with sendmail.

7 JES2 in the RA03 system is using a NJE connection to an RSCS of a
VM system.

1 2 3 4 5 6

7

8

T28ATCP

H ost
m vs28a

sendm ail
pop3

T28ATC P

Host
m vs28c

sendm ail

T03CTCP

Host
m vs03c

sendm ail

T03A TCP

Host
m vs03a

SM TP

T39ATCP

Host
m vs39a

sendm ail

T39BTCP

Host
m vs39b

sendm ail

NJE /RSCS

W TSCPO K

RA28 RA39RA03
102 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The SMTP process can be configured to be a mail server and at the same time to be a
mail gateway between TCP/IP network sites and NJE/RSCS sites.

8 The remote VM system, WTSCPOK, is connected to the RA03
system.

5.6.1 Configuration of SMTPPROC
The following actions were taken in order to run SMTP as a gateway and to be able to send
mail to and from all systems:

1. Autolog and port definitions.

2. Update the SMTPPROC procedure.

3. Update the configuration file.

4. Run the SMTPNJE command.

5. Update the secure tables.

6. Update the alias files in the sendmail servers.

Autolog and port definitions
If we want the SMTP to start automatically at the time the TCP/IP address space starts, the
name of the member of the catalogued procedure should be added after the AUTOLOG
statement in the PROFILE of TCP/IP.

 AUTOLOG 1
 T03ASMTP ; SMTP Server
 ENDAUTOlOG

Port 25 for SMTP is reserved in the hlq.PROFILE.TCPIP

 PORT
 25 TCP T03ASMTP ; SMTP Server

Update the SMTP catalogued procedure
The SMTP cataloged procedure is copied from the samples and updated.
Chapter 5. z/OS UNIX sendmail 103

Figure 5-56 SMTP cataloged procedure

1 Data set created by the SMTPNJE command

2 SMTP configuration file

3 The secure tables

4 Data set containing the SMTP rules. It is commented out here and the defaults are used.

Update the configuration file
The important parameters in the configuration file for the tests with a NJE/RSCS connection
are:

Figure 5-57 Part of configuration file

//SMTP PROC MODULE=SMTP,DEBUG=,PARMS='NOSPIE/', SYSERR=SYSERR
//SETSMSG EXEC PGM=SETSMSG,PARM=ON
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//SYSIN DD DUMMY
//SMTP EXEC PGM=MVPMAIN,
// PARM='&MODULE,PARM=&DEBUG,ERRFILE(&SYSERR),&PARMS',
// REGION=6144K,TIME=1440
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSMDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSERR DD SYSOUT=*
//SYSDEBUG DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//LOGFILE DD SYSOUT=*
//SMTPNJE DD DSN=TCP.SMTPNJE.HOSTINFO,DISP=SHR 1
//CONFIG DD DSN=TCP.TCPPARMS(SMTP03CF),DISP=SHR 2
//SECTABLE DD DSN=TCP.SMTP.SECTABLE,DISP=SHR 3
//*SMTPRULE DD DSN=SMTP.SMTP.RULE,DISP=SHR 4
//SYSTCPD DD DSN=TCP.TCPPARMS(TDATA03A),DISP=SHR

; Configuration for a typical NJE to TCP/IP mail gateway.
GATEWAY 5 ; Accept mail from and deliver mail to NJE host
NJEDOMAIN BITNET ; Pseudo domain name of associated NJE network
NJEFORMAT PUNCH ; NJE recipients receive mail in punch format
NJECLASS B ; spool class for mail delivered by
 ; NJE network
LOCALFORMAT NETDATA ; Local recipients get mail in ne
 ; Netdata allows TSO receive to b
LOCALCLASS B ; Spool class for local mail deli
;
REWRITE822HEADER YES NOPRINT
 ;
SECURE 6
 ;
104 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

5 To be able to use the NJE/RSCS connection to transfer mail from a sendmail to a VM or
MVS system, the gateway parameter must be specified. Sending mail from SMTP to an NJE
or RSCS node via another SMTP server, the destination is composed of
'userid'%'nodeid'@'hostname', where the user ID is the VM/MVS user ID, the node ID is the
NJE/RSCS node ID and the host name is the TCP/IP host name of the gateway. Sending mail
from sendmail to NJE or RSCS, a destination like 'userid'%'nodeid'@'hostname' is not
understood by sendmail and an error message is issued. The mail stays in the gateway.

A solution is to change the configuration file in the sendmail /etc/sendmail.cf using the
/etc/sendmail.mc and the M4 macro preprocessor and adapt the rule sets.

6 Another solution is to specify the secure option. The secure option forces the SMTP to scan
the secure table and to use the nickname.

sendmail has no problem with a destination in the shape of 'nickname'@'hostname'. The
nicknames can be defined in the /etc/aliases.

Run the SMTPNJE command
SMTP must know the name of the NJE/RSCS node where it can send mail. The command
SMTPNJE 'datasetname' (JES2 creates a data set hlq.SMTPNJE.HOSTINFO. and contains
the host names known in the NJE/RSCS network. Following is a small example of the file:

Figure 5-58 SMTPNJE.HOSTINFO file

Update the secure tables
When the secure option is added in the SMTP.CONFIG data set the gateway will run in
secure mode and only the NJE/RSCS addresses in the SMTP security table (the
SMTP.SECTABLE data set) are authorized to send and receive mail.

The format of the file is:

<userid> <nodeid> <nickname> <primary_nick?> <primary_mbox? >

Following is an example of the TCP.SMTP.SECTABLE:

WTSCPOK
RASANJE

RALVSMV6
RA3ANJE

RABANJE
Chapter 5. z/OS UNIX sendmail 105

Figure 5-59 Sample SMTP.SECTABLE file

The nicknames CHRISVM, KARLVM and ROLANDVM are the three users that can receive
mail from the gateway.

When sendmail provides mail with a destination of CHRISVM@MVS03A and MVS03A runs a
gateway SMTP with this secure table CHRISVM@MVS03A is translated into VANDEKER at
WTSCPOK.

The other names, without the nicknames specified, are users defined in the TCP/IP network
and have a format of userid@hostname.

These nicknames are used to build the standard format of the destination in the sendmail and
may also be used in the /etc/aliases.

Update alias files in the sendmail servers
The following example of /etc/aliases is a copy of the /etc/aliases in TCP/IP mvs39a. All the
sendmail servers in our configuration have the /etc/aliases specified.

Figure 5-60 sendmail alias file /etc/aliases

VANDEKE MVS03A
VANDEKE MVS28A
VANDEKE MVS39A
PESCHKE MVS03A
PESCHKE MVS28A
PESCHKE MVS39A
TUTOR MVS03A
TUTOR MVS28A
TUTOR MVS39A
VANDEKER WTSCPOK CHRISVM Y Y
WOZABAL WTSCPOK KARLVM Y Y
PESCHKER WTSCPOK ROLANDVM Y Y

 #sendmail alias file

 #mandatory aliases
 postmaster: root
 mailer-daemon: postmaster
 #other aliases

 Chris03a: VANDEKE@MVS03A
 Chris28a: VANDEKE@MVS28A
 Chris28c: VANDEKE@MVS28C
 Chris39a: VANDEKE@MVS39A
 Chrisvm: CHRISVM@MVS03A 7
 Rolandvm: ROLANDVM@MVS03A
 Roland3a: PESCHKE@MVS03A
 Rolan28a: PESCHKE@MVS28A
 Rolan28c: PESCHKE@MVS28C
 rolan39a: pesch e@MVS39A
 root: woza
 karl: karl@wtr05113.buddha.ral.ibm.com
 nobody: /dev/null
106 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

7 Is the nickname specified in the /etc/aliases in TCP/IP of MVS03C, MVS28A, MVS28C,
MVS39A and MVS39B. Refer to the configuration in Figure 5-55. These TCP/IP stacks are
running sendmail. This nickname is also specified in the secure table of TCP/IP stack
MVS03A in the above section and is translated in the SMTP of MVS03A into VANDEKER at
WTSCPOK.

5.6.2 Mail from sendmail to SMTPPROC
To issue the sendmail command we use the TSO ISHELL and in the TOOLS option we
choose 2. Run shell command(SH)... and entered the sendmail command with the options:

� -v = verbose

� Chris03a = The alias used for VANDEKE@MVS03A

After the command has been issued, we receive the messages of the execution of the
sendmail command due to the -v option.

In Figure 5-61 you can see that the alias chris03a is translated into VANDEKE@MVS03A.
MVS39A is contacting MVS03A and delivers the mail.

Figure 5-61 sendmail command

 Enter a Shell Command

 Enter a shell command and press Enter.

 Standard output and standard error are redirected to a temporary
 file. If there is any data in the file when the shell command
 completes, the file is displayed.
 sendmail -v chris03a < /u/vande e/fr39vdk
 __

. BROWSE -- /tmp/VANDEKE.11: 5:36.1 3171.ishell ------------- Line 00000000 Col 001 087 .

. Command ===> Scroll ===> CSR .

. ************************************ Top of Data ************************************** .

. chris03a... aliased to VANDEKE@MVS03A

. vandeke@mvs03a... Connecting to mvs03a.itso.ral.ibm.com. via esmtp... .

. 220 MVS03A.itso.ral.ibm.com running IBM MVS SMTP CS V2R7 on Wed, 03 Mar 99 11: 6:12 EST .

. >>> EHLO MVS39A.itso.ral.ibm.com .

. 500 Unknown command, 'EHLO'.

. >>> HELO MVS39A.itso.ral.ibm.com .

. 250 MVS03A.itso.ral.ibm.com is my domain name. HELO from IP (9.24.104.149) .

. >>> MAIL From:<VANDEKE@MVS39A.itso.ral.ibm.com> .

. 250 OK .

. >>> RCPT To:<vandeke@mvs03a.itso.ral.ibm.com> .

. 250 OK .

. >>> DATA .

. 35 Enter mail body. End by new line with just a '.'.

. >>> . .

. 250 Mail Delivered .

. vandeke@mvs03a... Sent (Mail Delivered) .

. Closing connection to mvs03a.itso.ral.ibm.com. .

. >>> QUIT .

. 221 MVS03A.itso.ral.ibm.com running IBM MVS SMTP CS V2R7 closing connection .

. *********************************** Bottom of Data ************************************ .
Chapter 5. z/OS UNIX sendmail 107

In the TCP/IP stack MVS03A the SMTP is contacted and the log is displayed in Figure 5-62.

Figure 5-62 Log of T03ASMTP

The extended log in Figure 5-63 is caused by the debug option being turned on, which results
in extra messages send to the log about the SMTP process.

Figure 5-63 Entries in the SMTP log due to the debug option

In MVS System RA03, on the TSO command line we issued the RECEIVE command causing
the mail to be received and added in the dataset VANDEKE.LOG.MISC. The following screen
shows the received mail.

5.6.3 Mail from SMTP to sendmail
Using SMTPNOTE a note is sent from a TCP/IP stack running SMTP to a user in a TCP/IP
stack running sendmail, in this case from user ID VANDEKE@RA3ANJE to
vandeke@mvs39a.

EZA5125I IBM MVS SMTP CS V2R7 on Wed, 03 Mar 99 11:42:29 EST
EZA5461I 03/03/99 11:46:12 TCP (0) Helo Domain: MVS39A.itso.ral.ibm.com 9.24.104.149
EZA5475I 03/03/99 11:46:20 Received Note 00000001 via TCP (0) From
<VANDEKE@MVS39A.itso.ral.ibm.com> 501 Bytes
EZA5476I 03/03/99 11:46:25 Delivered Note 00000001 to VANDEKE at RA3ANJE

EZA5547I 03/03/99 11:46:12 Processing Path String:
 <VANDEKE@MVS39A.itso.ral.ibm.com> and length = 33
EZA5503I 03/03/99 11:46:12 Processing Sender Address:
 <VANDEKE@MVS39A.itso.ral.ibm.com>
EZA5547I 03/03/99 11:46:12 Processing Path String:
 <@MVS03A.itso.ral.ibm.com:vandeke@MVS39A.itso.ral.ibm.com> and length = 58
EZA5504I 03/03/99 11:46:12 Sender Converted to:
 <@MVS03A.itso.ral.ibm.com:vandeke@MVS39A.itso.ral.ibm.com>
EZA5547I 03/03/99 11:46:13 Processing Path String:
 <vandeke@mvs03a.itso.ral.ibm.com> and length = 33
EZA5506I 03/03/99 11:46:13 Resolving Recipient Address:
 <vandeke@mvs03a.itso.ral.ibm.com>
EZA5547I 03/03/99 11:46:20 Processing Path String:
 <VANDEKE@MVS39A.itso.ral.ibm.com> and length = 33
EZA5126I ==

INMR901I Dataset ** MESSAGE ** from T03ASMTP on RA3ANJE
 Received: from MVS39A.itso.ral.ibm.com (9.24.104.149) by MVS03A.itso.ral.ibm.com
 (IBM MVS SMTP CS V2R7) with TCP; Wed, 03 Mar 99 11:46:13 EST
 Received: (from VANDEKE@localhost)
 :by MVS39A.itso.ral.ibm.com (8.8.7/8.8.7) id LAA67108881
 :for vandeke@mvs03a; Wed, 3 Mar 1999 11:46:12 -0500
 Date: Wed, 3 Mar 1999 11:46:12 -0500
 From: VANDEKE <VANDEKE@MVS39A.itso.ral.ibm.com>
 Message-Id: <199903031646.LAA67108881@MVS39A.itso.ral.ibm.com>

 testing from vandeke @ mvs39a/mvs39b to somewhere
108 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-64 SMTP log

In Figure 5-64 the SMTP log contains three parts:

From 1 to 2 the log contains the messages captured by the debug option.

From 2 to 3 the log shows the resolution of the addresses by the domain name server
running in the TCP/IP stack MVS03A.

From 3 to 4 the log of the SMTP address space.

EZA5547I 03/03/99 15:23:56 Processing Path String: <VANDEKE@RA3ANJE> and length = 17
EZA5547I 03/03/99 15:24:02 Processing Path String: <vandeke@mvs39a> and length = 16
2
EZA5506I 03/03/99 15:24:02 Resolving Recipient Address: <vandeke@mvs39a>
EZA9554I * * * * * Beginning of Message * * * * *
EZA9555I Query Id: 1
EZA9556I Flags: 0000 0001 0000 0000
EZA9516I Number of Question RRs: 1
EZA9517I Question 1: mvs39a.itso.ral.ibm.com MX (9500) IN (9507)
EZA9516I Number of Answer RRs: 0
EZA9516I Number of Authority RRs: 0
EZA9516I Number of Additional RRs: 0
EZA9557I * * * * * End of Message * * * * *
EZA5520I 03/03/99 15:24:02# 1 UDP Query Sent, Try: 1 to NS(.1.) := 9.24.104.113
EZA5521I 03/03/99 15:24:02# 1 Adding Request to Wait Queue
EZA5522I 03/03/99 15:24:02# 1 Setting Wait Timer: 10 seconds
EZA5491I 03/03/99 15:24:02 UDP packet arrived from: 9.24.104.113 229/229 bytes.
EZA9554I * * * * * Beginning of Message * * * * *
EZA9555I Query Id: 1
EZA9556I Flags: 1000 0101 1000 0000
EZA9516I Number of Question RRs: 1
EZA9517I Question 1: mvs39a.itso.ral.ibm.com MX (9500) IN (9507)
EZA9516I Number of Answer RRs: 3
EZA9517I Answer 1: mvs39a.itso.ral.ibm.com 3600 MX (9500) IN (9507) 10 mvs28a.itso.ral.ibm.com
EZA9517I Answer 2: mvs39a.itso.ral.ibm.com 3600 MX (9500) IN (9507) 0 mvs39a.itso.ral.ibm.com
EZA9517I Answer 3: mvs39a.itso.ral.ibm.com 3600 MX (9500) IN (9507) 5 mvs03a.itso.ral.ibm.com
EZA9516I Number of Authority RRs: 1
EZA9517I Authority 1: itso.ral.ibm.com 3600 NS (9487) IN (9507) mvs03a.itso.ral.ibm.com
EZA9516I Number of Additional RRs: 6
EZA9517I Additional 1: mvs28a.itso.ral.ibm.com 3600 A (9486) IN (9507) 9.24.104.42
EZA9517I Additional 2: mvs28a.itso.ral.ibm.com 3600 A (9486) IN (9507) 192.168.252.28
EZA9517I Additional 3: mvs39a.itso.ral.ibm.com 3600 A (9486) IN (9507) 192.168.232.39
EZA9517I Additional 4: mvs39a.itso.ral.ibm.com 3600 A (9486) IN (9507) 9.24.104.149
EZA9517I Additional 5: mvs03a.itso.ral.ibm.com 3600 A (9486) IN (9507) 192.168.250.3
EZA9517I Additional 6: mvs03a.itso.ral.ibm.com 3600 A (9486) IN (9507) 9.24.104.113

EZA9557I * * * * * End of Message * * * * *
EZA5507I 03/03/99 15:24:02 MX records left: 96 mvs39a.itso.ral.ibm.com
3
EZA5547I 03/03/99 15:24:02 Processing Path String: <vandeke@mvs39a.itso.ral.ibm.com> and length = 33
EZA5502I 03/03/99 15:24:02 Enqueuing file 00000001 recipient 1 on 192.168.232.39
EZA5126I ==
EZA5125I IBM MVS SMTP CS V2R7 on Wed, 03 Mar 99 15:18:50 EST
EZA5460I 03/03/99 15:23:54 BSMTP Helo Domain: RA3ANJE You check out okay!
EZA5474I 03/03/99 15:23:56 Received Note 00000001 via BSMTP From <VANDEKE@RA3ANJE> 263 Bytes
EZA5476I 03/03/99 15:24:09 Delivered Note 00000001 to <vandeke@mvs39a.itso.ral.ibm.com>
4

Chapter 5. z/OS UNIX sendmail 109

The mail is received by sendmail on TCP/IP stack MVS39A and a mail command on a TSO
ISHELL shows the following screen:

Figure 5-65 SMTPNOTE received with the mail command

5.6.4 Mail from sendmail to NJE/RSCS
As mentioned earlier an alias is used to specify the destination. sendmail in our system is not
set up to support the format userid%nodeid@hostname. We are using the nickname in
sendmail to bypass this.

Following is the output of a sendmail command in a TSO ISHELL screen to send a note to a
VM system via gateway SMTP:

 BROWSE -- /tmp/VANDEKE.15:24:17.782004.ishell ------ Line 00000000 Col 001 072
 Command ===> Scroll ===> CSR
********************************* Top of Data **********************************
Message 1:
From RA3ANJE@MVS03A.itso.ral.ibm.com Wed Mar 3 15:24:09 1999
Received: from MVS03A.itso.ral.ibm.com ([192.168.233.3])
 Wed, 3 Mar 1999 15:24:08 -0500
Message-Id: <199903032024.PAA436207633@MVS39A.itso.ral.ibm.com>
Received: from RA3ANJE by MVS03A.itso.ral.ibm.com (IBM MVS SMTP CS V2R7)
 with BSMTP id 3173; Wed, 03 Mar 99 15:23:54 EST
Date: 3 Mar 99 15:22:16 LCL
From: VANDEKE@MVS03A.itso.ral.ibm.com
To: vandeke@mvs39a.itso.ral.ibm.com
Subject: smtpnote

 send note to myself at mvs39a

Saved 1 message in "/u/vandeke/mbox"
******************************** Bottom of Data ********************************
110 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-66 Mail sent from sendmail to VM

1 chrisvm is the alias specified in the /etc/aliases file of mva39a.

2 CHRISVM is a nickname in the SMTP, which will translate it in SMTP to VANDEKER at
WTSCPOK.

3 Mail is delivered to the gateway SMTP, which should forward it to the NJE/RSCS network.

SMTP receives the mail and changes the destination according to the secure tables as seen
in Figure 5-67.

Figure 5-67 SMTP log

4 The alias CHRISVM has been translated into VANDEKER at WTSCPOK.

Again referring to the configuration in Figure 5-55, the VM system WTSCPOK is connected
via RSCS/NJE to MVS System RA03. The NJENODE name is RA3ANJE.

 1 chrisvm... aliased to 2 CHRISVM@MVS03A
 CHRISVM@MVS03A... Connecting to mvs03a.itso.ral.ibm.com. via esmtp...

 220 MVS03A.itso.ral.ibm.com running IBM MVS SMTP CS V2R7 on Wed, 03 Mar 99 17:21:02 EST
 >>> EHLO MVS39A.itso.ral.ibm.com
 500 Unknown command, 'EHLO'
 >>> HELO MVS39A.itso.ral.ibm.com
 250 MVS03A.itso.ral.ibm.com is my domain name. HELO from IP (9.24.104.149)
 >>> MAIL From:<VANDEKE@MVS39A.itso.ral.ibm.com>
 250 OK
 >>> RCPT To:<CHRISVM@MVS03A.itso.ral.ibm.com>
 250 OK
 >>> DATA
 354 Enter mail body. End by new line with just a '.'
 >>> .
 250 Mail Delivered

 CHRISVM@MVS03A... Sent (Mail Delivered) 3
 Closing connection to mvs03a.itso.ral.ibm.com.
 >>> QUIT
 221 MVS03A.itso.ral.ibm.com running IBM MVS SMTP CS V2R7 closing connection

 03/03/99 17:21:02 Processing Path String: <VANDEKE@MVS39A.itso.ral.ibm.com> and length = 33
 03/03/99 17:21:02 Processing Sender Address: <VANDEKE@MVS39A.itso.ral.ibm.com>
 03/03/99 17:21:02 Processing Path String:
 <@MVS03A.itso.ral.ibm.com:vandeke@MVS39A.itso.ral.ibm.com> and length = 58
 03/03/99 17:21:02 Sender Converted to:
 <@MVS03A.itso.ral.ibm.com:vandeke@MVS39A.itso.ral.ibm.com>
 03/03/99 17:21:02 Processing Path String: <CHRISVM@MVS03A.itso.ral.ibm.com> and length = 33
 03/03/99 17:21:02 Resolving Recipient Address: <CHRISVM@MVS03A.itso.ral.ibm.com>
 03/03/99 17:21:10 Processing Path String: <VANDEKE@MVS39A.itso.ral.ibm.com> and length = 33
 ==
 IBM MVS SMTP CS V2R7 on Wed, 03 Mar 99 15:18:50 EST
 03/03/99 17:21:02 TCP (0) Helo Domain: MVS39A.itso.ral.ibm.com 9.24.104.149
 03/03/99 17:21:10 Received Note 00000002 via TCP (0) From <VANDEKE@MVS39A.itso.ral.ibm.com> 494 Bytes
 03/03/99 17:21:15 Delivered Note 00000002 to VANDEKER at WTSCPOK 4
Chapter 5. z/OS UNIX sendmail 111

A RDR LIST displays the following screen:

Executing the PEEK command for the received file in the VM reader list gives the following
display:

Figure 5-68 Mail from sendmail received at VM

Sendmail to transfer MVS data sets
The files we were sending until now were files on the HFS.

An easy way to transfer sequential files or members of a partitioned data set using sendmail,
is to submit the following job:

Figure 5-69 Sample batch job to send MVS data sets with sendmail

5 A file /tmp/vandeke.mail.file is created.

T03ASMTP OUTPUT PUN B T03ASMTP RA3ANJE NONE 10 03/03 17:19:24

 0226 PEEK A0 V 80 Trunc=80 Size=10 Line=0 Col=1 Alt=0
File T03ASMTP OUTPUT from T03ASMTP at RA3ANJE Format is PUNCH.
* * * Top of File * * *
Received: from MVS39A.itso.ral.ibm.com (9.24.104.149) by MVS03A.itso.ral.ibm.com
 (IBM MVS SMTP CS V2R7) with TCP; Wed, 03 Mar 99 17:21:02 EST
Received: (from VANDEKE@localhost)
;by MVS39A.itso.ral.ibm.com (8.8.7/8.8.7) id RAA134217749
;for chrisvm; Wed, 3 Mar 1999 17:21:02 -0500
Date: Wed, 3 Mar 1999 17:21:02 -0500
From: VANDEKE <VANDEKE@MVS39A.itso.ral.ibm.com>
Message-Id: <199903032221.RAA134217749@MVS39A.itso.ral.ibm.com>

testing from vandeke @ mvs39a/mvs39b to WTSCPOK
* * * End of File * * *

 //VANDEKE1 JOB (SWCE),'VANDEKE',
 // NOTIFY=VANDEKE,
 // CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
 //**
 //S1 EXEC PGM=IKJEFT01,DYNAMNBR=30
 //OUTPUT DD PATH='/tmp/vandeke.mail.file', 5
 // PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
 // PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
 //INPUT DD DISP=SHR,DSN=VANDEKE.JCL(SENDMAIL) 6
 //SYSTSPRT DD SYSOUT=A
 //SYSTSIN DD DATA,DLM='*/'
 OCOPY INDD(INPUT) OUTDD(OUTPUT) TEXT
 */
 //***
 //S1 EXEC PGM=BPXBATCH,REGION= 4096K,TIME=NOLIMIT,
 // PARM='PGM /usr/lpp/tcpip/sbin/sendmail -v Chrisvm@mvs03a' 7
 //STDOUT DD PATH='/u/vandeke/send.report', 8
 // PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
 // PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
 //STDIN DD PATH='/tmp/vandeke.mail.file', 9
 // PATHOPTS=(ORDONLY),
 // PATHDISP=(DELETE,DELETE)
112 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

6 The file we want to transfer with sendmail is copied into the HFS file /tmp/vandeke/mail.file.

7 sendmail is invoked and sends the contents of /tm/vandeke.mail.file to the alias
chrisvm@mvs03a, who is the user VANDEKER at WTSCPOK in the VM system as seen
above.

8 The log will be appended to file /u/vandeke/send.report.

Figure 5-70 sendmail log of the batch job

9 The file /tmp/vandeke.mail.file created in 5 will be deleted after execution of the job.

5.6.5 Mail from NJE/RSCS nodes to sendmail
To send a note via an SMTP gateway to a TCP/IP host from an NJE/RSCS node you should
create a sequential data set on MVS or VM with the proper SMTP-defined content and
transmit it to the SMTP gateway.

This example was used to send a note from the WTSCPOK VM system to a user in the
TCP/IP network:

 BROWSE -- /u/vandeke/send.report -------------------------- Line 00000000 Col 001 087
 Command ===> Scroll ===> PAGE
 ************************************ Top of Data **************************************
 Chrisvm@mvs03a... Connecting to mvs03a.itso.ral.ibm.com. via esmtp...
 220 MVS03A.itso.ral.ibm.com running IBM MVS SMTP CS V2R7 on Wed, 2 Feb 99 17:51:27 EST
 >>> EHLO MVS28A.itso.ral.ibm.com
 500 Unknown command, 'HELO'
 >>> HELO MVS28A.itso.ral.ibm.com
 250 MVS03A.itso.ral.ibm.com is my domain name. HELO from IP (9.24.104.42)
 >>> MAIL From:<VANDEKE@MVS28A.itso.ral.ibm.com>
 250 OK
 >>> RCPT To:<Chrisvm@mvs03a.itso.ral.ibm.com>
 250 OK
 >>> DATA
 35 Enter mail body. End by new line with just a '.'
 >>> .
 250 Mail Delivered
 Chrisvm@mvs03a... Sent (Mail Delivered)
 Closing connection to mvs03a.itso.ral.ibm.com.
 >>> QUIT
 221 MVS03A.itso.ral.ibm.com running IBM MVS SMTP CS V2R7 closing connection
 *********************************** Bottom of Data ************************************
Chapter 5. z/OS UNIX sendmail 113

Figure 5-71 File to be sent from VM to sendmail

You send the file created in VM with the normal sendfile command:

 Sendfile VANDEKE NOTE A to T03ASMTP 1 AT RA3ANJE 2

1 is the name of the SMTP gateway

2 is the name of the NJENODE

The receiver in this scenario is a sendmail in TCP/IP stack MVS28A .

In the SMTP log, the messages tell us the mail is forwarded to the destination host.

Figure 5-72 SMTP log of transfer from NJE to sendmail

The note will have the following look when it arrives in this sendmail:

helo mvs03a
mail from :<VANDEKER@WTSCPOK>
rcpt to:<vandeke@mvs39a>
data
Date: March 1999, 16:19:53 ETW
From: VANDEKER@WTSCPOK
To: vandeke@mvs39a.itso.rl.ibm.com
Subject: mail from VM to sendmail
This mail is coming from WTSCPOK
Best regards

EZA5460I 03/04/99 10:33:26 BSMTP Helo Domain:
 mvs03a I've never heard of you!
EZA5474I 03/04/99 10:33:29 Received Note 00000002 via BSMTP From
 <VANDEKER@WTSCPOK> 301 Bytes
EZA5476I 03/04/99 10:33:39 Delivered Note 00000002 to
 <vandeke@mvs39a.itso.ral.ibm.com>
114 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-73 Mail received in MVS39A

Figure 5-73 shows a TSO OMVS session with the command mail executed and the note
received.
Chapter 5. z/OS UNIX sendmail 115

Figure 5-74 Mail received in Lotus Notes from an RSCS node

Figure 5-74 shows a Lotus Notes session and the mail received from a VM RSCS node. This
mail passed through the SMTP gateway "mvs03a" and several mail servers.

5.7 sendmail and Lotus Notes
We had the possibility to send mail from MVS running sendmail to a Lotus Notes user. In
Figure 5-75, a note is sent from MVS RA28, TCP/IP stack MVS28A to a Lotus Notes user.
116 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 5-75 Sending mail

The DNS server running in MVS03A is the first DNS server contacted. Several domain name
servers are contacted before the mail can be sent. Following are the messages issued due to
the -v option in the sendmail command:
Chapter 5. z/OS UNIX sendmail 117

Figure 5-76 Verbose output of mail sent to Lotus Notes

1 Another domain name server is contacted to find this destination.

2 The mail is delivered to the destination.

ChrisVan... aliased to Chris_Vandekerckhove@be.ibm.com
Chris_Vandekerckhove@be.ibm.com... Connecting to
 d06relay01.portsmouth.uk.ibm.com. via esmtp... 1
220 d06relay01.portsmouth.uk.ibm.com ESMTP Sendmail 8.8.7.NCA v1.8;
 Fri, 5 Mar 1999 22:45:06 GMT
>>> EHLO MVS28A.itso.ral.ibm.com
250- d06relay01.portsmouth.uk.ibm.com Hello mvs28a.itso.ral.ibm.com
 "9.24.104.42", pleased to meet you
250-8BITMIME
250-SIZE 10000000
250-DSN
250-ONEX
250-ETRN
250-XUSR
250-HELP
>>>> MAIL From:vandeke@mvs28a.itso.ral.ibm.com SIZE-48
250 <vandeke@mvs28a.itso.ral.ibm.com>... Sender ok
>>>RCPT To:<Chis_Vandekerckhove@be.ibm.com>
250 <Chis_Vandekerckhove@be.ibm.com>... Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself 2
>>> .
250-WAA22243 Message accepted for delivery
Chris_Vandekerckhove@be.ibm.com. Sent (WAA22234 Message accepted)
Closing connection to d06relay01.portsmouth.uk.ibm.com
>>> QUIT
221 d06relay01.portsmouth.uk.ibm.com closing connection
118 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

5.7.1 Submit a job to send a mail
In the same way, a job can be submitted to send a mail to a mail server. The following job was
used to transfer a small sequential data set to a Lotus Notes user.

Figure 5-77 Job to send a mail to a Lotus Notes user

3 The -v is the verbose option and is not necessary if you do not want all the messages.
ChrisVan is the alias defined in the /etc/aliases. Using the complete name and no alias works
as well.

The file that is specified in the //INPUT DD in the JCL contains the note to be sent. The first
step in the JCL copies the sequential file to an HFS file with ocopy. The second step uses
sendmail to send the contents of this hfs file to the Lotus Notes user.

//VANDEKE1 JOB (SWCE),’VANDEKE’,
// NOTIFY=VANDEKE
// CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
//***
//S1 EXEC PGM=IKJEFT01,DYNAMNBR=30
//OUTPUT DD PATH=’/tmp/vandeke.mail.file’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//INPUT DD DISP=SHR,DSN=VANDEKE.NOTE
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD DATA,DLM=’*/’
 OCOPY INDD(INPUT) OUTDD(OUTPUT) TEXT
*/
//S1 EXEC PGM=BPXBATCH,REGION=4096k,TIME=NOLIMIT,
 PARM=’PGM /usr/lpp/tcpip/sbin/sendmail -v ChrisVan’ 3
//STDOUT DD PATH=’/u/vandeke/send.report’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDIN DD PATH=’/u/vandeke.mail.file’,
// PATHOPTS=(ORDONLY),
// PATHDISP=(DELETE,DELETE)
Chapter 5. z/OS UNIX sendmail 119

120 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Part 3 File-related
applications

In this part, we describe file-related protocols such as the File Transfer Protocol (FTP) and the
Network File System (NFS).

Part 3
© Copyright IBM Corp. 1998 2002 121

122 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 6. File Transfer Protocol (FTP)

This chapter introduces and guides you through the implementation and use of one of the
most frequently used applications in the TCP/IP protocol suite. It highlights the new features
introduced by CS for z/OS V1R2 IP and details their implementation.

6

© Copyright IBM Corp. 1998 2002 123

6.1 Introduction to FTP
File Transfer Protocol (FTP) is the name of the Unix application and the protocol which allows
you to transfer files in a TCP/IP network. There are two machines involved in a FTP session,
namely the local host which is the client machine and a remote host which is the server. Using
the FTP command and subcommands, you can sequentially access multiple hosts without
leaving the FTP environment. The local host or FTP client is the TCP/IP host that initiates the
FTP session. The FTP server is the TCP/IP host to which the client’s session is established.
This host provides the responses to the client’s commands and subcommands. CS for z/OS
V1R2 IP FTP, includes translation facilities for ASCII/EBCDIC translation to support host file
transfer to and from a variety of host platforms and operating systems.

An FTP client connects to an FTP server using the TCP protocol. The FTP protocol requires
the FTP server to use two TCP ports. One TCP port is called the control connection over
which all control information, such as user ID and password, is transmitted. All FTP
commands, subcommands, and responses are exchanged over this connection. Well-known
port 21 is used as the default for the control connection port on the FTP server. The other
TCP port is called the data connection, which is used for transferring the contents of files
based on the FTP client's requests. The output of the ls or dir FTP subcommands are also
sent over this data connection. Well-known port 20 is used as the default for the data
connection port on the FTP server. Refer to z/OS V1R2.0 CS: IP User’s Guide and
Commands, SC31-8780 for details about FTP usage, commands, and subcommands.

During an FTP session, it is extremely important to keep track of which machine is the client
and which is the server, because this will determine whether you use a get command or a put
command to move files. The get command is always used to copy files from the server to the
client and the put command is used to copy files from the client to the server.

6.2 CS for z/OS IP: FTP overview
This section outlines the FTP server and client included with CS for z/OS IP. Additional
information on the subject can be found in z/OS V1R2.0 CS: IP Configuration Reference,
SC31-8776.

6.2.1 Server and client overview
CS for z/OS V1R2 IP continues with the trend of providing only a single version of the FTP
server based on the TCP/IP for MVS OpenEdition Applications Feature. Note that in CS for
OS/390 V2R5 IP and later the FTP server and client exploit UNIX System Services and
provides access to both traditional MVS data sets and UNIX System Services hierarchical file
system(HFS) files. It supports all functions found in the C-FTP server in TCP/IP Version 3
Release 2 and replaces it. The fact that the server works with both standard MVS data sets
and HFS files also means that functions from the C-FTP server, such as JES file type and
SQL file type functions, are supported by the CS for z/OS IP FTP server for both standard
MVS data sets and hierarchical file system files. You can run SQL queries based on SQL
statements in hierarchical file system files, or you can submit MVS batch jobs written in JCL
from a file in the hierarchical file system. CS for OS/390 V2R5 IP and later provides a new
FTP client written in C language. The FTP client has the same functions of the Pascal FTP
client that are provided in TCP/IP V3R2 for MVS, with the addition of the support of UNIX
System Services hierarchical file system. The new FTP client requires the LE runtime library.
The FTP client in an IP network may use CS for z/OS IP FTP server for the following major
services:
124 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

� Transferring files between the client TCP/IP host and the z/OS system.

� Submitting batch jobs to the MVS job queues, displaying the status of batch jobs and
retrieving the output for completed jobs.

� Submitting SQL queries to DB2 and retrieving the results of the queries.

Communications Server for z/OS IP is also delivered with translation tables supporting many
different languages, including both single-byte character sets (SBCS) and double-byte
character sets (DBCS). In CS for OS/390 V2R5 IP and later the FTP implementation supports
the transfer of Unicode data encoded in UCS-2, which is a character encoding defined by ISO
10646. UCS-2 is a 16-bit character code capable of encoding all of the characters of the
major scripts used throughout the world.

The FTP server does not use InetD as a listener process. The FTP server in CS for z/OS IP
uses its own daemon (the listener) and server processes. Refer to Figure 6-1 on page 125 for
an overview. The FTP server daemon is called ftpd, and is executed from the SEZALINK
library of z/OS. The hierarchical file system (HFS) contains a non-executable dummy module
/usr/lpp/tcpip/sbin/ftpd with the sticky bit file attribute turned on. (When the sticky bit is set on,
UNIX System Services searches for the program in the user’s STEPLIB, the link pack area, or
the link list concatenation.) The daemon performs initialization, listens for new connections
and starts a separate server process for each connection. The new server process is created
for each client connection to process the client commands in the background. The server
address space is started with the ftpdns program, which is also loaded from the SEZALINK
library of z/OS.

Figure 6-1 FTP server implementation overview

6.2.2 Process flow of UNIX System Services FTP
The FTP server will not complete initialization unless the CS for z/OS IP stack is enabled in
the IFAPRDxx parmlib member. The FTP client also requires the CS for z/OS IP stack to be
enabled in IFAPRDxx. Otherwise, client invocation ends with error message EZA2800E.

FTPD Daemon
(Listener)

FTP
Server

AF_INET PFS

fork() and execv() per
client that connects

initial connect() AF_INET socket

FTP Client

HFS files

MVS data
sets
Chapter 6. File Transfer Protocol (FTP) 125

The FTP.DATA file is read when ftpd is started and the translate tables are set up in the initial
address space which has access to DD statement allocation. A process is then forked to run
in the background but an execv() is not done at this stage. Therefore, it is an exact copy of the
original address space and has all the configuration data. When a client connects, the
daemon forks a new address space to handle the client session. In that new address space
an execv() is done to load the ftpdns module, and the configuration parameters are passed in
a parameter list over the execv(). Refer to Figure 6-2 on page 126 for an overview.

Figure 6-2 Process flow of OS/390 UNIX FTP server

When a new FTP client connects to the FTPD daemon process, the FTP daemon forks
another address space that uses the execv() services to start the connection-specific server
program, the ftpdns program. When the FTP daemon process forks an FTP server process, a
new job name is generated by UNIX System Services. If the original job name is less than 8
characters, UNIX System Services adds a digit between 1 and 9. At TCP/IP startup this will
always be a 1. So in most cases the FTP daemon address space would be named FTPD1. If
your original job name is 8 characters, UNIX System Services uses the same job name for
the background job. Similarly, every instance of the FTP server address space will have a
name generated by UNIX System Services. Refer to z/OS V1R2.0 UNIX System Services
Planning, GA22-7800 for details about how job names are generated in UNIX System
Services.

The FTP daemon may be registered in a DNS/WLM sysplex connection balancing group.
This is necessary if FTP is to participate in a group of FTP servers in the same sysplex, which
will allow clients to attach to them in a balanced manner. You may use the
WLMCLUSTERNAME statement in the FTP.DATA configuration data set to specify the group
name registered to a DNS/WLM sysplex group. Up to 16 different groups are supported for
the FTP server.

S FTPD FTPD
FTPD1

FTPDn

FTPDn

client client

Listener Process

FTP.DATA

HFS
files MVS

data sets

stop or
modify

command

fork()
exec()

fork()
exec()

(n=1-9)

connect() connect()

data and control
connection

data and control
connection
126 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

6.2.3 SITE and LOCSITE parameters
Each operating system has unique requirements for allocating files or data sets in its file
system. These requirements differ so widely between operating systems that it has been
impossible to develop a single protocol that embraces all requirements from all operating
systems.

In order to cover all requirements, the FTP protocol implements a SITE command, which
enables an FTP client to send imbedded parameters to the FTP server over the control
connection.

Figure 6-3 When are SITE parameters used? - z/OS FTP server

When an FTP client issues a put to transfer a file to the OS/390 FTP server, the FTP server
needs specific parameters in order to allocate a data set. These parameters include record
format (RECFM), record length (LRECL), unit-type (UNIT), and blocksize (BLKSIZE), plus
many others, depending on the specific operation requested. The FTP server has a set of
default values for all the parameters it may need. The client can change many of these values
for the current FTP session via the SITE command.

Figure 6-4 When are LOCSITE parameters used? - z/OS FTP client

FTP Client
FTP

Server

SITE parameters

PUT a file

Default
SITE
parameters

z/OS

HFS file or
MVS data sets

FTP Client FTP
Server

GET a file

Default
LOCSITE
parameters

z/OS

HFS file or
MVS data sets
Chapter 6. File Transfer Protocol (FTP) 127

If you use the z/OS FTP client function and you retrieve a file from an FTP server somewhere
in your IP network, the FTP client function also needs a set of parameters similar to those of
the z/OS FTP server, in order to allocate a data set in MVS. Again a set of default values
exists for the z/OS FTP client, but you as a user may change these via a LOCSITE command.

You do not necessarily need to specify all the allocation attributes of an MVS data set; you
may instead use the Storage Management System (SMS) of IBM Data Facility Systems
Managed Storage. You have in both the SITE and the LOCSITE commands an option to specify
values for the three main SMS constructs:

1. Data class (site/locsite dataclass=) is a collection of data set allocation attributes, for
example, space requirements, record format, data set type, or retention period.

2. Management class (site mgmtclass=) is a collection of management attributes, for
example, migration rules, backup frequency, or rules for release of unused space.

3. Storage class (site storclass=) is a collection of service attributes, for example,
availability requirements and requested storage subsystem response time.

Consult your storage administrator for a list of available SMS constructs in your installation.

In addition to passing data set allocation parameters, the FTP implementation also uses the
SITE and LOCSITE commands to enable or disable special services, which are outside the
scope of the original FTP protocols, such as submitting jobs to JES or initiating DB2 queries.

6.2.4 Specification of FTP default values
Default values for data set and disk parameters can be specified using the FTP configuration
data sets.

For the FTP client, the default LOCSITE parameters are specified in an installation-wide
default configuration data set, or in a user-specific configuration data set. For the FTP server,
the default SITE parameters are specified in an FTP server configuration data set.

Default FTP Client LOCSITE parameters
When a user on your z/OS system starts the FTP client function, a set of default local SITE
parameters are in effect. The user can change these parameters during the FTP session by
using the LOCSITE command.

The FTP client function searches for a configuration data set with these default parameters
using the following search hierarchy.

Table 6-1 FTP.DATA search order - FTP client

TSO Environment UNIX Environment

1. SYSFTP DD statement

2. tso_prefix.FTP.DATA

3. userid.FTP.DATA

4. /etc/ftp.data

5. SYS1.TCPPARMS(FTPDATA)

6. tcpip_hlq.FTP.DATA

1. $HOME/ftp.data

2. userid.FTP.DATA

3. /etc/ftp.data

4. SYS1.TCPPARMS(FTPDATA)

5. tcpip_hlq.FTP.DATA
128 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

If none of these data sets is found, the FTP client will use a set of hard-coded default values
for the local SITE parameters.

The FTP.DATA configuration data set may be shared between the server and the client
function in z/OS. If you need to use different parameters for the server and your clients, you
can make an explicit allocation in the server JCL of the server SITE parameters, and let your
clients find their default local SITE parameters using dynamic allocation of either
SYS1.TCPPARMS(FTPDATA) or datasetprefix.FTP.DATA.

If a user needs to use a different setup, that user may make a temporary modification by
means of the LOCSITE command, or a permanent modification by creating a userid.FTP.DATA
configuration data set. Review the hlq.SEZAINST(FTCDATA) sample member for client SITE
parameters.

For details about both the SITE, LOCSITE, and FTP.DATA client statement parameters,
consult z/OS V1R2.0 CS: IP User’s Guide and Commands, SC31-8780.

Default FTP Server SITE parameters (FTPDATA)
The FTP server uses a set of default SITE parameters.

When a client connects to the z/OS FTP server, the default SITE parameters will become the
actual SITE parameters for that FTP session, unless the client during the session changes
them by means of an FTP client SITE command.

During startup, the server will look for your default SITE parameters in an FTP configuration
data set. The search order for FTP.DATA for the server follows:

The FTP.DATA search order is as follows:

1. A SYSFTPD DD-name allocation

2. jobname.FTP.DATA or userid.FTP.DATA

3. /etc/ftpd.data

4. SYS1.TCPPARMS(FTPDATA)

5. datasetprefix.FTP.DATA

The search step for FTP.DATA that uses a job name as high-level qualifier will use the original
job name and not the UNIX System Services generated FTP daemon job name. This original
job name will be used to search for both FTP.DATA and translation tables, for example
FTPD.FTP.DATA and FTPD.STANDARD.TCPXLBIN. If the ftpd daemon program were
started from the UNIX System Services shell, these search steps would use the user ID of the
process that started the listener program or the value of the _BPX_JOBNAME environment
variable. The datasetprefix used in the last search step comes from the UNIX System
Services resolver configuration file, in our setup the SYSTCPD DD statement. If none of

Note: Not all SITE parameters can be specified in the FTP.DATA file and not all parameters
specified in the FTP.DATA file can be changed with SITE or LOCSITE commands.

Note: Some systems do not support the SITE command. In order to pass the SITE
parameters to MVS, the user has to enter the QUOTE command in front of SITE. To pass, for
example, the RECFM=U parameter to MVS, the user might have to type in:

 quote site recfm=u
Chapter 6. File Transfer Protocol (FTP) 129

these data sets is found, the server will use a set of hard-coded default values. Review the
hlq.SEZAINST(FTPSDATA) sample member for server site parameters. Also review the z/OS
V1R2.0 CS: IP Configuration Reference, SC31-8776 for details about the FTP.DATA
configuration statements.

6.2.5 FTP translate tables
When either the FTP client or the FTP server is in an FTP session with z/OS is an ASCII host
and you use a data type of ASCII, the data will be translated between EBCDIC and ASCII.
This translation takes place on the MVS system.

In addition to single-byte ASCII/EBCDIC conversion, V2R5 FTP and later also supports
DBCS and Unicode UCS-2 conversion to/from EBCDIC.

In a z/OS FTP client session, the user can select which DBCS translation to use via the
DBCS subcommands of the FTP client function. Similarly, the user can issue FTP
subcommands to select Unicode data transfer and conversion to/from EBCDIC.

The z/OS FTP server accepts TYPE FTP commands with subparameters that can specify
DBCS or Unicode translation for the data transfer.

6.2.6 Supported translations
See the following chart for an overview of the DBCS translate tables that are supported:

Table 6-2 DBCS translation support

FTP Client Command TYPE Command Translation

BIG5 TYPE B 8 Big-5

EUCKANJI TYPE B 2 Extended UNIX code Kanji

HANGEUL TYPE B 5 Hangeul transfer type

IBMKANJI TYPE F 1 IBM (EBCDIC) Kanji

JIS78JK TYPE B 4 A JIS 1978 Kanji using ASCII
shift-in

JIS78JK (ASCII TYPE B 4 A ASCII shift-in esc sequence

JIS78JK (JISROMAN TYPE B 4 R JISROMAN shift-in esc seq.

JIS78JK (JISROMAN NOSO TYPE B 4 R N Pure DBCS

JIS83KJ TYPE B 3 A JIS 1983 Kanji using ASCII
shift-in

JIS83KJ (ASCII TYPE B 3 A ASCII shift-in escape seq.

JIS83KJ (JISROMAN TYPE B 3 R JISROMAN shift-in esc seq.

JIS83KJ (JISROMAN NOSO TYPE B 3 R N Pure DBCS

KSC5601 TYPE B 6 Korean Standard Code

SCHINESE TYPE B 9 Simplified Chinese

SJISKANJI TYPE B 1 Shift JIS Kanji

SJISKANJI (SOSI TYPE B 1 S A Shift-out / shift-in characters
X’1E’ / X’1F’
130 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

For SBCS translation, the z/OS FTP client user selects a translate table via the FTP
command line keyword TRANSLATE, and the z/OS FTP server accepts a SITE command with
a translate table name from a remote FTP client.

See the following chart for an overview of the SBCS translate tables that are provided:

Table 6-3 SBCS translation support

SJISKANJI SOSI ASCII TYPE B 1 S A Shift-out / shift-in characters
X’1E’ / X’1F’

SJISKANJI (SOSI EBCDIC TYPE B 1 S E Shift-out / shift-in characters
X’0E’ / X’0F’

SJISKANJI (SOSI SPACE TYPE B 1 S S Shift-out / shift-in characters
X’20’ / X’20’

SJISKANJI (NOSO TYPE B 1 N Pure DBCS

TCHINESE TYPE 7 Traditional Chinese (5550)

UCS2 TYPE U 2 Unicode (UCS-2)

Table Name Country or Region ASCII-EBCDIC
Code Page Number

AUSGER Austrian-German 850 <-> 273

BELGIAN Belgian 850 <-> 500

CANADIAN Canadian 850 <-> 037

CUSTOM Customer 819 <-> 1047

DANNOR Danish-Norwegian 850 <-> 277

DUTCH Dutch 850 <-> 037

FINSWED Finnish-Swedish 850 <-> 278

FRENCH French 850 <-> 297

ITALIAN Italian 850 <-> 280

JAPANESE Japanese 850 <-> 281

JPNALPHA Japanese code 1041 <-> 1027

JPNKANA Japanese code 1041 <-> 0290

KOR0891 Korean code 0891 <-> 0833

KOR1088 Korean code 1088 <-> 0833

PORTUGUE Portuguese 850 <-> 037

PRC1115 P. R. China 1115 <-> 0836

SPANISH Spanish 850 <-> 284

SWISFREN Swiss-French 850 <-> 500

SWISGERM Swiss-German 850 <-> 500

TAI0904 Taiwan 0904 <-> 0037

FTP Client Command TYPE Command Translation
Chapter 6. File Transfer Protocol (FTP) 131

6.2.7 Translation tables search order
In OS/390 V2R5 IP and later, a user selects DBCS tables independently of SBCS tables. If a
remote FTP client wants to transfer a mixed-mode data stream (a data stream that consists of
both DBCS and SBCS data sections intermixed with shift-in and shift-out control characters),
the user has to select a DBCS translation table using an FTP TYPE command. The user may
change an SBCS translation table using a SITE SBDATACONN command. The selected DBCS
table will be used to translate the DBCS sections, and the SBCS table will be used to
translate the SBCS sections of the mixed-mode data stream.

In OS/390 V2R5 IP and later, both the FTP server and the FTP client allow the use of
separate SBCS translation tables for the data connection and the control connection.

See the following table for the SBCS translation table search order for the FTP server.

Table 6-4 z/OS FTP server SBCS translation table search order

Notes:

1. The jobname is the job name of the FTP cataloged procedure, not that of the FTP daemon
address space.

2. The CCXLATE and XLATE statements in the FTP.DATA data set have been modified to
use an environment variable.

The name parameter specified at the CCXLATE statement used to be the DD name of the
data set, but now it is a part of the environment variable called _FTPXLATE_name. If the
environment variable exists, its value is used as the data set name.

TAI1114 Taiwan 1114 <-> 0037

UK United Kingdom 850 <-> 285

US United States 850 <-> 037

Table Name Country or Region ASCII-EBCDIC
Code Page Number

The Control Connection The Data Connection (SBCS)

1. CTRLCONN (or CCXLATE) keyword in
FTP.DATA

1. SYSFTSX DD Statement in the start
procedure

2. Search order to locate a TCPXLBIN data set
 a. jobname.SRVRFTP.TCPXLBIN
 b. hlq.SRVRFTP.TCPXLBIN
 c. jobname.STANDARD.TCPXLBIN
 d.hlq.STANDARD.TCPXLBIN

2. SBDATACONN (or XLATE) keyword in
FTP.DATA

3. 7-bit ASCII 3. Search order to locate a TCPXLBIN data
set
 a. jobname.SRVRFTP.TCPXLBIN
 b. hlq.SRVRFTP.TCPXLBIN
 c. jobname.STANDARD.TCPXLBIN
 d.hlq.STANDARD.TCPXLBIN

4. Internal (hard-coded) 7-bit tables 4. The same conversions established for the
control connection
132 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The environment variable name must be all uppercase, although name parameter can be
in mixed case.

If the environment variable does not exist, the FTP server looks for hlq.name.TCPXLBIN.

3. CCXLATE/XLATE and CTRLCONN/SBDATACONN are mutually exclusive.

4. The SITE XLATE option also has been changed, and the name parameter specified at the
SITE XLATE option works the same way as the XLATE statement.

The FTP client resolves the SBCS translation table in the following order:

Table 6-5 z/OS FTP client SBCS translation table search order

Notes:

1. The TRANSLATE option will result in the same SBCS translation tables both for the
control and data connection.

2. When the TRANSLATE option is specified, the hlq.STANDARD.TCPXLBIN data set is
never used. If userid.dsname.TCPXLBIN and hlq.dsname.TCPXLBIN do not exist, or if
they were incorrectly created, FTP ends with an error message.

3. The CCTRANS and SBTRANS keyword in the FTP.DATA data set is still supported, but
the CTRLCONN and SBDATACONN are preferred respectively, if both are present.

For DBCS translation tables used for the data connection refer to the following corresponding
tables for the server and client to review the search order.

The Control Connection The Data Connection (SBCS)

with TRANSLATE dsname option with TRANSLATE dsname option

1. $HOME/dsname.TCPXLBIN (UNIX System
Services environment only)
2. userid.dsname.TCPXLBIN
3. hlq.dsname.TCPXLBIN

1. $HOME/dsname.TCPXLBIN (UNIX System
Services environment only)
2. userid.dsname.TCPXLBIN
3. hlq.dsname.TCPXLBIN

without TRANSLATE sdname option without TRANSLATE sdname option

1. CRTLCONN keyword in FTP.DATA
2. CCTRANS keyword in FTP.DATA
3. default search order
 a. userid.FTP.TCPXLBIN
 b. hlq.FTP.TCPXLBIN
 c. userid.STANDARD.TCPXLBIN
 d. hlq.STANDARD.TCPXLBIN
4. 7-bit ASCII
5. Internal (hard coded) 7-bit tables

1. SBDATACONN keyword in FTP.DATA
2. SBTRANS keyword in FTP.DATA
3. default search order
 a. userid.FTP.TCPXLBIN
 b. hlq.FTP.TCPXLBIN
 c. userid.STANDARD.TCPXLBIN
 d. hlq.STANDARD.TCPXLBIN
4. The same conversion established for the
control connection
5. The same conversion established for the
control connection

Note: As an example, we show the search order for the Japanese KANJI DBCS translation
tables here.
Chapter 6. File Transfer Protocol (FTP) 133

Table 6-6 z/OS FTP server DBCS translation search order (Kanji)

Table 6-7 z/OS FTP client DBCS translation search order (Kanji)

Default SBCS tables for the z/OS FTP server may be established via the server FTP.DATA
parameters CTRLCONN/CCXLATE for the control connection and SBDATACONN/XLATE for
the data connection. The remote FTP client end user can change the SBCS translation tables
for both the control and the data connection via a SITE CTRLCONN and SITE
SBDATACONN/XLATE respectively.

Default tables for the z/OS FTP client may be established via the client FTP.DATA parameters
CTRLCONN for the control connection and SBDATACONN for the data connection. The FTP
client end user can override these tables when the FTP client command is entered by passing
a TRANSLATE parameter on the command invocation. You also can change the SBCS
translate tables used by the OS/390 FTP client for both the control and data connection via a
LOCSITE CTRLCONN and LOCSITE SBDATACONN respectively.

The following is a list of SITE/LOCSITE options related to code page translation. XLATE can
only be used with a SITE subcommand.

CTRLCONN:

Sets the ASCII/EBCDIC SBCS translation option for the FTP control connection. The
default translation for the control connection is established via the FTP.DATA keyword
CTRLCONN.

You have to specify the ASCII code set using the code set names that can be recognized
by the iconv() functions. The FTP server and client use the EBCDIC code set of their
respective locales for the control connection.

The code sets that are supported by the FTP server and client are those that are
supported by the UNIX System Services iconv() functions. Please refer to z/OS V1R2.0
C/C++ Programming Guide, SC09-4765 for details on the supported code set
conversions. If, for example, you want the FTP server to use ASCII code set IBM-850 for
the control connection for your FTP session, you have to specify the following:

site ctrlconn=IBM-850

1. original_jobname.SRVRFTP.TCPKJBIN

2. hlq.SRVRFTP.TCPKJBIN

3. original_jobname.STANDARD.TCPKJBIN

4. hlq.STANDARD.TCPKJBIN

with TRANSLATE dsname option without TRANSLATE dsname option

1. userid.dsname.TCPKJBIN

2. hlq.dsname.TCPKJBIN

3. userid.STANDARD.TCPKJBIN

4. hlq.STANDARD.TCPKJBIN

1. userid.FTP.TCPKJBIN

2. hlq.FTP.TCPKJBIN

3. userid.STANDARD.TCPKJBIN

4. hlq.STANDARD.TCPKJBIN
134 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

SBDATACONN:

Sets the ASCII/EBCDIC SBCS translation option for the FTP data connection.

You specify both an ASCII code page and an EBCDIC code page. If, for example, you
want the FTP server to use EBCDIC code page IBM-037 and ASCII code page IBM-850,
you specify the following:

site sbdataconn=(IBM-037,IBM-850)

The code pages that are supported by the FTP server and client are those that are
supported by the UNIX System Services iconv() functions. Please refer to z/OS V1R2.0
C/C++ Programming Guide, SC09-4765 for details on the supported code set
conversions.

You may also use the translation table data sets generated by the CONVXLAT utility. You
do so by using the following syntax on your SITE command:

SITE sbdataconn=tcpip.ftpkana.tcpxlbin

Please note that you specify the fully qualified MVS data set name and not, as with the
obsolete XLATE SITE command, a DD-name. You may also place your translation tables in
the hierarchical file system and refer to a hierarchical file system file name in a SITE
SBDATACONN command. Note that the HFS name is case-sensitive.

SITE sbdataconn=/u/userx/ftpkana.tcpxlbin

Notes:

a. The name must not be enclosed in quotes. If quotes appear, they will be treated as part
of the name.

b. The SBDATACONN keyword must be the only keyword or last keyword on a SITE
subcommand.

c. SITE XLATE and SITE SBDATACONN are mutually exclusive.

UCSHOSTCS:

Specifies the EBCDIC code set to be used when converting to or from Unicode.

The code sets that are supported by the FTP server and client are those that are
supported by the UNIX System Services iconv() functions. You must specify the EBCDIC
code set using the code set names which can be recognized by the iconv() functions. You
can use this technique to transfer DBCS data encoded in Unicode to or from the DBCS
EBCDIC code sets supported by the iconv() functions. If, for example, you want to use
EBCDIC code page IBM-939 for the FTP server, you specify the following:

site ucshostcs=IBM-939

If you want to use the same code converter for the FTP client, you have to specify the
following FTP subcommand:

locsite ucshostcs=IBM-939

If you do not use ucshostcs to specify a code set, the current code set of the server (or
client) process will be used.

The code converter supported by the iconv() functions are listed in Communications
Server for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270
Configuration, SG24-5227. For detailed information on the iconv() functions and
supported code page, please refer to z/OS V1R2.0 C/C++ Programming Guide,
SC09-4765.
Chapter 6. File Transfer Protocol (FTP) 135

XLATE:

Indicates the desired translation table to be used for the data connection.

This option has been modified to use an environment variable. The usage of this option is:

SITE XLATE=name

The name parameter specified at the option used to be the DD name of the data set, but
now it is a part of the environment variable called _FTPXLATE_name.

If the environment variable exists, its value is used as the data set name. If it does not
exist, FTP server looks for hlq.name.TCPXLBIN. The name of * indicates that the
translation table set up at initialization for the data connection will be used.

Notes:

a. The environment variable name must be all uppercase, although the name parameter
can be in mixed case.

b. SITE XLATE and SITE SBDATACONN are mutually exclusive.

If you use the FTP client and want to change the code pages of the client, you have to use the
LOCSITE FTP subcommand instead of the SITE subcommand.

6.2.8 Selecting translation tables
The following are examples of how to select the translation tables. In all of the examples, we
have configured the following statement in the TCPIP.DATA used by the FTP server and
client.

DATASETPREFIX TCPIP
LOADDBCSTABLES SJISKANJI EUCKANJI

The FTP server has been started by the cataloged procedure named FTPDB and the FTP
daemon address space had a UNIX System Services generated name FTPDB1.

Figure 6-5 Selecting translation tables

1 The FTP client changes the FTP server translation table for the control connection to 7-bit
ASCII. Since some system may not recognize the site ctrlconn subcommand, you would
have to use the quote FTP subcommand.

If you specify an invalid parameter or the FTP server cannot support the specified translation
table, you will see the following error message:

Figure 6-6 site ctrlconn command on client

ftp> quote site ctrlconn=7bit 1
200 Site command was accepted
ftp> quote site sbdataconn=garthm.ftpkana.tcpxlbin 2
200 Site command was accepted
ftp> quote type b 1 3
200-Representation type is KANJI Shift-JIS
200 Standard DBCS control used

ftp> quote site ctrlconn=8bit
200-ctrlconn=8bit ignored. Requested conversion is not supported.
200 Site command was accepted
136 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

2 The FTP client tries to change the translation table for the data connection used by the FTP
server to a customized SBCS table.

If you specify an invalid table name, the FTP server will return the following error message to
the client:

Figure 6-7 site sbdataconn command on client

3 The FTP client asks the FTP server to change the current transfer type to Shift JIS Kanji.
The message with the number 200 will be returned to the client, if the FTP server server loads
the corresponding DBCS translation table correctly.

If the LOADDBCSTABLES statement is not specified in TCPIP.DATA allocated for the FTP
server, or the proper code pages are not specified to the LOADDBCSTABLES statement,
your attempt will fail and the client will receive the following message:

Figure 6-8 Type not supported error

If you set the TRACE option for the z/OS FTP server, the following trace entries will be written
to the syslog file (if daemon.debug has been defined in /etc/syslog.conf) or displayed on the
MVS console if syslogd is not active:

ftp> quote site sbdataconn=tcpip.notable
200-Translate file 'tcpip.notable' not found. SBDATACONN ignored.
200 Site command was accepted

504-Type not Supported. Translation table not Loaded.
504 Type remains Ascii NonPrint
Chapter 6. File Transfer Protocol (FTP) 137

Figure 6-9 syslogd output

1 The FTP client changes the FTP server translation table for the control connection to 7-bit
ASCII.

2 The FTP client changes the FTP server translation table for the single byte data connection
to a private translate table.

3 You can see the search order for the DBCS translation table. In this case, the name of the
FTPD cataloged procedure is FTPDB, so FTPDB will be used as the original job name.

4 The DBCS translation table loaded by the FTP server.

get_command: select rc is 1
get_command: received 20 bytes
Parse_cmd: command line: site ctrlconn=7bit. 1
site_cmd entered with 'ctrlconn=7bit'
site(): processing ctrlconn=7bit
site: freeing site arg: 'CTRLCONN'
get_command: select rc is 1
get_command: received 40 bytes
Parse_cmd: command line: site sbdataconn=kakky.ftpkana.tcpxlbin. 2
site_cmd entered with 'sbdataconn=kakky.ftpkana.tcpxlbin'
site(): processing sbdataconn=kakky.ftpkana.tcpxlbin
site: freeing site arg: 'SBDATACONN'
get_command: select rc is 1
get_command: received 10 bytes
Parse_cmd: command line: type b 1.
xtype: xtype routine entered with type 'B' dataformat '1' opt1 ' ' opt2
trying to open DBCS file //'FTPDB.SRVRFTP.TCPKJBIN' 3
fopen failed for //'FTPDB.SRVRFTP.TCPKJBIN'.
 EDC5049I The specified file name could not be located.
trying to open DBCS file //'TCP.SRVRFTP.TCPKJBIN' 3
fopen failed for //'TCP.SRVRFTP.TCPKJBIN'.
 EDC5049I The specified file name could not be located.
trying to open DBCS file //'FTPDB.STANDARD.TCPKJBIN' 3
fopen failed for //'FTPDB.STANDARD.TCPKJBIN'.
 EDC5049I The specified file name could not be located.
NC1444 trying to open DBCS file //'TCP.STANDARD.TCPKJBIN' 3
NC1816 read_db_table() ... checking table header
NC1817 byte1 is 00 and byte2 is 00
NC1816 read_db_table() ... checking table header
NC1817 byte1 is 00 and byte2 is 00
NC1816 read_db_table() ... checking table header
NC1817 byte1 is 00 and byte2 is 00
NC1816 read_db_table() ... checking table header
NC1817 byte1 is 00 and byte2 is 00
NC1816 read_db_table() ... checking table header
NC1817 byte1 is 00 and byte2 is 00
NC1816 read_db_table() ... checking table header
NC1817 byte1 is 00 and byte2 is 00
NC1816 read_db_table() ... checking table header
NC1817 byte1 is 00 and byte2 is 00
NC1816 read_db_table() ... checking table header
NC1817 byte1 is 00 and byte2 is 00
EZY2720I Using Japanese translation tables in 'TCP.STANDARD.TCPKJBIN' 4
138 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Here are examples when we started FTP clients with the debug option. You can use either -d
or (TRACE for this option.

Figure 6-10 FTP client with debug option

1 The messages used by the FTP clients are stored in message catalogs to allow message
translation.

2 If both the CCTRANS and CTRLCONN keywords are specified in FTP.DATA, CTRLCONN
is preferred.

3 If both the SBTRANS and SBDATACONN keywords are specified in FTP.DATA,
SBDATACONN is preferred.

4 The translation used by the client for control connection.

5 The translation table used by the client for data connection.

6 The DBCS code pages specified in the TCPIP.DATA configuration data set have been
allocated for this client. Each code page name is recognized by the preceding 8 characters.

If you specify the TRANSLATE FTP command option, the hlq.STANDARD.TCPXLBIN data set is
never used. If the translation table search procedure using a data set name specified with this
option fails, FTP ends with an error message.

Figure 6-11 Translate table not found

EZA1736I FTP -d (EXIT
EZYFT18I Using catalog '/usr/lib/nls/msg/C/ftpdmsg.cat' for FTP messages. 1
EZY2640I Using dd:SYSFTPD for local site configuration parameters.
EZA2794I Both CCTRANS and CTRLCONN were specified. Using CTRLCONN. 2
 CCTRANS will be ignored.
EZA2795I Both SBTRANS and SBDATACONN were specified. Using SBDATACONN. 3
 SBTRANS will be ignored.
EZYFT27I Using conversion between 'IBM-850' and 'IBM-1047'
 for the control connection. 4
EZYFT31I Using TCP.FTPKANA.TCPXLBIN for FTP translation tables
 for the data connection. 5
EP4873 set_dbcs: __ipdbcs() returned 2 parms from LOADDBCSTABLES statement(s)
EP4879 main: dbcstables->__ip_dbcs_listÿ0À is: SJISKANJ. Len is: 8 6
EP4879 main: dbcstables->__ip_dbcs_listÿ1À is: EUCKANJI. Len is: 8 6
EZA1450I IBM FTP CS/390 296 00:10 UTC
EZA1466I FTP: using TCPIPA instead of INET
EZA1772I FTP: EXIT has been set.
EZA1456I Connect to ?
EZA1736I 9.24.104.26

KAKKY@/u/kakky$ftp -d 9.24.104.47 \(translate notable 1
Using catalog '/usr/lib/nls/msg/C/ftpdmsg.cat' for FTP messages.
Using FTP configuration defaults.
NX0570 read_xlate_files: Unable to open /u/kakky/notable.tcpxlbin : 2
 EDC5129I No such file or directory.
NX0613 read_xlate_files: Unable to open //'KAKKY.NOTABLE.TCPXLBIN' :
 EDC5049I The specified file name could not be located.
NX0625 read_xlate_files: Unable to open //'TCP.NOTABLE.TCPXLBIN' :
 EDC5049I The specified file name could not be located.
Cannot load translate table specified by TRANSLATE parameter notable 3
Chapter 6. File Transfer Protocol (FTP) 139

1 If you issue the FTP command in the UNIX System Services shell with MVS style options,
you have to precede the left parenthesis with an escape character such as the backslash(\).

2 In the UNIX System Services environment, the translation table in the hierarchical file
system is the top of the table search hierarchy.

3 The FTP command stops. No more table search attempts are executed.

When you use the DBCS data transfer mode in the FTP client, the debug option of the FTP
client will show you the following messages.

Figure 6-12 Debug log when using DBCS transfer mode

EZA1460I Command:
sjiskanji (notype 1
 PC0291 Input to parCmd is :
 PC0293 parseCmd: Number of parameters is 2
 PC0296 parseCmd: parameter 0 is sjiskanji
 PC0296 parseCmd: parameter 1 is (notype
 PC0486 fndCmd: entering with sjiskanji.
 PC0568 fndCmd: Command found is sjiskanji
 PC0305 parseCmd: fndCmd returned the cmdrecord for sjiskanji
 PC0386 parseCmd: Using primary session
 CT2205 sjiskj: routine entered with parmcount=2
 NC1017 get_client_dbcs_table() entered for lang type 1
 NC1053 trying to open DBCS file //'KAKKY.FTP.TCPKJBIN' 2
 NC1079 fopen failed for //'KAKKY.FTP.TCPKJBIN'.
 EDC5049I The specified name could not be located.
 NC1053 trying to open DBCS file //'TCP.FTP.TCPKJBIN' 2
 NC1079 fopen failed for //'TCP.FTP.TCPKJBIN'.
 EDC5049I The specified file could not be located.
 NC1053 trying to open DBCS file //'KAKKY.STANDARD.TCPKJBIN' 2
 NC1079 fopen failed for //'KAKKY.STANDARD.TCPKJBIN'.
 EDC5049I The specified file name could not be located.
 NC1053 trying to open DBCS file //'TCP.STANDARD.TCPKJBIN' 2
 NC1816 read_db_table() ... checking table header
 NC1817 byte1 is 00 and byte2 is 00
 NC1816 read_db_table() ... checking table header
 NC1816 read_db_table() ... checking table header
 NC1817 byte1 is 00 and byte2 is 00
 NC1816 read_db_table() ... checking table header
 NC1817 byte1 is 00 and byte2 is 00
 NC1816 read_db_table() ... checking table header
 NC1817 byte1 is 00 and byte2 is 00
 NC1816 read_db_table() ... checking table header
 NC1817 byte1 is 00 and byte2 is 00
 NC1816 read_db_table() ... checking table header
 NC1817 byte1 is 00 and byte2 is 00
 NC1816 read_db_table() ... checking table header
 NC1817 byte1 is 00 and byte2 is 00
 NC1816 read_db_table() ... checking table header
 NC1817 byte1 is 00 and byte2 is 00
 NC1061 Using Japanese translation tables in 'TCP.STANDARD.TCPKJBIN' 3
 CT0334 entering cliDBOptopns() for newftpoptformat=0, parmcount=2
 CT0711 cliDBOpt: no cmd sent to server
 PC0452 parseCmd: Using primary session.
 EZA1460I Command:
140 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

1 Change the data transfer mode to Japanese Shift JIS Kanji. In order to suppress the
sending of the corresponding TYPE message to the FTP server which may not recognize it,
the end user issues the SJISKANJI FTP subcommand with the NOTYPE parameter.

2 The debug message shows you the DBCS translation search order used by the FTP client.

3 The DBCS translation table loaded by the FTP client.

The following examples show you how to enable Unicode data transfer mode. In this
example, we used the OS/2 FTP client and CS for z/OS IP FTP server.

Figure 6-13 Unicode data transfer mode

1 Issue TYPE U 2. Receiving this TYPE command, the FTP server set the transfer type to UCS-2
TYPE. Since the OS/2 client cannot recognize this TYPE, you have to precede the FTP
subcommand with QUOTE.

2 Specify the EBCDIC code set to be used for converting to/from Unicode. In this sample, we
use the IBM-939 code character set. You have to specify the EBCDIC code set using the
code character set name supported by the iconv() API. At the same time, we disable the
substitution and truncation. If you transfer the EBCDIC data that contains DBCS characters,
you should disable the truncation, or the EBCDIC data might collapse.

Verify the server status using STAT FTP subcommand. The following is part of the output from
the STAT subcommand.

Figure 6-14 Partial STAT command output

1 The data encoded in Unicode will be converted IBM-939 character set.

2 Neither the UCS substitution nor UCS truncation are enabled. If you transfer SBCS/DBCS
mixed data, you should disable the UCS truncation.

3 The byte order for the Unicode encoding is set to big-endian by default. You can change it to
the little-endian byte order by issuing the TYPE U 2 L FTP subcommand.

If you want to use the z/OS FTP client in Unicode transfer type, you have to issue the UCS2
FTP subcommand and optionally the LOCSITE subcommand with UCS* parameters before
starting the file transfer. You can also verify the status of the FTP client with the LOCSTAT FTP
subcommand.

ftp> quote type u 2 1
200 Representation type is UCS-2
ftp> quote site noucstrunc noucssub ucshostcs=ibm-939 2
200 Site command was accepted
ftp> put jpdata.ucs 'kakky.test.jpdata'
200 Port request OK.
125 Storing data set KAKKY.TEST.JPDATA
250 Transfer completed successfully.
local: jpdata.ucs remote: 'kakky.test.jpdata'
96 bytes sent in 0.00 seconds (0 Kbytes/s)

211-using Mode Stream, Structure File, type UCS-2, byte-size 8
211-TYPE U data will be converted to/from IBM-939 1
211-UCS Substitution: OFF, UCS Truncation: OFF 2
211-Byte Order: big-endian 3
Chapter 6. File Transfer Protocol (FTP) 141

6.2.9 Directory mode or data set mode
The directory mode or data set mode specifies how the output from a directory command
submitted to the z/OS FTP server should look.

When you customize the z/OS FTP server, you specify the default mode in the server
configuration data set (see , “Default FTP Server SITE parameters (FTPDATA)” on page 129).

The client can switch between the two modes by using the SITE command specifying either
DIRECTORYMODE or DATASETMODE.

An MVS data set name consists of a number of qualifiers separated by periods, each qualifier
having a maximum length of eight bytes.

Our normal MVS way of looking at MVS data set names is:

Figure 6-15 MVS dataset name layout

However, we might also look upon the data sets in a way that more closely resembles the
OS/2 or UNIX style:

ALFREDC.DB2.CNTL
ALFREDC.DB2.OUTPUT
ALFREDC.ESA4.ISPPROF
ALFREDC.ISPF.CLIST
ALFREDC.ISPF.ISPPLIB
ALFREDC.ISPF.TEST.CLIST
ALFREDC.ISPF.TEST.WORKDSN
ALFREDC.ISPFESA.ISPPROF
ALFREDC.PRINT
ALFREDC.SPFLOG1.LIST
ALFREDC.SPFTEMP1.CNTL
142 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-16 MVS data set list in an OS/2 or UNIX style

Working with FTP employs the notion of a directory and a hierarchy of directories. When MVS
is the FTP server, the client still uses the directory notion and the server must transform this
notion into the traditional MVS file system structure.

When you initiate an FTP session, the z/OS server will try to extract the value of your
TSOPREFIX settings in RACF and use that as your default directory. If you do not maintain
TSO logon information in RACF, your user ID will be used as your default directory.

Each qualifier level is considered a directory. A directory may contain data sets or
subdirectories. A partitioned data set is considered a directory, and the individual members as
files in that directory.

You may step down the hierarchy by using CD commands to name the next low level qualifier
you want to view. You may step up to the root by using CD .. commands.

When at a given directory you issue a dir command to have the contents of the directory
listed, the output you receive from the z/OS server is determined by your settings of
datasetmode or directorymode.

When you use the datasetmode, the result of a dir command will look like your normal data
set list output:

ALFREDC DB2 CNTL member1

member2

member3OUTPUT

ISPF CLIST member1

member2

member1ISPPLIB

TEST CLIST member1

member2WORKDSN

ESA4 ISPPROF member1

member2

member3

SPFTEM1

PRINT

SPFLOG1 LIST

CNTL
DSN220

TCPIP
Chapter 6. File Transfer Protocol (FTP) 143

Figure 6-17 The directory command datasetmode

But if you use the directory mode, the results of a dir command would be:

Figure 6-18 The directory command directory mode

Then you can work down through the directory hierarchy to list the contents of each hierarchy
level:

ftp> dir
200 Port request OK.
125 List started OK.
Volume Unit Referred Ext Used Recfm Lrecl BlkSz Dsorg Dsname
WTLSTG 3380K 05/13/96 1 10 FB 80 6160 PO DB2.CNTL
WTLSTG 3380K 05/13/96 1 6 VB 4092 4096 PS DB2.OUTPUT
WTLSTG 3380K 05/13/96 1 2 FB 80 3120 PO ESA4.ISPPROF
WTLSTG 3380K 05/13/96 1 9 FB 80 6160 PO ISPF.CLIST
WTLSTG 3380K 05/13/96 1 10 FB 80 6160 PO ISPF.ISPPLIB
WTLSTG 3380K 05/13/96 1 1 FB 80 6160 PO ISPF.TEST.CLIST
WTLSTG 3380K 05/13/96 1 1 VB 136 23476 PS ISPF.TEST.WORKDSN
WTLSTG 3380K 05/13/96 1 2 FB 80 3120 PO ISPFESA.ISPPROF
WTLSTG 3380K 05/13/96 1 1 VB 136 23476 PS PRINT
WTLSTG 3380K 05/13/96 1 8 VA 125 129 PS SPFLOG1.LIST
WTLSTG 3380K 05/13/96 1 1 FB 80 800 PS SPFTEMP1.CNTL
250 List completed successfully.
808 bytes received in 1.3 seconds (0 Kbytes/s)

ftp> dir
200 Port request OK.
125 List started OK.
Volume Unit Referred Ext Used Recfm Lrecl BlkSz Dsorg Dsname
Pseudo Directory DB2
Pseudo Directory ESA4
Pseudo Directory ISPF
Pseudo Directory ISPFESA
WTLSTG 3380K 05/13/96 1 1 VB 136 23476 PS PRINT
Pseudo Directory SPFLOG1
Pseudo Directory SPFTEMP1
250 List completed successfully.
493 bytes received in 0.84 seconds (0 Kbytes/s)
144 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-19 Moving through the directory

You can issue the SITE DATASETMODE or SITE DIRECTORYMODE FTP subcommand to set the file
system mode.

6.2.10 Transfer mode, data type and data structure
At first glance, it may seem to be a trivial matter to transfer files between different computer
systems, but when you take a closer look, you soon discover a range of issues originating
from the diversity of computer architectures represented in a typical IP network. Some
operating systems use 7-bit ASCII to represent character data, others use 8-bit ASCII or
EBCDIC, just to mention the most obvious. Some operating systems organize files into
records, while others treat files as continuous streams of data, in some situations without any
encoded notion of record boundaries (in such a case, it will be up to the program reading or
writing the data to impose a structure onto the data stream).

The FTP protocol deals to a great extent with these issues, but you, as a user of this protocol,
have to select the proper options in order to let FTP transfer a file in such a way that it is
usable on the receiving system.

ftp> cd ispf
257 "'ALFREDC.ISPF.'" is working directory name prefix.
ftp> dir
200 Port request OK.
125 List started OK.
Volume Unit Date Ext Used Recfm Lrecl BlkSz Dsorg Dsname
WTLSTG 3380K 05/13/96 1 9 FB 80 6160 PO CLIST
WTLSTG 3380K 05/13/96 1 10 FB 80 6160 PO ISPPLIB
Pseudo Directory TEST
250 List completed successfully.
247 bytes received in 0.44 seconds (0 Kbytes/s)
ftp> cd test
257 "'ALFREDC.ISPF.TEST.'" is working directory name prefix.
ftp> dir
200 Port request OK.
125 List started OK.
Volume Unit Date Ext Used Recfm Lrecl BlkSz Dsorg Dsname
WTLSTG 3380K 05/13/96 1 1 FB 80 6160 PO CLIST
WTLSTG 3380K 05/13/96 1 1 VB 136 23476 PS WORKDSN
250 List completed successfully.
187 bytes received in 0.34 seconds (0 Kbytes/s)
ftp> cd clist
257 "'ALFREDC.ISPF.TEST.CLIST'" partitioned data set is working directory
ftp> dir
200 Port request OK.
125 List started OK.
 Name VV.MM Created Changed Size Init Mod Id
LOGON18 01.00 96/05/13 96/05/13 12:28 111 111 0 ALFREDC
LOGON20 01.00 96/05/13 96/05/13 12:29 111 111 0 ALFREDC
MYLOGON 01.04 96/05/13 96/05/13 11:29 111 101 0 ALFREDC
250 List completed successfully.
265 bytes received in 0.44 seconds (0 Kbytes/s)
ftp>
Chapter 6. File Transfer Protocol (FTP) 145

FTP always transfers data in 8-bit bytes; this is called the transfer size. If the sending or
receiving system uses another byte length, it is up to the FTP client and the FTP server to
implement the proper conversion between local byte sizes and the FTP transfer size. When
FTP transfers ASCII data, it always transfers it in 8-bit bytes, where the bits are used to
encode the ASCII character according to a specific ASCII standard, which is called
NVT-ASCII (Network Virtual Terminal ASCII as defined in the TELNET protocol). This implies
that when you transfer ASCII type data between two ASCII hosts, a translation from the local
ASCII representation to NVT-ASCII for transmission and back to the receiving hosts local
ASCII representation always takes place.

When MVS is involved in an ASCII type transfer, MVS will translate the received NVT-ASCII
into EBCDIC, and translate data to be transmitted from EBCDIC into NVT-ASCII.

When you request an FTP file transfer, you can characterize the transfer by means of three
attributes:

TYPE The term used in the official sources is data type, but you may also
meet the term transfer type or representation type. Data type is used
to signal how the bits of the transmitted data should be interpreted by
the receiver.

Data type will normally have one of the following three values:

ASCII When you set the data type to ASCII, the receiver knows that the
data is character data and that each line of data is terminated via a
control sequence of Carriage Control plus Line Feed (CRLF),
which in ASCII is X'0D0A'. If MVS is the receiving side, data will be
translated from NVT-ASCII to EBCDIC and the CRLF sequences
will be removed from the data stream and substituted by traditional
MVS record boundaries according to the current settings of the
SITE/LOCSITE parameters: RECFM and LRECL. If RECFM is
fixed, the data records will be padded with extra spaces in order to
fill up a record. If MVS is the sending side, the data will be
translated from EBCDIC into NVT-ASCII and, based on existing
record boundaries, CRLF sequences will be constructed and
inserted into the ASCII data stream.

A data type of ASCII is the default data type in all FTP implementations.

EBCDIC A data type of EBCDIC means that the data transferred is EBCDIC
data. In such a case, no translation to NVT-ASCII or from
NVT-ASCII takes place in MVS. The 8-bit EBCDIC bytes are
transferred as they are. If you transfer text data between two
EBCDIC systems, a data type of EBCDIC is the most efficient way
to transfer the data. Most ASCII hosts will reject a data transfer
where you specify a data type of EBCDIC. Some will treat it as an
ASCII transfer, but the point where the translation takes place is at
their end of the FTP connection, and not in MVS.

IMAGE A data type of IMAGE means that the data will be transmitted as
contiguous bits packed into the 8-bit FTP transfer byte size. No
translation takes place, neither at the sending nor at the receiving
side. You will normally use this data type for binary data, such as
program files. If you transfer text data between two similar ASCII
hosts, it will often be more efficient to use an IMAGE data type
instead of an ASCII data type. As the two systems use exactly the
same ASCII representation, there is no need to impose the
overhead of translating to and from NVT-ASCII.
146 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Both the ASCII and EBCDIC data types have a second attribute called format control.

Non-print The text data does not include any vertical format control
characters. This format control is the only one you will find in the
MVS FTP implementation. When you set data type to ASCII, the
format control defaults to Non-print.

TELNET The text data includes TELNET control characters. This is not
commonly used.

CC The text data includes Carriage Control (ASA) control characters,
according to the FORTRAN implementation, which only includes:

• "blank" - move up one line

• "0" - move up two lines

• "1" - move to top of form

• "+" - suppress movement

STRUCT Defines the structure of a file being transferred between systems. This
option is especially important when you transfer files between systems
with different views of a file system. Some are stream oriented, while
others are record oriented. The possible values this option can take
are:

File The file has no internal structure and is considered to be a
continuous sequence of bytes. File structure can be used with all
transfer modes and data types, and is the most widely
implemented.

Record The file is made up of sequential records. This is a relatively simple
matter to deal with as long as we talk about text files. The ASCII
data type with CRLF sequences can be seen as a special case of
the record data structure, which in a sense is implied by the data
type of ASCII. All data types are generally supported for record
structure. In CS for z/OS IP, the explicit use of record structure is
only supported with stream mode transfers. When record structure
is explicitly used, each record is terminated by an end-of-record
(EOR) sequence, which is X'FF01'. End-Of-File (EOF) is indicated
by X'FF02'. If the data contains X'FF' bytes, each X'FF' byte will be
transmitted as two bytes, X'FFFF', in order to preserve the original
value. In CS for z/OS IP both the FTP server and FTP client can
support the record structure.

Page A third structure value exists, called page structure. It is not used in
conjunction with MVS, and CS for z/OS IP does not support it,
either in the FTP client or in the FTP server.

MODE Transfer mode, sometimes referred to as transmission mode, is used
to indicate which kind of services should be associated with the
transmission of data.

Stream Data is transmitted as a stream of bytes. The data is passed with
very little or no extra processing. With stream mode, the data type
is used to determine if any processing at all should be applied to
the data: for example, translation of text data or CRLF processing.
There is no restriction on data type or data structure. If record

Note: Other data types are all flavors of DBCS and Unicode (UCS-2).
Chapter 6. File Transfer Protocol (FTP) 147

structure is used, the end of file will be indicated via the EOF
control sequence (X'FF02'). If file structure is used, the end of the
file is indicated when the sending host closes the data connection.
Stream mode is the default transfer mode, and the most commonly
used.

Block In block mode, you transfer data as a series of data blocks, each
block preceded by a header. The header contains a count field of
the number of bytes in the block (excluding the header itself) and a
descriptor code, which defines block attributes (last block in the file,
last block in the record or restart marker). The FTP protocols do not
impose any restrictions on either data type or structure used with
block mode transfers. The actual FTP implementations do,
however, impose restrictions of various kinds. In CS for z/OS IP, for
example, the block mode transfer is only supported with a data
type of EBCDIC. You may use block mode when you transfer files
between S/370 hosts. A file transferred between two MVS systems
in block mode will preserve its record structure unchanged,
including files with variable length records.

Compress Data is transmitted in a compressed format. The compression
algorithm is rather simple. It includes the ability to send replicated
bytes in a two-byte sequence (max. 128 replications), and to send
a filler byte in a one-byte sequence (max. 64 filler bytes). A filler
byte is defined as space for ASCII or EBCDIC data types and as
binary zero for a data type of image. In CS for z/OS IP compressed
mode requires a data type of EBCDIC.

See the following chart for an overview of the supported combinations of these three
attributes in the FTP server and client implementations. It provides a cross reference between
mode, type and structure.

Table 6-8 Cross reference between mode, type, and structure

When you select among the options listed above, you have to consider the purpose of your
file transfer:

1. Are you going to transfer a file to a host, where the file will be processed by programs on
that host? In that case, you have to select options that will result in a file that can be used
by the target host. If the data is text, the originating host uses EBCDIC and the target host
uses ASCII, you have to use an ASCII data type and a stream transfer mode.

2. Are you going to transfer a file to another host for intermediate storage only and later
retrieve it again on the original host? In this case it is very important that you can invert the
process, so the file you will end up with back on your original host is exactly like the file
you started with. If it is text data, you may not need to translate between EBCDIC and
ASCII, but you can use a BINARY data type instead.

Data Type Data Structure

Transfer Modes ASCII EBCDIC Image File Record

STREAM yes yes yes yes yes

BLOCK no yes no yes no

COMPRESSED no yes no yes no
148 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

6.2.11 Stream-oriented or record-oriented
If you want to use a stream-oriented file system as intermediate storage for a record-oriented
MVS file, you may have a problem, depending on the record format of the MVS data set you
want to store and the data type you use.

Figure 6-20 ASCII stream transfer of MVS data sets

For ASCII data types, record boundaries do not impose problems. The record boundaries are
preserved by means of CRLF (Carriage Return, Line Feed - X'0D0A') for OS/2 and DOS
systems or just LF (Line Feed - X'0A') for UNIX systems. If such a data set is transferred from
MVS to, for example, UNIX and back to MVS again, the CRLF or LF is used to rebuild the
record boundaries and the data set will be identical to the one you originally had on MVS.
This is true for both fixed length and variable length record data sets.

ASCII
STREAM

RECFM=VB
Text Data Set

rdw data1

rdw data2

rdw data3

rdw data1

rdw data2

rdw data3

RECFM=VB
Text Data Set

ASCII
STREAM

data1 CRLF data2 CRLF data3 CRLF
Chapter 6. File Transfer Protocol (FTP) 149

Figure 6-21 BINARY stream transfer of MVS data sets with RECFM=V

For BINARY or IMAGE transfer from MVS to a stream-oriented file system, the situation is
slightly more complicated.

When the records of an MVS data set are stored in a stream-oriented file system, the records
are stored one after the other as one long stream of bytes, without any notion of the record
boundaries from the MVS system.

If the original data set was a fixed length record data set, you can reconstruct this data set if
you transfer the file back to MVS using the same logical record length as the original data set.
The long stream of bytes will be chopped into records of exactly the length you specify,
thereby reconstructing the same record boundaries as you had in the original data set.

If the original data set was a variable length record data set or a data set with undefined
record format, you cannot use the above technique as you have no knowledge of the varying
length of each record in the original data set.

There are two ways in which you can move a variable record length file out of MVS and back
into MVS again, preserving the record boundaries:

1. Use the RDW option of the z/OS FTP client or z/OS FTP server.

2. Use the record structure option.

Note: We strongly recommend that you use the record structure option. This is one of the
standard file structures defined in RFC959. Both the FTP server and FTP client support it.

BINARY
STREAM

RECFM=VB
Binary Data Set

No record boundary information
is preserved in the stream stored
in the Stream-Oriented File System.

rdw data1

rdw data2

rdw data3

There is no way to reconstruct record
boundaries in MVS.

BINARY
STREAM

data1 data2 data3

?
? ? ?

?

150 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

6.2.12 Using the RDW option

Figure 6-22 BINARY stream transfer of MVS data sets with the RDW SITE option

If you use the MVS FTP client or the MVS C FTP server to transfer a variable length record
data set from MVS to a stream-oriented file system and you use the RDW option, the file
stored on the stream-oriented file system will include the record descriptor words (RDWs) of
each record in the original data set.

If the purpose of including the RDWs was to let an application program on the remote host
work with the information in the file including the RDWs, you have accomplished what you
wanted, but there may be situations where you might want to get such a file back into MVS
again. Unfortunately, the code in CS for z/OS IP that stores the data set on MVS DASD does
not use the preserved RDWs to reconstruct record boundaries. Instead, the DCB information
given in either the SITE or LOCSITE command is used. You can implement a solution to this
problem in the following way:

1. Use the z/OS FTP client or the z/OS FTP server to transfer a RECFM=V or VB data set to,
for example, OS/2 using the BINARY, STREAM, and RDW option. This will give you the
file on OS/2 with imbedded RDWs.

2. Transfer the file back to MVS using the BINARY, STREAM, and MVS SITE parameters of
RECFM=U and BLKSIZE=some high value.

MVS SITE: RDW

BINARY
STREAMRYO

RECFM=VB
Binary Data Set

To reconstruct records in MVS, you
have to post-process the file you transfer
back to MVS.

In the Stream-Oriented File System
it is still one long stream of bytes -
but now with record boundary
information encoded.

rdw data1

rdw data2

rdw data3

rdw data1

rdw data2

rdw data3

RECFM=VB
Binary Data Set

BINARY
STREAM

rdw data1 rdw data2 rdw data3
Chapter 6. File Transfer Protocol (FTP) 151

3. Create a little program that, based on the imbedded RDWs, reconstructs the original
record structure. Check E.5, “FTP RDW post process sample program” on page 536 for
the sample program written at Raleigh ITSO for testing.

Take care if you use the RDW option with ASCII transfers. Transferring the file out of MVS will
work without problems, but if you later want to transfer the file back into MVS, the
ASCII-to-EBCDIC translation will also translate the RDWs, which may give some interesting
results.

6.2.13 Using the FTP record structure option
When you connect your FTP client to the z/OS Server, you can use the record structure
option to accomplish the same results.

The following suggestion might not be the intended use of this option, but it works (at least
from an AIX FTP client):

Figure 6-23 FTP session

1 Connect your FTP client to the z/OS FTP server and set transfer mode to binary.

2 Issue a quote stru r command. This command will not be interpreted by the AIX FTP client,
but will be sent directly to the z/OS FTP server. The effect of this command is that the OS/390
FTP server will send data to the FTP client with imbedded end-of-record sequences.

3 Issue a get command to copy your variable record length file from z/OS to AIX. Because the
structure command was sent in a quote, the AIX client does not know about it and will receive
and store the file as a binary stream of bytes, including the imbedded EOR sequences.

When you want to copy the file back into MVS again, you connect your FTP client to the MVS
FTP Server, set transfer mode to binary, and send the quote command with a structure
command telling the MVS FTP Server to expect records with imbedded EORs.

4 Depending on your default MVS SITE parameters, you may have to send another SITE
command with record format and record length information to MVS, before you put the file.

230 ALFREDC is logged on. Working directory is "ALFREDC.".
ftp> binary 1
200 Representation type is Image
ftp> quote stru r 2
250 Data structure is Record
ftp> get vb vb.binary 3
200 Port request OK.
125 Sending data set ALFREDC.VB
250 Transfer completed successfully.
156 bytes received in 0.1165 seconds (1.308 Kbytes/s)
ftp> site recfm=vb lrecl=255 blksize=8192 4
200 Site command was accepted
ftp> put vb.binary vb.back 5
200 Port request OK.
125 Storing data set ALFREDC.VB.BACK
250 Transfer completed successfully.
156 bytes sent in 0.001355 seconds (112.4 Kbytes/s)
152 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

5 You issue a put command, where you put the file you received earlier. Because AIX does
not know about the record structure mode it will transfer the file as a stream of bytes. The file
still has the imbedded EOR sequences that will be interpreted by the MVS FTP Server,
rebuilding the original record boundaries.

While the technique above can be used to transfer the VB data set in binary mode, it is still
difficult to use the contents of a file at the remote system, because the file received contains
imbedded EOR sequences.

The FTP client provided in OS/390 V2R5 IP and later can support record structure option.
Therefore you can transfer any VB files via structure mode among MVS systems.

Here is an example of the usage of the record structure option:

Figure 6-24 Usage record structure option

1 Since both FTP server and client can recognize the stru r command, you do not need to
add the quote command any more. Both FTP server and client recognize the file structure that
is supposed to be transferred is record.

2 Issue a get command. The sending side (in this case the FTP server) will add EOR
sequences at the end of each record and EOF to indicate the end of file. Since the receiver
(in this case the FTP client) is also able to process these control sequences, the file
transferred will be stored without imbedded ERO sequences.

6.2.14 New features introduced with CS for z/OS V1R2 IP
The following is a list of features introduced as part of CS for z/OS V1R2 IP.

� Restricting DIRECTORY output

Directory output is handled in the same way as the ISPF data set list. Catalog security is
provided where users cannot list data set names for which they do not have read access.

� RFC 2389 & 2640 updates

CS for z/OS V1R2 IP implements additional standards which includes an FTP feature
negotiation mechanism and FTP language Internationalization.

 EZA1460I Command:
bin
 EZA1701I >>> TYPE I
 200 Representation type is Image
 EZA1460I Command:
stru r
 EZA1701I >>> STRU R 1
 250 Data structure is Record
 EZA1460I Command:

get test.vb 'kakky.test.vb1' 2
 EZA1701I >>> PORT 9,24,104,231,4,14
 200 Port request OK.
 EZA1701I >>> RETR test.vb
 125 Sending data set KAKKY.TEST.VB
 250 Transfer completed successfully.
 EZA1617I 4197 bytes transferred in 0.490 seconds. Transfer rate 8.57 Kbytes/sec.
 EZA1460I Command:
 EZA1460I Command:
Chapter 6. File Transfer Protocol (FTP) 153

� Stream mode file transfer restarting

If you are transferring a large file over an unstable network, you will keep losing the
session. Restartability of a file transfer becomes a key factor in this environment. A large
percentage of transfers are done between non EBCDIC nodes. These FTP users were
thus left out in the cold, as restarts were only supported for users using block or
compressed mode of type EBCDIC. CS for z/OS V1R2 IP has now implemented support
for stream mode as per the draft RFC - Extensions to FTP. Stream mode restarts are
supported for types I, A, and E.

� Socksifying of the FTP client

Only a socksified FTP client can get past a fire wall SOCKS server. Clients in other words
have to implement SOCKS protocols to enable them to connect to a SOCKS server. Now
with CS for z/OS V1R2 IP you have just that, with support for both SOCKS V4 and
SOCKS V5.

� Trace enhancements

FTP server and client traces used to be to be all encompassing. This process has
changed to allowing selected trace points and levels of detail.

� Native ASCII support

Support has been added for tagging of HFS files. A file tag is an attribute of a file that is
used by the ASCII Runtime Library to automatically convert between character sets. HFS
files tags can thus be set, interpreted or recognized as either tagged, untagged or tagged
with a binary or ecdic codepage.

� TLS enablement for FTP

Support for Transport Layer Security (TLS) has been added to both the FTP server and
client environments.

� ISPF stats enhancements

After editing a dataset using ISPF, it updates the dataset statistics display accordingly.
Changes to the member's current size, initial size, creation date, last modified date
settings would reflect some form of change. In the previous versions of FTP these
statistics remained untouched and thus incorrect. FTP will now create or update the ISPF
stats of partitioned datasets after a stream mode data transfer.

� User level FTP server options

The FTP.DATA configuration file provides settings and characteristics for all FTP clients
that log into the server. With CS for z/OS V1R2 IP users are allowed to have user-level
configuration files that are unique to each login userid. These config files set the session
parameters for each client session overriding those set in FTP.DATA.

� Fending off bounce attacks using PORT commands

This feature was included to provide the FTP server a way to protect itself from being used
to attack well-known network servers. A client can attack a data-receiving server by
sending a PORT command to a data-sending server with well-known port number, which
allows the client to avoid having direct connection with the data-receiving server.
Instructing a third party to connect to the service, rather than connecting directly, makes
tracking down the attacker very difficult. In CS for z/OS V1R2 IP FTP can now restrict
PORT commands.
154 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

� Surrogate RACF support

Anonymous support can be enabled by specifying a userid and password in FTP.DATA.
This really defeats the purpose of being secure. RACF surrogate support eliminates the
need for passwords. The user would however include SURROGATE as a password. CS
for z/OS V1R2 IP FTP would recognize this and issue a RACF call to check if the user is
allowed access without a password.

� Kerberos Support for FTP client and server

Kerberos support is implemented using the GSSAPI and Kerberos APIs provided by the
z/OS Security Server (RACF).

� FTP SMF record changes

CS V1R2 has implemented new SMF records, type 119.Both type 118 and type 119
records can be collected, although that is not recommended for performance reasons.
SMF Type 119 records utilize subtypes that cannot be modified by the customer.

6.3 z/OS FTP server configuration and implementation
In this section, we outline the necessary steps to configure the FTP server. Where
appropriate, we include configuration file samples.

6.3.1 Configuring the FTP server
To configure the FTP server functions, you have to perform one or more of the following tasks:

� Set up the RACF security environment.

� Update the PROFILE.TCPIP data set.

� Set up the default MVS FTP server configuration values (FTP.DATA).

� Set up configuration values, which FTP clients on your MVS system will use when they
start an FTP session.

� Set up a set of available translation tables to be used for translation between ASCII and
EBCDIC.

� Implement FTP server security.

� Set up the syslogd daemon for the FTP server logging.

� Prepare DB2 for the SQL query function.

In TCP/IP V3R2 for MVS you had the choice of using either a C-based MVS FTP server
(called EZAFTSRV) or an z/OS UNIX System Services FTP server (called FTPD), which was
introduced in TCP/IP for MVS OpenEdition Applications Feature. In CS for OS/390 V2R5 IP
and later you have only one FTP server, which is based on OS/390 TCP/IP OpenEdition
server and has been extended with functions earlier found in both FTP servers.

The FTP server functions consist of the following modules:

ftpd - The FTP daemon load module. It performs initialization and listens for incoming client
connections. For each client connection, the daemon establishes a separate address space
that runs the FTP server load module.

ftpdns - The FTP server load module. It runs in a separate address space (one for each client
connection) and processes the FTP subcommands until the quit command is received.
Chapter 6. File Transfer Protocol (FTP) 155

The FTP listener program is called ftpd and the program that processes each FTP client
connection is called the ftpdns program. During installation, both of these programs are
installed into the /usr/sbin directory. The installation process also places copies of these two
programs into your SEZALINK library.

The modules (ftpd and ftpdns) installed in the /usr/sbin directory are not executable modules,
but symbolic links to dummy modules that are installed into the /usr/lpp/tcpip/sbin directory
with the sticky bit set. The files in the hierarchical file system with the sticky bit set are only
used to force a search through the CS for z/OS V1R2 IP SEZALINK library for the executable
module. Therefore if the sticky bit is turned off, on /usr/lpp/tcpip/sbin/ftpd or
/usr/lpp/tcpip/sbin/ftpdns, the process will not run. Note that there are options to change the
mount point for the TCP/IP file system in a hierarchical file system environment, so the
dummy modules might be installed in another directory.

6.3.2 Setting up the syslog daemon
If the syslogd daemon has been started before the FTP server, all the messages from the
FTPD will be sent to syslogd and written in HFS files. The FTP server issues info, warning,
and error messages. All trace entries are written with debug priority. If you configure the
following statement in /etc/syslog.conf, all trace entries (and all messages) will be recorded in
/tmp/daemon.logs:

 daemon.debug /tmp/daemon.logs

An alternative is to configure the following statement in /etc/syslog.conf. Then all trace entries
(and all messages) will be recorded in /tmp/ftpd.logs, thereby isolating ftpd messages that
use the daemon facility name. For more information on the syslogd daemon, refer to
Appendix 14, “syslogd” on page 435

.FTPD.daemon.debug /tmp/ftpd.logs

If syslogd does not start before the FTP, all messages and trace entries will appear on the
MVS system console. Figure 6-25 shows a started procedure for the syslog daemon which
points to the output file as described above.

Figure 6-25 STC Procedure for SYSLOGD

6.3.3 Security environment for FTP servers
In order to use the FTP server, you have to configure several security elements required by
RACF or equivalent security products.

The following is an overview of the security configuration for the FTP server:

//SYSLOGD PROC
//* --
//* SYSLOG Daemon
//* --
//SYSLOGD EXEC PGM=BPXBATCH,REGION=0M,TIME=NOLIMIT,
// PARM='PGM /usr/sbin/syslogd -f /etc/syslog.conf'
//STDIN DD PATH='/dev/null'
//STDOUT DD PATH='/dev/null'
//*STDENV DD PATH='/etc/std.environment',PATHOPTS=(ORDONLY)
//* --
156 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

If you want to start the FTP server as an MVS started task, define the STARTED class profile
with the associated user ID that has an OMVS segment with UID=0.

If you have the BPX.DAEMON facility class defined in the security database, give the user
associated with the FTP started task permission to READ this facility class. Then make sure
that all load modules that are loaded for the FTP server come from controlled libraries.

If you want to allow ANONYMOUS users to access your FTP server, add a user definition to
the security database for user ID ANONYMO (or whatever user ID you define in FTP.DATA on
the ANONYMOUS statement). see , “Anonymous user definitions” on page 239.

A user ID must have an OMVS segment in order to log on the FTP server. Therefore each
login user ID must either:

� Have an OMVS segment defined in the security database.

� The OMVS default user must be established.

The terminal ID passed from FTP to RACF is an 8-byte hexadecimal character string
containing an IP address. RACF interprets this as a terminal logon address and rejects it if it
is not previously defined. The terminal access control is optional.

Optionally you may use four FTP server security user exits to control accesses to the FTP
server. For more information on the FTP user exit, refer to 6.6.4, “FTPD server security user
exit routines” on page 246.

The security considerations for the FTP server is discussed further in 6.6, “Security in the
FTP environment” on page 234

6.3.4 The catalogued procedure for FTP servers
The FTP listener can be started in several ways: from a shell script, via a BPXBATCH job, or
as a POSIX(ON) program. We decided to start it as a POSIX(ON) program because we
wanted to control, by means of the SYSFTPD DD-statement, which FTP.DATA configuration
data set the FTP server used. If you need to start only one FTP server in UNIX System
Services, you may use the default FTP.DATA location in the hierarchical file system, the
/etc/ftp.data file. However, if you want to start more than one instance of the FTP server and
need to control the function of each of these servers via different FTP.DATA configuration
options, you have to use the SYSFTPD DD-statement approach or use jobname.FTP.DATA.

The JCL we used to start our FTP server looks like the following:
Chapter 6. File Transfer Protocol (FTP) 157

Figure 6-26 FTP server sample Start Procedure

1 When we use the catalogued procedure to start the FTP listener, the resulting listener
process will get a job name of this procedure name suffixed with 1 - FTPDB1. The FTP
address space, which you start with an MVS operator START command, starts the FTP
listener program, which does some initialization (including reading SYSFTPD) before it forks
another address space, the FTPDB1 address space. The FTPDB1 address space is the
address space in which the FTP listener program will execute until closed down by an MVS
operator STOP command (P FTPDB1) or a UNIX System Services kill signal.

2 The FTP server daemon program is called ftpd, and will be executed from an MVS library on
the system link list, the SEZALINK library. The server address space is started with the ftpdns
program, which is also loaded from an MVS library on the system link list.

3 If you have developed your own FTP server security exit routines (FTCHKIP, FTCHKJES,
FTCHKPWD, FTCHKCMD) or SMF exit routine (FTPSMFEX), they must be either in a library
on your system link list, or you must add a STEPLIB library to this JCL procedure. As
mentioned earlier, a STEPLIB allocation is the only DD-name allocation that will be passed to
forked child processes. The FTP server security user exits are discussed further in 7.6.4,
“FTPD server security user exit routines” on page 252.

4 In our sample setup, we use the SYSFTPD DD-statement to direct the FTP server to its
FTP.DATA configuration options. The FTP.DATA configuration data sets are discussed in
more detail in , “Default FTP Server SITE parameters (FTPDATA)” on page 129.

5 The FTP server gets certain operating parameters from the statement in the TCPIP.DATA
data set. In our sample setup, we use the SYSTCPD DD-statement to teach the FTP server
the location of this configuration data set.

The search order for TCPIP.DATA is as follows:

� The environment variable RESOLVER_CONFIG

� /etc/resolv.conf

� A SYSTCPD DD-name allocation

� jobname.TCPIP.DATA or userid.TCPIP.DATA

� SYS1.TCPPARMS(TCPDATA)

� datasetprefix.TCPIP.DATA

//FTPDB PROC MODULE='FTPD',PARMS='' 1
//***
//* Resulting address space name will be FTPDB1 *
//***
//FTPDB EXEC PGM=&MODULE,REGION=0M,TIME=NOLIMIT, 2
// PARM=('POSIX(ON) ALL31(ON)',
// 'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPB"',
// '"_BPX_JOBNAME=FTPDB1"',
// '"TZ=EST")/&PARMS')
//*
//*FTPD is in TCPIP.SEZALINK (on the LINKLST)
//*FTCHKxxx routines are in the STEPLIB load library
//*STEPLIB DD DISP=SHR,DSN=WOZA.GIMLIB 3
//*
//CEEDUMP DD SYSOUT=*
//SYSFTPD DD DISP=SHR,DSN=TCPIP.TCPPARMS(FTSD&SYSCLONE.B) 4
//SYSTCPD DD DISP=SHR,DSN=TCPIP.TCPPARMS(TCPD&SYSCLONE.B) 5
158 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

You can see our sample configuration for the TCPIP.DATA data set as follows

Figure 6-27 Sample TCPIP.DATA data set

Notes:

1. Please remember that the library must be RACF program controlled and APF authorized.
The FTPD server, in addition to using UNIX System Services functions to change the
security environment, also uses standard MVS functions to check a user's authorization to
standard MVS resources before a user is allowed to transfer MVS data sets in or out of
your MVS system.

2. If you want to transfer files that contain DBCS data, you have to configure the
LOADDBCSTABLES statement with the proper DBCS code names.

3. If you enable SQL query support, DB2 load modules are going to be loaded from your
DB2 DSNLOAD library and most likely also from your DB2 DSNEXIT library. These
libraries must be under RACF program control too, in order for the FTPD server address
space not to become corrupted when the DB2 load modules are loaded.

Figure 6-28 RACF definitions for DB2

Using FTP servers in multiple-stack environments
In CS for z/OS IP, you can configure multiple TCP/IP stacks in a single z/OS image using the
UNIX System Services C-INET feature. In C-INET configuration an application using the
UNIX System Services Socket interface can get transparent access to all the TCP/IP protocol
stacks configured under C-INET. When an application issues a socket/bind/listen call in a
C-INET environment, the request is propagated by C-INET to all TCP/IP stacks. This
application can then service clients that arrive into any of the configured TCP/IP stacks
without having any awareness of this fact. This type of application is often referred to as a
generic server/daemon.

Since FTP server can act as a generic server and communicate with C-INET PFS, the
TCPIPJOBNAME statement is ignored by the FTP server. In a multiple-stack environment,
the FTP server can connect to all TCP/IP stacks that are active at the time the FTP server is
initialized.

The following is the output from a D TCPIP,,NETSTAT,CONN command in our test system at
ITSO-Raleigh. In this sample, you will see the FTP server is listening on two TCP/IP stacks
that are named TCPIPA and TCPIPB.

HOSTNAME MVS28B ; OS/390 IP host name
DOMAINORIGIN itso.ral.ibm.com ; this is appended to the host name to
 ; form the fully qualified host name
DATASETPREFIX TCPIP ; default hlq for configuration data sets
MESSAGECASE MIXED ; case translation for the FTP server
LOADDBCSTABLES SJISKANJI EUCKANJI ; DBCS translation tables
TCPIPJOBNAME TCPIPB ; name of the TCPIP procedure

RALTER PROGRAM * ADDMEM('db2.version.DSNEXIT'/volser/NOPADCHK) UACC(READ)
RALTER PROGRAM * ADDMEM('db2.version.DSNLOAD'/volser/NOPADCHK) UACC(READ)
Chapter 6. File Transfer Protocol (FTP) 159

Figure 6-29 Netstat connections command

1 The listening local IP address 0.0.0.0 means that the FTP server issued the bind() Sockets
API with local IP address INADDR_ANY which is predefined and has the value 0. Then the
FTP server can receive all incoming requests to the particular server port number over all
available network interfaces. This way of listening is mandatory for the socket server
programs that work on a multihomed host.

2 As you can see in the sample output above, some other servers, such as the InetD and
syslogd daemon, can also work as generic servers.

Although generic servers can help reduce complexity in some C-INET environments, there
are also cases where the FTP server is required to connect to a single TCP/IP stack only,
because of a security reason and/or to restrict the usage of servers and so on.

This can be accomplished by use of the _BPXK_SETIBMOPT_TRANSPORT environment
variable. This variable can be set in the JCL for a started procedure to indicate which TCP/IP
stack instance the FTP server should bind to.

The following is a sample configuration in our test environment at ITSO-Raleigh. We
configured TCPIPB and FTPDB on images SC63 and SC64 both running CS for z/OS V1R2
IP. The following common started procedure was used for both FTP servers.

D TCPIP,TCPIPB,NETSTAT,CONN
RESPONSE=RA28
 EZZ2500I NETSTAT CS V1R2 TCPIPB 533
 USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
 BPXOINIT 00002AD0 0.0.0.0..10007 0.0.0.0..0 LISTEN
 FTPDB1 00002B49 0.0.0.0..21 1 0.0.0.0..0 LISTEN
 TCPIPB 00000013 0.0.0.0..23 0.0.0.0..0 LISTEN
 TCPIPB 0000000C 0.0.0.0..1025 0.0.0.0..0 LISTEN
 TCPIPB 00000012 127.0.0.1..1025 127.0.0.1..1026 ESTBLSH
 TCPIPB 00000011 127.0.0.1..1026 127.0.0.1..1025 ESTBLSH
 SYSLOGD1 0000028C 0.0.0.0..514 *..* UDP
 7 OF 7 RECORDS DISPLAYED

D TCPIP,TCPIPA,NETSTAT,CONN
RESPONSE=RA28
 EZZ2500I NETSTAT CS V1R2 TCPIPA 537
 USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
 BPXOINIT 0000000B 0.0.0.0..10007 0.0.0.0..0 LISTEN
 FTPDA1 00001B5A 0.0.0.0..21 1 0.0.0.0..0 LISTEN
 INETD1 0000002A 0.0.0.0..110 2 0.0.0.0..0 LISTEN
 INETD1 00000029 0.0.0.0..109 2 0.0.0.0..0 LISTEN
 INETD1 0000002B 0.0.0.0..2023 2 0.0.0.0..0 LISTEN
 OMPROUTA 00000016 127.0.0.1..1027 127.0.0.1..1028 ESTBLSH
 TCPIPA 00000011 127.0.0.1..1025 127.0.0.1..1026 ESTBLSH
 TCPIPA 0000000D 0.0.0.0..1025 0.0.0.0..0 LISTEN
 TCPIPA 00000010 127.0.0.1..1026 127.0.0.1..1025 ESTBLSH
 TCPIPA 00000014 127.0.0.1..1028 127.0.0.1..1027 ESTBLSH
 TCPIPA 00000015 0.0.0.0..23 0.0.0.0..0 LISTEN
 11 OF 11 RECORDS DISPLAYED
160 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-30 Sample procedure for FTPDB FTP server

3 You can indicate which TCP/IP stack instance the FTP server should connect to using the
environment variable.

You can verify the association between an FTP server and a TCP/IP instance using the
DISPLAY TCPIP MVS operator command or NETSTAT CONN command as follows:

Figure 6-31 SC64 NETSTAT connections display

The display shows the TCPIPB stack is associated with FTPDB1, the FTP listener. You can
also issue the D,OMVS,CINET command. The multiple-stack environment is discussed in further
detail in Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 1:
Base and TN3270 Configuration, SG24-5227.

6.3.5 Starting FTP servers from the z/OS UNIX shell
You may start the FTP server as a UNIX System Services shell command or automatically
when OMVS is started, rather than as an MVS cataloged procedure.

Starting the FTP daemon manually, you can issue the following command:

 _BPX_JOBNAME='FTPD' /usr/sbin/ftpd port 20021 &

If you want to start FTP server when the OMVS address space is started, you have to include
the following statement in the /etc/rc file:

 export _BPX_JOBNAME='FTPD'
 /usr/sbin/ftpd port 20021 &

The _BPX_JOBNAME environment variable specifies the job name for MVS commands. If
the name is 8 characters, the UNIX System Services generated name will be the same. If it is
less than 8 characters, UNIX System Services will generate a different name by adding a digit
that may or may not be 1. The initialization complete message and the FTP server job name
will be displayed at an MVS operator console (if syslogd is not active) or sent to the syslogd
and written by it in an HFS file.

//FTPDB PROC MODULE='FTPD',PARMS=''
//FTPDB EXEC PGM=&MODULE,REGION=0K,TIME=NOLIMIT,
// PARM=('POSIX(ON) ALL31(ON)',
// 'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPB"', 3
// '"_BPX_JOBNAME=FTPDB1"',
// '"TX=EST")/&PARMS')
//CEEDUMP DD SYSOUT=*
//SYSFTPD DD DISP=SHR,DSN=TCPIPB.&SYSNAME..TCPPARMS(FTPDATB)
//SYSTCPD DD DISP=SHR,DSN=TCPIPB.&SYSNAME..TCPPARMS(TCPDATB)
//SYSFTSX DD DISP=SHR,DSN=TCPIPMVS.STANDARD.TCPXLBIN

RESPONSE=SC64
 EZZ2500I NETSTAT CS V1R2 TCPIPB 421
 USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
 DB7KDIST 00000019 0.0.0.0..33741 0.0.0.0..0 LISTEN
 DB7KDIST 00000017 0.0.0.0..33740 0.0.0.0..0 LISTEN
 FTPDB1 000002C5 0.0.0.0..21 0.0.0.0..0 LISTEN
Chapter 6. File Transfer Protocol (FTP) 161

Figure 6-32 FTP Server initialization

In this case, the FTP daemon was named FTPD8.

If FTP is started from the shell without _BPX_JOBNAME, the UNIX System Services
generated name comes from the underlying user ID. For example, if you are using USER1,
you will get a job name USER1x.

Under prior versions of CS for z/OS IP, if TCP/IP initialization is not completed before FTP is
started, the FTP server will be unable to create a socket. The FTP server will continue to try
every minute forever until TCP/IP initialization completes, at which time FTP initialization can
complete. FTP will not recognize the STOP command at this phase of its initialization, so you
have to use the CANCEL command to stop it.

However, we recommend using the AUTOLOG statement, and starting up the FTP server
when the TCP/IP address space is started.

If you start the FTP server from an UNIX System Services environment, you might face
several security violation errors. For security considerations, refer to “Security in the FTP
environment” on page 234 and Communications Server for z/OS V1R2 TCP/IP
Implementation Guide Volume 1: Base and TN3270 Configuration, SG24-5227.

6.3.6 PROFILE.TCPIP for FTP servers
If you want the FTP server to be started automatically when the TCP/IP address space is
started, then include the name of the member containing the FTP server cataloged procedure
in the AUTOLOG statement. To reserve ports 21 and 20 for the FTP server you have to
configure the PORT statement too.

The following is our sample configuration for PROFILE.TCPIP.

Figure 6-33 Sample TCPIP.PROFILE configuration for an FTP server

1 The automatic server activation is done by a separate subtask, called the AUTOLOG
subtask. This subtask is started at TCP/IP initialization and runs in the TCP/IP address space
until the address space is terminated. The AUTOLOG subtask also monitors the procedure.
The monitoring function performed is:

� Check if the procedure's address space is still active. If not, restart the procedure.

EZY2702I Server-FTP: Initialization completed at 09:38:39 on 02/24/98.
EZYFT41I Server-FTP: process id 33554445, server jobname FTPD8

AUTOLOG 1

 FTPDB JOBNAME FTPDB1 ; FTP Server Listener 1

ENDAUTOLOG

PORT

 20 TCP OMVS NOAUTOLOG ; FTP Server data port
 21 TCP FTPDB1 ; FTP Server control port 2
162 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

� For each PORT entry for this procedure that has an AUTOLOG statement keyword, check
to make sure each PORT is still active. If there is one or more PORT entry that is not
active, the procedure will be restarted.

To avoid needless attempts for the AUTOLOG subtask to restart the FTP server, you need to
let it know the correct FTP listener name. Therefore in the AUTOLOG statement, the
JOBNAME parameter was added.

If the procedure name for FTP startup is less than 8 characters, you need to provide the UNIX
System Services generated job name on the AUTOLOG statement and the PORT statement
must specify that job name. If the procedure name is 8 characters, the UNIX System Services
generated job name will be the same 8 characters and the JOBNAME parameter does not
need to be specified on the AUTOLOG statement.

2 On the PORT statement you should not reserve port 20, which is used for the data
connection port, for a particular job name. Instead, you should reserve port 20 for the general
job name OMVS because the data connection is used by the forked FTP server processes
that have UNIX System Services generated job names, such as FTPDB2 or FTPDB3. If you
reserve port 20 for the FTP listener program (in this case FTPDB1), the forked FTP server
process (for example, FTPDB2) cannot bind a socket to port 20 and the attempt at opening a
socket will fail.

In this case the following error message will be displayed at an MVS operator console or sent
to the syslogd and written in an HFS file if daemon.debug is active.

SR0388 data_connect: bind() error (111/744C7246) - EDC5111I Permission denied.

The client will see the following message:

425 Unable to open data connection

However, there remain a few ways to reserve both the control and data connection for a
particular job name of the FTP server.

One way to do this is by using the 8-character original job name for the FTP server. In this
case, all FTP server-related address spaces, including the FTP daemon address spaces,
have the same job name. You would see several address spaces running concurrently with
the same job name. In this case, to stop the FTP server you just need to issue the STOP
command with the 8-character job name. Since existing FTP connections will not be
terminated, the currently active FTP sessions can continue to work with the z/OS FTP server
until a QUIT subcommand is entered.

The other way is to reserve the data connection port for all possible FTP server job names. As
we mentioned before, the UNIX System Services generated names consist of the original job
name plus a one-digit character that is selected from 1 to 9. Therefore by adding eight more
PORT statements with all possible job names, we can reserve the data connection port for
the particular FTP server.

You will see the sample configuration in Figure 6-34. In this sample, we configured two FTP
servers. One is the FTP server with an 8-character name and work on non-standard port
numbers. The other one is the same server as shown before, but in the PORT statement the
data connection port is reserved for all possible names of the FTP server address spaces
Chapter 6. File Transfer Protocol (FTP) 163

Figure 6-34 Sample TCPIP.PROFILE configuration for an FTP server

3 This cataloged procedure for the FTP server has an 8-character job name, so you do not
need to specify a JOBNAME statement with the name of the FTP daemon address space.

4 Reserve data connection port number for all possible job names of the FTP server address
spaces. You have to specify the NOAUTOLOG parameter as well.

5 The PORT statement for the FTP server with the 8-character original job name. Since all of
the FTP daemon and server processes have the same job name, you can specify the same
job name as that in the AUTOLOG statement.

6.3.7 SMF records
With CS for z/OS V1R2 IP two smf record types are available, namely the type 118 record
and a type 119 record. All the existing events are recorded via both the Type 118 and the
Type 119 records. It is possible to collect both types if desired. This however isn't
recommended, due to the performance overhead of generating two records containing largely
the same data. Subsequent releases of CS for z/OS IP will see the Type 118 record being
retired permanently. The FTP server uses SMF type 118 (X’76’) and type 119 (X’77’) records
to record transactions made by the FTP server.

The type 118 record
The SMFCONFIG statement is used in TCPIP.PROFILE to provide SMF logging for type 118
records, with standard subtypes. At least one of the SMF subtype statements (SMF,
SMFAPPE, SMFDEL, SMFLOGN, SMFREN, SMFRETR, or SMFSTOR) must be coded in
FTP.DATA to enable logging.If no subtypes have been specified, the server will not write any
SMF records. Using the SMFPARM statement provides similar capability but requires the
installation to select subtype numbers to enable SMF logging.

By entering options into the server configuration data set, you control in what situations you
want the server to write SMF records.

AUTOLOG

 FTPDB JOBNAME FTPDB1
 T28FTPSV 3

ENDAUTOLOG

PORT

 20 TCP FTPDB1 NOAUTOLOG ; FTP Server1 data port 4
 20 TCP FTPDB2 NOAUTOLOG ; FTP Server1 data port 4
 20 TCP FTPDB3 NOAUTOLOG ; FTP Server1 data port 4
 20 TCP FTPDB4 NOAUTOLOG ; FTP Server1 data port 4
 20 TCP FTPDB5 NOAUTOLOG ; FTP Server1 data port 4
 20 TCP FTPDB6 NOAUTOLOG ; FTP Server1 data port 4
 20 TCP FTPDB7 NOAUTOLOG ; FTP Server1 data port 4
 20 TCP FTPDB8 NOAUTOLOG ; FTP Server1 data port 4
 20 TCP FTPDB9 NOAUTOLOG ; FTP Server1 data port 4
 21 TCP FTPDB1 ; FTP Server1 control port

 20020 TCP T28FTPSV NOAUTOLOG ; FTP Server2 data port 5
 20021 TCP T28FTPSV ; FTP Server2 control port 5

164 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The following FTP.DATA options are used to enable SMF recording for the listed events. nn is
used to associate individual SMF record 118 subtypes to each event. You can use any value
between 1 and 255. You should ensure that the values you select for your FTP SMF record
subtypes are unique within SMF record type 118. Other components of TCP/IP may have
been customized to write SMF records too, for example, TELNET.

SMFAPPE nn Append

SMFDEL nn Delete or Mdelete

SMFRETR nn Get or Mget

SMFSTOR nn Put or Mput

SMFREN nn Rename

These records can be selected for all file types, or for one or more of the supported file types:

SEQ Sequential files: enabled by default, when the above options are
specified.

JES JES spool files: FTP.DATA option: SMFJES.

SQL SQL query files: FTP.DATA option: SMFSQL.

In addition to these SMF records, you may request that the MVS FTP server write an SMF
record whenever an invalid logon attempt takes place (FTP.DATA option: SMFLOGN). All
SMF records have predefined standard values. You may use the SMF STD statement to set
the default SMF record subtype for all SMF records. SMF STD will do two things: Activate all
FTP's SMF events and set the subtypes to the standard subtype numbers. Alternatively you
can specify STD on the individual SMF* statements to activate recording for selective events
using standard subtypes.

You are able to implement a user exit, which will be given control every time the FTP server is
about to write an SMF record. The exit receives the SMF record that is about to be written
and can either modify the record or suppress writing of the SMF record.

You enable FTP client SMF records by specifying SMFCONFIG FTPCLIENT in the
PROFILE.TCPIP configuration data set. SMF records of type 118 and subtype 3 are created
when a user invokes the FTP client commands. While the SMFPARMS statement in
PROFILE.TCPIP is still supported, we strongly recommend migrating to SMFCONFIG in
order to standardize subtypes. If SMFPARMS is encountered after an SMFCONFIG
statement, an error message is displayed and the SMFPARMS parameters are ignored. If
SMFCONFIG is encountered after an SMFPARMS statement, a warning message is
displayed and the SMFCONFIG parameters are accepted.

The Type 119 record
As part of the type 119 record, the FTP Server Transfer Complete records have been
reformatted to utilize one subtype value, and to include a "self defining section" and TCP
Stack Identification section.
Chapter 6. File Transfer Protocol (FTP) 165

� The FTP Server record has additional optional sections:

Hostname

Associated MVS or HFS filename(s)

– Some of the other information included is:

Operation type

Transmission start and end time and date

Local and remote IP addresses and port numbers, for data and control connections

Inbound/outbound byte data counts

File transmission characteristics

� The FTP Login Failure record has been reformatted to include a "self defining section" and
the TCP Stack Identification section.

– Some of the other information included is:

User ID attempting the login

Local and remote IP addresses and port numbers, for data and control connections

Login failure reason code

� The FTP Client Transfer Complete record has been reformatted to include a "self defining
section" and the new TCP Stack Identification section.

– FTP Client record has additional optional sections:

Associated MVS or HFS data set name

SOCKS Server information

– Some of the other information included is:

Operation type

Transmission start and end time and date

Local and remote IP addresses and port numbers, for data and control connections

Inbound/outbound byte data counts

 File transmission characteristics

Type 119 SMF records include all those available under type 118, but additionally include
IFSTATISTICS, PORTSTATISTICS, TCPSTACK, and UDPTERM.

Type 119 records may be configured in FTP.DATA using the TYPE119 keyword following the
command as follows.

� SMF TYPE119 requests that type 119 SMF FTP records be created for all file transfer
operations.

� SMFAPPE TYPE119 requests that type 119 records be created for append operations.

� SMFDEL TYPE119 requests that type 119 records be created for delete operations.

� SMFLOGN TYPE119 requests that type 119 records be created when a logon failure
occurs.

� SMFREN TYPE119 requests that type 119 records be created for rename operations.

� SMFRETR TYPE119 requests that type 119 records be created for retrieve operations.

� SMFSTOR TYPE119 requests that type 119 records be created for store and store unique
operations.
166 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The three FTP.DATA statements SMFEXIT, SMFJES, and SMFSQL control FTP's SMF
behavior as follows:

� SMFEXIT controls whether the FTP user exit, FTPSMFEX, is called when writing a SMF
FTP record. The SMFEXIT statement however affects only type 118 records.

� SMFJES causes type 118 transfer completion records to be issued for transfers of JES
files. SMFJES TYPE119 does the same for type 119 records.

� SMFSQL causes type 118 transfer completion records to be issued for transfers of SQL
files. SMFSQL TYPE119 does the same for type 119 records.

Layout of the SMF records is documented in z/OS V1R2.0 CS: IP Configuration Reference,
SC31-8776.

6.4 Server customization and usage
We continue our exploration of the FTP server by illustrating basic customization procedures.

6.4.1 Users of the FTP server
The FTP server sets the initial working directory at the server to one of the following:

� The login user's home directory in hierarchical file system.

� The PREFIX defined in the PROFILE of the login TSO user ID. If no PREFIX has been
defined, the login user ID will be the initial working directory.

You can choose which directory to be used by FTP server using the STARTDIRECTORY
statement in FTP.DATA. The default is MVS data set.

If your FTP clients want to transfer both MVS data sets and hierarchical file system files, in or
out of the FTP server, they can change the current working directory after they have logged in
as shown in Figure 6-35:

Note: If you run the FTP client in the TSO environment, the PREFIX (or your TSO user ID
if no prefix is defined) is used as the initial local working directory. If you run the FTP client
from the OE shell, your $HOME directory is used as the initial local working directory.
Chapter 6. File Transfer Protocol (FTP) 167

Figure 6-35 Changing to a HFS directory

1 The default working directory just after having logged in is the user's HOME directory (we
have STARTDIRECTORY HFS defined in the Server).

2 Change working directory to an MVS data set high-level qualifier.

3 Change working directory back to a directory in hierarchical file system.

If you can change the initial working directory in the MVS environment, you can use the TSO
PROFILE command as follows:

1. Log on to TSO on the MVS system of the FTP server.

2. Set your new prefix using the TSO PROFILE command:

 TSO PROFILE PREFIX(prefix)

where prefix is any TSO prefix you choose.

3. Log off to save the new default working directory name.

Using a PWD FTP subcommand after logging into an FTP server, you can see where your initial
working directory is in the remote system.

A user of the UNIX System Services FTPD server must have a valid OMVS identity in terms
of an OMVS segment in the user's RACF profile in order just to log on to the FTP server. This
is the case even if the user does not intend to transfer files in or out of the hierarchical file
system, but just wants to use the server for transferring standard MVS data sets.

If FTP clients receive an error message like the following when they try to log on to your FTP
server, they most likely do not have a valid OMVS segment in their RACF user profile and a
default OMVS segment has not been established.

C:\>FTP 9.24.104.43
Connected to 9.24.104.43.
220-FTPDB1 IBM FTP CS V1R2 at wtsc63oe, 17:34:35 on 2002-05-26.
220-***
220-* *
220-* Welcome to z/OS ITSO Raleigh SC63 *
220-* You accessed this system via CS for z/OS V1R2 *
220-* *
220-* This is the TCPIP.TCPPARMS(FTPBANR) file for FTP *
220-* *
220-***
220-This is SC63.itso.ral.ibm.com on Sun May 26 17:34:35 2002
220-For administrative assistance contact support@helpdesk.com
220-
220 Connection will not timeout.
User (9.24.104.43:(none)): garthm
331 Send password please.
Password:
230 KAKKY is logged on. Working directory is "/u/garthm". 1
ftp> cd 'TCPIP.TCPPARMS'
250 "TCPIP.TCPPARMS" partitioned data set is working directory 2
ftp> cd /tmp
250 HFS directory /tmp is the current working directory 3
ftp>
168 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-36 User signon without valid OMVS segment

6.4.2 MVS datasets and HFS files
The FTP server determines the source and target file (MVS data set or a hierarchical file
system file) in the following way:

It does so based on an analysis of the resource name. You do not have to specify explicitly if
you are working with MVS data sets or hierarchical file system files.

� Is the name a fully qualified resource name (enclosed in single quotes)?

Use the name as it is. If the name begins with a slash (/), then treat it as an HFS file name.
Otherwise treat it as an MVS data set name.

– 'mydata.set' - MVS data set MYDATA.SET

– '/u/user/myfile' - HFS file /u/user/myfile

� Is the name not a fully qualified resource name?

If the name begins with a slash, use the name as it is and treat it as an HFS file name.

– /u/user/yourfile - HFS file /u/user/yourfile

If the name does not begin with a slash, then append the value of the current working
directory to the beginning of the name and treat the combined name as a fully qualified
name.

– myfile - if the current working directory is /u/user, the resulting name is an HFS file
called /u/user/myfile. If the current working directory is myuserid, the resulting name is
an MVS data set called MYUSERID.MYFILE.

MVS data set names are translated to uppercase before the FTPD server accesses the data
sets. HFS file names are left as is, because mixed case file names are fully valid in the
hierarchical file system.

File names in the hierarchical file system may consist of any characters, including quotes and
spaces. This poses a small dilemma if, for example, you want to transfer a file in the HFS that
has a name of /u/user/c/'weird.name', which is a fully valid name in the hierarchical file
system.

Assume the following sequence of events:

1. Current working directory is /u/user/c

2. User enters get ‘weird.name'

[C:\]ftp mvs18o
IBM TCP/IP for OS/2 - FTP Client ver 08:36:08 on Jul 22 1996
Connected to mvs18o.itso.ral.ibm.com.
220-FTPD1 IBM MVS V3R3 at mvs18oe.itso.ral.ibm.com, 13:45:23 on 1997-09-28
220 Connection will close if idle for more than 5 minutes.
Name (mvs18o): alfred
331 Send password please.
Password:
550 PASS command failed - getpwnam() error : EDC5163I SAF/RACF extract error.
Login failed.
ftp>
Chapter 6. File Transfer Protocol (FTP) 169

According to our rules described earlier, this is a fully qualified MVS data set name, but that is
not what the user meant. The FTP server has a new option available to deal with this
dilemma: the quotes override option. It can be set to an installation-wide default value in your
FTP.DATA configuration and it can be changed by individual users via a SITE
(NO)QUOTESOVERRIDE command.

QUOTESOVERRIDE refers to overriding the current directory specification in this situation or
not.

If QUOTESOVERRIDE=TRUE, the above situation would result in the MVS data set
'WEIRD.NAME' being transferred.

If QUOTESOVERRIDE=FALSE, the above situation would result in the HFS file
/u/user/c/'weird.name' being transferred.

Another interesting file name in the hierarchical file system could be the following:

&blank.&blank.very&blank.weird'Name&blank.&blank.

where the &blank. in the name stands for a blank character. This file name starts with two
blanks, has a blank and a quote in the middle of the name and ends with two blanks.
Although special, it is a valid HFS file name.

The UNIX System Services FTPD server deals with such a name based on the FTP protocol
subcommand contents. If a user wants to retrieve the above file, the FTP subcommand would
be a RETR subcommand. The exact contents of the subcommand would be as follows:

RETR very weird'Name <eol>

The RETR command is followed by one blank before the file name starts. In this example, there
are three blanks following the RETR command, which means that the file name starts with two
blanks. Everything up until the <eol> control character is considered to be the resource name,
including the two trailing blanks in the above example. The resource name is then treated as
described earlier. If the current working directory is an MVS data set high-level qualifier, the
result would be a invalid MVS data set name, but if the current working directory is a directory
path in the hierarchical file system, the resulting name would be a valid file name.

When you work with file names in the hierarchical file system, there are a couple of character
sequences that have special meaning:

~/ (tilde slash) This stands for your $HOME directory.

../ (dot dot slash) This means back up one directory level.

These may be combined in a resource name. Consider the following example: your current
working directory is /u/dilbert/c/trojan_horses and your $HOME directory is /u/weirdo.

� You enter get ~/mysweetie - the resulting file name becomes: /u/weirdo/mysweetie.

� You enter get ../../bin/sweeproot - resulting file name becomes:
/u/dilbert/bin/sweeproot.

� You enter get ~/../boss/salary_list - the resulting file name becomes:
/u/boss/salary_list.

Note: Please note that not all FTP clients will be able to deal with such file names,
especially not file names with leading or trailing blanks.
170 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

6.4.3 Restartability
Checkpoint restarting can be done for the following modes

� Block mode and type E (ebcdic)

� Compressed mode and type E (ebcdic)

� Stream Mode and type I (binary), E (ebcdic), or A (ascii)

Block transfer mode and the compressed transfer mode supports checkpoint/restart. When
checkpointing is used, the sending side inserts checkpoint markers into the data being
transmitted (using the descriptor code in block mode and using an escape sequence in
compressed mode). The FTP client always keeps track of the checkpoint markers. In the CS
for z/OS V1R2 IP FTP client the checkpoints are logged in a data set called
userID.FTP.CHKPOINT. The FTP client restarts the failed request using the logged
checkpoint marker information.

You have to indicate to the sending side if you want to include checkpoints in your file
transfer. If you GET a file, you must use the site chkptint=nn command. If you PUT a file, you
must use the locsite chkptint=nn command to specify how many blocks to transmit between
checkpoints.

Figure 6-37 Setting the checkpoint interval

Formulae: CHKPTINT = amount of data in interval / record length of the file

CHKPTINT = 200KB / 80 bytes

 = 200 * 1024 bytes / 80 bytes

 = 2560

mode b
 >>>MODE b
 200 Data transfer mode is Block
 Command:
type e
 >>>TYPE e
 200 Representation type is Ebcdic NonPrint
 Command:
site chkptint=2
 >>>SITE chkptint=2
 200 Site command was accepted
 Command:
get large large.mvs1803
 >>>PORT 9,67,41,2,4,8
 200 Port request OK.
 >>>RETR large
 125 Sending data set GARTHM.LARGE FIXrecfm 80

Line error connection terminated

Note: Set your CHKPTINT based on the formulae below and not on the figure and set in
the above example.
Chapter 6. File Transfer Protocol (FTP) 171

Now assume that your connection broke down in the middle of this transfer. The FTP client
keeps track of the checkpoints in a data set, which would look like the following if the transfer
had broken down:

 get.large.large.mvs1803.
 110 MARK 84 = 0,768,2,320,0,320,0,3200
 110 MARK 168 = 0,1280,4,640,0,640,0,3200

To restart this transfer, you have to start your FTP client again, reconnect to the server,
reestablish your transfer mode and data type settings, and issue a restart command:

Figure 6-38 Restarting a block mode file transfer

To restart an interrupted stream mode transfer the SRESTART subcommand has to be used.
The srestart command arguments indicate the file transfer to restart, and has to match the
original command arguments.The environment (FTP.DATA statements, site and locsite
commands, subcommands, start options) when you issue srestart, must be identical to the
original environment. You the user is responsible for creating this environment. The local file
must be HFS and must be a link to a file.

The following SRESTART restrictions apply:

� the mode must be stream

� structure must be file

� the filetype must be SEQ (no JES or SQL restarts)

� sunique must be toggled off

� the type must be I (binary), E (ebcdic), or A (ascii)

� TLS or Kerberos protected data connections cannot be restarted

mode b
 >>>MODE b
 200 Data transfer mode is Block
 Command:
type e
 >>>TYPE e
 200 Representation type is Ebcdic NonPrint
 Command:
restart
 >>>REST 0,1280,4,640,0,640,0,3200
 300 Restart command accepted, parameter 0,1280,4,640,0,640,0,3200.
 >>>PORT 9,67,41,2,4,6
 200 Port request OK.
 >>>RETR large
 125 Sending data set ALFREDC.LARGE FIXrecfm 80
 65536 bytes transferred.
 139264 bytes transferred.
 311296 bytes transferred.
 483328 bytes transferred.
 638976 bytes transferred.
 794624 bytes transferred.
 250 Transfer completed successfully.
 921300 bytes transferred in 72.871 seconds. Transfer rate 12.64 Kbytes/
 Command:
172 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

When type A is set, the file data received from the server on the data connection is encoded
in ASCII. Each line is terminated with a <CRLF> (carriage return, line feed) sequence, in
accordance with RFC 959. If the data contains a <CR> other than the <CRLF> sequence, the
file cannot be restarted. The FTP client can detect this problem and will fail the restart,
provided the same ASCII translate table is used for the original file transfer and for the
restarted file transfer.

If SRETART fails, there is always the option of running your file transfer again.

To activate this function on the z/OS server, you must code two statements in FTP.DATA as
can be seen in Figure 6-41 on page 175:

� extensions SIZE

� extensions REST_STREAM

The SIZE command is part of the sequence needed to restart a file in stream mode.
Extensions REST_STREAM configures the server to accept a REST command while in
stream mode, and while type is set to I, A, or E.

FTP logs an error message when you code EXTENSIONS REST_STREAM without coding
EXTENSIONS SIZE.The server FEAT command can be used as a means of asking the
server which extensions to FTP it supports.

We setup a 3CDAEMON FTP server on Windows 2000, and transferred an HFS file to the PC
from a z/OS client. We defined a mode of Stream and a type of Image/Binary and issue our
PUT command as shown in Figure 6-39.

Figure 6-39 Stream FTP failure to PC FTP Server

Once the transfer was well under way we broke the LAN connection to simulate the
connection and subsequent FTP termination. After restoring the FTP connection, we
recreated the same environment as we had at the time of the failure. We did this by setting
Mode to S (Stream) and the type to I (Image or Binary). We then issued the Stream restart
command called SRESTART as shown in Figure 6-40 on page 174. The format for this
command is as follows:

 Command:
mode s
 >>> MODE S
 200 Command OK. Current mode is stream
 Command:
type i
 >>> TYPE I
 200 Type set to I.
 Command:
put /usr/hfstest hfstest
 >>> PORT 9,12,6,30,4,153
 200 PORT command successful.
 >>> STOR hfstest
 150 File status OK ; about to open data connection
 1658880 bytes transferred.

 Line error connection terminated
Chapter 6. File Transfer Protocol (FTP) 173

SRESTART subcommand

SRESTART get foreignfile localfile

SRESTART put localfile localfile

The file transfer continued from the point of termination. As apposed to the block restart
scenario, the SITE command CHKPTINT is not required when doing Stream restarts

Figure 6-40 Restarted Stream file transfer to PC FTP Server

6.4.4 Using a socks server
A firewall controls access to a companies networks by either allowing or blocking such
access. Firewall technology used to isolate the intranet from the internet, normally
implements a SOCKS server. The SOCKS server allows client applications inside the fire wall
to use servers outside the fire wall, by relaying the application data in the SOCKS server,
which is also known as a transparent proxy server. The SOCKS server can be configured to
reject, allow, redirect, or log connections requested by clients.

To set up the client to use a socks server the following has to be done.

� Include a SOCKSCONFIGFILE statement in the client's FTP.DATA which points to a
configuration file as detailed in Figure 6-41. The SOCKSCONFIGFILE can be HFS, a PDS
or a Sequential file.

 Command:
mode s
 >>> MODE S
 200 Command OK. Current mode is stream
 Command:
type i
 >>> TYPE I
 200 Type set to I.
 Command:
srestart put /usr/hfstest hfstest
 >>> SIZE hfstest
 213 2114112
 >>> PORT 9,12,6,30,4,155
 200 PORT command successful.
 >>> REST 2114111
 350 Requested file action pending further information
 >>> STOR hfstest
 150 File status OK ; about to open data connection
 1756609 bytes transferred.
 3415489 bytes transferred.
 :
 17608129 bytes transferred.
 226 Closing data connection; File transfer successful.
 18864565 bytes transferred in 114.760 seconds. Transfer rate 164.38 Kbytes/s
 ec.
 Command:
174 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-41 FTP.DATA file showing SOCKS config file parm

If the file defined in this statement is absent or invalid it will not default but the statement will
be ignored as shown in Figure 6-42 on page 175.

Figure 6-42 Invalid Socks config file

Socks protocols will therefore not be used in the following circumstances:

� If there is no SOCKSCONFIGFILE statement is in FTP.DATA;

� The SOCKSCONFIGFILE cannot be opened or read;

� The SOCKSCONFIGFILE contains invalid data.

The SOCKSCONFIGFILE contains statements telling the FTP client whether to use SOCKS
protocols for a given target server as shown in Figure 6-43. Pertaining to this figure:

� DIRECT statement means don't use SOCKS protocols.

� SOCKD4 statement means use SOCKS V4 protocols to access the FTP server.

� SOCKD5 statement means use SOCKS V5 protocols to access the FTP server.

The statements can be in any order, but the FTP client will use the first statement that applies
to the target FTP server.

Figure 6-43 Socks configuration file

On the direct statement and you must supply an IP address and a subnet mask. Only IP V4
addressing is supported.

1 This direct statement indicates to FTP client not to use the SOCKS server for addresses
within our network.

On the sockd4 and sockd5 statements a DNS name or a dotted decimal IP address can be
used for your socks server. A gethostbyname(DNS name) is done at FTP initialization, so the
DNS name for the socks server host given in this statement has to be valid.

SOCKD4 @=socks_server_host_name remote_server address mask

Recfm FB ; Fixed blocked record format
Filetype SEQ ; File Type = SEQ (default)
RDW false ; Do not retain RDWs as data
EXTENSIONS SIZE ; Server can respond to SIZE cmd
EXTENSIONS MDTM ; Server can respond to MDTM cmd
EXTENSIONS UTF8 ; Server can respond to LANG & UTF-8 enc.
EXTENSIONS REST_STREAM ; Server can respond to SIZE cmd
SOCKSCONFIGFILE 'TCPIPB.SC63.TCPPARMS(SOCKSCNF)' ;SOCKS CONFIG FILE

BPXF024I (TCPIPMVS) May 8 14:15:20 ftpd 67240208 : EZYFT47I 797
 dd:SYSFTPD file, line 21: Ignoring keyword "SOCKSCONFIGFILE".

direct 9.0.0.0 255.0.0.0 ; internal net 1
sockd4 @=socks4srv 192.152.1.0 255.255.255.0 ; Test Network1 2
sockd5 @=socks5srv 192.158.3.0 255.255.255.0 ; Test Network2 3
sockd5 @=9.1.2.3 0.0.0.0 0.0.0.0 ; Anything else 4
Chapter 6. File Transfer Protocol (FTP) 175

As in the direct statement, you use a dotted decimal IP address and mask to denote the FTP
server or servers affected by this rule --target FTP server IP address AND'ed with the mask
must match the remote server address

2This sockd4 statement instructs the FTP client to use the SOCKS server socks4srv for any
target in the class C 192.152.1.0 network, and to use SOCKS 4 protocols to establish the
connection. As can be seen in this example the use of DNS names are allowed.

3This sockd5 statement instructs the FTP client to use the SOCKS server socks5srv for any
target in the class C 192.158.3.0 network, and use SOCKS 5 protocols to establish the
connection.The SOCKD and SOCKD5 keywords can be used interchangeably.

4 This sockd5 statement was defined as a catch all bucket for dealing with all other servers
out there.t

You can use the LOCSTAT command to determine which file is used for
SOCKCONFIGFILE.The example shown in Figure 6-44 indicates 'garthm.ftp.cnf1' is coded in
FTP.DATA. If no SOCKSCONFIGFILE statement is in FTP.DATA or there is something wrong
will the file then this entry will not be displayed.

Figure 6-44 STAT command showing SOCKS server file

All messages, tracing, logging, and TCP/IP diagnostics that show peer information will now
show the SOCKS server information, not the FTP client information. Exit routines are driven
with the SOCKS server IP address and port.

Note: If you use direct 0.0.0.0 0.0.0.0 at end of the SOCKSCONFIGFILE it will bypass
SOCKS for all target FTP servers.

locstat
 Trace: FALSE, Send Port: TRUE
 Send Site with Put command: TRUE
 Connected to:9.12.6.63, Port: FTP control (21), logged in
 Local Port: 1208
 Data type:a, Transfer mode:s, Structure:f
 UTF-8 encoding is being used on the control connection
 Automatic recall of migrated data sets.
 Automatic mount of direct access volumes.
 Data set mode. (Do not treat each qualifier as a directory.)
 ISPFSTATS is set to FALSE
 Primary allocation 5 tracks, Secondary allocation 2 tracks.
 Partitioned data sets will be created with 15 directory blocks
 FileType is SEQ (Sequential - the default).
:
:
:
Prompting: ON, Globbing: ON
 ASA control characters transferred as ASA control characters
 New data sets catalogued if a store operation terminates abnormally
 Single quotes will override the current working directory
 UMASK value is 027
 Data connections for the client are not firewall friendly.
 Authentication mechanism: None
 Tape write is not allowed to use BSAM I/O
 Using GARTHM.FTP.CNF1 for SOCKS server configuration
 Using dd:SYSFTPD=TCPIPB.SC63.TCPPARMS(CLFTPD) for local site configuration pa
 rameters.
176 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

In this example, the STAT reply, which shows FTP server status, displays the SOCKS server
IP address, not the client IP address.

This is correct because the connection is truly with the SOCKS server, but it is something to
be aware of when debugging and interpreting FTP server replies.

6.4.5 FTP Tracing
Server tracing is determined at the time the client starts its session. Tracing cannot be
changed for the session after it starts. If a modify command is issued for the trace, it affects
only those clients that start a session after the modify command completes.

The DEBUG command can set trace types as follows:

� ALL sets all of the traces. The following is a list of the available trace types.

FLO function flow

CMD command trace

PAR parser details

INT program initialization and termination

ACC access control (logging in)

UTL utility functions

FSC file services

SOC socket services

JES JES processing (server only)

SEC Security

SQL SQL processing

� NONE resets all

� BAS (for Basic) sets the following traces:

– CMD

– INT

– FSC

– SOC

� ? as a type to show the active traces as shown in Figure 6-45 on page 177:

� Entering ‘DEBUG’ twice toggles tracing on and off respectively

Figure 6-45 Querying active traces

Each trace type entry can be reset by adding the prefix X to the debug command. This will
then exclude this type entry from the active client trace which is in effect at the time of the
command. This is shown in Figure 6-46 on page 178 which demonstrated how to exclude
certain trace types.

debug ?
 PC0315 parseCmd: subcommand: debug
 PC0318 parseCmd: parameter 1: ?
 Active client traces - CMD INT FSC(1) SOC(1)
 Command:
Chapter 6. File Transfer Protocol (FTP) 177

Figure 6-46 Excluding trace types

File Services(FSC) and Socket Services (SOC) supports different levels of tracing. Setting
these different levels is shown in Figure 6-47. The higher levels of tracing produce large
amounts of output and should be used only when requested by IBM service.

Figure 6-47 Changing trace levels

Server trace can be started as follows:

� F FTPDB1,TRACE

� F FTPDB1,DEBUG=(BAS)

� SITE DEBUG=(INT,ACC)

Client trace can be started as follows:

� FTP.DATA statements. Figure 6-48 on page 179 show an example of these

� ftp ip_address -d

� ftp ip_address (trace

� debug subcommand

Extended tracing can be done in the form of the DUMP command. The ID parameter of the
dump command which activates specific trace points in the FTP code, ranges from 1-99.

debug ?
 CL0181 debug: entered
 Active client traces - ACC UTL SEC FSC(1) SOC(1) SQL
 Command:
debug xacc xutl
 CL0181 debug: entered
 GU2299 setDebug: entered
 GU2299 setDebug: entered
 Active client traces - SEC FSC(1) SOC(1) SQL
 Command:

 debug fsc soc
 PC0315 parseCmd: subcommand: debug
 PC0318 parseCmd: parameter 1: fsc
 PC0318 parseCmd: parameter 2: soc
 Active client traces - CMD INT FSC(1) SOC(1)
 Command:
debug fsc(2) soc(4)
 PC0315 parseCmd: subcommand: debug
 PC0318 parseCmd: parameter 1: fsc(2)
 PC0318 parseCmd: parameter 2: soc(4)
 Active client traces - CMD INT FSC(2) SOC(4)
 Command:

Note: The server FTP.DATA file must have the statement ‘DEBUGONSITE TRUE’, for the
‘SITE DEBUG=’ subcommand to be accepted by the server
178 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Server extended trace activation can be done as follows:

� FTP.DATA statements. Figure 6-48 on page 179 shows an example of these.

� F FTPDB1,DUMP

� SITE DUMP=1

Client EXTENDED trace activation can be done as follows:

� FTP.DATA statements. This is shown with the dump command in Figure 6-48.

� dump subcommand

Figure 6-48 Client or Server FTP.DATA dump activation statements

The following controls can be put in place when activating server traces:

� RACF profile use of SERVAUTH resource class

EZB.FTP.<sysname>.<ftpname>.SITE.DEBUG

EZB.FTP.<sysname>.<ftpname>.SITE.DUMP

Example:

EZB.FTP.SC63.FTPDB1.SITE.DEBUG

� MODIFY command filters for userid and for ip address

MODIFY FTPDB1,DEBUG=(ALL,USERID(USER3*))

MODIFY FTPDB1,DEBUG=(ALL,IPADDR(9.67.113.57))

Only one filter can be active at a time for DEBUG and DUMP

Details in the DEBUG and DUMP subcommand can be reviewed in the z/OS V1R2.0 CS: IP
User’s Guide and Commands, SC31-8780 manual.

6.4.6 Using the latest FTP features (RFC2389 and 2640)
CS for z/OS V1R2 IP FTP implements RFCs 959, 1123 and 1579. These RFCs are quite old
as they date back to the eighties. New RFCs in the form of RFC 2389 and 2640 has been
added in the late nineties which incorporated new features and extensions to FTP. These
RFCs represent the feature negotiation mechanism and FTP internationalization respectively.

RFC 2389

Note: The server FTP.DATA file must have the statement ‘DUMPONSITE TRUE’ for the ‘SITE
DUMP’ subcommand to be accepted by the server

DEBUG BAS ; set basic trace parms
DUMP 21 ; dynamic allocation text units
DUMP 35 ; checkpoint marker error
DUMP 53 ; 1st 5 bytes of data on ctrl connection
DUMP 62 ; job status
DUMP 72 ; SQL FETCH values
DUMP 84 ; SOCKS configuration tables
Chapter 6. File Transfer Protocol (FTP) 179

The Feature negotiation Mechanism feature enables FTP clients to ask the server which
features or options it supports. Commands introduced with this feature are:

� On the z/OS Server:

OPTS
FEAT

� On the z/OS Client

feature

� On the non z/OS Client

quote feature

Displaying server features depends upon what is included in the EXTENSIONS statement in
FTP.DATA. Figure 6-49 on page 180 shows an example of a FTP.DATA showing some
extension statements.

Figure 6-49 FTP.DATA file showing extensions supported

RFC2640 - FTP Internationalization

FTP servers use English alpha numerics for their directory and file names, even though the
site serves a nonEnglish speaking community. This is so because FTP constrains pathnames
to single byte encodings (ASCII). With Internationalization, 7-bit restrictions on pathnames
used in client commands and server responses are removed. UCS transformation format
UTF-8 is used, and a new command for language negotiation is defined. To activate the
RFC2640 implementation the ’EXTENSIONS UTF8’ parameter in TCP is required in
FTP.DATA as shown in Figure 6-49 on page 180. This parameter has to be coded in both the
z/OS Client and the z/OS Server. A client can thus override statements within FTP.DATA
which control code page selection by using the ’LOCSITE CONTRLCONN subcommand.

Requirements to implement these RFCs

� RFC 2389 is available from CS for z/OS V1R2 IP with no additional tasks having to be
performed to activate the support.

� RFC 2640 requires you to code an EXTENSIONS UTF8 statement in your server and
clients FTP.DATA

The National Language Resources component of z/OS Language Environment must be
installed for the UTF-8 function to be available.

Once UTF-8 has been negotiated between client and server, the STAT command will indicate
that UTF-8 is active on the control connection. Figure 6-50 on page 181 shows the results of
a successful UTF-8 negotiation.

SpaceType TRACK ; Data sets allocated in tracks
Recfm FB ; Fixed blocked record format
Filetype SEQ ; File Type = SEQ (default)
RDW false ; Do not retain RDWs as data
EXTENSIONS SIZE ; Server can respond to SIZE cmd
EXTENSIONS AUTH_GSSAPI ; GSSAPI authentication is supported
EXTENSIONS MDTM ; Server can respond to MDTM cmd
EXTENSIONS UTF8 ; Server can respond to LANG & UTF-8 enc.
EXTENSIONS REST_STREAM ; Server can respond to SIZE cmd
EXTENSIONS AUTH_TLS ; TLS authentication supported
180 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-50 STAT command output

6.4.7 FTP from a Web browser
The server now presents a UNIX appearance from a Web browser. For example if you log in
to the CS for z/OS V1R2 IP FTP server from a Web browser with the following in the locator
field:

ftp://userid:password@your.mvshost.com/

your browser will present the files and directories with the look of a UNIX environment. Be
cautious when you access the FTP server using this URL syntax, because your user ID and
password are sent over the IP network in clear text. Also your user ID and password will
remain in the locator pull-down list of the Web browser. You may enter a URL without the
password by entering the following URL:

ftp://userid@your.mvshost.com/

Then you will be prompted for the password once the FTP server is contacted.

Figure 6-51 Password entry dialog for FTP connection using Netscape Navigator

This will keep the password out of the browser locator pull-down list of URLs, but once
prompted for the password by the FTP server the password is still sent over the network in
clear text. Figure 6-51 is a dialog panel from a browser accessing the CS for z/OS V1R2 IP
FTP server.

stat
 >>> STAT
 211-Server FTP talking to host 9.12.6.30, port 1088
 211-User: GARTHM Working directory: GARTHM.
 211-UTF-8 encoding in use on the control connection
 211-The control connection has transferred 309 bytes
 211-There is no current data connection.
 211-The next data connection will be actively opened
 211-to host 9.12.6.30, port 1088,
 211-using Mode Stream, Structure File, type ASCII, byte-size 8
 211-Automatic recall of migrated data sets.
 211-Automatic mount of direct access volumes.
 211-Auto tape mount is allowed.
 211-Inactivity timer is set to 300
 211-VCOUNT is 59
 211-ASA control characters in ASA files opened for text processing
 211-will be transferred as ASA control characters.
 211-Trailing blanks are removed from a fixed format
 211-data set when it is retrieved.
Chapter 6. File Transfer Protocol (FTP) 181

If your FTP.DATA file has the STARTDIRECTORY set to MVS then the ’/’ at the end of the
URL is crucial if you want to access the UNIX System Services file system. In this case the ’/’
at the end of the URL assures you are presented the listing of the root directory of UNIX
System Services. The information in Figure 6-52 can be displayed by entering
ftp://userid@your.mvshost.com/usr/lpp/tcpip/ in the Web browser locator field. Also
make sure that the FTP.DATA keyword ’FILETYPE’ is set to SEQ, so that a file listing will be
presented. The SITE and LOCSITE commands cannot be used in a browser interface to make
changes to the keywords that affect FTP transfers.

Figure 6-52 View of CS for z/OS V1R2 IP /usr/lpp/tcpip directory from a browser

Suppose you wanted to view /etc/banner file in your browser. You can view it in the browser
by using the following syntax to view the file:

ftp://userid:password@your.mvshost.com/etc/banner;type=a

The ;type=a following the file name informs the FTP server that this is an ASCII file. File
names with extension that are typically used to describe a text file (for example, txt) can be
displayed by a browser without ;type=a. The FTP server has also extended its system tests
to allow it to function with GUI FTP client software.
182 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-53 Browsing a text file using an FTP connection

z/OS data set URL support
CS for z/OS V1R2 IP FTP server allows a Web browser to read MVS data sets by entering:

ftp://userid@yourhost.com//hlq.jcl(test);type=a

Figure 6-54 Browsing an MVS data set using an FTP connection
Chapter 6. File Transfer Protocol (FTP) 183

The two slashes tell the FTP server that the data set is a traditional data set and not a file in
the HFS. CS for z/OS V1R2 IP adds a new configuration statement (MVSURLKEY) to allow
the FTP server URL syntax (or an HTML script) to be consistent with WebSphere URL syntax.
Refer to z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776 for more details. The new
statement allows you to define a key to indicate an MVS data set name in a URL. |
Suppose you code the new statement as follows in an FTP.DATA configuration file:

MVSURLKEY MVSDS

Then you will also be able to access MVS data sets with a browser by using the following
URL:

ftp://userid@yourhost.com/MVSDS/’hlq.jcl(test)’;type=a

Note that the MVS data set name has apostrophes at the beginning and end of the data set
name. Be aware of the following when implementing the new statement:

� When using the MVSURLKEY statement, avoid using metacharacters (for example, ###)
in the key that the FTP client browser may interpret instead of passing on to the FTP
server. Stick to using the basic alphanumeric characters.

� When selecting a name for a key, WebSphere users should choose a name that matches
the WebSphere configuration directive for encoding MVS data set URLs. Typically the key
is MVSDS.

� The FTP server won’t support the WebSphere URL encoding unless you explicitly encode
an MVSURLKEY in FTP.DATA.

� If the MVSURLKEY happens to match the name of an HFS root subdirectory, that
directory will be closed to FTP transfers.

� The key you choose is case sensitive.

6.4.8 Transferring load modules
It is possible to transfer load modules between systems provided that they are CS for OS/390
V2R10 IP and above. The load module transfer function uses the IEBCOPY system utility,
which must be available on both the origin and destination host. Sufficient temporary DASD to
hold the unload file must be available on both the origin and destination systems. On the
origin system, it unloads the load module(s) to be transferred into a temporary data set, which
is then transferred to the destination system and reloaded. (Refer to z/OS V1R2.0 CS: IP
User’s Guide and Commands, SC31-8780 for further details). If the SITE/LOCSITE
parameter AUTOMOUNT is allowed FTP will attempt to mount sufficient temporary DASD to
satisfy the request. This can cause a delay if your system does not process mount requests
quickly.

The transfer may specify a real or alias name; in either case the real module and all its
associated aliases are transferred. The FTP commands get, mget, put, and mput are supported
in MVS load module transfer. After a successful FTP transfer the load module will be
executable on the destination host.

If processing fails, the file transfer may continue but the transferred load modules will not be
executable on the target system. See the z/OS V1R2.0 CS: IP Diagnosis, GC31-8782 for
details about load module transfer failure causes. Some reasons for failure of load module
transfer but successful base file transfer processing could include:

� Not all hosts are at CS for z/OS V1R2 IP; this includes Proxy situations

� Attempt to rename a file or specify it as anything other than a member name

� Attempt to transfer from a PDSE to a PDS or any other non-PDSE file structure
184 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Some load module transfer failures that are fatal and will terminate without attempting base
processing:

� Failure to allocate the temporary file

� IEBCOPY not available on either host

� Failure to unload or reload load modules out of or into the temporary file

� Attempt to transfer from a non-PDSE to a PDSE

An example of a failure may be if AUTOMOUNT is not allowed and there is not sufficient
temporary DASD. The transfer will fail with a message or reply indicating an error allocating
the temporary data set.

Because of special requirements of the load module transfer, there are some restrictions:

� The current working directory on both the client and the server must be the source and
destination load library. A load library is a PDS or PDSE with RECFM=U.

� Only member names may be specified with get or put commands. No fully qualified names
may be specified.

� File rename is not supported on load module transfer.

� Load modules may only be transferred between the same types of libraries. For example,
PDS to PDSE transfer is not allowed.

� If load modules are being sent to or from the z/OS FTP client, the client must be started
from one of the following environments: TSO terminal session, TSO REXX, TSO batch,
TSO background, or UNIX System Services terminal session.

� Hosts must be running CS for OS/390 V2R10 IP or greater.

� A load module loading from a temporary data set will always be a REPLACE operation;
existing members are overwritten.

� There is no prompting on mput and mget commands. All files that match the mask provided
will be transferred.

� DDNAME token "//DD:" is not supported on load module transfers.

Some additional FTP messages will be seen when doing a cd and lcd into a potential load
library (PDS or PDSE with RECFM=U). The following example shows a successful FTP
transfer of the load module TCPIP.SEZALINK(FTP) from SC63, which is running CS for z/OS
V1R2 IP FTP. The FTP client was SC64 running CS for z/OS V1R2 IP. The load module was
retrieved with the get command into BTHOMPS.SEZALINK(FTP).

Note that both client (set with lcd command) and server (set with cd command) are set to the
proper working directory.
Chapter 6. File Transfer Protocol (FTP) 185

Figure 6-55 Load module transfer

The following accomplishes the same function using an FTP batch job. This job was
submitted from an SC64 system:

 220-FTPDB1 IBM FTP CS V1R2 at wtsc63oe.itso.ibm.com, 18:11:09 on 2002-05-16.
 220 Connection will close if idle for more than 5 minutes.
 NAME (9.12.6.67:GARTHM):
garthm
 >>> USER garthm
 331 Send password please.
 PASSWORD:

 >>> PASS
 230-Processing FTPS.RC configuration file - GARTHM.FTPS.RC
 230-SITE command was accepted
 230-No users are allowed to use SITE DEBUG
 230-SITE command was accepted
 230-"GARTHM.GARTHM.FTP.CNF1." is the working directory name prefix.
 230 GARTHM is logged on. Working directory is "GARTHM.GARTHM.FTP.CNF1.".
 Command:
cd 'tcpip.sezalink'
 >>> CWD 'tcpip.sezalink'
 250-The working directory may be a load library
 250 The working directory "TCPIP.SEZALINK" is a partitioned data set
 Command:
Command:
lcd 'garthm.sezalink'
 Local directory might be a load library
 Local directory name set to partitioned data set GARTHM.SEZALINK
 Command:
get ftp
 >>> XLMT PDS 0 ftp
 250 PDS 1279216 - send next command for load module transfer
 >>> PORT 9,12,6,63,4,9
 200 Port request OK.
 >>> RETR ftp
 125-Transferring load module
 125 DCB 32760 32760
 250 Transfer completed successfully.
 1328284 bytes transferred in 0.260 seconds. Transfer rate 5108.78 Kbytes/sec
 .
 Command:
186 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-56 Batch load module transfer

As a result of the get FTP subcommand two load modules were transferred: the alias load
module FTP and EZAFTPLC. The transfer preserves the load module structure and directory
information. It also preserves alias information.

Figure 6-57 Load module present in SEZALINK

6.4.9 Setting up a welcome page
The following FTP configuration file statements are available to customize your FTP
environment for welcome pages. Review the z/OS V1R2.0 CS: IP Migration, GC31-8773 for
details.

BANNER
This statement is used to tell the FTP server which file contains the information to be
displayed when a client connects to the FTP server. The file can contain any alphanumeric
characters and the supported magic cookies. The magic cookies are special characters that
are replaced with the appropriate text definition when the banner is displayed. The file
containing the banner can be located in the UNIX System Services HFS or a traditional MVS
data set. The slash ’ / ’ as the first character indicates that it’s an HFS file, and no slash
indicates that it’s an MVS data set.

CS for z/OS V1R2 IP support the following magic cookies:

� %T - Local time (displayed as Thu May 16 18:15:39 2002)

� %C - Current working directory

//FTPBAT JOB 1,BTHOMPS,CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
//STEP01 EXEC PGM=FTP,REGION=2048K
//*
//SYSFTPD DD DSN=TCPIP.TCPPARMS(FTSD28B),DISP=SHR
//SYSTCPD DD DSN=TCPIP.TCPPARMS(TCPD28B),DISP=SHR
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//INPUT DD *
; Comments can be inserted in this area.
; connect to SC63 FTP Server
9.12.6.67
;enter userid password below
userid password ;be sure to secure this file
lcd 'garthm.sezalink' ;set client’s (local) directory
cd 'tcpip.sezalink' ;set server’s (remote) directory
get ftp ;get ftp load module
QUIT
/*

 EDIT GARTHM.SEZALINK
 Command ===>
 Name Prompt Alias-of Size
 _________ EZAFTPLC 000EA1F0
 _________ FTP EZAFTPLC 000EA1F0
Chapter 6. File Transfer Protocol (FTP) 187

� %E - The FTP server administrator’s e-mail address

� %R - Remote host name

� %L - Local host name

� %U - Username (logged-in user)

In order to support the FTP server administrator e-mail address cookie (%E), you must
specify the e-mail address in the FTP.DATA file. You must also define the banner page
support statement. Refer to the statement definitions below for meaning and use. Following
are the definitions used on MVS28B FTP.DATA to test banner page support:

ADMINEMAILADDRESS support@helpdesk.com
BANNER /etc/ftpbanner

Figure 6-58 Sample banner file with the magic cookies

Figure 6-58 show a sample banner that makes use of the magic cookies, which produces the
messages shown in Figure 6-59.

Figure 6-59 Sample banner messages

The banner file /etc/ftpbanner was copied to an MVS data set for testing.
TCPIP.TCPPARMS(FTPBANR) and FTP.DATA were updated as follows:

BANNER TCPIP.TCPPARMS(FTPBANR)

The message produced was exactly the same as the one above. There will be an error
message if the MVS data set name is coded incorrectly in FTP.DATA.

001 **
002 * *
003 * Welcome to z/OS ITSO Raleigh SC63 *
004 * You accessed this system via CS for z/OS V1R2 *
005 * *
006 * This is the /etc/ftpbanner file for ftp server use *
007 * *
008 **
009 This is %L on %T
010 For administrative assistance contact %E
011

220-***
220-* *
220-* Welcome to z/OS ITSO Raleigh SC63 *
220-* You accessed this system via CS for z/OS V1R2 *
220-* *
220-* This is the /etc/ftpbanner file for ftp server use *
220-* *
220-***
220-This is wtsc63oe.itso.ral.ibm.com on Thu May 16 18:15:39 2002
220-For administrative assistance contact support@helpdesk.com
220-
188 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

LOGINMSG / ANONYMOUSLOGINMSG
This statement is used to tell the FTP server which file contains the information to be
displayed when a client logs into the FTP server. The file can contain any alphanumeric
characters. When a defined user logs in, the information in the file pointed to by LOGINMSG
will be displayed. When an anonymous user logs in, the information in the file pointed to by
ANONYMOUSLOGINMSG will be displayed. The file can be located in the UNIX System
Services HFS or a traditional MVS data set. The slash ’ / ’ as the first character indicates that
it’s an HFS file, and the absence of a slash indicates that it’s an MVS data set.

LOGINMSG /etc/ftploginmsg
ANONYMOUSLOGINMSG /etc/ftpanonymousloginmsg

Figure 6-60 Content of /etc/ftploginmsg

Figure 6-61 Content of /etc/ftpanonymousloginmsg

MVSINFO / ANONYMOUSMVSINFO
This statement is used to tell the FTP server which file name contains the information to be
displayed when a client uses the change directory command and initially enters a specific
MVS directory. The MVS directory must contain a low level qualifier file name that matches
the one specified as the parameter of the statement. A wild card character " * " cannot be
used for pattern matching in the parameter. The file name that matches the parameter in the
MVS directory will have its content presented to the FTP client. If no match is found nothing
will be presented. The information file can contain any alphanumeric characters.

When a defined user initially changes to an MVS directory, the information from the file name
in the MVS directory that matches the parameter on the MVSINFO statement will be
displayed. When an anonymous user initially changes to an MVS directory, the information
from the file name in the MVS directory that matches the parameter on the
ANONYMOUSMVSINFO statement will be displayed. Only the initial entry (per FTP session)
into a directory will cause the information file to be presented to the FTP client. Subsequent cd
commands to the same directory during the same FTP session will not cause the information
file to be presented again.

For testing purposes, the following MVS-LLQ (low level qualifier) was used:

 MVSINFO README
 ANONYMOUSMVSINFO README

To show the use of this statement, below is a listing of HLQ = "USER":

001
002 ****** This system is for authorized purposes only ******
003

001
002 **** You will be restricted to the /u/ftp directory ****
003
Chapter 6. File Transfer Protocol (FTP) 189

Figure 6-62 DSLIST showing ‘user.’ files

We edited the USER.README with the content shown below:

Figure 6-63 Edited USER.README file

When an FTP client changes its working directory to ’USER’ 1, you will see the directory
information configured 2 as FTP client messages (see Figure 6-64 on page 190).

Figure 6-64 Display MVS directory information

 DSLIST - Data Sets Matching USER
 Command ===>

 Command - Enter "/" to select action

 USER
 USER.PARMLIB
 USER.PROCLIB
 USER.PROCLIB.OLD
 USER.README
 USER.SA03.APPCTP
 USER.SA03.APPCTP.DATA
 USER.SA03.APPCTP.INDEX
 USER.TRACE
 USER.VTAMLST
 USER.VTAMLST.RECOVER

01
02 This file was created to test FTP MVSINFO and can be used as
03 a reference for information that will be stored in hlq 'USER"
04
05 See GC31-8773 z/OS V1r2.0 CS: IP Migration for details:
06

230 BTHOMPS is logged on. Working directory is "/u/bthomps".
Command:
cd 'user' 1
>>> CWD 'user'
250-
250-
250-This file was created to test FTP MVSINFO and can be used as 2
250-a reference for information that will be stored in hlq 'USER"
250-
250-See GC31-8773 z/OS V1r2.0 CS: IP Migration for details:
250-
250 "USER." is the working directory name prefix.
Command:
190 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

HFSINFO / ANONYMOUSHFSINFO
This statement is used to tell the FTP server which file name contains the information to be
displayed when a client uses the change directory command and initially enters a specific
HFS directory. The HFS directory must contain a file name that matches the one specified as
the parameter of the statement. A wild card character " * " can be used for pattern matching in
the parameter. The first file that matches in the HFS directory will have its content presented
to the FTP client. If no match is found nothing will be presented. The information file can
contain any alphanumeric characters.

When a defined user initially changes into an HFS directory, the information from the file
name in the HFS directory that matches the parameter on the HFSINFO statement will be
displayed. When an anonymous user initially changes into an HFS directory, the information
from the file name in the HFS directory that matches the parameter on the
ANONYMOUSHFSINFO statement will be displayed. Only the initial entry (per FTP session)
into the directory will cause the information file to be presented to the FTP client. Subsequent
cd commands to the same directory during the same FTP session will not cause the
information file to be presented again.

HFSINFO README*
ANONYMOUSHFSINFO README*

This function basically performs like MVSINFO and ANONYMOUSMVSINFO. The first file
found whose name starts with "README" content will be presented to the FTP client; the use
of the wild-card makes that possible. If the content of the file is longer than 100 lines, the
messages after the 100th line will not be displayed, and a message indicating truncation will
be displayed on the 101st line. See the sample below to show usage of this function.

We had files shown below in the HFS directory of /usr/lpp/dce/examples/xdsxom/cds_xmpl:

Figure 6-65 HFS directory display

BTHOMPS:/usr/lpp/dce/examples/xdsxom/cds_xmpl: >ls -l
total 112
-rw-r--r-- 2 FTPD2 OMVSGRP 483 Dec 6 1999 Makefile
-rw-r--r-- 2 FTPD2 OMVSGRP 7257 Dec 6 1999 README
-rw-r--r-- 2 FTPD2 OMVSGRP 42969 Dec 6 1999 cds_xmpl.c
Chapter 6. File Transfer Protocol (FTP) 191

Figure 6-66 Display HFS directory information

This output is produced during the FTP session, after changing into the directory that has a
matching filename (README). The first 100 lines of the file is displayed, ending with "250-
The message was truncated." .

6.4.10 Using the SIZE and MDTM commands
Commands SIZE and MDTM are client commands that are honored by the FTP server only if the
extensions are properly configured in the FTP configuration file (FTP.DATA). The extensions
to FTP are implemented at the server only. The CS for z/OS V1R2 IP client does not support
the SIZE or MDTM commands. A client such as a Web browser sends these commands to the
FTP server. Code the following in FTP.DATA to enable this support:

EXTENSIONS SIZE
EXTENSIONS MDTM

SIZE returns the number of bytes that would be transferred to the client if the client were to get
the file from the server. This command is only valid for :

� FILETYPE of SEQ

� UNIX System Services HFS files

� Type image

� Structure of file

� Mode of stream

The number returned by the SIZE command varies according to current settings for type,
structure, and file. When type is image, structure is file, and mode is stream the actual file
size is equal to the byte transfer size.

230 BTHOMPS is logged on. Working directory is "/u/bthomps".
Command:
cd /usr/lpp/dce/examples/xdsxom/cds_xmpl

250-Note: You must have proper authority to
250- perform the above. If you do not,
250- contact your DCE Administrator.
250-
250-Step #3: After setting up your account, etc., log in
250- to DCE. Enter:
250-
250- dce_login <principal> <password>
250-
250-Step #4: Start the CDS_XMPL application with either
250- the add (a), read (r), modify (m), list (l),
250- or delete (d) parameter.
250-
250-The message was truncated.
250 HFS directory /usr/lpp/dce/examples/xdsxom/cds_xmpl is
the current working directory
Command:

Note: This command does not work for traditional MVS datasets.
192 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-67 Sample use of the SIZE command

As illustrated in Figure 6-67, you can see that in order to send the SIZE command to the FTP
server it must be preceded by the quote command. The value returned is 57,344. Therefore if
the file /usr/lpp/internet/bin/httpd is retrieved with the ftp get command the amount of data
bytes will be 57,344 bytes.

MDTM (Modification Time) returns the date and time the file was last modified. This command is
supported only for:

� FILETYPE of SEQ

� UNIX System Services HFS files

Figure 6-68 Sample use of the MDTM command

As illustrated in Figure 6-68, you can see that in order to send the MDTM command to the FTP
server it must be preceded by the quote command. The value returned is 20020518150533.
Therefore the time /usr/lpp/internet/bin/httpd was last modified was May 18, 2002 at 15:05:33.
Other responses from the MDTM command are file does not exist, the modification time
is unavailable, or some other standard ftp 550- message.

site filetype=seq
 EZA1701I >>> SITE filetype=seq
 200 SITE command was accepted
 EZA1460I Command:
type i
 EZA1701I >>> TYPE I
 200 Representation type is Image
 EZA1460I Command:
structure f
 EZA1701I >>> STRU F
 250 Data structure is File
 EZA1460I Command:
mode s
 EZA1701I >>> MODE S
 200 Data transfer mode is Stream
 EZA1460I Command:
quote size /usr/lpp/internet/bin/httpd
 EZA1701I >>> size /usr/lpp/internet/bin/httpd
 213 57344
 EZA1460I Command:

site filetype=seq
 EZA1701I >>> SITE filetype=seq
 200 SITE command was accepted
 EZA1460I Command:
quote mdtm /usr/lpp/internet/bin/httpd
 EZA1701I >>> mdtm /usr/lpp/internet/bin/httpd
 213 20020518150533
 EZA1460I Command:
Chapter 6. File Transfer Protocol (FTP) 193

6.4.11 Using the STAT and SITE commands
The STAT command (short for status) can be used to view configuration statement settings of
a remote host (FTP server) from the local host (FTP client). This command allows the client to
validate the settings prior to an FTP transfer, and is also key in problem determination of
failed transfers. When the STAT command is issued current settings of the configuration
statements are shown. The initial values of the statements can be initialized from the
FTP.DATA configuration file. Refer to “Default FTP Server SITE parameters (FTPDATA)” on
page 129 for information on selecting a configuration file for the server. Figure 6-69 is output
from the STAT command:

Figure 6-69 Sample output STAT command

You may have to issue QUOTE STAT to produce the desired output, if the FTP client you are
using does not send the STAT command to the CS for z/OS IP FTP server. To display

 STAT
 211-Server FTP talking to host 9.24.104.113, port 1060
 211-User: BTHOMPS Working directory: /u/bthomps
 211-The control connection has transferred 5126 bytes
 211-There is no current data connection.
 211-The next data connection will be actively opened
 211-to host 9.24.104.113, port 1060,
 211-using Mode Stream, Structure File, type ASCII, byte-size 8
 211-Automatic recall of migrated data sets.
 211-Automatic mount of direct access volumes.
 211-Auto tape mount is allowed.
 211-Inactivity timer is disabled
 211-UCOUNT is 5
 211-VCOUNT is 50
 211-ASA control characters in ASA files opened for text processing
 211-will be transferred as ASA control characters.
 211-Trailing blanks are removed from a fixed format
 211-data set when it is retrieved.
 211-Data set mode. (Do not treat each qualifier as a directory.)
 211-Primary allocation 1 track. Secondary allocation 1 track.
 211-Partitioned data set will be created with 27 directory blocks
 211-FileType JES (MVS Job Spool). JES Name is JES2
 211-Number of access method buffers is 5
 211-RDWs from variable format data sets are discarded.
 211-SITE DB2 subsystem name is DB2
 211-Data not wrapped into next record.
 211-JESLRECL is 80
 211-JESRECFM is Fixed
 211-JESINTERFACELEVEL is 2
 211-JESENTRYLIMIT is 20
 211-JESOWNER is BTHOMPS
 211-JESJOBNAME is BTHOMPS*
 211-JESSTATUS is ALL
 211-SMS is active.
 211-Data sets will be allocated on SPLEX1.
 211-New data sets will be catalogued if a store operation abends
 211-Single quotes will override the current working directory
 211-UMASK value is 027
 211-Process id is 16777497
 211-Checkpoint interval is 0
 211-Record format VB, Lrecl: 256, Blocksize: 6233
194 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

JES statements with the STAT command the FILETYPE must be set to JES. The FILETYPE
statement specifies the mode of operation of the server. For normal file transfers FILETYPE
should be set to SEQ, which is the default value.

STAT is used to show configuration settings, and the SITE command allows you to set or
change the values of these settings. The initial settings can be defined in FTP.DATA. If a
statement is not coded in the configuration file the system hardcoded default is used. Review
the following to see how the new keywords values were set:

Figure 6-70 The SITE command

As for most SITE commands, you can revert to the FTP default value by simply entering the
keyword without a value. For example entering SITE UCOUNT will revert to the FTP default.

Refer to the z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776 and the z/OS V1R2.0
CS: IP User’s Guide and Commands, SC31-8780 for further details on these statements.

Refer to 6.4.12, “JES interface” on page 195 and 6.5.7, “FTP client in a batch job” on
page 212 for examples and usage of the JES statements.

6.4.12 JES interface
With this interface enabled you can submit jobs and can view these jobs allowable by the
system JESSPOOL RACF class. You are also able to display held/dup jobs on the internal
reader, CPU time of running jobs, and number of sysout data sets for a complete job.

Use the SITE command to set filetype=jes, before issuing any of the JES interface
commands. The FILETYPE statement specifies the mode of operation of the server.

To enable this function set JESINTERFACELEVEL to 2 in FTP.DATA. You can now use the
DIR command to display a list of started tasks.

site ucount=5
 EZA1701I >>> SITE ucount=5
 200 SITE command was accepted
 EZA1460I Command:
site vcount=50
 EZA1701I >>> SITE vcount=50
 200 SITE command was accepted
 EZA1460I Command:
site volume=splex1
 EZA1701I >>> SITE volume=splex1
 200 SITE command was accepted
 EZA1460I Command:
Chapter 6. File Transfer Protocol (FTP) 195

Figure 6-71 DIR command displaying STCs

See the following for a sample of using the list Jxx command with a JOB:

Figure 6-72 Using the list Jxx command

Refer to 6.5.11, “FTP server interface to JES” on page 221 for a sample of retrieving sysout.
And also see z/OS V1R2.0 CS: IP User’s Guide and Commands, SC31-8780 for a sample of
how to retrieve sysout automatically.

site jesjobname=*
 EZA1701I >>> SITE jesjobname=*
 200 SITE command was accepted
 EZA1460I Command:
site jesowner=ibmuser
 EZA1701I >>> SITE jesowner=ibmuser
 200 SITE command was accepted
 EZA1460I Command:
dir
 EZA1701I >>> PORT 9,39,64,151,8,91
 200 Port request OK.
 EZA1701I >>> LIST
 125 List started JESJOBNAME=*, JESSTATUS=ALL and JESOWNER=IBMUSER
 EZA2284I JOBNAME JOBID OWNER STATUS CLASS
 EZA2284I ASCHINT STC00968 IBMUSER ACTIVE STC
 EZA2284I ASCHINT STC00966 IBMUSER ACTIVE STC
 EZA2284I ASCHINT STC00965 IBMUSER ACTIVE STC
 EZA2284I ASCHINT STC00964 IBMUSER ACTIVE STC
 250 List completed successfully.
EZA1460I Command:
dir STC00964
 EZA1701I >>> PORT 9,39,64,151,8,92
 200 Port request OK.
 EZA1701I >>> LIST STC00964
 125 List started JESJOBNAME=*, JESSTATUS=ALL and JESOWNER=IBMUSER
 EZA2284I JOBNAME JOBID OWNER STATUS CLASS
 EZA2284I ASCHINT STC00964 IBMUSER ACTIVE STC
 EZA2284I --------
 EZA2284I STEPNAME ++++++++ PROCNAME ASCHINT
 EZA2284I CPUTIME 1347769.376 ELAPSED TIME 1995358.962
 250 List completed successfully.

list j2080
 EZA1701I >>> PORT 9,39,64,151,8,72
 200 Port request OK.
 EZA1701I >>> LIST j2080
 125 List started JESJOBNAME=*, JESSTATUS=ALL and JESOWNER=BTHOMPS
 EZA2284I JOBNAME JOBID OWNER STATUS CLASS
 EZA2284I DDNTEST JOB02080 BTHOMPS OUTPUT A RC=000
 EZA2284I --------
 EZA2284I ID STEPNAME PROCSTEP C DDNAME BYTE-COUNT
 EZA2284I 001 JES2 X JESMSGLG 1351
 EZA2284I 002 JES2 X JESJCL 548
 EZA2284I 003 JES2 X JESYSMSG 1596
 EZA2284I 004 STEP01 X OUTPUT 1389
 EZA2284I 4 spool files
 250 List completed successfully.
196 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The LIST and DIR commands are essentially equivalent. They require more system resources
because they provide spool information. If you only need a list of job names use the NLST or
its equivalent LS. The following will illustrate setting the JESENRYLIMIT to 5, to only list the
first five jobs matching the filtering criteria. Then output from the LS and LIST commands.

Figure 6-73 Showing the jesentrylimit command

1 The LS command was entered, but the generic information message EZA1701I displays
NLST; the LS equivalent.

Since JESENTRYLEVEL = 2 allows client access, security is needed to control this access.
SAF resources mirror SDSF for the JES2 environment. JES3/non-SDSF installations require
SAF setup. To tighten up on security implement the changes listed below:

� Use SDSF SAF Resources

– JESJOBNAME ISFCMD.FILTER.PREFIX

– JESJOBOWNER ISFCMD.FILTER.OWNER

site jesentrylimit=5
EZA1701I >>> SITE jesentrylimit=5
200 SITE command was accepted
EZA1460I Command:
site jesowner=*
EZA1701I >>> SITE jesowner=*
200 SITE command was accepted
EZA1460I Command:
site jesjobname=bpx*
EZA1701I >>> SITE jesjobname=bpx*
200 SITE command was accepted
EZA1460I Command:
ls
EZA1701I >>> PORT 9,39,64,151,8,141
200 Port request OK.
EZA1701I >>> NLST 1
125 Nlst started JESJOBNAME=BPX*, JESSTATUS=ALL and JESOWNER=*
EZA2284I STC02133
EZA2284I STC00916
EZA2284I STC02134
EZA2284I STC02132
EZA2284I STC02131
250-JESENTRYLIMIT of 5 reached Additional entries not displayed
250 Nlst completed successfully
EZA1460I Command:
list
EZA1701I >>> PORT 9,39,64,151,8,140
200 Port request OK.
EZA1701I >>> LIST
125 List started JESJOBNAME=BPX*, JESSTATUS=ALL and JESOWNER=*
EZA2284I JOBNAME JOBID OWNER STATUS CLASS
EZA2284I BPXAS STC02133 ++++++++ OUTPUT STC RC=000 2 spool
EZA2284I BPXAS STC00916 ++++++++ OUTPUT STC RC=000 2 spool
EZA2284I BPXAS STC02134 ++++++++ ACTIVE STC
EZA2284I BPXAS STC02132 ++++++++ ACTIVE STC
EZA2284I BPXAS STC02131 ++++++++ ACTIVE STC
250-JESENTRYLIMIT of 5 reached Additional entries not displayed
 250 List completed successfully.
 EZA1460I Command:
Chapter 6. File Transfer Protocol (FTP) 197

– JESSTATUS

• ISFCMD.DSP.INPUT.<jesx>

• ISFCMD.DSP.ACTIVE<jesx>

• ISFCMD.DSP.OUTPUT.<jesx>

– Defaults

• JESJOBNAME=<userid>

• JESOWNER=<userid>*

• JESSTATUS=ALL,OUTPUT,INPUT

6.4.13 User exits
The following is a list of exits available for FTP:

� FTPSMFEX

� FTCHKIP

� FTCHKPWD

� FTCHKCMD

� FTCHKJES

� FTPOSTPR

Refer to z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776 for detailed information
regarding these exits.

FTPSMFEX
This user exit is called before an SMF type 118 record containing session stats is written. You
can then modify the record and control if the record should be written to SMF.

FTCHKIP
This user exit is called when a user attempts to log in to the FTP server or when a new
connection is established. The IP address and PORT number of both the local and remote
host is passed to the user exit. It can be used validate whether port numbers and IP
addresses are allowed to access an FTP server.

FTPCHKPWD
This user exit is called after the users password or e-mail address is entered. The following
information is passed to the exit:

� The user ID

� The user password or an asterisk (*) if an e-mail address is entered instead of a password

� A userdata buffer

� If an e-mail address is entered to log in, the userdata buffer contains the e-mail address.

This exit can be used to restrict access to a site based on user ID and password.

FTPCHKJES
This exit is called if the server is in FILETYPE=JES mode and the client tries to submit a job.
The user ID and the job being submitted are passed to the exit. The exit can allow or refuse
the job to be submitted to the JES internal reader. If the job is refused message 550 User Exit
refuses this job to be submitted by userid is sent to the user.
198 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

FTCHKCMD
The FTCHKCMD user exit is called whenever the user enters an FTP command.The exit is
passed the user ID, current directory type (MVS or HFS), working directory name, filetype
setting (JES, SQL or SEQ), the FTP command to be executed, command arguments, and a
buffer. The following chart shows the offset of each item in the parameter list:

Table 6-9 FTCHKCMD parameter list

For example, if a user issues a DIR * command, the exit can prevent the command from
being executed and reply with a message 500- User Exit denies Userid xxxxx from using
Command yyy or the exit can change the " * " parameter into "userid* ". This can prevent the
DIR * command from hanging the catalog. Note also that only the parameter can be changed,
not the command. There are three sample FTCHKCMD exits included with CS for z/OS V1R2
IP. All the members are in hlq.SEZAINST. FTCHKCMD and FTCHKCM1 deal with restricting
erroneous DIR command with the ’*’ wildcard. FTCHKCM2 implements customized SITE
options.

FTPOSTPR
The exit (FTPOSTPR) gets control whenever a file transfer attempt completes successfully or
unsuccessfully. It will give a return code indicating a completion status of the transfer. This
exit allows a customer to perform some post processing after FTP processing in user-written
batch jobs. This user exit is passed the user ID, client’s IP address, client’s port number,
current directory type, length of the parameter string, current working directory, current file
type, FTP reply code, a buffer containing the FTP reply string, FTP command code, current
CONDDISP setting, and the close reason code. The following chart show the offset of each
item in the parameter list:

Table 6-10 FTPOSTPR parameter list

Offset Description

 +0 Return 0 to accept the command or to pass new arguments to the command.
Return non-zero value to reject the command.

 +4 Pointer to a word containing the number of following parameters.

 +8 Pointer to the 8-byte user ID the is logged on.

 +12 Pointer to the 8-byte command being entered.

 +16 Pointer to a string containing arguments after the command. The first halfword of the
string contains the number of characters that follow.

 +20 4-byte character string with current directory type: MVS or HFS.

 +24 4-byte character string with current FILETYPE: SEQ, JES, or SQL.

 +28 Buffer with current directory value, first bytes hold length of remaining buffer. 1102-byte
output buffer in which to return modified argument strings. The first two bytes must be
initialized to the length of the returned command string.

 +32 1102-byte output buffer in which to return modified argument strings. You can modify
the arguments passed to the command by placing the modified arguments in this buffer.
The first two bytes must be initialized to the length of the returned command string.

Offset Description

 +0 Pointer to the word with the user exit return code

 +4 Pointer to the number of parameters passed in

 +8 Pointer to the 8-byte buffer containing the user ID
Chapter 6. File Transfer Protocol (FTP) 199

 +12 Pointer to the 4-byte client IP address

 +16 Pointer to the 2-byte client port number

 +20 Pointer to the 4 byte character string with current
directory type: MVS or HFS (left justified)

 +24 Pointer to a buffer that contains the current directory value, the first two bytes hold
the length of the remaining buffer

 +28 Pointer to the 4 character byte field that contains the current
filetype: SEQ, JES, SQL (left justified)

 +32 Pointer to the 3 character byte field that contains the current reply code

 +36 Pointer to buffer that contains FTP reply string; first two bytes contain the length of
the remaining buffer

 +40 Pointer to the 4 byte field that contains the current FTP command code

 +44 Pointer to the 1-character byte field that contains the current
CONDDISP setting- C for catalog, D for delete

 +48 Pointer to the 4 byte binary field that contains the close reason code:
 0 -- transfer completed normally
 4 -- transfer aborted before data connection was established
 8 -- transfer aborted with socket communication errors
 12 -- transfer aborted after data connection was established
 16 -- transfer aborted with SLQ file errors after data connection
 was established

Offset Description
200 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

User exit FTPOSTPR implementation
The sample exit source code, EZAECCM3, is also located in hlq.SEZAINST. You will see the
sample user exit and the JCL used to compile and link-edit it in Appendix E, “FTP user exits
and sample code” on page 525.

The user exit load modules must be placed in an APF-authorized library to which the FTP
server has access via STEPLIB, LNKLST, or LPA. After the compile and link we updated the
FTP started task procedure as follows:

Figure 6-74 FTPD started procedure with steplib

1 is the load module library that contains the FTPOSTPR load module. This library has to be
APF-authorized and program controlled, if you have activated the program control.

To verify that the exit was functioning properly we initiated an FTP session and executed a
put command to store a file on the CS for z/OS V1R2 IP FTP server. Then we reviewed
/tmp/syslogd.log file to see the posted messages:

FTPOSTPR: FTP process completed with rc of 0, userid 'KAKKY ', client IP 09186A1F,
client port 1569, reply code '250', and reply string 'Transfer completed successfully'

This was a successful transfer with a rc=0. A failure will return a non-zero value: for example,
a get on an non-existing file will have rc=4. You can see that the user name, hex IP address
(translates to 9.24.106.31), port number, FTP standard 250- message, and the actual
message Transfer completed successfully are recorded by this exit.

6.4.14 Using the directory command
The DIR command considers the users access to the catalog before returning the requested
entries. Users can thus not see any datasets in a protected catalog without having the
relevant read access to that catalog. As can be seen in Figure 6-75, the user does not have
access to ‘test.’ datasets, and receives the ‘no datasets found’ response. The same
responses are received when using the LS, MGET, MPUT and MDEL commands.

Figure 6-75 Directory listing with ‘*’ at the end of the qualifier

//FTPDA PROC MODULE='FTPD',PARMS=''
 //***
 //FTPDA EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
 // PARM=('POSIX(ON) ALL31(ON)',
 // 'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPA")','/&PARMS')
 //* 'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPA")','/')
 //* 'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=T&SYSCLONE.ATCP")',
 //* '/&PARMS')
 //CEEDUMP DD SYSOUT=*
 //SYSFTPD DD DISP=SHR,DSN=TCPIP.TCPPARMS(FTSD&SYSCLONE.A)
 //SYSTCPD DD DISP=SHR,DSN=TCPIP.TCPPARMS(TCPD&SYSCLONE.A)
 //*SYSFTSX DD DISP=SHR,DSN=TCPIP.FTPKANA.TCPXLBIN
 //* STEPLIB FOR USER EXITS
 //STEPLIB DD DISP=SHR,DSN=TCPIP.TCPPARMS.VTAMLIB 1

dir 'test.*'
 >>> PORT 9,12,6,30,4,12
 200 Port request OK.
 >>> LIST 'test.*'
 550 No data sets found
 Command:
Chapter 6. File Transfer Protocol (FTP) 201

The use of ’**’ in the DIR command represents one or more qualifiers in a dataset.
Figure 6-76 shows the result of the wild card, where all datasets having its first qualifier as
‘tcpipb’ followed by one or more qualifiers and having its final qualifier as’ files’ being
displayed.

Figure 6-76 Double asterisk

The single asterisk wild card ‘*’ can be embedded in between the text of a qualifier as shown
in Figure 6-77. This can be done, as opposed to putting the ‘*’ at the beginning or the end of
the text of a qualifier. In this case only datasets with a single qualifier between the ‘tcpipb’ and
‘files’ are displayed.

Figure 6-77 Directory Display with ‘*’ between qualifiers

6.5 Client customization and usage
We now provide details into the customization of the FTP client.

6.5.1 Using FTP client in z/OS
CS for z/OS IP ships a C-based FTP client. Since this client is based on the FTP server, the
following functions that are part of the server functions are now available for FTP clients:

� The UNIX System Services shell environment support

� The hierarchical file system files support

Command:
dir 'tcpipb.**.files'
 >>> PORT 9,12,6,30,4,25
 200 Port request OK.
 >>> LIST 'tcpipb.**.files'
 125 List started OK.
 Volume Unit Referred Ext Used Recfm Lrecl BlkSz Dsorg Dsname
 SBOX02 3390 2002/04/29 1 1 FB 80 27920 PO 'TCPIPB.EXAMPLE.TEMP.F
 ILES'
 SBOX02 3390 **NONE** 1 1 FB 80 27920 PO 'TCPIPB.EXAMPLE.TEMP2.
 FILES'
 SBOX02 3390 **NONE** 1 1 FB 80 27920 PO 'TCPIPB.TEMP.FILES'
 SBOX02 3390 **NONE** 1 1 FB 80 27920 PO 'TCPIPB.TEMP2.FILES'
 SBOX02 3390 **NONE** 1 1 FB 80 27920 PO 'TCPIPB.TEMP3.FILES'
 250 List completed successfully.
 Command:

Command:
dir 'tcpipb.*.files'
 >>> PORT 9,12,6,30,4,31
 200 Port request OK.
 >>> LIST 'tcpipb.*.files'
 125 List started OK.
 Volume Unit Referred Ext Used Recfm Lrecl BlkSz Dsorg Dsname
 SBOX02 3390 **NONE** 1 1 FB 80 27920 PO 'TCPIPB.TEMP.FILES'
 SBOX02 3390 **NONE** 1 1 FB 80 27920 PO 'TCPIPB.TEMP2.FILES'
 SBOX02 3390 **NONE** 1 1 FB 80 27920 PO 'TCPIPB.TEMP3.FILES'
 250 List completed successfully.
 Command:
202 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

� Client can read and write to tape

� Support record structure

� Client can transfer data encoded in Unicode (UCS-2)

The messages used by FTP client are stored in message catalogs to allow message
translation. Therefore, the FTP client is NLS enabled.

You can run FTP client in several environments such as:

� From TSO command line

� Batch job

� TSO REXX

� UNIX System Services shell command

� UNIX System ServicesREXX

Note that if you enter an FTP command from the UNIX System Services shell, the FTP flags
must be entered in lowercase. From TSO, you can use both lowercase and uppercase. Case
sensitivity includes names of files in the UNIX System Services environment.

Each FTP client needs an OMVS segment defined in your security database. However, you
can use a default OMVS segment instead.

6.5.2 FTP client NETRC data set
In many UNIX environments, you have the option of creating a file that holds the user ID and
password you use when you connect to other UNIX systems. The FTP client supports a
similar implementation, which allows you to use a userid.NETRC data set ($HOME/.netrc, in
the UNIX System Services shell) as an alternative to specifying your user ID and password
every time you want to connect to an FTP server at a remote host.

Figure 6-78 userid.NETRC

To use the z/OS FTP client to connect to host 9.24.104.26, for example, type in:

ftp 9.24.104.26

You would see the following sequence of events on your TSO terminal:

Figure 6-79 FTP with userid.NETRC

machine 9.24.104.47 login jedeye password secret
machine 9.24.104.26 login jedeye password secret

IBM FTP CS V1R2
FTP: using TCPIPB
EZA1554I Connecting to: 9.24.104.26 port: 21.
220 rs60001 FTP server (Version 4.1 Sun Jul 28 12:35:09 CDT 1996) ready.
EZA1701I >>> USER jedeye 1
331 Password required for jedeye.
EZA1701I >>> PASS 2
230 User jedeye logged in.
EZA1460I Command: 3
Chapter 6. File Transfer Protocol (FTP) 203

Your user ID will be sent automatically 1, as well as your password 2. Your first prompt will be
at 3.

Whether this approach is a valid implementation in your security environment is something
you have to consider. The user ID and passwords are kept in hlq.NETRC data set in clear
text. You should as a minimum, ensure that the data set is RACF protected, so only you can
read it. Refer to “FTP client in a batch job” on page 212 to review sample JCL using a NETRC
DD card.

6.5.3 Setting USER level FTP Server options
This is done using a configuration file that defined per user. The filename ends with the name
"FTPS.RC", and it is searched for as follows:

1. TSO_prefix for the userid.

2. userid as a high-level qualifier

3. $HOME directory, filename ftps.rc.

Remember, the HFS environment is case-sensitive, you need to make sure that ftps.rc is in
lowercase.

The following can be entered into this file as is shown in Figure 6-80 on page 204

� SITE commands.

� CWD (Change Working Directory) command.

� CD (Change Directory) command

� Comments ‘;’ lines.

Figure 6-80 GARTHM.FTPS.RC dataset

The login process as shown in Figure 6-81 on page 205 shows the FTPS.RC configuration
file which is selected. It also prefixes messages with a 230 message number. This can also
be used to debug any possible errors in your configuration file.

 ; This is a sample configuration file for FTPS.RC
 SITE automount
 SITE debug=all
 ; Setting directory to a dataset.
 CD garthm.ftp.cnf1
204 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-81 Session initiation with ftps.rc file

6.5.4 LOCSTAT and LOCSITE commands
The LOCSTAT command (short for local status) can be used to view configuration statement
settings of the local host (FTP client). This command allows the client to validate the settings
prior to an FTP transfer, and is also key in problem determination of failed transfers. When the
LOCSTAT command is issued current settings of the configuration statements are shown. The
initial values of the statements can be initialized from the FTP.DATA configuration file. Refer to
“Default FTP Client LOCSITE parameters” on page 128 for information on selecting a
configuration file for the client. Following is output from the LOCSTAT command:

garthm
 >>> USER garthm
 331 Send password please.
 PASSWORD:

 >>> PASS
 230-Processing FTPS.RC configuration file - GARTHM.FTPS.RC
 230-SITE command was accepted
 230-Active server traces - FLO CMD PAR INT ACC UTL SEC FSC(1) SOC(1) JES SQL
230-SITE command was accepted
 230-CWD cmd failed : EDC5129I No such file or directory.
 230-"GARTHM.GARTHM.FTP.CNF1." is the working directory name prefix.
 230 GARTHM is logged on. Working directory is "GARTHM.GARTHM.FTP.CNF1.".
 Command:
Chapter 6. File Transfer Protocol (FTP) 205

Figure 6-82 The LOCSTAT command

1 Trace : Trace setting which can be true or false depending on whether a debug command
was issued or the FTP was started with the trace option. The current sendport setting is also
shown, which can be changed by using the sendport command.

2 Connected to : IP address of the FTP server you are connected to

3 Data type : a (ascii), e (edcdic), i (image), b(dbcs) , or u (unicode))

 Transfer mode : s (stream), b (block), or (compressed)

 Structure. f (file), or r (record)

4 Record Format : RECFM (record format) for new datasets

 LRECL (logical record length)

 BLKSIZE (blocksize)

locstat
EZA1600I Trace: FALSE, Send Port: TRUE 1
EZA1601I Send Site with Put command: TRUE
EZA2677I Connected to:9.24.104.43, Port: FTP control (21)2
EZA1605I Local Port: 1295
EZA1606I Data type:a, Transfer mode:s, Structure:f 3
EZA2098I Automatic recall of migrated data sets.
EZA2100I Automatic mount of direct access volumes.
EZA2101I Data set mode. (Do not treat qualifier as a directory)
EZA2137I Primary allocation 1 track, Secondary allocation 1 track
EZA2138I Partitioned data sets will be created with 27 directory
EZA2103I FileType is SEQ (Sequential - the default)
EZA2141I Number of access method buffers is 5.
EZA2145I RDW's from VB/VBS files are discarded.
EZA2148I DB2 subsystem name is DB2
EZA2152I Volid of Migrated Data Sets is MIGRAT
EZA2154I Trailing blanks in records read from RECFM F datasets...
EZA2535I Record format: VB, Lrecl: 256, Blocksize: 6233. 4
EZA2080I Data sets will be allocated on PUBTST,PUBPRD
EZA2801I Data not wrapped into next record.
EZA2494I Checkpoint interval is 0
EZA2425I RESTGet Checkpoint data set will be opened for get.
EZA2817I No automatic mount of tape volumes. 5
EZA2809I CCONNTIME is 30 6
EZA2810I DATACTTIME is 120 7
EZA2811I DCONNTIME is 120 8
EZA2812I INACTTIME is 300 9
EZA2813I MYOPENTIME is 60 10
EZA2814I UCOUNT is 3 11
EZA2815I VCOUNT is 20 12
EZA2689I Prompting: ON, Globbing: ON
EZA2719I ASA control characters transferred as ASA control char
EZA2720I New data sets catalogued if a store operation abends
EZA2722I Single quotes will override the current working directory
EZA2724I UMASK value is 027
EZA2819I Data connections for the client are not firewall friendly
EZY2640I Using 'BTHOMPS.FTP.DATA' for local site configuration...
EZA1460I Command:
206 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

5 AUTOMOUNT : True: permits automatic mounting of tape volumes for data sets on volumes
that are not mounted. False: prevents automatic mounting of tape volumes for data sets on
volumes that are not mounted. False is the hard-coded default for the client. The value can be
set in FTP.DATA and cannot be changed by a client with the LOCSITE command.

6 CCONNTIME : Defines the amount of time to wait after attempting to close a control
connection before terminating the connection and reporting an error (default = 30).

7 DATACTTIME : Defines the amount of time to wait after attempting to send or receive data
before terminating the connection and reporting an error (default=120).

8 DCONNTIME : Defines the amount of time to wait after attempting to close a data transfer
before terminating the connection and reporting an error (default=120).

9 INACTTIME : This statement is used to set the inactivity timer to a specified number of
seconds. Any client control connection which is inactive for the amount of time specified on
the statement is closed by the server. A value of zero disables the timer. A value greater than
zero enables the timer. The valid range is (0 - 86400). The default is 300.The value can be set
in FTP.DATA and cannot be changed by a client with the LOCSITE command.

10 MYOPENTIME : Defines the amount of time to wait for a session to open before
terminating the attempt and reporting an error (default=60)

11 UCCODE : Specifies the number of devices to allocate. Valid range is (1-59) or P. The P
signifies a parallel mount request. When specified without a value, the FTP server does not
specify a unit count when allocating data sets. If this statement is not coded in FTP.DATA or
set with the LOCSITE command, it will not appear in the output of STAT.

12 VCOUNT : Specifies number of volumes an allocated data set may span. Valid ranges
(1-255). When specified without a value, the FTP server uses a volume count of 50 when
allocating data sets. LOCSITE can be used to set this value.

The timer values which are described in points 6 through 10 above can be set when the FTP
command is issued to initiate a session. The command ‘FTP ip_address (timeout nn’ will set
the values of the aforementioned timers and that of FTPKeepAlive to ’nn’. These timers can
also be individually set in FTP.DATA.

The LOCSITE subcommand to specify information that is used by the local host to provide
services specific to that host system.The initial FTP session settings are defined in FTP.DATA.
If a statement is not coded in this configuration file, the system hardcoded default is used. As
for most LOCSITE commands, you can revert to the FTP default value by simply entering the
keyword without a value. For example entering LOCSITE UCOUNT will revert to the FTP default.

Refer to the z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776 and the z/OS V1R2.0
CS: IP User’s Guide and Commands, SC31-8780 for further details on these statements.

6.5.5 FTP SUNIQUE command
This command can be used to assure that existing files on the remote host are not
overwritten on an FTP put or mput command. It is basically used to change the method of
storing files on the remote host. Following is a syntax diagram for the command:
Chapter 6. File Transfer Protocol (FTP) 207

Figure 6-83 FTP SUNIQUE command syntax

The default setting is OFF, NAME and the FTP server uses a store command (STOR) with put
and mput. If the file name on the remote host exists, it is overwritten.

Table 6-11 FTP SUNIQUE command syntax description

If SUNIQUE is set to ON, FTP uses a store-unique command (STOU) with the put and mput
command. This prevents you for overwriting an existing file. If the default setting of NAME is
in effect, a string will be sent to the server with the store-unique command. The file will be
created with a unique name, then FTP sends the unique name to the local host where it is
displayed. The following is the screen output that shows usage of the SUNIQUE command.

Figure 6-84 SUNIQUE command

 ON

 OFF

NAME

NONAME

 SUNIQUE

Parameter Description

blank Toggles on/off (default is off)

ON Turns on store unique

OFF Turns off store unique

NAME When specified with ON or OFF, instructs the client to include a name when sending
a store-unique command to the server (default)

NONAME When specified with ON or OFF, instructs the client to omit a name when sending
the store-unique command to the server.

Note: This command (SUNIQUE) has no effect on load module FTP transfers. The load
module name on the remote host must be the same as the name on the local host. Refer to
6.4.8, “Transferring load modules” on page 184 for further detail.

EZA1460I Command:
sunique 1
 EZA1626I Store unique is ON
 EZA1460I Command:
put readme 2
 EZA1701I >>> SITE VARrecfm LRECL=80 RECFM=VB BLKSIZE=27920
 200 SITE command was accepted
 EZA1701I >>> PORT 9,24,104,43,4,6
 200 Port request OK.
 EZA1701I >>> STOU readme
 125 Storing data set /u/bthomps/readme1 (unique name) 3
 250 Transfer completed successfully.
 EZA1617I 38 bytes transferred in 0.070 seconds.
 Transfer rate 0.54 Kbytes/sec.
208 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

1 The sunique command is issued to turn on the store-unique option. It is issued without any
parameters and since it is off by default, it turns on. NAME is also the default. The initial
SUNIQUE command is equivalent to issuing sunique on name.

2 The file readme already exists on the remote host.

3 The STOU readme command stores the file with a unique name /u/bthomps/readme1 instead
of overwriting it, then informs you in message #125.

6.5.6 Using FTP client in the z/OS UNIX shell environment
The FTP command can be issued from the UNIX System Services shell. In the UNIX System
Services shell, the FTP command and FTP flags must be entered in lowercase. You can also
use the traditional MVS command options in the UNIX System Services shell. However, you
have to precede the left parenthesis with an escape character such as backslash(\):

 ftp 9.24.104.74 \(trace

In the UNIX System Services shell, the directory where the FTP command was issued is the
local working directory. On the other hand, if the FTP client is started in a TSO environment,
the user's TSO prefix or logon user ID will be the initial local working directory.

When you use the FTP client in the UNIX System Services shell environment, you can use
the ! FTP subcommand to invoke the UNIX System Services shell with a UNIX System
Services command.

Here are examples of the FTP command in the UNIX System Services shell.
Chapter 6. File Transfer Protocol (FTP) 209

Figure 6-85 FTP in Unix System Services

1 Issue the FTP command.

2 The current working directory in the remote host is the TSO prefix defined in the PROFILE
of the login user ID.

In Figure 6-86 on page 211, the FTP client changes the FTP transfer modes, and gets an
MVS VB data set as a record structured file in binary mode. Both the FTP server and FTP
client support the transfer mode and file structure shown below.

BTHOMPS:/u/bthomps: > ftp 9.24.104.43 1
FTP: using TCPIPB
Connecting to: 9.24.104.43 port: 21.
220-FTPDB1 IBM FTP CS V1R2 at wtsc63oe, 17:34:35 on 2002-05-26.
220-***
220-* *
220-* Welcome to z/OS ITSO Raleigh SC63 *
220-* You accessed this system via CS for z/OS V1R2 *
220-* *
220-* This is the /etc/ftpbanner file for ftp server use *
220-* *
220-***
220-This is wtscoe.itso.ral.ibm.com on Sun May 26 17:34:35 2002
220-For administrative assistance contact support@helpdesk.com
220-
220 Connection will not timeout.
>>> USER bthomps
331 Send password please.
>>> PASS
230 BTHOMPS is logged on. Working directory is "BTHOMPS." 2
Command:
bin
>>> TYPE I
200 Representation type is Image
Command:
get a.out a.out.bin
>>> PORT 9,24,104,43,5,20
200 Port request OK.
>>> RETR a.out
125 Sending data set BTHOMPS.A.OUT
250 Transfer completed successfully.
86016 bytes transferred 0.350 seconds. Transfer rate 245.76KB/sec
Command:
quit
>>> QUIT
221 Quit command received. Goodbye.
BTHOMPS:/u/bthomps: >
210 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-86 Changing modes

1 Set the data transfer mode to BLOCK mode. You may also use the BLock FTP
subcommand.

2 Set the data transfer mode to COMPRESS mode. You may also use the COMpress FTP
subcommand.

3 Set the data transfer mode to STREAM mode. You may also use the STREam FTP
subcommand.

4 Set the data transfer type to IMAGE mode. You may also use the Binary FTP subcommand.

5 Set the file structure to RECORD. You may also use the RECord FTP subcommand.

6 Invoke the UNIX System Services shell with the LS command, which displays the list of files
in the current working directory. For more information on FTP transfer mode, data type, and
data structure, see “Transfer mode, data type and data structure” on page 145.

Figure 6-87 on page 212 shows how to work with directories on a local host, and how to issue
the UNIX System Services commands from an FTP client session.

Command:
mode b 1
>>> MODE B
200 Data transfer mode is Block
Command:
mode c 2
>>> MODE C
200 Data transfer mode is Compressed
Command:
mode s 3
>>> MODE S
200 Data transfer mode is Stream
Command:
type i 4
>>> TYPE I
200 Representation type is Image
Command:
struct r 5
>>> STRU R
250 Data structure is Record
Command:
get test.vb test.vb.bin
>>> PORT 9,24,104,231,4,11
200 Port request OK.
>>> RETR test.vb
125 Sending data set GARTHM.TEST.VB
250 Transfer completed successfully.
4197 bytes transferred in 0.350 seconds. Transfer rate 11.99 Kbytes/sec.
Command:
! ls -laF /tmp/test* 6
-rw-rw-rw- 1 GARTHM DCEGRP 4080 Feb 25 18:21 /tmp/test.vb.bin
Command:
quit
>>> QUIT
221 Quit command received. Goodbye.
Chapter 6. File Transfer Protocol (FTP) 211

Figure 6-87 Issuing Unix system services commands from FTP

1 Changes the current directory on the local host for the FTP session.

2 Displays the name of the current working directory on the local host. The current directory
has been changed from the default directory to /tmp directory.

3 Invokes the UNIX System Services shell with the PWD command, which displays the current
working directory name. Since the ! command invokes the new UNIX System Services shell
every time it is issued, the passed UNIX System Services command is always started in the
user's $HOME directory (in this case /u/garthm). Therefore if you issue the UNIX System
Services cd command to change the working directory, the current working directory
information cannot be inherited to the succeeding UNIX System Services commands.

6.5.7 FTP client in a batch job
The FTP server has an interface so that it can be used to submit jobs to the z/OS internal
reader from a remote client system using the TCP/IP network. This allows job submission to
be automated and eliminates the need to log on to MVS. The CS for z/OS IP FTP JES
interface supports JES2 and JES3 and allows the following functions:

� Submit jobs (JCL and data) from any TCP/IP client to MVS.

� Display current execution status of submitted jobs.

� Receive output of completed jobs at the client.

� Selectively deletes jobs on the MVS server JES queue.

Figure 6-88 on page 213 contains sample JCL that can be used to submit an FTP command
as a batch job:

Command:
lcd /tmp 1
HFS directory /tmp is the current working directory.
Command:
lpwd 2
Local directory name set to hierarchical file /tmp
Command:
! pwd 3
/u/garthm
Command: 3
! cd /tmp
Command:
! pwd 3
/u/garthm

Note: Receiving of output does not purge output on the JES output queue. Output
spool files can be explicitly purged via FTP commands. Only output in HELD status can
be retrieved.
212 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-88 Batch JCL for FTP client

1 You must configure the following three DD statements:

� SYSPRINT DD

� INPUT DD

� OUTPUT DD

You may specify MVS data sets on these DD statements, but you have to ensure that the
data set for the OUTPUT DD statement has an LRECL of 160 with any block size that is a
multiple of the LRECL. The data set specified on the INPUT DD statement should have an
LRECL of 80 with any block size that is a multiple of the LRECL.

2 By default, the FTP client sends the SITE subcommands when sending data to a foreign
host. This may cause error messages from a non-mainframe FTP server such as an AIX
system. You can use the SENDSITE FTP subcommand to prevent clients from sending site
information. Comments are only allowed with CS for OS/390 V2R10 IP and later. The " ; "
semicolon denotes a comment.

Note that each time you use the SENDSITE subcommand, it is turned alternately on and off.
You may use the LOCSTAT subcommand to make sure the sending of site information is
disabled on your OS/390 system.

3 The -d parameter turns on tracing. This is for debugging only. The EXIT parameter will
provide message EZA1735I with the FTP return code if something goes wrong and inhibits
further processing. EXIT=nn will terminate FTP with an non-zero return code of your choice if
an FTP error occurs.

Note: the continuation character for FTP batch jobs is the " + " sign. Figure 6-89 shows the
continuation for the get statement as being a “+”

Figure 6-89 Showing continuation in batch jobs

 It will be interpreted as one line: get ftp.test1 'user1.ftptst2' (replace

//jobname JOB MSGCLASS=O,MSGLEVEL=(1,1),CLASS=A,NOTIFY=&SYSUID
//FTP EXEC PGM=FTP,REGION=3M,PARM='/-d (EXIT' 3
//STEPLIB DD DSN=TCPIP.SEZALINK,DISP=SHR
//SYSTCPD DD DSN=TCP.TCPPARMS(TDATA03A),DISP=SHR
//SYSFTPD DD DSN=TCP.TCPPARMS(FDATACLN),DISP=SHR
//SYSPRINT DD SYSOUT=* 1
//OUTPUT DD SYSOUT=*,DCB=(LRECL=160,RECFM=FB,BLKSIZE=16000) 1
//INPUT DD * 1
9.24.104.26
user1 passwd1 ; note - userid and password is case sensitive
sendsite 2 ; toggle off to suppress sending site command
cd /tmp/
put 'user1.ftptst1' ftp.test1
get ftp.test1 'user1.ftptst2' (replace
quit
/*

get ftp.test1 +
 'user1.ftptst2' +
 (replace
Chapter 6. File Transfer Protocol (FTP) 213

The user ID and password can be placed in userid.NETRC and defined with a DD card in
JCL.Figure 6-90 shows the required JCL.

Figure 6-90 JCL with NETRC DD statement.

1 Notice that the user ID and password is not required in the JCL INPUT DD card. In this case
that information is coded in BTHOMPS.NETRC and defined with the //NETRC DD card. Refer
to 6.5.2, “FTP client NETRC data set” on page 203 for NETRC file coding syntax as well as
z/OS V1R2.0 CS: IP User’s Guide and Commands, SC31-8780.

6.5.8 FTP server DDNAME and batch job comment support
The CS for z/OS V1R2 IP client can refer to local files by DDNAME with FTP get and put
subcommands (mget and mput are not supported with DDNAME). This function is enabled
when a local filename is specified with the //DD: token followed by a 1 - 8 character DD name;
otherwise the client does not invoke this support. Because an HFS file name could be
allocated with a DD statement, both MVS data sets and HFS files in the local system can be
transferred using this function.

This is a client-only function and the user is responsible for allocating and deallocating
DDNAMEs that are transferred. The DDNAME can be allocated in a job or by using the ALLOC
TSO command. DDNAME support does not require any action unless you want to take
advantage of the new function. Figure 6-91 on page 215 will show how to use //DD: with
ALLOC and then the FTP put subcommand.

//FTPNETRC JOB MSGCLASS=O,MSGLEVEL=(1,1),CLASS=A,NOTIFY=&SYSUID
//FTP EXEC PGM=FTP,REGION=3M,PARM='/-d (EXIT'
//STEPLIB DD DSN=TCPIP.SEZALINK,DISP=SHR
//SYSTCPD DD DSN=TCP.TCPPARMS(TDATA03A),DISP=SHR
//SYSFTPD DD DSN=TCP.TCPPARMS(FDATACLN),DISP=SHR
//NETRC DD DSN=BTHOMPS.NETRC,DISP=SHR 1
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*,DCB=(LRECL=160,RECFM=FB,BLKSIZE=16000)
//INPUT DD *
9.24.104.26
sendsite ; toggle off to suppress sending site command
cd /tmp/
put 'user1.ftptst1' ftp.test1
get ftp.test1 'user1.ftptst2' (replace
quit
/*
214 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-91 ALLOC DD with PUT command

When using the put command with the //DD: token you must specify the foreign file or data set
name, it cannot be blank. In the above example, the local file name is referenced by
//DD:MYTESTDD on the put subcommand and the foreign data set name will
be’MS168.DDNTEST’. Refer to z/OS V1R2.0 CS: IP User’s Guide and Commands,
SC31-8780 for further details. Please note that the //DD: token can only be used with local file
names; it cannot reference a foreign file name on a remote host. The FTP client used was
MVS28B.itso.ral.ibm.com, where the local file is stored and then subsequently referenced
with the //DD: token, after ALLOC was used to define the DD name. And at the conclusion of
the FTP put, a file named ’MS168.DDNTEST’ will exist on the FTP server host
DEMOMVS.DDS.DFW.IBM.COM.

Figure 6-92 on page 216 will show you how to use the //DD: token in JCL. The example JCL
will demonstrate its use with the ftp get and put subcommands. Also notice that comments are
allowed in the JCL. A semicolon " ; " is the character that denotes the start of a comment. It
can be in column one of a line or at the end of a statement following a space.

 READY
ALLOC fi(MYTESTDD) da('BTHOMPS.JCL(DDNTEST)') shr
 READY
ftp 9.39.64.151
 220-FTPDB1 IBM FTP CS V1R2 at wtsc63oe, 23:39:35 on 2002-05-26.
 EZA1554I Connecting to: 9.39.64.151 port: 21.
 220-FTPD1 IBM FTP CS V2R8 at DEMOMVS.DDS.DFW.IBM.COM, 16:54:12
 220 Connection will close if idle for more than 5 minutes.
 EZA1459I NAME (9.39.64.151:BTHOMPS):
ms168
 EZA1701I >>> USER ms168
 331 Send password please.
 EZA1789I PASSWORD:
 EZA1701I >>> PASS
 230 MS168 is logged on. Working directory is "MS168."
 EZA1460I Command:
put //DD:MYTESTDD 'MS168.DDNTEST'
EZA1701I >>> PORT 9,24,104,43,4,168
200 Port request OK.
EZA1701I >>> STOR 'MS168.DDNTEST'
125 Storing data set MS168.DDNTEST
250 Transfer completed (data was truncated)
EZA1617I 1230 bytes transferred in 0.030 seconds.
Transfer rate 41.00 Kbytes/sec.
EZA1460I Command:
Chapter 6. File Transfer Protocol (FTP) 215

Figure 6-92 Making use of DD card in the FTP GET & PUT command

Refer to z/OS V1R2.0 CS: IP User’s Guide and Commands, SC31-8780 for a "//DD:" token
JCL example used with GDG data sets.

6.5.9 FTP client in REXX
The FTP EXEC interface allows you to execute FTP subcommands from an EXEC rather than
interactively from a terminal. The FTP subcommand can be in a file (MVS data set or
hierarchical file system file), or you can code it directly in the EXEC. By default, the FTP
session dialog is printed on the terminal. If you want the message sent to a data set rather
than the terminal do the following:

TSO Specify an OUTPUT data set as part of the ALLOC statement.

UNIX System Services Redirect the output to an hierarchical file system file when invoking
the FTP command.

See Appendix F, “FTP client sample REXX program” on page 549 for a sample REXX
program to submit an FTP command. You can run this REXX EXEC in both a TSO
environment and UNIX System Services shell.

From TSO command line, you can run this sample REXX as follows:

Figure 6-93 Executing a Rexx exec from the TSO command line

//DDNTEST JOB 1,BTHOMPS,CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
//STEP01 EXEC PGM=FTP,REGION=2048K
//*
//SYSFTPD DD DSN=TCPIP.TCPPARMS(FTSD28B),DISP=SHR
//SYSTCPD DD DSN=TCPIP.TCPPARMS(TCPD28B),DISP=SHR
//SYSPRINT DD SYSOUT=*
//MYTESTDD DD PATH='/u/bthomps/ddexample',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//OUTPUT DD SYSOUT=*
//INPUT DD *
; ip address of the remote host follows
9.39.64.151 ; host name can be used here instead
userid password ; please protect this file or use netrc
;issue get & put ftp subcommands
GET /samples/profile //DD:MYTESTDD (REPLACE
;
PUT //DD:MYTESTDD ’MS168.MYTESTDD’
QUIT
/*

Important: The REPLACE option causes a data set on your local host to be overwritten.
Also a get issued for an empty or non-existing file erases the content of the existing file on
the local host.

EXEC 'KAKKY.SAMP.JCL(FTPREX01)' 'KAKKY.FTPIN KAKKY.FTPOUT' EX
FTP client return code is: 0

216 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

In the UNIX System Services shell environment, the FTP command may be started by the
following command:

Figure 6-94 FTP command

The following is an example of the input file (either the input data set KAKKY.FTPIN or the
hierarchical file system file ftpin).

Figure 6-95 Input file

You may also use the REXX stack to hold the FTP subcommands. When using the REXX

Figure 6-96 Rexx stack holding FTP subcommands

The output messages from an FTP command are sent to the output file (either the output data
set KAKKY.FTPOUT or the hierarchical file system file ftpout).

6.5.10 Proxy FTP
The proxy FTP allows file transfer between two hosts on behalf of another host. There is no
need to do a get for a file on the client system and then do a put of the file to a different
server. The proxy client has two control connections and can initiate data transfer between
two servers. The control connection to a secondary (proxy) server, is established using the
PROXY OPEN subcommand.

The FTP client may send most FTP commands using the PROXY command. These commands
and replies are sent via control connections between the FTP client and proxy FTP server.

The LOCSTAT output shows both the primary and secondary connections.

Figure 6-97 on page 218 illustrates how proxy FTP works.

ftprex01 ftpin ftpout
FTP client return code is: 0

9.24.104.26
user1 passwd1
sendsite
cd /tmp
put 'user1.ftptst1' ftp.test1
get ftp.test1 'user1.ftptst2' (replace
quit

QUEUE "9.24.104.26"
QUEUE user1 passwd1
QUEUE "put 'user1.ftptst1' ftp.test1"
QUEUE "quit"

cmdargs = "-v -p TCPIPA"
parse source env .
/*************************************/
if env = "OpenMVS" then
 ADDRESS LINKMVS "ftp cmdargs"
else
 "ftp" cmdargs
end
Chapter 6. File Transfer Protocol (FTP) 217

Figure 6-97 Proxy FTP operation

Figure 6-98 on page 219 shows an example of the proxy FTP operation. Note that the
numbers in Figure 6-98 match with the numbers in Figure 6-97, so that you will easily see the
communications occurred during the proxy FTP operation.

primary server secondary server

control connection

reply

1 2

PASV4PORT5

RETR6

STOR7

ftp client

data connection

control connection
218 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-98 PROXY FTP operation

1 The FTP client connects to the primary FTP server. In this case, the primary server is
running in an OS/2 system.

2 After entering the primary FTP server the client tries to open another control connection to
the secondary FTP server. We used the TCP/IP V3R2 for MVS FTP server as a secondary
FTP server.

ftp 9.24.104.47 1

 EZA1450I IBM FTP CS/390 V2R5 1997 296 00:10 UTC
 EZA1466I FTP: using TCPIPA instead of INET
 EZA1554I Connecting to: 9.24.104.47 port: 21.
 220 wtr05118 IBM TCP/IP for OS/2 - FTP Server ver 02:36:43 on Aug 29 1996 ready.
 EZA1459I NAME (9.24.104.47:kakky):
kakky
 EZA1701I >>> USER kakky
 331 Password required for kakky.
 EZA1789I PASSWORD:

 EZA1701I >>> PASS
 230 User kakky logged in.
 EZA1460I Command:
proxy open 9.24.104.74 2
 EZA1554I Connecting to: 9.24.104.74 port: 21.
 220-T18NFTP1 IBM MVS V3R2 at MVS18.ITSO.RAL.IBM.COM, 12:00:18 on 1998/02/24
 220 Connection will close if idle for more than 5 minutes.
 EZA1459I NAME (9.24.104.74:kakky):
kakky
 EZA1701I >>> USER kakky
 331 Send password please.
 EZA1789I PASSWORD:

 EZA1701I >>> PASS
 230 KAKKY is logged on. Working directory is "KAKKY.".
Chapter 6. File Transfer Protocol (FTP) 219

Figure 6-99 The proxy get command

3 The client issues a proxy get command, which will initiate file transfer from the primary FTP
server to the secondary FTP server. From the client point of view, the secondary server looks
like a local host, when you issue FTP subcommands with the proxy subcommand. In this
case, the client specifies an OS/2 format file name as a remote host name, and uses an MVS
data set name for the local host name.

In the PROXY FTP the data connection is initiated by the primary FTP server, so the
secondary FTP server must support the PASV FTP subcommand.

4 The PASV command is sent to the secondary server. The proxy server sends back a reply
with an IP address and port number. This will be used for the data connection established by
the primary server.

5 A PORT command is sent to the primary server. The IP address and port number received on
the PASV reply are sent on the PORT command.

6 A RETR command for the source file is sent to the primary server.

7 A STOR command for the target file is sent to the secondary server.

8 To make sure the file was stored successfully, the FTP client issues a proxy ls command.
This command will display the data set name lists of the current working directory in the
secondary FTP server.

 EZA1460I Command:
proxy get c:\autoexec.bat 'kakky.test.proxy01' 3
 EZA1701I >>> PASV 4
 227 Entering Passive Mode (9,24,104,74,4,15)
 EZA1701I >>> PORT 9,24,104,74,4,15 5
 200 PORT command successful.
 EZA1701I >>> RETR c::autoexec.bat 6
 150 Opening ASCII mode data connection for c:\autoexec.bat (389 bytes).
 EZA1701I >>> STOR 'kakky.test.proxy01' 7
 125 Storing data set KAKKY.TEST.PROXY01
 250 Transfer completed successfully.
 226 Transfer complete.
 EZA1460I Command:
proxy ls 8
 EZA1701I >>> PORT 9,24,104,231,4,11
 200 Port request OK.
 EZA1701I >>> NLST
 125 List started OK.
 EZA2284I ISPF52.ISPPROF
 EZA2284I MVS39.ISPPROF
 EZA2284I SAMP.JCL
 EZA2284I SPFLOG1.LIST
 EZA2284I TEST.PROXY01
 250 List completed successfully.
 EZA1460I Command:
quit
 EZA1701I >>> QUIT 9
 221 Quit command received. Goodbye.
 EZA1701I >>> QUIT
 221 Goodbye.

220 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

9 Terminate both FTP control connections. If you want to terminate only the control
connection with the secondary server, you may use the proxy close command.

6.5.11 FTP server interface to JES
The FTP server JES interface can be used to submit MVS batch jobs from any FTP client in
your IP network, and to retrieve spool output from the JES spool queues to your FTP client. In
a sense, this function can be characterized as a form of MVS Remote Job Entry function,
based on the FTP protocols. It is important to stress that this function does not require any
special RJE software on your TCP/IP workstations.

No special customization of the FTP server is required to implement this function. It is
available and ready to use. You can control its use via the FTCHKJES exit routine.

The JES interface, which is used by the FTP server to query information in the spool data set,
is based on the same interface that is used by the TSO commands STATUS and OUTPUT. If the
JESINTERFACELEVEL is set to 1 in FTP.DATA the following is true. This interface is not
based on the OWNER attribute of a spool file. It will only select jobs based on a match of user
ID and the corresponding number of characters in a job name.

The job name in the JCL must be the USERIDx, where x is a 1-character letter or number and
USERID must be the user ID you will use to log on to the FTP server to submit the job. Only
held output can be retrieved by the FTP client, so you may have to review your JES SYSOUT
class specifications. The output class for MSGCLASS and SYSOUT files contained in your
JCL must specify a JES HOLD output class.

If the JESINTERFACELEVEL is set to 2, the job name in the JCL can be any name you are
authorized to view via the Security Authorization Facility (SAF), such as RACF. Review “JES
interface” on page 195 and z/OS V1R2.0 CS: IP User’s Guide and Commands, SC31-8780
for further details.

At a client host, you use the SITE command to set filetype=jes. The FILETYPE statement
specifies the mode of operation of the server.

In filetype JES mode, the put, dir, ls, delete and get commands work according to the
following rules:

� A put will submit the file directly to the JES internal reader in the MVS FTP server.

� A dir or an ls command will list jobs that have as the job name your user ID plus one
character.

� A delete command will delete a job or a SYSOUT data set from the spool data set.

� A get command will either retrieve one or more held SYSOUT files from the spool data set,
or it will perform the combined function of submitting a job, waiting for it to run, collecting
all output files and returning them to the FTP client.

The following is an example of the output from a dir command with a job waiting in the input
queue and two jobs in the output queue.
Chapter 6. File Transfer Protocol (FTP) 221

Figure 6-100 The dir command

1 A job in the output queue with three held spool files that can be retrieved.

2 A job in the output queue, but without any held output.

3 A job that is waiting in the input queue, but not held. If it were held, the line would have
shown a status of -HELD-.

If you want to retrieve a spool file, you will have to use the following syntax:

Figure 6-101 Retrieving a spool file

1 You can specify the full job ID (job03192) or abbreviate to J3192. In this example, you
retrieve spool file number 1 of the three available.

Figure 6-102 Retrieving spool files

You can request to retrieve all spool files for a given job in a single operation, by using an x 1
as spool file number:

ftp> site filetype=jes
200 Site command was accepted
ftp> dir
200 Port request OK.
125 List started OK
ALFREDCA JOB03192 OUTPUT 3 Spool Files 1
ALFREDCA JOB03193 OUTPUT 0 Spool Files 2
ALFREDCA JOB03194 INPUT 3
125 List completed successfully
222 bytes received in 14 seconds (0 Kbytes/s)

ftp> get j3192.1 1
200 Port request OK.
125 Sending data set ALFREDC.ALFREDCA.JOB03192.D0000002.JESMSGLG
250 Transfer completed successfully
local: j3192.1 remote: j3192.1
1958 bytes received in 2.2 seconds (0 Kbytes/s)

ftp> dir
200 Port request OK.
125 List started OK
ALFREDCA JOB03192 OUTPUT 3 Spool Files
ALFREDCA JOB03193 OUTPUT 3 Spool Files
ALFREDCA JOB03194 INPUT
125 List completed successfully
222 bytes received in 14 seconds (0 Kbytes/s)
ftp> get j3192.x job3192.out 1
200 Port request OK.
125 Sending all SPOOL files for requested JOBID
250 Transfer completed successfully
local: job3192.out remote: j3192.x
2758 bytes received in 19 seconds (0 Kbytes/s)
222 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

In the file you receive on your FTP client system, the individual spool files are separated by a
line with the following contents:

 !! END OF JES SPOOL FILE !!

You are able to submit a job and retrieve the output from the job in a single operation. The
sequence of events are illustrated in Figure 6-103.

Figure 6-103 FTP server job submission and SYSOUT retrieval

1 First you have to create your JCL data set and transfer it to MVS. In this example we
transfer the local file called myjob.jcl to MVS as userID.mvsjob in a traditional ASCII transfer.

2 Then you must set the filetype to JES.

3 To submit the job, wait for it to execute and retrieve the output. Enter a get command,
where you name the data set on MVS, which you just created, and name your local file (in this
example myjob.out). Your local FTP client is blocked until the job has been executed and
SYSOUT files transmitted to you.

4 The MVS FTP server will submit the job to JES, where it will be placed in the job queue.

5 MVS will schedule the job when an initiator becomes available.

6 Output from the job will be placed in the JES SYSOUT spool queue.

MVS Host

FTP Client DSN=userID.mvsjob

put myjob.jcl mvsjob

SITE filetype=jes

get mvsjob myjob.out
MVS
Job
Execution

1

2

3

4

5

6

7

//userIDA JOB 1,,,
//

 FTP Server

JES

Job
Queue

Sysout
Queue

J E S 2 J O B L O G

 myjob.out
Chapter 6. File Transfer Protocol (FTP) 223

7 The FTP server will pick up the individual JES SYSOUT files and assemble them into a
single file, which will be transmitted to your FTP client and placed in the file, you specified on
the get command: myjob.out.

The command you issue from your client and the responses you get back at your client
workstation look like the following:

Figure 6-104 Client commands and responses

The JESPUTGETTO parameter in FTP.DATA specifies how long a client should wait for JES output
after a job has been submitted. The default for value is 600 (10 minutes).

If the JESPUTGETTO timeout value is exceeded before the job is executed and has returned
output, the transfer operation is aborted, and you will have to retrieve the JES output files
manually.

6.5.12 Use NJE network to forward files
From your FTP client, you can use the OS/390 FTP server to forward files using an existing
NJE network.

When you PUT a file to the FTP server, you can specify that the file is not to be stored on the
MVS system, but is to be forwarded to a user on an NJE node. You do this by issuing the
following command before you put your file:

site dest=nodename.userid

ftp> put myjob.jcl mvsjob 1
200 Port request OK.
125 Storing data set ALFREDC.MVSJOB
250 Transfer completed successfully.
local: myjob.jcl remote: 'alfredc.mvsjob'
96 bytes sent in 0.032 seconds (2 Kbytes/s)
ftp> site filetype=jes 2
200 Site command was accepted
ftp> get mvsjob myjob.out 3
200 Port request OK.
125-Submitting job 'ALFREDC.MVSJOB' FIXrecfm 80
125 When JOB03193 is done, will retrieve its output 4
250 Transfer completed successfully
local: myjob.out remote: 'alfredc.mvsjob'
2758 bytes received in 26 seconds (0 Kbytes/s)
ftp>
224 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-105 Forwarding files to NJE destinations from FTP

1 You set the NJE destination via a SITE command.

2 The file is forwarded to the FTP server as an ASCII file.

3 The FTP server forwards the file to JES with the NJE node ID and user ID from the
preceding SITE command.

4 The file is forwarded through the NJE network to the destination NJE node ID, which in this
example is an RSCS virtual machine on a VM operating system.

The file is finally placed into the virtual reader of the user.

Figure 6-106 FTP NJE session

1 You specify the NJE receiver of the file via the SITE DEST option.

ftp> site dest=wtscpok.alfredc 1
200 Site command was accepted
ftp> put test.nje 2
200 Port request OK.
125 Sending file via NJE to requested destination. 3
250 Transfer completed successfully.
local: test.nje remote: test.nje
96 bytes sent in 0 seconds (0 Kbytes/s)

1

2

3

4

RAIANJE MVS System

FTP Server

JESWTSCPOK VM System

Put test.nje

FTP Client

SITE dest=wtscpok.alfredc

NJE Network

ALFREDC

RSCS

1

2

3

4

Chapter 6. File Transfer Protocol (FTP) 225

2 You put the file to the FTP server.

3 The server acknowledges that the file is transmitted via the NJE network.

6.5.13 FTP and use of tape data sets
You are able to read from and write data to tape devices, which are allocated by the FTP
server or FTP client.

You request tape data set allocation via the UNIT SITE parameter for the FTP server and the
UNIT LOCSITE parameter for the FTP client. You can use the following SITE and/or LOCSITE
command:

� For the FTP server

 site unit=tape

� For the FTP client

 locsite unit=tape

You can disable automatic volume mounting via the AUTOTAPEMOUNT parameter in the
FTP.DATA data set for your server and/or client.

If the number of users who have to be able to access tape data sets is limited, you can set up
a second FTP server address space on a separate set of port numbers. You can then set
AUTOTAPEMOUNT to false in the primary FTP server's FTP.DATA data set, and AUTOTAPEMOUNT to
true in the secondary FTP server's FTP.DATA data set. You can control access to this
secondary FTP server in more ways:

1. By IP address via the FTCHKIP user exit class

2. By user ID via the FTCHKPWD user exit or RACF application class

6.5.14 DB2 SQL queries with FTP
A user at an FTP client may use this support to extract data from a DB2 database. The user at
the client will have to do the following:

1. Edit a file with an SQL SELECT statement.

2. Transfer the file to the FTP server with a filetype of SEQ.

3. Issue the SITE command to set the name of the DB2 subsystem to use and to set the
filetype to SQL.

4. Issue a GET command referring to the file just transferred, thereby signalling to the FTP
server that the SQL query should be executed and the result returned to the client.

Similarly, you can use the z/OS FTP client to extract data from a local DB2 database and
send the result to any server.

DB2 SQL query function
This function can be used to execute queries (SQL SELECTs) against DB2 objects.

You must BIND the DBRM called EZAFTPMQ to the plan used by FTP, and GRANT execute
privilege to PUBLIC. You may specify the name of the plan by the DB2PLAN statement in
FTP.DATA. The default name is EZAFTPMQ. This FTP facility performs the SELECT
operation only on the DB2 tables. The UPDATE, INSERT, and DELETE operations are not
supported.
226 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The FTOEBIND member of the SEZAINST data set may be used as a sample job to enable
the FTP server and client to do SQL queries.

You can start a second FTP server that was configured so it would, by default, process all get
requests as SQL queries.

The JCL procedure to start this server looks like the following:

Figure 6-107 FTP SQL server started procedure

1 This server starts on an alternate control port, port number 2021, and it will use 2020 as the
data port. These port numbers should be reserved to the FTP server job name (for control
connection) and OMVS (for data connection) in your TCP/IP PROFILE data set:

Figure 6-108 Port statements in TCPIP profile for SQL

2 As this server is used for SQL queries, we add the DB2 load libraries to our STEPLIB. If
your DB2 load libraries are on your system link list, you do not need to add them to STEPLIB.
Please remember to mark your DB2 load libraries as RACF program control.

The FTP.DATA options used for this server look like the following:

//FTPDSQL PROC
//*
//* OpenEdition MVS FTP SQL Query Server main process
//*
//FTPD EXEC PGM=FTPD,REGION=40M,
// PARM='POSIX(ON),ALL31(ON)/PORT 2021' 1
//*
//* FTPD is in TCPIP.SEZALINK (on the LINKLST)
//* FTCHKxxx routies are in the following load library
//* DB2 modules are needed for SQL support
//*
//* NB: All steplib libraries MUST be RACF PROGRAM controlled!
//*
//STEPLIB DD DSN=WOZA.GIMLIB,DISP=SHR
// DD DSN=SYS1.DSN230.DSNEXIT,DISP=SHR 2
// DD DSN=SYS1.DSN230.DSNLOAD,DISP=SHR
//SYSFTPD DD DSN=TCP.TCPPARMS(OEFTPSQL),DISP=SHR

PORT
2020 TCP OMVS ;FTP Alternate Server data port
2021 TCP FTPDSQL1 ;FTP Alternate Server control port
Chapter 6. File Transfer Protocol (FTP) 227

Figure 6-109 FTP.DATA statements for SQL

1 This server processes all requests as SQL queries by default.

2 The default DB2 subsystem to connect to is called DSNI.

Each FTP client runs in its own MVS address space, two clients can concurrently be
connected to two different DB2 subsystems.

3 This server instance allows anonymous login. An anonymous user will be associated with
the FTPANOM user ID. The anonymous user will not be prompted for a password.

Assume that the file /u/ftpanom/sqldept.txt has the following contents:

SELECT * FROM ALFREDC.ABCDEPT

An anonymous user that retrieves this file via this FTPD server can use the following FTP
dialog:

;***
;* * *
;* Name of File: TCP.TCPPARMS(OEFTPSQL) * *
;* * *
;* FTP.DATA for SQL FTP server on ports 2020/2021 * *
;* * *
;***
Primary 1 ;Primary allocation is 1 track
Secondary 20 ;Secondary allocation is 20 tracks
Directory 15 ;PDS allocated with 15 directory blocks
Lrecl 255 ;Logical Record Length of 255
BlockSize 6144 ;Block Size of 6144
AutoRecall true ;Migrated HSM files recalled automatically
AutoMount false ; Non-mounted volumes not mounted auto.
DirectoryMode false ; Use all qualifiers (Datasetmode)
Volume WTLTCP ; Volume serial number for new data sets
SpaceType TRACK ; Data sets allocated in tracks
Recfm VB ; Variable Blocked record format
Smf 170 ; The SMF record sub type to be used
Mgmtclass TCPMGMT ; SMS management class for new data sets
Ctrlconn IBM-850 ; ASCII code page for control connection
Sbdataconn (IBM-1047,IBM-850) ; EBCDIC, ASCII code page data
Quotesoverride TRUE ; Single quotes means qualified name
Umask 027 ; Make new HFS files rw- r-- ---
Filetype SQL 1 ; File Type = SQL
DB2 DSNI 2 ; DB2 subsystem DSNI on mvs18
Spread False ; Do not use spread-sheet format
SQLCol Any ; Use labels or names
Anonymous FTPANOM/NOSECRET ; The anonymous userid and password 3
STARTDIRECTORY HFS ; Start in OE
228 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-110 Anonymous FTP session

The output file, sqldept.out, will hold the result of the SQL query:

Figure 6-111 SQL query output

The FTP request could also be imbedded in an HTML document, as the following example
shows:

Sample DB2 SQL query - Is now working - check it out

By clicking on this link, the Web browser will log on as the anonymous user to the FTP server,
send a RETR FTP command for the specified file, sqldept.txt in the default home directory
(/u/ftpanom), and display the output from the SQL query. The reason we use the txt suffix is
that the Web browser then will treat the output as a text file and show the result with its default
text file browser (see Figure 6-112 on page 230).

[C:\]ftp mvs18o 2021
IBM TCP/IP for OS/2 - FTP Client ver 15:51:28 on Nov 19 1994
Connected to mvs18o.itso.ral.ibm.com.
220-FTPDSQL1 IBM MVS V3R3 at mvs18oe.itso.ral.ibm.com, 21:06:07 on 1997-
220 Connection will close if idle for more than 5 minutes.
Name (mvs18o): anonymous
230 'ANONYMOUS' logged on. Working directory is "/u/ftpanom".
ftp> get sqldept.txt sqldept.out
200 Port request OK.
125 Sending data set /u/ftpanom/sqldept.txt
250 Transfer completed successfully.
local: sqldept.out remote: sqldept.txt
1490 bytes received in 0.44 seconds (3 Kbytes/s)
ftp>

s--------+---------+---------+---------+---------+---------+---------+--
 SELECT * FROM ALFREDC.ABCDEPT
h--------+---------+---------+---------+---------+---------+---------+--
DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION
d--------+---------+---------+---------+---------+---------+---------+--
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
B01 PLANNING 000020 A00
C01 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER ------ A00
D11 MANUFACTURING SYSTEMS 000060 D01
D21 ADMINISTRATION SYSTEMS 000070 D01
E01 SUPPORT SERVICES 000050 A00
E11 OPERATIONS 000090 E01
E21 SOFTWARE SUPPORT 000100 E01
F22 BRANCH OFFICE F2 ------ E01
G22 BRANCH OFFICE G2 ------ E01
H22 BRANCH OFFICE H2 ------ E01
I22 BRANCH OFFICE I2 ------ E01
J22 BRANCH OFFICE J2 ------ E01
Chapter 6. File Transfer Protocol (FTP) 229

Figure 6-112 FTP SQL query from a Web browser

Note: Please note that this technique will work only if the FTPD server uses the default
FTP server port number. Even though the HTTP protocol allows you to specify an alternate
port number in an FTP URL, our testing shows that this does not work from the majority of
currently available Web browsers.
230 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

6.5.15 Using the FTP SQL query function from a remote FTP client

Figure 6-113 Using the FTP SQL query function from a remote FTP client

1 This step is optional. The remote user may edit a local file with an SQL SELECT statement,
and transfer this file to the MVS system. Or the user may use a file that already has been
prepared with an SQL statement and stored on the MVS system.

If a file is prepared and transferred to MVS, it is done via a traditional ASCII mode transfer.

To execute the SQL query, issue the following two commands 2:

1. First, a SITE command, which instructs the MVS FTP server to switch to filetype SQL
mode, and names the DB2 subsystem to connect to.

2. Then a get command, where the remote file name points to the MVS data set holding the
SQL statement to be executed, and the local file name points to the local file, where the
output from the SQL query must be placed.

The MVS FTP server will 3 read the MVS data set, but instead of sending it to the client, it will
be handed to the DB2 subsystem for execution. The output from the query will be picked up,
and transferred 4 to the client.

If you have an SQL query that you want to execute frequently, you should probably store it
permanently on MVS. Periodically you enter your FTP client function, where you go into
filetype SQL mode, execute the query, and retrieve the current results of the query.

6.5.16 Using the FTP SQL query function from a local TSO FTP client

FTP Client

Put mysql mysql

SITE filetype=sql db2=dsni
Get mysql mysql.out

1

2

MVS Host

DSN=userID.mysql

DB2
Sub-
System
DSNI

DB2
Table
TABLEx

SELECT * FROM TABLEx

FTPSRV

4

3

Note: The FTP client does not have to be invoked under TSO to use the SQL support. You
can do this also when the client is invoked from the UNIX System Services shell.
Chapter 6. File Transfer Protocol (FTP) 231

Figure 6-114 Using the FTP SQL query function from a local TSO FTP client

When you are in an FTP session with the remote FTP server, enter the following two
commands in order to use the SQL query function:

1. A LOCSITE command, where you set the FTP client local filetype=sql, and name the DB2
subsystem to use for the query function.

2. A PUT command 1, where your local file name points to a data set holding the SQL query
to execute, and the remote file name points to the remote file, where the output of the
query should be placed.

The FTP client will hand the data set with the SQL query to the DB2 subsystem 2, pick up the
response from the DB2 subsystem 3 and transfer the response to the remote host.

You may use this facility in combination with the batch FTP facility to automate distribution of
DB2 data to remote FTP hosts. You could let your batch production scheduling system
schedule jobs periodically, which enters a batch FTP session with remote FTP servers,
executes predefined SQL queries, and transfers the results to the remote system

Figure 6-115 Batch FTP with SQL query

1 The SQL query is in the data set called userID.v3r4.db2cntl(select). The result of the query
should be placed into the remote file called query1.out.

//jobname JOB 1,MSGLEVEL=(1,1),MSGCLASS=H,NOTIFY=tsouser
//SQL EXEC PGM=FTP,PARM='(EXIT'
//SYSPRINT DD SYSOUT=*
//INPUT DD *
<remote host name>
<remote userid>
<remote password>
locsite filetype=sql db2=dsni
put v3r4.db2cntl(select) query1.out 1
close
quit
//OUTPUT DD SYSOUT=*,DCB=(RECFM=FB,LRECL=160,BLKSIZE=3200)

Local MVS FTP Client User

Remote
FTP
Server

DB2
Sub-
System
DSNI

3

DB2
Table
TABLEx

TSO FTP Client Function

LOCSITE filetype=sql db2=dsni
Put mysql mysql.out

DSN=userID.MYSQL

SELECT * FROM TABLEx

2

1

232 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

In a batch invocation of FTP you have to specify PARM='(EXIT' in order to terminate FTP in
case an error is encountered. If you do not specify (EXIT, FTP will try to execute all FTP
subcommands in the INPUT data set even if one of the first commands fails. Another
advantage of the (EXIT keyword is that in case of an error the FTP step will terminate with a
non-zero return code, which you may use to control the execution of succeeding steps in your
JCL stream.

If you get a non-zero return code, you can check the OUTPUT file to see what went wrong.

6.5.17 FTP SQL query output
You can control the format of the output from DB2 via two SITE/LOCSITE parameters:

SPread/NOSPread If you specify SPread, output will be in such a format that the file can be
directly imported into a spreadsheet program of your choice.

SQLCol= With the SQLCol keyword, you control how you want column headings
to look. You have three options:

Names Use the column names of the DB2 tables.

Labels Use the labels associated with columns in the DB2 tables. If a
column does not have a label, that column will be given a
system-generated heading of the form COLnnn.

Any Use the labels if they are defined. If a column does not have a
label, then use the column name.

Default output format (SQLCol=names NOSPread) looks very much like the output you would
get from SPUFI under TSO:

Figure 6-116 SQL query output

The only difference from SPUFI output is that the separator lines have a one-letter prefix,
which indicates the type of information following that separator line:

s The SQL query statement follows.

h A header line is following with column headings.

d The rest of the data set is rows selected as a result of the query.

e An error message follows this separator line.

A program processing this output can use these codes to determine the contents of the lines
following.

Output with sqlcol=any nospread would appear as follows:

s--------+---------+---------+---------+---------+---------+---
 select deptno, deptname, mgrno, admrdept from abcdept
h--------+---------+---------+---------+---------+---------+---
DEPTNO DEPTNAME MGRNO ADMRDEPT
d--------+---------+---------+---------+---------+---------+---
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
B01 PLANNING 000020 A00
C01 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER ------ A00
D11 MANUFACTURING SYSTEMS 000060 D01
D21 ADMINISTRATION SYSTEMS 000070 D01
E01 SUPPORT SERVICES 000050 A00
Chapter 6. File Transfer Protocol (FTP) 233

Figure 6-117 sqlcol=any output

The labels were created with the following SQL statement:

 label on abcdept
 (deptno is 'Number',
 deptname is 'Name',
 admrdept is 'Admin')

Please note that the MGRNO column did not get a label. When you use the sqlcol=any
option, the MGRNO column heading will be the name of the column.

If you intend to load the output from DB2 into a spreadsheet program, you have to use the
spread option. Here we used it in combination with sqlcol=labels:

Figure 6-118 sqlcol=labels output

Each value in the spreadsheet output is separated by a tab character (X'05' in EBCDIC).
These characters are not visible in the above print.

Because the MGRNO column does not have a label, it will get a system-generated label
when we specify sqlcol=labels.

6.6 Security in the FTP environment
Each FTP server relies on the use of an external security manager such as RACF. Several
servers provide some built-in security functions for additional security. Quite a few security
loopholes exist in the FTP environment so it is imperative to plug as many of these with
whatever tools are available to you. The arsenal to plug these loopholes is ever increasing,
just as the threats against security are. We will discuss a few of the common exposures that
exist in the environment and how to guard against them.

s--------+---------+---------+---------+---------+---------+---------+--
 select deptno, deptname, mgrno, admrdept from abcdept
h--------+---------+---------+---------+---------+---------+---------+--
Number Name MGRNO Admin
d--------+---------+---------+---------+---------+---------+---------+--
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
B01 PLANNING 000020 A00
C01 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER ------ A00
D11 MANUFACTURING SYSTEMS 000060 D01
D21 ADMINISTRATION SYSTEMS 000070 D01
E01 SUPPORT SERVICES 000050 A00

Number Name COL003 Admin
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
B01 PLANNING 000020 A00
C01 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER ------ A00
D11 MANUFACTURING SYSTEMS 000060 D01
D21 ADMINISTRATION SYSTEMS 000070 D01
E01 SUPPORT SERVICES 000050 A00
234 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

6.6.1 FTP server RACF definition
The FTP server requires, as do other servers in UNIX System Services, the ability to change
the user security environment to that of the client. The FTP server listener process (ftpd) must
therefore be started under a user ID with UID=0. If you want to start the FTP server as an
MVS started procedure or activate the FTP server using the AUTOLOG statement in
PROFILE.TCPIP, you need to configure the STARTED class profile for the FTP server in the
RACF database. In the STARTED class profile, you also have to specify a user ID that has an
OMVS segment with UID=0.

If the job name of the FTP server is FTPDB and the associated user ID is TCPIP3, the
following RACF definitions would be needed:

 SETROPTS GENERIC(STARTED) 1
 SETROPTS CLASSACT(STARTED) RACLIST(STARTED) 1
 RDEFINE STARTED FTPDB.* STDATA(USER(TCPIP3) GROUP(OMVSGRP) TRUSTED(NO))
 SETROPTS RACLIST(STARTED) REFRESH

1 The first two commands are needed if you have not configured the RACF STARTED
resource class on your z/OS system.

If you have the BPX.DAEMON facility class configured in the RACF database, the user
associated with the FTP server must have READ access to this facility class resource.
Activating the BPX.DAEMON level of security is not required. However, it is recommended,
because it provides additional security in the UNIX System Services environment.

The following RACF definitions will give the user TCPIP3 the READ permission to the
BPX.DAEMON facility class.

 PERMIT BPX.DAEMON CLASS(FACILITY) ID(TCPIP3) ACCESS(READ)

If you define the BPX.DAEMON facility class, then you must enable program control for
certain z/OS load libraries. The following commands define three load libraries as controlled
libraries. These definition are required for the FTP server, when you configure the
BPX.DAEMON facility class.

 SETROPTS WHEN(PROGRAM) 1
 RDEFINE PROGRAM * ADDMEM ('TCPIP.SEZALINK'/O35RZ1/NOPADCHK) UACC(READ)
 RDEFINE PROGRAM * ADDMEM ('SYS1.LINKLIB'/O35RZ1/NOPADCHK) UACC(READ)
 RDEFINE PROGRAM * ADDMEM ('CEE.SCEERUN'/O35RZ1/NOPADCHK) UACC(READ)
 SETROPTS WHEN(PROGRAM) REFRESH

1 The first command is needed only if you have not defined program control in your RACF
database.

If the server is configured for DB2 query support, you also need to define the DB2 load
libraries as controlled libraries.

If you do not give the user associated with the FTP server the READ authority to the
BPX.DAEMON facility class, your FTP client will fail with the following message:

Figure 6-119 Read authorization to BPX.DAEMON failure

Name (9.24.105.126): garthm
331 Send password please.
Password:
550 error processing PASS command : EDC5113I Bad file descriptor.
Login failed.
Chapter 6. File Transfer Protocol (FTP) 235

Then you will see the following security violation message at the MVS console:

Figure 6-120 Security violation on system console

In this case, you would have to check your RACF definition, and make sure the user
associated with the FTP server started task has the READ permission to the BPX.DAEMON
facility class.

If you do not define the load libraries as program controlled correctly, your FTP client would
receive the following error message when you try to log on to the FTP server:

Figure 6-121 Load libraries not defined as pgm controlled error

With the TRACE option, you will see the following error message from the FTP server, which
may be displayed at the MVS console or sent to the syslog daemon log file:

Figure 6-122 Trace output of load library error

To see the list of the program controlled libraries, use the RACF Display General Resource
Services panel or issue the following RACF command:

RLIST PROGRAM *

If you decide not to define the BPX.DAEMON Facility Class, then assigning UID(0) for UIDs
associated with the FTP server is sufficient to process.

For more information on the RACF definition, such as the BPX.DAEMON facility class or
program control, refer to Communications Server for z/OS V1R2 TCP/IP Implementation
Guide Volume 1: Base and TN3270 Configuration, SG24-5227.

6.6.2 Signing on to the z/OS FTP server
During a logon to the z/OS FTP server, the user is prompted for an MVS user ID and
password, which are verified via the SAF interface in MVS. The user is able to change the
MVS password during a logon to the FTP server.

The z/OS FTP server will, on the RACROUTE VERIFY call, pass both an application ID and a
terminal ID:

APPLID The first seven characters of the FTP server address space name.

TERMID A character representation of the hexadecimal byte value of the IP
address of the originating host.

ICH408I USER(TCPIP3) GROUP(OMVSGRP) NAME(TCPIP TASKS)
 BPX.DAEMON CL(FACILITY)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

Name (9.24.105.126): garthm
331 Send password please.
Password:
550 error processing PASS command : EDC5157I An internal error has occurred.
Login failed.

RA0638 pass2: seteuid failed (157/0B7F02AF) :
 EDC5157I An internal error has occurred.
236 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

If the IP address is 9.24.104.79
 Then the Terminal ID becomes 0918684F

All requests for access to a data set in MVS are checked via the SAF interface based on the
user ID entered when you log on to the FTP server. A user must have a valid user ID on the
MVS system to be able to access the FTP server.

The z/OS FTP server does not require the OPERATIONS RACF attribute on its started task
user ID. It has a start option, which allows it to accept anonymous connections. An anonymous
connection is a connection where the user types in the word ANONYMOUS for a user ID.

When the FTP server processes a logon request from a client, it will issue a RACROUTE
REQUEST=VERIFY, where the following parameters will be passed:

1. User ID
2. Password and, optionally, a new password
3. The first seven characters of the FTP server job name as application name
4. A terminal ID based on the IP address of the client

The terminal ID passed will be constructed as an 8-byte character string consisting of
characters representing hexadecimal characters:

 IP address = 9.24.104.79 (X'09.18.68.4F')
 Terminal ID = C'0918684F'

If your RACF SETROPTS options are TERMINAL(READ), all terminals are allowed access to
your system, and you do not need to add extra resource definitions to your RACF database.

If your RACF SETROPTS options are TERMINAL(NONE), you will have to add TERMINAL
resource definitions to the RACF database for your IP addresses:

 RDEFINE TERMINAL 091868* UACC(NONE) 1
 PERMIT 091868* ID(USER3) CLASS(TERMINAL) ACCESS(READ) 2

With the RDEFINE in line 1 above, you define a generic resource in the TERMINAL class.
This resource covers all IP addresses in the 9.24.104 subnet. In this example the universal
access code is NONE, but if you had specified UACC(READ), all IP addresses in the
9.24.104 subnet would be available to all users for logging on to the FTP server.

With the PERMIT in line 2, you allow the user with user ID USER3 to log on to the FTP server
from any IP host in the 9.24.104 subnet.

You can use this support to control from which IP hosts your users log on to your FTP server.

When FTP opens a data set on behalf of the network user, then MVS OPEN uses the
credentials of the network user.

6.6.3 Implementing an anonymous user
The use of an FTPD server brings up a special security aspect. It is quite common to provide
FTP services for undefined users that logs in with a user ID of ANONYMOUS. The UNIX
System Services FTPD server supports both defined and anonymous users. Anonymous
user support is enabled in FTP.DATA with a configuration option. The decision to enable this
option is left up to your discretion and requirements.
Chapter 6. File Transfer Protocol (FTP) 237

Identifying the user
The FTP daemon is a never-ending server process that waits for connection requests on the
well-known port number 21. After an FTP client connects, the FTPD listener process starts
another process that is going to be used for this individual FTP session. Refer to “CS for z/OS
IP: FTP overview” on page 124 for details about the processes. In our setup, the FTP daemon
process was started with a user ID of FTPD2 as shown in Figure 6-123.

Figure 6-123 FTPD server before user enters login information

1 This is the FTPD listener process that executes the ftpd program.

2 This is the new process that handles the new client connection. The program in this process
is ftpdns. At this time, the FTP client has not yet entered a user ID and password, which is the
reason why this process still executes under the same user ID as the FTPD process.

Figure 6-124 FTPD server after user has entered login information

1 After the user enters a user ID and password, the process changes its user ID. You can
verify the relationship between parent and child processes by comparing the PPID of the user
process 2, and the PID of the server process 3.

Please note that all users of the FTPD server must have a valid OMVS segment in their
RACF user profiles (see Figure 6-128 on page 241). This is true even when the user only
wants to access MVS data sets via the FTPD server. If the FTP client maneuvers in a way not
allowed in the file system, RACF immediately notices it, the request fails, and a
corresponding RACF message is issued on the MVS console (see Figure 6-125).

Figure 6-125 RACF error message when a user request violates the access permission

 D OMVS,A=ALL
 BPXO040I 15.29.24 DISPLAY OMVS 650
 OMVS 000E ACTIVE OMVS=(28)
 USER JOBNAME ASID PID PPID STATE START CT_SECS
 FTPD2 1 FTPDB1 006B 33554458 1 1FI 16.38.17 .118
 LATCHWAITPID= 0 CMD=FTPD
 FTPD2 2 FTPDB1 0062 107 33554458 1FI 15.45.08 .099
 LATCHWAITPID= 0 CMD=/usr/sbin/ftpdns 0 0 27 1 80 128 256 5

 D OMVS,A=ALL
 BPXO040I 15.29.24 DISPLAY OMVS 650
 OMVS 000E ACTIVE OMVS=(28)
 USER JOBNAME ASID PID PPID STATE START CT_SECS
 FTPD2 FTPDB1 006B 33554458 3 1 1FI 16.38.17 .110
 LATCHWAITPID= 0 CMD=FTPD
 BTHOMPS 1 FTPDB1 0083 16777284 33554458 2 1FI 15.29.11 .185
 LATCHWAITPID= 0 CMD=/usr/sbin/ftpdns 2138244376

ICH408I USER(GARTHM) GROUP(WTCRES) NAME(GARTHM MADELLA)
 /etc/orouted.03a.env
 CL(FSOBJ) FID(01E2D7D3C5E7F34E2B0D0000106A0000)
 INSUFFICIENT AUTHORITY TO OPEN
 ACCESS INTENT(R--) ACCESS ALLOWED(OTHER ---)
238 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Notes:

1. CL(FSOBJ) identifies an internal RACF class. It refers to a file system object. You do not
need to define it anywhere; it is used for auditing purposes. You may see the following
classes in similar messages: DIRACC, DIRSRCH, FSSEC, IPCOBJ, PROCACT,
PROCESS.

2. FID identifies the file system object in question.

Anonymous user definitions
A special situation with respect to user identification occurs with FTP. This service may be
accessed by an ANONYMOUS user. The UNIX System Services FTPD server must be
specifically configured to support anonymous access. The default option is to refuse
anonymous logons.

Anonymous support must first be enabled by specifying the ANONYMOUS statement in
FTP.DATA or specifying ANONYMOUS as a parm in the FTP started procedure. As follows:

Figure 6-126 FTP started proc with ANONYMOUS parm

//FTPDB PROC MODULE='FTPD',PARMS='ANONYMOUS'
//FTPDB EXEC PGM=&MODULE,REGION=0M,TIME=NOLIMIT,
// PARM=('POSIX(ON) ALL31(ON)',
// 'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPB")','/&PARMS')
//* 'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=T&SYSCLONE.BTCP")',
//* '/&PARMS')
//CEEDUMP DD SYSOUT=*
//SYSFTPD DD DISP=SHR,DSN=TCPIP.TCPPARMS(FTSD&SYSCLONE.B)
//SYSTCPD DD DISP=SHR,DSN=TCPIP.TCPPARMS(TCPD&SYSCLONE.B)

Note: Specifying ANONYMOUS as a parm in the started procedure will not enable the
enhanced support that allows the e-mail address to be used as the password.
Chapter 6. File Transfer Protocol (FTP) 239

Following is a syntax diagram of the ANONYMOUS statement for the FTP.DATA configuration
file that is used to define what credentials are required for the user that accesses the FTP
server using anonymous as the user ID. Refer to z/OS V1R2.0 CS: IP Configuration Guide,
SC31-8775 for further assistance configuring the anonymous user.

The following statements are used in FTP.DATA to manage the anonymous user:

Table 6-12 FTP.DATA parameters for an anonymous user

FTP.DATA Statement Description

ANONYMOUS Used to allow FTP clients to log in as an anonymous user.
no options: When an FTP client enters a user ID of
anonymous, the FTPD server uses an MVS user ID of
ANONYMO. The user will be prompted for a valid password If
the user ID ANONYMO is not defined in RACF or if ANONYMO
is defined but no OMVS segment created for it, the logon
request fails.
userid: When the FTP client enters a user ID of anonymous, the
FTPD server will act as though the user entered the user ID
specified. Then the user must enter the valid password for that
user ID. All access to resources will be made based on the
specified user ID. If this user ID has not been defined in RACF
or if the user ID has been defined but no OMVS segment
created, the logon request fails.
userid/password: When the FTP client enters a user ID of
anonymous, the FTPD server will act as though the user
entered the user ID specified. The FTPD server will also use the
specified password in its request to RACF to create a user
security environment. (see note 1)

ANONYMOUSLEVEL Used to set the type of access permitted to the user who logs in
as an anonymous user.
1: No enhanced support, all other statements listed below in this
chart are ignored. FTP server functions using the ANONYMO
user ID for anonymous access. The anonymous user has
unrestricted access to host resources.
2: Same as 1, but calls chroot() to restrict the anonymous user
to the anonymous user’s home directory. (see note 2)
3: Enhanced support. All other statements listed below in the
chart are enforced. Login credentials are based on parameters
of the ANONYMOUS statement. (see note 3)

ANONYMOUSHFSFILEMODE Used to set the permission bits for files created by the
anonymous user. The default is 000 (---------).

ANONYMOUSHFSDIRMODE Used to set the permission bits for directories created by the
anonymous user. The default is 333 (-wx-wx-wx).

ANONYMOUSFILEACCESS Sets the type of files that the anonymous user can access. If this
access type contradicts the STARTDIRECTORY option, the
anonymous user will not be allowed to log in.
MVS: Only MVS data set access
HFS: Only HFS file access
BOTH: The user can access MVS and HFS files

ANONYMOUSFILETYPESEQ Used to restrict the anonymous user’s ability to issue the
command SITE FILETYPE = SEQ
TRUE: allowed
FALSE: not allowed
240 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Notes:

1 Use this syntax with ANONYMOUSLEVEL 3 to allow the anonymous user to enter an e-mail
address in place of a password.

2 For ANONYMOUSLEVEL 2 and greater, when STARTDIRECTORY is HFS, you must
create a specific directory structure and contents within the anonymous user's home
directory. This directory structure is needed so the FTP client maintains addressability to
needed executables once the chroot() is executed.

3 When STARTDIRECTORY HFS, chroot() is called to limit the anonymous user to the
anonymous user’s home directory. The FTP USER subcommand is not allowed by the
anonymous user and the USER ANONYMOUS command is not allowed by known FTP users.

The support for anonymous users consistent with the UNIX implementation is only possible
with ANONYMOUS user ID/password and ANONYMOUSLEVEL 3. In our sample setup, we
defined a user ID called FTPANOM in FTP.DATA (see Figure 6-127) and defined that user
with a valid password in RACF (see Figure 6-128).

Figure 6-127 Anonymous user support in FTPD

Figure 6-128 Defining anonymous RACF user ID

The following is a sample of anonymous user statements in FTP.DATA from
mvs28b.itso.ral.ibm.com:

ANONYMOUSFILETYPESQL Used to restrict the anonymous user’s ability to issue the
command SITE FILETYPE = SQL
TRUE: allowed
FALSE: not allowed

ANONYMOUSFILETYPEJES Used to restrict the anonymous user’s ability to issue the
command SITE FILETYPE = JES
TRUE: allowed
FALSE: not allowed

EMAILADDRCHECK Used to control the extent to which the FTP server validates the
e-mail address entered by the FTP client.
NO: No validation performed
FAIL: The FTP server reject the login if the e-mail address is not
valid (crude validation: only checks for @ sign).
WARNING: The FTP server returns a warning reply to an invalid
e-mail address, then closes the control connection.

FTP.DATA Statement Description

ANONYMOUS ftpanom/password

ADDUSER FTPANOM OMVS(UID(999) HOME(/u/ftp) PGM(/bin/sh)) PASSWORD(password)
Chapter 6. File Transfer Protocol (FTP) 241

Figure 6-129 Anonymous user FTP.DATA keywords

The ANONYMOUS statement includes ftpanom/password which is the actual user ID and
password that is used when the anonymous users log in. The ANONYMOUSLEVEL is set to
3, which enables the enhanced anonymous user support. The home directory is /u/ftp for the
anonymous user, refer to Figure 6-128 on page 241 where it is defined.

1 A file stored by an anonymous user with the put command will have permission bits set to
000 (---------).

2 A directory created by an anonymous user with the mkdir command will have permission
bits set to 333 (d-wx-wx-wx).

3 The anonymous user can issue the cd command to access MVS data sets and HFS files
(for example, MVS data sets cd ’BTHOMPS.JCL’ and HFS files cd /u/ftp/pub). To restrict
access of MVS resources, use RACF. The anonymous user will have access to files that the
FTPANOM user ID has access to within the MVS file space. If the anonymous user does not
have a need to access MVS data sets this statement should be set to HFS as follows:

ANONYMOUSFILEACCESS HFS

4 The anonymous user can put or get files based on the imposed permissions.

5 The anonymous user cannot issue FILETYPE=SQL and therefore cannot submit SQL
queries or perform any other tasks that require FILETYPE=SQL.

6 The anonymous user cannot issue FILETYPE=JES and therefore cannot submit JCL to
have jobs executed or perform any other tasks that require FILETYPE=JES.

7 If the anonymous user enters an invalid e-mail address it will be rejected.

Creating the anonymous user HFS directory structure
If you choose an ANONYMOUSLEVEL greater than one and the STARTDIRECTORY HFS,
you must create an anonymous directory structure in the HFS. You can manually create the
directory structure or run the sample script /usr/lpp/tcpip/samples/ftpandir.scp and it will do it
for you. The script will create the required directories and content as well as the suggested
directories (pub, incoming, and extract). If you choose to manually create the directory/file
structure for the anonymous user, please consult the z/OS V1R2.0 CS: IP Configuration
Guide, SC31-8775. Superuser authority is required to execute the sample script.

The following shows the usage syntax and description of the parameters that can be used
with the sample script, /usr/lpp/tcpip/samples/ftpandir.scp.

 ANONYMOUS ftpanom/password
 ANONYMOUSLEVEL 3
 ANONYMOUSHFSFILEMODE 000 1
 ANONYMOUSHFSDIRMODE 333 2
 ANONYMOUSFILEACCESS BOTH 3
 ANONYMOUSFILETYPESEQ TRUE 4
 ANONYMOUSFILETYPESQL FALSE 5
 ANONYMOUSFILETYPEJES FALSE 6
 EMAILADDRCHECK FAIL 7
242 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-130 Usage syntax used with script

Running the sample script without parameters creates the following structure.

Figure 6-131 ftpandir.scp directory layout

Running the sample script without parameters creates the following permissions:

Figure 6-132 Permissions created by script

usage: ftpandir <root> [<owner> [<pub> [<incoming> [<extract>]]]]
 <root> Anonymous root directory: default is /u/ftp
 <owner> owner of directory structure and files
 <owner> := <user>[:<group>]
 <user> := user name, from the user data base, of
 the owner of the directory structure
 <group> := group name, from the group data base, of
 the owner of the directory structure.
 Group - owning group of directory structure and files
 the default is the user's group
 Public subdirectory name: default is pub
 Incoming subdirectory name: default is incoming
 Extract subdirectory name: default is extract
 The owning user and group should not be the anonymous user

ls -al /u
drwx--x--x 7 FTPD2 SYSPROG 8192 Jul 12 17:55 ftp

ls -al /u/ftp
drwx--x--x 7 FTPD2 SYSPROG 8192 Jul 12 17:55 .
drwxr-xr-x 17 FTPD2 SYSPROG 8192 Jul 12 17:19 ..
drwx--x--x 2 FTPD2 SYSPROG 8192 Jul 12 17:19 bin 1
drwx--x--x 2 FTPD2 SYSPROG 8192 Jul 12 17:52 extract 2
drwx-wx-wx 2 FTPD2 SYSPROG 8192 Jul 12 17:53 incoming 3
drwxr-xr-x 2 FTPD2 SYSPROG 8192 Jul 12 17:55 pub 4
drwx--x--x 3 FTPD2 SYSPROG 8192 Jul 12 17:19 usr 5

/u/ftp

usrbin extractincoming
pub

shls

ftpdns

sbin
Chapter 6. File Transfer Protocol (FTP) 243

If any of the files or directories exist when ftpandir.scp is called, ftpandir.scp will reset the
permissions of the files and directories to the ones shown above. When migrating to
ANONYMOUSLEVEL 2 or greater, due to the chroot() function, the
ANONYMOUSLOGINMSG banner may need to be relocated. For example, if you were using
/etc/anonymousloginmsg, you may have to move the file to /u/ftp/etc/anonymousloginmsg. At
ITSO we were able to use the login message stored in file /etc/anonymousloginmsg without
having to relocate it to /u/ftp/etc/anonymousloginmsg.

1 The required directory /u/ftp/bin has the ls and sh command files stored there so that the
anonymous user shell is created and the ls command can be performed. The permission bits
(drwx--x--x) of the directory do not allow the anonymous user to view a file listing or store
(put) files in this directory.

2 The suggested directory /u/ftp/extract can be used for special purposes. Support personnel
can place files here and give explicit instructions to the anonymous users to retrieve the file.
The permission bits (drwx--x--x) of the directory do not allow the anonymous user to view a
file listing or store (put) files in this directory.

3 The suggested directory /u/ftp/incoming can be used by the anonymous user to store files
with the put command in this directory. The stored file will have permissions bit set to
(---------). The permission bit value is set by ANONYMOUSHFTFILEMODE 000. The
permission bits (drwx-wx-wx) of the directory do not allow the anonymous user to view a file
listing but does allow them to store (put) files in this directory.

4 The suggested directory /u/ftp/pub permission bits (drwxr-xr-x) allow the anonymous user to
view file listing and retrieve files. Storing files with the put command is prohibited. This is the
public directory where various files are available to the general public.

5 Required directory /u/ftp/usr/sbin contains the ftpdns server process.

A sample FTP logon sequence
The anonymous user can also have a predefined banner (welcome page), login message,
and informational message presented during the FTP session. Refer to 6.4.9, “Setting up a
welcome page” on page 187 for configuration assistance.
244 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

BTHOMPS:/u/bthomps: >ftp 9.24.104.43
220-FTPDB1 IBM FTP CS V1R2 at wtsc63oe, 23:39:35 on 2002-05-26.
FTP: using TCPIPB
Connecting to: 9.24.104.43 port: 21.
220-FTPDB1 IBM FTP CS V1R2 at wtsc63oe, 17:34:35 on 2002-05-26.
:
:
:
220-This is wtsc63oe.itso.ral.ibm.com on Sun May 26 23:39:35 2002
220-For administrative assistance contact support@helpdesk.com
220-
220 Connection will not timeout.
NAME (9.24.104.43:BTHOMPS):
anonymous 1
>>> USER anonymous
331 Send email address as password please. 2
PASSWORD:

>>> PASS
230 'ANONYMOUS' logged on. Working directory is "/".
Command:
cd /incoming 3
>>> CWD /incoming
250 HFS directory /incoming is the current working directory.
Command:
put readme.ftp 3
>>> PORT 9,24,104,43,4,29
200 Port request OK.
>>> STOR readme.ftp
125 Storing data set /incoming/readme.ftp
250 Transfer completed successfully.
16 bytes transferred in 0.010 seconds Transfer rate 1.60 Kbytes/sec
Command:
cd /pub 4
>>> CWD /pub
250 HFS directory /pub is the current working directory.
Command:
ls -l 4
>>> PORT 9,24,104,43,4,21
200 Port request OK.
>>> NLST -l
125 List started OK
total 80
-rwxr-xr-x 1 FTPANOM SYSPROG 5846 Jul 12 21:46 ftp.test.0
-rwxr-xr-x 1 OMVSKERN SYSPROG 5846 Jul 20 19:44 ftp.test.1
-rwxr-xr-x 1 OMVSKERN SYSPROG 5846 Jul 20 19:44 ftp.test.2
-rwxr-xr-x 1 OMVSKERN SYSPROG 5846 Jul 20 19:44 ftp.test.3
-rwx--xr-x 1 OMVSKERN SYSPROG 5846 Jul 20 19:44 ftp.test.4
250 List completed successfully.
Command:
get ftp.test.1 4
>>> PORT 9,24,104,43,4,23
200 Port request OK.
>>> RETR ftp.test.1
125 Sending data set /pub/ftp.test.1
250 Transfer completed successfully.
5939 bytes transferred in 0.020 seconds. Transfer rate 296.95 Kbytes/sec.
Chapter 6. File Transfer Protocol (FTP) 245

1 anonymous entered at the user ID prompt

2 guess@ibm.com entered at the email address prompt

3 Change to the incoming directory and put a file named readme.ftp

4 Change to the pub directory, listing of the file content and get a file named ftp.test.1

Securing ANONYMOUSLEVEL 1
The following can be done with ANONYMOUSLEVEL 1 to enforce some restrictions on the
anonymous user.

To limit access to resources in the hierarchical file system, we connected this user to the
same RACF group we used for public access to our MVS Web server, the EXTERNAL group.

The user FTPANOM TSO segment is undefined, so that even if someone were able to read
FTP.DATA where the password has to be stored in clear text, no TSO access is possible. If
the password is compromised, another possible entry into MVS could be through rlogin or
telnet. To manage that situation, we defined a .profile in the /u/ftp directory that just contained
an exit command (see Figure 6-133).

Figure 6-133 The /u/ftp/.profile file for the anonymous FTP user

Further we removed ownership of /u/ftp/.profile, assigned OMVSKERN as the owner, and
modified the attribute to 045, which restricts FTPANOM to just reading and executing this file.
To write a shell history log, we gave .sh_history attributes of 060 so FTPANOM can write to it.

Figure 6-134 Ownership removed from .profile

6.6.4 FTPD server security user exit routines
In CS for z/OS V1R2 IP you have the option to enable four FTP server security user exits:

FTCHKIP You may use this exit to control which TCP/IP hosts are allowed to connect to
the z/OS FTP server. The exit is given control when a new connection is being
opened. The exit receives the IP address and the port number of the client host
and may return a return code indicating whether the connection should be
allowed or denied. At ITSO-Raleigh we used this exit to prevent TCP/IP hosts
outside of our test subnets from connecting to the FTP server.

If the connection is denied, the following message will be sent to the user:

 421 User Exit rejects open for connection.

This function can also be performed within the SAF environment, which in a way makes
this exit superfluous.

echo Hello $LOGNAME.
echo Sorry, you do not have access to the system.
exit

pwd=/u/ftp: >ls -nal
total 24
drwx------ 2 999 999 0 May 7 01:18 .
drwxr-xr-x 13 0 0 0 May 7 00:58 ..
----r--r-x 1 0 999 69 May 7 01:08 .profile
----rw---- 1 999 999 14 May 7 01:48 .sh_history
-rw-r------ 1 999 999 57 May 7 01:17 test.scr
246 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

FTCHKPWD You may use this exit to control which user IDs log on to your z/OS FTP server.
The exit is given control just after the user has entered a user ID and password.
The exit receives both the user ID and the password of the user and may return
a return code indicating whether the logon should be allowed or rejected.

If logon is denied, the following message will be sent to the user:

 530 Logon attempt by 'userid' rejected by user exit.

FTCHKCMD In this exit you may control which FTP subcommands a user is allowed to use.
For example, you may want to use this exit to disable the delete command for
all users, or to disable the put command for certain users. The exit receives the
user ID, the command, and the argument string entered with the command.
The exit may accept or reject the command by returning a return code. At the
International Technical Support Organization we used this exit to disable all
delete commands and to prevent any anonymous user from changing the
password for our default anonymous user ID (FTPANOM). Refer to 6.4.13,
“User exits” on page 198 to learn about user exits FTCHKCMD, and
FTPOSTPR.

If the DELE (delete) command is denied, the following message will be sent to the user:

 500 User Exit denies Userid 'userid' from using Command 'DELE'

FTCHKJES Using this exit you may control which users are allowed to submit MVS batch
jobs via the FTP server. You may also implement a check to see if a user is
trying to submit a job with a user ID that is not the same as the user ID that was
used for logging on to the MVS FTP server. The exit receives user ID and the
buffer containing the JCL statements that are about to be submitted via an
internal reader to JES. The exit is allowed to modify the passed buffer. The exit
may reject the job submission or accept it.

If the remote job submission is denied, either of the following messages will be sent to the
user depending on the command issued by the user:

 125 User Exit refuses this Job to be submitted by userid
 550 JesPutGet aborted

or

 550 User Exit refuses this Job to be submitted by userid

Security user exit implementation
The FTP server allows you to implement several security-related exit routines. See z/OS
V1R2.0 CS: IP Configuration Guide, SC31-8775, for details on these exits.

The user exit load modules must be placed in an APF-authorized library to which the FTP
server has access via STEPLIB, LNKLST, or LPA.

Because the FTPCHKIP user exit is loaded at FTP daemon initialization time, if you want the
server to use a new version of your exit routine, you have to recycle the FTP server. You may
use a test version of a server that runs over non-default port numbers in order to debug a
user exit.

For examples of the exits used at ITSO-Raleigh, see Appendix E, “FTP user exits and sample
code” on page 525.

Note: You cannot use the System Programming C Facilities for the user exits.
Chapter 6. File Transfer Protocol (FTP) 247

Both the FTCHKIP and the FTCHKPWD routines were very straightforward and we did not
experience any problems. An IP address of 9.32.6.2 would be passed to FTCHKIP as
X'09200602'.

In the FTCHKCMD routine, you have to be aware that the functions passed to the exit are the
standard function names as listed in RFC 959. They are all in EBCDIC. Refer to Appendix E,
“FTP user exits and sample code” on page 525 for details.

Some client functions result in multiple FTP commands going to the FTP server, which means
that your FTCHKCMD exit may be driven more times per client function. For example, when
the user at the client issues a rename command, two commands will actually flow: first a
rename from (RNFR) followed by a rename to (RETO).

The FTCHKJES exit is called for every logical record that the FTP server receives while it is in
filetype=JES mode. The exit sees the records after they have been translated to EBCDIC.
The format of the buffer that is passed to the exit depends on:

Jesrecfm The jesrecfm value set by a SITE command; default is F for fixed length

Jeslrecl The jeslrecl value set by a SITE command; default is 80 bytes.

If you plan to use this exit, please see Appendix E, “FTP user exits and sample code” on
page 525 for details on the interface.

While you debug your FTCHKJES exit, you may find it of value to issue two Modify
commands:

1. F ftpd1,JTRACE

2. F ftpd1,JDUMP

Detailed trace information about the interface to your FTCHKJES exit is then sent to syslogd.

If you have configured the BPX.DAEMON facility class in your security database, make sure
that these modules are located in a program controlled library too. The FTPD server modules
load the security exits when they are needed. If these exit routines are located in a library that
is not program controlled, MVS sets the dirty bit and the FTP server modules will not be able
to change the user security environment as required. If you inadvertently place the FTP
server security exits in a wrong library, the FTP client end user will receive an error message,
and the following messages will appear in your syslogd destination for the daemon logging
facility name:
248 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 6-135 Daemon error log for FTPD

The errno 157 means that an MVS environmental or internal error occurred. The setuid() API
returns the 4-byte long UNIX System Services reason code, which consists of a halfword
reason code qualifier (2-bytes long) and a halfword reason code (2 bytes). The reason code
02AF means that the address space has become dirty and the specified function is not
supported in a dirty address space.

6.6.5 Using a SURROGATE user
Another way to enable anonymous support in the z/OS FTP server is to specify a RACF
userid in the servers FTP.DATA configuration file.RACF SURROGATE support bypasses the
need for defining a password in FTP.DATA. As can be seen in Figure 6-136 a userid as
defined in FTP.DATA is allowed to logon with a password of SURROGATE. When this
password is used, the FTP server calls RACF and checks if userid ‘NUTALL” is allowed to
login without a password

Figure 6-136 FP.DATA showing SURROGATE userid

1. Activate the SURROGATE class support in RACF

� SETROPTS CLASSACT(SURROGAT)

This has to be done only once on the system. It is possible that the SURROGAT class
may already have been set up on your system.

parse_cmd: entering parse_cmd.
get_command: select rc is 1
get_command: received 10 bytes
parse_cmd: calling user exit FTCHKCMD with: rc 0, numparms 3, userid '',
 cmd 'USER' args '3/hdm'.
parse_cmd: return from FTCHKCMD with rc: 0.
user: user routine entered with username 'hdm'.
get_command: select rc is 1
get_command: received 15 bytes
parse_cmd: calling user exit FTCHKCMD for PASS cmd.
parse_cmd: return from FTCHKCMD with rc: 0.
pass: pass routine entered.
pass: calling user exit FTCHKPWD with: rc 0, numparms 3, userid 'HDM'.
pass: return from chkpwd with rc: 0.
pass: termid is '091868D0'.
pass: return from racf with: saf: 0, racf: 0,racf reason: 0 acee: 006F10D8.
pass: calling delacee to delete useracee 006F10D8.
pass2: seteuid failed (157/0B7F02AF) : EDC5157I An internal error has occurred.

Note: We have discarded the time stamp, process ID, etc., from the above lines.

DEBUGONSITE TRUE
DUMPONSITE TRUE
PORTCOMMAND ACCEPT
PORTCOMMANDPORT NOLOWPORTS
PORTCOMMANDIPADDR NOREDIRECT
ANONYMOUS guest/SURROGATE
Chapter 6. File Transfer Protocol (FTP) 249

2. Create the Surrogate class profile for user ‘guest’

� RDEFINE SURROGATE BPX.SRV.guest UACC(NONE)

� SETROPTS RACLIST(SURROGAT) REFRESH

3. Permit the FTP daemon FTPDB to create a security environment for user ‘guest’, by
issuing the PERMIT command

� PERMIT BPX.SRV.guest CLASS(SURROGATE) ID(FTPDB) ACCESS(READ)

� SETROPTS RACFLIST(SURROGATE) REFRESH

Figure 6-137 FTP.DATA with anonymous parms

As is shown in Figure 6-138 we logged in with a userid of ‘ANONYMOUS” and a password of
‘SURROGATE”.

Figure 6-138 Surrogate login session

6.6.6 Guarding against bounce attacks
One of the well known ways of poaching data from a remote server without having the
required access is by using the “FTP server bounce attack” mechanism. A client can send a
PORT command with IP address of SMTP server and number of 25. The FTP server will
connect to the SMTP server, assuming that it is an FTP client. A client can attack the SMTP
server by issuing a RETR command to send SMTP files over to the FTP server, even though
the client was never authorized for a such transaction. Instructing a third party to connect to
the service, rather than connecting directly, makes tracking down the attacker very difficult.

StartDir MVS 1
RDW false ; Do not retain RDWs as data
EXTENSIONS SIZE ; Server can respond to SIZE cmd
EXTENSIONS MDTM ; Server can respond to MDTM cmd
EXTENSIONS UTF8 ; Server can respond to LANG & UTF-8 enc.
EXTENSIONS REST_STREAM ; Server can respond to SIZE cmd
ANONYMOUS GUEST/SURROGATE
ANONYMOUSLEVEL 3
ANONYMOUSFILEACCESS MVS 2

Note: Is is important to keep in mind that ANONYMOUSFILEACCESS defaults to HFS. Your
FTP.DATA STARTDIRECTORY entry and ANONYMOUSFILEACCESS entry has to match, otherwise
message ‘530-StartDirectory MVS/HFS is disabled for anonymous’ will be issued.

 Connecting to: 9.12.6.63 port: 21.
 220-FTPDB1 IBM FTP CS V1R2 at wtsc64oe.itso.ibm.com, 18:39:12 on 2002-05-11.
 220 Connection will close if idle for more than 5 minutes.
 NAME (9.12.6.63:GARTHM):
ANONYMOUS
 >>> USER ANONYMOUS
 331 Send email address as password please.
 PASSWORD:
SURROGATE

 >>> PASS
 230 'ANONYMOUS' logged on. Working directory is "GUEST.".
 Command:
250 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

In Figure 6-139 on page 251, we see FTP client A connecting to the FTP server that is
listening to PORT 21. FTP client A then uses the PORT command to tell the FTP server to
initiate a dataconnection to PORT 25, where the SMTP server is listening. FTP client A
follows the PORT command with RETR command that prompts the FTP server to send file A
that contains SMTP commands to the SMTP server. Because SMTP is receiving
recognizable SMTP commands, it returns OK replies and receives whatever data the FTP
server is sending.This demonstrates that it is quite trivial for an outside FTP client to bypass
security restrictions you impose within your environment. Using a third party to connect to
well known services can be used for many destructive purposes. Similar methods can be
used to post virtually untraceable mail, cause disruption on servers, fill up disks, bypass
firewalls, and generally be annoying and difficult to track down.

Figure 6-139 FTP bounce attack

What can be done to prevent this?
Preventing the use of the PORT command will go a long way to preventing this exposure.
These command are defined as part of FTP.DATA and can be coded as follows:

PORTCOMMAND, which has default value of ACCEPT, tells FTP server whether it should
accept PORTCOMMAND or not.

PORTCOMMANDIPADDR, which has default value of UNRESTRICTED, tells FTP server
whether it should accept PORT commands with IP address that's different from the IP
address of the FTP client.

PORTCOMMANDPORT, which has default value of UNRESTRICTED, tells FTP server
whether they should accept PORT commands with PORT number that is less than 1024.

Figure 6-140 on page 252 shows how we restricted the use of the PORT command in
FTP.DATA.

1) ftp server X port 21
2) PORT 25
3) RETR A

PORT 25

FTP
client A

FTP
server listening
to PORT 21

IP = 9.67.5.5

1) connect 9.99.9.9 21

3) RETR A

IP = 9.99.9.9

2) PORT 9.67.5.5.0.25

3) data contained in
file A is sent to
PORT 25.

SMTP
server listening
to PORT 25

HELO

OK

MAIL FROM:

OK

RCPT TO:

OK

DATA

....

This FTP client has
access to FTP server
, but does NOT
have access to SMTP
server.
Chapter 6. File Transfer Protocol (FTP) 251

Figure 6-140 FTP.DATA including PORT restrict commands

1 Restrict the use of the Port command by not accepting a PORT number that less than 1024.
In this case getting to our SMTP server using the ‘PORT 25’ command will fail.

6.6.7 Transport Layer Security (TLS) and Kerberos
Details for both TLS and Kerberos can be found in the Communications Server for z/OS
V1R2 TCP/IP Implementation Guide Volume 7: Security, SG24-6840. This book deals with
how to setup your FTP environment for TLS using digital certificates and for Kerberos using
the Key Distribution Centre(KDC).

EXTENSIONS UTF8 ; Server can respond to LANG & UTF-8 enc.
EXTENSIONS REST_STREAM ; Server can respond to SIZE cmd
DEBUGONSITE TRUE
DUMPONSITE TRUE
PORTCOMMAND ACCEPT
PORTCOMMANDPORT NOLOWPORTS 1
PORTCOMMANDIPADDR NOREDIRECT
252 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 7. Network File System (NFS)

The Network File System (NFS) support is provided by z/OS Network File System (z/OS
NFS). With the z/OS NFS server, you can remotely access MVS/ESA conventional data sets
or z/OS UNIX files from workstations, personal computers, and other systems that run client
software for the Sun NFS Version 2 protocols, the Sun NFS Version 3 protocols, and the
WebNFS protocols over a TCP/IP network.

This chapter contains the following sections:

� 7.1, “Introduction to NFS” on page 254

� 7.2, “Configuring the Network File System (NFS)” on page 256

� 7.3, “Configuring NFS as a client” on page 271

� 7.4, “Performance” on page 274

7

© Copyright IBM Corp. 1998 2002 253

7.1 Introduction to NFS
The Network File System (NFS) was developed by Sun Microsystems in 1985 and has been
implemented on various platforms including as Sun Solaris, HP/UX, AIX, Linux, Windows,
and z/OS. NFS clients can use the resources of NFS servers transparently as if they were
their own local file systems.

Figure 7-1 z/OS NFS overview

Client systems in a TCP/IP network that support the NFS client protocol can use traditional
MVS data sets and UNIX System Services HFS files as part of their file system. Currently,
z/OS UNIX System Services HFS files cannot be physically shared in read/write mode among
multiple z/OS systems. Therefore, the combination of the z/OS NFS server with the z/OS
NFS client is one of the alternative solutions that you can use to share z/OS UNIX System
Services HFS files through a TCP/IP network.

NFS can use TCP or UDP to transport its data, and has been enhanced in recent releases of
z/OS. Since the purpose of this section is to discuss z/OS NFS security, if you want to know
more about the z/OS NFS Server, see z/OS Network File System Customization and
Operation, SC26-7417.

The z/OS Network File System server allows TCP/IP client systems to access the following
data set types on your z/OS:

1. MVS data sets

– Direct access (DA)

– Partitioned data set (PDS)

– Partitioned data set extended (PDSE)

– Physical sequential (PS)

– Virtual storage access method (VSAM)

• Entry-sequenced data set (ESDS)

• Key-sequenced data set (KSDS)

• Relative record data set (RRDS)

TCP/IP
Network

PC-NFS AIX

Linux Solaris OS/390

P
O

R
T

M
A

P

N
F

S
 S

erver
Access

Methods

OS/390
UNIX

MVS data set

HFS

OS/390

NFS
Client

OS/390
UNIX

HFS

mount

MOUNT

WebNFS
254 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

These data sets can use the following record formats:

– Fixed length

– Variable length

– Undefined

– Blocked and spanned

2. UNIX System Services (Hierarchical File System) files

In OS/390 V2R6 IP, OS/390 NFS was enhanced with the following functions:

– WebNFS server and Internet

WebNFS eliminates the overhead of PORTMAP and MOUNT protocols, making the
protocol easier to use through corporate firewalls. It also reduces the number of
LOOKUP requests that are required to identify a particular file on the server.

– File locking over the z/OS NFS server

The z/OS Network File System Network Lock Manager (NLM) and the z/OS Network
File System Network Status Monitor (NSM) are Remote Procedure Call (RPC) based
servers that execute as autonomous "daemon" servers on NFS server systems. NSM
and NLM work together to provide file locking and access control capability with the
z/OS NFS server.

– File name extension mapping support

The z/OS Network File System server is enhanced to provide file extension mapping
for members of a Partition Data Set (PDS) and Partition Data Set Extended (PDSE)
that are mounted via the Network File System from a client machine. The file name
extension mapping capability is provided by the use of "side files" on the MVS host
specified by the system administrator and the user during the MOUNT operation.

– Sun NFS Version 3 protocol support for both client and server functions

The NFS Version 3 protocol is a revision of the NFS Version 2 protocol. It supports
larger files and file systems by allowing 64-bit sizes and offsets. The NFS Version 3
protocol enhances performance by returning attributes for every procedure, thus
reducing the number of calls requesting modified file attributes. The NFS Version 3
also enhances performance by adding support to allow the NFS server to do
asynchronous writes and by relaxing the limitations on transfer sizes.

– TCP support

In addition to UDP, the z/OS NFS server supports communications over the TCP
protocol. Any client platform with TCP support can choose to access the z/OS NFS
server using TCP.

7.1.1 Accessing data sets
The z/OS NFS server acts as an intermediary to read, write, create or delete z/OS UNIX files
and MVS data sets that are maintained on an MVS host system. The remote MVS data sets
or z/OS UNIX files are mounted from the host processor to appear as local directories and
files on the client system. This server makes the strengths of an MVS host processor --
storage management, high-performance disk storage, security, and centralized data --
available to the client platforms.

Note: Only ICF catalogued data sets are supported. There is no support for tape data
sets or generation data groups.
Chapter 7. Network File System (NFS) 255

We recommend that you refer to Communications Server for z/OS V1R2 TCP/IP
Implementation Guide Volume 7: Security, SG24-6840, which addresses z/OS NFS security
issues.

Reading and writing data sets
When the Network File System server accesses a data set, it first completes the client's
request before continuing with the next request for that data set. The Network File System
server treats each request as an individual operation, which allows different NFS clients to
simultaneously have read access to a file.

The Network File System server does not maintain control information about the client's
activities. This means that if a request fails, a client may retry the request without
re-establishing the session with the Network File System server.

The Network File System server also uses the remote procedure call (RPC) protocol. This
allows users on TCP/IP NFS client systems to create applications that ensure that any
attempts to write to DASD are synchronized.

Creating data sets
Users on TCP/IP NFS client systems can also create MVS data sets with the Network File
System server. When creating data sets, the user on the client system needs to know the
data set attributes that describe how data sets are structured, located, and stored. The
Network File System server gives experienced users the flexibility to pass these creating and
processing attributes directly to MVS.

7.2 Configuring the Network File System (NFS)
The network file system (NFS) server is shipped as a component of DFSMS/MVS.

Please refer to the following manuals for details on NFS:

� For installation and setup: z/OS Network File System Customization and Operation,
SC26-7417.

� For usage guidelines: z/OS Network File System User’s Guide, SC26-7419.

The NFS protocol was developed by SUN Microsystems in 1984 and is a mechanism for
sharing data across heterogeneous independent systems.

With file transfer protocol (FTP), you can copy files between TCP/IP host systems, creating a
copy of a file in the local file system of each host. If you distribute a file to three hosts, the file
will exist in three physical copies.

With NFS you share one physical copy of your file among hosts in your TCP/IP network. The
file exists once and can be accessed simultaneously by all authorized hosts in the network.

NFS is based on the SUN remote procedure call (RPC) and the accompanying eXternal Data
Representation (XDR).

The version of the NFS protocol that is implemented on MVS is Version 2 as described in
RFC 1094 and Version 3 as described in RFC 1813.

One of the fundamental ideas put into the NFS protocol is the idea of being as stateless as
possible. This means that an NFS server should not need to maintain any protocol state
information about any of its clients in order to function correctly. In case of a failure, an NFS
client need only retry a request until the server responds; it does not need to be aware of the
256 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

fact that the server may have crashed and has been restarted, or that the whole network went
down and came up again. Each NFS operation should be as idempotent as possible.
Idempotent means that each request from the client to the server can be repeated an
unlimited number of times and will return the same result each time. Not all operations can be
implemented in an idempotent fashion; if you delete a file, it is deleted after the first time the
server executes the operation. Retries of the operation, caused by network failures or other
malfunctions, will not yield the same result as the first time the operation was performed.
Operations such as read and write are implemented in an idempotent fashion in NFS.

7.2.1 The NFS file system model
NFS has its roots in the UNIX world, which impacts the assumptions made by NFS. NFS
assumes that a file system is hierarchical with directories of files. Each entry in a directory
represents a file, a directory or even a device as you will find in UNIX implementations, and
has a name expressed as a character string. Each operating system may put limitations on
the depth of the hierarchy or the allowed syntax for names. An OS/2 or a DOS system uses a
"\" character to separate directory entries in a full path name, whereas a UNIX system uses a
"/" character and an MVS system uses a ".". UNIX System Services uses the same syntax as
other UNIX systems.

Figure 7-2 Path Name Syntax

With NFS you mount a file system or parts of a file system residing on the NFS server into
your local file system, combining the two file systems into one virtual file system.

Look at Figure 7-3 for an extract of a UNIX file system.

Figure 7-3 Extract of a UNIX file system

The /u/abc/mvs subdirectory is an empty directory we have created as a place holder for the
MVS file system we want to mount.

Look at Figure 7-4 for an extract of an MVS file system.

DOS or OS/2: d:\level1\level2\filename.xyz
UNIX: /level1/level2/filename.xyz
MVS: level1.level2.filename.xyz
 - or level1.level2.filename(xyz)

/u

/user1 /user2 /abc

/include /mvs
Chapter 7. Network File System (NFS) 257

In NFS, a partitioned data set (PDS or PDSE) is considered a directory and the members of
the partitioned data set as individual files.

Figure 7-4 Extract of an MVS file system

To combine the TCPIP.ITSOABC part of the MVS file system with the file system on our AIX
system, issue a mount command on AIX:

Figure 7-5 Mount an MVS file system onto an AIX file system

This command will map our MVS file system starting from TCPIP.ITSOABC into the AIX file
system at the /u/abc/mvs point, giving us a view of a file system, as shown in Figure 7-6.

mount mvs18:tcpip.itsoabc /u/abc/mvs

T C P IP

IT S OIT S O A B CV 3 R 2

C A S M C O B O L H O B J L O A D C N T L M .T E S T

m e m b e rs m e m b e rs m e m b e rs m e m b e rs m e m b e rs m e m b e rs m e m b e rs
258 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 7-6 Combined file system - AIX view

A list of the /u/abc/mvs directory on AIX will give the following result:

All the partitioned data sets are considered directories while all other data set organizations
on MVS will be considered as files residing in this directory.

You can traverse down the directories to list members of, for example, the tcpip.itsoabc.h
partitioned data set:

The members of a partitioned data set are considered to be files.

$ ls -n
total 4016
Drwxrwxrwx 2 0 0 1024 Aug 21 09:30 asm
Drwxrwxrwx 2 0 0 1024 Aug 21 09:30 c
Drwxrwxrwx 2 0 0 1024 Aug 21 09:30 cntl
Drwxrwxrwx 2 0 0 1024 Aug 21 09:30 cobol
Drwxrwxrwx 2 0 0 1024 Aug 21 09:30 h
Drwxrwxrwx 2 0 0 1024 Aug 21 09:30 load
Frw-rw-rw- 1 0 0 2048838 Aug 21 09:30 m.test
Drwxrwxrwx 2 0 0 1024 Aug 21 09:30 obj
$

$ cd h
$ ls -n
total 45
Frw-rw-rw- 1 0 0 3344 Aug 13 15:00 bank
Frw-rw-rw- 1 0 0 633 Aug 13 15:10 bankdefs
Frw-rw-rw- 1 0 0 106 Aug 12 09:07 rg
Frw-rw-rw- 1 0 0 10291 Aug 13 10:54 rpc
Frw-rw-rw- 1 0 0 7015 Aug 13 10:53 socket
$

/u

/abc

/m vs/include

/C /ASM /COBOL /H /OBJ /LOAD /CNT L M.TEST

files

/user2/user1

filesfilesfilesfilesfilesfiles
Chapter 7. Network File System (NFS) 259

The NFS server on MVS will use the statistical information generated by ISPF/PDF to obtain
date and time information for files, which are members of MVS partitioned data sets. When
you create a file, which ends up as a member in an MVS partitioned data set, the DFP NFS
server will generate the same kind of statistical information for the new member, as would
have been done by ISPF/PDF.

7.2.2 Byte stream and record mapping considerations
The basic file structure of operating systems such as OS/2, AIX or DOS is byte
stream-oriented. The MVS concept of records and blocks is unknown to these kinds of
operating systems, and as NFS assumes a byte stream oriented file structure, the NFS
MVS-based server must hide the notion of records and blocks from the NFS clients.

NFS client requests to read or write data from/to a file are expressed as: read/write a number
of bytes starting at a given offset in bytes from the beginning of the file. Before the MVS NFS
server can execute such a request, it must first determine which record in the MVS data set
contains the offset specified in the NFS request. To do so, the MVS NFS server reads forward
from the last known location in the data set until the record that contains the requested byte
offset is found. The MVS NFS server will maintain an in-storage cache over mappings
between records and byte offsets. This cache will be kept updated as long as the data set is
opened by the MVS NFS server.

Accessing large data sets in a random fashion may result in a significant number of I/O
operations, until a complete cache of record-to-byte offset mappings has been constructed for
the data set.

7.2.3 Accessing EBCDIC data sets from ASCII hosts
When you access MVS text data sets via NFS, you have to specify what kind of end-of-line
processing is appropriate for the operating system you are working from. An OS/2 or DOS
operating system uses the carriage return/line feed sequence (CRLF) to denote the end of
the line, while a UNIX-based system only uses the line feed character (LF) to denote the end
of a line. The DFP NFS server supports the following end-of-line processing options:

Option Description

lf Line feed only is terminator. This is a standard UNIX notation.

cr Carriage return only is terminator.

lfcr The sequence of line feed followed by carriage return is terminator.

crlf The sequence of carriage return followed by line feed is terminator.
This is standard OS/2 and DOS.

noeol No end-of-line terminator is used.

If you access an MVS mounted file as text and crlf, the MVS NFS server will translate the
data from EBCDIC to ACSII and append the CRLF character sequence to every record it
reads in an MVS data set. For writes, it will translate from ASCII to EBCDIC, and strip off all
CRLF sequences considering each CRLF as a logical record boundary.

If you are working with fixed length records in text mode, you can save transmission time if
you use the blankstrip processing attribute. During reads, the MVS NFS server will strip
trailing blanks at the end of each record and will append trailing blanks up to the specified
record length on writes. The blankstrip attribute is the default. You can switch it off by using
the noblankstrip processing attribute.
260 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The MVS NFS server will by default use the STANDARD.TCPXLBIN translate table for ASCII
- EBCDIC translations.

7.2.4 Access serialization to data sets
The MVS NFS server will use shared enqueues for read and write, and exclusive enqueues
on QNAME=SPFEDIT and RNAME=datasetname for writes.

The exclusive enqueue on write is kept after the write has been completed for as long a
period as specified in the processing attribute writetimeout, which defaults to 30 seconds.
You have also a readtimeout attribute, which defaults to 90 seconds before a data set
allocated for read operations will be released.

If you want to share data sets for update between the NFS server and TSO users using
ISPF/PDF, you have to consider the following:

� The exclusive write enqueue is kept only for the writetimeout period. If you begin editing
an NFS mounted file on your local TCP/IP host, the NFS server will enqueue on
QNAME=SPFEDIT protecting your data set or PDS member from TSO users, but the
protection will last only for the writetimeout period. If you have not saved the file from your
local TCP/IP host before this timer expires, the file is no longer protected and other users
may update it. You will then end up overwriting when some time later you exit your local
editor. From this point of view, you may want to set a high writetimeout value.

� If you update a data set or a member of a PDS, the enqueue on QNAME=SPFEDIT will
remain active for the period specified in writetimeout making it unavailable to other users
in that period. From this point of view, you may want to set low writetimeout value.

In a UNIX environment, there is normally no protection when more users are allowed to
update the same file. If two users edit the same file at the same time, the one who saves the
file first will lose his changes when the second user saves the file. This is the way of life in a
UNIX environment. The MVS NFS server does not protect two NFS clients from each other.
The serialization scheme imposed by the MVS NFS server does not impose serialization
between NFS clients.

7.2.5 Preparing to use the z/OS NFS server
To set up the network file system server, you will have to perform the following tasks:

� Define your default NFS attributes.

� Define the EXPORTS entries.

� Distribute the mvslogin, mvslogout and showattr commands to NFS client hosts.

Please note that the RACF user ID, under which the MVS NFS server task is running, must
be defined with the OPERATIONS attribute in RACF.

NFS attributes data set
This data set contains three sets of attributes:

1. The NFS server site attributes:

The site attributes specify the normal operating parameters for the NFS server which
include the size of buffers and cache, and the number of subtasks to start. These
attributes cannot be changed by the NFS client.
Chapter 7. Network File System (NFS) 261

We will mention two important site attributes:

– Security

The NFS server supports various levels of security:

• NONE

• Exports data set (exp)

• RACF (saf)

• RACF and the exports data set (safexp)

– UNIX System Services file access

The HFS attribute specifies the prefix to use to indicate that the path name points to an
HFS file. The default is hfs; nohfs means no access to HFS files.

2. The NFS server processing attributes:

These attributes affect the way a data set is transmitted (binary or text transfer, fastfilesize
or not, write) between the MVS NFS server and the NFS client and readtimeout values. An
NFS client can modify the processing attributes for the duration of an NFS session. The
values you specify here are the default values used.

3. Data set creation attributes:

These attributes correspond to the data control block (DCB) parameters you specify when
you create a new data set which includes space, blksize, lrecl, etc. The values you specify
here are the default values. The NFS client can override these values during the NFS
session.

Please refer to z/OS Network File System Customization and Operation, SC26-7417 for
details about these attributes.

To change the default attributes, you have to close down the NFS server and restart it with the
new attribute definitions. The MVS NFS server maintains information about active mounts in
a file handle data set. When the server is restarted, the mounts that were active, when the
server was closed down, will remain active. The new NFS processing and data set creation
attributes will not become active for those mounts until the client unmounts and mounts the
file systems again.

The NFS EXPORTS data set
In the EXPORTS data set, you specify what parts of your MVS file system may be mounted
from which NFS client hosts.

An entry in the EXPORTS data set consists of a partial or full MVS data set name plus a list of
host names that are allowed to mount the file system.

Figure 7-7 NFS EXPORTS dataset

The above example exports all HFS files listed as read/write to the TCP/IP hosts listed and
read-only to all other TCP/IP hosts; the UNIX System Services directory /u/karl, for example,
can be accessed by mvs03a and mvs03c only.

/HFS/u/karl -rw=mvs03a:mvs03c
 /HFS/u/camiluc -rw=mvs03a:mvs03c
 /HFS/u/vandeke -rw=mvs03a:mvs03c
 WOZA.PRIV.LIB
262 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

You can use the following options in an EXPORTS entry: An entry for a directory is specified
as follows:

>>--directory-----ro-->
 À <-,----+ À
 +--rw=--client---------------------------À
 À <-,----+ À
 +--access=--client-----------------------+
 À <-,----+ À
 +-,rw=--client---À
 +-,ro------------+

directory
MVS high-level qualifier, data set name, or alias to a user catalog; the
name must conform to MVS data set naming conventions unless UNIX
System Services is used (for an HFS directory entry, you need to use
the hfs prefix that is used at your site).

-ro
Export the directory as read only. If not specified, the directory is
exported as read/write.

rw=client:client...
The directory is exported as read/write to specified clients, and
read-only to everyone else. Separate client names by colons.

-access=client:client...,rw=client†:client... |,ro
Gives access only to clients listed.

If neither rw nor ro is specified for the -access parameter, then the clients listed have
read/write access and the rest of the clients have no access.

If the rw parameter is specified for the -access parameter, the associated clients have
read/write access to the directory, and the clients specified in the access list but not in the
rw list has read-only access.

If the ro parameter is specified for the -access parameter, the clients in the access list
have read-only access to the directory, and the rest of the clients have no access.

If no options are specified, the default value allows any client to mount the given directory
with read/write access. Separate client names by colons.

You cannot mix the three options on the same entry.

The actual data set read or write authorization will be done based on the RACF user ID,
specified during the NFS logon to the MVS NFS server.

Later updates to the EXPORTS data set may be activated by the NFS modify command:

 f procname,exportfs

Distributing MVSlogin, MVSlogout and Showattr commands
The NFS protocol assumes authorization is based on the UNIX style uid and gid values,
which are passed from the NFS client to the NFS server on each request. MVS has no
knowledge of uid and gid but requires the user to identify himself by means of a valid MVS
user ID and password.

As the NFS protocol itself does not include logon or logoff functions, these functions have
been added by three commands, which are distributed along with the MVS NFS server code.
You have to download these commands to all NFS clients that intend to mount and use a file
system on MVS.
Chapter 7. Network File System (NFS) 263

Operating systems that do not allow command names to be more than eight bytes long will
use an mvslogut command name and not the mvslogout command name.

Executable modules are delivered for OS/2 and DOS. For all other environments, C source
code is delivered, which you have to download and compile.

See z/OS Network File System Customization and Operation, SC26-7417 for details.

You may mount the MVS file system from your TCP/IP host during system startup, but no files
will be available until an mvslogin is performed.

For multi-user hosts, the MVS file system may be mounted once, but each user will have to
issue an mvslogin command in order to gain access to the file system.

The MVS NFS server is not stateless in respect to logon. If the server is stopped and
restarted, all users will have to reissue logon. If a user is inactive for more than the period
specified in the logout attribute, the user will be automatically logged off MVS, and the user
will have to issue a new mvslogin command in order to regain access to files in the mounted
file system.

The MVS NFS server also supports the PCNFSD protocol.

7.2.6 Using the DFP Network File System server from AIX
To mount a file system, you may either have it done during AIX startup, or you may manually
mount a file system any time after startup.

To mount the TCPIP.ITSOABC data sets from MVS into the /u/mvsmnt directory, we used the
following input parameters to the add a file system for mounting function in SMIT:
264 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

1 The AIX directory onto which we mount the TCPIP.ITSOABC data sets from MVS.

2 The data sets are mounted with a default processing attribute of text and line feed
end-of-line processing.

3 The file system is on a TCP/IP host with the name mvs18.

The LAN segment, to which this AIX system was connected, had about 30% errors. The only
way to get acceptable performance was to use a low buffer size for both read 4 and write 5.

6 Because of the poor LAN segment quality, we only wanted the default number of
retransmissions in case of serious errors. If you specify hard mount, the NFS server and
client will retry requests indefinitely. When you specify soft mount, the client and server will
only retry failing requests a certain number of times before an error is reported to the user.

After having mounted the file system, the individual users on the AIX system must issue
mvslogin commands to be allowed access.

* PATHNAME of mount point 1 [/u/mvsmnt]
* PATHNAME of remote directory 2 [tcpip.itsoabc,text,lf]
* HOST where remote directory resides 3 [mvs18]
 Mount type NAME []
* Use SECURE mount option? no
* MOUNT now, add entry to /etc/filesystems or both? now
* /etc/filesystems entry will mount the directory no
 on system RESTART.
* MODE for this NFS file system read-write
* ATTEMPT mount in foreground or background background
 NUMBER of times to attempt mount []
 Buffer SIZE for read 4 [1024]
 Buffer SIZE for writes 5 [1024]
 NFS TIMEOUT. In tenths of a second []
 Internet port NUMBER for server []
* Mount file system soft or hard 6 soft
 Allow keyboard INTERRUPTS on hard mounts? yes
 Minimum TIME, in seconds, for holding [3]
 attribute cache after file modification
 Maximum TIME, in seconds, for holding [60]
 attribute cache after file modification
 Minimum TIME, in seconds, for holding [30]
 attribute cache after directory modification
 Maximum TIME, in seconds, for holding [60]
 attribute cache after directory modification
 Minimum & Maximum TIME, in seconds, for []
 holding attribute cache after any modification
 The Maximum NUMBER of biod daemons allowed [6]
 to work on this file system
* Allow execution of SUID and sgid programs yes
 in this file system?
* Allow DEVICE access via this mount? yes
* Server supports long DEVICE NUMBERS? yes

$ mvslogin mvs18 christe 1
Password required
GFSA973A Enter MVS password:
GFSA955I christe logged in ok.
Chapter 7. Network File System (NFS) 265

1 The host name is mvs18, and the user ID is christe. The user is prompted for the password,
which is not echoed onto the screen.

To edit a member of the TCPIP.ITSOABC.H data set, the following commands are used:

After an NFS edit command, the member rg of the TCPIP.ITSOABC.H partitioned data set is
locked. An attempt to use the PDF editor to edit the member will give a MEMBER IN USE
message. The member is locked until the writetimeout period expires.

If you want to override the processing attributes specified during the mount, you have to
enclose the file name in quotation marks and append the overriding attributes to the file
name.

1 The file system was mounted with the text processing attribute. To copy binary files we have
to override that attribute during the copy process. This command copies the ndbreq file from
the /u/abc/ndbclient directory to a sequential data set on MVS, with the name
TCPIP.ITSOABC.MVSNDB. The file is copied in binary mode.

2 This command copies the file back from MVS in binary mode. When the file is written into
the local AIX file system, the execute bit should be turned on.

3 A test to see if the file came back in executable form.

You could also execute the mvsndb file directly from MVS using the following sequence of
commands on AIX:

$ cd h
$ ls -n
total 6
-rw-rw-rw- 1 0 0 3531 Aug 13 16:00 bank
-rw-rw-rw- 1 0 0 650 Aug 13 16:10 bankdefs
-rw-rw-rw- 1 0 0 112 Aug 23 1992 rg
-rw-rw-rw- 1 0 0 10765 Aug 13 11:54 rpc
-rw-rw-rw- 1 0 0 7310 Aug 13 11:53 socket
$ vi rg

$ cd /u/mvsmnt
$ copy /u/abc/ndbclient/ndbreq "mvsndb,binary" 1
$ copy "mvsndb,binary,executebiton" /u/abc/ndbclient/ndbreqback 2
$ cd /u/abc/ndbclient
$ ndbreqback 3
usage: ndbreqback hostname "begin"
 or
usage: ndbreqback hostname "select..."

$ cd /u/mvsmnt
$ "mvsndb,binary,executebiton"
usage: mvsndb,binary,executebiton hostname "begin"
 or
usage: mvsndb,binary,executebiton hostname "select..."
$

266 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

To use MVS as a code server, you would normally mount the file system with the binary and
the executebiton attributes. If you had done so, you could have executed the command just
by typing in the name of the file mvsndb, without having to append the two overriding
processing attributes:

1 The file system is mounted binary and with the executebit on.

If you are in doubt about your active NFS server attributes, you can use the showattr
command, which was one of the commands you downloaded from MVS together with the
mvslogin and the mvslogout commands.

If you have not used the MVS NFS server for a period of time, and you suddenly receive
messages such as permission denied or cannot read, it is presumably because the logout
timeout value has been reached. When this happens, you have to reissue your mvslogin
command to regain access to the MVS NFS server.

$ cd /u/mvsmnt
$ ls -n mvsndb
-rwxrwxrwx 1 0 1 22483 Aug 28 1992 mvsndb 1
$ mvsndb
usage: mvsndb hostname "begin"
 or
usage: mvsndb hostname "select..."
$

$ showattr mvs18

MVS/DFP Network File System Server Data Set Creation Attributes:

lrecl(8196) recfm(vb) blksize(0)
space(100,10) blks dsorg(ps)
dir(27) unit() volume()
recordsize(512,4096) keys(64,0) nonspanned
shareoptions(1,3) model()
mgmtclas() dsntype(pds) norlse

MVS/DFP Network File System Server Processing Attributes:

binary lf blankstrip
nofastfilesize retrieve maplower
mapleaddot executebitoff setownerroot
attrtimeout(120) readtimeout(90) writetimeout(30)

MVS/DFP Network File System Server Site Attributes (not modifiable):

mintimeout(0) nomaxtimeout logout(1800)
nfstasks(8)
bufhigh(2097152) readaheadmax(16384) cachewindow(16)
percentsteal(20) maxrdforszleft(32) logicalcache(1048576)
Chapter 7. Network File System (NFS) 267

7.2.7 Using the DFP Network File System server from OS/2
Mount a file system using the following OS/2 command:

1 The file system is mounted as text with CRLF end-of-line processing applied.

You have to log on to MVS using the downloaded mvslogin command:

You can now use normal OS/2 commands to look at the X drive:

You can edit files using the Enhanced Editor on OS/2. We had problems using the normal E
editor, but the Enhanced Editor worked without problems on NFS mounted drives:

[C:\]mount x: mvs18:tcpip.itsoabc,text,crlf 1
mount: mvs18:tcpip.itsoabc,text,crlf

NFS Drive 'x:' was attached successfully.

[C:\]

[C:\]mvslogin mvs18 christe
Password required
GFSA973A Enter MVS password:
GFSA955I christe logged in ok.

[C:\]

[C:\]x:
[X:\]dir

 The volume label in drive X is NFS.
 The Volume Serial Number is ED36:0002
 Directory of X:\

 8-26-92 9:52p <DIR> 0 .
 8-26-92 9:52p <DIR> 0 ..
 8-22-92 3:59a <DIR> 0 asm
 8-26-92 9:52p <DIR> 0 c
 8-26-92 9:52p <DIR> 0 cntl
 8-22-92 3:59a <DIR> 0 cobol
 8-26-92 9:52p <DIR> 0 h
 8-22-92 3:59a <DIR> 0 load
 8-26-92 9:52p 2049840 0 mega.testnfs
 8-22-92 3:59a <DIR> 0 obj
 14 file(s) 2140455 bytes used
 61440000 bytes free

[X:\]

[X:\]cd h

[X:\]epm rg
268 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

If you, as in this example, have mounted the file system in text mode, you can copy files in
and out of MVS in binary mode using the following syntax:

1 Copy an executable file to MVS in binary mode. If you want to use the file as an executable
file on the NFS mounted file system, you must preserve the exe suffix. OS/2 will not recognize
a file without that suffix as an executable command.

2 Copy it back again to OS/2 in binary mode.

3 Test that it is still an executable file.

You can also execute the command arpmvs directly from the MVS file system:

1 You have to use the full name of the file with the exe suffix.

If you want to use the MVS NFS server as a code server for OS/2 workstations, you will have
to mount the MVS file system in binary mode:

[X:\]copy c:\tcpip12\bin\arp.exe "arpmvs.exe,binary" 1
 1 file(s) copied.

[X:\]copy "arpmvs.exe,binary" c:\arpback.exe 2
 1 file(s) copied.

[X:\]c:\arpback -a 3
 ARP table contents:

interface hardware address IP address minutes since
 last use
 0 10005a4f58ce 9.67.38.73 0
 0 400000032210 9.67.38.93 7
 0 400050013172 9.67.38.96 0
 0 10005aa87023 9.67.38.72 4

[X:\]"arpmvs.exe,binary" -a 1
 ARP table contents:

interface hardware address IP address minutes since
 last use
 0 10005a4f58ce 9.67.38.73 3
 0 400000032210 9.67.38.93 12
 0 400050013172 9.67.38.96 0
 0 10005aa87023 9.67.38.72 4

[X:\]
Chapter 7. Network File System (NFS) 269

1 Mount the file system in binary mode.

2 A dir command to see if we have the file on the mounted file system.

3 A normal command invocation in an OS/2 environment.

When you are finished using the MVS NFS server, unmount and log out from MVS:

[C:\]mount z: mvs18:tcpip.itsoabc,binary 1
mount: mvs18:tcpip.itsoabc,binary

NFS Drive 'z:' was attached successfully.

[C:\]z:

[X:\]dir arpmvs.exe 2

 The volume label in drive X is NFS.
 The Volume Serial Number is ED36:0002
 Directory of X:\

 8-26-92 10:16p 16665 0 arpmvs.exe
 1 file(s) 16665 bytes used
 61440000 bytes free

[Z:\]arpmvs -a 3
 ARP table contents:

interface hardware address IP address minutes since
 last use
 0 10005a4f58ce 9.67.38.73 1
 0 400000032210 9.67.38.93 0
 0 400050013172 9.67.38.96 0
 0 10005aa87023 9.67.38.72 2

[Z:\]

[C:\]umount *
Unmounting drive X:... successful.
Unmounting drive Z:... successful.

[C:\]mvslogut mvs18
GFSA958I uid -2 logged out ok.

[C:\]
270 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

7.3 Configuring NFS as a client
NFS may also be configured as a client.

7.3.1 Changes to SYS1.PARMLIB and SYS1.PROCLIB
To use the NFS client requires modifications to the SYS1.PARMLIB.

The following statement needs to be added to member BPXPRMxx to define the NFS client to
OMVS:

 FILESYSTYPE
 TYPE(NFS)
 ENTRYPOINT(GFSCINIT)
 PARM('installation parms')
 ASNAME(proc_name)

The PARM may be omitted if the defaults are workable. Please refer to z/OS Network File
System Customization and Operation, SC26-7417 for a detailed description of all the
installation parameters, including their defaults.

proc_name is the address space name and the name of the procedure in SYS1.PROCLIB that
is used to start the NFS client. A sample procedure GFSCPROC may be taken from
SYS1.NFSSAMP. The STEPLIB libraries need APF authorization. These will normally be the
SYS1.NFSLIB and the Language Environment run-time libraries.

The procedure and all its data sets have to be available when starting OMVS.

Before starting, it should be verified that DFSMS/MVS NFS has been properly enabled in the
SYS1.PARMLIB member IFAPRDxx.

7.3.2 Using the NFS client
Execute the next steps:

1. Get superuser authority:

The user VANDEKE was logged in to TSO and the OMVS shell and had issued the "SU"
command to be a superuser.

2. Do an mvslogin:

After the mvslogin command was entered, we received the message there was a
mismatch in uid/gid but we could continue.

Use the mvslogin command to log in to the remote MVS system. The mvslogin command
can be issued multiple times and the last one overrides the previous one.

Note: The NFS client can only be started and stopped together with OMVS.

VANDEKE @ RA03:/u/vandeke>/usr/lpp/NFS/mvslogin mvs28a vandeke
Password required
GFSA973A Enter MVS password:
GFSA978I VANDEKE logged in ok.
 Mismatch in uid/gid: uid is 4027, gid is 1,
 client uid is 0, gid is 0.
VANDEKE @ RA03:/u/vandeke>su vandeke
FSUM5019 Enter the password for vandeke:
Chapter 7. Network File System (NFS) 271

The mvslogin command is only required when accessing data on systems where the
DFSMS/MVS NFS server site security attribute is set to saf or safexp.

Following is an example of the mvslogin command where mvs28a is the name of the MVS
host and vandeke is the user's ID on MVS:

In the example where the user enters mvslogin mvshost1, the current login client user ID
is used as the MVS user ID.

In the example, 2 the user enters mvslogin mvs28a vandeke, the system then prompts for
vandeke's MVS password. 3 If vandeke logs in successfully, this message appears 4

 GFSA955I vandeke logged in ok.

Otherwise, an appropriate error message appears.

3. Mount the network file system

Use the TSO MOUNT command to make a connection between a mount point on your local
UNIX System Services HFS file system and one or more files on a remote MVS, AIX,
UNIX, OS/2, z/OS, or other file system. The MOUNT command can only be used by an MVS
superuser.

The same mount function can also be performed using the UNIX System Services
automount facility or /etc/rc shell scripts support. UNIX System Services does not support
NFS mounts in the SYS1.PARMLIB member statement. When the automount facility is
used to manage remote NFS mount points, the DFSMS/MVS NFS client user could
experience ESTALE/EIO errors if the automounter unmounts the accessed mount point
when the time limits specified by the automount DURATION and DELAY parameters have
been exceeded. The automount default, DURATION=NOLIMIT, disables the DURATION
timeout period. The DELAY for unmounting file systems should be longer than the time
DFSMS/MVS NFS clients are likely to keep NFS mounts to the files and directories active.

MOUNT command syntax:

MOUNT FILESYSTEM(file_system_name)
 TYPE(NFS)
 MOUNTPOINT(local_mountpoint)
 MODE(RDWR|READ)
 PARM('hostname:"path_name,server_attributes", options')
 SETUID|NOSETUID
 WAIT|NOWAIT

Operands:

– FILESYSTEM(file_system_name) specifies the name of the file system to be added to
the file system hierarchy. This operand is required. The file system name specified
must be unique among previously mounted file systems. It may be an arbitrary name
up to 44 characters in length of a file system. You can enclose file_system_name in
single quotes, but they are not required.

VANDEKE @ RA03:/u/vandeke>/usr/lpp/NFS/mvslogin mvs28a vandeke 2
Password required
GFSA973A Enter MVS password: 3
GFSA955I vandeke logged in ok. 4

Note: Messages that start with GFSA and GFSC apply to network file system requests.
These messages are further explained in z/OS Network File System User’s Guide,
SC26-7419.
272 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

– TYPE(NFS) specifies the type of file system that performs the logical mount request.
The NFS parameter must be used.

– MOUNTPOINT(local_mountpoint) specifies the path name of the mount point directory,
the place within the file hierarchy where the file system is to be mounted. The
local_mountpoint specifies the mount point path name. The name can be a relative
path name or an absolute path name. The relative path name is relative to the current
working directory of the TSO session (usually the HOME directory). Therefore, you
should usually specify an absolute path name. A path name is case-sensitive, so enter
it exactly as it is to appear. Enclose the path name in single quotes.

– MODE(RDWR|READ) specifies the type of access for which the file system is to be
opened.

– RDWR specifies that the file system is to be mounted for read and write access. This is
the default option.

– READ specifies that the file system is to be mounted for read-only access.

– PARM('hostname:"path_name,server_attributes", options') specifies the hostname of
the remote network file system server, the server attributes, and the options. The
double quotes are omitted if no server attributes are specified. Enclose the entire string
in single quotes. You can specify lowercase or uppercase characters.

– SETUID|NOSETUID

Refer to z/OS V1R2.0 UNIX System Services Command Reference, GA22-7802 for
details on SETUID and NOSETUID.

– WAIT|NOWAIT

Refer to z/OS V1R2.0 UNIX System Services Command Reference, GA22-7802 for
details on WAIT and NOWAIT.

Now the general users may start using the NFS client.

Note: The mount point must be a directory. Any files in that directory are inaccessible
while the file system is mounted. Only one file system can be mounted to a mount point
at any time.
Chapter 7. Network File System (NFS) 273

We used a REXX exec to execute the mount command to mount the /u/vandeke/ in host
mvs28a to /u/vandeke/mnt/ of host mvs03a:

7.4 Performance
NFS is implemented on top of the SUN RPC programming interface using the remote
procedure call protocols. Data is transformed between the extended data representation
(XDR) and the individual TCP/IP host's local representation. As a transport protocol, NFS
uses UDP. The MVS NFS server has to take care of the translation between the
stream-oriented file structure assumed by NFS clients and the record-oriented file structure of
MVS. It all adds up to some degree of processing overhead, which impacts the performance
you may expect.

Other considerations apply as well. During mount or during NFS client startup, you are often
allowed to specify a buffer size to be used during data transfer between the NFS client and
the NFS server. The NFS protocol itself imposes an upper limit of 8 KB on this buffer size.
UDP datagrams of this size will be used for the transfer of data. If your network's MTU size is
lower than this value, the UDP datagrams will be fragmented into IP datagrams fitting into the
MTU size. If your network is reliable with very few transmission errors, you will achieve good
performance with a high buffer value, but if your network generates many temporary errors, a
high buffer value may give you very poor performance.

Please also note that the hard/soft mount option applies not only to the mount operation itself,
but to all requests between the NFS client and the NFS server. If you specify hard mount, the
NFS client and server will retry failing requests indefinitely. If you specify soft mount, the NFS
client and server will retry a specified number of times before the error will be reported to the
user. Using hard mount with a high buffer size on a poor network may cause NFS operations
to perform very poorly.

There are quite a few APARs which address performance issues with MVS NFS. If you get
into performance problems with MVS NFS, it might be worthwhile bringing the MVS NFS
server to the highest possible PTF level.

 /* REXX */
 trace r
 hfs = 'MVS3NFS1'
 hfs = "FILESYSTEM('"||hfs||"')"
 mp = '/u/vandeke/mnt'
 mp = "MOUNTPOINT('"||mp||"')"
 tp = 'TYPE(NFS)'
 parms = 'mvs28a:/hfs/u/vandeke'
 parms = '9.24.104.42:/hfs/u/vandeke'
 parms = "PARM('"parms"')"
 MOUNT hfs mp tp parms NOWAIT
 exit
274 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 8. Trivial File Transfer Protocol
(TFTP)

The trivial file transfer protocol (TFTP) that enables the transfer of files to and from a server is
a standard protocol with STD number 33. It is defined in RFC 1350 with the status of elective.
TFTP uses a start-and-stop protocol on well-known port 69, sending a packet, and waiting for
acknowledgment from the receiver. Updates to TFTP can be found in the following RFCs:
RFC 1785, 2347, 2348, and 2349.

TFTP is an extremely simple protocol to transfer files and is implemented on top of the User
Datagram Protocol (UDP). The TFTP client initially sends a read/write request via port 69;
then the server and the client determine the port that they will use for the rest of the
connection. TFTP lacks most of the features of FTP; the only thing it can do is read or write a
file from or to a server.

This chapter contains the following sections:

� 8.1, “tftpd command syntax” on page 276

� 8.2, “Starting the z/OS TFTP server” on page 277

� 8.3, “z/OS TFTP server security” on page 277

8

© Copyright IBM Corp. 1998 2002 275

8.1 tftpd command syntax
TFTP is installed in the /usr/lpp/tcpip/sbin/ directory as an z/OS UNIX executable module,
namely tftpd.

The tftpd command syntax is:

tftpd [-l] [-p port] [-t timeout] [-r maxretries] [-c concurrency_limit] [-s
maxsegsize] [-f file] [-a archive directory [-a ...]] [directory ...]

where:

-l Logs all the incoming read and write requests.

-p port Uses the specified port. The default port is 69.

-t timeout Sets the packet timeout in seconds. The TFTP server usually waits
five seconds before presuming that a transmitted packet has been
lost.

-r maxretries Sets the retry limit. The default is 5.

-c concurrency_limit Sets the concurrency limit. The TFTP server spawns both threads
and processes to handle incoming requests. You can specify the limit
for the number of threads that may be concurrently processing
requests under a single process. When the limit is exceeded, a new
process is spawned to handle requests. The default is 200 threads.

-s maxsegsize Sets the maximum block size that can be negotiated by the TFTP
block size option. The default is 8192.

-f file You can specify files to be pre-loaded and cached for transmission. An
entry has the form: a | b <pathname>

where: a indicates that the specified file is cached in ASCII form. b indicates that the
specified file is cached in binary form.

The following are examples of cache file entries:

 a /usr/local/textfile
 b /usr/local/binaryfile

Caching is not dynamic. The cache files are read in when the TFTP server is started and
are not updated, even if the file on disk is updated. To update or refresh the cache, the
TFTP server must be recycled.

-a archive Specifies an archive directory. The files in this directory's
subdirectories are treated as binary files for downloading. This option
is useful on EBCDIC machines that act as file servers for ASCII
clients. Multiple -a options can be specified; one directory per -a
option. Directories must have absolute path names.

directory Specifies an absolute path name for a directory. You may specify no
more than 20 directories on the tftpd command line.

If the TFTP server is started without a list of directories, all mounted directories are
considered active.

Activating a directory activates all of its subdirectories.

Note: For IBM Network Station Manager, the root of the client code hierarchy (for example,
/usr/lpp/nstation/standard) should be specified as an archive directory.
276 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

For a file to be readable by the TFTP server, the file must be in an active directory and
have world ("other") read access enabled.

For a file to be writable by the TFTP server, the file must already exist in an active directory
and have world ("other") write access.

The TFTP server pre-forks a child process to handle incoming requests when the
concurrency limit is exceeded. Consequently, immediately after starting the TFTP server, two
TFTP processes exist. In case of a flood of concurrent TFTP requests, the TFTP server may
fork additional processes. When the number of concurrent requests being processed drops
below the concurrency limit, the number of TFTP processes is decreased back to two.

8.2 Starting the z/OS TFTP server
You can start the TFTP server in different ways:

1. Using the MVS procedure: Enter S TFTPD from the MVS console.

We used the following procedure:

//TFTPD PROC
//*
//* TFTP Server main process
//*
//TFTPD EXEC PGM=TFTPD,REGION=0M,
// PARM='POSIX(ON),ALL31(ON)/-l -a /usr/lpp/nstation/standard'
//*

2. Issue the tftpd command from the command line. Be sure to include:

tftpd -a /usr/lpp/nstation/standard /usr/lpp/nstation/standard

8.3 z/OS TFTP server security
The TFTP server has no user authentication. Any client that can connect to port 69 at the
server has access to TFTP. If TFTP is started without a directory, access to the entire HFS is
allowed. To restrict access, start the TFTP with a list of directories.

If you want to use the TFTP server on z/OS, you should specify fully qualified directory names
that TFTP clients are allowed to access. You may specify no more than 20 directories on the
tftpd command line.

If a list of directories is specified, only those specified directories are active. That list is used
as a search path for incoming requests that specify a relative path name for a file. Activating a
directory activates all of its subdirectories. TFTP will not allow access to any other parts of the
file system.

On the other hand, if the TFTP server is started without a list of directories, all mounted
directories are considered active. In this case, all HFS files are open to every TFTP client
because TFTP does not provide user authentication.
Chapter 8. Trivial File Transfer Protocol (TFTP) 277

TFTP may sound like a very dangerous alternative to FTP, but it is extensively used to
download code and initial configurations to routers and simple workstations, because of its
simplicity. Due to its lack of security functions, you ought to take these simple steps if you
need to run a TFTP server on your z/OS:

� Ensure that the TFTP home directory list is short and harmless.
� Use IPSec whenever a nonsecure network is involved.
� Restrict access to port 69 on packet filters in firewalls.
278 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Part 4 Bootstrapping
functions

In this part, we explore some of the bootstrapping functions shipped with CS for z/OS IP. We
term these function bootstrapping because they aid in network participation.

Part 4
© Copyright IBM Corp. 1998 2002 279

280 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 9. Dynamic IP with DHCP/PXE,
BINL and DDNS

Dynamic IP is a way to bring flexibility and ease of administration into the normally very static
world of IP address and name definitions. It enables an end user to get to work without having
to wait for an administrator to assign an IP address to him and it eases the work of the
administrator by letting the machine do the boring job of assigning an address to a user and
typing this into a computer. Dynamic IP gives mobility to the users. They can easily move to a
new location and bring their IP identity (name) with them.

In addition to dynamic IP address assignment there is now available a pre-boot execution
procedure that gives more flexibility to locate or distribute functions to servers in the network
that do IP address assignment, directory services for boot images, and boot services to store
and deliver boot files of different system architectures.

This chapter contains the following sections:

� 9.1, “Overview of Dynamic IP” on page 282

� 9.2, “Dynamic Host Configuration Protocol (DHCP)” on page 283

� 9.3, “Dynamic Domain Name System (DDNS)” on page 293

� 9.4, “Pre-Boot eXecution Environment (PXE)” on page 303

9

© Copyright IBM Corp. 1998 2002 281

9.1 Overview of Dynamic IP
The term dynamic IP includes four functions:

1. Dynamic Host Configuration Protocol (DHCP)

2. Dynamic Domain Name System (DDNS)

3. Pre-Boot Execution Services (PXE)

4. Bind Image Negotiation Layer Services (BINL)

CS for z/OS IP provides all of these services. There are also other platforms such as
Windows NT and Warp Server which are capable of acting as DHCP and DDNS servers.

DHCP provides a configuration of mobile and stationary workstations that are connected to
the network with TCP/IP protocols. The IP configuration can deliver any or all of the following
values to a client.

Network stations will use the benefits of PXE and BINL services:

1. IP address

2. IP subnet mask

3. Default router address

4. Local host name

5. Domain name

6. Name server address

7. Time zone indication

8. Pre-boot extension information (OS/390 V2R7+ only)

9. Bind Image Server address (OS/390 V2R7+ only)

10.Boot files

11.Other types of information for configuration

DDNS permits a Domain Name System (DNS) server to learn dynamically about the host
names and IP addresses of clients dynamically configured via DHCP. This alleviates the
manual efforts involved in maintaining a name server. DDNS administrators, DDNS clients,
and DHCP servers running a DDNS client can request DDNS services with the nsupdate
command.

The benefit of this dynamic approach is the simplification of network administration. Instead of
having to hard code IP addresses and IP names in individual workstations and in the name
server, symbolic settings of these values can allow the addresses and names to be
dynamically generated. This simplification is particularly relevant in today's mobile computing
world in which a workstation's move from one site to another can necessitate a change in
adapter DLC addresses and in IP (network layer) addresses and names. Managing this
process with statically defined files becomes a near impossibility when the workstations
involved number in the hundreds or in the thousands, as is now often the case.

DHCP with its PXE extensions will provide an address of the BINL server. The BINL server
recognizes the specific client system architecture and selects the address for the appropriate
boot server. The client workstation may retrieve the boot image from this boot server.

Note: For PXE information provided by the z/OS server, you need a PXE-enabled client.
282 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

A prerequisite, however, for using DHCP/PXE extensions is a PXE-enabled client
workstation.

9.2 Dynamic Host Configuration Protocol (DHCP)
This section explains the normal DHCP protocol without Pre-Boot Execution Environment
(PXE) extensions. These extensions will be described in 9.4, “Pre-Boot eXecution
Environment (PXE)” on page 303.

DHCP is a TCP/IP protocol that enables you to centrally locate and dynamically distribute
configuration information.

DHCP allows clients to obtain IP network configuration information, including an IP address,
from a central DHCP server. The addresses provided to clients by the DHCP server are
allocated permanently or are leased for a period of time. When a client receives a leased
address, it must periodically request that the server revalidate the address and renew the
lease.

The processes of address allocation, leasing, and lease renewal are all handled dynamically
by the DHCP client and server programs.

DHCP defines three IP address allocation policies:

Dynamic A DHCP server assigns a temporary, leased IP address to a DHCP
client.

Static A DHCP server administrator assigns a static, predefined address
reserved for a specific DHCP client.

Permanent A DHCP server administrator assigns a permanent IP address to a
DHCP client. No lease renewal is required.

9.2.1 How does DHCP work?
DHCP allows clients to obtain IP network configuration information, including an IP address,
from a central DHCP server. DHCP servers control whether the addresses they provide to
clients are allocated permanently or are "leased" for a specific time period. When a client
receives a leased address, it must periodically request that the server revalidate the address
and renew the lease.

The DHCP client and server programs handle the processes of address allocation, leasing,
and lease renewal.

Acquiring configuration information
DHCP allows DHCP clients to obtain an IP address and other configuration information
through a request process to a DHCP server. DHCP clients use RFC-architected messages
to accept and use the options served them by the DHCP server. For example:

Note: BOOTP was the predecessor to DHCP. BOOTP did not support address leasing.

Note: If your network uses routers or gateways, you need to ensure that they can be
enabled as BOOTP relay agents. Enabling the routers or gateways as relay agents allows
the DHCP packets to be sent across the network to other LAN segments.
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 283

1. The client broadcasts a message (containing its client ID) announcing its presence and
requesting an IP address (DHCPDISCOVER message) and desired options such as
subnet mask, domain name server, domain name, and static route.

2. Optionally, if routers on the network are configured to forward DHCP and BOOTP
messages (using BOOTP Relay), the broadcast message is forwarded to DHCP servers
on the attached networks.

3. Each DHCP server that receives the client's DHCPDISCOVER message sends a
DHCPOFFER message to the client offering an IP address.

The server checks the configuration file to see if it should assign a static or dynamic
address to this client.

In the case of a dynamic address, the server selects an address from the address pool,
choosing the least recently used address. An address pool is a range of IP addresses to
be leased to clients. In the case of a static address, the server uses a Client statement
from the DHCP server configuration file to assign options to the client. Upon making the
offer, the IBM DHCP server reserves the offered address.

4. The client receives the offer message(s) and selects the server it wants to use.

5. The client broadcasts a message indicating which server it selected and requesting use of
the IP address offered by that server (DHCPREQUEST message).

6. If a server receives a DHCPREQUEST message indicating that the client has accepted
the server's offer, the server marks the address as leased. If the server receives a
DHCPREQUEST message indicating that the client has accepted an offer from a different
server, the server returns the address to the available pool. If no message is received
within a specified time, the server returns the address to the available pool. The selected
server sends an acknowledgment which contains additional configuration information to
the client (DHCPACK message).

7. The client determines whether the configuration information is valid. Upon receipt of a
DHCPACK message, the IBM DHCP client sends an Address Resolution Protocol (ARP)
request to the supplied IP address to see if it is already in use. If it receives a response to
the ARP request, the client declines (DHCPDECLINE message) the offer and initiates the
process again. Otherwise, the client accepts the configuration information.

8. Accepting a valid lease, the client enters a BINDING state with the DHCP server, and
proceeds to use the IP address and options.

To DHCP clients that request options, the DHCP server typically provides options that include
subnet mask, domain name server, domain name, static route, class-identifier (which
indicates a particular vendor), user class, and the name and path of the load image.

However, a DHCP client can request its own, unique set of options. The default set of
client-requested DHCP options provided by IBM includes subnet mask, domain name server,
domain name, and static route.

Renewing leases
The DHCP client keeps track of how much time is remaining on the lease. At a specified time
prior to the expiration of the lease, usually when half of the lease time has passed, the client
sends a renewal request, containing its current IP address and configuration information, to
the leasing server. If the server responds with a lease offer, the DHCP client's lease is
renewed.

If the DHCP server explicitly refuses the request, the DHCP client may continue to use the IP
address until the lease time expires and then initiate the address request process, including
broadcasting the address request. If the server is unreachable, the client may continue to use
the assigned address until the lease expires.
284 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Moving a client out of its subnet?
One benefit of DHCP is the freedom it provides a client host to move from one subnet to
another without having to know ahead of time what IP configuration information it needs on
the new subnet. As long as the subnets to which a host relocates have access to a DHCP
server, a DHCP client will automatically configure itself correctly to access those subnets.

For a DHCP client to reconfigure itself to access a new subnet, the client host must be
rebooted. When a host restarts on a new subnet, the DHCP client may try to renew its old
lease with the DHCP server which originally allocated the address. The server refuses to
renew the request since the address is not valid on the new subnet. Receiving no server
response or instructions from the DHCP server, the client initiates the IP address request
process to obtain a new IP address and access the network.

Implementing changes in the network
With DHCP, you can make changes at the server, re-initialize the server, and distribute the
changes to all the appropriate clients. A DHCP client retains DHCP option values assigned by
the DHCP server for the duration of the lease. If you implement configuration changes at the
server while a client is already up and running, those changes are not processed by the
DHCP client until the client attempts to renew its lease or until it is restarted.

9.2.2 Implementing DHCP
The IBM DHCP server in CS for z/OS IP provides configuration information to clients based
on statements in the server's configuration file and based on information provided by the
client. The server's configuration file defines the policy for allocating IP addresses and other
configuration parameters.

Before you start the DHCP server, create or modify the DHCP server configuration file.

Once the DHCP server is running, you can also make dynamic changes to the configuration
by modifying the configuration file and using the DHCP Server Maintenance program, dadmin
to re-initialize the DHCP server. Status information for retrieving old lease information is found
in /etc/dhcps.ar and /etc/dhcps.cr.

DHCP configuration file
You configure the DHCP server by manually editing the DHCP server configuration file.

The DHCP server will locate the configuration file by default in /etc/dhcpsd.cfg. A sample
server configuration file called DHCPSD.CFG is located in the /usr/lpp/tcpip/samples/
directory and in Appendix C, “Sample DHCP configuration file” on page 503.

You can create a hierarchy of configuration parameters by nesting statements within the
DHCP server configuration file. This allows you to specify the scope of some configuration
values that are served to all clients, while other configuration values are served only to certain
clients. The statement used and its position in the file determines what information is supplied
to the clients. The options, also known as BOOTP vendor extensions, are defined in
RFC2131 and RFC2132. You will find a detailed description in the book S/390 Network
Station Manager, SC31-8546 or on the Web page:

http://www.ietf.org/rfc.html.

Note: Configuring the server incorrectly causes few, if any, warning messages. The DHCP
server normally runs even when it encounters errors in the configuration file and typically
ignores incorrect data and may optionally post a message to its log.
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 285

Figure 9-1 on page 286 shows the dhcpsd.cfg configuration file we used.

Figure 9-1 DHCP configuration file (dhcpsd.cfg)

1 We defined the MAC-address (0000e568afdf) and ANY to get a dynamic policy for the IBM
Network Station.

SMP/E Distribution name: EZATDDSD
#
See /usr/lpp/tcpip/samples/dhcpsd file for description
of parameters
numLogFiles 4 9
logFileSize 400 OS/390 Firewall Technology Guide and Reference
logFileName /tmp/dhcpsd.log 8
logItem SYSERR
logItem OBJERR
logItem PROTERR
logItem WARNING
logItem EVENT
logItem ACTION
logItem INFO
logItem ACNTING
logItem TRACE 6
leaseTimeDefault 60 minute
leaseExpireInterval 600 seconds
supportBOOTP no
supportUnlistedClients yes

subnet 9.24.104.0 255.255.255.0 9.24.104.185-9.24.104.220 2
{
 Option 1 255.255.255.0 # mask
 Option 6 9.24.104.108 # DNS
 Option 15 itso.ral.ibm.com # domain name
 Option 3 9.24.104.1 # router
client 6 0000e568afdf ANY # MAC Address 1
 { # dynamic IP
 Option 1 255.255.255.0
 Option 6 9.24.104.108
 }
client 6 0000e111afff 9.24.104.221 # MAC Address + 3
 { # IP Address
 Option 1 255.255.255.0
 Option 51 43000 # Lease time 12 hours
 }
client 6 0000e345aefe 9.24.104.225 # MAC Address + 4
 { 5 # IP Address
 Option 1 255.255.255.0
 Option 51 0xffffffff # Infinite lease
 } 5
}
Class "IBM Network Station"
 {
 Option 6 9.24.104.108
 Option 15 itso.ral.ibm.com
 Option 3 9.24.104.1
 }
end of dhcpsd.cfg
286 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

2 address range (9.24.104.185-9.24.104.220) where the DHCP server decides which IP
address is given to the name server (see Appendix C, “Sample DHCP configuration file” on
page 503 for information of the Options).

3 is a static allocation, specific MAC address gets a specified IP address with a lease time of
12 hours.

4 is permanent. IP and MAC address defined, no lease renewal required.

Note how the scope of a keyword is limited by a pair of curly brackets ({, }) within which the
keyword is located. If a keyword is located outside of any pair of curly brackets, its scope is
applicable to all the clients served by this server. In the example depicted in 5, only Client 6 is
affected by the subsequent parameters within the curly brackets ({, }).

6 shows how TRACE has been enabled. This is particularly useful when you are first enabling
DHCP or when you have new client types that need to be added. The TRACE option can be
turned on and off by using the dadmin -t option. (For more about dadmin, see “DADMIN utility”
on page 291)

7 shows how we have increased the size of the DHCP log data set from the default of 100 KB
to 400 KB. Our experience during debugging showed that the logs wrapped too quickly when
the file was small, forcing us to review all four generations of the log. With 400 KB, we often
captured what we needed in one generation of the log.

8 specifies the location of the DHCP log. We placed it in the /tmp/ directory. Your logging will
build four generations of logs 9 before the logs start wrapping. Those logs are named:

_ File dhcpsd.log (most recent)
_ File dhcpsd.log.1 (second most recent)
_ File dhcpsd.log.2 (third most recent)
_ File dhcpsd.log.3 (fourth most recent)

To enable logging by the server, all of the following must be specified in the DHCP
configuration file:

� Number of DHCP log files

� Size of DHCP log files

� Name of DHCP log files

� At least one information type to log

This set of parameters specifies the log files maintained by the server. Each parameter is
identified by a keyword and followed by its value.

numLogfiles 0 to n
If 0 is specified there will be no log file and no message is displayed. The most recent are
kept.

logFileSize in kbytes
 If the size is reached it is renamed and a new file is created.

logFilename path and filename
The name of the most recent log file. Renamed files are 1 to n.

logItem Item
 An item defined will be logged.

SYSERR System error, at the interface to the platform.

OBJERR Object error, in between objects in the process.

PROTERR Protocol error, between client and server.
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 287

WARNING Warning, worth of attention from the user.

EVENT Event occurred to the process.

ACTION Action taken by the process.

INFO Information that might be useful.

ACNTING Accounting information on clients served.

TRACE Code flow, for debugging.

Appendix D, “The DHCP log data set” on page 519 shows the entries in the dhcpsd.log data
set after starting the IBM Network Station with the configuration file we used in Figure 9-1.

9.2.3 Configuring DHCP for dynamic IP (DDNS client)
Figure 9-2 on page 289 shows the configuration file used to add Dynamic IP capabilities to
the DHCP server. The information between 1 and 2 is used by the DHCP server to run the
nsupdate command (the DDNS client program) to add, change or delete A records or PTR
records from DDNS server files. Records are released (deleted) when a DHCP lease expires
or when an administrator issues the nsupdate command to delete them.

A request for an A record update can be submitted only if the DHCP configuration file
contains the keyword proxyARec 3. This keyword enables the DHCP server to execute
updateDNSA, which tells the DDNS client to submit an A record update to the DDNS server.
The new A record will represent the DHCP client. (If we had omitted proxyArec, the DDNS
client would have been permitted to submit only the request for the PTR record update:
updateDNSP.).

The placement of the proxyARec statement is important. You can put it at the general
defaults, at specific vendor options, at a specific subnet as shown in Figure 9-2 on page 289
or at the specification for a specific class to control the update of the A records.

Note: Certain DHCP clients, such as the Network Station, do not have DDNS client
capability, and therefore require that the DHCP server submits requests for A record
updates and deletions. Other DHCP clients, such as OS/2 Warp, include DDNS client
function. For such DDNS clients you would probably want to be consistent about whether
the DDNS client at the workstation or the client at z/OS executed requests for A record
updates; otherwise, the first client requesting the function implants his KEY record in the
zone file and locks out processing by any other client.
288 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 9-2 DHCP configuration file

The DDNS client statements look complicated, but you can just use the samples and they will
work fine. The following two lines are always required for pointer record updates:

SMP/E Distribution name: EZATDDSD
#
numLogFiles 4
logFileSize 400
logFileName /tmp/dhcpsd.log
logItem SYSERR
logItem OBJERR
logItem PROTERR
logItem WARNING
logItem EVENT
logItem ACTION
logItem INFO
logItem ACNTING
logItem TRACE
#
leaseTimeDefault 7 minute
leaseExpireInterval 20 seconds
supportBOOTP yes
supportBOOTP no
supportUnlistedClients yes
vendor ibm
{
 option 42 hex"ab dc"
}
vendor sun hex"ef 12 34 56 78"
subnet 192.168.100.0 255.255.255.0 192.168.100.101-192.168.100.120
{
option 1 255.255.255.0
option 3 192.168.100.100
option 4 192.168.100.100
option 5 192.168.100.100
option 6 192.168.100.100
option 15 small.isp.com # domain name
option 51 10800
}
1
updateDNSP "nsupdate -f -r%s -s"d;ptr;*;a;ptr;%s;s;%s;0;q" -q"
updateDNSA "nsupdate -f -h%s -s"d;a;*;a;a;%s;s;%s;3110400;q" -q"
releaseDNSP "nsupdate -f -r%s -s"d;ptr;%s;s;%s;0;q" -q"
releaseDNSA "nsupdate -f -h%s -s"d;a;%s;s;%s;0;q" -q"
2
proxyARec 3
#
class fruit
{
 option 48 6.5.4.3
 option 48 8.8.8.8
}
class veggie
{
 option 49 1.2.3.4
 option 48 6.6.6.6
}
end of dhcpsd.cfg
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 289

updateDNSP "nsupdate -f -r%s -s"d;ptr;*;a;ptr;%s;s;%s;0;q" -q"
releaseDNSP "nsupdate -f -r%s -s"d;ptr;%s;s;%s;0;q" -q" 1

The following two lines are only required for A record updates if you specify proxyARec:

 2
updateDNSA "nsupdate -f -h%s -s"d;a;*;a;a;%s;s;%s;3110400;q" -q"
releaseDNSA "nsupdate -f -h%s -s"d;a;%s;s;%s;0;q" -q"

1 defines the amount of output you get from the nsupdate command:

� -q specifies quit mode for very little output.

� -v specifies verbose mode. Use this for debugging only.

2 specifies how long the A record will be kept at the name server after the lease has expired.
The value of 3110400 seconds will give a 36-day buffer for inactivity times like vacation.

9.2.4 Generating keys for DDNS updates by the DHCP server
To secure the updates to the DDNS server we have to create keys to be used by the DDNS
client. Keys for PTR record updates are always needed; keys for A record updates are
needed only if we specified proxyARec.

The nsupdate command that will generate the DHCP PTR record key for use when DHCP
requests a DDNS update for the dynamic zone 192.168.100 at name server
mvs03.itso.ral.ibm.com is:

The nsupdate command that will generate the DHCP A record key for use when DHCP
requests a DDNS update for the dynamic zone small.isp.com at name server
mvs03.itso.ral.ibm.com is:

Each successful key generation results in an additional key in /tmp/ddns.dat and the following
shell messages:

After you have generated the keys you should save the ddns.dat file. We backed it up in the
/etc/ directory but you may wish to do so in a /backup/ directory that you have created for your
installation.

9.2.5 Start the DHCP server
If you have installed Network Station Manager, DHCPSD is installed in the
/usr/lpp/tcpip/nsm/sbin directory. When you are using Communications Server for z/OS IP,
you will find DHCPSD in the /usr/lpp/tcpip/sbin directory.

nsupdate -a -f -g -h *.100.168.192.in-addr.arpa -p mvs03.itso.ral.ibm.com

nsupdate -a -f -g -h *.small.isp.com -p mvs03.itso.ral.ibm.com

********************************* Top of Data ***************************
--- NSUPDATE Utility --- ---
Key Gen succeeded ...
******************************** Bottom of Data *************************
290 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

DHCP is considered a generic server/daemon, meaning that it can gain transparent access to
all TCP/IP stacks configured under CINET. Normally you would run only one copy of DHCP in
your OS/390 image and it would be associated with only one TCP/IP stack. If, however, you
decide to use multiple DHCP servers, each with affinity to a different stack, it is extremely
important that you review the multi-stack discussion of the environment variable
_BPXK_SETIBMOPT_TRANSPORT in Communications Server for z/OS V1R2 TCP/IP
Implementation Guide Volume 1: Base and TN3270 Configuration, SG24-5227.

To start the DHCP server, use the following form of the dhcpsd command:

dhcpsd [-q or -v] [-f configFile]

where:

� -q , which starts the server in quiet mode, which means that no banner is displayed when
the server starts.

� -v, which starts the server in verbose mode. This causes messages dealing with client
communication to print to the screen.

We recommend that you not use verbose mode because it can tie up your OpenEdition
shell screen. If you must use verbose mode to obtain additional diagnostic messages,
then remember to specify it with the & character as follows: dhcpsd -v &. Then, once you
have obtained the messages, stop dhcpsd before doing any editing.

� -f configFile, which is the name of the DHCP server configuration file. The default filename
is /etc/dhcpsd.cfg.

You also can use an MVS procedure. When starting the DHCP server with a procedure the
sample start proc is found in the DHCP member of the SEZAINST library.

If you had run dhcpsd in verbose mode with the following command:

/usr/lpp/tcpip/sbin/dhcpsd -v >/u/gdente/dhcpsd.trc &

The you would see output like the following:

9.2.6 DADMIN utility
If you implement DHCPSD, you will want to make use of the DADMIN utility for debugging
DHCP or understanding how your DHCP is operating. Figure 9-3 on page 292 shows how
you obtain help for dadmin from the shell environment.

: INFO: EZZ7277 DHCP Server Initialized at Tue Mar 10 11:54:12 1998
Request from: 6-0x08005a0d2856
.Type:. DISCOVER
...Status:. Offering reserved address to the client - REPLY OFFER.
....IP Addr: 192.168.100.101
....Options:. 1 3 4 5 6 15 51
Request from: 6-0x08005a0d2856
.Type:. REQUEST
...Status:. Requesting a reserved address - REPLY ACK.
....IP Addr: 192.168.100.101
....Options:. 1 3 4 5 6 15 51
Request from: 6-0x08005a0d2856
.Type:. REQUEST
...Status:. Requesting an existing lease - REPLY ACK.
....IP Addr: 192.168.100.101
....Options:. 1 3 4 5 6 15 51
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 291

Figure 9-3 DADMIN utility: results of dadmin -?

There are many helpful options for dadmin; we show you first the results when you reinitialize
your DHCPSD definitions by issuing: dadmin -i:

Next you see the results of your allocated and leased addresses when you issue the
command, dadmin -s:

dadmin -?
dadmin Version 3.20 - IBM DHCP Server

This utility is used to perform administrative functions on the specified
DHCP Server. If no server is specified, the local DHCP Server is used.

USAGE: dadmin [-?] | [-v] [[-h]<host>] [-f] -d <ipaddress>

| [-v] [[-h]<host>] -i

| [-v] [[-h]<host>] -s

| [-v] [[-h]<host>] -t <on/off>

| [-v] [[-h]<host>] -n <intervals>

| [-v] [[-h]<host>] -p <ipaddress>

| [-v] [[-h]<host>] -c <client id>
WHERE:

-? Display help message.
-v Execute in verbose mode.
-f Don't prompt when deleting a lease. Force it to yes.
-h <host> DHCP Server being used (local server if not specified).
-d <ipaddress> DELETE the lease for the specified IP address.
-i ReINITIALIZE the specified server.
-s Display address pool STATUS of the specified server.
-t <on/off> Turn server trace on or off.
-n <intervals> Display server statistics, summary and any requested inte
 intervals
-q <ipaddress> Display information for an IP address
-p <ipaddress> Display information for a Pool of IP addresses.
-c <client id> Display information for a client ID.

 PLEASE WAIT....Gathering Information From the Server....PLEASE WAIT
 Server successfully reinitialized.
292 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

For testing purposes do not overlook the fact that you can terminate a lease from your side
using dadmin -d <ipaddress>.

You might prefer for debugging reasons to pipe the results of the dadmin into a file:

9.3 Dynamic Domain Name System (DDNS)
DDNS is simple to implement once you already understand the concepts of a name server in
general. Its purpose is to allow dynamic updates to the DNS server files: changes to PTR
records and changes to A records. The dynamic updates occur when a DDNS administrator
or a DDNS client issues an nsupdate command to notify the name server that new records
are required.

You could have a secondary name server retrieve a DDNS zone from a primary in a zone
transfer operation. This would allow the secondary to respond to queries for information about
dynamically defined entries. However, a secondary name server cannot respond to an update
of the DDNS zone obtained in this fashion. In this sense, a secondary name server is not a
backup for the DDNS function itself, but it is a backup for the basic domain name system
functionality.

********************************* Top of Data ***************************

PLEASE WAIT....Gathering Information From the Server....PLEASE WAIT

IP Address Status Lease Time Start Time Last Leased Proxy ClientID

192.168.100.101 Leased 3:00:00 03/09 16:53 03/10 07:55 FALSE 6-08005a0d2856
192.168.100.102 Free
192.168.100.103 Free
192.168.100.104 Free
192.168.100.105 Free
192.168.100.106 Free
192.168.100.107 Free
192.168.100.108 Free
192.168.100.109 Free
192.168.100.110 Free
192.168.100.111 Free
192.168.100.112 Free
192.168.100.113 Free
192.168.100.114 Free
192.168.100.115 Free
192.168.100.116 Free
192.168.100.117 Free
192.168.100.118 Free
192.168.100.119 Free
192.168.100.120 Free
******************************** Bottom of Data *************************

 /usr/lpp/tcpip/sbin/dadmin -s > /u/gdente/dadmin.leases
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 293

If the secondary name server needed to be a DDNS as well, it would need to generate its own
keys and files and become a primary name server for the dynamic domain while remaining a
secondary for other domains.

There are two ways to implement a Dynamic Domain Name System:

� Dynamic Secured Updates

Keyword dynamic secured or dynamic appears in the boot file.

Clients are allowed to update their records dynamically using their own encryption keys.

� Dynamic Presecured Updates

Keyword dynamic presecured appears in the boot file.

Clients are allowed to update their records dynamically only if they have been given
encryption keys generated by the DDNS administrator.

The KEY resource record must have been predefined by the DDNS administrator in the
domain file for each client.

Here is a summary of the process you follow to create a DDNS environment:

1. Execute nsupdate command with appropriate keywords and values to generate keys
necessary for records. The keywords for the nsupdate command are:

optional parameters are:
 -kkeyfile -hhostname -ddomainname -pprimaryname
 -rIPaddress(for in-addr.arpa hostname) -s"command string"
switches:
 -a administrator mode
 -g key generation mode
 -q quiet (no prompts)
 -v verbose output
 -? display this help

Update DHACP configuration file if you plan to have DHCP communicate with the DDNS
client to request DDNS server updates.

2. Back up the output of nsupdate in /tmp/ddns.dat and copy to a directory that is safe from
deletions (for example, /etc/ddns.dat.bak or a backup directory that can be reached by
administrative personnel).

3. Create boot file for DDNS.

4. Cut and paste forward public zone key in forward dynamic file which you have created for
DDNS and back it up in case you ever have to restore the original version.

5. Cut and paste reverse public zone key in forward dynamic file which you have created for
DDNS and back it up in case you ever have to restore the original version.

As Figure 9-4 on page 295 shows, our dynamic network is 192.168.100.0 and our dynamic
domain is small.isp.com. MVS03 reaches this network through a token-ring OSA port with IP
address of 192.168.100.100. For the DDNS updates, we will focus on the interaction between
workstation #1 and MVS03. The workstation, an OS/2 Warp V4.0 platform, will have been
assigned IP address 192.168.100.101 by its DHCP server, MVS03. Its DDNS client function
will then request an A record update of the DDNS server at MVS03 and will provide the name
myhost to the DDNS server for that update. The DDNS server at MVS03 also goes by the
name ns-updates.small.isp.com.

Note: For dynamic presecured mode, additional keys must be generated for each user.
We do not show an example of dynamic presecured in this book.
294 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 9-4 Network diagram for DDNS and DHCP

In the documentation that follows, watch for the manner in which these pieces of information
have been coded and dynamically updated:

� Addresses 192.168.100.100 and 192.168.100.101

� Domain name small.isp.com

� Host name myhost.small.isp.com

� DDNS server name ns-updates.small.isp.com

In an environment as shown above you should not code proxyARec in your DHCP server
configuration because all workstations have a DDNS client installed and will update their A
records.

9.3.1 Generating zone keys
We have already generated keys to be used by DHCP server initiated DDNS updates in 9.2.4,
“Generating keys for DDNS updates by the DHCP server” on page 290. If the administrator of
the DDNS server is to perform this function, then you need to generate zone keys: one for the
dynamic forward file and one for the dynamic reverse file. In fact, the zone keys must always
be present if you expect to initiate a server that has been defined as dynamic. Figure 9-5
shows partially what these four keys can look like when they are stored in /tmp/ddns.dat.

TR2
192.168.100.100

small.isp.com
192.168.100.0

MVS03
itso.ral.ibm.com

OSA Port

DHCP
Server

DDNS
Client

DDNS
Server

DHCP
Client

DDNS
Client

Workstation #2
192.168.100.102

DHCP
Client

DDNS
Client

Workstation #3
192.168.100.103

DHCP
Client

DDNS
Client

Workstation #1
192.168.100.101

(myhost)
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 295

Figure 9-5 DDNS.DAT with four keys

The keys are much longer than they appear above and include both a private key portion and
a public key. The private key is required by any zone administrator who wishes to update the
zone with nsupdate. (He can take the key with him and use it on a different platform from
which he executes the nsupdate command.) The public key, the second key in the records, is
copied into the domain file and the reverse file. In sequence the keys you see above are:

1 The DHCP A record key for use when DHCP requests a DDNS update for the dynamic
zone small.isp.com.

2 The DHCP PTR record key for use when DHCP requests a DDNS update for the dynamic
zone 192.168.100.

3 The DDNS zone key for use in the reverse (in-addr.arpa) file when DDNS requests an
update for the dynamic zone 192.168.100. The syntax of the nsupdate command that will
generate this key is:

4 The DDNS zone key for use in the domain (forward) file when DDNS requests an update for
the dynamic zone small.isp.com. The syntax of the nsupdate command that will generate
this key is:

The syntax of -h implies that you are giving a host name; in fact you are simply naming the
first part of a domain name. The above command to generate the forward zone key would
have executed equally as successfully had you keyed it as follows:

Each successful key generation results in an additional key in /tmp/ddns.dat and the following
shell messages:

You will want to perform the key generation task prior to building the new boot file and zone
records. The results of our nsupdate commands are visible in the DDNS.DAT file in Figure 9-8
on page 299.

 *.small.isp.com mvs03.itso.ral.ibm.com Hd1CgHs5eMgGtXu050Rn98nOi2dn0z8FE 1
 *.100.168.192.in-addr.arpa mvs03.itso.ral.ibm.com 4jDkIDnrU4Ii9WyqvGcx9y 2
 100.168.192.in-addr.arpa mvs03.itso.ral.ibm.com Y3BU88qXZQOE0ryPqC1n9+vx 3
 small.isp.com mvs03.itso.ral.ibm.com mJw7G8UfJAuUaKGk3A1D97VM5757d6c5sY6 4

nsupdate -a -g -p mvs03.itso.ral.ibm.com -h 100.168.192.in-addr.arpa

nsupdate -a -g -p mvs03.itso.ral.ibm.com -h small -d isp.com

nsupdate -a -g -p mvs03.itso.ral.ibm.com -h small.isp.com

********************************* Top of Data ***************************
--- NSUPDATE Utility --- ---
Key Gen succeeded ...
******************************** Bottom of Data *************************
296 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

9.3.2 MVS03 DDNS boot file
Please examine the DDNS boot file in Figure 9-6 on page 297. You will notice that the
majority of the domain (forward) files, reverse files, hints file, and Loopback file have already
been made available in A.1, “BIND 4.9.3-based DNS implementation” on page 468.
Therefore, we print here only the files that are different.

Figure 9-6 Boot file for DDNS

Significant points in the boot file for a DDNS are:

� You may have more than one domain file (forward file), as you see in 1 and 2 of Figure 9-6.
One forward file is used when MVS03 manages the itso.ral.ibm.com domain. One is
used when MVS03 provides services for the small.isp.com domain.

� The keyword dynamic secured appears on both the domain file for the dynamically
managed domain (4) and the reverse file for that domain (5).

Note: Remember to back up the /tmp/ddns.dat file in another data set outside of the /tmp/
directory so that the periodic installation cleanup of the /tmp/ directory does not leave you
without a valid copy of the DDNS.DAT file. We backed it up in the /etc/ directory but you
may wish to do so in a /backup/ directory that you have created for your installation.

; /etc/named.boot.dyn (modeled after named.boot)
; requires new boot file, new for.dyn file, and new rev.dyn file
; optional=slave
; TYPE DOMAIN FILE OR HOST
directory /etc/dnsdata
;
primary itso.ral.ibm.com 1 named.for 3
primary small.isp.com 2 named.for.dyn dynamic secured 4
primary 100.168.192.in-addr.arpa named.rev192.168.100.dyn dynamic secured 5
primary 251.168.192.in-addr.arpa named.rev192.168.251
primary 252.168.192.in-addr.arpa named.rev192.168.252
primary 236.168.192.in-addr.arpa named.rev192.168.236
primary 235.168.192.in-addr.arpa named.rev192.168.235
primary 105.24.9.in-addr.arpa named.rev9.24.105
primary 104.24.9.in-addr.arpa named.rev9.24.104
primary 221.168.192.in-addr.arpa named.rev192.168.221
primary 109.168.192.in-addr.arpa named.rev192.168.109
primary 0.0.127.in-addr.arpa named.lbk
cache . named.ca
forwarders 9.24.104.108
slave
options query-log

Note: You will recall that another keyword, cluster, appears on only the domain (forward)
file when you implemented DNS/WLM.
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 297

9.3.3 MVS03 DDNS domain file
Figure 9-7 shows the DDNS domain file.

Figure 9-7 Domain file for DDNS

1 shows a new record type in the domain file: a KEY record. This key is extracted by you from
the information in the /tmp/ddns.dat file. The key contents, beginning with the characters AQ
do not resemble the part of the key that is visible to you in the ddns.dat file above (Figure 9-5).
This is because the key in the KEY record is the public key, and it is found at an offset of
several hundred bytes into the full key that is in the /tmp/ddns.dat file. There are currently no
tools on z/OS to create these keys and find the public portion, so it is a labor-intensive
process, although easy to implement.

2 identifies mvs03.itso.ral.ibm.com in the SOA record for the domain small.isp.com; we
could just as well have declared mvs03 to be a member of the small.isp.com domain, but
chose not to for the sake of simplicity.

3 shows how we have added an A record for the name the DDNS client uses to address the
DDNS server. If you look in Appendix A, “BIND DNS sample configuration” on page 467, you
will see that we had also added an address for mvs03.itso.ral.ibm.com in named.for; this
address is the address of the OSA port that we used to isolate our DHCP/DDNS testing.

Instead of an A record for ns-updates, we could have added a CNAME record:

This is merely a matter of preference; some installations find it less confusing to have multiple
A records for the same address; others find it less confusing to use aliases associated with
the actual A records.

Extracting the Public Key from ddns.dat
Browse the /tmp/ddns.dat file. Find the key you need for a particular file you are building
(forward or reverse). Now perform a search looking for a blank character in the relevant key
record. The blank will be found several hundred characters from the start of the record (we
are concerned here with only the zone keys, which are depicted below in 1 and 2 of
Figure 9-8).

; /etc/dnsdata/named.for.dyn for MVS03 as DHCP and DDNS
;
$ORIGIN small.isp.com.
@ 1 IN KEY 80 0 1 AQPYZeXmV/uIJXttTwIlvLcvtDfH5RNE+7GeYix01+JRWqsFluxiSUfJzrRS
@ 2 IN SOA mvs03.itso.ral.ibm.com. gdente@itso.ral.ibm.com. (
 6 10800 3600 604800 86400)
 IN NS mvs03.itso.ral.ibm.com.
;
; OWNER CLASS TYPE RECORD DATA
localhost IN A 127.0.0.1
murli750 IN A 192.168.100.254 ; DNS on small.isp.com.
ns-updates.small.isp.com. 3 IN A 192.168.100.100 ;

ns-updates IN CNAME mvs03.itso.ral.ibm.com.
298 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 9-8 Keys in DDNS.DAT file at MVS03

Once you see the blank character as in ^ 3 and 4 above, you have found the public key. (In
our key generation, the public key started with the characters AQ, but this is not always the
case.) Cut and paste the string of characters behind the blank 4 into the KEY record of the
forward file.

You can verify your cut-and-paste operation of both keys by counting the number of
characters in each public key. The length of the key in the domain file should match that of the
key in the reverse file. (Perhaps you could use the line mode editing command cols to count
the characters.)

9.3.4 MVS03 DDNS reverse file
You see in 2 of Figure 9-9 that we have added the name that is used for the DDNS server
when the server is sought by the DDNS client. This is the OSA port we used to isolate our
DHCP/DDNS testing on.

Figure 9-9 DDNS reverse file (in-addr.arpa)

If this paragraph looks familiar to you, it is because you have just read essentially the same
information in the section on the domain file. 1 shows a new record type in the domain file: a
KEY record. This key is extracted by you from the information in the /tmp/ddns.dat file. The
procedure is the same as for the domain file. See Figure 9-8 3. Cut and paste the string of
characters behind the blank into the KEY record of the reverse file.

 *.small.isp.com mvs03. &ellip. gqpSW36Qk= AQOeJS8yuRoXzqvJrCN4uOsB

 *.100.168.192.in-addr. &ellip. 4RaEHMvz0Khbv3k7n4w== AQO6/FfPf3yIo
 ^ 5
1 100.168.192.in-addr.ar &ellip. kFwHh8yslFjYFIhcg== AQO/dB7EGk1IPpp
 ^ 3

2 small.isp.com mvs03.it &ellip. V+38Y/I= AQPYZeXmV/uIJXttTwIlvLcvtD
 ^ 4

Note: At this point you should make a backup of the forward file. Changes to it through
nsupdate commands in the future will alter the file's appearance. If at any time you wish to
return to what you had coded originally, you may use this backup. This is especially useful
during testing.

; /etc/dnsdata/named.rev for MVS03-osa 192.168.100.100
;
;$ORIGIN 100.168.192.in-addr.arpa.
@ IN 1 KEY 80 0 1 AQO/dB7EGk1IPpp19eSSbnazFpvtcxkFoWor7JpIMM/om6CrZrsMUO4
@ IN SOA mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
 6 10800 3600 604800 86400)
 IN NS mvs03.itso.ral.ibm.com.
100 IN PTR ns-updates.small.isp.com. 2
254 IN PTR murli750.small.isp.com.
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 299

9.3.5 Starting the DDNS
The start procedure is the same as what you have seen before; the only difference is the boot
file you point to. The log shows that you are loading a configuration that is prepared to
perform dynamic updates, as you can see in the notations about SECURED below (1, 2).

Figure 9-10 DDNS files loading

9.3.6 A DDNS client requesting dynamic update
We started DHCPSD, the server function, at MVS03, ensuring that we were pointing to the
correct resolver configuration, since we had multiple TCP/IP stacks running. Then we started
the DHCP client at an OS/2 Warp workstation. The DHCP client caused the DDNS client
function at the workstation to issue its own nsupdate request to MVS03, the DDNS. You see
the results in the named.run data set in Figure 9-11 on page 301 (We had enabled DNS
debug tracing at level 11, the trace has been heavily edited to show only the interesting data.)

Note: At this point you should make a backup of the reverse file. Changes to it through
nsupdate commands in the future will alter the file's appearance. If at any time you wish to
return to what you had coded originally, you may use this backup. This is especially useful
during testing

EZZ6699I name server starting. @(#) ddns/ns/ns_main.c, dns_ns, dns_r1.1 1
EZZ6701I named established affinity with 'T03ATCP'
EZZ6540I Static primary zone 'itso.ral.ibm.com' loaded (serial 5)
EZZ6540I SECURED primary zone 'small.isp.com' loaded (serial 6) 1
EZZ6540I SECURED primary zone '100.168.192.in-addr.arpa' loaded (serial 6) 2
EZZ6540I Static primary zone '251.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '252.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '236.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '235.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '105.24.9.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '104.24.9.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '221.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '109.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '0.0.127.in-addr.arpa' loaded (serial 2)
EZZ6540I Static cache zone '' loaded (serial 0)
300 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 9-11 named.run after nsupdate request from DDNS client

1 shows that the client wants to get the address of his DDNS. At 2 the client checks if there
are already entries in the database. 3 shows the actual update. Notice that this is done using
the reliable TCP connection. At 4 the update was successfully written to the database. At 5
the TCP connection was closed.

The DDNS client at the OS/2 workstation requested the update of the A record. You will later
see that the DDNS client at MVS03 requests the update of the PTR record. (You will recall
that we had imbedded nsupdate commands in the DHCP server configuration file in
Figure 9-2.) The new view of the updated named.for.dyn shows that a record called
myhost.small.isp.com was added, but it bears not the key of the A record in the ddns.dat of
MVS03, but rather the key in the ddns.dat record of the OS/2 Warp client.

After these updates, a view of the named.for.dyn file shows that myhost.small.isp.com has
been added:

 1
datagram from 192.168.100.101 .49400, fd 4, len 42; now Fri Mar 6 19:57:38
;; QUESTIONS:
;; ns-updates.small.isp.com, type = A, class = IN
;; ANSWERS:
ns-updates.small.isp.com. 86400 IN CNAME mvs03.itso.ral.ibm.com.
mvs03.itso.ral.ibm.com. 86400 IN A 192.168.100.100

 2
datagram from 192.168.100.101 .49401, fd 4, len 38; now Fri Mar 6 19:57:35
;; QUESTIONS:
;; myhost.small.isp.com, type = KEY, class = IN
 2
datagram from 192.168.100.101 .49403, fd 4, len 38; now Fri Mar 6 19:57:38
;; QUESTIONS:
;; myhost.small.isp.com, type = A, class = IN

 3
TCP connection from 192.168.100.101 .49168 (fd 7)
streamq = 0x14ce5a48
;; ->>HEADER<<- opcode: UPDATE, status: NOERROR, id: 9684
;; ADD:
myhost.small.isp.com. 3600 IN KEY 0x0000 0 1 AQPHNSRI2+nPVg2eCf8ekMgGRQdevKuz1Y
 .myhost.small.isp.com. 4294967295 IN A *

Init_Dyn_Update: Mode=Secured, changingKEY=1, addingothers=1
do_dyn_update: dname myhost.small.isp.com type 25 class 1 ttl 3600
do_dyn_update: dname myhost.small.isp.com type 1 class 1 ttl 4660
do_dyn_update: dname myhost.small.isp.com type 24 class 1 ttl 4660
 4
fclose(8) succeeded
ns_req: answer -> 192.168.100.101 .49168 fd=7 id=9684 size=4 Local
streamq = 0x14ce5a48
 5
close(7) succeeded
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 301

Figure 9-12 Dynamically updated named.for.dyn after nsupdate request from client

Notice in Figure 9-12 above how new KEY, A, and SIG records have been added (1, 2, 3).
Note that the key record for myhost 1 is the one generated by the DDNS client at the
workstation and is visible only in the DDNS.DAT file at that OS/2 DDNS client. This means
that the OS/2 DDNS client issued the nsupdate command that led to the A record update.

Although the updated domain file has a somewhat different syntax from the one you originally
created, you may still manually make changes to the file in its current form. These updates
will, however, be picked up only at the next recycle of the DDNS.

OS/2 DDNS clients are not capable of requesting PTR record updates with the nsupdate
command. However, we see in Figure 9-13 on page 302 that the reverse file (in-addr.arpa) at
MVS03 has been updated through someone's nsupdate:

Figure 9-13 Dynamically updated named.rev192.168.100.dyn from DDNS client

$ORIGIN isp.com.
small..IN.KEY.0x0080 0 1 AQPYZeXmV/uIJXttTwIlvLcvtDfH5RNE+7GeYix01+JR
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=3
..IN.SOA.mvs03.itso.ral.ibm.com. gdente@itso.ral.ibm.com. (
..42 10800 3600 604800 86400 300).;Cl=3
$ORIGIN small.isp.com.
murli750.IN.A.192.168.100.254.;Cl=3
ns-updates.IN.A.192.168.100.100.;Cl=3
myhost.3600.IN.KEY.0x0000 0 1 AQO357s/vZCMhgwD+QLttfbsa7vp0LDtRGRpN5z 1
.4660.IN.A.192.168.100.101.;Cr=auth 2
.4660.IN.SIG.A 1 4 4660 892245244 892234444 0x71e6 myhost.small.isp.com Q 3
.4660.IN.SIG.KEY 1 4 4660 895355644 892234444 0x71e6 myhost.small.isp.com 3
localhost.IN.A.127.0.0.1.;Cl=3

Note:If we had used a CNAME record instead of an A record, as described in Figure 9-7,
the ns-updates entry in the dynamically altered file would have looked like this

$ORIGIN small.isp.com.
ns-updates.IN.CNAME.mvs03.itso.ral.ibm.com.;Cl=3

$ORIGIN 168.192.in-addr.arpa.
100..IN.KEY.0x0080 0 1 AQO/dB7EGk1IPpp19eSSbnazFpvtcxkFoWor7JpIMM/om6 1
..IN.SOA.mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
..7 10800 3600 604800 86400 300).;Cl=5
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=5
..IN.NS.rsserver.itso.ral.ibm.com..;Cl=5
$ORIGIN 100.168.192.in-addr.arpa.
254..IN.PTR.murli750.small.isp.com..;Cl=5
100..IN.PTR.ns-updates.small.isp.com..;Cl=5
101.3600.IN.KEY.0x0000 0 1 AQO6/FfPf3yIotmqUtCUDPRnARwWi/Nn0xtd5kxJEz
.4660.IN.PTR.myhost.small.isp.com..;Cr=auth
.4660.IN.SIG.PTR 1 6 4660 892060119 892049319 0xea50 101.100.168.192.in-a
.4660.IN.SIG.KEY 1 6 4660 892060119 892049320 0xea50 101.100.168.192.in-a
302 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Note that the key record for 101 1 contains the key that MVS03 generated; compare the key
here with the one (5) in the DDNS.DAT file in Figure 9-8. They are the same. The nsupdate
command was executed based upon the parameters in the DHCP configuration file of
MVS03: see 7 in Figure 9-2. Therefore, MVS03 was the DDNS client for the PTR record
update.

You will recall that we advised you to make a backup copy of the original static files. If you are
making manual updates to the current version of these files, you may also wish to keep the
original backup copy synchronized by adding the new static entries to it as well. But
remember that the static entries to the dynamic zone file(s) cannot be made known to the
running DDNS through a signal to the named process; you must stop and start the DDNS to
pick up the new static entries. Alternatively you may add them as dynamic entries with the
nsupdate command while the DDNS is running.

9.4 Pre-Boot eXecution Environment (PXE)
The Pre-Boot eXecution Environment (PXE) is an extension to dynamic IP that allows PCs
and workstations to extract boot images from a server use them to boot up. This section
describes this enhancement.

9.4.1 Current state of Dynamic IP
The current Dynamic Host Configuration Protocol (DHCP)/Dynamic Domain Name Server
(DDNS) solution provides dynamic IP address and name administration for client
workstations accessing intranets. This means a user doesn't have to wait for an administrator
to get assigned an IP address and a host name which has to be typed in during a
configuration process at the user's PC/workstation.

The automatic configuration process starts with the DHCPDISCOVER broadcast message
issued from the PC/workstation after hardware startup. It requests for an IP address and
some options like subnet mask, domain name, IP address for the domain name server and
static route information. It finally ends up with a DHCPACK and binding state with a DHCP
server which also may provide the name and the path of a load image to boot the
PC/workstation. This boot image is based on additional client information.

The client may provide:

� A vendor statement which indicates a specific vendor's hardware equipment

� An operating system

� A class statement to configure a unique configuration to the client's workstation, for
example, shared printers or a specific load image including special application software.

9.4.2 New requirements
Many IT managers request to separate the dynamic IP address assignment from the boot
process into selectable three phases. In these phases different servers at different locations
should be used for these tasks. For example:

� In the first phase, the dynamic IP address maintenance for clients' PC/workstations should
be done through a DHCP server.

� In the second phase in a pre-boot process the appropriate boot image directory server
should be selected which points to the boot server. The boot server stores the boot
module for the appropriate PC/workstation depending on system architecture and vendor
specifications and also user information.
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 303

� In the third phase the download of the boot image should be done by the PC/workstation
from the selected boot server and the boot process should be executed.

The first phase can be skipped when a client already has a static IP address.

Separation into three phases makes it possible to use different boot servers at different
locations for the acquired boot procedure relating to configuration parameters for the various
clients.

Since IT managers also want to include application software to the boot process, different
configurations have to be booted. This requires configuration parameters defined differently
depending on the tasks for which the clients are responsible. For example, some clients in an
enterprise are located in the sales department, others may be working on production tasks,
etc.

Therefore, different boot images are needed for the client groups. This requires selected boot
images for the different groups which might be defined for the department's servers while the
dynamic IP address assignment process is done by centrally installed DHCP servers.

Of course, all clients should boot consistently also in an interoperable way regardless of
vendors' hardware with or without hard disks (for example, using a network station) software,
and available servers.

9.4.3 Common solution
This goal may be accomplished only through a uniform and consistent set of pre-boot
protocol services within the client which ensures network-based booting through industry
standard protocols used to communicate with the servers.

Implementation of clients
The client needs the support of certain vendor option fields in the DHCP protocol. Clients and
servers that are aware of these extensions will recognize and use this information, and those
that do not recognize the extensions will ignore them. The client also should be able to
request the download of an executable image from the boot server and execute the
downloaded image so that the system is ready for use by its user.

Implementation of servers
Servers must have the capability to support and recognize clients' DHCP extensions and
provide information for a redirection of the client to an appropriate boot server. This
redirection service may be organized in two ways:

� Combined standard DHCP and redirection services. This means DHCP servers supply IP
addresses for clients and redirect PXE-enabled clients to boot servers.

� Separate standard DHCP and redirection services. This means PXE redirection servers
(Proxy DHCP servers) are added to the existing network environment. They respond only
to PXE-enabled clients, and provide only redirection to boot servers.

PXE APIs
For the interoperability of clients and the download process of boot modules, the client PXE
code provides a set of services. These are:

� Pre-boot services API, which contain several control information and information functions
(like client system environment)

� Trivial file transfer protocol (TFTP) API, used as TCP/IP application protocol
304 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

� User datagram protocol (UDP) API, used as a TCP/IP datagram transport protocol over
the network, which means not a secure transport mechanism

� Universal network driver interface (UNDI) API, which enables basic control of and I/O
through the clients' network interface device. This allows use of universal protocol drivers.

9.4.4 IBM's solution
IBM's solution for CS for z/OS IP is implemented by using separate standard and redirection
services. It uses the DHCP server, and for redirection, the Bind Image Negotiation Layer
(BINL) server.

Two standard protocols will support this solution:

1. Pre-Boot Execution Environment Protocol (PXE)

2. Bind Image Negotiation Layer (BINL) Protocol

Both protocols are specified in the Intel Wired For Management Baseline document.

� PXE is an enhancement to DHCP. This allows a PXE-enabled client to read DHCP
information provided by the BINL server, find where the boot server is located and which
boot image has to be loaded.

� BINL is a server that directs a PXE-enabled client to the boot server and the specific boot
image file. In order to retrieve the appropriate boot image or boot load module, the client
has to provide information about its system architecture and network interface type. BINL
uses DHCP messages for its communication with the clients.

Therefore, in addition:

� The z/OS Communications Server for the Dynamic Host Configuration Protocol (DHCP) is
enhanced to support the PXE extensions.
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 305

9.4.5 The overall DHCP, DDNS, PXE, BINL, boot server environment

Figure 9-14 DHCP, DDNS, BINL, boot server environment

This figure shows that in a networking environment there might clients with and without PXE
extensions.

Clients without PXE extensions will get their IP address assignment from the DHCP server
without PXE support while clients with PXE support will take the offerings from the DHCP
server with PXE extensions.

The BINL server provides the IP address for the specific boot server.

This kind of technology gives more flexibility in locating servers within a network.

DHCP and PXE extensions
DHCP extensions
The current DHCP header is extended with DHCP/PXE extensions or in some documents
also called options. These options contain the following fields:

� Client User/Group ID (UUID), which is a universally unique ID, retrieved from the client
system

� Client Network Name (for example 1 = UNDI)

� Client System Architecture

0 IA x86 PC

1 NEC/PC98

2 IA64 PC

Client
with
PXE

Client
without

PXE

DDNS

Boot
Server

DHCP Server
without

PXE

DHCP Server
with
PXE

PXE Server
only

BINL
Server

IP Network

Boot
Server
306 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

3 DEC Alpha

4 ArcX86

5 Intel Lean Client

� Parameter Request List

1 subnet

3 router

43 vendor

60 class

128 - 135 vendor options

� Class Identifier

a. Used for transactions between client and server; PXEClient:

Arch:xxxxx:UNDI:yyyzzz

b. Used for transactions between servers:

xxxxx = client system architecture

yyy = UNDI major version

zzz = UNDI minor version

c. Vendor Options (multiple DHCP_VENDOR options can be used)

d. Message Type

1 DHCPDISCOVER

2 DHCPOFFER

3 DHCPREQUEST

4 DHCPDECLINE

5 DHCPACK

6 DHCPNAK

7 DHCPRELEASE

8 DHCPINFORM

e. Server ID

f. Message Length

g. End of Options

PXE exensions (commands)
PXE_MTFTP_IP (Multicast IP address)

PXE_MTFTP_CPORT (UDP port number of the client)

PXE_MTFTP_SPORT (UDP port number of the server)

PXE_MTFTP_TMOUT (Timeout, number of seconds a client must listen for activity before
trying to start a new transfer)

PXE_MTFTP_DELAY (Reopen timeout)

PXE_DISCOVERY_CONTROL (Disable broadcast/multicast discovery)
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 307

DISCOVERY_MCAST_ADDR (Boot server discovery multicast address)

PXE_BOOT_SERVERS (Boot server type)

Type 0 PXE boot strap server

Type 1 Windows Microsoft NT server

Type 2 Intel LCM boot server

Type 3 DOS/UNDI boot server

Type 4 NEC ESMORO boot server

Type 5 IBM WSoD boot server

Type 6 IBM LCCM boot server

Type 7 CA Unicenter TNG boot server

Type 8 HP OpenView boot server

Type 9 - 32767 Reserved

Type 32768 - 65534 For vendor use

Type 65535 PXE API test server

PXE_BOOT_MENUE (Boot server type; type = local boot)

PXE_MENUE_PROMPT (Timeout)

PXE_MCAST_ADDRS_ALLOC (Multicast addresses for boot services)

PXE_CREDENTIAL_TYPES (Credential types retrieved from a security subsystem)

Loader Options
PXE_BOOT_ITEM (Boot server type and layer)

Vendor Options
Vendor specific information

PXE_END

9.4.6 DHCP/PXE protocol flow overview
This description gives you an overview of the protocol steps between the client and
DHCP/PXE, BINL and boot server.

The procedure is divided into three subtasks:

� Dynamic IP address assignment

� Pre-boot procedure

� Boot procedure

Dynamic IP address assignment
1. The client initiates broadcasting a DHCPDISCOVER request to port 67 containing client

PXE extension tags that identifies the client request coming from a PC/workstation with
implemented PXE support.

The DHCP/PXE header for this DHCPDISCOVER contains the following fields:

– A tag for a client identifier (UUID)
308 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

– A tag for the client UNDI version

– A tag for the client system architecture

– A DHCP option class 60, Class ID set to

PXEClient:Arch:xxxxx:UNDI:yyyzzz

2. The DHCP server or Proxy DHCP server will first do the IP address assignment according
to the rules defined for the client. Assuming the DHCP server has also implemented PXE
support, it has recognized in the received DHCPDISCOVER request that the client
supports PXE. Based on the server's knowledge about the client's PXE capability the
server returns in its DHCPOFFER to the client a list of appropriate IP addresses of BINL
servers. The DHCPOFFER is addressed to the client's port 68. The DHCP/PXE header for
this DHCPOFFER contains the following fields:

– Client IP address (and other parameters) offered by standard DHCP

– BINL server list in the PXE tags

– Discovery control options (if provided)

– Multicast discovery IP address (if provided)

3. Because the client broadcasted the DHCPDISCOVER to the network the client may now
receive more than one DHCPOFFER from other DHCP servers. Some servers may
support PXE too and have included a list of BINL server addresses; others may not
support PXE, they don't provide BINL server addresses.

4. The client selects the appropriate BINL server and starts to continue the normal DHCP
flow to get its IP address reserved by the selected server. It starts with the
DHCPREQUEST to the selected DHCP server requesting the registration of the reserved
IP address. The request again is addressed to server port 67.

5. The server responds to the client's DHCPREQUEST after registration with a DHCPACK to
the client's port 68.

6. After receiving the DHCPACK from the DHCP server the client checks through issuing an
ARP request if the provided IP address is already in use. An ARP response will tell the
client that the provided IP address is already implemented by another IP host. Therefore,
the client sends a DHCPDECLINE to the server which provided the IP address and the
entire process has to be restarted until the client has a valid IP address.

7. When this phase of the protocol flow is finished, the second phase, the pre-boot phase,
will be started by the client.

Pre-boot procedure
1. The client selects a BINL server and sends a DHCPREQUEST to the IP address of the

BINL server, which it had learned from the DHCP server from which it got its IP address.
The client also provides in this request information describing its system architecture and
network interface type. The DHCPREQUEST may be sent as broadcast to port 67, as
multicast to port 4011`or unicast to port 4011 depending on the discovery control options
included in the previous DHCPOFFER of the PXE service extension tags. This packet is
the same as the initial DHCPDISCOVER as in step 1 (Dynamic IP Address Assignment),
except that it is coded as a DHCPREQUEST and now contains the following information:

– Client IP address assigned to the client from DHCP services

– A tag for the client identifier (UUID)

– A tag for the UNDI version

– A tag for the system architecture
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 309

– A DHCP option 60, class ID set to

PXEClient:Arch:xxxxx:UNDI:yyyzzz

– The boot server type in a PXE option field

2. The BINL server uses a table driven approach based on system architecture and network
interface type values to determine which boot server and which boot file the client should
use. These two pieces of information, the IP address of the boot server and the name of
the load module (the boot image), are returned in a DHCPACK to the client addressed to
port 4011.

The acknowledgment contains:

– Boot server’s IP address

– Boot file name

– MTFTP configuration parameters

– A tag for the system architecture

Boot procedure
1. The client then uses this information to contact the boot server's IP address, which it got

from the BINL server, and starts via TFTP to download the proper boot kernel from the
boot server. The name of the boot file on the boot server was also provided by the BINL
server.

2. The download will be done via TFTP (port 69) or MTFTP (the port assigned in the BINL
server's ACK).

3. If the download of the boot file was successful the client now starts the execution of the
loaded boot file. The placement of the downloaded code in the memory is dependent on
the client's CPU architecture.

9.4.7 Location of the DHCP/PXE/BINL servers
If we regard how systems support for PCs in large networks are organized then in many
cases there will be one group in charge of administering IP addresses while another group
might be taking care of servers for various boot images for these PCs or network stations.

When extending the IP address assignment by PXE functions the tasks for DHCP servers
might be separated. One group might be responsible for a normal DHCP server while another
group will support the network computing environment PXE-only DHCP server and BINL
server.

The DHCP and PXE servers can be combined in one machine or installed separately on
dedicated machines.

Also the BINL server can run on the same machine as the DHCP and PXE server. It may also
be installed on any combination of multiple machines. Whatever combination of server and
location is selected, DHCP, PXE and BINL work seamlessly for the end user.

This flexibility meets the requirements of many enterprises.

Note: The table-driven approach provides the intelligence in the server and boot file
selection. For example, boot files for all Intel machines with PCI network interface cards
can be installed in certain boot servers while all others with plug-and-play network
interface cards can be installed in other boot servers, etc.
310 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

9.4.8 Definition of the DHCP/PXE/BINL servers
The z/OS DHCP server is controlled using a configuration file that resides in the Hierarchical
File System (HFS).

DHCP/PXE configuration file
This configuration file contains new keywords to distinguish between DHCP without and with
PXE extensions and a pointer to the BINL server.

You will find a sample of the DHCP configuration file in the samples directory
/usr/lpp/tcpip/samples/dhcpsd.cfg. You copy the sample configuration file to the /etc directory
as /etc/dhcpsd.cfg, which is the default location of this file.

Then you specify the type of server using the servertype keyword in the DHCP configuration
file.

The values of this keyword cause the following behavior:

DHCP

The server behaves exactly as it does today. PXE-related options in the client requests
are ignored. This is the default.

PXEDHCP

The server behaves as a combined PXE and DHCP server. It manages IP addresses as it
does today, and additionally it provides PXE extensions in its interactions with clients that
request them (by setting option 60 to PXEClient). This is how the PXE/DHCP server
shown in the protocol description would be configured.

PXEPROXY

The server provides only PXE extensions. It does not manage or provide IP address
assignment or any other DHCP information. It simply waits for DHCPDISCOVER
messages for clients that contain option 60 with the value of PXEClient and responds to
these DHCPDISCOVER messages specifying the address of the BINL server. If this
configuration is used, there must be another DHCP server in the network that provides the
rest of the DHCP functions.

The PXE client receives a DHCPOFFER from the PXEPROXY server and combines the
BINL information provided with an IP address received from another DHCP server using
the normal processing, and continues its boot process.

You may also use another file location by using the -f argument when starting the DHCP
server, for example:

dhcpd -f /etc/dhcpd.cfg.test

In the DHCP configuration file there is also a pointer to the location of the BINL server. The
keyword imageserver points to the IP address or host name of the BINL server.

For performance reasons, we recommend that you use the IP address to avoid the name
server lookup.

If the keyword is not specified, the siaddr (server IP address) value is left null (0.0.0.0) on
PXE responses. This means to the client that the BINL server resides on the same host as
the PXE server.
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 311

BINL server
The BINL server is a new executable file binlsd. It is located in /usr/lpp/tcpip/sbin/binlsd and
has a symbolic link to /usr/sbin/binlsd.

The BINL server uses DHCP messages to implement its protocol, and operates similarly to
DHCP.

This server receives requests and sends replies on port 4011. Therefore, it can reside on the
same machine as a DHCP and/or PXE server.

BINL configuration file
A sample of the configuration file for BINL server is located in the directory
/usr/lpp/tcpip/samples/. This sample configuration file should be copied to /etc/binlsd.cfg.

If you want to use another file name you may use the -f parameter when starting the BINL
server, for example:

binlsd -f /etc/binl/binlsd.cfg1

The configuration file gives you choices to define the boot image for the client. Please see an
overview of some choices in the following screen.

Figure 9-15 Sample BINL configuration file (part 1 of 2)

Definitions are continued in Figure 9-16 on page 313.

The directives are specified in the form of
<keyword> <value1> ... <valueN>.
#
Here is a partial list of keywords whose value can be specified
in this file:
#
Keyword Effect
------------- --
sa Specifies the system architecture.
nit Specifies the network interface type.
lsa1nic Specifies the lsa1 nic type.
tftp Specifies the address of the tftpd server.
bpname Specifies the install filename given to clients.
numLogFiles The number of log files desired.
logFileSize The size of log files in kilobytes.
logFileName The name of the most recent log file.
logItem An item to be logged.
call Server exit definition.
servername The LCM server name for LSA-1 clients. Not used
serverdomainname The LCM domain name for LSA-1 clients. Not used
312 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 9-16 Sample BINL configuration file (part 2 of 2)

client Definition of a set of options for a specific cl
or a definition of a client not to be serviced.
#
pxevendor Configuration delimiter to indicate pxe options
#
pxeoption A pxe configuration option value to pass to clie
#
The scope of a keyword is limited by a pair of curly brackets ({, })
within which the keyword is located. If a keyword is located outsid
of any pair of curly brackets, its scope is applicable to all the
clients served by this server. The curly brackets must appear alone
a line.
#
Log files. This set of parameters specifies the log files that will
maintained by this server. Each parameter is identified by a keyword
and followed by its value.
Keyword Value Definition
-------- ------------ --
numLogFiles 0 to 99 number of log files. If 0 is specified,
no log file will be maintained and no lo
message is displayed anywhere. When a l
file reaches maximum size, a new log fil
is created, until the maximum number of
log files have been created. Only the m
recent n log files are kept/
#
logFileSize in K bytes maximum size of a log file. When the si
of the most recent log file reaches this
value, it is renamed and a new log file
created.
#
logFileName file path name of the most recent log file. Less
recent log files have the number 1 to
n-1 appended to their names; the larger
the number, the less recent the file.
the number, the less recent the file.
#
logItem An item that will be logged.
SYSERR System error, at the interface to the pl
OBJERR Object error, in between objects in the
PROTERR Protocol error, between client and serve
WARNING Warning, worth of attention from the use
EVENT Event occurred to the process.
ACTION Action taken by the process.
INFO Information that might be useful.
ACNTING Accounting information on clients served
TRACE Code flow, for debugging.
#
call <dll name> <function name> [options]
If present, the server will load the dll
and load the function given in function
it may have.
servername <server name> If present this name is sent to LSA-1 cl
packet. If this option in not present t
its name to the client as the LCM server

serverdomainname <domain name> <workgroup | domain>
Specifies the domain name of the LCM ser
............ LSA-1 clients in the offer packet.
............
see continuation in the file or in the manual.
Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS 313

314 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 10. BIND Domain Name System
(DNS)

This chapter contains information about configuring the name server in a BIND-based
Domain Name System (DNS). Berkeley Internet Name Domain (BND) was developed at the
University of California, Berkeley and is currently maintained by the Internet Software
Consortium (ISC) and is used on the vast majority of name server machines on the Internet
providing a stable system on top of which an organization’s name architecture can be built.

CS for z/OS IP provides a port of the BIND-based version 9 name server to the zSeries
platform. It is different from the BIND 4.9.3-based name server that existed in previous CS for
OS/390 releases. Both modes of the name server are available through one command
interface. The BIND 9 mode of the name server allows for greater security, has IPv6 support,
and brings an industry standard Dynamic DNS (DDNS) to the zSeries platform. However
when run in the BIND 9 mode, the name server does not have DNS/WLM (connection
optimization) capability nor is it compatible with prior CS for OS/390 Dynamic DNS (DDNS)
support.

DNS/WLM provides intelligent sysplex distribution of requests through cooperation between
the WLM and the DNS server and is implemented only on BIND 4.9.3. For customers who
elect to place a DNS in a z/OS sysplex, DNS will invoke WLM sysplex routing services to
determine the best system to service a given request. For customers who choose to
implement BIND 9, but still need to balance the DNS requests in a sysplex environment, this
can be accomplished through Sysplex Distributor, the strategic load distribution technology.
Please see Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 5:
Availability, Scalability, and Performance, SG24-6517 for more information. In CS for z/OS
V1R2 IP, customers will be able to implement and run their Domain Name System in three
different ways:

� Using BIND 9 only

� Using BIND 4.9.3 only

� Using both BIND 9 and BIND 4.9.3 simultaneously

10
© Copyright IBM Corp. 1998 2002 315

This chapter contains the following sections:

� 10.1, “Domain Name System overview” on page 316

� 10.2, “Setting up a BIND 4.9.3-based Domain Name Server” on page 323

� 10.3, “DNS/WLM - Connection Optimization in a sysplex domain” on page 340

� 10.4, “Setting up a BIND 9-based Domain Name Server” on page 355

� 10.5, “Securing your DNS environment” on page 385

� 10.6, “Running DNS in BIND 9 and BIND 4.9.3 simultaneously” on page 393

� 10.7, “DNS tools” on page 397

For information about DNS, please reference the following RFCs:

� 1033 - Domain Administrators Operations Guide

� 1034 - Domain Names - Concepts and Facilities

� 1035 - Domain Names - Implementation and Specification

� 1183 - New DNS RR Definitions

� 1886 - DNS Extensions to support IP version 6

� 1995 - Incremental Zone Transfer in DNS

� 1996 - A Mechanism for Prompt Notification of Zone Changes

� 2065 - Domain Name System Security Extensions

� 2136 - Dynamic Updates in the Domain Name System (Non-Secure)

� 2137 - Secure Domain Name System Dynamic Update

� 2181 - Clarifications to the DNS Specification

� 2308 - Negative Caching of DNS Queries

� 2845 - Secret Key Transaction Authentication for DNS (TSIG)

Valuable information about DNS is also available in:

� z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775

� z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776

� TCP/IP Tutorial and Technical Overview, GG24-3376

� z/OS V1R2.0 CS: IP Migration, GC31-8773

10.1 Domain Name System overview
The following text provides a very brief overview of the major components of the DNS. Note
that this subject is a very complex one. Numerous books on DNS have been written. If you
are going to be implementing a DNS, it is strongly recommended you obtain a good text on
the subject.

10.1.1 Why DNS?
The TCP/IP protocols rely upon a strict system of addressing in order to reach a host on a
network. These host addresses are numeric, in the format nnn.nnn.nnn.nnn where nnn can
range from 0 to 255 (with a few exceptions). The major drawback of this system is that, for
most people, numbers are difficult to remember. As a result, today's IP-based networks use a
mapping of host names to host numbers or addresses. The obvious advantage of this
316 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

name-to-address mapping is that we can assign easy-to-remember names to hosts on the
network. For example what if we map the host Garth to the number 9.24.104.200? The
immediate advantage is that we no longer need to memorize the address, we can use the
name Garth in its place. What happens, though, if another Garth wants to use this name on
the network too? The Domain Name System not only handles the name-to-address (and vice
versa) mapping, it also encompasses a system that is capable of ensuring that names are
unique throughout all interconnected networks.

10.1.2 What is the Domain Name System?
Domain Name System (DNS) is a protocol developed to handle the use of host names in a
network. It provides the host name-to-IP address mapping (and vice versa) through network
server hosts called Domain Name Servers. DNS can also provide other information about
server hosts and networks such as the TCP/IP services available at a server host and the
location of domain name servers in a network.

DNS organizes the hosts in a network into domains. A domain is a group of hosts that share
the same namespace and are usually controlled within the same organization. Domains are
arranged in a hierarchical form. A special domain known as the root domain exists at the top
of the hierarchy. The root domain servers store information about server hosts in the root
domain and the name servers in the delegated, top-level domains, such as com
(commercial), edu (education), and mil (military). The name servers in the top-level domain,
in turn, store the names of name servers for their delegated domains, and so on.

Controlling the names
The complete name of a host, also known as the fully qualified domain name (FQDN), is a
series of labels separated by dots or periods. Each label represents an increasingly higher
domain level within a network. A domain name server requires the FQDN. The client resolver
combines the host name with the domain name to create the FQDN before sending the name
resolution request to the domain name. The complete name of a host connected to one of the
larger networks generally has more than one subdomain, as shown in the following example:

small.itso.raleigh.ibm.com

Here, itso.raleigh.ibm.com is the lowest level domain name, a subdomain of raleigh.ibm.com,
which again is a subdomain of ibm.com, a subdomain of com. We can also represent this
naming concept by a hierarchical tree as shown on Figure 10-1 on page 318.
Chapter 10. BIND Domain Name System (DNS) 317

Figure 10-1 Hierarchical distribution of Domains

The uniqueness of host names within a domain is managed in much the same fashion that
file names are used within a directory. For example, the files /bin/matt and /sbin/matt are
obviously different. The DNS uses the same principle, but the root directory is listed on the far
right, and successive subdomains (equivalent to successive subdirectories) are listed from
right to left. For example, if we have an address such as buddha.ral.ibm.com, our highest (or
closest to the root) domain is com. Note that the root domain is represented by a dot, just as
on a file system the root directory is a slash. The same address could correctly be written as
buddha.ral.ibm.com.. Often we leave the dot out of the address, but you will see situations
later in this text where it becomes very important. The next subdomain is ibm, and we
continue on down to the lowest subdomain of buddha.

At this point, you might be wondering where the hosts are. Any domain name can represent a
host while at the same time it can represent the domain of a group of hosts (or more
subdomains even). In other words, we know the domain ibm.com represents the domain of the
IBM corporation, but there could also be a host called ibm.com out there as well.

So how does DNS get a hold of these name-to-address mappings? The DNS is essentially a
distributed database system. A network administrator chooses a host on the network that will
run as a DNS server. This server will usually have a zone for which it is responsible for
resolving names to addresses (and addresses to names, called reverse mapping). A zone
can describe an entire domain of mappings, more than one domain, or only a subset of a
domain. Either way, the server will refer to a configuration file containing simple lists of
address and name records, often referred to as a data file. A host to address (and vice versa)
mapping is referred to as a resource record. For example:

mvs03a IN A 168.192.221.3

(root)

mil

Pentagon DARPA

edu

mit yale

gov

NSF Whitehouse

com

ibm

raleigh

itso

watson
318 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

is the resource record that maps host mvs03a to the address 168.192.221.3.

The name server's job is to respond to queries by providing either an address for a name, or
else a name for a supplied address. Each server will only know about the hosts within the
zones for which it is configured to respond. It should also be noted that the name-to-address
mapping can be one to many -- a host can have more than one IP address.

Finding an address
Hosts on a network must be configured to look for a DNS server when a host name is used
instead of an address. The request for name resolution is handed to a resolver routine. The
resolver routine will have an address or list of addresses that point to hosts running a DNS
server. In the MVS TCP/IP environment this is controlled by the NSINTERADDR parameter.
The resolver routine will send the query to the host listed in NSINTERADDR, and the resolver
routine waits for a response and passes the answer back to the application that requested the
resolution. When a query is sent to a name server and the name server is expected to find the
answer, this is referred to as a recursive query. Later, we'll discuss a situation where we
simply want a name server to give us the best answer it has (that is, the name and address of
a more likely name server). This is referred to as an iterative query.

It can happen that a name server doesn't know the mapping that is being requested. When
this happens, there are several courses of action the server can take. Usually, there is a
name server record pointed to by a data file that maps a domain name to a specific server for
resolution. This hard-coded record gives the name server a mapping between a domain it
doesn't have data for and the address of a name server that should have the mapping. That
name server will respond back to the original name server with its answer, and the original
name server will then respond back to the resolver routine on the host that originated the
request.

What if we get a request for a domain that is completely separate from any domain we have
data files for? This distributed database Domain Name System contains something called a
root name server. A root name server's purpose in the DNS world is to provide other servers
with information on where to find the top-level domain server for a given domain. In other
words, if a name server gets a request for where.world.ca., and the name server knows
nothing about the ca domain we can send the request to our root name server. The root name
server probably will not resolve the request, but it should return the address of a name server
more likely to be able to resolve the request (for example, it could return the address for a
name server responsible for a world.ca zone). This process of sending the request to another
name server, and receiving iteratively better responses, is called iterative resolution.

Once we have the IP address of the host, the work of the DNS is done.

Reverse mappings
Sometimes, we might already know an address, but we want to find the host name
associated with the address. When such a request comes to a name server, it is referred to
as a reverse lookup. Reverse mappings are considered to be in the in-addr.arpa domain. The
term in-addr.arpa is associated with the actual coding of the resource record for a reverse
mapping. For example, the reverse mapping for host mvs03a would look like:

3.221.168.192 IN PTR mvs03a.buddha.ral.ibm.com.
Chapter 10. BIND Domain Name System (DNS) 319

10.1.2.1 DNS implementation
To implement this process, the network uses three components:

� Domain name space and resource records which are specifications for a tree-structured
name space and the data associated with the names. The whole domain name space is
partitioned into areas called zones.

� Name Server programs which hold and administer the information about a domain tree's
structure or part of it. With the name server, the network can be broken into a hierarchy of
domains.

� Resolvers programs which extracts the information from name servers in response to
client requests.

Domain Name Space
The structure of the DNS is tree-like where each portion represents a domain or a
subdomain.The root of this tree-liked structure is a dot (.). A domain is a full subtree in the
name space. Each domain administrator has authority over his portion of the tree and may
delegate authority and control for any of his subsections of the tree to other administrator.
Resource Records (RRs) are the data associated with the names in a domain. A domain
name identifies a node. The authoritative data for a zone is composed of all of the RRs
attached to all of the nodes from the top node of the zone down to a single host.

Domain name servers
A name server is said to be authoritative for some part of the domain name space, called
zone. A zone consists of the resources within a single domain (for example, commercial or
.com) or subdomain (for example, raleigh.ibm.com). Typically, a zone is administered by a
single organization or individual. All host systems in a given zone share the same higher level
domain name,for example, host1.ral.ibm.com, host2.ral.ibm.com, host3.ral.ibm.com, and so
on. As system administrator, you create a zone of authority by listing all the host systems in
your zone in the database file of the name server that is authoritative for the zone.

If a domain name server receives a query about a host for which it has information in its
database or in its cache, it performs the name resolution and returns all the address records
associated with the host to the client. Some hosts (for example, routers or gateways between
two or more networks) might have more than one IP address. Alternatively, the name server
can query other name servers for information. This process is called iterative resolution. The
local name server successively queries other name servers, each of which responds by
referring the local name server to a remote name server that is closer to the name server
authoritative for the target domain. Finally, the local name server queries the authoritative
name server and gets an answer. If the information about a requested host name does not
exist or if a name server does not know where to go for the information, it sends a negative
response back to the client.

There are multiple name server modes in the DNS:

� Authoritative

– Master (primary)

– Slave (secondary)

� Caching-only

� Forwarders

� Stealth
320 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

A single server can perform multiple functions. For example, it can be a primary server and a
slave server for different zones. The purpose of having these different kinds of servers is to
provide redundancy (in case of system failure), to distribute the workload among multiple
servers, to speed up the name-resolution process, and to provide flexibility in network design.
In addition to being an authoritative or caching-only server, a name server can be defined to
only contact a specific set of name servers if queries cannot be resolved locally (through the
use of forwarders).

Authoritative servers
An authoritative server is the authority for its zone. It queries and is queried by other name
servers in the DNS. The data it receives in response from other name servers is cached.
Authoritative servers are not authoritative for cached data.

There are two types of authoritative servers: master and slave. Each zone must have only
one master name server, and it should have at least one slave name server for backup.
Calling a particular name server a master or slave is misleading. Any given name server can
take on either or both roles, as defined by the boot or conf file.

A master name server maintains all the data for its zone. Static resources are kept in
database files called domain data files. Master name servers can also receive zone updates
dynamically.

A slave name server acts as an alternate to the master server if the master name server
becomes unavailable or overloaded. The slave name server receives zone data directly from
the master name server in a process called zone transfer. A slave server, like a master
server, is authoritative for a zone.

Caching-only servers
All name servers cache (store) the data they receive in response to a query. A caching-only
server, however, is not authoritative for any domain. When a caching-only server receives a
query, it checks its cache for the requested information. If it does not have the information, it
queries a local name server or a root name server, passes the information to the client, and
caches the answer for future queries.

Forwarders
Normally, name servers answer queries either from their data files or their cached data and, if
that does not succeed, they attempt to contact other name servers identified in their data files
as authoritative for certain domains. However, name servers can also be configured to
contact special servers called forwarders before contacting the name servers listed in their
data files. Forwarders are typically used when you do not wish all the servers at a given site
to interact with the rest of the Internet servers. A sample scenario is a network with a number
of internal DNS servers and an Internet firewall. Those servers which are not allow to pass
packets through the firewall would forward their packets to the server designated as
forwarder and this server would query the Internet DNS servers on the internal server’s
behalf.

Stealth server
A stealth server is a server that answers authoritatively for a zone, but is not listed in that
zone's NS records. Stealth servers can be used as a way to centralize distribution of a zone,
without having to edit the zone on a remote nameserver. When the master file for a zone
resides on a stealth server in this way, it is often referred to as a hidden primary configuration.
Stealth servers can also be a way to keep a local copy of a zone for rapid access to the
zone's records, even if all official name servers for the zone are inaccessible.
Chapter 10. BIND Domain Name System (DNS) 321

10.1.2.2 What is a BIND
BIND, an acronym for Berkeley Internet Name Domain, implements the Domain Name
System (DNS) protocols, and is used on the vast majority of name serving machines on the
Internet, providing a robust and stable system on top of which an organization's name
architecture can be built. The resolver library included in the BIND distribution provides the
standard Application Programs Interface (APIs) for translation between domain names and
Internet addresses and is intended to be linked with applications requiring name service.

The BIND components are a nameserver daemon called named, a resolver library, and a set
of tools for verifying the proper operation of the DNS server. A nameserver is a program that
stores information about named resources and responds to queries from programs, called
resolvers, which act as client processes. (A client is a program that requests services from a
server). The basic function of an Name Server is to provide information about network objects
by answering queries.

CS for z/OS V1R2 IP added BIND 9-Based DNS to line up with the industry standards,
implementing the new features released in this new version, such as:

� Data authentication security (DNSSEC) and access control

� IPV6 support

� Performance improvements (multi threaded)

� Industry standard Dynamic DNS (DDNS)

� Split DNS

However, since BIND 9 does not have DNS/WLM and is not compatible with prior DDNS
support, CS for z/OS V1R2 IP still supports BIND 4.9.3-Based DNS, so you have the option
to define which one is the best choice to implement in your network.

10.1.3 Files to support a DNS implementation
The following files are available to configure a DNS server in CS for z/OS V1R2 IP:

1. A startup file or boot file:

– BIND 4.9.3 called by default named.boot.

– BIND 9 called by default named.conf

2. The domain data files (used only by the master name server)

a. A data file or zone file that maps host names to IP addresses for specific domains. We
refer to this zone file as the forward domain file, because it conventionally uses a suffix
of for, as in named.for. The file name is usually the zone name, but it can be anything.

b. A data file or zone file that resolves IP addresses to host names for IP networks. We
refer to this zone file as the reverse domain file, or in-addr.arpa file; it conventionally
uses a suffix of rev, as in named.rev. Again, the file name is usually the zone name, but
it can be anything.

3. Hints (root server) file. The Hints file, also known as Cache file, contains the names and IP
addresses of the authoritative root domain name servers. The root domain name servers
contain the names of name servers in the top-level domains such as com, edu, mil, etc.....
By convention it uses the suffix ca.

4. A loopback file, which by convention uses the suffix lbk, define the loopback names and
addresses that a host uses to route queries to itself. This file must be defined if you decide
to start both BIND 4.9.3 and BIND 9 in the same host.
322 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

5. Log file. Used only when you start BIND 9 and is configured via the logging statement in
the named.conf file.

Optionally a DNS server may have additional configuration files:

1. Extra forward files for additional zones that the name server may be servicing

2. Extra reverse files if the name server manages more than one IP network

3. A loopback file, which by convention uses the suffix lbk, to define the loopback names and
addresses

4. Forward and reverse zone files that are used to manage a name server that cooperates
with WLM. (used only with BIND 4.9.3)

5. Forward and reverse zone files that are used in a network with DHCP and DDNS

All of these files may be present at a secondary name server as well as at the primary name
server. A secondary name server obtains most of its data from the primary name server
through a process called zone transfer. The secondary server uses its forward and reverse
files to store the data obtained from the primary name server.

10.2 Setting up a BIND 4.9.3-based Domain Name Server
The following steps will show you what is required to implement and run a basic master
(primary) Domain Name Server environment, using BIND 4.9.3-based DNS:

1. 10.2.1, “Define your zone” on page 323

2. 10.2.2, “Create a configuration file for your environment (named.boot)” on page 325

3. 10.2.3, “Specify stack affinity (multiple stack environment)” on page 325

4. 10.2.4, “Specify port ownership” on page 326

5. 10.2.5, “Update the name server start procedure (optional)” on page 327

6. 10.2.6, “Create the domain data files” on page 327

7. 10.2.7, “Create the loopback file” on page 331

8. 10.2.8, “Create the cache file (hints file)” on page 332

9. 10.2.9, “Starting the DNS server” on page 332

10. 10.2.10, “Verifying if the name server has started correctly” on page 335

11. 10.2.11, “Reloading the Domain Name Server V4.9.3” on page 336

12. 10.2.12, “Stopping the DNS server” on page 337

13. 10.2.13, “Implementing a secondary name server DNS64” on page 338

10.2.1 Define your zone
The first thing to do when you implement a Domain Name Server in your network
environment is to plan and define what you are to control, the boundaries of your domain,
which servers are going to control your domain, how you are going to interact with external
domains. By defining these issues, you will be able to draw a good picture of the domain you
are going to control, and use it as input to go through all the necessary steps to built your
domain name server. A good way to get these definitions is to answer a few questions and
draw the scenario you are willing to create.
Chapter 10. BIND Domain Name System (DNS) 323

So we create our scenario by using the following guidelines:

1. What will be the name of your Domain?

a. We defined in our test environment a Domain named itso.ral.ibm.com

2. Which host will become your master domain name server (primary)?

a. The host we are going to use as primary Server is 9.12.6.67 (sc63)

3. Which host will be defined as your slave domain name server (secondary)?

a. The host we are going to use as secondary server is 9.12.6.61 (sc64)

4. To which servers will you forward your unresolved queries?

a. In our scenario all unresolved queries will be forwarded to 9.24.104.108, the ITSO
DNS

5. What kind of environment do you have (single or multiple TCPIP stacks)?

a. Our environment has multiple TCPIP stacks and we are going to use a stack named
tcpipb in our scenario

Based on the answers provided, we are able now to draw our scenario, which, in our case
would look like the one showed in Figure 10-2:

Figure 10-2 Primary and secondary name servers

The domain is itso.ral.ibm.com. There is one primary name server platform: SC63. The
secondary name server SC64 obtains its information from zone transfers with SC63.

Domain:
Primary Name Server:

Secondary Name Server:

itso.ral.ibm.com
SC63 - 9.12.6.67
SC64 - 9.12.6.61

itso.ral.ibm.com

SC63
Primary
Name
Server

SC64
Secondary
Name
Server

Zone Transfer
324 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

10.2.2 Create a configuration file for your environment (named.boot)
The boot file initializes the name server environment and points to the individual name server
definition files and to the options that the name server will provide for each zone it supports.
The boot file is referenced in the start procedure used from the MVS console or in the UNIX
System Services shell command used to start the domain name system server. If no boot file
is referenced in the start procedure or command, the default of /etc/named.boot is assumed.
Figure 10-3 shows the contents of the named.boot files being used in our scenario.

Figure 10-3 named.boot file

The contents of this boot file are:

1 The directory entry (or directive) defines the location of the files that are listed within the
boot file. Those HFS files will be found in the /etc/dnsdata/ subdirectory.

2 This primary directive defines the domain name for the zone followed by the file to read for
the name-to-IP address mappings.

3 This primary directive defines the domain name for the zone followed by the file to read for
the IP address-to-name mappings.

4 This special primary directive is used to map the loopback address.

5 The cache directive defines the root level domain, identified by a dot (.), and the file in which
the IP address of the root DNS servers can be found. The cache file is also known as the
hints file.

6 The forwarders directive identifies a list of DNS servers to query if the primary or secondary
mappings cannot resolve a DNS request. Forwarders act as intermediaries between name
servers at one site and name servers at multiple other sites. They query off-site name servers
and cache the results, thus minimizing network traffic that could otherwise have been
generated by allowing all name servers to query all other name servers without requesting
help from a forwarder first.

7 This options directs the V4 name server to log all queries with the syslog daemon.

10.2.3 Specify stack affinity (multiple stack environment)
A BIND DNS name server must be associated with a TCP/IP stack. This process occurs by
default if there is only one copy of CS for z/OS IP in the z/OS image. The establishing of
affinity to a particular stack is an issue only if you are running a CINET configuration with
multiple stacks. In a multiple stack environment, the name server is like any application. It
binds to the stack specified by TCPIPJOBNAME, which is defined in the TCPIPDATA file. To

; boot file for BIND 4.9.3-Based Name Server
;
;type domain source file or host
;
 directory /etc/octavio/dnsdata 1
 primary itso.ibm.com itso.for.v4 2
 primary 6.12.9.in-addr.arpa itso.rev.v4 3
 primary 0.0.127.in-addr.arpa itso.lbk.v4 4
 cache . itso.ca.v4 5
 forwarders 9.24.104.108 6
 options query-log 7
Chapter 10. BIND Domain Name System (DNS) 325

determine the location of the file that contains the correct TCPIPjobname parameter, you
must use an environmental variable called RESOLVER_CONFIG. If you are going to start the
name server from MVS, this variable can be specified in a file defined by STDENV DD card in
the startup procedure as shown in Figure 10-4.

Figure 10-4 STDENV DD card example

An example of the STDENV file contents is shown in Figure 10-5

Figure 10-5 Contents of STDENV file

If you decide to start the name server named from the z/OS UNIX shell, you can identify the
location of the resolver configuration using the export command to include the variable
before the named command, as shown in Figure 10-6:

Figure 10-6 Export command to change the RESOLVER_CONFIG variable

10.2.4 Specify port ownership
By default, the name server uses a single port (53) for TCP and UDP sessions. DNS servers
can share port 53 if they connect to clients or other servers on different IP addresses. A BIND
4 server cannot specify IP addresses in its configuration file but will use any IP address not
already selected by a BIND 9 server. To specify port ownership when using the named start
procedure for BIND 4.9.3, you must include the name server procedure name in the port
definition statement of the PROFILE TCPIP dataset adding the suffix 2 to the procedure
name you are going to use, as shown in Figure 10-7:

Figure 10-7 Reserving port 53 to NAMED4 startup procedure

1 The procedure name is NAMED4 and the suffix 2 indicates a BIND V4 name server

If you decide to start the Name Server using the z/OS UNIX shell, the port can be generically
reserved to UNIX applications, as shown in Figure 10-8:

Figure 10-8 Reserving port 53 to z/OS UNIX Shell

 //STDENV DD PATH='/etc/octavio/named.env.v4',
 // PATHOPTS=(ORDONLY)

 RESOLVER_CONFIG=/etc/octavio/named.resolv
 RESOLVER_CONFIG=//'TCPIPB.SC63.TCPPARMS(TCPDATB)
 the next variable directly defines the TCPIP stack to connect
_BPXK_SETIBMOPT_TRANSPORT=TCPIPB

 export RESOLVER_CONFIG="//'TCPIPB.SC63.TCPPARMS(TCPDATB)'" named

 PORT
 53 TCP NAMED42 1 ; NAME SERVER V4 TCP PORT
 53 UDP NAMED42 ; NAME SERVER V4 UDP PORT

 PORT
 53 TCP OMVS ; reserved to z/OS UNIX
 53 UDP OMVS ; reserver to z/OS UNIX
326 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

10.2.5 Update the name server start procedure (optional)
When choosing to start the name server from MVS, create a start procedure. This is not
necessary if the name server is started from the z/OS UNIX shell. Move the sample start
procedure, SEZAINST(NAMED4), to a recognized PROCLIB. Specify name server
parameters and change the data set names as required to suit local configuration. The boot
file path (for BIND 4.9.3-DNS) can also be changed in the sample start procedures, as shown
in Figure 10-9 below:

Figure 10-9 NAMED4 startup procedure

If you are migrating your name server from an older OS/390 version, you can continue to use
the PGM name provided with those versions (ezansnmd), which continue to be supported. In
this case, the procedure should be defined as shown in Figure 10-10:

Figure 10-10 Using PGM EZANSMD to start the name server

10.2.6 Create the domain data files
The domain data files contain information about a domain, such as the IP addresses and
names of the hosts in the domain for which the master name server is authoritative. The
forward domain data file contains entries that provide forward mapping (host names-to-IP
addresses for each host system in the zone) as well as additional information about system
resources. The reverse domain data file contains entries that provide reverse mapping (IP
addresses-to-host names).

//***** Proc used to start DNS server bind 4.9.3 *******
//NAMED4 PROC B='/etc/octavio/named.boot'
//NAMED4 EXEC PGM=BPXBATCH,REGION=0K,TIME=NOLIMIT,
// PARM='PGM /usr/lpp/tcpip/sbin/named -b &B '
//STDENV DD PATH='/etc/octavio/named.env',
// PATHOPTS=(ORDONLY)
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*

 //NAMED PROC B='/etc/octavio/named.boot',P='53'
//**
 //NAMED EXEC PGM=EZANSNMD,REGION=0K,TIME=NOLIMIT,
 //* PARM='POSIX(ON) ALL31(ON)/ -b &B -p &P -d 11 -q'
 // PARM=('POSIX(ON) ALL31(ON)',
 // 'ENVAR("RESOLVER_CONFIG=/etc/octavio/named.data")',
 //* 'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPB")',
 // '/ -b &B -p &P -d 11')
 //*SYSTCPD DD DISP=SHR,DSN=TCPIPMVS.SC63.TCPPARMS(TCPDATA)
 //SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
 //SYSIN DD DUMMY
 //SYSERR DD SYSOUT=*
 //SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
 //CEEDUMP DD SYSOUT=*
Chapter 10. BIND Domain Name System (DNS) 327

10.2.6.1 The forward file
The forward files are identified in the /etc/named.boot and contain the name-to-IP address
mappings. Every zone must have a separate forward file. If your DNS server services three
zones, then you must have three separate forward files. These files are stored in HFS format
and their UNIX permission bits must allow name server read/write access. The entries in the
forward files are defined using a special format that is defined by RFC1034. These entries are
called resource records. All resource records (RR) are written in the file with the following
format:

name ttl address_class record_type record_data

The record_type and record_data fields are the only required fields. The name, ttl and
address_class have defaults that may be set if they are not specified. The record_type
indicates the type of resource record which defines the record data format. Valid resource
record types include, but are not limited to, the following:

Table 10-1 DNS valid Resource Records:

You also can include in the zone files other records, called Master File Directives, to define
some specific values, as follows:

� $ORIGIN directive - sets the domain name that will be appended to any unqualified record
as shown in the example below:

$ORIGIN itso.ibm.com
sample CNAME host01

would be equivalent to:
sample.itso.ibm.com CNAME host01.ibm.com

� $INCLUDE directive - Read and process the file filename as if it were included into the file
at this point. If origin is specified, the file is processed with $ORIGIN set to that value,
otherwise the current $ORIGIN is used. Once the file is read, the origin and current
domain revert to the values they were prior to the $INCLUDE. it has the following syntax:

$INCLUDE filename [origin] [comment]

� $TTL directive - Set the default Time To Live (TTL) for subsequent records with undefined
TTLs. Valid TTLs are of the range 0-2.147.483.647 seconds. It has the following syntax:

$TTL default-ttl [comment]

Figure 10-11 shows the contents of the named.for file. It is referenced in the named.boot file
you saw in Figure 10-3 as the primary DNS information for the domain itso.ral.ibm.com.

DNS Resource Record type Record Type description

SOA Start Of Authority for the stated Zone

A Name -to-IP address translation record

SRV Service-to-Location definition

PTR IP address-to-Name translation record

NS Name of the authoritative DNS server for the stated Zone

CNAME alias name of a stated host
328 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-11 named.for file contents

1 This $ORIGIN control records defines the higher domain zone where the subdomain itso is
being defined. Its used in conjunction with the SOA record that follows to resolve the name of
itso.ral.ibm.com. which will is the domain name of our zone.

2 The SOA record specifies the name of the host that has the domain name server authority
for the zone. This name is appended to the domain name specified in the previous $ORIGIN
record. The SOA record includes a mailbox address of the user who is responsible for the
zone: admin@itso.ral.ibm.com. A left parenthesis signals that everything between here and a
succeeding right parenthesis should be considered as belonging to the same resource
record, despite record boundaries of the master data set. The number enclosed in
parenthesis are parameters used to set different values for the zone, as follows

3 the Serial parameter is used to identify the serial number of the domain database. is
referenced by secondary name servers. Increment the number each time you change the
file.The secondary name servers determine when to do a zone transfer based on an
increment in this value.

4 The Refresh parameter is expressed in seconds. A secondary name server that has
transferred this zone from the primary name server should not wait more than this number of
seconds before it requests a refresh (a full zone transfer) from the primary name server.
Before requesting a zone transfer, the secondary name server checks if the value of the serial
field for the zone in question has changed or not. If not, a zone transfer is not necessary.

;
 $ORIGIN ral.ibm.com. 1
;
 itso IN SOA dns63.itso.ral.ibm.com admin@itso.ral.ibm.com (2
 1 ; Serial 3
 10800 ; Refresh 4
 3600 ; Retry 5
 604800 ; Expire 6
 86400) ; Minimum ttl 7
;
 $ORIGIN itso.ral.ibm.com. 8
 IN NS dns63 9
 IN NS dns64
;
 _http._tcp.www SRV 0 0 80 www.itso.ral.ibm.com 10
 SRV 10 0 8000 www2.itso.ral.ibm.com
;
 localhost IN A 127.0.0.1 11
 sc63 IN A 9.12.6.68
 sc64 IN A 9.12.6.62
 host1 IN A 9.12.6.67
 host2 IN A 9.12.6.61
 www2 IN A 9.179.147.237
 www IN A 9.179.147.237
;
 gateway IN A 9.12.6.68 12
 IN A 9.12.6.67
;
 mail IN CNAME host1 13
 ftp IN CNAME host2
Chapter 10. BIND Domain Name System (DNS) 329

5 The Retry parameter is expressed in seconds. If a secondary name server fails to refresh its
copy of resource records, it should wait this number of seconds before it retries the refresh
from the primary name server.

6 The Expire parameter is expressed in seconds. This is the maximum time a secondary
name server should consider its copy of resource data valid. If the secondary name server
does not succeed with a zone transfer from the primary name server within this amount of
time, it should consider its copy of the resource data obsolete, and stop answering queries for
this zone.

7 The Minimum TTL parameter is expressed in seconds. Every time a response from this
name server is sent out, it contains a time to live (TTL) field, which signifies how long the
receiver should be able to consider the response valid. In BIND name servers, this Minimum
TTL field really represents the Default value if no TTL value has been specified on an
individual resource record.

8 The control entry $ORIGIN appends the string itso.ral.ibm.com. to all the following host
names that do not end with a dot ('.').

9 The NS (Name Server) records specify the name servers in the zone. Note that NS records
do not distinguish between primary and secondary name servers. You will later see that in our
scenario dns64 is a secondary name server that receives zone transfers from dns63.

10 Specifies the location of services (for example, ftp, http, telnet). This record identifies one
or more hosts capable of satisfying the service and protocol represented in the name field of
the resource record. The name field for these resource records must follow a unique naming
convention. The contents of this RR are:

name priority weight port target

where:

the name field must be specified as Service.Protocol.Name.:

Service is the symbolic name of the desired service, as defined in Assigned Numbers (1)
or locally.

Protocol is typically TCP or UDP

Name is the domain this RR refers to.

Priority is a number in the rage of 0-65535 and represents the priority of this target host. A
client must attempt to contact the target host with the
lowest-numbered priority. Target hosts with the same priority should be
tried in pseudo-random order.

Weight is used for a crude connection balancing mechanism. When selecting a target host
among those that have the same priority, the chance of trying this one
first should be proportional to its weight. The valid range is 0-65535.

Port is the port on this target host of this service. The valid range is 0-65535.

Target is the domain name of the target host. This name must be a canonical name and not
an alias. There must be one or more A records for this name. A target
of consisting of a dot (.) means that the service is not available at this
domain.

Note: For dynamic WLM resources the TTL value defaults to 0 and can be specified with
the -l start option.
330 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

In our file, the SRV records specify the location for the 'http' service using the ‘TCP’ protocol.
The first record has a priority of 0, a weight of 0, uses port 80 and the service is provided at
host www.itso.ral.ibm.com. The second record has a priority of 10 which is lower, a different
port and target. A web client capable of using SRV records requesting a site named
http://itso.ral.ibm.com/, would be directed to www.itso.ral.ibm.com and
www2.mycorp.com. The client would be responsible for determining which site to connect
first based on priority and then on weight.

11 An A record is an address record, naming the host and the IP address of that host.

12 You can also use A records to define more than one address to a host. If you do not specify
a value in the name field, the value from the preceding record will be used.

13 A CNAME record is an alias for a host name.

10.2.6.2 The reverse file (in-addr.arpa file)
Figure 10-12 shows the contents of itso.rev.v4 reverse file. It is referenced in the
named.boot file as the primary DNS information for the domain 6.12.9.in-addr.arpa. Note the
inverse syntax used for referencing this in-addr.arpa file in Figure 10-3 on page 325. There
must be a single reverse file for each IP address grouping.

Figure 10-12 in-addr.arpa file

1 The @ sign on the SOA record is a special character that indicates the SOA is for the zone
named in the named.boot file. It is used as a shorthand method, but it would have been
equally as valid to specify the $ORIGIN statement that has been commented out at 2.

3 The value 68 will have the $ORIGIN (implied by the @ sign on the SOA record) appended
to form the full resource name of 68.6.12.9.in-addr.arpa, which is a resource name in the
in-addr.arpa special domain.

The PTR record type includes, in the data part of the record, the fully qualified name of the
host corresponding to the IP address in the name part of the record.

10.2.7 Create the loopback file
 The loopback file contains the loopback address. This is the address that a host uses to
route queries to itself. The preferred loopback address is 127.0.0.1, although you can
configure additional loopback interfaces in the TCPIP Profile. For BIND 4.9.3, DNS will bind to
127.0.0.1 in addition| to the first loopback address configured in TCPIP Profile. Figure 10-13
shows the contents of the itso.lbk.v4 file. It is referenced in the named.boot file as the primary
name server information for the domain 0.0.127.in-addr.arpa. domain.

; $ORIGIN 6.12.9.in-addr.arpa. 2

 @ IN SOA dns63.itso.com. admin@itso.com. (1
 1 10800 3600 604800 86400)
 IN NS dns63.itso.com.
 IN NS dns64.itso.com.
 68 IN PTR dns63.itso.com. 3
 62 IN PTR dns64.itso.com.
 67 IN PTR host1.itso.com.
 61 IN PTR host2.itso.com.
 20 IN PTR printserver.itso.com.
Chapter 10. BIND Domain Name System (DNS) 331

Figure 10-13 Loopback file contents

10.2.8 Create the cache file (hints file)
The hints file contains the names and IP addresses of the authoritative root domain name
servers. The root name servers contain the names of name servers in the top-level domains
such as com, edu, and mil. The name server uses root server information when deciding
which name server to contact when it receives a query for a host outside its zone of authority
and it does not have the data in its cache.To obtain a hints file, point your Web browser to
ftp://ftp.rs.internic.net and retrieve the file named.root from the domain subdirectory.
Update your hints file on a regular basis.The cache directive in a BIND 4.9.3 boot file
specifies the path and name of the hints file.

Figure 10-14 displays the partial contents of the named.ca file.

Figure 10-14 Partial contents of a hint file

10.2.9 Starting the DNS server
Once you have finished the previous configuration steps, you will be able to start the domain
name server. Basically you can start the named process either from a mvs procedure, which
has been customized in step 5.2.2, or from the z/OS UNIX shell. If the user choose to use the
MVS procedure, a supervisor with an authorized TSO ID can start a name server from the
MVS operator's console by starting the customized named start procedure.

To execute the named process fro z/OS UNIX, a user with superuser authority can start the
name server from the shell by starting z/OS UNIX, then issuing the named command and,
optionally, any parameters. It is also possible to start the server automatically when z/OS
UNIX is started by specifying the path and file name of the z/OS UNIX initialization shell script
in the /etc/init.options file using the -sc option:

 0.0.127.in-addr.arpa. IN SOA ns1.itso.ral.ibm.com. admin@ral.ibm.com (
 1
 10800
 3600
 604800
 86400)
 0.0.127.in-addr.arpa. IN NS dns63.itso.ral.ibm.com.
 0.0.127.in-addr.arpa. IN NS dns64.itso.ral.ibm.com.
 1.0.0.127.in-addr.arpa. IN PTR localhost.

Note: In addition to creating the loopback file, add an address resource record called
localhost to the forward domain data file. This record supports proper two-way resolution.

Note: The hints file does not contain cached data nor does the name server provide other
hosts with the information contained in the hints file. A forward-only server is the only type
of name server that does not require a hints file.

. 3600000 IN NS A.ROOT-SERVERS.NET.
 A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
. 3600000 NS B.ROOT-SERVERS.NET.
 B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
332 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-15 -sc option definition

 The file /etc/rc is the default z/OS UNIX initialization shell script that is executed when z/OS
UNIX is started. Information such as the following can be entered in /etc/rc:

Figure 10-16 Contents of the rc file

If you use the UNIX System Services /etc/rc method, the actual startup of the name server
waits for the completion of TCP/IP initialization. You cannot start the name server with the
INETD daemon. The startup must know either via default or via parameters what the boot file
name is so that the correct data can be loaded into the DNS.

The following figures will show other method you can use to start the BIND DNS server and
the use of export command to define the correct resolv.conf file:

� Starting named using z/OS UNIX console (omvs command in TSO command line option)
Like any UNIX command you execute each command in the command line of the UNIX
console as follows:

Figure 10-17 Executing export command from z/OS Unix console

 -sc /etc/rc shell script = /etc/rc

Start name server
 | /usr/lpp/tcpip/sbin/named -b /named/production/named.boot &

IBM
Licensed Material - Property of IBM
5694-A01 (C) Copyright IBM Corp. 1993, 2001
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

OCTAVIO @ SC63:/>
OCTAVIO @ SC63:/>

 ===> export RESOLVER_CONFIG=/etc/octavio/named.resolv

RUNNING
ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh
 11=FwdRetr 12=Retrieve
Chapter 10. BIND Domain Name System (DNS) 333

Figure 10-18 Executing named command from z/OS Unix console

� Starting named using ISHELL (ish in TSO command line option). If you choose this way
to start the named daemon and you are in a multistack environment then you must use the
export command to define the RESOLV_CONFIG statement that indicates which TCPIP
stack you will be using. The following figures show you the commands.

Figure 10-19 ISHELL command screen

1 In the sample use the export file to point to an MVS file. Once the export command is
executed connecting the new resolv file to named process, you can proceed and start the
named procedure in the ISHELL command screen as shown:

IBM
Licensed Material - Property of IBM
5694-A01 (C) Copyright IBM Corp. 1993, 2001
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

OCTAVIO @ SC63:/>export RESOLVER_CONFIG=/etc/octavio/named.resolv
OCTAVIO @ SC63:/>

 ===> /usr/lpp/tcpip/sbin/named -b /etc/octavio/named.boot

INPUT
ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh
 11=FwdRetr 12=Retrieve

 Enter a Shell Command

 Enter a shell command and press Enter.

 Standard output and standard error are redirected to a temporary
 file. If there is any data in the file when the shell command
 completes, the file is displayed.
 export RESOLV_CONFIG="//'TCPIPB.SC63.TCPPARMS(TCPDATB)'" named 1
 __
 __
 __
334 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-20 Starting named from the Ishell command screen

We customarily started the name server with a procedure from the MVS console. The
following is the console log following the startup of the DNS server process at SC63.

Figure 10-21 named startup messages in the MVS console log

10.2.10 Verifying if the name server has started correctly
 Once you had started the named process, you can go to the syslogd hfs file (as defined by
the syslogd process in your z/OS UNIX) and check the results of the startup procedure. The
messages generated should basically appear as shown in Figure 10-22.

 Enter a Shell Command

 Enter a shell command and press Enter.

 Standard output and standard error are redirected to a temporary
 file. If there is any data in the file when the shell command
 completes, the file is displayed.
 /usr/lpp/tcpip/sbin/named -d 11 -b /etc/octavio/named.boot
 __
 __
 __

 S NAMED4
 $HASP100 NAMED4 ON STCINRDR
 IEF695I START NAMED4 WITH JOBNAME NAMED4 IS ASSIGNED TO USER STC, GROUP SYS1
 $HASP373 NAMED4 STARTED
 IEF403I NAMED4 - STARTED - TIME=13.01.26 - ASID=0088 - SC63
 ---TIMINGS (MINS.)-- ----PAGING COUNTS---
 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK SERV PG PAGE SWAP
-NAMED4 NAMED 0 36 .00 .00 .00 1290 0 0 0
 EZZ9166I STARTING NAMED, BIND V4
 EZZ6452I NAMED STARTING. @(#) DDNS/NS/NS_MAIN.C, DNS_NS, DNS_R1.1 1.62 9/23/9710:57:21
 EZZ6475I NAMED: READY TO ANSWER QUERIES.
 - --TIMINGS (MINS.)-- ----PAGING COUNTS---
 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK SERV PG PAGE SWAP
 -NAMED4 *OMVSEX 01 541.00.00.04 8049 0 0
 IEF404I NAMED4 - ENDED - TIME=13.01.29 - ASID=0088 - SC63 1
 -NAMED4 ENDED. NAME- TOTAL CPU TIME= .00
 TOTAL ELAPSED TIME= .04
 $HASP395 NAMED4 ENDED

Note: Note that the procedure NAMED4 has ended 1, but you will later see that it has
created a child process called NAMED433.
Chapter 10. BIND Domain Name System (DNS) 335

Figure 10-22 syslog contents after named is started

Looking at the message EZZ6701 1 in Figure 10-22 above, you can confirm that your server
has been associated via the resolver process with the TCPIPB stack. You can also see which
level of your customization has been loaded 2: serial 1. You may want to maintain the serial
number designation in the files as you customize them in order to understand which version
of a file has been loaded. The serial number is also used at secondary name servers to
determine whether data needs to be reloaded after a zone transfer. If you discover a
mismatch between the data at a secondary name server and that at a primary, the
discrepancy could be due to one of the following:

� A view of the secondary name server prior to its having pulled new data from the primary

� The failure of the secondary to pull new data from the primary because a matching serial
number at the primary signalled the secondary not to update its data

When the name server is up with no logged errors, ensure that it can accept queries. Ensure
that the name server can accept queries locally from both the MVS and z/OS UNIX
environments. To be able to do that you must first assure that your userid is using the same
resolver configuration files. After the resolver configuration is correct, you can test your server
either with the nslookup or dig command. An example using nslookup follows. Issue the
following command from both the z/OS UNIX shell and the TSO ready prompt. In this sample,
the name 'host1.itso.com.' is used for the search.

OCTAVIO @ SC63:/>nslookup host1

The result of the command follows:

Defaulting to nslookup version 4
Starting nslookup version 4
Server: dns63.itso.com
Address: 9.12.6.68

Name: host1.itso.com
Address: 9.12.6.67

10.2.11 Reloading the Domain Name Server V4.9.3
To reload data that you may have changed during this lifetime of the name server, you can
send a signal to the UNIX System Services shell asking DNS to reread its configuration files.
To send the signal from the z/OS UNIX console, execute the following command:

kill -HUP ($cat /etc/named.pid)

From the ISHELL follow these steps:

1. from the ISHELL select Tools

2. From Tools select option 1 - Work with Processes.

/usr/lpp/tcpip/sbin/namedÝ131178¨: EZZ9166I STARTING NAMED, BIND V4
namedÝ131180¨: EZZ6698I name server starting. @(#) ddns/ns/ns_main.c, dns_ns, dns_r1.1
1.62 9/23/9
namedÝ131180¨: EZZ6701I named established affinity with 'TCPIPB' 1
namedÝ131180¨: EZZ6540I Static primary zone 'itso.com' loaded (serial 1) 2
namedÝ131180¨: EZZ6540I Static primary zone '6.12.9.in-addr.arpa' loaded (serial 1)
namedÝ131180¨: EZZ6540I Static primary zone '0.0.127.in-addr.arpa' loaded (serial 1)
namedÝ131180¨: EZZ6540I Static cache zone '' loaded (serial 0)
namedÝ131181¨: EZZ6475I named: ready to answer queries.
namedÝ131181¨: EZZ6476I Return from getdtablesize() > FD_SETSIZE
336 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

3. In the Work with Processes Signal screen go to the line where the named process is and
enter s

4. In the Enter Signal Number screen, confirm you choose the process you want to reload,
go to the Signal number field and enter the SIGHUP signal number, #1.

These steps will reload the named process implementing your changes. To confirm your
name server has been reloaded, you can check the syslogd log file for the following
messages:

EZZ6557I reloading name server resource information
EZZ6475I named: ready to answer queries.

This command works only at a primary name server. A secondary periodically returns to
query the primary for new data, theoretically eliminating the need to reload a secondary with a
signal. (The refresh interval is one of the settings in the SOA record.)

The reload process is not designed for dynamic domains, since these are updated via the
nsupdate command.

10.2.12 Stopping the DNS server
You can stop the DNS server with the MVS STOP command P NAMED43, which is the name
of the startup procedure used to start you name server (it can be any name), followed by the
number “3”, which is an extra forking process assigned to BIND V4 during the startup process
The advantage of the STOP command is the graceful termination of the name server and the
issuing of messages in syslog. Other alternatives are to use the MVS CANCEL command or
the OMVS KILL command. The OMVS KILL command can be issued from OMVS or from the
NSSIG procedure.

Executing the KILL command in the z/OS UNIX console:

 kill $(cat /etc/named.pid)

From the ISHELL follow these steps:

1. Select Tools

2. From Tools select 1 - Work with Processes.

3. In the Work with Processes screen go to the line where the named process is and enter k
(kill)

You can also stop the process using MVS CANCEL command to NAMED43, and this will
cause the following messages in the console log:

 C NAMED43
 IEA989I SLIP TRAP ID=X222 MATCHED. JOBNAME=NAMED43, ASID=007A.
 BPXP018I THREAD 106A29D800000000, IN PROCESS 131223, ENDED 085
 WITHOUT BEING UNDUBBED WITH COMPLETION CODE 40222000,
 AND REASON CODE 00000000.
 IEE301I NAMED43 CANCEL COMMAND ACCEPTED
 IEF450I NAMED43 STEP1 - ABEND=S222 U0000 REASON=00000000 087
 TIME=09.34.14
Chapter 10. BIND Domain Name System (DNS) 337

10.2.13 Implementing a secondary name server DNS64
The next step to perform to implement our domain name server scenario is to configure the
secondary name server. A secondary name server can be primary for some zones and
secondary for others. Its boot file indicates for which zones it is primary and for which it is
secondary. Using a zone transfer process, the secondary server retrieves the files for
specified zones from the primary name server that it points to. The secondary stores this
information in its own files if the retrieved serial number is higher than the current serial
number stored at the secondary (Figure 10-11 on page 329, 5) The secondary obtains the
files from the primary name server based upon the refresh interval coded on the SOA record
or the resource record (RR) itself.

To implement a secondary name server, follow the same steps used to create the master
name server. The difference is that there is no need to create the domain data files (the files
containing host-to-address and address-to-host mappings). These files are maintained on the
master name server and the secondary (slave) name server transfers this data to its own
database. The boot file also has different definitions to state that this server is a slave
(secondary) name server.

To show how we define our secondary name server we go through the same steps we
followed to build the master name server:

1. Create the boot file of the secondary name server

To create the named.boot file of the secondary name server, copy the named.boot file created
for the master name server and alter the contents to reflect this is a secondary server, as
shown in Figure 10-23.

Figure 10-23 Boot file for the secondary name server

1 This line indicates that this server will be a secondary server and its primary server is
located at IP address 9.12.6.68. It also indicates where the data gathered from the primary
server will be saved. (itso.bk.for.v4)

2 The server is still considered to be a primary DNS for its loopback address.

The remaining steps are shown here only as an information. For further instructions about
each steps, refer to the previous section, implementing the master name server.

2. 10.2.3, “Specify stack affinity (multiple stack environment)” on page 325

3. 10.2.4, “Specify port ownership” on page 326

4. 10.2.5, “Update the name server start procedure (optional)” on page 327

5. 10.2.7, “Create the loopback file” on page 331

; /etc/named.boot
;
; boot file for name server
;
;
;type domain source file or host
;
directory /etc/octavio/dnsdata
secondary itso.com 9.12.6.68 itso.bk.for.v4 1
secondary 6.12.9.in-addr.arpa 9.12.6.68 itso.bk.rev.v4
primary 0.0.127.in-addr.arpa named.lbk.v4 2
cache . named.ca.v4
options query-log
338 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

6. 10.2.8, “Create the cache file (hints file)” on page 332

7. 10.2.9, “Starting the DNS server” on page 332

8. 10.2.10, “Verifying if the name server has started correctly” on page 335

At a secondary name server, you would see similar console messages about the file loading
process. A partial SC65 console log is displayed in Figure 10-24.

Figure 10-24 Successful zone transfer from SC63 to SC65

If your zone transfers are successful, the files identified in the secondary name server's boot
file as the storage for retrieved files can be viewed. The format looks a bit different from your
own coding at the primary, but the contents are nonetheless identifiable. For example, below
is a portion of the domain file retrieved by SC65, the secondary name server.

Figure 10-25 Contents of the backup forward file, in SC65, retrieved from SC63

 +EZZ6475I NAMED: READY TO ANSWER QUERIES.
 BPXF024I (OCTAVIO) May 22 14:15:09 namedÝ65764¨: EZZ6472I received
 query from 9.12.6.121 for zos12.ral.ibm.com (type=SOA)
 BPXF024I (OCTAVIO) May 22 14:15:09 namedÝ65764¨: EZZ6472I received
 query from 9.12.6.121 for 6.12.9.in-addr.arpa (type=SOA)
 BPXF024I (OCTAVIO) May 22 14:15:13 namedÝ65764¨: EZZ6472I received
 query from 9.12.6.121 for zos12.ral.ibm.com (type=SOA)
 BPXF024I (OCTAVIO) May 22 14:15:20 namedÝ65764¨: EZZ6472I received
 query from 9.12.6.121 for 68.6.12.9.in-addr.arpa (type=PTR)
 BPXF024I (OCTAVIO) May 22 14:15:21 namedÝ65764¨: EZZ6472I received

; BIND version @(#) ddns/ns/named-xfer.c, dns_ns, dns_r1.0 1.30 6/4/97 14:19:25
; zone 'zos12.ral.ibm.com' last serial 0
; from 9.12.6.68 at Wed May 22 14:15:39 2002
$ORIGIN ral.ibm.com.
zos12..IN.SOA.dns63.zos12.ral.ibm.com. admin.zos12.ral.ibm.com. (
..1 10800 3600 604800 86400)
..IN.NS.dns63.zos12.ral.ibm.com.
..IN.NS.dns64.zos12.ral.ibm.com.
$ORIGIN zos12.ral.ibm.com.
mail..IN.CNAME.host1.zos12.ral.ibm.com.
ftp..IN.CNAME.host2.zos12.ral.ibm.com.
sc63..IN.A.9.12.6.68
..IN.A.9.12.6.67
dns63..IN.A.9.12.6.68
host1..IN.A.9.12.6.67
host2..IN.A.9.12.6.63
localhost.IN.A.127.0.0.1
dns64..IN.A.9.12.6.63
www..IN.A.9.179.147.237
$ORIGIN _tcp.zos12.ral.ibm.com.
_http..IN.SRV.0 0 80 www.zos12.ral.ibm.com.
Chapter 10. BIND Domain Name System (DNS) 339

10.3 DNS/WLM - Connection Optimization in a sysplex domain
Officially known as connection optimization, DNS/WLM provides intelligent sysplex
distribution of requests through cooperation between the WLM and the DNS server. In
DNS/WLM, the DNS will invoke WLM sysplex routing services to determine the best system
to service a given client request. For additional information, please refer to Communications
Server for z/OS V1R2 TCP/IP Implementation Guide Volume 5: Availability, Scalability, and
Performance, SG24-6517.

WLM provides various workload related services: performance administration, performance
management and workload balancing, for example. WLM is capable of dynamically assessing
resource utilization on all participating hosts within a sysplex.

A DNS server running on a host in the sysplex can take advantage of WLM's knowledge and
use it to control how often an address for a particular host in the sysplex is returned on a DNS
query. When a sysplex name server queries the WLM for information, it is provided with a
weight corresponding to the relative resource availability of each participating host in the
sysplex. These weights are used by the name server to control the frequency with which an
address will be returned for a given host. If a host in the sysplex is relatively busy, its address
will not be returned by the server as often as a less busy host's address. As you might have
guessed, this means that you must use host names when accessing an application in the
sysplex. The name server is the only place where address selection based upon resource
availability can occur. If you use an IP address directly, no workload balancing can occur with
DNS/WLM solution.

10.3.1 How load distribution works using DNS/WLM
Before any application can take part in workload balancing (connection optimization), the
TCP/IP stack should register itself to WLM. It, and only it, can correctly maintain the IP
addresses that DNS/WLM will need to resolve a host name to an address. Once the stack
has been registered, WLM knows its name and its interface addresses. The SYSPLEX
Routing keyword in the IPCONFIG statement in the TCP/IP profile tells the stack to do this.
As interfaces are activated and deactivated, the stack keeps WLM informed of the status.
Note that if the stack does not register, DNS uses the defined interface addresses but they
are never checked for active status.

Once the TCP/IP stacks have registered with WLM, the following occurs (see Figure 10-26):

1. When each application becomes active in the sysplex, it registers with WLM using the
appropriate group, server, and host (stack) name.

2. The sysplex-enabled name server will query WLM periodically for a list of available
applications. WLM returns the names of the applications within each group, the active IP
addresses associated with them (obtained from the associated stack name), and a set of
workload-related weights.

Note: For each TCP/IP stack within a sysplex, only the first 15 addresses listed in the
HOME statement of your profile will be registered to WLM (and passed on to the name
server when it requests the information). If an interface is not active, its address will not be
forwarded to WLM. When the name server receives these active addresses from WLM, it
will accept only the addresses that have a matching address listed in its data file. This
requirement for statically defined addresses ensures full administrative control over the
workload distribution.
340 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

3. Resource records representing the application's group name are dynamically (and not
permanently) added to the name server's data files. These entries will now be treated the
same as any hard-coded entries read from the server's data file.

4. When a request to resolve one of these group (server) names comes in, the server will
choose an address to return based upon the weighting factor provided from WLM.

5. The next request for the same group name within the sysplex will be given the next
address according to the weighting. Depending on the relative resource utilization of the
hosts in the sysplex, this could be the same address as retrieved in the previous query, it
could be a different address for the same host, or it could be an address for another host
in the sysplex.

6. WLM is queried by the name server every 60 seconds (by default) for a new set of
addresses and host weights. This can be controlled by the -t parameter at startup of the
name server task (daemon).

Figure 10-26 WLM and name server working together

If you are familiar with DNS, you might have already noticed that we appear to have crossed
a boundary: an application registers with WLM, providing its service name or identification,
and then the name server picks up this information and creates a host name entry. The name
server dynamically maps an application (actually the group name representing the
application) within the sysplex to a host address. While this might be confusing at first, it
makes great sense.

If an application goes down, either WLM will be notified by a deregistration command, or else
it will detect automatically that the address space has terminated. Then WLM will remove the
entry from its tables. When the name server next queries WLM, it will no longer be given that
application, group, and hostname. Since we can have multiple applications within a single
group, another request for the same group will still succeed if another application registered
with the same group is active within the sysplex.

TCP/IP1Appl1 weight addr
Appl2 weight addr

WLM

Sysplex Host

Appl1
Appl2
Appl3

DNS Server

1. Registration

2. Query list of active APPLs

3. List of registered groups
and active addresses

4. DNS request
5. DNS response based on
the weight from WLM

hostname
groupname
servername
Chapter 10. BIND Domain Name System (DNS) 341

10.3.2 Data returned by the name server
When the sysplex DNS returns information to a DNS requesting data about WLM resources,
the sysplex DNS returns a time-to-live (TTL) of 0 so that the local DNS does not cache the
results. However, some resolver and name server implementations do not honor a zero TTL,
thus reducing the effect of connection optimization during the time they preserve knowledge
of cached resources. If you find that there are too many queries on the network for sysplex
resources and you wish to choose reduced network traffic over completely optimized
connections, you may start the DNS/WLM with a longer TTL value by overriding the default of
0 with the -l option.

10.3.3 WLM weights
The DNS/WLM queries the WLM every 60 seconds by default for information regarding
resource usage (weights) and available resource addresses. Weights are reflected in the
server entries and represent available capacity. The highest weight possible for a server is
64, which indicates the highest capacity available.

The weight 1 of a resource is only visible in a debug trace of the DNS as you see can see in
Figure 10-27:

Figure 10-27 Partial output of debug trace with WLM weight for MVS images

10.3.4 Static addresses versus registered addresses
The static addresses are those that are defined to the DNS in the sysplex (cluster) domain
file. The registered addresses are those that have been defined and are active within the
TCP/IP protocol stack. In response to queries, DNS/WLM sends a list of available addresses
comprised of the intersection of active addresses registered to the WLM and active
addresses that have been defined to the DNS zone files, as shown in Figure 10-28. The idea
is to present a list of addresses that are reachable by any host that needs to know. If you have
VIPAs configured in your TCP/IP stacks, only VIPA addresses should be statically defined in
DNS data files. For a TCP/IP stack within the sysplex, only the first 15 addresses listed in the
HOME statement of TCPIP.PROFILE will be registered to WLM (and passed on to the name
server when it requests the information). If an interface is not active, its address will not be
forwarded to WLM. When the name server receives these active addresses from WLM, it will
accept only the addresses that have matching address listed in its data file. This requirement
for statically defined addresses ensures full administrative control over the workload
distribution.

Server info from WLM follows for group, TCPIP, with 3 entries:
 Server # 1: Netid = MVS03A, Server = TCPIPA, Weight = 21, Num_addrs = 3
 [172.16.250.3], [9.24.104.113], [9.24.105.126], 1
 host_name = MVS03A
 Server # 2: Netid = MVS28A, Server = TCPIPA, Weight = 21, Num_addrs = 3
 [172.16.252.28], [9.24.104.42], [9.24.105.74], 1
 host_name = MVS28A
 Server # 3: Netid = MVS39A, Server = TCPIPA, Weight = 21, Num_addrs = 2
 [172.16.232.39], [9.24.104.149], 1
 host_name = MVS39A
 End of WLM Server info
342 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-28 DNS addresses used in WLM distribution

The emphasis should be on the words reachable addresses. Whether you use static or
dynamic routing protocols, you must ensure that any address returned in response to a DNS
query can be reached. If you are running static routing in your network without a
comprehensive set of static routing definitions on the appropriate platforms, many such
addresses could be unreachable. A DNS extraction might present a list of addresses, some
of which would not be reachable by every host in the network.

10.3.5 Benefits of DNS/WLM workload distribution
Since the target TCP/IP stack is chosen by the DNS server using the workload information
provided by WLM, the workload is balanced in a sysplex based on the current load and
system capacity.

Clients use the sysplex name as a server’s hostname. In case of TCP/IP stack failure, the
connection can be re-established to an appropriate surviving TCP/IP stack within the sysplex.

In general, the benefits of DNS/WLM include:

� Distributes connections in a sysplex based on current load and capacity.

� Distributes load across adapters on a single host.

� Dynamically avoids crashed hosts and servers.

� Dynamically avoids crashed TCP/IP stacks when using sysplex name.

� Highly scalable - new servers may be added without DNS administration.

� Inexpensive to deploy - uses existing technology. No special software/hardware is
required.

� Provides for high performance since the distribution is done during hostname resolution.

10.3.6 DNS/WLM limitations
Most of the DNS/WLM solution’s limitations arise from its inherent dependence on the
Domain Name System. The following lists some of these drawbacks:

� To take advantage of DNS/WLM connection optimization, the clients must be using DNS
to resolve addresses.

� Additionally, the DNS server must be implemented within the sysplex. Further, the
dynamic naming structure may require client re-configuration.

named.for

TN3270E

 FTPD

TCPIP

Static Address Used Address Registered
Address
Chapter 10. BIND Domain Name System (DNS) 343

� The DNS/WLM solution is not applicable to all applications, since application software
support is required.

� The DNS/WLM implementation does not distinguish among multiple servers on the same
host but using a different port.

� If caching is enabled at other name servers or at hosts and these name servers or hosts
ignore the TTL value, full connection optimization is defeated.

� The DNS/WLM can optimize connections only within a single sysplex.

� DNS/WLM is intended primarily for long-lived connections. Although short-lived
connections do exploit the potential of DNS/WLM, the added network traffic they generate
may outweigh the benefits.

10.3.7 Application and stack registration to WLM
In order for Workload Manager to become aware of an application, the application must
register with WLM. There is an assembler macro and a C function available for doing this
(IWMSRSRG and IWMDNREG, respectively). Although they have different names, the C
function is just a wrapper to call IWMSRSRG. When an application registers, the following
information must be passed to WLM:

Group (cluster) name - A generic name used to represent a group of applications running on
the sysplex. This can be considered the name of the service provided.

Server name - The name of the application running on that particular host in the sysplex.
Each application in a group must register with a different server name.
Essentially, this is the name of the application instance providing the
service.

Hostname - The TCP/IP hostname of the stack associated with the application (server). This
can be obtained by issuing the gethostname() call.

When the name server requests a list of registered applications from WLM, the above
information is returned for each one, along with a list of active addresses associated with the
hostname; that is, all the interfaces that have been successfully activated and have an
address assigned via the HOME statement in the TCP/IP profile.
344 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-29 Application and Stack registration to WLM

10.3.8 DNS/WLM registration
If you plan to use the connection optimization features of the BIND DNS server that is
exploiting WLM, then you need to be aware of several additions to your TCP/IP Profile data
set:

IPCONFig
 SYSPLEXRouting 1

SYSPLEXRouting 1 indicates that this CS for z/OS IP stack participates in a sysplex and
should notify the Workload Manager (WLM) of any changes in interface definitions or
statuses. This statement allows the stack to register itself and its interfaces with the WLM for
connection optimization purposes. SYSPLEXRouting is part of the IPCONFig statements of
the PROFILE.TCPIP. If you want Telnet to register with WLM, you need to add
WLMClustername and ENDWLMClustername 2 to the TELNETPARMS section of your profile
coding:

TELNETPARMS
 WLMClustername 2
 TELNET 3
 TN3270 3
 TN3270E 3
 TN03A 3
 ENDWLMClustername 2
;
ENDTELNETPARMS

SYSPLEX1

DNS

HOST1 HOST2

WLM REGISTRATION

FTPD1

CICS1

DDF1

APPL1

FTPD1

CICS1

DDF1

APPL1

 TCPIPA

TN3270E1

FTPD2

CICS2

DDF2

APPL2

TCPIPB

TN3270E2

HOST3

FTPD3

CICS3

DDF3

APPL3

TCPIPC

TN3270E3

TNRAL : TN3270E1,TN3270E2,TN3270E3 CICS : CICS1,CICS2,CICS3 DDF : DDF1,DDF2,DDF3
FTPRAL : FTPD1,FTPD2,FTPD3 APPL1 : APPL1,APPL2,APPL3

GROUP NAMES
Chapter 10. BIND Domain Name System (DNS) 345

Imbedded between WLMC and ENDWLMC you may specify the names that you would like
TELNET or TN3270(E) to go by when they register with the WLM. TELNET 3 and the other
names in the WLMC list are known as group names. They represent a cluster of equivalent
server names in a sysplex environment. The TCP/IP stack and the Telnet server are
registered at stack startup if the appropriate definitions have been placed in the
PROFILE.TCPIP. Reregistration occurs after every OBEYFILE command. You may deregister
by stopping the stack or by issuing an OBEYFILE command against a PROFILE that has coded
NOSYSPLEXrouting or by changing the specifications in the PROFILE between WLMC and
ENDWLMC.

The Telnet server can also be deregistered with either of the following commands:

V TCPIP,procname,TELNET,QUIESCE
V TCPIP,procname,TELNET,STOP

A reregistration is accomplished with:

V TCPIP,procname,TELNET,RESUME

You may specify up to 16 group names for a TN3270 server.

Other applications besides Telnet can be registered with WLM. A C-interface provides the
function to perform this task; an assembler macro (IWMSRSRG) also performs the
registration function. Application deregistration capability is also documented.

The best documentation on how to code the WLM registration is in the z/OS V1R2.0 CS: IP
Configuration Reference, SC31-8776.

For FTP, you specify a group name in WLMCLUSTERNAME of the FTP.DATA file. (See
Chapter 6, “File Transfer Protocol (FTP)” on page 123.)You may specify up to 16 group
names for an FTP server. If you want to change the registration, you have to stop and restart
the server.

For CICS, you specify the group names in the LISTENER definition.You may specify up to
three group names for a CICS listener. If you want to change the registration, you have to
stop and restart the listener.

With regard to the Telnet function itself, the group names by themselves are meaningless.
That is, Telnet does not necessarily connect a user with line mode Telnet; that is a function of
the Telnet negotiation that occurs when Telnet is requested. Nor does TN3270E by itself
mean that the TN3270E server will be invoked; again, this is a function of the client/server
Telnet negotiation prior to connection establishment. Nevertheless, we have chosen these
names as group names in our WLMCluster definitions just to make it obvious that we are
referring to the registration of Telnet group names. A name like FRED would have worked just
as well for registration purposes, although it might not have been intuitively obvious what type
of server application it represented.

So you may wonder why we chose different group names for the TN3270 or Telnet function.
Functionally each group name is not equivalent to every other group name. TN3270 and
TN3270E represent group names that allow users to reach the same applications on all four
MVS images. TN is a group name that allows users to reach applications that run only on
SC63 and SC64. Telnet is a group name that allows users to access only one of the four MVS
images; that MVS image, SC64, runs an application that is not available on any of the other
three MVS images. If a user entered an incorrect group name, he could be connected with a
Telnet that will not allow him to access the application he needs, whether it be directly or
indirectly via VTAM cross-domain, cross-network, or APPN services. Figure 10-30 depicts
this scenario.
346 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-30 Telnet distribution in a sysplex

Telnet clients will be told to issue any of the following commands to reach a Telnet server:

1. telnet telnet.ralplex1

(no dot following ralplex1) so that the fully qualified name can be resolved appropriately

2. tn3270 tn3270.ralplex1.zos12.ral.ibm.com

3. tn3270 tn03a

The format of the command the end users enter will differ depending on the setting of their
TCPIP.DATA information and on the coding at their DNS.

10.3.9 DNS/WLM registration results
Unfortunately there is no generic query available to determine from z/OS WLM the names of
resources registered with it. Some applications issue messages about a successful
registration:

Figure 10-31 FTPD successful registration

Other applications have commands available to show the group names registered with WLM:

SC65

TN3270
TN3270E

 DNS

WLM

SC64

TN3270
TN3270E

 DNS

WLM

SC66

TN3270
TN3270E
TN
TELNET
 DNS

WLM

SC63

TN3270
TN3270E
TN

 DNS

W LM

SYSPLEX

 BPXF024I (TCPIPB) Mar 3 17:02:09 ftpd 33554435: EZYFT57I FTP 140
 registering with WLM as group = FTPSRV host = SC63
Chapter 10. BIND Domain Name System (DNS) 347

Figure 10-32 Display Telnet group names registration with WLM

If there is no command or message available to check the registration with WLM, you can use
the nslookup or any other function that resolves host names to verify the results. Another
possibility to be certain if an application has registered is to dump the DNS database. Please
review 2.5.6, “Dumping the DNS server cache” on page 36 for a detailed explanation.

10.3.10 Data returned by the name server
When the sysplex DNS returns information to a DNS requesting data about WLM resources,
the sysplex DNS returns a Time-to-Live (TTL) of 0 so that the local DNS does not cache the
results. However, some resolver and name server implementations do not honor a zero TTL,
thus reducing the effect of connection optimization during the time they preserve knowledge
of cached resources. If you find that there are too many queries on the network for sysplex
resources and you wish to choose reduced network traffic over completely optimized
connections, you may start the DNS/WLM with a longer TTL value by overriding the default of
0 with the -l option.

10.3.11 Recommendation for DNS/WLM address definition
Based on the discussion so far, we have come to the following conclusions:

1. If you have implemented dynamic routing protocols in your network, limit your statically
defined addresses in the sysplex subdomain to the VIPA address and use SOURCEVIPA.

2. If you use dynamic routing protocols throughout your network, but you do not use VIPA at
the z/OS IP host, you may still successfully use multiple addresses in your name server
forward zone files.

3. If you use static routes in your network, limit the statically defined name server addresses
to those that are reachable throughout the network.

Some of the traces you see in this chapter and in the appendixes show that we did not always
follow our own recommendations. Expecting dynamic routing to be in place by the time we
were ready to test the BIND DNS/WLM, we overdefined our statically defined addresses in
the zone files. With static routing still in place, we ended up with some unreachable
addresses for a while. When you review our static name server definitions in be aware that
they are not necessarily optimal.

10.3.12 Round-robin technique and addresses returned
If the intersection of active addresses and DNS-defined addresses yields multiple potential
addresses for a query and if all systems have the same weights, you would expect to see a
rotation of the addresses being offered a client. Yet you may test with DNS/WLM and never
perceive the phenomenon. This is due to the default for the -t option on the DNS startup. -t
represents the amount of time between queries to the WLM about sysplex names, addresses,

 D TCPIP,T03ATCP,T,WLM
 EZZ6067I TELNET WLM DISPLAY 204
 PORT
 NUM WLM CLUSTER NAME STATUS
 ----- ------------------ ---------------------
 23 TELNET Registered
 23 TN3270 Registered
 23 TN3270E Registered
 3 OF 3 RECORDS DISPLAYED
348 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

and weights. When the time specified in -t (default of 60 seconds) expires, DNS resets its list
of potential addresses to the order specified in the DNS definition sequence. The default of 60
seconds has been deemed optimal for a production system, because weights can change
rapidly; DNS should refresh its knowledge of weights frequently. A great number of
connections occur in a production environment in those 60 seconds, and these will receive
the benefits of the round-robin address offers. If you set -t to a value greater than 60 seconds,
you defeat the purpose of connection balancing by overriding refreshed knowledge about
sysplex weights.

However, if you want to see the round-robin effect in action during testing you can temporarily
set the value higher than 60 seconds. Multiple (o)nslookups in rapid succession should
deliver a list of addresses that rotate with each command.

Comparison of addresses returned
When we had only one active interface eligible for DNS/WLM selection, nslookup from two
different workstations on the 9.24.104.0 network (subnet mask = 255.255.255.0) delivered a
single entry (Figure 10-33):

Figure 10-33 nslookup response from different servers

When we had multiple active interfaces eligible for DNS/WLM selection, nslookup delivered
the result shown in Figure 10-34:

Figure 10-34 nslookup with multiple active interfaces

All six addresses you see in each of the two screens above are active. They are all reachable
addresses if your network employs dynamic routing and has the appropriate connectivity.
They are unreachable if your static definitions are not comprehensive.

C:\>nslookup ftpsrv.ralplex1 mvs03
Server: mvs03-en1.ralplex1.itso.ral.ibm.com
Address: 9.24.105.126
Name: ftpsrv.ralplex1.itso.ral.ibm.com
Address: 9.24.105.126

C:\>nslookup ftpsrv.ralplex1
Server: rsserver.itso.ral.ibm.com
Address: 9.24.104.108
Name: ftpsrv.ralplex1.itso.ral.ibm.com
Address: 9.24.105.126

OS2 C:\>nslookup tn3270
Server: rsserver.itso.ral.ibm.com
Address: 9.24.104.108
Non-authoritative answer:
Name: tn3270.ralplex1.itso.ral.ibm.com
Addresses: 192.168.251.1, 192.168.252.1, 192.168.236.1, 192.168.221.20
 192.168.109.3, 9.24.105.126
Aliases: tn3270.itso.ral.ibm.com
Chapter 10. BIND Domain Name System (DNS) 349

10.3.13 DNS/WLM TCPDATA considerations
The TCPDATA file (or resolver file) is used by clients to determine, among other things, the
stack name they should have affinity to and the domain name that will automatically be
appended to their name-based queries. The fully qualified name for mvs03 could end up
being mvs03.itso.ral.ibm.com. or mvs03.ralplex1.itso.ral.ibm.com. even if all you entered at
the client was ping mvs03. This depends on the resolver file your client is using.

If you are the DNS server for a sysplex domain, you have a decision to make about how you
designate the domain name for the TSO or shell client. If you leave the domain name as
itso.ral.ibm.com., then every time your client needs to have for example ftpsrv converted into
a fully qualified name, it will be resolved into ftpsrv.itso.ral.ibm.com. You may not find the
group name ftpsrv under these conditions; however, you would find the thousands of other
resources in the domain itso.ral.ibm.com and served by another name server very easily by
allowing the default domain to be appended.

Your network users who need to get to the few resources managed by the sysplex domain
simply need to change those requests to something like this: ftp ftpsrv.ralplex1, ensuring
that they do not append a period to the request. (The period or dot would indicate that the
fully qualified name has been specified and the current domain name should not be
appended.) Their client resolver process will expand the two-part name into the fully qualified
ftpsrv.ralplex1.itso.ral.ibm.com. To avoid your network users having to specify the long
sysplex names, you can simply code CNAME records for your sysplex resources.

On the other hand, if you make the domain name ralplex1.itso.ral.ibm.com, then every time
your TSO client needs to find the group name ftpsrv, it will be correctly resolved into
ftpsrv.ralplex1.itso.ral.ibm.com. However, to reach the thousands of resources by name that
are actually in the itso.ral.ibm.com domain, the TSO or shell client would have to specify the
fully qualified name to begin with or would have to rely on your CNAME coding in the name
server. (The CNAME coding would spell out the fully qualified name of the resource.)

You have probably figured out that the issue of what domain name to put into the TCPDATA
file is one of degree: how many host-based clients are there versus workstation clients? If
there are few z/OS-based clients trying to reach resources that are based mostly in the
sysplex, then you might decide to use the sysplex subdomain as your TCPDATA domain. If
the same clients are trying to reach resources in a completely different domain, then you
might decide to use the domain name that represents the greater number of resources.

In our network, we left the TCPDATA file at the host with a domain of itso.ral.ibm.com. for the
clients to use and CNAME records to point to the sysplex resources.

10.3.14 Client/server affinity
Some client/server applications require that the client connects to the same server instance
after an interruption. This is achieved in the following way:

1. The server uses the new ioctl() function SIOCGSPLXFQDN to get its fully qualified name
from the TCP/IP stack.

2. After the connection has been established using only the group name or the sysplex name
the server sends its fully qualified name
(server_instance.groupname.sysplex_subdomain.domain) to the client.

3. After an interruption, the client uses this fully qualified name to make sure he connects to
the same server he was connected to before the interruption.

To enable this function the following definition has to be added to the sysplex name servers
loopback file:
350 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

127.0.0.128 IN PTR ralplex1.itso.ral.ibm.com; Sysplex Loopback Address (SLA)

The loopback address range 127.0.0.128-127.0.0.255 has been reserved by IBM for this
purpose.

10.3.15 Configuring the DNS server for WLM
In this scenario MVS03 and MVS28 serve as domain name systems in two domains: the
parent domain of itso.ral.ibm.com and the sysplex subdomain of ralplex1.itso.ral.ibm.com.

Figure 10-35 DNS/WLM with combined parent and sysplex domains

 Parent Domain: itso.ral.ibm.com
 Primary DNS: MVS03
Secondary DNS: MVS28

Sysplex Subdomain:
Primary DNS:

Secondary DNS:

ralplex1.itso.ral.ibm.com
MVS03
MVS28

Existing itso.ral.ibm.com

MVS03
DNS

MVS28
DNS

ralplex1

MVS03
DNS

MVS28
DNS

TN3270 TN3270E TELNET
Chapter 10. BIND Domain Name System (DNS) 351

MVS03 DNBoot file for MVS03: DNS/WLMS/WLM boot file

Figure 10-36 Boot file for MVS03: DNS/WLM

As you would expect, two zone files are listed: one for ralplex1.itso.ral.ibm.com 3 and one for
itso.ral.ibm.com 4. The sysplex subdomain reference uses the cluster keyword 5.

MVS03 DNS/WLM forward files
Here you see the two domain files referenced in the boot file in Figure 10-36.

Figure 10-37 DNS/WLM forward file

; /etc/named.boot.wlm2 based on /etc/named.boot.wlm1
;
; TYPE DOMAIN FILE OR HOST
directory /etc/dnsdata
;
; (Following for sysplex name server as both parent + sysplex DNS)
primary ralplex1.itso.ral.ibm.com 3 named.for.wlm1 cluster 5
primary itso.ral.ibm.com 4 named.for2
primary 251.168.192.in-addr.arpa named.wlm2192.168.251
primary 252.168.192.in-addr.arpa named.wlm2192.168.252
primary 236.168.192.in-addr.arpa named.wlm2192.168.236
primary 235.168.192.in-addr.arpa named.wlm2192.168.235
primary 105.24.9.in-addr.arpa named.wlm29.24.105
primary 104.24.9.in-addr.arpa named.wlm29.24.104
primary 221.168.192.in-addr.arpa named.wlm2192.168.221
primary 109.168.192.in-addr.arpa named.wlm2192.168.109
primary 0.0.127.in-addr.arpa named.lbk.wlm2
cache . named.ca
forwarders 9.24.104.108
options query-log

; /etc/dnsdata/named.for.wlm1 for MVS03 and SYSPLEX
 $ORIGIN itso.ral.ibm.com.
 ralplex1 IN SOA 8 mvs03.ralplex1.itso.ral.ibm.com. gdente@ralplex1.i
 5 10800 3600 604800 86400)
 $ORIGIN ralplex1.itso.ral.ibm.com.
 IN NS mvs03
 IN NS mvs28
; OWNER CLASS TYPE RECORD DATA
 localhost IN A 127.0.0.1
 mvs03 IN A 7 9.24.105.126 ; Ethernet LCS
 IN A 6 192.168.251.1 ; Via address
 IN A 192.168.252.1 ; SAMEHOST to MVS03C
 IN A 192.168.236.1 ; RAS XCF to 28
 IN A 192.168.235.3 ; MPC to 25
 IN A 192.168.221.20; LICP03 Connection
 IN A 192.168.109.3 ; LICCP25 Connection
 mvs03c IN A 192.168.252.2 ; SAMEHOST at MVS03C
 mvs28 IN A 9.24.105.75 ; Ethernet LCS at MVS28
 IN A 192.168.236.2 ; RAS XCF to 03
 IN A 192.168.221.24; LICP03 Connection
 IN A 192.168.109.1 ; LICCP25 Connection
352 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

As previously noted, this forward file could be trimmed down significantly so that only the
VIPA 6 and/or the generally available LAN connection (9.24.105.126) 7 are available as
statically defined addresses. As long as full dynamic routing is in place and no firewall
interference prevents all addresses from being used, you could leave the full cluster domain
file as you see it here. 8 points out that the SOA record for the ralplex1 subdomain is
managed using the fully qualified ralplex1 name for mvs03.

The following figures show the remaining files configured in the scenario. The reverse file is
shown in Figure 10-38:

Figure 10-38 MVS03 DNS/WLM reverse file (in-addr.arpa)

 The named addresses belong to two domains and are so identified: 1, 2, 3, 4.

Figure 10-39 MVS03 DNS/WLM loopback file

Again you see in Figure 10-39 that the loopback address has been associated with both the
parent domain and the sysplex subdomain (5, 6).

MVS03 console displays
You will notice in the console displays of the files loading that the cluster file does not appear
(Figure 10-40 on page 354) as you might expect in message EZZ6540I.

; /etc/dnsdata/named.wlm29.24.105 for MVS03-en1 9.24.105.126
;$ORIGIN 105.24.9.in-addr.arpa.
 @ IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.itso.ral.ibm.com (
 2 10800 3600 604800 86400)
 IN NS mvs03.ralplex1.itso.ral.ibm.com.
 IN NS mvs28.ralplex1.itso.ral.ibm.com.
; LCS entry at MVS03
 126 IN PTR mvs03.ralplex1.itso.ral.ibm.com. 1
 126 IN PTR mvs03.itso.ral.ibm.com. 2
; LCS entry at MVS28
 75 IN PTR mvs28.ralplex1.itso.ral.ibm.com. 3
 75 IN PTR mvs28.itso.ral.ibm.com. 4

; /etc/dnsdata/named.lbk.wlm2
;
 0.0.127.in-addr.arpa. IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.ibm.
 5
 10800
 3600
 604800
 86400)
 0.0.127.in-addr.arpa. IN NS mvs03.ralplex1.itso.ral.ibm.com. 5
 0.0.127.in-addr.arpa. IN NS mvs03.itso.ral.ibm.com. 6
 1.0.0.127.in-addr.arpa. IN PTR localhost.
Chapter 10. BIND Domain Name System (DNS) 353

Figure 10-40 Console or SYSLOGD.LOG messages: DNS/WLM loading

This omission is by design. The sysplex domain file is refreshed every 60 seconds, so the
decision was made to suppress the load message for any cluster file. Nevertheless, a dump
of the DNS server database (OE Signal #2, or SIGINT) will show that the information has
been loaded; in addition, if you set debugging at, for example, level 11 (-d 11), the output in
named.run also proves that the data has been loaded.

Figure 10-41 MVS28 boot file (two forward files)

Again you see in Figure 10-41 that the secondary is to participate in sysplex connection
optimization (keyword cluster 1). Also note that two domain files will be retrieved in a zone
transfer from the primary name server: one for the sysplex domain (1) and one for the parent
domain (2).

EZZ6699I name server starting. @(#) ddns/ns/ns_main.c, dns_ns, dns_r1.1 1
EZZ6701I named established affinity with 'T03ATCP'
EZZ6540I Static primary zone '251.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '252.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '236.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '235.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '105.24.9.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '104.24.9.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '221.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '109.168.192.in-addr.arpa' loaded (serial 2)
EZZ6540I Static primary zone '0.0.127.in-addr.arpa' loaded (serial 2)
EZZ6540I Static cache zone '' loaded (serial 0)

; /etc/named.boot.wlm2 based on /etc/named.boot
; TYPE DOMAIN FILE OR HOST
 directory /etc/dnsdata
; (Following for sysplex name server as both parent/sysplex name server)
 secondary ralplex1.itso.ral.ibm.com 192.168.236.1 named.for.wlm1 cluster 1
 secondary itso.ral.ibm.com 192.168.236.1 named.for2 2
 secondary 251.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.251
 secondary 252.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.252
 secondary 236.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.236
 secondary 235.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.235
 secondary 105.24.9.in-addr.arpa 192.168.236.1 named.wlm29.24.105
 secondary 104.24.9.in-addr.arpa 192.168.236.1 named.wlm29.24.104
 secondary 221.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.221
 secondary 109.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.109
 primary 0.0.127.in-addr.arpa named.lbk.wlm2
 cache . named.ca
 forwarders 9.24.104.108
 options query-log
354 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-42 MVS28 loopback file

The only changes we make to the loopback file at MVS28 (Figure 10-42) are:

� To identify MVS28 as a member of the ralplex1.itso.ral.ibm.com domain 3

� To add a loopback record showing the sysplex domain 4

10.4 Setting up a BIND 9-based Domain Name Server
CS for z/OS V1R2 IP provides a port of the BIND-based version 9 name server to the zSeries
platform. It is known as the BIND 9-based name server and it is different from the BIND
4.9.3-based name server that existed in previous CS for OS/390 releases. In a multiple stack
(Common INET) environment, the BIND 9 name server is a generic server which does not
have stack affinity. This is in contrast to the BIND 4.9.3 name server which does have stack
affinity.

In general, the BIND 9 name server may perform slower than the BIND 4.9.3 name server for
small zones on simple query/response operations, or you may achieve equivalent throughput
as a BIND 4.9.3 name server but with higher CPU consumption, depending on if your system
is already CPU constrained. The BIND 9 name server contains extra overhead to support
multi-threading, and DNSSEC. For small zones, the extra overhead for multi-threading may
cause a performance disadvantage. On the other hand, the multi-threading may improve
performance for large zones.

BIND 4.9.3 name servers are unable to answer queries for a period of time during zone
transfers. The larger the zone, the more noticeable this may become. Because of the
multi-threading, BIND 9 name servers, in contrast, are able to answer queries during zone
transfers. Furthermore, BIND 9 name servers are capable of Incremental Zone Transfers,
while BIND 4.9.3 name servers are not. Incremental Zone Transfer allows only the changed|
information in a zone to be sent to slave name servers instead of the entire zone.

The following steps will show you what is required to implement and run a basic master
(primary) domain name server environment, using BIND 9-based DNS:

1. 10.4.1, “Migrating from a BIND V4.9.3 DNS environment” on page 356

2. 10.4.2, “Define your zone” on page 356

3. 10.4.3, “Create a configuration file for your environment (named.conf)” on page 357

4. 10.4.4, “Specify port ownership” on page 359

5. 10.4.5, “Update the name server start procedure (optional)” on page 359

6. 10.4.6, “Create the domain data files” on page 360

; /etc/dnsdata/named.lbk.wlm2
; 3
0.0.127.in-addr.arpa. IN SOA mvs28.ralplex1.itso.ral.ibm.com. mvs28.ralp
 5
 10800
 3600
 604800
 86400)
0.0.127.in-addr.arpa. IN NS mvs28.ralplex1.itso.ral.ibm.com. 4
0.0.127.in-addr.arpa. IN NS mvs28.itso.ral.ibm.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.
Chapter 10. BIND Domain Name System (DNS) 355

7. 10.4.7, “Create the loopback file” on page 364

8. 10.4.8, “Create the cache file (hints file)” on page 365

9. Configure logging

10.Start the name server

11.Verifying if name server is working as expected

12.Define the backup (secondary) domain name server

10.4.1 Migrating from a BIND V4.9.3 DNS environment
The named.boot file in the BIND 4.9.3-based DNS server is replaced with the named.conf file
for BIND 9-based DNS servers. Along with the name change is a change in syntax. A
migration tool (initiated by specifying a new UNIX command called downstater) is supplied to
convert the files from the BIND 4.9.3-based DNS format to the newer BIND 9-based DNS
format. The migration tool will not do backwards conversion from the newer version to the
older version. In our scenario, since we want to show you how to configure each file we will
assume this is a new DNS implementation.

10.4.2 Define your zone
The first thing to do when you need to implement a domain name server in your network
environment is to plan and define what you are suppose to control, the boundaries of your
domain, which servers are going to control your domain, and how you are going to interact
with external domains. By defining these issues, you will be able to draw a good picture of the
domain you are going to control, and use it as input to go through all the necessary steps to
built your domain name server. A good way to get these definitions is to answer a few
questions and draw the scenario you are willing to create.

Our scenario will be defined based on the following definitions

1. Our domain will be named zos12 and it will be a sub domain of ral.ibm.com

2. The host we are going to use as primary server is 9.12.6.68 (sc63)

3. The host we are going to use as secondary server is 9.12.6.64 (sc64)

4. In our scenario all unresolved queries will be forwarded to 9.24.104.108

Based on the answers provided, we are able now to draw our scenario, that, in our case
would look like the one showed in Figure 10-43:
356 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-43 DNS basic implementation scenario

The domain is zos12.ral.ibm.com. There is one primary name server platform: SC63. The
secondary name server SC64 obtains its information from zone transfers with SC63.

10.4.3 Create a configuration file for your environment (named.conf)
The boot file initializes the name server environment and points to the individual name server
definition files and to the options that the name server will provide for each zone it supports.
The boot file is referenced in the start procedure used from the MVS console or in the UNIX
System Services shell command used to start the domain name system server. If no boot file
is referenced in the start procedure or command, the default of /etc/named.boot is assumed.

A BIND 9 configuration consists of statements and comments. Statements end with a
semicolon (;). Statements and comments are the only elements that can appear without
enclosing braces ([]). Many statements contain a block of substatements, which are also
terminated with a semicolon. Figure 10-44 shows the contents of the named.boot files being
used in our scenario.

Domain:
Primary Name Server:

Secondary Name Server:

zos12.ral.ibm.com
SC63 - 9.12.6.68
SC64 - 9.12.6.64

zos12.ral.ibm.com

SC63
Primary
Name
Server

SC64
Secondary
Name
Server

Zone Transfer
Chapter 10. BIND Domain Name System (DNS) 357

Figure 10-44 named.conf contents

The contents of this boot file specify the following statements:

1 The options statement controls global server configuration options and sets defaults for
other statements. It can appear only once in a configuration file. In our sample, we defined
only the directory parameter to identify the working directory of the server. This will be the
default location for all server files identified in this configuration file.

2 The logging statement configure the logging options to be used by this name server
configuration. In our sample we defined that all queries received will be logged in the syslog
daemon default system log.

3 A zone statement, associated with the type parameter identifies the zone and how this
server is related to it. This record defines that this server has a master copy of the data
related to the zone and will be able to provide authoritative answers for it. The file parameter
identifies the file to read for the name-to-IP address, IP address-to-name, and loopback
mappings.

4 This zone statement has a type parameter hint defined identifies the root level domain,
identified by a dot (.), and the file in which the IP address of the root DNS servers can be
found. The cache file is also known as the hints file.

 #
 # conf file for BIND9-based Name Server
 #
 options { 1
 directory "/etc/octavio/dnsdata";
};
 logging { 2
 category "queries" {
 default_syslog;
};
};
 zone "zos12.ral.ibm.com" in { 3
 type master;
 file "zos12.for.v9";
};
 zone "6.12.9.in-addr.arpa" in { 3
 type master;
 file "zos12.rev.v9";
};
 zone "0.0.127.in-addr.arpa" in { 3
 type master;
 file "zos12.lbk.v9";
};

 zone "." in { 4
 type hint;
 file "zos12.ca.v9";
};
 zone "itso.ral.ibm.com" in { 5
 type forward;
 forward only;
 forwarders {
 9.24.104.108;}
};
358 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

5 This zone statement has a type of forward and is a way to configure forwarding on a
per-domain basis. A zone statement of type forward can contain a forward or forwarders
statement, which will apply to queries within the domain given by the zone name. If no
forwarders statement is present or an empty list for forwarders is given, then no forwarding
will be done for the domain, cancelling the effects of any forwarders in the options statement.
Thus if you want to use this type of zone to change the behavior of the global forward option
(that is, forward first to, then forward only, or vice versa, but want to use the same servers as
set globally) you need to respecify the global forwarders.

10.4.4 Specify port ownership
By default, the name server uses a single port (53) for TCP and UDP sessions. DNS servers
can share port 53 if they connect to clients or other servers on different IP addresses. A BIND
9 server can specify IP addresses to listen on and from which to send queries, notifies and
zone transfers in its configuration file.

To specify port ownership when using the named start procedure for BIND 9, add the
following statements to the PROFILE.TCPIP data set:

Figure 10-45 Port ownership definition

1 The procedure name is NAMED9.

If you decide to start the Name Server using the z/OS UNIX shell, the port can be generically
reserved to UNIX applications, as shown:

Figure 10-46 Ports reserved to z/OS UNIX

10.4.5 Update the name server start procedure (optional)
 When choosing to start the name server from MVS, create a start procedure. This is not
necessary if the name server is started from the z/OS UNIX shell. Move the sample start
procedure, SEZAINST(NAMED9), to a recognized PROCLIB. Specify name server
parameters and change the data set names as required to suit local configuration. The boot
file path (for BIND 9-based DNS) can also be changed as shown in the sample start
procedures shown in Figure 10-47 below:

PORT
 53 TCP NAMED91 1
 53 UDP NAMED91

PORT
 53 TCP OMVS;reserved to z/OS UNIX
 53 UDP OMVS;reserved to z/OS UNIX
Chapter 10. BIND Domain Name System (DNS) 359

Figure 10-47 BIND 9 startup procedure

1 The parameter that identifies the configuration file has been changed to -c. The older
versions used -b to define the same file.

2 Since BIND9 has no stack affinity there is no need to define a STDENV DD card. It is an
optional card.

10.4.6 Create the domain data files
The domain data files contain information about a domain, such as the IP addresses and
names of the hosts in the domain for which the master name server is authoritative. The
forward domain data file contains entries that provide forward mapping (host names-to-IP
addresses for each host system in the zone) as well as additional information about system
resources. The reverse domain data file contains entries that provide reverse mapping (IP
addresses-to-host names)

10.4.6.1 The forward file
The forward files are identified in the /etc/named.boot and contain the name-to-IP address
mappings. Every zone must have a separate forward file. If your DNS server services three
zones, then you must have three separate forward files. These files are stored in HFS format
and their UNIX permission bits must allow name server read/write access. The entries in the
forward files are defined using a special format that is defined by RFC1034. These entries are
called resource records. All resource records (RR) are written in the file with the following
format:

name ttl address_class record_type record_data

The record_type and record_data fields are the only required fields. The name, ttl and
address_class have defaults that may be set if they are not specified. The record_type
indicates the type of resource record which defines the record data format. Valid resource
record types include, but are not limited to, the following:

Table 10-2 DNS resource record types

 //NAMED PROC C='/etc/octavio/named.conf'
 //NAMED EXEC PGM=BPXBATCH,REGION=0K,TIME=NOLIMIT,
 // PARM='PGM /usr/lpp/tcpip/sbin/named -c &C ' 1
 //*STDENV DD PATH='/etc/named.env', 2
 //* PATHOPTS=(ORDONLY)
 //SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
 //SYSIN DD DUMMY
 //SYSERR DD SYSOUT=*
 //SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
 //CEEDUMP DD SYSOUT=*

DNS Resource Record type Record Type description

SOA Start Of Authority for the stated Zone

A Name -to-IP address translation record

SRV Service-to-Location definition

PTR IP address-to-Name translation record

NS Name of the authoritative DNS server for the stated Zone
360 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

You also can include in the zone files other records, called master file directives, to define
some specific values, as follows:

� $ORIGIN directive - sets the domain name that will be appended to any unqualified record
as shown in the example below:

$ORIGIN itso.ibm.com
sample CNAME host01
would be equivalent to:
sample.itso.ibm.com CNAME host01.ibm.com

� $INCLUDE directive - Read and process the file filename as if it were included into the file
at this point. If origin is specified, the file is processed with $ORIGIN set to that value,
otherwise the current $ORIGIN is used. Once the file is read, the origin and current
domain revert to the values they were prior to the $INCLUDE. it has the following syntax:

$INCLUDE filename [origin] [comment]

� $TTL directive - Set the default Time To Live (TTL) for subsequent records with undefined
TTLs. Valid TTLs are of the range 0-2.147.483.647 seconds. It has the following syntax:

$TTL default-ttl [comment]

Figure 10-48 shows the contents of the named.for file. It is referenced in the named.conf file
you saw in Figure 10-44 as the primary DNS information for the domain zos12.ral.ibm.com.

Figure 10-48 Forward master file definitions

CNAME alias name of a stated host

Note:Since BIND 8.2, you must use the $TTL directive to set the default TTL for the zone.
If you do not define it, you will receive this message:

No default TTL set using SOA minimum instead

; Default TTL value
 $TTL 86400 1
 $ORIGIN ral.ibm.com. 2
 zos12 IN SOA dns63.zos12 admin.zos12 (3
 1 ; Serial (incriminated when database is changed 4
 10800 ; Refresh (slave will check every 3 hours 5
 3600 ; Retry (retry every hour after refresh failure 6
 604800 ; Expire (slave gives up retry after 1 week 7
 86400) ; Leg. Cache (cache NXDOMAIN/RRSET responses 1 day 8
$ORIGIN zos12.ral.ibm.com. 9
 IN NS dns63 10
 IN NS dns64
 _http._tcp SRV 0 0 80 www.zos12.ral.ibm.com. 11
 localhost IN A 127.0.0.1 12
 dns63 IN A 9.12.6.68
 dns64 IN A 9.12.6.64
 host1 IN A 9.12.6.67
 host2 IN A 9.12.6.63
 www IN A 9.179.147.237
 sc63 IN A 9.12.6.67 13
 IN A 9.37.6.68
 mail IN CNAME host1 14
 ftp IN CNAME host2

DNS Resource Record type Record Type description
Chapter 10. BIND Domain Name System (DNS) 361

1 The $TTL directive must be defined and provides the time-to-live value. If named finds a
$TTL directive it follows TTL semantics defined in RFC 2308, which states that records not
explicitly setting a TTL inherit the TTL from the $TTL value. If there is no $TTL set, it follows
TTL semantics from RFCs 1035 and 1035, which state that records with no explicit TTL
inherit one from the previous record. This implies that to follow RFC 1034/1035 semantics,
the SOA RR must set its TTL value. For simplicity, it is recommended that you always specify
a $TTL value. This line sets the default TTL for all records to 86400 seconds (one day).

2 This $ORIGIN control records defines the higher domain zone where the subdomain itso is
being defined. Its used in conjunction with the SOA record that follows to resolve the name of
zos12.ral.ibm.com, which will is the domain name of our zone.

3 The SOA record specifies the name of the host that has the domain name server authority
for the zone. This name is appended to the domain name specified in the previous $ORIGIN
record. The SOA record includes a mailbox address of the user who is responsible for the
zone: admin@zos12.ral.ibm.com. A left parenthesis signals that everything between here
and a succeeding right parenthesis should be considered as belonging to the same resource
record, despite record boundaries of the master data set. The number enclosed in
parenthesis are parameters used to set different values for the zone, as follows:

4 The Serial parameter is used to identify the serial number of the domain database. is
referenced by secondary name servers. Increment the number each time you change the
file.The secondary name servers determine when to do a zone transfer based on an
increment in this value.

5 The Refresh parameter is expressed in seconds. A secondary name server that has
transferred this zone from the primary name server should not wait more than this number of
seconds before it requests a refresh (a full zone transfer) from the primary name server.
Before requesting a zone transfer, the secondary name server checks if the value of the serial
field for the zone in question has changed or not. If not, a zone transfer is not necessary.

6 The Retry parameter is expressed in seconds. If a secondary name server fails to refresh its
copy of resource records, it should wait this number of seconds before it retries the refresh
from the primary name server.

7 The Expire parameter is expressed in seconds. This is the maximum time a secondary
name server should consider its copy of resource data valid. If the secondary name server
does not succeed with a zone transfer from the primary name server within this amount of
time, it should consider its copy of the resource data obsolete, and stop answering queries for
this zone.

8 The meaning of the last SOA value has changed from BIND v4 to V9. It now represents
length of time other servers should cache negative responses from this zone. This line sets
that value to 86400 seconds (one day).

9 The control entry $ORIGIN appends the string zos12.ral.ibm.com. to all the following host
names that do not end with a dot ('.').

10 The NS (Name Server) records specify the name servers in the zone. Note that NS
records do not distinguish between primary and secondary name servers. You will later see
that in our scenario dns64 is a secondary name server that receives zone transfers from
dns63.

11 Specifies the location of services (for example, ftp, http, telnet). This record identifies one
or more hosts capable of satisfying the service and protocol represented in the name field of
the resource record. The name field for these resource records must follow a unique naming
convention. The contents of this RR are as follows:
362 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

name priority weight port target where:

the name field must be specified as Service.Protocol.Name.:

Service is the symbolic name of the desired service, as defined in Assigned Numbers (1)
or locally.

Protocol is typically TCP or UDP

Name is the domain this RR refers to.

Priority is a number in the rage of 0-65535 and represents the priority of this target host. A
client must attempt to contact the target host with the lowest-numbered priority.
Target hosts with the same priority should be tried in pseudo-random order.

Weight is used for a crude connection balancing mechanism. When selecting a target host
among those that have the same priority, the chance of trying this one first
should be proportional to its weight. The valid range is 0-65535.

Port is the port on this target host of this service. The valid range is 0-65535.

Target is the domain name of the target host. This name must be a canonical name and not
an alias. There must be one or more A records for this name. A target of
consisting of a dot (.) means that the service is not available at this domain.

In our file, the SRV records specify the location for the 'http' service using the 'tcp' protocol.
The first record has a priority of 0, a weight of 0, uses port 80 and the service is provided at
host www.itso.ral.ibm.com. The second record has a priority of 10 which is lower, a different
port and target. A web client capable of using SRV records requesting a site named
http://itso.ral.ibm.com/, would be directed to www.itso.ral.ibm.com and
www2.mycorp.com. The client would be responsible for determining which site to connect first
based on priority and then on weight.

12 An A record is an address record, naming the host and the IP address of that host.

13 You can also use A records to define more than one address to a host. If you do not
specify a value in the name field, the value from the preceding record will be used.

14 A CNAME record is an alias for a host name.

10.4.6.2 The reverse file (in-addr.arpa file)
Figure 10-49 shows the contents of zos12.rev.v9 reverse file. It is referenced in the
named.conf file as the primary DNS information for the domain 6.12.9.in-addr.arpa. Note the
inverse syntax used for referencing this in-addr.arpa file in Figure 10-44 on page 358. There
must be a single reverse file for each IP address grouping.
Chapter 10. BIND Domain Name System (DNS) 363

Figure 10-49 Reverse master file sample

1 The PTR record type includes, in the data part of the record, the fully qualified name of the
host corresponding to the IP address in the name part of the record.

2 $GENERATE is a v9-specific directive that is useful for creating a series of records that
differ only by an tolerator. This line prompts the name server to create the records listed
below upon zone load. The syntax and a brief explanation over the parameters follows:

$GENERATE range hs type rhs [comment]

 range - This can be one of two forms: start-stop or start-stop/step. If the first form is used
then step is set to 1. All of start, stop and step must be positive.

 hs - This parameter describes the owner name of the resource records to be created.
Any single $symbols within the lhs side are replaced by the
interactor value.

 type - At present the only supported types are PTR, CNAME, NS, A, and AAAA. In our
sample we defined as PTR

 rhs - A domain name. It is processed similarly to lhs.

10.4.7 Create the loopback file
 The loopback file contains the loopback address. This is the address that a host uses to
route queries to itself. BIND 9 mode| requires the availability to bind onto loopback address
127.0.0.1. Figure 10-50 shows the contents of the loopback file.

;
 $TTL 86400
 $ORIGIN 12.9.in-addr.arpa.
 6 IN SOA dns63.zos12.ral.ibm.com. admin.zos12.ral.ibm.com. (
 1 10800 3600 604800 86400)
 IN NS dns63.zos12.ral.ibm.com.
 IN NS dns64.zos12.ral.ibm.com.
 $ORIGIN 6.12.9.in-addr.arpa.
 68 IN PTR dns63.zos12.ral.ibm.com. 1
 62 IN PTR dns64.zos12.ral.ibm.com.
 $GENERATE 3-6 $PTR host$.zos12.ral.ibm.com. 2
; The following records are generated by the above $GENERATE directive.
;3 IN PTR host3.zos12.ral.ibm.com.
;4 IN PTR host4.zos12.ral.ibm.com.
;5 IN PTR host5.zos12.ral.ibm.com.
;6 IN PTR host6.zos12.ral.ibm.com.
 67 IN PTR host1.zos12.ral.ibm.com.
 61 IN PTR host2.zos12.ral.ibm.com.

Note: The $GENERATE directive is a BIND extension and not part of the standard zone
file format.
364 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-50 Loopback file contents

10.4.8 Create the cache file (hints file)
The hints file contains the names and IP addresses of the authoritative root domain name
servers. The root name servers contain the names of name servers in the top-level domains
such as com, edu, and mil. The name server uses root server information when deciding
which name server to contact when it receives a query for a host outside its zone of authority
and it does not have the data in its cache. To obtain a hints file, point your Web browser at
ftp://ftp.rs.internic.net and retrieve the file named.root from the domain subdirectory. Update
your hints file on a regular basis.The zone statement with a type hints parameter definition in
a BIND 9 conf file specifies the path and name of the hints file. Figure 10-51 displays the
partial contents of the named.ca file.

Figure 10-51 Partial contents of a cache file

 $TTL 86400
 0.0.127.in-addr.arpa. IN SOA dns63.zos12.ral.ibm.com. admin.zos12.ral.ibm.com (
 1
 10800
 3600
 604800
 86400)

 0.0.127.in-addr.arpa. IN NS dns63.zos12.ral.ibm.com.
 0.0.127.in-addr.arpa. IN NS dns64.zos12.ral.ibm.com.
 1.0.0.127.in-addr.arpa. IN PTR localhost.

Note: In addition to creating the loopback file, add an address resource record called
localhost to the forward domain data file. This record supports proper two-way resolution.

; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
 A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
 B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
;

Note: The hints file does not contain cached data nor does the name server provide other
hosts with the information contained in the hints file. A forward-only server is the only type
of name server that does not require a hints file.
Chapter 10. BIND Domain Name System (DNS) 365

10.4.9 Configuring logging
A wide variety of logging options for the nameserver can be configured via the logging
statement. Its channel phrase associates output methods, format options and severity levels
with a name that can then be used with the category phrase to select how various classes of
messages are logged. Only one logging statement is used to define as many channels and
categories as are wanted. If there is no logging statement, the logging configuration will be:

logging {
category "default" {"default_syslog"; "default_syslog";};
};

In BIND 9, the logging configuration is only established when the entire configuration file has
been parsed. When the server is starting up, all logging messages regarding syntax errors in
the configuration file go to the default channels. Therefore, if started from a procedure, the
logging messages will be written to syslogd. If started from z/OS UNIX, the logging messages
may be written to 'named.run' if started with the -d option, in addition to syslog.

All log output goes to one or more channels; you can make as many of them as you want.
Every channel definition must include a clause that says whether messages selected for the
channel go to a file, to a particular syslog facility, or are discarded. It can optionally limit the
message severity level that will be accepted by the channel (the default is info), and whether
to include a named -generated time stamp, the category name and/or severity level (the
default is not to include any).

A example of a channel definition in the named.conf file is shown in Figure 10-52:

Figure 10-52 Channel definition

1 The channel phrase defines an output destination to log DNS generated messages. You can
create as many channels as you want and reference them in your category phrase.

2 The file option defines the file name where all messages directed to this channel should be
sent. It also defines the size of the file (size parameter) and how many files to create in a
round robin fashion, before it reuses the first file (version parameter). If you want this channel
not to log any messages, you can use the null option instead of file. The word null in the
destination option for the channel will cause all messages sent to it to be discarded; in that
case, other options for the channel are meaningless.

3 The print-time clause defines whether you want to append the date and time to the
messages being logged. The default option is no.

4 The print-category clause defines whether you want to append to the messages being
received the category that generated them. The default is no.

5 The print-severity clause defines whether you want to append their severity to the
messages being received. The default is no.

 logging {
 channel "main_log" { 1
 file "/etc/octavio/named.run" versions 2 size 20M; 2
 print-time yes; 3
 print-category yes; 4
 print-severity yes; 5
 severity dynamic; 6
 };
366 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

6 The severity clause works like syslog's priorities, except that it can also be used if you are
writing straight to a file rather than using syslog. Messages which are not at least of the
severity level given will not be selected for the channel; messages of higher severity levels
will be accepted. The normal options to be defined here are info, debug, and dynamic. Use
debug to define the detail level you want to log in this channel: up to 99, which is the most
detailed debug level. Using the dynamic option, the debug detail level is defined by the
named -d start option value. Figure 10-53 shows partial contents of a log file.

Figure 10-53 Partial contents of a log file.

There are four predefined channels that are used for named's default logging, as follows:

 channel "default_syslog" {
 syslog daemon; // end to syslog's daemon
 // facility
 severity info; // only send priority info
 // and higher
 };
 channel "default_syslog" {
 file "named.run"; // write to named.run in
 // the working directory
 severity dynamic // log at the server's
 // current debug level
 };
 channel "default_stderr" { // writes to stderr
 file "<stderr>"; // this is illustrative only;
 // there's currently no way of
 // specifying an internal file
 // descriptor in the
 // configuration language.
 severity info; // only send priority info
 // and higher
 };
 channel "null" {
 null; // toss anything sent to
 // this channel
 };

Once a channel is defined, it cannot be redefined. Thus, you cannot alter the built-in channels
directly, but you can modify the default logging by pointing categories at channels you have
defined. There are many categories, so you can send the logs you want to see wherever you
want, without seeing logs you do not want. If you don't specify a list of channels for a
category, then log messages in that category will be sent to the default category instead. If
you do not specify a default category, the following "default" is used:

category "default" {"default_syslog"; "default_stderr";};

You can use the category phrase to direct the messages being generated to each category to
one or more channels, as shown in the following examples:

category client {main_log;};
category config { main_log; };
category "database" { main_log; };

 May 22 12:23:36.735 general: debug 1: now using logging configuration from config file
 May 22 12:23:36.738 general: debug 1: load_configuration: success
 May 22 12:23:36.738 general: debug 1: dns_zone_load: zone 0.0.127.in-addr.arpa/IN:
 May 22 12:23:36.741 general: debug 1: dns_zone_load: zone 6.12.9.in-addr.arpa/IN: start
 May 22 12:23:36.742 general: debug 1: zone_timer: zone 0.0.127.in-addr.arpa/IN: enter
 May 22 12:23:36.742 resolver: debug 1: createfetch: dns64.zos12.ral.ibm.com. A
Chapter 10. BIND Domain Name System (DNS) 367

category dispatch { main_log; };
category dnssec { security_log; main_log; };
category security { security_log; main_log; };
category update { main_log; };
category queries { query_log;};
category lame-servers { query_log; main_log; };
category xfer-in { "transfer_log"; };
category xfer-out { "transfer_log"; };
category default { main_log; };
};

More details about the available categories and brief descriptions of the types of log
information they contain can be found in the z/OS V1R2.0 CS: IP Configuration Reference,
SC31-8776.

10.4.10 Starting the DNS server
Once you have completed the previous configuration steps, you will be able to start the
Domain Name Server. Basically, you can start the named process either from an MVS
procedure, which has been customized in step 5.2.2, or from the z/OS UNIX shell. If the user
choose to use the MVS procedure, a supervisor with an authorized TSO ID can start a name
server from the MVS operator's console by starting the customized named start procedure.

S NAMED9

To execute the named process fro z/OS UNIX, a user with superuser authority can start the
Name Server from the shell by starting z/OS UNIX, then issuing the named command and,
optionally, any parameters. It is also possible to start the server automatically when z/OS
UNIX is started by specifying the path and file name of the z/OS UNIX initialization shell script
in the /etc/init.options file using the -sc option as shown in Figure 10-54.

Figure 10-54 Contents of the init.options file

 The file /etc/rc is the default z/OS UNIX initialization shell script that is executed when z/OS
UNIX is started. Information such as the following can be entered in /etc/rc:

Figure 10-55 Contents of /etc/rc file

If you use the UNIX System Services /etc/rc method, the actual startup of the name server
waits for the completion of TCP/IP initialization. You cannot start the name server with the
INETD daemon. The startup must know either via default or via parameters what the boot file
name is so that the correct data can be loaded into the DNS.

You can use the same syntax to start named using z/OS UNIX console (omvs command in
TSO command line option). Like any UNIX command you execute each command in the
command line of the UNIX console as follows:

-a 9999 timeout = 9999 seconds
-t 1 terminate shell = yes
-sc /etc/rc shell script = /etc/rc
-e TZ=EST5EDT TZ environment variable

Start name server
 | /usr/lpp/tcpip/sbin/named -c /named/production/named.conf &
368 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-56 Starting named v9 from z/OS UNIX command line

The same command could also be issued from the ISHELL command panel. To get to this
panel, follow these steps from the TSO/PDF option 6 (command line):

1. In TSO - ISPF Primary Options Menu - enter option 6 - (commands)

2. In TSO - ISPF Command Shell - enter the command ish - (UNIX System Services ISPF
shell)

3. In the UNIX System Services ISPF Shell screen - go to top line and choose Tools.This will
open a box with the available tools. Choose option 2 - Run Shell Command

4. In the Enter a Shell Command panel, enter the named startup command as shown:

Figure 10-57 Executing named from UNIX System Services ISPF Shell

The usual way to start named in z/OS V1R2 is to execute a procedure from the MVS console.
The following is the console log following the startup of the DNS server process at SC63.

 ===> /usr/lpp/tcpip/sbin/named -c /etc/octavio/named.conf

 Enter a Shell Command

 Enter a shell command and press Enter.

 Standard output and standard error are redirected to a temporary
 file. If there is any data in the file when the shell command
 completes, the file is displayed.
 /usr/lpp/tcpip/sbin/named -c /etc/octavio/named.conf
 __
 __
 __

 F1=Help F3=Exit F6=Keyshelp F12=Cancel
Chapter 10. BIND Domain Name System (DNS) 369

Figure 10-58 Named V9 startup messages in the MVS Console Log

10.4.11 Verifying that the name server has started correctly
In BIND 9, the logging configuration is only established when the entire configuration file has
been parsed. When the server is starting up, all logging messages regarding syntax errors in
the configuration file go to the default channels. Therefore, if started from a procedure, the
logging messages will be written to syslogd. If started from z/OS UNIX, the logging
messages may be written to 'named.run' if started with the -d option, in addition to syslog.
Once you had started the named process, you can go to the logging files you defined in your
named.conf configuration file and check the results of the startup procedure. The messages
generated should basically appear as shown in Figure 10-59.

Figure 10-59 Named V9 startup messages in named.run file

 S NAMED9
 $HASP100 NAMED9 ON STCINRDR
 IEF695I START NAMED9 WITH JOBNAME NAMED9 IS ASSIGNED TO USER STC
 , GROUP SYS1
 $HASP373 NAMED9 STARTED
 IEF403I NAMED9 - STARTED - TIME=17.06.08 - ASID=0065 - SC63
 - --TIMINGS (MINS.)--
 ----PAGING COUNTS---
 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK SERV
 PG PAGE SWAP VIO SWAPS
 -NAMED9 NAMED 00 45 .00 .00 .00 1881
 0 0 0 0 0
 +EZZ9095I STARTING NAMED, BIND 9.1.1
 - --TIMINGS (MINS.)--
 ----PAGING COUNTS---
 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK SERV
 PG PAGE SWAP VIO SWAPS
 -NAMED9 *OMVSEX 00 620 .00 .00 .03 16797
 0 0 0 0 0
 IEF404I NAMED9 - ENDED - TIME=17.06.10 - ASID=0065 - SC63
 -NAMED9 ENDED. NAME- TOTAL CPU TIME= .00
 TOTAL ELAPSED TIME= .03
 $HASP395 NAMED9 ENDED
 IEA989I SLIP TRAP ID=X33E MATCHED. JOBNAME=*UNAVAIL, ASID=0065.
 +EZZ9130I NAMED, BIND 9.1.1 IS RUNNING

Note: Note that the procedure NAMED9 has ended, but it creates a child process called
NAMED91. This process is used to stop named V9 as we will see later in this chapter.

 EZZ9171I LPAR mode detected. Using 2 CPUs for -n option 1
 EZZ9547I starting named, BIND 9.1.1 -d 1 -c /etc/octavio/named.conf 2
 EZZ9217I Running non-swappable
 EZZ9540I using 2 CPUs
 EZZ9126I loading configuration from '/etc/octavio/named.conf'
 EZZ8842I the default for the 'auth-nxdomain' option is now 'no'
 EZZ9052I no IPv6 interfaces found
 EZZ9046I listening on IPv4 interface OSA22E0 , 9.12.6.67#53 3
 EZZ9046I listening on IPv4 interface VIPL090C0644 , 9.12.6.68#53
370 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

1 Because the BIND 9 name server is multi-threaded, it can take advantage of any additional
processors you add to the system. The BIND 9 name server will detect the number of logical
CPUs configured for the system (if not running partitioned) or LPAR (if running partitioned),
and create additional worker threads accordingly. You can define how many processors you
are going to use specifying the option -n in named command.

2 Message EZZ9547I shows to you the parms you used to start named and also the BIND
version you are about to start

3 A BIND V9 server can specify IP address to listen on and from which to send queries,
notifies and zone transfers in its configuration file. During the startup process, named tries to
bind to each interface you configured. Since BIND V9 has no stack affinity, the default is to try
all defined interfaces in all TCPIP stacks. To specify which interfaces we want, use option
listen-on in the named.conf file.

After these messages, named initializes the logging system and all remaining messages are
directed to the configured logging files.

When the name server is up with no logged errors, ensure that it can accept queries. Ensure
that the name server can accept queries locally from both the MVS and z/OS UNIX
environments. To be able to do that you must first assure that your userid is using the same
resolver configuration files. After the resolver configuration is correct, you can test your server
either with the nslookup or dig command. An example using nslookup follows. Issue the
following command from both the z/OS UNIX shell and the TSO ready prompt. In this
example, the name 'host1.zos12.ral.ibm.com.' is used for the search.

nslookup host1

The result of the command follows in Figure 10-60.

Figure 10-60 nslookup command response

10.4.12 Reloading BIND V9

To reload data that you may have changed during this lifetime of the name server, you can

send a signal to the UNIX System Services shell asking DNS to reread its configuration files.

To send the signal from the z/OS UNIX console, execute the following command:

kill -HUP ($cat /etc/named.pid)

You can execute also a signal command from the ISHELL command panel. To get to this

panel, follow these steps from the TSO/PDF option 6 (command line):

1. In TSO - ISPF Primary Options Menu - enter option 6 - (commands)

2. In TSO - ISPF Command Shell - enter the command ish - (UNIX System Services ISPF
shell)

OCTAVIO @ SC63:/>nslookup host1
Defaulting to nslookup version 4
Starting nslookup version 4
Server: dns63.zos12.ral.ibm.com
Address: 9.12.6.68

Name: host1.zos12.ral.ibm.com
Address: 9.12.6.67
Chapter 10. BIND Domain Name System (DNS) 371

3. In the UNIX System Services ISPF Shell screen - go to top line and choose Tools.This will
open a box with the available tools. Choose option 1 - Work with processes

4. In the Work with Processes Signal screen go to the line where the named process is and
enter s

5. In the Enter Signal Number screen, confirm you choose the process you want to reload,
go to the Signal number field and enter the SIGHUP signal number, #1.

These steps will reload the named process implementing your changes. To confirm your
name server has been reloaded, you can check the main_log file you defined for the following
messages:

general: info: EZZ9126I loading configuration from '/etc/octavio/named.conf'
config: warning: EZZ8842I the default for the 'auth-nxdomain' option is now 'no'
network: info: EZZ9052I no IPv6 interfaces found

This command works only at a primary name server. A secondary periodically returns to
query the primary for new data, theoretically eliminating the need to reload a secondary with a
signal. (The refresh interval is one of the settings in the SOA record.)

The reload process is not designed for dynamic domains, since these are updated via the
nsupdate command.

10.4.13 Stopping the DNS server
You can stop the DNS server with the MVS STOP command P NAMED91, which is the name
of the startup procedure used to start you name server (it can be any name), followed by the
number “1”, which is an extra forking process assigned to BIND V9 during the startup process
The advantage of the STOP command is the graceful termination of the name server and the
issuing of messages in SYSLOG. Other alternatives are to use the MVS CANCEL command
or the OMVS kill command. The OMVS kill command can be issued from OMVS or from
the NSSIG procedure.

Executing the kill command in the z/OS UNIX console:

 kill $(cat /etc/named.pid)

You can execute also the kill command from the ISHELL command panel. To get to this

panel, follow these steps from the TSO/PDF option 6 (command line):

1. In TSO - ISPF Primary Options Menu - enter option 6 - (commands)

2. In TSO - ISPF Command Shell - enter the command ish - (UNIX System Services ISPF
shell)

3. In the UNIX System Services ISPF Shell screen - go to top line and choose Tools.This will
open a box with the available tools. Choose option 1 - Work with processes

4. In the Work with Processes screen go to the line where the named process is and enter k

You can also stop the process using the MVS CANCEL command to NAMED43, and this will
cause the following messages in the console log:
372 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-61 Cancel command messages

10.4.14 Implementing a secondary name server DNS64
The next step to perform to implement our domain name server scenario is to configure the
secondary name server. A secondary name server can be primary for some zones and
secondary for others. Its boot file indicates for which zones it is primary and for which it is
secondary. Using a zone transfer process, the secondary server retrieves the files for
specified zones from the primary name server that it points to. The secondary stores this
information in its own files if the retrieved serial number is higher than the current serial
number stored at the secondary (Figure 10-48 on page 361, 4). The secondary obtains the
files from the primary name server based upon the refresh interval coded on the SOA record
or the resource record (RR) itself.

To implement a secondary name server, follow the same steps used to create the master
name server. The difference is that there is no need to create the domain data files (the files
containing host-to-address and address-to-host mappings). These files are maintained on the
master name server and the secondary (slave) name server transfers this data to its own
database. The configuration file also has different definitions to state that this server is a a
slave (secondary) name server.

To show how we define our secondary name server, we’ll go through the same steps we
followed to build the master name server.

10.4.14.1 Create the configuration file of the secondary name server
The best approach to create the named.conf file of the secondary name server, is to copy the
named.conf file created for the master name server and alter the contents to reflect this is a
secondary server, as shown:

 C NAMED91
 IEA989I SLIP TRAP ID=X222 MATCHED. JOBNAME=NAMED91, ASID=0056.
 BPXP018I THREAD 106954D000000001, IN PROCESS 50397272, ENDED 764
 WITHOUT BEING UNDUBBED WITH COMPLETION CODE 00222000,
 AND REASON CODE 00000000.
 BPXP018I THREAD 1069615800000000, IN PROCESS 50397272, ENDED 768
 WITHOUT BEING UNDUBBED WITH COMPLETION CODE 40222000,
 AND REASON CODE 00000000.
 IEE301I NAMED91 CANCEL COMMAND ACCEPTED
 IEF450I NAMED91 STEP1 - ABEND=S222 U0000 REASON=00000000 770
 TIME=11.27.34
Chapter 10. BIND Domain Name System (DNS) 373

Figure 10-62 Contents of named.conf for the slave DNS

1 The listen-on parameter takes an optional port and an address_match_list. The server will
listen on all interfaces allowed by the address match list. If a port is not specified, port 53 is
used.

2 A channel phrase in the logging statement associates output methods, format options and
severity levels with a name that can then be used with the category phrase to select how
various classes of messages are logged. All log output goes to one or more channels; you
can make as many of them as you want. In our config file we created a channel called
main_log that will send all log output to the file named_main.log.

3 A category phrase selects how various classes of messages are logged. Use with channel
name. Because many categories exist, you can send the logs you want to see wherever you
want and avoid seeing logs you do not want. In this configuration file, we want to log only the
messages generated during transfer processes between the master and the slave DNS.

4 This zone statement defines that this DNS is a slave for the indicated zone, will transfer
definitions from a Master DNS pointed by the masters statement and will save this definitions
in the file defined by the statement file

5 The server is still considered to be a primary DNS for its loopback address.

The remaining steps are shown here only for your information. For further instructions about
each step, refer to the previous section, implementing the master name server.

options {
 pid-file "/etc/named.pid" ;
 directory "/etc/octavio/dnsdata";
 listen-on { 9.12.6.63;9.12.6.64; }; 1
};
logging {
 channel main_log { 2
 file "/etc/octavio/named_main.log" versions 2 size 20M;
 severity dynamic;
 };
 category xfer-in { main_log; }; 3
 category xfer-out { main_log; };
 };
zone "zos12.ral.ibm.com" in { 4
 type slave;
 file "zos12.for.bak.v9";
 masters { 9.12.6.68; };
};
zone "6.12.9.in-addr.arpa" in {
 type slave;
 file "zos12.rev.bak.v9";
 masters { 9.12.6.68; };
};
zone "0.0.127.in-addr.arpa" in { 5
 type master;
 file "zos12.lbk.v9";
};
zone "." in {
 type hint;
 file "zos12.ca.v9";
};
374 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

1. Specify port ownership

2. Update the name server start procedure (optional)

3. Create the loopback file

4. Create the hints (cache) file

5. Start the secondary name server

6. Verifying if secondary name server is working as expected

The remaining steps are shown here only for your information. For further instructions about
each step, refer to the previous section, implementing the master name server.

At a secondary name server, you would see similar console messages about the file loading
process. You also should be able to see messages indicating a successful transfer of file
contents between master and slave DNS. Figure 10-63 shows a partial contents of the
main_log file.

Figure 10-63 Successful zone transfer from Master DNS

If your zone transfers are successful, the files identified in the secondary name server's boot
file as the storage for retrieved files can be viewed. The format looks a bit different from your
own coding at the primary, but the contents are nonetheless identifiable. For example, below
is a portion of the domain file retrieved by DNS64, the secondary name server.

Figure 10-64 Contents of the backup domain file after the zone transfer operation

EZZ9156I transfer of 'zos12.ral.ibm.com' from 9.12.6.68#53: end of transfer
EZZ9156I transfer of '6.12.9.in-addr.arpa' from 9.12.6.68#53: end of transfer

 $ORIGIN .
 $TTL 86400 ; 1 day
 zos12.ral.ibm.com IN SOA dns63.zos12.ral.ibm.com. admin.zos12.ral.ibm.com (
 1 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (1 week)
 86400 ; minimum (1 day)
)
 NS dns63.zos12.ral.ibm.com.
 NS dns64.zos12.ral.ibm.com.
 $ORIGIN zos12.ral.ibm.com.
 _http._tcp SRV 0 0 80 www
 dns63 A 9.12.6.68
 dns64 A 9.12.6.64
 ftp CNAME host2
 host1 A 9.12.6.67
 host2 A 9.12.6.63
 localhost A 127.0.0.1
 mail CNAME host1
 sc63 A 9.12.6.67
 A 9.12.6.68
 www A 9.179.147.237
Chapter 10. BIND Domain Name System (DNS) 375

10.4.15 BIND 9 name server advanced topics
The following topics describe the new funcionality implemented in CS for z/OS V1R2 IP with
the BIND 9-Based Name Server:

� 10.4.15.1, “Multiple TCP/IP stack (Common INET) considerations” on page 376

� 10.4.15.2, “Dynamic update” on page 377

� 10.4.15.3, “Incremental zone transfers (IXFR)” on page 377

� 10.4.15.4, “Split DNS” on page 377

� 10.4.15.5, “TSIG” on page 380

� 10.4.15.6, “DNSSEC” on page 382

� 10.4.15.7, “IPv6 support in BIND 9” on page 384

10.4.15.1 Multiple TCP/IP stack (Common INET) considerations
The BIND 9 name server is a generic server which does not have stack affinity. This is in
contrast to the BIND 4.9.3 name server which does have stack affinity. This has certain
implications. If you wish to run multiple BIND 9 name servers, you must divide the interfaces
between the name servers with the listen-on named.conf file option. For example, you may
want one stack serviced by one BIND 9 name server, and a second stack serviced by a
second BIND 9 name server. Each name server would contain only the IP addresses of the
assigned stack in its listen-on option 1. Figure 10-65 shows how to configure it in the
named.conf file:

Figure 10-65 named.conf file with the listen-on definition

Be aware that once you start a TCP/IP stack, all of the adapters may not be active
immediately, and therefore will not be usable by the name server immediately. When the
name server is started manually or restarted automatically by stack bring up or bring down, it
immediately queries the available TCP/IP stacks for active adapters. Often times, it will take
some time for all of the adapters to become active (this is independent of the name server).
The name server will re-query the stacks every minute, by default, for any changes in the
active/inactive status of adapters and then make use of them once they are active. The one
minute interval can be lengthened by the interface-interval named.conf file option if desired
but this is not recommended.

By default, the name server will unpredictably choose one adapter from any of the active
stacks to use when it must communicate with other name servers. If some adapters do not
have the capability to route into the network, you may see unpredictable results on name
server queries. This unpredictable behavior can be eliminated by making use of the
query-source option in the named.conf file. The query-source option should specify an
adapter address that will always have network routing capability. The query-source option
then places a dependency on the stack that owns that address to be active. If the owning
TCP/IP stack of the query-source option address is taken down, the name server will end,
since it will no longer have a way to communicate with the network, and thus, with other name
servers.

options {
 pid-file "/etc/named.pid" ;
 directory "/etc/octavio/dnsdata";
 listen-on { 9.12.6.67;9.12.6.68; }; 1
376 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

10.4.15.2 Dynamic update
Dynamic update is the term used to refer to the ability, under certain specified conditions, to
add, modify or delete records or RRsets in the master zone files. Dynamic update is fully
described in RFC 2136. Dynamic update is enabled on a zone-by-zone basis, by including an
allow-update or update-policy clause in the zone statement. Preferably, use TSIG security
between the nsupdate utility and the targeted name server. BIND 9 name server configuration
processing messages will remind you when nsupdate authorization is only based on client IP
address. Updating of secure zones (zones using DNSSEC) is modelled after the
simple-secure-update proposal, a work in progress in the DNS Extensions working group of
the IETF. (See http://www.ietf.org/html.charters/dnsext-charter.html for information about the
DNS Extensions working group.) SIG and NXT records affected by updates are automatically
regenerated by the server using an online zone key. Update authorization is based on
transaction signatures and an explicit server policy.

The zone files of dynamic zones must not be edited by hand. If the zone file of a dynamic
zone is edited by hand, corrupt .jnl files can result and all changes not written to the zone file
may be lost. The zone file on disk at any given time may not contain the latest changes
performed by dynamic update. The zone file is written to disk only periodically, and changes
that have occurred since the zone file was last written to disk are stored only in the zone's
journal (.jnl) file. Depending on signal or rndc stop options, BIND 9 name server may or may
not update the zone file. Therefore, editing the zone file manually is unsafe even when the
server has been shut down.

10.4.15.3 Incremental zone transfers (IXFR)
The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer only
changed data, instead of having to transfer the entire zone. The IXFR protocol is documented
in RFC 1995. When acting as a master, BIND 9 supports IXFR for those zones where the
necessary change history information is available. These include master zones maintained by
dynamic update and slave zones whose data was obtained by IXFR, but not manually
maintained master zones nor slave zones obtained by performing a full zone transfer (AXFR).
When acting as a slave, BIND 9 will attempt to use IXFR unless it is explicitly disabled. For
more information about disabling IXFR, see the description of the request-ixfr clause of the
server statement.

10.4.15.4 Split DNS
 Setting up different views, or visibility, of DNS space to internal and external resolvers is
usually referred to as a split DNS setup. There are several reasons an organization would
want to set up its DNS this way. One common reason for setting up a DNS system this way is
to hide internal DNS information from external clients on the Internet. Another common
reason for setting up a split DNS system is to allow internal networks that are behind filters or
in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve DNS on the
Internet. Split DNS can also be used to allow mail from outside back in to the internal
network.

For example, a company named Example, Inc. (example.com) has several corporate sites
that have an internal network with reserved Internet Protocol (IP) space and an external
demilitarized zone (DMZ), or outside section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to
exchange mail with people on the outside. The company also wants its internal resolvers to
have access to certain internal-only zones that are not available at all outside of the internal
network.
Chapter 10. BIND Domain Name System (DNS) 377

In order to accomplish this, the company will set up two sets of name servers. One set will be
on the inside network (in the reserved IP space) and the other set will be on bastion hosts,
which are proxy hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for site1.internal,
site2.internal, site1.example.com, and site2.example.com, to the servers in the DMZ. These
internal servers will have complete sets of information for site1.example.com,
site2.example.com, site1.internal, and site2.internal.

To protect the site1.internal and site2.internal domains, the internal name servers must be
configured to disallow all queries to these domains from any external hosts, including the
proxy hosts.

The external servers, which are on the proxy hosts, will be configured to serve the public
version of the site1 and site2.example.com zones. This could include things such as the host
records for public servers (www.example.com and ftp.example.com), and mail exchange
(MX) records (a.mx.example.com and b.mx.example.com).

In addition, the public site1 and site2.example.com zones should have special MX records
that contain wildcard (*) records pointing to the proxy hosts. This is needed because external
mail servers do not have any other way of looking up how to deliver mail to those internal
hosts.

With the wildcard records, the mail will be delivered to the proxy host, which can then forward
it on to internal hosts.

Here's an example of a wildcard MX record:

 * IN MX 10 external1.example.com.

Now that they accept mail on behalf of anything in the internal network, the proxy hosts will
need to know how to deliver mail to internal hosts. In order for this to work properly, the
resolvers on the proxy hosts will need to be configured to point to the internal name servers
for DNS resolution. Queries for internal hostnames will be answered by the internal servers,
and queries for external hostnames will be forwarded back out to the DNS servers on the
proxy hosts. In order for all this to work properly, internal clients will need to be configured to
query only the internal name servers for DNS queries. This could also be enforced via
selective filtering on the network. If everything has been set properly, Example, Inc.'s will be
allow the following:

� Its internal clients will now be able to:

– Look up any hostnames in the site1 and site2.example.com zones.

– Look up any hostnames in the site1.internal and site2.internal domains.

– Look up any hostnames on the Internet.

– Exchange mail with internal and external people.

� Hosts on the Internet will be able to:

– Look up any hostnames in the site1 and site2.example.com zones.

– Exchange mail with anyone in the site1 and site2.example.com zones.

Figure 10-66 on page 379 shows the internal server configuration for the setup we just
described above. Note that this is not the complete file.
378 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-66 named.conf file for the internal server

This shows the internal server configuration for the setup we just described above. Note that
this is not the complete file.

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { proxy-ips-go-here; };
options {
 ...
 ...
 forward only;
 forwarders { // forward to external servers
 proxy-ips-go-here;
 };
 allow-transfer { none; }; // sample allow-transfer (no one)
 allow-query { internals; externals; }; // restrict query access
 allow-recursion { internals; }; // restrict recursion
 ...
 ...
};
 zone "site1.example.com" { // sample slave zone
 type master;
 file "m/site1.example.com";
 forwarders {}; // do normal iterative
 // resolution (do not forward)
 allow-query { internals; externals; };
 allow-transfer { internals; };
};
 zone "site2.example.com" {
 type slave;
 file "s/site2.example.com";
 masters { 172.16.72.3; };
 forwarders { };
 allow-query { internals; externals; };
 allow-transfer { internals; };
};
 zone "site1.internal" {
 type master;
 file "m/site1.internal";
 forwarders { };
 allow-query { internals; };
 allow-transfer { internals; }
};
 zone "site2.internal" {
 type slave;
 file "s/site2.internal";
 masters { 172.16.72.3; };
 forwarders { };
 allow-query { internals };
 allow-transfer { internals; }
};
Chapter 10. BIND Domain Name System (DNS) 379

Figure 10-67 External server named.conf definitions

Figure 10-68 on page 380 shows the resolf.conf file definitions in the proxy server
configuration for the setup we just described above. Note that this is not the complete file.

Figure 10-68 resolv.conf file definitions in the proxy server

10.4.15.5 TSIG
 This is a short guide to setting up Transaction SIGnatures (TSIG) based transaction security
in BIND. It describes changes to the configuration file as well as what changes are required
for different features, including the process of creating transaction keys and using transaction
signatures with BIND. BIND primarily supports TSIG for server to server communication. This
includes zone transfer, notify, and recursive query messages. Resolvers on other platforms
which are based on newer versions of BIND 8 have limited support for TSIG.

TSIG might be most useful for dynamic update. A master server for a dynamic zone should
use access control to control updates, but IP-based access control is insufficient. Key-based
access control is far superior. The nsupdate program supports TSIG via the -k and -y
command line options.

To implement TSIG in your environment, follow these steps:

� “Generate shared keys for each pair of hosts” on page 381

� “Copying the shared secret to both machines” on page 381

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { proxy-ips-go-here; };
 options {
 ...
 ...
 allow-transfer { none; }; // sample allow-transfer (no one)
 allow-query { internals; externals; }; // restrict query access
 allow-recursion { internals; externals; }; // restrict recursion
 ...
 ...
};
 zone "site1.example.com" { // sample master zone
 type master;
 file "m/site1.foo.com";
 allow-query { any; };
 allow-transfer { internals; externals; };
};
 zone "site2.example.com" { // sample slave zone
 type slave;
 file "s/site2.foo.com";
 masters { another_proxy_host_maybe; };
 allow-query { any; };
 allow-transfer { internals; externals; }
};

In the resolv.conf (or equivalent) on the proxy host(s):
 search ...
 nameserver 172.16.72.2
 nameserver 172.16.72.3
 nameserver 172.16.72.4
380 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

� “Informing the servers of the key's existence” on page 381

� “Instructing the server to use the key” on page 381y

� “TSIG key based access control” on page 382

� “Errors” on page 382

Generate shared keys for each pair of hosts
A shared secret is generated to be shared between host1 and host2. An arbitrary key name is
chosen: "host1-host2.". The key name must be the same on both hosts. The shared secret
can be generated either automatically or manually, as follows:

� Automatic Generation: The following command will generate a 128-bit (16-byte)
HMAC-MD5 key as described above. Longer keys are better, but shorter keys are easier
to read. Note that the maximum key length is 512 bits; keys longer than that will be
digested with MD5 to produce a 128 bit key.

dnssec-keygen -a hmac-md5 -b 128 -n HOST host1-host2.

The key is in the file Khost1-host2.+157+00000.private. Nothing directly uses this file, but the
base-64 encoded string following "Key:" can be extracted from the file and used as a shared
secret:

Key: La/E5CjG9O+os1jq0a2jdA==

The string "La/E5CjG9O+os1jq0a2jdA==" can be used as the shared secret.

� Manual Generation: The shared secret is simply a random sequence of bits, encoded in
base-64. Most EBCDIC strings are valid base-64 strings (assuming the length is a multiple
of 4 and only valid characters are used), so the shared secret can be manually generated.
Also, a known string can be run through mmencode or a similar program to generate
base-64 encoded data.

Copying the shared secret to both machines
This is beyond the scope of DNS. A secure transport mechanism should be used. This could
be secure FTP, ssh, telephone, etc.

Informing the servers of the key's existence
Imagine host1 and host2 are both servers. The following is added to each server's
named.conf file:

 key host1-host2. {
 algorithm hmac-md5;
 secret "La/E5CjG9O+os1jq0a2jdA==";
 };

The algorithm, hmac-md5, is the only one supported by BIND. The secret is the one
generated above. Since this is a secret, it is recommended that either named.conf be
non-world readable, or the key directive be added to a non-world readable file that is included
by named.conf. At this point, the key is recognized. This means that if the server receives a
message signed by this key, it can verify the signature. If the signature succeeds, the
response is signed by the same key.

Instructing the server to use the key
Since keys are shared between two hosts only, the server must be told when keys are to be
used. The following is added to the named.conf file for host1, if the IP address of host2 is
10.1.2.3:

 server 10.1.2.3 {
 keys { host1-host2.; };
 };
Chapter 10. BIND Domain Name System (DNS) 381

Multiple keys may be present, but only the first is used. This directive does not contain any
secrets, so it may be in a world-readable file. If host1 sends a message that is a request to
that address, the message will be signed with the specified key. host1 will expect any
responses to signed messages to be signed with the same key. A similar statement must be
present in host2's configuration file (with host1's address) for host2 to sign request messages
to host1.

TSIG key based access control
BIND allows IP addresses and ranges to be specified in ACL definitions and allow-{query |
transfer | update} directives. This has been extended to allow TSIG keys also. The above key
would be denoted key host1-host2. An example of an allow-update directive would be:

 allow-update { key host1-host2. ;};

This allows dynamic updates to succeed only if the request was signed by a key named
"host1-host2.".

Errors
The processing of TSIG signed messages can result in several errors. If a signed message is
sent to a non-TSIG aware server, a FORMERR will be returned, since the server will not
understand the record. This is a result of misconfiguration, since the server must be explicitly
configured to send a TSIG signed message to a specific server. If a TSIG aware server
receives a message signed by an unknown key, the response will be unsigned with the TSIG
extended error code set to BADKEY. If a TSIG aware server receives a message with a
signature that does not validate, the response will be unsigned with the TSIG extended error
code set to BADSIG. If a TSIG aware server receives a message with a time outside of the
allowed range, the response will be signed with the TSIG extended error code set to
BADTIME, and the time values will be adjusted so that the response can be successfully
verified. In any of these cases, the message's return code is set to NOTAUTH.

10.4.15.6 DNSSEC
Cryptographic authentication of DNS information is possible through the DNS Security
(DNSSEC) extensions, defined in RFC 2535. This section describes the creation and use of
DNSSEC signed zones.

The set of dnssec- tools rely on a /dev/random device for the entropy it needs to generate
cryptographically strong keys. If RSA keys are used, only dnssec-keygen requires random
data. z/OS UNIX does not include such a device, but the tools provide alternate methods of
providing them with random data. The user can specify a file containing random data or can
provide random data via the keyboard. To specify a file, use the -r random data file option on
the tool command line. The dnssec- tools use the timing between keystrokes as the source of
entropy. As such, TN3270 terminal emulation is not the ideal interface. Setting up a VT100
terminal session is a better solution. Refer to "Configuring the z/OS UNIX Telnet Server
(otelnetd)" in topic 2.2.2 for more information on setting up otelnetd.

In order to set up a DNSSEC secure zone, there are a series of steps which must be
followed. z/OS ships with several tools that are used in this process, which are explained in
more detail below. In all cases, the "-h" option prints a full list of parameters. Note that the
DNSSEC tools require the keyset and signedkey files to be in the working directory. There
must also be communication with the administrators of the parent and/or child zone to
transmit keys and signatures. A zone's security status must be indicated by the parent zone
for a DNSSEC capable resolver to trust its data. For other servers to trust data in this zone,
they must either be statically configured with this zone's zone key or the zone key of another
zone above this one in the DNS tree using the trusted-keys statement.
382 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

To implement DNSSEC, follow these steps:

� “Generating keys” on page 383

� “Creating a keyset” on page 383

� “Signing the child's keyset” on page 383

� “Signing the zone” on page 384

� “Configuring servers” on page 384

Generating keys
The dnssec-keygen program is used to generate keys. A secure zone must contain one or
more zone keys. The zone keys will sign all other records in the zone, as well as the zone
keys of any secure delegated zones. Zone keys must have the same name as the zone, a
name type of ZONE, and must be usable for authentication. The following command will
generate a 768-bit RSA key for the child.example zone:

dnssec-keygen -a RSA -b 768 -n ZONE child.example

Two output files will be produced: Kchild.example.+001+12345.key and
Kchild.example.+001+12345.private (where 12345 is an example of a key tag). The key file
names contain the key name (child.example.), algorithm (3 is DSA, 1 is RSA, etc.), and the
key tag (12345 in this case). The private key (in the .private file) is used to generate
signatures, and the public key (in the .key file) is used for signature verification. To generate
another key with the same properties (but with a different key tag), repeat the above
command. The public keys should be inserted into the zone file with $INCLUDE statements,
including the .key files.

Creating a keyset
The dnssec-makekeyset program is used to create a key set from one or more keys. Once the
zone keys have been generated, a key set must be built for Transmission to the administrator
of the parent zone, so that the parent zone can sign the keys with its own zone key and
correctly indicate the security status of this zone. When building a key set, the list of keys to
be included and the TTL of the set must be specified, and the desired signature validity period
of the parent's signature may also be specified. The list of keys to be inserted into the key set
may also include non-zone keys present at the top of the zone. dnssec-makekeyset may also
be used at other names in the zone.

The following command generates a key set containing the above key and another key
similarly generated, with a TTL of 3600 and a signature validity period of 10 days starting
from now.

dnssec-makekeyset -t 3600 -e +8640 Kchild.example.+001+12345
Kchild.example.+001+23456

One output file is produced: keyset-child.example. This file should be transmitted to the
parent to be signed. It includes the keys, as well as signatures over the key set generated by
the zone keys themselves, which are used to prove ownership of the private keys and encode
the desired validity period.

Signing the child's keyset
The dnssec-signkey program is used to sign one child's keyset. If the child.example zone has
any delegations which are secure, for example, grand.child.example, the child.example
administrator should receive keyset files for each secure subzone. These keys must be
signed by this zone's zone keys. The following command signs the child's key set with the
zone keys:

dnssec-signkey keyset-grand.child.example. Kchild.example.+001+12345
Kchild.example.+001+23456
Chapter 10. BIND Domain Name System (DNS) 383

One output file is produced: signedkey-grand.child.example.. This file should be both
transmitted back to the child and retained. It includes all keys (the child's keys) from the
keyset file and signatures generated by this zone's zone keys.

Signing the zone
The dnssec-signzone program is used to sign a zone. Any signedkey files corresponding to
secure subzones should be present, as well as a signedkey file for this zone generated by the
parent (if there is one). The zone signer will generate NXT and SIG records for the zone, as
well as incorporate the zone key signature from the parent and indicate the security status at
all delegation points. The following command signs the zone, assuming it is in a file called
zone.child.example. By default, all zone keys which have an available private key are used to
generate signatures.

dnssec-signzone -o child.example zone.child.example

One output file is produced: zone.child.example.signed. This file should be referenced by
named.conf as the input file for the zone.

Configuring servers
Data is not verified on load in BIND 9, so zone keys for authoritative zones do not need to be
specified in the configuration file. The public key for any security root must be present in the
configuration file's trusted-keys statement.

10.4.15.7 IPv6 support in BIND 9
 BIND 9 fully supports all currently defined forms of IPv6 name to address and address to
name lookups. For forward lookups, BIND 9 supports both A6 and AAAA records. The use of
AAAA records is deprecated, but it is still useful for hosts to have both AAAA and A6 records
to maintain backward compatibility with installations where AAAA records are still used. In
fact, the stub resolvers currently shipped with most operating system support only AAAA
lookups, because following A6 chains is much harder than doing A or AAAA lookups. For
IPv6 reverse lookups, BIND 9 supports the new bitstring format used in the ip6.arpa domain,
as well as the older, deprecated nibble format used in the ip6.int domain

Address lookups using AAAA records
The AAAA record is a parallel to the IPv4 A record. It specifies the entire address in a single
record. For example:

 $ORIGIN example.com.
host 3600 IN AAAA 3ffe:8050:201:1860:42::1

While their use is deprecated, they are useful to support older IPv6 applications. They should
not be added where they are not absolutely necessary.

Address lookups using A6 records
The A6 record is more flexible than the AAAA record, and is therefore more complicated. The
A6 record can be used to form a chain of A6 records, each specifying part of the IPv6
address. It can also be used to specify the entire record as well. For example, this record
supplies the same data as the AAAA record in the previous example:

 $ORIGIN example.com.
 host 3600 IN A6 0 3ffe:8050:201:1860:42::1

A6 Chains: A6 records are designed to allow network renumbering. This works when an A6
record only specifies the part of the address space the domain owner controls. For example,
a host may be at a company named "company." It has two ISPs which provide IPv6 address
space for it. These two ISPs fully specify the IPv6 prefix they supply.
384 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

� In the company's address space:

$ORIGIN example.com.
host 3600 IN A6 64 0:0:0:0:42::1 company.example1.net.
host 3600 IN A6 64 0:0:0:0:42::1 company.example2.net.

� ISP1 will use:

$ORIGIN example1.net.
company 3600 IN A6 0 3ffe:8050:201:1860::

� ISP2 will use:

$ORIGIN example2.net.
company 3600 IN A6 0 1234:5678:90ab:fffa::

When host.example.com is looked up, the resolver (in the caching name server) will find two
partial A6 records, and will use the additional name to find the remainder of the data.

A6 Records for DNS servers: When an A6 record specifies the address of a name server, it
should use the full address rather than specifying a partial address. For example:

 $ORIGIN example.com.
 @ 14400 IN NS
 ns0
 14400 IN NS
 ns1
 ns0 14400 IN A6 0
 3ffe:8050:201:1860:42::1
 ns1 14400 IN A
 192.168.42.1

It is recommended that IPv4-in-IPv6 mapped addresses not be used. If a host has an IPv4
address, use an A record, not an A6, with ::ffff:192.168.42.1 as the address.

10.5 Securing your DNS environment
z/OS V1R2 Communications Server has introduced several important security features that
help you protect your name server, as we already shown in “BIND 9 name server advanced
topics” on page 376. These features are particularly important if your name server is running
on the Internet, but they're also useful on purely internal name servers. The purpose of these
section is to show you, step by step, the measures you could take to secure the
implementation scenario we created in the section 10.4, “Setting up a BIND 9-based Domain
Name Server” on page 355. The security implementation scenario will follow these steps:

1. 10.5.1, “Restricting queries” on page 386

2. 10.5.2, “Preventing unauthorized zone transfers” on page 386

3. 10.5.3, “Creating a transaction signature between master and slave” on page 387

4. 10.5.4, “Signing your zone” on page 388

Note: A6 chain resolution is only performed when one name server requests an A6 record
from another name server. A6 chain resolution will not be performed if a client requests an
A6 record.
Chapter 10. BIND Domain Name System (DNS) 385

10.5.1 Restricting queries
Before BIND 4.9, administrators had no way to control who could look up names on their
name servers. That makes a certain amount of sense; the original idea behind DNS was to
make information easily available all over the Internet. The Internet is not such a friendly
place anymore, though. In particular, people who run Internet firewalls may have a legitimate
need to hide certain parts of their namespace from most of the world while making it available
to a limited audience.

The BIND 9 allow-query substatement lets you apply an IP address-based access control list
to queries. The access control list can apply to queries for data in a particular zone or to any
queries received by the name server. In particular, the access control list specifies which IP
addresses are allowed to send queries to the server.

The global form of the allow-query substatement looks like this:

options {
 allow-query { address_match_list; };
};

So to restrict our name server to answering queries only from our internal network,
zos12.ral.ibm.com, we'd use:

options {
 allow-query { 9.12.6/24;};
};

BIND 9 also allow you to apply an access control list to a particular zone. In this case, just use
allow-query as a substatement to the zone statement for the zone you want to protect:

acl "zos12-net" { 9.12.6/24; };
 zone "zos12.ral.ibm.com" {
 type master;
 file "zos12.for.v9";
 allow-query { "zos12-net"; };
};

Any kind of authoritative name server, master or slave, can apply an access control list to the
zone. Zone-specific access control lists take precedence over a global ACL for queries in that
zone. The zone-specific access control list may even be more permissive than the global
ACL. If there's no zone-specific access control list defined, any global ACL will apply.

Any attempt of querying a record coming from an unauthorized host will not receive an
answer, and the request will timeout with no further notice.

10.5.2 Preventing unauthorized zone transfers
Even more important than controlling who can query your name server is ensuring that only
your real slave name servers can transfer zones from your name server. Users on remote
hosts that can query your name server's zone data can only look up records (e.g., addresses)
for domain names they already know, one at a time. Users who can start zone transfers from
your server can list all of the records in your zones.

BIND 8 and BIND 9's allow-transfer substatement let administrators apply an access control
list to zone transfers. allow-transfer restricts transfers of a particular zone when used as a
zone substatement, and restricts all zone transfers when used as an options substatement. It
takes an address match list as an argument.
386 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The slave server for our zos12.ral.ibm.com zone have the IP addresses 9.12.6.63
(sc64.zos12.ral.ibm.com). The following zone statement:

zone "zos12.ral.ibm.com" in {
 type master;
 file "zos12.for.v9";
 allow-query { "zos12-net";};
 allow-transfer { 9.12.6.63; };

allows only this slave to transfer zos12.ral.ibm.com records from the primary master name
server. Note that because the default for BIND 9 is to allow zone transfer requests from any
IP address, and because hackers can just as easily transfer the zone from your slaves, you
should probably also have a zone statement like this on your slaves:

zone "zos12.ral.ibm.com" in {
 type slave;
 file "zos12.for.bak.v9";
 masters { 9.12.6.68; };
 allow-transfer {none; };
};

BIND 9 also let you apply a global access control list to zone transfers. This applies to any
zones that don't have their own explicit access control lists defined as zone substatements.
For example, we might want to limit all zone transfers to our internal IP addresses:

options {
 allow-transfer { 9.12.6/24; };
};

10.5.3 Creating a transaction signature between master and slave
The next step to increase our secure environment is to use TSIG to let you restrict zone
transfers to slave name servers that include a correct transaction signature with their request.
On the master name server, generate a key, sc63-sc64, using the command dnssec-keygen as
follows:

OCTAVIO @ SC63:/>dnssec-keygen -a hmac-md5 -b 128 -n HOST sc63-sc64
start typing:
...............................
...........................
stop typing.
Ksc63-sc64.+157+35544

This generates two key files:

Ksc63-sc64.+157+35544.key
Ksc63-sc64.+157+35544.private

The contents of these files is shown in Figure 10-69:

Figure 10-69 Contents of file Ksc63-sc64.+157+37860.private

Get the key you generated, insert it in a key statement and then specify the key in the
address match list as shown next:

Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: 8k0IjL3m4sS013DBNs6S6w==
Chapter 10. BIND Domain Name System (DNS) 387

key sc63-sc64 {
algorithm "hmac-md5";
secret "8k0IjL3m4sS013DBNs6S6w==";
};
server 9.12.6.67 {
keys { sc63-sc64; };
};
zone "zos12.ral.ibm.com" in {
 type master;
 file "zos12.for.v9";
 allow-query { "zos12-net";};
 allow-transfer { key dns63-dns64.; };
};

On the slave's end, you need to configure the slave to sign zone transfer requests with the
same key:

key sc63-sc64 {
algorithm "hmac-md5";
secret "8k0IjL3m4sS013DBNs6S6w==";
};
server 9.12.6.68 {
keys { sc63-sc64; };
};
zone "zos12.ral.ibm.com" {
type slave;
masters { 9.12.6.68; };
file "zos12.for.bak.v9";
};

For a primary master name server accessible from the Internet, you probably want to limit
zone transfers to just your slave name servers. You probably don't need to worry about name
servers inside your firewall, unless you're worried about your own employees listing your
zone data.

10.5.4 Signing your zone
The last and higher level of security to implement in our DNS environment is to use DNSSEC
to sign your zone. We'll show you how we signed our DNS scenario, which is the zone called
zos12.ral.ibm.com. All process will be done using the BIND 9 tools, as follows:

10.5.4.1 Generating your key pair
First, we generated a key pair for zone zos12.ral.ibm.com using dnssec-key:

OCTAVIO @ SC63:>dnssec-keygen -a DSA -b 512 -n ZONE zos12.ral.ibm.com
start typing:
...............................
...........................
stop typing.
Kzos12.ral.ibm.com.+003+09520

We ran dnssec-keygen in our name server's working directory. That's mostly for convenience:
the zone data files are in this directory, so we won't need to use full pathnames as arguments.
If we want to use dynamic update with DNSSEC, though, we'd need the keys in the name
server's working directory.

Recall dnssec-keygen's options from the TSIG section of this chapter:

-a The cryptographic algorithm to use, in this case RSA. We could also have used DSA,
but RSA is more efficient.
388 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

-b The length of the keys to generate, in bits. RSA keys can be anywhere from 512 to
2000 bits long. DSA keys can be 512 to 1024 bits long, as long as
the length is divisible by 64.

-n The type of key. DNSSEC keys are always ZONE keys.

The only non-option argument is the domain name of the zone, zos12.ral.ibm.com. The
dnssec-keygen program prints the basename of the files it's written the keys to. The numbers
at the end of the basename (+003 and +09520), as we explained in the TSIG section, are the
key's DNSSEC algorithm number as used in the KEY record (003 is DSA/MD5), and the key's
fingerprint (+09520), used to distinguish one key from another when multiple keys are
associated with the same zone.

The public key is written to the file basename.key (Kzos12.ral.ibm.com.+003+09520.key). The
private key is written to the file basename.private (Kzos12.ral.ibm.com.+003+09520.key).
Remember to protect the private key; anyone who knows the private key can forge signed
zone data. dnssec-keygen does what it can to help you: it makes the .private file readable
and writable only by the user who runs it.

10.5.4.2 Sending your keys to be signed (optional)
Next, we sent our KEY record to the administrator of our parent zone to sign. BIND 9 includes
a program to package up the key for transmission, dnssec-makekeyset:

> dnssec-makekeyset -t 172800 Kzos12.ral.ibm.com.+003+09520.key

After executed dnssec-makekeyset created a file called keyset-zos12.ral.ibm.com.. Its
contents are shown in Figure 10-70.

Figure 10-70 Contents of keyset-zos12.ral.ibm.com. file

The -t option takes a TTL for the records to submit. This serves as a suggestion to your
parent zone's administrator of the TTL (in seconds) you'd like for your record. They may
ignore it, of course. The SIG record actually contains a signature covering your zone's KEY
record, generated with your zone's private key. That proves you really have the private key
that corresponds to the public key in the KEY record--you're not just submitting a KEY record
you found on the street.

Then we sent our file off to our parent zone's administrators to sign. Since the message
included proof of our identity, they signed it with the dnssec-signkey program:

dnssec-signkey keyset-zos12.ral.ibm.com Kral.ibm.com.+003+64185.private

 $ORIGIN .
 $TTL 172800 ; 2 days
 zos12.ral.ibm.com IN KEY 256 3 3 (
 AILbO5yIGFZAsGCeh67DNVh7cYytzwmtkRbEERPh9rWy
 MlQbHuUBXTHdU/wsIvBr7omnRUXvLQxXEF4mLUnILL7j
 G5yncdRBo1KR7XTDkzGI9CW4qU4UGpH98QnbnZupGXDw
 nrHs8pK7stgssfjniShyUAbzVVnSxCtCHC7EQbnvIKdf
 jI5pydYKFeooXBdO2kGPKmQinZFVdROKqstD5jFZ/+lh
 TjUKTZGYFDc57i6yMPNErsP8DI3GwQ410NaP20tCGMTJ
 YtI0hb9oNkUOtS9fgtIP) ; key id = 10547
 SIG KEY 3 4 172800 20020626173942 (
 20020527173942 9520 zos12.ral.ibm.com.
 AHUWn73ryAc3TInk8OlCso/1Mb3QF02026Xop+8nibcK
 WrtY24+DJsE=)
Chapter 10. BIND Domain Name System (DNS) 389

and sent the resulting file, signedkey-zos12.ral.ibm.com, back to us. Its contents are shown in
Figure 10-71.

Figure 10-71 signedkey-zos12.ral.ibm.com. contents

If we did not care about getting our KEY record signed, we could have skipped this step. But
then only name servers with a trusted-keys entry for zos.ral.ibm.com could verify our data.

10.5.4.3 Signing your zone
Before signing our zone, we had to include a reference to the key file into the our zone data
file (zos12.for.v9) using the $INCLUDE statement:

$INCLUDE Kzos12.ral.ibm.com.+003+09520.key

This gives the signer program the information it needed to know which key to use to sign the
zone. It automatically finds and includes the contents of signedkey-zos12.ral.ibm.com.

Then we signed the zone with dnssec-signzone:

dnssec-signzone -o zos12.ral.ibm.com. zos12.for.v9

We used the -o option to specify the origin in the zone data file, because dnssec-signzone
doesn't read named.conf to determine which zone the file describes. The only non-option
argument is the name of the zone data file.

This produces a new zone data file, zos12.for.v9.signed. A partial contents of this file is
shown in Figure 10-72.

 $ORIGIN .
 $TTL 172800 ; 2 days
 zos12.ral.ibm.com IN KEY 256 3 3 (
 AILbO5yIGFZAsGCeh67DNVh7cYytzwmtkRbEERPh9rWy
 MlQbHuUBXTHdU/wsIvBr7omnRUXvLQxXEF4mLUnILL7j
 G5yncdRBo1KR7XTDkzGI9CW4qU4UGpH98QnbnZupGXDw
 nrHs8pK7stgssfjniShyUAbzVVnSxCtCHC7EQbnvIKdf
 jI5pydYKFeooXBdO2kGPKmQinZFVdROKqstD5jFZ/+lh
 TjUKTZGYFDc57i6yMPNErsP8DI3GwQ410NaP20tCGMTJ
 YtI0hb9oNkUOtS9fgtIP) ; key id = 10547
 SIG KEY 3 4 172800 20020626173942 (
 20020527173942 64185 ral.ibm.com.
 AEvxWeXonAFwpaQp9nYhI5GDqafcHSTblwL1oAh+841m
 4FZzImMpJF4=)
390 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-72 Partial contents of zos12.for.v9.signed file

Finally, we changed the zone statement in named.conf so that named would load the new
zone data file:

zone "zos12.ral.ibm.com" in {
 type master;
 file "zos12.for.v9.signed";
 allow-query { "zos12-net";};
 allow-transfer { key dns63-dns64.; };
 allow-update { 9.12.6.67;9.12.6.68;9.12.6.63; };
};

Then we reloaded the zone using rndc reload command and checked syslog.

10.5.4.4 DNSSEC and dynamic update
dnssec-signzone is not the only way to sign zone data. The BIND 9 name server is capable of
signing dynamically updated records on the fly. As long as the private key for a secure zone is
available in the name server's working directory (in the correctly named .private file), a BIND
9 name server signs any records that are added via dynamic update. If any records are
added to or deleted from the zone, the name server adjusts (and re-signs) the neighboring
NXT records, too. The following steps show how it is done:

; File written on Mon. May 27 14:26:46 2002
; dnssec_signzone version 9.1.1
 zos12.ral.ibm.com. 86400 IN SOA dns63.zos12.ral.ibm.com. admin.zos12.ral.ibm.com. (
 4 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (1 week)
 86400 ; minimum (1 day)
)
 86400 SIG SOA 3 4 86400 20020626182646 (
 20020527182646 9520 zos12.ral.ibm.com.
 AF2UFK1AP5eTSlpvgayWUN84rvREMzM3paa3
 /KJwdJ/EZ0vnAuIAuc4=)
 86400 NS dns63.zos12.ral.ibm.com.
 86400 NS dns63.zos12.ral.ibm.com.
 86400 NS dns64.zos12.ral.ibm.com.
 86400 SIG NS 3 4 86400 20020626182646 (
 20020527182646 9520 zos12.ral.ibm.com.
 AH1qWnUz5L9xVKBEOc6twGTXyp6BKLPtNRJo
 PEhuc2GXBvgHhYwssj4=)
 86400 KEY 256 3 3 (
 AILbO5yIGFZAsGCeh67DNVh7cYytzwmtkRbE
 ERPh9rWyMlQbHuUBXTHdU/wsIvBr7omnRUXv
 LQxXEF4mLUnILL7jG5yncdRBo1KR7XTDkzGI
 9CW4qU4UGpH98QnbnZupGXDwnrHs8pK7stgs
 sfjniShyUAbzVVnSxCtCHC7EQbnvIKdfjI5p
 ydYKFeooXBdO2kGPKmQinZFVdROKqstD5jFZ
 /+lhTjUKTZGYFDc57i6yMPNErsP8DI3GwQ41
 0NaP20tCGMTJYtI0hb9oNkUOtS9fgtIP) ; key id = 10547
 172800 SIG KEY 3 4 172800 20020626173942 (
 20020527173942 64185 ral.ibm.com.
 AEvxWeXonAFwpaQp9nYhI5GDqafcHSTblwL1
 oAh+841m4FZzImMpJF4=)
Chapter 10. BIND Domain Name System (DNS) 391

� We first query the name server about a host called newhost using dig command:

/> dig +dnssec newhost.zos12.ral.ibm.com.

The result of the command will be:

OCTAVIO @ SC63:/>dig +dnssec newhost.zos12.ral.ibm.com
Allocated socket 5, type udp

; <<>> DiG 9.1.1 <<>> +dnssec newhost.zos12.ral.ibm.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 49597
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 3

;; OPT PSEUDOSECTION:
; EDNS: version: 0, udp= 4096
;; QUESTION SECTION:
;newhost.zos12.ral.ibm.com. IN A

;; AUTHORITY SECTION:
zos12.ral.ibm.com. 86400 IN SOA dns63.zos12.ral.ibm.com.
admin.zos12.ral.ibm.com.
zos12.ral.ibm.com. 86400 IN SIG SOA 3 4 86400 20020626182646
20020527182646 9520 z
gayWUN84rvREMzM3paa3/KJwdJ/EZ0vnAuIAuc4=
mail.zos12.ral.ibm.com. 86400 IN NXT sc63.zos12.ral.ibm.com. CNAME SIG NXT
mail.zos12.ral.ibm.com. 86400 IN SIG NXT 3 5 86400 20020626182646
20020527182646 9520 z
;; Query time: 2 msec
;; SERVER: 9.12.6.68#53(9.12.6.68)
;; WHEN: Mon May 27 15:23:29 2002
;; MSG SIZE rcvd: 640

Note that we trimmed the output a little. Notice the mail.zos12.ral.ibm.com NXT record, which
is the last record in our domain file, indicating that the domain name doesn't exist. Now we'll
use nsupdate to add an address record for newzone.zos12.ral.ibm.com:

/>nsupdate -V v9
> update add newhost.zos12.ral.ibm.com. 3600 IN A 9.12.6.61

Now, we look up newhost.zos12.ral.ibm.com again:

% dig +dnssec newhost.zos12.ral.ibm.com.
OCTAVIO @ SC63:/>dig +dnssec newhost.zos12.ral.ibm.com
Allocated socket 5, type udp

; <<>> DiG 9.1.1 <<>> +dnssec newhost.zos12.ral.ibm.com
;; global options: printcmd
; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11973
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 9
;; QUESTION SECTION:
;newhost.zos12.ral.ibm.com. IN A
;; ANSWER SECTION:
newhost.zos12.ral.ibm.com. 3600 IN A 9.12.6.61
newhost.zos12.ral.ibm.com. 3600 IN SIG A 1 3 3600 20010215195456
20010116185456 27791 zos12.ral.ibm.com.
C/JXdCLUdugxN91v0DZuUDTusi2XNNttb4bdB2nBujLxjwwPAf/D5MJz
//cDtuZ3X+uYzhkN8MDROqOwUQuQSA==

;; AUTHORITY SECTION:
392 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

zos12.ral.ibm.com. 86400 IN SOA dns63.zos12.ral.ibm.com.
admin.zos12.ral.ibm.com.
zos12.ral.ibm.com. 86400 IN SIG SOA 3 4 86400 20020626182646
20020527182646 9520 z
gayWUN84rvREMzM3paa3/KJwdJ/EZ0vnAuIAuc4=
mail.zos12.ral.ibm.com. 86400 IN NXT sc63.zos12.ral.ibm.com. CNAME SIG NXT
mail.zos12.ral.ibm.com. 86400 IN SIG NXT 3 5 86400 20020626182646
20020527182646 9520 z
;; Query time: 2 msec
;; SERVER: 9.12.6.68#53(9.12.6.68)
;; WHEN: Mon May 27 15:23:29 2002
;; MSG SIZE rcvd: 640

Again, we trimmed the output a little. Now, not only was an address record generated, but
there is also a SIG record generated from movie.edu's private key. As impressive as this is,
you should be careful when allowing dynamic updates to secure zones. You should make
sure that you use strong authentication (e.g., TSIG) to authenticate the updates, or you will
give a hacker an easy backdoor to use to modify your "secure" zone. And you should ensure
you have enough horsepower for the task: normally, dynamic updates do not take much to
process. But dynamic updates to a secure zone require NXT recalculation and, more
significantly, asymmetric encryption (to calculate new SIG records), so you should expect
your name server to take longer and need more resources to process them.

10.6 Running DNS in BIND 9 and BIND 4.9.3 simultaneously
Because each name server version supports some functions that the other does not, you may
wish to run both name servers on the same TCP/IP stack. This is accomplished by having
each name server listen on a different set of interfaces. When running the name server in
both BIND 9 and BIND 4.9.3 modes, the same requirements and restrictions of running them
separately apply.

10.6.1 Compatibility considerations

Zone transfers
It is not recommended to have a BIND 4.9.3- DNS act as a slave name server to a BIND 9
master. However, if required, it can be done under certain conditions. If the BIND 9 master
contains any resource records (RRs) that BIND 4.9.3-DNS does not understand, the zone will
fail to load. A BIND 9 nameserver with BIND 4 slaves should specify the 'transfer-format
one-answer' option in its named.conf. Otherwise, any transfer will also fail.

BIND 4.9.3 does not understand NOTIFY, therefore, if BIND 4.9.3 is running as a slave name
server to a BIND 9 master, the DNS Change Notification protocol will not work. The standard
method of zone transfers applies, where the slave periodically polls the master for an updated
SOA serial number.

Queries
BIND 4.9.3 can participate in DNS queries when BIND 9 name servers are in the DNS tree
structure, even when the queries are for RR types that BIND 4.9.3 does not understand. For
example, if a resolver is pointed to a BIND 4.9.3-DNS and is asked for an AAAA record (an
RR type that BIND 4.9.3 name server does not understand), BIND 4.9.3-DNS will recursively
query other (possibly BIND 9) name servers and return the answer to the client. The BIND
4.9.3-DNS will not cache the response (in the case of RR types it does not understand),
which may mean a little more network traffic. This caching issue may or may not be significant
depending on your particular network traffic patterns.
Chapter 10. BIND Domain Name System (DNS) 393

Dynamic update
BIND 4.9.3 version ofdynamic update is incompatible with the BIND 9 version. For dynamic
update on BIND 4.9.3-DNS, use nsupdate with -V v4 start option. For dynamic update on
BIND 9-DNS, use nsupdate with -V v9 start option. Additionally, only the DHCP server on
z/OS and OS/2 can successfully dynamically update the BIND 4.9.3-DNS.

DNSSEC
BIND 4.9.3 does not support DNSSEC.

TSIG
BIND 4.9.3 does not support TSIG security which may be used on queries, update and zone
transfers on BIND 9 name servers.

DNS/WLM (Sysplex Connection balancing)
Not supprorted by a name server running in BIND 9 mode.

IPV6 Support
BIND 4.9.3 name server does not fully suport IPv6.

Stack Affinity
The BIND 9 name server is a generic server, unlike the BIND 4.9.3 name server which has
stack affinity. If stack affinity is desired for the BIND 9 name server, use the
_BPXK_SETIBMOPT_TRANSPORT environment variable.

NOTIFY
This function notifies the slave of a change in the master. It is not supported by a BIND 4.9.3
name server.

10.6.2 Implementation procedure
To implement the scenario shown in, see section 10.2, “Setting up a BIND 4.9.3-based
Domain Name Server” on page 323 and section 10.4, “Setting up a BIND 9-based Domain
Name Server” on page 355 for details about the steps to follow to implement each one of
them, making sure to follow these tasks to allow both BINDs to run simultaneously:

10.6.2.1 Specify port ownership
Allow the name server port (53) to be shared by removing any PORT reservations for port 53
or else reserve PORT 53 for TCP for both jobnames. Ensure that PORT 53 TCP port
reservations have a suffix of 2 for BIND 4.9.3 and a suffix of 1 for BIND 9 if they are started
from a procedure. To implement our scenario, specify one of the following:

a. reserve TCP port 53 to each procedure:

PORT 53 TCP NAMED42 ;BIND 4.9.3
PORT 53 TCP NAMED91 ;BIND 9

b. Reserve TCP and UDP port 53 to OMVS:

PORT 53 TCP OMVS ; Reserved to OMVS
PORT 53 UDP OMVS ; Reserved to OMVS

This might be the best choice if you are going to start the name servers from z/OS UNIX.

Note: UDP PORT reservation for multiple jobnames is not allowed.
394 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

10.6.2.2 Bind each name server to its own set of IP interfaces
� Bind the BIND 9 name server to the set of interfaces you wish to be serviced by the BIND

9 name server using the 'listen-on{}' 1 option in the named.conf file.

options {
directory "/etc/octavio/dnsdata";
1 listen-on { 9.12.6.68; };

� Bind the BIND 4.9.3 name server to the interface you wish to be serviced by the BIND
4.9.3 name server using the BIND option on the PORT statement in the TCPIP.PROFILE
for the name server's port. This should use the job name of the BIND 4.9.3 name server. 1

PORT
 20 TCP OMVS NOAUTOLOG ; FTP SERVER DATA PORT
 21 TCP FTPDB1 ; FTP SERVER CONTROL PORT
 53 TCP NAMED91 ; RESERVE PORT TO BIND 9 DNS
 1 53 TCP NAMED42 BIND 9.12.6.67 ;RESERVE PORT TO BIND 4.93 DNS

10.6.2.3 Assign unique job names
Assign unique job names to the two name servers and correlate those names with the job
names used in the previous steps. Ensure that the jobnames match those on the PORT
statement, with the exception of the numerical suffix. Port reservation will not work if named is
started from z/OS UNIX, unless the ports are reserved with the name OMVS. In our scenario
we use NAMED4 and NAMED9 to specify each BIND’s procedure.

10.6.2.4 Store the name server process IDs (PIDs) in unique files
Configure the BIND 9 name server to store the process ID (PID) in a file other than that one
used for the BIND 4.9.3 name server (/etc/named.pid). This is done with the 'pid-file'
named.conf file option. 1

options {
pid-file "/etc/named.v9.pid"; 1
 directory "/etc/octavio/dnsdata";
 listen-on { 9.12.6.68; };
};

10.6.2.5 Change the loopback address for BIND 4.9.3 Name Server
BIND 9 and BIND 4 server modes coexistence on the same host requires different loopback
addresses. If BIND 9 and BIND 4.9.3 are to be started on the same host, once BIND 9 mode
is started, BIND 4 mode server will have to use a different loopback address. BIND 4 server
master forward and loopback zone files should define A and PTR resource records,
respectively, for the appropriate loopback addresses, as shown:

a. In the forward file:

localhost IN A 127.0.0.2

b. In the loopback file:

0.0.127.in-addr.arpa. IN NS dns63.wlm.zos12.ral.ibm.com.
2.0.0.127.in-addr.arpa. IN PTR localhost.
Chapter 10. BIND Domain Name System (DNS) 395

10.6.2.6 Forward the queries to the correct name server
When you implement an environment where you have 2 Name Servers working
simultaneously you need to be sure your clients are going to reach the right server, by
configure clients' resolver configuration data set or HFS file so that it points to the interface or
interfaces of the desired name server. This is typically specified by the NSINTERADDR
statement, or an equivalent statement. Another way to do it is to forward the queries that does
not belong to one server to the right by defining the forwarder option on the options statement
as shown in Figure 10-73:

Figure 10-73 Forwarders definition in named.conf file

10.6.2.7 Verifying the implementation
After you start both name servers, you can check if everything is up as planned, using these
options:

� Check the startup messages for both servers in the console log as shown in Figure 10-74
and Figure 10-75:

Figure 10-74 Startup messages for named V4 (partial contents).

Figure 10-75 Startup messages for named V9 (partial contents)

� Confirm that each Server has opened the interface they were allowed to bind, by using the
command netstat conn. The partial results of the command shown in Figure 10-76.

 options {
 pid-file "/etc/named.v9.pid";
 directory "/etc/octavio/dnsdata";
 listen-on { 9.12.6.68; };
 forwarders { 9.12.6.67; };
};

 $HASP100 NAMED4 ON STCINRDR
 IEF695I START NAMED4 WITH JOBNAME NAMED4 IS ASSIGNED TO
 $HASP373 NAMED4 STARTED
 EZZ9166I STARTING NAMED, BIND V4
 EZZ6697I NAMED STARTING
 EZZ6475I NAMED: READY TO ANSWER QUERIES.
 IEF404I NAMED4 - ENDED - TIME=16.23.47 - ASID=006C - SC63
 $HASP395 NAMED4 ENDED

 S NAMED9
 $HASP100 NAMED9 ON STCINRDR
 IEF695I START NAMED9 WITH JOBNAME NAMED9 IS ASSIGNED TO
 $HASP373 NAMED9 STARTED
 +EZZ9095I STARTING NAMED, BIND 9.1.1
 IEF404I NAMED9 - ENDED - TIME=16.23.41 - ASID=006C - SC63
 $HASP395 NAMED9 ENDED
 +EZZ9130I NAMED, BIND 9.1.1 IS RUNNING
396 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-76 Partial results of netstat conn command

� Check that the queries are being answered by the correct servers using nslookup in the
host as follows:

a. To see if the BIND 4 is accepting queries, enter the nslookup with the server_address
parameter and the host_name you want to check:

OCTAVIO @ SC63:/>nslookup host1.wlm.ral.ibm.com. 9.12.6.67
Defaulting to nslookup version 4
Starting nslookup version 4
Server: host1.wlm.ral.ibm.com
Address: 9.12.6.67
Name: host1.wlm.ral.ibm.com
Address: 9.12.6.67

b. To see if the BIND 9 is accepting queries, the nslookup with the server_address
parameter and the host_name you want to check:

OCTAVIO @ SC63:/>nslookup -V=v9 host1.zos12.ral.ibm.com 9.12.6.68
Running nslookup version 9
Allocated socket 5, type udp
Server: 9.12.6.68
Address: 9.12.6.68#53
Name: host1.zos12.ral.ibm.com
Address: 9.12.6.67

c. Check if the forwarder is sending your query to the right server, assuming that your
workstation uses BIND9 as primary DNS:

OCTAVIO @ SC63:/>nslookup -V=v9 host1.wlm.ral.ibm.com 9.12.6.68
Running nslookup version 9
Allocated socket 5, type udp
Server: 9.12.6.68
Address: 9.12.6.68#53

Non-authoritative answer: 1
Name: host1.wlm.ral.ibm.com
Address: 9.12.6.67

Looking at the resulting messages, you can confirm that you are receiving your answer
from the other server, as expected 1.

10.7 DNS tools
There are several diagnostics, administrative and monitoring tools available to the system
administrator for controlling and debugging the nameserver daemon. z/OS V1R2
Communications Server has improved some tools and implemented new functions to
enhance the control over a Domain Name Server. In the next sections, we are going to
describe the most used ones.

 D TCPIP,TCPIPB,N,CONN
 EZZ2500I NETSTAT CS V1R2 TCPIPB 866
 USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
NAMED42 0000062B 9.12.6.67..53 0.0.0.0..0 LISTEN
NAMED91 00000628 9.12.6.68..53 0.0.0.0..0 LISTEN
NAMED42 0000062C 0.0.0.0..53 *..* UDP
NAMED91 00000627 9.12.6.68..53 *..* UDP
Chapter 10. BIND Domain Name System (DNS) 397

10.7.1 Administrative tools
This section describes the Domain Name System (DNS) administrative tools you can use to
control, maintain and verify domain name servers, resolvers, and resource records. z/OS
V1R2 Communication Server implemented the following commands:

� nsupdate -

� dnssec commands (keygen, makekeyset, signkey, and signzone) related to DNS security

� rndc command to remotely control a name server

� dnsmigrate command to convert named.boot file syntax into named.conf file syntax

10.7.1.1 Using the z/OS UNIX nsupdate command
You can use nsupdate to create and execute DNS update operations on a host record as
defined in RFC 2136 (for DNS 9) or RFC 2065 (for DNS 4.9.3) to a name server. This allows
resource records to be added or removed from a zone without manually editing the zone file.
A single update request can contain requests to add or remove more than one resource
record.

� BIND v4

You can use nsupdate command in an interactive fashion (where you are prompted through a
series of subcommands and associated input values), or if you know the sequence of
operations and input values beforehand, you can use nsupdate in batch mode and specify a
subcommand sequence in the -s command line parameter. The search order locations and
order of priority from which the values for version BIND 4.9.3 nsupdate options can be
specified are:

– nsupdate command options

– nsupdaterc file in the home directory

– environment variable (LOCALDOMAIN)

� BIND v9

The resource records for nsupdate using BIND 9 that are dynamically added or removed
with nsupdate have to be in the same zone. Requests are sent to the zone's master
server. This is identified by the MNAME field of the zone's SOA record. Batch mode is
indirectly provided when input is redirected to a file, such as

nsupdate -V v9 < /tmp/update.zone.

A valid series of nsupdate commands must be in the file, one command per line, prior to
nsupdate invocation.

BIND 9 DNS uses the z/OS application's search order to find TCPIP.DATA statements. It
uses the following directives from the resolver configuration file:

– nameserver/nsinteraddr

– options ndots:n

– search domain/domainorigin

Note: Zones that are under dynamic control via nsupdate or a DHCP server should not be
edited by hand. Manual edits could conflict with dynamic updates and cause data to be
lost.
398 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The examples below show how nsupdate with BIND 9 could be used to insert and delete
resource records from the example.com zone. Notice that the input in each example contains
a trailing blank line so that a group of commands are sent as one dynamic update request to
the master name server for example.com.

nsupdate
> update delete host1.zos12.ral.ibm.com.com A
> update add newhost.zos12.ral.ibm.com 86400 A 9.12.6.67
>

Any A records for host1.zos12.ral.ibm.com are deleted, and an A record for
newhost.zos12.ral.ibm.com at IP address 9.12.6.67 is added. The newly added record has a
1-day TTL (86400 seconds).

10.7.1.2 Using the z/OS UNIX dnssec-keygen command
The dnssec-keygen command generates keys for DNSSEC, Secure DNS, as defined in RFC
2535. It also generates keys for use in Transaction Signatures (TSIG) which is defined in
RFC 2845. The dnssec-keygen command can only be run from the z/OS UNIX shell. If
dnssec-keygen is invoked with no command line options or arguments, it prints a short
summary of the supported commands and the available options and their arguments.

To generate a 768-bit DSA key for the domain example.com, the following command would
be issued:

dnssec-keygen -a DSA -b 768 -n ZONE example.com Kexample.com.+003+26160

dnssec-keygen has printed the key identification string Kexample.com.+003+26160,indicating
a DSA key with identifier 26160. It will also have created the files
Kexample.com.+003+26160.key and Kexample.com.+003+26160.private containing the
public and private keys for the generated DSA key.

10.7.1.3 Using the z/OS UNIX dnssec-makekeyset command
The dnssec-makekeyset command, used to configure the BIND 9 DNS DNSSEC feature,
creates a key set file. A key set contains all of the keys containing KEY and SIG records for
some zone which can then be signed by the zone's parent, if the parent zone is
DNSSEC-aware. The dnssec-makekeyset command may only be run from the z/OS UNIX
shell. If dnssec-makekeyset is invoked with no command line options or arguments, it prints a
short summary of the supported commands and the available options and their arguments.

The following command generates a key set for the DSA key for example.com.

dnssec-makekeyset -t 86400 -s 20000701120000 -e +2592000 Kexample.com.+003+26160

dnssec-makekeyset creates a file called keyset-example.com. containing a SIG and KEY
record for example.com. These records will have a TTL of 86400 seconds (1 day). The SIG
record becomes valid at noon UTC on July 1st 2000 and expires 30 days (2592000 seconds)
later.

The DNS administrator for example.com could then send keyset-example.com. to the DNS
administrator for .com to sign the resource records in the file. This assumes that the .com
zone is DNSSEC-aware and the administrators of the two zones have some mechanism for
authenticating each other and exchanging the keys and signatures securely.

10.7.1.4 Using the z/OS UNIX dnssec-signkey command
The dnssec-signkey command, used to configure DNSSEC security features for a BIND 9
name server, signs one child's keyset with the parent zone's private key. The dnssec-signkey
command may only be run from the z/OS UNIX shell.
Chapter 10. BIND Domain Name System (DNS) 399

If dnssec-signkey is invoked with no command line options or arguments, it prints a short
summary of the supported commands and the available options and their arguments. The
DNS administrator for a DNSSEC-aware .com zone would use the following command to
make dnssec-signkey sign the keyset file for example.com:

dnssec-signkey keyset-example.com. Kcom.+003+51944

where Kcom.+003+51944 was a key file identifier produced when dnssec-keygen generated a
key for the .com zone. dnssec-signkey produces a file called signedkey-example.com. which
has the keys for example.com signed by the com zone's zone key.

10.7.1.5 Using the z/OS UNIX dnssec-signzone command
The dnssec-signzone command, used to configure the DNSSEC security feature for BIND 9
name servers, signs zones with the keys generated by dnssec-keygen. By signing zones with
a private key, users of that data which have the public key or can securely obtain the public
key can be assured that the data is authentic. The dnssec-signzone command may only be
run from the z/OS UNIX shell.

The following example shows how dnssec-signzone could be used to sign the zone file. The
zone file for this zone is example.com, which is the same as the origin, so there is no need to
use the -o option to set the origin. This zone file contains the keyset for example.com that was
created by dnssec-makekeyset. The zone's keys were either appended to the zone file or
incorporated using a $INCLUDE statement. If there was a signedkey file from the parent zone
(signedkey-example.com.), it should be present in the current directory. This allows the
parent zone's signature to be included in the signed version of the example.com zone.

dnssec-signzone example.com Kexample.com.+003+26160

dnssec-signzone will create a file called example.com.signed, the signed version of the
example.com zone. This file can then be referenced in a zone{} statement in /etc/named.conf
so that it can be loaded by the name server.

10.7.1.6 Using the z/OS UNIX dnsmigrate command
The dnsmigrate command is a migration aid that will convert named.boot files for the
BIND.4.9.3 mode, into named.conf files suitable for the BIND.9 mode. The dnsmigrate
command may only be run from the z/OS UNIX shell.

The following command, using dnsmigrate without parameters, converts the default input file
(/etc/named.boot) and writes the results to the default output file (/etc/named.conf).

dnsmigrate

The following converts the specified input file (/tmp/named.boot) to the specified output file
(/tmp/named.conf). Note that it does not matter what order the input and output file options
are used.

dnsmigrate -o /tmp/named.conf -i /tmp/named.boot

10.7.1.7 Using the z/OS UNIX rndc command
Remote Name Daemon Control (rndc) command allows the system administrator to control the
operation of a name server. If rndc is invoked with no command line options or arguments, it
prints a short summary of the supported commands and the available options and their
arguments. rndc may only be used with the v9 (BIND9) name server and will not function with
the v4 (BIND.4.9.3) name server
400 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The function of rndc may be used as a secure remote client to control the name server. Some
local UNIX signal functions for the name server can be replaced by equivalent rndc functions.
The name server and rndc communicates over a TCP connection, sending commands
authenticated with digital transaction signatures (TSIG). This provides TSIG-style
authentication for the command request and the name server's response. All commands sent
over the channel must be signed by a key_id known to the server. Therefore, rndc and the
name server must be configured with a 'shared-secret'. This shared secret is a TSIG key,
which may be generated with the dnssec-keygen utility. The only supported encryption
algorithm for rndc is HMAC-MD5, which uses a shared secret on each end of the connection.
The functions available are:

� Reload configuration file and zones.

� Write server statistics to the statistics file.

� Toggle query logging.

� Dump the current contents of the cache.

� Stop the server.

If you run rndc without any options it will display a usage message as follows:

rndc [-c config] [-s server] [-p port] [-y key] [-z zone] [-v view] command [command ...]

A configuration file is required, because all communication with the server is authenticated
with digital signatures that rely on a shared secret, and there is no way to provide that secret
other than with a configuration file. The default location for the rndc configuration file is
/etc/rndc.conf, but an alternate location can be specified with the -c option. The format of the
configuration file is similar to that of named configuration file, but limited to only three
statements, the options, key and server statements. These statements are what associate the
secret keys to the servers with which they are meant to be shared. The order of statements is
not significant.

The options statement has two clauses: default-server and default-key. If default-server is
specified, the value takes a host name or address argument and represents
the server that will be contacted if no -s option is provided on the command
line. Alternatively, default-key takes the name of key as its argument, as
defined by a key statement. In future releases, a default-port clause will be
added to specify the port to which rndc should connect.

The server statement uses the key clause to associate a key-defined key with a server. The
argument to the server statement is a host name or address (addresses must
be enclosed in double quotes). The argument to the key clause is the name
of the key as defined by the key statement. A port clause will be added to a
future release to specify the port to which rndc should connect on the given
server.

A implement a sample minimal configuration to allow the local host to control the local
Domain Name Server using a key named rndc-dns63, follow these steps:

1. Generate the shared secret key (a TSIG key) using the command dnssec-keygen:

dnssec-keygen -a hmac-md5 -b 128 -n HOST rncd-dns63

the dnssec-keygen command generates 2 files:

Krndc-dns63.+157+22612.key
Krndc-dns63.+157+22612.private
Chapter 10. BIND Domain Name System (DNS) 401

2. Open the file Krndc-dns63.+157+22612.private and copy the generated key 1:

Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: iRIgqf6MhdHFCKl2FzqkgA== 1

3. Configure the rndc.conf file on the host you whish to run rndc from. the contents of the file
should be the key parameter, the server parameter and the options parameter, which
defines the default key and server, as follows:

 key rndc-dns63 {
 algorithm "hmac-md5";
 1 secret "iRIgqf6MhdHFCKl2FzqkgA==";};
 server dns63.zos12.ral.ibm.com { 2
 key rndc-dns63;};
 options { default-server localhost;
 default-key rndc-dns63; };
copy the key generated in step 1 as shown in 1
The server 2 parameter defines which server you want to contact and which key you are
going to use to contact it.

4. Add a key{} statement to the name server’s named.conf file describing the key. you must
use the same key generated in the rndc host and implemented in the rndc.conf file at that
host:

 key rndc-dns63 {
 algorithm "hmac-md5";
 secret "iRIgqf6MhdHFCKl2FzqkgA==";};

5. Add a control{} statement to the name server’s named.conf file as follows:

 controls {
 inet 127.0.0.1 allow {localhost;} keys {rndc-dns63;
};};
to connect to 127.0.0.1 port 953, using the key rndc-dns63 to authenticate the rndc
command. this key must match the one configured in rndc.config file.

6. reload the Name Server and test the command rndc:

rndc -c /etc/rndc.conf reload

10.7.2 DNS diagnostic tools
This section describes the available tools to diagnose a DNS problem:

� 10.7.2.1, “Checking messages sent to the operators console” on page 402

� “Checking syslog messages” on page 403

� Using Name Server Signals to Diagnose BIND 4.9.3-DNS Problems

� Using rndc to Diagnose BIND 9 Problems

� Using nslookup to Diagnose Problems

� Using dig to Diagnose Problems

10.7.2.1 Checking messages sent to the operators console
Messages displayed on the operators console indicate the status of your DNS. Messages fall
into the following categories:

� Name server initialization
� Name server initialization failure
� Name server initialization complete
� Name server termination
� Assertion failures (unexpected errors) (v9 only)
402 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Regularly check console messages to identify problems.

Figure 10-77 BIND 4.9.3 startup messages in the operator console

BIND 9 DNS startup messages in tho operator console

10.7.2.2 Checking syslog messages
Error messages may also be displayed in the syslog output file, which is pointed to by the
syslog configuration file. (/etc/syslog.conf is the default configuration file.) For BIND 9, refer to
10.4.9, “Configuring logging” on page 366. For the BIND 9 name server, initial startup
messages go to syslog, later messages will be directed to other defined or default logs
according to logging statements found or implied in the configuration file. Error, debug and
informational messages can be written to the name server's logging files.

Figure 10-78 BIND 4.9.3 DNS startup messages in the syslog file

 S NAMED4
 $HASP100 NAMED4 ON STCINRDR
 IEF695I START NAMED4 WITH JOBNAME NAMED4 IS ASSIGNED TO USER STC
 , GROUP SYS1
 $HASP373 NAMED4 STARTED
 IEF403I NAMED4 - STARTED - TIME=11.12.25 - ASID=0066 - SC63
 - --TIMINGS (MINS.)--
 EZZ9166I STARTING NAMED, BIND V4
 EZZ6452I NAMED STARTING. @(#) DDNS/NS/NS_MAIN.C, DNS_NS, DNS_R1.1 1.
 +EZZ6475I NAMED: READY TO ANSWER QUERIES.

 S NAMED9
 $HASP100 NAMED9 ON STCINRDR
 IEF695I START NAMED9 WITH JOBNAME NAMED9 IS ASSIGNED TO USER STC
 , GROUP SYS1
 $HASP373 NAMED9 STARTED
 IEF403I NAMED9 - STARTED - TIME=14.10.15 - ASID=0066 - SC63
+EZZ9095I STARTING NAMED, BIND 9.1.1
 IEF404I NAMED9 - ENDED - TIME=14.10.17 - ASID=0066 - SC63
 -NAMED9 ENDED. NAME- TOTAL CPU TIME= .00

 /usr/lpp/tcpip/sbin/namedÝ83951713¨: EZZ9166I STARTING NAMED, BIND V4
 EZZ6452I named starting. @(#) ddns/ns/ns_main.c, dns_ns, dns_r1.1 1.62 9/23/97 10:57:2
 EZZ6701I named established affinity with 'TCPIPB'
 EZZ6540I Static primary zone 'zos12.ral.ibm.com' loaded (serial 1)
 EZZ6540I Static primary zone '6.12.9.in-addr.arpa' loaded (serial 1)
 EZZ6540I Static primary zone '0.0.127.in-addr.arpa' loaded (serial 1)
 EZZ6540I Static cache zone '' loaded (serial 0)
 EZZ6475I named: ready to answer queries.
 EZZ6476I Return from getdtablesize() > FD_SETSIZE
Chapter 10. BIND Domain Name System (DNS) 403

Figure 10-79 BIND 9 DNS startup messages in the syslog file

10.7.2.3 Using nslookup to diagnose problems
The z/OS UNIX nslookup is a program used to query Internet domain name servers.
nslookup has two modes: interactive and non-interactive. It also has two versions in z/OS
UNIX: v4 and v9, where v4 gives the legacy z/OS UNIX onslookup function, and v9 gives the
BIND 9 version of nslookup. Use the interactive mode to query name servers for information
about various hosts and domains or to display a list of hosts (BIND 4) in a domain.
Non-interactive mode is used to display just the name and requested information for a host or
domain.

The z/OS UNIX onslookup/nslookup command enables you to perform the following tasks
from the z/OS UNIX environment:

� Identify the location of name servers
� Examine the contents of a name server database
� Establish the accessibility of name servers

To display a list of options, enter the following from the command line:

onslookup -h

Figure 10-80 nslookup non-interactive command (using the default version 4)

 EZZ9171I LPAR mode detected. Using 2 CPUs for -n option
 EZZ9547I starting named, BIND 9.1.1 -d 1 -c /etc/octavio/named.co
 EZZ9095I STARTING NAMED, BIND 9.1.1
 EZZ9217I Running non-swappable
 EZZ9540I using 2 CPUs
 EZZ9126I loading configuration from '/etc/octavio/named.conf'
 EZZ9542I zone 'zos12.ral.ibm.com' allows updates by IP address, w
 EZZ9542I zone '6.12.9.in-addr.arpa' allows updates by IP address,
 EZZ9542I zone '0.0.127.in-addr.arpa' allows updates by IP address
 EZZ8842I the default for the 'auth-nxdomain' option is now 'no'
 EZZ9052I no IPv6 interfaces found
 EZZ9046I listening on IPv4 interface OSA22E0 , 9.12.6.67#
 EZZ9046I listening on IPv4 interface VIPL090C0644 , 9.12.6.68#
 EZZ9111I command channel listening on 127.0.0.1#953
 EZZ9130I NAMED, BIND 9.1.1 IS RUNNING

Note: The onslookup command is a synonym for the nslookup command in the z/OS UNIX
shell. The nslookup command syntax is the same as that for the onslookup command. The
nslookup command may be run from the z/OS UNIX shell or from TSO; however, only the
legacy TSO version of NSLOOKUP is available from TSO.

OCTAVIO @ SC63:/>nslookup host1
Defaulting to nslookup version 4
Starting nslookup version 4
Server: dns63.zos12.ral.ibm.com
Address: 9.12.6.68
Name: host1.zos12.ral.ibm.com
Address: 9.12.6.67
404 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-81 nslookup non-interactive mode command (version 9)

Figure 10-82 nslookup interactive mode (version 4)

Figure 10-83 nslookup interactive mode (version 9)

10.7.2.4 Using the z/OS UNIX dig command
The domain information groper (dig) is a command line tool that can be used to gather
information from the Domain Name System servers. The dig command has two modes:
simple interactive mode for a single query, and batch mode, which executes one query for
each in a list of several query lines. All query options are accessible from the command line.
Dig is a program for querying Domain Name Servers, which enables you to:

� Exercise name servers

� Gather large volumes of domain name information

� Execute simple domain name queries

� Execute multiple lookups from the command line

OCTAVIO @ SC63:/>nslookup -V=v9 host1
Running nslookup version 9
Note: nslookup is deprecated and may be removed from future releases.
Consider using the `dig' or `host' programs instead. Run nslookup with
the `-silÝent¨' option to prevent this message from appearing.
Allocated socket 5, type udp
Server: 9.12.6.68
Address: 9.12.6.68#53

Name: host1.zos12.ral.ibm.com
Address: 9.12.6.67

OCTAVIO @ SC63:/>nslookup
Defaulting to nslookup version 4
Starting nslookup version 4
Default Server: dns63.zos12.ral.ibm.com
Address: 9.12.6.68

> root
Default Server: a.root-servers.net
Address: 198.41.0.4

>

> exit
OCTAVIO @ SC63:/>nslookup -V=v9
Running nslookup version 9
Note: nslookup is deprecated and may be removed from future releases.
Consider using the `dig' or `host' programs instead. Run nslookup with
the `-silÝent¨' option to prevent this message from appearing.
Default server: 9.12.6.68
Address: 9.12.6.68#53
> lserver
Default server: 9.12.6.68
Address: 9.12.6.68#53
>
Chapter 10. BIND Domain Name System (DNS) 405

You can use dig in several methods:

� Command line

All options are specified on the invoking command line, as shown in Figure 10-84.

Figure 10-84 Using dig command line option

� Batch mode

A group of queries are placed in a file and executed by a single invocation of dig using the
-f filename option. The filename contains complete queries, one per line. The keyword dig
is not used within a batch file when specifying queries. Blank lines are ignored, and lines
beginning with a # character or a semicolon (;) in the first column are comment lines.
Figure 10-86 shows the result of a dig command executed using a file named queries.file
as parameter. the contents of the queries.file is shown in Figure 10-85.

Figure 10-85 Contents of the file pointed by the dig -f batch command

OCTAVIO @ SC63:/>dig host1.zos12.ral.ibm.com.
Allocated socket 5, type udp

; <<>> DiG 9.1.1 <<>> host1.zos12.ral.ibm.com.
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49597
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:
;host1.zos12.ral.ibm.com. IN A

;; ANSWER SECTION:
host1.zos12.ral.ibm.com. 86400 IN A 9.12.6.67

;; AUTHORITY SECTION:
zos12.ral.ibm.com. 86400 IN NS dns63.zos12.ral.ibm.com.
zos12.ral.ibm.com. 86400 IN NS dns64.zos12.ral.ibm.com.

;; ADDITIONAL SECTION:

 EDIT /etc/octavio/queries.file
 Command ===>
 ****** **
 000001 host1
 000002 dns63
 ****** **
406 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 10-86 dig command in batch mode

� Multiple queries

The BIND 9 implementation of dig supports specifying multiple queries on the command
line (in addition to supporting the -f batch file option). Each of those queries can be
supplied with its own set of flags, options and query options. In multiple queries, query1,
query2, and so on represent an individual query in the command-line syntax. Each
consists of any of the standard options and flags, the name to be looked up, an optional
query type and class and any query options that should be applied to that query, as shown
in Figure 10-87

OCTAVIO @ SC63:/>dig -f /etc/octavio/queries.file
Allocated socket 6, type udp
; <<>> DiG 9.1.1 <<>> host1
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 49597
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0
;; QUESTION SECTION:
;host1. IN A
;; AUTHORITY SECTION:
. 10369 IN SOA A.ROOT-SERVERS.NET.
NSTLD.VERISIGN-GRS.COM. 2002052500 1800 900 604800 86400
;; Query time: 7 msec
;; SERVER: 9.12.6.68#53(9.12.6.68)
;; WHEN: Sat May 25 15:09:56 2002
;; MSG SIZE rcvd: 98

Allocated socket 7, type udp
; <<>> DiG 9.1.1 <<>> dns63
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 41218
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0
;; QUESTION SECTION:
;dns63. IN A
;; AUTHORITY SECTION:
. 10800 IN SOA A.ROOT-SERVERS.NET.
NSTLD.VERISIGN-GRS.COM. 2002052500 1800 900 604800 86400
;; Query time: 239 msec
;; Query time: 239 msec
;; SERVER: 9.12.6.68#53(9.12.6.68)
;; WHEN: Sat May 25 15:09:57 2002
;; MSG SIZE rcvd: 98

Note: When entered on z/OS UNIX shell command line, long dig commands may be
broken up in segments entered with a terminating backlashes (\) except for the last
segment.
Chapter 10. BIND Domain Name System (DNS) 407

Figure 10-87 dig command with multiple queries (partial screen)

10.7.2.5 Using name server signals to Diagnose BIND 4.9.3-DNS
You can use name server signals to send messages to a BIND 4.9.3 or a BIND 9 DNS name
server. Note that some of the signals may have different consequences if a signal is sent to a
BIND 4.9.3 name server instead of a BIND 9 name server. These signals control various
functions that can be used to diagnose problems. The signals valid for the Domain Name
System server are SIGHUP, SIGINT, SIGABRT, SIGUSR1, SIGUSR2, and SIGWINCH. A
sample job stream in SEZAINST named NSSIG allows you to issue signal s to the name
server from the MVS operator console:

s nssig,sig=hup

The documentation for issuing signals with the name server is in z/OS V1R2.0 CS: IP
Configuration Reference, SC31-8776 and in Figure 10-88 you see a copy of the NSSIG JCL.

Figure 10-88 NSSIG sample from SEZAINST

When you are using a BIND 4.9.3-based Nameserver you can use signals to execute a
number of the following tasks.

; <<>> DiG 9.1.1 <<>> host1.zos12.ral.ibm.com. host2.zos12.ral.ibm.com.
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49597
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2
;; QUESTION SECTION:
;host1.zos12.ral.ibm.com. IN A
;; ANSWER SECTION:
host1.zos12.ral.ibm.com. 86400 IN A 9.12.6.67
;; Query time: 2 msec
;; SERVER: 9.12.6.68#53(9.12.6.68)
;; WHEN: Sat May 25 15:35:19 2002
;; MSG SIZE rcvd: 129

Allocated socket 5, type udp
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 41218
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2
;; ANSWER SECTION:
host2.zos12.ral.ibm.com. 86400 IN A 9.12.6.63
;; Query time: 1 msec
;; SERVER: 9.12.6.68#53(9.12.6.68)
;; WHEN: Sat May 25 15:35:19 2002
;; MSG SIZE rcvd: 129

OCTAVIO @ SC63:/>

//NSSIG PROC SIG=''
//NSSIG EXEC PGM=BPXBATCH,REGION=30M,TIME=NOLIMIT,
// PARM='SH kill -s &SIG $(cat /etc/named.pid)'
//* STDIN and STDOUT are both defaulted to /dev/null
//STDERR DD PATH='/etc/log',PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
408 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Displaying the DNS active sockets
Once the DNS server process has started, you can display the active sockets with an
onetstat -a display. Also, you can use the -c and the -s options of onetstat to display the
active sockets. In Figure 10-89 is the result of an onetstat display. and you can observe that
DNS has opened a connection with each interface 1 defined in the named.conf’s listen-on
option using the default port 53.

Figure 10-89 Display of active sockets: onetstat -a

In Figure 10-90, you see the result of a different onetstat display.

Figure 10-90 onetstat -s display after starting DNS

Dumping the DNS server cache
When you start the DNS server process it will read all the ZONE files and place the
information in memory. This memory database will get updated with entries that it learns from
other DNS servers because of the recursive searching that may go on between DNS servers.

When using BIND 4.9.3-based Nameserver, you have the ability to dump this memory table
by sending a signal to the DNS server. The SIGINT signal dumps the name server memory
database in the HFS file /tmp/named_dump.db. You can issue the signal through the ISPF
ISHELL panel or you can issue the command in the UNIX System Services shell by entering:

kill -INT $(cat /etc/named.pid)

The process ID of the named daemon is stored in the /etc/named.pid file at the named
startup. Alternatively you might enter the PID directly:

kill -INT 402653187

OCTAVIO @ SC63:/>onetstat -a
MVS TCP/IP onetstat CS V1R2 TCPIP Name: TCPIPB 13:54:21
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
FTPDB1 00001F31 0.0.0.0..21 0.0.0.0..0 Listen
NAMED91 00002C7B 9.12.6.68..53 0.0.0.0..0 Listen
NAMED91 00002C79 9.12.6.67..53 0.0.0.0..0 Listen
TCPIPB 00000014 0.0.0.0..23 0.0.0.0..0 Listen
TCPIPB 00000013 127.0.0.1..1025 127.0.0.1..1026 Establsh
NAMED91 00002C78 9.12.6.67..53 *..* UDP 1
NAMED91 00002C7A 9.12.6.68..53 *..* UDP
OCTAVIO @ SC63:/>

OCTAVIO @ SC63:/>onetstat -s
MVS TCP/IP onetstat CS V1R2 TCPIP Name: TCPIPB 14:26:55
Sockets interface status:
Type Bound to Connected to State Conn
==== ======== ============ ===== ====
Name: FTPDB1 Subtask: 007F9030
Stream 0.0.0.0..21 0.0.0.0..0 Listen 00001F31
Name: NAMED91 Subtask: 007E2BC8
Dgram 9.12.6.68..53 *..* UDP 00002C7A
Dgram 9.12.6.67..53 *..* UDP 00002C78
Stream 9.12.6.67..53 0.0.0.0..0 Listen 00002C79
Stream 9.12.6.68..53 0.0.0.0..0 Listen 00002C7B
Chapter 10. BIND Domain Name System (DNS) 409

You can obtain the PID with an UNIX System Services shell command ps -e or with the D
OMVS,A=ALL console command, as you see in Figure 10-91 1. Note the name of the executed
program when using BPXBATCH 2.

Figure 10-91 D OMVS,A=ALL: process ID

See Figure 10-92 for a partial copy of the /tmp/named_dump.db file that was created when
you issued command kill -INT $(cat /etc/named.pid).

Figure 10-92 Partial contents of tmp/named_dump.db (from a SIGINT to DNS process)

 D OMVS,A=ALL
 BPXO040I 10.52.17 DISPLAY OMVS 659
 OMVS 000F ACTIVE OMVS=(ZF)
 USER JOBNAME ASID PID PPID STATE START CT_SECS
 OMVSKERN BPXOINIT 003C 1 0 MRI--- 08.27.21 19.73
 LATCHWAITPID= 0 CMD=BPXPINPR
 SERVER=Init Process AF= 0 MF=00000 TYPE=FILE
 STC MVSNFSC5 002A 16842757 1 1A---- 08.27.42 .84
 LATCHWAITPID= 0 CMD=BPXVCMT
 STC MVSNFSC5 002A 16842759 1 1R---- 08.27.40 .84
 LATCHWAITPID= 0 CMD=BPXVCLNY
 STC MVSNFSC5 002A 67174409 1 1R---- 08.27.44 .84
 LATCHWAITPID= 0 CMD=GFSCMAIN
 TCPIPMVS FTPDC1 004C 33619978 1 1FI--- 17.39.21 .09
 LATCHWAITPID= 0 CMD=FTPD
 TCPIPMVS TCPIP MVS 0020 16842763 1 MR---B 08.29.13 594.88
 LATCHWAITPID= 0 CMD=EZBTCPIP
 STC NAMED43 0051 65645 1 1 1F---- 10.51.41 .02
 LATCHWAITPID= 0 CMD=/usr/lpp/tcpip/sbin/named4 -b /etc/octav 2

; Dumped at Sat May 25 15:13:12 2002
;; ++zone table++
; zos12.ral.ibm.com (type 1, class 1, source zos12.for.v4)
; time=1022346871, lastupdate=1022091095, serial=1,
; refresh=10800, retry=3600, expire=604800, minimum=86400
; ftime=1022091095, xaddr=Ý0.0.0.0¨, state=0041, pid=0
; Note: NT=milliseconds for any A RR which we've used as a name
; --- Cache & Data ---
$ORIGIN .
 518359 IN NS A.ROOT-SERVERS.NET. ;Cr=auth Ý192.33.4.12¨
 518359 IN NS B.ROOT-SERVERS.NET. ;Cr=auth Ý192.33.4.12¨
$ORIGIN ral.ibm.com.
zos12 IN SOA dns63.zos12.ral.ibm.com. admin.zos12.ral.ibm.com. (
 1 10800 3600 604800 86400) ;Cl=4
 IN NS dns63.zos12.ral.ibm.com. ;Cl=4
 IN NS dns65.zos12.ral.ibm.com. ;Cl=4
$ORIGIN zos12.ral.ibm.com.
mail IN CNAME host1.zos12.ral.ibm.com. ;Cl=4
ftp IN CNAME host2.zos12.ral.ibm.com. ;Cl=4
sc63 IN A 9.12.6.67 ;Cl=4
410 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

DNS statistics
When you are using BIND 4.9.3, you can obtain DNS statistics by using the signal #3 (ABRT),
available either from the ISHELL selection menus or by issuing a kill -3 $(cat
/etc/named.pid) from the shell. The data is stored in /tmp/named.stats as shown in
Figure 10-93.

Figure 10-93 Name server statistics (partial contents)

Tracing the name server
With BIND 4.9.3-based name server you can also use a signal to start, increase the debug
level and stop a trace. As shown in Figure 10-94, the Signal #16 (USR1) 1 begins a trace of
the DNS server processes. Signal #17 (USR2) 2 terminates the trace. The data is placed in
/tmp/named.run as seen in Figure 10-95.

 +++ Statistics Dump +++ (1022340539) Sat May 25 15:28:59 2002
 992 time since boot (secs)
 992 time since reset (secs)
 0 Unknown query types
 4 A queries
 4 SOA queries
 ++ Name Server Statistics ++
 (Legend)
 RQ RR RIQ RNXD RFwdQ
 RFwdR RDupQ RDupR RFail RFErr
 RErr RTCP RAXFR RLame ROpts
 SSysQ SAns SFwdQ SFwdR SDupQ
 SFail SFErr SErr RNotNsQ SNaAns
 SNXD
 (Global)
 8 11 0 4 4 10 0 0 0 0 0 1 0 0 0 1 3 4 10 11 0 0 0 5 0 0
 Ý9.12.6.68¨
 4 0 0 0 4 6 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 4 0 0
Chapter 10. BIND Domain Name System (DNS) 411

Figure 10-94 Using ISHELL to send a signal to start and stop a trace process.

Figure 10-95 /tmp/named.run output

The debug level was raised to 9 in the trace because we issued the USR1 signal (#16)
multiple times. We really wanted a debug level of 11, the recommended (and highest
allowable) setting. Attempting to reach debug level 11 via the ISHELL TOOLS menu can be
tedious, as you see. We recommend instead short cutting the ISHELL process and setting the
debug trace level at 11 by one of two methods:

 Work with Processes
 +___
 | Enter Signal Number
 |
 | Process ID.....: 16777232
 | Command......: /usr/lpp/tcpip/sbin/named
 | Signal number.... 16 1
 |
 | Some of the common signal numbers are:
 | 1 SIGHUP hang-up 2 17 SIGUSR2 application defined
 | 3 SIGABRT abnormal termination 19 SIGCONT continue
 | 7 SIGSTOP stop 20 SIGCHLD child
 | 9 SIGKILL kill 21 SIGTTIN ctty background rea
 | 13 SIGPIPE write with no readers 22 SIGTTOU ctty background wri
 | 14 SIGALRM alarm 23 SIGIO I/O completion
 | 15 SIGTERM termination 24 SIGQUIT quit
 |1 16 SIGUSR1 application defined 25 SIGTSTP interactive stop
 |
 |
 | F1=Help F3=Exit F6=Keyshelp F12=Cancel
 +___

Debug turned ON, Level 1
Debug turned ON, Level 2
Debug turned ON, Level 3
Debug turned ON, Level 4
Debug turned ON, Level 5
Debug turned ON, Level 6
Debug turned ON, Level 7
Debug turned ON, Level 8
Debug turned ON, Level 9
datagram from [127.0.0.1].1135, fd 11, len 39; now Thu Feb 5 16:17:01 19
ns_req(from=[127.0.0.1].1135)
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1
;; flags: rd; Ques: 1, Ans: 0, Auth: 0, Addit: 0
;; QUESTIONS:
;;.fred.itso.ral.ibm.com, type = A, class = IN
;; ...truncated
req: nlookup(fred.itso.ral.ibm.com) id 1 type=1 class=1
req: found 'fred.itso.ral.ibm.com' as 'fred.itso.ral.ibm.com' (cname=0)
412 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

1. Use -d 11 on the named start command or in your JCL.

2. Issue the kill -USR1 ($cat /etc/named.pid) multiple times from the shell with the help of
the retrieve key.

Resolver tracing is available with the name server and is enabled as usual in the TCPDATA
file. The output goes to the MVS console or to the syslogd.log if you have started the syslog
daemon.

10.7.2.6 Using rndc to diagnose BIND 9 problems
rndc may be used to dump the name servers cache to a file with the dumpdb parameter. Also,
the reload parameter may be used similar to the SIGHUP signal for increasing the amount of
information written to the logging files. The querylog and stats options may also be helpful.

Remote Name Daemon Control (rndc) command allows the system administrator to control
the operation of a name server. If rndc is invoked with no command line options or
arguments, it prints a short summary of the supported commands and the available options
and their arguments. rndc may only be used with the v9 (BIND9) name server and will not
function with the v4 (BIND.4.9.3) name server

The function of rndc may be used as a secure remote client to control the name server. Some
local UNIX signal functions for the name server can be replaced by equivalent rndc functions.
The name server and rndc communicates over a TCP connection, sending commands
authenticated with digital transaction signatures (TSIG). This provides TSIG-style
authentication for the command request and the name server's response. All commands sent
over the channel must be signed by a key_id known to the server. Therefore, rndc and the
name server must be configured with a 'shared-secret'. This shared secret is a TSIG key,
which may be generated with the dnssec-keygen utility. The only supported encryption
algorithm for rndc is HMAC-MD5, which uses a shared secret on each end of the connection.

To allow your host to execute the rndc command, follow the steps defined in section “Using
the z/OS UNIX rndc command” on page 400.

Note: The signals showed doesn’t provide the results if used with BIND V9-based Name
Server. with BIND 9 you must use rncd command to execute the same process.
Chapter 10. BIND Domain Name System (DNS) 413

414 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Part 5 Utility applications

In this part, we introduce some of the utility applications shipped with Communications Server
for z/OS IP. These include applications suchs as inetd, netstat, and syslogd that make it
easier to operate in the TCP/IP environment.

Part 5
© Copyright IBM Corp. 1998 2002 415

416 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 11. InetD

InetD is a generic listener. It can be used by any server that does not have its own listener.
InetD supports various servers, such as the z/OS UNIX telnet server, the z/OS UNIX
REXECD server, the z/OS UNIX RSH server, and the rlogin server.

This chapter contains the following sections:

� 11.1, “InetD configuration” on page 418

� 11.2, “Internet services supported internally by InetD” on page 420

11
© Copyright IBM Corp. 1998 2002 417

11.1 InetD configuration
The InetD configuration information is by default placed in /etc/inetd.conf. If you need to
specify server run-time options for the servers that are started via InetD, you have to do so in
the /etc/inetd.conf file.

Figure 11-1 InetD generic listener

The /etc/inetd.conf file describes to the InetD daemon what servers to manage. InetD looks
up the ETC.SERVICES file to find the port numbers for its defined servers and listens on
these ports. If the InetD daemon receives a request on one of these sockets, it determines
which service corresponds to that socket and then invokes the appropriate server.

The /etc/inetd.conf configuration file that was used in our sample setup looks like the
following:

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
#
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -l
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -LV -d -r
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -LV
uucp stream tcp nowait OMVSKERN /usr/sbin/uucpd uucpd -10

As InetD opens sockets and issues listen() calls on these sockets, you need to pay attention
to when you start InetD and when you need to restart InetD.

For each server
in /etc/inetd.conf
- socket()
- bind()
- listen() - select()

- accept()
- fork()

close() the
connected
socket

close() all files
except socket

exec() to
server

Server

InetD Server Process

Parent path

Child path

Forked Server Process

/etc/inetd.conf
418 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

You have three different choices to start InetD:

� Using a small shell script like the following:

Figure 11-2 Sample shell script to start the InetD server

� Including the command to start the InetD in /etc/rc file, thus starting it automatically.

� Using a started procedure. In our test environment, this method was chosen.

On OS/390 V2R7 the InetD module has been moved to the HFS. InetD has to be started
with BPXBATCH.

Figure 11-3 Sample InetD started procedure

1 The STDENV DD statement can be used to define the environment variables for the shell in
which the InetD runs. Figure 11-4 shows the variable settings we used.

Figure 11-4 The environment variable setting fot InetD

2 If you want InetD to bind only one TCP/IP stack, the environment variable
_BPXK_SETIBMOPT_TRANSPORT has to be configured to direct InetD to this particular TCP/IP
stack.

#
Start the INETD daemon
#

export _BPX_JOBNAME='INETD'
export _CEE_RUNOPTS='ALL31(ON)'
/usr/sbin/inetd /etc/inetd.conf &

echo -- /u/silviar/restart_inetd.sh script executed, `date`

//INETD EXEC PGM=BPXBATCH,REGION=30M,TIME=NOLIMIT,
// PARM='PGM /usr/sbin/inetd /etc/inetd.conf'
//STDOUT DD PATH='/tmp/inetd.stdout',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDERR DD PATH='/tmp/inetd.stderr',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDENV DD DSN=TCPIP.TCPPARMS(INETDENV),DISP=SHR 1

Note: If there is no TCP/IP active when InetD is started, it will try to connect to TCP/IP
every three minutes. If the stack goes down, InetD will also try to re-establish the
connection. This behavior is different from other servers.

_BPXK_SETIBMOPT_TRANSPORT=TCPIPA 2
TZ=EST5EDT
Chapter 11. InetD 419

11.2 Internet services supported internally by InetD
The InetD daemon supports various server functions internally. The services supported
internally by the inetd daemon are generally used for debugging. They include the following
internal services:

� echo, which returns data packets to a client host.

� discard, which discards received data packets.

� chargen, which discards received data packets and sends predefined or random data.

� daytime, which sends the current date and time in user-readable form.

� time, which sends the current date and time in machine-readable form.

Since all internal servers support both TCP and UDP protocols, they can cooperate with the
clients that support only one of two transport protocols. For example, the time client provided
in AIX, the setclock command, supports TCP protocol only, while the existing TIMED server
shipped with CS for z/OS IP runs on the UDP transport only, so they will never be able to
communicate with each other. By using the time service implemented inside InetD, the
setclock command can retrieve the current time from a z/OS system and set it for the local
system.

To activate the internal services you will have to update both /etc/inetd.conf and /etc/services
as shown in Figure 11-5 and Figure 11-6 on page 421.

Figure 11-5 InetD configuration for the internal services

All internal services can run over both TCP and UDP protocols, so you should configure two
entries for each service. The server program field should be internal for these services.

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -m
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -LV -d -r
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -LV

echo stream tcp nowait OMVSKERN internal
echo dgram udp wait OMVSKERN internal
discard stream tcp nowait OMVSKERN internal
discard dgram udp wait OMVSKERN internal
chargen stream tcp nowait OMVSKERN internal
chargen dgram udp wait OMVSKERN internal
daytime stream tcp nowait OMVSKERN internal
daytime dgram udp wait OMVSKERN internal
time stream tcp nowait OMVSKERN internal
time dgram udp wait OMVSKERN internal
420 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 11-6 /etc/services configuration for the internal services

The socket and protocol have to be defined in the service definition files (/etc/services) for
each service. The configured values will be an official Internet service name 1, the socket port
number 2, and the transport protocol 3 used for the service, TCP or UDP.

If these ports have been reserved in TCPIP.PROFILE, you will have to update the definitions
to allow InetD to bind to them. Reserving with OMVS is recommended, because if InetD starts
with the -d option (debug option), it will not fork a child process, then those ports would need
to be reserved for InetD. Whereas, without this option, InetD will create a child process with
the name of INETD1 that will bind to the specified ports. In this scenario, you have to
configure the PORT statements with the procedure name INETD1.

If you have the PORT statements configured with the user name of OMVS, InetD will work
correctly regardless of the -d configuration.

Figure 11-7 is the report from the D TCPIP,,N,CONN command. You will see that InetD has
bound to the ports for the internal services.

Figure 11-7 Report from NETSTAT CONN

 1 2 3
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
daytime 13/tcp
daytime 13/udp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
time 37/tcp timserver
time 37/udp timserver

D TCPIP,TCPIPA,N,CONN
EZZ2500I NETSTAT CS V2R10 TCPIPA 524
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
 :
INETD1 000106A7 0.0.0.0..7 0.0.0.0..0 LISTEN
INETD1 000106A8 0.0.0.0..9 0.0.0.0..0 LISTEN
INETD1 000106AB 0.0.0.0..37 0.0.0.0..0 LISTEN
INETD1 000106AA 0.0.0.0..13 0.0.0.0..0 LISTEN
INETD1 000106A9 0.0.0.0..19 0.0.0.0..0 LISTEN
 :
INETD1 000106AC 0.0.0.0..7 *..* UDP
INETD1 000106AD 0.0.0.0..9 *..* UDP
INETD1 000106AF 0.0.0.0..13 *..* UDP
INETD1 000106AE 0.0.0.0..19 *..* UDP
INETD1 000106B0 0.0.0.0..37 *..* UDP
46 OF 46 RECORDS DISPLAYED
Chapter 11. InetD 421

422 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 12. Netstat

The TSO NETSTAT, z/OS UNIX onetstat (USS onetstat), and MVS Netstat console
commands provide information about the status of the local host, including information about
TCP/IP connections, network clients, gateways, and devices. The enhancements to Netstat
in CS z/OS V1R2.0 include filtering, performance counters, and restricted access to netstat
commands. It is important to remember that most, although not all of the commands are
universal between the three environments. For detailed information on the syntax, options,
and explanation of the command results, see z/OS V1R2.0 CS: IP System Administrator’s
Commands, SC31-8781.

This chapter contains the following sections:

� 12.1, “TSO Netstat” on page 424

� 12.2, “USS onetstat” on page 424

� 12.3, “MVS netstat console command” on page 425

� 12.4, “Netstat enhancements in z/OS V1R2.0” on page 426

12
© Copyright IBM Corp. 1998 2002 423

12.1 TSO Netstat
The TSO Netstat is issued as a TSO command. The TSO Netstat command is used to
display the network status on the local host. Figure 12-2 produces the results from the
following command:

onetstat -c

Figure 12-1 TSO netstat home

12.2 USS onetstat
The z/OS UNIX onetstat command is used to display the network status of the local host.

Figure 12-2 onetstat -c

Note: netstat is a synonym for the onetstat command in the z/OS UNIX shell. The
netstat command syntax is the same as that for the onetstat command.

MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCPIPMVS 20:08:46
Home address list:
Address Link Flg
------- ---- ---
 9.12.6.9 OSA22E0LNK P
 172.16.233.209 EZASAMEMVS
 172.16.233.209 IQDIOLNKAC10E9D1
 172.16.233.209 EZAXCF63
 127.0.0.1 LOOPBACK

MVS TCP/IP onetstat CS V1R2 TCPIP Name: TCPIPB 15:43:33
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
DB7KDIST 0000001F 0.0.0.0..33741 0.0.0.0..0 Listen
DB7KDIST 0000001B 0.0.0.0..33740 0.0.0.0..0 Listen
PAGENT 0000073C 10.1.1.5..1701 10.1.1.6..1700 Establsh
PAGENT 0000073A 10.1.1.5..1701 10.1.1.5..1700 Establsh
PAGENT 00000734 0.0.0.0..1700 0.0.0.0..0 Listen
PAGENT 00000743 10.1.1.5..1701 10.1.1.4..1700 Establsh
PAGENT 0000073B 10.1.1.5..1700 10.1.1.5..1701 Establsh
TCPIPB 0000000B 127.0.0.1..1025 0.0.0.0..0 Listen
TCPIPB 00000018 0.0.0.0..2364 0.0.0.0..0 Listen
TCPIPB 00000017 0.0.0.0..23 0.0.0.0..0 Listen
TCPIPB 00000015 127.0.0.1..1026 127.0.0.1..1025 Establsh
TCPIPB 00000016 127.0.0.1..1025 127.0.0.1..1026 Establsh
NAMED91 0000084D 0.0.0.0..10009 *..* UDP
NAMED91 0000084B 9.12.6.63..53 *..* UDP
424 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

12.3 MVS netstat console command
The Display TCPIP,,NETSTAT command is issued from an operator's console to request
NETSTAT information. Figure 12-3 displays the output from the following console command:

D TCPIP,TCPIPB,N,AR

Figure 12-3 MVS netstat console command for ARP cache information

000290 D TCPIP,TCPIPB,N,AR
000090 EZZ2500I NETSTAT CS V1R2 TCPIPB 680
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.63
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.68
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.67
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.62
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.61
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.3
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.6
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.122
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.121
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.11
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.10
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.5
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.4
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.9
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.8
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.1
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.2
000090 LINK: OSA22E0 ETHERNET: 0006296C3650
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.75
000090 LINK: OSA22E0 ETHERNET: 10005A995C46
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.78
000090 LINK: OSA22E0 ETHERNET: 0004AC57456D
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.7
000090 LINK: OSA22E0 ETHERNET: 0004ACEE2208
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.155
000090 LINK: OSA22E0 ETHERNET: 000255E45AD7
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.30
000090 LINK: OSA22E0 ETHERNET: 0006296CA584
000090 QUERYING ARP CACHE FOR ADDRESS 9.12.6.92
000090 LINK: OSA22E0 ETHERNET: 0007858565C2
000090 23 OF 23 RECORDS DISPLAYED
Chapter 12. Netstat 425

12.4 Netstat enhancements in z/OS V1R2.0
The following enhancements were added to the netstat command in z/OS V1R2.0:

� Filter enhancements

� Performance counters

� Restricted access to netstat commands

For more information on the netstat enhancements, you can refer to z/OS V1R2.0 CS: IP
Migration, GC31-8773.

12.4.1 Filter enhancements
CS for z/OS V1R2 IP includes enhancements to the netstat commands to allow a choice to
include or exclude the TN3270 server connections from the netstat ALL/-A, ALLCONN/-a,
CONN/-c, BYTEINFO/-b, CLIENTS/-e, and SOCKETS/-s reports. The following netstat
entries include new and changed filter options:

� TSO NETSTAT command: ALL, ALLCONN, BYTEINFO, CLIENTS, CONN, and
SOCKETS options

� UNIX onetstat/netstat command: -A, -a, -b, -c, e, and -s options

� MVS D TCPIP,,NETSTAT command: ALLCONN, BYTEINFO, CONN, and SOCKETS
options

In addition, the existing filter support for CLIENT/-E, IPADDR/-I, and PORT/-P is enhanced to
work for netstat SOCKETS/-s so that the netstat SOCKETS/-s report can provide the
response on the specified client name, IP address, or port number. The existing filter support
for IPADDR/-I, and PORT/-P is enhanced to work for netstat ALL/-A so that the netstat ALL/-A
report can provide the response on the specified IP address, or port number.

12.4.2 Performance counters
z/OS V1R2 Communications Server enhances the netstat commands to show performance
characteristics and identify performance problems.The following netstat entries include new
or changed performance options:

� TSO NETSTAT command: ALL, DEVLINKS, HELP, and STATS options

� UNIX onetstat/netstat command: -A, -d, -S, and -? options

� UNIX onetstat/netstat command: -A, -d, -S, and -? options

12.4.3 Restricting access to Netstat commands
z/OS V1R2 Communications Server provides a new way to control access to the netstat
command at both the overall command level and command option level. You can permit or
disallow user access to specific netstat options or resources. This function only applies to
TSO and UNIX shell netstat command users.
426 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Implementing netstat access control
The procedure for implementing netstat access control is to define the security product
resource name, EZB.NETSTAT.mvsname.tcpprocname.option, in the SERVAUTH class.
Ensure that the SERVAUTH class is active and RACLISTed. Permit users READ access to
the resource name. For more information on the implementation, please refer to zz/OS
V1R2.0 CS: IP System Administrator’s Commands, SC31-8781 and z/OS V1R2.0 CS: IP
Configuration Guide, SC31-8775.
Chapter 12. Netstat 427

428 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 13. ONC/RPC port mapper

Port mapper converts RPC program numbers into Internet port numbers.

It comes in two flavors:

� z/OS UNIX port mapper

� z/OS port mapper

The ONC/RPC port mapper was supplied with the OS/390 TCP/IP OpenEdition as a UNIX
System Services application program.

To support ONC/RPC application programs that execute in the OpenEdition environment, you
may use either the z/OS UNIX version of the port mapper or the non-z/OS UNIX port mapper
(PORTMAP). In this chapter, we will address the z/OS UNIX port mapper only. For more
information about the ONC/RPC port mapper, please refer to z/OS V1R2.0 CS: IP
Configuration Guide, SC31-8775 and z/OS V1R2.0 CS: IP Configuration Reference,
SC31-8776.

This chapter contains the following sections:

� 13.1, “The z/OS port mapper” on page 430

� 13.2, “The non-z/OS UNOIX port mapper” on page 433

13
© Copyright IBM Corp. 1998 2002 429

13.1 The z/OS port mapper
Following are examples of how to operate the z/OS UNIX port mapper.

The port reservations in the TCP/IP for MVS PROFILE data set must tell OMVS to start the
UNIX System Services version of the port mapper:

PORT
 111 UDP OMVS ; OE Portmapper Server
 111 TCP OMVS ; OE Portmapper Server

To start the port mapper as a UNIX System Services socket application, you may either start
it from the shell or as a started task in MVS.

13.1.1 Starting the port mapper from the z/OS UNIX shell
This is how to start the port mapper from OMVS with displays of the result:

Figure 13-1 The port mapper started via OMVS

OEUSER:/u/oeuser: >cd /bin
OEUSER:/bin: >su 1
OEUSER:/bin: >oportmap & 2
[1] 67108889
OEUSER:/bin: >
[1] + Done oportmap & 3
OEUSER:/bin: >exit 4
OEUSER:/bin: >

 D TCPIP,T03ATCP,N,SOCK

 EZZ2500I NETSTAT CS V2R5 T03ATCP 741
 SOCKETS INTERFACE STATUS:
 TYPE BOUND TO CONNECTED TO STATE CONN
 NAME: OEUSER5 SUBTASK: 007DB3E0 5
 DGRAM 0.0.0.0..111 *..* UDP 00191
 STREAM 0.0.0.0..111 0.0.0.0..0 LISTEN 00192
 ..
17 OF 17 RECORDS DISPLAYED

 D OMVS,A=ALL

 BPXO040I 19.17.37 DISPLAY OMVS 743
 OMVS 000E ACTIVE OMVS=(03)
 USER JOBNAME ASID PID PPID STATE START CT_SECS
 OMVSKERN BPXOINIT 0025 1 0 MKI 10.34.39 .346
 LATCHWAITPID= 0 CMD=BPXPINPR
 SERVER=Init Process AF= 0 MF=65535 TYPE=FILE
 ..
OEUSER OEUSER5 003B 134217752 6 1 1FI 19.14.32 .126
 LATCHWAITPID= 0 CMD=oportmap
 ..
430 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

The following apply to Figure 13-1:

1 Switch to a superuser.

2 Start oportmap as a background process.

3 Oportmap has forked a child process.

4 Exit from the superuser mode. The user name here is OEUSER5.

5, 6 The forked process.

13.1.2 Starting the port mapper from a started task
This section illustrates how to start the port mapper from a started task.

The sample started procedure can be found in TCPIP.SEZAINST(OPORTPRC). We renamed
it to PORTMAP as follows:

//PORTMAP PROC
//*
//PORTMAP EXEC PGM=OPORTMAP,REGION=4096K,TIME=1440,
// PARM=('POSIX(ON),ALL31(ON)',
// 'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPA")',
// '/')
//*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//* PEND
Chapter 13. ONC/RPC port mapper 431

Following is the STC START command and its results:

Figure 13-2 The z/OS UNIX port mapper started via started task

The following apply to Figure 13-2:

1 The forked process PORTMAP1 is now listening on port 111.

2 The new address space.

 S PORTMAP

 $HASP100 PORTMAP ON STCINRDR
 IEF695I START PORTMAP WITH JOBNAME PORTMAP IS ASSIGNED TO USER
 OMVSKERN, GROUP OMVSGRP
 $HASP373 PORTMAP STARTED
 - --TIMINGS (MINS.)--
 ----PAGING COUNTS---
 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB CLOCK
 SERV PG PAGE SWAP VIO SWAPS
 -PORTMAP PORTMAP 00 12 28 .00 .00 .3
 5052 0 0 0 0 0
 -PORTMAP ENDED. NAME- TOTAL TCB CPU TIME= .00
 TOTAL ELAPSED TIME= .3
 $HASP395 PORTMAP ENDED

 D TCPIP,T03ATCP,N,SOCK

 EZZ2500I NETSTAT CS V2R5 T03ATCP 436
 SOCKETS INTERFACE STATUS:
 TYPE BOUND TO CONNECTED TO STATE CONN
 NAME: PORTMAP1 SUBTASK: 007DB438
 DGRAM 0.0.0.0..111 *..* 1 UDP 00099
 STREAM 0.0.0.0..111 0.0.0.0..0 1 LISTEN 0009A
 ..
 11 OF 11 RECORDS DISPLAYED

 D OMVS,A=ALL

 BPXO040I 16.14.01 DISPLAY OMVS 434
 OMVS 000E ACTIVE OMVS=(03)
 USER JOBNAME ASID PID PPID STATE START CT_SECS
 OMVSKERN BPXOINIT 0025 1 0 MKI 10.34.39 .282
 LATCHWAITPID= 0 CMD=BPXPINPR
 SERVER=Init Process AF= 0 MF=65535 TYPE=FILE
 ..
 OMVSKERN PORTMAP1 0038 771751955 2 1 1FI 16.12.52 .122
 LATCHWAITPID= 0 CMD=OPORTMAP
432 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

13.2 The non-z/OS UNOIX port mapper
The non-z/OS UNIX port mapper may also be used. We found the instructions in z/OS
V1R2.0 CS: IP Configuration Guide, SC31-8775, to be adequate for getting the non-z/OS
UNIX port mapper up and running. We will not repeat that chapter. Just make sure the PORT
statement's user and the started task member name are the same. In our tests, we used the
name PORTMAP.

In the SEZAINST data set, you will find the catalogued procedure to run the non-z/OS UNIX
port mapper. It is named PORTPROC and only needs the STEPLIB and SYSTCPD DD
statements to be adapted to your environment.
Chapter 13. ONC/RPC port mapper 433

434 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 14. syslogd

syslogd is a server process in UNIX System Services that logs application messages, user
messages, authorization violation messages, and trace data. Prior to IBM Communications
Server for OS/390 V2R10 IP, there were two versions of syslogd. One version shipped with
CS for OS/390 IP and the other shipped with OS/390 Security Server. Currently there is one
syslogd for z/OS and it ships with CS for z/OS IP. If you are using the version of syslogd that
shipped with Security Server, you must migrate to Communications Server for z/OS IP
version of syslogd. Refer to z/OS V1R2.0 CS: IP Migration, GC31-8773 guide for assistance.

This chapter contains the following sections:

� 14.1, “z/OS UNIX syslogd overview” on page 436

� 14.2, “syslogd features” on page 436

� 14.3, “syslogd configuration” on page 439

� 14.4, “Starting syslogd” on page 444

� 14.5, “Switching between two log files” on page 445

� 14.6, “Centralized logging” on page 446

14
© Copyright IBM Corp. 1998 2002 435

14.1 z/OS UNIX syslogd overview
The processing of syslogd is controlled by a configuration file (etc/syslogd.conf). The
configuration file contains entries for different logging facility names, priority codes, log file
names or destinations. For example, an entry indicating the facility name of mail, a priority
code of err and a destination file path and name of /tmp/mail.log, will record mail server
messages in that file. The configuration file can be setup to direct all other messages to the
log file for entry *.* , which is generally the default file /tmp/syslogd.log. Refer to z/OS V1R2.0
CS: IP Configuration Guide, SC31-8775 and z/OS V1R2.0 CS: IP Configuration Reference,
SC31-8776 for configuration details.

Servers on the local system use AF_UNIX sockets for communication with syslogd. Remote
servers on the network use AF_INET sockets for communication with syslogd. Refer to
Figure 14-1 on page 436 for an overview of how syslogd operates in UNIX System Services.

Figure 14-1 syslogd overview

14.2 syslogd features
IBM Communications Server for OS/390 V2R10 IP added additional management
capabilities and usability improvements to syslogd. Managing networks and monitoring
applications are key to availability requirements of systems in a distributed processing
environment. CS for OS/390 V2R10 IP with its enhancements to the AF_UNIX sockets API
and syslogd addressed the management and usability inadequacies of the prior versions.

In CS for OS/390 V2R10 IP, four startup options were added. Table 14-1 summarizes the
start options that syslogd recognizes.

syslogd process
/tmp/????.syslog

/tmp/syslogd.log

Server
Process 1

Server
Process 2

Remote
syslogd /tmp/????.syslog

AF_UNIX socket AF_INET socket

UDP Port 514

MVS console

/etc/syslog.conf

AF_UNIX socket

AF_INET socket

Remote
syslogd
436 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Table 14-1 syslogd startup options

14.2.1 Management: syslogd isolation
AF_UNIX sockets provide a mechanism for determining certain information about the sender
of a message. There are certain steps you must follow to enable isolation. Refer to z/OS
V1R2.0 CS: IP Migration, GC31-8773 for further details on how to enable the isolation
enhancements. The traditional record selection mechanism only supported facility name and
priority parameters in the /etc/syslog.conf file.

There are two new startup parameters, -u and -i, that can be used on the command line or in
a script with syslogd to enable the new parameters in /etc/syslog.conf that support isolation.

The -u parameter allows user ID and job name selection criteria. The new record selection
format { [userid.jobname.] facility.priority } when processed by syslogd, writes the
user ID and job name with the message in the destination file specified in /etc/syslog.conf.
The configuration file now allows for an easier way to manage logs because you are able to
separate application program logs and user logs that use the same facility name. This is
helpful when performing problem determination. The following example specifies *.*.*.* in
the configuration file and directs all messages to be logged in a file named /etc/syslogd.logs.
Figure 14-2 shows sample syslogd records when it has been started with -u option.

Figure 14-2 syslogd records with the -u option

Startup option Description

-c syslogd creates log files and directories automatically.

-d Enable the debugging mode, in which syslogd runs in the
foreground and writes a large number of trace messages to STDOUT.

-f Specifies configuration file name.

-i syslogd does not receive messages from the IP network.

-m Defines number of minutes between mark messages. The default
value is 20 minutes.

-p Indicates path name of z/OS UNIX character device for the datagram
socket. The default value is /dev/log.

-u syslogd adds the user ID and job name in the record received over
the AF_UNIX socket (most messages generated on the local
system).

Date: Time Host /Userid Jobname Recordid[pid] Message
Jun 19 15:14:48 mvs03a/BTHOMPS BTHOMPS6 FSUM1220 syslogd: restart
Jun 19 15:33:52 mvs03a/OMVSKERN INETD2 telnetd[137]: EZYTE52E
 Couldn't resolve your address into a host name.
Jun 19 15:33:52 mvs03a/OMVSKERN INETD2 telnetd[137]: IP address is
 9.24.106.127
Jun 19 19:57:57 mvs03a/TCPIP3 OMPROUTA omproute[16777227]: EZZ7827I
 Adding stack route to 172.16.233.0, mask 255.255.255.0 via 0.0.0.0,
link EZAXCF28, metric 1, type 1
Jun 19 19:57:57 mvs03a/TCPIP3 OMPROUTA omproute[16777227]: EZZ7885I
 Route not added to stack routing table - static route exists
Jun 19 19:57:57 mvs03a/TCPIP3 OMPROUTA omproute[16777227]: EZZ7882I
 Processing static route from stack, destination 172.16.233.28,
 mask 255.255.255.255, gateway 0.0.0.0
Chapter 14. syslogd 437

You can tell whether or not the user ID and job name is present in the log by looking at the
character after the host name. If it is a ’/’, the user ID and job name are present. If it is blank
then the user ID and job name are not present. The absence of a "/" also gives you the
indication that syslogd is running without the -u option.

If a host sends a message via UDP to the local host’s syslogd server, the user ID and job
name within the UDP packet is treated as user data and is not recognized as user ID and job
name. So, messages received via UDP have N/A in the user ID and job name fields. The
actual user ID and job name is part of the message, as shown below and is shifted to the right
and recorded in the log file message field.

Figure 14-3 syslogd records from remote hosts

In this scenario, mvs03a.itso.ral.ibm.com running CS for OS/390 V2R10 IP with syslogd -u
received a UDP packet from mvs28.itso.ral.ibm.com also running CS for OS/390 V2R10 IP
with syslogd -u (FSUM1220 syslog: restart, message is recorded in the log when syslogd is
started). Now that the user ID and job name is included with the syslogd message, verification
of client credentials can be ensured before access to a log is allowed. Previous releases of
CS for OS/390 IP syslogd trusted all applications.

The second syslogd startup parameter in support of isolation is the -i parameter. This
parameter tells syslogd not to receive messages via UDP, which disables remote syslogd
servers from logging messages on the local syslogd server. The -i parameter enforces UDP
reception shut-off. It does not disable syslogd from sending its messages to remote syslogd
servers; it only applies to suppressing inbound UDP packets from other syslogd daemons on
the network.

Starting syslogd with the -i option and /etc/syslog.conf not containing any remote destinations
to send messages prevents syslogd from getting an AF_INET socket. In order to determine
the standard host name of the local host’s syslogd calls, use gethostname(char *name,
size_t namelen). Because gethostname requires an INET socket, it will fail. Normally the
value returned by the gethostname function call is the value of the HOSTNAME statement in
TCPIP.DATA. If the HOSTNAME is not specified in TCPIP.DATA, the VMCF node name is
returned. If all gethostname() attempts fail then "localhost" is used. Previous releases printed
nothing (for a host name) in the log file. This activity does not affect normal processing of
trace messages. Only AF_UNIX sockets messages will be logged since an AF_INET socket
for syslogd is not available. And that’s the whole point, to disable the syslogd messages from
remote syslogd servers via UDP.

Date: Time Host /Userid Jobname Recordid[pid] Message
Jun 19 15:14:48 mvs03a/BTHOMPS BTHOMPS6 FSUM1220 syslogd: restart
Jun 19 15:14:52 mvs28.itso.ral.ibm.com/N/A N/A BTHOMPS BTHOMPS8 FSUM1
220 syslog: restart

Note: The remote syslogd must be started with the -u parameter to include user ID and job
name. Not all hosts support -u, but CS for z/OS IP does.
438 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

14.3 syslogd configuration
The processing of syslogd is controlled via a configuration file called /etc/syslog.conf by
default. Another name may be chosen for the configuration file. This file can be used to define
specific logging conditions and output destinations for application messages, user messages,
authorization violation messages, and trace data for systemwide use.

All log files and directories without date/time format strings used by syslogd defined in
/etc/syslog.conf must be created in the hierarchical file system before syslogd is started. Each
statement of the configuration file has the following syntax:

 { [userid.jobname.]facility name.prioritycode destination }

The syslogd configuration file allows you to set up logging rules depending on:

� A logging user ID
� A logging job name
� A logging facility name
� A logging priority code

The user ID recorded in the log file is typically the same as the user ID of the logged-in user
that started the application or process. It can also be the name of the parent process, such as
OMVSKERN. By default, fork and spawn set the job name value to the user ID with a number
(1-9) appended. However, daemons or users with the appropriate privileges can set the
_BPX_JOBNAME environment variable to change the job name for forked or spawned child
processes. Refer to z/OS V1R2.0 UNIX System Services Planning, GA22-7800 for details
about user IDs, job names, and the environment variables. Issue D OMVS,U=userid to
display job names associated with a user ID on the MVS console. The following facility names
and priority codes are predefined in the syslogd implementation:

The facility names are:

user Messages from anyone that does not fall within any of the other
categories (the default facility name).

mail Messages from the mail system.

news Messages from the Usenet network news system.

uucp Messages from the UUCP system.

daemon This facility name is generally used by server processes. The FTPD
server, the RSHD server, the REXECD server, the SNMP agent, and
SNMP subagent use this facility name to log trace messages.

auth Messages about authorization.

authpriv Same as auth.

cron Messages from the CRON daemon or the AT command.

lpr Messages from the line printer system.

local0-7 These names are meant for local use. The TelnetD server in the UNIX
System Services uses facility name local1 for its log messages.

mark Used for logging MARK messages.

* Wildcard used to represent any facility names.

CS for z/OS IP components use daemon, local1 (used by telnet), user, mail, and auth
facilities names. Refer to z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775 for details
about each server and facility name it uses. Each application activates and deactivates traces
in a slightly different manner. For details, refer to the chapter on the individual application.
Chapter 14. syslogd 439

The priority codes listed in degree highest to lowest are:

emerg Emergency messages. System is becoming unusable.

panic Same as emerg.

alert Immediate action is required.

crit Critical condition. A device or a component is becoming unusable.

err(or) Error condition.

warn(ing) Warning condition.

notice A condition requiring special handling

info General information message.

debug A message useful for debugging programs.

none Inhibits message logging for the specified facility

* Wildcard used to represent any priority code, except none.

The criteria for selecting messages for processing are combined with a destination, which
tells syslogd what to do with selected messages.

You combine user ID, job name, facility name, and priority codes in the entries in the
/etc/syslog.conf file and for each combination you specify a destination for log messages that
belong to the specified combination:

{ [userid.jobname.]facility name.prioritycode destination }

Where the user ID and job name are optional, you may specify "*.*" or omit.

The destination can be any of the following:

� A file in the hierarchical file system

facility_name.priority_code /tmp/syslogd/auth.log

� One or more local users

facility_name.priority_code user1,user2

You may send the messages to all logged-in users by specifying an asterisk as the user
name:

facility_name.priority_code *

� A syslogd server running on another host called myaixserver

facility_name.priority_code @myaixserver

� Write messages to SMF record type 109

facility_name.priority_code $SMF

� MVS console, if syslogd is not running messages are sent here

facility_name.priority_code /dev/console

Note: Be careful with this option. If the user is not logged in, all messages will be
queued in UNIX System Services.
440 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Priority code specifications include all higher priorities. If you specify a priority code of, for
example, crit, then messages of this priority plus messages with alert, panic and emerg
priorities will be logged at the specified destination. To send all messages with a priority of crit
or higher to a user ID of OPER1, specify the following rule in /etc/syslog.conf:

*.crit OPER1

A message may be logged in more destinations, depending on your rules in /etc/syslog.conf.
To capture all messages from the facility name daemon into one file and all messages with a
priority of crit or higher into another file, specify the following:

daemon.* /tmp/syslogd/daemon.log
*.crit /tmp/syslogd/crit.log

If a server sends a message to syslogd with a facility name of debug and a priority code of
alert, the above rules will log the message in both the daemon.log and the crit.log files.

One of the priority codes has a special meaning; it is the none priority code. If you include this
priority code in a rule, it means: do not select any messages. What is the purpose of such a
rule? If you want to log all messages from facility name local1 into one file and all from
daemon into another and then everything else into a third, you can use the following rule set:

local1.* /tmp/syslogd/local1.log
daemon.* /tmp/syslogd/daemon.log
.;local1.none;daemon.none /tmp/syslogd/the_rest.log

Figure 14-4 Sample /etc/syslog.conf from mvs03a used for testing

Assuming syslogd was started on 6-21-2000, then all log messages will be recorded in
/u/bthomps/06212000/syslogd.logs except messages from user ID bthomps and mail
messages because none is coded. Messages from user ID and job name bthomps(1-9) will
be recorded in /u/bthomps/06212000/bthomps.logs. Firewall command message results use
local0 and the messages will be recorded in /tmp/firewall/06212000/cmd_msg.log. Firewall
also uses local4 for info, notice, and err messages, since debug is the lowest priority all the
messages will be recorded in /tmp/firewall/06212000/debug.logs. Any job name INET(1-9)
will be recorded in /tmp/inet/06212000/inet.logs.

If syslogd is stopped and restarted on 06-21-2000, the logs will simply be appended. There
will be a restarted message logged in /u/bthomps/06212000/syslogd.logs file.

A ’#’ sign denotes a comment.
A blank line is ignored.

..*.*;bthomps.*.*.none;*.mail.none /u/bthomps/%m%d%Y/syslogd.logs
bthomps.bthomps*.*.* /u/bthomps/%m%d%Y/bthomps.logs
mail.* /tmp/mail/%m%d%Y/mail.logs
local0.* /tmp/firewall/%m%d%Y/cmd_msg.log
local4.debug /tmp/firewall/%m%d%Y/debug.log
.INET.*.* /tmp/inet/%m%d%Y/inet.logs
Chapter 14. syslogd 441

Figure 14-5 Sample from UNIX System Services /usr/lpp/tcpip/samples/syslog.conf

The following example stores messages with facility daemon or
local1 in the file /directory/logfile.
#
daemon.*;local1.* /directory/logfile
#
Write all messages with priority crit or higher to the MVS
console. See the UNIX System Services Planning manual for more
information about the /dev/console special file.
#
*.crit /dev/console

Write all messages from syslogd itself to the file
/var/log/YYYY/MM/DD/syslogd.log and to the system console.
#
Notes:
#
a) If syslogd is invoked as a started task with job name
SYSLOGD, the name of the long-running syslogd job is
SYSLOGD1. If syslogd is invoked from a shell script
(e.g., /etc/rc) with job name SYSLOGD, the name of the
long-running syslogd job is SYSLOGD followed by a
digit.
#
If syslogd runs with a different job name on your system, the
rule will have to be changed accordingly.
#
b) During initialization, syslogd writes messages to
/dev/console. These rules cover messages during steady-
state.
#
.SYSLOGD.*.* /var/log/%Y/%m/%d/syslogd
.SYSLOGD.*.* /dev/console
#
Write all messages from otelnetd and other applications which
specify facility "local1" when running as user SMITH to the log
local1.smith. This could be useful if, otelnetd traces need
to be collected for a problem which user SMITH is experiencing
and you do not wish to collect otelnetd traces from all user IDs.
#
SMITH.*.local1.* /var/log/%Y/%m/%d/local1.smith
#
#
Write all messages with priority crit and higher to the syslogd on
host 192.168.1.9.
#
*.crit @192.168.1.9
#
Write all messages with priority err and higher to log file errors.
#
THIS EXAMPLE STATEMENT IS UNCOMMENTED.
#
*.err /var/log/%Y/%m/%d/errors
Write all messages from inetd to the log file inetd and to the
console. If inetd is invoked as a started task with job name
INETD, the name of the long-running inetd job is INETD1. If
inetd invoked from a shell script with job name INETD, the
name of the job is INETD followed by a digit(1-9).
#
.INETD.*.* /var/log/%Y/%m/%d/inetd
.INETD.*.* /dev/console
442 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

14.3.1 syslogd configuration recommendations
Here are some goals for file management:

� Start over with new logs files every day in a new directory.

Use date/time format strings to create destination files in /etc/syslog.conf that have this
format for a destination: /var/log/%Y/%m/%d/logfile_name

� Delete log files that are 14 days old or older.

Copy the sample REXX program from /usr/lpp/tcpip/samples/rmoldlogs to
/usr/local/bin/rmoldlogs and change cfg.DAYSTOKEEP from 30 to 14, make
/usr/local/bin/rmoldlogs executable with the chmod command, and then create a cron job:

0 0 * * * kill -HUP ’cat /etc/syslog.pid’
0 0 * * * /usr/local/bin/rmoldlogs

Here are some implementation tips:

� Start syslogd with the -c option; also use -u and -i if needed.

� Copy hlq.SEZAINST(SYSLOGD) to proclib.

� Copy /usr/lpp/tcpip/samples/syslog.conf to /etc/syslog.conf, then un-comment various
rules in the file to fit your environment.

14.3.2 syslog.h
Your own UNIX System Services application programs can use the logging facilities of the
syslogd server. Your C program must include the syslog.h header file. The program can then
use the following functions to open a log facility, send log messages to syslogd and close the
facility again:

1 Open a log facility name of local0. Prefix each line in the log file with the program name
(oec) and the process ID.

2 Log an info priority message of the specified content.

3 Close the log facility name again.

The above statements resulted in the following line in the log file:

May 26 11:27:51 mvs18oe oec[3014660]: Hello from oec

For more information on the syslog function, please see Advanced Programming in the UNIX
Environment, by Richard W. Stevens, published by Addison-Wesley, SR23-7254.

Note: The ability for syslogd to substitute the current time or date file names is
incompatible with the existing ability for file names to contain a percent sign (%). File
names in the syslogd configuration file that contain a ’%’ must be changed to use two ’%%’
signs (/tmp/test%file.log becomes /tmp/test%%file.log).

#include </usr/include/syslog.h>
int main(void) {
openlog("oec", LOG_PID, LOG_LOCAL0); 1
syslog(LOG_INFO, "Hello from oec"); 2
closelog(); 3
}

Chapter 14. syslogd 443

14.3.3 File syslog.pid
The syslog.pid file is created at startup by syslogd in the /etc/ directory and contains the
process ID of syslogd.

14.3.4 TCPIP.PROFILE
The following statements in TCPIP.PROFILE are needed for syslogd. This port is required to
accept log data from the remote syslogd servers.

 AUTOLOG 1

 SYSLOGD JOBNAME SYSLOGD1 ; SyslogD Server

 PORT

 514 UDP SYSLOGD1 ; SyslogD Server

14.4 Starting syslogd
Only one syslogd runs in UNIX System Services. Prior to IBM Communications Server for
OS/390 V2R10 IP, starting more than one copy of syslogd caused unpredictable results.
Now, syslogd detects when something is already processing its AF_UNIX socket and won’t
initialize a second syslogd.

You can start the syslogd process via a small shell script that allows you to set the job name
and eventually also pass proper environment variables to the syslogd process; the file is
named syslogd.start and located in the /etc/ directory.

You can execute this shell script directly from the /etc/rc file to get syslogd started at UNIX
System Services initialization. In the RC file the following was added to start syslogd
automatically:

16777472

#
Start the syslog Daemon
#
export _BPX_JOBNAME='SYSLOGD'
/usr/sbin/syslogd -f /etc/syslog.conf -u -c &
DATE='date'
echo -- /etc/syslogd.start script executed, $DATE

Start the syslog Daemon
/etc/syslogd.start
sleep 5
echo /etc/rc script executed, 'date'
444 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

In our implementation we used the following procedure to start the syslogd server as a
POSIX(ON) program:

14.5 Switching between two log files
A kill pid -SIGHUP command can be used to force syslogd to re-read its configuration file
and activate any modified parameters without stopping syslogd.

syslogd just keeps appending log messages to the files you have specified in your
/etc/syslog.conf. You need some technique to periodically delete unwanted messages or
offload the current log files to another location. If you update the log files from an archive
process, you need to stop syslogd while you do so. To avoid stopping syslogd during archive
and cleanup, you can create two syslogd configuration files: one called /etc/syslog.conf.a and
another called /etc/syslog.conf.b. The two files are equal except that they end with either an a
or b.

If your current /etc/syslog.conf file was created from your syslog.conf.a file, then you can copy
your syslog.conf.b file to /etc/syslog.conf and send syslogd a SIGHUP signal, which will make
syslogd stop writing to the a log files and begin writing to the b log files. This will give you the
opportunity to offload the a files and delete their current contents, making them ready for
syslogd use again by swapping the other way from the syslog.conf.b file to the syslog.conf.a
file. Following are the three configuration files in system MVS03A:

� File syslog.conf

//SYSLOGD PROC PARMS='-f /etc/syslog.conf -u -c',
// MODULE=SYSLOGD
//SYSLOGD EXEC PGM=&MODULE,REGION=30M,TIME=NOLIMIT,
// PARM=('POSIX(ON) ALL31(ON)',
// '/&PARMS')
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSOUT DD SYSOUT=*
//SYSERR DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//*

 BROWSE -- /etc/syslog.conf ------------------------- Line 00000000 Col 001 067
 Command ===> Scroll ===> PAGE
********************************* Top of Data **********************************
mail.* /tmp/mail.log.a
.;mail.none /tmp/syslogd.log.a
******************************** Bottom of Data ********************************
Chapter 14. syslogd 445

� File syslog.conf.a

� File syslog.conf.b

14.6 Centralized logging
As you can see in Figure 14-3 on page 438, syslogd is able to receive log data from other
syslogd servers in your network as well as send log data to other syslog servers in your
network. For that purpose, syslogd creates a UDP socket and binds it to port 514 during
initialization. If there is no AF_INET transport provider connected to z/OS UNIX when syslogd
is started, syslogd's bind() socket call fails. syslogd does not abort its initialization for this
reason, but it does not retry the bind() call either, which means that syslogd in this situation
will not be able to receive log data from other syslogd servers in your network. To cope with
this situation, we decided to AUTOLOG syslogd. When the stack is started, the autolog
function will find syslogd already running, cancel and restart it. The following log shows the
syslogd being and canceled and restarted by TCP/IP when the TCP/IP stack starts.

 BROWSE -- /etc/syslog.conf.a ----------------------- Line 00000000 Col 001 067
 Command ===> Scroll ===> PAGE
********************************* Top of Data **********************************
mail.* /tmp/mail.log.a
.;mail.none /tmp/syslogd.log.a
******************************** Bottom of Data ********************************

 BROWSE -- /etc/syslog.conf.b------------------------ Line 00000000 Col 001 067
 Command ===> Scroll ===> PAGE
********************************* Top of Data **********************************
mail.* /tmp/mail.log.b
.;mail.none /tmp/syslogd.log.b
******************************** Bottom of Data ********************************
446 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 14-6 syslogd restarted by AUTOLOG

We are running three MVS systems: MVS03A, MVS28A, MVS39A. MVS28A and MVS39A
send all the messages about mail to the system MVS03A according to the following
definitions in MVS28A and MVS39A. All other messages of the servers go to
/tmp/syslogd.log.a.

The three systems have syslogd running and netstat shows port 514 assigned to
SYSLOGD1.

In the remote systems MVS28A and MVS39A the byte count of the outgoing counter is
increasing and the incoming counter is staying at zero, but in the system MVS03A the
incoming counter is increasing and the outgoing counter is staying at zero. The system
MVS03A is the system where the mail log is sent to from the systems MVS28A and MVS39A.

S T03ATCP
$HASP100 T03ATCP ON STCINRDR
IEF695I START T03ATCP WITH JOBNAME T03ATCP IS ASSIGNED TO USER TCPIP3
 , GROUP OMVSGRP
$HASP373 T03ATCP STARTED
IEF403I T03ATCP - STARTED - TIME=14.04.18
IEE252I MEMBER CTIEZB01 FOUND IN SYS1.PARMLIB
EZZ7450I FFST SUBSYSTEM IS NOT INSTALLED
EZZ0300I OPENED PROFILE FILE DD: PROFILE
EZZ0309I PROFILE PROCESSING BEGINNING FOR DD: PROFILE
 "
 "
EZZ0621I AUTOLOG FORCING SYSLOGD1, REASON: TCP/IP HAS BEEN RESTARTED
CANCEL SYSLOGD1
IEA989I SLIP TRAP ID=X222 MATCHED. JOBNAME=SYSLOGD1, ASID=003B.
IEE301I SYSLOGD1 CANCEL COMMAND ACCEPTED
IEF450I SYSLOGD1 STEP1 - ABEND=S222 U0000 REASON=00000000 201
 TIME=14.05.26
S SYSLOGD
$HASP100 SYSLOGD ON STCINRDR
IEF695I START SYSLOGD WITH JOBNAME SYSLOGD IS ASSIGNED TO USER
OMVSKERN, GROUP OMVSGRP
$HASP373 SYSLOGD STARTED
IEF403I SYSLOGD - STARTED - TIME=14.05.37

 BROWSE -- /etc/syslog.conf ------------------------- Line 00000088 Col
 Command ===> Scroll ==
 mail.* @MVS03A
 .;mail.none /tmp/syslogd.log.a
 ******************************** Bottom of Data ************************

EZZ2585I User Id Conn Local Socket Foreign Socket State
EZZ2587I SYSLOGD1 02522 0.0.0.0..514 *..* UDP
Chapter 14. syslogd 447

Figure 14-7 shows the result in the file /tmp/mail.log.a of system MVS03A:

Figure 14-7 Logging of three systems recorded at MVS03A

Feb 8 10:50:28 MVS03A sendmail 117 0537 : gethostbyaddr(192.168.20.3) failed: 0
Feb 8 10:50:28 MVS03A sendmail 117 0537 : gethostbyaddr(192.168.100.100) failed: 0
Feb 8 10:50:28 MVS03A sendmail 117 0537 : NOQUEUE: SYSERR(OMVSKERN): dbm map Alias0 : unsafe map file
/etc/aliases
Feb 8 11:26:0 MVS03A sendmail 3355 63 : gethostbyaddr(192.168.20.3) failed: 0
Feb 8 11:26:0 MVS03A sendmail 3355 63 : gethostbyaddr(192.168.100.100) failed: 0
Feb 8 16:56:37 mvs39a.itso.ral.ibm.com sendmail 385875975 : EZZ7510I user 027 attempted to run daemon
Feb 8 16:58:03 mvs39a.itso.ral.ibm.com sendmail 3355 51 : EZZ751 I: sendmail starting
Feb 8 16:58:05 mvs39a.itso.ral.ibm.com sendmail 20 : starting daemon (8.8.7): SMTP
Feb 8 16:59:26 mvs28a.itso.ral.ibm.com sendmail 3355 57 : EZZ751 I: sendmail starting
Feb 8 16:59:26 mvs28a.itso.ral.ibm.com sendmail 15099 966 : starting daemon (8.8.7): SMTP
Feb 8 17:1 : 8 mvs39a.itso.ral.ibm.com sendmail 50331669 : NOQUEUE: SYSERR(OMVSKERN): dbm map Alias0 :
unsafe map file
/etc/aliases
Feb 8 17:17:13 mvs39a.itso.ral.ibm.com sendmail 67108885 : NOQUEUE: SYSERR(OMVSKERN): dbm map Alias0 :
unsafe map file
/etc/aliases
Feb 8 17:18: 6 mvs39a.itso.ral.ibm.com sendmail 83886101 : alias database /etc/aliases rebuilt by
PESCHKE
Feb 8 17:18: 6 mvs39a.itso.ral.ibm.com sendmail 83886101 : /etc/aliases: 13 aliases, longest 32 bytes,
289 bytes total
Feb 8 17:20:13 mvs39a.itso.ral.ibm.com sendmail 805306383 : alias database /etc/aliases rebuilt by
PESCHKE
Feb 8 17:20:13 mvs39a.itso.ral.ibm.com sendmail 805306383 : /etc/aliases: 13 aliases, longest 32 bytes,
289 bytes total
Feb 8 17:25: 1 mvs39a.itso.ral.ibm.com sendmail 536870919 : RAA536870919: collect: premature EOM:
EDC5122I Input/output error.
Feb 8 17:25: 1 mvs39a.itso.ral.ibm.com sendmail 536870919 : RAA536870919: from=PESCHKE, size=90,
class=0, pri=90, nrcpts=0,
msgid=<199902082221.RAA536870919@MVS39A.itso.ibm.com>, relay=OMVSKERN@localhost
Feb 8 17:29:32 mvs39a.itso.ral.ibm.com sendmail 251658259 : RAA251658259: from=PESCHKE, size=226,
class=0, pri=30226, nrcpts=1,
msgid=<199902082228.RAA251658259@MVS39A.itso.ibm.com>, relay=PESCHKE@localhost
Feb 8 17:29:32 mvs39a.itso.ral.ibm.com sendmail 251658259 : RAA251658259: to=PESCHKE@MVS28A,
delay=00:01:30, mailer=esmtp,
stat=queued
Feb 8 18:10:56 MVS03A sendmail 268 35 85 : EZZ751 I: sendmail starting
Feb 8 18:10:57 MVS03A sendmail 268 35 85 : gethostbyaddr(192.168.100.100) failed: 0
Feb 8 18:10:57 MVS03A sendmail 3355 336 : starting daemon (8.8.7): SMTP
448 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 15. Time server (TIMED)

TIMED (RFC 868) is a server used to provide the date and time. The time service sends back
to the originating source the time in seconds since midnight on January 1, 1900.

One motivation arises from the fact that not all systems have a date/time clock, and all are
subject to occasional human or machine error. Network stations can obtain a clock from this
server. The use of time servers makes it possible to quickly confirm or correct a system's idea
of the time by making a brief poll of several independent sites on the network.

The time server is invoked using timed from the UNIX System Services shell environment or
with the TIMED procedure in MVS.

User Datagram Protocol (UDP) is used as the protocol with timed. The time service works as
follows:

S: Listen on port 37 (45 octal).

U: Send an empty datagram to port 37.

S: Receive the empty datagram.

S: Send a datagram containing the time as a 32-bit binary number.

U: Receive the time datagram.

The server listens for a datagram on port 37. When a datagram arrives, the server returns a
datagram containing the 32-bit time value. If the server is unable to determine the time at its
site, it should discard the arriving datagram and make no reply.

15

Note: Although the TIMED server supports the UDP protocol only, the Time service that
can run over the TCP and UDP protocol is provided by the InetD super daemon internally.
See 11.2, “Internet services supported internally by InetD” on page 420 for more
information.
© Copyright IBM Corp. 1998 2002 449

The time used by timed is the number of seconds since 00:00 (midnight) of January 1, 1900
GMT, such that the time 1 is 12:00:01 a.m. on January 1, 1900 GMT; this base will serve until
the year 2036.

For example:

 the time 2,208,988,800 corresponds to 00:00 1 Jan 1970 GMT,

 2,398,291,200 corresponds to 00:00 1 Jan 1976 GMT,

 2,524,521,600 corresponds to 00:00 1 Jan 1980 GMT,

 2,629,584,000 corresponds to 00:00 1 May 1983 GMT,

 and -1,297,728,000 corresponds to 00:00 17 Nov 1858 GMT.
450 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Chapter 16. Web server performance

This chapter describes the interaction between the HTTP Server and z/OS to optimize the
server performance.

The following sections are included in this chapter:

� 16.1, “Overview” on page 452

� 16.2, “Fast Response Cache Accelerator” on page 452

� 16.3, “Starting the HTTP server” on page 453

� 16.4, “Configuring the HTTP server” on page 455

16
© Copyright IBM Corp. 1998 2002 451

16.1 Overview
The current design of the Web server (See Figure 16-1) has all the function running above the
kernel, where kernel refers to all code residing at or below the socket API, including both
UNIX Services and the TCP/IP stack.

From a performance study it appears that 85% of the processing time for a given query to the
Web server is spent in the Kernel code. So to obtain better performance, changes have been
made in the kernel code.

Figure 16-1 Current solution flow

16.2 Fast Response Cache Accelerator
This new solution is based upon a hybrid kernel/user Web server as shown in Figure 16-2.

Web pages are cached within the TCP/IP stack, and requests are handled without passing
the entire kernel or entering the user space, but by using the z/OS Cache Accelerator exits
shipped with z/OS and the WebSphere Application Server Kernel-Space exits provided by the
WebSphere Application Server product.

WebSphere Application
Server

OE Socket Library

z/OS TCP/IP
Stack
452 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 16-2 Overview of the FRCA solution flow

The Cache Accelerator (if enabled) is loaded automatically during the Web server operation
so you are not required to list the files to be cached in the server configuration file. In addition
the server will recache the updated pages and remove the outdated pages from the cache.

The FRCA provides support for caching on multiple Web servers and on servers with multiple
IP addresses. At the moment, support is not available for a proxy server.

Communications Server for z/OS IP provides an enhancement so that the cache serving
responsibility can be passed back from the WebSphere application to the TCP/IP stack Fast
Response Cache Accelerator.

This results in faster response time for the Web client if the Web content includes dynamic
Web pages.

16.3 Starting the HTTP server
Before you can start the HTTP Server for OS/390 V5.3 you have to do several system and
RACF definitions. For detailed information about these please refer to z/OS V1R1.0-V1R3.0
IBM HTTP Server Planning, Installing, and Using V5.3, SC34-4826.

The following procedure is used to start the server:

//IMWPROC PROC LEPARM=,
//*IMWPROC PROC LEPARM=,ICSPARM=
//***
//*
//* LEPARM ==> LE runtime opts
//* LEPARM='ENVAR("_CEE_ENVFILE=/etc/httpd.envvars")'

WebSphere Application
Server

OE Socket Library
(New IOCTL Functions)

z/OS
TCP/IP
Stack

Fast Response Cache Accelerator

z/OS
FRCA
Server
Exits

WebSphere
Kernel
Space
Exits

User Address Space
TCP/IP Address Space
Chapter 16. Web server performance 453

//*
//* ICSPARM ==> Internet Connection Server parameters
//* # Standalone HTTPD
//* ICSPARM='-p 8080 -r /etc2/httpd.conf'
//* ICSPARM='-p 80 -vv -r /etc/httpd.conf'
//* 1 2 3 4
// ICSPARM='-p 80 -SN FRCAHTTP -vv -r /etc/httpd.conf'
//* # WLM Queue Manager
//* ICSPARM='-SN WEBSN1 -p 8080 -r /etc/httpd.conf'
//* # WLM ApplEnv Queue Server
//* ICSPARM='-SN WEBSN1 -AE WEBHTML'
//*
//* Internet Connection Server Parameters:
//* -SN # WLM - subsystem name
//* -AE # WLM - Application Environment
//*
//* -fscp nnn # File system codepage - EBCDIC
//* -netcp nnn # net code page - ASCII
//*
//* -gc_only # clean cache & exit (garbage collect)
//*
//* -normalmode
//* -p nnnn # use port nnn (default 80)
//* -sslmode
//* -sslport nnnn # use port nnn (default 443)
//* -nosec # no security
//*
//* -nosmf # no smf processing on
//* -smf # smf processing on
//*
//* -r /etc/httpd.conf # use rule file xxxx
//* -restart
//* -v # trace to stderr
//* -vv # trace all to stderr
//* -vc # cache trace to stderr
//*
//* -version # show version and exit
//*
//*
//* xxxxxxx # ServerRoot xxxxxxx; Pass /*
//*
//***
//WEBSRV EXEC PGM=IMWHTTPD,REGION=0K,TIME=NOLIMIT,
// PARM=('&LEPARM/&ICSPARM')
//*STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR
//***
//SYSIN DD DUMMY
//OUTDSC OUTPUT DEST=HOLD
//SYSPRINT DD SYSOUT=*,OUTPUT=(*.OUTDSC)
//SYSERR DD SYSOUT=*,OUTPUT=(*.OUTDSC)
//STDOUT DD SYSOUT=*,OUTPUT=(*.OUTDSC)
//STDERR DD SYSOUT=*,OUTPUT=(*.OUTDSC)
//SYSOUT DD SYSOUT=*,OUTPUT=(*.OUTDSC)
//CEEDUMP DD SYSOUT=*,OUTPUT=(*.OUTDSC)
454 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

In this PROC:

1 This is the HTTP Server port number (default).

2 This is the WLM subsystem name and must match the value specified in the configuration
file (See Figure 242 on page 405).

3 A trace of the HTTP Server component will be taken and directed to STDOUT.

4 This is the name of the configuration file to be used (default).

16.4 Configuring the HTTP server
The Web administrator can use two different methods to configure the HTTP Server:

� Using the configuration and administration forms:

The server comes with configuration and administration forms. These forms are a
combination of CGI programs and HTML forms that provide an easy way for you to
configure or to view the current configuration of your server.

� Manually editing the configuration file:

The configuration file (by default, /etc/httpd.conf) is made up of statements called
directives. You change your configuration by editing this file, updating the directives and
saving your changes.

In our implementation we used the first method, and we strongly suggest all beginner Web
administrators use it. Each form provides instructions to assist you in deciding what changes
to make. For further information you can click the question mark (?) in the upper right-hand
corner of the page and choose from three kinds of help:

� Field description for information about each field on the form

� How do I? for information about configuration tasks

� Index for an index of all help topics in alphabetical order

After you fill in the form, click Submit to update the server configuration (/etc/httpd.conf will
be updated) with the changes you made.

A status message on the top of the page will tell you if the operation completed successfully
or not. After a successful completion click the Restart button (|) in the upper right-hand corner
of the page.

16.4.1 Accessing the configuration and administration forms
When the HTTP Server is started for the first time, go to the server's Front Page by typing the
following URL:

http://your.server.name

where your.server.name is the fully qualified name or address of your host.

Then you will see the following window:

Note: If you change some basic values, you have to stop and restart your server in order
for your changes to take effect.
Chapter 16. Web server performance 455

Figure 16-3 Web server default welcome page

Click Configuration and Administration Forms.

The introduction page is shown in Figure 16-4.

Note: You will be prompted for a user name and password the first time you use the forms.
456 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 16-4 Introduction HTTP Server page

16.4.2 Configuring the Fast Response Cache Accelerator
Here we will describe the necessary steps to take to configure correctly the Fast Response
Cache Accelerator option. For more information about any parameter value please consult
the online guide or z/OS V1R1.0-V1R3.0 IBM HTTP Server Planning, Installing, and Using
V5.3, SC34-4826.

To access the FRCA forms you have to select, on the left frame of the introduction page, Fast
Response Cache Accelerator.

You will see the following window:
Chapter 16. Web server performance 457

Figure 16-5 Fast Response Cache Accelerator form (part 1)

You must check Enable Fast Response Cache Accelerator. If you don't set this value, any
other parameter entered will be ignored.

Next, you can set the cache size (the default values are acceptable) and the location of the
cache log (if you don't set the value the entries will be recorded in the common log file).
458 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 16-6 Fast Response Cache Accelerator form (part 2)

If you use the CINET function with multiple TCP/IP stacks, specify the name of the stack used
by the Fast Response Cache Accelerator. This name must match the name on the
SUBFILESYSTYPE statement in the UNIX BPXRMxx parmlib member.

To classify the work performed by the Fast Response Cache Accelerator under the Workload
Manager (WLM), the only requested parameter is the Subsystem Name, which must match
the SN parameter in the HTTP Server startup procedure (See 16.3, “Starting the HTTP
server” on page 453).
Chapter 16. Web server performance 459

Figure 16-7 Fast Response Cache Accelerator form (part 3)

If you want to control the set of URLs that the FRCA will consider for cache (it means you
want to limit the cache utilization) you can specify the appropriate value in the following form
shown in Figure 16-8 on page 461. Wildcards are supported in those fields.
460 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 16-8 Fast Response Cache Accelerator form (part 4)

At this point the FRCA configuration has done. Then you have to click Submit, and after a
successful response, restart server by selecting the to restart the server button (see page
Figure 16-4 on page 457).

16.4.3 Monitoring the Fast Response Cache Accelerator
A new DISPLAY TCPIP command has been added to show the statistics of the cache
accelerator utilization. The syntax is the following:

DISPLAY TCPIP,FRCA_Stack_Name,NET,CACH

where FRCA_Stack_Name is the TCP/IP stack name used by FRCA (See Figure 16-7 on
page 460).

This is a sample output obtained:
Chapter 16. Web server performance 461

Figure 16-9 Sample report from the NETSTAT CACHE command

 1 The maximum number of 4K (4096-byte) blocks of memory that may be used for storing
cache objects by the FRCA (See Figure 16-6 on page 459).

 2 The maximum number of cache objects that may be stored by the FRCA (See Figure 16-6
on page 459).

3 The number of connections established.

4 The number of connections that are processed by the Web server application.

5 The number of times a response is sent to a client.

6 The number of cache objects that were successfully located and transmitted to clients.

7 The number of cache objects which were successfully located but not transmitted to clients.

8 The current number of 4KB pages used to cache objects.

9 The current number of cached objects.

10 The number of connections that have successfully completed an in-kernel transaction,
resulting in a response sent to the client.

11 The number of connections for which timeout is expired.

12 The number of times a request is received by a client but additional data is required to
process the request.

13 The number of cache objects that were not successfully located and transmitted to clients.

To diagnose a problem in the HTTP Server for OS/390 V5.3 it is possible to activate a trace in
the startup procedure (See 16.3, “Starting the HTTP server” on page 453).

The following is a sample log output obtained with an active trace. We considered only the
entries regarding the FRCA process.

 D TCPIP,TCPIPA,N,CACH
 EZZ2500I NETSTAT CS V2R10 TCPIPA 367
 CLIENT: WEBSRV LISTENING SOCKET: 0.0.0.0..80
 MAXCACHESIZE: 0000025000 1 CURRCACHESIZE: 0000000010 8
 MAXNUMOBJECTS: 0000001000 2 CURRNUMOBJECTS: 0000000005 9
 NUMCONNS: 0000000010 3 CONNSPROCESSED: 0000000000 10
 CONNSDEFERRED: 0000000010 4 CONNSTIMEDOUT: 0000000000 11
 REQUESTSPROCESSED: 0000000000 5 INCOMPLETEREQUESTS: 0000000000 12
 NUMCACHEHITS: 0000000000 6 NUMCACHEMISSES: 0000000018 13
 NUMUNPRODCACHEHITS: 0000000000 7
 1 OF 1 RECORDS DISPLAYED

Note: In our test, we were not able to heavily load the HTTP Server, so the statistics
showed that we just issued a few get requests for some Web page to the Web server,
which might not be enough for the application to cache the object. Since there was no
cached entry in FRCA, every connection was deferred to the Web server application.
462 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Figure 16-10 Sample HTTP Server trace

ıThe configuration values are processed

ⁿThe WLM environment is established

þA request from a client to obtain an object (child.jpg) is processed and according to the mask
we specified (See Figure 16-8 on page 461) it has been found eligible to be cached by FRCA.

 :
Initializing FRCA support
FRCA log size is 184320 1
FRCA Timeout value is 5000
Generated server name to be used by FRCA: IBM HTTP Server/V5R3M0
FRCA Cache objects per connection is 5.
FRCA Maximum Cache Size is 25000 4K blocks
FRCA maximum number of Cache entries is 1000
FRCA TCPIP stackname is TCPIPA
FRCA version is 1
FRCA LoadMod Name = "IMWUWDX "
SiocAfpaConfigure was successful, FRCA support initialized
signal...... 23 could not be set!
Timer....... not being created for a type-12 thread.
Log......... "/tmp/cache.log.Jul112000" opened
Logging..... FRCA updating SNMP/PerfMon counters.
 :
Setting __SERVER_CLASSIFY_TRANSACTION_CLASS=WEBFRCA worked 2
 :
etting __SERVER_CLASSIFY_TRANSACTION_NAME=GET worked
 :
etting __SERVER_CLASSIFY_USERID=WEBSRV worked
FRCA enclave created successfully
 :
 FRCA: Fast Response Cache Accelarator is enabled.
 Local....... filename is "/usr/lpp/internet/server_root/icons/child.jpg
 FRCA: Fast Response Cache Accelerator values being checked.
 HTStat...... on file "/usr/lpp/internet/server_root/icons/child.jpg" --
 HTAccess.... Ò/icons/child.jpg' has been accessed. 3
 FRCA: Fast Response Cache Accelarator is enabled.
 FRCA: Fast Response Cache Accelerator values being checked.
 HTServer.c: Entry to RequestCacheable req = 1574e134
 Searching for URL /icons/child.jpg in FRCA cacheable list
 ---------- We matched|
Chapter 16. Web server performance 463

464 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Part 6 Appendixes

Part 6
© Copyright IBM Corp. 1998 2002 465

466 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Appendix A. BIND DNS sample configuration

In Chapter 10, “BIND Domain Name System (DNS)” on page 315, we described the
implementation of several DNS scenarios, including both BIND 4.9.3-based DNS and BIND
9-based DNS. This appendix contains all the files created to build those scenarios.

A

© Copyright IBM Corp. 1998 2002 467

A.1 BIND 4.9.3-based DNS implementation
This section includes sample configurations for our BIND 4.9.3 implementation.

A.1.1 Basic scenario (no WLM)
Please refer to Figure A-1 for the configuration used in this section.

Figure A-1 SC63, SC64 basic name server implementation

A.1.1.1 SC63 definitions (primary name server)
SC63 boot file (named.boot)

********************************* Top of Data ************************
; boot file for BIND 4.9.3-Based Name Server
;
;type domain source file or host
;
directory /etc/octavio/dnsdata
primary itso.ral.ibm.com zos12.for.v4
primary 6.12.9.in-addr.arpa zos12.rev.v4
primary 0.0.127.in-addr.arpa zos12.lbk.v4
cache . zos12.ca.v4
forwarders 9.12.6.68
options forward-only
options query-log
******************************** Bottom of Data **********************

SC63 BIND 4.9.3 forward domain file (itso.for.v4)
********************************* Top of Data ***************************
; /etc/octavio/dnsdata/itso.for.v4
; this file is the forward file for the Name Server SC63
$ORIGIN com.

Domain:
Primary Name Server:

Secondary Name Server:

itso.ral.ibm.com
SC63 - 9.12.6.67
SC64 - 9.12.6.61

itso.ral.ibm.com

SC63
Primary
Name
Server

SC64
Secondary
Name
Server

Zone Transfer
468 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

; this record defines the authoritative server for itso subdomain
itso IN SOA dns63.itso admin.itso (
 1 ; Serial (incremented when database is changed
 10800 ; Refresh (slave will check every 3 hours
 3600 ; Retry (retry every hour after refresh failure
 604800 ; Expire (slave gives up retry after one week
 86400) ; Time to Live (data cached in other servers 1 day
$ORIGIN itso.com.
; define domain nameservers
 IN NS dns63
 IN NS dns64
;the following records specify the location of a specific service
_http._tcp SRV 0 0 80 www.itso.com
 SRV 10 0 8000 www2.itso.com
;the following records map the host names to their related ip addresses
localhost IN A 127.0.0.1
dns63 IN A 9.12.6.68
dns64 IN A 9.12.6.62
sc63 IN A 9.12.6.68
sc64 IN A 9.12.6.62
host1 IN A 9.12.6.67
host2 IN A 9.12.6.61
www2 IN A 9.179.147.237
www IN A 9.179.147.237
gateway IN A 9.12.6.68
 IN A 9.12.6.67
;these records define an alias for hosts host1 and host2
mail IN CNAME host1
ftp IN CNAME host2
******************************** Bottom of Data **********************

SC63 BIND 4.9.3 reverse files - in-addr.arpa (itso.rev.v4)
********************************* Top of Data ***************************
;
; /etc/octavio/dnsdata/itso.rev.v4
;
$ORIGIN 12.9.in-addr.arpa.

6 IN SOA dns63.itso.com. admin.itso.com. (
 1 10800 3600 604800 86400)
 IN NS dns63.itso.com.
 IN NS dns64.itso.com.
$ORIGIN 6.12.9.in-addr.arpa.
68 IN PTR dns63.itso.com.
62 IN PTR dns64.itso.com.

67 IN PTR host1.itso.com.
61 IN PTR host2.itso.com.
68 IN PTR www2.itso.com.
62 IN PTR www.itso.com.
20 IN PTR printserver.itso.com.
******************************** Bottom of Data **********************

SC63 BIND 4.9.3 loopback file (itso.lbk.v4)
********************************* Top of Data ***************************
; /etc/octavio/dnsdata/itso.lbk.v4
0.0.127.in-addr.arpa. IN SOA dns63.itso.com. admin.itso.com (
 1
 10800
 3600
Appendix A. BIND DNS sample configuration 469

 604800
 86400)
0.0.127.in-addr.arpa. IN NS dns63.itso.com.
0.0.127.in-addr.arpa. IN NS dns64.itso.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.
******************************** Bottom of Data *************************

SC63 BIND 4.9.3 hints file (cache file) (itso.ca.v4)
The file replicated here is found on the Web at:
 ftp://ftp.rs.internic.net/domain/named.root

********************************* Top of Data ***************************
; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
; This file is made available by InterNIC registration services
; under anonymous FTP as
; file /domain/named.root
; on server FTP.RS.INTERNIC.NET
; -OR- under Gopher at RS.INTERNIC.NET
; under menu InterNIC Registration Services (NSI)
; submenu InterNIC Registration Archives
; file named.root
; last update: Aug 22, 1997
; related version of root zone: 1997082200
; formerly NS.INTERNIC.NET
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
; formerly NS1.ISI.EDU
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
; formerly C.PSI.NET
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
; formerly TERP.UMD.EDU
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
; formerly NS.NASA.GOV
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
; formerly NS.ISC.ORG
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
; formerly NS.NIC.DDN.MIL
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
; formerly AOS.ARL.ARMY.MIL
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
; formerly NIC.NORDU.NET
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
; temporarily housed at NSI (InterNIC)
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 198.41.0.10
; housed in LINX, operated by RIPE NCC
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
; temporarily housed at ISI (IANA)
470 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

ftp://ftp.rs.internic.net/domain/named.root

. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12
; housed in Japan, operated by WIDE
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
******************************** Bottom of Data *************************

A.1.1.2 SC64 BIND 4.9.3-based definitions (secondary name server)
SC63 BIND 4.9.3 boot file (named.boot)

********************************* Top of Data ***************************
; /SC64/etc/named.boot
; boot file for name server
;type domain source file or host
directory /etc/octavio/dnsdata
secondary itso.com 9.12.6.68 itso.bk.for.v4
secondary 6.12.9.in-addr.arpa 9.12.6.68 itso.bk.rev.v4
primary 0.0.127.in-addr.arpa itso.lbk.v4
cache . itso.ca.v4
options query-log
******************************** Bottom of Data *************************

SC64 BIND 4.9.3 loopback file (itso.lbk.v4)
********************************* Top of Data ***************************
; /SC64/etc/octavio/dnsdata/itso.lbk.v4
0.0.127.in-addr.arpa. IN SOA dns64.itso.com. admin.itso.com (
 1
 10800
 3600
 604800
 86400)
0.0.127.in-addr.arpa. IN NS dns63.itso.com.
0.0.127.in-addr.arpa. IN NS dns64.itso.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.
******************************** Bottom of Data *************************

SC64 BIND 4.9.3 hints file (cache file) (itso.ca.v4)
The file is not replicated here; it is the same file shown at “SC63 BIND 4.9.3 hints file (cache
file) (itso.ca.v4)” on page 470 of this appendix.
Appendix A. BIND DNS sample configuration 471

A.1.2 BIND 4-based DNS/WLM scenario
Please refer to Figure A-2 for the configuration used in the following discussion.

Figure A-2 MVS03 + MVS28: DNS server for parent and SYSPLEX domains

A.1.2.1 MVS03 definitions
MVS03 is the primary DNS server for both the parent domain itso.ral.ibm.com. and the
sysplex domain ralplex1.itso.ral.ibm.com.

MVS03 boot file
 ***************************** Top of Data ******************************
; /etc/named.boot.wlm2 based on /etc/named.boot.wlm1
;
; TYPE DOMAIN FILE OR HOST
directory /etc/dnsdata
;
; (Following for sysplex name server as both parent + sysplex DNS)
primary ralplex1.itso.ral.ibm.com named.for.wlm1 cluster
primary itso.ral.ibm.com named.for2
primary 251.168.192.in-addr.arpa named.wlm2192.168.251
primary 252.168.192.in-addr.arpa named.wlm2192.168.252
primary 236.168.192.in-addr.arpa named.wlm2192.168.236
primary 235.168.192.in-addr.arpa named.wlm2192.168.235
primary 105.24.9.in-addr.arpa named.wlm29.24.105
primary 104.24.9.in-addr.arpa named.wlm29.24.104
primary 221.168.192.in-addr.arpa named.wlm2192.168.221
primary 109.168.192.in-addr.arpa named.wlm2192.168.109
primary 0.0.127.in-addr.arpa named.lbk.wlm2
cache . named.ca
forwarders 9.24.104.108
options query-log
**************************** Bottom of Data ****************************

Parent Domain:
Primary DNS:

Secondary DNS:

itso.ral.ibm.com
MVS03
MVS28

Sysplex Subdomain:
Primary DNS:

Secondary DNS:

ralplex1.itso.ral.ibm.com
MVS03
MVS28

Existing itso.ral.ibm.com

MVS03
DNS

MVS28
DNS

ralplex1

MVS03
DNS

MVS28
DNS

TN3270 TN3270E TELNET
472 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

MVS03 domain file named.for.wlm1 (ralplex1.itso.ral.ibm.com.)
 ***************************** Top of Data ******************************
 ;
 ; /etc/dnsdata/named.for.wlm1 for MVS03 and SYSPLEX
 ;
 $ORIGIN itso.ral.ibm.com.
 ralplex1 IN SOA mvs03.ralplex1.itso.ral.ibm.com. gdente@ralplex1.i
 5 10800 3600 604800 86400)
 $ORIGIN ralplex1.itso.ral.ibm.com.
 IN NS mvs03
 ;
 IN NS mvs28
 ;
 ; OWNER CLASS TYPE RECORD DATA
 localhost IN A 127.0.0.1
 mvs03 IN A 9.24.105.126 ; Ethernet LCS
 IN A 192.168.251.1 ; Vipa address
 IN A 192.168.252.1 ; SAMEHOST to MVS03C
 IN A 192.168.236.1 ; RAS XCF to 28
 IN A 192.168.235.3 ; MPC to 25
 IN A 192.168.221.20 ; LICP03 Connection
 IN A 192.168.109.3 ; LICCP25 Connection
 mvs03c IN A 192.168.252.2 ; SAMEHOST at MVS03C
 mvs28 IN A 9.24.105.75 ; Ethernet LCS at MVS28
 IN A 192.168.236.2 ; RAS XCF to 03
 IN A 192.168.221.24 ; LICP03 Connection
 IN A 192.168.109.1 ; LICCP25 Connection
**************************** Bottom of Data ****************************

MVS03 domain file named.for2 (itso.ral.ibm.com.)
 ***************************** Top of Data ******************************
; /etc/dnsdata/named.for2 for MVS03
;
$ORIGIN ral.ibm.com.
itso IN SOA mvs03.itso.ral.ibm.com. gdente@itso.ral.ibm.com. (
 5 10800 3600 604800 86400)
$ORIGIN itso.ral.ibm.com.
 IN NS mvs03
;
 IN NS mvs28
;
; OWNER CLASS TYPE RECORD DATA
localhost IN A 127.0.0.1
mvs03 IN A 9.24.105.126 ; Ethernet LCS
 IN A 192.168.251.1 ; Vipa address
 IN A 192.168.252.1 ; SAMEHOST to MVS03C
 IN A 192.168.236.1 ; RAS XCF to 28
 IN A 192.168.235.3 ; MPC to 25
 IN A 192.168.221.20 ; LICP03 Connection
 IN A 192.168.109.3 ; LICCP25 Connection
mvs03c IN A 192.168.252.2 ; SAMEHOST at MVS03C
;
mvs28 IN A 9.24.105.75 ; Ethernet LCS at MVS28
 IN A 192.168.236.2 ; RAS XCF to 03
 IN A 192.168.221.24 ; LICP03 Connection
 IN A 192.168.109.1 ; LICCP25 Connection
;
rsserver IN A 9.24.104.108 ; DNS (6611) at ITSO
gwen IN A 9.24.104.35
henk IN A 9.24.104.201
Appendix A. BIND DNS sample configuration 473

kakky IN A 9.24.104.47
silvia IN A 9.24.104.213
;
ourmvs IN CNAME mvs03
othermvs IN CNAME mvs28
dns2 IN CNAME rsserver
wtr05199 IN CNAME gwen
wtr05101 IN CNAME henk
wtr05118 IN CNAME kakky
wtr05119 IN CNAME silvia
**************************** Bottom of Data ****************************

MVS03 reverse file (in-addr.arpa file) named.wlm2192.168.109
 ***************************** Top of Data ******************************
; /etc/dnsdata/named.wlm2192.168.109 for MVS03-iccp 192.168.109.3
;
;$ORIGIN 109.168.192.in-addr.arpa.
@ IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.itso.r
 5 10800 3600 604800 86400)
 IN NS mvs03.ralplex1.itso.ral.ibm.com.
 IN NS mvs28.ralplex1.itso.ral.ibm.com.
 IN NS rsserver.itso.ral.ibm.com.
;
; MVS03 ICCP entry
3 IN PTR mvs03.ralplex1.itso.ral.ibm.com.
3 IN PTR mvs03.itso.ral.ibm.com.
; MVS28 ICCP entry
1 IN PTR mvs28.ralplex1.itso.ral.ibm.com.
1 IN PTR mvs28.itso.ral.ibm.com.
**************************** Bottom of Data ****************************

MVS03 reverse file (in-addr.arpa file) named.wlm2192.168.221
 ***************************** Top of Data ******************************
 ; /etc/dnsdata/named.wlm2192.168.221 for MVS03-icp 192.168.221.20
 ;
 ;$ORIGIN 221.168.192.in-addr.arpa.
 @ IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.itso.r
 2 10800 3600 604800 86400)
 IN NS mvs03.ralplex1.itso.ral.ibm.com.
 IN NS mvs28.ralplex1.itso.ral.ibm.com.
 ;
 ; MVS03 ICP entry
 20 IN PTR mvs03.ralplex1.itso.ral.ibm.com.
 20 IN PTR mvs03.itso.ral.ibm.com.
 ; MVS28 ICP entry
 24 IN PTR mvs28.ralplex1.itso.ral.ibm.com.
 24 IN PTR mvs28.itso.ral.ibm.com.
 **************************** Bottom of Data ****************************

MVS03 reverse file (in-addr.arpa file) named.wlm2192.168.235
 ***************************** Top of Data ******************************
 ; /etc/dnsdata/named.wlm2192.168.235 MVS03-MPC 192.168.235.3 (> MVS25)
 ;
 ;$ORIGIN 235.168.192.in-addr.arpa.
 @ IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.itso.r
 2 10800 3600 604800 86400)
 IN NS mvs03.ralplex1.itso.ral.ibm.com.
 IN NS mvs28.ralplex1.itso.ral.ibm.com.
 ;
474 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

 ; MVS03 MPC entry to 25
 3 IN PTR mvs03.ralplex1.itso.ral.ibm.com.
 3 IN PTR mvs03.itso.ral.ibm.com.
 **************************** Bottom of Data ****************************

MVS03 reverse file (in-addr.arpa file) named.wlm2192.168.236
 ***************************** Top of Data ******************************
 ; /etc/dnsdata/named.wlm2192.168.236 MVS03-XCF to MVS28 192.168.236.1
 ;
 ;$ORIGIN 236.168.192.in-addr.arpa.
 @ IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.itso.r
 2 10800 3600 604800 86400)
 IN NS mvs03.ralplex1.itso.ral.ibm.com.
 IN NS mvs28.ralplex1.itso.ral.ibm.com.
 ;
 ; MVS03 XCF entry to 28
 1 IN PTR mvs03.ralplex1.itso.ral.ibm.com.
 1 IN PTR mvs03.itso.ral.ibm.com.
 ; MVS28 XCF entry to 03
 2 IN PTR mvs28.ralplex1.itso.ral.ibm.com.
 2 IN PTR mvs28.itso.ral.ibm.com.
 **************************** Bottom of Data ****************************

MVS03 reverse file (in-addr.arpa file) named.wlm2192.168.251
 ***************************** Top of Data ******************************
 ; /etc/dnsdata/named.wlm2192.168.251 - mvs-3-vipa for MVS03
 ;
 ;ORIGIN 168.192.in-addr.arpa.
 ; MVS03 VIPA entry
 ;251 IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.itso.
 ;$ORIGIN 251.168.192.in-addr.arpa.
 ;tso.ral.ibm.com. IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ra
 @ IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.itso.r
 2 10800 3600 604800 86400)
 IN NS mvs03.ralplex1.itso.ral.ibm.com.
 IN NS mvs28.ralplex1.itso.ral.ibm.com.
 ;
 1 IN PTR mvs03.ralplex1.itso.ral.ibm.com.
 1 IN PTR mvs03.itso.ral.ibm.com.
 **************************** Bottom of Data ****************************

MVS03 reverse file (in-addr.arpa file) named.wlm2192.168.252
 ***************************** Top of Data ******************************
 ; /etc/dnsdata/named.wlm2192.168.252 for MVS03 Samehost to MVS03C
 ;
 ;ORIGIN 252.168.192.in-addr.arpa.
 @ IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.itso.r
 2 10800 3600 604800 86400)
 IN NS mvs03.ralplex1.itso.ral.ibm.com.
 IN NS mvs28.ralplex1.itso.ral.ibm.com.
 ;
 1 IN PTR mvs03.ralplex1.itso.ral.ibm.com.
 1 IN PTR mvs03.itso.ral.ibm.com.
 2 IN PTR mvs03c.ralplex1.itso.ral.ibm.com.
 2 IN PTR mvs03c.itso.ral.ibm.com.
 **************************** Bottom of Data ****************************
Appendix A. BIND DNS sample configuration 475

MVS03 reverse file (in-addr.arpa file) named.wlm29.24.104
 ***************************** Top of Data ******************************
 ; /etc/dnsdata/named.wlm29.24.104 for team workstations
 ;
 $ORIGIN 24.9.in-addr.arpa.
 104 IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.itso.r
 2 10800 3600 604800 86400)
 IN NS mvs03.ralplex1.itso.ral.ibm.com.
 IN NS mvs28.ralplex1.itso.ral.ibm.com.
 $ORIGIN 104.24.9.in-addr.arpa.
 ; Other DNS at ITSO
 108 IN PTR rsserver.itso.ral.ibm.com.
 ; Gwen's workstation
 35 IN PTR wtr05199.itso.ral.ibm.com.
 ; Henk's workstation
 201 IN PTR wtr05101.itso.ral.ibm.com.
 ; Kakky's workstation
 47 IN PTR wtr05118.itso.ral.ibm.com.
 ; Silvia's workstation
 213 IN PTR wtr05119.itso.ral.ibm.com.
 **************************** Bottom of Data ****************************

MVS03 reverse file (in-addr.arpa file) named.wlm29.24.105
 ***************************** Top of Data ******************************
 ; /etc/dnsdata/named.wlm29.24.105 for MVS03-en1 9.24.105.126
 ;
 ;$ORIGIN 105.24.9.in-addr.arpa.
 @ IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralplex1.itso.r
 2 10800 3600 604800 86400)
 IN NS mvs03.ralplex1.itso.ral.ibm.com.
 IN NS mvs28.ralplex1.itso.ral.ibm.com.
 ; Address of other dns
 209 IN PTR rsserver.itso.ral.ibm.com.
 ; LCS entry at MVS03
 126 IN PTR mvs03.ralplex1.itso.ral.ibm.com.
 126 IN PTR mvs03.itso.ral.ibm.com.
 ; LCS entry at MVS28
 75 IN PTR mvs28.ralplex1.itso.ral.ibm.com.
 75 IN PTR mvs28.itso.ral.ibm.com.
 **************************** Bottom of Data ****************************

MVS03 loopback file
 ***************************** Top of Data ******************************
 ; /etc/dnsdata/named.lbk.wlm2
 ;
 0.0.127.in-addr.arpa. IN SOA mvs03.ralplex1.itso.ral.ibm.com. mvs03.ralp
 5
 10800
 3600
 604800
 86400)
 0.0.127.in-addr.arpa. IN NS mvs03.ralplex1.itso.ral.ibm.com.
 0.0.127.in-addr.arpa. IN NS mvs03.itso.ral.ibm.com.
 1.0.0.127.in-addr.arpa. IN PTR localhost.
 **************************** Bottom of Data ****************************
476 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

A.1.2.2 MVS28 definitions (SYSPLEX and parent DNS server)
MVS28 boot file (SYSPLEX and parent DNS server)

 ***************************** Top of Data ******************************
 ; /etc/named.boot.wlm2 based on /etc/named.boot
 ;
 ; TYPE DOMAIN FILE OR HOST
 directory /etc/dnsdata
 ;
 ; (Following for sysplex name server as both parent + sysplex DNS)
 secondary ralplex1.itso.ral.ibm.com 192.168.236.1 named.for.wlm1 cluster
 secondary itso.ral.ibm.com 192.168.236.1 named.for2
 secondary 251.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.251
 secondary 252.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.252
 secondary 236.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.236
 secondary 235.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.235
 secondary 105.24.9.in-addr.arpa 192.168.236.1 named.wlm29.24.105
 secondary 104.24.9.in-addr.arpa 192.168.236.1 named.wlm29.24.104
 secondary 221.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.221
 secondary 109.168.192.in-addr.arpa 192.168.236.1 named.wlm2192.168.109
 primary 0.0.127.in-addr.arpa named.lbk.wlm2
 cache . named.ca
 forwarders 9.24.104.108
 options query-log
 **************************** Bottom of Data ****************************

MVS28 loopback file
 ***************************** Top of Data ******************************
; /etc/dnsdata/named.lbk.wlm2
;
0.0.127.in-addr.arpa. IN SOA mvs28.ralplex1.itso.ral.ibm.com. mvs28.ralp
 5
 10800
 3600
 604800
 86400)
0.0.127.in-addr.arpa. IN NS mvs28.ralplex1.itso.ral.ibm.com.
0.0.127.in-addr.arpa. IN NS mvs28.itso.ral.ibm.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.
**************************** Bottom of Data ****************************

MVS28 hints file (cache file)
The file is not replicated here; it is the same file shown in “SC63 BIND 4.9.3 hints file (cache
file) (itso.ca.v4)” on page 470 of this appendix.

A.2 DHCP + DDNS on MVS03
This section shows the configuration files we used in our DDNS scenario.

A.2.1 MVS03 DHCP configuration file
The sample file on which this is based can be found in Appendix C, “Sample DHCP
configuration file” on page 503.
Appendix A. BIND DNS sample configuration 477

********************************* Top of Data ***************************
#
dhcpsd.cfg -- DHCP Server Configuration File
#
SMP/E Distribution name: EZATDDSD
#
numLogFiles 4
logFileSize 400
logFileName /tmp/dhcpsd.log
logItem SYSERR
logItem OBJERR
logItem PROTERR
logItem WARNING
logItem EVENT
logItem ACTION
logItem INFO
logItem ACNTING
logItem TRACE

#
leaseTimeDefault 7 minute
leaseExpireInterval 20 seconds
supportBOOTP yes
supportBOOTP no
supportUnlistedClients yes

vendor ibm
{
 option 42 hex"ab dc"
}

vendor sun hex"ef 12 34 56 78"

subnet 192.168.100.0 255.255.255.0 192.168.100.101-192.168.100.120
{
option 1 255.255.255.0
option 3 192.168.100.100
option 4 192.168.100.100
option 5 192.168.100.100
option 6 192.168.100.100
option 15 small.isp.com # domain name
option 51 10800
}
#
updateDNSP "nsupdate -f -r%s -s"d;ptr;*;a;ptr;%s;s;%s;0;q" -q"
updateDNSA "nsupdate -f -h%s -s"d;a;*;a;a;%s;s;%s;3110400;q" -q"
releaseDNSP "nsupdate -f -r%s -s"d;ptr;%s;s;%s;0;q" -q"
releaseDNSA "nsupdate -f -h%s -s"d;a;%s;s;%s;0;q" -q"

class fruit
{
 option 48 6.5.4.3
 option 48 8.8.8.8
}
class veggie
{
 option 49 1.2.3.4
 option 48 6.6.6.6
}

478 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

#
end of dhcpsd.cfg
#

A.2.2 MVS03 DDNS definitions
Please examine the DDNS Boot File in A.2.2.1, “MVS03 DDNS boot file” on page 479. You
will notice that the majority of the domain (forward) files, reverse files, hints file, and loopback
file have already been made available in the section on Scenario 1 (A.1, “BIND 4.9.3-based
DNS implementation” on page 468). Therefore, we show here only the files that are different.

A.2.2.1 MVS03 DDNS boot file
;
; /etc/named.boot.dyn (modeled after named.boot)
; requires new boot file, new for.dyn file, and new rev.dyn file
; optional=slave
; TYPE DOMAIN FILE OR HOST
directory /etc/dnsdata
;
primary itso.ral.ibm.com named.for
primary small.isp.com named.for.dyn dynamic secured
primary 100.168.192.in-addr.arpa named.rev192.168.100.dyn dynamic secured
primary 251.168.192.in-addr.arpa named.rev192.168.251
primary 252.168.192.in-addr.arpa named.rev192.168.252
primary 236.168.192.in-addr.arpa named.rev192.168.236
primary 235.168.192.in-addr.arpa named.rev192.168.235
primary 105.24.9.in-addr.arpa named.rev9.24.105
primary 104.24.9.in-addr.arpa named.rev9.24.104
primary 221.168.192.in-addr.arpa named.rev192.168.221
primary 109.168.192.in-addr.arpa named.rev192.168.109
primary 0.0.127.in-addr.arpa named.lbk
cache . named.ca
forwarders 9.24.104.108
slave
options query-log

A.2.2.2 MVS03 DDNS forward domain file
;
; /etc/dnsdata/named.for.dyn for MVS03 as DHCP and DDNS
;
$ORIGIN small.isp.com.
@ .IN KEY 80 0 1 AQPYZeXmV/uIJXttTwIlvLcvtDfH5RNE+7GeYix01+JRWqsFluxiSU
@ .IN SOA mvs03.itso.ral.ibm.com. gdente@itso.ral.ibm.com. (
 6 10800 3600 604800 86400)
 IN NS mvs03.itso.ral.ibm.com.
;
; OWNER CLASS TYPE RECORD DATA
localhost IN A 127.0.0.1
murli750 IN A 192.168.100.254 ; DNS on small.is

ns-updates.small.isp.com. IN A 192.168.100.100 ;
Appendix A. BIND DNS sample configuration 479

A.2.2.3 MVS03 DDNS reverse file
;
; /etc/dnsdata/named.rev192.168.100.dyn
;
;$ORIGIN 100.168.192.in-addr.arpa.
@ IN KEY 80 0 1 AQO/dB7EGk1IPpp19eSSbnazFpvtcxkFoWor7JpIMM/om6CrZrsMUO
@ IN SOA mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
 6 10800 3600 604800 86400)
 IN NS mvs03.itso.ral.ibm.com.
;
100 IN PTR ns-updates.small.isp.com.
254 IN PTR murli750.small.isp.com.

A.3 BIND 9-based DNS implementation
The following section includes the implementation configuration for a BIND 9-based
environment.

A.3.1 BIND 9 basic scenario
This section describes a basic BIND 9 scenario. Please refer to Figure A-3 for a description.

Figure A-3 SC63, SC64 basic name server implementation

Domain:
Primary Name Server:

Secondary Name Server:

zos12.ral.ibm.com
SC63 - 9.12.6.68
SC64 - 9.12.6.64

zos12.ral.ibm.com

SC63
Primary
Name
Server

SC64
Secondary
Name
Server

Zone Transfer
480 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

A.3.1.1 SC63 definitions (primary name server)
SC63 bind 9 conf file (named.conf)

********************************* Top of Data ************************
options {
 pid-file "/etc/named.pid" ;
 directory "/etc/octavio/dnsdata";
 listen-on { 9.12.6.67;9.12.6.68; };
};
logging {
 channel "default_debug" {
 file "/etc/octavio/named.run" versions 2 size 20M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel main_log {
 file "/etc/octavio/named_main.log" versions 2 size 20M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel security_log {
 file "/etc/octavio/named_security.log" versions 2 size 1M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel query_log {
 file "/etc/octavio/named_query.log" versions 2 size 10M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel transfer_log {
 file "/etc/octavio/named_transfer.log" versions 2 size 10M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 category client { main_log; };
 category config { main_log; };
 category "database" { main_log; };
 category dispatch { main_log; };
 category dnssec { security_log; main_log; };
 category general { main_log; };
 category network { main_log; };
 category "notify" { main_log; };
 category resolver { main_log; };
 category security { security_log; main_log; };
 category update { main_log; };
 category queries { query_log;};
 category lame-servers { query_log; main_log; };
 category xfer-in { "transfer_log"; };
 category xfer-out { "transfer_log"; };
 category default { main_log; };
Appendix A. BIND DNS sample configuration 481

 };
zone "zos12.ral.ibm.com" in {
 type master;
 file "zos12.for.v9";
};
zone "6.12.9.in-addr.arpa" in {
 type master;
 file "zos12.rev.v9";
};
zone "0.0.127.in-addr.arpa" in {
 type master;
 file "zos12.lbk.v9";
};

zone "." in {
 type hint;
 file "zos12.ca.v9";
};
******************************** Bottom of Data **********************

SC63 bind 9 forward domain file (zos12.for.v9)
********************************* Top of Data ***************************
; /etc/octavio/dnsdata/zos12.for.v9
; name server zone data
;
; Default TTL value
$TTL 86400
$ORIGIN ral.ibm.com.
zos12 IN SOA dns63.zos12 admin.zos12 (
 1 ; Serial (incremented when database is changed
 10800 ; Refresh (slave will check every 3 hours
 3600 ; Retry (retry every hour after refresh failure
 604800 ; Expire (slave gives up retry after 1 week
 86400) ; Neg. Cache (cache NXDOMAIN/RRSET responses 1 day
;
$ORIGIN zos12.ral.ibm.com.
; define domain nameservers
 IN NS dns63
 IN NS dns64
; define the host locations of specific services
_http._tcp SRV 0 0 80 www.zos12.ral.ibm.com.
; define hosts-to-address
localhost IN A 127.0.0.1
dns63 IN A 9.12.6.68
dns64 IN A 9.12.6.64
host1 IN A 9.12.6.67
host2 IN A 9.12.6.63
www IN A 9.179.147.237
;define multiple address to a given host
sc63 IN A 9.12.6.67
 IN A 9.12.6.68

;IPv6 addresses samples
;www IN AAAA 3ffe:8050:201:1860:42::1
;www IN A6 0 3ffe:8050:201:1860:42::1
;alias definitions
mail IN CNAME host1
ftp IN CNAME host2
******************************** Bottom of Data **********************
482 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

SC63 bind 9 reverse files - in-addr.arpa (zos12.rev.v9)
********************************* Top of Data ***************************
; /etc/octavio/dnsdata/zos12.rev.v9
$TTL 86400
$ORIGIN 12.9.in-addr.arpa.
6 IN SOA dns63.zos12.ral.ibm.com. admin.zos12.ral.ibm.com. (
 1 10800 3600 604800 86400)
 IN NS dns63.zos12.ral.ibm.com.
 IN NS dns64.zos12.ral.ibm.com.
$ORIGIN 6.12.9.in-addr.arpa.
68 IN PTR dns63.zos12.ral.ibm.com.
62 IN PTR dns64.zos12.ral.ibm.com.
$GENERATE 3-6 $ PTR host$.zos12.ral.ibm.com.
; The following records are generated by the above $GENERATE directive.
;1 IN PTR host1.zos12.ral.ibm.com.
;2 IN PTR host2.zos12.ral.ibm.com.
;3 IN PTR host3.zos12.ral.ibm.com.
;4 IN PTR host4.zos12.ral.ibm.com.
67 IN PTR host1.zos12.ral.ibm.com.
61 IN PTR host2.zos12.ral.ibm.com.
******************************** Bottom of Data **********************

SC63 bind 9 loopback file (zos12.lbk.v9)
********************************* Top of Data ***************************
; /etc/octavio/dnsdata/zos12.lbk.v9
$TTL 86400
0.0.127.in-addr.arpa. IN SOA dns63.zos12.ral.ibm.com. admin.zos12.ral.ibm.com (
 1
 10800
 3600
 604800
 86400)
0.0.127.in-addr.arpa. IN NS dns63.zos12.ral.ibm.com.
0.0.127.in-addr.arpa. IN NS dns64.zos12.ral.ibm.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.
******************************** Bottom of Data *************************

SC63 BIND 9 hints file (zos12.ca.v9)
The file replicated here is found on the Web at:

ftp://ftp.rs.internic.net/domain/named.root
********************************* Top of Data ***************************
; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
; This file is made available by InterNIC registration services
; under anonymous FTP as
; file /domain/named.root
; on server FTP.RS.INTERNIC.NET
; -OR- under Gopher at RS.INTERNIC.NET
; under menu InterNIC Registration Services (NSI)
; submenu InterNIC Registration Archives
; file named.root
; last update: Aug 22, 1997
; related version of root zone: 1997082200
; formerly NS.INTERNIC.NET
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
; formerly NS1.ISI.EDU
Appendix A. BIND DNS sample configuration 483

. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
; formerly C.PSI.NET
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
; formerly TERP.UMD.EDU
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
; formerly NS.NASA.GOV
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
; formerly NS.ISC.ORG
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
; formerly NS.NIC.DDN.MIL
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
; formerly AOS.ARL.ARMY.MIL
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
; formerly NIC.NORDU.NET
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
; temporarily housed at NSI (InterNIC)
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 198.41.0.10
; housed in LINX, operated by RIPE NCC
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
; temporarily housed at ISI (IANA)
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12
; housed in Japan, operated by WIDE
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
******************************** Bottom of Data *************************

A.3.1.2 SC64 definitions (secondary name server)
SC63 BIND 9 conf file (named.conf)

********************************* Top of Data ***************************
options {
 pid-file "/etc/named.pid" ;
 directory "/etc/octavio/dnsdata";
 listen-on { 9.12.6.63;9.12.6.64; };
};
logging {
 channel "default_debug" {
 file "/etc/octavio/named.run.log" versions 2 size 20M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel main_log {
 file "/etc/octavio/named_main.log" versions 2 size 20M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
484 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

 };
 channel security_log {
 file "/etc/octavio/named_security.log" versions 2 size 1M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel query_log {
 file "/etc/octavio/named_query.log" versions 2 size 10M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel transfer_log {
 file "/etc/octavio/named_transfer.log" versions 2 size 10M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 category client { main_log; };
 category config { main_log; };
 category "database" { main_log; };
 category dispatch { main_log; };
 category dnssec { security_log; main_log; };
 category general { main_log; };
 category network { main_log; };
 category "notify" { main_log; };
 category resolver { main_log; };
 category security { security_log; main_log; };
 category update { main_log; };
 category queries { query_log;};
 category lame-servers { query_log; main_log; };
 category xfer-in { "transfer_log"; };
 category xfer-out { "transfer_log"; };
 category default { main_log; };
 };
zone "zos12.ral.ibm.com" in {
 type slave;
 file "zos12.for.bak.v9";
 masters { 9.12.6.68; };
};
zone "6.12.9.in-addr.arpa" in {
 type slave;
 file "zos12.rev.bak.v9";
 masters { 9.12.6.68; };
};
zone "0.0.127.in-addr.arpa" in {
 type master;
 file "zos12.lbk.v9";
};

zone "." in {
 type hint;
 file "zos12.ca.v9";
};
******************************** Bottom of Data *************************
Appendix A. BIND DNS sample configuration 485

SC64 BIND 9 loopback file (zos12.lbk.v9)
********************************* Top of Data ***************************
; /etc/octavio/dnsdata/zos12.ral.ibm.lbk.v9
$TTL 86400
0.0.127.in-addr.arpa. IN SOA dns64.zos12.ral.ibm.com. admin.zos12.ral.ibm.com (
 1
 10800
 3600
 604800
 86400)
0.0.127.in-addr.arpa. IN NS dns63.zos12.ral.ibm.com.
0.0.127.in-addr.arpa. IN NS dns64.zos12.ral.ibm.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.
******************************** Bottom of Data *************************

SC64 BIND 9 hints file (zos12.ca.v9)
The file is not replicated here; it is the same file shown in “SC63 BIND 9 hints file
(zos12.ca.v9)” on page 483 of this appendix.

A.3.2 Transaction Signature (TSiG) - key and configuration files
The following files were created using the BIND 9 tool dnssec-keygen, which generates the
key to be inserted in the config files on both the primary and secondary Domain Name
Servers.

A.3.2.1 Ksc63-sc64.+157+35544.key file
***************************** Top of Data *****************************
sc63-sc64. IN KEY 512 3 157 8k0IjL3m4sS013DBNs6S6w==
**************************** Bottom of Data ***************************

A.3.2.2 Ksc63-sc64.+157+35544.private file
***************************** Top of Data *****************************
Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: 8k0IjL3m4sS013DBNs6S6w==
**************************** Bottom of Data ***************************

A.3.2.3 SC63 BIND 9-based named.conf with Transaction Signature
***************************** Top of Data *****************************
controls {
 inet 127.0.0.1 allow { localhost; } keys { rndc_key; };
};
key rndc_key {
algorithm "hmac-md5";
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";
};
key sc63-sc64 {
algorithm "hmac-md5";
secret "8k0IjL3m4sS013DBNs6S6w==";
};
options {
 pid-file "/etc/named.v9.pid";
 directory "/etc/octavio/dnsdata";
 listen-on { 9.12.6.68; };
 forwarders { 9.12.6.67; };
};
logging {
486 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

 channel "default_debug" {
 file "/etc/octavio/named.run" versions 2 size 20M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel main_log {
 file "/etc/octavio/named_main.log" versions 2 size 20M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel security_log {
 file "/etc/octavio/named_security.log" versions 2 size 1M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel query_log {
 file "/etc/octavio/named_query.log" versions 2 size 10M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel transfer_log {
 file "/etc/octavio/named_transfer.log" versions 2 size 10M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 category client { main_log; };
 category config { main_log; };
 category "database" { main_log; };
 category dispatch { main_log; };
 category dnssec { security_log; main_log; };
 category general { main_log; };
 category network { main_log; };
 category "notify" { main_log; };
 category resolver { main_log; };
 category security { security_log; main_log; };
 category update { main_log; };
 category queries { query_log;};
 category lame-servers { query_log; main_log; };
 category xfer-in { "transfer_log"; };
 category xfer-out { "transfer_log"; };
 category default { main_log; };
 };
zone "zos12.ral.ibm.com" in {
 type master;
 file "zos12.for.v9";
 allow-transfer { key sc63-sc64; };
};
zone "6.12.9.in-addr.arpa" in {
 type master;
 file "zos12.rev.v9";
Appendix A. BIND DNS sample configuration 487

 allow-transfer { key sc63-sc64; };
};
zone "0.0.127.in-addr.arpa" in {
 type master;
 file "zos12.lbk.v9";
 allow-transfer { key sc63-sc64; };
};
zone "." in {
 type hint;
 file "zos12.ca.v9";
};
**************************** Bottom of Data ***************************

A.3.2.4 SC64 BIND 9-based named.conf with Transaction Signature
**************************** Top of Data ***************************
controls {
 inet 127.0.0.1 allow { localhost; } keys { rndc_key; };
};
key rndc_key {
algorithm "hmac-md5";
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";
};
key sc63-sc64 {
algorithm "hmac-md5";
secret "8k0IjL3m4sS013DBNs6S6w==";
};
server 9.12.6.68 {
keys { sc63-sc64; };
};
options {
 pid-file "/etc/named.pid" ;
 directory "/etc/octavio/dnsdata";
 listen-on { 9.12.6.63; };
};
logging {
 channel "default_debug" {
 file "/etc/octavio/named.run.log" versions 2 size 20M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel main_log {
 file "/etc/octavio/named_main.log" versions 2 size 20M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel security_log {
 file "/etc/octavio/named_security.log" versions 2 size 1M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel query_log {
 file "/etc/octavio/named_query.log" versions 2 size 10M;
 print-time yes;
 print-category yes;
488 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

 print-severity yes;
 severity dynamic;
 };
 channel transfer_log {
 file "/etc/octavio/named_transfer.log" versions 2 size 10M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 category client { main_log; };
 category config { main_log; };
 category "database" { main_log; };
 category dispatch { main_log; };
 category dnssec { security_log; main_log; };
 category general { main_log; };
 category network { main_log; };
 category "notify" { main_log; };
 category resolver { main_log; };
 category security { security_log; main_log; };
 category update { main_log; };
 category queries { query_log;};
 category lame-servers { query_log; main_log; };
 category xfer-in { "transfer_log"; };
 category xfer-out { "transfer_log"; };
 category default { main_log; };
 };
zone "zos12.ral.ibm.com" in {
 type slave;
 file "zos12.for.bak.v9";
 masters { 9.12.6.68; };
 allow-update-forwarding { any; };
};
zone "6.12.9.in-addr.arpa" in {
 type slave;
 file "zos12.rev.bak.v9";
 masters { 9.12.6.68; };
 allow-update-forwarding { any; };
};
zone "0.0.127.in-addr.arpa" in {
 type master;
 file "zos12.lbk.v9";
};
zone "." in {
 type hint;
 file "zos12.ca.v9";
};
**************************** Bottom of Data ***************************
Appendix A. BIND DNS sample configuration 489

A.3.3 BIND 9-based DNSSEC - primary DNS related files
Here we show some the files we generated in our scenarios.

A.3.3.1 SC63 zone generated key files (dnssec-keygen tool)
Kzos12.ral.ibm.com.+003+09520.key

**************************** top of Data ******************************
zos12.ral.ibm.com. IN KEY 256 3 3
AILbO5yIGFZAsGCeh67DNVh7cYytzwmtkRbEERPh9rWyMlQbHuUBXTHd
U/wsIvBr7omnRUXvLQxXEF4mLUnILL7jG5yncdRBo1KR7XTDkzGI9CW4
qU4UGpH98QnbnZupGXDwnrHs8pK7stgssfjniShyUAbzVVnSxCtCHC7E
QbnvIKdfjI5pydYKFeooXBdO2kGPKmQinZFVdROKqstD5jFZ/+lhTjUK
TZGYFDc57i6yMPNErsP8DI3GwQ410NaP20tCGMTJYtI0hb9oNkUOtS9f gtIP
**************************** Bottom of Data ***************************

Kzos12.ral.ibm.com.+003+09520.private
**************************** top of Data ******************************
Private-key-format: v1.2
Algorithm: 3 (DSA)
Prime(p):
zwmtkRbEERPh9rWyMlQbHuUBXTHdU/wsIvBr7omnRUXvLQxXEF4mLUnILL7jG5yncdRBo1KR7XTDkzGI9CW4qQ==
Subprime(q): gts7nIgYVkCwYJ6HrsM1WHtxjK0=
Base(g):
ThQakf3xCdudm6kZcPCesezykruy2Cyx+OeJKHJQBvNVWdLEK0IcLsRBue8gp1+MjmnJ1goV6ihcF07aQY8qZA==
Private_value(x): RjJE/yvLNeJYSpcwV/DzdI9RnVA=
Public_value(y):
Ip2RVXUTiqrLQ+YxWf/pYU41Ck2RmBQ3Oe4usjDzRK7D/AyNxsEONdDWj9tLQhjEyWLSNIW/aDZFDrUvX4LSDw==
**************************** Bottom of Data ***************************

A.3.3.2 Parent zone generated key files (dnssec-keygen tool)
Kral.ibm.com.+003+64185.key

**************************** top of Data ******************************
ral.ibm.com. IN KEY 256 3 3 AJzuoUPYucqE+XdnZ/hZ3fhXRYYf+2cxYtB73IDDqMRkvDiXdhvkztt8
hHVLymIuuNpGhNVQSBR+/pffL4PCAeUls2BE+ovCr8MhC8t/F7gDGBhD
8afYXVx8dyGndSCNNa0pA5G3PGJhDoG7EdKjWiu9tFcW8g15zsOe8uP/
17UpYjMlPsG7lbOyzmIFabNouXhO5u9bJKrXrxeml3p2JAvoyX+tO+EX
IbunH7Itrh7ADLEbpav5doYBzJ4zjD/ojTQK4og7tNaIeT6qwms9EQ2B IWzt
**************************** Bottom of Data ***************************

Kral.ibm.com.+003+64185.private
**************************** top of Data ******************************
Private-key-format: v1.2
Algorithm: 3 (DSA)
Prime(p):
+2cxYtB73IDDqMRkvDiXdhvkztt8hHVLymIuuNpGhNVQSBR+/pffL4PCAeUls2BE+ovCr8MhC8t/F7gDGBhD8Q==
Subprime(q): nO6hQ9i5yoT5d2dn+Fnd+FdFhh8=
Base(g):
p9hdXHx3Iad1II01rSkDkbc8YmEOgbsR0qNaK720VxbyDXnOw57y4//XtSliMyU+wbuVs7LOYgVps2i5eE7m7w==
Private_value(x): Jjg2jsnZoSNYNcvOSD15dOGYwFo=
Public_value(y):
WySq168Xppd6diQL6Ml/rTvhFyG7px+yLa4ewAyxG6Wr+XaGAcyeM4w/6I00CuKIO7TWiHk+qsJrPRENgSFs7Q==
**************************** Bottom of Data ***************************
490 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

A.3.3.3 SC63 zone keyset file (dnssec-makekeyset tool)
keyset-zos12.ral.ibm.com

**************************** top of Data ******************************
$ORIGIN .
$TTL 172800 ; 2 days
zos12.ral.ibm.com IN KEY 256 3 3 (
 AILbO5yIGFZAsGCeh67DNVh7cYytzwmtkRbEERPh9rWy
 MlQbHuUBXTHdU/wsIvBr7omnRUXvLQxXEF4mLUnILL7j
 G5yncdRBo1KR7XTDkzGI9CW4qU4UGpH98QnbnZupGXDw
 nrHs8pK7stgssfjniShyUAbzVVnSxCtCHC7EQbnvIKdf
 jI5pydYKFeooXBdO2kGPKmQinZFVdROKqstD5jFZ/+lh
 TjUKTZGYFDc57i6yMPNErsP8DI3GwQ410NaP20tCGMTJ
 YtI0hb9oNkUOtS9fgtIP) ; key id = 10547
 SIG KEY 3 4 172800 20020626173942 (
 20020527173942 9520 zos12.ral.ibm.com.
 AHUWn73ryAc3TInk8OlCso/1Mb3QF02026Xop+8nibcK
 WrtY24+DJsE=)
**************************** Bottom of Data ***************************

A.3.3.4 parent zone signed key file (dnssec-signkey tool)
signedkey-zos12.ral.ibm.com

**************************** top of Data ******************************
$ORIGIN .
$TTL 172800 ; 2 days
zos12.ral.ibm.com IN KEY 256 3 3 (
 AILbO5yIGFZAsGCeh67DNVh7cYytzwmtkRbEERPh9rWy
 MlQbHuUBXTHdU/wsIvBr7omnRUXvLQxXEF4mLUnILL7j
 G5yncdRBo1KR7XTDkzGI9CW4qU4UGpH98QnbnZupGXDw
 nrHs8pK7stgssfjniShyUAbzVVnSxCtCHC7EQbnvIKdf
 jI5pydYKFeooXBdO2kGPKmQinZFVdROKqstD5jFZ/+lh
 TjUKTZGYFDc57i6yMPNErsP8DI3GwQ410NaP20tCGMTJ
 YtI0hb9oNkUOtS9fgtIP) ; key id = 10547
 SIG KEY 3 4 172800 20020626173942 (
 20020527173942 64185 ral.ibm.com.
 AEvxWeXonAFwpaQp9nYhI5GDqafcHSTblwL1oAh+841m
 4FZzImMpJF4=)
**************************** Bottom of Data ***************************

A.3.3.5 SC63 signed forward zone file
zos12.for.v9.signed:

**************************** top of Data ******************************
; File written on Mon May 27 14:26:46 2002
; dnssec_signzone version 9.1.1
zos12.ral.ibm.com.86400IN SOAdns63.zos12.ral.ibm.com. admin.zos12.ral.ibm.com. (

4 ; serial
10800 ; refresh (3 hours)
3600 ; retry (1 hour)
604800 ; expire (1 week)
86400 ; minimum (1 day)
)

86400SIGSOA 3 4 86400 20020626182646 (
20020527182646 9520 zos12.ral.ibm.com.
AF2UFK1AP5eTSlpvgayWUN84rvREMzM3paa3
/KJwdJ/EZ0vnAuIAuc4=)

86400NSdns63.zos12.ral.ibm.com.
86400NSdns64.zos12.ral.ibm.com.
86400SIGNS 3 4 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
Appendix A. BIND DNS sample configuration 491

AH1qWnUz5L9xVKBEOc6twGTXyp6BKLPtNRJo
PEhuc2GXBvgHhYwssj4=)

86400KEY256 3 3 (
AILbO5yIGFZAsGCeh67DNVh7cYytzwmtkRbE
ERPh9rWyMlQbHuUBXTHdU/wsIvBr7omnRUXv
LQxXEF4mLUnILL7jG5yncdRBo1KR7XTDkzGI
9CW4qU4UGpH98QnbnZupGXDwnrHs8pK7stgs
sfjniShyUAbzVVnSxCtCHC7EQbnvIKdfjI5p
ydYKFeooXBdO2kGPKmQinZFVdROKqstD5jFZ
/+lhTjUKTZGYFDc57i6yMPNErsP8DI3GwQ41
0NaP20tCGMTJYtI0hb9oNkUOtS9fgtIP) ; key id = 10547

172800SIGKEY 3 4 172800 20020626173942 (
20020527173942 64185 ral.ibm.com.
AEvxWeXonAFwpaQp9nYhI5GDqafcHSTblwL1
oAh+841m4FZzImMpJF4=)

86400NXT_http._tcp.zos12.ral.ibm.com. NS SOA SIG KEY NXT
86400SIGNXT 3 4 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AGABIFS/2SuBeeTgRy9EgXR+qeM7TXIkjS+q
s0PBKJg4jsPIVXb5Y6c=)

_http._tcp.zos12.ral.ibm.com. 86400 IN NXT dns63.zos12.ral.ibm.com. SIG NXT SRV
86400SIGNXT 3 6 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AF/TB3xPnlGo3v7LimsystaDM6UcJfIsL/EC
x54bn6Aix02Rj/mOH4w=)

86400SRV0 0 80 www.zos12.ral.ibm.com.
86400SIGSRV 3 6 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AC7G5SMMRTURT1pZaLWh9JVoID0qHJmFO4S3
vM4ntWDnWdgleyAU7pM=)

dns63.zos12.ral.ibm.com. 86400IN A9.12.6.68
86400SIGA 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AAPerGMTlMZE7jMq+biqWzIQUnlqOacC+GWV
qNHXDzjLzs1cx8zjSMs=)

86400NXTdns64.zos12.ral.ibm.com. A SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AB2XfwVfn5mSv0R24WfcgFhbrj+tgLEO2zIK
ilUO++7IN8DCiGe721M=)

dns64.zos12.ral.ibm.com. 86400IN A9.12.6.63
86400SIGA 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AHNttD6WLIiXOQDBhC9yOHAQzhWKPsmrDakJ
Q6MronRtIfsrLrMpgTA=)

86400NXTftp.zos12.ral.ibm.com. A SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AFE9KYNoCGK2iipNvgR2CcRnY61vZEwwTSUc
NNRrGOSte0/NkHMhgiQ=)

ftp.zos12.ral.ibm.com.86400IN CNAME host2.zos12.ral.ibm.com.
86400SIGCNAME 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AEewWOzl4n6wJkYQfQgOtGlt5PhsYqTx12nk
dkCrM/5/sVSyU1R+S3c=)

86400NXThost1.zos12.ral.ibm.com. CNAME SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
ADuSM92ypsdSHARzh5f6zde2U9DlB6UUsbnx
+DWN2dYGkbFq8YImvAc=)
492 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

host1.zos12.ral.ibm.com. 86400IN A9.12.6.67
86400SIGA 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AC6kBQXVqfvMR3PYnos4gu3/mCffC04lvSSW
3j8Iov8Zv58toZKpo+w=)

86400NXThost2.zos12.ral.ibm.com. A SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
ABXbL0sxkuSApfUYYbDxIXzl0Pz6UjkmoGKt
quyjmM0Icmra3P0a6l0=)

host2.zos12.ral.ibm.com. 86400IN A9.12.6.63
86400SIGA 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AGnASy/SGCEHgmXseIxGw+wZwVXhdX03fhvC
Qk/Slb8vfFswLQ2CKRY=)

86400NXTkerbftp3.zos12.ral.ibm.com. A SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AGJTpDTpbEtwGjNfqizSbJ5sDdnYLEA1wPNK
3yVm91qjKaYXBA3PNf0=)

kerbftp3.zos12.ral.ibm.com. 86400 IN A9.12.6.61
86400SIGA 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AA80pereY3NNWmHnevLwWWdBFs38crirugfW
lBN4NAMtT4yA2Bhg6xs=)

86400NXTlocalhost.zos12.ral.ibm.com. A SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
ACvLtZtzpxh5oN9F+u1u5c2xx+gARp45ALkI
gNwyloitdKsbkV0EiU8=)

localhost.zos12.ral.ibm.com. 86400 IN A127.0.0.1
86400SIGA 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AHnM+FPE5STbT1nD9F4xYy1+e3oZYU1CLqMy
XZy7RsKwOdQBoSShfQs=)

86400NXTmail.zos12.ral.ibm.com. A SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AGQR3hmzrYiUxkYEVuxLPLzzJksgIU3ZZ3U6
5IzmmIhWVejqhU6MQ2I=)

mail.zos12.ral.ibm.com.86400IN CNAME host1.zos12.ral.ibm.com.
86400SIGCNAME 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AFA7Fmoej3rbrZx1RhqanT7jI1hiel/5FiiA
t6s0T8Z752NZyxJL1bc=)

86400NXTsc63.zos12.ral.ibm.com. CNAME SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AAX00FN30LlbNkiEQChUokhhhTnSEHIWh2CO
X+ViMfODKKkIWG6Rsc0=)

sc63.zos12.ral.ibm.com.86400IN A9.12.6.67
86400IN A9.12.6.68
86400SIGA 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AHSLjBeMfbxqZcAJqUBbLFwkydRyXpH/9irq
5O1hmCP9ayM2/+QzMNA=)

86400NXTwtsc63c.zos12.ral.ibm.com. A SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AB2DmCx4ofy9pbNKvWBFESByEa1rYwoYNdoK
Appendix A. BIND DNS sample configuration 493

G3RC+q9cEHPHu7pOZDg=)
wtsc63c.zos12.ral.ibm.com. 86400 IN A9.12.6.61

86400SIGA 3 5 86400 20020626182646 (
20020527182646 9520 zos12.ral.ibm.com.
AAlwKl2xSsq3DsoXKW/u2gpTzpmHCSlOC2ko
CXLHpsjsbS+qKOwCVek=)

86400NXTwww.zos12.ral.ibm.com. A SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
ABjzPdVO14PXvdpfzuG+kzD7c85vX0zDiqTg
rfIvo4GBToqLBOsqrLk=)

www.zos12.ral.ibm.com.86400IN A9.179.147.237
86400SIGA 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
ABTEo9f0BqqNWlYEOvRBMjNbykBrIfPiNQyC
IgpxCc4cKFH+PLVlIic=)

86400NXTzos12.ral.ibm.com. A SIG NXT
86400SIGNXT 3 5 86400 20020626182646 (

20020527182646 9520 zos12.ral.ibm.com.
AG2t2kiSm9yEWpuiKkRp4Av223RRFP7I/WzX
FoNdtKcaUdCYQtUfiWg=)

**************************** bottom of Data ******************************

A.3.3.6 SC63 BIND 9-based named.conf altered file
**************************** top of Data ******************************
controls {
 inet 127.0.0.1 allow { localhost; } keys { rndc-dns63;
};};
key rndc-dns63 {
algorithm "hmac-md5";
secret "iRIgqf6MhdHFCKl2FzqkgA==";
};
acl "zos12-net" { 9.12.6/24; };
options {
 pid-file "/etc/named.pid";
 directory "/etc/octavio/dnsdata";
 listen-on { 9.12.6.67;9.12.6.68; };
};
logging {
 channel "default_debug" {
 file "/etc/octavio/named.run" versions 2 size 20M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel main_log {
 file "/etc/octavio/named_main.log" versions 2 size 20M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel security_log {
 file "/etc/octavio/named_security.log" versions 2 size 1M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
494 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

 channel query_log {
 file "/etc/octavio/named_query.log" versions 2 size 10M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 channel transfer_log {
 file "/etc/octavio/named_transfer.log" versions 2 size 10M;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity dynamic;
 };
 category client { main_log; };
 category config { main_log; };
 category "database" { main_log; };
 category dispatch { main_log; };
 category dnssec { security_log; main_log; };
 category general { main_log; };
 category network { main_log; };
 category "notify" { main_log; };
 category resolver { main_log; };
 category security { security_log; main_log; };
 category update { main_log; };
 category queries { query_log;};
 category lame-servers { query_log; main_log; };
 category xfer-in { "transfer_log"; };
 category xfer-out { "transfer_log"; };
 category default { main_log; };
 };
zone "zos12.ral.ibm.com" in {
 type master;
 file "zos12.for.v9.signed";
 allow-query { "zos12-net";};
 allow-update { 127.0.0.1;9.12.6.68; };
};
zone "6.12.9.in-addr.arpa" in {
 type master;
 file "zos12.rev.v9";
 allow-query { "zos12-net";};
 allow-update { 127.0.0.1;9.12.6.68; };
};
zone "0.0.127.in-addr.arpa" in {
 type master;
 file "zos12.lbk.v9";
 allow-query { "zos12-net";};
 allow-update { 127.0.0.1;9.12.6.68; };
};

zone "." in {
 type hint;
 file "zos12.ca.v9";
};

**************************** Bottom of Data ***************************
Appendix A. BIND DNS sample configuration 495

496 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Appendix B. Dump of BIND DNS table
(SIGINT)

A discussion of this table can be found in Chapter 10, “BIND Domain Name System (DNS)”
on page 315.

/tmp/named_dump.db (from a SIGINT to a DNS process)

; Dumped at Wed Feb 25 01: 0:31 1998
;; ++zone table++
; itso.ral.ibm.com (type 1, class 1, source named.for)
;.time=888379335, lastupdate=888330120, serial=5,
;.refresh=10800, retry=3600, expire=60 800, minimum=86 00
;.ftime=888330120, xaddr=[0.0.0.0], state=00 1, pid=0
; 251.168.192.in-addr.arpa (type 1, class 1, source named.rev192.168.251)
;.time=888379232, lastupdate=887 07201, serial=2,
;.refresh=10800, retry=3600, expire=60 800, minimum=86 00
;.ftime=887 07201, xaddr=[0.0.0.0], state=00 1, pid=0
; 252.168.192.in-addr.arpa (type 1, class 1, source named.rev192.168.252)
;.time=888375013, lastupdate=887 07239, serial=2,
;.refresh=10800, retry=3600, expire=60 800, minimum=86 00
;.ftime=887 07239, xaddr=[0.0.0.0], state=00 1, pid=0
; 236.168.192.in-addr.arpa (type 1, class 1, source named.rev192.168.236)
;.time=8883777 , lastupdate=887 07103, serial=2,
;.refresh=10800, retry=3600, expire=60 800, minimum=86 00
;.ftime=887 07103, xaddr=[0.0.0.0], state=00 1, pid=0
; 235.168.192.in-addr.arpa (type 1, class 1, source named.rev192.168.235)
;.time=88837 936, lastupdate=887 07162, serial=2,
;.refresh=10800, retry=3600, expire=60 800, minimum=86 00
;.ftime=887 07162, xaddr=[0.0.0.0], state=00 1, pid=0
; 105.2 .9.in-addr.arpa (type 1, class 1, source named.rev9.2 .105)
;.time=888378996, lastupdate=887 07270, serial=2,
;.refresh=10800, retry=3600, expire=60 800, minimum=86 00
;.ftime=887 07270, xaddr=[0.0.0.0], state=00 1, pid=0
; 10 .2 .9.in-addr.arpa (type 1, class 1, source named.rev9.2 .10)
;.time=88837922 , lastupdate=887 0725 , serial=2,
;.refresh=10800, retry=3600, expire=60 800, minimum=86 00

B

© Copyright IBM Corp. 1998 2002 497

;.ftime=887 0725 , xaddr=[0.0.0.0], state=00 1, pid=0
; 221.168.192.in-addr.arpa (type 1, class 1, source named.rev192.168.221)
;.time=888375568, lastupdate=887 071 8, serial=2,
;.refresh=10800, retry=3600, expire=60 800, minimum=86 00
;.ftime=887 071 8, xaddr=[0.0.0.0], state=00 1, pid=0
; 109.168.192.in-addr.arpa (type 1, class 1, source named.rev192.168.109)
;.time=888375763, lastupdate=887 07132, serial=2,
;.refresh=10800, retry=3600, expire=60 800, minimum=86 00
;.ftime=887 07132, xaddr=[0.0.0.0], state=00 1, pid=0
; 0.0.127.in-addr.arpa (type 1, class 1, source named.lb)
;.time=888375759, lastupdate=887 07058, serial=2,
;.refresh=10800, retry=3600, expire=60 800, minimum=86 00
;.ftime=887 07058, xaddr=[0.0.0.0], state=00 1, pid=0
;; --zone table--
; Note: Cr=(auth,answer,addtnl,cache) tag only shown for non-auth RR's
; Note: NT=milliseconds for any A RR which we've used as a nameserver
; --- Cache & Data ---
$ORIGIN .
..360062.IN.NS.B.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.C.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.D.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.E.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.I.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.F.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.G.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.J.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.K.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.L.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.M.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.A.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
.360062.IN.NS.H.ROOT-SERVERS.NET..;Cr=answer [9.2 .10 .108]
$ORIGIN ral.ibm.com.
itso..IN.SOA.mvs03.itso.ral.ibm.com. gdente@itso.ral.ibm.com. (
..5 10800 3600 60 800 86 00).;Cl=
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=
..IN.NS.mvs28.itso.ral.ibm.com..;Cl=
..IN.NS.rsserver.itso.ral.ibm.com..;Cl=
$ORIGIN itso.ral.ibm.com.
localhost.IN.A.127.0.0.1.;Cl=
mvs03..IN.A.9.2 .105.126.;Cl=
..IN.A.192.168.251.1.;Cl=
..IN.A.192.168.252.1.;Cl=
..IN.A.192.168.236.1.;Cl=
..IN.A.192.168.235.3.;Cl=
..IN.A.192.168.221.20.;Cl=
..IN.A.192.168.109.3.;Cl=
wtr05199.IN.CNAME.gwen.itso.ral.ibm.com..;Cl=
mvs03-mpc.IN.A.192.168.235.3.;Cl=
mvs28..IN.A.9.2 .105.75.;Cl=
..IN.A.192.168.236.2.;Cl=
..IN.A.192.168.221.2 .;Cl=
..IN.A.192.168.109.1.;Cl=
rsserver.IN.A.9.2 .10 .108.;Cl=
mvs03-vipa.IN.A.192.168.251.1.;Cl=
dns2..IN.CNAME.rsserver.itso.ral.ibm.com..;Cl=
wtr05101.IN.CNAME.hen .itso.ral.ibm.com..;Cl=
mvs03c..IN.A.192.168.252.2.;Cl=
thismvs..IN.A.192.168.235.3.;Cl=
mvs28-iccp.IN.A.192.168.109.1.;Cl=
mvs03-xcf.IN.A.192.168.236.1.;Cl=
498 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

wtr05118.IN.CNAME. a y.itso.ral.ibm.com..;Cl=
wtr05119.IN.CNAME.silvia.itso.ral.ibm.com..;Cl=
a y..IN.A.9.2 .10 . 7.;Cl=
ourmvs..IN.CNAME.mvs03.itso.ral.ibm.com..;Cl=
gwen..IN.A.9.2 .10 .35.;Cl=
mvs03-en1.IN.A.9.2 .105.126.;Cl=4
othermvs.IN.CNAME.mvs28.itso.ral.ibm.com..;Cl=
hen ..IN.A.9.2 .10 .201.;Cl=
mvs03-icp.IN.A.192.168.221.20.;Cl=
silvia..IN.A.9.2 .10 .213.;Cl=
mvs03-iccp.IN.A.192.168.109.3.;Cl=
mvs28-ra3.IN.A.192.168.236.2.;Cl=
mvs03-sh.IN.A.192.168.252.1.;Cl=
mvs28-en1.IN.A.9.2 .105.75.;Cl=
mvs28-icp.IN.A.192.168.221.2 .;Cl=
$ORIGIN ROOT-SERVERS.NET.
A.600 99.IN.A.198. 1.0. .;Cr=answer [9.2 .10 .108]
B.600 99.IN.A.128.9.0.107.;Cr=answer [9.2 .10 .108]
C.600 99.IN.A.192.33. .12.;Cr=answer [9.2 .10 .108]
D.600 99.IN.A.128.8.10.90.;Cr=answer [9.2 .10 .108]
E.600 99.IN.A.192.203.230.10.;Cr=answer [9.2 .10 .108]
J.600 98.IN.A.198. 1.0.10.;Cr=answer [9.2 .10 .108]
F.600 99.IN.A.192.5.5.2 1.;Cr=answer [9.2 .10 .108]
K.600 98.IN.A.193.0.1 .129.;Cr=answer [9.2 .10 .108]
G.600 99.IN.A.192.112.36. .;Cr=answer [9.2 .10 .108]
H.600 99.IN.A.128.63.2.53.;Cr=answer [9.2 .10 .108]
L.600 98.IN.A.198.32.6 .12.;Cr=answer [9.2 .10 .108]
M.600 98.IN.A.202.12.27.33.;Cr=answer [9.2 .10 .108]
I.600 99.IN.A.192.36.1 8.17.;Cr=answer [9.2 .10 .108]
$ORIGIN 168.192.in-addr.arpa.
221..IN.SOA.mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
..2 10800 3600 60 800 86 00).;Cl=5
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=5
..IN.NS.mvs28.itso.ral.ibm.com..;Cl=5
..IN.NS.rsserver.itso.ral.ibm.com..;Cl=5
235..IN.SOA.mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
..2 10800 3600 60 800 86 00).;Cl=5
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=5
..IN.NS.mvs28.itso.ral.ibm.com..;Cl=5
..IN.NS.rsserver.itso.ral.ibm.com..;Cl=5

251..IN.SOA.mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
..2 10800 3600 60 800 86 00).;Cl=5
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=5
..IN.NS.mvs28.itso.ral.ibm.com..;Cl=5
..IN.NS.rsserver.itso.ral.ibm.com..;Cl=5
236..IN.SOA.mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
..2 10800 3600 60 800 86 00).;Cl=5
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=5
..IN.NS.mvs28.itso.ral.ibm.com..;Cl=5
..IN.NS.rsserver.itso.ral.ibm.com..;Cl=5
252..IN.SOA.mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
..2 10800 3600 60 800 86 00).;Cl=5
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=5
..IN.NS.mvs28.itso.ral.ibm.com..;Cl=5
..IN.NS.rsserver.itso.ral.ibm.com..;Cl=5
109..IN.SOA.mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
..2 10800 3600 60 800 86 00).;Cl=5
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=5
Appendix B. Dump of BIND DNS table (SIGINT) 499

..IN.NS.mvs28.itso.ral.ibm.com..;Cl=5

..IN.NS.rsserver.itso.ral.ibm.com..;Cl=5

$ORIGIN 221.168.192.in-addr.arpa.
2 ..IN.PTR.mvs28.itso.ral.ibm.com..;Cl=5
..IN.PTR.mvs28-icp.itso.ral.ibm.com..;Cl=5
20..IN.PTR.mvs03.itso.ral.ibm.com..;Cl=5
..IN.PTR.mvs03-icp.itso.ral.ibm.com..;Cl=5
$ORIGIN 235.168.192.in-addr.arpa.
3..IN.PTR.mvs03.itso.ral.ibm.com..;Cl=5
$ORIGIN 251.168.192.in-addr.arpa.
1..IN.PTR.mvs03-vipa.itso.ral.ibm.com..;Cl=5
..IN.PTR.mvs03.itso.ral.ibm.com..;Cl=5
$ORIGIN 236.168.192.in-addr.arpa.
2..IN.PTR.mvs28.itso.ral.ibm.com..;Cl=5
..IN.PTR.mvs28-xcf.itso.ral.ibm.com..;Cl=5
1..IN.PTR.mvs03.itso.ral.ibm.com..;Cl=5
..IN.PTR.mvs03-xcf.itso.ral.ibm.com..;Cl=5
$ORIGIN 252.168.192.in-addr.arpa.
2..IN.PTR.mvs03c.itso.ral.ibm.com..;Cl=5
1..IN.PTR.mvs03-sh.itso.ral.ibm.com..;Cl=5
..IN.PTR.mvs03.itso.ral.ibm.com..;Cl=5
$ORIGIN 109.168.192.in-addr.arpa.
1..IN.PTR.mvs28.itso.ral.ibm.com..;Cl=5
..IN.PTR.mvs28-iccp.itso.ral.ibm.com..;Cl=5
3..IN.PTR.mvs03.itso.ral.ibm.com..;Cl=5
..IN.PTR.mvs03-iccp.itso.ral.ibm.com..;Cl=5
$ORIGIN 0.127.in-addr.arpa.
0..IN.SOA.mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
..2 10800 3600 60 800 86 00).;Cl=5
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=5
..IN.NS.mvs28.itso.ral.ibm.com..;Cl=5
..IN.NS.rsserver.itso.ral.ibm.com..;Cl=5

$ORIGIN 0.0.127.in-addr.arpa.
1..IN.PTR.localhost..;Cl=5
$ORIGIN 2 .9.in-addr.arpa.
10 ..IN.SOA.mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
..2 10800 3600 60 800 86 00).;Cl=5
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=5
..IN.NS.mvs28.itso.ral.ibm.com..;Cl=5
..IN.NS.rsserver.itso.ral.ibm.com..;Cl=5
105..IN.SOA.mvs03.itso.ral.ibm.com. mvs03.itso.ral.ibm.com. (
..2 10800 3600 60 800 86 00).;Cl=5
..IN.NS.mvs03.itso.ral.ibm.com..;Cl=5
..IN.NS.mvs28.itso.ral.ibm.com..;Cl=5
..IN.NS.rsserver.itso.ral.ibm.com..;Cl=5
$ORIGIN 10 .2 .9.in-addr.arpa.
7..IN.PTR.wtr05118.itso.ral.ibm.com..;Cl=5
35..IN.PTR.wtr05199.itso.ral.ibm.com..;Cl=5
108..IN.PTR.rsserver.itso.ral.ibm.com..;Cl=5
..IN.PTR.dns2.itso.ral.ibm.com..;Cl=5
213..IN.PTR.wtr05119.itso.ral.ibm.com..;Cl=5
201..IN.PTR.wtr05101.itso.ral.ibm.com..;Cl=5
$ORIGIN 105.2 .9.in-addr.arpa.
126..IN.PTR.mvs03-en1.itso.ral.ibm.com..;Cl=5
..IN.PTR.mvs03.itso.ral.ibm.com..;Cl=5
75..IN.PTR.mvs28.itso.ral.ibm.com..;Cl=5
500 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

..IN.PTR.mvs28-en1.itso.ral.ibm.com..;Cl=5
209..IN.PTR.rsserver.itso.ral.ibm.com..;Cl=5

; --- Hints ---
$ORIGIN .
..3600.IN.NS.A.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.B.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.C.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.D.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.E.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.F.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.G.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.H.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.I.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.J.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.K.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.L.ROOT-SERVERS.NET..;Cl=0
.3600.IN.NS.M.ROOT-SERVERS.NET..;Cl=0
$ORIGIN ROOT-SERVERS.NET.
A.3600.IN.A.198. 1.0. .;Cl=0
B.3600.IN.A.128.9.0.107.;Cl=0
C.3600.IN.A.192.33. .12.;Cl=0
D.3600.IN.A.128.8.10.90.;Cl=0
E.3600.IN.A.192.203.230.10.;Cl=0
J.3600.IN.A.198. 1.0.10.;Cl=0
F.3600.IN.A.192.5.5.2 1.;Cl=0
K.3600.IN.A.193.0.1 .129.;Cl=0
G.3600.IN.A.192.112.36. .;Cl=0
L.3600.IN.A.198.32.6 .12.;Cl=0
H.3600.IN.A.128.63.2.53.;Cl=0
M.3600.IN.A.202.12.27.33.;Cl=0
I.3600.IN.A.192.36.1 8.17.;Cl=0
Appendix B. Dump of BIND DNS table (SIGINT) 501

502 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Appendix C. Sample DHCP configuration file

This sample DHCP configuration file is from /usr/lpp/tcpip/samples/dhcpsd.cfg.

##
IBM Communications Server for OS/390
SMP/E distribution name: EZATDDSD
#
5647-A01 (C) Copyright IBM Corp. 1998.
Licensed Materials - Property of IBM
##
#
dhcpsd.cfg -- DHCP/PXE Redirection Server Configuration File
#
This file contains most of the directives that can be specified by the
server's administrator to configure the server and enforce
policies. Please reference the official DHCP Server documentation for
a complete listing of server directives. This file is only a sample.
The finished file must be placed in the directory specified by the ETC
environment variable.
#
Do not put any long line without spaces in this file.
#
A line starting with a '#' character is a comment and is ignored.
A '#' on a line which is not part of a quoted string indicates
that anything to the right of this character is a comment and should
be ignored.
#
A continuation character of '\' is supported. It must be
the last non-whitespace character on the line prior to
any comments. It should not be used in the updateDNS line.
#
The directives are specified in the form of
<keyword> <value1> ... <valueN>.
#
Here is a partial list of keywords whose value can be specified
in this file:
#
Keyword Effect

C

© Copyright IBM Corp. 1998 2002 503

------------- ---
servertype Specifies the mode the server is running in.
imageserver Specifies the address of the image server.
numLogFiles The number of log files desired.
logFileSize The size of log files in kilobytes.
logFileName The name of the most recent log file.
logItem An item to be logged.
#
subnet Address of one subnet within a network.
option A configuration option value to pass to clients.
#
leaseTimeDefault
The default duration of leases issued by this server.
#
leaseExpireInterval
The time interval at which the expiration condition
of the leases currently running is examined.
#
supportBOOTP Whether or not to support BOOTP clients.
supportUnlisted Clients Whether or not to support clients that are
not listed specifically with individual
client statements. (see "client" below.)
updateDNSP String defining command to use to update the DNS PTR
IP address to name mappings for IP addresses assigned
by this server.
updateDNSA String defining command to use to update the name to DNS PTR
IP address mappings for IP addresses assigned
by this server.
proxyArec Administrator policy to perform proxy A record updates on beha
of a client.
class Definition of a set of options for a specific class
of clients.
client Definition of a set of options for a specific client
or a definition of a client not to be serviced
or a definition of an address not to be used.
vendor Definition of a vendor class option (43)
#
#
The scope of a keyword is limited by a pair of curly brackets ({, })
within which the keyword is located. If a keyword is located outside
of any pair of curly brackets, its scope is applicable to all the
clients served by this server. The curly brackets must appear alone
on a line.
#
Log files. This set of parameters specifies the log files that will be
maintained by this server. Each parameter is identified by a keyword
and followed by its value.
#
Keyword Value Definition
-------- ------------ --
numLogFiles 0 to 99 number of log files. If 0 is specified,
no log file will be maintained and no log
message is displayed anywhere. When a log
file reaches maximum size, a new log file
is created, until the maximum number of
log files have been created. Only the most
recent n log files are kept/
#
logFileSize in K bytes maximum size of a log file. When the size
of the most recent log file reaches this
504 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

value, it is renamed and a new log file is
created.
#
logFileName file path name of the most recent log file. Less
recent log files have the number 1 to
n-1 appended to their names; the larger
the number, the less recent the file.
#
logItem An item that will be logged.
SYSERR System error, at the interface to the platform.
OBJERR Object error, in between objects in the process.
PROTERR Protocol error, between client and server.
WARNING Warning, worth of attention from the user.
EVENT Event occurred to the process.
ACTION Action taken by the process.
INFO Information that might be useful.
ACNTING Accounting information on clients served.
TRACE Code flow, for debugging.
STAT Statistical information.
#
#

#
Subnet. Statements with this keyword specify the addresses of the
subnets and pools of addresses to use for clients within the subnet.
#
Here is a list of the parameters in this set and their definitions:
#
Keyword Value Definition
-------- --------------- --
#
subnet <Subnet address> [<Subnet Mask>] <range> [(alias=name
DDNSServer=ip_address]
#
Parameters to the right of a left parenthesis
are used only by the DHCP Server Configuration
program. A space must precede the left
parenthesis. The DHCP server parses statements
to the right of a left parenthesis as comments.
#
subnet statement. One or more subnet
statements are allowed in a configuration file.
#
"Subnet address" is the address of this subnet.
This address is specified in dotted decimal
notation (e.g., 9.17.32.0 or 128.81.22.0).
The subnet must be within the subnet mask, and
the address can be no longer (in bits)
than the subnet mask. For example,
if the subnet mask is 255.255.255.0, the
address 9.67.10.128 is too long.
#
The subnet address may optionally be followed
by the subnet mask or a range.
#
The mask for the subnet in dotted decimal
notation or in integer format. A subnet mask
divides the subnet address into a subnet
portion and a host portion. If no value is
Appendix C. Sample DHCP configuration file 505

entered for the subnet mask, the default is the
class mask appropriate for an A, B, or C class
network.
#
The subnet mask may be specified either in the
dotted notation (e.g., 255.255.255.128) or as
a number indicating the number of 1 bits in the
mask (e.g., 25, which is equivalent to
255.255.255.128).
#
Subnet address may be followed by a range.
If a range is specified, it describes the
pool of addresses this server will administer
for this subnet. A
range is specified by host addresse in
dotted decimal notation
separated by a hyphen with no intervening
spaces (e.g., 192.81.20.1-129.81.20.128).
#
If no range is specified,
all host addresses in the subnet are
administered by this server.
#
The address pools administered by different
DHCP servers must not overlap. Otherwise
two hosts may be assigned the same address.
#
Parameters to the right of a left parenthesis
are used only by the DHCP Server Configuration
program. A space must precede the left
parenthesis. The DHCP server parses statements
to the right of a left parenthesis as comments.
#
The parameter alias=name immediately after a
left parenthesis contains the symbolic name,
which appears in the DHCP Server Configuration
program graphic display of the server
configuration. If no name is entered, the
subnet IP address is used to identify the
subnet in the DHCP Server Configuration
program display.
#
A subnet statement may be immediately followed
by a pair of curly brackets, in which parameters
(e.g., options) particular to this subnet can
be specified.
#
subnet <subnet_address> [<subnet_mask>] <range> [<label:value[/priority]]
To define a subnet group, use
label:value[/priority]] in the Subnet statement.
#
The subnet_address, subnet_mask, and range
parameters are described in Defining Subnets.
#
label identifies subnets grouped together on
the same wire.
#
value[/priority] is a string of 1 to 64
alphanumeric characters that identifies the
subnet, followed by the priority in which this
506 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

subnet's address pool is used. No spaces are
allowed in labels. Priority is a positive
integer.
#
inOrder:<labellist>
balance:<labellist>
To specify the policy by which IP addresss
are served from multiple subnets.
#
The labelslist is a list of labels in which
each label indentifies a subnet group.
#
class <class_name> [<range>]
Definition of a class. The class name is a
simple ascii string. Enclose the class name
in double quotes if the name contains spaces.
A class's scope is determined by the curly
brackets in which it is enclosed. If it is
outside all curly brackets, then its scope is
the entire file.
#
A class name may be followed by a range.
If a range of addresses is
specified, then addresses in that range
will be assigned to clients who request this
class, and only to those clients. If a
range is specified on a class statement,
that statement must be within the scope
of a subnet statement which
also specifies a range, and the range of
the class must be within the range of the
subnet.
#
Note that if a client requests this class,
but it is not within the subnet,
it will not be assigned an address from
the subnet.
#
If an address range is not specified, then
addresses will be given to clients using
the usual rules of assignment.
#
The class statement may be immediately followed
by a pair of curly brackets, in which
the options particular to this class can be
specified. A class may be defined within
the curly brackets of a subnet, but a subnet
may not be defined within the curly brackets
of a class.
#
Options set up in the subnet
containing a class definition will also
apply to the class.
#
vendor <vendor_name> [hex "<value>"]
#
Definition of a vendor option. The vendor name
is a simple ascii string. Enclose the class name
in double quotes if the name contains spaces.
The scope is that of the entire file. Vendor
Appendix C. Sample DHCP configuration file 507

statements within subnet, class, or client scopes
are ignored.
#
A vendor name may be followed by a hex ascii
string which represents the hex value of the
data portion of the option. A client may
request a vendor option by specifying
the vendor name in option 43 of the Bootp
or DHCP request. The server returns the
specified value as the data in option 43.
The data to be returned is specified in
hexadecimal, e.g.:
#
hex "01 a0 23"
#
The vendor statement may be immediately followed
by a pair of curly brackets, in which
the options particular to this vendor can be
specified. Within these curly braces, the
usual option value encoding/decoding rules
do not apply. This means that the value for
each option must be specified either as an
ascii string, or as hex in the hex ascii
string construct:
hex "<value>"
where <value> is a string of hex values
each byte separated by a space. I.e.
hex "01 02 03"
#
client <id_type> <id_value> <address>
Definition of a client record.
#
<id_type> is one of the hardware types defined
in RFC 1340 (e.g. 1 for 10 megabit Ethernet,
6 for 802.5 Token Ring.) The type may be
0, in which case the hardware type is not
specified and the
id_value may be a string of any format.
#
<id_value> is a character string if the type
is 0. Typically, this would be a domain name.
For a non-zero <id_type>, the <id_value> is
a hexadecimal string representing
the hardware address of the client.
#
Note: An <id_type> of 0 and an <id_value> of
'0' indicates that the <address> specified
should not be administered by this server.
A client record of this format is used to
reserve addresses within a subnet range;
such addresses are not offered to clients.
#
The <address> can be the string "none" to
indicate that the client matching
<id_type> and <id_value> should
not be serviced by this server.
The <address> can be the string "any" to
indicate that the server should choose
an appropriate address for this client.
The <address> can be an internet address
508 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

in dotted notation (eg. 9.2.15.82). This
will be the address given to the
particular client specified by <id_type>
and <id_value>. As mentioned above, an
<id_type> of 0 and an <id_value> of '0'
indicates that the <address> specified
should not be distributed by this server.
#
The client statement may be immediately followed
by a pair of curly brackets, in which the options
particular to this client can be specified.
#
Note: All clients inherit all globally defined options.
A client defined in a subnet scope inherits
options defined for that subnet and emcompassing network.
#
A class definition inside a client scope is not allowed.
#
The client statement may be used to configure bootp clients.
To do this, specify all the bootp options using the option
syntax defined below.
#
#
Option. This keyword identifies an option statement. The BOOTP/DHCP
options are defined in "DHCP Options and BOOTP Vendor Extensions"
(RFC 1533).
#
An option is specified by the "option" keyword followed by the option code
of this option and its data field, in a single line. One or more options
may be specified.
#
The scope within which an option applies is delimited by a pair of curly
brackets ({, }) surrounding the option statement.
#
If two or more options with the same option code are specified, the
one with the most specific scope is used. This allows, for example,
an option specified at the subnet scope to override that same option
specified at the network or global scope. If two or more options
with the same option code are specified within the same scope,
the first one read by the server will be the one used, (subject to
its being overridden by the same option in a more specific scope).
#
Some options defined in the RFC may not be configured on an options
statement, but are used automatically by the server and/or client.
These are:
#
0 Pad Option
255 End Option
#
and the following DHCP extensions:
#
52 Option Overload
53 DHCP Message Type
54 Server Identifier
55 Parameter Request List
57 Maximum DHCP Message Size
60 Class-identifier of client
61 Client-identifier.
#
All other options may be specified by the option statements.
Appendix C. Sample DHCP configuration file 509

#
When specifying an option, its data field takes one of the following
formats:
#
IP Address : a single IP address.
IP Addresses : One or more IP addresses separated by
spaces.
IP Address Pair : two IP addresses separated by a single colon.
IP Address Pairs : One or more IP address pairs separated by
spaces.
Boolean : [0, 1]
Byte : [-128, 127]
Unsigned Byte : [0, 255]
Unsigned Bytes : space delimited list of values in range [0, 255]
Short : [-32768, 32767]
Unsigned Short : [0, 65535]
Unsigned Shorts : space delimited list of values in range [0, 65535]
Long : [-2147483648, 2147483647]
Unsigned Long : [0, 4294967295]
String : string of characters possible enclosed between two
double quotes.
#
Note: All IP addresses are specified in dotted-decimal form.
#
#
Each of the defined options is listed below by its code and name, followed
by the format of its data field.
#
Code Name Data field format/Notes
---- ----------------------- ------------------------------------
#
RFC 1497 Vendor Extensions
#
0 Pad Option No need to specify
255 End Option No need to specify
1 Subnet Mask Unsigned Long
2 Time Offset Long
3 Router Option IP Addresses
4 Timer Server Option IP Addresses
5 Name Server Option IP Addresses
6 Domain Name Server Option IP Addresses
7 Log Server Option IP Addresses
8 Cookie Server Option IP Addresses
9 LPR Server Option IP Addresses
10 Impress Server Option IP Addresses
11 Resource Location Server Option IP Addresses
12 Host Name Option String
Note: Option 12 should only be specified within the scope of client
statements.
13 Boot File Size Option Unsigned Short
14 Merit Dump File String
15 Domain Name String
16 Swap Server IP Address
17 Root Path String
18 Extensions Path String
#
IP Layer Parameters per Host
#
19 IP Forwarding Enable/Disable
Option Boolean, or client class profile file
510 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

20 Non-local Source Routing
Enable/Disable Option Boolean, or client class profile file
21 Policy Filter Option IP Address Pairs
22 Maximum Datagram Reassembly Size
Unsigned Short
23 Default IP Time-to-live Unsigned Byte
24 Path MTU Aging Timeout Option Unsigned Long
25 Path MTU Plateau Table One or more Unsigned Short separated by
spaces
#
IP Layer Parameters per Interface
#
26 Interface MTU Option Unsigned Short
27 All Subnets are Local Option Boolean
28 Broadcast Address Option IP address
29 Perform Mask Discovery Option Boolean
30 Mask Supplier Option Boolean
31 Perform Router Discovery Option Boolean
32 Router Solicitation Address
Option IP Address
33 Static Route Option IP Address Pairs
#
Link Layer Parameters per Interface
#
34 Trailer Encapsulation Option Boolean
35 ARP Cache Timeout Option Unsigned Long
36 Ethernet Encapsulation Option Boolean
#
TCP Parameters
#
37 TCP Default TTL Option Unsigned Byte
38 TCP Keepalive Interval Option Unsigned Long
39 TCP Keepalive Garbage Option Boolean
#
Application and Service Parameters
#
40 NIS Domain Option String
41 NIS Option IP Addresses
42 Network Time Protocol Servers
Option IP Addresses
43 Vendor Specific Information MUST use "vendor" keyword syntax.
44 NetBIOS over TCP/IP Name Server
Option IP Addresses
45 NetBIOS over TCP/IP Datagram
Distribution Server IP Addresses
46 NetBIOS over TCP/IP Node
Type Option Unsigned Byte
47 NetBIOS over TCP/IP Scope
Option Unsigned Bytes
48 X Window System Font Server
Option IP Addresses
49 X Window System Display
Manager Option IP Addresses
#
DHCP Extensions
#
51 IP Address Lease Time Unsigned Long
May be specified in a network, subnet, class or client definition
to indicate the lease time to be be used in that scope.
Use 0xffffffff to indicate an infinite/permanent lease.
Appendix C. Sample DHCP configuration file 511

56 Message String
58 Renewal (T1) Time Value
59 Rebinding (T2) Time Value
#
#

Servertype. This parameter specifies the running mode of the server.
If the value is not specified, standard DHCP operation will take place.
No pxe extensions is recognized.
#
Keyword Value Definition
----------- ----------------------- --------------------------
servertype [dhcp|pxeproxy|pxedhcp] If "dhcp" regular non pxe
extension server
#
If "pxeproxy" only pxe-extensions
is recognized. Pure redirection
server.
#
If "pxedhcp" combined server. Performs
both standard dhcp and pxe functions.
#
Imageserver. The address of the BINL server. Only used for pxeclients and only
at the global level.
#
Keyword Value Definition
----------- ------------------- -------------------------------------
imageserver [ipaddress|hostname] If "ipaddress" actual address of imag
#
If "hostname" dns lookup is done to r
ipaddress of image server.
#
Default Lease Time. This parameter specifies the default lease
duration for the leases issued by this server. In the absence
of any more specific lease duration (e.g., lease duration for
specific client(s) or class of clients,) the lease duration
specified by this parameter takes effect. The keyword for this
parameter and its values are as follows:
#
Keyword Value
----------- -----------------------
leaseTimeDefault <amount> [<unit>]
#
The amount is specified by a decimal number. The unit is one
of the following (plural is accepted):
#
year
month
week
day
hour
minute (default if no unit is specified)
second
#
There is at lease one space between the amount and the unit.
Only the first amount following the keyword has any effect.
#
If this parameter is not specified, the default lease duration is
24 hours.
512 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

#
This statement should appear outside of any pair of curly brackets,
and it applies to all leases issued by this server.
#
NOTE: This value may be overridden for specific subnets, networks,
or classes, by specifying option 51 within the scope of the network,
subnet, or class.
#
Lease Expiration Time Interval. This parameter specifies the time
interval at which the lease expirations are checked. If a lease
has expired, it is returned to the free pool.
The keyword for this statement and its values are as follows:
#
Keyword Value
----------- -----------------------
leaseExpireInterval <amount> [<unit>]
#
The amount is specified by a decimal number. The unit is one
of the following (plurals are accepted):
#
year
month
week
day
hour
minute (default if no unit is specified)
second
#
There is at least one space between the amount and the unit.
Only the first amount following the keyword has any effect.
#
If this parameter is not specified, the default interval is
one minute.
#
This statement should appear outside of any pair of curly brackets,
and it applies to all leases issued by this server.
#
The value of this parameter should be some fraction of the value
specified for leaseTimeDefault so that lease expirations are
recognized on time.
#
#
BOOTP Support. This parameter indicates to the server whether or
not to support requests from BOOTP clients. The keyword for this
parameter and its values are as follows:
#
Keyword Value Definition
------------- ---------- ------------------------------
supportBOOTP [yes | no]
If "yes" is specified, the
server will support BOOTP
clients.
#
If the value field is not
"yes", or the keyword is omitted,
the server will not support
BOOTP clients.
#
The scope of this parameter covers all subnets administered by this server.
#

Appendix C. Sample DHCP configuration file 513

If the server previously supported BOOTP clients and has been
reconfigured not to support BOOTP clients, the address binding
for a BOOTP client established before the reconfiguration, if any,
will still be maintained until the time when that BOOTP client sends
a request again (when it is rebooting.) At that time, the server
will not respond, and the binding will be removed.
#
#
#
Support for unlisted clients. This parameter indicates to the server whether
or not to support requests from clients that are not specifically configured
with their own individual client statements in the server. The keyword for
this parameter and its values are as follows:
#
Keyword Value Definition
------------- ---------- ------------------------------
supportunlistedClients [yes | dhcp | bootp | both | no]
If "yes" or "both" is specified, the
server will support unlisted
clients.
#
If "dhcp" is specified, the
server will support unlisted
dhcp clients but not bootp clients.
#
If "bootp" is specified, the
server will support unlisted
bootp clients but not dhcp clients.
#
If the value field is anything other
than "yes", the server will not support
unlisted clients.
#
If this keyword is not found in the file, the server WILL support
clients not specifically configured with a client statement.
#
Keyword Value Definition
------------- ---------- ------------------------------
updateDNSP string A string enclosed in quotes. It includes
the name of a program to execute to update
the DNS server with the new hostname
of the assigned IP address, and the parameters
to pass to the program.
#
Ip Address - This is the IP address leased to this client
by the server. The string is supplied in dotted
notation, ie 9.2.23.43.
#
hostname.domainname
hostname - the value of option 12.
This is the value the server would return for option
12 for the client's DHCP request, if such a value
is configured. If not, then if the client
specifies option 12 in its DHCP request, that value
is used. Otherwise, the statement is not
executed.
#
domainname - This is the value of option 15.
This is the value the server would return for option
15 for the client's DHCP request, if such a value
514 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

is configured. If not, then if the client
specifies option 15 in its DHCP request, that value
is used. Otherwise, a null string "" is passed
on the name server update command.
#
leasetime - This is the lease time granted by the server.
This string is a decimal number representing the
number of seconds of the lease.
#
These values are output by dhcp in this order:
Ip Address hostname.domainname leasetime
#
An example updateDNSP string might be:
updateDNSP "nsupdate -f -r%s -s"d;ptr;*;a;ptr;%s;s;%s;0;q" -q"
#
Only one updateDNSP string is allowed in this file. If multiple
instances occur, the last one found in the file will be used.
#
#
#
Keyword Value Definition
------------- ---------- ------------------------------
updateDNSA string A string enclosed in quotes. It includes
the name of a program to execute to update
the DNS server with the new hostname
of the assigned IP address, and the parameters
to pass to the program.
#
hostname.domainname
hostname - the value of option 12.
This is the value the server would return for option
12 for the client's DHCP request, if such a value
is configured. If not, then if the client
specifies option 12 in its DHCP request, that value
is used. Otherwise, the statement is not
executed.
#
domainname - This is the value of option 15.
This is the value the server would return for option
15 for the client's DHCP request, if such a value
is configured. If not, then if the client
specifies option 15 in its DHCP request, that value
is used. Otherwise, a null string "" is passed
on the name server update command.
#
Ip Address - This is the IP address leased to this client
by the server. The string is supplied in dotted
notation, ie 9.2.23.43.
#
leasetime - This is the lease time granted by the server.
This string is a decimal number representing the
number of seconds of the lease.
#
These values are output by dhcp in this order:
hostname.domainname Ip Address leasetime
#
#
An example updateDNSA string might be:
updateDNSA "nsupdate -f -h%s -s"d;a;*;a;a;%s;s;%s;0;q" -q"
#

Appendix C. Sample DHCP configuration file 515

#
Keyword Value Definition
---------- ------------------------ ------------------------------
proxyarec [standard|protected|no] Allows the administrator to have
a server policy to perform proxy
A record updates on behalf of a
client.
#
<standard>. No verification is made
to ensure the client id match before
an update is performed.
#
<protected>. A check is made to ensure
that the client id matches on each upda
#
<no>. No proxy A records are performed
at the current scope.
#
#
##

The remaining portion of this file is an sample configuration file.
Comments are added to assist in understanding the configuration file.
Further information and detail is found in the online user documentation.

Setup of the log file information. This includes the size and name of the
logfile along with number of logfiles maintained and type of information that
will be logged.
numLogFiles 10
logFileSize 1000
logFileName dhcpsd.log
logItem SYSERR
logItem OBJERR
logItem PROTERR
logItem WARNING
logItem EVENT
logItem ACTION
logItem INFO
logItem ACNTING
logItem TRACE
logItem STAT

Server mode setup
servertype pxedhcp

imageserver 5.4.3.2
Configuration of server parameters.
leaseTimeDefault 120 # 120 minutes
leaseExpireInterval 20 seconds
supportBOOTP yes
supportUnlistedClients yes

Configuration of DNS parameters.
updateDNSP "nsupdate -f -r%s -s"d;ptr;*;a;ptr;%s;s;%s;0;q" -q"
updateDNSA "nsupdate -f -h%s -s"d;a;*;a;a;%s;s;%s;0;q" -q"

This administrator will attempt to do proxy A record updates for all
clients unless overridden at a lower scope.
proxyarec standard

516 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Server Address for PXE clients to obtain image information.
imageserver 5.4.3.2

Global options. Passed to every client unless overridden at a lower scope.
option 15 "raleigh.ibm.com" # domain name
option 6 9.67.1.5 # dns server

class manager
{
 option 48 6.5.4.3
 option 9 9.37.35.146
 option 210 "manager_authority" # site specific option giving to all managers

}

Setup to send options to the pxeclient. Sent in the encapsulated option 43.
vendor PXEClient
 {
 option 1 1.1.4.5
 option 2 2
 option 3 3
 option 4 4
 option 5 5
}

This subnet specifies it subnetmask as number of bits instead of dotted decimal
notation. 24 bits corresponds to 255.255.255.0
subnet 9.2.23.0 24 9.2.23.120-9.2.23.126
{
 option 28 9.2.23.127 # broadcast address
 option 9 5.6.7.8
 option 51 200

 # class manager defined at the subnet scope. Option 9 here will override
 # the option 9 specified in the global manager class.
 class manager
 {
 option 9 9.2.23.98
 }

 # Programmers have their own subnet range.
 class developers 9.2.23.125-9.2.23.126
 {
 option 51 -1 # infinite lease.
 option 9 9.37.35.1 # printer used by the developers
 }
}

##
The next two subnets are an example of how to create gaps in a subnet range.
##
subnet 129.42.1.0 255.255.255.0 129.42.1.1-129.42.1.50
{
 option 51 650 # lease time
 option 9 6.7.8.9 # printer for all
 option 15 "mobile.watson.ibm.com" # domain
}

subnet 129.42.1.0 255.255.255.0 129.42.1.200-129.42.1.254
{

Appendix C. Sample DHCP configuration file 517

 option 9 1.2.3.4 # printer for all
 option 15 "mobile.watson.ibm.com" # domain
 option 51 600 # lease time
}

Example of a client that will accept any address but will have its own set of
options.
client 6 0x10005aa4b9ab ANY
{
 option 51 999
 option 1 255.255.255.0
}

Exclude an address from service.
client 0 0 9.2.23.121

#
end of dhcpsd.cfg
#

518 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Appendix D. The DHCP log data set

This appendix contains the dhcpsd.log data set after starting the IBM Network Station with
the configuration file we used in Figure 9-1 on page 286.

In the log file, we discover the following:

1 is the start of the DHCP server.

2 starts the adaption of the address range 185 - 220.

3 shows the selection of the default port 67 and 4 starts listening to the port.

5 receives a package from the IBM Network Station for a boot request.

6 is the DHCPDISCOVER request.

7 here the client’s MAC address is not mapped to a specific IP address, but is found in the
clientele list 8.

9 here the client gets a mapping to the first free address of the pool 10, reserves it, and
checks that the subnet definitions are matching 11.

12 when this is done, it sends an offer (DHCPOFFER).

09/30 14:41:11 : INFO: ..log_initialize: ***************************
09/30 14:41:11 : INFO: ..log_initialize: * NEW LOG FOLLOWS *
09/30 14:41:11 : INFO: ..log_initialize: * | | | | | | | | | | | | *
09/30 14:41:11 : INFO: ..log_initialize: * V V V V V V V V V V V V *
09/30 14:41:11 : INFO: ..log_initialize: ***************************
09/30 14:41:11 : SYSERR: ..log_initialize: Logging ENABLED
09/30 14:41:11 : OBJERR: ..log_initialize: Logging ENABLED
09/30 14:41:11 : PROTERR:..log_initialize: Logging ENABLED
09/30 14:41:11 : WARNING:..log_initialize: Logging ENABLED
09/30 14:41:11 : EVENT: ..log_initialize: Logging ENABLED
09/30 14:41:11 : ACTION: ..log_initialize: Logging ENABLED
09/30 14:41:11 : INFO: ..log_initialize: Logging ENABLED
09/30 14:41:11 : ACNTING:..log_initialize: Logging ENABLED
09/30 14:41:11 : TRACE: ..log_initialize: Logging ENABLED
09/30 14:41:11 : TRACE: ..server_initialize: function entered

D

© Copyright IBM Corp. 1998 2002 519

09/30 14:41:11 : TRACE: initialize_statistic_list: function Entered
1
09/30 14:41:11 : TRACE: profile_repository_initialize: function entered
09/30 14:41:11 : TRACE: pr_mismatch_quote_check: function entered
09/30 14:41:11 : TRACE: freenetprofile: function entered
09/30 14:41:11 : TRACE: pr_initialize_server_parms: function entered
09/30 14:41:11 : TRACE: pr_set_time_interval: function entered
09/30 14:41:11 : TRACE: pr_set_time_interval: function entered
09/30 14:41:11 : TRACE: pr_initialize_boot_canon_append: function entered
09/30 14:41:11 : TRACE: pr_initialize_all_subnets: function entered
09/30 14:41:11 : TRACE: pr_initialize_one_subnet: function entered
09/30 14:41:11 : TRACE: pr_initialize_boot_canon_append: function entered
09/30 14:41:12 : TRACE: pr_initialize_options: function entered
09/30 14:41:12 : TRACE: pr_initialize_clients: function entered
09/30 14:41:12 : TRACE: pr_initialize_one_client: function entered
09/30 14:41:12 : TRACE: pr_initialize_boot_canon_append: function entered
09/30 14:41:12 : TRACE: pr_initialize_options: function entered
09/30 14:41:12 : TRACE: pr_initialize_classes: function entered
09/30 14:41:12 : TRACE: pr_initialize_classes: Class IBM Network Station defined
09/30 14:41:12 : TRACE: pr_initialize_one_class: function entered
09/30 14:41:12 : TRACE: pr_initialize_boot_canon_append: function entered
09/30 14:41:12 : TRACE: pr_initialize_options: function entered
09/30 14:41:12 : TRACE: am_initialize: Function entered
09/30 14:41:12 : TRACE: am_initMapper: function Entered
09/30 14:41:12 : TRACE: am_initPool: function entered
09/30 14:41:12 : TRACE: pr_numAddresses: function entered
09/30 14:41:12 : TRACE: countAddresses: function entered
09/30 14:41:12 : TRACE: pr_numClientAddresses: function entered
09/30 14:41:12 : TRACE: countClients: function entered
09/30 14:41:12 : TRACE: pr_fillAddressRecords: function entered
09/30 14:41:12 : TRACE: pr_classifyAddressRecords: function entered
09/30 14:41:12 : INFO: am_initMapper: Previous map files not removed; try to
accomodate within new configuration
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.185 has been
adopted 2
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.186 has been
adopted
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.187 has been
adopted
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.188 has been
adopted
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.189 has been
adopted
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.190 has been
adopted
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
>>>>>>>>>>>>>>>>>>>>>>>>> same for the addresses in between <<<<<<<<<<<
09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.216 has been
adopted
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.217 has been
adopted
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
520 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.218 has been
adopted
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.219 has been
adopted
09/30 14:41:12 : TRACE: locateAddressRecord: function Entered
09/30 14:41:12 : TRACE: am_initMapper: Previous address 9.24.104.220 has been
adopted
09/30 14:41:12 : TRACE: ..main: Local Network Address found
09/30 14:41:12 : TRACE: ..main: IPC INIT Server done
09/30 14:41:13 : INFO: getPortNum: dhcps/udp unknown service, assuming port 67
3
09/30 14:41:13 : TRACE: initUserComm: Opening usercomm socket.
09/30 14:41:13 : TRACE: initUserComm: Binding usercomm socket, addr=0x00000000
port=0x03ae
09/30 14:41:13 : TRACE: initUserComm: Listening on usercomm port
09/30 14:41:13 : TRACE: ..main: Mailbox created

09/30 14:41:13 : TRACE: ..main: Garbage Collection started
: INFO: EZZ7277 DHCP Server Initialized at Tue Sep 30 14:41:13 1997
4
09/30 14:43:06 : TRACE: receiveMailbox: select completed:
09/30 14:43:06 : SYSERR:receiveMailbox: recvmsg got 548 bytes.
09/30 14:43:06 : TRACE: receiveMailbox: SELECT_SEMAPHORE
09/30 14:43:06 : TRACE: ..main: Size of incoming packet is: 548
5
09/30 14:43:06 : TRACE: process_bootrequest: function entered
09/30 14:43:06 : TRACE: process_bootrequest: received packet xid = 1e4
09/30 14:43:06 : INFO: primeOptions: Option: 53, length:1
09/30 14:43:06 : INFO: primeOptions: Option: 57, length:2
09/30 14:43:06 : INFO: primeOptions: Option: 77, length:12
09/30 14:43:06 : INFO: primeOptions: Option: 60, length:19
09/30 14:43:06 : TRACE: identifiableClient: function entered
09/30 14:43:06 : TRACE: identifiableClient: Using htype, hlen and chaddr to id
client
09/30 14:43:06 : TRACE: legibleRequest: function entered
09/30 14:43:06 : TRACE: legibleRequest: DHCP msg type DHCPDISCOVER
6
09/30 14:43:06 : TRACE: process_bootrequest: Request is self-consistent
09/30 14:43:06 : TRACE: reply_generator: function entered
09/30 14:43:06 : TRACE: processDISCOVER: function entered
09/30 14:43:06 : TRACE: locateExchange: function entered
09/30 14:43:06 : TRACE: newExchangeBlock: function entered
09/30 14:43:06 : TRACE: locateConfiguredClient: function entered
09/30 14:43:06 : TRACE: addressManager: Function entered
09/30 14:43:06 : TRACE: am_queryClient: Function entered
09/30 14:43:06 : TRACE: am_queryMapper: function Entered
09/30 14:43:06 : TRACE: locateClientRecord: function Entered
7
09/30 14:43:06 : TRACE: am_queryMapper: Cannot find client
6-0x0000e568afdf in client records
09/30 14:43:06 : TRACE: am_queryClient: Client 6-0x0000e568afdf is not known
to address mapper, ask clientele
09/30 14:43:06 : TRACE: cl_queryClientele: function entered
09/30 14:43:06 : TRACE: checkclient: function entered
8
09/30 14:43:06 : TRACE: cl_queryClientele: Client 6-0x0000e568afdf
authenticated by clientele list
09/30 14:43:06 : TRACE: processDISCOVER: binder.subnet [0x00000000]
09/30 14:43:06 : TRACE: processDISCOVER: AM_STATUS_AUTHENTIC
Appendix D. The DHCP log data set 521

09/30 14:43:06 : TRACE: addressManager: Function entered
09/30 14:43:06 : TRACE: am_reserve: Function entered
09/30 14:43:06 : TRACE: am_addressClient: function Entered
09/30 14:43:06 : TRACE: am_addressClient: pbinder->ipaddress [0x00000000]
09/30 14:43:06 : TRACE: am_addressClient: pbinder->subnet [0x0918687d]
09/30 14:43:06 : TRACE: locateClientRecord: function Entered
09/30 14:43:06 : TRACE: newClientRecord: function Entered
09/30 14:43:06 : TRACE: am_addressClient: Garbage Collection started
09/30 14:43:06 : TRACE: am_addressClient: pbinder->address [0x00000000]
09/30 14:43:06 : TRACE: am_addressClient: pbinder->subnet [0x0918687d]
09/30 14:43:06 : TRACE: am_addressClient: pcr->mssw 1082238115
09/30 14:43:06 : TRACE: indexAddressRecord: function Entered
09/30 14:43:06 : OBJERR:indexAddressRecord: indexAddressRecord: Zero
Index
09/30 14:43:06 : TRACE: am_addressClient: client address index 0
09/30 14:43:06 : TRACE: am_addressClient: addrFolio.netClue = 0x0918687d
09/30 14:43:06 : TRACE: pr_queryAddr: function entered
09/30 14:43:06 : TRACE: pr_queryAddr: clue = [0x0918687d], 152594557
09/30 14:43:06 : TRACE: pr_queryAddr: netaddr = 9.0.0.0
09/30 14:43:06 : TRACE: pr_queryAddr: hostaddr = 0.24.104.125
09/30 14:43:06 : TRACE: pr_queryAddr: Garbage Collection started
09/30 14:43:06 : INFO: am_addressClient: Client 6-0x0000e568afdf had no
previous mapping, getting one
09/30 14:43:06 : TRACE: newAddressRecord: function Entered
9
09/30 14:43:06 : TRACE: isAddressRecordUsed: function Entered
09/30 14:43:06 : TRACE: isAddressInUse: Function Entered
09/30 14:43:09 : TRACE: isAddressInUse: IP address 9.24.104.185, not
in use. rc=146692
09/30 14:43:09 : TRACE: indexAddressRecord: function Entered
10
09/30 14:43:10 : TRACE: nonvolatilizeAR: function Entered
09/30 14:43:10 : TRACE: nonvolatilizeCR: function Entered
09/30 14:43:10 : ACTION:addressManager: Address 9.24.104.185 has been reserved
09/30 14:43:10 : TRACE: pr_new_menu : Function entered
09/30 14:43:10 : TRACE: pr_fill_menu_class: function entered
09/30 14:43:10 : TRACE: pr_queryAddr: function entered
09/30 14:43:10 : TRACE: pr_queryAddr: clue = [0x091868b9], 152594617
09/30 14:43:10 : TRACE: pr_queryAddr: netaddr = 9.0.0.0
09/30 14:43:10 : TRACE: pr_queryAddr: hostaddr = 0.24.104.185
09/30 14:43:10 : TRACE: pr_queryAddr: Garbage Collection started
09/30 14:43:10 : TRACE: locateAddressRecord: function Entered
09/30 14:43:10 : TRACE: pr_fill_menu_net: function entered
09/30 14:43:10 : TRACE: pr_queryAddr: function entered
09/30 14:43:10 : TRACE: pr_queryAddr: clue = [0x091868b9], 152594617
09/30 14:43:10 : TRACE: pr_queryAddr: netaddr = 9.0.0.0
09/30 14:43:10 : TRACE: pr_queryAddr: hostaddr = 0.24.104.185
09/30 14:43:10 : TRACE: pr_queryAddr: Garbage Collection started
09/30 14:43:10 : TRACE: locateAddressRecord: function Entered
09/30 14:43:10 : TRACE: pr_fill_menu_house: function entered
09/30 14:43:10 : TRACE: pr_fill_dish: function entered
09/30 14:43:10 : TRACE: pr_new_menu : Function entered
09/30 14:43:10 : TRACE: locateConfiguredClient: function entered
09/30 14:43:10 : TRACE: pr_queryAddr: function entered
09/30 14:43:10 : TRACE: pr_queryAddr: clue = [0x091868b9], 152594617
09/30 14:43:10 : TRACE: pr_queryAddr: netaddr = 9.0.0.0
09/30 14:43:10 : TRACE: pr_queryAddr: hostaddr = 0.24.104.185
09/30 14:43:10 : TRACE: pr_queryAddr: Garbage Collection started
09/30 14:43:10 : TRACE: locateAddressRecord: function Entered
522 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

09/30 14:43:10 : TRACE: locateConfiguredClient: first, check for this
client in the subnet scope
09/30 14:43:10 : TRACE: locateConfiguredClient: look for client match in
this subnet 11
09/30 14:43:10 : TRACE: locateConfiguredClient: found match !
09/30 14:43:10 : TRACE: pr_queryAddr: function entered
09/30 14:43:10 : TRACE: pr_queryAddr: clue = [0x091868b9], 152594617
09/30 14:43:10 : TRACE: pr_queryAddr: netaddr = 9.0.0.0
09/30 14:43:10 : TRACE: pr_queryAddr: hostaddr = 0.24.104.185
09/30 14:43:10 : TRACE: pr_queryAddr: Garbage Collection started
09/30 14:43:10 : TRACE: locateAddressRecord: function Entered
09/30 14:43:10 : INFO: getPortNum: dhcpc/udp unknown service, assuming port
68
09/30 14:43:10 : TRACE: newReplyPacket: function entered
09/30 14:43:10 : TRACE: enqueueExchange: function entered
09/30 14:43:10 : TRACE: generate_bootreply: function entered
09/30 14:43:10 : INFO: generate_bootreply: Generating a DHCPOFFER reply
12
09/30 14:43:10 : TRACE: transmitMailbox: transmitting to (255.255.255.255 #68)
09/30 14:43:15 : TRACE: receiveMailbox: select completed:
09/30 14:43:15 : SYSERR:receiveMailbox: recvmsg got 548 bytes.
09/30 14:43:15 : TRACE: receiveMailbox: SELECT_SEMAPHORE
09/30 14:43:15 : TRACE: reply_generator: Size of incoming packet is: 548
09/30 14:47:13 : TRACE: reply_generator: Garbage Collecting...
09/30 14:47:13 : TRACE: event_timeout: function entered
09/30 14:47:13 : TRACE: event_timeout: Garbage collection (every 360 seconds).
09/30 14:47:13 : TRACE: removeExpiredLeases: function Entered
09/30 14:47:13 : TRACE: update_statistic_list: function Entered
09/30 14:47:13 : TRACE: reply_generator: Done.
Appendix D. The DHCP log data set 523

524 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Appendix E. FTP user exits and sample code

This appendix contains the source code of the sample FTP user exits, which were developed
and tested at ITSO-Raleigh during installation and testing of the Communications Server for
z/OS IP.

This appendix also includes two sample assembler macros used for various exit routines in
the ITSO Raleigh environment, including the FTP security exits. The macros are called INIT
and TERM and are used to generate assembler entry and exit code. See E.6, “assembler
entry code (INIT MACRO)” on page 541 and E.7, “assembler exit code (INIT MACRO)” on
page 544.

E.1 FTCHKIP security exit
*** 00010000
* * 00020000
* Name: FTCHKIP * 00030000
* * 00040000
* Function: Check if an FTP Client host may connect to this * 00050000
* MVS FTP Server * 00060000
* * 00070000
* Interface: R1 -> parameterlist with 6 pointers: * 00080000
* +0 -> fullword returncode (Out) * 00081000
* +4 -> fullword with value of 4 (In) * 00082000
* +8 -> fullword client IP address (In) * 00083000
* +12 -> fullword client port number (In) * 00084000
* +16 -> fullword local IP address (In) * 00090000
* +20 -> fullword local port number (In) * 00091000
* * 00100000
* Logic: If the foreign IP host belongs to our subnets, * 00100300
* the connection will be allowed. * 00100400
* If not, this exit will reject it * 00100500
* * 00100600
* Abends: - none - * 00100700
* * 00100800
* Returncode: RC = 0: Accept the connection * 00100900
* RC = non zero: Reject the connection * 00101000

E

© Copyright IBM Corp. 1998 2002 525

* * 00101200
* Written: July 16'th 1992 at ITSC Raleigh * 00102000
* * 00105000
* Changes: May 11'th 1994 at ITSO Raleigh * 00106000
* TCP/IP V3R1: No modifications required. * 00106100
* Subnet and IP address values are changed. * 00107000
* Feb. 14'th 1998 at ITSO Raleigh * 00107101
* CS for OS/390 V2R5: No modifications required. * 00107201
* Subnet and IP address values are changed. * 00107301
* * 00108000
*** 00110000
PARMS DSECT 00111000
PTRRC DC F'0' 00112000
 DC F'0' 00113000
PTRFIP DC F'0' 00114000
PTRFPORT DC F'0' 00115000
PTRLIP DC F'0' 00116000
PTRLPORT DC F'0' 00117000
* 00118000
FTCHKIP INIT 'FTP Check IP adress of foreign host', C00120000
 RENT=YES 00130000
* 00130100
* -- 00131000
* 00131100
* The subnet mask is 255.255.255.0 00131300
* Allowed subnets are in table in this program. 00131400
* 00131500
* -- 00136000
* 00137000
 LR R2,R1 *Parm pointer 00140000
 USING PARMS,R2 00150000
 L R4,PTRRC *-> Return code field 00150100
 L R3,PTRFIP *-> Foreign IP address 00151000
***** 00152000
* B ACCEPT ******Disbale this exit****** 00153000
***** 00154000
 L R3,0(R3) *Foreign IP Address 00160000
 SRL R3,8 *Get rid of the 8 loworders 00170000
 SLL R3,8 *Back into line again 00171000
 LM R5,R7,OURBXLE *Adresses for net loop 00171100
NETLOOP EQU * 00171200
 C R3,0(R5) *One of our subnets ? 00171300
 BE ACCEPT *- Yes, accept connection 00171400
 BXLE R5,R6,NETLOOP *Loop through all subnets 00171500
 SRL R3,24 *only first byte 00171600
 C R3,=A(10) *All 10 network addresses are OK 00171700
 BE ACCEPT 00171800
 LA R15,16 *Not allowed to connect 00177000
 B DONE 00178000
ACCEPT EQU * 00179100
 SR R15,R15 *Zero RC means accept it 00179300
DONE EQU * 00179500
 ST R15,0(R4) *Return the RC 00179600
 TERM 00179700
 LTORG 00179800
OURBXLE DC A(OURSUB,4,OURSUBSL-4) 00179900
OURSUB EQU * 00180000
 DC AL1(9,67,38,0) *9.67.38.0 (TR) 00180100
 DC AL1(9,67,32,0) *9.67.38.0 (Ethernet) 00180200
 DC AL1(9,24,104,0) *9.24.104.0 (Production) 00181000
526 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

 DC AL1(9,24,103,0) *9.24.103.0 MPN dialin 00181100
 DC AL1(9,67,41,0) *9.24.41.0 (MVS03 link) 00181200
 DC AL1(9,67,46,0) *9.24.46.0 WAN FR link 00181300
 DC AL1(9,67,51,0) *9.24.51.0 3174 private 00181400
 DC AL1(9,12,11,0) *9.12.11.0 (new POK link) 00181500
OURSUBSL EQU * 00182000
 END 00190000

E.2 FTCHKPWD security exit

* *
* Name: FTCHKPWD *
* *
* Function: Check if we will allow a given user to log on to the *
* MVS FTP Server *
* *
* Interface: R1 -> parameterlist with 4 pointers: *
* +0 -> fullword returncode (Out) *
* +4 -> fullword with value of 2 (In) *
* +8 -> 8 bytes user id (In) *
* +12 -> 8 bytes password (In) *
* *
* Logic: If the user is in our hardcoded include list, the log *
* on will be accepted. *
* If not, this exit will reject it *
* *
* Abends: - none - *
* *
* Returncode: RC = 0: Accept the log on *
* RC = non zero: Reject the log on *
* *
* Written: July 16'th 1992 at ITSC Raleigh *
* *
* Changed: May 11'th 1994 at ITSO Raleigh *
* TCP/IP V3R1: No modifications required. *
* Allowed userIDs updated. *
* Feb. 14'th 1998 at ITSO Raleigh *
* CS for OS/390 V2R5: No modifications required. *
* Allowed userIDs updated. *
* *

PARMS DSECT
PTRRC DC F'0'
 DC F'0'
PTRUSER DC F'0'
PTRPW DC F'0'
*
USERID DSECT
USER DC CL8' '
*
FTCHKPWD INIT 'FTP Check if user is acceptable', C
 RENT=YES
*
 LR R2,R1 *Parm pointer
 USING PARMS,R2
 L R4,PTRRC *-> Return code field
 L R3,PTRUSER *-> 8 byte user id
*

Appendix E. FTP user exits and sample code 527

* Accept all
*
* B ACCEPT *****Disable this exit********
*
 LM R5,R7,USERBXLE *BXLE for user lookup
 USING USERID,R5
LOOKALL EQU *
 CLC USER,0(R3) *Is user in our positive list?
 BE ACCEPT *- Yes, accept the log on
 BXLE R5,R6,LOOKALL *Search all entries
DROPIT EQU * *If not, reject the log on
 LA R15,16 *Any value which is not zero
 B DONE
ACCEPT EQU *
 SR R15,R15 *Zero RC means accept it
DONE EQU *
 ST R15,0(R4) *Return the RC
 TERM
 LTORG
*
USERBXLE DC A(USERSTRT,L'USER,USEREND-L'USER)
USERSTRT EQU *
 DC CL8'WOZA'
 DC CL8'GDENTED'
 DC CL8'SILVIAR'
 DC CL8'EIKENS'
 DC CL8'KAKKY'
 DC CL8'FTPANOM' *Anonymous userID
USEREND EQU *
*
 END

E.3 FTCHKCMD security exit

* *
* Name: FTCHKCMD *
* *
* Function: This exit will reject any FTP Delete command. *
* It will further reject an attempt to change password *
* from the anonymous userID (FTPANOM). *
* *
* Interface: R1 -> parameterlist with 5 pointers: *
* +0 -> fullword returncode (Out) *
* +4 -> fullword with value of 3 (In) *
* +8 -> 8 bytes user id (In) *
* +12 -> 8 bytes command name (In) *
* +16 -> buffer with argument string, 2 first bytes *
* holds length of remaining buffer. *
* *
* Logic: If the command is DELE, the request will *
* be rejected no matter who the user is, *
* If the command is a PASS command from user FTPANOM, the *
* command buffer is searched for an '/' - if one is found *
* the command is rejected. *
* *
* Abends: - none - *
* *
528 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

* Returncode: RC = 0: Accept the command *
* RC = non zero: Reject the command *
* *
* Written: July 16'th 1992 at ITSC Raleigh *
* *
* Changed: May 11'th 1994 at ITSO Raleigh *
* TCP/IP V3R1: No modifications required. *
* *
* Oct 17'th 1994 at ITSO Raleigh *
* Check for FTPANOM PASS command implemented. *
* *

PARMS DSECT
PTRRC DC F'0'
 DC F'0'
PTRUSER DC F'0'
PTRCMD DC F'0'
PTRBUF DC F'0'
*
BUFFER DSECT
BUFLEN DC AL2(0)
BUFDATA DS 0C
*
CMDENTRY DSECT
CMDNAME DC CL8' ' *Command name
CMDSTAT DC AL1(0) *Command status
CMDENTRL EQU *-CMDNAME *L'Command table entry
*
WORKAREA DSECT
 DC 18F'0' *Save area
LCCMD DC CL8' ' *Command name in lower case
*
FTCHKCMD INIT 'FTP Reject any DELETE command', C
 RENT=YES,WORKLEN=512
*
 USING WORKAREA,R13 *Adressability work extension
 LR R2,R1 *Parm pointer
 USING PARMS,R2
 L R4,PTRRC *-> Return code field
 L R3,PTRCMD *-> 8 byte command name
 MVC LCCMD,0(R3) *It may be lower case (QUOTE)
 OC LCCMD,=8B'01000000' *Be sure it is upper-case
*
* ---
*
* If command is PASS and user id FTPANOM, we parse the command buffer
* to see if any '/'s are present. If an anonymous user tries to change
* the password of the FTPANOM user, we will reject the command.
*
* ---
*
 CLC LCCMD,=CL8'PASS' *Password ?
 BNE LOOKCMD *- No, normal process
 L R1,PTRUSER *-> UserID
 CLC 0(8,R1),=CL8'FTPANOM' *Anonymous FTP User ?
 BNE LOOKCMD *- No, normal process
 L R7,PTRBUF *-> Command buffer
 USING BUFFER,R7
 LH R9,BUFLEN *L'Buffer data
 LA R7,BUFDATA *Start of buffer data
Appendix E. FTP user exits and sample code 529

 DROP R7
 LA R8,1 *Scan one char at a time
 AR R9,R7 *First byte after buffer
 BCTR R9,0 *Last byte of buffer
LOOKNPW EQU *
 CLI 0(R7),C'/' */ means he/she tries new pw
 BE DROPIT *Not allowed for FTPANOM
 BXLE R7,R8,LOOKNPW *Scan whole buffer
*
* ---
*
* The passed command is checked against the command table. If the
* table disables the command, it is rejected - if not, it is
* accepted.
*
* ---
*
LOOKCMD EQU *
 LM R5,R7,CMDSBXLE *BXLE for command lookup
 USING CMDENTRY,R5
LOOKALL EQU *
 CLC CMDNAME,LCCMD *Is this our command ?
 BE LOOKSTAT *- Yes, look at status
 BXLE R5,R6,LOOKALL *Search all entries
 B DROPIT *If not found, we drop it.
LOOKSTAT EQU *
 CLI CMDSTAT,1 *Is command enabled?
 BE ACCEPT *- Yes, Accept it
DROPIT EQU * *- No, reject the command
 LA R15,16 *Any value which is not zero
 B DONE
ACCEPT EQU *
 SR R15,R15 *Zero RC means accept it
DONE EQU *
 ST R15,0(R4) *Return the RC
 TERM
 LTORG
*
* ---
*
* This table includes all possible FTP commands (as listed in
* RFC765) - they may not all be implemented in the MVS FTP Server.
*
* Each entry in the tables consists of
*
* - 8 bytes command name
* - 1 byte status code of 0: Not allowed or 1: Allowed
*
* At the ITSC Raleigh site, we have disabled DELETE and RENAME
* functions.
*
* ---
*
CMDSBXLE DC A(CMDSSTRT,CMDENTRL,CMDSEND-CMDENTRL)
CMDSSTRT EQU *
* *Access Control Commands
 DC CL8'USER',AL1(1) *User name
 DC CL8'PASS',AL1(1) *Password
 DC CL8'ACCT',AL1(1) *Account
 DC CL8'REIN',AL1(1) *Reinitialize
530 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

 DC CL8'QUIT',AL1(1) *Log out
* *Transfer parameter commands
 DC CL8'PORT',AL1(1) *Data Port
 DC CL8'PASV',AL1(1) *Passive
 DC CL8'TYPE',AL1(1) *Type
 DC CL8'STRU',AL1(1) *File Structure
 DC CL8'MODE',AL1(1) *Transfer mode
* *FTP service commands
 DC CL8'MKD ',AL1(1) *Make Directory (*)
 DC CL8'XMKD',AL1(1) *Make Directory (*)
 DC CL8'RETR',AL1(1) *Retrieve
 DC CL8'STOR',AL1(1) *Store
 DC CL8'APPE',AL1(1) *Append (with create)
 DC CL8'MLFL',AL1(1) *Mail File
 DC CL8'MAIL',AL1(1) *Mail
 DC CL8'MSND',AL1(1) *Mail send to term
 DC CL8'MSOM',AL1(1) *Mail send to term or mailbox
 DC CL8'MSAM',AL1(1) *Mail send to term and mailbox
 DC CL8'MRSQ',AL1(1) *Mail recipient scheme question
 DC CL8'MRCP',AL1(1) *Mail recipient
 DC CL8'ALLO',AL1(1) *Allocate
 DC CL8'REST',AL1(1) *Restart
 DC CL8'RNFR',AL1(1) *Rename from
 DC CL8'RNTO',AL1(1) *Rename to
 DC CL8'ABOR',AL1(1) *Abort
 DC CL8'DELE',AL1(0) DISABL *Delete
 DC CL8'PWD ',AL1(1) *Print working directory
 DC CL8'XPWD',AL1(1) *Print working directory
 DC CL8'CWD ',AL1(1) *Change working directory
 DC CL8'XCWD',AL1(1) *Change working directory
 DC CL8'LIST',AL1(1) *List
 DC CL8'NLST',AL1(1) *Name-list
 DC CL8'SITE',AL1(1) *Site parameters
 DC CL8'SYST',AL1(1) *System information
 DC CL8'STAT',AL1(1) *Status
 DC CL8'HELP',AL1(1) *Help
 DC CL8'NOOP',AL1(1) *No Operation
 DC CL8'STOU',AL1(1) *Store Unique
CMDSEND EQU *
 END

E.4 FTCHKJES security exit

* *
* Name: FTCHKJES *
* *
* Function: We will only allow users to submit jobs with their *
* own user id. *
* *
* Interface: R1 -> parameterlist with 9 pointers: *
* +0 -> fullword returncode (Out) *
* +4 -> fullword with value of 7 (In) *
* +8 -> 8 bytes user id (In) *
* +12 -> buffer with one JCL statement (In) *
* +16 -> fullword with length of buffer (In) *
* +20 -> fullword with client JESLrecl (In) *
* +24 -> fullword with buffer number (In) *
Appendix E. FTP user exits and sample code 531

* +28 -> fullword with unique client id (In) *
* +32 -> fullword with JESRecfm (In) *
* JESRecfm = 0: Fixed length *
* JESRecfm = 1: Variable length *
* +34 -> 4 bytes client specific work area *
* *
* Logic: This exit will be called once for every logical *
* line (input record) with JCL data. *
* If recordformat is fixed, the buffersize equals *
* JESLrecl. The JCL data is padded with spaces. *
* If recordformat is variable, the format of the *
* buffer is 4 bytes rdw (2 bytes length, 2 bytes 0) *
* followed by data (LLzzdata.....). Length includes *
* the 4 byte rdw. *
* *
* Scan max 20 buffers (JOB statement assumed to be *
* within the first 20 records). Look for USER= *
* *
* Compare the USER= value with the FTP Client user id *
* passed on the call to this exit routine. *
* *
* Characters have been translated to EBCDIC. *
* At the time, the exit is driven, no userid or password *
* has been put into the buffer - unless they were *
* supplied by the client. The exit must be *
* able to distinguish between the following situations: *
* *
* * JOB statement does not include any USER= keyword - *
* the client user id and password will be *
* propagated at submission time, which will be OK. *
* *
* * The JOB statement does include USER= keyword and *
* contents of this must be checked against the client's *
* log on user id. *
* *
* Restric- This exit only checks the first JOB stmt. in the file *
* tions: that is about to be submitted to JESx. *
* *
* Abends: - none - *
* *
* Returncode: RC = 0: Accept the job submission *
* RC = non zero: Reject submission of the job *
* *
* Written: July 16'th 1992 at ITSC Raleigh *
* *
* Changed: May 11'th 1994 at ITSO Raleigh *
* TCP/IP V3R1: Interface changed. Code rewritten to use *
* the provided 4-bytes work area. *
* *
* Feb 2'nd 1995 at ITSO Relaigh *
* Added logic to replace first comment *
* stmt. with another (test) comment *
* stmt. Works only for JESRecfm fixed. *
* *
* Sep 4'th 1996 at ITSO Raleigh *
* Changed the option from Feb 2, 1995 to be *
* optional. Default is that the exit does *
* not modify any comment statements. By *
* removing the identified comment character *
* for an MVC statement, the exit will work *
532 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

* as described above. *
* *
* Jan 28 1997 at ITSO Raleigh *
* Added a WTO to inform on MVS joblog when *
* this exit rejects a job because of misuse *
* of USER= keyword in JOB card. *
* *

PARMS DSECT
PTRRC DC F'0' *-> Returncode fullword
 DC F'0'
PTRUSER DC F'0' *-> user id
PTRBUF DC F'0' *-> buffer
PTRBUFLN DC F'0' *-> word with length of buffer
PTRJESLR DC F'0' *-> word with JESLrecl
PTRBUFNO DC F'0' *-> word with buffer number
PTRCLNID DC F'0' *-> word with client id
PTRJESRF DC F'0' *-> word with JESRecfm
PTRJWORK DC F'0' *-> work word
*
USERID DSECT
USER DC CL8' '
*
WORKAREA DSECT
 DC 18F'0' *Save areas
JOBUSER DC CL8' ' *USER value from JOB card
WTOWORK DS 0F *WTO Message build area
 DC XL4'00',C'FTCHKJES - ' *Placeholder
 DC C'Job from FTP userID=' *Placeholder
WTOUSER DC CL8' ' *FTP User ID
 DC C' cancelled by exit' *Placeholder
 DC XL4'00' *Placeholder
*
EXITWORD DSECT
LASTNONB DC CL1' ' *Last non-blank
STATBYTE DC X'00' *Scan status byte
STATJOB EQU BIT0 *JOB card in process
STATCONT EQU BIT1 *JOB Card is continuing
STATUSER EQU BIT2 *USER keyword has been found
STATSTOP EQU BIT3 *Stop further SCAN
APOST EQU BIT4 *Within apostrophies
MODDONE EQU BIT5 *//* Modification is done
*
FTCHKJES INIT 'FTP Check if user id match JOB statement', C
 RENT=YES,WORKLEN=512
*
 USING WORKAREA,R13
 LR R2,R1 *Parm pointer
 USING PARMS,R2
 L R11,PTRJWORK *-> 4 bytes work area
 USING EXITWORD,R11
 L R4,PTRRC *-> Return code field
 L R3,PTRUSER *-> 8 byte user id
 L R5,PTRBUFNO *-> Buffer number
 L R5,0(R5) *Buffer number
 CH R5,=AL2(1) *First buffer ?
 BH NOTFIRST *- No, preserve work word
 XC STATBYTE,STATBYTE *Initialize status bits
NOTFIRST EQU *
 CH R5,=AL2(20) *Max scan 20 first buffers
Appendix E. FTP user exits and sample code 533

 BL BELOW20
 OI STATBYTE,STATSTOP *Stop further scanning
BELOW20 EQU *
 TM STATBYTE,MODDONE *Have we modified first //* ?
 BO MODOK *- Yes, that has been done
 L R5,PTRBUF *-> Start of buffer
 L R1,PTRJESRF *-> word with JESRecfm
 L R1,0(R1) *JESRecfm code
 LTR R1,R1 *zero means Fixed
 BZ MODFIXED *Registers are OK
 WTO 'FTCHKCMD - JESRecfm is not fixed'
 B MODSET *We skip processing
MODFIXED EQU *
 CLC 0(3,R5),=CL3'//*' *Is this a comment stmt ?
 BNE MODOK *- No, we can't use it
*
* ---
* Remove the comment character in the following MVC Statement and
* replace the literal with your own value, if you want this
* exit to replace the first comment card in this job
* with your installation standard value.
* With the comment character in pos one, this exit does NOT
* modify any comment statements.
* ---
*
* MVC 0(80,R5),=CL80'//* Our modified comment stmt.'
*
MODSET EQU *
 OI STATBYTE,MODDONE *Modify is now done
MODOK EQU *
 TM STATBYTE,STATSTOP *Job stmt. scanning terminated ?
 BO ACCEPT *- Yes, just return
*
* ---
*
* The buffer holds a JCL statement with // in col 1 and 2 - or
* SYSIN data.
*
* The code will look for the word JOB in the first valid JCL statement.
*
* If the word JOB is found the code scans for a USER= keyword until
* either a hit is made or the job card statement terminates (It may
* continue over more records).
* Proper considerations to avoid scanning text within apostrophies
* are taken.
*
* ---
*
 L R5,PTRBUF *-> Start of buffer
 LA R6,1 *Scan one byte at a time.
 L R7,PTRBUFLN *-> fullword w. buffer length
 L R7,0(R7) *L'buffer
 L R1,PTRJESRF *-> word with JESRecfm
 L R1,0(R1) *JESRecfm code
 LTR R1,R1 *zero means Fixed
 BZ RECFMFIX *Registers are OK
 LA R5,4(R5) *Skip rdw
 SH R7,=AL2(4) *Reduce length
RECFMFIX EQU *
 AR R7,R5 *-> First byte after scan area
534 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

 BCTR R7,0 *-> Last byte to scan
 MVC JOBUSER,=CL8' ' *Init to space
 MVI LASTNONB,C' ' *Set to blank
 LR R8,R5 *Save original start
 LR R9,R7 *Save original end
 TM STATBYTE,STATJOB *Are we scanning JOB card
 BO JOBCONT *- Yes, continued job card
 CLC 0(2,R5),=CL2'/*' *EOF OK
 BE NEXTREC
 CLC 0(3,R5),=CL3'//*' *Comments as well
 BE NEXTREC
 CLC 0(3,R5),=CL3'// ' *Just flushing
 BE NEXTREC
 CLC 0(2,R5),=CL2'//' *Must be JCL stmt.
 BNE NEXTREC *Must be there somewhere..
 LR R7,R5 *Start of record
 LA R7,15(R7) *JOB Must be within first 16
 CR R7,R9 *Avoid scanning after buffer
 BNH JOBLOOP *OK
 LR R7,R9 *Else reduce to end-buffer
JOBLOOP EQU *
 CLC 0(5,R5),=CL5' JOB ' *Is this a JOB Card?
 BE JOBFOUND *- Yes, start scan for USER=
 BXLE R5,R6,JOBLOOP *Look for JOB
 B NEXTREC *Ask for next buffer
JOBFOUND EQU *
 OI STATBYTE,STATJOB *We found a job card
JOBCONT EQU *
 LR R5,R8 *-> First byte in record
 LR R7,R9 *Only scan buffer
 LA R6,1 *Advance one byte
USLOOK1 EQU *
 CLI 0(R5),C' ' *Is this a blank?
 BE US1NEXT *- Yes, just advance
 MVC LASTNONB,0(R5) *Save for Cont. test
 TM STATBYTE,APOST *Within apostrophies?
 BO LOOKAPOS *We will only recog. ending apos
 CLC 0(5,R5),=CL5'USER=' *USER= keyword?
 BE USERFND *- yes, we've got it!
 CLI 0(R5),C'''' *Starting apost ?
 BNE US1NEXT *- No, just advance
 OI STATBYTE,APOST *We are now within aposts
 B US1NEXT *Advance
LOOKAPOS EQU *
 CLI 0(R5),C'''' *Ending apost ?
 BNE US1NEXT *Advance
 NI STATBYTE,AB-APOST *We are now outside apost
US1NEXT EQU *
 BXLE R5,R6,USLOOK1
 CLI LASTNONB,C',' *Was last a cont. mark?
 BE NEXTREC *- Yes, let's have next buffer
 OI STATBYTE,STATSTOP *- No, just stop scanning
NEXTREC EQU *
 SR R15,R15 *No reason to complain
 B DONE *Give us next buffer
*
* ---
*
* We have found the USER= keyword, Now just copy the value
*

Appendix E. FTP user exits and sample code 535

* ---
*
USERFND EQU *
 LA R5,5(R5) *Past USER=
 LA R8,JOBUSER *Copy value here
US2LOOK EQU *
 CLI 0(R5),C' ' *A blank terminates value
 BE US2DONE
 CLI 0(R5),C',' *So does a comma
 BE US2DONE
 MVC 0(1,R8),0(R5) *Move one byte at a time
 LA R8,1(R8) *Advance target pointer
 BXLE R5,R6,US2LOOK *Advance source pointer
*
* ---
*
* Check the value of USER= keyword against the client's
* FTP Log on user id.
*
* ---
*
US2DONE EQU *
 CLC JOBUSER,0(R3) *USER= equals log on ID ?
 BE ACCEPT *- Yes, accept the job sub.
DROPIT EQU * *If not, reject the log on
 MVC WTOWORK(WTOLISTL),WTOLIST
 L R15,PTRUSER *->FTP user ID
 MVC WTOUSER,0(R15) *Move in user ID
 WTO MF=(E,WTOWORK) *Put message to log
 LA R15,4 *Any value which is not zero
 B DONE
ACCEPT EQU *
 OI STATBYTE,STATSTOP *No more scanning needed
 SR R15,R15 *Zero RC means accept it
DONE EQU *
 ST R15,0(R4) *Return the RC
 TERM
 LTORG
WTOLIST WTO 'FTCHKJES - Job from FTP userID=xxxxxxxx cancelled by exC
 it',MF=L
WTOLISTL EQU *-WTOLIST
 END

E.5 FTP RDW post process sample program

* *
* Name: FTPRDW *
* *
* Function: Reconstruct a RECFM=V or VB Data Set from a RECFM=U *
* Data Set - holding TCP/IP FTP RDW information. *
* Use would be: *
* 1. Transfer a V or VB Data set with FTP using *
* Binary, Stream and RDW option - to a TCP/IP host *
* with a Stream file system. *
* 2. Transfer the data set back to MVS with FTP using *
* Binary Stream and MVS SITE RECFM=U BLKSIZE=some *
* high value *
* 3. Run this program specifying the RECFM=U data set *
536 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

* as input and an output data set with the same *
* DCB information as the original data set. *
* *
* Interface: DD-name: INPUT The RECFM=U Data Set *
* DD-name: OUTPUT The reconstructed V or VB Data Set *
* DD-name: PRINT Error and informational messages *
* *
* Logic: The RECFM=U Data set could look like *
* Block 1: rdw1,data1,rdw2,data2 *
* Block 2: data2,rdw3,data3,rdw4 *
* Block 3: data4 ,rdw5,data5,rd *
* Block 4: w6,data. *
* Read the RECFM=U Data Set using BSAM - assemble the *
* individual records and write them to the RECFM V or *
* VB data set using QSAM. *
* *
* Restric- If the format of the data set does not adhere to the *
* tions: format constructed by MVS FTP using the SITE option *
* RDW - results may be unpredictable. *
* *
* Abends: - none - *
* *
* Returncode: RC = 0: Reconstruction performed without errors *
* RC = 16: No output data set written, errors encountered *
* See the PRINT file *
* *
* Written: July 20'th 1992 at ITSC Raleigh *
* *

 PRINT NOGEN
 DCBD DSORG=PS
FTPRDW INIT 'Recreate Record boundaries for VB dataset', C
 MODE=24
*
* ---
*
* Open DCB's
*
* Verify that input data set is RECFM=U, Obtain Blksize and
* GETMAIN storage for one buffer.
*
* Verify that output data set is RECFM V or VB, Obtain Max. Record
* Length and GETMAIN storage to build one output record.
*
* ---
*
 XC RC,RC *Start optimistic!
 OPEN (UDCB,(INPUT),VBDCB,(OUTPUT),PRINT,(OUTPUT))
 LA R10,UDCB *RECFM=U DCB
 USING IHADCB,R10
 TM DCBRECFM,DCBRECU *Should be RECFM=U
 BO INPUTISU *- Yes, it is.
 LA R2,MSG01 *- No, it's not
 MVC RC,=A(16) *Bad return
 B ERROR
INPUTISU EQU *
 LH R2,DCBBLKSI *We need BLKSIZE for buffer
 ST R2,BUFFERL
 GETMAIN R,LV=(R2) *Getmain a buffer
 ST R1,BSTART *Here our buffer is
Appendix E. FTP user exits and sample code 537

 LA R10,VBDCB *OUTPUT DCB
 TM DCBRECFM,DCBRECV *Must be RECFM=V/VB
 BO OUTISV *- Yes, It is
 LA R2,MSG02 *- No, it is not
 MVC RC,=A(16) *Bad return
 B ERROR
OUTISV EQU *
 LH R2,DCBLRECL *OUTPUT max record length
 LTR R2,R2 *Must be GT 0
 BP RECLOK *It is
 LA R2,MSG03 *Unlikely.
 MVC RC,=A(16) *Bad return
 B ERROR
RECLOK EQU *
 ST R2,RECORDL *Room for max. reclen.
 GETMAIN R,LV=(R2) *Getmain record buffer
 ST R1,RECORDAD *Here to build output record
 ST R1,OUTP *Output buffer Pointer
*
* ---
*
* Main Program logic
*
* ---
*
 BAL R14,READBLOK *Get a block of data
NEXT EQU *
 L R2,BP *Current buffer pointer
 LA R2,4(R2) *Past RDW
 C R2,BEND *Partial RDW in this block ?
 BH PARTRDW *- Yes, special attention!
 L R2,BP
 MVC ARDW,0(R2) *Save Actual RDW
 LA R2,4(R2) *Advance past RDW
 ST R2,BP *New position
 B GOTARDW
PARTRDW EQU *
 L R2,BEND *End of buffer
 S R2,BP *Remaining bytes in buffer
 ST R2,LEN *We may need it..
 LTR R2,R2 *Anything left?
 BNZ PARTRDWD *- Yes, partial RDW is present
 BAL R14,READBLOK *Read next block
 B NEXT *Process next block
RDWMVC MVC 0(*-*,R3),0(R4) *Move partial RDW
PARTRDWD EQU *
 L R2,LEN *So many bytes
 BCTR R2,0 *Ready for Execute an MVC
 LA R3,ARDW *Here to move RDW
 L R4,BP *Here to move from
 EX R2,RDWMVC *Move partial RDW
 BAL R14,READBLOK *Get next block
 LA R2,4 *RDW Length
 S R2,LEN *Remains to move
 LR R5,R2 *We need it to advance BP.
 BCTR R2,0 *For execute
 LA R3,ARDW *
 A R3,LEN *Here to place remaining RDW
 L R4,BP *Here to move from
 EX R2,RDWMVC *Move remaining part
538 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

 A R5,BP *Advance Buffer pointer
 ST R5,BP *Ready for further process
GOTARDW EQU *
 LH R3,ARDW *Length in RDW
 LTR R3,R3 *Zero length RDW
 BNP SLUT *We are Done.
 SH R3,=AL2(4) *Excluding RDW
 ST R3,ALEN *This is L'record
 L R3,OUTP *Here to build output rec
 MVC 0(L'ARDW,R3),ARDW *Copy RDW to output record
 LA R3,4(R3) *Advance output pointer
 ST R3,OUTP
*
BUILD EQU *
*
 CLC BP,BEND *Anything left in buffer ?
 BL SOMELEFT *- Yes, some data is left.
 BAL R14,READBLOK *- No, Read next block.
 B BUILD *Check again..
SOMELEFT EQU *
 L R2,BP *Buffer pointer
 A R2,ALEN *Plus rest of this record
 C R2,BEND *Is it all in the buffer ?
 BH PARTREC *Only a part in this buffer
 L R5,ALEN *L'records data
 LR R7,R5 *From and To length equal
 L R4,OUTP *Move to
 L R6,BP *Move From
 MVCL R4,R6 *Move records data part
 L R2,RECORDAD *Here is record
 PUT VBDCB,(R2) *Write output record
 L R2,RECOUT *Number of records written
 LA R2,1(R2) *Plus One
 ST R2,RECOUT *
 MVC OUTP,RECORDAD *Reset Output pointer
 L R2,ALEN *So much used from buffer
 A R2,BP *Advance buffer pointer
 ST R2,BP
 B NEXT *Process next record
PARTREC EQU *
 L R5,BEND *End of buffer
 S R5,BP *Move what remains in buffer
 LR R7,R5 *From and To length equals
 LR R3,R5 *We need it..
 L R4,OUTP *Move To
 L R6,BP *Move From
 MVCL R4,R6 *Move partial record
 L R2,OUTP *First part went here
 AR R2,R3 *Next part goes here
 ST R2,OUTP *Advance output pointer
 L R2,ALEN *L'whole record
 SR R2,R3 *Remaining length
 ST R2,ALEN *This remains to be moved
 BAL R14,READBLOK *Get next block
 B BUILD *Process remaining part
*
* ---
*
* Read a Block of data and initialize buffer variables
*

Appendix E. FTP user exits and sample code 539

* ---
*
READBLOK EQU *
*
 ST R14,SAVER14 *Remember return address.
 L R11,BSTART *Read into buffer
 READ MYDECB,SF,UDCB,(R11),'S' *Read one block
 CHECK MYDECB *Wait for completion
 LA R11,MYDECB *-> DECB
 L R11,16(R11) *-> IOB
 L R14,BUFFERL *Max blksize
 SH R14,14(R11) *Minus residual from IOB
 ST R14,BUFLEN *Gives actual blk length
 A R14,BSTART *plus buffer start
 ST R14,BEND *Gives end of buffer
 MVC BP,BSTART *Reset current buffer pointer
 L R14,RECIN *Number of records read
 LA R14,1(R14) *Plus one more
 ST R14,RECIN
 L R14,SAVER14 *Restore return address
 BR R14 *Back to main logic
*
ERROR EQU *
 PUT PRINT,(R2)
SLUT EQU *
 L R2,RECIN *Blocks read
 CVD R2,DORD
 OI DORD+7,X'0F'
 UNPK MSG04NO,DORD *For message
 PUT PRINT,MSG04
 L R2,RECOUT *Records written
 CVD R2,DORD
 OI DORD+7,X'0F'
 UNPK MSG05NO,DORD *For message
 PUT PRINT,MSG05
 CLOSE (UDCB,,VBDCB,,PRINT)
 L R2,BSTART
 L R3,BUFFERL
 FREEMAIN R,A=(R2),LV=(R3)
 L R2,RECORDAD
 L R3,RECORDL
 FREEMAIN R,A=(R2),LV=(R3)
 L R15,RC *The return code to pass
 TERM RC=R15
 LTORG
DORD DC D'0'
RC DC A(0) * Return Code
SAVER14 DC A(0) * Return from READ routine
BSTART DC A(0) *-> Start of buffer
BEND DC A(0) *-> First byte after buffer
BUFLEN DC A(0) *L'Block
BP DC A(0) *-> Current buffer position
ARDW DC A(0) * Actual RDW
ALEN DC A(0) * Actual record length
LEN DC A(0) * Work
OUTP DC A(0) * Output record pointer
BUFFERL DC A(0)
RECORDAD DC A(0)
RECORDL DC A(0)
RECIN DC A(0)
540 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

RECOUT DC A(0)
UDCB DCB DSORG=PS,RECFM=U,DDNAME=INPUT,MACRF=(R),EODAD=SLUT, C
 BLKSIZE=32760
VBDCB DCB DSORG=PS,RECFM=VB,MACRF=(PM),DDNAME=OUTPUT
PRINT DCB DSORG=PS,RECFM=F,MACRF=(PM),DDNAME=PRINT, C
 LRECL=80
MSG01 DC CL80'RDW001 - Input Data Set must be RECFM=U'
MSG02 DC CL80'RDW002 - Output Data Set must be RECFM=V or VB'
MSG03 DC CL80'RDW003 - Output Data Set LRECL Must be greater thanC
 zero'
MSG04 DC C'RDW004 - Blocks read from Input Data Set: '
MSG04NO DC CL7' '
 DC CL(80-(*-MSG04))' '
MSG05 DC C'RDW005 - Records written to Output Data Set: '
MSG05NO DC CL7' '
 DC CL(80-(*-MSG05))' '
 END

E.6 assembler entry code (INIT MACRO)
This macro generates standard housekeeping code in an assembler routine. See the macro
comments for details on the syntax.

.* ---
 MACRO
&NAME INIT &TEXT,&BASE=R12,&FLOAT=NO,&RENT=NO,&WORKLEN=0, C
 &PRINT=NOGEN,&MODE=31,&EQUATES=YES
.* ===
.*
.* This macro is used to generate the normal assembler routine
.* housekeeping code - CSECT, TITLE, Base registers, save area
.* chaining etc.
.*
.* It is assumed to be used together with it's companion macro
.* called TERM for exit from an assembler routine. The INIT macro
.* sets some GLOBAL variables that are tested by TERM.
.*
.* Parameters are:
.*
.* TEXT The text value to be used in a TITLE stmt.
.* BASE= One or more base registers. BASE=R12 or
.* BASE=(R12,R11,R10). Default is BASE=R12.
.* FLOAT=YES/NO Indicate whether floating point registers
.* should be saved upon entry and restored upon
.* exit.
.* Default is FLOAT=NO.
.* RENT=YES/NO Indicate whether the macro should generate
.* reentrant code or not. Default is RENT=NO.
.* WORKLEN= Length of extension to getmained savearea to
.* use as workarea for the program. R13 is base
.* starting with 18F savearea. If FLOAT=YES an
.* additional 32 bytes are reserved for savearea.
.* PRINT=GEN/NOGEN Print macro expansions or not
.* MODE=24/31 If MODE=24 the macro generates AMODE and
.* RMODE 24. If MODE=31 the macro generates
.* AMODE 31 and RMODE ANY.
.* EQUATES=YES/NO Generate bit equates - default is YES
.*
.*
Appendix E. FTP user exits and sample code 541

.* ===
&NAME TITLE &TEXT
&NAME CSECT
 AIF ('&MODE' EQ '31').MODE31
&NAME AMODE 24
&NAME RMODE 24
 AGO .MODEOK
.MODE31 ANOP
&NAME AMODE 31
&NAME RMODE ANY
.MODEOK ANOP
 GBLB &EQUDONE,&FLOATREG,&INIRENT
 GBLC &FLOATSAV
 GBLA &GETLEN
 PRINT &PRINT *DEFAULT PRINT OPTION
 AIF (&EQUDONE).EQOK
*
* GENERAL PURPOSE REGISTER EQUATES
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 AIF ('&FLOAT' EQ 'NO').NOFLOAT
*
* FLOATING POINT REGISTER EQUATES
*
FR0 EQU 0
FR2 EQU 2
FR4 EQU 4
FR6 EQU 6
.NOFLOAT ANOP
 AIF ('&EQUATES' EQ 'NO').NOBITEQ
*
* BITTESTING EQUATES
*
AB EQU X'FF'
BIT0 EQU X'80'
BIT1 EQU X'40'
BIT2 EQU X'20'
BIT3 EQU X'10'
BIT4 EQU X'08'
BIT5 EQU X'04'
BIT6 EQU X'02'
BIT7 EQU X'01'
.NOBITEQ ANOP
*
&EQUDONE SETB 1
542 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

.EQOK ANOP

.*

.* SETUP ADRESSABILITY, GENERATE ID AND CHAIN SAVEAREA

.*
 USING *,R15
 B INITA&SYSNDX.
 DC AL1(INITA&SYSNDX.-*)
 DC C'&NAME. - &SYSTIME. &SYSDATE.'
 CNOP 0,4
INITA&SYSNDX. EQU *
 STM R14,R12,12(R13) *SAVE CALLERS REGS
 AIF ('&BASE'(1,1) NE '(').ONEBASE
 LR &BASE(1),R15
 DROP R15
 USING &NAME.,&BASE(1) *FIRST BASE
 LCLA &IDX,&BASVAL
&IDX SETA 2
.BASLOP ANOP
 AIF (&IDX GT N'&BASE).BASDONE
&BASVAL SETA 4095
&BASVAL2 SETA 4095*(&IDX-1)
 LA &BASE(&IDX),&BASVAL.(&BASE(&IDX-1))
 USING &NAME+&BASVAL2.,&BASE(&IDX) *SUBSEQUENT BASE
&IDX SETA &IDX+1
 AGO .BASLOP
.ONEBASE ANOP
 LR &BASE.,R15
 DROP R15
 USING &NAME.,&BASE.
.BASDONE ANOP
 AIF ('&RENT' EQ 'NO').NORENT
&INIRENT SETB 1
&GETLEN SETA (18*4)+&WORKLEN
 AIF ('&FLOAT' EQ 'NO').RNFL
&GETLEN SETA &GETLEN+(8*4)
.RNFL ANOP
 LA R0,&GETLEN
 GETMAIN R,LV=(R0)
 LR R15,R1 *START GETMAINED AREA
 L R1,24(R13) *RESTORE PARM REG
 USING INITS&SYSNDX.,R15
INITS&SYSNDX. DSECT
 DC 18F'0'
INITF&SYSNDX. DC 4D'0'
&NAME. CSECT
 AGO .DOSAVE
.NORENT ANOP
 B INITB&SYSNDX.
INITS&SYSNDX. DS 0F
 DC 18F'0' *SAVE AREA
 AIF ('&FLOAT' EQ 'NO').NOFLAR
INITF&SYSNDX. DS 0D
 DC 4D'0'
.NOFLAR ANOP
INITB&SYSNDX. EQU *
.DOSAVE ANOP
 ST R13,INITS&SYSNDX.+4 *BACKWARD CHAIN
 LA R15,INITS&SYSNDX.
 ST R15,8(R13) *FORWARD CHAIN
 LR R13,R15 *READY FOR GO
Appendix E. FTP user exits and sample code 543

 AIF ('&FLOAT' EQ 'NO').NOFLSAV
&FLOATSAV SETC 'INITF&SYSNDX'
 STD FR0,&FLOATSAV.
 STD FR2,&FLOATSAV.+8
 STD FR4,&FLOATSAV.+16
 STD FR6,&FLOATSAV.+24
&FLOATREG SETB 1
.NOFLSAV ANOP
 AIF ('&RENT' EQ 'NO').USOK
 DROP R15
.USOK ANOP
.*
 MEND

E.7 assembler exit code (INIT MACRO)
This macro generates standard exit code from an assembler routine.

 MACRO
 TERM &RC=
 GBLB &FLOATREG,&INIRENT
 GBLA &GETLEN
 AIF ('&RC' EQ '').NORC
 AIF ('&RC'(1,1) EQ 'R').REG
 LA R15,&RC *SET RETURN REGISTER
 AGO .NORC
.REG ANOP
 LR R15,&RC *SET RETURN REGISTER
.NORC ANOP
 AIF (&FLOATREG EQ 0).NOFL
 LD FR0,18*4(R13) *FR0
 LD FR2,18*4+8(R13) *FR2
 LD FR4,18*4+16(R13) *FR3
 LD FR6,18*4+24(R13) *FR6
.NOFL ANOP
 AIF (NOT &INIRENT).NOR
 LR R1,R13 *REMEMBER FOR FREEMAIN
.NOR ANOP
 L R13,4(R13) *POP SAVEAREAS
 AIF (NOT &INIRENT).NORENT
 LR R6,R15 *SAVE RC
 LA R0,&GETLEN *LENGHT TO FREEMAIN
 FREEMAIN R,A=(R1),LV=(R0)
 LR R15,R6 *REMENER RC
.NORENT ANOP
 L R14,12(R13) *RESTORE REG14
 LM R0,R12,20(R13) *RESTORE REMAINING REGS
 BR R14 *RETURN....
 MEND
544 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

E.8 FTPOSTPR user exit
/**/
/*
 Communications Server for OS/390, Version 2, Release 10

 Copyright: Licensed Materials - Property of IBM
 "Restricted Materials of IBM"
 5647-A01
 (C) Copyright IBM Corp. 2000.
 US Government Users Restricted Rights -
 Use, duplication or disclosure restricted by
 GSA ADP Schedule Contract with IBM Corp.

 Status: CSV2R10

 Function: Sample FTP User exit that allows for post-FTP
 processing

 This is unsupported code which is provided on an "as is" basis.

 Parameters being passed in from the FTP server via the
 parameter list:

 +0 -- Pointer to the word with the user exit return code
 +4 -- Pointer to the number of parameters passed in
 +8 -- Pointer to the 8-byte buffer containing the USERID
 +12-- Pointer to the 4-byte client IP address
 +16-- Pointer to the 2-byte client port number
 +20-- Pointer to the 4 byte character string with current
 directory type:
 MVS or HFS (left justified)
 +24-- Pointer to a buffer that contains the current directory
 value, the first two bytes hold the length of the
 remaining buffer.
 +28-- Pointer to the 4 character byte field that contains the
 current filetype (SEQ, JES, SQL), left justified
 +32-- Pointer to the 3 character byte field that contains the
 current FTP reply code
 +36-- Pointer to buffer that contains FTP reply string; first
 two bytes contain the length of the remaining buffer
 +40-- Pointer to the 4 byte field that contains the current
 FTP command code
 +44-- Pointer to the 1 char byte field that contains the current
 CONDDISP setting-
 C for catalog, D for delete
 +48-- Pointer to the 4 byte binary field that contains the close
 reason code:
 0 -- transfer completed normally
 4 -- transfer aborted before data connection was
 established
 8 -- transfer aborted with socket communication errors
 12 -- transfer aborted after data connection was
 established
 16 -- transfer aborted with SLQ file errors after data
 connection was established
*/
/**/
/* */
/* FTPOSTPR USER EXIT */
Appendix E. FTP user exits and sample code 545

/* */
/**/

#pragma linkage(FTPOSTPR, fetchable)

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdio.h>
#include <stdlib.h>
#include <syslog.h>

/* set up structure needed for current directory value */
typedef struct {
 short dirlen;
 char dirname[1100];
 }currdir;

/* set up structure needed for reply string value */
typedef struct {
 short replylen;
 char reply[1200];
 }replystr;

/* beginning of FTPOSTPR function */
int FTPOSTPR(int *exitrc, int *numparms, char exitusrid[8],
 unsigned long *clientIP, unsigned int *clientport,
 char dirtype[4], currdir *cwd, char filetype[4],
 char replycode[3], replystr *rs, char cmdcode[4],
 char *conddispvalue, int *closerc)
{

 char userid[9];
 memset(userid,'\0',9);
 memcpy(userid,exitusrid,8);
 /* write message to syslog */
 syslog(LOG_INFO,"FTPOSTPR: FTP process completed with rc of "
 "%d, userid '%s', client IP %0.8X, client port %d, "
 "reply code '%s', and reply string '%s'",
 *closerc, userid, *clientIP, *clientport, replycode,
 rs->reply);
}

E.9 Sample JCL to compile and link-edit the FTPOSTPR user
exit

//CCFTPOST JOB (KAKKY,1A1767),'T.KAKIMOTO',MSGCLASS=X,NOTIFY=&SYSUID
//*
//PROCS JCLLIB ORDER=CBC.SCBCPRC
//CLG EXEC EDCCL,
// INFILE=KAKKY.TCPIP.SRCJCL(FTPOSTPR),
// CPARM='LIST,SOURCE'
//COMPILE.SYSLIB DD
546 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

// DD DISP=SHR,DSN=TCPIP.SEZACMAC
//LKED.SYSLIB DD DISP=SHR,DSN=TCPIP.SEZACMTX
// DD DISP=SHR,DSN=CEE.SCEELKED
//LKED.SYSLMOD DD DISP=SHR,DSN=TCPIP.TCPPARMS.VTAMLIB(FTPOSTPR)
//LKED.SYSIN DD *
 NAME FTPOSTPR(R)
Appendix E. FTP user exits and sample code 547

548 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Appendix F. FTP client sample REXX program

This appendix contains the REXX source code to execute the FTP client. This REXX program
can be executed in both a TSO environment and UNIX System Services environment.

F.1 REXX sample program for FTP client
/* rexx */
/* */
/* Example REXX exec for FTP */
/* */

parse arg infile outfile . /* get command line input */
parse source env . /* check if running under OE */
 /* env='OpenMVS' if invoked */
 /* from OE, otherwise env=' ' */
input_file = ''
output_file = ''

/*************************************/
/* Process input file */
/*************************************/
if infile = '' then /* input file not specified */
 do
 say 'Input file name is required.'
 exit 12 /* return error */
 end
else
 do
 /* for OE check if input file exist and add redirection to */
 /* FTP command issued to OE shell. */
 if env = "OpenMVS" then
 do /* OE environment. */
 address syscall "stat (infile) fstat." /* input file exist? */
 if fstat.0 = 0 then
 do
 say 'Input file:' infile 'not found.'
 exit 28
 end

F

© Copyright IBM Corp. 1998 2002 549

 input_file = '<' infile
 end
 /* For TSO allocate DD INPUT */
 else
 do /* TSO environment */
 ADDRESS TSO "ALLOC DA('"&lor.&lor.infile&lor.&lor."') DD(INPUT) SHR REUSE"
 if rc ¬sym.=0 then /* ALLOC failed */
 do
 say "*ERROR: ALLOC" infile "failed with return code =" rc
 exit 12 /* return error */
 end
 end
/*************************************/
/* Process output file */
/*************************************/
if outfile <> '' then
 /* for OE add redirection to FTP command issued to OE shell */
 if env = "OpenMVS" then
 output_file = '>' outfile
 /* For TSO allocate DD OUTPUT */
 else
 do /* TSO environment */
 ADDRESS TSO "ALLOC DA('"&lor.&lor.outfile&lor.&lor."') DD(OUTPUT) SHR REUSE"
 if rc ¬sym.=0 then
 do
 say "*ERROR: ALLOC" outfile "failed with return code =" rc
 exit 12 /* return error */
 end
 end
/* say " ALLOC : IN ->" infile " OUT ->" outfile */
/*************************************/
/* Invoke FTP client */
/*************************************/
"ftp -v -p T03ATCP" input_file output_file

if env <> "OpenMVS" then
 do
 "FREE DD(INPUT)" /* free the DD(INPUT) */
 if outfile <> '' then
 "FREE DD(OUTPUT)" /* free the DD(OUTPUT) */
 end

say "FTP client return code is:" rc /* print client return code */
exit 0 /* return to invoker */
550 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 552.

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base
and TN3270 Configuration, SG24-5227

� OS/390 eNetwork Communications Server for V2R7 TCP/IP Implementation Guide
Volume 3: MVS Applications, SG24-5229

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 4:
Connectivity and Routing, SG24-6516

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 5:
Availability, Scalability, and Performance, SG24-6517

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 6: Policy
and Network Management, SG24-6839

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security,
SG24-6840

� TCP/IP in a Sysplex, SG24-5235

� Managing OS/390 TCP/IP with SNMP, SG24-5866

� Secure e-business in TCP/IP Networks on OS/390 and z/OS, SG24-5383

� TCP/IP Tutorial and Technical Overview, GG24-3376

� Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender,
SG24-5957

� Networking with z/OS and Cisco Routers: An Interoperability Guide, SG24-6297

� zSeries HiperSockets, SG24-6816

Other resources
These publications are also relevant as further information sources:

� z/OS V1R2.0 UNIX System Services Planning, GA22-7800

� z/OS V1R2.0 UNIX System Services User’s Guide, GA22-7801

� z/OS V1R1.0-V1R2.0 MVS Initialization and Tuning Guide, SA22-7591

� z/OS V1R2.0 C/C++ Programming Guide, SC09-4765

� z/OS V1R2.0 C/C++ Run-Time Library Reference, SA22-7821

� z/OS V1R2.0 CS: IP Migration, GC31-8773

� z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775

� z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776

� z/OS V1R2.0 CS: IP User’s Guide and Commands, SC31-8780
© Copyright IBM Corp. 1998 2002 551

� z/OS V1R2.0 CS: IP System Administrator’s Commands, SC31-8781

� z/OS V1R2.0 CS: IP Diagnosis, GC31-8782

� z/OS V1R2.0 CS: IP Messages Volume 1 (EZA), SC31-8783

� z/OS V1R2.0 CS: IP Messages Volume 2 (EZB), SC31-8784

� z/OS V1R2.0 CS: IP Messages Volume 3 (EZY), SC31-8785

� z/OS V1R2.0 CS: IP Messages Volume 4 (EZZ-SNM), SC31-8786

� z/OS V1R2.0 CS: IP Application Programming Interface Guide, SC31-8788

Referenced Web sites
These Web sites are also relevant as further information sources:

� The z/OS Web pages

http://www-1.ibm.com/servers/eserver/zseries/zos/installation/installz12.html

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for Redbooks at the
following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM images) from
that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
site for information about all the CD-ROMs offered, as well as updates and formats.
552 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Index

Symbols
.ti files 21
/etc/banner 17
/etc/ftp.data 129
/etc/inetd.conf 33, 418
/etc/rc 161, 419
/usr/sbin/ruserok 35
/usr/share/lib/terminfo 21

A
AF_INET 4, 436
AF_INET6 4
AF_UNIX 4, 436
aliases database 45
anonymous FTP 237
ANONYMOUSLOGINMSG 189
application programming interfaces 3
ASCII 130
AUTOLOG statement 162
AUTOLOG subtask 162

B
banner page 17
batch requests in FTP 232
Berkeley Internet Name Domain (BND) 315
Bind Image Negotiation Layer Services (BINL) 282, 305

BINL configuration file 312
BINL server 312
definition of DHCP/PXE/BINL server 311
DHCP/PXE keywords 311

BINL 281, 305
BOOTP 283
BPX.DAEMON RACF facility class 35, 235, 248
BPXISMKD 17
BPXMKDIR 17
byte stream 260

C
character-at-a-time mode 15
chargen 420
chcp command 16
code page 16
CTRLCONN 132

D
dadmin utility 291
data class (SMS) 128
data structure 145
data type 145
daytime 420
DDNS 281
ddns.dat 296
© Copyright IBM Corp. 1998 2002
deregistration, DNS 342
DHCP 281, 283
DHCP/PXE 281
dhcpsd.cfg 285
discard 420
DISPLAY environment variable 8
Distributed Programming Interface (DPI) 9
DNS

resolution of server name 341
DNS/WLM 316

address definition 348
deregistration 345
dump 354
group definition 126
PROFILE.TCPIP 345
query to WLM 340
recommendations 348
refresh 354
registration 345
round-robin 348
service 344
SYSPLEXRouting 345
TCPIP.DATA 350
WLMClustername 345

Domain Name System (DNS)
active socket 409
boot file 91
cache file 332
domain

forward mapping 318
in-addr.arpa 319
reverse mapping 319
root 318
zone 318

domain file 328
dump 354, 409
forward file 92, 328
in-addr.arpa file 331
iterative query 319
loopback file 331
MX records 88
process ID 409
PROFILE.TCPIP 345
recursive query 319
resolver 319
resource record 318–319, 328
reverse file 331
root name server 319
secondary name server 338
sendmail 87

operation 96
SOA 331
start of authority (SOA) record 331
statistics 411
time to live (TTL) 330, 348
 553

TTL 330, 348
DPI 9
Dynamic DNS (DDNS) 282, 293

boot file 297
ddns.dat 296
DHCP server 288
dynamic presecured 294
dynamic secured 294
implementation 294
keys 290, 295
public key 298
reverse file 299
startup 300
zone key 296

Dynamic Host Configuration Protocol (DHCP) 282
acquiring information 283
ARP 284
configuration file 285
dadmin utility 291
DDNS client 288
definition of DHCP/PXE/BINL server 311
DHCP and PXE extensions 306
DHCP procedure 283
DHCP/PXE configuration file 311
DHCP/PXE keywords 311
DHCPACK 284
DHCPDECLINE 284
DHCPREQUEST 284
dhcpsd.cfg 285
implementation 285
leases 284
log file 287
nsupdate command 288
policies 283
PXEDHCP 311
PXEPROXY 311
renewing 284
start command 290
trace 287
verbose 291

dynamic IP 281

E
EBCDIC 130
echo 420
environment variable

_BPX_JOBNAME 161
_BPXK_SETIBMOPT_TRANSPORT 291
DISPLAY 28
LIBPATH 29
TERM 21

F
facility name 439
Fast Response Cache Accelerator (FRCA) 451–452

configuration 457
monitoring 461

FID 239
File Transfer Protocol (FTP)

$HOME directory 170
/etc/ftp.data 129
anonymous FTP 237
anonymous user 237
ANONYMOUSLEVEL 240, 246
ANONYMOUSLOGINMSG 189
ANONYMOUSMVSINFO 189
ASCII 130, 146
ASCII transfer 149
automount 226
batch FTP requests 232
block transfer 148
browsing a file from a Web browser 182
CCTRANS 133
CCXLATE 132
compressed transfer 148
CTRLCONN 132, 134
current working directory 167, 169
data set mode 142
data set or file name 169
data structure 145
data type 145
DB2 SQL queries 226
DB2 statement 226
DBCS translation table search order 133
directory mode 142
DNS/WLM 126
DSNEXIT 159
DSNLOAD 159
EBCDIC 130, 146
EZAFTSMQ DB2 plan 226
filetype JES 221
filetype SQL 226, 231
FTCHKCMD user exit 247, 528
FTCHKIP user exit 246, 525
FTCHKJES user exit 247, 531
FTCHKPWD user exit 247, 527
FTOEBIND sample job 226
FTP client 202, 214
FTP client in a batch job 212
FTP client in OS/390 UNIX 209
FTP client in REXX 216
FTP client sample REXX program 549
FTP overview 124
FTP.DATA 129
FTPOSTPR user exit 199, 545
FTPSMFEX user exit 165
fully qualified resource name 169
IMAGE 146
image transfer 146
INIT macro 541
initial directory 167
introduction 124
JDUMP 248
JES interface 221
JESINTERFACELEVEL 195
JESLRECL 248
JESPUTGET timeout value 224
JESRECFM 248
JTRACE 248
554 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

load module transfer 184
LOCSITE parameter 127–128
LOCSITE subcommand 205
LOCSTAT 205
LOGINMSG 189
magic cookies 187
MDTM 192
MODE 147
multiple-stacks environment 159
MVSINFO 189
NETRC data set 203
NJE FTP usage 224
PROFILE.TCPIP 162
program control 227, 235
proxy FTP 217
QUOTE 129
QUOTESOVERRIDE 170
RACROUTE Verify 236
RDW option 150
RDW sample post proprocessor 536
record structure option 152
SBCS translation 131
SBCS translation table search order 132
SBDATACONN 132, 135
SBTRANS 133
security consideration 234
SENDSITE subcommand 213
SITE 127, 194
SIZE 192
SMF record 164
SMFCONFIG 164–165
SMS constructs 128
special characters in file name 169
SPREAD SQL option 233
SQL FTP query 159
SQLCOL SQL option 233
STARTDIRECTORY 167
STAT 194
stream transfer 147
STRUCT data type 147
STRUCT R subcommand 152
SUNIQUE 207
tape data sets 226
transfer mode 145
TRANSLATE 130–131
translate tables 130
TSO prefix 143, 167
UCS-2 203
UCSHOSTCS 135
unicode data transfer 141, 203
URL with ftp request 229
user exit implementation 247
user exits 246
Web browser support 181
welcome page 187
WLMCLUSTERNAME 126
working directory 169
XLATE 132, 135

forward mapping 318
FSOBJ RACF class 239

FTCHKCMD user exit 199, 247, 528
FTCHKIP user exit 246, 525
FTCHKJES user exit 247, 531
FTCHKPWD user exit 247, 527
FTP RDW sample postprocessor 536
FTP.DATA 129
FTPOSTPR user exit 199, 545
FTPSMFEX user exit 165

G
generic server 159

H
HTTP server 451, 453

administration forms 455
configuration 455
FRCA configuration 457
FRCA monitor 461
started procedure 453
trace 462

I
ICH408I 239
IN6ADDR_ANY 4
IN6ADDR_LOOPBACK 4
in-addr.arpa file 331
INADDR_ANY 160
InetD 417

chargen 420
daytime 420
discard 420
echo 420
time 420

INIT macro 541
internet domain socket 4
IPv6 4
IWMDNREG 344
IWMSRSRG 344

J
JES interface from FTP server 221
JES put-get operation 223
JESINTERFACELEVEL 195
JESPUTGET timeout value 224
JESSPOOL RACF class 195

L
librpclib.a 7
line mode 15
local socket 5
LOCSITE FTP subcommand 205
LOCSITE parameter 127–128
LOCSTAT FTP subcommand 205
LOGINMSG 189
Lotus Domino Go Web Server 451
Lotus Notes 116
 Index 555

M
m4 preprocessor 53
magic cookies 187
mail delivery agent (MDA) 40
mail server 39
mail transfer agent (MTA) 40
management class (SMS) 128
MAXPTYS 18
MDA 40
MDTM FTP subcommand 192
mknod 18
MTA 40
MUA 40
MVSINFO 189
mvslogin command 263
mvslogout command 263

N
NCS 6
NETRC data set 203
Network Computing System (NCS) 6
Network File System (NFS) 253

access serialization 261
AIX as NFS client 264
attributes data set 261
byte stream 260
configuration tasks 261
creating data sets 256
data set creation attributes 262
end-of-line processing 260
exports data set 262
file system model 257
hard mount 274
idempotent 256
introduction 254
large data sets 260
mount 257
mounting a file system 258
MVS Enqueue 261
mvslogin command 263
OS/2 as NFS client 268
partitioned data sets 257
performance 274
processing attributes 262
reading and writing data sets 256
record mapping 260
showattr command 263
site attributes 261
soft mount 274
stateless 256
text processing 260
translate tables 260
writetimeout attribute 261

network socket 4
NFS 254
NJE forward of FTP files 224
NJE gateway 39
NJE/RSCS 39
nsupdate command 288

NVT-ASCII 145

O
OE API 3
ONC/RPC files 7
ONC/RPC port mapper 429
orexec client 38
orexecd server 31
orshd server 31
OS/390 UNIX port mapper 429
OSF/Motif 7, 26
otelnetd 15

P
pathname 5
physical file system 5
POP3 39
popper 39, 75

debugging 85
implementation 76
operation 83

port mapper 429
PORT statement 162
Post Office Protocol (POP3) 39
Pre-Boot Execution Services (PXE) 282, 303

BINL server 310
boot procedure 310
client network name 306
client system architecture 306
client user / group ID 306
Client User/Group ID (UUID) 306, 310
definition of DHCP/PXE/BINL server 311
DHCP and PXE extensions 306
DHCP header 306
DHCP with PXE-extensions 305
DHCP/PXE configuration file 311
DHCP/PXE option class 60 309
DHCP/PXE protocol flow overview 308
Intel Wired For Management Baseline 305
location of DHCP/PXE/BINL server 310
Pre-Boot Execution Environment Protocol 305
PXE API 304
PXE boot server typess 308
PXE class identifier 307
PXE client identifier 310
PXE extension commands 307
PXE message type 307
PXE parameter request list 307
PXE pre-boot procedure 309
PXE vendor options 307
PXEDHCP 311
PXE-enabled client 305
PXEPROXY 311
Trivial file transfer protocol (TFTP) API 304
UNDI 306
Universal network driver interface (UNDI) API 305
User datagram protocol (UDP) API 305

priority code 439
program control 227, 235, 248
556 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

pseudoterminal 17
PXE 281–282, 303

Q
Quality of Service (QoS)

RAPI 11
queue directory 45

R
RACF

BPX.DAEMON facility class 35, 235, 248
FSOBJ class 239
program control 227, 235, 248
RACROUTE Verify 236
STARTED facility class 235
terminal class 236

RACROUTE Verify 236
raw mode 15
rcopy command 32
RDW FTP option 150
Redbooks Web site 552

Contact us xv
registration, DNS 342
remote procedure call APIs 5
Request for Comments (RFC)

RFC 1785 275
RFC 1901 9
RFC 2131 285
RFC 2132 285
RFC 2347 275
RFC 2348 275
RFC 2349 275
RFC 868 449
RFC1228 9
RFC1592 9

resolver 319
resource record 318, 328
reverse file 331
reverse mapping 319
REXEC in OS/390 UNIX 31

rexec client 38
user and password 32

rhosts.data 32
round-robin 342
RSH in OS/390 UNIX 31

/usr/sbin/ruserok 35
rhosts.data 32
user and password 33
user exit 35

S
SBDATACONN 132
secondary name server 338
sendmail 39

/etc/inetd.conf file 77
/etc/sendmail.cf file 50
/etc/sendmail.hf file 50
/etc/sendmail.st file 49

/etc/services file 76
8BITMIME 66
alias file 44
aliases 44
aliases database 45
-b mode 71
-b option 67
-bd sendmail as a daemon 71
-bi initialize alias database 71
-bp print the message queue 71
-bt rule testing mode 71
configuration 54
-d option 67
debugging mode 67
displaying queue information 45
divert 60
dnl. 59
Domain Name System (DNS) 87
DSN 66
EHLO 66
ESMTP 66
EXPN 66
extended modes 67
extended SMTP 66
HELO 66
identity 79–80
incoming mail server 81
incomming mail 79
initiating debugging output 64
local delivery agent 49
local mailer program 40
local users 76
log information receiver 73
logging 71
Lotus Notes 116
m4 macro preprocessor 52
m4 preprocessor 53
m4 preprocessor run 53, 56
m4 process 71
m4 run 58
Mail and Newsgroups 79
Mail Delivery Agent (MDA) 40, 76
mail servers 79–80
Mail Transfer Agent (MTA) 40
Mail User Agent (MUA) 40, 76
mailstats command 49
MX records 66, 88
newaliases 45
outgoing mail 79
outgoing mail server 82
PART.file 112
POP3 76
POP3 MUA definitions 78
popper 39, 75

debugging 85
implementation 76
operation 83

postmaster 44
printing the queue 47
processing the queue 48
 Index 557

queue directory 44–45
queue information 45
relationship of .m4 files 56
resolver 66
running sendmail 60
sample.mc 52
sendmail client's and server's role 65
sendmail server 40
sendmail statistic file 44
sendmail.cf 44
server type 79, 81
simple mode 60
SMTP connection 40
SMTP delivery agent 49
SMTP gateway 42
started procedure 64
syslog 71
syslog logging priority 72
syslog output 74
temporary maildrop file 77
temporary maildrop file cannot be opened 87
using Netscape to send messages 84
UUCP delivery agent 49
-v option 67
verbose mode 67

SENDSITE FTP subcommand 213
showattr command 263
SITE FTP subcommand 194
SIZE FTP subcommand 192
SMF record 164
SMFCONFIG statement 164
SMS 128

data class 128
management class 128
storage class 128

SMTP server 39
SMTPROC 39
SNMP DPI 9
socket address 4–5
SQL queries via FTP 226
started procedure

FTP server 227
HTTP server 453
InetD 419
port mapper 431
sendmail 64
syslogd 445
TFTPD 277

STARTED RACF facility class 235
STAT FTP subcommand 194
storage class (SMS) 128
SUNIQUE FTP subcommand 207
syslogd 435

/etc/syslog.conf 441
AF_UNIX 436
closelog() call 443
facility name 439
openlog() call 443
port reservation 444
priority code 439

start syslogd 444
syslog() call 443
syslog.h 443
syslogd isolation 437

SYSPLEXROUTING 340
SYSPLEXRouting 345

T
telnet server 15

.ti files 21
banner page 17
BPXISMKD 18
BPXMKDIR 18
character-at-a-time mode 15
code page 16
DBCS 17
line mode 15
MAXPTYS 18
mknod command 18
options 19
pseudoterminal 17
raw mode 15
termcap 20
terminfo 20
terminfo database 21
tic compiler 21
urgent data 16

TelnetD 15
TERM environment variable 21
termcap 20
terminal RACF class 236
terminfo 20
terminfo database 21
TFTP 275
tic compiler 21
time 420
Time server (TIMED) 449

InetD 449
time to live (TTL) 330, 348
TIMED 420, 449
transfer mode 145
TRANSLATE 130
TRANSLATE option 131
Trivial file transfer protocol (TFTP) 275

command 276
starting 277

TTL 348

U
UCS-2 203
unicode data transfer 203
UNIX domain socket 5
UNIX System Services

chcp command 16
mailstats command 49
mknod command 18
mvslogin command 263
mvslogout command 263
nsupdate command 288
558 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

showattr command 263
UNIX System Services API 4

V
variable length records 150

W
Web server 451
WLM

registration of application 340, 344
registration of stack 340

WLMCLUSTERNAME 126
WLMClustername 345

X
X-Window system 25

APIs 7
creating X application 26
DISPLAY environment variable 28
DLL compilation option 26
dynamic linkage libraries (DLLs) 8
executing X applications 28
introduction 25
OSF/Motif 26
porting codes 27
toolkit 26
TSO environment 25
UNIX Systems Services environment 25
X client 25
X server 25
X-11 R4 25
X-11 R6 25
Xclock sample program 29
Xdefaults variable file 29

Z
zone 318
 Index 559

560 Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications

(1.0” spine)
0.875”<->1.498”

460 <-> 788 pages

Com
m

unications Server for z/OS V1R2 TCP/IP
Im

plem
entation Guide Volum

e 2: UNIX Applications

®

SG24-5228-03 ISBN 073842692X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Communications Server
for z/OS V1R2 TCP/IP
Implementation Guide

Provides a detailed
survey of CS for z/OS
applications and APIs

Covers DNS, FTP,
syslogd, otelnet,
sendmail, and much
more

Uses scenarios to
ease your application
deployment

The Internet and enterprise-based networks have led to the rapidly
increasing reliance upon TCP/IP implementations. The zSeries platform
provides an environment in which critical business applications flourish.
The demands placed on these systems is ever-increasing and such
demands require a solid, scalable, highly available, and highly
performing Operating System and TCP/IP component. z/OS and
Communications Server for z/OS provide for such a requirement with a
TCP/IP stack that is robust and rich in functionality.

The Communications Server for z/OS TCP/IP Implementation Guide
series provides a comprehensive, in-depth survey of CS for z/OS.
Volume 2 covers the UNIX applications shipped as part of
Communications Server for z/OS IP. In this volume, we classify z/OS
applications and provide a detailed survey of the protocols and
implementation issues associated with each. These applications
provide a rich set of functionality, including remote execution with
otelnet and file transfers with FTP and TFTP. In addition, we cover
important network functions such as DNS, Dynamic IP, syslogd, and
NFS. We provide scenario-based discussions to aid in application
deployment.

Because of the varied scope of CS for z/OS, this volume is not intended
to cover all aspects of the topic. The main goal of this volume is to
provide an insight into the different applications provided by CS for z/OS
and, more specifically, into the protocols they use and the mechanisms
to deploy them. For more information, including on applications
available with CS for z/OS IP, please reference the other volumes in the
series.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Notice
	Comments welcome

	Part 1 Introduction
	Chapter 1. z/OS UNIX application programming interfaces
	1.1 UNIX System Services APIs
	1.2 Remote procedure APIs
	1.2.1 ONC/RPC files and libraries

	1.3 X-Windows programming interfaces
	1.3.1 X-Windows dynamic linkage libraries

	1.4 SNMP agent distributed programming interface (DPI)
	1.5 Resource Reservation Protocol API (RAPI)
	1.5.1 RAPI overview
	1.5.2 Compiling and linking RAPI applications
	1.5.3 Running RAPI applications

	Part 2 Productivity applications
	Chapter 2. z/OS UNIX telnet server
	2.1 z/OS UNIX telnet server overview
	2.2 Pseudoterminals
	2.3 Starting the z/OS UNIX telnet server
	2.4 Termcap and terminfo
	2.4.1 TERMINFO environment variable
	2.4.2 z/OS UNIX otelnetd logging

	Chapter 3. X-Window system
	3.1 Creating X-Window applications
	3.2 Running X-Window applications

	Chapter 4. z/OS UNIX remote command execution
	4.1 z/OS UNIX remote command execution overview
	4.2 Starting the REXECD and RSHD servers
	4.3 Trusted host concept with RSHD server
	4.4 REXEC client in the z/OS UNIX environment

	Chapter 5. z/OS UNIX sendmail
	5.1 Overview and terms
	5.1.1 Configuration of our basic tests
	5.1.2 Configuration of our extended tests

	5.2 Configuration of sendmail
	5.2.1 Alias file
	5.2.2 Queue directory
	5.2.3 The sendmail.st file
	5.2.4 The sendmail.hf file
	5.2.5 The sendmail.cf file
	5.2.6 M4 preprocessor

	5.3 Running sendmail
	5.3.1 sendmail's client mode
	5.3.2 sendmail's server/daemon role
	5.3.3 Some considerations about sendmail client and server roles
	5.3.4 sendmail's tasks to get mail transmitted
	5.3.5 sendmail extended modes
	5.3.6 Logging

	5.4 The popper server
	5.4.1 Introduction
	5.4.2 z/OS popper implementation
	5.4.3 POP3 definitions for the MUA
	5.4.4 Using the popper
	5.4.5 Using Netscape to send files
	5.4.6 popper debugging samples

	5.5 Bind-based Domain Name Server and sendmail
	5.5.1 MX records
	5.5.2 Configuration
	5.5.3 Files in the BIND-based DNS server
	5.5.4 Startup
	5.5.5 Operation of DNS server with sendmail

	5.6 sendmail and SMTP
	5.6.1 Configuration of SMTPPROC
	5.6.2 Mail from sendmail to SMTPPROC
	5.6.3 Mail from SMTP to sendmail
	5.6.4 Mail from sendmail to NJE/RSCS
	5.6.5 Mail from NJE/RSCS nodes to sendmail

	5.7 sendmail and Lotus Notes
	5.7.1 Submit a job to send a mail

	Part 3 File-related applications
	Chapter 6. File Transfer Protocol (FTP)
	6.1 Introduction to FTP
	6.2 CS for z/OS IP: FTP overview
	6.2.1 Server and client overview
	6.2.2 Process flow of UNIX System Services FTP
	6.2.3 SITE and LOCSITE parameters
	6.2.4 Specification of FTP default values
	6.2.5 FTP translate tables
	6.2.6 Supported translations
	6.2.7 Translation tables search order
	6.2.8 Selecting translation tables
	6.2.9 Directory mode or data set mode
	6.2.10 Transfer mode, data type and data structure
	6.2.11 Stream-oriented or record-oriented
	6.2.12 Using the RDW option
	6.2.13 Using the FTP record structure option
	6.2.14 New features introduced with CS for z/OS V1R2 IP

	6.3 z/OS FTP server configuration and implementation
	6.3.1 Configuring the FTP server
	6.3.2 Setting up the syslog daemon
	6.3.3 Security environment for FTP servers
	6.3.4 The catalogued procedure for FTP servers
	6.3.5 Starting FTP servers from the z/OS UNIX shell
	6.3.6 PROFILE.TCPIP for FTP servers
	6.3.7 SMF records

	6.4 Server customization and usage
	6.4.1 Users of the FTP server
	6.4.2 MVS datasets and HFS files
	6.4.3 Restartability
	6.4.4 Using a socks server
	6.4.5 FTP Tracing
	6.4.6 Using the latest FTP features (RFC2389 and 2640)
	6.4.7 FTP from a Web browser
	6.4.8 Transferring load modules
	6.4.9 Setting up a welcome page
	6.4.10 Using the SIZE and MDTM commands
	6.4.11 Using the STAT and SITE commands
	6.4.12 JES interface
	6.4.13 User exits
	6.4.14 Using the directory command

	6.5 Client customization and usage
	6.5.1 Using FTP client in z/OS
	6.5.2 FTP client NETRC data set
	6.5.3 Setting USER level FTP Server options
	6.5.4 LOCSTAT and LOCSITE commands
	6.5.5 FTP SUNIQUE command
	6.5.6 Using FTP client in the z/OS UNIX shell environment
	6.5.7 FTP client in a batch job
	6.5.8 FTP server DDNAME and batch job comment support
	6.5.9 FTP client in REXX
	6.5.10 Proxy FTP
	6.5.11 FTP server interface to JES
	6.5.12 Use NJE network to forward files
	6.5.13 FTP and use of tape data sets
	6.5.14 DB2 SQL queries with FTP
	6.5.15 Using the FTP SQL query function from a remote FTP client
	6.5.16 Using the FTP SQL query function from a local TSO FTP client
	6.5.17 FTP SQL query output

	6.6 Security in the FTP environment
	6.6.1 FTP server RACF definition
	6.6.2 Signing on to the z/OS FTP server
	6.6.3 Implementing an anonymous user
	6.6.4 FTPD server security user exit routines
	6.6.5 Using a SURROGATE user
	6.6.6 Guarding against bounce attacks
	6.6.7 Transport Layer Security (TLS) and Kerberos

	Chapter 7. Network File System (NFS)
	7.1 Introduction to NFS
	7.1.1 Accessing data sets

	7.2 Configuring the Network File System (NFS)
	7.2.1 The NFS file system model
	7.2.2 Byte stream and record mapping considerations
	7.2.3 Accessing EBCDIC data sets from ASCII hosts
	7.2.4 Access serialization to data sets
	7.2.5 Preparing to use the z/OS NFS server
	7.2.6 Using the DFP Network File System server from AIX
	7.2.7 Using the DFP Network File System server from OS/2

	7.3 Configuring NFS as a client
	7.3.1 Changes to SYS1.PARMLIB and SYS1.PROCLIB
	7.3.2 Using the NFS client

	7.4 Performance

	Chapter 8. Trivial File Transfer Protocol (TFTP)
	8.1 tftpd command syntax
	8.2 Starting the z/OS TFTP server
	8.3 z/OS TFTP server security

	Part 4 Bootstrapping functions
	Chapter 9. Dynamic IP with DHCP/PXE, BINL and DDNS
	9.1 Overview of Dynamic IP
	9.2 Dynamic Host Configuration Protocol (DHCP)
	9.2.1 How does DHCP work?
	9.2.2 Implementing DHCP
	9.2.3 Configuring DHCP for dynamic IP (DDNS client)
	9.2.4 Generating keys for DDNS updates by the DHCP server
	9.2.5 Start the DHCP server
	9.2.6 DADMIN utility

	9.3 Dynamic Domain Name System (DDNS)
	9.3.1 Generating zone keys
	9.3.2 MVS03 DDNS boot file
	9.3.3 MVS03 DDNS domain file
	9.3.4 MVS03 DDNS reverse file
	9.3.5 Starting the DDNS
	9.3.6 A DDNS client requesting dynamic update

	9.4 Pre-Boot eXecution Environment (PXE)
	9.4.1 Current state of Dynamic IP
	9.4.2 New requirements
	9.4.3 Common solution
	9.4.4 IBM's solution
	9.4.5 The overall DHCP, DDNS, PXE, BINL, boot server environment
	9.4.6 DHCP/PXE protocol flow overview
	9.4.7 Location of the DHCP/PXE/BINL servers
	9.4.8 Definition of the DHCP/PXE/BINL servers

	Chapter 10. BIND Domain Name System (DNS)
	10.1 Domain Name System overview
	10.1.1 Why DNS?
	10.1.2 What is the Domain Name System?
	10.1.3 Files to support a DNS implementation

	10.2 Setting up a BIND 4.9.3-based Domain Name Server
	10.2.1 Define your zone
	10.2.2 Create a configuration file for your environment (named.boot)
	10.2.3 Specify stack affinity (multiple stack environment)
	10.2.4 Specify port ownership
	10.2.5 Update the name server start procedure (optional)
	10.2.6 Create the domain data files
	10.2.7 Create the loopback file
	10.2.8 Create the cache file (hints file)
	10.2.9 Starting the DNS server
	10.2.10 Verifying if the name server has started correctly
	10.2.11 Reloading the Domain Name Server V4.9.3
	10.2.12 Stopping the DNS server
	10.2.13 Implementing a secondary name server DNS64

	10.3 DNS/WLM - Connection Optimization in a sysplex domain
	10.3.1 How load distribution works using DNS/WLM
	10.3.2 Data returned by the name server
	10.3.3 WLM weights
	10.3.4 Static addresses versus registered addresses
	10.3.5 Benefits of DNS/WLM workload distribution
	10.3.6 DNS/WLM limitations
	10.3.7 Application and stack registration to WLM
	10.3.8 DNS/WLM registration
	10.3.9 DNS/WLM registration results
	10.3.10 Data returned by the name server
	10.3.11 Recommendation for DNS/WLM address definition
	10.3.12 Round-robin technique and addresses returned
	10.3.13 DNS/WLM TCPDATA considerations
	10.3.14 Client/server affinity
	10.3.15 Configuring the DNS server for WLM

	10.4 Setting up a BIND 9-based Domain Name Server
	10.4.1 Migrating from a BIND V4.9.3 DNS environment
	10.4.2 Define your zone
	10.4.3 Create a configuration file for your environment (named.conf)
	10.4.4 Specify port ownership
	10.4.5 Update the name server start procedure (optional)
	10.4.6 Create the domain data files
	10.4.7 Create the loopback file
	10.4.8 Create the cache file (hints file)
	10.4.9 Configuring logging
	10.4.10 Starting the DNS server
	10.4.11 Verifying that the name server has started correctly
	10.4.12 Reloading BIND V9
	10.4.13 Stopping the DNS server
	10.4.14 Implementing a secondary name server DNS64
	10.4.15 BIND 9 name server advanced topics

	10.5 Securing your DNS environment
	10.5.1 Restricting queries
	10.5.2 Preventing unauthorized zone transfers
	10.5.3 Creating a transaction signature between master and slave
	10.5.4 Signing your zone

	10.6 Running DNS in BIND 9 and BIND 4.9.3 simultaneously
	10.6.1 Compatibility considerations
	10.6.2 Implementation procedure

	10.7 DNS tools
	10.7.1 Administrative tools
	10.7.2 DNS diagnostic tools

	Part 5 Utility applications
	Chapter 11. InetD
	11.1 InetD configuration
	11.2 Internet services supported internally by InetD

	Chapter 12. Netstat
	12.1 TSO Netstat
	12.2 USS onetstat
	12.3 MVS netstat console command
	12.4 Netstat enhancements in z/OS V1R2.0
	12.4.1 Filter enhancements
	12.4.2 Performance counters
	12.4.3 Restricting access to Netstat commands

	Chapter 13. ONC/RPC port mapper
	13.1 The z/OS port mapper
	13.1.1 Starting the port mapper from the z/OS UNIX shell
	13.1.2 Starting the port mapper from a started task

	13.2 The non-z/OS UNOIX port mapper

	Chapter 14. syslogd
	14.1 z/OS UNIX syslogd overview
	14.2 syslogd features
	14.2.1 Management: syslogd isolation

	14.3 syslogd configuration
	14.3.1 syslogd configuration recommendations
	14.3.2 syslog.h
	14.3.3 File syslog.pid
	14.3.4 TCPIP.PROFILE

	14.4 Starting syslogd
	14.5 Switching between two log files
	14.6 Centralized logging

	Chapter 15. Time server (TIMED)
	Chapter 16. Web server performance
	16.1 Overview
	16.2 Fast Response Cache Accelerator
	16.3 Starting the HTTP server
	16.4 Configuring the HTTP server
	16.4.1 Accessing the configuration and administration forms
	16.4.2 Configuring the Fast Response Cache Accelerator
	16.4.3 Monitoring the Fast Response Cache Accelerator

	Part 6 Appendixes
	Appendix A. BIND DNS sample configuration
	A.1 BIND 4.9.3-based DNS implementation
	A.1.1 Basic scenario (no WLM)
	A.1.2 BIND 4-based DNS/WLM scenario

	A.2 DHCP + DDNS on MVS03
	A.2.1 MVS03 DHCP configuration file
	A.2.2 MVS03 DDNS definitions

	A.3 BIND 9-based DNS implementation
	A.3.1 BIND 9 basic scenario
	A.3.2 Transaction Signature (TSiG) - key and configuration files
	A.3.3 BIND 9-based DNSSEC - primary DNS related files

	Appendix B. Dump of BIND DNS table (SIGINT)
	Appendix C. Sample DHCP configuration file
	Appendix D. The DHCP log data set
	Appendix E. FTP user exits and sample code
	E.1 FTCHKIP security exit
	E.2 FTCHKPWD security exit
	E.3 FTCHKCMD security exit
	E.4 FTCHKJES security exit
	E.5 FTP RDW post process sample program
	E.6 assembler entry code (INIT MACRO)
	E.7 assembler exit code (INIT MACRO)
	E.8 FTPOSTPR user exit
	E.9 Sample JCL to compile and link-edit the FTPOSTPR user exit

	Appendix F. FTP client sample REXX program
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

