
  

ibm.com/redbooks

Communications Server for 
z/OS V1R2 TCP/IP 
Implementation Guide
Volume 1: Base and TN3270 Configuration

Adolfo Rodriguez
Marcia Maria Fascini

Giancarlo Rodolfi
Heather Woods

Understand and implement TCP/IP 
strategies related to CS for z/OS

Build and maintain your z/OS 
TCP/IP environment efficiently

Includes installation, base 
configuration, and TN3270

Front cover





International Technical Support Organization

Communications Server for z/OS V1R2 TCP/IP 
Implementation Guide Volume 1: Base and TN3270 
Configuration 

June 2002

SG24-5227-03



© Copyright International Business Machines Corporation 1998 2002. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

Fourth Edition (June 2002)

This edition applies to Version 1, Release 2 of Communications Server for z/OS.

Take Note! Before using this information and the product it supports, be sure to read the general 
information in “Notices” on page ix.

Note: This book is based on a pre-GA version of a product and may not apply when the product becomes 
generally available. We recommend that you consult the product documentation or follow-on versions of this 
redbook for more current information.



Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .x

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
The team that wrote this redbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Become a published author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1.  Communications Server for z/OS IP overview . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  Evolving architecture of TCP/IP on S/390. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1  MVS OpenEdition or UNIX System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2  TCP/IP V3 for MVS and TCP/IP for MVS OpenEdition Applications Feature . . . . . 3
1.1.3  OS/390 TCP/IP OpenEdition stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4  OS/390 eNetwork Communications Server V2R5 IP and later . . . . . . . . . . . . . . . . 8

1.2  Functional overview of Communications Server for z/OS IP. . . . . . . . . . . . . . . . . . . . . 10
1.2.1  Operating environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2  Supported connectivity protocols and devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3  Supported routing applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4  Enterprise Extender  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.5  Application programming interfaces (APIs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.6  Communications Server for z/OS IP applications . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.7  Diagnostic aids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3  IBM Communications Server for z/OS V1R2  IP enhancements  . . . . . . . . . . . . . . . . . 14
1.3.1  Resolver changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2  TN3270 Server enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3  Usability and serviceability enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2.  Customizing UNIX System Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1  Customization levels of UNIX System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2  UNIX System Services history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3  UNIX System Services concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1  UNIX Hierarchical File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2  z/OS UNIX user identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3  Accessing the z/OS UNIX shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4  Operating mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.5  UNIX System Services communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.6  AF_INET transport providers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4  Customization of UNIX System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1  Started task user IDs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2  Parmlib definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3  OMVS start-up at IPL time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.4  OMVS displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5  Working with UNIX System Services: interactive interfaces for the end user . . . . . . . . 35
2.5.1  Displaying OMVS processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2  Working with file systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.3  Manipulating files and directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.4  Superuser mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
© Copyright IBM Corp. 1998 2002. All rights reserved. iii



2.6  Common user errors with UNIX System Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.1  Problems with the home directory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.2  UNIX permission bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.3  Default search path and symbolic links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.4  Incorrect RESOLVER_CONFIG in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 3.  Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1  First things first  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2  Planning your installation and migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3  Preinstallation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1  IP Migration Guide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2  z/OS Program Directory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3  Program support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4  Security considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1  APF authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2  RACF environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3  TCP/IP server functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.4  TCP/IP client functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.5  UNIX client functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.6  TCP/IP built-in security functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5  Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1  TCP/IP configuration data set names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2  Installation steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6  Message types: Where to find them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.1  Messages with prefix of BPX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.2  Messages with prefix of EZA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.3  Messages with prefix of EZB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.4  Messages with prefix of EZY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.5  Messages with prefix of EZZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.6  Messages with prefix of FOM and FSUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.7  Eight-digit SNA sense codes and DLC codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7  Checklist for installation and customization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 4.  Configuring base functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1  z/OS IP Configuration Wizard and msys for Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1  z/OS IP Configuration Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.2  z/OS msys for Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2  PROFILE.TCPIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1  Displaying the TCP/IP Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2  Locating PROFILE.TCPIP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.3  Configuration features of CS for z/OS IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.4  System symbolics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.5  PROFILE.TCPIP parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3  Configuring the system with MVS commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.1  Deleting a device and adding/changing a device . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2  Example: changing an LCS device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4  TCPIP.DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.1  Resolvers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.2  Resolver configuration for the TCP/IP stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.3  MVS application search path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.4  z/OS UNIX application search path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.5  Working with TCPDATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.6  Testing TCPIP.DATA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
iv CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



4.5  Configuring the SITE table (HOSTS.LOCAL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.1  /etc/hosts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5.2  Maintaining shared source in HOSTS.LOCAL . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5.3  Maintaining shared source in /etc/hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6  /etc/protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.7  /etc/services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.8  Starting Communications Server for z/OS IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Chapter 5.  Multiple TCP/IP stacks on z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1  Value of multiple concurrent copies of TCP/IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2  Managing network attachments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.1  Fault-tolerant network attachment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3  Performance and capacity issues: multiple stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4  Common Internet Physical File System (CINET PFS)  . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5  Port management overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.6  SMF accounting issues: multiple stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7  Selecting a stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7.1  Standard servers and clients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.7.2  Non-standard servers and clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.7.3  TCP/IP TSO clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.7.4  UNIX System Services clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.7.5  Selecting configuration data sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.7.6  Sharing Resolver configuration data sets between two stacks. . . . . . . . . . . . . . 128

5.8  Steps for installing a second stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.9  Example: implementing a two-stack configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.9.1  Step 1: Stack name and DATASETPREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.9.2  Step 2: Network connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.9.3  Step 3: Alter the BPXPRMxx member  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.9.4  Step 4: Allocate TCPPARMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.9.5  Step 5: Create PROFILE.TCPIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.9.6  Step 6: Create TCPIP.DATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.9.7  Step 7: Create system address space JCL procedure . . . . . . . . . . . . . . . . . . . . 135
5.9.8  Step 8: Create server address space JCL procedures . . . . . . . . . . . . . . . . . . . . 136
5.9.9  Step 9: Create server-specific configuration data sets . . . . . . . . . . . . . . . . . . . . 136
5.9.10  Step 10: Update your name server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.9.11  Step 11: Create REXX program to switch TSO users. . . . . . . . . . . . . . . . . . . . 137
5.9.12  Step 12: Create VTAM definitions and USS message 10 tables  . . . . . . . . . . . 137
5.9.13  Step 13: Starting the stacks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Chapter 6.  National Language Support (NLS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.1  Server and client translation options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2  Standard translate tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.1  Using your country SBCS translate table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2.2  Using your country DBCS translate table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3  Telnet use of translate tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.1  Telnet sessions between two z/OS or VM hosts. . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.2  Telnet sessions between z/OS and other TCP/IP hosts . . . . . . . . . . . . . . . . . . . 143

6.4  Code set conversion utilities in UNIX System Services  . . . . . . . . . . . . . . . . . . . . . . . 145

Chapter 7.  Diagnostic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.1  DISPLAY TCPIP command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2  NETSTAT and onetstat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2.1  Routing table displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2.2  Home addresses display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
 Contents v



7.2.3  Device/link displays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.2.4  Active sockets displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2.5  Connection detail display  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.2.6  TCP/IP storage usage display  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2.7  NETSTAT filter enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2.8  NETSTAT performance counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2.9  Monitoring Sysplex Distributor with NETSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3  PING/oping and TRACERTE/otracert commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.4  Component trace (CTRACE)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4.1  Taking a component trace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.4.2  Event Trace for TCP/IP stacks (SYSTCPIP). . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.4.3  Sample SYSTCPIP trace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.4.4  Packet trace (SYSTCPDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.4.5  OMPROUTE trace (SYSTCPRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4.6  Resolver trace (SYSTCPRE)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4.7  Intrusion detection services trace (SYSTCPIS)  . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.5  Obtaining component trace data with a dump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.6  Analyzing a trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.6.1  Using the IPCS panels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.6.2  Using IPCS and the CTRACE command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.6.3  Printing a component trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.6.4  Useful formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.7  Processing IPCS dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.8  Configuration profile trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.9  Job log versus syslog as diagnosis tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.10  Message types: where to find them  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Chapter 8.  TN3270 Telnet server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.1.1  Telnet functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.1.2  Telnet printer support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.2  Telnet server customization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2.1  Customizing the TCP/IP procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2.2  Customizing the VTAM configuration data set  . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.2.3  Customizing the PROFILE data set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.2.4  CLID to object mapping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2.5  USS messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.2.6  Using translation tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.3  Operating the Telnet environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.3.1  Telnet VARY commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.3.2  Telnet DISPLAY commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.3.3  VTAM display commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.4  Problem determination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.4.1  Telnet DEBUG  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.4.2  Abend Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8.4.3  CTRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Appendix A.  Sample REXX to create HOSTS.LOCAL from /etc/hosts . . . . . . . . . . . . 221

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Other resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Referenced Web sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
How to get IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
vi CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



IBM Redbooks collections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
 Contents vii



viii CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. 
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, program, or service that does 
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not give you any license to these patents. You can send license inquiries, in 
writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of 
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE: 
This information contains sample application programs in source language, which illustrates programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and 
distribute these sample programs in any form without payment to IBM for the purposes of developing, using, 
marketing, or distributing application programs conforming to IBM's application programming interfaces. 
© Copyright IBM Corp. 1998 2002. All rights reserved. ix



Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

ACF/VTAM®
AIX®
AnyNet®
APPN®
C/MVS™
CICS®
DFS™
DFSMS/MVS®
DPI®

server®
ESCON®
FFST™
IBM ®

IBM.COM™
IMS™
IPDS™
MVS™
MVS/ESA™
NetView®
OpenEdition®
OS/2®
OS/390®
PAL®
Parallel Sysplex®
RACF®
Redbooks™

Redbooks Logo 
RISC System/6000®
RS/6000®
S/390®
SecureWay®
SP™
VTAM®
z/OS™
z/VM™
zSeries™

The following terms are trademarks of International Business Machines Corporation and Lotus Development 
Corporation in the United States, other countries, or both: 

Domino™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United 
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the 
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun 
Microsystems, Inc. in the United States, other countries, or both. 

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic 
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Preface

The Internet and enterprise-based networks have led to the rapidly increasing reliance upon 
TCP/IP implementations. The z/Series platform provides an environment upon which critical 
business applications flourish. The demands placed on these systems are ever-increasing 
and such demands require a solid, scalable, highly available, and highly performing operating 
system and TCP/IP component. z/OS and Communications Server for z/OS provide for such 
a requirement with a TCP/IP stack that is robust and rich in functionality. 

The Communications Server for z/OS TCP/IP Implementation Guide series provides a 
comprehensive, in-depth survey of CS for z/OS.The series has been restructured to conform 
to a more task-oriented, user-friendly standard. As a result, many portions once included in 
Volume 1 have been moved to other volumes including security issues, network interface 
connectivity, and routing considerations. 

In Volume 1, we begin by providing an introduction to CS for z/OS. We include a survey on 
the evolution of what was once known as TCP/IP for MVS. We cover issues involved in using 
UNIX System Services as well as installation and base configuration of CS for z/OS. We 
further discuss other stack-related issues such as language support and multi-stack 
environments. Finally, because the TN3270 Server is so closely integrated with the stack, this 
volume details the intricacies of the server. 

Because of the varied scope of CS for z/OS, this volume is not intended to cover all aspects of 
it. The main goal is to provide sufficient detail to install and initialize the TCP/IP stack. 
Additionally, this volume covers all stack-related issues. That is, anything that is system- or 
stack-related falls into the realm of this volume. For more advanced information, including 
routing and network interfaces, please reference the other volumes in the series. These are:

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX 
Applications, SG24-5228

� OS/390 eNetwork Communications Server for V2R7 TCP/IP Implementation Guide 
Volume 3: MVS Applications, SG24-5229 

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 4: 
Connectivity and Routing, SG24-6516 (redpiece available at 
http://www.ibm.com/redbooks  (expected redbook publish date July 2002))

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 5: 
Availability, Scalability, and Performance, SG24-6517 (redpiece available at 
http://www.ibm.com/redbooks  (expected redbook publish date July 2002))

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 6: Policy 
and Network Management, SG24-6839 (redpiece available at 
http://www.ibm.com/redbooks  (expected redbook publish date August 2002))

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security, 
SG24-6840 (redpiece available at http://www.ibm.com/redbooks  (expected redbook 
publish date August 2002))
© Copyright IBM Corp. 1998 2002. All rights reserved. xi

http://www.ibm.com/redbooks
http://www.ibm.com/redbooks
http://www.ibm.com/redbooks
http://www.ibm.com/redbooks


The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the 
International Technical Support Organization, Raleigh Center.

Adolfo Rodriguez is a Senior I/T Specialist at the International Technical Support 
Organization, Raleigh Center. He writes extensively and teaches IBM classes worldwide on 
all areas of TCP/IP. Before joining the ITSO, Adolfo worked in the design and development of 
CS for z/OS, in RTP, NC. He holds a B.A. degree in Mathematics and B.S. and M.S. degrees 
in Computer Science, from Duke University. He is currently pursuing the Ph.D. degree in 
Computer Science at Duke University, with a concentration on Networking Systems.

Marcia Maria Fascini is a Systems Specialist in Brazil. She has four years of experience in 
CICS and six years of experience in the networking field. She holds a degree in Mathematics 
from Fundação Santo André. Her areas of expertise include VTAM and TCP/IP networks.

Giancarlo Rodolfi is a zSeries FTSS for Latin America. He has 16 years of experience in the 
zSeries field. His areas of expertise include TCP/IP, z/VM, z/OS, UNIX System Services, CS 
for z/OS, security, Linux, WebSphere Application Server, firewalls, TN3270 Server, and 
Domino. He has written extensively on CS for z/OS TCP/IP services and security.

Heather Woods is a Network Systems Programmer with IBM Strategic Outsourcing in the 
UK. She has eight years of experience in S/390 systems, and has spent the past four years 
working mainly with TCP/IP, CS for OS/390(z/OS), NCP, and SNA. 

Thanks to the following people for their contributions to this project:

Bob Haimowitz, Jeanne Tucker, Margaret Ticknor, Tamikia Barrow, Gail Christensen, Linda 
Robinson
International Technical Support Organization, Raleigh Center

Barry Mosakowski, Jeff Haggar, Bebe Isrel, Van Zimmerman, Jerry Stevens, Tom Moore
Communications Server for z/OS Development, Raleigh, NC

Garth Madella
IBM South Africa

Peter Focas
IBM New Zealand

Octavio Ferreira
IBM Brazil

Steve Zammit
IBM Canada

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with 
specific products or solutions, while getting hands-on experience with leading-edge 
technologies. You'll team with IBM technical professionals, Business Partners and/or 
customers. 

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, 
you'll develop a network of contacts in IBM development labs, and increase your productivity 
and marketability. 
xii CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or 
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xiii

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html


xiv CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Chapter 1. Communications Server for z/OS 
IP overview

Communications Server for z/OS IP provides an implementation of the TCP/IP protocol for 
the z/OS platform. In addition to TCP/IP, Communications Server for z/OS includes 
ACF/VTAM with AnyNet/MVS (also known as Multiprotocol/HPR Services). 

This chapter provides an overview of the IP functionality included in Communications Server 
for z/OS and includes the following sections:

� 1.1, “Evolving architecture of TCP/IP on S/390” on page 1 describes how the TCP/IP 
implementation on S/390 has evolved throughout the years.

� 1.2, “Functional overview of Communications Server for z/OS IP” on page 10 provides a 
description of the supported functions included in the product.

� 1.3, “IBM Communications Server for z/OS V1R2 IP enhancements” on page 14 gives a 
summary of the new features included in the V2R10 release.

1.1  Evolving architecture of TCP/IP on S/390
Much confusion surrounds the naming of the MVS TCP/IP code that communicates with 
OS/390 OpenEdition MVS. Various trademark considerations have caused the names of the 
same (or similar) functions to fluctuate among several conventions. Some of these 
conventions have appeared in marketing literature and the trade press. We refer to these as 
external names. Other conventions have been used strictly as internal IBM names that the 
implementer may continue to hear in the marketplace or even see in system messages. We 
refer to these as internal names. Table 1-1 illustrates the many different names for CS for 
z/OS IP.

Table 1-1   MVS TCP/IP: Naming conventions across several releases

1

External Name Internal Name

IBM TCP/IP Version 3 Release 1 for MVS TCP/IP V3R1
© Copyright IBM Corp. 1998 2002. All rights reserved. 1



If nothing else, the table illustrates how difficult it is to communicate with others about TCP/IP 
for OS/390, since the proliferation of names for TCP/IP often serves to complicate 
understanding.

In order to understand what CS for z/OS IP provides, it is helpful to look at the evolution of 
OpenEdition in the MVS environment and the architecture of some of the releases of TCP/IP 
that are illustrated in Table 1-1.

1.1.1  MVS OpenEdition or UNIX System Services
Beginning with MVS/ESA Version 4.3, a new type of application program interface was added 
to the MVS platform with the intent of integrating the UNIX operating system into MVS. Both a 
C programming API and an interactive environment called the shell were defined to 
interoperate with UNIX-style files that were part of the Hierarchical File System (HFS). Over 
time, other organizations developed approaches to working with UNIX on various platforms 
until finally an organization named X/Open documented standards of what to implement for 
UNIX interfaces in a series of guides published as the X/Open Portability Guides (XPG). 
X/Open now owns the term UNIX and certifies different implementations of UNIX according to 
the UNIX definitions contained in XPG 4.2. In 1996, IBM UNIX System Services, also referred 
to as OS/390 OpenEdition MVS or OpenEdition, was awarded UNIX 95 brand certification, 
thus confirming that it is compliant with all current open-industry standards.

OpenEdition MVS Applications Feature, or TCP/IP for 
MVS OpenEdition Applications Feature

OE Apps Feature
TCP/IP OE

IBM TCP/IP Version Release 2 for MVS/ESA TCP/IP V3R2

OpenEdition MVS Applications Feature, or TCP/IP for 
MVS OpenEdition Applications Feature

OE Apps Feature
TCP/IP OE

eNetwork Communications Server OS/390 TCP/IP 
OpenEdition
OS/390 TCP/IP OpenEdition for MVS/ESA and OS/390 
R3/R4

Stage 1
OS/390 TCP/IP OE
TCP/IP V3R3

OS/390 eNetwork Communications Server V2R5 IP Stage 2
TCP/IP V3R4
IP V2R5
CS/390 R5

OS/390 eNetwork Communications Server V2R6 IP There is no internal name any longer.

OS/390 eNetwork Communications Server V2R7 IP There is no internal name any longer.

SecureWay Communications Server for OS/390 V2R8 
IP

There is no internal name any longer.

IBM Communications Server for OS/390 V2R10 IP There is no internal name any longer.

Communications Server for z/OS V1R2 IP There is no internal name any longer.

Note: We will frequently use the shorter term CS for z/OS IP throughout the book to refer 
to Communications Server for z/OS IP.

External Name Internal Name
2 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



UNIX System Services is the OS/390 or MVS implementation of UNIX as defined by X/Open 
in the XPG 4.2. UNIX System Services is required for creating and using applications 
conforming to the POSIX or XPG4 standard. UNIX System Services coexists with traditional 
MVS functions and traditional MVS file types (partitioned data sets, sequential files, etc.). It 
concurrently allows access to HFS files and to UNIX utilities and commands by means of 
application programming interfaces and the interactive shell environment. MVS offers two 
variants of the UNIX shell environment: the OMVS shell, much like a native UNIX 
environment, and the Ishell, an ISPF interface with access to menu-driven command 
interfaces.

OpenEdition programs communicate with the IP network through sockets, which are opened 
as AF_INET family sockets. (See “AF_INET addressing family” on page 23 for more 
information.) In order to interact with UNIX System Services under OS/390 and its sockets 
applications, an AF_INET transport provider is required. Such a transport provider can be any 
of the following:

� Communications Server for z/OS IP (previously known as IBM Communications Server for 
OS/390 IP and SecureWay Communications Server for OS/390 IP)

� AnyNet Sockets over SNA

� IPv6 demonstration stack (Web download)

1.1.2  TCP/IP V3 for MVS and TCP/IP for MVS OpenEdition Applications 
Feature

The original version of TCP/IP for MVS was ported from a VM implementation. The 
implementation for MVS was designed to emulate some basic VM functions for transfer of 
data and control information between the sockets application address spaces and the TCP/IP 
system address space. These functions are in a VM environment known under the names of 
Virtual Machine Communication Facility (VMCF) and Inter-User Communication Vehicle 
(IUCV). This emulation was done using the TCP/IP for MVS platform code.

The TCP/IP system address space is where the TCP/IP protocol stack is implemented in 
TCP/IP for MVS. The TCP/IP system address space is also often referred to as the stack 
(short for the TCP/IP protocol stack) or the engine (a nickname for the code that implements 
the TCP/IP protocol stack functions).

TCP/IP for MVS OpenEdition Applications Feature was a precursor to OS/390 TCP/IP 
OpenEdition and was available as a feature on both IBM TCP/IP Version 3 Release 2 for 
MVS and IBM TCP/IP Version 3 Release 1 for MVS. TCP/IP for MVS OpenEdition 
Applications Feature, however, provided only communication between IBM TCP/IP Version 3 
for MVS and OS/390 OpenEdition MVS and accesses to HFS files on OpenEdition; it did not 
provide network connections itself. Instead, it relied on the data link control connections 
defined within the IBM TCP/IP Version 3 for MVS stack. In other words, TCP/IP for MVS 
OpenEdition Applications Feature could not run as a stand-alone TCP/IP stack, but rather 
had to use the services of the IBM TCP/IP Version 3 Release 1 for MVS or IBM TCP/IP 
Version 3 Release 2 for MVS stack. Figure 1-1 shows the relationship between IBM TCP/IP 
Version 3 for MVS and TCP/IP for MVS OpenEdition Applications Feature.

Note: Although this transport is also a function IPv4 stack, it is not supported and is for 
demonstration purposes only.
Chapter 1. Communications Server for z/OS IP overview 3



Figure 1-1   IBM TCP/IP Version 3 Release 2 for MVS with TCP/IP for MVS OpenEdition Applications Feature: Stack 
overview

In IBM TCP/IP Version 3 Release 2 for MVS, the TCP/IP for MVS platform was still being 
used, but only for the Pascal Sockets API, the IUCV Assembler Sockets API, and the REXX 
Sockets API, and in the rare situation where a TCP/IP C-Sockets application worked with 
AF_IUCV sockets (refer to Figure 1-2).

CICSIMS

C-Sockets
(asynch

only)

BPX
ASM
Callable 
API

OESockets

 LFS

CDLC CLAW CTC HYPER LCS Offload OSA SNALINK

  CETI 

HIPPI X.25

IP and ICMP Network Protocols and Interface Layer

TCP, UDP, and Raw Sockets Transport Protocol Layer

PFS

VMCF

Pascal
API

HPNS ENABLED

Sockets Extended
Callable ASM, COBOL, PL/I

Assembler
C-SocketsIUCV

REXX
Sockets

IUCV
ASM
API

X.25

SNALINK

NDB, NCS, REXEC, REXECD, RSH, 
Kerberos, LPR Client, MISC Server,
NCPRoute, RouteD, Portmapper,
C-FTP Server, SNMP Server,
SNMP Query, X-Windows Client

DNS Server, LPD Server,
SMTP Server,
Telnet Client, Telnet 
Server, FTP Client, 
Netstat, Ping, Traceroute

FTP Server, REXEC, 
REXECD, RSHD,
RPC, Telnet Server
X-Windows Client

  CDLC   CLAW     CTC     HIPPI   HYPER   LCS     Offload   OSA    SNALINK   X.25
4 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 1-2   HPNS versus IUCV paths in MVS TCP/IP V3R2

As you see in Figure 1-2, the VMCF and IUCV paths both used an intermediate address 
space to communicate between a sockets application and the TCP/IP stack. In contrast, the 
High Performance Native Sockets (HPNS) path did not use any intermediate address space, 
thus providing a direct communication path based on OS/390 functions, such as program 
calls (PCs), ALETs, and data spaces. The HPNS path was an interim solution to providing 
performance improvements for sockets applications; this path would become superfluous with 
the enhanced architecture of the OS/390 V2R5 IP stack. (See more about this in 1.1.4, 
“OS/390 eNetwork Communications Server V2R5 IP and later” on page 8.)

Beginning with IBM TCP/IP Version 3 Release 2 for MVS, applications using the Sockets 
Extended interfaces (including both CICS and IMS sockets), the C-Sockets interface, and 
those programming interfaces that were built on top of the C-Sockets API (XTI, ONC/RPC, 
SNMP/DPI, NCS/RPC and X-Window) gained the full benefits of High Performance Native 
Sockets (HPNS). Figure 1-2 shows that there were three ways that sockets address spaces 
could communicate with the TCP/IP address space:

1. Via the VMCF/IUCV address space
2. Via the OpenEdition MVS Kernel address space
3. Via the High Performance Native Sockets (HPNS) path

As you saw in Figure 1-1, IBM TCP/IP Version 3 Release 2 for MVS could communicate with 
the OpenEdition Kernel address space using base IBM TCP/IP Version 3 for MVS, using 
TCP/IP for MVS OpenEdition Applications Feature, or using OS/390 TCP/IP OpenEdition 
(“TCP/IP V3R3”). OS/390 TCP/IP OpenEdition running in its own address space provided 
additional performance benefits even over IBM TCP/IP Version 3 Release 2 for MVS.

CICSIMS

HPNSVMCF IUCV

Pascal
API

IUCV
ASM
API

REXX
Sockets

C-
Sockets

Sockets Extended
Callable API

and
Sockets Extended Assembler

Macro API

BPX
ASM
Callable
API

C-Sockets
(asynch

only)

LFS

OE PFS

AF_IUCV AF_INET

TCP, UDP, and Raw Transport Protocols

IP and ICMP Network Protocols

Transport
Medium
Layer

Socket
Interface
Layer

OE Environment
Non-OE
Environment

TCP/IP Network Interfaces

5203\5203GD03

The 
"Engine" 
or the 
"Stack"
Chapter 1. Communications Server for z/OS IP overview 5



The next section presents more about the enhancements that accompanied OS/390 TCP/IP 
OpenEdition, which was made generally available in June 1997.

1.1.3  OS/390 TCP/IP OpenEdition stack
OS/390 TCP/IP OpenEdition was the first phase in offering native TCP/IP support in the 
OpenEdition environment. It was a replacement for and an enhancement to the TCP/IP for 
MVS Application Feature and provided full-stack TCP/IP support for the OpenEdition 
environment, additional connection types to the TCP/IP network, and improved performance.

OS/390 TCP/IP OpenEdition was not a replacement of TCP/IP for MVS V3R2 due to the fact 
that it did not have an equivalent level of connectivity and application support. It did, however, 
provide connections to OS/390 OpenEdition MVS and allowed the OpenEdition applications 
that ran under IBM TCP/IP Version 3 for MVS with TCP/IP for MVS OpenEdition Applications 
Feature to continue to run with OS/390 TCP/IP OpenEdition.

Figure 1-3 illustrates how IBM TCP/IP Version 3 Release 2 for MVS could continue to support 
its traditional network connections while OS/390 TCP/IP OpenEdition introduced a new 
connection type, MPC point-to-point, that shared the VTAM DLC code. Notice how even 
so-called traditional connections such as CLAW, CTC, and LCS used the common VTAM 
DLC code if they were defined within a separate OS/390 TCP/IP OpenEdition (TCP/IP V3R3) 
stack.
6 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 1-3   OS/390 V1R3 TCP/IP OpenEdition stack overview

As noted earlier, OS/390 TCP/IP OpenEdition could run either as a stand-alone stack or 
could be used in parallel with IBM TCP/IP Version 3 Release 2 for MVS. This was often 
necessary since the OS/390 TCP/IP OpenEdition stack did not support all the functions and 
network connections available with IBM TCP/IP Version 3 Release 2 for MVS. TCP/IP 
OS/390 TCP/IP OpenEdition and TCP/IP Version 3 Release 2 were delivered as part of the 
Communications Server for OS/390 Version 1 Release 3 (Program No. 5645-001) and the 
Communications Server for OS/390 Version 2 Release 4 (Program No. 5647-A01).

X.25

SNA
LINK

NDB, NCS,
REXEC, REXECD,

RSH, Kerberos,
LPR client, MISC

server, NCPRoute,
RouteD,

Portmapper, C-FTP
server, SNMP
server, SNMP

query, X-Windows
client

DNS server,
LPD server,

SMTP server,
Telnet client,
Telnet server,

FTP client,
Netstat, Ping,

Traceroute

FTP server,
REXEC,

REXECD,
RSHD,
RPC,
Telnet
server,

X-
W indows

client

IUCV
asm
API

REX
X

Sock-
ets

HPNS ENABLED

Sockets Extended
Callable asm,
COBOL, PL/1

Assembler
C-Sockets

Pas-
cal
API

IUCV VMC
F

C-
Sock-

ets
(a-

synch
)

OE
Sockets

BPX
ASM
Calla
ble
API

LFS

IP and ICMP Network Protocols and Interface
Layer

I
M
S

C
I
C
S

TCP, UDP, and Raw Sockets Transport
Protocol Layer

PFS

C
E
T
I

H
Y
P
E
R

X.25
SNA
LINK

L
C
S

O
f
f
l
o
a
d

O
S
A

H
I
P
P
I

C
T
C

C
L
A
W

C
D
L
C

V3R2
Applications

SNMPv2, OE Commands, OE Config, OE RouteD, OE Applications
(OE FTPD, ONC/RPC, OE Telnet Server, X-Window system)

OE Sockets

Sockets PFS

New TCP, UDP, and Raw Sockets
Transport Protocol Layer

New IP and ICMP Network Protocols
and Interface Layer

C
S
M

Synch Only
Synch and Asynch

LCS CTCCLAW MPC XCF

TCP/IP Exclusive
DLCs Shared DLCs

BPX Assembler
Callable API

C-Sockets
(Synch Only)

LFS
Chapter 1. Communications Server for z/OS IP overview 7



In OS/390 TCP/IP OpenEdition, the functions of the platform were replaced by a highly 
efficient direct communication between the OpenEdition kernel address space and a new 
TCP/IP stack that was integrated with OpenEdition. This communication path included the 
OpenEdition Physical File System (PFS) component for AF_INET (Addressing 
Family_Internet) sockets communication.

The OS/390 TCP/IP OpenEdition product offered many enhancements over the TCP/IP for 
MVS OpenEdition Applications Feature including:

� A new process model 

The process model provided a fully multiprocessed environment. Also, the processing and 
data transfer paths were full duplex, or bi-directional. The process requests were more 
efficiently coded to reduce path lengths. The transport protocol layer processing exploited 
multiprocessing and multiprocessor environments and was completely re-entrant. All this 
added up to a better performing TCP/IP system.

� A new I/O process model

As you saw earlier, the TCP/IP I/O device drivers were now provided by VTAM, rather than 
having the I/O drivers within the TCP/IP address space. The LCS, CTC and CLAW DLCs 
were provided exclusively for TCP/IP. The MPC DLC could be shared between VTAM and 
TCP/IP. The I/O process could execute multiple I/O dispatchable units of work and was 
tightly integrated with the common storage management support. By providing a common 
I/O structure for VTAM and TCP/IP, one based on the SNA Multipath Channel (MPC) 
protocol, serviceability and reliability of the product improved.

� A new storage management model

OS/390 TCP/IP OpenEdition used common storage for its processing support. Therefore, 
buffer pool definitions did not need to be allocated in the TCP/IP address space. The 
storage management support handled expansion and contraction of storage resources 
automatically. It also handled storage requests of varying sizes and types more efficiently. 
The storage management support for TCP/IP was tightly integrated with the I/O model. 
With the use of common storage, system resources were more efficiently used.

Figure 1-3 illustrates how the Communications Storage Management (CSM) facility was 
used to manage communication between the Sockets PFS, through the transport 
protocols and network protocols, to the network interface layer of the OS/390 TCP/IP 
OpenEdition stack. Thus data for I/O was placed in a set of buffers from which any 
function all the way down the protocol stack could access it without having to move the 
data.

1.1.4  OS/390 eNetwork Communications Server V2R5 IP and later
OS/390 eNetwork Communications Server V2R5 IP and later was the second phase in 
offering native TCP/IP support in the OpenEdition environment. It was a complete 
replacement of and an enhancement to IBM TCP/IP Version 3 for MVS and to OS/390 
TCP/IP OpenEdition. Like OS/390 TCP/IP OpenEdition, it provided full stack TCP/IP support 
for the OpenEdition environment, but, unlike OS/390 TCP/IP OpenEdition, it provided:

� A full array of data link control possibilities, as you see in Figure 1-4.

� Applications that were not available with OS/390 TCP/IP OpenEdition, for example, 
TN3270E (RFC1647).
8 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 1-4   OS/390 eNetwork Communications Server V2R5 IP: Stack overview

Communications Server for z/OS IP builds upon all the enhancements introduced in OS/390 
TCP/IP OpenEdition, Stage 1, and discussed earlier in 1.1.3, “OS/390 TCP/IP OpenEdition 
stack” on page 6. It expands upon what was available with OS/390 TCP/IP OpenEdition by 
being fully integrated with OpenEdition and exploiting UNIX System Services. In contrast to 
earlier TCP/IP OpenEdition interfaces, it requires some OpenEdition configuration. It runs as 
a single stack that serves both the traditional MVS environment and the OpenEdition 
environment.

NDB, NCS, REXECD, RPC,
Kerberos, LPR client, MISC

server, NCPRoute, Portmapper,
NPF, SNMP query, X-Windows

client, DPI library

DNS server,
LPD server,

SMTP server,
Telnet client,

Ping,
Traceroute,

REXEC, RSH

TN3270 Server, FTP server, FTP client,
SNMPv2 Agent, OE DPI library and OE SNMP
Command, OE Netstat, OE Ping, OE Tracerte,

OE RouteD, R-commands, RPC, Telnet
server, X-Windows client, DNS/WLM server

REXX
SocketsSockets Extended

Callable ASM, COBOL, PL/1
Assembler
C-Sockets

Pascal
API C-Sockets

(asynch
only)

OE Sockets

BPX
ASM

Callable
API

LFS

IP and ICMP Network Protocols and Interface Layer

IMS CICS

TCP, UDP, and Raw Sockets Transport Protocol Layer

PFS

SAMEHOST
(SNALINK,

X.25)
HYPER MPCPTPLCS XCF ATMCTCCLAWCDLC

C
S
M

TCP/IP Exclusive
DLCs

Shared DLCs
Chapter 1. Communications Server for z/OS IP overview 9



The HPNS sockets introduced for performance purposes in IBM TCP/IP Version 3 Release 2 
for MVS are no longer necessary in CS for z/OS IP since the latest stacks provide 
performance enhancements that obsolete HPNS. Any applications written to take advantage 
of HPNS can be seamlessly migrated to CS for z/OS IP while enjoying the full performance 
benefits of the fully integrated stack because they are automatically converted to OE sockets.

1.2  Functional overview of Communications Server for z/OS IP
Communications Server for z/OS IP is the second phase of the z/OS TCP/IP evolution 
towards using z/OS UNIX System Services. Today’s CS for z/OS IP enjoys improved 
performance due to a redesigned stack, one that takes advantage of Communications 
Storage Management (CSM) and of VTAM's Multi-Path Channel (MPC) and Queued Direct 
I/O (QDIO) capabilities. This tight coupling with VTAM provides enhanced performance and 
serviceability. In CS for z/OS IP, two worlds converge, providing access to z/OS UNIX System 
Services and the traditional MVS environment via network attachments, both old and new.

Due to performance improvements in the stack, it is, in most cases, no longer necessary to 
consider running multiple stacks for performance reasons. In addition, features such as 
Server Bind Control make it even less necessary to run multiple stacks. Nonetheless, a 
multiple stack environment is still supported. One stack option of past releases, however, was 
removed from CS for z/OS with the withdrawal of support for High Speed Access Services in 
V2R10.

1.2.1  Operating environment
z/OS UNIX System Services customization is required in order to start OS/390 V2R5 IP or 
later successfully. This dependence on UNIX, of course, implies that z/OS administrators 
must be familiar with both traditional MVS commands and interfaces, as well as the newer 
UNIX flavors. 

1.2.2  Supported connectivity protocols and devices
As seen in Figure 1-4 on page 9, DLCs can be classified into two categories: TCP exclusive 
DLCs and shared DLCs. TCP exclusive DLCs are those only available for the CS for z/OS IP 
stack and cannot be shared between multiple instances of CS for z/OS IP. The TCP exclusive 
DLCs supported by CS for z/OS IP include the following channel protocols:

� Channel Data Link Control (CDLC)

This protocol supports a native IP connection between CS for z/OS IP and an IP router 
coded within a 374x running Network Control Program (NCP) or within a 3746 9x0 
channel-attached router.

� Common Link Access to Workstation (CLAW)

This protocol is used to connect the CS for z/OS IP to a 3172 running ICCP, an RS/6000, 
and Cisco routers supporting this interface.

� Channel-to-Channel (CTC)

This protocol is supported between two CS for z/OS IP systems and uses one read/write 
channel pair. Both parallel and ESCON channels are supported.

� Hyperchannel

This protocol is used to connect via the NSC A220 Hyperchannel Adapter and its 
descendants.
10 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



� LAN Channel Station (LCS)

This protocol is used by OSA, the 3172 running ICP, the 2216, and the 3746-9x0 MAE.

In addition, one more TCP/IP exclusive DLC protocol exists, although it does not make use of 
zSeries channels. Not to be confused with PTP Samehost, the SAMEHOST DLC enables 
communication between CS for z/OS IP and other servers running on the same MVS image. 
In the past, this communication was provided by IUCV. Currently, three such servers exploit 
the SAMEHOST DLC:

� SNALINK LU0

This server provides connectivity through SNA networks using LU0 traffic. It acts as an 
application to z/OS VTAM.

� SNALINK LU6.2

This server provides connectivity through SNA networks using LU6.2 traffic. It also acts as 
an SNA application to z/OS VTAM.

� X.25

This server provides connectivity to X.25 networks by using the NCP packet switching 
interface (NPSI).

Shared DLCs are those that can be simultaneously used by multiple instances of multiple 
protocol stacks. For example, a shared DLC may be used by one or more instances of CS for 
z/OS IP and one or more instances of z/OS VTAM. These shared DLCs include:

� Multipath Channel+ (MPC+)

MPC+ is an enhanced version of the Multipath Channel (MPC) protocol. It allows for the 
efficient use of multiple read and write channels. High Performance Data Transfer (HPDT) 
uses MPC+ together with Communication Storage Manager (CSM) to decrease the 
number of data copies required to transmit data. This type of connection can be used in 
two ways. 

The first of these is called MPCPTP, in which CS for z/OS IP is connected to a peer IP 
stack in a point-to-point fashion. In this way, CS for z/OS IP can be connected to each of 
the following:

– Another CS for z/OS IP stack
– 2216
– RS/6000
– 3746-9x0 MAE
– Cisco routers via the Cisco Channel Interface Processor (CIP) or the Cisco Channel 

Port Adapter (CPA)

The second way to use MPC+ is to connect to an Open Systems Adapter (OSA). In this 
configuration, OSA acts as an extension of the CS for z/OS IP stack and not as a peer IP 
stack as in MPCPTP. The following are supported in this manner:

– OSA-2 native ATM (RFC1577) 
– OSA-2 Fast Ethernet and FDDI (MPCOSA)
– OSA-Express QDIO uses MPC+ for the exchange of control signals between CS for 

z/OS IP and the OSA-Express

� MPCIPA (QDIO)

The OSA-Express provides a mechanism for communication called Queued Direct I/O 
(QDIO). Although it uses the MPC+ protocol for its control signals, the QDIO interface is 
quite different from channel protocols. It uses Direct Memory Access (DMA) to avoid the 
overhead associated with channel programs. The OSA-Express and CS for z/OS IP 
support Gigabit Ethernet, Fast Ethernet, Fast Token-Ring, and ATM LAN emulation.
Chapter 1. Communications Server for z/OS IP overview 11



A partnership between CS for z/OS IP and the OSA-Express Adapter provides offload of 
compute-intensive functions from the zSeries to the adapter. This interface is called IP 
Assist (IPA). Offloading reduces zSeries cycles required for network interfaces and 
provides an overall improvement in the OSA-Express environment compared to existing 
OSA-2 interfaces.

� XCF

The XCF DLC allows communication between multiple CS for z/OS IP stacks within a 
Parallel Sysplex via the Cross-System Coupling Facility (XCF). The XCF DLC can be 
defined, as with traditional DLCs, but it also supports XCF Dynamics, in which the XCF 
links are brought up automatically.

� PTP Samehost

Sometimes referred to as IUTSAMEH, this connection type is used to connect two or more 
CS for z/OS IP stacks running on the same MVS image. In addition it can be used to 
connect these CS for z/OS IP stacks to z/OS VTAM for the use of Enterprise Extender.

� HiperSockets

HiperSockets provides very fast TCP/IP communication between servers running in 
different Logical Partitions (LPARs) on a z800 or z900 CEC. The communication is 
through processor system memory via Direct Memory Access (DMA). The virtual servers 
that are so connected form a virtual LAN. HiperSockets uses internal QDIO at memory 
speeds to pass traffic between virtual servers. 

Connectivity restrictions
Certain DLCs are no longer considered strategic for the networking environment of today and 
are therefore no longer supported in the OS/390 V2R5 IP and later stack:

� Offload for 3172

There are no plans to support 3172 offload in any future releases. The improved 
performance and the reduced CPU cycle provided by the new TCP/IP stack should 
substantially reduce or eliminate the benefit of offload for most environments.

� High Performance Parallel Interface (HiPPI)

� Continuously Executing Transfer Interface (CETI)

1.2.3  Supported routing applications
CS for z/OS IP ships two routing applications, ORouteD and OMPROUTE. OMPROUTE and 
ORouteD cannot run on the same TCP/IP stack concurrently. These applications add, delete, 
and change routing entries in the routing table and can be used as an alternative to static 
routes created via GATEWAY or BEGINROUTES definitions in the CS for z/OS IP profile. 

ORouteD
ORouteD is the CS for z/OS IP implementation of the Routing Information Protocol (RIP) 
Version 1 (RFC 1058) and RIP Version 2 (RFC 1723). A much older application than 
OMPROUTE, ORouteD has limitations. ORouteD does not support zero subnets. In addition, 
ORouteD does not support equal-cost multipath routes to a destination network or host. As a 
result, OMPROUTE is the recommended routing application (also called routing daemon).
12 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



OMPROUTE
In OS/390 V2R6 IP and later, OMPROUTE implements the Open Shortest Path First (OSPF) 
protocol described in RFC 1583 (OSPF Version 2) as well as RIPv1 and RIPv2. When 
configured properly, the OS/390 host running with OMPROUTE becomes an active OSPF 
and/or RIP router in a TCP/IP network. Either (or both) of these two routing protocols can be 
used to dynamically maintain the host routing table. Additionally, OS/390 V2R7 IP provided 
an OMPROUTE subagent that implements the OSPF MIB variable containing OSPF protocol 
and state information for SNMP. This MIB variable is defined in RFC 1850.

1.2.4  Enterprise Extender
OS/390 V2R6 and later supports Enterprise Extender (also known as HPR/IP). Enterprise 
Extender provides the traditional advantages of advanced peer-to-peer networking (APPN), 
such as class of service and transmission priority, in an IP network. With Enterprise Extender, 
you can configure SNA networks with the following characteristics:

� A private IP-backbone network
� Stable and reliable service for mission-critical SNA applications
� Cost-effective network provisioning

Enterprise Extender uses User Datagram Protocol (UDP) to access the IP network.

1.2.5  Application programming interfaces (APIs)
The following APIs are provided with OS/390 V2R5 IP and later:

� Pascal:

– Various legacy applications and functions

� TCP/IP APIs:

– IMS Sockets
– CICS Sockets
– C-Sockets
– Assembler Callable Services
– REXX Sockets

� OpenEdition APIs:

– OpenEdition CSockets
– OpenEdition Assembler Callable Services

Figure 1-4 on page 9 depicts the relationship of various applications to the APIs they utilize.

OpenEdition APIs span releases with OS/390 V2R5 IP and later. Any programs that the 
customer may have written using the IUCV or VMCF interfaces must be migrated, as detailed 
in z/OS V1R2.0 CS: IP Migration, GC31-8773.

Most applications utilizing the IUCV sockets API tend to be written in assembler. As a result, 
the most suitable sockets API choices for these types of applications will probably be one of 
the following:

� The TCP/IP Macro Sockets API (EZASMI)
� z/OS UNIX Assembler Callable Services API

Owners of VMCF/IUCV-based applications should convert them to one of the above APIs. 
TCP/IP Version 3 Release 2 and CS OS/390 Version 2 Release 4 are the final releases to 
support IUCV and VMCF application communications over the TCP/IP stack.
Chapter 1. Communications Server for z/OS IP overview 13



Any applications written to take advantage of HPNS should run unchanged in OS/390 V2R5 
IP and later, since HPNS sockets are automatically converted to OE sockets. The HPNS 
applications will run faster in OS/390 V2R5 IP and later despite the sockets conversion 
routine because the stack improvements more than compensate for the additional path length 
of the conversion process. Some vendor applications written in Pascal are still being shipped; 
these will run under OS/390 V2R5 IP and later after relinking.

Since Pascal, SMSG, and SQE still use VMCF, it remains a requirement to start the VMCF 
and TNF subsystems for CS for z/OS IP. Technically you could run CS for z/OS IP without 
TNF and VMCF started, but you would have to forego the use of some application interfaces 
and even the TSO/E PING commands.

For more information on APIs available in Communications Server for z/OS IP, please consult 
Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX 
Applications, SG24-5228 and OS/390 eNetwork Communications Server V2R7 TCP/IP 
Implementation Guide Volume 3: MVS Applications, SG24-5229.

1.2.6  Communications Server for z/OS IP applications
CS for z/OS IP ships with a number of client and server applications, most of which are 
discussed in Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 
2: UNIX Applications, SG24-5228 and OS/390 eNetwork Communications Server V2R7 
TCP/IP Implementation Guide Volume 3: MVS Applications, SG24-5229. Some application 
functions are relevant to this volume, however.

The TN3270 server shipped with CS for z/OS IP runs in the same address space as the stack 
itself. In this regard, this server application can be viewed as an extension to the stack. As a 
result, the configuration of this server is included in this volume and covered in Chapter 8, 
“TN3270 Telnet server” on page 175.

1.2.7  Diagnostic aids
CTRACE for diagnosis purposes was originally introduced for TCP/IP with IBM TCP/IP 
Version 3 Release 2 for MVS. With OS/390 V2R5 IP and later, all stack components use 
CTRACE; even PKTTRACE employs CTRACE instead of GTF. ISPF panels and REXX 
CLISTs are made available to the implementer to aid in IPCS dump processing.

1.3  IBM Communications Server for z/OS V1R2  IP 
enhancements

In this section, we outline the enhancements included with IBM Communications Server for 
z/OS V1R2  IP relevant to this volume. For enhancements in all other areas, please consult 
the other V1R2 versions of each volume in the series:

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX 
Applications, SG24-5228

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 4: 
Connectivity and Routing, SG24-6516 (redpiece available at 
http://www.ibm.com/redbooks  (expected redbook publish date July 2002))

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 5: 
Availability, Scalability, and Performance, SG24-6517 (redpiece available at 
http://www.ibm.com/redbooks  (expected redbook publish date July 2002))
14 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration

http://www.ibm.com/redbooks
http://www.ibm.com/redbooks


� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 6: Policy 
and Network Management, SG24-6839 (redpiece available at 
http://www.ibm.com/redbooks  (expected redbook publish date August 2002))

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security, 
SG24-6840 (redpiece available at http://www.ibm.com/redbooks  (expected redbook 
publish date August 2002))

1.3.1  Resolver changes
A new consolidated Resolver provides consistency and enhanced functionality. Various 
applications previously provided their own Resolver libraries to handle socket API calls such 
as gethostbyname and gethostbyaddr. These APIs have been enhanced to utilize a common 
Resolver component that allows for consistent results in Resolver calls regardless of the API 
being used.

1.3.2  TN3270 Server enhancements
The TN3270E Server includes several enhancements, including support for the latest 
TN3270E standards and enhanced security features. These are:

� Ability to dynamically update the certificate key ring file used for TN3270E SSL 
connections without requiring a recycle of the server. 

� Contention Resolution Enhancements. The current TN3270E standards specification 
(RFC2355) contains certain limitations that stem from the fact that SNA is a send/receive 
state oriented protocol, while TN3270E is a relatively state-free protocol. 

� SNA Sense Support - When the server and client operate in an SNA environment, it is 
impractical to perpetuate the one-byte error code mapping style of the TN3270E protocol. 
Especially, when SNA already provides a table of defined Sense codes. The SNA Sense 
Code function allows the client to return SNA Sense codes to the server, which are in turn 
forwarded to the SNA host as a negative response.

� Enhanced LU mapping support for dynamic IP environments. This enhancement further 
extends an installation's ability to define rules hat assign LUs for clients that are assigned 
dynamic IP addresses. Specifically, installations with TN3270E clients using dynamic IP 
that are establishing TN3270E SSL protected sessions can now assign LUs based on the 
user ID that corresponds to the client's digital certificate. When this feature is enabled, the 
TN3270E server queries RACF with the client's certificate and obtains the user ID 
associated with the certificate. This user ID can then be used in TN3270E server LU 
assignment policy to assign a desired LU. 

1.3.3  Usability and serviceability enhancements
Communications Server for z/OS V1R2 provides a number of usability and serviceability 
enhancements including:

� msys support

The z/OS Managed System Infrastructure (msys) is a z/OS component that simplifies 
system management process for z/OS elements. It provides the system administrator with 
a consistent graphical user interface that can be used to customize and configure z/OS 
elements. In this release, Communication Server provides msys support that allows the 
network administrator to configure the TCP/IP protocol stack using the msys GUI. 

� Improved storage monitoring
Chapter 1. Communications Server for z/OS IP overview 15

http://www.ibm.com/redbooks
http://www.ibm.com/redbooks


Enhancements to the storage monitoring and management facilities for TCP/IP allow for 
more effective monitoring and management of storage used by the Communication 
Server. These enhancements allow users to monitor TCP/IP storage usage with a new 
operator command. 

� TCP/IP SMF recording enhancements 

All TCP/IP SMF records now follow a new standard record format. The new format allows 
TCP/IP to provide a significant amount of new data in several new SMF records that can 
be used for an installation's capacity planning, tuning and/or accounting procedures. 
16 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Chapter 2. Customizing UNIX System 
Services

Communications Server for z/OS IP requires that UNIX System Services be customized in 
full-function mode before the TCP/IP stack will successfully initialize.

This chapter is designed to give you an overview of UNIX System Services, an appreciation 
for the coding and security considerations involved with UNIX System Services, and insight 
into some common user errors with UNIX System Services.

This chapter contains the following sections:

� 2.1, “Customization levels of UNIX System Services” on page 17
� 2.2, “UNIX System Services history” on page 18
� 2.3, “UNIX System Services concepts” on page 18
� 2.4, “Customization of UNIX System Services” on page 29
� 2.5, “Working with UNIX System Services: interactive interfaces for the end user” on 

page 35
� 2.6, “Common user errors with UNIX System Services” on page 44

2.1  Customization levels of UNIX System Services
There are two levels of z/OS UNIX services:

� Minimum mode, indicating that although OMVS initializes, it provides few z/OS UNIX 
services, and there is no support for TCP/IP and the z/OS shell. In this mode there is no 
need for DFSMS or for a security product such as RACF.

� Full-function mode, indicating that the complete array of z/OS UNIX services is available. 
In this mode DFSMS, RACF, and the Hierarchical File System (HFS) are required. TCP/IP 

2

Note: In this redbook we use the terms UNIX System Services, OMVS, and OS/390 
OpenEdition interchangeably. With OS/390 V2R6, the name OpenEdition was changed to 
UNIX System Services.
© Copyright IBM Corp. 1998 2002. All rights reserved. 17



and HFS interaction with UNIX System Services is defined within the BPXPRMxx member 
of SYS1.PARMLIB.

z/OS V1R2.0 UNIX System Services Planning, SA22-7800 provides a good description of the 
UNIX System Services customization process. It also includes a chapter devoted to TCP/IP.

2.2  UNIX System Services history
Beginning with MVS/ESA Version 4.3, a new type of application program interface was added 
to the MVS platform with the intent of integrating the UNIX operating system into MVS. Both a 
C programming API and an interactive environment called the shell were defined to 
interoperate with UNIX-style files, called the Hierarchical File System (HFS). Over time, other 
organizations developed approaches to working with UNIX on various platforms until finally 
an organization named X/Open documented standards of what to implement for UNIX 
interfaces in a series of guides published as the X/Open Portability Guides (XPG). X/Open 
now owns the term UNIX and certifies different implementations of UNIX according to the 
UNIX definitions contained in XPG 4.2. In 1996, the IBM OS/390 OpenEdition was awarded 
UNIX 95 brand certification, thus confirming that it is compliant with all current open-industry 
standards. In 1998 IBM changed the name from OS/390 OpenEdition to OS/390 UNIX 
System Services.

UNIX System Services is the z/OS implementation of UNIX as defined by X/Open in the XPG 
4.2. UNIX System Services coexists with traditional MVS functions and traditional MVS file 
types (partitioned data sets, sequential files, etc.). It concurrently allows access to HFS files 
and to UNIX utilities and commands by means of application programming interfaces and the 
interactive shell environment. z/OS offers two variants of the UNIX shell environment: the 
z/OS shell (the default shell) and the tcsh shell (an enhanced version of the Berkeley UNIX C 
shell). 

2.3  UNIX System Services concepts
z/OS UNIX enables two open systems interfaces on the z/OS operating system: an 
application program interface (API) and an interactive shell interface.

With the APIs, programs can run in any environment - including batch jobs, in jobs submitted 
by TSO/E interactive users, and in most other started tasks - or in any other MVS application 
task environment. The programs can request:

� Only MVS services
� Only z/OS UNIX services
� Both MVS and z/OS UNIX services

The shell interface is an execution environment analogous to TSO/E, with a programming 
language of shell commands analogous to the Restructured eXtended eXecutor (REXX) 
language. The shell work consists of:

� Programs that are run interactively by shell users
� Shell commands and scripts that are run interactively by shell users
� Shell commands and scripts that are run as batch jobs

Prior to OS/390 V2R5, UNIX System Services required APPC/MVS in order to provide 
address spaces when programs issued the fork() or spawn() function of OpenEdition callable 
services. APPC/MVS is no longer required for this purpose in OS/390 V2R5 or later; in z/OS 
UNIX, forked and spawned address spaces are provided by Workload Manager (WLM).
18 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



For a fork(), the system copies one process, called the parent process, into a new process, 
called the child process, and places the child process in a new address space, the forked 
address space.

Spawn() also starts a new process in a new address space. Unlike a fork(), in a spawn() call 
the parent process specifies a name of a program to be run in the child process.

The types of processes can be:

� User processes, which are associated with a user.

� Daemon processes, which perform continuous or periodic systemwide functions, such as 
a Web server.

Daemons are programs that are typically started when the operating system is initialized 
and remain active to perform standard services. Some programs are considered daemons 
that initialize processes for users even though these daemons are not long-running 
processes. Examples of daemons provided by z/OS UNIX are cron, which starts 
applications at specific times, and inetd, which provides service management for a 
network.

A process can have one or more threads. A thread is a single flow of control within a process. 
Application programmers create multiple threads to structure an application in independent 
sections that can run in parallel for more efficient use of system resources.

2.3.1  UNIX Hierarchical File System
Data sets and files are comparable terms. If you are familiar with MVS, you probably use the 
term “data set” to describe a unit of data storage. If you are familiar with AIX or UNIX, you 
probably use the term “file” to describe a named set of records stored or processed as a unit. 
In the UNIX System Services environment, the files are arranged in a Hierarchical File 
System (HFS).

The Hierarchical File System allows you to set up a file hierarchy that consists of:

� Directories, which contain files, other directories, or both. Directories are arranged 
hierarchically, in a structure that resembles an upside-down tree, with the root directory at 
the top and branches at the bottom.

� HFS files, which contain data or programs. A file containing a load module, shell script, or 
REXX program is called an executable file. Files are kept in directories.

� Additional local or remote file systems, which are mounted on directories of the root file 
system or of additional file systems.

To the MVS system, the UNIX file hierarchy appears as a collection of HFS-type data sets. 
Each HFS data set is a mountable file system. The root file system is the first file system 
mounted. Subsequent file systems can be logically mounted on a directory within the root file 
system or on a directory within any mounted file system.

Each mountable file system resides in a Hierarchical File System (HFS) data set on direct 
access storage. DFSMS/MVS manages the HFS data sets and the physical files.

For more information about HFS, please refer to the z/OS V1R2.0 CS: IP Migration, 
GC31-8773 and z/OS V1R2.0 UNIX System Services Planning, SA22-7800.
Chapter 2. Customizing UNIX System Services 19



HFS definitions in BPXPRMxx
To get UNIX System Services active in full-function mode, you need the root file system 
defined in the BPXPRMxx member of SYS1.PARMLIB. The root file system is usually loaded 
or copied at z/OS installation time. The BPXPRMxx definition is as follows:

Figure 2-1   Root HFS in BPXPRMxx

An important part of your HFS is located in the /etc directory. The /etc directory contains some 
basic configuration files of UNIX System Services and most applications keep their 
configuration files in there as well. To avoid losing all of your configuration when you upgrade 
your operating system, it is recommended that you put the /etc directory in a separate HFS 
data set and mount it at the /etc mountpoint.

Figure 2-2   ETC HFS in BPXPRMxx

2.3.2  z/OS UNIX user identification
All users of an MVS system, including users of z/OS UNIX functions, must have a valid MVS 
user ID and password. To use standard MVS functions, the user must have the standard MVS 
identity based on the RACF user ID and group name.

If a unit of work in MVS uses z/OS UNIX functions, this unit of work must, in addition to a valid 
MVS identity, have a z/OS UNIX identity. A z/OS UNIX identity is based on a UNIX user ID 
(UID) and a UNIX group ID (GID). Both UID and GID are numeric values ranging from 0 to 
2147483647 (231-1). In a z/OS UNIX system, the UID is defined in the OMVS segment in the 
user's RACF user profile, and the GID is defined in an OMVS segment in the group's RACF 
group profile. What we in an MVS environment call the user ID is in a UNIX environment 
normally termed the user name or the login name. It is the name the user uses to present 
himself or herself to the operating system. In both a z/OS UNIX system and other UNIX 
systems, this user name is correlated to a numeric user identification, the UID, which is used 
to represent this user wherever such information has to be stored in the z/OS UNIX 
environment. One example of this is in the Hierarchical File System, where the UID of the 
owning user is stored in the file security portion of each individual file.

Access to resources in the traditional MVS environment is based on the MVS user ID, group 
ID, and individual resource profiles that are stored in the RACF database.

Note: Before you mount the new file system at the /etc mountpoint permanently, you 
should mount the new HFS temporarily at a different mountpoint and copy the contents of 
the /etc directory to the new HFS.

    ROOT     FILESYSTEM('OMVS.SA03.ROOT')
             TYPE(HFS)
             MODE(RDWR)

 MOUNT FILESYSTEM('OMVS.SA03.ETC')
       MOUNTPOINT('/etc')
       TYPE(HFS)
       MODE(RDWR)
20 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Access to z/OS UNIX resources is granted only if the MVS user ID has a valid OMVS 
segment with an OMVS UID or if a default user is configured as explained below. Access to 
resources in the Hierarchical File System is based on the UID, the GID, and file access 
permission bits that are stored with each file. The permission bits are three groups of three 
bits each. The groups describe:

� The owner of the file itself
� The users with the same GID as the owner
� The rest of the world

The three bits are:

� Read access
� Write access
� Search access if it is a directory or if it is a file that is executable

The superuser UID has a special meaning in all UNIX environments, including the z/OS UNIX 
environment. This user has a UID of zero and can access every resource.

In lieu of or in addition to RACF definitions for individual users, you may define a default user. 
The default user will be used to allow users without an OMVS segment defined to access 
UNIX System Services. The default user concept should be used judiciously since it could 
become a security exposure.

You will also find more information on the RACF security aspects of implementing 
Communications Server for z/OS IP in Communications Server for z/OS V1R2 TCP/IP 
Implementation Guide Volume 7: Security, SG24-6840 (redpiece available at 
http://www.ibm.com/redbooks (expected redbook publish date August 2002)), z/OS V1R2.0 
CS: IP Migration, GC31-8773, and z/OS V1R2.0 UNIX System Services Planning, 
SA22-7800.

2.3.3  Accessing the z/OS UNIX shells
The following ways are available to access the z/OS UNIX shells:

� The TSO/E OMVS command provides a 3270 interface.

� The TSO/E ISHELL command provides a 3270 interface that uses ISPF dialogs.

� The rlogin command provides an ASCII interface.

� The Telnet command provides an ASCII interface.

� RS/6000 serial attached terminals, using Communications Server support.

Communications Server is a terminal attachment capability for OpenEdition. 
Communications Server consists of an RS/6000 that is LAN- or channel-attached to the 
OpenEdition host system. Using this connection, terminals on asynchronous ports on the 
RS/6000 can operate as if they were directly attached to the OpenEdition system.

� From a TCP/IP network, the TN3270(E) command, which provides a full-screen 3270 
interface for executing the OMVS or ISHELL commands.

There are two shells, the z/OS shell and the tcsh shell. The login shell is determined by the 
PROGRAM parameter in the RACF OMVS segment for each user. The default is the z/OS 
shell.

Further information on the z/OS UNIX shells can be found in z/OS V1R2.0 UNIX System 
Services User’s Guide, SA22-7801.
Chapter 2. Customizing UNIX System Services 21

http://www.ibm.com/redbooks


2.3.4  Operating mode
When a user first logs on to the z/OS UNIX shell, the user is operating in line mode. 
Depending on the method of accessing the shell, the user may then be able to use utilities 
that require raw mode (such as vi) or run an X-Windows application.

The different workstation operating modes are:

� Line mode

Input is processed after you press Enter. This is also called canonical mode.

� Raw mode

Each character is processed as it is typed. This is also called non-canonical mode.

� Graphical mode

This is a graphical user interface for X-Windows applications.

2.3.5  UNIX System Services communication
A socket is the endpoint of a communication path; it identifies the address of a specific 
process at a specific computer using a specific transport protocol. The exact syntax of a 
socket address depends on the protocol being used, that is, on its addressing family. When 
you obtain a socket via the socket() system call, you pass a parameter that tells the socket 
library to which addressing family the socket should belong. All socket addresses within one 
addressing family use the same syntax to identify sockets.

Socket addressing families in UNIX System Services
In a z/OS UNIX environment, the most widely used addressing families are AF_INET and 
AF_UNIX. There is some IPv6 support (and hence the AF_INET6 addressing family) in 
Communications Server for z/OS IP in a single transport driver environment. Socket 
applications written to the IPv6 APIs can use the z/OS TCP/IP stack, but there is no support 
for IPv6 network connectivity. For this reason, the following discussion will concentrate on the 
AF_UNIX and AF_INET addressing families.

z/OS UNIX implements support for a given addressing family through different physical file 
systems. There is one physical file system for the AF_INET addressing family and there is 
another for the AF_UNIX addressing family. A PFS is the part of the z/OS UNIX operating 
system that handles the storage of data and its manipulation on a storage medium. (For more 
on this subject see z/OS V1R2.0 UNIX System Services Planning, SA22-7800.) You must 
know which addressing family you are using in order to code correctly in the UNIX System 
Services environment.

AF_UNIX addressing family
If two socket applications on the same MVS image want to communicate with each other, 
they may open a socket as an AF_UNIX family socket. In that case, the z/OS UNIX kernel 
address space will handle the full communication between the two applications (Figure 2-3). 
That is, the AF_UNIX physical file system is self-contained within z/OS UNIX and does not 
rely on other products to implement the required functions.
22 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 2-3   AF_UNIX sockets

AF_INET addressing family
Socket programs communicate with socket programs on other hosts in the IP network using 
AF_INET family sockets which, in turn, use the AF_INET physical file system.

The AF_INET physical file system relies on other products to provide the AF_INET transport 
services to interact with UNIX System Services and its sockets programs. For production 
environments, such a transport provider can be either of the following:

� Communications Server for z/OS IP
� IBM Communications Server for z/OS AnyNet

UNIX Application UNIX Application

MVS Image

LFS

PFS = AF_UNIX = UDS
Chapter 2. Customizing UNIX System Services 23



Figure 2-4   AF_INET sockets

For AF_INET sockets, the z/OS UNIX kernel address space routes the socket request to the 
TCP/IP system address space directly. As you see in Figure 2-4, the sockets/Physical File 
System layer is a transform layer between z/OS UNIX and the TCP/IP stack.

The sockets/PFS effectively transforms the sockets calls from the z/OS UNIX interface to the 
TCP/IP stack regardless of the version of MVS or TCP/IP. The sockets/PFS handles the 
communication between the TCP/IP system address space and the z/OS UNIX kernel 
address space in much the same manner as HPNS handles the communication between the 
TCP/IP system address space and the TCP/IP client and server address spaces starting with 
the IBM TCP/IP Version 3 Release 2 for MVS environment.

Address syntax: AF_INET and AF_UNIX
The following is a detailed description of the addressing syntax of the two addressing 
families, AF_INET and AF_UNIX:

� AF_INET T

The Internet addressing family, also referred to as the Internet domain.

This addressing family is used within the TCP/IP domain to identify sockets on IP hosts. A 
socket address in AF_INET consists of the following:

Family 1 byte binary with a value of 2, which identifies the socket address as 
belonging to the AF_INET addressing family.

Port Half-word binary with port number that identifies the process.

IP address Full-word binary with IP address of IP host in network byte order format.

Reserved 8 reserved bytes.

UNIX Application

MVS Image

LFS

PFS = AF_INET = INET

CS for z/OS V1R2 IP
24 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



The following is an example of an AF_INET address that represents the Telnet server 
(port number 23) on an IP host with the IP address of 9.24.104.126:

{AF_INET 23 9.24.104.126}

� AF_UNIX 

The UNIX addressing family, also referred to as the UNIX domain.

You can use AF_UNIX with UNIX sockets, where this addressing family is used for 
interprocess communication between UNIX processes within one MVS operating system. 
The syntax of an AF_UNIX address is as follows:

Family 1 byte binary with a value of 1, which identifies the socket address as 
belonging to the AF_UNIX addressing family.

Path 108 characters defining a path name (similar to a Hierarchical File 
System path name) by which this local process wants to be known by 
other local processes.

The following is an example of an address in the AF_UNIX addressing family:

AF_UNIX /u/xyz/testsrv

2.3.6  AF_INET transport providers
TCP/IP requires the use of the AF_INET Physical File System. The AF_INET PFS can be 
configured in two ways: the Integrated Sockets File System type (INET) or the Common INET 
Physical File System type (CINET). INET is used in a single-stack environment and CINET is 
used in a multiple-stack environment.

Whether to use a single AF_INET transport provider
If your background is in a UNIX environment, this may seem to be a strange question to ask, 
since you are used to the TCP/IP protocol stack being an integral part of the UNIX operating 
system. This is not the case in a z/OS environment. In this environment you may start 
multiple instances of a TCP/IP protocol stack, each stack running on the same operating 
system, but each stack having a unique TCP/IP identity in terms of network interfaces, IP 
addresses, host name, and sockets applications.

A simple example of a situation where you have more TCP/IP stacks running in your z/OS 
system is if you have two separate IP networks, one production and one test (or one secure 
and one not); you do not want routing between them, but you want to give hosts on both IP 
networks access to your z/OS environment. In this situation you could implement two TCP/IP 
stacks, one connected to the production IP network and another connected to the test 
network.

This multi-stack implementation in which you share the UNIX System Services across 
multiple TCP/IP stacks provides challenges. Sockets applications that need to have an affinity 
to a particular stack need special considerations, in some cases including the coordination of 
port number assignments in order to avoid conflicts. This subject is handled in depth in 
Chapter 5, “Multiple TCP/IP stacks on z/OS” on page 117 and in individual chapters in which 
port number assignments become important.

If a single AF_INET transport provider is sufficient, use the Integrated Sockets physical file 
system (INET). If you need more than one AF_INET transport provider, you must use the 
Common INET physical file system (CINET).
Chapter 2. Customizing UNIX System Services 25



You can customize z/OS to use the Common INET physical file system with just a single 
AF_INET transport provider, but it is generally not recommended due to a slight performance 
decrease as compared to the Integrated Sockets Physical File System (INET). However, you 
may consider doing this if you expect to run multiple stacks in the future.

If you have a single AF_INET transport provider on an MVS image, such as a single TCP/IP 
stack or a single AnyNet stack, you probably should use the INET, as you see in Figure 2-5.

Figure 2-5   AF_INET sockets and Physical File System (PFS)

The PFS is also known under the name INET, and this appears in UNIX System Services 
definitions when a FILESYSTYPE 1 and NETWORK TYPE 5 need to be defined in the 
BPXPRMxx member of SYS1.PARMLIB (Figure 2-7 on page 27).

Common INET Physical File System (CINET)
If you have two or more AF_INET transport providers on an MVS image (such as a 
production TCP/IP stack together with a test TCP/IP stack, or a TCP/IP stack with an AnyNet 
stack) you must use the Common INET Physical File System. Figure 2-6 shows a multiple 
stack environment with Common INET.

IP Network

PFS

TCP and UDP

IP and ICMP

Network Interfaces

CS for z/OS

OE LFS

OE Telnet Server

OE Environment

Telnet Client
26 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 2-6   Multiple AF_INET transport providers: CINET PFS

SYS1.PARMLIB(BPXPRMxx) definitions for AF_INET
The following samples show BPXPARM definitions for single and multiple transport providers.

Integrated Sockets PFS definitions
Figure 2-7 shows the definitions for a single transport provider.

Figure 2-7   BPXPRMxx for single stack using INET

2 EZBPFINI specifies INET with TCP/IP as transport provider.

3 AF_INET is the socket address type for this transport provider.

IP Network

C-INET PFS

OE LFS

OE Application

TCP and UDP

IP and ICMP

Network Interfaces

CS for z/OS

TCP and UDP

IP and ICMP

Network Interfaces

CS for z/OS

Stack T03ATCP Stack T03CTCP

FILESYSTYPE    TYPE(INET)   1
               ENTRYPOINT(EZBPFINI) 2
NETWORK        DOMAINNAME(AF_INET) 3
               DOMAINNUMBER(2)
               MAXSOCKETS(10000) 4
               TYPE(INET)  5
               INADDRANYPORT(2000)
               INADDRANYCOUNT(2000)
Chapter 2. Customizing UNIX System Services 27



4 Parameter MAXSOCKETS is the maximum number of INET sockets that can be obtained. 
Ensure this number is large enough to accomodate all applications that may request a 
socket.

Common INET PFS definitions
Figure 2-8 on page 28 shows the BPXPRMxx definitions for the Common INET Physical File 
System.

Figure 2-8   Sample BPXPRM definition for Common INET (multiple stacks)

In this example, the TYPE value is now CINET 1 with its ENTRYPOINT(BPXTCINT) 2.

A transport provider stack for CINET is specified with a SUBFILESYSTYPE 3 statement with 
its ENTRYPOINT 4. The NAME keyword contains the started task name of this transport 
provider stack (TCPIPA, TCPIPIB, TCPIPC, or the AnyNet stack ANYNET03).

FILESYSTYPE    TYPE(CINET)    1
               ENTRYPOINT(BPXTCINT) 2
NETWORK        DOMAINNAME(AF_INET)
               DOMAINNUMBER(2)
               MAXSOCKETS(5000)
               TYPE(CINET)    1
               INADDRANYPORT(2000)
               INADDRANYCOUNT(2000)

SUBFILESYSTYPE NAME(TCPIPA)  3
               TYPE(CINET)    1
               ENTRYPOINT(EZBPFINI) 4
               DEFAULT

SUBFILESYSTYPE NAME(TCPIPB)  3
               TYPE(CINET)    1
               ENTRYPOINT(EZBPFINI) 4

SUBFILESYSTYPE NAME(TCPIPC)  3
               TYPE(CINET)    1
               ENTRYPOINT(EZBPFINI) 4

SUBFILESYSTYPE NAME(ANYNET03)  3
               TYPE(CINET)    1
               ENTRYPOINT(ISTOEPIT) 4
28 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Summary of BPXPRMxx definitions
In tabular form, we give you a summary of the BPXPRMxx definitions: first for a single-stack 
environment (Table 2-1) and then for a multi-stack system (Table 2-2).

Table 2-1   BPXPRMxx for a single OE transport provider

Table 2-2   BPXPRMxx for multiple OE transport providers 

2.4  Customization of UNIX System Services
The customization of UNIX System Services is well explained in the z/OS V1R2.0 UNIX 
System Services Planning, SA22-7800.

TCP/IP requires UNIX System Services to be running in full-function mode. The following 
sections detail UNIX System Services customization that is relevant to the TCP/IP 
implementer.

2.4.1  Started task user IDs
The UNIX System Services tasks OMVS and BPXOINIT need the special user ID 
OMVSKERN assigned to them. OMVSKERN has to be defined as superuser with UID 0, 
program /bin/sh and home directory /.

TCP/IP tasks need RACF user IDs with the OMVS segment defined. The user ID associated 
with the main TCP/IP address space must be defined as a superuser; the requirements for 
the individual servers vary but most need to be a superuser as well.

2.4.2  Parmlib definitions
We show the IEASYSxx parmlib definitions that we used and explain the statements that are 
relevant to TCP/IP.

Figure 2-9   IEASYSxx indicating BPXPRM03

In Figure 2-9, 1 specifies BPXPRM03 to be used, showing that someone customized OMVS.

Transport 
Provider

FILESYSTYPE
TYPE

FILESYSTYPE 
ENTRYPOINT

NETWORK
TYPE

SUBFILESYSTYPE 
TYPE

SUBFILESYSTYPE 
ENTRYPOINT

TCP/IP INET EZBPFINI INET n/a n/a

AnyNet INET ISTOEPIT INET n/a n/a

Transport 
Provider

FILESYSTYPE
TYPE

FILESYSTYPE 
ENTRYPOINT

NETWORK
TYPE

SUBFILESYSTYPE 
TYPE

SUBFILESYSTYPE 
ENTRYPOINT

TCP/IP CINET BPXTCINT CINET CINET EZBPFINI

AnyNet CINET BPXTCINT CINET CINET ISTOEPIT

     .......

OMVS=03, 1
SMS=02,  2

     .......
Chapter 2. Customizing UNIX System Services 29



2 specifies IGDSMS02 to be used, showing that someone customized SMS. We will not talk 
more about SMS. 

The next two figures show our BPXPRM03 member of SYS1.PARMLIB.

Figure 2-10   BPXPRM03 part 1

1 in Figure 2-10 shows how a multi-stack environment has probably been planned for, since 
CINET is coded throughout.

3 are the names of the TCP/IP started tasks that are to run. With OS/390 V2R5 IP or later, it 
reflects the started task job name.

4 is the entry point that must be associated with TCP/IP or AnyNet.

MAXPROCSYS(300)
MAXPROCUSER(10125)   5
MAXUIDS(500)
MAXFILEPROC(65535)
MAXPTYS(256)
MAXRTYS(256)
CTRACE(CTIBPX00)
FILESYSTYPE TYPE(HFS)
            ENTRYPOINT(GFUAINIT)
FILESYSTYPE TYPE(IBMUDS)
            ENTRYPOINT(BPXTUINT)
NETWORK DOMAINNAME(AF_UNIX)
        DOMAINNUMBER(1)
        MAXSOCKETS(64)
        TYPE(IBMUDS)

FILESYSTYPE TYPE(CINET)    1
            ENTRYPOINT(BPXTCINT)
NETWORK DOMAINNAME(AF_INET)
        DOMAINNUMBER(2)
        MAXSOCKETS(10000)
        TYPE(CINET)        1
        INADDRANYPORT(4500)
        INADDRANYCOUNT(1500)

SUBFILESYSTYPE NAME(TCPIPA)  3
               TYPE(CINET)    1
               ENTRYPOINT(EZBPFINI) 4
               DEFAULT

SUBFILESYSTYPE NAME(TCPIPB)  3
               TYPE(CINET)    1
               ENTRYPOINT(EZBPFINI) 4

SUBFILESYSTYPE NAME(TCPIPC)  3
               TYPE(CINET)    1
               ENTRYPOINT(EZBPFINI) 4

SUBFILESYSTYPE NAME(ANYNET03)  3
               TYPE(CINET)    1
               ENTRYPOINT(ISTOEPIT) 4
30 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



If you are using the OMVS default user, the default value for MAXPROCUSER 5 will be too 
low. You have to estimate how many users will use the default user at the same time. The 
default user is typically used with FTP. In our case, we have changed the default value to 
10125, clearly an overestimation, but also a guarantee that we will not reach the limit. Setting 
this value to something so high, however, may result in wasted storage, so one should try to 
not reach the limit, but not overestimate too much.

Figure 2-11   BPXPRM03 part 2

1 in Figure 2-11 shows the name of the root file system that has been created for the UNIX 
System Services installation. The procedure for creating a UNIX System Services system is 
detailed in the z/OS V1R2.0 UNIX System Services Planning, SA22-7800 and in the z/OS 
V1R2.0 Program Directory, Program Number 5694-A01, GI10-0670.

2 indicates the HFS directory and file system that will be used for configuration files.

3 shows a separate file system for the /tmp directory. Files in /tmp can potentially become 
very large.

4 shows the parent directory for the user files. This file system could be combined with the 
user file systems 5 depending on individual installation preferences.

5 shows a series of user directories and file systems that are to be mounted for individual 
OMVS users.

/*****************************************************/
   ROOT     FILESYSTEM('OMVS.SA03.ROOT')  1
            TYPE(HFS)
            MODE(RDWR)
/*****************************************************/
MOUNT FILESYSTEM('OMVS.SA03.ETC')   2
      MOUNTPOINT('/etc')
      TYPE(HFS)
      MODE(RDWR)

MOUNT FILESYSTEM('OMVS.SA03.TMP')   3
      MOUNTPOINT('/tmp')
      TYPE(HFS)
      MODE(RDWR)
MOUNT FILESYSTEM('OMVS.SA03.USER')  4
      MOUNTPOINT('/u')
      TYPE(HFS)
      MODE(RDWR)
MOUNT FILESYSTEM('SMS.OMVS.KARL')     5
      TYPE(HFS)
      MODE(RDWR)
      MOUNTPOINT('/u/karl')

      .........

MOUNT FILESYSTEM('SMS.OMVS.KAKKY')    5
      TYPE(HFS)
      MODE(RDWR)
      MOUNTPOINT('/u/kakky')
Chapter 2. Customizing UNIX System Services 31



Another way to mount the user file systems from BPXPRMxx is to use the AUTOMOUNT 
facility. This facility mounts the file systems only when needed and unmounts them if they are 
not used for a specific amount of time, allowing management of the file systems. The 
AUTOMOUNT facility is described in the z/OS V1R2.0 UNIX System Services Planning, 
SA22-7800.

On our system all program products have been installed into the root file system. This might 
be different on your system. You could have all products installed in separate file systems. If 
that is the case, they have to be included in BPXPRMxx as shown in the following example:

For the /tmp directory there is also the option to put it into main storage for better performance 
and space management. To do this, you have to use the following statements in BPXPRMxx:

2.4.3  OMVS start-up at IPL time
If you IPL your z/OS system with PARMLIB definitions similar to ours you should get the 
messages shown in Figure 2-12. Note how messages issued by z/OS UNIX begin with the 
prefix BPX.

Note: For the initial startup of OMVS only the root file system is required.

MOUNT FILESYSTEM('OMVS.&SYSNAME..TCPIP')
      MOUNTPOINT('/usr/lpp/tcpip')
      TYPE(HFS)  MODE(RDWR)

FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)
MOUNT FILESYSTEM('/TMP')
      TYPE(TFS) MODE(RDWR)
      MOUNTPOINT('/tmp')
      PARM('-s 500')
32 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 2-12   Initialization of OMVS (UNIX System Services)

At 1 in Figure 2-12 you see that MVS found the defined OMVS PARMLIB member and starts 
OMVS. 2 shows the start of SMS initialization. After SMS has initialized at 3, OMVS continues 
with the mount of the file systems 4. At 5 OMVS has successfully activated the network 
domains and starts the initialization process 6. When the initialization process forks child 
processes, WLM starts BPXAS address spaces 7 as needed. Finally OMVS has initialized 8.

2.4.4  OMVS displays
You can issue the command D SMS to verify that the system is running a functional SMS 
environment.

IEE252I MEMBER BPXPRM03 FOUND IN SYS1.PARMLIB         1
IEF196I         1 //OMVS     JOB MSGLEVEL=1
IEF196I         2 //STARTING EXEC OMVS
IEF196I         2 IEFC001I PROCEDURE OMVS WAS EXPANDED USING SYSTEM
IEF196I LIBRARY SYS1.PROCLIB
IEF196I         3 XXOMVS PROC
IEF196I         4 XXOMVS EXEC     PGM=BPXINIT,REGION=0K
IEE252I MEMBER CTIBPX00 FOUND IN SYS1.PARMLIB

            ..............

IEE252I MEMBER IGDSMS02 FOUND IN SYS1.PARMLIB         2
IEE536I SMS      VALUE 02 NOW IN EFFECT
IGD020I SMS IS NOW ACTIVE                             3
IEF196I IGD103I SMS ALLOCATED TO DDNAME SYS00001
BPXF013I FILE SYSTEM OMVS.SA03.ROOT                   4
WAS SUCCESSFULLY MOUNTED.

            ..............

IEF196I IGD103I SMS ALLOCATED TO DDNAME SYS00008
BPXF013I FILE SYSTEM SMS.OMVS.GDENTE
WAS SUCCESSFULLY MOUNTED.
BPXF203I DOMAIN AF_UNIX WAS SUCCESSFULLY ACTIVATED.   5
BPXF203I DOMAIN AF_INET WAS SUCCESSFULLY ACTIVATED.   5
IEF196I         1 //BPXOINIT JOB MSGLEVEL=1           6
IEF196I         2 //STARTING EXEC BPXOINIT
IEF196I         2 IEFC001I PROCEDURE BPXOINIT WAS EXPANDED USING SYSTEM
IEF196I LIBRARY SYS1.PROCLIB
IEF196I         3 XXBPXOINIT PROC
IEF196I         4 XXBPXOINIT EXEC PGM=BPXPINPR,REGION=0K,TIME=NOLIMIT
IEF403I BPXAS - STARTED 7

            ..............

BPXI004I OMVS INITIALIZATION COMPLETE                 8
Chapter 2. Customizing UNIX System Services 33



Figure 2-13   SMS display

You see in the SMS display that we have executed the command from a sysplex environment 
and have captured information pertaining to both SA03 and SA28. In Figure 2-14, you can 
see that the OMVS member that is running is related to BPXPRM03 1 and that the 
initialization process 2 is running as superuser OMVSKERN 3:

Figure 2-14   Running the OMVS system

What is significant here is that OMVS=DEFAULT is not displayed in the output. Recall from 
2.1, “Customization levels of UNIX System Services” on page 17 that UNIX System Services 
must be customized in full-function mode. The display tells you that, at the very least, your 
system is not running in default mode (minimal mode).

Figure 2-15 shows a display of the available file systems. This display should list all mount 
statements in your BPXPARMxx member.

 D SMS                                  
 IGD002I 18:18:42 DISPLAY SMS 687       
 SCDS = IPO1.DFSMS.SCDS                 
 ACDS = IPO1.DFSMS.ACDS                 
 COMMDS = SYSPLEX.COMMDS                
 DINTERVAL = 150                        
 REVERIFY = NO                          
 ACSDEFAULTS = NO                       
     SYSTEM     CONFIGURATION LEVEL    INTERVAL SECONDS      
     RA03       2000/09/06 18:18:28           15             
     RA28       2000/09/06 18:18:28           15             
     RA39       2000/09/06 18:18:20           15             

D OMVS,ASID=ALL                                                        
BPXO040I 11.54.06 DISPLAY OMVS 825                                     
OMVS     000E ACTIVE          OMVS=(03)  1                      
USER     JOBNAME  ASID        PID       PPID STATE   START     CT_SECS 
OMVSKERN BPXOINIT 0022          1          0 MFI   13.33.56     40.066 
     3        2   
34 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 2-15   Display of mounted file systems

2.5  Working with UNIX System Services: interactive interfaces 
for the end user

As you have read in the overview of UNIX System Services, there are a couple of ways to 
work interactively with UNIX System Services:

1. You can display information about OMVS from the MVS console.

2. After you have configured and started TCP/IP you can use telnet and rlogin to access 
UNIX System Services.

3. You may enter commands from the z/OS UNIX shell. You enter the shell by specifying 
OMVS from TSO, and you are presented with a screen similar to the one in Figure 2-16.

4. You may enter commands from the ISHELL environment, depicted in Figure 2-17.

D OMVS,F                                           
BPXO045I 11.59.06 DISPLAY OMVS 883                 
OMVS     000E ACTIVE          OMVS=(03)            
TYPENAME   DEVICE ----------STATUS----------- MODE 
....
HFS             6 ACTIVE                      RDWR    
  NAME=OMVS.SA03.ETC                                  
  PATH=/etc                                           
HFS             5 ACTIVE                      RDWR    
  NAME=OMVS.SA03.USER                                 
  PATH=/u                                             
HFS             4 ACTIVE                      RDWR    
  NAME=OMVS.SA03.TMP                                  
  PATH=/SYSTEM/tmp                                    
HFS             3 ACTIVE                      RDWR    
  NAME=HFS.RA03.O10RB1.ROOT                           
  PATH=/                                              
Chapter 2. Customizing UNIX System Services 35



Figure 2-16   OMVS shell

This shell provides a command interface to the UNIX System Services environment. The 
OMVS shell, licensed from the Mortice Kern company, is XPG4- and POSIX 
1003.2-compliant.

Another way to communicate with TCP/IP is to interface with the UNIX environment by means 
of an ISPF interface called the ISHELL with the TSO commands ISHELL or ISH. Figure 2-17 
displays the ISHELL environment. 

IBM
Licensed Material - Property of IBM                                       
5647-A01 (C) Copyright IBM Corp. 1993, 2000                               
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.                     
(C) Copyright Software Development Group, University of Waterloo, 1989.   
                                                                          
All Rights Reserved.                                                      
                                                                          
U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or          
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.         
                                                                          
IBM is a registered trademark of the IBM Corp.                            
                                                                          
 - - - - - - - - - - - - - - - - - - - - - - - - - - -                    
 - Improve performance by preventing the propagation -                    
 - of TSO/E or ISPF STEPLIBs                         -                    
 - - - - - - - - - - - - - - - - - - - - - - - - - - -                    
ADOLFO @ RA03:/u/adolfo>                                                  
                                                                          
                                                                          
 ===>                                                                     
                                                                          INPUT 
ESC=¢   1=Help      2=SubCmd    3=HlpRetrn  4=Top       5=Bottom    6=TSO       
        7=BackScr   8=Scroll    9=NextSess 10=Refresh  11=FwdRetr  12=Retrieve  
36 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 2-17   ISHELL interface

The ISHELL can be used conveniently by users and system administrators to enter 
commands for the TCP/IP stack or to perform activities such as creating files, assigning UIDs 
to users, and so on.

2.5.1  Displaying OMVS processes
You can display the processes running in OMVS from the MVS console or from any of the 
shell interfaces.

Figure 2-18 shows the list of processes with their associated user IDs.

   File  Directory  Special_file  Tools  File_systems  Options  Setup  Help     
 --------------------------------------------------------------------------     
                             OpenMVS ISPF Shell                                 
                                                                                
 Enter a pathname and do one of these:                                          
                                                                                
     - Press Enter.                                                             
     - Select an action bar choice.                                             
     - Specify an action code or command on the command line.                   
                                                                                
 Return to this panel to work with a different pathname.                        
                                                                More:     +     
    /u/adolfo                                                                   
    ________________________________________________________________            
    ________________________________________________________________            
    ________________________________________________________________            
                                                                                
                                                                                
             (C) Copyright IBM Corp., 1993,2000. All rights reserved.         

 Command ===> ______________________________________________________________    
  F1=Help      F3=Exit      F5=Retrieve  F6=Keyshelp  F7=Backward  F8=Forward   
 F10=Actions  F11=Command  F12=Cancel                                           
Chapter 2. Customizing UNIX System Services 37



Figure 2-18   UNIX System Services processes display from the MVS console

In Figure 2-18, multiple tasks are associated with the same RACF user ID, TCPIPA. This has 
the advantage of easier maintenance but the disadvantage of no distinguishing features 
among messages for individual tasks. Many users of TCP/IP and UNIX System Services 
would lean towards ease of problem determination and would assign individual RACF user 
IDs to each OMVS user.

You will find a thorough discussion of RACF authority and superuser in Communications 
Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security, SG24-6840 
(redpiece available at http://www.ibm.com/redbooks  (expected redbook publish date August 
2002)).

Another way to look at UNIX processes is to use the shell environment and to execute the 
UNIX command ps -ef. This displays all processes and their environments in forest or family 
tree format:

D OMVS,A=ALL                                                           
BPXO040I 12.14.02 DISPLAY OMVS 981                                     
OMVS     000E ACTIVE          OMVS=(03)                                
USER     JOBNAME  ASID        PID       PPID STATE   START     CT_SECS 
OMVSKERN BPXOINIT 0022          1          0 MF    13.33.56     40.344 
  LATCHWAITPID=         0 CMD=BPXPINPR                                 
  SERVER=Init Process                     AF=    0 MF=00000 TYPE=FILE  
TCPIPA   TCPIPA   0040   16777222          1 MR    13.34.36    701.078  
  LATCHWAITPID=         0 CMD=EZBTCPIP                                  
OMVSKERN SYSLOGD1 003B   16777223          1 1FI   13.34.12     10.877  
  LATCHWAITPID=         0 CMD=/usr/sbin/syslogd -f /etc/syslog.conf     
TCPIPA   TCPIPA   0040          8          1 1R    13.34.41    701.078  
  LATCHWAITPID=         0 CMD=EZBTTSSL                                  
TCPIPA   TCPIPA   0040          9          1 1R    13.34.42    701.078  
  LATCHWAITPID=         0 CMD=EZBTMCTL                                  
TCPIPA   TCPIPA   0040         10          1 1F    13.34.42    701.078  
  LATCHWAITPID=         0 CMD=EZACFALG                                  
TCPIPA   TCPIPA   0040         11          1 1F    13.34.44    701.078  
  LATCHWAITPID=         0 CMD=EZASASUB                                  
...
KAKKY    KAKKY    0052   33554541          1 MRI   09.30.31     79.618  
  LATCHWAITPID=         0 CMD=EXEC                                      
PABST    PABST    003C   33554552          1 MRI   11.11.51     10.459  
  LATCHWAITPID=         0 CMD=EXEC                                      
ADOLFO   ADOLFO   0028   83886238         15 1FI   18.53.45       .510  
  LATCHWAITPID=         0 CMD=otelnetd -Y 9.24.106.51 -p adolfo -a dum  
38 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration

http://www.ibm.com/redbooks


Figure 2-19   UNIX System Services processes display from the shell

Notice that in Figure 2-19, the processes running with a superuser are shown as running with 
user ID OMVSKERN. The reason for this is that RACF cannot map a UNIX System Services 
UID to an MVS user ID correctly if there are multiple MVS user IDs defined with the same 
UID. So RACF uses the last referenced MVS user ID.

2.5.2  Working with file systems
You can display mounted file systems from ISHELL or the MVS console. Figure 2-20 shows 
the console display and Figure 2-21 the display from ISHELL.

Figure 2-20   Displaying mounted filesystems from MVS console

ADOLFO @ RA03:/u/adolfo>ps -ef
# ps -ef
OMVSKERN          1          0  -   Sep 05 ?         1:01 BPXPINPR
OMVSKERN   16777218          1  -   Sep 05 ?         0:00 BPXVCLNY
OMVSKERN   83886083          1  -   Sep 05 ?         0:00 BPXVCMT
OMVSKERN   50331653          1  -   Sep 05 ?         0:00 GFSCMAIN
OMVSKERN   16777222          1  -   Sep 05 ?        17:22 EZBTCPIP
OMVSKERN   16777223          1  -   Sep 05 ?         0:16 /usr/sbin/syslogd -f /
etc/syslog.conf
OMVSKERN          8          1  -   Sep 05 ?        17:22 EZBTTSSL
OMVSKERN          9          1  -   Sep 05 ?        17:22 EZBTMCTL
OMVSKERN         10          1  -   Sep 05 ?        17:22 EZACFALG
OMVSKERN         11          1  -   Sep 05 ?        17:22 EZASASUB
OMVSKERN   16777228          1  -   Sep 05 ?        15:59 /usr/lpp/tcpip/sbin/om
proute                                                                         
....
   KAKKY   33554541          1  -   Sep 06 ?         1:20 EXEC
    4011   83886193   16777414  -   Sep 07 ttyp0002  0:01 sh -L
   PABST   33554552          1  -   Sep 06 ?         0:10 EXEC
...

ADOLFO @ RA03:/u/adolfo>

D OMVS,F                                           
BPXO045I 15.22.32 DISPLAY OMVS 474                 
OMVS     000E ACTIVE          OMVS=(03)            
TYPENAME   DEVICE ----------STATUS----------- MODE 
...
HFS             6 ACTIVE                      RDWR      
  NAME=OMVS.SA03.ETC                                    
  PATH=/etc                                             
HFS             5 ACTIVE                      RDWR      
  NAME=OMVS.SA03.USER                                   
  PATH=/u                                               
HFS             4 ACTIVE                      RDWR      
  NAME=OMVS.SA03.TMP                                    
  PATH=/SYSTEM/tmp                                      
HFS             3 ACTIVE                      RDWR      
  NAME=HFS.RA03.O10RB1.ROOT                             
  PATH=/                                                
Chapter 2. Customizing UNIX System Services 39



From ISHELL you can get more information and can manipulate the file systems.

Figure 2-21   Viewing the mount table

From the mount table you can display the file system attributes.

Figure 2-22   File system attributes

The next screens show you how to mount a file system. To do this, you have to be a 
superuser with RACF OPERATIONS authority.

                       Work with Mounted File Systems

 Select one or more file systems with / or action codes.
   U=Unmount   A=Attributes   C=Change mode   R=Reset unmount or quiesce
   File system name                              Status       Row 1 of 10
 _ OMVS.SA03.ROOT                                Available
 _ OMVS.SA03.ETC                                 Available
 _ OMVS.SA03.TMP                                 Available
 _ OMVS.SA03.USER                                Available
 A SMS.OMVS.GIANCA                               Available
 _ SMS.OMVS.GDENTE                               Available
 _ SMS.OMVS.KAKKY                                Available
 _ SMS.OMVS.KARL                                 Available

                   File System Attributes                   
                                                            
 File system name:                                          
 OMVS.RA03.U.GIANCA                                         
 Mount point:                                               
 /u/gianca                                                  
                                                More:     + 
                                                            
 Status . . . . . . . . : Available                         
 File system type . . . : HFS                               
 Mount mode . . . . . . : R/W                               
 Device number  . . . . : 11                                
 Type number  . . . . . : 1                                 
 DD name  . . . . . . . : SYS00011                          
 Block size . . . . . . : 4096                              
 Total blocks . . . . . : 6840                              
 Available blocks . . . : 1492                              
 Blocks in use  . . . . : 5319                              
                                                            
  F1=Help        F3=Exit        F4=Name        F6=Keyshelp  
 F12=Cancel                                                 
40 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 2-23   Mount file systems

2.5.3  Manipulating files and directories
Figure 2-24 and Figure 2-25 show the steps taken in the ISHELL to define the HFS home 
directory /u/gdente for the user GDENTE.

Figure 2-24   Superuser in ISHELL creating /u/gdente/ user directory #1

Be sure that the UNIX permission bits have been set for Read, Write, and Executable modes.

    File Directory Special_file Tools File_systems Options Setup Help
- +____________________________________________________________________+
  |                         Mount a File System                        |
  |                                                                    |
E | Mount point:                                                       |
  |                                                          More:     |
  |    /u/gdente                                                       |
  |    ________________________________________________________________|
  |    ________________________________________________________________|
  |    ________________________________________________________________|
R |                                                                    |
  | File system name . . sms.omvs.gdente____________________           |
  | File system type . . hfs_____                                      |
  | New owner  . . . . . ________                                      |
  |                                                                    |
  | Select additional mount options:                                   |
  | _  Read-only file system                                           |
  | _  Ignore SETUID and SETGID                                        |
  | Mount parameter:                                                   |
  | ___________________________________________________________________|
  |                                                                    |
  |  F1=Help       F3=Exit       F4=Name       F6=Keyshelp  F12=Cancel |
  +____________________________________________________________________+

    File Directory Special_file Tools File_systems Options Setup Help
 ----- +________________________________+ -------------------------------
       | 2  1. List directory(L)...     | Shell
       |    2. New(N)...                |
 Enter |    3. Attributes(A)...         |
       |    4. Delete(D)...             |
     - |    5. Rename(R)...             |
     - |    6. Copy to PDS(C)...        |
     - |    7. Copy from PDS(I)...      | n the command line.
       |    8. Print(P)                 |
 Retur |    9. Compare(M)...            | rent pathname.
       |   10. Find strings(F)...       |                       More:
    /u |   11. Set working directory(W) |
    __ |   12. File system(U)...        | __________________________
    __ +________________________________+ __________________________
    ________________________________________________________________
Chapter 2. Customizing UNIX System Services 41



Figure 2-25   Creating user directory #2

From the OMVS shell you would just enter mkdir /u/gdente. In this case the permission bits 
would be set as specified in /etc/profile or $home/.profile. You want to verify them with the ls 
-all command and if you do not like them you have to change them with the chmod 
command.

If you have HFS files, you can browse them using the ISHELL tools or you can execute the 
obrowse command as follows from the OMVS shell environment:

Figure 2-26   obrowse example

To edit files, you can use the ISHELL tools or you can use the oedit command from the 
OMVS shell.

All methods have advantages and it is a matter of personal preference which one you use. 
The ISHELL provides an ISPF look and feel, the OMVS shell a more UNIX or DOS look and 
feel, and of course for real UNIX users there is the vi editor.

2.5.4  Superuser mode
Certain commands and operations from OMVS or from the ISHELL are authorized only for 
superusers. There are two alternatives for running as a superuser:

Note: Both obrowse and oedit are TSO commands. If you used telnet or rlogin to get to the 
UNIX System Services shell, you have to use the cat command and the vi editor.

    File Directory Special_file Tools File_systems Options Setup Help
 - +_________________________________________________+ ------------------
   |             Enter File Permissions              |
   |                                                 |
 E | Permissions  . . 755  (3 digits, each 0-7)      |
   |                                                 |
   |  F1=Help         F3=Exit         F6=Keyshelp    |
   | F12=Cancel                                      |
 - +_________________________________________________+ ------------------

 Return to this panel to work with a different pathname.
                                                                More:
    /u/gdente/
    ________________________________________________________________
    ________________________________________________________________
    ________________________________________________________________

# obrowse /tmp/ddns.dat

********************************* Top of Data ***************************
*.small.isp.com mvs03.itso.ral.ibm.com Hd1CgHs5eMgGtXu050Rn98nOi2dn0z8FEd
*.100.168.192.in-addr.arpa mvs03.itso.ral.ibm.com 4jDkIDnrU4Ii9WyqvGcx9y/
100.168.192.in-addr.arpa mvs03.itso.ral.ibm.com Y3BU88qXZQOE0ryPqC1n9+vxN
small.isp.com mvs03.itso.ral.ibm.com mJw7G8UfJAuUaKGk3A1D97VM5757d6c5sY62
******************************** Bottom of Data *************************
42 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



1. The user ID may have permanent superuser status. This means that the ID has been 
created with a UID value of 0.

2. The user ID may have temporary authority for the superuser tasks. The defined UID will 
have been set up as a non-zero value in RACF, but the user will have been granted READ 
access to the RACF facility class of BPX.SUPERUSER. Also, RACF provides superuser 
granularity enhancements to assign functions to users that need them.

If you need only temporary authority to enter superuser mode, then the granting of simple 
READ permission to the BPX.SUPERUSER facility class will allow the user to switch back 
and forth between superuser mode and standard mode. You enter su from the OMVS shell, 
as in Figure 2-28, or you may select SETUP OPTIONS from the ISHELL and specify Option 
#7 to obtain superuser mode.

Figure 2-27   Obtaining superuser mode

At this point the user can enter commands authorized for the superuser function from the 
ISHELL, or he can switch to an OMVS shell he has already signed onto. The original OMVS 
shell is displayed in Figure 2-28. Notice the basic prompt level, indicated by the $ prompt (1).

The user is still in basic user mode when he queries his identity 2. Next the user executes a 
command from the OMVS shell to put himself in superuser mode 3. The prompt sign changes 
to # (4). The user queries his identity once more and discovers his identity has changed to the 
OMVSKERN 5. The exit command 6 takes him out of superuser mode and back into the 
basic user mode. A final exit (7) will return the user to TSO once he presses Enter.

 File  Directory  Special_file  Tools  File_systems  Options  Setup  Help
----------------------------------------- +__________________________________+
                           OpenMVS ISPF S |_7_ 1. *User...                   |
                                          |    2. *User list...              |
Enter a pathname and do one of these:     |    3. *All users...              |
                                          |    4. *All groups...             |
   - Press Enter.                         |    5. *Permit field access...    |
   - Select an action bar choice.         |    6. *Character Special...      |
   - Specify an action code or command on |    7. Enable superuser mode(SU)  |
                                          +__________________________________+
Return to this panel to work with a diffe +_________________________________+
                                          | Some choices (*) require        |
  /u/gdente                               | superuser or the "special"      |
  _______________________________________ | attribute for full function, or |
  _______________________________________ | both                            |
  _______________________________________ +_________________________________+
Chapter 2. Customizing UNIX System Services 43



Figure 2-28   In the OMVS shell: alternating superuser and non-superuser modes

2.6  Common user errors with UNIX System Services
In this section, we show some simple problems that we encountered.

2.6.1  Problems with the home directory
In the next example, the TSO user attempted unsuccessfully to enter the OMVS shell 
interface from ISPF; the user has an OMVS segment defined but another problem occurs.

Figure 2-29   Executing OMVS command

A similar problem occurs when trying to access the ISHELL environment. See Figure 2-30.

$        1
$ whoami 2
GDENTE
$ su     3
# whoami 4
OMVSKERN 5
# exit   6
$ exit   7

 >>>> FSUM2331 The session has ended.  Press <Enter> to end OMVS. OS/390 Firewall Technolo
Guide and Reference

   Menu  List  Mode  Functions  Utilities  Help
 ________________________________________________________________________
                               ISPF Command Shell
 Enter TSO or Workstation commands below:

 ===> omvs

 Place cursor on choice and press enter to Retrieve command

 =>
 FSUM2078I No session was started.  The home directory for this TSO/E
user does not exist or cannot be accessed.+
 FSUM2079I Function = sigprocmask, return value = FFFFFFFF, return code
code = 9C reason code = 0507014D
 ***
44 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 2-30   Executing ISHELL command

In both cases the user had an OMVS segment defined for him in RACF. However, the UNIX 
System Services implementer had neglected to define or authorize the home directory that 
had been associated with the user in his OMVS segment. (You can see what this home 
directory is supposed to be with the RACF command listuser.) Authorization is provided 
with the permission bits.

The same symptom shows up for users without an OMVS segment defined if the 
BPX.DEFAULTUSER facility has been activated with an inaccessible home directory.

2.6.2  UNIX permission bits
You have already read something about setting up appropriate UNIX permission bits. 
Figure 2-31 shows an example of incorrect permission bits set for a user.

Figure 2-31   Errors with UNIX permission bit settings

Although the user had the UNIX permission bit settings of 755 on the /u/gdente/ directory, the 
permission bits were set at 600 for the /u/ directory as shown in Figure 2-32. The moral of this 
story is to ensure that all directories in the entire path are authorized with suitable permission 
bits. When the settings were changed to 755 for the /u/ directory, access to the subdirectory 
was allowed.

Note: If your system is OS/390 V2R7 or later, you will get access to the HFS even if you 
cannot access your home directory and get the above message.

    File Directory Special_file Tools File_systems Options Setup Help
 +_____________________________________________________________________+
 |                           Make a File System                        |
 |                                                                     |
 | File system name  . . . . __________________________________________|
 | Primary cylinders . . . . ________                                  |
 | Secondary cylinders . . . ________                                  |
 | Storage class . . . . . . ________                                  |
 | Management class  . . . . ________                                  |
 | Data class  . . . . . . . ________                                  |
 |                                                                     |
 |  F1=Help       F3=Exit       F6=Keyshelp  F12=Cancel                |
 |---------------------------------------------------------------------|
 |---------------------------------------------------------------------|
 | Errno=9Cx Process Initialization error; Reason=0507014D The dub fail|
 | due to an error with the initial home directory.  Press Enter to    |
 | continue.                                                           |
 +_____________________________________________________________________+

 ICH408I USER(GDENTE  ) GROUP(WTCRES  ) NAME(GWEN DENTE          ) 703
   /u/gdente CL(DIRSRCH ) FID(01E2D7D3C5E7F34E2B0F000000000003)
   INSUFFICIENT AUTHORITY TO LOOKUP
   ACCESS INTENT(--X)  ACCESS ALLOWED(OTHER ---)
 ICH408I USER(GDENTE  ) GROUP(WTCRES  ) NAME(GWEN DENTE          ) 704
Chapter 2. Customizing UNIX System Services 45



You may display UNIX permission bits from the ISHELL environment or by issuing the 
command ls -alF from the shell:

Figure 2-32   Permission bit display

The -alF options indicate that all files should be listed, including hidden files, that the long 
format should be displayed, and that the flags about the type of file (link, directory, etc.) 
should be given.

2.6.3  Default search path and symbolic links
The directory search path is specified in the environment variable $PATH. Normally this 
environment variable is set system-wide in /etc/profile and can be further customized for 
individual users in $home/.profile. The sample for /etc/profile sets $PATH to: 

/bin:.

and should be expanded to:

/bin:/usr/sbin:.

or:

.:/bin:/usr/sbin

depending on whether you want the current directory searched first or last. The instructions 
for setting up this user profile are contained in z/OS V1R2.0 UNIX System Services User’s 
Guide, SA22-7801 and z/OS V1R2.0 UNIX System Services Planning, SA22-7800.

A user may attempt to run a simple TCP/IP command such as oping and receive an error that 
the command is not found:

The user then finds he must preface the command with the directory path necessary to locate 
it:

/usr/lpp/tcpip/bin/oping

# cd /u/gdente
# ls -alF
total 32
drwxr-xr-x   2 GDENTE   OMVSGRP        0 Jan 28 17:56 ./
drw-------   7 WOZABAL  SYSPROG        0 Jan 28 18:03 ../

Note: To view the search path that has been established for you, issue echo $PATH from 
the shell environment.

          BROWSE -- /tmp/GDENTE.16:13:33.712714.ishell ---
          Command ===>
         ********************************* Top of Data ***
         oping: FSUM7351 not found
         ******************************** Bottom of Data *
46 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



If you experience such a problem, check that the symbolic links are correct. Part of the 
installation is to run the OE MKDIR program to set up the symbolic links for the various 
commands and programs from their real path to /bin or /usr/sbin, where they can be found 
using the default search path.

2.6.4  Incorrect RESOLVER_CONFIG in use
Every client process requires an affinity to one or more TCP/IP stacks. Traditionally the 
affinity is established through pointers to the TCPIP.DATA data set. With UNIX System 
Services integrated into Communications Server for z/OS IP, a TSO client looking for 
TCPIP.DATA information may use one search path and a UNIX shell client may use a 
different one. You may find that a process works one way when executed from TSO and 
another way when executed from the shell; this may occur if a different TCPIP.DATA file is 
found for each client type.
Chapter 2. Customizing UNIX System Services 47



48 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Chapter 3. Installation

Installation and customization of CS for z/OS IP consists of the following four major steps:

� Planning
� Preinstallation
� Installation
� Product customization

This chapter provides examples and usage guidelines on how the product can be installed. 
We also give you an introduction to the basic configuration tasks for CS for z/OS IP; more 
customization tasks are explained in subsequent chapters.

This chapter contains the following sections:

� 3.1, “First things first” on page 49
� 3.2, “Planning your installation and migration” on page 50
� 3.3, “Preinstallation” on page 51
� 3.4, “Security considerations” on page 53
� 3.5, “Installation” on page 59
� 3.6, “Message types: Where to find them” on page 66
� 3.7, “Checklist for installation and customization” on page 67

3.1  First things first
Before installing the Communications Server for z/OS, you should first review the z/OS 
V1R2.0 Program Directory, Program Number 5694-A01, GI10-0670. Review all the 
installation requirements and considerations before starting with the actual installation. 
Finally, we need to include a summary of important installation and customization points in 
the form of a checklist.

3

© Copyright IBM Corp. 1998 2002. All rights reserved. 49



3.2  Planning your installation and migration
It will be to your advantage to have studied thoroughly the following documentation prior to 
the installation and customization of Communications Server for z/OS IP:

1. z/OS V1R2.0 Program Directory, Program Number 5694-A01, GI10-0670

2. Preventive Service Planning (PSP) bucket

3. The z/OS Web pages:

http://www-1.ibm.com/servers/eserver/zseries/zos/installation/installz12.html

4. z/OS V1R2.0 CS: IP Migration, GC31-8773

5. z/OS V1R2.0 UNIX System Services Planning, SA22-7800

6. z/OS V1R2 Installation Planning Wizard located at:

http://www-1.ibm.com/servers/eserver/zseries/zos/wizards/ipw/ipwv1r2/

Planning for and installing Communications Server for z/OS IP requires MVS, UNIX, and 
networking skills. If your background is in traditional MVS programming or systems 
programming, the UNIX System Services terminology may at first seem to be somewhat 
confusing. If your background is in the UNIX environment, the same could be equally true for 
MVS terminology.

In the past the MVS TCP/IP system programmer has needed only a working knowledge of the 
MVS or z/OS system. He has been accustomed to working closely with the RACF 
administrator and MVS system programmer for authorizations, the VTAM and NCP system 
programmers for SNALINK and NCP connections, the IP address administrator for basic 
name and address assignments, and the administrators of the router network and 
channel-attached peripherals for connection definition and problem determination.

With Communications Server for z/OS, the TCP/IP system programmer needs to forge an 
additional alliance with the UNIX System Services system programmer. The TSO interfaces 
that have been traditionally available in host-based TCP/IP still stand at the system 
programmer's disposal and new MVS console commands simplify some TCP/IP operations. 
However, another user interface provided by the UNIX shell environment - either via the 
OMVS shell or the ISPF SHELL - is a useful and sometimes necessary tool that the TCP/IP 
system programmer will need to work with. In addition to this, the tight coupling of 
Communications Server for z/OS IP with UNIX System Services means that the TCP/IP 
system programmer needs more than a passing knowledge of UNIX conventions, 
commands, and Hierarchical File System (HFS) concepts. Even if the system programmer is 
familiar with other UNIX environments, work with the UNIX shell requires more than basic 
familiarity.

We discovered with the first version of a full TCP/IP stack based on native MVS and on UNIX 
System Services that very few people have all the requisite skills to implement CS for z/OS IP 
on their own successfully. As more and more systems programmers acquire skills in UNIX 
System Services and in TCP/IP, this will become less and less the case. Teaming with the 
UNIX System Services implementer when implementing CS for z/OS IP provides the best 
guarantee of overcoming the initial inhibitors to establishing a working CS for z/OS IP 
environment.

If you are migrating to Communications Server for z/OS, establish a migration process to 
move all your existing applications, and after this, consider the use of new and enhanced 
functions outlined in z/OS V1R2.0 CS: IP Migration, GC31-8773.
50 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Communications Server for z/OS allows multiple copies of the TCP/IP protocol stack to 
execute on the same MVS image. However, with all the performance enhancements present 
in CS for z/OS IP, it is probably not necessary to implement a multi-stack system for 
production purposes, unless, for example, one is considering running a test stack alongside a 
production stack.

3.3  Preinstallation
When you install and customize Communications Server for z/OS IP, it will be very helpful to 
have the following at your immediate disposal:

� The migration plan, fallback plans, and test plans that you have customized for your 
company's implementation

� Printouts of procedures and data sets that you will be using for the implementation

� z/OS V1R2.0 Program Directory, Program Number 5694-A01, GI10-0670

� z/OS V1R2.0 CS: IP Migration, GC31-8773

� z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775

� z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776

� z/OS V1R2.0 CS: IP Messages Volume 1 (EZA), SC31-8783

� z/OS V1R2.0 CS: IP Messages Volume 2 (EZB), SC31-8784

� z/OS V1R2.0 CS: IP Messages Volume 3 (EZY), SC31-8785

� z/OS V1R2.0 CS: IP Messages Volume 4 (EZZ-SNM), SC31-8786

� z/OS V1R2.0 CS: IP and SNA Codes, SC31-8791

� z/OS V1R2.0 UNIX System Services Planning, SA22-7800

� z/OS V1R2.0 UNIX System Services User’s Guide, SA22-7801

� z/OS V1R2.0 UNIX System Services Messages and Codes, SA22-7807

� z/OS V1R2.0 MVS System Messages, Vol 1 (ABA-AOM), SA22-7631

� z/OS V1R2.0 MVS System Messages, Vol 2 (ARC-ASA), SA22-7632

� z/OS V1R2.0 MVS System Messages, Vol 3 (ASB-BPX), SA22-7633

� z/OS V1R2.0 MVS System Messages, Vol 4 (CBD-DMO), SA22-7634

� z/OS V1R2.0 MVS System Messages, Vol 5 (EDG-GFS), SA22-7635

� z/OS V1R2.0 MVS System Messages, Vol 6 (GOS-IEA), SA22-7636

� z/OS V1R2.0 MVS System Messages, Vol 7 (IEB-IEE), SA22-7637

� z/OS V1R2.0 MVS System Messages, Vol 8 (IEF-IGD), SA22-7638

� z/OS V1R2.0 MVS System Messages, Vol 9 (IGF-IWM), SA22-7639

� z/OS V1R2.0 MVS System Messages, Vol 10 (IXC-IZP), SA22-7640

You should base your installation activities on the above-mentioned sources. You may use 
this redbook as a source of additional information, but do not use it as your only source during 
installation and customization of Communications Server for z/OS IP.
Chapter 3. Installation 51



3.3.1  IP Migration Guide
CS for z/OS IP is a complex product that offers many features. Review the z/OS V1R2.0 CS: 
IP Migration, GC31-8773 to understand the new functions, enhancements, changes, software 
and hardware requirements, and prerequisites for Communications Server for z/OS IP. Then 
select the TCP/IP services to be offered to the users and identify all prerequisites and 
incorporate them into your implementation plan. z/OS V1R2.0 Program Directory, Program 
Number 5694-A01, GI10-0670 and the PSP bucket may contain different information that 
supersedes the information in the z/OS V1R2.0 CS: IP Migration, GC31-8773, so take the 
information from all the sources into account.

3.3.2  z/OS Program Directory
The z/OS Program Directory contains not only the installation instructions for 
Communications Server for z/OS IP, but it also supersedes the information in the z/OS 
V1R2.0 CS: IP Migration, GC31-8773.

Figure 3-1 shows the cover of the Program Directory included with z/OS V1R2.

Figure 3-1   Cover of the z/OS V1R2 Program Directory
52 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



3.3.3  Program support
Contact the IBM Support Center or use IBMLINK to get the Preventive Service Planning 
(PSP) upgrade information. This document contains the latest information on new functions 
and maintenance that you may wish to take advantage of in your installation of 
Communications Server for z/OS IP. Its information supersedes that in the z/OS V1R2.0 CS: 
IP Migration, GC31-8773 and the z/OS V1R2.0 Program Directory, Program Number 
5694-A01, GI10-0670.

If you are asked to provide more information about the FMIDs, Component IDs (COMP IDs), 
or Component Names for which you require service, you will find this information in one of the 
appendixes of the z/OS V1R2.0 Program Directory, Program Number 5694-A01, GI10-0670.

3.4  Security considerations
Security is an important consideration for most MVS installations. TCP/IP has some built-in 
internal security mechanisms and relies on the services of an external security manager such 
as the IBM Resource Access Control Facility (RACF). The external security manager is called 
via the MVS System Authorization Facility (SAF) interface.

An external security manager is a requirement in the Communications Server for z/OS IP 
environment. As an online application, it is important that TCP/IP undergo security checks to 
eliminate possible security exposures. Some basic security concepts are included in the 
following sections, but for a more detailed explanation refer to Communications Server for 
z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security, SG24-6840 (redpiece 
available at http://www.ibm.com/redbooks  (expected redbook publish date August 2002)).

3.4.1  APF authorization
The TCP/IP system program libraries must be APF authorized. Authorized Program Facility 
(APF) means that MVS built-in security may be bypassed by programs that are executed from 
such libraries. CS for z/OS IP data sets have to be protected with RACF. Special attention 
has to be given to the APF authorized libraries defined in PROGxx.

We used the LNKAUTH=LNKLST specification in SYSx.PARMLIB member IEASYSxx, which 
means that all libraries in the LNKLST concatenation will be APF authorized. If these libraries 
are accessed through STEPLIB or JOBLIB, they will not be APF authorized unless they have 
been specifically defined in the IEAAPFxx or PROGxx member.

SEZALINK is one library that must be made part of your LNKLST concatenation. Because of 
the LNKAUTH=LNKLST specification, it will be APF authorized when it is accessed through 
the LNKLST concatenation. The SEZALINK library holds the TCP/IP system code, used by 
both servers and clients.

In addition to the LNKLST libraries, there are some libraries that are not accessed through the 
LNKLST concatenation, but have to be APF authorized. The SEZATCP library holds the 
TCP/IP system code used by servers. The library is normally placed in the STEPLIB or 
JOBLIB concatenation, which is part of the server JCL.

The following libraries may have to be APF authorized, depending on the choices you make 
during the installation of z/OS:

SEZALPA This library holds the TCP/IP modules that must be made part of your system's 
LPA. If you choose to add the library name to your LPALSTxx member in 
SYSx.PARMLIB, you also have to make sure the library is APF authorized. If 
Chapter 3. Installation 53

http://www.ibm.com/redbooks


you copy the load modules in the library to an existing LPALSTxx data set, you 
do not need to authorize the SEZALPA data set.

SEZADSIL This library holds the load modules used by the SNMP command processor 
running in the NetView address space. If you choose to concatenate this library 
to STEPLIB in the NetView address space, you may have to APF authorize it, if 
other libraries in the concatenation are already APF authorized.

Every APF-authorized online application may have to be reviewed to ensure that it matches 
the security standards of the installation. A program is ”a well-behaved program" if:

� Logged-on users cannot access or modify system resources for which they are not 
authorized and never would be by the security rules of the installation. Or, in other words, 
the program has no security hole that allows unauthorized penetration and data 
modification.

� The program does not require any special credentials to be able to execute.

Or, in the case of RACF, the program does not need the RACF authorization attribute 
OPERATIONS for execution.

3.4.2  RACF environment
RACF is very flexible and can be set up and tailored to meet almost all security requirements 
of large enterprises. RACF can be set up to match the scope of:

� A totally centralized enterprise structure, which includes centralized RACF administration 
and security audit functions.

� A totally decentralized structure, with either centralized or decentralized RACF 
administration and security audit functions.

The scope of decentralization may be either:

– An enterprise online application
– Several enterprise online applications
– Parts of an enterprise

All RACF implementations are based on the following key elements:

� User IDs
� Groups
� RACF resources
� RACF profiles
� RACF facility classes
� The hierarchical owner principle, which is applicable for all RACF definitions of user IDs, 

groups and RACF resources

RACF implementation
The TCP/IP RACF implementation is done using the following steps:

� The centralized RACF administration with system-wide RACF authorization sets up the 
decentralized RACF environment for TCP/IP and defines a RACF group for use as the 
RACF resource owner group for the TCP/IP application. The owner of this group may be 
any other group or user ID in the RACF cloud. We chose the RACF default group SYS1, 
which always exists in all RACF installations.

Note: User IDs with the RACF attribute OPERATIONS have ALTER access to all data 
sets in the system. The access authority to single data sets may be specifically lowered 
or excluded.
54 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



� Delegate the RACF authority to administer the decentralized TCP/IP RACF environment 
to the TCP/IP administration user ID. This can be a normal and existing RACF user ID 
without any additional RACF authorization attribute. The RACF command CONNECT may be 
used to connect this user ID with the RACF authorization attribute SPECIAL to the RACF 
group.

Each unit of work in the z/OS system that requires UNIX System Services must be associated 
with a valid UNIX System Services identity. A valid identity refers to the presence of a valid 
UNIX user ID (UID) and a valid UNIX group ID (GID) for each such user. The UID and the GID 
are defined through the OMVS segment in the user's RACF user profile and in the group's 
RACF group profile.

Each functional RACF access group must be authorized to access a specific TCP/IP RACF 
resource with a specific access attribute of either:

� ALTER
� CONTROL
� UPDATE
� READ
� NONE

This authorization is done with the RACF command PERMIT for each RACF resource needed 
by the functional access group.

Finally, RACF user IDs will be connected to the RACF resource access group using the RACF 
command CONNECT. The user ID then has the proper resource access authorization of the 
resource access group.

This example of a RACF implementation may seem confusing. However, it has some 
significant advantages over other RACF implementation approaches that are also possible. It 
isolates and shields RACF user IDs from the complex RACF resource definition and access 
authorization process. In addition it makes auditing and maintenance of the RACF 
environment easier. This approach to implementation is a question of organization and may 
be seen as follows:

� All RACF resources must be defined and have an owner assigned. An owner may be any 
RACF user ID or RACF group of the RACF cloud. If the owner is a group and this group is 
the focal point for all defined RACF resources of an entity, such as a decentralized 
structure, then its management is much simpler.

� RACF resources access authorization has to be given with specific access attributes to 
RACF user IDs and/or groups of the RACF cloud. If this RACF resource access 
authorization is given to functional resource access subgroups of the resource owning 
level, then its management, administration, and auditing is simplified. Being a resource 
access subgroup of the superior resource definition level means a strict isolation of both 
functional and hierarchical levels.

� RACF user IDs may have any number of personal resource access authorizations and be 
connected to any RACF group in the RACF cloud. The access rights may be the sum of all 
user IDs and connected groups' access group authorizations. If the user ID doesn't get 
any personal resource access authorization, then the process of management, 
administration and auditing is simplified again. It is easy to list and show all user ID 
connections to any authorization group. It is simple to list and show all access 
authorization given to a specific RACF resource access subgroup.

The RACF system-wide option SETROPTS GRPLIST must be set for the above RACF 
implementation to work.
Chapter 3. Installation 55



Assigning user IDs to started tasks
Chapter 2, “Customizing UNIX System Services” on page 17 and Communications Server for 
z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security, SG24-6840 (redpiece 
available at http://www.ibm.com/redbooks  (expected redbook publish date August 2002)), 
both emphasize the need to associate user IDs and started tasks with an OMVS RACF 
segment. In some cases, the user ID and started task must be associated with the UNIX 
superuser. In other cases, you can associate the user ID and started task with the default 
user.

RACF offers you two techniques to assign user IDs and group IDs to started tasks:

1. The started procedure name table (ICHRIN03).

2. The RACF STARTED resource profiles.

By using the STARTED resources, you can add new started tasks to RACF, and 
immediately make those new definitions active.

IEF695I START T03DNS   WITH JOBNAME T03DNS   IS ASSIGNED TO USER TCPIP3
 , GROUP OMVSGRP

The user ID and default group must be defined in RACF, which then treats the user ID as any 
other RACF user ID for its resource access checking. RACF allows multiple started procedure 
names to be assigned to the same RACF user ID. This has been used to assign two RACF 
user IDs to all TCP/IP started tasks as follows:

� User ID TCPIP3, to all started tasks requiring superuser authority
� User ID STCPIP3, to NFS (with the OPERATIONS attribute)

The default RACF group of STCTCPIP was assigned to STCPIP3. STCTCPIP has been 
defined as the RACF resource access subgroup of TCPOWN. This means that these RACF 
user IDs are implicitly connected to this RACF group.

The SUPERUSER RACF group of OMVSGRP was assigned to TCPIP3.

MVS VARY TCPIP commands
Access to MVS VARY TCPIP commands can be controlled by RACF by defining the commands 
(for example, VARY TCPIP OBEYFILE) to RACF class OPERCMDS. See Communications 
Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security, SG24-6840 
(redpiece available at http://www.ibm.com/redbooks  (expected redbook publish date August 
2002)), for further information.

NETSTAT command
Access to the TSO NETSTAT command, the UNIX shell command onetstat, and command 
options can be controlled by RACF by defining NETSTAT resources to the RACF generic 
class SERVAUTH. For example, it is possible to prevent access to the NETSTAT CONFIG 
command, but allow access to NETSTAT CONN. See Communications Server for z/OS V1R2 
TCP/IP Implementation Guide Volume 7: Security, SG24-6840 (redpiece available at 
http://www.ibm.com/redbooks  (expected redbook publish date August 2002))for further 
details.
56 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration

http://www.ibm.com/redbooks
http://www.ibm.com/redbooks
http://www.ibm.com/redbooks


More Information on RACF with CS for z/OS IP
RACF can be used to protect many TCP/IP resources, such as the TCP/IP stack itself and 
ports. Further information on securing your TCP/IP implementation can be found 
inCommunications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security, 
SG24-6840 (redpiece available at http://www.ibm.com/redbooks  (expected redbook publish 
date August 2002)).

3.4.3  TCP/IP server functions
Each CS for z/OS IP server relies on the use of an external security manager such as RACF. 
Several servers provide some built-in security functions for additional security. However, the 
following servers need some special attention:

� FTP
� NFS
� NCS
� RSHD

FTP security considerations
When the FTP server processes a logon request from a client user, it will issue a RACROUTE 
REQUEST=VERIFY, where the following parameters will be passed:

1. User's user ID
2. User's password and, optionally, a new password
3. The first seven characters of the FTP server jobname as application name
4. A terminal ID based on the IP address of the client

If you allow ANONYMOUS connections to your MVS FTP server, then all universally 
permitted data sets in your MVS system are available to all users in the TCP/IP network.

RACF considerations for FTP in CS for z/OS IP are covered in great detail in 
Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX 
Applications, SG24-5228.

NFS security considerations
Network File System (NFS) requires that its started task user ID have the RACF attribute 
OPERATIONS. When NFS opens a data set on behalf of the network user, MVS OPEN uses the 
credentials of the NFS address space and not the credentials of the network user.

Please see Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: 
UNIX Applications, SG24-5228 for more information.

NCS security considerations
For the NCS administrator there is an administration module that allows the administrator to 
add, delete, or view entries in the location broker data sets. During installation of TCP/IP for 
MVS, this module is loaded into a separate load library: tcpip.SEZALNK2. Since there is no 
protection built into the module, there is only one way to prevent users from inadvertently 
updating the location broker data sets, and that is to restrict the use of this module to a few 
people responsible for administration of the contents of the location broker data sets. You 
may use RACF to protect the tcpip.SEZALNK2 load library by giving it a universal access 
code of NONE and permitting only the NCS administrator(s) to read the data set.

Please see OS/390 eNetwork Communications Server V2R7 TCP/IP Implementation Guide 
Volume 3: MVS Applications, SG24-5229 for more information.
Chapter 3. Installation 57

http://www.ibm.com/redbooks


RSHD server security considerations
If you allow your users to send remote shell (RSH) commands to your MVS remote execution 
server (REXECD) address space without an MVS password, you must enable the RACF 
surrogate job submission resource class, and add surrogate resource definitions to RACF.

Please see OS/390 eNetwork Communications Server V2R7 TCP/IP Implementation Guide 
Volume 3: MVS Applications, SG24-5229 for details on this support.

3.4.4  TCP/IP client functions
The client functions of Communications Server for z/OS IP are executed in a TSO 
environment or a UNIX shell environment. Some functions are also available in other 
environments, such as batch or started task address spaces.

Any TSO user may execute any TCP/IP command and use a TCP/IP client function to access 
any other TCP/IP server host via the attached TCP/IP network. If these TCP/IP servers have 
not implemented adequate password protection, then any TSO client user may log on to 
these servers and access all data.

3.4.5  UNIX client functions
Certain client functions executed from the UNIX shell environment require superuser 
authority. The user ID accessing the shell must have an OMVS segment associated with it. 
You will find more about this subject in Chapter 2, “Customizing UNIX System Services” on 
page 17 and Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 
7: Security, SG24-6840 (redpiece available at http://www.ibm.com/redbooks  (expected 
redbook publish date August 2002)).

3.4.6  TCP/IP built-in security functions
TCP/IP for MVS has some built-in security functions that may be activated and used to 
control specific areas.

� The Simple Mail Transfer Protocol (SMTP) provides a secure mail gateway option that 
allows an installation to create a database of registered network job entry (NJE) users who 
are allowed to send mail through SMTP to a TCP/IP network recipient.

� The FTP server gives you the opportunity to code four security exits, in which you may 
extend the control over the functions performed by the FTP server. Using these exits you 
may control:

– The use of the FTP server based on IP addresses and port numbers.
– The use of the FTP server based on user IDs.
– The use of individual FTP subcommands.
– The submission of batch jobs via the FTP server.

� SNMP with Communications Server for z/OS IP has an SNMP agent that supports 
community-based security such as SNMPv1 and SNMPv2C, and user-based security 
such as SNMPv3. If you are concerned about sending SNMP data in a less secure 
environment, you may consider implementing SNMPv3, whose messages have data 
integrity and data origin authentication.

An SNMP subagent within CS for z/OS IP allows SET operations on some MIB objects. If 
you want to disable this function for security reasons, you may do so with parameters in 
the SACONFIG section of the PROFILE.TCPIP.

You may read more about the new SNMP in IBM Communications Server for OS/390 
V2R10 TCP/IP Implementation Guide Volume 2: UNIX Applications, SG24-5228.
58 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration

http://www.ibm.com/redbooks


� Both the IMS sockets and CICS sockets support provides a user exit that you can use to 
validate each IMS or CICS transaction received by the Listener function. How you code 
this exit and what data you require to be present in the transaction initiation request is up 
to you to decide. See z/OS V1R2.0 CS: IP IMS Sockets Guide, SC31-8830, and z/OS 
V1R2.0 CS: IP CICS Sockets Guide, SC31-8807, for full details.

3.5  Installation
The authoritative reference for any installation should be the z/OS V1R2.0 Program Directory, 
Program Number 5694-A01, GI10-0670. For this reason we do not include here a summary 
of this procedure. However, we emphasize to you the importance of working closely with the 
UNIX System Services and RACF implementers for your installation and customization of 
Communications Server for z/OS IP.

Having the Program Directory and understanding what it contains is not simply a matter of 
self-education and self-preservation. For proper teamwork with the z/OS installer, the UNIX 
System Services implementer, and the RACF administrator, you should know how your 
systems have been installed and prepared for you before you begin your customization. The 
implementer of CS for z/OS IP is encouraged to work closely with the z/OS installer, UNIX 
System Services implementer, and the RACF administrator.

Unless you have extensive experience with z/OS installation and maintenance procedures, 
much of the Program Directory can be a mystery to you. Do not let that discourage you. 
Examine the table of contents for the Program Directory and pick out the parts that affect your 
Communications Server for z/OS IP customization. 

3.5.1  TCP/IP configuration data set names
This topic is described in z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775. We strongly 
recommend that you read the information about data set names in this book, before you 
decide on your data set naming conventions.

The purpose here is to give an introduction to the data set naming and allocation techniques 
used by CS for z/OS IP.

In early versions of TCP/IP for MVS, almost all configuration data sets were implicitly 
allocated. Starting with TCP/IP MVS Version 3, you had a choice for some of the 
configuration data sets, whether they should be allocated implicitly or explicitly. With CS for 
z/OS IP, you still have a choice in the matter, but in addition you need to ensure that not only 
MVS functions find the appropriate data sets, but also that the UNIX System Services 
functions do as well.

� Implicit

The name of the configuration data set is resolved at runtime based on a set of rules (the 
search order) implemented in the various components of TCP/IP. When a data set name 
has been resolved, the TCP/IP component uses the dynamic allocation services of MVS 
and/or of UNIX System Services to allocate that configuration data set. The various data 
sets, whether for MVS functions or for UNIX System Services functions, are described in 
z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775, and the chapter that describes a 
specific server or client process. The information we provide below should be considered 
merely introductory, since you must examine the documentation on each procedure you 
use to determine what its specific resolution method is.

These are some of the data sets (or files) that can only be implicitly allocated in CS for 
z/OS IP:
Chapter 3. Installation 59



hlq.ETC.PROTO                         hlq.ETC.RPC

hlq.HOSTS.ADDRINFO              hlq.HOSTS.SITEINFO

hlq.SRVRFTP.TCPCHBIN           hlq.SRVRFTP.TCPHGBIN

hlq.SRVRFTP.TCPKJBIN            hlq.SRVRFTP.TCPSCBIN

hlq.SRVRFTP.TCPXLBIN            hlq.STANDARD.TCPCHBIN

hlq.STANDARD.TCPHGBIN           hlq.STANDARD.TCPKJBIN

hlq.STANDARD.TCPSCBIN           hlq.STANDARD.TCPXLBIN

In the above data set names, hlq is determined using the following search sequence:

a. User ID or jobname

b. DATASETPREFIX value (or its default of TCPIP), defined in TCPIP.DATA.

Dynamically allocated data sets can include a mid-level qualifier (MLQ), for example, a 
node name, or a function name:

a. For data sets containing a PROFILE.TCPIP configuration file:

xxxx.nodename.zzzz

b. For data sets containing a translate table used by a particular TCP/IP server:

xxxx.function_name.zzzz (for the FTP server the function_name is SRVRFTP)

Data set SYS1.TCPPARMS(TCPDATA) can be dynamically allocated if it contains the 
TCPIP.DATA config file.

� Explicit

For some of the configuration files, you can tell TCP/IP which files to use by coding DD 
statements in JCL procedures, or by setting UNIX environment variables. If the required 
data set has been allocated, for example, via a DD statement in the JCL used to start a 
TCP/IP component, the TCP/IP component will read its configuration data from that 
allocation, and will not try to construct a configuration data set name for dynamic 
allocation. Again, the various data sets used by TCP/IP functions and their resolution 
method are described in z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775 in the 
chapter that describes a specific server or client process.

3.5.2  Installation steps
Your z/OS installer must follow the z/OS installation steps detailed in the z/OS V1R2.0 
Program Directory, Program Number 5694-A01, GI10-0670. The following list includes only a 
high-level view of the steps required, in order to give you, the CS for z/OS IP implementer, a 
feeling of the whole installation process. The steps, unless otherwise indicated, are 
addressed to the z/OS installer.

1. Clone the running z/OS system. This becomes the target system. Verify that the clone 
IPLs.

2. Back up your cloned system.

3. Update the SMP/E entries for APPLY processing.

4. Decide which FMIDs to install.

– For Communications Server for z/OS IP, you must have:

• DFSMS since this is a prerequisite for an HFS system
• RACF, another prerequisite for CS for z/OS IP
• VTAM, a prerequisite for the data link control of CS for z/OS IP

5. Install products in waves.
60 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Waves are further broken down into subsections called ripples. The individual products 
that are installed in each wave and ripple are documented in the z/OS V1R2.0 Program 
Directory, Program Number 5694-A01.

– Wave 0 installs those elements that should be available on the driving system for 
subsequent wave installs.

– Wave 1 installs all FMIDs that don't install into an HFS.

• Some of CS for z/OS IP installation occurs with this wave, including the necessary 
DFSMS, RACF, and VTAM.

– Wave 2 installs those elements that install into an HFS.

• Some of CS for z/OS IP installation occurs with this wave, including the HFS portion 
of TCP/IP.

The z/OS V1R2.0 Program Directory, Program Number 5694-A01 points the CS for 
z/OS IP implementer to z/OS V1R2.0 CS: IP Migration, GC31-8773, for completing 
some of these steps.

• Run the EXEC to create the HFS directory systems and paths during this wave 
(EZAOEMDR).

• Customize the PARMLIB members, including BPXPRMxx for UNIX System 
Services.

• Customize BPXPRMxx for CS for z/OS IP now or wait until wave 3 completes.

• The CS for z/OS IP implementer may build the TCP/IP profile and Resolver 
configuration data sets or files at this point or may wait until wave 3 completes.

The z/OS V1R2.0 Program Directory, Program Number 5694-A01 points the 
TCP/IP implementer to z/OS V1R2.0 CS: IP Migration, GC31-8773, for completing 
some of these steps.

• Customize the RACF definitions to perform TCP/IP work or perform this after wave 
3 completes.

– Wave 3 installs the z/OS level of the JES2 or JES3 elements.

6. Back up the system after the successful APPLY step for each wave.

7. Back up the system after the successful ACCEPT step for each wave.

8. Back up the system after each successful IPL of the system.

MVS system modifications will have occurred during the above installation process. If you, 
the CS for z/OS IP system programmer, used to perform these tasks in the past, you may be 
surprised to find that they have already been performed by the z/OS system programmer. You 
will probably want to verify what was done during this process, so we suggest that you review 
the list of modifications made to your system. In “Updating the MVS system data sets” on 
page 61 and “Other modifications to the MVS system” on page 62, you find a list of items you 
were accustomed to finding in the formerly separate TCP/IP program directories.

Updating the MVS system data sets
z/OS uses the concept of product enablement policy. Certain products require registration in 
SYS1.PARMLIB(IFAPRDxx) if you intend to use them. If you forget to enable 
Communications Server for z/OS IP, you will see a message like the following:

IFA104I REGISTRATION HAS BEEN DENIED FOR PRODUCT WITH OWNER=’IBM CORP’
    NAME=z/OS FEATURE=featurename VERSION=vv.rr.mm ID=5694-AO1

Message IFA104I indicates that the product has not been listed in IFAPRDxx:
Chapter 3. Installation 61



IFA104I REGISTRATION HAS BEEN DENIED FOR PRODUCT WITH OWNER=prodown
    NAME=prodname FEATURE=featurename VERSION=vv.rr.mm ID=prodid

    Explanation:  The system denied the product's request to register.

    The product has a state of DISABLED in the product enablement policy.
    The product is not defined in the policy but its register request
    indicated that it should be disabled when there is no entry
    in the policy.
System Programmer Response:  ...
   (Check the enablement policy.)
   You might need to change the product's state from DISABLED to ENABLED.

To correct the problem, just add the following entry to IFAPRDxx:

PRODUCT OWNER('IBM CORP')
        NAME(z/OS)
        ID(5694-A01)
        VERSION(*) RELEASE(*) MOD(*)
        FEATURENAME('TCP/IP BASE')
        STATE(ENABLED)

Other modifications to the MVS system
Updating the MVS system libraries must be done with great care. Please follow the 
instructions in the z/OS V1R2.0 Program Directory, Program Number 5694-A01, GI10-0670, 
any additional hints in the PSP bucket, and information in z/OS V1R2.0 CS: IP Migration, 
GC31-8773, to ensure that all required MVS system modifications are done as required. You 
may need to make changes to all of the following members, depending on the features you 
are installing.

� SYSx.PARMLIB(PROGxx) or SYSx.PARMLIB(IEAAPFxx)

To APF-authorize CS for z/OS IP load libraries.

� SYSx.PARMLIB(LNKLSTxx)

To add CS for z/OS IP link libraries to the MVS system link list.

� SYSx.PARMLIB(LPALSTxx)

To add the CS for z/OS IP LPA modules to the LPA during IPL of MVS.

� SYSx.PARMLIB(IEFSSNxx)

To specify the VMCF and TNF subsystem names and optionally initialize the subsystems.

� SYSx.PARMLIB(SCHEDxx)

To specify certain CS for z/OS IP modules as privileged modules in MVS.

� SYSx.PARMLIB(IKJTSOxx)

To specify CS for z/OS IP modules as authorized TSO commands.

� SYSx.PARMLIB(IFAPRDxx) or (PROGxx)

To add product and feature information in a z/OS environment.

� SYS1.PROCLIB or the installation PROCLIB you use for your TCP/IP-related procedures.

For all your TCP/IP JCL procedures.
62 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Please use the following checklist as an introduction to the process of modifying the MVS 
system:

1. SYSx.PARMLIB updates:

a. LNKLSTxx

Add the following data sets:

hlq.SEZALINK 

hlq.SEZALNK2

b. LPALSTxx

Add the following data set: 

hlq.SEZALPA

c. PROGnn or IEAAPFxx

Add the following TCP/IP libraries for APF authorization:

hlq.SEZATCP

hlq.SEZADSIL

hlq.SEZALINK

hlq.SEZALNK2

hlq.SEZALPA

hlq.SEZAMIG

d. IEFSSNxx

TNF and VMCF are required for CS for z/OS IP. Add the subsystem definitions for the 
MVS address spaces of TNF and VMCF as follows:

• If you choose to use restartable VMCF and TNF:

TNF

VMCF

• If you will not be using restartable VMCF and TNF:

TNF,MVPTSSI

VMCF,MVPXSSI,nodename

The nodename should be set to the MVS NJE node name of this MVS system. It is 
defined in the JES2 parameter member of SYSx.PARMLIB:

Note: hlq.SEZALPA must be cataloged into the MVS master catalog. hlq.SEZALINK 
and hlq.SEZALNK2 can be cataloged into the MVS master catalog. You may omit them 
from the MVS master catalog if you identify them to include a volume specification as 
in:

           TCPIP.SEZALINK(WTLTCP),
           TCPIP.SEZALNK2(WTLTCP)

If the three data sets mentioned were renamed during the installation process, then use 
these names instead.
Chapter 3. Installation 63



NJEDEF   ....
         OWNNODE=03,
         ....

N03    NAME=SA03,SNA,NETAUTH

Make sure that the hlq.SEZALINK definition has been added to LNKLSTxx and the 
library itself has been APF authorized before you make this update. MVS initializes 
the address spaces of the TNF and VMCF subsystems during IPL as part of the 
master scheduler initialization.

e. SCHEDxx

The entries below are present in the IBM-supplied program properties table (PPT). 
However, if your installation has a customized version of the PPT, ensure these entries 
are present:

• For CS for z/OS IP

PPT PGMNAME(EZBTCPIP) KEY(6) NOCANCEL PRIV NOSWAP SYST LPREF SPREF

• If you use restartable VMCF and TNF

PPT PGMNAME(MVPTNF) KEY(0) NOCANCEL NOSWAP PRIV SYST
PPT PGMNAME(MVPXVMCF) KEY(0) NOCANCEL NOSWAP PRIV SYST

• For NPF

PPT PGMNAME(EZAPPFS) KEY(1) NOSWAP
PPT PGMNAME(EZAPPAAA) NOSWAP

• For SNALINK

PPT PGMNAME(SNALINK) KEY(6) NOSWAP SYST

f. COMMNDxx

VMCF and TNF are required for CS for z/OS IP. If you use restartable VMCF and TNF, 
procedure EZAZSSI must be run during your IPL sequence (EZAZSSI starts VMCF 
and TNF). Either use your operation's automation software to start EZAZSSI, or add a 
command to your COMMNDxx member in SYSx.PARMLIB:

COM='S EZAZSSI,P=your_node_name'

The value of variable P defaults to the value of the MVS symbolic &SYSNAME. If your 
node name is the same as the value of &SYSNAME, then you can use the following 
command instead:

COM='S EZAZSSI'

When the EZAZSSI address space starts, a series of messages is written to the MVS 
log indicating the status of VMCF and TNF; then the EZAZSSI address space 
terminates. Once VMCF and TNF have initialized successfully, you can start your 
TCP/IP system address spaces.

g. IKJTSOxx

Update the IKJTSOxx member by adding the following to the AUTHCMD section: 
MVPXDISP, NETSTAT, TRACERTE, RSH, LPQ, LPR and LPRM.

h. IEASYSxx

Review your CSA and SQA specifications and verify that the numbers allocated are 
sufficiently large enough to prevent getmain errors.

    IEASYSxx:  CSA(3000,250M) (used in BETA accounts)
    IEASYSxx:  SQA(8,448)     (used in BETA accounts)

i. IVTPRMxx
64 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Review the computed CSM requirements to reflect z/OS VTAM and CS for z/OS IP 
usage:

• IVTPRMxx: FIXED MAX(120M)
• IVTPRMxx: ECSA MAX(30M)

j. CTIEZBxx

Copy the following member to SYSx.PARMLIB from hlq.SEZAINST for use with 
CTRACE:

CTIEZB00 can be customized to include a different sized buffer. The default buffer 
size is 8MB. We made a new member, CTIEZB01, with the buffer size change. You 
may read more about the use of component tracing (CTRACE) in z/OS V1R2.0 CS: 
IP Diagnosis, GC31-8782 and in z/OS V1R2.0 CS: IP Migration, GC31-8773.

k. BPXPRMxx

• Define CS for z/OS IP as a UNIX Physical File System. At a minimum you must 
have the following INET definition. However, if you are using CINET, then you will 
need to make adjustments as described in Chapter 2, “Customizing UNIX System 
Services” on page 17 and Chapter 5, “Multiple TCP/IP stacks on z/OS” on 
page 117.

FILESYSTYPE    TYPE(INET) ENTRYPOINT(EZBPFINI) 
NETWORK        DOMAINNAME(AF_INET) 
               DOMAINNUMBER(2)
               MAXSOCKETS(60000) 
               TYPE(INET) 
               INADDRANYPORT(4000)
               INADDRANYCOUNT(2000)

Ensure that the INADDRANYPORT assignment does not conflict with PORT 
assignments in the PROFILE.TPCIP data set.

• Review the values specified in BPXPRMxx for MAXPROCSYS, MAXPROCUSER, 
MAXUIDS, MAXFILEPROC, MAXPTYS, MAXTHREADTASKS, and 
MAXTHREADS.

• Update BPXPRMxx in SYS1.PARMLIB with the following:

      MOUNT FILESYSTEM('OEA.TCPIP.HFS')
            TYPE(HFS)
            MODE(RDWR)
            MOUNTPOINT('usr/lpp/tcpip')

2. SYS1.PROCLIB or the PROCLIB you use for your TCP/IP JCL procedures. 

a. If you choose to use restartable VMCF and TNF, add procedure EZAZSSI:

     //EZAZSSI PROC P=''
     //STARTVT EXEC PGM=EZAZSSI,PARM=&P
     //STEPLIB DD   DSN=hlq.SEZATCP,DISP=SHR

b. Update your TCP/IP startup JCL procedure. The sample for the CS for z/OS IP 
procedure is in hlq.SEZAINST(TCPIPROC).

3. The PROCLIB you use for your TSO logon procedures.

Note: The OpenEdition ENTRYPOINT for TCP/IP for MVS OpenEdition 
Applications Feature was BPXTIINT; for CS for z/OS IP it is EZBPFINI. If you 
have failed to make this change in an existing BPXPRMxx member, you may see 
messages such as EZZ4203I or abend codes such as S806.
Chapter 3. Installation 65



Update your TSO logon procedures by adding the TCP/IP help data set hlq.SEZAHELP to 
the //SYSHELP DD concatenation. Optionally, add the //SYSTCPD DD statement to your 
logon procedures. 

Add hlq.SEZAMENU to the //ISPMLIB DD concatenation and hlq.SEZAPENU to the 
//ISPPLIB DD and the //ISPTLIB DD concatenations.

4. Establish RACF security environment for Communications Server for z/OS IP.

The notes that follow are merely an overview. You or the RACF implementer should 
consult the instructions in Secure e-business in TCP/IP Networks on OS/390 and z/OS, 
SG24-5383, and z/OS V1R2.0 CS: IP Migration, GC31-8773, to accomplish these tasks.

a. Defining commands for CS for z/OS IP in the RACF OPERCMDS class

b. Establishing a Group ID for a default OMVS group segment

ADDGROUP OEDFLTG OMVS(GID(9999))

c. Defining a user ID for a default OMVS group segment

RDEFINE FACILITY BPX.DEFAULT.USER APPLDATA('OEDFLTU/OEDFLTG')
ADDUSER OEDFLTU DFLTGRP(OEDFLTG) NAME('OE DEFAULT USER') PASSWORD(xg18ej) 
OMVS(UID(999999) HOME('/') PROGRAM('/bin/sh'))

d. Activating or refreshing appropriate facility classes

SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

e. Defining one or more superuser IDs to be associated with certain UNIX System 
Services users and TCP/IP started tasks

ADDGROUP OMVSGRP OMVS(GID(1))
ADDUSER TCPIP3 DFLTGRP(OMVSGRP) OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))

f. Defining other UNIX System Services users

You may already have defined RACF groups and users. If this is the case, you may 
merely need to set up an HFS home directory for each user, add an OMVS identity by 
altering the group to include a GID (ALTGROUP), and then using the ISHELL utility to 
add OE segments for UNIX System Services users, associating them with the altered 
group and giving each user a distinct UID.

Otherwise you may have to perform these tasks in a more painstaking manner:

ADDGROUP usergrp OMVS(GID(10))
ADDUSER user01 DFLTGRP(usrgrp) OMVS(UID(20) HOME('/u/user01') PROGRAM('/bin/sh/'))

3.6  Message types: Where to find them
You will want to have the z/OS System Messages manuals available as well as the messages 
manuals for TCP/IP. You will want to understand messages with a BPX prefix, an EZn prefix, 
SNA sense codes, and DLC codes.

3.6.1  Messages with prefix of BPX
You will find the explanations for these messages in z/OS V1R2.0 MVS System Messages, 
Vol 3 (ASB-BPX), SA22-7633.
66 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



3.6.2  Messages with prefix of EZA
For Communications Server for z/OS IP, you will find the explanations for these messages in 
z/OS V1R2.0 CS: IP Messages Volume 1 (EZA), SC31-8783.

3.6.3  Messages with prefix of EZB
For Communications Server for z/OS IP, you will find the explanations for these messages in 
z/OS V1R2.0 CS: IP Messages Volume 2 (EZB), SC31-8784.

3.6.4  Messages with prefix of EZY
For Communications Server for z/OS IP, you will find the explanations for these messages in 
z/OS V1R2.0 CS: IP Messages Volume 3 (EZY), SC31-8785.

3.6.5  Messages with prefix of EZZ
For Communications Server for z/OS IP, you will find the explanations for these messages in 
z/OS V1R2.0 CS: IP Messages Volume 4 (EZZ-SNM), SC31-8786.

3.6.6  Messages with prefix of FOM and FSUM
You will find the explanations for these messages in z/OS V1R2.0 UNIX System Services 
Messages and Codes, SA22-7807.

3.6.7  Eight-digit SNA sense codes and DLC codes
You will find the explanations for these codes in z/OS V1R2.0 CS: IP and SNA Codes, 
SC31-8791.

3.7  Checklist for installation and customization
1. Have you access to the detailed migration plan, fallback plan, and test plan for your 

installation?

2. Have you obtained at a minimum the following documentation: 

– z/OS V1R2.0 Program Directory, Program Number 5694-A01, GI10-0670

– Preventive Service Planning (PSP) bucket

– Upgrade name = OS390Rn; where n is 5, 6 or 7 for the release and subset ID = 
CS390IP

– z/OS V1R2.0 UNIX System Services Planning, SA22-7800

– z/OS V1R2.0 UNIX System Services User’s Guide, SA22-7801

– z/OS V1R2.0 UNIX System Services Messages and Codes, SA22-7807

– z/OS V1R2.0 UNIX System Services Command Reference, SA22-7802

– z/OS V1R2.0 MVS System Messages, Vol 1 (ABA-AOM), SA22-7631

– z/OS V1R2.0 MVS System Messages, Vol 2 (ARC-ASA), SA22-7632

– z/OS V1R2.0 MVS System Messages, Vol 3 (ASB-BPX), SA22-7633

– z/OS V1R2.0 MVS System Messages, Vol 4 (CBD-DMO), SA22-7634
Chapter 3. Installation 67



– z/OS V1R2.0 MVS System Messages, Vol 5 (EDG-GFS), SA22-7635

– z/OS V1R2.0 MVS System Messages, Vol 6 (GOS-IEA), SA22-7636

– z/OS V1R2.0 MVS System Messages, Vol 7 (IEB-IEE), SA22-7637

– z/OS V1R2.0 MVS System Messages, Vol 8 (IEF-IGD), SA22-7638

– z/OS V1R2.0 MVS System Messages, Vol 9 (IGF-IWM), SA22-7639

– z/OS V1R2.0 MVS System Messages, Vol 10 (IXC-IZP), SA22-7640

– z/OS V1R2.0 CS: IP Migration, GC31-8773

– z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775

– z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776

– z/OS V1R2.0 CS: IP User’s Guide and Commands, SC31-8780

– z/OS V1R2.0 CS: IP Messages Volume 1 (EZA), SC31-8783

– z/OS V1R2.0 CS: IP Messages Volume 2 (EZB), SC31-8784

– z/OS V1R2.0 CS: IP Messages Volume 3 (EZY), SC31-8785

– z/OS V1R2.0 CS: IP Messages Volume 4 (EZZ-SNM), SC31-8786

– z/OS V1R2.0 CS: IP and SNA Codes, SC31-8791

– Any other CS for z/OS IP manuals suitable for your product set

3. Have TNF and VMCF initialized successfully?

Check console log for a successful start of EZAZSSI, TNF, VMCF.

4. Has the TCP/IP feature of z/OS been enabled or registered in IFAPRDxx?

5. Has a full-function OMVS (DFSMS, RACF, HFS) started successfully?

a. Is OMVS active when you issue D OMVS?

b. Is SMS active when you issue D SMS?

c. Have HFS file systems been mounted? Verify with D OMVS,F.

d. Is RACF enabled on the system?

6. Have the definitions in BPXPRMxx of SYS1.PARMLIB been made to reflect: 

a. The correct transport provider for the stack(s) you will be running?

b. The correct CS for z/OS IP proc names?

c. The correct use of INET versus CINET?

d. The correct ENTRYPOINT name for Communications Server for z/OS IP versus earlier 
versions of OE function in TCP/IP? (z/OS IP ENTRYPOINT = EZBPFINI)

e. The mounting of filesystems for users? (You can verify with D OMVS,F.)

f. Appropriate values for MAXPROCSYS, MAXPROCUSER, MAXUIDS, 
MAXFILEPROC, MAXPTYS, MAXTHREADTASKS, and MAXTHREADS.

7. Have HFS file systems and directories been created and mounted for the users of the 
system?

8. Have RACF definitions been put in place for:

a. OMVS user IDs and group IDs for your CS for z/OS IP procedures

b. OMVS user IDs and group IDs for your other users, for Superusers, for a Default User, 
with definitions for appropriate Facility Classes, like BPX.SUPERUSER

c. TCP/IP VARY commands
68 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



d. NETSTAT commands

9. Have you placed the correct definitions in the MVS data sets:

– LNKLSTxx
– LPALSTxx
– SCHEDxx
– PROGxx
– IEASYSxx
– IEFSSNxx
– IKJTSOxx
– IVTPRMxx

10.Do you know how to work your way around the ISHELL and/or issue UNIX commands 
from the shell environment? (see z/OS V1R2.0 UNIX System Services Command 
Reference, SA22-7802.)

Have you attended a class on working with the shell environment or have you obtained 
hands-on experience otherwise?

11.Do you know how to set the environment variables for UNIX procedures so that the correct 
Resolver configuration data sets are found?

12.Raw sockets require authorization; they run from SEZALINK and are usually already 
authorized; if you have moved applications and functions to another library (not 
recommended), ensure that this library is authorized.

13.The loopback address is now 127.0.0.1. If you require 14.0.0.0, have you added this to the 
HOME list?

14.Have you computed CSA requirements to include not only z/OS VTAM, but also CS for 
z/OS IP?

a. IEASYSxx: CSA(3000,250M) (used in BETA accounts)

b. IEASYSxx: SQA(8,448) (used in BETA accounts)

15.Have you computed CSM requirements to include not only z/OS VTAM, but also CS for 
z/OS IP?

a. IVTPRMxx: FIXED MAX(120M)

b. IVTPRMxx: ECSA MAX(30M)

16.Have you modified the CTRACE initialization member to reflect at least 4 MB of buffer 
storage? (CTIEZB00)

17.Have you created CTRACE Writer procedures for taking traces?

18.Have you updated your TCP/IP Proc?

19.Have you updated your other procs, for example, the FTP server proc?

20.Have you revamped your TCP/IP Profile to use the new statements and to comment out 
the old?

a. Have you made provisions to address 3172 connections that are no longer supported?

b. Have you investigated all your connections to ensure to what extent they are still 
supported? (In some cases, definitions will have changed.)

21.Have your applications that relied on VMCF and IUCV sockets been converted now that 
those APIs are no longer supported?

22.If you plan to use multiple Communications Server for z/OS IP stacks, have you 
familiarized yourself with the issues surrounding PORT allocations? (See Chapter 5, 
“Multiple TCP/IP stacks on z/OS” on page 117.)
Chapter 3. Installation 69



23.Have you reviewed the Planning and Migration checklist in Appendix B of z/OS V1R2.0 
CS: IP Migration, GC31-8773 and made appropriate plans to use the sample data sets?

24.Have you reviewed the list and location of configuration data set samples in Chapter 1 of 
z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776?
70 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Chapter 4. Configuring base functions

This chapter describes how to customize the basic functions of the TCP/IP system address 
space. We will also review some of the commands to display the configuration and status of 
CS for z/OS IP resources. These commands may be issued from TSO, from the UNIX System 
Services shell environment, or as MVS console commands.

Starting with OS/390 V2R5 IP, the OS/390 TCP/IP stack is now fully integrated with UNIX 
System Services and capable of supporting many traditional TCP/IP applications and UNIX 
applications. This requires configuration steps that must be coordinated between the 
implementer of both CS for z/OS IP and UNIX System Services.

The installation of Communications Server for z/OS IP is detailed in the z/OS V1R2.0 
Program Directory, Program Number 5694-A01, GI10-0670, Chapter 2, “Customizing UNIX 
System Services” on page 17, and Chapter 3, “Installation” on page 49. The customization of 
UNIX System Services and Communications Server for z/OS IP is described in z/OS V1R2.0 
UNIX System Services Planning, GA22-7800.

You have already read that several jobs must be accomplished to arrive at a successfully 
operating Communications Server for z/OS IP:

� Implement a full-function UNIX System Services system on z/OS.

� An overview of a full-function UNIX System Services implementation is described in 
Chapter 1, “Communications Server for z/OS IP overview” on page 1 and Chapter 2, 
“Customizing UNIX System Services” on page 17.

� Define a RACF user ID with an OMVS UID and assign it to the started task name of the 
CS for z/OS IP system address space that is going to be used as your z/OS UNIX 
AF_INET transport provider.

� Information on RACF user IDs for UNIX System Services and Communications Server for 
z/OS IP is documented in Chapter 2, “Customizing UNIX System Services” on page 17 
and Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: 
Security, SG24-6840.

� Customize SYS1.PARMLIB(BPXPRMxx) to use either the integrated sockets AF_INET 
physical file system, or the Common AF_INET physical file system.

This process is described in Chapter 2, “Customizing UNIX System Services” on page 17 
and Chapter 5, “Multiple TCP/IP stacks on z/OS” on page 117.

4

© Copyright IBM Corp. 1998 2002. All rights reserved. 71



� Customize your CS for z/OS IP configuration data sets:

– PROFILE.TCPIP
– TCPIP.DATA
– Other configuration data sets

Samples of the configuration files can be found in hlq.SEZAINST, and in the HFS directory 
/usr/lpp/tcpip/samples.

4.1  z/OS IP Configuration Wizard and msys for Setup
The z/OS IP Wizard and msys for Setup are IBM offerings that can help you configure your 
CS for z/OS IP system. Both can be used to generate CS for z/OS IP configuration files.

4.1.1  z/OS IP Configuration Wizard
The z/OS IP Configuration Wizard sets up basic IP configuration for a single stack, including 
simple instances of OMPROUTE, FTP and TN3270 servers. 

The wizard takes you through a series of screens where you enter information about your 
z/OS IP configuration: general information such as the host name, the domain name, and the 
address of a name server; information about the type of routing you will use, details about 
your network connections, and whether you want to configure FTP and TN3270 servers. 
Wherever possible, the wizard uses defaults.
72 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 4-1   Example of Wizard screen

The wizard then builds customized PROFILE.TCPIP, TCPIP.DATA and OMPROUTE.CONF 
files, based on the information entered on the screens. You can upload the customized files to 
your system. The wizard also provides a checklist of tasks that must be completed when 
configuring z/OS IP.

The wizard can be found at:

 http://www.ibm.com/eserver/zseries/zos/wizards

4.1.2  z/OS msys for Setup
A z/OS system is very complex. It is controlled using a large variety of settings, including 
parmlib members, /etc files for UNIX System Services and so on, each of which has a 
different interface, and requires special knowledge to configure. Managed System 
Infrastructure for Setup (msys for Setup) addresses these issues by establishing a central 
directory for product configuration data and a single interface to that directory.
Chapter 4. Configuring base functions 73



msys for Setup code runs on a z/OS system. Product configuration data is held in a directory 
on an LDAP server running on z/OS. msys parses existing z/OS configuration files and stores 
the information in the LDAP directory. 

The configuration data stored in the LDAP directory can be viewed and updated, and new 
configuration data added, via the windows of the msys Windows NT application. To enable 
this, the Windows NT workstation has IP connections to the LDAP server and the z/OS 
system. Many products, such as CS for z/OS IP, can be configured using the same msys 
application.

The current version of msys for Setup allows you to set up a basic TCP/IP system. The 
windows prompt you for information about your z/OS IP system, which is then stored in the 
LDAP directory. msys for Setup can then be used to generate TCP/IP configuration files 
PROFILE.TCPIP, TCPIP.DATA and OMPROUTE.CONF based on the information in the LDAP 
directory.

For further information on msys for Setup, see z/OS V1R2.0 msys for Setup User’s Guide, 
SC33-7985.

4.2  PROFILE.TCPIP
Before you start your TCP/IP system, you must configure the operational and address space 
characteristics of your CS for z/OS IP stack.

These definitions are entered into a PROFILE configuration data set that is read by the 
TCP/IP system address space during initialization.

A sample PROFILE.TCPIP config file is provided in hlq.SEZAINST(SAMPPROF).

The PROFILE data set contains the following major groups of configuration parameters:

� TCP/IP operating characteristics
� TCP/IP reserved port number definitions
� TCP/IP physical network and hardware definitions
� TCP/IP Telnet definitions
� TCP/IP network routing definitions

In this chapter, we discuss TCP/IP operating characteristics and port reservation. 

For information on TCP/IP physical network and hardware definitions, see Communcations 
Server for z/OS V1R2 Implementation Guide Volume 4 : Connectivity and 
Routing,SG24-6516.

For information on TCP/IP Telnet definitions, see Chapter 8, “TN3270 Telnet server” on 
page 175.

For information on TCP/IP network routing definitions, see Communcations Server for z/OS 
V1R2 Implementation Guide Volume 4 : Connectivity and Routing, SG24-6516.

4.2.1  Displaying the TCP/IP Config
To display the operating characteristics of a TCP/IP stack, enter any of the following 
commands:

� TSO/E command NETSTAT CONFIG
� MVS command D TCPIP,procname,NETSTAT,CONFIG
74 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



� UNIX shell command onetstat -f

The following is example output from the NETSTAT CONFIG display:

D TCPIP,TCPIPA,N,CONFIG

EZZ2500I NETSTAT CS V1R2 TCPIPA 372

TCP CONFIGURATION TABLE: 1 
DEFAULTRCVBUFSIZE:  00016384  DEFAULTSNDBUFSIZE: 00016384    
DEFLTMAXRCVBUFSIZE: 00262144                                 
MAXRETRANSMITTIME:  120.000   MINRETRANSMITTIME: 0.500       
ROUNDTRIPGAIN:      0.125     VARIANCEGAIN:      0.250       
VARIANCEMULTIPLIER: 2.000     MAXSEGLIFETIME:    60.000      
DEFAULTKEEPALIVE:   00000120  LOGPROTOERR:       00          
RESTRICTLOWPORT:    YES       SENDGARBAGE:       NO          
TCPTIMESTAMP:       YES       FINWAIT2TIME:      600 

UDP CONFIGURATION TABLE: 2 
DEFAULTRCVBUFSIZE: 00065535  DEFAULTSNDBUFSIZE: 00065535     
CHECKSUM:          00000001  LOGPROTOERR:       01           
RESTRICTLOWPORT:   YES       NOUDPQUEUELIMIT:   NO

IP CONFIGURATION TABLE: 3 
FORWARDING: NO     TIMETOLIVE: 00064  RSMTIMEOUT:  00060     
FIREWALL:   00000                                            
ARPTIMEOUT: 01200  MAXRSMSIZE: 65535                         
IGREDIRECT: 00000  SYSPLXROUT: 00000  DOUBLENOP:   00000     
STOPCLAWER: 00000  SOURCEVIPA: 00001  VARSUBNET:   00000     
MULTIPATH:  NO     PATHMTUDSC: 00000  DEVRTRYDUR:  0000000090
DYNAMICXCF: 00000                                            
IQDIOROUTE: NO

SMF PARAMETERS: 4 
TYPE 118:                                                    
  TCPINIT:      00   TCPTERM:    00   FTPCLIENT:    00       
  TN3270CLIENT: 00   TCPIPSTATS: 00                          
TYPE 119:                                                    
  TCPINIT:      NO   TCPTERM:    NO   FTPCLIENT:    NO       
  TCPIPSTATS:   NO   IFSTATS:    NO   PORTSTATS:    NO       
  STACK:        NO   UDPTERM:    NO   TN3270CLIENT: NO 

GLOBAL CONFIGURATION INFORMATION: 5 
TCPIPSTATS: 00  ECSALIMIT: 0000000K  POOLLIMIT: 0000000K 

Parameters such as SOURCEVIPA can be either ENABLED or DISABLED. A value of 01 in 
the NETSTAT CONFIG display means it is ENABLED.

1 shows what settings are in effect in the TCPCONFIG parameters.

2 shows what you have set for the UDPCONFIG parameters.

3 shows the settings in effect in the IPCONFIG parameters.

4 shows what is in effect for SMFCONFIG.

5 shows the settings in effect for GLOBALCONFIG.
Chapter 4. Configuring base functions 75



4.2.2  Locating PROFILE.TCPIP
The following search order is used to locate the PROFILE.TCPIP config file:

1. //PROFILE DD DSN=.... (Explicit Allocation)

– //PROFILE DD DSN=TCP.TCPPARMS(PROF03A)

2. jobname.nodename.TCPIP (Implicit Allocation)

3. hlq.nodename.TCPIP (Implicit Allocation)

4. jobname.PROFILE.TCPIP (Implicit Allocation)

5. hlq.PROFILE.TCPIP (Implicit Allocation)

The PROFILE must exist. Otherwise, the TCP/IP address space will terminate abnormally 
with the message:

EZZ0332I DD:PROFILE NOT FOUND. CONTINUING PROFILE SEARCH
EZZ0325I INITIAL PROFILE COULD NOT BE FOUND

We recommend that you use //PROFILE DD statement in the TCP/IP system address space 
JCL procedure to explicitly allocate the PROFILE data set.

4.2.3  Configuration features of CS for z/OS IP
There have been a lot of new features and enhancements since OS/390 V2R5 IP. The 
following lists some of the more popular functions you might want to consider in configuring 
your TCP/IP stack:

� Multipath
� Path MTU discovery
� Dynamic XCF
� OSA-express Gigabit Ethernet support through the MPCIPA interface
� HiperSockets
� Sysplex Distributor 
� Enterprise Extender 

However, if you are migrating from a level of TCP/IP earlier than OS/390 V2R5 IP, you need 
to take note of the following additional changes:

1. Device support for MPC, native ATM, XCF and SAMEHOST interface.

– MPC and ATM need VTAM TRL definitions (XCF and SAMEHOST TRLs are 
dynamically generated by VTAM).

2. Changed device support: specification of AUTORESTART and IFSPEED, IFHSPEED.

3. Dropped support for obsolete devices: DDN1822, IUCV, CETI, X25ICA, HIPPI, Offload for 
3172.

4. Use of IPCONFIG ARPTO, specified in seconds, versus ARPAGE, specified in minutes.

5. Changed PORT reservation statements and PORTRANGE:

– SHAREPORT (sharing a port between multiple listeners, TCP only)

– BIND (making an application bind to a specific IP address)

6. The DELETE statement allows the removal of ATMARPSV, ATMLIS, ATMPVC, DEVICE, 
LINK, PORT and PORTRANGE definitions without restarting the TCP/IP stack.

7. New groupings for stack characteristics: parameters that were defined on the 
ASSORTEDPARMS statement should be migrated to the IPCONFIG, TCPCONFIG, 
UDPCONFIG and GLOBALCONFIG statements.
76 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



8. ITRACE and PKTTRACE replace TRACE, LESSTRACE, MORETRACE, NOTRACE.

9. Use of SMFCONFIG statement to turn on SMF logging.

10.Use of SACONFIG statement to configure the SNMP subagent.

11.New and changed miscellaneous statements:

– TRANSLATE, INCLUDE, GLOBALCONFIG 

The following parameters are obsolete:

� ADDRESSTRANSLATIONPOOLSIZE
� CCBPOOLSIZE
� ENVELOPEPOOLSIZE
� IPROUTEPOOLSIZE
� HPNSSTAGINGBUFFERS
� LARGEENVELOPEPOOLSIZE
� RCBPOOLSIZE
� SCBPOOLSIZE
� SKCPOOLSIZE
� SMALLDATABUFFERPOOLSIZE
� TCPPOOLSIZE
� TINYDATABUFFERPOOLSIZE
� UCBPOOLSIZE
� INFORM
� OFFLOADAPIOTHER
� RESTRICT
� SCREEN, NOSCREEN
� SYSCONTACT, SYSLOCATION
� TIMESTAMP
� OBEYLIST

For further information on migrating to Communications Server for z/OS IP, refer to z/OS 
V1R2.0 CS: IP Migration, GC31-8773.

4.2.4  System symbolics
Prior to OS/390 V2R7 IP, each TCP/IP profile configuration data set is unique. This means 
that if you are running your TCP/IP stacks in a sysplex, you would need to maintain one 
configuration for each stack on each of the systems. As more systems are added to the 
sysplex, more TCP/IP configuration files need to be maintained and synchronized.

Here in the ITSO we used system symbolics to enable us to share the definitions between our 
stacks. System symbolics are being used in creating shared parmlib definitions for systems 
that are in a sysplex. With this facility, you use the symbols defined during system startup as 
variables in configuring your TCP/IP stack. This means that you only need to create and 
maintain a template file for all the systems in the sysplex.

System symbols processing
System symbols used in the PROFILE, OBEYFILE and INCLUDE files are automatically 
translated during stack initialization. However, if you are planning to use it on the other TCP/IP 
data sets such as TCPIP.DATA, you need to run a JCL-driven utility called EZACFSM1 
located in hlq.SEZAINST(CONVSYM).
Chapter 4. Configuring base functions 77



Figure 4-2   JCL for EZACFSM1

The input to EZACFSM1 is your template data set that contains the system symbols and the 
definitions that you need. The output data set will be the parameter files such as TCPIP.DATA, 
that the TCP/IP stack or CS for z/OS IP application will use during its startup and operation. 
You need to run the utility on each of the systems where you need to have the symbols 
translated.

Symbols definitions
The variable &SYSCLONE is defined in the IEASYMxx member of SYS1.PARMLIB. As seen 
in Figure 4-3, the value for &SYSCLONE is derived from &SYSNAME. The variable 
&SYSNAME could be defined either in the IEASYSxx member or in the LOADxx member 
used during IPL. In our case, &SYSNAME was defined in IEASYSxx, which we used to IPL 
our MVS images. Please look at Figure 4-4 for a sample of the IEASYSxx that we used for the 
startup of RA03. You can find further information about system symbols in z/OS 
V1R1.0-V1R2.0 MVS Initialization and Tuning Guide, SA22-7591.

Figure 4-3   &SYSCLONE definition in SYS1.PARMLIB

Figure 4-4   &SYSNAME definition in IEASYSxx

//CONVSYM  JOB (accounting,information),programmer.name,
//             MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A
//*
//STEP1   EXEC  PGM=EZACFSM1,REGION=0K
//SYSIN   DD DSN=TCP.DATA.INPUT,DISP=SHR
//*SYSIN   DD    PATH='/tmp/tcp.data.input'
//*          The input file can be either an MVS file or an HFS file.
//*
//*
//*
//SYSOUT  DD DSN=TCP.DATA.OUTPUT,DISP=SHR
//*SYSOUT  DD 
// PATH='/tmp/tcp.data.output',PATHOPTS=(OWRONLY,OCREAT),
//*              PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)

 SYSDEF          SYSCLONE(&SYSNAME(3:2)) 1
                 SYMDEF(&SYSR2='O37RZ1')
                 SYMDEF(&SYSR3='&SYSR2(1:5).2')
                 SYMDEF(&SYSR4='&SYSR2(1:5).3')

 PROG=(00,37,MQ),             AUTHORIZATION LIST
 PROD=V2,
 OMVS=04,                     OPEN EDITION
 PLEXCFG=MULTISYSTEM,         SYSPLEX
 COUPLE=XX,                   SYSPLEX
 
 PAGTOTL=(10,5),
 REAL=0,
 SMF=03,                      SELECT SMFPRM00, SMF PARAMETERS    DEFAULT
 SSN=03,                      SUBSYSTEM INITIALIZATION NAMES
 SYSNAME=RA03,       2      SAME AS SID IN SMFPRM00
 VAL=00,                      SELECT VATLST00 DEFAULT
78 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



1 The value of SYSCLONE is defined as two characters starting from the third character of 
SYSNAME.

2 SYSNAME is defined as RA03 for system RA03.

You can also define and use your own variable in configuring CS for z/OS IP aside from 
&SYSNAME or &SYSCLONE.

System symbols in TCPIP.PROFILE
In Figure 4-5 we show the common configuration profile used for the A-stacks in systems 
RA03, RA28 and RA39. Since &SYSCLONE is unique in each system, it ensures that the 
files and IDs that will be generated when the stacks initialize are also unique.
Chapter 4. Configuring base functions 79



Figure 4-5   Common TCP/IP configuration profile with system symbolics

; MEMBER TCP.TCPPARMS(PROFILEA)
; ******************************************************************
; THIS IS THE COMMON TCP/IP PROFILE FOR THE TCP/IP A-STACK IN
; SYSTEMS RA03, RA28 and RA39.
; ******************************************************************
;
DATASETPREFIX TCP
;
TCPCONFIG
;
UDPCONFIG
;
; *********************************************************
;
IPCONFig
...
 DYNAMICXCF 192.168.233.&SYSCLONE 255.255.255.0 1   1

AUTOLOG 1
;
;Start OMPROUTE in each of the A-Stacks
;
    T&SYSCLONE.AOMPR     ; OSPF   SERVER     2
...
ENDAUTOLOG
;
;----------------------------------------------------------------------
PORT
....
   135 UDP LLBD                ; NCS Location Broker
   161 UDP T&SYSCLONE.SNMPD    ; SNMP AGENT             3
   162 UDP T&SYSCLONE.SNMPQ    ; SNMP QUERY ENGINE
   443 TCP OMVS                ; Domino webserver
...
;
; *********************************************************
; Include the stack and system specific device and home definitions. Devices
; are also started in the file.
;
INCLUDE TCP.TCPPARMS(PRDV&SYSCLONE.A)               4
;
; **********************************************************************
; Include Stack specific BSDRouting parameters for RouteD
;
INCLUDE TCP.TCPPARMS(PR&SYSCLONE.ABSD)
;

...

;
; **********************************************************************
;
; TCP.TCPPARMS(TELNETA1) contains the common definitions for all stacks.
; The VTAM parameters are in TCP.TCPPARMS(TELNETA1)
;
INCLUDE TCP.TCPPARMS(TELNETA1)   5
80 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



1Sets a unique IP address for the dynamic XCF definitions

2Autologs the OMPR routing program

3Port reservation for each server

4Include file for system specific device definitions

5Common include file for TELNET and VTAM definitions

Include files
Together with the system symbolics support, we also used a facility introduced in OS/390 
V2R5 IP to help us organize and share our stack configuration. By using the include 
configuration statement, we were able to structure our configuration better by putting different 
sections of PROFILE.TCPIP in separate files. During the stack's initialization, the contents of 
the file pointed to by the include statement are read and processed. These include 
statements are treated as if they were coded in PROFILE.TCPIP.

Because the devices used by each TCP/IP stack is unique, we used the variable 
&SYSCLONE (please refer to 4 in Figure 4-5) to resolve the name of the system-specific 
device file. We have included all of the DEVICE, LINK and START statements for each of the 
devices in this file. Figure 4-6 shows the device file for system RA03 called PRDV03A. We 
also have a separate device file each for systems RA28 and RA39.

Note: A dot is needed at the end of &SYSCLONE because the next character is not a 
space.

Important: The system symbols are stored in uppercase by MVS. Because you can code 
the TCP/IP configuration statements in either upper or lowercase, you have to make sure 
that you code the system symbol name in uppercase. If the symbols defined in the profile 
are not in uppercase, the symbols will not get translated and depending on the parameter, 
you may or may not get an error message but you would certainly encounter some unusual 
and unexpected names!
Chapter 4. Configuring base functions 81



Figure 4-6   Included device file PRDV03A for RA03

In our configuration, the three TCP/IP A-stacks were designed to have common Telnet and 
VTAM characteristics. This decision helped us to use and share the same file (5 in Figure 4-5) 
to define the Telnet and VTAM configuration for each of the TCP/IP stack. The variable 
&SYSCLONE is then used in the VTAM common configuration file to further customize the 
setting for each stack in the different systems. Figure 4-7 shows this common configuration 
file.

; MEMBER TCP.TCPPARMS(PRDV03A)
; ******************************************************************
; This file contains the stack specific device config data for system
; RA03 TCPIP A-Stack.
; *********************************************************
; VIPA Definition  (For V2R7)
; *********************************************************
   DEVICE VIPA3A   VIRTUAL     0
   LINK   VIPA3A   VIRTUAL     0     VIPA3A
;
;
; *********************************************************
; LCS Definition osa ch 78              Device # 2060-2061
; *********************************************************
  DEVICE TR1  LCS           2060 autorestart
  LINK   TR1  IBMTR         0    TR1

...

;
HOME
    192.168.250.3    VIPA3A     ; 1st VIPA Link
    9.24.104.133     TR1
...

;*********************************************************
; Start all the defined devices.
;
 START TR1
...
 START FDDI1
82 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 4-7   Common Telnet include file

Please take note of 1 in Figure 4-7. For illustration purposes, we used a different case for the 
&SYSCLONE variable and we got the error 2 in Figure 4-8 during the startup of the stack in 
RA03. Changing the case corrected the problem.

;********************************************************************
; MEMBER TCP.TCPPARMS(TELNETA1)
; Common  TELNET and VTAM definition for the A-Stacks in systems
; RA03, RA28 and RA39
;********************************************************************

TELNETPARMS
;TESTMODE
    PORT 23
...
ENDTELNETPARMS

BEGINVTAM
PORT 23 223

...
; Define the LUs to be used for general users.
; NONE

  LUGROUP LU1
      RA&sysclone.TN01..RA&sysclone.TN05   1
  ENDLUGROUP
  PRTGROUP PRT1
      RA&SYSCLONE.TP01..RA&SYSCLONE.TP05
  ENDPRTGROUP
  LUMAP LU1 IP1 GENERIC PRT1
...

ENDVTAM
Chapter 4. Configuring base functions 83



Figure 4-8   Startup error messages due to wrong case for &SYSCLONE

4.2.5  PROFILE.TCPIP parameters
The syntax for the parameters in the PROFILE TCPIP can be found in z/OS V1R2.0 CS: IP 
Configuration Reference, SC31-8776.

Reserving ports
The PORT reservations that are defined in the PROFILE data set are the ports that are used 
by specific applications. You may decide to explicitly not reserve all well-known ports by 
defining the UNRESTRICTLOWPORTS option on the TCPCONFIG and UDPCONFIG 
statements. This would allow any socket application to acquire a well-known port.

Figure 4-9   PROFILE.TCPIP UNRESTRICTLOWPORTS statement

If you want the well-known ports to be used only by predefined application processes or 
superuser authorized application processes, then you can define the RESTRICTLOWPORTS 
option on the TCPCONFIG and UDPCONFIG statements. This prevents any non-authorized 
socket application from acquiring a well-known port. You then need to explicitly define PORT 
statements to reserve each port, or define the process with superuser authority in RACF. You 
may reserve the PORT or PORTRANGE by using the keyword OMVS, jobname of the 
process, or a wild card jobname such as *. UNIX applications may fork() another address 
space with a different name (for example, inetd or FTPD). You would need to reserve the port 
using the new address space name.

 IEF403I  TCPIPA - STARTED - TIME=09.15.05
 IEE252I  MEMBER CTIEZB01 FOUND IN SYS1.PARMLIB
 EZZ7450I FFST SUBSYSTEM IS NOT INSTALLED
 EZZ0300I OPENED PROFILE FILE DD:PROFILE
 EZZ0309I PROFILE PROCESSING BEGINNING FOR DD:PROFILE
 EZZ0323I AUTOLOG STATEMENT ON LINE 72 HAD NO ENTRIES
 EZZ0300I OPENED TCP.TCPPARMS(PRDV03A) FILE
 EZZ0309I PROFILE PROCESSING BEGINNING FOR TCP.TCPPARMS(PRDV03A)
 EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE 'TCP.TCPPARMS(PRDV03A)'
 EZZ0304I RESUMING PROCESSING OF FILE DD:PROFILE
 EZZ0300I OPENED TCP.TCPPARMS(PR03ABSD) FILE
 EZZ0309I PROFILE PROCESSING BEGINNING FOR TCP.TCPPARMS(PR03ABSD)
 EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE 'TCP.TCPPARMS(PR03ABSD)'
 EZZ0304I RESUMING PROCESSING OF FILE DD:PROFILE
 EZZ0300I OPENED TCP.TCPPARMS(TELNETA2) FILE
 EZZ0309I PROFILE PROCESSING BEGINNING FOR TCP.TCPPARMS(TELNETA2)
 EZZ0401I LIST IS EMPTY IN FILE: 'TCP.TCPPARMS(TELNETA2)' ON LINE: 2
          57 AT: 'RA&SYSCLONE'
 EZZ0401I SYNTAX ERROR IN FILE: 'TCP.TCPPARMS(TELNETA2)' ON LINE:  2
          57 AT: 'RA&SYSCLONE'
 EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE 'TCP.TCPPARMS(TELNETA2

TCPCONFIG
UNRESTRICTLOWPORTS

UDPCONFIG
UNRESTRICTLOWPORTS
84 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 4-10   PROFILE.TCPIP: PORT & PORTRANGE

Normally you can specify either OMVS or the jobname in the PORT statement. However, 
certain daemons have special considerations on this matter.

When FTP starts it forks the listener process to run in the background, requiring that the 
name of the forked address space (T03FTP1 in this example), not the original procedure 
name, be used on the PORT statement of the control connection 4. You must specify OMVS 
as the name on the PORT for FTP's PORT 20 3, which is used for the data connection 
managed by the child process. If you specify the forked name on the data connection (Port 
20, 2), the data connections will fail.

As you see, this can be a confusing issue. We recommend that you research each daemon 
that you implement; if something does not work, then try the alternative coding. You may read 
more about this subject in Communications Server for z/OS V1R2 TCP/IP Implementation 
Guide Volume 7: Security, SG24-6840.

Please note that we reserve UDP port 514 5 to OMVS too. This port is used by the SyslogD 
server in OMVS to receive log messages from other SyslogD servers in the TCP/IP network.

In addition to assigning port numbers to servers, you also need to reserve the same range of 
ephemeral port numbers that was reserved on the NETWORK statement in BPXPRMxx.

7 These PORTRANGE statements reserve a range of ephemeral TCP and UDP ports for 
UNIX System Services. In this example, ports 10000 to 11999 are reserved. The range must 
match the INADDRANYPORT and INADDRANYCOUNT in your BPXPRMxx member 8.

NETWORK DOMAINNAME(AF_INET)
        DOMAINNUMBER(2)
        MAXSOCKETS(10000)

TCPCONFIG
   RESTRICTLOWPORTS

UDPCONFIG
   RESTRICTLOWPORTS

PORT
;   20 TCP T03FTP1   NOAUTOLOG ; FTP Server  2
    20 TCP OMVS      NOAUTOLOG ; FTP Server  3
    21 TCP T03FTP1   4       ; FTP Server
;   23 TCP INTCLIEN            ; Telnet Server
    25 TCP SMTP                ; SMTP Server
;   23 TCP INTCLIEN            ; Telnet Server
    25 TCP SMTP                ; SMTP Server
    53 TCP T03DNS  1         ; Domain Name Server - Parent Process
    53 UDP T03DNS  1         ; Domain Name Server - Parent Process
   514 UDP OMVS    5         ; OE SyslogD Server
;
PORTRANGE 10000 2000 TCP OMVS    ; TCP 10000 - 11999 7
PORTRANGE 10000 2000 UDP OMVS    ; UDP 10000 - 11999 7
;

Chapter 4. Configuring base functions 85



        TYPE(CINET)
        INADDRANYPORT(10000) 8
        INADDRANYCOUNT(2000) 8

To display the PORT reservation list you can use the TSO/E command NETSTAT PORTL, MVS 
command D TCPIP,procname,NETSTAT PORTL, or UNIX shell command onetstat -p t03atcp 
-o.

Figure 4-11   Viewing port reservation list

Port sharing (TCP only)
If you want to run multiple instances of a listener for performance reasons, you can share the 
same port between them. TCP/IP will select the listener with the fewest connections (both 
active and in the backlog) at the time when a client request comes in. A typical application 
using this feature is the Internet Connection Secure Server. If the load gets high, additional 
servers are started by the Workload Manager.

Example of a shared port:

PORT
    80   TCP  WEBSRV1 SHAREPORT
    80   TCP  WEBSRV2
    80   TCP  WEBSRV3

BIND control for INADDR_ANY
A new keyword in the PORT statement was introduced in CS for OS/390 V2R10 IP: the BIND 
keyword. (CS for OS/390 V2R8 IP provides this support via APAR.) It associates the server 
jobname with a specific IP address when the server binds to INADDR_ANY. This new 
function can be used to change the BIND for INADDR_ANY to a BIND for a specific IP 
address. 

MVS TCP/IP onetstat CS V2R7       TCPIP Name: T03ATCP          10:27:34
Port# Prot User     Flags Range
----- ---- ----     ----- -----
00007 TCP  MISCSERV A
00009 TCP  MISCSERV A
00019 TCP  MISCSERV A
00020 TCP  OMVS
00021 TCP  T03AFTP1 A
00025 TCP  SMTP     A
00053 TCP  T03DNS   A
00080 TCP  WEBQM    A
00111 TCP  OMVS     A
00520 UDP  T03AROU  A
00580 UDP  NCPROUT  A
00750 UDP  MVSKERB  A
00751 UDP  ADM@SRV  A
00760 UDP  IOASNMP  A
86 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Telnet, for example, is a server that binds to INADDR_ANY. Previously, an OS/390 client that 
wants to access both Telnet servers, Telnet 3270 and UNIX Telnet, would connect to different 
ports or different TCP/IP stacks, depending on which Telnet server it wished to connect to. 
This led to cases where either one server used a different, non-standard port or multiple 
TCP/IP stacks had to be used. With this function you do not need to have two different ports 
or TCP/IP stacks. You use the same port 23 for both Telnet 3270 and UNIX Telnet. All that is 
needed is to code the BIND keyword in the PORT statement for each server:

PORT
    23 TCP  INTCLIEN BIND 172.16.251.7
    23 TCP  OMVS BIND 172.16.251.8

In this case, the INTCLIEN is the special jobname associated with the TN3270 server, since it 
actually runs in the TCP/IP address space. The OMVS jobname identifies any OE server, 
including the UNIX Telnet server.

Both IP addresses can be dynamic VIPA addresses, static VIPA addresses or real interface 
addresses. You also can code a wild card for the jobname. Note that this function will work 
only for servers that bind to INADDR_ANY and is not valid with PORTRANGE statement.

AUTOLOG considerations
The purpose of the AUTOLOG statement is to start all procedures specified. AUTOLOG also 
monitors procedures started under its auspices, and will restart a procedure that terminates 
for any reason unless NOAUTOLOG is specified on the PORT statement.

For UNIX servers some special rules apply. If the procedure name on the AUTOLOG 
statement is eight characters long, no jobname need be specified. If the procedure name on 
the AUTOLOG statement is less than eight characters long and the job spawns listener 
threads with different names, you may have to specify the JOBNAME parameter and ensure 
that the jobname matches that coded on the PORT statement. In the following example, 
jobname T03FTP1 on the PORT statement matches JOBNAME on the AUTOLOG statement:

PORT
    20   TCP  OMVS
    21   TCP  T03FTP1

 AUTOLOG 1
    T03FTP JOBNAME T03FTP1   ; FTP Server
 ENDAUTOLOG

HOME
Starting with OS/390 V2R5 IP, the TCP/IP stack uses the IP address 127.0.0.1 for the 
loopback interface. If you also need to represent the IP address of 14.0.0.0 for compatibility 
with earlier MVS TCP/IP versions, you must code an entry in the HOME statement. The link 
label specified is LOOPBACK and you may define multiple IP addresses with the LOOPBACK 
interface.

Figure 4-12   PROFILE.TCPIP HOME statement for LOOPBACK

HOME
   14.0.0.0   LOOPBACK
Chapter 4. Configuring base functions 87



The onetstat -h command displays the home address assignments of the currently running 
CS for z/OS IP system. It is similar in display to the NETSTAT HOME command in TSO, and the 
MVS command D TCPIP,procname,NETSTAT,HOME. There is an additional field, called the Flg 
field, that indicates which interface is the primary interface. The primary interface is the 
address that is inserted as the source address in an IP header when communicating to a 
destination through an indirect route. The primary interface is the first entry in the HOME list 
in the PROFILE.TCPIP definitions unless the PRIMARYINTERFACE parameter is specified.

Figure 4-13   onetstat home display

IPCONFIG ARPTO
IPCONFIG ARPTO and ARPAGE statements have the same function: they specify the time 
interval between creation or revalidation and deletion of an entry in the ARP table. The value 
of IPCONFIG ARPTO is specified in seconds, and the value of ARPAGE is specified in 
minutes.

UNIX shell command onetstat -R displays the current ARP cache entries. The capital R in 
the option is required for this display. A third parameter may be coded that would specify the 
IP address of the entry you wish to display, as the NETSTAT ARP ip_addr command does from 
TSO. If you wish to display the entire ARP cache, you can specify the third parameter with the 
reserved word ALL (again, all in capital letters). If you do not specify in capital letters, the 
reserved word is not recognized. Figure 4-14 shows an example.

$ onetstat -h

MVS TCP/IP onetstat CS/390 V2R7       TCPIP Name: T03ATCP
Home address list:
Address          Link             Flg
-------          ----             ---
192.168.251.1    LNKVIPA1         P
9.24.105.126     EN1
9.24.104.231     TR1
192.168.252.1    T03CTCP
192.168.100.100  LTR2
192.168.236.1    RAS
127.0.0.1        LOOPBACK
88 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 4-14   onetstat ARP display

IPCONFIG DYNAMICXCF
Starting with OS/390 V2R7 IP, you now have the option of either defining the DEVICE, LINK, 
HOME and START statements for MPC XCF connections to another z/OS or letting TCP/IP 
dynamically define them for you. Dynamic XCF devices and links, when activated, appear to 
the stack as though they had been defined in the TCP/IP profile. They can be displayed using 
standard commands, and they can be stopped and started. For multiple stack environments, 
IUTSAMEH links are dynamically created for same-LPAR links. Please refer to 
Communications Server for z/OS V1R2 Implementation Guide Volume 5 : Availability, 
Scalability and Performance,SG24-6517for further details.

IPCONFIG PATHMTUDISCOVERY
Coding IPCONFIG PATHMTUDISCOVERY prevents the fragmentation of datagrams. It tells 
TCP/IP to discover dynamically the Path Maximum Transfer Unit (PMTU), which is the 
smallest of the MTU sizes of each hop in the path between two hosts.

When a connection is established, TCP/IP uses the minimum MTU of the sending host as the 
starting segment size and sets the Don't Fragment (DF) bit in the IP header. Any router along 
the route that cannot process the MTU will return an ICMP message requesting 
fragmentation and will inform the sending host that the destination is unreachable. The 
sending host can then reduce the size of its assumed PMTU. You can find more information 
about PMTU discovery in RFC 1191, Path MTU Discovery.

Aside from enabling PMTU during stack initialization, you could also enable or disable PMTU 
discovery by using VARY OBEYFILE.

onetstat -p t03atcp -R ALL

MVS TCP/IP onetstat CS/390 V2R7       TCPIP Name: T03ATCP
Querying ARP cache for address 9.24.104.172

Link: TR1               IBMTR: 406137462144
Route info: 0620 5801 5810

Querying ARP cache for address 9.24.104.205
Link: TR1               IBMTR: 08005A5530E7
Route info: 0620 5803 5830

Querying ARP cache for address 9.24.104.188
Link: TR1               IBMTR: 0004AC6210AC
Route info: 0620 5804 5840

Querying ARP cache for address 9.24.104.1
Link: TR1               IBMTR: 400052005011
Route info: 0000
Chapter 4. Configuring base functions 89



IPCONFIG MULTIPATH
With the multipath feature of CS for z/OS IP, packets can now be load balanced on routes that 
have been defined to be of equal cost. These routes could either be learned dynamically or 
defined statically in your routing program (OMPROUTE or OROUTED). Without multipath 
support, all connections use the first active route to the destination network or host even if 
there are other equal-cost routes available. With multipath enabled, TCP/IP will select a route 
to that destination network or host on a round-robin basis. TCP/IP can select a route on a 
per-packet basis, but this is not recommended.

IPCONFIG IQDIOROUTING
Communications Server for z/OS IP V1R2 introduces performance improvements when 
routing IP traffic between HiperSockets (also known as Internal Queued Direct I/O or iQDIO) 
and Queued Direct I/O (QDIO). This type of routing is called HiperSockets Accelerator 
because it allows you to concentrate external network traffic over a single OSA-Express 
QDIO connection and then accelerates the routing over a HiperSockets link bypassing the 
TCP/IP stack. To enable HiperSockets Accelerator, code the IPCONFIG IQDIOROUTING 
parameter.

For further information on HiperSockets, see Communcations Server for z/OS V1R2 
Implementation Guide Volume 4 : Connectivity and Routing, SG24-6516 and z/OS V1R2.0 
CS: IP Configuration Guide, SC31-8775.

Storage usage 
CS for z/OS IP uses Communications Storage Manager (CSM) to manage storage pools. The 
recommendation is to increase storage allocations by a minimum of 20 MB for TCP/IP in the 
CSA definition in IEASYSxx and the FIXED and ECSA definitions in IVTPRMxx.

New in CS for z/OS V1R2 are the GLOBALCONFIG ECSALIMIT and GLOBALCONFIG 
POOLLIMIT parameters. ECSALIMIT allows you to specify the maximum amount of extended 
common service area (ECSA) that TCP/IP can use, and POOLLIMIT allows you to specify the 
maximum amount of authorized private storage that TCP/IP can use within the TCP/IP 
address space. You can also use MVS command D TCPIP,tcpproc,STOR to display TCP/IP 
storage usage.

SACONFIG (SNMP subagent)
SACONFIG statement provides subagent support for SNMP. Through the subagent support 
you can manage an ATM OSA network interface. Please reference the PROFILE.TCPIP 
section in which you define SACONFIG:

 SACONFig
  COMMUNity public   ; Community string
  OSASF 760          ;OSASF port number
; AGENT 161          ;Agent port number
  ENABLed
  SETSENAbled
  ATMENabled

For more information on SNMP and subagent support, please see IBM Communications 
Server for OS/390 V2R10 TCP/IP Implementation Guide Volume 2: UNIX Applications, 
SG24-5228.
90 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



SMFCONFIG
Prior to z/OS V1R2.0, all TCP/IP SMF records are written using record type 118. The type 
118 record does not contain the identity of the TCP/IP stack. If you run multiple TCP/IP 
stacks, it is not easy to determine which SMF records relate to which TCP/IP stack. With z/OS 
V1R2.0, you have the option to record SMF type 119 records. Type 119 records contain 
additional values that identify the TCP/IP stack. Each type 119 record consists of an SMF 
header, a TCP/IP identification section, and a data section. The following type 119 records 
are available:

� TCP connection initiation and termination
� UDP socket close
� TCP/IP, interface and server port statistics
� TCP/IP stack start/stop
� FTP server transfer completion
� FTP server logon failure
� FTP client transfer completion
� TN3270 server session initiation and termination
� Telnet client connection initiation and termination

The SMFCONFIG statement is used to turn on SMF logging. It defines the type 118 and type 
119 records to be collected (the default format is type 118). 

The SMFPARMS statement can also be used to turn on SMF logging. However, you are 
encouraged to migrate to SMFCONFIG, which has the following advantages over the 
SMFPARMS statement:

� Using SMFCONFIG means that SMF records are written using standard subtypes. With 
SMFPARMS, you have to specify the subtypes to be used. 

� SMFCONFIG allows you to record both type 118 and type 119 records. With SMFPARMS, 
only type 118 records can be collected. 

� SMFCONFIG enables you to record a wider variety of information.

� By using SMFCONFIG, you gain support for dynamic reconfiguration, for all environments 
under which CS for z/OS IP is executing (SRB mode, reentrant, XMEM mode, etc.), and 
you can avoid duplicate SMF exit processes

In the following example, type 118 FTP client records, and type 119 TN3270 client records 
are collected:

SMFCONFIG TYPE118 FTPCLIENT
TYPE119 TN3270CLIENT

The above example can also be coded this way:

SMFCONFIG FTPCLIENT
TYPE119 TN3270CLIENT

since type 118 records are collected by default.

SMFCONFIG is coded in the PROFILE.TCPIP, but it has related entries in both Telnet and in 
FTP. (See Chapter 8, “TN3270 Telnet server” on page 175 and the FTP chapter in IBM 
Communications Server for OS/390 V2R10 TCP/IP Implementation Guide Volume 2: UNIX 
Applications, SG24-5228 for more information on the associated coding.)

The only SMF exit supported in CS for z/OS IP is the FTP server SMF exit, FTPSMFEX. This 
exit is only called for type 118 records. If you need to access type 119 FTP SMF records, use 
the standard SMF exit facilities, IEFU83, IEFU84, and IEFU85. 
Chapter 4. Configuring base functions 91



For further information on TCP/IP SMF records, see z/OS V1R2.0 CS: IP Configuration 
Guide, SC31-8775. z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776 contains the 
SMF record layouts and the standardized subtype numbers used by Communications Server 
for z/OS IP. 

ASSORTEDPARMS
If you use the ASSORTEDPARMS statement, consider migrating parameters from the 
ASSORTEDPARMS statement to the GLOBALCONFIG, IPCONFIG, TCPCONFIG and 
UDPCONFIG statements. All parameters on the ASSORTEDPARMS statement can be 
defined using the GLOBALCONFIG, IPCONFIG, TCPCONFIG and UDPCONFIG statements. 
Support for the ASSORTEDPARMS statement will be removed in a future release of CS for 
z/OS IP.

ASSORTEDPARMS should not be used with the GLOBALCONFIG, IPCONFIG, 
TCPCONFIG and UDPCONFIG statements, because unintended settings may result.

TCPCONFIG FINWAIT2TIME
The TCPCONFIG FINWAIT2TIME parameter allows you to specify the number of seconds a 
TCP connection should remain in the FINWAIT2 state. When this time limit is reached, the 
system waits a further 75 seconds before dropping the connection. The default is 600 
seconds, but you can specify a value as low as 60 seconds, which will reduce the time a 
connection remains in the FINWAIT2 status, and thereby free up resources for future 
connections.

TCPCONFIG TCPTIMESTAMP
The TCP timestamp option is exchanged during connection setup. This option is enabled (by 
default) via the TCPCONFIG TCPTIMESTAMP parameter. Enabling TCP timestamp allows 
TCP/IP to better estimate the Route Trip Response Time (RTT), which helps avoid 
unnecessary retransmissions and helps protect against wrapping of sequence numbers.

4.3  Configuring the system with MVS commands
CS for z/OS IP provides a way to change the running TCP/IP configuration dynamically: the 
VARY OBEYFILE command. This command replaces the OBEYFILE TSO command in TCP/IP 
for MVS V3R2. The VARY command is an MVS Console command. It allows you to add, 
delete, or completely redefine all devices dynamically as well as change TN3270 parameters, 
routing, and almost any TCP/IP parameter in the profile. These changes are in effect until the 
TCP/IP started task is started again or another VARY OBEYFILE command overrides them. 
Authorization is through the user's RACF profile containing the MVS.VARY.TCPIP.OBEYFILE 
definition. There is no OBEY statement in the CS for z/OS IP PROFILE.TCPIP which, in 
earlier MVS TCP/IP implementations, provided authorization. 

For further details on the VARY OBEYFILE command, see z/OS V1R2.0 CS: IP System 
Administrator’s Commands, SC31-8781. For more information on RACF definitions, please 
see Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: 
Security, SG24-6840. 

4.3.1  Deleting a device and adding/changing a device
You could use the OBEYFILE command to reconfigure the devices being used by CS for z/OS 
IP. Reconfiguration could either be deletion of existing devices, addition of new devices, or 
redefinition of an existing device. The syntax of the statements for OBEYFILE processing is 
the same as that being used in PROFILE.TCPIP.
92 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Device reconfiguration is a three-step process:

1. Stop the device with an MVS console command (VARY STOP) or with a VARY OBEYFILE that 
names a data set in which the STOP command is defined.

2. Activate an OBEYFILE that deletes the link(s) and the device(s).

3. Activate an OBEYFILE that adds the new or changed link(s) and device(s) and then starts 
them.

If you wish to delete a device, the order of steps you take is important. The DELETE 
statement in PROFILE.TCPIP allows you to remove LINK, DEVICE and PORT or 
PORTRANGE definitions. The general sequence for deleting and adding back a device is:

1. Stop the device.

2. Remove the HOME address by excluding it from the full stack's HOME list.

3. Remove the Gateway statement pertaining to the link if you see error messages when you 
try to delete the link; do this by excluding it from the full gateway list of the stack.

4. Delete the link.

5. Delete the device.

6. Add the new or changed device.

7. Add the new or changed link.

8. Add the HOME statements for the full stack.

9. Add the full gateway statements for the stack if you are using static routing.

10.Start the device.

Because the STOP command is executed as the last statement within an OBEYFILE 
regardless of its position within the file, you cannot do the STOP and DELETE in one step. 
Trying to do so will result in the error messages illustrated in Figure 4-15.

Figure 4-15   Timing problems with device/link deletion

Note: This step was required in OS/390 TCP/IP OpenEdition. It is not required in 
Communications Server for z/OS IP.

 V TCPIP,T03ATCP,O,TCP.TCPPARMS(DEL03A)
 EZZ0060I PROCESSING COMMAND: VARY TCPIP,T03ATCP,O,TCP.TCPPARMS(DEL03
 A)
 EZZ0300I OPENED OBEYFILE FILE 'TCP.TCPPARMS(DEL03A)'
 EZZ0309I PROFILE PROCESSING BEGINNING FOR 'TCP.TCPPARMS(DEL03A)'
 EZZ0395I DELETE LINK EN1 ON LINE 20 FAILED BECAUSE LINK IS ACTIVE
 EZZ0395I DELETE DEVICE DEVEN1 ON LINE 21 FAILED BECAUSE DEVICE IS AC
 TIVE
 EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE 'TCP.TCPPARMS(DEL03A)'
 EZZ0303I OBEYFILE FILE CONTAINS ERRORS
 EZZ0331I NO HOME ADDRESS ASSIGNED TO LINK EN1
 EZZ0059I VARY OBEY COMMAND FAILED: SEE PREVIOUS MESSAGES
 BPXF206I ROUTING INFORMATION FOR TRANSPORT DRIVER T03ATCP HAS BEEN
 INITIALIZED OR UPDATED.
 EZZ4315I DEACTIVATION COMPLETE FOR DEVICE DEVEN1
Chapter 4. Configuring base functions 93



4.3.2  Example: changing an LCS device
In this example we wanted to change the Ethernet device at address 0306 from TYPE 802.3 
to TYPE ETHERNET. This process would involve deleting the current definition and redefining 
the device. The results of our efforts follow.

In Figure 4-16, you see that there are 10 devices in the T03ATCP stack 1. Under each device 
a single link is defined, which is associated with an IP address.

Figure 4-16   Displays of devices and home before deletion

Notice the link type of 2: 8023. We need to change this in the running system by stopping, 
deleting, redefining, and adding back the Ethernet device and link.

In Figures 4-17, 4-18, and 4-20, you see the console messages that are issued as a result of 
these operations.

 D TCPIP,T03ATCP,N,HOME
 EZZ2500I NETSTAT CS V2R7 T03ATCP
 HOME ADDRESS LIST:
 ADDRESS          LINK             FLG
 192.168.251.1    LNKVIPA1         P
 9.24.105.126     EN1
 192.168.252.1    T03CTCP
 192.168.239.3    LINKT25A
 192.168.202.18   LINK3746
 192.168.221.20   LICP03
 192.168.109.3    LICCP25
 192.168.236.1    RAS
 192.168.235.3    MPCTO25
 127.0.0.1        LOOPBACK
 10 OF 10 RECORDS DISPLAYED  1

 D TCPIP,T03ATCP,N,DEV
 EZZ2500I NETSTAT CS V2R5 T03ATCP
 DEVNAME: LOOPBACK          DEVTYPE: LOOPBACK  DEVNUM: 0000
   LNKNAME: LOOPBACK          LNKTYPE: LOOPBACK    STATUS: READY
     NETNUM: 0   QUESIZE: 0   BYTEIN: 0000012120   BYTEOUT: 0000012120
   BSD ROUTING PARAMETERS:
     MTU SIZE: 00000             METRIC: 00
     DESTADDR: 0.0.0.0           SUBNETMASK: 0.0.0.0
 DEVNAME: DEVVIPA1          DEVTYPE: VIPA      DEVNUM: 0000

                        .....................

DEVNAME: DEVEN1            DEVTYPE: LCS       DEVNUM: 0306
  LNKNAME: EN1               LNKTYPE: 8023  2   STATUS: READY
    NETNUM: 0   QUESIZE: 0   BYTEIN: 0003131166   BYTEOUT: 0005792070
    BROADCASTCAPABILITY: YES
  BSD ROUTING PARAMETERS:
    MTU SIZE: 01500             METRIC: 00
    DESTADDR: 0.0.0.0           SUBNETMASK: 255.255.255.0

 10 OF 10 RECORDS DISPLAYED  1
94 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 4-17   V TCPIP command to stop a device

Now that the device is stopped, we can issue the command to delete the device and its link:

Figure 4-18   V TCPIP command to delete a device

The results of the delete are shown in the MVS NETSTAT console display of the HOME 
addresses. Notice the missing EN1 link as compared with Figure 4-16. In Figure 4-19, you 
see the statements necessary to delete the IP address, the LINK, and the DEVICE.

 V TCPIP,T03ATCP,STOP,DEVEN1
 EZZ0060I PROCESSING COMMAND: VARY TCPIP,T03ATCP,STOP,DEVEN1
 EZZ0053I COMMAND VARY STOP COMPLETED SUCCESSFULLY
 EZZ4315I DEACTIVATION COMPLETE FOR DEVICE DEVEN1
 BPXF206I ROUTING INFORMATION FOR TRANSPORT DRIVER T03ATCP HAS BEEN
 INITIALIZED OR UPDATED.

 V TCPIP,T03ATCP,O,TCP.TCPPARMS(DEL03A)
 EZZ0060I PROCESSING COMMAND: VARY TCPIP,T03ATCP,O,TCP.TCPPARMS(DEL03A)
 EZZ0300I OPENED OBEYFILE FILE 'TCP.TCPPARMS(DEL03A)'
 EZZ0309I PROFILE PROCESSING BEGINNING FOR 'TCP.TCPPARMS(DEL03A)'
 EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE 'TCP.TCPPARMS(DEL03A)'
 EZZ0053I COMMAND VARY OBEY COMPLETED SUCCESSFULLY
 BPXF206I ROUTING INFORMATION FOR TRANSPORT DRIVER T03ATCP HAS BEEN
 INITIALIZED OR UPDATED.

 D TCPIP,T03ATCP,N,HOME
 EZZ2500I NETSTAT CS V2R5 T03ATCP
 HOME ADDRESS LIST:
 ADDRESS          LINK             FLG
 192.168.251.1    LNKVIPA1         P
 192.168.252.1    T03CTCP
 192.168.239.3    LINKT25A
 192.168.202.18   LINK3746
 192.168.221.20   LICP03
 192.168.109.3    LICCP25
 192.168.236.1    RAS
 192.168.235.3    MPCTO25
 127.0.0.1        LOOPBACK
 9 OF 9 RECORDS DISPLAYED
Chapter 4. Configuring base functions 95



Figure 4-19   OBEYFILE member to delete a device (DEL03A)

We next add the device and link back with the changed definition 3:

Figure 4-20   V TCPIP command to add a device

The member with the definition change in it is shown in Figure 4-21.

 ;  From TCP.TCPPARMS(DEL03A)
 ;
 ;  To remove Ethernet Link and Device  (EN1)
 HOME
     192.168.251.1    LNKVIPA1    ; 1st VIPA Link (for V2R5)
 ;;;;9.24.105.126     EN1         ; 9.24.105.0
     192.168.252.1    T03CTCP     ; For SAMEHOST - IUTSAMEH - Connection
     192.168.239.3    LINKT25A
     192.168.202.18   LINK3746
     192.168.221.20   licp03
     192.168.109.3    liccp25
     192.168.236.1    RAS         ; XCF TO RA28
     192.168.235.3    MPCTO25     ; MPC TO MVS25
 DELETE LINK EN1
 DELETE DEVICE DEVEN1
 ;

 V TCPIP,T03ATCP,O,TCP.TCPPARMS(ADD03A)
 EZZ0060I PROCESSING COMMAND: VARY TCPIP,T03ATCP,O,TCP.TCPPARMS(ADD03A)
 EZZ0300I OPENED OBEYFILE FILE 'TCP.TCPPARMS(ADD03A)'
 EZZ0309I PROFILE PROCESSING BEGINNING FOR 'TCP.TCPPARMS(ADD03A)'
 EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE 'TCP.TCPPARMS(ADD03A)'
 EZZ0053I COMMAND VARY OBEY COMPLETED SUCCESSFULLY
 BPXF206I ROUTING INFORMATION FOR TRANSPORT DRIVER T03ATCP HAS BEEN
 INITIALIZED OR UPDATED.
 EZZ4314I INITIALIZATION COMPLETE FOR DEVICE DEVEN1, LINK EN1

 D TCPIP,T03ATCP,N,DEV
 EZZ2500I NETSTAT CS V2R5

                 ............................

 DEVNAME: DEVEN1            DEVTYPE: LCS       DEVNUM: 0306
   LNKNAME: EN1               LNKTYPE: ETH 3     STATUS: READY
     NETNUM: 1   QUESIZE: 0   BYTEIN: 0000012092   BYTEOUT: 00000036
     BROADCASTCAPABILITY: YES
   BSD ROUTING PARAMETERS:
     MTU SIZE: 00000             METRIC: 00
     DESTADDR: 0.0.0.0           SUBNETMASK: 255.255.255.0
 10 OF 10 RECORDS DISPLAYED
96 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



.

Figure 4-21   OBEYFILE member to add a device (ADD03A) (Part 1)

;  From TCP.TCPPARMS(ADD03A)
;
;  To add a new device/link pair
; ******************************* Top of Data ********************
; *          3172-3 2nd floor                                    *
; *                                                              *
; ****************************************************************
;
DEVICE DEVEN1  LCS           306   NETMAN
LINK   EN1     ETHERNET      1     DEVEN1
;
; ---------------------------------------------------------------------
;
; HOME Internet (IP) addresses of each link in the host.
;
; NOTE: To use this home statement, update the ipaddress and linknames
;to reflect your installation configuration and remove the semicolon
;

; HOME Internet (IP) addresses of each link in the host.
HOME
    192.168.251.1    LNKVIPA1    ; 1st VIPA Link (for V2R5)
    9.24.105.126     EN1         ; 9.24.105.0
    192.168.252.1    T03CTCP     ; For SAMEHOST - IUTSAMEH - Connection
    192.168.239.3    LINKT25A
    192.168.202.18   LINK3746
    192.168.221.20   licp03
    192.168.109.3    liccp25
    192.168.236.1    RAS         ; XCF TO RA28
    192.168.235.3    MPCTO25     ; MPC TO MVS25
;
; ---------------------------------------------------------------------
Chapter 4. Configuring base functions 97



Figure 4-22   OBEYFILE member to add a device (ADD03A) (Part 2)

4.4  TCPIP.DATA
The TCPIP.DATA configuration data set is the anchor configuration data set for the TCP/IP 
stack and all TCP/IP servers and clients running on that stack. In CS for z/OS IP, you may 
define the TCPIP DATA parameters in an HFS file or in an MVS data set. The TCPIP.DATA 
configuration data set is read during initialization of all TCP/IP server and client functions. 
They must all access this data set in order to find the basic configuration information, such as 
the name of the TCP/IP address space (keyword TCPIPJOBNAME), the TCP/IP host name 
(keyword HOSTNAME), and the data set prefix to use when searching for other configuration 
data sets (keyword DATASETPREFIX).

Notes: 

� The syntax for the parameters in the TCPIP DATA file can be found in z/OS V1R2.0 CS: IP 
Configuration Reference, SC31-8776.

� A sample TCPIP.DATA config file is provided in hlq.SEZAINST(TCPDATA).

The TCPIP.DATA file is also known as one of the Resolver configuration files. In fact, the 
name is now more commonly used to refer to this important file in the UNIX System Services 
environment because the sockets library contains a component called the Resolver. In the 
UNIX environment you use the /etc/resolv.conf file for the same purpose as you use 
TCPIP.DATA in an MVS environment.

GATEWAY
;
; Direct Routes - Routes that are directly connected to my interfaces.
;
; Network  First Hop  Link Name Packet Size  Subnet Mask  Subnet Value

 9              =        EN1       1500      0.255.255.0  9.24.105
 192.168.252.2  =      T03CTCP     4096      HOST
 192.168.202.8  =      LINK3746 DEFAULTSIZE  HOST
 192.168.221    =      licp03       4000          0
 192.168.239.27 =      LINKT25A     2000        host
 192.168.109.2  =      liccp25      4000        HOST
 192.168.236.2  =      RAS         32768        HOST
 192.168.235.1  =      MPCTO25     32768        HOST
;
;
; Indirect Routes - Routes that are reachable through routers on my
;                   network.
; Network  First Hop  Link Name Packet Size  Subnet Mask  Subnet Value
;
; Default Route - All packets to an unknown destination are routed
;                 through this route.
;
; Network  First Hop  Link Name Packet Size  Subnet Mask  Subnet Value

 DEFAULTNET 9.24.105.1   EN1       1500      0
; *********************************************************
  Start all the defined devices.
 START DEVEN1               ; 3172-3 ICP Ethernet
98 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



4.4.1  Resolvers
Resolver code executes as part of a socket program address space. It accesses name 
servers, on behalf of the application program, for name-to-address and address-to-name 
resolution. If no name server is available, the Resolver uses local definitions, such as 
/etc/hosts, HOSTS.SITEINFO or HOSTS.ADDRINFO. Statements in TCPIP.DATA tell the 
Resolver which name server, if any, it should use, and how to access that name server. 

Prior to z/OS V1R2.0 there are several versions of the Resolver. The different versions of the 
Resolver use different search orders when trying to locate the TCPIP.DATA file; the search 
order for MVS socket applications is different to the search order for UNIX socket applications. 
It is therefore possible for applications using different socket APIs to use different TCPIP.DATA 
files.

With z/OS V1R2.0 the various Resolvers have been consolidated into a single Resolver, the 
System Resolver, which allows consistent name resolution processing across all applications.

System Resolver 
The System Resolver is enabled automatically within z/OS. A Resolver address space is 
started during UNIX System Services initialization. The name of the address space is defined 
in BPXPRMxx with the RESOLVER_PROC statement. The address space reads the 
Resolver setup file, which contains two statements:

� GLOBALTCPIPDATA - specifies the name of an HFS file or MVS data set containing 
TCPIP.DATA statements that are to be used MVS image-wide.

� DEFAULTTCPIPDATA - specifies the name of an HFS file or MVS data set that will be 
used instead of data set TCPIP.TCPIP.DATA as the final location when searching for 
TCPIP.DATA.

The HFS file or MVS data set pointed to by the GLOBALTCPIPDATA statement must contain 
all TCPIP.DATA statements relating to the Resolver:

� DOMAINORIGIN/DOMAIN
� NSINTERADDR/NAMESERVER
� NSPORTADDR
� RESOLVEVIA
� RESOLVERTIMEROUT
� RESOLVERUDPRETRIES
� SEARCH
� SORTLIST

Other TCPIP.DATA statements can be specified in the global TCPIP.DATA file, or in a separate 
TCPIP.DATA file. If a statement, for example TCPIPJOBNAME, is not found in the global 
TCPIP.DATA file, the System Resolver will use either the MVS or UNIX search order, based 
on the Socket API in use, to locate the next TCPIP.DATA file, and this file will be examined for 
the statement TCPIPJOBNAME. When one TCPIP.DATA file is located, in addition to the 
global TCPIP.DATA file, the Resolver will stop searching, even if neither of the files contain 
TCPIPJOBNAME (if neither of the files contain TCPIPJOBNAME, the default value for 
TCPIPJOBNAME would be used). This effectively allows you to concatenate two files 
together to create the TCPIP.DATA configuration.

Resolver is also responsible for finding other files in the system. See Figure 4-23.
Chapter 4. Configuring base functions 99



Figure 4-23   Resolver-related configuration files

For more information on the System Resolver, see z/OS V1R2.0 CS: IP Migration, 
GC31-8773, z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775, and z/OS V1R2.0 CS: IP 
Configuration Reference, SC31-8776.

4.4.2  Resolver configuration for the TCP/IP stack
The functions invoked during stack initialization rely on the following search sequence for 
discovering the correct TCPIP.DATA information:

1. GLOBALTCPIPDATA

2. ENVAR("RESOLVER_CONFIG=...") (Explicit Allocation where the parm can be coded in 
either of the following fashions):

– //TCPIP PROC PARMS='ENVAR("RESOLVER_CONFIG=/etc/tdata03a") ...

– //TCPIP PROC 
PARMS='ENVAR("RESOLVER_CONFIG=//''TCP.TCPPARMS(TDATA03A)''")'

3. /etc/resolv.conf (HFS file) (Implicit Allocation)

4. //SYSTCPD DD DSN=TCP.TCPPARMS(TDAT03A) (Explicit Allocation)

REXX 
Sockets

C
Sockets

Native MVS Sockets

IMS CICS

Sockets

Sockets Extended
Callable

Sockets Extended
Assembler Macro

TCP UDP RAW

IP

Device Interfaces

System
Resolver

UNIX System Services
Socket API

System
Resolver

Config
HFS files:
/etc/resolv.conf
/etc/protocol
/etc/services
/etc/hosts

Config
Data Sets:
TCPIP.DATA
ETC.PROTO
ETC.SERVICES
HOSTS.ADDRINFO
HOSTS.SITEINFO

Note: Though the System Resolver is a required feature, not making changes to your 
system will result in the same Resolver functionality as in previous releases: it uses the 
applicable MVS or UNIX search order, without the GLOBALTCPIP and DEFAULTTCPIP 
information. 
100 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



5. userid.TCPIP.DATA or jobname.TCPIP.DATA (Implicit Allocation)

6. SYS1.TCPPARMS(TCPDATA) (Implicit Allocation)

7. hlq.TCPIP.DATA (default = TCPIP.TCPIP.DATA) (Implicit Allocation) or 
DEFAULTTCPIPDATA

4.4.3  MVS application search path
This search sequence is for most applications that are accessed through native MVS sockets. 
This is the path commonly used by programs written in the TCP/IP for MVS APIs, such as C, 
Sockets Extended, CICS, IMS, and REXX. TSO clients use this search sequence as well.

1. GLOBALTCPIPDATA

2. //SYSTCPD DD DSN=TCP.TCPPARMS(TDAT03A) (Explicit Allocation)

3. userid.TCPIP.DATA for TSO users or jobname.TCPIP.DATA for batch jobs (Implicit 
Allocation)

4. SYS1.TCPPARMS(TCPDATA) (Implicit Allocation)

5. TCPIP.TCPIP.DATA (Implicit Allocation) or DEFAULTTCPIPDATA

If one of the implicit methods for finding TCPIP.DATA can be used, TSO logon procedures 
need not be changed in order for TCP/IP clients to find the necessary configuration 
information. However, if you wish to make available the TCP/IP help information, you might 
consider adding the SEZAHELP data set to the TSO logon procedure as depicted in 1 below.

Figure 4-24   TCP/IP help data in TSO logon procedure

4.4.4  z/OS UNIX application search path
z/OS UNIX applications are written using the UNIX System Services Socket API. 
Applications, such as those invoked from the UNIX System Services shell, would search for 
their TCPIP.DATA information in this sequence:

Note: Some clients will have problems with the //SYSTCPD specification because the 
information from it is not passed to forked processes. For such clients, it is safer to use 
the RESOLVER_CONFIG variable or the HFS default of /etc/resolv.conf.

Note: Though not a result of the System Resolver, this search sequence represents a big 
change from earlier versions of TCP/IP. Note that //SYSTCPD is fourth in the search order, 
and no longer first.

The Telnet server, despite running in the TCP/IP address space, does not follow this 
search order. It uses the native MVS application search path.

* $RISC ACCOUNTING
//IKJACCNT PROC
//GENERAL  EXEC PGM=IKJEFT01,TIME=1440,REGION=4096K,DYNAMNBR=99,
//    PARM='EXEC ''ITSC.ISPF.CLISTS($RISC)'''
............
//SYSHELP  DD  DSN=SYS1.HELP,DISP=SHR
//         DD  DSN=TCPIP.SEZAHELP,DISP=SHR   1
              ............
//*
Chapter 4. Configuring base functions 101



1. GLOBALTCPIPDATA

2. Any MVS data set or HFS file explicitly defined with a UNIX System Services environment 
variable called RESOLVER_CONFIG. This variable may be set by a UNIX System 
Services shell command, by passing it as a JCL PARM with the EXEC statement or with 
the STDENV DD card.

– // PARM='ENVAR("RESOLVER_CONFIG=/etc/tdata03a")'...

– // PARM='ENVAR("RESOLVER_CONFIG=//''TCP.TCPPARMS(TDATA03A)''") '

– //STDENV DD .......

UNIX applications that use BPXBATCH to get started, as for example ORouteD, can 
use the special //STDENV DD card to point to a file that contains the environmental 
variables. BPXBATCH will read this file and set the variables before starting the UNIX 
program.

– RESOLVER_CONFIG=//'TCP.TCPPARMS(TDATA03A)' (ISHELL)

– RESOLVER_CONFIG=/etc/tdata03a (ISHELL)

– export RESOLVER_CONFIG=/etc/tdata03a (OMVS shell)

– export RESOLVER_CONFIG="//'TCP.TCPPARMS(TDATA03A)'" (OMVS shell)

See Figure 4-29 on page 104 for another example.

3. /etc/resolv.conf (HFS file) (Implicit Allocation)

4. //SYSTCPD DD DSN=TCP.TCPPARMS(TDAT03A) (Explicit Allocation)

This option may not be a good technique for processes that use the fork() command. This 
allocation will not be available to the child process that is forked since DD allocations for 
the parent process are not inherited by the child. The only exception to this rule is a 
STEPLIB allocation.

5. userid.TCPIP.DATA (Implicit Allocation)

6. SYS1.TCPPARMS(TCPDATA) (Implicit Allocation)

7. TCPIP.TCPIP.DATA (Implicit Allocation) or DEFAULTTCPIPDATA

4.4.5  Working with TCPDATA
Applications using CS for z/OS IP can override current TCPIP.DATA settings using the 
RESOLVER_CONFIG environment variable. This, however, will not override the name server 
specification if a GLOBALCONFIG file was specified.

From an OMVS shell environment
If an application wants to override the system default of /etc/resolv.conf, it can initialize the 
RESOLVER_CONFIG environment variable to point to an alternate Resolver configuration file 
or data set.

You might want to override the default if, for example, you have a requirement to use different 
name servers. If you are logged on to the z/OS UNIX shell, the export command can be used 
to point to an MVS data set:
102 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 4-25   Overriding TCPDATA from OMVS shell: MVS data set

Please note the required syntax for referring to an MVS data set name: double quotes 
followed by two slashes followed by the MVS data set name enclosed in single quotes. You 
will have to use the same syntax for other environment variables that point to MVS data sets.

The following shell command can be used to point to an HFS file:

Figure 4-26   Overriding TCPDATA from OMVS shell: HFS file

From ISHELL
An idiosyncrasy of the ISHELL environment is that any dynamic changes to the environment, 
such as a temporary change of TCPDATA, must be made for every command that is entered. 
A change to a new RESOLVER_CONFIG, as shown in Figure 4-27, is only temporary.

Figure 4-27   Changing TCPDATA environment for ISHELL client

The corresponding format for an HFS Resolver configuration file under the ISHELL is:

RESOLVER_CONFIG=/etc/resolv.conf.tst3a onslookup sys03

 - - - - - - - - - - - - - - - - - - - - - - - - - - -
# export RESOLVER_CONFIG="//'TCP.TCPPARMS(TDATATST)'"
# echo $RESOLVER_CONFIG
//'TCP.TCPPARMS(TDATATST)'
#
#
 Command ===>                                                  Scroll ===

 - - - - - - - - - - - - - - - - - - - - - - - - - - -
# export RESOLVER_CONFIG=/etc/resolv.conf.tst3a
# echo $RESOLVER_CONFIG
/etc/resolv.conf.tst3a
#
#
 Command ===>                                                  Scroll ===

File  Directory  Special_file  Tools  File_systems  Options  Setup  Help
_______________________________________________________________________________+
                        Enter a Shell Command                                  |
                                                                               |
 Enter a shell command and press Enter.                                        |
                                                                               |
 Standard output and standard error are redirected to a temporary              |
 file.  If there is any data in the file when the shell command                |
 completes, the file is displayed.                                             |
    RESOLVER_CONFIG="//'TCP.TCPPARMS(TDATATST)'" onslookup sys03               |
    ________________________________________________________________           |
    ________________________________________________________________           |
    ________________________________________________________________           |
                                                                               |
                                                                               |
                                                                               |
                                                                               |
  F1=Help       F3=Exit       F6=Keyshelp  F12=Cancel                          |
_______________________________________________________________________________+
Chapter 4. Configuring base functions 103



From TSO
TCP/IP client programs that execute under TSO must also be able to locate an explicitly 
allocated TCPIP.DATA data set in order to use a non-default Communications Server for z/OS 
IP stack. You can allocate a TCPIP.DATA data set to a TSO user in two ways:

1. Add a SYSTCPD DD statement to your TSO logon procedure. The issue with this 
approach is that you will need a separate TSO logon procedure per CS for z/OS IP stack 
in your MVS system, and users will have to log off TSO and log on again with another TSO 
logon procedure in order to switch from using one CS for z/OS IP stack to another.

2. Use one common TSO logon procedure without a SYSTCPD DD statement. Before a 
TSO user starts any TCP/IP client programs, the user has to execute a TSO ALLOC 
command to allocate a TCPIP.DATA data set to DD-name SYSTCPD. To switch from using 
one CS for z/OS IP stack to another, the user simply has to deallocate the current 
SYSTCPD allocation and allocate another TCPIP.DATA data set. (See Chapter 5, “Multiple 
TCP/IP stacks on z/OS” on page 117 for more details on how to operate in a multiple 
TCP/IP stack environment.)

This method is very convenient, especially if you are trying to test different values in your 
TCPIP.DATA file. You may even include the switch to different TCPIP.DATA configuration in 
a REXX CLIST. R Figure 4-28 is an example of freeing and allocating a new TCPIP.DATA 
file.

Figure 4-28   Changing TCPDATA environment for TSO client

From JCL startup procedure
To define the RESOLVER_CONFIG variable in a JCL startup procedure, you would pass the 
information as a PARM using the ENVAR reserved word. A sample of the JCL coding for this 
definition is shown in Figure 4-29.

Figure 4-29   Sample JCL for RESOLVER_CONFIG variable to an HFS file

An example of setting the RESOLVER_CONFIG variable to an MVS data set in a JCL 
procedure is shown in Figure 4-30.

Figure 4-30   Sample JCL for RESOLVER_CONFIG variable to an MVS data set

From the STDENV file
If the application is started with BPXBATCH the STDENV DD statement can be used to point 
to a file containing the environment variables. A sample of the contents of this file is in 
Figure 4-31.

free fi(SYSTCPD)
alloc fi(SYSTCPD) da('tcp.tcpparms(tdatatst)') SHR

 //T03FTPD  PROC PARMS='ENVAR("RESOLVER_CONFIG=/etc/resolv.conf.tst3a")'
 //T03FTP   EXEC PGM=FTPD,REGION=0M,TIME=NOLIMIT,
 //         PARM='POSIX(ON) ALL31(ON)/&PARMS'

 //T03ATCP PROC PARMS='CTRACE(CTIEZB01)',
 //    XS='ENVAR("RESOLVER_CONFIG=//TCP.TCPPARMS(TDATA03A)")'
 //TCPIP EXEC PGM=EZBTCPIP,
 // PARM='&PARMS &XS',
 //  REGION=7M,TIME=1440
104 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 4-31   Sample STDENV file for ORouteD

4.4.6  Testing TCPIP.DATA
HOMETEST is a TSO command that can be used to test your TCPIP.DATA specifications. It is 
meant to be issued from TSO only, so it uses the native MVS search order and Resolver 
when locating configuration data sets and/or doing name to IP address resolutions. 
Figure 4-32 shows an example.

Figure 4-32   Testing TCPIP.DATA with HOMETEST (Part 1)

RESOLVER_CONFIG=/etc/resolv.conf.3a
ROUTED_PROFILE=//'TCP.TCPPARMS(RD03APR)'
GATEWAYS_FILE=//'TCP.TCPPARMS(RD03AGW)'

EZA0619I Running IBM MVS TCP/IP CS/390 V2R7 TCP/IP Configuration Tester

EZA0620I The TCP/IP system parameter file used will be SYSTCPD DD.

EZA9431I FTP.DATA file not found. Using hardcoded default values.

EZA0602I TCP Host Name is: mvs03.itso.ral.ibm.com

EZA0605I Using Name Server to Resolve mvs03.itso.ral.ibm.com
EZA9455I TCP Host Name:            MVS03A
EZA9456I Domain Origin:            itso.ral.ibm.com
EZA9457I Jobname of TCP/IP:        T03ATCP
EZA9458I Communicate Via:          UDP
EZA9462I OpenTimeOut:              30
EZA9463I MaxRetrys:                2
EZA9464I NSPort:                   53
EZA9465I NameServer Jobname:       NAMESRV
EZA9466I NSInternetAddress(.1.) := 192.168.250.3
EZA9482I Data Set Prefix used:     TCP
EZA9468I
EZA9469I Resolving Name:           MVS03A.itso.ral.ibm.com
EZA9470I Result from InitResolver: OK
EZA9471I Building Name Server Query:
EZA9554I * * * * * Beginning of Message * * * * *
EZA9555I Query Id:                 1
EZA9556I Flags:                    0000 0001 0000 0000
EZA9516I Number of Question RRs:   1
EZA9517I Question   1: MVS03A.itso.ral.ibm.com A (9486) IN (9507)
EZA9516I Number of Answer RRs:     0
EZA9516I Number of Authority RRs:  0
EZA9516I Number of Additional RRs: 0
Chapter 4. Configuring base functions 105



Figure 4-33   Testing TCPIP.DATA with HOMETEST (Part 2)

4.5  Configuring the SITE table (HOSTS.LOCAL)
You can set up the local hosts file to support local host name resolution. If you use only the 
local hosts file for this purpose, your sockets applications will only be able to resolve names 
and IP addresses that appear in your local hosts file.

If you need to resolve host names outside your local area, you can configure the Resolver to 
use a domain name server (see the NSINTERADDR statement in the TCPIP.DATA config 
file). If you use a domain name server, you do not need to set up any host definitions in your 
Resolver configuration, but you may still do so.

If you have configured your Resolver to use a name server, it will always try to do so, unless 
your applications were written with a RESOLVE_VIA_LOOKUP symbol in the source code. If 
this is the case, all name resolution calls from such a program will always use the local hosts 
file. Additionally, the LOOKUP keyword in TCPIP.DATA will result in first attempting to look up 
a name in the local hosts file and then using the name server.

It may also be a good idea to have some basic local hosts file available for the Resolver to use 
if the name server is not reachable. If the name server does not respond to name resolution 
requests, the Resolver will try to use the local hosts file.

EZA9474I HostNumber (1) is: 192.168.250.3
EZA0611I The following IP addresses correspond to TCP Host Name:
         MVS03A.itso.ral.ibm.com
EZA0612I 192.168.250.3
EZA0614I The following IP addresses are the HOME IP addresses defined in
         PROFILE.TCPIP:
EZA0615I 192.168.233.3
EZA0615I 192.168.233.3
EZA0615I 192.168.233.3
EZA0615I 9.24.104.113
EZA0615I 192.168.250.3
EZA0615I 192.168.125.1
EZA0615I 192.168.125.3
EZA0615I 192.168.221.7
EZA0615I 9.24.105.76
EZA0615I 192.168.221.3
EZA0615I 192.168.229.3
EZA0615I 192.168.20.3
EZA0615I 192.168.100.100
EZA0615I 192.168.235.3
EZA0615I 192.166.236.1
EZA0615I 127.0.0.1

EZA0618I All IP addresses for MVS03A.itso.ral.ibm.com are in the HOME list!

EZA0622I Hometest was successful - all Tests Passed!
***
106 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



If the name server is reachable but returns a negative reply for a name resolution request, the 
Resolver will try to resolve the unqualified name via the local hosts file, if such a file is 
present. Assume you try to resolve the host name friendly and your DOMAINORIGIN is 
my.wood.com, the Resolver will send a query to the name server for friendly.my.wood.com. If 
the name server returns a negative reply (the name is not registered), the Resolver will look 
into the local hosts file for an entry of friendly and, if not found, for an entry of 
friendly.my.wood.com.

Due to the higher flexibility of the Domain Name System, we recommend you use a domain 
name server. If you have Communications Server for z/OS IP installed, you can configure and 
use the name server that comes with it. You need to configure your Resolver configuration file 
to point to the IP host in which your name server is running. This may be any host that is 
reachable from your UNIX System Services environment. There is no requirement that the 
name server must run on z/OS unless you wish to take advantage of DNS/WLM provided with 
Communications Server for z/OS IP. Even if you use DNS/WLM of CS for z/OS IP for a 
sysplex subdomain, you may continue to use another DNS for your parent domain. See more 
about this topic in IBM Communications Server for OS/390 V2R10 TCP/IP Implementation 
Guide Volume 2: UNIX Applications, SG24-5228 and Communications Server for z/OS V1R2 
TCP/IP Implementation Guide Volume 5: Availability, Scalability, and Performance, 
SG24-6517 (redpiece available at http://www.ibm.com/redbooks  (expected redbook publish 
date July 2002)).

If you set up a small TCP/IP network, the simplicity of the local hosts file approach is 
preferable.

The Resolver will attempt to service the following calls first via a request sent to a name 
server, and then via the local hosts file:

Gethostbyname Resolve a host name into one or more IP addresses

Gethostbyaddr Resolve an IP address into a host name

The following Resolver calls only use the local hosts file. If you have configured your system 
to use a name server, these calls will bypass the name server and use your local hosts file, if 
you have configured one. If no local hosts file exists, the calls will return with an error.

Sethostent Prepare to read your local hosts file sequentially

Gethostent Read next entry in your local hosts file

Endhostent End reading your local hosts file sequentially

CS for z/OS IP supports two different formats for the local hosts file:

� The standard BSD formatted text file - as it is supported in most TCP/IP implementations, 
implemented via HFS file /etc/hosts.

� The format that the Communications Server for z/OS IP MAKESITE utility program 
creates. The MAKESITE utility program comes with Communications Server for z/OS IP. 

You can use either format in a CS for z/OS IP environment, but note the following:

� Applications that use MVS sockets must use the format created via the MAKESITE utility 

� The following Resolver calls need the format created via the MAKESITE utility:

Getnetbyaddr Get a net entry by name

Getnetbyname Get a net entry by network address

Note: DNS/WLM support is only available with the BIND4 DNS server; it is currently not 
supported in BIND9.
Chapter 4. Configuring base functions 107

http://www.ibm.com/redbooks


Setnetent Prepare to read the net entries sequentially

Getnetent Get next net entry

Endnetent End reading net entries sequentially

In most UNIX systems these calls are serviced via a file called /etc/networks, but this file is 
currently not supported by CS for z/OS IP. If you use the Communications Server for z/OS IP 
MAKESITE utility, this utility supports a HOSTS.LOCAL source file according to the RFC952 
syntax, which allows you to specify both host and network entries. The resulting files from 
MAKESITE, HOSTS.ADDRINFO and HOSTS.SITEINFO may therefore hold both host and 
network entries, which is the reason why these calls are supported if you use the MAKESITE 
format.

The z/OS UNIX search order for HOSTS.SITEINFO is as follows:

1. The value of the environment variable X_SITE.

This should point to the HOSTS.SITEINFO MVS data set that was created by the 
MAKESITE command. This should not refer to an HFS file, because the two types of data 
are incompatible.

2. /etc/hosts file that resides in the HFS.

3. userid.HOSTS.SITEINFO for TSO

4. datasetprefix.HOSTS.SITEINFO

where datasetprefix represents the value of the DATASETPREFIX keyword specified in 
TCPIP.DATA configuration file. The default is TCPIP.

The z/OS UNIX search order for HOSTS.ADDRINFO is as follows:

1. The value of the environment variable X_ADDR.

This should point to the HOSTS.ADDRINFO MVS data set that was created by the 
MAKESITE command.

2. /etc/hosts file that resides in the HFS. This step is skipped unless the request is a 
gethostbyaddr().

3. userid.HOSTS.ADDRINFO

4. datasetprefix.HOSTS.ADDRINFO

datasetprefix represents the value of the DATASETPREFIX keyword specified in 
TCPIP.DATA configuration file. The default is TCPIP.

The native MVS Sockets search order for data sets HOSTS.ADDRINFO and 
HOSTS.SITEINFO is:

1. jobname.HOSTS.xxxxINFO for batch jobs or userid.HOSTS.xxxxINFO for TSO users

2. datasetprefix.HOSTS.xxxxINFO

where datasetprefix represents the value of the DATASETPREFIX keyword specified in 
the TCPIP.DATA configuration file. The default is TCPIP.

For host names and address information you can use either the HOSTS.SITEINFO and 
HOSTS.ADDRINFO data sets built by MAKESITE, or HFS file /etc/hosts. When you use 
/etc/hosts it can supply both name-to-address and address-to name resolution. 
HOST.SITEINFO supplies name-to-address resolution, and HOST.ADDRINFO supplies 
address-to-name resolution.
108 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



4.5.1  /etc/hosts
If you want to use the text format, we recommend that you place your local hosts file in the 
Hierarchical File System under the name /etc/hosts (the standard location). Please observe 
that some of the available documentation specifies this name differently (without the last "s"), 
which will not work.

See Figure 4-34 for a sample /etc/hosts file.

Figure 4-34   Sample /etc/hosts file

There are some syntax requirements for the /etc/hosts file. The most important are the 
following:

1. A host name can have a maximum of four qualifiers:

– Host name a.b.c.d is a valid host name.
– Host name a.b.c.d.e is not a valid host name.

2. You can specify a maximum of 35 aliases per IP address.

3. A qualifier can have a maximum length of 24 characters:

– Host name mypchost.mynet is a valid host name.
– Host name myotherpchost.mynet is a valid host name.
– Host name myotherpchostinlosangeles.mynet is not a valid host name.

If you already have a CS for z/OS IP stack implemented and want to maintain your local hosts 
file in one place, you can instruct the UNIX Resolver to use the same file format as CS for 
z/OS IP uses.

You can use two different approaches:

1. Maintain your local hosts file in the source format that is accepted by the TCP/IP for MVS 
MAKESITE utility program. This format is documented in RFC952.

2. Maintain your local hosts file in the BSD source format that is accepted by the UNIX 
Resolver and most other TCP/IP platforms.

4.5.2  Maintaining shared source in HOSTS.LOCAL
You maintain your HOSTS.LOCAL file in the format that is required by the TCP/IP for MVS 
MAKESITE utility program. See Figure 4-35 for a sample HOSTS.LOCAL data set.

#
# OE Resolver /etc/hosts file
#
# The format of this file is:
#
# Internet Address      Host name   Aliases     # Comments
#
# Items are separated by any number of blanks and/or tabs.  A '#'
# indicates the beginning of a comment; characters up to the end of the
# line are not interpreted by routines which search this file.  Blank
# lines are allowed in this file.

9.24.104.126    mvs18oe mvsoe # OE host
192.168.210.1   mvs18an       # AnyNet MVS host
192.168.210.8   mypcaa        # AnyNet gw host
9.24.104.79     mypc          # A workstation
Chapter 4. Configuring base functions 109



Figure 4-35   Sample HOSTS.LOCAL source

When you run the MAKESITE utility program, it produces two output data sets:

� datasetprefix.HOSTS.SITEINFO
� datasetprefix.HOSTS.ADDRINFO

You can instruct the UNIX Resolver to use these data sets in two ways:

1. To use these data sets as a system default, you must ensure that there is no file called 
/etc/hosts in your Hierarchical File System, and in addition, you must specify the 
DATASETPREFIX keyword in your TCPIP.DATA file.

If your DATASETPREFIX in the TCPIP.DATA configuration data set or file is TCPIP.OMVS, 
the UNIX Resolver will use:

TCPIP.OMVS.HOSTS.SITEINFO
TCPIP.OMVS.HOSTS.ADDRINFO

2. If you want to override your system default for a specific application, you can set the two 
environment variables called X_SITE and X_ADDR to point to two data sets that are 
created with the MAKESITE utility. If your application executes in the shell environment, 
you can use the following commands to assign values to the environment variables:

export X_SITE="//'MYOWN.HOSTS.SITEINFO'"
export X_ADDR="//'MYOWN.HOSTS.ADDRINFO'"

If you use the same DATASETPREFIX for your TCP/IP for MVS Resolver, the same set of 
HOSTS.SITEINFO and HOSTS.ADDRINFO data sets can be used by both MVS and z/OS 
UNIX socket applications.

4.5.3  Maintaining shared source in /etc/hosts
Though CS for z/OS IP can now directly read the /etc/hosts file, you may wish to create 
HOSTS.SITEINFO and HOSTS.ADDRINFO data sets from your /etc/hosts source file. 
Because the format of the /etc/hosts file is not compatible with the format that is required by 
the CS for z/OS IP MAKESITE utility, you would need to process the /etc/hosts file with a 
small home-written REXX program before running the MAKESITE command. The sample 
REXX program in Appendix A, “Sample REXX to create HOSTS.LOCAL from /etc/hosts” on 
page 221 can be used for such a purpose.

; HOSTS.LOCAL (Input to TCP/IP for MVS MAKESITE utility)
;
; Syntax requirements documented in RFC952.
;
HOST : 9.24.104.126  : mvs18a, mvsoe ::::
HOST : 192.168.210.1 : mvs18aa ::::
HOST : 192.168.210.8 : mypcaa ::::
HOST : 9.24.104.79   : mypc ::::
HOST : 9.24.104.80   : abc.ibm.com ::::
HOST : 9.24.104.81   : abc1, abc1.ibm.com ::::
;
NET :  9.24.104.0    : itso.ral.ibm.com :
NET :  9.0.0.0       : ibm.com :
110 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



4.6  /etc/protocol
HFS file /etc/protocol and MVS data set ETC.PROTO hold information about supported 
protocols. The /etc/protocol file is used by the following Resolver calls:

Getprotobyname Get protocol number based on a protocol name

Getprotobynumber Get protocol name based on a protocol number

Setprotoent Prepare to read the protocol file sequentially

Getprotoent Read next protocol file entry

Endprotoent End reading the protocol file sequentially

The protocol number is used in the 8-bit protocol field in an IP packet header.

To create HFS file /etc/protocol, we used the sample protocol member from 
datasetprefix.SEZAINST(PROTO), which contains the following (some comments removed 
for readability):

Figure 4-36   /etc/protocol sample

The z/OS UNIX search order for the protocol file is as follows:

1. /etc/protocol that resides in the HFS.

2. userid.ETC.PROTO

3. datasetprefix.ETC.PROTO

datasetprefix represents the value of the DATASETPREFIX keyword specified in 
TCPIP.DATA configuration file. The default is TCPIP.

The MVS Sockets search order for the protocol file is:

1. jobname.ETC.PROTO for batch jobs or userid.ETC.PROTO for TSO users

2. datasetprefix.ETC.PROTO

where datasetprefix is the value of the DATASETPREFIX keyword specified in the 
TCPIP.DATA configuration file. The default is TCPIP.

4.7  /etc/services
HFS file /etc/services and MVS data set ETC.SERVICES hold information about how 
individual applications are assigned to port numbers. Standard applications, such as telnet or 
FTP, are assigned port numbers inside the well-known port number range (from 0 to 1023). 
You can assign port numbers to your own server applications by adding entries to the 
/etc/services file. The content of /etc/services is typically used by a server program via a 
getservbyname() call, where the server program passes its own name and receives the 
assigned port number when the call returns. The server program can then bind its socket to 

# offical name, protocol number, aliases

ip              0               # dummy for IP
icmp            1               # control message protocol
tcp             6               # tcp
udp             17              # user datagram protocol
Chapter 4. Configuring base functions 111



the assigned port number. This technique allows you to keep port number assignments 
external to your server program. This is of particular importance if you want to start more 
instances of your server program on the same TCP/IP stack. By using different /etc/services 
files, each instance of the server program may be assigned alternate port numbers.

The /etc/services file is used by the following Resolver calls:

Getservbyname Get server port number based on server name

Getservbynumber Get server name based on server port number

Setservent Prepare to read /etc/services sequentially

Getservent Read next entry in /etc/services

Endservent End reading /etc/services sequentially

The port number is used on various socket calls and is also included in both the header of a 
TCP segment and the header of a UDP datagram.

Figure 4-37 shows an extract of the /etc/services file.

Figure 4-37   /etc/services sample (extract)

In general, servers use a getservbyname() call to find the assigned port number. Some 
servers allow you to override the port number via a server-specific configuration or start 
option. The FTPD server, for example, allows you to pass a runtime option:

PORT 7021

If this option is specified, the FTPD server will not use the value assigned in /etc/services, but 
use the value specified in the runtime option. You can use this technique to start alternate 
FTPD server instances on alternate port numbers.

# Name          Port/protocol   Aliases

echo            7/tcp
echo            7/udp
discard         9/tcp           sink null
discard         9/udp           sink null
systat          11/tcp          users
daytime         13/tcp
daytime         13/udp
netstat         15/tcp
qotd            17/tcp           quote
chargen         19/tcp           ttytst source
chargen       19/udp        ttytst source
ftp           21/tcp
telnet        23/tcp
smtp          25/tcp         mail
time          37/tcp         timserver
time          37/udp         timserver
rlp           39/udp         resource        # resource location
nameserver    42/tcp         name            # IEN 116
whois         43/tcp         nicname
domain        53/tcp         nameserver      # name-domain server
domain        53/udp         nameserver
112 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Servers that are started via InetD use the service name, which you specify in the 
/etc/inetd.conf file as argument on the getservbyname() call. If you, for example, want to have 
your UNIX TelnetD server to operate on port 2023 instead of the default port 23, you can edit 
the line in your /etc/services file that corresponds to the Telnet service name in your 
/etc/inetd.conf file.

Figure 4-38   Assigning port number to the TelnetD server

If you want to start two Telnet servers in your UNIX environment, you can use the following set 
of definitions:

Figure 4-39   Assigning port numbers to two TelnetD servers

With this setup, you will have your normal UNIX Telnet server operating on the standard port 
23, and you will have your test Telnet server operating on port 2023. If a telnet client connects 
to port 2023, the telnet client will use your test Telnet server.

The z/OS UNIX search order for the services file is as follows:

1. /etc/services that resides in the HFS

2. userid.ETC.SERVICES

3. datasetprefix.ETC.SERVICES

datasetprefix represents the value of the DATASETPREFIX keyword specified in the 
TCPIP.DATA configuration file. The default is TCPIP.

The MVS search order for the services file is:

1. The //SERVICES DD name

2. jobname.ETC.SERVICES for batch jobs or userid.ETC.SERVICES for TSO users

3. datasetprefix.ETC.SERVICES

/etc/inetd.conf (extract):
--------------------------

telnet   stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd

/etc/services (extract):
------------------------

telnet        2023/tcp

/etc/inetd.conf (extract):
--------------------------

telnet     stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd
testtelnet stream tcp nowait OMVSKERN /usr/test/otelnetd otelnetd

/etc/services (extract):
------------------------

telnet          23/tcp
testtelnet    2023/tcp
Chapter 4. Configuring base functions 113



where datasetprefix represents the value of the DATASETPREFIX keyword specified in 
the TCPIP.DATA configuration file. The default is TCPIP.

4.8  Starting Communications Server for z/OS IP
Figure 4-40 shows the messages issued during the start of Communications Server for z/OS 
IP.

Figure 4-40   CS for z/OS IP startup

1 shows how the member that defines CTRACE processing has been found: CTIEZB01. We 
will discuss this member in 7.4, “Component trace (CTRACE)” on page 158.

2 shows how the PROFILE.TCPIP for the CS for z/OS IP stack has been found and 
processed.

3 shows how the TCP/IP stack has been bound to UNIX System Services. It indicates that the 
Common INET pre-router has successfully obtained a copy of the IP layer routing table from 
the transport provider stack.

4 specifies the started task user ID of the transport provider stack for which a connection to 
UNIX System Services has been provided.

5 is interesting because it drives home the point that Communications Server for z/OS IP uses 
the data link control facilities of z/OS VTAM to support devices defined in the IP stack. This 
means that VTAM must be started prior to the start of CS for z/OS IP. The sense code in 5 is 
a VTAM DLC status code and must be interpreted with the help of z/OS V1R2.0 CS: IP and 
SNA Codes, SC31-8791. In this case it means that the device was not online.

 S T03ATCP
 IEF695I START T03ATCP  WITH JOBNAME T03ATCP  IS ASSIGNED TO USER TCPIP3
  , GROUP OMVSGRP
 $HASP373 T03ATCP  STARTED
 IEF403I T03ATCP - STARTED - TIME=08.38.06
 IEE252I MEMBER CTIEZB01 FOUND IN SYS1.PARMLIB   1
 EZZ0300I OPENED PROFILE FILE DD:PROFILE
 EZZ0309I PROFILE PROCESSING BEGINNING FOR DD:PROFILE
 EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE DD:PROFILE  2
 EZZ0334I IP FORWARDING IS ENABLED
 EZZ0335I ICMP WILL IGNORE REDIRECTS
 EZZ0350I SYSPLEX ROUTING SUPPORT IS ENABLED
 EZZ0351I SOURCEVIPA SUPPORT IS DISABLED
 EZZ0352I VARIABLE SUBNETTING SUPPORT IS DISABLED
 EZZ0345I STOPONCLAWERROR IS ENABLED
 
 BPXF206I ROUTING INFORMATION FOR TRANSPORT DRIVER T03ATCP HAS BEEN
 INITIALIZED OR UPDATED.                            3
 EZZ4202I OPENEDITION-TCP/IP CONNECTION ESTABLISHED FOR T03ATCP 4
 EZZ4313I INITIALIZATION COMPLETE FOR DEVICE RAS
 EZZ4313I INITIALIZATION COMPLETE FOR DEVICE IUTSAMEH
 EZZ4308I ERROR: CODE=80103332 DURING ACTIVATION OF DEVICE ICP03.
 DIAGNOSTIC CODE: 02   5

 EZZ4200I TCP/IP INITIALIZATION COMPLETE FOR T03ATCP
114 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Important: Since TCP/IP shares its Data Link Controls (DLCs) with VTAM, you must 
restart TCP/IP if you restart VTAM.
Chapter 4. Configuring base functions 115



116 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Chapter 5. Multiple TCP/IP stacks on z/OS

Multiple TCP/IP stacks may coexist on the same z/OS system. If you are planning to run 
multiple copies of TCP/IP concurrently, you will need to understand issues that will help you 
define a strategy for doing so. In addition, you will need a background in the implementation 
and operational areas that affect your decision.

In this chapter we provide you with the information required to implement and configure a 
multiple-stack environment. We also give you console displays of multiple stacks in operation 
and provide you with examples of backing up and recovering using multiple stacks.

This chapter contains the following sections:

� 5.1, “Value of multiple concurrent copies of TCP/IP” on page 118
� 5.2, “Managing network attachments” on page 118
� 5.3, “Performance and capacity issues: multiple stacks” on page 120
� 5.4, “Common Internet Physical File System (CINET PFS)” on page 120
� 5.5, “Port management overview” on page 121
� 5.6, “SMF accounting issues: multiple stacks” on page 122
� 5.7, “Selecting a stack” on page 123
� 5.8, “Steps for installing a second stack” on page 129
� 5.9, “Example: implementing a two-stack configuration” on page 130

5

© Copyright IBM Corp. 1998 2002. All rights reserved. 117



5.1  Value of multiple concurrent copies of TCP/IP
You can define as many as 32 Communications Server for z/OS IP stacks in the 
SYS1.PARMLIB(BPXPRMxx), and as many as eight stacks can be started at any one time.

Each protocol stack implementation has a separate IP address and host name and its own 
set of active, started interfaces. In fact, from a TCP/IP point of view, each protocol stack on 
the same z/OS system is a separate TCP/IP host system.

You might implement multiple stacks for any of a number of reasons:

� You might wish to establish separate stacks to separate workloads based on availability 
and security. For example, you might have different requirements for a production stack, a 
system test stack, and an education stack.

This approach could, for example, be used to establish a test TCP/IP stack, where new 
socket applications are tested before they are moved into the production system. The two 
TCP/IP address spaces can communicate with each other via, for example, a 
SAMEHOST link. You may want to apply maintenance to a non-production stack so it can 
be tested before you apply it to the production stack.

� Your strategy might be to separate workload onto multiple stacks based on the functional 
characteristics of applications, as with OpenEdition applications and non-OpenEdition 
applications.

In the past, there were other reasons to run multiple stacks, which have since been solved by 
added functionality:

� Running MVS servers and UNIX (OpenEdition) servers on the same well-known port 
(TN3270 and otelnet on port 23) can be easily overcome with the use of the BIND for 
INADDR_ANY function included with CS for OS/390 V2R10 IP. See Chapter 4, 
“Configuring base functions” on page 71 for more information.

� You might want servers with different configurations on the same well-known port 
(TN3270E and base TN3270 on port 23). Remote clients would use the host name (or 
address) of the appropriate stack to select the function they want to use. Again, the BIND 
for INADDR_ANY function included with CS for OS/390 V2R10 IP can overcome this 
restriction.

5.2  Managing network attachments
In order to save physical network interfaces, a design with a front-end stack that connects to 
the physical network and handles routing to application back-end stacks may be a desirable 
implementation. This design principle can be implemented purely with multiple stacks where 
one stack has the network interfaces and uses SAMEHOST links to route traffic to the 
back-end stacks. See diagram A in Figure 5-1.
118 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 5-1   Managing network attachments

In a sysplex environment, it may be more desirable to offload the front-end stack functions to 
a channel-attached router that connects to the individual application back-end stacks via 
ESCON channel connections. Any channel-attached router can be used in such a 
configuration. See diagram B in Figure 5-1.

If you have only a couple of stacks, you may select to attach each of the stacks to the physical 
network via separate network connections. See diagram C in Figure 5-1.

5.2.1  Fault-tolerant network attachment
The front-end stack principle is good for saving physical network attachments, but it is also 
vulnerable if the front-end stack fails. A full implementation should therefore include backup 
for the front-end router, which can be accomplished by duplicating the channel-attached 
router and attaching each back-end stack to both channel-attached routers. If this technique 
is combined with the use of VIPA functions, TCP connections can be recovered dynamically 
using the alternate channel-attached router.

Front-end Stack
z/OS-Router

Back-end Stack
Host-1

Back-end Stack
Host-2

Samehost
Links

Network Interfaces

Front-end, Back-end Stacks with z/OS-Based 
Router

Back-end Stack
Host-1

Back-end Stack
Host-2

Network Interfaces

A

Front-end, Back-end Stacks with Channel-Attached 
Router

C

Back-end Stack
Host-1

Back-end Stack
Host-2

Front-end Stack
IP Router

Channel-attached 
IP router

Network InterfacesB

ESCON
director
Chapter 5. Multiple TCP/IP stacks on z/OS 119



Figure 5-2   Fault-tolerant network attachment

This approach can also be used in an installation where the back-end stacks are executing on 
different z/OS systems, such as in a sysplex. The remote clients connect to one of the three 
VIPA addresses, and the IP traffic is routed via one of the two channel-attached routers.

5.3  Performance and capacity issues: multiple stacks
Consider the following trade-offs when designing an z/OS system that runs multiple stacks 
concurrently:

� If multiple stacks have LCS interfaces, CPU cycles spent on ARP processing will be 
duplicated by each stack, since each stack maintains its own ARP cache.

� If multiple stacks run servers that spend CPU cycles when certain periodic updates arrive, 
these CPU cycles will be duplicated in each stack. An example is that of routing daemons 
receiving periodic routing updates.

� Each stack requires a certain amount of system resources just to exist. The most 
significant resource is virtual storage. The amount varies depending on the configuration. 
Because of this, we do not recommend the use of multiple stacks except in isolated 
circumstances.

5.4  Common Internet Physical File System (CINET PFS)
In UNIX System Services, the Physical File System (PFS) includes the following components:

� Integrated Sockets AF-INET PFS

� Converged Sockets AF-INET, known as the Common Internet Physical File System 
(CINET PFS)

� Hierarchical File System (HFS)

The Integrated Sockets AF-INET PFS and the CINET PFS handle sockets requests from C 
programs and the UNIX System Services applications. The HFS PFS lets applications access 
files, then passes file requests from a UNIX System Services application, through 
DFSMS/MVS, to the HFS where traditional files or special character files are located.

Front-end Stack
IP Router-1

Front-end Stack
IP Router-2

Network Interfaces

Back-end Stack
Host-1

Back-end Stack
Host-2

VIPA-1 VIPA-2

Samehost
Link

VIPA-3

Back-end Stack
Host-3

MVSA MVSB

ESCON
Director

ESCON
Director
120 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Depending on the number of stacks you want to run on the sockets interfaces, you can use 
Integrated Sockets AF-INET or Common INET. Integrated Sockets AF-INET supports one 
TCP/IP stack at a time. It is used when applications communicate through a single stack. 
CINET is used when applications communicate through multiple stacks, and its daemon uses 
a timeout when opening sockets. For example, if you have three stacks and two of them are 
running, the inetd daemon opens the sockets on both of them. If the third stack is started 
later, the third stack cannot connect to any servers. To avoid this situation, start the servers 
after you start the stacks.

You can specify your choice of Integrated Sockets AF-INET or CINET in the NETWORK 
DOMAINNAME parameter of SYS1.PARMLIB(BPXPRMxx).

5.5  Port management overview
When there is a single transport provider and the relationship of server to transport provider is 
1:1, port management is relatively simple. Using the PORT statement, the port number can 
be reserved for the server in the PROFILE.TCPIP for that single transport provider.

Port management becomes more complex in an environment where there are multiple 
transport providers (multiple instances of Communications Server for z/OS) and a potential 
for multiple combinations of the same server (for example, UNIX System Services and 
TN3270/TN3270E Telnet).

So, in a multiple transport provider environment, you need to solve some questions based on 
the following concepts:

� Generic server

A generic server is a server without affinity for a specific transport provider, and it provides 
service to any client on the network. FTP is an example, since the transport provider is 
merely a connection linking client and server. The service File Transfer is not related to the 
internal functioning of the transport provider, and the server can communicate 
concurrently over any number of transport providers.

Other examples of generic server/daemons shipped by CS for z/OS IP are:

– OE RSHD
– OE REXECD
– OE TELNETD
– TFTPD
– DHCP
– TIMED
– OE Portmap

Note that the OE RSHD, OE REXECD and OE TELNETD are usually started by the inetd 
daemon that is shipped as part of the UNIX System Services. Since inetd is also a generic 
daemon, any server processes started by inetd inherently become a generic server as 
well.

� Servers with an affinity for a specific transport provider

There must be an explicit binding of the server application to the chosen transport provider 
when the service is related to the internal functioning of the transport provider. You can 
take UNIX System Services DNS, OROUTED, OSNMP and ONETSTAT as examples for 
that.

This bind is made via the setibmopt() socket call to specify which TCP/IP they have 
chosen, or via the C function _iptcpn() that allows applications to search in the 
TCPIP.DATA file to find the name of a specific TCP/IP.
Chapter 5. Multiple TCP/IP stacks on z/OS 121



� Ephemeral ports

As well as synchronizing PORT reservations for specific applications across all stacks, you 
have to synchronize reservations for port numbers that will be dynamically assigned 
across all stacks, when running with multiple transport providers.

Those ports are called ephemeral ports, which are all above 1024, and are assigned by 
the stack when none is specified on the application bind(). You have the PORTRANGE 
statement in the PROFILE.TCPIP to reserve a group of ports, and you should specify the 
same portrange for every stack. You also need to let CINET know which ports are 
guaranteed to be available on every stack, which is done in the BPXPRMxx parmlib 
member through INADDRANYPORT and INADDRANYCOUNT statements.

Taking those three concepts into consideration, you have to solve the following questions 
concerning port management:

� Is the server generic or does the server have an affinity for one instance of the transport 
providers?

� How can ports be reserved across multiple transport providers? When is the port 
reservation determined by MVS rather then by jobname, procedure name, or user ID?

� How can you synchronize between BPXPARMS and PORTRANGE for ephemeral port 
reservation?

� How can CS for z/OS IP distinguish between two different instances of Telnet 
(OpenEdition TELNET and TN3270/TN3270E Telnet)?

5.6  SMF accounting issues: multiple stacks
Many installations rely on SMF for job accounting and for performance analysis. If you are 
running multiple stacks, SMF will not always allow you to distinguish among them. Consider 
the following issues:

� There is no stack identity in SMF118 records. SMF records that are written by the system 
address space or by standard servers may be identified as belonging to one stack or 
another, based on address space naming conventions.

� SMF records that are written by client address spaces cannot be identified as belonging to 
a single stack via this method.

� The only currently available technique to distinguish among records written by various 
client address spaces is to assign unique SMF118 record subtype intervals to each stack:

FTP Server One or six subtypes in FTP.DATA

Telnet Server Two subtypes on TELNETPARMS

API Two subtypes on SMFPARMS

FTP, Telnet Client One subtype on SMFPARMS

If you choose to assign subtypes, there is an obvious impact on your local accounting 
programs. SMF118 subtype changes and additions must be coordinated with persons 
responsible for managing the use of SMF.
122 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



5.7  Selecting a stack
Sockets application programs face two issues in a multi-stack environment:

� How does the sockets program select which TCP/IP stack to use for its sockets 
communication?

� How does the TCP/IP Resolver code that is executing in the sockets application address 
space decide which TCP/IP Resolver configuration data sets to allocate?

In order to answer the above two questions, we need to distinguish between standard servers 
and clients (those that come with the Communications Server for z/OS product) and other 
sockets application programs, including those you might have written yourself.

5.7.1  Standard servers and clients
For standard servers and clients, the anchor configuration data set is the TCPIP.DATA data 
set. This is the main Resolver configuration data set with information on host name, domain 
origin, etc. In addition it also holds the TCPIPJOBNAME parameter, which identifies the 
TCP/IP stack to use, and it holds the DATASETPREFIX parameter, which is used by the 
Resolver code when allocating the other configuration data sets (HOSTS.SITEINFO, 
HOSTS.ADDRINFO, ETC.SERVICES, ETC.PROTO, and STANDARD.TCPXLBIN).

So the key both to selecting a specific stack and to selecting Resolver configuration data sets 
is to control which TCPIP.DATA data set is allocated by a standard server or client address 
space.

Non-OE servers and clients will search for TCPIP.DATA in the following sequence:

1. //SYSTCPD DD (the SYSTCPD DD-name)

2. jobname.TCPIP.DATA for batch jobs and started task, or userID.TCPIP.DATA for TSO 
users

3. SYS1.TCPPARMS(TCPDATA)

4. TCPIP.TCPIP.DATA

OpenEdition servers and clients will search for TCPIP.DATA in the following sequence:

1. ENVIRONMENT VARIABLE "RESOLVER_CONFIG=file/dataset"

2. /etc/resolv.conf

3. //SYSTCPD DD

This is not valid for "fork-ed" processes.

4. userid.TCPIP.DATA or jobname.TCPIP.DATA

5. SYS1.TCPPARMS(TCPDATA)

6. TCPIP.TCPIP.DATA

For the problem of determining which stack an application should use, an alternative solution 
is to try to have the well-known port be used by both the OE and MVS REXEC servers on the 
same MVS image. Obviously, this isn't possible on a single TCP/IP stack. A solution to this 
problem could be to configure two TCP/IP stacks on a single MVS image; one of the stacks 
would be designated as the OpenEdition Server stack and the other as the native MVS server 
stack. Note that in z/OS there really is no way to designate a TCP/IP stack as not being 
enabled for OpenEdition. Consider further that since a CINET environment is also required to 
execute multiple TCP/IP stacks, generic servers will typically be serviced by all stacks 
available. What's needed in this scenario is the ability to be able to bind the MVS REXEC 
Chapter 5. Multiple TCP/IP stacks on z/OS 123



server to one stack and the OE REXEC server to the other. The MVS REXEC server always 
has affinity to the TCP/IP stack specified in the TCPIPJOBNAME parameter on its 
TCPIP.DATA file so this isn't a problem. However, as discussed earlier, the OE REXECD is 
started via inetd, which is a generic server. Therefore, in this scenario, we need to be able to 
have inetd, a generic daemon, have affinity to a specific stack.

This can be accomplished by use of the _BPXK_SETIBMOPT_TRANSPORT OpenEdition 
environment variable.

This environment variable, when set, has an effect similar to the setibmopt() function call 
provided by C/C++ compiler and described in the z/OS V1R2.0 C/C++ Run-Time Library 
Reference, SA22-7821. This variable can be set in the JCL for a started procedure or batch 
job that executes an OpenEdition C/C++ program to indicate which TCP/IP stack instance the 
application should bind to. OpenEdition TCP/IP applications that require affinity to a specific 
TCP/IP stack, such as OSNMPD and OROUTED, use the setibmopt(): function call directly. 
The _BPXK_SETIBMOPT_TRANSPORT environment variable basically provides the ability 
to bind a generic server type of application to a specific stack.

For example, if you had two TCP/IP stacks configured under CINET, one named TCPIP and 
the other TCPIPOE, and you wanted to start an FTPD server instance that was associated 
with TCPIPOE, you could modify the FTPD procedure as follows:

//FTPD   PROC MODULE='FTPD',PARMS='TRACE'
//FTPD   EXEC PGM=&MODULE,REGION=7M,TIME=NOLIMIT,
//       PARM=('POSIX(ON) ALL31(ON)',
//      'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE")',
//      '/&PARMS')
//CEEDUMP  DD SYSOUT=*
//*
//*       SYSFTPD is used to specify the FTP.DATA file for the FTP
//*       server.  The file can be any sequential data set, member
//*       of a partitioned data set (PDS), or HFS file.
//*
//*       The SYSFTPD DD statement is optional.  The search order for
//*       FTP.DATA is:
//*
//*           /etc/ftp.data
//*           SYSFTPD DD statement
//*           jobname.FTP.DATA
//*           SYS1.TCPPARMS(FTPDATA)
//*           tcpip.FTP.DATA
//*
//*       If no FTP.DATA file is found, FTP default values are used.
//*       For information on FTP defaults, see the Customization
//*       and Administration Guide and TCP/IP OE MVS Applications
//*       Feature Guide.
//*SYSFTPD DD DISP=SHR,DSN=TCPIP.SEZAINST(FTPSDATA)
//*
//*      SYSTCPD explicitly identifies which file is to be
//*      used to obtain the parameters defined by TCPIP.DATA.
//*      The SYSTCPD DD statement should be placed in the JCL of
//*      the server.  The file can be any sequential data set,
//*      member of a partitioned data set (PDS), or HFS file.
//SYSTCPD DD DISP=SHR,DSN=SYS1.TCPPARMS(TCPDATA)
//*
//*      SYSFTSX explicitly identifies which file is to be used
124 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



//*      for the EBCDIC-ASCII translation table.  The file can
//*      be any sequential data set, member of a partitioned data
//*      set (PDS), or HFS file.
//SYSFTSX DD DISP=SHR,DSN=TCPV34.STANDARD.TCPXLBIN

Note that all the parameters specified prior to '/' in the parm statement are processed by the 
C/C++ runtime library. Parameters to be passed to the FTPD program must appear after the 
'/'. Also note how the parameters were split over three lines in this example, since they could 
not fit on a single line. Another example follows with JCL for the started procedure for inetd:

//INETD  PROC
//*********************************************************************
//INETD EXEC PGM=T03INETD,REGION=0K,TIME=NOLIMIT,
//      PARM=('POSIX(ON) ALL31(ON)',
//           'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE")',
//            '/ //''USER1.INETD.CONF''')
//SYSPRINT DD SYSOUT=*
//SYSIN    DD DUMMY
//SYSERR   DD SYSOUT=*
//SYSOUT   DD SYSOUT=*
//CEEDUMP  DD SYSOUT=*

Note that in the previous example, inetd was also passed its configuration file as a parameter. 
In our example, this file is an MVS data set rather than an HFS file; therefore, it requires the 
additional '//' and quotes that the example shows.

On OS/390 V2R7 the inetd module has been moved to the Hierarchical File System. inetd 
has to be started with BPXBATCH.

//T03INETD EXEC PGM=BPXBATCH,REGION=4096K,TIME=NOLIMIT,
//    PARM='PGM /usr/sbin/inetd'
//STDENV   DD DSN=TCP.TCPPARMS(IN3AENV),DISP=SHR

The //STDENV DD statement is needed to pick up the _BPXK_SETIBMOPT_TRANSPORT 
environmental variable. In this case the file should look like this:

BPXK_SETIBMOPT_TRANSPORT=TCPIPOE

The environmental variable _BPXK_SETIBMOPT_TRANSPORT will direct inetd to the 
TCPIPOE stack.

Also note that multiple instances of inetd are not allowed even if each instance is bound to a 
different TCP/IP stack. This is an inetd restriction, not a TCP/IP related one. Therefore, if you 
decide to make inetd have affinity to a specific stack, then that is the only inetd instance that 
you will be able to have running in that MVS image.

Notes:

� The _BPXK_SETIBMOPT_TRANSPORT variable is only supported when specified as a 
parm in JCL as previously described. It can be set via the STDENV DD file for programs 
started with BPXBATCH as shown in the above inetd example.

Use of it in other environments may yield unpredictable results.

� The _BPXK_SETIBMOPT_TRANSPORT variable should only be specified for a generic 
server type of application.

If specified for a non-generic server and/or non-UNIX (OpenEdition) C/C++ application, it 
will not have any effect.

� The name specified for _BPXK_SETIBMOPT_TRANSPORT must match the jobname 
associated with the TCP/IP stack.
Chapter 5. Multiple TCP/IP stacks on z/OS 125



If the name specified does not match the jobname of any TCP/IP stacks defined for CINET 
the application will receive an OpenEdition return code of X'3F3' and a return value of 
X'005A' and may be accompanied by the following message:

EDC8011I A name of a PFS was specified that either is not configured
or is not a Sockets PFS.

If the name specified does not match the jobname of any currently active TCP/IP stack 
defined under CINET the application will receive an OpenEdition return code of X'70' and 
a return value of X'0296' and may be accompanied by the following message:

EDC5112I Resource temporarily unavailable.

5.7.2  Non-standard servers and clients
Non-standard servers and clients also use TCPIP.DATA for deciding which Resolver 
configuration data sets to allocate, but they may or may not use the TCPIPJOBNAME 
parameter to select the stack. Whether or not they do depends on the socket API that was 
used to create the program.

If you run socket programs from other products or vendors, you may want to find out which 
socket API was used to develop the program and which techniques, if any, the program uses 
to specify the name of the TCP/IP system address space. As long as application programs 
that use a CS for z/OS socket library do not specify anything specific on a setibmopt() or 
INITAPI call, the TCPIPJOBNAME from a TCPIP.DATA data set will be used as the last resort 
for finding a TCP/IP system address space name.

The stack selection depends on the socket API you are running:

C Sockets SETIBMOPT or TCPIPJOBNAME from TCPIP.DATA

Sockets Extended TCPNAME on INITAPI or TCPIPJOBNAME from TCPIP.DATA. 
Sockets Extended programs may have a configuration option to 
specify the TCP/IP system address space name, or they may 
interrogate the available stacks via the getibmopt() call. Sockets 
Extended programs do not have to call INITAPI. If INITAPI is not 
called, an implicit INITAPI will be performed with the value from 
TCPIPJOBNAME in a TCPIP.DATA data set. If INITAPI is called, a 
TCPNAME of space results in the TCPIPJOBNAME keyword value 
being used as the TCP/IP system address space name.

Pascal Sockets TCPIPJOBNAME from TCPIP.DATA

REXX Sockets TCPIPJOBNAME from TCPIP.DATA

OpenEdition servers can use the setibmopt() function or the 
_BPXK_SETIBMOPT_TRANSPORT environment variable. OpenEdition clients can use the 
setibmopt() function or let the Common-INET pre-router select the stack depending on the 
destination IP address.

5.7.3  TCP/IP TSO clients
TSO client functions can be directed against any of a number of TCP/IP stacks. Obviously the 
client function must be able to find the TCPIP.DATA that is appropriate to the stack that is of 
interest at any time. Two methods are available for finding the relevant TCPIP.DATA:

1. Add a SYSTCPD DD statement to your TSO logon procedure. The issue with this 
approach is that you will need a separate TSO logon procedure per stack you implement 
on your z/OS system, and users will have to log off TSO and log on again with another 
TSO logon procedure in order to switch from using one TCP/IP stack to another.
126 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



2. Use one common TSO logon procedure without a SYSTCPD DD statement. Before a 
TSO user starts any TCP/IP client programs, the user has to do a TSO ALLOC command 
where the user allocates a TCPIP.DATA data set to DD-name SYSTCPD. To switch from 
using one TCP/IP stack to another, the user simply has to deallocate the current 
SYSTCPD allocation and allocate another TCPIP.DATA data set.

The last method can be implemented easily by creating a small REXX program per TCP/IP 
stack on your z/OS system. For each stack, you create a REXX program with the name of the 
stack, for example, T03A or T03C. Whenever the TSO user wants to use the T03A stack, 
he/she runs the T03A REXX program. Any TCP/IP functions invoked thereafter will use the 
T03A stack for sockets communication. If the user wants to switch to the T03C stack, he or 
she runs the T03C REXX program. See Figure 5-3 for an example of such a REXX program.

Figure 5-3   REXX program to switch TSO user to another TCP/IP stack

5.7.4  UNIX System Services clients
For UNIX System Services clients, it is typically the CINET pre-router that selects the stack 
depending on the destination IP address.

5.7.5  Selecting configuration data sets
The Resolver code that executes as part of the sockets program address space to service 
calls such as gethostbyname() or getservbyname() allocates one or more so-called Resolver 
configuration data sets in order to service these calls. All socket programs, including standard 
servers and clients and homegrown sockets programs, need access to one or more of these 
Resolver configuration data sets. In addition to TCPIP.DATA, the Resolver configuration data 
sets are HOSTS.ADDRINFO, HOSTS.SITEINFO, ETC.SERVICES, ETC.PROTO, and 
STANDARD.TCPXLBIN. Please refer to Figure 5-4.

/* REXX */
/**********************************************************************/
/*                                                                    */
/* Switch TSO Address Space to use the T03A stack                     */
/* Subsequent NETSTAT or PING commands will be directed towards       */
/* the T03ATCP stack.                                                 */
/*                                                                    */
/**********************************************************************/
Say 'Switching to T03ATCP stack'

msgstat = msg()
z = msg("OFF")
"FREE FI(SYSTCPD)"
"FREE FI(SYSFTPD)"
"ALLOC FI(SYSTCPD) DA('TCP.TCPPARMS(TDATA03A)') SHR"
z = msg(msgstat)

exit(0)
Chapter 5. Multiple TCP/IP stacks on z/OS 127



Figure 5-4   Selecting configuration data sets

The Resolver code will use the DATASETPREFIX from the selected TCPIP.DATA 
configuration data set to search for the Resolver configuration data sets. In addition to 
allocating the Resolver configuration data sets, TCP/IP standard servers may use the 
DATASETPREFIX value when they search for server-specific configuration data sets. For 
example, when the name server searches for an NSMAIN.DATA data set, it will look for 
DATASETPREFIX.NSMAIN.DATA in one of the search steps.

5.7.6  Sharing Resolver configuration data sets between two stacks
The general recommendation is to use separate DATASETPREFIX values per stack and 
create separate copies of the required configuration data sets, or, at the very least, to create 
separate copies of the Resolver configuration data sets. For a test and a production stack, 
you would probably use different DATASETPREFIX values. However, if the stacks are 
functionally identical, you may share the same DATASETPREFIX value and many of the 
same configuration data sets. You need separate TCPIP.DATA data sets because of the two 
different TCPIPJOBNAMEs. On the other hand, you may choose to share the Resolver 
configuration data sets between the stacks by using the same DATASETPREFIX value in the 
two TCPIP.DATA data sets. Please refer to Figure 5-5 for an example.
128 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 5-5   Sharing DATASETPREFIX

You must exercise caution if servers use the DATASETPREFIX to allocate server-specific 
configuration data sets. Try to use explicit allocation as far as possible in your server JCL 
procedures. Most servers allow you to explicitly allocate their configuration data sets via DD 
statements.

Some servers may use the DATASETPREFIX to create new data sets. Servers that do create 
new data sets allow you to specify an alternate data set prefix to use for the data sets that are 
created. NPF creates new sequential data sets with captured print data. NPF has a special 
keyword in NPF.DATA for this purpose, called NPFPRINTPREFIX. If this keyword is specified, 
NPF will use that as a high-level qualifier for newly created print data sets instead of the 
DATASETPREFIX value from TCPIP.DATA. Another example of a server that creates new 
data sets is the SMTP server.

5.8  Steps for installing a second stack
The following steps apply to running two TCP/IP protocol stacks on the same z/OS system, 
with the same version and release level of TCP/IP.

1. Decide on a stack name and an associated stack DATASETPREFIX. For example, you 
might choose T03A as the stack name and TCPIP.T03A as the DATASETPREFIX.

2. Decide on network connections for the new stack. Remember that each stack is a 
separate TCP/IP host with its own network interface(s) and IP address(es). At a minimum 
a stack could have a SAMEHOST link to another stack on the same MVS system. A 
SAMEHOST link is a separate IP (sub)net with its own two endpoint IP addresses.

3. Decide whether you allocate a new TCPPARMS library to use for explicitly allocated 
configuration data sets for this stack, or create a new member in your existing TCPPARMS 
library, for example, TCP.TCPPARMS(TDATA03A) and TCP.TCPDATA(TDATA03C).

4. Alter your SYS1.PARMLIB(BPXPRMxx).

5. Create a PROFILE member in TCP.TCPPARMS.

6. Create a TCPDATA member in TCP.TCPPARMS.
Chapter 5. Multiple TCP/IP stacks on z/OS 129



7. Create a new system address space JCL procedure: T03CTCP.

8. Create required server address space JCL procedures with a SYSTCPD DD statement 
pointing to TCP.TCPPARMS(TDATA03C).

9. Create server-specific configuration data sets, such as FTP.DATA or NPF.DATA.

10.Create required RACF definitions to assign started task user IDs to new address spaces.

11.If you are using a domain name server, ensure that it is updated with your new host name 
and address.

12.If you are not using a domain name server, edit your TCP.TCPPARMS(HOSTS) and run 
MAKESITE.

13.Optionally create a REXX program to switch TSO users to the new stack.

14.Depending on your system’s management strategy, you may optionally create a different 
USS table and different VTAM definitions to distinguish among the different stacks.

5.9  Example: implementing a two-stack configuration
In this example we guide you through the creation of two TCP/IP stacks (T03A and T03C) on 
z/OS system MVS03 in the ITSO installation.

We perform the setup tasks following the steps in 5.8, “Steps for installing a second stack” on 
page 129.

5.9.1  Step 1: Stack name and DATASETPREFIX
The first stack will be called T03A. The TCP/IP system address space name will be T03ATCP 
and it will have a DATASETPREFIX of TCP.

The second stack will be called T03C. The TCP/IP system address space name will be 
T03CTCP and it will have a DATASETPREFIX of TCP as well.

5.9.2  Step 2: Network connections
See Figure 5-6 for an overview of the network configuration used by the two stacks.

Note: If server-specific configuration data sets can be explicitly allocated using DD 
statements, we recommend that you create the configuration data set as a member in 
the stack-specific TCPPARMS library. If the data set has to be implicitly allocated, 
remember to create it with the stack-specific data set prefix.

Note: An alternative to this is to create another TSO logon procedure and add 
//SYSTCPD pointing to the second TCPIP.DATA data set.
130 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 5-6   Two stacks on a z/OS system

The two stacks both have network interfaces to a token-ring. In addition to the LAN interfaces, 
they have a SAMEHOST link between them. Please note that the SAMEHOST link between 
the two stacks is a separate point-to-point link that requires a separate subnet.

In a configuration like the above, you have to be careful when you select the (sub)network 
address for the point-to-point link. If you are constrained on available subnets, it might be 
desirable to use a private network address on the SAMEHOST link, for example, a class C 
network of 192.168.252.0. To do so in the configuration shown would result in errors if you are 
using RIP-1 dynamic routing because you would introduce a discontiguous subnet situation, 
where subnets of the class A 9.0.0.0 network would be located at both ends of a class C 
network.

5.9.3  Step 3: Alter the BPXPRMxx member
You must have one SUBFILESYSTYPE entry for each stack, as in the following example for 
our configuration:

MAXPROCSYS(200)
MAXPROCUSER(25)
MAXUIDS(200)
MAXFILEPROC(64)
MAXPTYS(256)
CTRACE(CTIBPX00)
STEPLIBLIST('/SYSTEM/STEPLIB')
FILESYSTYPE TYPE(HFS)
            ENTRYPOINT(GFUAINIT)
FILESYSTYPE TYPE(IBMUDS)
            ENTRYPOINT(BPXTUINT)
NETWORK DOMAINNAME(AF_UNIX)
        DOMAINNUMBER(1)
        MAXSOCKETS(64)
        TYPE(IBMUDS)

FILESYSTYPE TYPE(CINET)

9.24.105.0
Subnet

192.168.252.0
Subnet

 192.168.252.1

T03ATCP T03CTCP

  VIPA: 192.168.251.2  VIPA: 192.168.251.1
 192.168.252.2 

MVS System: MVS03

5203\520334

Samehost
Link

  9.24.105.126    9.24.105.73
Chapter 5. Multiple TCP/IP stacks on z/OS 131



            ENTRYPOINT(BPXTCINT)
NETWORK DOMAINNAME(AF_INET)
        DOMAINNUMBER(2)
        MAXSOCKETS(10000)
        TYPE(CINET)
        INADDRANYPORT(4000)
        INADDRANYCOUNT(2000)
SUBFILESYSTYPE NAME(T03ATCP)
               TYPE(CINET)
               ENTRYPOINT(EZBPFINI)
               DEFAULT
SUBFILESYSTYPE NAME(T03CTCP)
               TYPE(CINET)
               ENTRYPOINT(EZBPFINI)
ROOT  FILESYSTEM('OMVS.SA03.ROOT.A')
      TYPE(HFS)
      MODE(RDWR)
MOUNT FILESYSTEM('OMVS.SA03.TMP')
      MOUNTPOINT('/tmp')
      TYPE(HFS)
      MODE(RDWR)
MOUNT FILESYSTEM('OMVS.SA03.USER')
      MOUNTPOINT('/u')
      TYPE(HFS)
      MODE(RDWR)
MOUNT FILESYSTEM('OMVS.SA03.ETC')
      MOUNTPOINT('/etc')
      TYPE(HFS)
      MODE(RDWR)
MOUNT FILESYSTEM('SMS.OMVS.KARL')
      TYPE(HFS)
      MODE(RDWR)
      MOUNTPOINT('/u/karl')
/* following are more user file systems. they are not shown here */

5.9.4  Step 4: Allocate TCPPARMS
We allocated only one data set TCP.TCPPARMS and used different members to hold the 
stack-specific configuration information.

5.9.5  Step 5: Create PROFILE.TCPIP
One member for each stack was created in the TCP.TCPPARMS library. Our examples will 
result in a TN3270 server running on stack T03A and OE Telnet (inetd) on stack T03C. Both 
Telnet servers can be reached at the well-known port 23.

Notice the AUTOLOG statements in the following examples. Stack T03A will autolog T03FTP 
and T03DNS, stack T03C will autolog inetd, and no stack will autolog WEBSRV. This 
configuration will need the following start sequence:

� Start the T03C stack.

The stack will autolog the inetd server. This server was defined as shown in 5.7.1, 
“Standard servers and clients” on page 123 to connect only to this stack.

� Start the T03A stack.

The stack will autolog T03FTP and T03DNS. The DNS server can only connect to one 
stack. The FTP server will connect to both stacks.

� WEBSRV was not defined in any autolog statements, so it has to be started manually.
132 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Step 5A: profile for T03A stack
;*******************************************************************
; Member TCP.TCPPARMS(PROF03A)
;*******************************************************************
DATASETPREFIX TCP
TCPCONFIG
   UNRESTRICTLowports
   TCPSENDBfrsize  16384   ; Range is 256-256K - Default is 16K
   TCPRCVBufrsize  16384   ; Range is 256-256K - Default is 16K
   SENDGARBAGE FALSE       ; Packet contains no data
UDPCONFIG
   UNRESTRICTLowports
   UDPCHKsum               ; Do checksum
   UDPSENDBfrsize 16384    ; Range is ???-???K (Default is 16K)
   UDPRCVBufrsize  16384   ; Range is ???-???K (Default is 16K)
IPCONFig
 ARPTO  1200           ; In seconds
 DATAGRamfwd
 SOURCEVIPA
 VARSUBNETTING         ; For RIPV2
 SYSPLEXRouting
 IGNORERedirect
 REASSEMBLytimeout   15 ; In seconds
 STOPONclawerror
 TTL    60             ; In seconds, but actually Hop count
 AUTOLOG 5
    T03FTP JOBNAME T03FTP1 ; FTP Server
    T03DNS                 ; Domain Name Server
    WEBSRV                 ; Domain Name Server
 ENDAUTOLOG
PORT
    20 TCP OMVS      NOAUTOLOG ; FTP Server
    21 TCP T03FTP1             ; FTP Server
    23 TCP INTCLIEN            ; Telnet Server
    53 TCP T03DNS              ; Domain Name Server - Parent Process
    53 UDP T03DNS              ; Domain Name Server - Parent Process
    80 TCP OMVS                ; Domino webserver
 DEVICE DEVVIPA1    VIRTUAL     0
 LINK   LNKVIPA1    VIRTUAL     0     DEVVIPA1
 DEVICE DEVEN1  LCS           2026
 LINK   EN1     802.3         1     DEVEN1
 DEVICE IUTSAMEH    MPCPTP
 LINK   T03CTCP     MPCPTP      IUTSAMEH
HOME
    192.168.251.1    LNKVIPA1    ; 1st VIPA Link (for V2R5)
    9.24.105.126     EN1         ; 9.24.105.0
    192.168.252.1    T03CTCP     ; For SAMEHOST - IUTSAMEH - Connection
GATEWAY
 9              =      EN1         1500      0.255.255.0  0.24.105.0
 192.168.252.2  =      T03CTCP     4096      HOST
 DEFAULTNET 9.24.105.1   EN1       1500      0
;
;  the Telnet parameters are in telnet3a
 INCLUDE TCP.TCPPARMS(TELN03A)
;
 START DEVEN1              ; OSA Ethernet
 START IUTSAMEH            ; SAMEHOST LINK (IUTSAMEH)
Chapter 5. Multiple TCP/IP stacks on z/OS 133



Step 5B: profile for T03C stack
;*******************************************************************
; Member TCP.TCPPARMS(PROF03C)
;*******************************************************************
DATASETPREFIX TCP
TCPCONFIG
   UNRESTRICTLowports
   TCPSENDBfrsize  16384   ; Range is 256-256K - Default is 16K
   TCPRCVBufrsize  16384   ; Range is 256-256K - Default is 16K
   SENDGARBAGE FALSE       ; Packet contains no data
UDPCONFIG
   UNRESTRICTLowports
   UDPCHKsum               ; Do checksum
   UDPSENDBfrsize 16384    ; Range is ???-???K (Default is 16K)
   UDPRCVBufrsize  16384   ; Range is ???-???K (Default is 16K)
IPCONFig
 ARPTO  1200           ; In seconds
 DATAGRamfwd
 SOURCEVIPA
 VARSUBNETTING         ; For RIPV2
 SYSPLEXRouting
 IGNORERedirect
 REASSEMBLytimeout   15 ; In seconds
 STOPONclawerror
 TTL    60             ; In seconds, but actually Hop count
 AUTOLOG 5
    INETD  JOBNAME INETD1  ; INETD for OE telnet
 ENDAUTOLOG
PORT
    20 TCP OMVS                ; FTP Server
    21 TCP T03FTP1             ; FTP Server
    23 TCP OMVS                ; INETD for OE telnet
    80 TCP OMVS                ; Domino webserver
   111 TCP OMVS                ; Portmap Server
   111 UDP OMVS                ; Portmap Server
 DEVICE DEVVIPA1    VIRTUAL     0
 LINK   LNKVIPA1    VIRTUAL     0     DEVVIPA1
 DEVICE DEVEN1  LCS           2026
 LINK   EN1     802.3         1     DEVEN1
 DEVICE IUTSAMEH    MPCPTP
 LINK   T03ATCP     MPCPTP      IUTSAMEH
HOME
    192.168.251.2    LNKVIPA1    ; 1st VIPA Link (for V2R5)
    9.24.105.73      EN1         ; 9.24.105.0
    192.168.252.2    T03ATCP     ; For SAMEHOST - IUTSAMEH - Connection
GATEWAY
 9              =      EN1         1500      0.255.255.0  0.24.105.0
 192.168.252.1  =      T03ATCP     4096      HOST
 DEFAULTNET 9.24.105.1   EN1       1500      0
START DEVEN1              ; OSA Ethernet
START IUTSAMEH            ; SAMEHOST LINK (IUTSAMEH)

5.9.6  Step 6: Create TCPIP.DATA
In the same way, one member was created for each stack in TCP.TCPARMS.

Step 6A: TCPIP.DATA for the T03A stack
For the T03A stack, the contents are:
134 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



TCPIPJOBNAME T03ATCP
HOSTNAME  MVS03
DOMAINORIGIN  itso.ral.ibm.com
NSINTERADDR  9.24.104.108
NSPORTADDR 53
RESOLVEVIA UDP
RESOLVERTIMEOUT 10
RESOLVERUDPRETRIES 1
;TRACE RESOLVER
DATASETPREFIX TCP
MESSAGECASE MIXED

Step 6B: TCPIP.DATA for the T03C stack
For the T03C stack, the contents are:

TCPIPJOBNAME T03CTCP
HOSTNAME  MVS03C
DOMAINORIGIN  itso.ral.ibm.com
NSINTERADDR  192.168.252.1      ;  MVS03 Samehost Connection
NSINTERADDR  9.24.104.108
NSPORTADDR 53
RESOLVEVIA UDP
RESOLVERTIMEOUT 30
RESOLVERUDPRETRIES 1
DATASETPREFIX TCP
MESSAGECASE MIXED

5.9.7  Step 7: Create system address space JCL procedure
For the T03A stack, the system address name was selected to be T03ATCP:

//T03ATCP  PROC PARMS='CTRACE(CTIEZB01)',
// XPARM='ENVAR("RESOLVER_CONFIG=//TCP.TCPPARMS(TDATA03A)")'
//TCPIP    EXEC PGM=EZBTCPIP,
//             PARM='&PARMS &XPARM',
//             REGION=7500K,TIME=1440
//STEPLIB   DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FB,LRECL=137,BLKSIZE=137)
//ALGPRINT DD SYSOUT=A,DCB=(RECFM=FB,LRECL=137,BLKSIZE=137)
//SYSOUT   DD SYSOUT=A,DCB=(RECFM=FB,LRECL=137,BLKSIZE=137)
//CEEDUMP  DD SYSOUT=*,DCB=(RECFM=FB,LRECL=137,BLKSIZE=137)
//SYSERROR DD SYSOUT=A
//PROFILE  DD DISP=SHR,DSN=TCP.TCPPARMS(PROF03A)
//SYSTCPD  DD DSN=TCP.TCPPARMS(TDATA03A),DISP=SHR

For the T03C stack, the system address space name is T03CTCP:

//T03CTCP  PROC PARMS='CTRACE(CTIEZB01)'
//TCPIP    EXEC PGM=EZBTCPIP,
//             PARM='&PARMS &XPARM',
//             REGION=7500K,TIME=1440
//STEPLIB   DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FB,LRECL=137,BLKSIZE=137)
//ALGPRINT DD SYSOUT=A,DCB=(RECFM=FB,LRECL=137,BLKSIZE=137)
//SYSOUT   DD SYSOUT=A,DCB=(RECFM=FB,LRECL=137,BLKSIZE=137)
//CEEDUMP  DD SYSOUT=*,DCB=(RECFM=FB,LRECL=137,BLKSIZE=137)
//SYSERROR DD SYSOUT=A
//PROFILE  DD DISP=SHR,DSN=TCP.TCPPARMS(PROF03C)
//SYSTCPD  DD DSN=TCP.TCPPARMS(TDATA03C),DISP=SHR
Chapter 5. Multiple TCP/IP stacks on z/OS 135



5.9.8  Step 8: Create server address space JCL procedures
For each server you specified in the AUTOLOG section of the PROFILE configuration 
member, you need to create a JCL procedure in your JCL procedure library.

Taking RouteD as an example, here is the JCL procedure for the T03AROUT server address 
space:

//T03AROUT  PROC MODULE='BPXBATCH'
//OROUTED  EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
//         PARM='PGM /usr/lpp/tcpip/sbin/orouted'
//STDOUT   DD PATH='/tmp/orouted.03a.stdout',
//         PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
//         PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDERR   DD PATH='/tmp/orouted.03a.stderr',
//         PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
//         PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDENV   DD PATH='/etc/orouted.03a.env'
//CEEDUMP  DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//SYSERR   DD PATH='/tmp/orouted.03a.syserr',
//         PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
//         PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)

And this is the JCL procedure for the T03CROUT server address space:

//OROUTED  EXEC PGM=BPXBATCH,REGION=4096K,TIME=NOLIMIT,
//         PARM='PGM /usr/lpp/tcpip/sbin/orouted -ep -t -t -t -t'
//*        PARM='PGM /usr/lpp/tcpip/sbin/orouted'
//STDOUT   DD PATH='/tmp/orouted.03c.stdout',
//         PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
//         PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDENV   DD DSN=TCP.TCPPARMS(RD03CENV),DISP=SHR

5.9.9  Step 9: Create server-specific configuration data sets
In this example, we need one configuration data set per stack, which can be explicitly 
allocated. As an example of the contents of those data sets, Examples 5-1 and 5-2 show the 
STDENV data set for each stack.

Example 5-1   STDENV data set for stack 03A (TCP.TCPPARMS(RD03A))

RESOLVER_CONFIG=//'TCP.TCPPARMS(TDATA03A)'
ROUTED_PROFILE=//'TCP.TCPPARMS(RD03APR)'
GATEWAYS_FILE=//'TCP.TCPPARMS(RD03AGW)'

Example 5-2   STDENV data set for stack 03C (TCP.TCPPARMS(RD03C))

RESOLVER_CONFIG=//'TCP.TCPPARMS(TDATA03C)'
ROUTED_PROFILE=//'TCP.TCPPARMS(RD03CPR)'
GATEWAYS_FILE=//'TCP.TCPPARMS(RD03CGW)'

5.9.10  Step 10: Update your name server
If you use a name server, you have to add the host names of the new stacks to your zone data 
sets. Remember that each stack is a separate TCP/IP host and has a separate host name 
with associated IP addresses.
136 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



5.9.11  Step 11: Create REXX program to switch TSO users
To switch a TSO user to use the T03A stack, we created the following REXX program, called 
T03A:

/* REXX */
/**********************************************************************/
/*                                                                    */
/* Switch TSO Address Space to use the T03A stack                     */
/* Subsequent client commands, such as NETSTAT, PING or FTP           */
/* will be directed towards the T03A stack.                           */
/*                                                                    */
/**********************************************************************/
Say 'Switching to the T03A stack'

msgstat = msg()
z = msg("OFF")
"FREE FI(SYSTCPD)"
"FREE FI(SYSFTPD)"
"ALLOC FI(SYSTCPD) DA('TCP.TCPPARMS(TDATA03A)') SHR"
z = msg(msgstat)

exit(0)

To switch a TSO user to use the T03C stack, we created the following REXX program, called 
T03C:

/* REXX */
/**********************************************************************/
/*                                                                    */
/* Switch TSO Address Space to use the T03C stack                     */
/* Subsequent client commands, such as NETSTAT, PING or FTP           */
/* will be directed towards the T03C stack.                           */
/*                                                                    */
/**********************************************************************/
Say 'Switching to the T03C stack'

msgstat = msg()
z = msg("OFF")
"FREE FI(SYSTCPD)"
"FREE FI(SYSFTPD)"
"ALLOC FI(SYSTCPD) DA('TCP.TCPPARMS(TDATA03C)') SHR"
z = msg(msgstat)

exit(0)

5.9.12  Step 12: Create VTAM definitions and USS message 10 tables
If both stacks are going to be used for Telnet access, you may wish to create two separate 
pools of VTAM LU definitions, one per stack.

The two stacks used the same USS message 10 table, but if you want to display the stack 
name on the USS message 10 screen, you need to create one USS message 10 table per 
stack.

5.9.13  Step 13: Starting the stacks
The two TCP/IP stacks are now ready to start.
Chapter 5. Multiple TCP/IP stacks on z/OS 137



138 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Chapter 6. National Language Support 
(NLS)

TCP/IP is an any-to-any communication protocol for heterogeneous systems. A general 
mechanism to negotiate the code page at the time of connection is not defined in the protocol 
suite. A client uses the services of a remote server. A server may service multiple clients at a 
given time residing on different systems and using different code pages. There is no way for 
the server to use the correct translation for each client. Some servers, however, allow the 
selection of a specific translate table by the client.

Communications Server for z/OS supports both single-byte character set (SBCS) and 
double-byte character set (DBCS) translation. For SBCS translation, one ASCII character 
translates to one EBCDIC character and vice versa. For DBCS translation, one ASCII 
double-byte character translates to one EBCDIC double-byte character and vice versa.

This chapter contains the following sections:

� 6.1, “Server and client translation options” on page 140
� 6.2, “Standard translate tables” on page 140
� 6.3, “Telnet use of translate tables” on page 143
� 6.4, “Code set conversion utilities in UNIX System Services” on page 145

For FTP support of multiple translate tables, please see Communications Server for z/OS 
V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications, SG24-5228.

For LPD and LPR support of multiple translate tables, please see OS/390 eNetwork 
Communications Server V2R7 TCP/IP Implementation Guide Volume 3: MVS Applications, 
SG24-5229.

z/OS UNIX Telnet relies on the z/OS UNIX chcp command to provide code page conversions. 
Therefore, if the Telnet client wants to use a code page other than the default IBM-1047, it has 
to use the chcp command. For more information, please see 6.4, “Code set conversion 
utilities in UNIX System Services” on page 145 and z/OS V1R2.0 UNIX System Services 
Planning, GA22-7800.

6

© Copyright IBM Corp. 1998 2002. All rights reserved. 139



6.1  Server and client translation options
The following TCP/IP server functions in z/OS offer a way for the remote client to select a 
specific translate table to be used by the z/OS server for a single session between the server 
and the client:

� The FTP server accepts the CTRLCONN, XLATE, and SBDATACONN keywords on the 
site subcommand for SBCS translation or the DBCS keywords on the TYPE subcommand 
for DBCS translation. The FTP server will optionally use the iconv functions instead of the 
external tables for single-byte conversion.

� The Telnet server, when it operates in DBCS transform mode, will prompt the user for a 
conversion type (which DBCS conversion to use).

The  Telnet server relies on the UNIX System Services chcp command to provide code 
page conversion. The remote Telnet client can set the ASCII and EBCDIC code pages 
using the chcp command. For more information, refer to z/OS V1R2.0 UNIX System 
Services Planning, GA22-7800.

The following TCP/IP client functions in CS for z/OS IP offer a way for the user to select a 
specific translate table to be used by the client for a single session between the client and the 
remote server:

� FTP via the TRANSLATE keyword on the FTP command for SBCS and/or DBCS 
translation, or the CTRLCONN and SBDATACONN keywords on the locsite 
subcommand for SBCS translation, or the DBCS client subcommands for DBCS 
translation.

� LPR via the translate keyword for SBCS translation or the DBCS keywords for DBCS 
translation.

� Telnet line mode connections via the translate keyword on the Telnet command invocation.

� TSO REXEC client via the -t parameter on the REXEC command invocation. You can 
use the SBCS translate table only.

There is always a default translate table selected during server or client startup, either 
through standard implicit allocation search order or through server configuration parameters. 
Please refer to z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776 for the names of 
the default translate table data sets used by the individual server functions. During installation 
of Communications Server for z/OS IP, these default translate tables are created by the 
sample installation job EZAGETIN.

6.2  Standard translate tables
The different translate tables are supplied in editable source. A utility allows a user to convert 
the source into a binary file, which is actually used by TCP/IP. If you need a special translate 
table, you can create your own.

There are always two translate tables for each language, one for Telnet client usage and 
another for all the other applications.

The Telnet translate table prevents the z/OS Telnet client from translating special ASCII 
characters to EBCDIC characters, which are not allowed in the 3270 data stream and could 
lead to unpredictable results.

The standard translate tables are located in:

� SBCS tables: tcpip.SEZAXLD1
140 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



� DBCS tables: tcpip.SEZAXLD2

They are copied to sequential data sets by the sample installation job EZAGETIN.

6.2.1  Using your country SBCS translate table
Communications Server for z/OS IP contains the following SBCS NLS translate tables in 
source format.

Table 6-1   SBCS translations supported by CS for z/OS IP

The editable translation tables used by the Telnet Server in 3270 DBCS transform mode and 
Telnet client are members of the tcpip.SEZATELX data set. The translation source tables 
used by the other applications, such as FTP, are located in the tcpip.SEZATCPX data set.

Table name Country or region ASCII-EBCDIC
code page numbers

AUSGER Austrian-German 850<->273

BELGIAN Belgian 850<->500

CANADIAN Canadian 850<->037

CUSTOM Customer 819<->1047

DANNOR Danish-Norwegian 850<->277

DUTCH Dutch 850<->037

FINSWED Finnish-Swedish 850<->278

FRENCH French 850<->297

ITALIAN Italian 850<->280

JAPANESE Japanese 850<->281

JPNALPHA Japanese Code 1041<->1027

JPNKANA Japanese Code 1041<->0290

KOR0891 Korean Code 0891<->0833

KOR1088 Korean Code 1088<->0833

PORTUGUE Portuguese 850<->037

PRC1115 P.R. China 1115<->0836

SPANISH Spanish 850<->284

SWISFREN Swiss-French 850<->500

SWISGERM Swiss-German 850<->500

TAI0904 Taiwan 0904<->0037

TAI1114 Taiwan 1114<->0037

UK United Kingdom 850<->285

US United States 850<->037
Chapter 6. National Language Support (NLS) 141



Note that the Telnet server for line mode no longer uses TCPXLBIN and 
hlq.TelnetSE.TCPXLBIN translation tables. Instead of them, now it uses iconv functions. You 
can specify the ASCII and EBCDIC code page with the CODEPAGE statement in the 
TelnetPARMS block.

All the translate table members contain two parts. The first part is used to translate from 
ASCII to EBCDIC. The second part is used to translate from EBCDIC to ASCII.

To use one of these translate tables, you must convert it into binary with the TSO CONVXLAT 
command.

The command CONVXLAT 'tcpip.SEZATELX(FRENCH)' Telnet.TCPXLBIN  will create a 
translate table named userID.Telnet.TCPXLBIN available for the next Telnet line mode client 
command from this MVS user.

6.2.2  Using your country DBCS translate table
Communications Server for z/OS is delivered with the following DBCS translate tables in 
source format. The source for these tables is located in the tcpip.SEZADBCX data set.

Table 6-2   DBCS NLS translate tables

These tables include only DBCS code points. To translate a mixed-mode data stream, you 
need to specify both an SBCS and a DBCS translation. A mixed-mode DBCS string is a string 
that contains both SBCS and DBCS characters. Shift-out and shift-in (EBCDIC X'0E' and 
X'0F') characters are used to denote the beginning and end of DBCS characters in a 
mixed-mode EBCDIC string.

You can modify the source of these tables and generate the corresponding binary translate 
tables with the CONVXLAT program.

The servers and clients that support DBCS translation are:

� FTP client and server - see IBM Communications Server for OS/390 V2R10 TCP/IP 
Implementation Guide Volume 2: UNIX Applications, SG24-5228.

� LPD client, LPD and SMTP server - see OS/390 eNetwork Communications Server V2R7 
TCP/IP Implementation Guide Volume 3: MVS Applications, SG24-5229.

� Telnet Server (for line mode) in 3270 DBCS transform mode.

Member name Language group Translation ASCII and EBCDIC
code page numbers

EZACHLAT Taiwan DBCS Chinese 0927<->0835

Big5 0947<->0835

EZAHGLAT Korea DBCS Hanguel 0926<->0834

KSC5601 0951<->0834

EZAKJLAT Japan DBCS EUckanji 0954<->0300

JIS78kj 0955<->0300

JIS83kj 5048<->0300

SJiskanji 0301<->0300

EZASCLAT P.R. China DBCS Schinese 1380<->0837
142 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



6.3  Telnet use of translate tables
Telnet in line mode must always use its own translate tables in order to prevent the translation 
of special ASCII characters to EBCDIC characters outside the range of displayable data for 
the 3270 data stream.

6.3.1  Telnet sessions between two z/OS or VM hosts
Both sides of the Telnet functions, the server and the client function, have two modes:

� 3270 full-screen mode, where the data sent between the two TCP/IP hosts is an EBCDIC 
3270 data stream. This is also called transparent mode.

� Line mode, where the data sent between the two TCP/IP hosts is ASCII.

3270 full-screen mode, Telnet server and client
No translation is done; the connection is transparent. Extended data stream including 
Programmed Symbols (PS) is supported.

Line mode, Telnet server
The Telnet server must translate from/to EBCDIC/ASCII because ASCII data is sent between 
the two TCP/IP hosts. The Telnet server for line mode no longer uses TCPXLBIN and 
hlq.TelnetSE.TCPXLBIN translation tables. Instead of them, now it uses iconv functions. You 
can specify the ASCII and EBCDIC code page with the CODEPAGE statement in the 
TelnetPARMS block.

Line mode, Telnet client
Users (Telnet clients) send and receive data to be displayed at their workstation in EBCDIC; 
therefore, EBCDIC/ASCII translation must be done on the client side. The user invoking the 
TSO Telnet Client function can request a specific translate table. The following hierarchical 
search algorithm is used during dynamic translate table data set allocation:

1. user_id.Telnet.TCPXLBIN

2. hlq.Telnet.TCPXLBIN

3. user_id.STANDARD.TCPXLBIN

4. hlq.STANDARD.TCPXLBIN

Only in line mode can you specify the TRANSLATE option to use a nonstandard translation 
table. If the TRANSLATE dsname option is specified, the Telnet client resolves the SBCS 
translation table in the following order:

1. user_id.dsname.TCPXLBIN

2. hlq.dsname.TCPXLBIN

If you specify this option, the STANDARD translation tables are never used. If 
user_id.dsname.TCPXLBIN and hlq.dsname.TCPXLBIN do not exist, or if they were 
incorrectly created, Telnet ends with an error message.

6.3.2  Telnet sessions between z/OS and other TCP/IP hosts
Both sides of CS for z/OS IP Telnet, the server and the client function, have three modes:

� 3270 full-screen mode

The data sent between the CS for z/OS IP host and the other TCP/IP host is an EBCDIC 
3270 data stream.
Chapter 6. National Language Support (NLS) 143



� Line mode

The data sent between the CS for z/OS IP host and the other TCP/IP host is ASCII.

� DBCS transform mode

This mode supports full-screen access from the remote terminals that can emulate the 
family of DBCS-capable terminals, such as terminal types VT100, VT220, and VT282. The 
data sent between the CS for z/OS IP host and the other TCP/IP host is ASCII.

3270 full-screen mode, Telnet server
No translation is done; the connection is transparent. Extended data stream including 
programmed symbols (PS) is supported.

This is known as Telnet 3270 support or TN3270.

If your workstation is an OS/2 workstation with IBM TCP/IP for OS/2, you can customize the 
translate table that TN3270 uses on the OS/2 workstation. It is located in the /tcpip/etc 
directory; the file name is 3278xlt. The format of this file matches the format of the translate 
table source members you find in tcpip.v3r1.SEZATELX. You can use FTP to download the 
translate table member that you want to use as 3278xlt.

Line mode, Telnet server
In this mode, the code conversion between EBCDIC and ASCII is done by the OS/390 Telnet 
server. The Telnet server uses iconv functions with the CODEPAGE statement in the 
TelnetPARMS block to specify country translation tables. You have to specify the ASCII and 
EBCDIC code sets using the code character names supported by the iconv functions.

You can allow a client to use the Telnet line mode server in MVS without any translation, if you 
specify the BINARYLINEMODE keyword on the TelnetPARMS statement in PROFILE.TCPIP.

DBCS transform mode, Telnet server
If you customize the MVS Telnet server to allow Telnet sessions in 3270 DBCS transform 
mode, a Telnet client will be prompted for the terminal type and which DBCS translation to 
use. In this mode, data exchanged between the client and the z/OS Telnet server is in ASCII, 
so all translation takes place in z/OS based on the selected DBCS translate table.

To enable 3270 DBCS transform mode, you have to include TNDBCSCN, TNDBCSXL and 
TNDBCSER DD statements in your TCP/IP procedure.

Configure the TNDBCSCN data set with the CODEKIND and CHARMODE parameters 
according to the required DBCS code page. A sample is supplied in 
TCPIP.SEZAINST(TNDBCSCN).

The translate tables must reside in a partitioned data set allocated to the TCP/IP address 
space via a DD name of TNDBCSXL. The installation data set, hlq.SEZAXLD2, contains the 
default binary translation table. You can also customize the DBCS translation table for 3270 
DBCS transform mode using the CONVXLAT utility.

TNDBCSER DD receives trace output.

For more information, refer to z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776.

Note: The other TCP/IP host is responsible for building an EBCDIC 3270 data stream. In 
the case of an ASCII host, it must translate from EBCDIC to ASCII, which may include NLS 
translation.
144 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



6.4  Code set conversion utilities in UNIX System Services
z/OS provides the iconv utility, which converts a file from one coded character set encoding to 
another. The iconv utility invokes iconv() functions internally such as iconv_open(), iconv(), 
and iconv_close().

Several applications provided in Communications Server for z/OS IP use the functions to 
perform code conversion.

The following are examples that use the iconv functions to perform code conversion:

� The FTP server and client use iconv when CTRLCONN or SBDATACONN keywords are 
used in the FTP.DATA configuration file or on the site and locsite FTP subcommands to 
specify code pages. This support is limited to single-byte code pages. However, when 
transferring UCS-2 data, the EBCDIC code page can be double-byte.

� The UNIX System Services Telnet server

The Telnet server in a UNIX System Services (or TelnetD) environment provides the code 
conversion function based on the UNIX System Services chcp shell command. The Telnet 
client end user can specify which translation to use via the chcp shell command.

When a chcp shell command is executed, the TelnetD process is informed about the code 
page change via urgent data over the pseudo terminal connection (the master/slave PTY 
interface). A user may select to have a chcp command executed as part of the user's login 
process, for example, via the user's $HOME/.profile or $HOME/.setup shell scripts.

The code set conversions supported in CS for z/OS IP are shown in Table 6-3.

Table 6-3   Supported code character set converters

From code To code

IBM-037 IBM-500, IBM-850, IBM-1047, ISO8859-1

IBM-273 IBM-500, IBM-850, IBM-1047, ISO8859-1

IBM-274 IBM-500, IBM-1047, ISO8859-1

IBM-275 IBM-500, IBM-1047, ISO8859-1

IBM-277 IBM-500, IBM-850, IBM-1047, ISO8859-1

IBM-278 IBM-500, IBM-850, IBM-1047, ISO8859-1

IBM-280 IBM-500, IBM-850, IBM-1047, ISO8859-1

IBM-281 IBM-500, IBM-1047, ISO8859-1

IBM-282 IBM-500, IBM-1047, ISO8859-1

IBM-284 IBM-500, IBM-850, IBM-1047, ISO8859-1

IBM-285 IBM-500, IBM-850, IBM-1047, ISO8859-1

IBM-290 IBM-500, IBM-1027, IBM-1047, ISO8859-1

IBM-297 IBM-500, IBM-850, IBM-1047, ISO8859-1

IBM-500 IBM-037, IBM-273, IBM-274, IBM-275, IBM-277, IBM-278, IBM-280, 
IBM-281, IBM-282, IBM-284, IBM-285, IBM-290, IBM-297, IBM-850, 
IBM-871, IBM-1027, IBM-1047, ISO8859-1

IBM-833 IBM-1047

IBM-836 IBM-1047
Chapter 6. National Language Support (NLS) 145



The DBCS code set converters are also supplied (see Table 6-4) in z/OS. These converters 
are used by the code set converters between the code sets IBM-930, IBM-932, IBM-932C, 
IBM-939, IBM-2022-JP, IBM-5052, IBM-eucJC, and IBM-eucJP.

Table 6-4   Supported DBCS code character set converters 

IBM-850 IBM-037, IBM-273, IBM-277, IBM-278, IBM-280, IBM-284, IBM-285, 
IBM-297, IBM-850, IBM-871, IBM-1047

IBM-871 IBM-500, IBM-850, IBM-1047, ISO8859-1

IBM-875 IBM-1047, ISO8859-7

IBM-930 IBM-1047

IBM-933 IBM-1047, ISO8859-1

IBM-935 IBM-1047

IBM-937 IBM-1047

IBM-939 IBM-1047

IBM-1026 IBM-1047, ISO8859-9

IBM-1027 IBM-290, IBM-500, IBM-1047, ISO8859-1

IBM-1047 IBM-037, IBM-273, IBM-274, IBM-275, IBM-277, IBM-278, IBM-280, 
IBM-281, IBM-282, IBM-284, IBM-285, IBM-290, IBM-297, IBM-500, 
IBM-833, IBM-836, IBM-850, IBM-871, IBM-875, IBM-930, IBM-933, 
IBM-935, IBM-937, IBM-939, IBM-1026, IBM-1027, ISO8859-1

ISO8859-1 IBM-037, IBM-273, IBM-274, IBM-275, IBM-277, IBM-278, IBM-280, 
IBM-281, IBM-282, IBM-284, IBM-285, IBM-290, IBM-297, IBM-500, 
IBM-871, IBM-933, IBM-1027, IBM-1047

ISO8859-7 IBM-875

ISO8859-9 IBM-1026

From code To code

IBM-290 IBM-932, IBM-932C, IBM-eucJP, IBM-eucJC

IBM-300 IBM-932, IBM-932C, IBM-eucJP, IBM-eucJC

IBM-930 IBM-932, IBM-932C, IBM-956, IBM-957, IBM-958, IBM-959, 
IBM-2202-JP, IBM-5052, IBM-5053, IBM-5054, IBM-5055, 
IBM-eucJP, IBM-eucJC

IBM-932 IBM-290, IBM-300, IBM-930, IBM-939, IBM-1027

IBM-932C IBM-290, IBM-300, IBM-930, IBM-939, IBM-1027, IBM-1047

IBM-939 IBM-932, IBM-932C, IBM-956, IBM-957, IBM-958, IBM-959, 
IBM-1047 IBM-2202-JP, IBM-5052, IBM-5053, IBM-5054, IBM-505, 
IBM-eucJP, IBM-eucJC

IBM-956 IBM-930, IBM-939

IBM-957 IBM-930, IBM-939

IBM-958 IBM-930, IBM-939

IBM-959 IBM-930, IBM-939

From code To code
146 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Examples of POSIX data are C source and shell scripts. The data includes characters from 
the POSIX character set. The names IBM-932C and IBM-eucJC indicate that the <yen> and 
<overline> characters in POSIX data encoded by IBM-932 or IBM-eucJP map to the 
<backslash> and <tilde> characters, respectively, when the data is converted to or from host 
encodings.

You can use the name UCS-2 to request setup for conversion to and from the Universal 
Two-Octet Coded Character Set (UCS-2) specified in ISO/IEC International Standard 
10646-1.

For example, if you specify IBM-939 as the EBCDIC code set, the code conversion to/from 
IBM-939 character encoding from/to UCS-2 character encoding is set up.

The EBCDIC code sets you can use for the UCS-2 conversion are shown in Example 6-1.

Example 6-1   EBCDIC code sets

IBM-037, IBM-273, IBM-274, IBM-275, IBM-277, IBM-278, IBM-280, IBM-282, IBM-284, IBM-285, 
IBM-290, IBM-297, IBM-300, IBM-420, IBM-424, IBM-500, IBM-813, IBM-819, IBM-833, IBM-834, 
IBM-835, IBM-836, IBM-837, IBM-838, IBM-850, IBM-852, IBM-856, IBM-861, IBM-862, IBM-864, 
IBM-866, IBM-869, IBM-870, IBM-871, IBM-880, IBM-904, IBM-912, IBM-914, IBM-915, IBM-916, 
IBM-920, IBM-921, IBM-922, IBM-927, IBM-930, IBM-932, IBM-933, IBM-935, IBM-937, IBM-939, 
IBM-942, IBM-946, IBM-948, IBM-949, IBM-950, IBM-951, IBM-964, IBM-970, IBM-1025, IBM-1026, 
IBM-1027, IBM-1046, IBM-1047, IBM-1088, IBM-1089, IBM-1112, IBM-1115, IBM-1122, IBM-1250, 
IBM-1251, IBM-1252, IBM-1253, IBM-1255, IBM-1256, IBM-1380, IBM-1381, IBM-1383, IBM-1386, 
IBM-1388, IBM-8550, IBM33722, IBM-eucJC, IBM-eucKR, IBM-eucTW, ISO8859-1, ISO8859-2, 
ISO8859-4, ISO8859-5, ISO8859-6, ISO8859-7, ISO8859-8, ISO8859-9

For more information about the iconv utility, please refer to z/OS V1R2.0 C/C++ Programming 
Guide, SC09-4765.

IBM-1027 IBM-932, IBM-932C, IBM-eucJP, IBM-eucJC

IBM-1047 IBM-930, IBM-939

IBM-2022-JP IBM-930, IBM-939

IBM-5052 IBM-930, IBM-939

IBM-5053 IBM-930, IBM-939

IBM-5054 IBM-930, IBM-939

IBM-5055 IBM-930, IBM-939

IBM-eucJC IBM-290, IBM-300, IBM-930, IBM-939, IBM-1027

IBM-eucJP IBM-290, IBM-300, IBM-930, IBM-939, IBM-1027

Note: Specify IBM-932C or IBM-eucJC as the source or target code set name to set up for 
conversion of POSIX data encoded by IBM-932 or IBM-eucJP to or from a host code set 
encoding of the data such as IBM-930 or IBM-939.

From code To code
Chapter 6. National Language Support (NLS) 147



148 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Chapter 7. Diagnostic tools

z/OS V1R2.0 CS: IP Diagnosis, GC31-8782 is the ultimate source for diagnosing problems 
you may encounter in your implementation of Communications Server for z/OS IP. In this 
chapter we review some of the tools available to you, but you can find more detailed 
information in the referenced manual.

7.1  DISPLAY TCPIP command
You are already familiar with the MVS DISPLAY command as you have seen it in Chapter 2, 
“Customizing UNIX System Services” on page 17. The MVS DISPLAY TCPIP command 
displays the status of the TCP/IP stack or stacks.

You can retrieve a list of known stacks on an MVS system by issuing the MVS command D 
TCPIP:

D TCPIP                                  
EZAOP50I TCPIP STATUS REPORT 012         
COUNT   TCPIP NAME   VERSION    STATUS   
-----   ----------   --------   ---------
    1   TCPIPOE      CS V1R2    ACTIVE   
    2   TCPIPMVS     CS V1R2    ACTIVE   
    3   TCPIPA       CS V1R2    ACTIVE   
*** END TCPIP STATUS REPORT *** 

The command is also useful in issuing other diagnostic commands, since you may need to 
distinguish among multiple running TCP/IP procedures. The DISPLAY TCPIP command gives 
you the procedure names.

7

© Copyright IBM Corp. 1998 2002. All rights reserved. 149



7.2  NETSTAT and onetstat
NETSTAT, onetstat, and DISPLAY TCPIP,tcpproc,NETSTAT commands display information 
about the status of the local CS for z/OS IP configuration. They are extremely useful in 
diagnosing and monitoring your network. onetstat is issued from the UNIX System Services 
shell environment, NETSTAT is issued from TSO, and the DISPLAY TCPIP,tcpproc,NETSTAT 
command from the MVS console. All of them are functionally equivalent; they just use 
different front ends for input processing. They are all documented in z/OS V1R2.0 CS: IP 
System Administrator’s Commands, SC31-8781.

Any of the three variations of the command may be directed toward a specific stack if you are 
running multiple stacks, for example:

onetstat -p procname -d         1
D TCPIP,procname,N,DEV          2
TSO NETSTAT DEV TCP procname    3

� onetstat uses the -p option 1 

� The DISPLAY TCPIP,tcpproc,NETSTAT command specifies the procedure name of the IP 
stack in the third field of the command 2 

� The TSO NETSTAT command uses the TCP option 3

You can display online help by issuing the onetstat -?, TSO NETSTAT HELP or DISPLAY 
TCPIP,tcpproc,HELP,NETSTAT command.

7.2.1  Routing table displays
To see information about each gateway use either the onetstat -g command (Figure 7-1)or 
the TSO NETSTAT GATE command.

Figure 7-1   Gateway display

To display routing information, you can use the command onetstat -r, TSO NETSTAT ROUTE 
or the MVS console command DISPLAY TCPIP,tcpproc,NETSTAT,ROUTE.

Note: Access to the NETSTAT command can now be controlled by RACF. See z/OS V1R2.0 
CS: IP System Administrator’s Commands, SC31-8781 or Communications Server for 
z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security, SG24-6840 for further 
details.

onetstat -p TCPIPC -g 
MVS TCP/IP onetstat CS V2R10       TCPIP Name: TCPIPC  14:53:04  
Known gateways:                                                              
NetAddress  FirstHop        Link     Pkt Sz Subnet Mask Subnet Value 
----------  --------        ----     ------ ----------- ------------ 
Default     172.16.100.254  M032216B 30720  <none>                       
9.0.0.0     172.16.100.254  M032216B 30720  <none>                       
9.0.0.0     172.16.100.254  M032216B 30720  0.255.254.0 0.1.150.0    
9.0.0.0     172.16.100.254  M032216B 30720  0.255.255.0 0.3.1.0      
9.0.0.0     172.16.100.254  M032216B 30720  0.255.255.0 0.3.240.0    
9.0.0.0     172.16.100.254  M032216B 30720  0.255.255.0 0.12.0.0 
150 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 7-2   Displaying the route table

The FLAGS column is helpful to understand the characteristics of the route. Each flag 
represents certain information about the specific route entry, as follows:

� Flag U indicates that the route entry is up and running or ACTIVE. If there is no U, then the 
route entry is defined but not active. This may be because the device is in a NOT ACTIVE 
status.

� Flag G indicates that the route entry specifies an indirect route. That means the 
destination indicated on the route entry is behind a router from this z/OS system. If there is 
no G, then the route entry specifies a direct route. That means the destination indicated on 
the route entry is on the same local network.

� Flag H indicates that the destination field in this route entry specifies a host route. That 
means this route will be used only if the destination IP address of a datagram exactly 
matches all 32 bits (255.255.255.255) in the route entry destination field. If there is no H, 
then the destination field in this route entry specifies a network route. That means this 
route will be used only if the destination IP address of a datagram exactly matches all the 
network bits (less than 32 bits, for example, 255.255.255.0) in the route entry destination 
field.

� Flag D indicates that the route entry was created by an ICMP redirect. This may occur with 
static route definitions but not with dynamic routing protocols.

� Flag O indicates the route was created by OSPF.

� Flag R indicates the route was created by RIP.

� Flag S indicates the route is a static route that cannot be replaced by a routing daemon 
(such as OMPROUTE).

� Flag Z indicates the route is a static route that can be replaced by dynamic routes learned 
by OMPROUTE.

If you are using OMPROUTE, you can display routes in the OMPROUTE routing table by 
issuing the command DISPLAY TCPIP,tcpproc,OMPROUTE,RTTABLE.

D TCPIP,TCPIPC,NETSTAT,ROUTE                               
EZZ2500I NETSTAT CS V2R10 TCPIPC 875                       
DESTINATION      GATEWAY         FLAGS  REFCNT  INTERFACE 
DEFAULT          172.16.100.254   UG    000000   M032216B  
9.0.0.0          172.16.100.254   UG    000000   M032216B  
9.1.150.0        172.16.100.254   UG    000000   M032216B  
9.3.1.0          172.16.100.254   UG    000000   M032216B  
9.3.240.0        172.16.100.254   UG    000000   M032216B  
9.12.0.0         172.16.100.254   UG    000000   M032216B  
9.12.2.0         172.16.100.254   UG    000000   M032216B  
9.12.3.0         172.16.100.254   UG    000000   M032216B  
9.24.105.0       172.16.100.254   UG    000000   M032216B  
9.12.3.16        172.16.100.254   UG    000000   M032216B  
9.12.3.32        172.16.100.254   UG    000000   M032216B  
9.12.3.48        172.16.100.254   UG    000000   M032216B     
9.12.0.0         172.16.100.254   UG    000000   M032216B     
9.24.104.1       172.16.100.254   UGH   000000   M032216B  
9.24.104.18      172.16.100.254   UGH   000000   M032216B       
Chapter 7. Diagnostic tools 151



7.2.2  Home addresses display
The onetstat -h, TSO NETSTAT HOME and DISPLAY TCPIP,tcpproc,NETSTAT,HOME 
commands display the home IP addresses for the IP stack. If you do not see your IP address 
in the home list, the interface will not be available for use.

Figure 7-3   Home IP address table display

Flag P indicates the link VIPA39A is the primary interface.

Flag I indicates that this IP address was created as a result of this TCP/IP being identified as 
a target stack for this address from a sysplex distributing stack. This IP address is not 
advertised to routing daemons.

7.2.3  Device/link displays
The onetstat -d command displays the device status for the defined network interfaces. You 
can also use the DEVLINKS option in the TSO NETSTAT or DISPLAY 
TCPIP,tcpproc,NETSTAT,DEVLINKS command. 

This command is used to verify whether a device or link is up and running. You can also issue 
the MVS command DISPLAY U,,,device_addr,num to check the status of the address 
assigned to that device. A state of BSY/A is normal. See z/OS V1R2.0 MVS System 
Commands, SA22-7627 for further information about the DISPLAY U command.

D TCPIP,TCPIPC,NETSTAT,HOME                
EZZ2500I NETSTAT CS V2R10 TCPIPC 775       
HOME ADDRESS LIST:                         
ADDRESS          LINK             FLG      
172.16.102.39    M392216B         P        
172.16.233.39    EZASAMEMVS                
172.16.233.39    EZAXCF28                  
172.16.233.39    EZAXCF03                  
172.16.251.3     VIPLAC10FB03     I        
127.0.0.1        LOOPBACK                  
6 OF 6 RECORDS DISPLAYED                   
152 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 7-4   Displaying devices and links

7.2.4  Active sockets displays
The onetstat -c, onetstat -a, and onetstat -s commands each display the current 
active socket connections. The -a option is basically the same as the -c option, but it displays 
information for all TCP/IP connections, including recently closed ones. The -s option also 
displays the subtask identifier. The subtask identifier is combined with the address space 
name to produce a unique identifier for the client.

The -c, -a, and -s options are equivalent to the CONN, ALLCONN, and SOCKETS options 
either for TSO NETSTAT or DISPLAY TCPIP,tcpproc,NETSTAT commands.

D TCPIP,TCPIPA,NETSTAT,DEVLINKS                                    
EZZ2500I NETSTAT CS V1R2 TCPIPA 003                                
DEVNAME: LOOPBACK          DEVTYPE: LOOPBACK  DEVNUM: 0000         
  DEVSTATUS: READY                                                 
  LNKNAME: LOOPBACK          LNKTYPE: LOOPBACK    LNKSTATUS: READY 
    NETNUM: 0   QUESIZE: 0                                         
    BYTESIN: 28659                 BYTESOUT: 28659                 
  BSD ROUTING PARAMETERS:                                          
    MTU SIZE: 00000             METRIC: 00                         
    DESTADDR: 0.0.0.0           SUBNETMASK: 0.0.0.0                
  MULTICAST SPECIFIC:                                              
    MULTICAST CAPABILITY: NO                                       
DEVNAME: OSA22E0           DEVTYPE: MPCIPA    DEVNUM: 0000         
  DEVSTATUS: READY         CFGROUTER: NON  ACTROUTER: NON          
  LNKNAME: OSA22E0LINK       LNKTYPE: IPAQENET    LNKSTATUS: READY 
    NETNUM: 0   QUESIZE: 0   SPEED: 0000000100                     
    BYTESIN: 12377                 BYTESOUT: 11575                 
    BROADCASTCAPABILITY: NO                                        
    ARPOFFLOAD: YES  ARPOFFLOADINFO: YES                           
  BSD ROUTING PARAMETERS:                                          
    MTU SIZE: 00000             METRIC: 00                         
    DESTADDR: 0.0.0.0           SUBNETMASK: 255.255.255.0          
  MULTICAST SPECIFIC:                                              
    MULTICAST CAPABILITY: YES                                      
    GROUP             REFCNT                                       
    -----             ------                                       
    224.0.0.1         0000000001 
Chapter 7. Diagnostic tools 153



Figure 7-5   Active sockets display

7.2.5  Connection detail display
The onetstat -A command provides detailed information about all TCP/IP connections. You 
can also use the ALL option in the TSO NETSTAT command. The following is an extract of the 
display representing one connection.

onetstat -p tcpipa -a                                    
MVS TCP/IP onetstat CS V1R2       TCPIP Name: TCPIPA           18:14:31 
User Id  Conn     Local Socket           Foreign Socket         State   
-------  ----     ------------           --------------         -----   
TCPIPA   0000000B 127.0.0.1..1025        0.0.0.0..0             Listen  
TCPIPA   00000012 0.0.0.0..23001         0.0.0.0..0             Listen  
TCPIPA   00000013 0.0.0.0..23            0.0.0.0..0             Listen  
TCPIPA   00000011 0.0.0.0..23002         0.0.0.0..0             Listen  
TCPIPA   0000000E 127.0.0.1..1026        127.0.0.1..1025        Establsh
TCPIPA   0000000F 127.0.0.1..1025        127.0.0.1..1026        Establsh
TCPIPA   00000010 0.0.0.0..23003         0.0.0.0..0             Listen  

onetstat -p tcpipa -c                                    
MVS TCP/IP onetstat CS V1R2       TCPIP Name: TCPIPA           18:16:01 
User Id  Conn     Local Socket           Foreign Socket         State   
-------  ----     ------------           --------------         -----   
TCPIPA   0000000B 127.0.0.1..1025        0.0.0.0..0             Listen  
TCPIPA   00000012 0.0.0.0..23001         0.0.0.0..0             Listen  
TCPIPA   00000013 0.0.0.0..23            0.0.0.0..0             Listen  
TCPIPA   00000011 0.0.0.0..23002         0.0.0.0..0             Listen  
TCPIPA   0000000E 127.0.0.1..1026        127.0.0.1..1025        Establsh
TCPIPA   0000000F 127.0.0.1..1025        127.0.0.1..1026        Establsh
TCPIPA   00000010 0.0.0.0..23003         0.0.0.0..0             Listen  
TCPIPA   00000048 0.0.0.0..1036          *..*                   UDP 

onetstat -p tcpipa -s                                   
MVS TCP/IP onetstat CS V1R2       TCPIP Name: TCPIPA           18:10:00
Sockets interface status:                                              
Type   Bound to               Connected to           State    Conn     
====   ========               ============           =====    ====     
Name: TCPIPA    Subtask: 00000000                                      
Stream 9.12.6.60..23001       9.24.106.91..1715      TimeWait 0000002E 
Stream 9.12.6.60..23001       9.24.106.91..1714      TimeWait 0000002C 
Stream 9.12.6.60..23001       9.24.106.91..1716      TimeWait 00000031 
Name: TCPIPA    Subtask: 008CA0D8                                      
Stream 0.0.0.0..23002         0.0.0.0..0             Listen   00000011 
Name: TCPIPA    Subtask: 008CACF8                                      
Stream 127.0.0.1..1026        127.0.0.1..1025        Establsh 0000000E 
Name: TCPIPA    Subtask: 008E1B58                                      
Stream 127.0.0.1..1025        127.0.0.1..1026        Establsh 0000000F 
Stream 127.0.0.1..1025        0.0.0.0..0             Listen   0000000B 
Name: TCPIPA    Subtask: 008E21A8                                      
Stream 0.0.0.0..23003         0.0.0.0..0             Listen   00000010 
Name: TCPIPA    Subtask: 008E2AE0                                      
Stream 0.0.0.0..23            0.0.0.0..0             Listen   00000013 
Name: TCPIPA    Subtask: 008E2C78                                      
Stream 0.0.0.0..23001         0.0.0.0..0             Listen   00000012 
154 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 7-6   Detailed active sockets display

7.2.6  TCP/IP storage usage display
CS for z/OS V1R2 introduces a new command to display TCP/IP storage usage: 
D TCPIP,tcpproc,STOR. Its output contains the following:

Figure 7-7   Displaying storage usage

7.2.7  NETSTAT filter enhancements
With CS for z/OS V1R2, you have the choice to include or exclude TN3270 server 
connections on the netstat commands listed below. The default is to include TN3270 server 
connections. To exclude them, specify option NOTN3270 on the D TCPIP,tcpproc,NETSTAT 
and TSO NETSTAT commands, and option -T on the onetstat commands.

� TSO NETSTAT ALL

onetstat -A

Client Name: TCPIPA                   Client Id: 00000012              
Local Socket: 0.0.0.0..23001          Foreign Socket: 0.0.0.0..0       
  Last Touched:       22:06:16          State:              Listen     
  BytesIn:            0000000000        BytesOut:           0000000000 
  SegmentsIn:         0000000000        SegmentsOut:        0000000000 
  RcvNxt:             0000000000        SndNxt:             0000000000 
  ClientRcvNxt:       0000000000        ClientSndNxt:       0000000000 
  InitRcvSeqNum:      0000000000        InitSndSeqNum:      0000000000 
  CongestionWindow:   0000000000        SlowStartThreshold: 0000000000 
  IncomingWindowNum:  0000032768        OutgoingWindowNum:  0000000000 
  SndWl1:             0000000000        SndWl2:             0000000000 
  SndWnd:             0000000000        MaxSndWnd:          0000000000 
  SndUna:             0000000000        rtt_seq:            0000000000 
  MaximumSegmentSize: 0000000536        OptMaxSegmentSize:  0000000000 
  DSField:            00                                               
  Round-trip information:                                              
    Smooth trip time: 0.000             SmoothTripVariance: 1500.000   
  ReXmt:              0000000000        ReXmtCount:         0000000000 
  DupACKs:            0000000000                                       
  SockOpt:            80                TcpTimer:           00         
  TcpSig:             00                TcpSel:             00         
  TcpDet:             C0                TcpPol:             10         
  PolicyRuleName:                                                      
  ReceiveBufferSize:  0000016384        SendBufferSize:     0000016384 
  ConnectionsIn:      0000000014        ConnectionsDropped: 0000000000 
  CurrentBacklog:     0000000000        MaximumBacklog:     0000000010 

d tcpip,tcpipa,stor                                      
 EZZ8453I TCPIP STORAGE                                   
 EZZ8454I TCPIPA   STORAGE    CURRENT   MAXIMUM     LIMIT 
 EZZ8455I TCPIPA   ECSA         3816K     4646K   NOLIMIT 
 EZZ8455I TCPIPA   POOL         4440K     4985K   NOLIMIT 
 EZZ8459I DISPLAY TCPIP STOR COMPLETED SUCCESSFULLY 
Chapter 7. Diagnostic tools 155



� TSO NETSTAT ALLCONN

onetstat -a

D TCPIP,tcpproc,NETSTAT,ALLCONN

� TSO NETSTAT BYTEINFO

onetstat -b

D TCPIP,tcpproc,NETSTAT,BYTEINFO

� TSO NETSTAT CLIENTS

onetstat -e

� TSO NETSTAT CONN

onetstat -c

D TCPIP,tcpproc,NETSTAT,CONN

� TSO NETSTAT SOCKETS

onetstat -s

D TCPIP,tcpproc,NETSTAT,SOCKETS 

You can now display sockets based on client name, IP address or port number. Use the 
CLIENT, IPADDR and PORT options on the D TCPIP,tcpproc,NETSTAT,SOCKETS and TSO 
NETSTAT SOCKETS commands, and the -E, -I and -P options on the onetstat -s command.

You can also specify options IPADDR and PORT on the TSO NETSTAT ALL command, and 
options -I and -P on the onetstat -A command, to select connections for a specific IP 
address or port number.

See z/OS V1R2.0 CS: IP System Administrator’s Commands, SC31-8781 for further details 
on these commands.

7.2.8  NETSTAT performance counters
In CS for z/OS V1R2, the commands TSO NETSTAT ALL, onetstat -A, TSO NETSTAT 
DEVLINKS, onetstat -d and D TCPIP,tcpproc,NETSTAT DEVLINKS have been updated to 
show performance characteristics. A new command TSO NETSTAT STATS, onetstat -S, D 
TCPIP,tcpproc,NETSTAT,STATS displays performance statistics.

For more information on these commands, see z/OS V1R2.0 CS: IP System Administrator’s 
Commands, SC31-8781. See Communications Server for z/OS V1R2 Implementation Guide 
Volume 5 : Availability, Scalability and Performance, SG24-6517 for information on CS for 
z/OS IP performance.

7.2.9  Monitoring Sysplex Distributor with NETSTAT
The following commands are available to help you monitor Sysplex Distributor activity:

1. Display information about Dynamic VIPA

– TSO NETSTAT VIPADYN 
– onetstat -v
– D TCPIP,tcpproc,NETSTAT,VIPADYN

2. Display Dynamic VIPA configuration data

– TSO NETSTAT VIPADCFG
– onetstat -F 
156 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



– D TCPIP,tcpproc,NETSTAT,VIPADCFG

3. Display Dynamic VIPA connection routing table

– TSO NETSTAT VCRT
– onetstat -V
– D TCPIP,tcpproc,NETSTAT,VCRT

4. Display Dynamic VIPA destination port table

– TSO NETSTAT VDPT
– onetstat -O
– D TCPIP,tcpproc,NETSTAT,VDPT

5. Request Sysplex information

– D TCPIP,tcpproc,SYSPLEX

Please refer to z/OS V1R2.0 CS: IP System Administrator’s Commands, SC31-8781 for more 
information on these commands.

7.3  PING/oping and TRACERTE/otracert commands
The PING and TRACERTE commands work as with earlier releases of TCP/IP. The oping and 
otracert commands are the UNIX shell versions of these commands. PING and TRACERTE 
are issued from TSO, oping and otracert from either the ISHELL or the UNIX System 
Services shell.

If you run multiple stacks, use option -p tcpproc on the oping command, and the -a 
tcpproc option on the otracert command to select the stack. TSO commands select the 
stack using the TCPIP.DATA data set.

The PING command is useful to check the network connectivity. With the TRACERTE command, 
you may find the last router the packet can reach in a disrupted network, or you can verify if 
the packets flow over a planned route.

Figure 7-8   oping and otracert

With MULTIPATH support you can have multiple interfaces as possible paths for the same 
network destination. Option -i on the oping and otracert commands specifies the local 
interface over which the oping or otracert packets will be sent. There is no equivalent 
interface option on the TSO PING and TSO TRACERTE commands.

oping -c 5 192.168.41.1

CS V2R10: Pinging host 192.168.41.1   
Ping #1 response took 0.043 seconds.  
Ping #2 response took 0.042 seconds.  
Ping #3 response took 0.042 seconds.  
Ping #4 response took 0.056 seconds.  
Ping #5 response took 0.043 seconds. 

otracert 192.168.41.1 

Traceroute to 192.168.41.1 (192.168.41.1).                   
Use escape C sequence to interrupt                           
1 172.16.100.254 (172.16.100.254)  6 ms  6 ms  6 ms          
2 POK2210A.itso.ral.ibm.com (9.24.104.3)  9 ms  9 ms  8 ms   
3 192.168.41.1 (192.168.41.1)  40 ms  39 ms  39 ms 
Chapter 7. Diagnostic tools 157



7.4  Component trace (CTRACE)
The MVS component trace is used for diagnosis of most TCP/IP problems. This includes the 
functions formerly associated with LESSTRACE, MORETRACE, PKTTRACE, and so on.

The following TCP/IP traces are available using the component trace:

� Event trace for TCP/IP stacks
� TCP/IP packet trace
� OMPROUTE trace
� Resolver trace
� TCP/IP intrusion detection service trace

Information APAR II12014 is a useful source of information on the TCP/IP component and 
packet trace.

For general information on the MVS component trace, see z/OS V1R2.0 MVS 
Diagnosis:Tools and Service Aids, GA22-7589.

7.4.1  Taking a component trace
Component trace data is written to either an external writer or the TCP/IP dataspace 
TCPIPDS1 (the default is to write trace data to the dataspace). The following command 
sequence starts a component trace that uses the external writer; this allows you to store trace 
data in data sets, which can later be used as input to IPCS.

In the following commands, component is one of the following:

� SYSTCPIP for the TCP/IP event trace
� SYSTCPDA for the TCP/IP packet trace
� SYSTCPRT for the OMPROUTE trace
� SYSTCPRE for the Resolver trace
� SYSTCPIS for the TCP/IP intrusion detection service trace

and proc_name is the name of the TCP/IP, OMPROUTE, or RESOLVER procedure. 

1. Start the external writer (CTRACE writer):

TRACE CT,WTRSTART=ctwrt

Figure 7-9 shows a sample of an external writer. It was taken from the IXZCTW member of 
SYS1.SAMPLIB. Other examples can be found in II12014 informational APAR.

Figure 7-9   External writer

Note: Some components of TCP/IP continue to maintain their own tracing mechanisms as 
well, for example, the FTP server. Consult individual chapters in this redbook and others in 
the series for tracing and diagnosis methods unique to those components.

Note: Before starting the external writer, ensure that you have the ctwrt procedure in 
the SYS1.PROCLIB library.

//CTWDASD   PROC                                      
//IEFPROC   EXEC  PGM=ITTTRCWR                        
//SYSPRINT  DD    SYSOUT=A                            
//TRCOUT01  DD    DSN=&&TRACE,UNIT=3380,              
//          SPACE=(4096,20),DISP=(NEW,PASS),DSORG=PS  
158 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



2. Start the CTRACE and connect to the external writer:

TRACE CT,ON,COMP=component,SUB=(proc_name)
R xx,OPTION=(valid_options),WTR=ctwrt,END

3. Display the active component trace options with:

DISPLAY TRACE,COMP=component,SUB=(proc_name)

4. Perform the operation you want to trace.

5. Disconnect the external writer:

TRACE CT,ON,COMP=component,SUB=(proc_name)
R xx,WTR=DISCONNECT,END

6. Stop the component trace:

TRACE CT,OFF,COMP=component,SUB=(proc_name)

7. Stop the external writer:

TRACE CT,WTRSTOP=ctwrt

7.4.2  Event Trace for TCP/IP stacks (SYSTCPIP)
The TCP/IP event trace, SYSTCPIP, traces individual TCP/IP components, such as storage. 
It is automatically started at TCP/IP initialization using the default trace options set in the 
SYS1.PARMLIB member CTIEZB00. Alternatively, you may create a different member with 
new options (for example, CTIEZBXX) and override CTIEZB00 by means of the CTRACE 
keyword in your TCP/IP PROC:

Figure 7-10   Overriding CTIEZB00 with CTIEZBXX

If you wish to specify different trace options after TCP/IP initialization, you may execute the 
TRACE CT MVS command, and either specify a component trace options file or respond to 
prompts from the command. However, you might want to edit the buffer size in this member 
and increase its size from the default of 8 MB. Buffer sizes, unlike many of the other CTRACE 
options, cannot be reset without restarting the TCP/IP system address space.

Figure 7-11 shows the status of the component trace for TCP/IP procedure TCPIPC as it has 
been initialized using SYS1.PARMLIB member CTIEZB01. Note that we have changed the 
default value for BUFSIZE to 4M.

//TCPIPC   PROC PARMS='CTRACE(CTIEZBXX)'                      
//*                                                           
//TCPIP    EXEC PGM=EZBTCPIP,REGION=0M,TIME=1440,             
//             PARM='&PARMS' 
Chapter 7. Diagnostic tools 159



Figure 7-11   DISPLAY TRACE,COMP=SYSTCPIP,SUB=(TCPIPC) output

The MINIMUM trace option is always active. During minimum tracing, certain exceptional 
conditions are being traced so the trace records for these events will be available for easier 
debugging in case the TCP/IP system address space should encounter an abend condition.

Socket API trace 
The SOCKAPI option for the TCP/IP CTRACE component SYSTCPIP is intended to be used 
for application programmers to debug problems in their application. The SOCKAPI option 
captures trace information related to the socket API calls that an application may issue. 
However, the SOCKET option is primarily intended for use by TCP/IP Service and provides 
information meant to be used to debug problems in the TCP/IP socket layer, UNIX System 
Services, or the TCP/IP stack. Please refer to z/OS V1R2.0 CS: IP Diagnosis, GC31-8782 for 
further details on the SOCKAPI option.

7.4.3  Sample SYSTCPIP trace
Figure 7-12 shows the trace activation process (steps 1, 2 and 3) and Figure 7-13 shows the 
deactivation process (steps 5,6, and 7).

1. Start the external writer (CTRACE writer).
2. Connect to the CTRACE external writer and specify trace options.
3. Display the active component trace options.
4. Reproduce the failure you want to trace.
5. Disconnect the external writer.
6. Stop the component trace.
7. Stop the external writer.

Instead of specifying options individually as we did in Step 2, we could have created a 
SYS1.PARMLIB member that would have started the external writer for us and included the 
desired options. We could use the following command for that: 

TRACE CT,ON,COMP=SYSTCPIP,SUB=(tcpproc),PARM=(CTIEZBXX)

DISPLAY TRACE,COMP=SYSTCPIP,SUB=(TCPIPC)                     
IEE843I 10.31.34  TRACE DISPLAY 003                             
        SYSTEM STATUS INFORMATION                               
 ST=(ON,0064K,00128K) AS=ON  BR=OFF EX=ON  MT=(ON,064K) 
  TRACENAME                                                     
  =========                                                     
  SYSTCPIP                                                      
                      MODE BUFFER HEAD SUBS                     
                      =====================                     
                      OFF         HEAD    3                     
     NO HEAD OPTIONS                                            
  SUBTRACE            MODE BUFFER HEAD SUBS                     
 -------------------------------------------------------------- 
  TCPIPC              ON   0004M                                
     ASIDS      *NONE*                                          
     JOBNAMES   *NONE*                                          
     OPTIONS    MINIMUM                                         
     WRITER     *NONE*         
160 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 7-12   CTRACE activation sample

TRACE CT,WTRSTART=CTVLAD                                             
ITT038I ALL OF THE TRANSACTIONS REQUESTED VIA THE TRACE CT COMMAND 
WERE SUCCESSFULLY EXECUTED.                                        
IEE839I ST=(ON,0064K,00128K) AS=ON  BR=OFF EX=ON  MT=(ON,064K) 413
     ISSUE DISPLAY TRACE CMD FOR SYSTEM AND COMPONENT TRACE STATUS
     ISSUE DISPLAY TRACE,TT CMD FOR TRANSACTION TRACE STATUS      
IRR813I NO PROFILE WAS FOUND IN THE STARTED CLASS FOR 414         
     CTVLAD WITH JOBNAME CTVLAD. RACF WILL USE ICHRIN03.          
IEF196I        1 //CTVLAD   JOB MSGLEVEL=1                       
IEF196I        2 //STARTING EXEC CTVLAD                           
IEF196I  STMT NO. MESSAGE                                         
IEF196I        2 IEFC001I PROCEDURE CTVLAD WAS EXPANDED USING SYSTEM
IEF196I LIBRARY SYS1.PROCLIB                                      
IEF196I        3 XXCTRACE   PROC                                  
IEF196I          XX*         EXTERNAL WRITER USED WITH CS V2R10     
IEF196I        4 XXIEFPROC  EXEC  PGM=ITTTRCWR                 
IEF196I        5 XXTRCOUT01 DD DSNAME=LUNA.CTRACE,DISP=OLD     
IEF403I CTVLAD - STARTED - TIME=16.26.58                          
IEF196I IEF236I ALLOC. FOR CTVLAD CTVLAD                          
IEF196I IEF237I 0829 ALLOCATED TO TRCOUT01                        
IEF196I AHL906I THE OUTPUT BLOCK SIZE OF    27998 WILL BE USED FOR 
IEF196I OUTPUT                                                    
IEF196I         DATA SETS:                                        
IEF196I           LUNA.CTRACE                                     
AHL906I THE OUTPUT BLOCK SIZE OF  27998 WILL BE USED FOR OUTPUT 441
        DATA SETS:                                                
          LUNA.CTRACE                                             
ITT110I INITIALIZATION OF CTRACE WRITER CTVLAD COMPLETE.          
...
TRACE CT,ON,COMP=SYSTCPIP,SUB=(TCPIPC)             
*90 ITT006A SPECIFY OPERAND(S) FOR TRACE CT COMMAND.
 R 90,JOBNAME=(TCPIPC),OPTIONS=(XCF)                            
 IEE600I REPLY TO 90 IS;JOBNAME=(TCPIPC),OPTIONS=(XCF)           
*91 ITT006A SPECIFY OPERAND(S) FOR TRACE CT COMMAND.              
 R 91,WTR=CTVLAD,END                                             
 IEE600I REPLY TO 91 IS;WTR=CTVLAD,END                           
 ITT038I ALL OF THE TRANSACTIONS REQUESTED VIA THE TRACE CT COMMAND
 WERE SUCCESSFULLY EXECUTED.                                      
 IEE839I ST=(ON,0064K,00128K) AS=ON  BR=OFF EX=ON MT=(ON,064K) 515 
      ISSUE DISPLAY TRACE CMD FOR SYSTEM AND COMPONENT TRACE STATUS   
      ISSUE DISPLAY TRACE,TT CMD FOR TRANSACTION TRACE STATUS        
...
DISPLAY TRACE,COMP=SYSTCPIP,SUB=(TCPIPC)                     
IEE843I 16.29.59  TRACE DISPLAY 526                             
        SYSTEM STATUS INFORMATION                               
 ST=(ON,0064K,00128K) AS=ON  BR=OFF EX=ON  MT=(ON,064K)         
  TRACENAME                                                     
  =========                                                     
  SYSTCPIP                                                      
                      MODE BUFFER HEAD SUBS                     
                      =====================                     
                      OFF         HEAD    3                     
     NO HEAD OPTIONS                                            
  SUBTRACE            MODE BUFFER HEAD SUBS                     
 -------------------------------------------------------------- 
  TCPIPC              ON   0004M                                
     ASIDS      *NONE*                                          
     JOBNAMES   TCPIPC                                          
     OPTIONS    XCF             
     WRITER     CTVLAD                                       
Chapter 7. Diagnostic tools 161



Figure 7-13   CTRACE deactivation sample

 TRACE CT,ON,COMP=SYSTCPIP,SUB=(TCPIPC)                       
*92 ITT006A SPECIFY OPERAND(S) FOR TRACE CT COMMAND.                  
 R 92,WTR=DISCONNECT                                                  
 IEE600I REPLY TO 92 IS;WTR=DISCONNECT                                
*93 ITT006A SPECIFY OPERAND(S) FOR TRACE CT COMMAND.                  
 R 93,END                                                             
 IEE600I REPLY TO 93 IS;END                                           
 ITT038I ALL OF THE TRANSACTIONS REQUESTED VIA THE TRACE CT COMMAND   
 WERE SUCCESSFULLY EXECUTED.                                          
 IEE839I ST=(ON,0064K,00128K) AS=ON  BR=OFF EX=ON  MT=(ON,064K) 597   
         ISSUE DISPLAY TRACE CMD FOR SYSTEM AND COMPONENT TRACE STATUS
         ISSUE DISPLAY TRACE,TT CMD FOR TRANSACTION TRACE STATUS      
...

TRACE CT,OFF,COMP=SYSTCPIP,SUB=(TCPIPC)                               
ITT038I ALL OF THE TRANSACTIONS REQUESTED VIA THE TRACE CT COMMAND    
WERE SUCCESSFULLY EXECUTED.                                           
IEE839I ST=(ON,0064K,00128K) AS=ON  BR=OFF EX=ON  MT=(ON,064K) 613    
        ISSUE DISPLAY TRACE CMD FOR SYSTEM AND COMPONENT TRACE STATUS 
        ISSUE DISPLAY TRACE,TT CMD FOR TRANSACTION TRACE STATUS       
...

TRACE CT,WTRSTOP=CTVLAD                                               
ITT038I ALL OF THE TRANSACTIONS REQUESTED VIA THE TRACE CT COMMAND    
WERE SUCCESSFULLY EXECUTED.                                           
IEF196I AHL904I THE FOLLOWING TRACE DATASETS CONTAIN TRACE DATA :     
IEF196I           LUNA.CTRACE                                         
AHL904I THE FOLLOWING TRACE DATASETS CONTAIN TRACE DATA : 619         
          LUNA.CTRACE                                                 
IEE839I ST=(ON,0064K,00128K) AS=ON  BR=OFF EX=ON  MT=(ON,064K) 623    
        ISSUE DISPLAY TRACE CMD FOR SYSTEM AND COMPONENT TRACE STATUS 
        ISSUE DISPLAY TRACE,TT CMD FOR TRANSACTION TRACE STATUS       
ITT111I CTRACE WRITER CTVLAD TERMINATED BECAUSE OF A WTRSTOP REQUEST. 
..
-JOBNAME  STEPNAME PROCSTEP    RC   EXCP   CONN    TCB    SRB  CLOCK   
 SERV  PG  PAGE  SWAP   VIO SWAPS                                      
-CTVLAD            IEFPROC     00    208    414    .00    .00   10.9   
 4286   0     0     0     0     0                                      
IEF404I CTVLAD - ENDED - TIME=16.37.36                                 
-CTVLAD   ENDED.  NAME-                     TOTAL TCB CPU TIME=   .00  
 TOTAL ELAPSED TIME=  10.9                                             
IEF196I IEF142I CTVLAD CTVLAD - STEP WAS EXECUTED - COND CODE 0000     
...

DISPLAY TRACE,COMP=SYSTCPIP,SUB=(TCPIPC)                               
IEE843I 18.58.52  TRACE DISPLAY 384                                    
        SYSTEM STATUS INFORMATION                                      
 ST=(ON,0064K,00128K) AS=ON  BR=OFF EX=ON  MT=(ON,064K)                
  TRACENAME                                                            
  =========                                                    
  SYSTCPIP                                                        
                      MODE BUFFER HEAD SUBS                       
                      =====================                       
                      OFF         HEAD    3                       
     NO HEAD OPTIONS                                              
  SUBTRACE            MODE BUFFER HEAD SUBS                       
 --------------------------------------------------------------   
  TCPIPC              MIN  0004M                                  
     ASIDS      *NONE*                                            
     JOBNAMES   *NONE*                                            
     OPTIONS    MINIMUM                                           
     WRITER     *NONE*               
162 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



7.4.4  Packet trace (SYSTCPDA)
Packet tracing captures IP packets as they enter or leave TCP/IP. You select what you want 
to trace via the PKTTRACE statement within the PROFILE.TCPIP or via the VARY PKTTRACE 
command entered from the MVS console. RACF authorization is required to execute this 
command.

With the VARY PKTTRACE command or PKTTRACE statement in PROFILE.TCPIP, you can 
specify options such as IP address, port number and protocol type. If you are planning to 
gather a trace for relatively long hours, or if your system experiences heavy traffic, it is 
recommended that you specify these filtering options, so that TCP/IP does not have to gather 
unnecessary packets.

The following steps run a packet trace, and the data is written to an external writer:

a. Start the CTRACE external writer:

TRACE CT,WTRSTART=ctwtr

b. Start the CTRACE and connect the external writer to the TCP/IP address space:

TRACE CT,ON,COMP=SYSTCPDA,SUB=(tcpprocname)
R nn,WTR=ctwtr,END

c. Check that the trace started successfully:

D TRACE,COMP=SYSTCPDA,SUB=(tcpprocname)

d. Start the trace through the PROFILE.TCPIP statement and the VARY OBEYFILE 
command, or through the V TCPIP,,PKT command.

VARY TCPIP,tcpprocname,PKT,ON

e. Perform the operation that you want to trace.

f. Stop the trace:

VARY TCPIP,tcpprocname,PKT,OFF

g. Disconnect the external writer from TCP/IP:

TRACE CT,ON,COMP=SYSTCPDA,SUB=(tcpprocname)
R nn,WTR=DISCONNECT,END

h. Stop the CTRACE:

TRACE CT,OFF,COMP=SYSTCPDA,SUB=(tcpprocname)

i. Stop the external writer.

TRACE CT,WTRSTOP=ctwtr

Examine the data with IPCS or send it to the Support Center if they have requested it.

Socket data trace
The data trace is used to trace socket data into and out of the Physical File System (PFS).

Follow the packet trace steps detailed above, but use the following commands to start and 
stop the data trace:

V TCPIP,tcpproc,DATTRACE,ON
V TCPIP,tcpproc,DATTRACE,OFF
Chapter 7. Diagnostic tools 163



7.4.5  OMPROUTE trace (SYSTCPRT)
OS/390 V2R6 IP and later provides component trace support for the OMPROUTE 
application. A default minimum component trace is always started during OMPROUTE 
initialization. To customize the parameters used to initialize the trace, update the 
SYS1.PARMLIB member CTIORA00. Besides specifying the trace options, you can also 
change the OMPROUTE trace buffer size. The buffer size can be changed only at 
OMPROUTE initialization.

After OMPROUTE initialization, you must use the TRACE CT command to change the 
component trace options. 

To gather the component trace for OMPROUTE, use the commands listed in 7.4.1, “Taking a 
component trace” on page 158, and specify a component name of SYSTCPRT and your 
OMPROUTE proc_name.

Examine the data with IPCS or send it to the Support Center if they have requested it.

7.4.6  Resolver trace (SYSTCPRE)
CS for z/OS V1R2 provides component trace support for the Resolver. A default minimum 
component trace is always started during Resolver initialization. To customize the parameters 
used to initalize the trace, update SYS1.PARMLIB member CTIRES00. Besides specifying 
the trace options, you can also change the Resolver trace buffer size. The buffer size can be 
changed only at Resolver initialization. 

After Resolver initialization, you must use the TRACE CT command to change component trace 
options.

To gather the component trace for the Resolver, use the commands listed in 7.4.1, “Taking a 
component trace” on page 158, and specify a component name of SYSTCPRE and your 
Resolver proc_name.

Examine the data with IPCS or send to the Support Center if they have requested it.

7.4.7  Intrusion detection services trace (SYSTCPIS)
When the TCP/IP stack starts, it reads SYS1.PARMLIB member CTIIDS00, which contains 
trace options for the SYSTCPIS trace. Packets are traced based on IDS policy defined in 
LDAP.

Please see z/OS V1R2.0 CS: IP Diagnosis, GC31-8782 for details on the intrusion detection 
services trace, and z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775, for information on 
defining policy.

7.5  Obtaining component trace data with a dump
When dumping TCP/IP, remember to specify the dataspace name, which is always 
TCPIPDS1, since it contains the trace data for the SYSTCPIP, SYSTCPDA and SYSTCPIS 
components. Be sure to include “region” in the SDATA dump options:

1. DUMP COMM=(enter_dump_title_here)

2. Rxx,JOBNAME=tcpproc,DSPNAME=(‘tcpproc’.TCPIPDS1),CONT

3. Rxx,SDATA=(CSA,LSQA,NUC,PSA,RGN,SQA,SUM,SQA,TRT),END
164 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



To obtain a dump of the OMPROUTE or Resolver address space (which contain the trace 
table), use the DUMP command as follows:

1. DUMP COMM=(enter_dump _title_here)

2. Rxx,JOBNAME=proc_name,SDATA=(RGN,CSA,SQA),END

7.6  Analyzing a trace
You can format component trace records using IPCS panels or a combination of IPCS panels 
and the CTRACE command, either from a dump or from external writer files. You can also use 
IPCS in batch to print a component trace.

The primary purpose of the component trace is to capture data that the IBM Support Center 
may use in diagnosing problems. There is little information in the documentation on 
interpreting trace data. If you wish to analyze the packet trace or data trace by yourself, you 
can do so with IPCS, an example of the IP packet layout or format, and a booklet that allows 
you to interpret the hexadecimal data in EBCDIC or ASCII.

7.6.1  Using the IPCS panels
The code for the component trace formatter is in data set SYS1.MIGLIB. Ensure that your 
TSO logon procedure includes SYS1.MIGLIB in the STEPLIB concatenation.

Figure 7-14   IPCS main panel

First we specify the name of our trace data set on the IPCS defaults panel. See 1 in 
Figure 7-15 on page 166.

------------------------ IPCS PRIMARY OPTION MENU  ----------------------------

 OPTION  ===>  0
                                                            *******************
    0  DEFAULTS    - Specify default dump and options       * USERID  - USER1
    1  BROWSE      - Browse dump data set                   * DATE    - 98/03/26
    2  ANALYSIS    - Analyze dump contents                  * JULIAN  - 98.085
    3  UTILITY     - Perform utility functions              * TIME    - 16:14
    4  INVENTORY   - Inventory of problem data              * PREFIX  - USER1
    5  SUBMIT      - Submit problem analysis job to batch   * TERMINAL- 3278
    6  COMMAND     - Enter subcommand, CLIST or REXX exec   * PF KEYS - 12
    T  TUTORIAL    - Learn how to use the IPCS dialog       ********************
    X  EXIT        - Terminate using log and list defaults

 Enter END command to terminate IPCS dialog
   Message Control ==> CONFIRM VERIFY FLAG(WARNING)
   Display Content ==> NOMACHINE REMARK REQUEST NOSTORAGE SYMBOL

 Press ENTER to update defaults.

Command ===>
Chapter 7. Diagnostic tools 165



Figure 7-15   Changing IPCS defaults

After we return to the primary IPCS panel, we enter:

� 2 for ANALYSIS
� 7 for TRACES
� 1 for CTRACE

Once you arrive at the CTRACE primary option menu, you simply proceed through the menu 
selections, specifying Q first, then on the parameter panel displayed in Figure 7-16 on 
page 167 enter report type FULL and start formatting with S. See the trace shown in 
Figure 7-17 on page 167.

 ------------------------- IPCS Default Values ------------------ LOCAL

 Command ===>

   You may change any of the defaults listed below.  The defaults shown
   any changes are LOCAL.  Change scope to GLOBAL to display global def

   Scope   ==> LOCAL   (LOCAL, GLOBAL, or BOTH)

   If you change the Source default, IPCS will display the current defa
   Address Space for the new source and will ignore any data entered in
   the Address Space field.

   Source  ==> DSNAME('TCP.CTRACE1.TRACE01') 1
   Address Space   ==> RBA
   Message Routing ==> NOPRINT TERMINAL
   Message Control ==> NOCONFIRM VERIFY FLAG(WARNING)
   Display Content ==> NOMACHINE REMARK REQUEST NOSTORAGE SYMBOL

 Press ENTER to update defaults.

 Use the END command to exit without an update.
166 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 7-16   Specifying query parameters and starting CTRACE formatting

Figure 7-17   Displaying the trace formatting parameters

Now that you know the TCPIP name (TCPIPC 1 in Figure 7-17), you are prepared to execute 
the next step. Back out of CTRACE processing by pressing PF3 twice and select D to enter 
the formatting parameters on Figure 7-18 on page 168. Fill in the name of the TCP/IP proc 1 
that was traced and that you want a FULL report 2.

 --------------------- CTRACE QUERY PARAMETERS  -----------------------

 COMMAND ===>  S

   Enter/verify CTRACE QUERY parameters below:

   System      ===>           (System name or blank)
   Component   ===>           (Blank for all active components)
   Subnames    ===>

   Report type ===> FULL      (Short or Full, short is default)

   GMT/LOCAL   ===> G         (G or L, GMT is default)
   Subname
   entry panel ===>
   Override
     source    ===>

   CTRACE QUERY FULL

   END/PF3 = return to CTRACE primary options panel.
   S = start CTRACE.  R = reset all fields.

 IPCS OUTPUT STREAM ------------------------------------------ Line 0 C

 Command ===>                                                  SCROLL =
  ****************************** TOP OF DATA **************************

  COMPONENT TRACE QUERY SUMMARY

        SYSNAME  COMPONENT SUB NAME
        -------- --------- --------
  0001. MVSVIC97 SYSTCPDA TCPIPC 1
Chapter 7. Diagnostic tools 167



Figure 7-18   Specifying TCP/IP name and full report

In the Component field 4, specify:

� SYSTCPDA for packet trace or data trace
� SYSTCPIP for TCP/IP stack trace
� SYSTCPRT for OMPROUTE trace
� SYSTCPRE for the Resolver trace
� SYSTCPIS for intrusion detection services trace

In Options 3 specify DATATRACE for a data trace, or PACKETTRACE for a packet trace. You can 
use the Options field to filter the display: for example, if you have a packet trace and you only 
want to display packets for port 23, you can specify PACKETTRACE PORT(23), or if you have a 
TCP/IP event trace and you only want to display events related to a particular IP address you 
can specify IPADDR(ip_addr). See z/OS V1R2.0 CS: IP Diagnosis, GC31-8782 for a full list of 
available options.

In CS for z/OS V1R2, the CTRACE packet trace formatter has been rewritten. The example 
below shows one packet which has been formatted using the new packet trace formatter.

-------------------- CTRACE DISPLAY PARAMETERS  -----------------------

 COMMAND ===>  S

   System      ===>           (System name or blank)
   Component   ===> SYSTCPDA   4 (Component name (required))
   Subnames    ===> TCPIPC 1

   GMT/LOCAL   ===> l                        (G or L, GMT is default)
   Start time  ===>                          (mm/dd/yy,hh:mm:ss.dddddd
   Stop time   ===>                           mm/dd/yy,hh.mm.ss.dddddd)
   Limit       ===> 0         Exception ===>
   Report type ===> FULL 2  (SHort, SUmmary, Full, Tally)
   User exit   ===>           (Exit program name)
   Override source ===>
   Options         ===>  3

   To enter/verify required values, type any character
   Entry IDs ===>   Jobnames ===>   ASIDs ===>   OPTIONS ===>   SUBS ==

   ENTER = update CTRACE definition.  END/PF3 = return to previous pane
   S = start CTRACE.  R = reset all fields.
168 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 7-19   Formatted packet

7.6.2  Using IPCS and the CTRACE command
If you prefer to bypass most of the IPCS panels, you can enter IPCS, set your defaults 
(Option 0), and go to command mode (Option 6). Then use the CTRACE command to format 
the trace data. For example:

CTRACE COMP(component) SUB((proc_name)) FULL
CTRACE COMP(SYSTCPDA) SUB((TCPIPA)) FULL OPTIONS((PACKETTRACE PORT(23)))

For more information on the CTRACE command see z/OS V1R2.0 CS: IP Diagnosis, 
GC31-8782.

COMPONENT TRACE FULL FORMAT                                                  
 SYSNAME(SC64)                                                                
 COMP(SYSTCPDA)SUBNAME((TCPIPA))                                              
 OPTIONS((PACKETTRACE))                                                       
 OS/390 TCP/IP Packet Trace Formatter, (C) IBM 2000, 2001.134                 
 DSNAME('WOODS.CTRACE1')                                                      
                                                                              
**** 2001/09/24                                                               
RcdNr Sysname  Mnemonic Entry Id   Time Stamp    Description                  
----- -------- -------- -------- --------------- -----------------------------
40 SC64     PACKET   00000001 17:55:02.444686 Packet Trace                 
 To Link           : OSA22E0LINK      Device: QDIO Ethernet    Full=71        
  Tod Clock        : 2001/09/24 17:55:02.444686                               
  Lost Records     : 0                Flags: Pkt Ver2 Adj Out                 
  Source Port      : 23               Dest Port: 1160  Asid: 004C TCB: 00000000
 IpHeader: Version : 4                Header Length: 20                       
  Tos              : 00               QOS: Routine Normal Service             
  Packet Length    : 71               ID Number: 050C                         
  Fragment         :                  Offset: 0                               
  TTL              : 64               Protocol: TCP            CheckSum: F34F FFFF
  Source           : 9.12.6.60                                                
  Destination      : 9.24.105.246                                             
                                                                              
 TCP                                                                          
  Source Port      : 23    (telnet)   Destination Port: 1160  ()              
  Sequence Number  : 2366825366       Ack Number: 2895763969                  
  Header Length    : 20               Flags: Ack Psh                          
  Window Size      : 32765            CheckSum: B735 FFFF Urgent Data Pointer: 0000

Telnet: 31                                                                    
 0000 IAC,WILL,SUPPRESS GO AHEAD,(data=28);                                   
                                                                              
IP Header          : 20     IP: 9.12.6.60, 9.24.105.246                       
000000 45000047 050C0000 4006F34F 090C063C  091869F6                          
Protocol Header    : 20     Port:    23,  1160                                
000000 00170488 8D12E396 AC99DA01 50187FFD  B7350000 

Data               : 31     Data Length: 31                                   
000000 FFFB030D 0A494B4A 35363730 30412045 |.......¢........ .....IKJ56700A E|
000010 4E544552 20555345 52494420 3D0D0A   |+..............  NTER USERID =.. |
Chapter 7. Diagnostic tools 169



7.6.3  Printing a component trace
If you want to print a component trace, you may do so with IPCS. See Figure 7-20 on 
page 170 for a sample batch IPCS job to format a TCP/IP component trace.

Figure 7-20   Batch IPCS formatting job

The component and procname are the same values you specified when you took the 
component trace. The options vary depending on the type of component trace. Please refer 
to z/OS V1R2.0 CS: IP Diagnosis, GC31-8782 for details of the options available for each 
trace. IPCS requires member IPCSPR00 to be present in the data set referenced by DD 
name IPCSPARM (usually SYS1.PARMLIB). See z/OS V1R2.0 MVS Initialization and Tuning 
Reference, SA22-7592 for details of what to define in IPCSPR00.

//jobname  JOB  ...
//IEFPROC  EXEC PGM=IKJEFT01,REGION=4M,DYNAMNBR=10
//STEPLIB      DD    DSN=SYS1.MIGLIB,DISP=SHR
//IPCSPARM  DD    DSN=SYS1.PARMLIB,DISP=SHR
//IPCSDDIR   DD     DSN=userid.DDIR,DISP=SHR
//SYSPROC   DD    DSN=SYS1.SBLSCLI0,DISP=SHR
//SYSTSPRT DD    SYSOUT=*      
//IPCSTOC    DD    SYSOUT=*         
//IPCSPRNT  DD    SYSOUT=*      
//SYSTSIN     DD     *
 IPCS
 MERGE
 CTRACE DSN('your.trace.dataset1') -
     COMP(component) SUB(procname) FULL -
     OPTIONS((option1,option2))
 CTRACE DSN('your.trace.dataset2') -
     COMP(component) SUB(procname) FULL -
     OPTIONS((option1,option2))
 MERGEEND
 END
/*
170 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



7.6.4  Useful formats

Figure 7-21   Format of IP datagram

Figure 7-22   Format of TCP header

Figure 7-23   Format of UPD header

VERS LEN Type of Service Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

source IP address

destination IP address

Options (rarely present) pading

data

31 bit #190 4 168

Source Port Destination Port

Sequence Number 

Acknowledgement Number

...

31 bit #190 4 168

Source Port Destination Port 

Length Checksum

31 bit #190 4 168
Chapter 7. Diagnostic tools 171



7.7  Processing IPCS dumps
Communications Server for z/OS IP provides an IPCS subcommand to format an IPCS dump. 
The TCPIPCS subcommand is documented in z/OS V1R2.0 CS: IP Diagnosis, GC31-8782.

7.8  Configuration profile trace
You can use the ITRACE statement in the PROFILE.TCPIP data set to activate TCP/IP 
runtime tracing for configuration, the TCP/IP SNMP subagent, commands, and the autolog 
subtask. ITRACE should only be set at the direction of an IBM Service representative. For 
more information, please refer to z/OS V1R2.0 CS: IP Diagnosis, GC31-8782.

7.9  Job log versus syslog as diagnosis tool
In the past, we often used the TCP/IP job log to detect problems. Most procedures now send 
messages to the syslog daemon or the MVS console log. Please refer to the Communications 
Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX Applications, 
SG24-5228 for more information on the syslog daemon. Individual server documentation also 
provides information about diagnosis.

7.10  Message types: where to find them
You will want to have the z/OS system messages manuals available, as well as the 
messages manuals for TCP/IP. You will need to understand messages with a BPX prefix, an 
EZn prefix, and with SNA sense codes.

– Messages with prefix of BPX

You will find the explanations for these messages in z/OS V1R2.0 MVS System 
Messages, Vol 3 (ASB-BPX), SA22-7633.

– Messages with prefix of EZA

For Communications Server for z/OS IP, you will find the explanations for these 
messages in z/OS V1R2.0 CS: IP Messages Volume 1 (EZA), SC31-8783.

– Messages with prefix of EZB

For Communications Server for z/OS IP, you will find the explanations for these 
messages in z/OS V1R2.0 CS: IP Messages Volume 2 (EZB), SC31-8784.

– Messages with prefix of EZY

For Communications Server for z/OS IP, you will find the explanations for these 
messages in z/OS V1R2.0 CS: IP Messages Volume 3 (EZY), SC31-8785.

– Messages with prefix of EZZ and SNM

For Communications Server for z/OS IP, you will find the explanations for these 
messages in z/OS V1R2.0 CS: IP Messages Volume 4 (EZZ-SNM), SC31-8786.

– Messages with prefix of FOMC, FOMM, FOMO, FSUC and FSUM

You will find the explanations for these messages in z/OS V1R2.0 UNIX System 
Services Messages and Codes, SA22-7807.
172 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



– Eight-digit SNA sense codes and DLC codes

You will find the explanations for these codes in z/OS V1R2.0 CS: IP and SNA Codes, 
SC31-8791.

– UNIX System Services return codes and reason codes

You will find the explanations for these codes in z/OS V1R2.0 UNIX System Services 
Messages and Codes, SA22-7807.
Chapter 7. Diagnostic tools 173



174 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Chapter 8. TN3270 Telnet server

This chapter focuses on the Telnet functions that are available in z/OS V1R2 
Communications Server IP. Where appropriate, we indicate the level of CS for z/OS IP at 
which a specific function was introduced.

8

© Copyright IBM Corp. 1998 2002. All rights reserved. 175



8.1  Overview
Telnet is a terminal emulation protocol that allows you to log on to a remote host as if you 
were directly connected to it. Telnet allows users to have access to applications running on 
that host. You may establish concurrent sessions on different hosts or multiple sessions with a 
single host.

Telnet operation
Telnet has a concept of Network Virtual Terminal (NVT). NVT is a virtual device that has basic 
characteristics common to a wide range of real terminals. NVT must be supported by all 
Telnet servers and clients.

The Telnet protocol allows servers and clients to negotiate their characteristics, because 
many hosts will wish to provide additional services to the NVT. Once a TCP connection has 
been established, both sides of the connection are capable of working at the minimum level 
that is implemented by NVT. After this minimum understanding is achieved, they can 
negotiate additional options to extend the capabilities of the real hardware in use. Because of 
the symmetric model used by Telnet, both the server and the client may propose additional 
options to be used.

Telnet 3270 (TN3270)
The TN3270 or TN3270E Telnet server is simply a VTAM application that activates one 
application minor node logical unit (LU) to represent each Telnet client. You should note that 
the Telnet server is a separate application, not a part of VTAM, although it uses VTAM. Using 
TN3270 Telnet is a two-step process. First the client connects via TCP/IP to the Telnet server 
listening on some TCP port. The Telnet server allocates VTAM resources and a session on 
behalf of the client. 

Traditional Telnet may be used to make a TCP/IP connection to an SNA host, but Telnet 3270 
will be the better choice to connect to the host because it provides 3270 emulation capability. 
This capability will release the host from the responsibility of converting EBCDIC to/from 
ASCII code, and avoids the imperfection of the code conversion. TN3270 server does not 
convert the SNA data stream.

The following differences between traditional Telnet and 3270 terminal emulation make it 
necessary to use 3270 emulation under certain circumstances:

� 3270 terminal emulation uses block mode rather than line mode.
� 3270 terminal emulation uses the EBCDIC character set rather than the ASCII character 

set.

The TN3270 connection is accomplished by the negotiation of the following Telnet options:

� Terminal Type
� Binary Transmission
� End of Record

The Terminal Type option is a string that specifies the terminal type for the host such as 
IBM-3278-2-E. The Binary Transmission option specifies that the receiver should interpret 
characters received from the sender as 8-bit binary data, besides the “interpret as command” 
(IAC) character and the following Telnet command. Since the length of the data may vary, and 
CRLF no longer means "new line" in binary transmission mode, every command and its 
related data must be separated with the IAC EOR sequence. For this purpose, the End of 
Record option is used.
176 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



TN3270 enhancements (TN3270E)
The TN3270 function was enhanced by RFC 1646 and RFC 1647. Since RFC 1647 covers all 
of the function that RFC 1646 has and most clients support RFC 1647, z/OS Telnet does not 
implement RFC 1646.

The z/OS Telnet server implements RFC 1647 TN3270 enhancements. TN3270E overcomes 
the following shortcomings in traditional TN3270:

� It provides no capability to emulate the 328x printers.
� There is no mechanism for the Telnet client to request a 3270 device name.
� ATTN and SYSREQ keys are not always supported.
� SNA positive/negative response, Sysreq, Start Data Indicator, BID, Signal or Sense Data 

are not supported.

In order to solve these issues, TN3270E was introduced. Telnet clients and servers negotiate 
the support of TN3270E. If either side does not support TN3270E, traditional TN3270 can be 
used.

Once both sides have agreed on using TN3270E, they begin to negotiate the subset of 
TN3270E options. These options are device-type and a set of supported 3270 functions:

� 328x printer support 

� Device name specification

A TN3270E client can optionally request that a particular device name be assigned. If the 
requested device name is allowed for this client (based on LU mapping statements) the 
session is established. Otherwise, the session is rejected.

� The passing of BIND information from server to client

� Positive/negative response exchange

Support of SNA responses all the way to the client helps synchronize data flow and 
provides a more accurate measurement of user response.The following response types 
are supported:

– Definite
– Exception
– No response

� Sysreq function

� Contention resolution

Improves communication between the client and host VTAM applications. It includes the 
following:

– Start Data Indicator (SDI)
– BID
– Signal Indicator

Note: TN3270E is a function and IBM 327x device types that end in -E (for example, 
3278-2-E) are terminals that support Extended field attributes such as color and 
highlighting. These field attributes are not related to Telnet functions.

Note: RFC 1646 and RFC 1647 are not compatible. If your TN3270 client supports only 
RFC 1646, you will not have LU name selection and printer support capabilities.

Note: z/OS Telnet server support the ATTN key both in TN3270 and TN3270E.
Chapter 8. TN3270 Telnet server 177



� SNA Sense Support

RFC 1647 has already been made obsolete by RFC 2355. The updates are mostly the 
clarification of RFC 1647, but it added new DATA-TYPE - PRINT-EOJ. z/OS Telnet provides 
the PRINT-EOJ function to synchronize SNA brackets with the Telnet printer client.

Figure 8-1   Telnet overview

8.1.1  Telnet functions
z/OS Telnet provides:

� Client and server support for TN3270 full-screen (transparent) mode
� Server support for TN3270E mode as in RFC 1647
� Client and server support for line mode
� Server support for 3270 DBCS transform mode, which supports full-screen access from a 

VT100 or VT282 remote Telnet client

The Telnet server has been completely rewritten to take advantage of MVS service request 
block (SRB) and multiple task control block (TCB) capabilities on OS/390 V2R5 IP and later. 
The following sections explain some of the features you find in the Telnet component of CS 
for z/OS.

Secure sockets support
Secure sockets support for the z/OS Telnet server provides secure data transmission 
between a secure sockets port and a Secure Sockets Layer (SSL) enabled Telnet client.

TELNET
SERVER

V
T
A
M

TSO

CICS

IMS

XYZ

MVS

IP
NETWORK

SUN

UNIX

PS/2
178 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



In an SSL-encrypted session, any data on a secure port is encrypted using the SSL protocol 
before it is sent to the client. Data received from the client is decrypted before the data is sent 
to other processes, such as VTAM. The flows between Telnet and VTAM are unchanged.

z/OS CS IP also supports SSL client authentication which allows additional authentication 
and access control checking. CS for OS/390 V2R8 IP used the key ring utility GSKKYMAN for 
managing keys. Since CS for OS/390 V2R10 IP, SSL is supported by the system security 
environment (z/OS Cryptographic Services), which uses RACF panels and commands. 
Additionally, CS for OS/390 V2R10 IP included some enhancements regarding connection 
type (SSL and negotiated security are included).

A key ring file is used to obtain certificate/key information. The file may be an MVS data set 
(using RACF) or a Hierarchical File System (HFS) file (using GSKKYMAN).

If you need some more information about the concepts of cryptography and SSL, you can find 
some additional information in Communications Server for z/OS V1R2 TCP/IP 
Implementation Guide Volume 7: Security, SG24-6840 and at the following Web sites:

� About SSL protocol:

http://home.netscape.com/eng/ssl3/ssl-toc.html

� About the encryption methodology:

http://www.verisign.com/repository/crptintr.html
http://www.verisign.com/client/about/introCryp.html

Multiple ports support
CS for z/OS IP provides the capability for the Telnet server to listen on multiple ports. This 
means you can define different security levels (basic, secure, negtsecure, all) and/or different 
configuration parameters for each port. Up to 255 ports are allowed. You define ports using 
statements within the TELNETPARMS and BEGINVTAM information blocks. You can use the 
VARY and/or DISPLAY operator commands to select a particular type of port access or a 
specific port to display related information.

Parameter group mapping
This mapping function gives the ability to map certain parameters to clients based on client 
identifier. This enables the configuration of different parameter groups containing different 
security specifications for different clients.

TN3270E mode
The Telnet server supports this connection mode, which simulates most closely a real SNA 
connection, including LU0/LU2 support for display session and LU1/LU3 support for printer 
session.

The z/OS Telnet supports RFC 1647. TN3270E offers support for device name specification, 
3287-type printer emulation and additional SNA function and protocols. The range of support 
for RFC 1647 in the clients varies and is negotiated at connection time.The client must also 
support RFC 1647 in order for TN3270E to be used.

Unformatted System Services (USS) support
USS support provides the ability to emulate the VTAM USS messages. You may define one or 
more USS tables. The actual USS table to be used for the Telnet sessions can be selected via 
the USSTCP definition. USS table support has been enhanced with OS/390 V2R5 IP and 
later and now supports the LOGON APPLID() DATA() LOGMODE() command. NQN is available 
on USSCMD in CS for OS/390 V2R8 IP. NQN application names can be used as 
DEFFAULTAPPL and LINEMODEAPPL.
Chapter 8. TN3270 Telnet server 179

http://home.netscape.com/eng/ssl3/ssl-toc.html
http://www.verisign.com/repository/crptintr.html
http://www.verisign.com/client/about/introCryp.html


Client identifier (CLID) to object mapping
The CLID to object mapping function provides the capability to select both an LU name and 
an application name for incoming Telnet sessions. The selection may be made on the basis of 
a specific IP address, a group of IP addresses, a subnet, or the link name used to connect to 
the z/OS. The function makes the LU name and the application name predictable and 
controllable. In addition, OS/390 V2R7 IP supports LU and application name selection with a 
host name or a group of host names. Some enhancements in CS for OS/390 V2R10 IP were 
to support multiple LU or LU group mappings to the same IP address or IP address group 
(client identifier).

Takeover functionality
The Telnet takeover function enables the reconnection of a client and an SNA session after 
the recovery of a failed TCP connection between the client and Telnet server. In this case, the 
client must specify the specific LU name of the session. 

Support for 3270 DBCS transform
The 3270 DBCS transform mode provides 3270 full-screen emulation, but data exchange 
between the client and the z/OS Telnet server is in ASCII. So all the needed translation takes 
place in z/OS. The client may emulate VT100 or VT282 type terminal.

SMF reporting
New record type 119 was introduced by CS for z/OS V1R2 IP and is controlled by use of the 
TYPE119/NOTYPE119 operands on the SMFINIT and SMFTERM statements. Record type 
118 is also supported. SMF records may be recorded for the Telnet server and client. The 
consistency and completeness of record contents allows service providers to better monitor 
service level agreements and provide usage billing to their customers. 

DEBUG utility
OS/390 V2R10 introduced a DEBUG function to aid in tracking state changes and to provide 
connection ID and LU name information.

AbendTrap command
New in z/OS V1R2 CS IP, the AbendTrap can be used to set up and abend based on some 
variables specified in the command. The command is: 

VARY TCPIP,,TELNET,ABENDTRAP,module,rcode,instance

Console commands
CS for z/OS IP supports several console commands. The operator may issue DISPLAY or VARY 
commands to monitor and control z/OS Telnet. The new commands offer more consistency 
with other products such as VTAM, provide more information, and take advantage of MCS. 

Binary option for line mode
Some applications running in line mode require the ability to do their own unique translation of 
the data in the line mode packet. Normally the Telnet server will automatically translate the 
data from EBCDIC to/from ASCII. Clients working in line mode may bypass this translation.

Generic resources
Generic resources allows for the concurrent multiplicity of VTAM applications in the z/OS 
environment. When requests come in for the application, VTAM chooses the optimal 
application instance for the client. 
180 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Workload Manager (DNS/WLM) support
Several applications, including the Telnet server shipped with CS for z/OS, are able to register 
with WLM for load distribution. Relying on the CS for z/OS IP DNS, names are created 
dynamically when Telnet registers to WLM. The host name to IP address mapping enables 
the DNS server to distribute load during name resolution of each client. 

Sysplex Distributor support
CS for z/OS IP also provides the Sysplex Distributor function, which provides for connection 
dispatching of a particular service. Sysplex Distributor can be used with the Telnet server for 
load distribution among many Telnet servers in a sysplex. Unlike DNS/WLM, Sysplex 
Distributor dispatches connections at the IP layer, thereby overcoming the many challenges in 
DNS-based load distribution techniques.

Automatic VIPA Takeover/Takeback
The Automatic VIPA Takeover/Takeback function allows the Telnet server to provide for higher 
availability in a sysplex environment. A dynamic VIPA can be coded to represent the Telnet 
service. This VIPA can move from one stack to another within a sysplex in the event the Telnet 
server fails, thus providing increased availability of the Telnet service.

Profile replacement
When you replace a profile with the VARY OBEYFILE command, new PROFILE statements 
completely replace the PROFILE statements in effect before an update on a port basis. The 
updates are not cumulative from the previous PROFILE.

The most recent profile is referred to as the current profile. New connections use the tables 
generated by the current profile, but the tables generated by older profiles remain active and 
continue to support any connections established when the older profiles were the current 
profile.

8.1.2  Telnet printer support
Telnet clients can route SNA print output over TCP/IP. 328x class printers (device type 
IBM-3287-1) are supported by z/OS Telnet. These printers support both the SNA character 
stream (LU Type 1) and 3270 data stream (LU Type 3). The Telnet printer communicates with 
VTAM applications as a secondary LU and looks exactly like an actual 3287-class printer. The 
server will drop the connection if a printer request comes in during negotiation as a 
non-TN3270E connection.

Note: Load distributions with DNS/WLM and Sysplex Distributor work nicely if there is no 
GR instance in the same z/OS where the Telnet server resides. If there is, the local VTAM 
will always choose a zero-hop instance. This is because Telnet terminals are applications 
for VTAM. OS/390 V2R5 and above provides new options to bypass VTAM's bias to 
choose the nearest instance when resolving a GR name. It does so by allowing you to 
change the coding of the GR resolution exit, ISTEXCGR.
Chapter 8. TN3270 Telnet server 181



Figure 8-2   z/OS Telnet with TN3270E printer emulation

Telnet 3287 printer emulation allows the Telnet administrator to use a single product (that is, 
Telnet) to route SNA print output over TCP/IP. Figure 8-2 shows the simplicity of this solution.

Printer association
Once printer emulation is available, it is useful to associate printer device names with terminal 
device names. With association, end users can connect their Telnet terminals to an 
application and then associate their Telnet printer device with the terminal device. For 
example, a CICS table may specify that if a terminal LU is requesting a printer function, the 
output should be routed to the printer that is associated with that terminal LU.

FM Header support
z/OS Telnet supports FM Header (FMH). Since RFC 1647 does not specify exact 
requirements about FMH, some of the initial implementations of TN3270E had a problem with 
FMH support. FMH is used with the LU1 printer stream.

Note: To utilize this function, the Telnet server needs to work together with the Telnet client. 
Therefore, the client also has to support printer association.

PRINTER

Desktop PC

TN3270E
Terminal

Client
TN3270E
PRINTER

OS/390

APPLICATION
(CICS1)

TCP/IP

TELNET SERVER

VTAM

DISPLAY
SESSION

PRINTER
SESSION
182 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



PRINT-EOJ support
PRINT-EOJ is not a part of RFC 1647 but a part of RFC 2355, which made RFC 1647 
obsolete. In native SNA, bracket control is used to indicate the beginning or end of a group of 
exchanged requests. But since the Telnet session does not pass request and response 
header (RH) information, there is no way for the Telnet client to notice the end bracket. This 
means that the Telnet printer has to hold the actual printing until the obvious end of printing, 
that is UNBIND. With some kinds of applications, this implementation may result in client 
hangs.

To solve this problem, PRINT-EOJ will be sent to the client when the server receives an end 
bracket from the application.

8.2  Telnet server customization
Some of the options you have when configuring Telnet are covered in this section:

� 8.2.1, “Customizing the TCP/IP procedure” 
� 8.2.2, “Customizing the VTAM configuration data set” 
� 8.2.3, “Customizing the PROFILE data set” 
� 8.2.4, “CLID to object mapping” 
� 8.2.5, “USS messages” 
� 8.2.6, “Using translation tables” 

Follow the steps to configure the Telnet server as explained in z/OS V1R2.0 Communications 
Server IP Configuration Reference, SC31-8776.

8.2.1  Customizing the TCP/IP procedure
Telnet Server is part of TCP/IP stack in z/OS CS IP. When you start TCP/IP, Telnet Server is 
available if there is a PROFILE statement for that (see 8.2.3, “Customizing the PROFILE data 
set” on page 185).

If you want to provide full-screen access to Telnet from non-3270 terminals such as VT100 
and VT282, you need to configure the Telnet server for 3270 single-byte character set (SBCS) 
or double byte character set (DBCS) transform mode. You need to include special data 
definition (DD) statements in the TCPIP cataloged procedure and specify the 
DBCSTRANSFORM parameter in the TELNETPARMS statement in the TCPIP PROFILE 
data set. The following are the sample DD definitions for DBCS transform mode:

Figure 8-3   DBCS related DD statements in the TCP/IP procedure

In this example:

1 The TNDBCSCN DD must point to the configuration data set for the 3270 DBCS 
transform mode. This configuration data set specifies the default DBCS conversion mode 
that will take effect at initialization time.

Specify the CODEKIND and CHARMODE parameters according to the required DBCS 
code page. A sample configuration can be found in the installation data set 
hlq.SEZAINST(TNDBCSCN).

//TNDBCSCN DD DSN=hlq.SEZAINST(TNDBCSCN),DISP=SHR 1
//TNDBCSXL DD DSN=hlq.SEZAXLD2,DISP=SHR 2
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136) 3
:
//SYSTCPD  DD DSN=TCP.TCPPARMS(TDATA&SYSCLONE.A),DISP=SHR 4
Chapter 8. TN3270 Telnet server 183



2 The TNDBCSXL DD must point to the data set containing binary translation table code 
files for the 3270 DBCS transform mode. The installation data set hlq.SEZAXLD2 contains 
the default binary translation table code files.

3 When DBCSTRACE is specified in the PROFILE data set, the debug output from the 
3270 DBCS transform mode is sent to the location specified in the SYSPRINT output DD 
statement.

4 The SYSTCPD DD is still needed for the Telnet server. The environment variable 
"RESOLVER_CONFIG" will not be used by Telnet.

8.2.2  Customizing the VTAM configuration data set
The Telnet server needs VTAM definitions to enable Telnet clients to access SNA 
applications. Since the Telnet server itself is a VTAM application, you have to define an 
application program major node with minor nodes that represent Telnet clients.

To ensure that the VTAM definition is enabled when VTAM is started, you may want to update 
the VTAM configuration data set. You can do this by specifying the name of the VTAM 
application program major node to the ATCONNxx member of your VTAMLST.

To configure the application program major node, copy the sample provided in 
hlq.SEZAINST(VTAMLST) and modify it to suit your installation.

When you update the VTAM configuration data set, you can define Telnet LUs to VTAM using 
a wild card character. VTAM Version 4 Release 3 introduced a new function called model 
application names. This function gives system administrators the ability to code a generic 
APPL name using the * or ? character. With this capability, Telnet administrators can use a 
simpler definition with the TCP/IP range statement coding (for example, LU00001..LU20000).

Both TCP/IP and VTAM support system symbolics. Figure 8-4 shows an example.

Figure 8-4   VTAM definitions for Telnet with system symbolics

The default LOGMODE entries are shown in the table of Telnet device name parameters in 
z/OS V1R2.0 Communications Server IP Configuration Reference, SC31-8776. The 
logmodes used can be changed with the TELNETDEVICE statement for both TN3270 and 
TN3270E sessions. Be sure to code both the TN3270 and TN3270E logmodes if the same 
logmode is desired for connection types. It is common to leave off the second, TN3270E, 
logmode specification with the result being that all TN3270E connections use the default 
logmode.

*
*  VTAMLST SAMPLE DEFINITION
*
TELAPPL  VBUILD TYPE=APPL
RA&SYSCLONE.TN?? APPL AUTH=NVPACE,EAS=1,PARSESS=NO,                    X
               MODETAB=ISTINCLM,SESSLIM=YES
RA&SYSCLONE.TP?? APPL AUTH=NVPACE,EAS=1,PARSESS=NO,                    X
               MODETAB=ISTINCLM,SESSLIM=YES

Note: Because the TCP/IP LU code cannot handle multiple concurrent sessions, make 
sure that the SESSLIM=YES parameter is coded for each VTAM APPL statement to 
ensure correct Telnet processing with applications using VTAM CLSDST/PASS macros. 
Also, code EAS=1 to minimize CSA storage use and LOSTERM=IMMED to ensure the 
quickest Telnet LU ACB cleanup.
184 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



For further SNA details the following books are recommended:

� z/OS V1R2.0 Communications Server SNA Network Implementation, SC31-8777
� z/OS V1R2.0 Communications Server SNA Resource Definition Reference, SC31-8778

8.2.3  Customizing the PROFILE data set
The TCP/IP PROFILE data set is used to configure the Telnet server. You can update the 
PROFILE data set to change or add statements. You can change the association of VTAM 
LUs and IP addresses or host names, add host printers, or switch the port(s) used by Telnet. 
The Telnet server uses this information to build its own internal profile. This Telnet profile can 
be replaced easily without stopping and restarting the TCP/IP stack using the VARY OBEYFILE 
command. Profiles are managed in the following manner:

Complete replacement
New profile statements completely replace old profile statements. The updates are not 
cumulative from the previous profile. Old profiles are referred to by sequential numbers 
starting with 1. The new profile is referred to as the current profile.

In general, Telnet uses the last valid value or statement that was specified. However, if the 
replacement statement does not contain all of the required parameters or the required 
parameter contains errors in all of its list elements, the statement being replaced will be 
removed and the replacement will not occur.

The only exception to the rule is the IP addresses definition in the IPGROUP statement. In 
this example:

IPGROUP ABC 1.1.1.1 2.2.2.2
IPGROUP XYZ 2.2.2.2 3.3.3.3

The second IPGROUP statement will receive an error message indicating:

2.2.2.2 already defined in an IPGROUP, it is ignored.

Connection association
New connections use the current profile. Older profiles remain active and continue to support 
old connections.

Profile table management
When all connections associated with an older profile have ended, the storage for the profile 
tables is freed, and the profile is now inactive. This is not a problem because all new 
connections must use the current profile.

Notes:

1. Transform is supported only on a single port. To change the port to use transform, the port 
must be terminated first. Then a VARY OBEY can be used to define transform support to 
another port.

2. When the profile is read by Telnet, the Workload Manager names are registered. 
Registration names must be duplicated in later Telnet profiles to keep the registration. 
Otherwise, the name will be deregistered from DNS. This only applies to DSN/WLM.

3. When you do a VARY OBEYFILE to update the Telnet profile, the profile must include both a 
TELNETPARMS block and a BEGINVTAM block for each port. If either of the blocks is not 
present, the profile update does not occur for the port.
Chapter 8. TN3270 Telnet server 185



Stand-alone PORT and PORTRANGE statements
Prior to OS/390 V2R5 IP, the Telnet server was configured with a stand-alone port 
reservation statement such as PORT 23 INTCLIEN and the BEGINVTAM/ENDVTAM group of 
statements. This is still supported and if a single port is used, the first stand-alone INTCLIEN 
port statement will generate a TELNETPARMS block with all default values.

It is not necessary to code PORT or PORTRANGE statement to start the Telnet server. But 
you may reserve Telnet ports if there is any possibility of another application taking the ports 
that Telnet will use. Figure 8-5 shows an example of Telnet port reservation:

Figure 8-5   Telnet port reservation with INTCLIEN

If you are using multiple Telnet ports, each port must be defined to Telnet with a 
TELNETPARMS block. Even if using one port, a TELNETPARMS block is recommended.

TELNETGLOBALS statement
TELNETGLOBALS statement is optional and contains Telnet parameters statements that 
define port characteristics across all ports. Table 8-1 on page 187 shows a list of Telnet 
parameters and where they can be coded.

You can see an example configuration with TELNETGLOBALS in Figure 8-6. You can find 
more information in z/OS V1R2.0 Communications Server IP Configuration Guide, 
SC31-8775.

Figure 8-6   TELNETGLOBALS Telnet server profile definition

TELNETPARMS statement
This is a required statement where the characteristics of a specified port are coded. 
Figure 8-7 shows an example.

PORT
   23    TCP INTCLIEN ; Telnet Server basic port
   :
PORTRANGE
   623 7 TCP INTCLIEN ; Telnet Server secure ports

Note: When a TELNETPARMS PORT statement is present with the stand-alone PORT 
statement, the TELNETPARMS information will be used. The port numbers should match. 
If they do not match, the TELNETPARMS PORT number will be used and the stand-alone 
PORT number is reserved for no use.

TELNETGLOBALS
  KEYRING hfs /usr/keyring/tcpcs.kdb ;keyring used by all SECUREPORTs
ENDTELNETGLOBALS

TELNETPARMS     ; this secure port definition uses TELNETGLOBALS
  SECUREPORT 992  ; KEYRING definition
ENDTELNETPARMS
186 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 8-7   TELNETPARMS statement example

Notes:

1. If no statements are entered between TELNETPARMS and ENDTELNETPARMS, Telnet 
will use the default values.

2. If there are duplicated statements within the TELNETPARMS block, the last statement 
with no errors is used.

You can define as many as 255 listening ports for session requests. Ports are defined using 
PORT or SECUREPORT statements within the TELNETPARMS information blocks. Each 
port requires a separate TELNETPARMS block.

Table 8-1 shows a list of Telnet parameters and where they can be coded. An X in a column 
indicates that the parameter can be coded in the indicated block. For example, CLIENTAUTH 
can be coded in TELNETGLOBALS, TELNETPARMS or PARMSGROUP (affecting all 
connections on all ports, all connections on one port or a subset of connections on one port, 
respectively). For a description of each parameter, see z/OS V1R2.0 Communications Server 
IP Configuration Reference, SC31-8776.

Table 8-1   Telnet parameter statements

TELNETPARMS
    PORT 23
    INACTIVE 600
    TIMEMARK 600
    SCANINTERVAL 120
    SMFINIT STD
    SMFTERM STD
    WLMCLUSTERNAME TN3270E ENDWLMCLUSTERNAME
ENDTELNETPARMS

Statement TELNET 
GLOBALS

TELNET 
PARMS

PARMS 
GROUP

BEGINVTAM

BINARYLINEMODE X

CLIENTAUTH X X X

CODEPAGE X X X

CONNTYPE X X X

CRLLDAPSERVER X

DBCSTRACE X

DBCSTRANSFORM X

DEBUG X X X

DISABLESGA X

ENCRYPTION X X X

EXPRESSLOGON 
NOEXPRESSLOGON 1

X X X

FULLDATATRACE 
NOFULLDATATRACE

X X X

INACTIVE X X X
Chapter 8. TN3270 Telnet server 187



1 - new parameters in z/OS V1R2 CS IP.

BEGINVTAM and ENDVTAM statements
When you define general characteristics for the Telnet port using the TELNETPARMS 
statements, you have completed half of the necessary profile configuration tasks. The other 
half is completed when you define LUs, printers, applications, and mapping statements.

KEEPINACTIVE X X X

KEYRING X X

LUSESSIONPEND 
NOLUSESSIONPEND

X X X X

MAXRECEIVE X

MAXREQSESS X

MAXVTAMSENDQ X

MSG07 
NOMSG07

X X X X

OLDSOLICITOR X

PORT/SECUREPORT X

PRTINACTIVE X X X

SCANINTERVAL 
TIMEMARK

X X X

SECUREPORT X

SIMCLIENTLU 
NOSIMCLIENTLU

X X X

SINGLEATTN X

SMFINIT
SMFTERM

X X X

SNAEXT
NOSNAEXT 1

X X X

SSLTIMEOUT X X X

TESTMODE X

TIMEMARK X X X

TKOSPECLU X

TKOSPECLURECON X

TN3270E
NOTN3270E

X X X

WLMCLUSTERNAME X

Statement TELNET 
GLOBALS

TELNET 
PARMS

PARMS 
GROUP

BEGINVTAM
188 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



To do this, you add statements to the BEGINVTAM information block in the PROFILE data 
set. The BEGINVTAM statement indicates the start of the list of valid VTAM statements to 
configure the Telnet server. The ENDVTAM statement ends the list of VTAM parameters. 
Figure 8-8 shows an example.

Figure 8-8   BEGINVTAM and ENDVATM statements

TELNETPARMS 1
  PORT 23
ENDTELNETPARMS

TELNETPARMS 1
  SECUREPORT 992 KEYRING MVS TCPCS.KEYRING
ENDTELNETPARMS

BEGINVTAM
  PORT 23 992 2

  TelnetDEVICE 3278-2   D4B32782,SNX32702 ; 24 x 80
  TelnetDEVICE 3278-2-e NSX32702,SNX32702 ; 24 x 80
  TelnetDEVICE 3278-3   D4B32783,SNX32703 ; 32 x 80
  TelnetDEVICE 3278-3-e NSX32703,SNX32703 ; 32 x 80

  LUGROUP sysusrlu CONSLU1..CONSLU7 ENDLUGROUP
  LUGROUP
    accntlu ACCLU01 ACCLU03 ACCLU05 ACCLU07 ACCLU08
    ACCLU16 ACCLU27 ACCLU38 ACCLU49 ACCLU68
    ACCLU71 ACCLU75 ACCLU78 ACCLU84 ACCLU95
  ENDLUGROUP

  IPGROUP
    admin 255.255.240.0:198.25.32.0
  ENDIPGROUP

  LUMAP accntlu admin
  LUMAP sysusrlu 198.25.32.10
  LUMAP CONSLU4 199.28.33.12

  DEFAULTAPPL ADMLOGO admin
  DEFAULTAPPL CADLOGO 198.25.32.10
  DEFAULTAPPL ANONLOGO ETH1

  LINEMODEAPPL APCLOGO admin
  LINEMODEAPPL ANZLOGO 198.25.32.10
  LINEMODEAPPL NONLOGO ETH1

  RESTRICTAPPL CADLOGO
    USER NIGEL
      LU CONSLU1 LU CONSLU2 LU CONSLU3
  ALLOWAPPL ANZLOGO
    LU CONSLU4 LU CONSLU5 LU CONSLU6 LU CONSLU7

  USSTCP ABCLOGON TR1
  USSTCP CBALOGON 198.25.32.11
  USSTCP CBALOGON 199.28.33.12
ENDVTAM
Chapter 8. TN3270 Telnet server 189



In the example:

1 Multiple TELNETPARMS blocks are supported resulting in a basic and a secure port.

2 The PORT statement in the BEGINVTAM block allows multiple or range-based port 
definitions. You can define a single BEGINVTAM block for multiple TELNETPARMS blocks. 
Multiple BEGINVTAM blocks are also supported.

Table 8-2 shows BEGINVTAM statements supported in CS for z/OS. Some statements can 
be used only with higher OS/390 releases. These are shown with the OS/390 release 
number.

Table 8-2   BEGINVTAM statements in CS for z/OS IP 

ALLOWAPPL The ALLOWAPPL statement is used to specify which VTAM 
application names clients can access. You can use the full application 
name or application names with wild cards for mapping application to 
LU or LUGROUP (OS/390 V2R10 or higher). For example 
ALLOWAPPL * allows all applications. 

DEFAULTPRTSPEC
V2R10

The DEFAULTPRTSPEC statement defines a default list or range of 
LUs. This pool can be used by a specific printer connection request if 
no other LU mapping method is attempted for the client.

DEFAULTPRT
V2R10

The DEFAULTPRT statement defines a default list or range of LUs. 
This pool can be used by a generic printer connection request if no 
other LU mapping method is attempted for the client.

DEFAULTAPPL
V2R7

The DEFAULTAPPL statement specifies the initial application to which 
to connect when a Telnet client establishes a connection other than 
line mode. OS/390 V2R10 and higher provide more enhancements 
regarding DEFFAULTAPPL which are FIRSTONLY, DEFONLY and 
LOGAPPL parameters. 

DEFAULTLUS The DEFAULTLUS statement defines a list or range of default LUs. 
This pool can be used by a general terminal connection request if no 
other LU mapping method is attempted for the client.

DEFAULTLUSSPEC
V2R10

The DEFAULTLUSSPEC statement defines a list or range of default 
LUs. This pool can be used by a specific terminal connection request 
if no other LU mapping method is attempted for the client.

DESTIPGROUP
z/OS V1R2

DESTIPGROUP client identifier statement is used to define a group 
of destination IP addresses. The group name can be used on several 
mapping statements.

HNGROUP
V2R7

The HNGROUP statement defines a group of host names. Wild card 
names are accepted. 

IPGROUP IPGROUP client identifier statement defines a group of IP addresses. 
Each group name can be used on several mapping statements.

INTERPTCP
V2R7

The INTERPTCP statement maps a customized interpret table to an 
IP address, a host name or a network interface. This table is used to 
interpret incoming USS commands before the USS command 
processor is invoked. If the input string does not match any interpret 
table entry, the USS command processor parses the input string.

LINEMODEAPPL
V2R7

The LINEMODEAPPL statement provides default application to line 
mode client connections. 

LINKGROUP
z/OS V1R2

LINKGROUP client identifier statement defines a group of link names. 
The group name can be used on several mapping statements.
190 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



LUGROUP LUGROUP statement defines a group of LUs. These group names 
can be used on the LUMAP statement to represent an LU pool.

LUMAP
V2R7

The LUMAP statement maps LUNAMES or LUGROUPS to clients 
that are specified by client identifiers parameter. For a list of 
client identifiers see Table 8-3 on page 193.

OS/390 V2R10 and higher support more LUMAP functions including 
multiple LUMAP mapping to same client. Parameters included by 
OS/390 V2R10 were LOGAPPL, KEEPOPEN and FIRSTONLY.

LOGAPPL application_name optional keyword specifies the initial 
application to which Telnet will connect. In addition, if the application 
is not available, Telnet will respond with MSG07 to the client and keep 
the LU ACB open and ready to accept a BIND from the application. 

Specifying the KEEPOPEN keyword means that all LUs identified in 
the lu_group_name or the LU identified by lu_name will always have 
an OPEN ACB as long as the connection exists.

What happens at session logoff depends on whether FIRSTONLY is 
coded. If FIRSTONLY is not coded, Telnet will issue another Request 
Session to the default application (defined by either 
LUMAP-DEFAPPL or DEFAULTAPPL). If FIRSTONLY is coded, 
Telnet will send a USSMSG10 screen or Solicitor Panel to the client. 

LUSESSIONPEND LUSESSIONPEND parameter statement allows the server to redrive 
the DEFAULTAPPL, USS, or Solicitor screen after LOGOFF of the 
current session. If this statement is not coded or 
NOLUSESSIONPEND is specified, the Telnet server connection is 
dropped after session LOGOFF.

MSG07
V2R7

MSG07 statement is used to activate logon error message 
processing. Specifying this statement will provide information to the 
client when a session attempt to the target application fails.

PARMSGROUP
V2R10

The PARMSGROUP statement defines parameters that will be 
mapping to certain clients. The PARMSGROUP parameters are 
mapped to client identifiers with the PARMSMap statement. For 
connections that map to a PARMSGROUP, the statements defined in 
the PARMSGROUP block override those defined in the 
TELNETGLOBALS, TELNETPARMS, or BEGINVTAM block. 

PARMSMAP
(OS/390 V2R10)

The PARMSMAP statement maps PARMSGROUP parameters to 
specified clients which are described with a client identifier. For a list 
of client identifiers, see Table 8-3 on page 193.

PORT
V2R6

The PORT statement must be used to associate the BEGINVTAM 
block with the correct TELNETPARMS block when multiple ports are 
used. The PORT statement must be the first statement in the 
BEGINVTAM block. You can define separate BEGINVTAM blocks for 
each TELNETPARMS port or you can use only one BEGINVTAM 
block with all port numbers for all TELNETPARMS ports.

PRTGROUP The PRTGROUP statement defines a printer LU group for TN3270E 
printer support.

PRTMAP The PRTMAP statement maps a printer or a printer group to a client 
identifier. For a list of client identifiers, see Table 8-3 on page 193.
Chapter 8. TN3270 Telnet server 191



For a complete description of all parameters see z/OS V1R2.0 Communications Server IP 
Configuration Reference, SC31-8776.

The BEGINVTAM ENDVTAM block contains different characteristics in the same block, for 
example display and printer LU definitions, application characteristics, address mapping 
definitions, and so on.

The following are the major categories in a block:

� Device-type to logmode mapping

TELNETDEVICE

� Initial screen selection

DEFAULTAPPL

LOGAPPL (With LUMAP or DEFAULTAPPL in OS/390 V2R10)

LINEMODEAPPL

USSTCP

INTERPTCP

� Application permission

ALLOWAPPL

RESTRICTAPPL

� LU to IP address or host name mapping

DEFAULTLUS

DEFAULTPRT(OS/390 V2R10)

DESTIPGROUP (z/OS V1R2)

LINKGROUP (z/OS V1R2)

LUGROUP

QUEUESESSION QUEUESESSION parameter statement signifies that all 
DEFAULTAPPL applications queue their sessions within VTAM when 
performing a CLSDST-PASS. At session logoff, Telnet leaves the LU 
ACB open and waits for a BIND from the DEFAULTAPPL application.

RESTRICTAPPL RESTRICTAPPL statement restricts access to the specified 
application. This statement must be followed by user parameters 
defining each user who is authorized to use the application. Users are 
prompted to identify themselves with a password. RACF or an 
equivalent security program is used to validate the password. If no 
user parameters are specified, the application cannot be accessed.

TELNETDEVICE This statement defines logmode entries for TN3270 and TN3270E 
devices. You should use a TELNETDEVICE statement for each type 
of terminal and one TELNETDEVICE statement for printers. Logmode 
entries define device type, enhanced facility support capability 
(TN3270 or TN3270E), terminal screen size, alternate terminal 
screen size capability and size, etc.

USERGROUP
z/OS V1R2

The USERGROUP object statement defines a group of user IDs. The 
group name can be used on several mapping statements.

USSTCP The USSTCP statement allows you to map a customized USS table 
to either a remote host name, remote IP address, or a network 
interface. USSTables of USSTCP can be any non-SNA USSTables.
192 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



PRTGROUP

IPGROUP

HNGROUP

LUMAP

PRTMAP

USERGROUP (z/OS V1R2)

� Connection handling

PORT

MSG07

LUSESSIONPEND

QUEUESESSION

There is also the INCLUDE statement that can be used to insert and process configuration 
statements in the PROFILE.TCPIP data set. This statement causes profile statements from 
the named data set to be included at the point that the INCLUDE statement is encountered.

8.2.4  CLID to object mapping
Telnet mapping can be used to improve control of Telnet access relative to application 
security and routing through the correlation of client identifiers and objects.

Application security means that you are able to control the mapping of Telnet client IP 
addresses or host names to specific LU names. You can define groups of IP addresses, host 
names, and LU names. You can map an LU name or an LU name group with some client 
identifiers, as described on Table 8-3.

Table 8-3   Client identifier types and definitions

Client Identifier Type Definition

UserID The Client User ID derived from the client certificate at connection time 
when ClientAuth SAFcert is specified on an SSL connection.

Hostname The completely qualified client host name.

IPaddr The client IP address expressed in dotted decimal form.

UserGrp The USERGROUP name that contains exact or wild-carded client user 
IDs.

HNGrp The HNGROUP name that contains exact or wild-carded client host 
names.

IPGrp The IPGROUP name that contains exact or subnetted client IP 
addresses.

DestIPGrp The DESTIPGROUP name that contains exact or subnetted 
destination IP addresses.

Linkname The link name defined by the LINK statement in PROFILE.TCPIP.

DestIP The destination IP address expressed in dotted decimal form.

LinkGrp The LINKGROUP object name that contains exact or wild-carded link 
names.
Chapter 8. TN3270 Telnet server 193



When client identifiers are used together, conflicts may occur. To avoid them, Telnet server 
performs the client identifier selection rules in the following order:

1. Exact client identifier (user ID, host name, IP address):

LUMAP   LU1     USERID,USER1 
LUMAP   LU2     NAME1.HOST1.COM 
LUMAP   LU3     1.2.3.4 

Client identifier type USERID is required. If not specified, USER1 is assumed to be a link 
name. 

2. Exact client identifier in a group definition (user group, host name group, IP address 
group):

USERGROUP USRGRP1 
  USER1 USER2 USER3 
ENDUSERGROUP 
HNGROUP  HNGRP1 
  NAME2.HOST1.COM  NAME2.HOST3.COM 
ENDHNGROUP 
IPGROUP  IPGRP1 
  1.2.3.5     1.2.3.6 
ENDIPGROUP 
LUMAP   LUGRP1   USRGRP1 
LUMAP   LUGRP2   HNGRP1 
LUMAP   LUGRP3   IPGRP1 

3. Wild card match for client identifier in a group definition (user group, host name group, IP 
address group):

USERGROUP USRGRP2 
  USER%%  TCPU* 
ENDUSERGROUP 
HNGROUP  HNGRP2 
  *.HOST2.COM  **.HOST3.COM 
ENDHNGROUP 
IPGROUP  IPGRP2 
  255.255.0.0:     2.3.0.0 
ENDIPGROUP 
LUMAP   LUGRP1   USRGRP2 
LUMAP   LUGRP2   HNGRP2 
LUMAP   LUGRP3   IPGRP2 

4. Exact destination (destination IP address, link name):

DEFAULTAPPL    TSO        DESTIP, 1.2.3.4 
USSTCP         USSTAB1    LINK1 

client identifier type DESTIP is required. If not specified, destination IP address 1.2.3.4 is 
assumed to be a client IP address. 

5. Exact destination in a group definition (destination IP address group, link name group): 

DESTIPGROUP DSTIPGRP1 
  1.2.3.5  1.2.3.6 

NULL Not coded, but listed here for completeness. The client identifier type 
indicates that no client identifier was specified. This is valid for the 
DEFAULTAPPL, LINEMODEAPPL, USSTCP and INTERPTCP 
mapping statements. It is the implied client identifier for the 
DEFAULTLUS, DEFAULTLUSSPEC, DEFAULTPRT and 
DEFAULTPRTSPEC object statements.

Client Identifier Type Definition
194 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



ENDDESTIPGROUP 
LINKGROUP LINKGRP1 
  LINK1 LINK2 LINK3 
ENDLINKGROUP 
LUMAP LUGRP1 DSTIPGRP1 
LUMAP LUGRP2 LNKGRP1 

6. Wild card match for destination in a group definition (destination IP address group, link 
name group):

DESTIPGROUP DSTIPGRP2 
  255.255.0.0: 1.4.0.0 
ENDDESTIPGROUP 
LINKGROUP LINKGRP2 
  LINK* %LINK 
ENDLINKGROUP 
LUMAP LUGRP1 DSTIPGRP2 
LUMAP LUGRP2 LNKGRP2 

7. Null Client ID (DEFAULTAPPL, LINEMODEAPPL, USSTCP, INTERPTCP, DEFAULTLUS, 
DEFAULTLUSSPEC, DEFAULTPRT, DEFAULTPRTSPEC):

DEFAULTAPPL     TSO 
LINEMODEAPPL    CICS 
USSTCP          USSTAB1 
INTERPTCP       INTTAB1 
DEFAULTLUS 
  LU01..LU99 
ENDDEFAULTLUS 

Application routing means that you are able to control what the Telnet client initially is 
presented with when a new Telnet session is established. When a client connects to the 
Telnet server, the following sequence will occur:

Step 1. LU name selection for TN3270E clients

This step will occur first only with TN3270E clients. A TN3270E client may optionally 
request that a particular device name be assigned. If the device name is allowed for this 
client and is available, the client is assigned the requested device name. Otherwise, the 
request is rejected with an appropriate reason code. The device name can be either an LU 
name or an LU group name. A sample IBM Personal Communication Client configuration 
is shown in Figure 8-9 on page 196.

Because of this implementation, device name selection is required during session 
negotiation. This means the device name will be chosen before the application is chosen.

LU name selection will occur based on the LU mapping sequence shown in Table 8-4 on 
page 197. DEFAULTLUS will also be chosen for display sessions if all the mappings fail.
Chapter 8. TN3270 Telnet server 195



Figure 8-9   Sample client device name configuration

Step 2. Initial screen selection

When a client connects to the Telnet server, it selects an application, a USS message 10 
screen, or the Telnet solicitor screen.
196 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Step 3. Application-based LU selection for non-TN3270E clients

After an application is chosen by the user or DEFAULTAPPL definition, LU name selection 
will occur based on the LU mapping sequence shown in Table 8-4 and LU and LUMAP 
definition shown in Table 8-5. All the applications must be defined in the PROFILE using 
the RESTRICTAPPL, ALLOWAPPL, or DEFAULTAPPL statements.

Because of the Step 1 process, TN3270 and TN3270E may result in a different outcome. 
Consider the example depicted in Figure 8-10.

Figure 8-10   LU selection example

In this example, the server will react differently depending on the client type:

� TN3270 clients

a. Solicitor screen appears.

b. Specify APPL1, USER54, and a password. The server selects T3.

� TN3270E clients

a. Solicitor screen appears. The server selects T1 at this time.

b. Specify APPL1, USER54, and a password. The server fails the connection because of 
an LU mismatch.

Table 8-4 shows the initial screen and LU selection sequence.

Table 8-4   Initial screen and LU selection sequence 

Notes:

BEGINVTAM
  DEFAULTLUS T1 T2 T3 T4 T5 ENDDEFALTLUS
  RESTRICTAPPL APPL1 USER USER54 LU T3
ENDVTAM

Note: The specification of LU names in the ALLOWAPPL or RESTRICTAPPL is optional. 
Use of the LUMAP statements is the preferred method of assigning LUs. The 
RESTRICTAPPL parameter is still viable with a TN3270E connection via the 
SIMCLIENTLU statement or mapping statements.

Mapped to Application Security Application Routing

LUMAP LINEMODEAPPL
DEFAULTAPPL

USSTCP 1

Host Name 1 1 2

IP Address 2 3 4

Host Name Group 3 5 6

IP Address Group 4 7 8

Wildcard Host Name 2 5 9 10

IP Subnet 3 6 11 12

Network Interface not applicable 13 14

No Option not applicable 15 16
Chapter 8. TN3270 Telnet server 197



1 USSTCP is not applicable to the line mode clients.

2 Wild cards are not allowed on LUMAP, PRTMAP, DEFAULTAPPL, LINEMODEAPPL, 
and USSTCP statements. HNGROUP block should be used.

3 IP subnets are not allowed on LUMAP, PRTMAP, DEFAULTAPPL, LINEMODEAPPL, 
and USSTCP statements. IPGROUP block should be used.

Table 8-5 shows the LU name allocation rules based on an application name.

Table 8-5   LU name allocation rules

LU mapping for application security
You can use LUMAP statements to define a mapping from an LU or a group of LUs to a client 
identifier. Multiple LUMAP statements for the same client are supported. You can map 
different LU groups to the same client or client group with IP address or host name. For 
LUMAP syntax, see z/OS V1R2.0 Communications Server IP Configuration Reference, 
SC31-8776.

The LUMAP syntax has expanded throughout the releases to handle more mappings of LUs 
to CLIDs. Here are some examples of LUMAP coding:

1. Map an LU name with an IP address

In the following example, workstation 9.24.105.220 will always be assigned to an LU name 
of RA03TN70:

LUMAP RA03TN70 9.24.105.220

2. Map a group of LUs with an IP address

In order to associate a group of LUs and an IP address, you have to use 
LUGROUP/ENDLUGROUP statements to define a group of LUs. The following example 
shows that when the workstation 9.24.105.220 connects to z/OS, it will be assigned to one 
of the LUs RA03TN70 through RA03TN75, which means that the workstation 9.24.104.28 
can have up to six Telnet sessions when accessing z/OS:

LUGROUP LUGRP1
        RA03TN70 RA03TN71 RA03TN72 RA03TN73 RA03TN74 RA03TN75
ENDLUGROUP
LUMAP LUGRP1 9.24.105.220

3. Map a group of LUs with a group of IP addresses

In order to associate a group of LUs and a group of IP addresses you have to use 
LUGROUP/ENDLUGROUP statements to define a group of LUs and 
IPGROUP/ENDIPGROUP statements to define a group of IP addresses. The following 
example shows that when any of the workstations on the 9.24.105.0 subnet connect to 
z/OS, they will be assigned one of the LUs RA03TN01 through RA03TN20:

RESTRICAPPL/ALLOWAPPL DEFAULTAPPL

Both LU and LUMAP 
are defined

The selected LU must be in both lists. Not applicable

Either LU or LUMAP 
is defined

The LU is selected from the defined list. The LU is selected from 
the LUMAP list.

Neither LU nor 
LUMAP is defined

The LU is selected from the default list. The LU is selected from 
the default list.
198 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



LUGROUP EN1LUG
        RA03TN01..RA03TN20
ENDLUGROUP
IPGROUP EN1IPG 255.255.255.0:9.24.105.0 ENDIPGROUP
LUMAP EN1LUG EN1IPG

4. Map an LU name with a host name

In the following example, workstation m238p4rk.itso.ral.ibm.com will always be assigned 
to an LU name of RA03TN70:

LUMAP RA03TN70 m238p4rk.itso.ral.ibm.com

5. Map a group of LUs with a host name

In order to associate a group of LUs and a host name, you have to use 
LUGROUP/ENDLUGROUP statements to define a group of LUs. The following example 
shows that when the workstation m238p4rk.itso.ral.ibm.com connects to z/OS, it will be 
assigned to one of the LUs RA03TN01 through RA03TN05, which means that the 
workstation m238p4rk.itso.ral.ibm.com can have up to five Telnet sessions when 
accessing z/OS:

LUGROUP NTLUG
        RA03TN01 RA03TN02 RA03TN03 RA03TN04 RA03TN05
ENDLUGROUP
LUMAP NTLUG m238p4rk.itso.ral.ibm.com

6. Map a group of LUs with a group of host names

In order to associate a group of LUs and a group of IP addresses you have to use 
LUGROUP/ENDLUGROUP statements to define a group of LUs, and 
HNGROUP/ENDHNGROUP statements to define a group of IP addresses. The following 
example shows that when any of the workstations on the itso.ral.ibm.com domain connect 
to z/OS, they will be assigned one of the LUs RA03TN61 through RA03TN80:

LUGROUP TR1LUG
        RA03TN61..RA03TN80
ENDLUGROUP
HNGROUP TR1HNG **.itso.ral.ibm.com ENDHNGROUP
LUMAP TR1LUG TR1HNG

As SNA security normally relies on the LU names, it is imperative to have means to 
ensure the IP addresses using Telnet really are the ones they pretend to be. This requires 
an adequate network security management.

The LUMAP statement that mapped the LU name to the IP address assumed a static IP 
address at the end user. But with dynamic IP assignment, this assumption is no longer 
valid because the DHCP may assign a different IP address to the client every time the 
client connects to the Telnet server.

LUMAP with host name mapping will help you solve this problem. To do so, DHCP is 
required to allow clients to specify host names. And DDNS is required as an interface to 
the DHCP server for host name updates. This solution may avoid specifying LU names in 
the TN3270E clients.

7. Map a group of LUs with a group of destination IP addresses

In order to associate a group of LUs and a group of destination IP addresses you have to 
use LUGROUP/ENDLUGROUP statements to define a group of LUs and 
DESTIPGROUP/ENDDESTIPGROUP statements to define a group of destination IP 
addresses. Following is an example, mapping LUs RA03TN01 and RA03TN02 to 
destination IP addresses 1.2.3.5 and 1.2.3.6:
Chapter 8. TN3270 Telnet server 199



LUGROUP LUGRP1
        RA03TN01 RA03TN02 
ENDLUGROUP
DESTIPGROUP DSTIPGRP1
 1.2.3.5  1.2.3.6 
ENDDESTIPGROUP 
LUMAP LUGRP1 DSTIPGRP1 

8. Map a group of LUs with a group of link names

In order to associate a group of LUs and a group of link names, you have to use 
LUGROUP/ENDLUGROUP statements to define a group of LUs and 
LINKGROUP/ENDLINKGROUP statements to define a group of link names. Following is 
an example, mapping LUs RA03TN61 to RA03TN80 to link names LINK1, LINK2 and 
LINK3:

LUGROUP LUGRP2
        RA03TN61..RA03TN80
ENDLUGROUP
LINKGROUP LINKGRP1 
 LINK1 LINK2 LINK3 
ENDLINKGROUP 
LUMAP LUGRP2 LNKGRP1

9. Map a group of LUs with a group of user IDs

In order to associate a group of LUs and a group of user IDs, you have to use 
LUGROUP/ENDLUGROUP statements to define a group of LUs and 
USERGROUP/ENDUSERGROUP statements to define a group of user IDs. Following is 
an example, mapping LUs RA03TN01 to RA03TN20 to user IDs MOBL0002, MOBL0003 
and MOB1%%C (%% means any character in that position):

LUGROUP LUGRP3
        RA03TN01..RA03TN20
ENDLUGROUP
USERGROUP  USRGRP1
 MOBL0002 MOBL0003 
 MOBL1%%C 
ENDUSERGROUP 
LUMAP   LUGRP3 USRGRP1 

10.This syntax, implemented by OS/390 V2R10, applies to all of the syntax options above. 
Additionally, it provides a default application with the LOGAPPL functionality in the LUMAP 
statement. 

LUMAP RA03TN70 9.24.105.220 SPECIFIC DEFAPPL RA03T LOGAPPL RA03TP70
PRTMAP RA03TP70 9.24.105.220

LUGROUP LUGRP1
        RA03TN90..RA03TN99
ENDLUGROUP
PRTROUP PRTGRP1
        RA03TP90..RA03TP99
ENDPRTGROUP
LUMAP LUGRP1 9.24.105.220 SPECIFIC DEFAPPL RA03N LOGAPPL PRTGRP1
PRTMAP PRTGRP1 9.24.105.220

You can associate printers at the same time in the LUMAP syntax with the DEFAPPL 
parameter. Also you can use them without printer association or without the DEFAPPL 
parameter.
200 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Application selection
After a client is connected to the Telnet server, an application, a USS message 10 screen, or 
a network solicitor screen will be sent to the client. Then an application permission check and 
LU allocation will occur based on a default application name or a user-entered application 
name. If the application is permitted, an LU-LU session will be established.

Figure 8-11   IP address to LU mapping

LUMAP statement with DEFAPPL option
You can define an application to an LU or LUGROUP with the LUMAP statement. The 
DEFAPPL parameter on the LUMAP statement allows a host application to be mapped with 
an LU name or LUGROUP name instead of using DEFAULTAPPL. The LUMAP-DEFAPPL 
statement is treated just like DEFAULTAPPL when a client identifier matches the LUMAP 
statement. The LUMAP-DEFAPPL statement also supports the LOGAPPL, FIRSTONLY, and 
DEFONLY parameters that are used by DEFAULTAPPL and LINEMODEAPPL. You can see a 
sample definition in Figure 8-12.

MVS

BEGINVTAM
     LUGROUP  ABC  ACCT001..
     IPGROUP   XYZ  Subnet Mask
     LUMAP      ABC XYZ
     DEFAULTAPPL ADMLOGO XYZ
     LINEMODEAPPL APCLOGO XYZ
     USSTAB
     ENDVTAM

IP Address
Transparent Mode

TCP/IP

TELNET
SERVER

ADMLOGO

ADMLOGO
Application

LU=ACCT001
(to VTAM)

Terminal on Subnet for
IP Group XYZ
Chapter 8. TN3270 Telnet server 201



Figure 8-12   Sample LUMAP-DEFAPPL definition

LINEMODEAPPL and DEFAULTAPPL statements
You have the following options for selecting an initial application or a USS message 10 
screen:

1. You can use the LINEMODEAPPL statement to specify an initial application to which to 
connect when a Telnet client establishes a line mode connection.

2. You can use the DEFAULTAPPL statement to specify an initial application to which to 
connect when a Telnet client establishes a 3270 full-screen connection.

3. The LOGAPPL function can be coded on DEFFAULTAPPL and LINEMODEAPPL. The 
LOGAPPL function keeps the Telnet LU active if a Request Session fails because the host 
application is not active. In addition, VTAM remembers the attempted Request Session 
and will initiate a session request to the Telnet LU on behalf of the host application when 
the application becomes active. When the Request Session fails, Telnet sends the client a 
solicitor panel or USSMSG7 screen.

4. You can use the USSTCP statement to specify a USS message 10 screen to show when a 
Telnet client establishes a 3270 connection.

5. You can use the INTERPTCP statement to specify a customized interpret table, which is 
used to interpret incoming USS commands before the USS command processor is 
invoked.

6. You can specify none of the above and get the Telnet solicitor screen.

Telnet uses the sequence shown in Table 8-4 on page 197 to select an application or a USS 
message 10. If neither an application nor a USS message 10 can be mapped to the client, 
then the default Telnet solicitor screen is displayed to get an application from the user.

;TCPIP.TCPPARMS.R2615(TELN03A) - 01.44 
TELNETPARMS                                                             
   TKOSPECLU 0                                                          
   PORT 23                                                              
   WLMCLUSTERNAME  TN03 TNRAL TNTSO   ENDWLMCLUSTERNAME                 
ENDTELNETPARMS                                                          
                                                                        
BEGINVTAM                                                               
   PORT 23 
   ALLOWAPPL *                                                          
   MSG07                                                                
;*** IP2 TN3270 DEFINITIONS **                                          
                                                                        
; IP2 group includes 9.24.105.220 and 9.24.106.165 ip addresses         
  IPGROUP IP2                                                           
9.24.105.220 9.24.106.165                                         
  ENDIPGROUP                                                            
   LUGROUP LU2 RA03TN50..RA03TN51 ENDLUGROUP                            
   PRTGROUP PR2 RA03TP50..RA03TP51 ENDPRTGROUP                          
; LUTSO group includes lus from RA03TN70 to RA03TN75                    
  LUGROUP LUTSO                                                         
      RA03TN70..RA03TN75                                                
  ENDLUGROUP                                                            
; This mapping maps LUTSO lu group to IP2 ip group and supports direct   
; logon to RA03T application for LUTSO group name and members.          
  LUMAP  LUTSO   IP2 SPECIFIC DEFAPPL RA03T LOGAPPL 
202 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



If the USSTCP statement is specified but the USS table module cannot be found in the 
system's linklist or TCPIP STEPLIB, a default USS table (EZBTPUST) will be used.

RESTRICTAPPL and ALLOWAPPL statements
When an application name is selected, an LU is allocated based on the client identifier 
selection and application status (restricted, allowed) using the following criteria:

1. Checks if it is a restricted application (RESTRICTAPPL).

The RESTRICTAPPL statement restricts access to the specified application. This 
statement must be followed by a USER statement for each user who is authorized to use 
the application. When a restricted application is selected, users are prompted to identify 
themselves with a user ID and a password. RACF or equivalent security program is used 
to validate the password.

The USER statement specifies a user who is authorized to access the application 
specified by the RESTRICTAPPL statement. Only one user ID is specified on a USER 
statement, but multiple USER statements can be used to specify multiple user ID 
definitions. This statement must follow the RESTRICTAPPL statement. For example:

RESTRICTAPPL  RAKAA
    USER user23
    USER user24

You can use LU statements in the RESTRICTAPPL statement to map an LU name and 
further restrict access to the application, but it complicates administration and may fail 
with TN3270E clients if not configured properly.

2. Checks if it is an allowed application (ALLOWAPPL).

You can use LU statements in the ALLOWAPPL statement to map an LU name, but the 
LUMAP statement is the preferred method of allocating LUs. Since OS/390 V2R10, Telnet 
Server supports LUGROUP name usage for ALLOWAPPL statement. The ALLOWAPPL 
statement will be used just to specify applications defined in the USS message 10 as 
applicable.

3. Checks if it is a default application (LINEMODEAPPL, DEFAULTAPPL).

DISCONNECTABLE and QSESSION parameters
On the ALLOWAPPL and RESTRICTAPPL, the DISCONNECTABLE and QSESSION 
parameters may be specified.

� DISCONNECTABLE allows applications to be disconnected rather than logged off. This 
may be of value to VM and NetView/Access Services users. For example, you will be able 
to reconnect to the application before its timeout.

� QSESSION allows you to select individually which VTAM applications queue their 
sessions when performing a CLSDST/PASS. CLSDST/PASS information is stored up to 
10 sessions deep. QSESSion is only needed on the first application entered, for example 
NetView/Access Services.

Generic and specific device pools for LU names
Server LU device name pools (terminal or printer) can be defined as either generic or 
specific. Specific pools are used to satisfy requests from clients that request a particular 
(specific) device name.

Note: The LU is selected during negotiation for TN3270E connections before the 
application is chosen. Care must be taken to ensure that an LU name chosen based solely 
on LU mapping during TN3270E negotiation is not later rejected because of LU statements 
on the RESTRICTAPPL and ALLOWAPPL statements.
Chapter 8. TN3270 Telnet server 203



Generic pool LUs are used to satisfy connection requests where no device name is 
requested. If a specific request fails to match a device name in the specific LU pool, the 
generic pool will be searched. If again no match is found, the connection will be dropped by 
the server.

TN3270E recognizes four kinds of device pools: generic and specific terminals (LUMAP) and 
generic and specific printers (PRTMAP). Here are the rules for terminal and printer 
connections:

� The client can connect without a device name request and let the server select the 
terminal LU for the client. This function is also available for printer connections. The server 
selects a name and sends it to the client. If the client agrees, negotiation continues. 
Otherwise, the connection is dropped.

� The client can request a specific device name during negotiation. If the server PROFILE 
definitions allow the use of this name for the particular client identifier, that name is 
reserved for the client and negotiations continue. First the specific group is checked; if no 
match is found, the generic group is checked.

The LUGROUP or PRTGROUP statement with the SPECIFIC parameter configures the 
specific pool. The following is an example:

LUMAP SPECLX SPECIP SPECIFIC

The LUGROUP or PRTGROUP statement with the GENERIC parameter configures the 
generic pool. The following is an example:

LUMAP GENLX GENIP GENERIC

GENERIC is the default for all LUMAP and PRTMAP statements.

Printer definition
As part of the TN3270E protocol the Telnet server supports 3287-type printers. The printers 
are basically defined in the same way as display LUs. Just use PRTGROUP and PRTMAP 
instead of LUGROUP and LUMAP.

The client can also ask for a printer session that is associated with an existing display 
session. The server must know through profile statements which printer LU is associated with 
which display LU. There must be a one-to-one mapping of display LUs to printer LUs. This 
mapping can be either a single display LU to a single printer LU or a display LU group to a 
printer LU group with each group having the same number of LUs. The association is done 
using the LUMAP statement. The last parameter on the LUMAP statement is the printer LU 
name or printer LU group name that is associated with the display LU name or display LU 
group in the LUMAP statement.

LUMAP SPECLX SPECIP GENERIC PRTLU

Printer sessions that are not associated require either the PRTMAP/PRTGROUP statements 
for direct printer connections or the LUMAP statement for associated printer sessions. You 
can use specific or generic mapping. For an explanation of specific mapping see “Generic 
and specific device pools for LU names” on page 203.

LU mapping samples
Figure 8-13 is a sample Telnet PROFILE configuration. The markers in this figure are related 
to those in Table 8-4 on page 197 and to the explanations that follow.
204 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 8-13   Example of LU mapping (part 1)

TELNETPARMS
  PORT 23
  INACTIVE 600  TIMEMARK 600  SCANINTERVAL 120
  SMFINIT STD  SMFTERM STD
  WLMCLUSTERNAME TNRAL ENDWLMCLUSTERNAME
ENDTELNETPARMS
TELNETPARMS
  SECUREPORT 223 KEYRING MVS TCP.Telnet.KYR
  INACTIVE 600  TIMEMARK 600  SCANINTERVAL 120
  SMFINIT STD  SMFTERM STD
  WLMCLUSTERNAME TNRALSSL3 ENDWLMCLUSTERNAME
ENDTELNETPARMS

BEGINVTAM
  PORT 23 223

  DEFAULTLUS
    RA&SYSCLONE.TN01..RA&SYSCLONE.TN50                  A
  ENDDEFAULTLUS

  LUGROUP SPECLU
    RA&SYSCLONE.TN91..RA&SYSCLONE.TN99                  B
  ENDLUGROUP
  LUMAP  SPECLU  9.24.104.201

  IPGROUP SPECIP
    9.24.104.191 9.24.104.192 9.24.104.193 9.24.104.194 9.24.104.195
    9.24.104.196 9.24.104.197 9.24.104.198 9.24.104.199
  ENDIPGROUP

  LUGROUP SPECLX
    RA&SYSCLONE.TN71..RA&SYSCLONE.TN75                  C
  ENDLUGROUP

PRTGROUP PRINTERS
    RA&SYSCLONE.TPR1..RA&SYSCLONE.TPR5
  ENDPRTGROUP             ; printers for specific mapping and
                          ; printer to LU association
  LUMAP SPECLX SPECIP SPECIFIC PRINTERS

  PRTGROUP PRINTERG
    RA&SYSCLONE.TPR6..RA&SYSCLONE.TPR9                  D
  ENDPRTGROUP
  PRTMAP PRINTERG SPECIP

  LUGROUP RISCLUG
    RA&SYSCLONE.TN82 RA&SYSCLONE.TN83 RA&SYSCLONE.TN84  E
    RA&SYSCLONE.TN85 RA&SYSCLONE.TN86
  ENDLUGROUP
  LUMAP  RISCLUG  9.24.104.28

  LUGROUP TR1LUG
    RA&SYSCLONE.TN61..RA&SYSCLONE.TN80                  F
  ENDLUGROUP
  IPGROUP TR1IPG 255.255.255.0:9.24.104.0 ENDIPGROUP
  LUMAP  TR1LUG  TR1IPG
Chapter 8. TN3270 Telnet server 205



Figure 8-14   Example of LU mapping (part 2)

Notes:

A Default LU name selection

You can use DEFAULTLUS/ENDDEFAULTLUS to define a universal pool of LUs. These 
LUs are used when the application selected by the user does not meet the criteria for an 
LU, as defined in the ALLOWAPPL, RESTRICTAPPL, or LUMAP statements. When 
defining this universal pool of LUs, avoid coding MAPPED LU NAMES in the 
DEFAULTLUS/ENDDEFAULTLUS statement also. It prevents the pool of mapped LUs 
from being exhausted.

B LU name selection based on the IP address

The workstation with the IP address 9.67.32.10 connecting to z/OS will be mapped with 
RA39TN81. &SYSCLONE. variable is 39 on this system. Also the workstation with the IP 
address 9.24.104.201 will be mapped with the LU from RA39TN91 through RA39TN99.

C Terminal LU to printer LU association

Users with IP addresses defined in SPECIP can get an LU name from the SPECLX group 
and later an associated printer; they can also directly request a specific printer LU.

To be of use, these printers should also be defined in the VTAM application.

D Printer LU selection based on the IP address

All users with addresses defined in SPECIP can get printer sessions.

E Initial screen and LU name selection based on the IP address

The workstation with the IP address 9.24.104.28 connecting to z/OS in transparent mode 
will get USS message 10 from the USS table TELNUST. Also, the first LU name available 
in the RISCLUG LU group from RA39TN82 through RA39TN86 will be assigned.

 LUGROUP NTLUG
    RA&SYSCLONE.TN51..RA&SYSCLONE.TN59                  G
  ENDLUGROUP
  HNGROUP HNG
    **.ral.ibm.com
  ENDHNGROUP
  LUMAP  NTLUG  HNG  SPECIFIC

  LUMAP  RA&SYSCLONE.TN81  9.67.32.10                   B
  LUMAP  RA&SYSCLONE.TN60  wtr05246.itso.ral.ibm.com    H

  USSTCP       TELNUSS                                  I
  USSTCP       TELNUST 9.24.104.28                      E
  DEFAULTAPPL  RAKAA   TR1IPG                           F
  LINEMODEAPPL RA&SYSCLONE.T ICP1                       J

  ALLOWAPPL RA*
  ALLOWAPPL AD*
  ALLOWAPPL A2*
  ALLOWAPPL FD*
  ALLOWAPPL X6*
  ALLOWAPPL X7*
ENDVTAM
206 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



F Initial screen and LU name selection based on the IP addresses group

The workstations on the 9.24.104.0 subnet (except the workstation with the IP address 
9.24.104.28) is assigned to one of the LUs RA39TN61 through RA39TN80 with the 
full-screen application called RAKAA.

G LU name selection based on the host names group

The workstations with the host name that matches the wild card **.ral.ibm.com is assigned 
to one of the LUs RA39TN51 through RA39TN59.

H LU name selection on the basis of host name

The workstation with the host name wtr05246.itso.ral.ibm.com connecting to z/OS will be 
mapped with RA39TN60.

I Initial screen selection with no option specified

If TCP/IP does not find an application or USS message 10 based on the client's host 
name, IP address, or link name, it tries to find it with no optional parameter. In this case, 
TCP/IP finds TELNUSS as a universal USS message 10. This search sequence is shown 
in Table 8-4 on page 197.

J Initial screen selection based on the link name

Any users of the ICP1 network interface will use the RA39T line mode application when 
connecting to z/OS in line mode.

8.2.5  USS messages
If you do not want to use the default Telnet solicitor logon panel, you can implement a 
customized Unformatted System Services (USS) screen as the Telnet logon screen. Telnet 
USSMSG tables can be used to send messages to the client and process commands from 
the client. Telnet USSMSG tables provide you with a way to emulate VTAM USSMSG 
processing. For more details on how to implement these USS messages, see z/OS V1R2.0 
Communications Server IP Configuration Guide, SC31-8775.

USS services are used for 3270 devices only. You may include information about logon errors 
on the message 10 screen by USS message 7 support.

USS message support has been improved to bring TCP/IP more in line with VTAM. End users 
can enter APPLID, LOGMODE and DATA parameters. Date and time are additional 
substitution variables on USSMSG. Functional support is included in IBMTEST and LOGOFF 
commands. Several message types are also included.

You can use the USSTCP mapping rules to associate a customized USS message 10 screen 
with an IP address, a group of IP addresses, a host name, a group of host names, or a link 
name (for example, a client identifier).

When you create a USS table for the TCP/IP environment, you must be aware of certain rules 
and restrictions:

1. The USS table load module should be accessible to the TCP/IP and Telnet address 
space. You can ensure that by placing the load library holding the USS table in the 
STEPLIB concatenation of the TCP/IP address space. See 1 in Figure 8-15.
Chapter 8. TN3270 Telnet server 207



Figure 8-15   TCP/IP address space STEPLIP for USS table

2. You may reuse any USS table already in use in your VTAM environment, as long as it is 
one that has been coded for non-SNA terminals.

� TN3270 and TN3270E clients understand only the 3270 data stream and non-SNA 
commands with USS messages. Except for the READ MODIFIED ALL command, the 
commands valid for an SNA environment are also valid for the non-SNA locally attached 
environment. For example, the ERASE/WRITE command (Figure 8-17 on page 210) is valid 
in both SNA and non-SNA environment, but the command code is different. Thus we used 
an x'05' command code instead of an x'F5' command code to define the ERASE/WRITE 
command in Figure 8-17 on page 210.

� To activate Telnet's character string substitution you must use the LUNAME or SCAN 
subparameter of the BUFFER parameter on the USSMSG macro.

� You may use the TEXT instead of the BUFFER parameter in USS messages.

3. Following are the character strings supported by character string substitution:

Table 8-6   Character strings supported 

4. The USS table can be changed, re-assembled, and put back into the same library ready to 
be loaded when the next OBEYFILE command processes the Telnet profile. The end result 
will be existing connections continue to use the old table but any new connections will use 
the newly assembled table.

5. LU names are reserved for only TN3270E connections when the user connects. TN3270 
and line mode connections do not reserve an LU. When the application name is entered, 
TN3270E will verify that the reserved LU is valid for the application chosen and will open 
the ACB. TN3270 and line mode will select an LU based on CLID to object mapping and 
then open the ACB.

//T03ATCP  PROC PARMS='CTRACE(CTIEZB01)',
// XPARM='ENVAR("RESOLVER_CONFIG=//TCP.TCPPARMS(TDATA03A)")'
   :
   :
//STEPLIB  DD DSN=TCPIP.SEZATCP,DISP=SHR
//   1   DD DSN=TCPIP.ITSC.LINKLIB,DISP=SHR
   :
   :

Character string Explanation

@@LUNAME Server (SLU) Name

@@@@RUNAME Failing RU name

@@@SENSE Sense Code

@@@@DATE Current Date

@@@@TIME Current Time

@@@@@@@@@IPADDR Client IP Address

@@PRT Client Port Number
208 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



6. TCP/IP supplies a default USS table named EZBTPUST. You will find the load module in 
the SEZALINK data set. The source code is in the SEZAINST and has the same name.

If the USSTCP statement is specified but the USS table module cannot be found in the 
system's linklist or TCP/IP's STEPLIB, the following default USS table (EZBTPUST) will be 
used, as shown in Figure 8-16.

Figure 8-16   Default USS table

7. Logon errors are handled by the MSG07 parm and logoff from applications is handled by 
the LUSESSIONPEND parm. With MSG07 coded, logon errors will result in MSG07 or 
MSG04 being returned to the client. Without MSG07 coded, logon errors result in 
connection drops. With LUSESSIONPEND coded, logoff from the application will result in 
a new MSG10 or solicitor screen being sent to the client or the default application redriven. 
Without LUSESSIONPEND coded, logoffs from applications will result in connection 
drops.

Sample USS table coding and results
Figure 8-17 is a sample source USS table that was used for testing the Telnet USS messages 
7 and 10.

Note: Since ACB will not be opened until the application name is entered, an SNA 
application may not be able to acquire the Telnet display session. Printer session is an 
exception.

USSMSG10: Enter: LOGON APPLID() LOGMODE() DATA() 
                                                 
Port:   01079             Date: 07/09/01 
IPADDR: 9.24.105.220      Time: 11:05:22 
Chapter 8. TN3270 Telnet server 209



Figure 8-17   USSMSG7 and USSMSG10 sample

Figure 8-18 displays the USS message 10 screen that results from the coding in Figure 8-17.

USST     TITLE 'USSTAB FOR 5203TELN WITH NEW APPLICATIONS'
USSITSO  USSTAB  FORMAT=DYNAMIC
*
TSO03    USSCMD  CMD=TSO03,REP=LOGON,FORMAT=BAL
         USSPARM PARM=APPLID,DEFAULT=RA3AT
         USSPARM PARM=P1,REP=DATA
         USSPARM PARM=P2,REP=LOGMODE

           ..
           ..

IMS      USSCMD  CMD=IMS,REP=LOGON,FORMAT=BAL
         USSPARM PARM=APPLID,DEFAULT=T18AIMS
*
MESSAGE7 USSMSG   MSG=7,BUFFER=(MSG07,SCAN)
         DS    0F
MSG10    DC    AL2(MSG07E-MSG07S)
MSG10S   DC    X'05C21D70114040',C'MSG07 OE/390 (03)'

           ..                               Messages 7 and 10 are
           ..                               the same in this USS table,
                                            except for the number in
MSG07E   EQU   *                            line 1 column 4 and 5.
*
MESSAG10 USSMSG  MSG=10,BUFFER=(MSG10,SCAN)
         DS    0F
MSG10    DC    AL2(MSG10E-MSG10S)
MSG10S   DC 2X'05C21D70114040',C'MSG10 OE/390 (03)'
         DC    X'11C150'
         DC    C'Raleigh - International Technical Support OrganizationC
                - ITSO - ITSO1'
         DC    X'11C2F1'
         DC    C'System OE/390 (03)'
         DC    X'11C3F2'
         DC    C' '
         DC    X'114AC9',C'Enter:'
         DC    X'114A50',X'1D4013',CL41' ',X'1D40'
         DC    X'114BD9',C' '
         DC    X'114CE9',C'TSO03 userID - TSO on MVS03'
         DC    X'114DF9',C'TSO28 userID - TSO on MVS28'
         DC    X'114FC9',C'CICS         - CICS on MVS03'
         DC    X'1150D9',C'NVAS20       - NetView Access on MVS20'
         DC    X'11D1E9',C'IMS          - IMS on MVS18'
         DC    X'11D2F9',C'SYS6         - RALYDPD6'
         DC    X'11D4C9',C' '
         DC    X'11D5D9',C' '
 DC           X'11D660',C'Your IP Address:     @@@@@@@@@IPADDR'
 DC           X'11D7D3',C'Your Telnet Port:  @@PRT            '
 DC    X'11D7F0',C'----------------------------------------------'
 DC    X'11D85E',C'-----Last command: @@@@RUNAME'
 DC           X'11D940',C'LU: @@LUNAME         Sense Code: @@@SENSE'
 DC           X'11D9F3',C'Date: @@@@DATE Time: @@@@TIME'
MSG10E   EQU   *
END      USSEND
         END
210 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 8-18   USSMSG10: initial view

In the following screen you can also observe the contents of the USS message 7 keywords 
after the user has entered the USSCMD NVAS20 to request a cross-domain application that 
is currently not reachable. Notice the sense code of 087D0001, which indicates the 
application is unknown to VTAM.

Figure 8-19   USSMSG07: USSMSG7 contents after unsuccessful logon

MSG10 OE/390 (03)                                                               
Raleigh - International Technical Support Organization - ITSO - ITSO1           
                 System OE/390 (03)                                             
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
         Enter:                                                                 
                                                                                
         TSO03 userID - TSO on MVS03                                            
         TSO28 userID - TSO on MVS28                                            
         TSO39 userID - TSO on MVS39                                            
         CICS         - TCP/IP CICS on MVS18                                    
         NVAS20       - NetView Access on MVS20                                 
         IMS          - TCP/IP IMS on MVS18                                     
         SYS6         - RALYDPD6                                                
                                                                                
Your IP Address:     9.24.105.220                  Your Telnet Port:  01318     
---------------------------------------------------Last command:                
LU: RA03TN50         Sense Code:                   Date: 10/09/01 Time: 11:18:23

MSG07 OE/390 (03)                                                               
Raleigh - International Technical Support Organization - ITSO - ITSO1           
                 System OE/390 (03)                                             
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
         Enter:                                                                 
                                                                                
         TSO03 userID - TSO on MVS03                                            
         TSO28 userID - TSO on MVS28                                            
         TSO39 userID - TSO on MVS39                                            
         CICS         - TCP/IP CICS on MVS18                                    
         NVAS20       - NetView Access on MVS20                                 
         IMS          - TCP/IP IMS on MVS18                                     
         SYS6         - RALYDPD6                                                
                                                                                
Your IP Address:     9.24.105.220                  Your Telnet Port:  01318     
---------------------------------------------------Last command: REQSESS        
LU: RA03TN50         Sense Code: 087D0001          Date: 10/09/01 Time: 11:20:12
Chapter 8. TN3270 Telnet server 211



8.2.6  Using translation tables
Two types of translation tables are used by OS/390 V2R5 IP and later. SBCS are used for 
single-byte characters. DBCS translation tables are used for converting double-byte 
characters. DBCS are required for character sets such as Japanese Kanji.

For more information on how to use translation, see:

� Chapter 6, “National Language Support (NLS)” on page 139
� z/OS V1R2.0 Communications Server IP Configuration Guide, SC31-8775
� z/OS V1R2.0 Communications Server IP User’s Guide and Commands, SC31-8780

8.3  Operating the Telnet environment
The operator can use VARY commands to control Telnet and display commands to view 
profile, connection and port information. These commands are described in z/OS V1R2.0 
Communications Server IP System Administrator’s Commands, SC31-8781.

8.3.1  Telnet VARY commands
Telnet VARY commands give the operator control over stopping and starting Telnet and 
allowing clients to connect.

The combination of the STOP, QUIESCE, RESUME, and OBEYFILE commands gives the operator 
complete control over when to stop and start Telnet and when to allow end users to connect. 
To help manage commands related to multiple ports, VARY and DISPLAY commands for the 
profile, connection, and port categories support a PORT keyword. Telnet VARY commands 
include:

� VARY QUIESCE causes the port not to accept any new Telnet connections. The existing 
connections are not affected.

� VARY RESUME to end the QUIESCE state and accept new connections.

� VARY STOP to end all the connections to the Telnet port and close the port.

� Start or restart a port using the VARY OBEYFILE command (to update the Telnet PROFILE). 
Using this command, you can stop Telnet activity on one port and begin activity on a new 
port without stopping the TCP/IP stack. You can also start activity on new ports without 
stopping activity on existing ports.

� VARY ACTIVATE and INACTIVATE to activate and deactivate LUs from the Telnet server's 
perspective. If an LU is already in use, the INACT command will fail.

� VARY OBEYFILE is used to update the Telnet profile or to restart a Telnet port if the VARY 
STOP command has been issued.

� When the OBEYFILE command is issued, the existing profile becomes non-current. A new 
current profile is then used to serve all new connections. The non-current profile keeps 
serving its old connections.

Note: These commands are Telnet commands and have no effect on VTAM's LU 
status.
212 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



VARY ACT command
The VARY ACT command changes the availability status of a VTAM LU for Telnet server usage. 
ACT enables the specified LU to be a candidate to represent a Telnet client.

Figure 8-20   Telnet VARY ACT command

VARY INACT command
The VARY INACT command changes the availability status of a VTAM LU for Telnet server 
usage. INACT disables the LU as a candidate to represent a Telnet client.

Figure 8-21   Telnet VARY INACT command

But you cannot use the VARY INACT command for used LUs. You will get an error message as 
in Figure 8-22.

Figure 8-22   Telnet VARY INACT command for used LUs

VARY OBEYFILE command
The VARY OBEYFILE command is not a Telnet command, but it is used to update the Telnet 
profile or to restart a Telnet port.

Update profiles do not need to contain statements for all active ports. If the profile does not 
contain a TELNETPARMS block or a BEGINVTAM block for a port that is currently active, the 
port remains active with its current profile.

Note: If you QUIESCE or STOP a port defined with the WLMCLUSTERNAME statement, the 
QUIESCE and STOP commands will deregister the Telnet server from WLM. This will result in 
host unknown type messages for clients that attempt to connect to the Telnet server using 
the WLMCLUSTERNAME in a DNS/WLM sysplex. RESUME command will re-register the 
Telnet server with WLM. If there is more than one port defined with WLMCLUSTERNAME, 
the deregister will only occur when you stop the last WLM port.

V TCPIP,T39ATCP,T,ACT,RA39TN77
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPIPA,T,ACT,RA39TN77
EZZ6038I TELNET COMMAND ACT RA39TN77 COMPLETE

Note: The LUs must also be activated in VTAM or the openACB will fail and the LUs will be 
inactivated again.

V TCPIP,TCPIPA,T,INACT,RA03TN51                                 
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPIPA,T,INACT,RA03TN51 
EZZ6038I TELNET COMMAND INACT RA03TN51 COMPLETE 

V TCPIP,TCPIPA,T,INACT,RA03TN51                                      
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPIPA,T,INACT,RA03TN51      
EZZ6039I TELNET COMMAND INACT RA03TN51 FAILED, RC = 3001 
Chapter 8. TN3270 Telnet server 213



Figure 8-23   OBEYFILE command with Telnet

VARY QUIESCE command
The VARY QUIESCE command causes the specified port not to accept any new Telnet client 
connections. Currently established connections continue to be serviced. The current profile is 
retained as long as an OBEYFILE command does not create a new profile.

Figure 8-24   Telnet VARY QUIESCE command

VARY RESUME command
The VARY RESUME command causes the currently QUIESCEd port to begin accepting new 
Telnet client connections again using either the existing profile or a new profile. If a VARY 
OBEYFILE command has been issued while the port was QUIESCEd, a new profile will be 
used.

Figure 8-25   Telnet VARY RESUME command

VARY STOP command
The VARY STOP command ends the port connection and all active connections. After the VARY 
STOP command, the command processor is still active and you can use a VARY OBEYFILE 
command to activate a Telnet port using the Telnet configuration parameters.

Figure 8-26   Telnet VARY STOP command

V TCPIP,TCPIPA,O,TCPIP.TCPPARMS.R2615(TELN03A)                      
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPIPA,O,TCPIP.TCPPARMS.R261 5(TELN03A)                                                          
EZZ0300I OPENED OBEYFILE FILE 'TCPIP.TCPPARMS.R2615(TELN03A)'       
EZZ0309I PROFILE PROCESSING BEGINNING FOR 'TCPIP.TCPPARMS.R2615(TELN 03A)'                                                               
EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE 'TCPIP.TCPPARMS.R2615(TELN03A)'                                                           
EZZ0053I COMMAND VARY OBEY COMPLETED SUCCESSFULLY                    
EZZ0400I TELNET/VTAM (SECOND PASS) BEGINNING FOR FILE: 'TCPIP.TCPPAR MS.R2615(TELN03A)'                                                  
EZZ0201I NETWORK REFERENCE IN DATABASE REPLACED BY THIS ONE ON LINE 112                                                                    
EZZ6018I TELNET PROFILE UPDATE COMPLETE FOR PORT    23                 
EZZ6018I TELNET PROFILE UPDATE COMPLETE FOR PORT  6623                 
EZZ0403I TELNET/VTAM (SECOND PASS) COMPLETE FOR FILE: //'TCPIP.TCPPARMS.R2615(TELN03A)'

Note: The processing of the Telnet server begins with the EZZ0400I message and ends 
with the EZZ0403I message.

V TCPIP,TCPIPA,T,QUIESCE,PORT=6623                                 
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPIPA,T,QUIESCE,PORT=6623 
EZZ6003I TELNET QUIESCED ON PORT  6623 

V TCPIP,TCPIPA,T,QUIESCE,PORT=6623                                 
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPIPA,T,RESUME,PORT=6623 
EZZ6003I TELNET RESUMED ON PORT  6623 

V TCPIP,TCPIPA,T,STOP,PORT=6623                                
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPIPA,T,STOP,PORT=6623
EZZ6010I TELNET SERVER ENDED FOR PORT  6623 
214 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



8.3.2  Telnet DISPLAY commands
The profile displays have been streamlined to match the mapping of objects to client 
identifiers concept. Several profile displays are no longer supported and have been replaced 
by Object or ClientID displays. The old commands are still accepted, but the output is in the 
Object or ClientID format. The same, or more, information is provided. The following displays 
are no longer supported and internally generate the specified Object or ClientID:

� Appl
� Defaults 
� IpGroup
� HnGroup
� Linkname
� LuGroup
� LuMap
� WhereUsed

Telnet DISPLAY commands support multiple dynamic profiles in Telnet. The DISPLAY 
commands are used to supply the operator with information concerning:

� Profiles
� Connections
� Port
� Server

The new DISPLAY commands available are:

� Display Telnet ClientID
� Display Telnet DEVICETYPE 
� Display Telnet OBJect 
� Display Telnet PROFILE 
� Display Telnet Group Connection 
� Display Telnet Group WLM 
� Display Telnet Group INACTLUS 

For a complete description of each command, please refer to z/OS V1R2.0 Communications 
Server IP System Administrator’s Commands, SC31-8781.

8.3.3  VTAM display commands
The following examples show the output of the VTAM application program major node, as in 
Figure 8-27, and a minor node, as in Figure 8-28. ACT/S means VTAM ACB has been 
opened and an LU-LU session has been established.

Figure 8-27   Telnet major node display

OS/390 V2R5 and later has added a function to report the IP addresses associated with 
OS/390 Telnet server clients and client IP addresses reported by dependent LUs acting as 
Telnet servers. The message shows the IP address of the TN3270 client in dotted decimal 
form in the IST1669I message.

D NET,ID=TELAPPL,E                                                
IST097I DISPLAY ACCEPTED                                          
IST075I NAME = TELAPPL, TYPE = APPL SEGMENT 178                   
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV                       
IST360I APPLICATIONS:                                             
IST080I RA03TN?? CONCT      RA03TN51 ACT/S      RA03TP?? CONCT    
IST314I END 
Chapter 8. TN3270 Telnet server 215



Figure 8-28   Telnet application LU display

There is a DISPLAY IDTYPE - IPADDR. The operator should issue this DISPLAY ID IDTYPE, with 
input ID=i.j.k.l which is TN3270 client IP address in dotted decimal form, and if there is an 
associated z/OS Telnet server APPL or LU minor resource name, VTAM will output it. An 
example is shown in Figure 8-29.

Figure 8-29   VTAM IPADDR display with multiple connections

In this example, a remote Telnet client at the one IP address has multiple TN3270 
connections, to one TN3270 server. For this case, since there are multiple LUs, only a 
summary is presented. You may issue the D NET,ID=luname,E command to get detailed 
information.

D NET,ID=RA03TN51,E                                                    
IST097I DISPLAY ACCEPTED                                               
IST075I NAME = USIBMRA.RA03TN51, TYPE = DYNAMIC APPL 186               
IST486I STATUS= ACT/S, DESIRED STATE= ACTIV                            
IST1447I REGISTRATION TYPE = CDSERVR                                   
IST1629I MODSRCH = NEVER                                               
IST977I MDLTAB=***NA*** ASLTAB=***NA***                                
IST861I MODETAB=ISTINCLM USSTAB=***NA*** LOGTAB=***NA***               
IST934I DLOGMOD=***NA*** USS LANGTAB=***NA***                          
IST1632I VPACING =  7                                                  
IST597I CAPABILITY-PLU ENABLED  ,SLU ENABLED  ,SESSION LIMIT 00000001  
IST231I APPL MAJOR NODE = TELAPPL                                      
IST1425I DEFINED USING MODEL RA03TN??                                  
IST654I I/O TRACE = OFF, BUFFER TRACE = OFF                            
IST1500I STATE TRACE = OFF                                             
IST271I JOBNAME = TCPIPA, STEPNAME = TCPIPA, DSPNAME = IST7512E        
IST228I ENCRYPTION = OPTIONAL , TYPE = DES                             
IST1563I CKEYNAME = RA03TN51 CKEY = PRIMARY CERTIFY = NO               
IST1552I MAC = NONE MACTYPE = NONE                                     
IST1050I MAXIMUM COMPRESSION LEVEL - INPUT = 0, OUTPUT = 0            
IST1633I ASRCVLM = 1000000                                            
IST1634I DATA SPACE USAGE: CURRENT = 0 MAXIMUM = 0                    
IST1669I IPADDR..PORT 9.24.105.220..1078                              
IST171I ACTIVE SESSIONS = 0000000001, SESSION REQUESTS = 0000000000   
IST206I SESSIONS:                                                     
IST634I NAME     STATUS         SID          SEND RECV VR TP NETID    
IST635I RA03T03  ACTIV-P    C7335B7CBE2C4935 0581 05D5       USIBMRA  
IST314I END 

D NET,IDTYPE=IPADDR,ID=9.24.105.220                 
IST097I DISPLAY ACCEPTED                            
IST1668I LUNAME             IPADDR..PORT 215        
IST1670I USIBMRA.RA03TN50   9.24.105.220..1956      
IST1670I USIBMRA.RA03TN51   9.24.105.220..1078      
IST314I END 
216 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Figure 8-30   VTAM IPADDR display with a single connection

If there is a single connection found, detailed information will be displayed. Note that the port 
1078 is returned as output on the message but was not required as command input.

D NET,IDTYPE=IPADDR,ID=9.24.105.220                                   
IST097I DISPLAY ACCEPTED                                              
IST075I NAME = USIBMRA.RA03TN51, TYPE = DYNAMIC APPL 232              
IST486I STATUS= ACT/S, DESIRED STATE= ACTIV                           
IST1447I REGISTRATION TYPE = CDSERVR                                  
IST599I REAL NAME = USIBMRA.RA03TN51                                  
IST1629I MODSRCH = NEVER                                              
IST977I MDLTAB=***NA*** ASLTAB=***NA***                               
IST861I MODETAB=ISTINCLM USSTAB=***NA*** LOGTAB=***NA***              
IST934I DLOGMOD=***NA*** USS LANGTAB=***NA***                         
IST1632I VPACING =  7                                                 
IST597I CAPABILITY-PLU ENABLED  ,SLU ENABLED  ,SESSION LIMIT 00000001 
IST231I APPL MAJOR NODE = TELAPPL                                     
IST1425I DEFINED USING MODEL RA03TN??                                 
IST654I I/O TRACE = OFF, BUFFER TRACE = OFF                           
IST1500I STATE TRACE = OFF                                            
IST271I JOBNAME = TCPIPA, STEPNAME = TCPIPA, DSPNAME = IST7512E       
IST228I ENCRYPTION = OPTIONAL , TYPE = DES                            
IST1563I CKEYNAME = RA03TN51 CKEY = PRIMARY CERTIFY = NO              
IST1552I MAC = NONE MACTYPE = NONE                                    
IST1050I MAXIMUM COMPRESSION LEVEL - INPUT = 0, OUTPUT = 0            
IST1633I ASRCVLM = 1000000                                            
IST1634I DATA SPACE USAGE: CURRENT = 0 MAXIMUM = 0                    
IST1669I IPADDR..PORT 9.24.105.220..1078                              
IST171I ACTIVE SESSIONS = 0000000001, SESSION REQUESTS = 0000000000   
IST314I END 
Chapter 8. TN3270 Telnet server 217



Figure 8-31   VTAM LU name display for the client defined with DNS name and LOGAPPL parameter

Figure 8-31 shows the VTAM LU name display defined with the HOSTNAME and LOGAPPL 
parameters. With OS/390 V2R8 and later releases, the VTAM LU display command shows 
the client’s DNS name. OS/390 V2R10 and later supports the LOGAPPL parameter and 
VTAM displays this application as the CONTROLLING LU. In Figure 8-32 you can see the 
client TCPIP profile that is used for the display above.

Figure 8-32   Example TCP/IP profile statements for clients configured with HOSTNAME and LOGAPPL 

D NET,ID=RA03TN71,E                                                  
IST097I DISPLAY ACCEPTED                                             
IST075I NAME = USIBMRA.RA03TN71, TYPE = DYNAMIC APPL 242             
IST486I STATUS= ACT/S, DESIRED STATE= ACTIV                          
IST1447I REGISTRATION TYPE = CDSERVR                                 
IST1629I MODSRCH = NEVER                                             
IST977I MDLTAB=***NA*** ASLTAB=***NA***                              
IST861I MODETAB=ISTINCLM USSTAB=***NA*** LOGTAB=***NA***             
IST934I DLOGMOD=***NA*** USS LANGTAB=***NA***                        
IST1632I VPACING =  7                                                
IST597I CAPABILITY-PLU ENABLED  ,SLU ENABLED  ,SESSION LIMIT 00000001
IST231I APPL MAJOR NODE = TELAPPL                                    
IST1425I DEFINED USING MODEL RA03TN??                                
IST654I I/O TRACE = OFF, BUFFER TRACE = OFF                          
IST1500I STATE TRACE = OFF                                           
IST271I JOBNAME = TCPIPA, STEPNAME = TCPIPA, DSPNAME = IST34C54      
IST228I ENCRYPTION = OPTIONAL , TYPE = DES                           
IST1563I CKEYNAME = RA03TN71 CKEY = PRIMARY CERTIFY = NO            
IST1552I MAC = NONE MACTYPE = NONE                                  
IST1050I MAXIMUM COMPRESSION LEVEL - INPUT = 0, OUTPUT = 0          
IST1633I ASRCVLM = 1000000                                          
IST1634I DATA SPACE USAGE: CURRENT = 0 MAXIMUM = 0                  
IST1727I DNS NAME: M238P4RK.ITSO.RAL.IBM.COM                        
IST1669I IPADDR..PORT 9.24.106.165..1241                            
IST1131I DEVICE = LU - CONTROLLING LU= RA03T                        
IST171I ACTIVE SESSIONS = 0000000001, SESSION REQUESTS = 0000000000 
IST206I SESSIONS:                                                   
IST634I NAME     STATUS         SID          SEND RECV VR TP NETID  
IST635I RA03T12  ACTIV-P    C7335B7CBBD32F31 0000 0002       USIBMRA

TELNETPARMS                                                     
   TKOSPECLU 0                                                  
   PORT 23                                                      
   WLMCLUSTERNAME  TN03 TNRAL TNTSO   ENDWLMCLUSTERNAME         
ENDTELNETPARMS                                                  
BEGINVTAM                                                       
   PORT 23 6623 7723 8823 9923                                  
   ALLOWAPPL *                                                  
; LUTSO group includes lus from RA03TN70 to RA03TN75            
  LUGROUP LUTSO                                                 
      RA03TN70..RA03TN75                                        
  ENDLUGROUP                                                    
; This mapping maps LUTSO lu group to m238p4rk.itso.ral.ibm.com 
; hostname and supports direct logon to RA03T application for   
; LUTSO group name and members.                                        
  LUMAP  LUTSO  m238p4rk.itso.ral.ibm.com                              
                               SPECIFIC DEFAPPL RA03T LOGAPPL 
218 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



8.4  Problem determination
This section describes some z/OS CS IP problem determination tools.

8.4.1  Telnet DEBUG
The DEBUG statement had some changes in z/OS V1R2. Now it can be defined in 
TELNETPARMS, TELNETGLOBALS or PARMSGROUP block. The parameters that can be 
used are:

� OFF

When OFF is specified, no debug records are issued except for connection drops due to 
timeouts or errors.

� SUMMARY

When SUMMARY is specified, a summary debug message (EZZ6034I) is issued 
indicating major state changes. It provides tracking of connection status. A summary 
message is written when:

– A connection request is accepted by Telnet.
– Connection negotiation is complete.
– A session is established with the host application.
– A session is dropped.
– A connection is dropped.

� DETAIL

When DETAIL is specified, a detail debug message (EZZ6035I) is written whenever a 
reportable error is detected in Telnet. Summary messages are also written when DETAIL 
is specified. The DEBUG DETAIL statement may be needed if the DEBUG SUMMARY 
messages do not provide enough information to solve a problem. In addition to the 
summary messages listed above, DEBUG DETAIL will issue a message at the time of 
failure that displays the client IP address and port, connection ID, Telnet LU name, 
detecting module name, unique return code and a brief explanation, and additional 
parameters if relevant.

� TRACE

When TRACE is specified, data to and from the client and to and from VTAM is displayed 
by the debug message EZZ6035I. Detail and summary messages are also written when 
TRACE is specified. The TRACE option allows you to quickly see why a client is not 
connecting or why a session hangs. Once TRACE is added via OBEYFILE, the first client 
assigned tracing will be the only client traced. Another connection cannot be traced until 
the client currently being traced is dropped.

� JOBLOG

When JOBLOG is specified, the debug messages are routed to the joblog instead of the 
console.

� CONSOLE

When CONSOLE is specified, the debug messages are routed to the operator console 
and to the teleprocessing console in addition to being sent to the joblog.

The DEBUG parameter may cause flooding of the operator’s console. Console flooding 
concerns can be dealt with in several ways. 

� DEBUG messages are, by default, assigned to routing code 11 - the joblog. The DEBUG 
option JOBLOG can be used for the same effect. However, the master console also 
receives routing code 11 messages by default. To stop the messages from going to the 
Chapter 8. TN3270 Telnet server 219



master console, issue VARY CN(01),DROUT=(11), which drops routing code 11 from the 
console. The other DEBUG option, CONSOLE, will direct the messages to the master 
console, routing code 2, and the teleprocessing console, routing code 8.

� If DEBUG messages are being used primarily for problem diagnosis, the OBEYFILE 
command can be used to keep the number of messages low. Bring up Telnet initially 
without DEBUG coded. When a problem appears, issue an OBEYFILE for a Telnet profile 
that includes the DEBUG statement. Only new connections to the new profile will produce 
messages. Once data is obtained, issue another OBEYFILE for a Telnet profile that omits 
the DEBUG statement.

� If the client identifier of the client having the problem is known, include DEBUG in a 
PARMSGROUP statement. Using PARMSMAP, map that group to the client.

The VARY TCPIP,,TELNET,DEBUG,OFF command can be issued to turn off DEBUG for all 
connections associated with all profiles, including the current profile.

8.4.2  Abend Trap
The Abend Trap feature allows you to set up for a dump of the TCP address space at the time 
of failure in Telnet. This is a new feature of z/OS V1R2 CS IP. This command provides abend 
dumps based on a return code being set in a given module.

The VARY TCPIP,,TELNET,ABENDTRAP,module,rcode,instance command can be used to set 
up an abend based on the variables specified. ABENDTRAP has three variables:

� module 
� rcode 
� instance 

Below is a sample of the ABENDTRAP command:

Figure 8-33   ABENDTRAP command

8.4.3  CTRACE
CTRACE, with only the Telnet option, gives very complete information about the Telnet 
processes. To debug almost any Telnet problem, no other CTRACE option is needed. 
Generally, the other options simply take up space creating a trace-wrap condition more 
quickly. If the problem is data related, use the FULLDATATRACE statement to trace all the 
data coming into and leaving Telnet rather than tracing only the first 64 bytes of data. 
FULLDATATRACE will cause a trace-wrap condition more quickly so should be set only if 
needed. It should be set in PARMSGROUP instead of TELNETPARMS if a subset of clients 
can be identified. For transform problems, the DBCSTRACE statement in TELNETPARMS 
should be used to produce more trace entries in the SYSPRINT and TNDBCSER data sets.

V TCPIP,TCPCS6,T,ABENDTRAP,EZBTTRCV,1001
EZZ0060I PROCESSING COMMAND:VARY TCPIP,TCPCS6,T,ABENDTRAP,EZBTTRCV,1001
EZZ6013I TELNET COMMAND ABENDTRAP EZBTTRCV COMPLETE

Note: The Abend Trap deactivates after its first occurrence.
220 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Appendix A. Sample REXX to create 
HOSTS.LOCAL from /etc/hosts

This sample REXX program converts an /etc/hosts local file into a HOSTS.LOCAL file and 
executes the TCP/IP for MVS MAKESITE utility to build the corresponding 
datasetprefix.HOSTS.ADDRINFO and datasetprefix.HOSTS.SITEINFO data sets.

/* REXX */
call syscalls 'ON'       /* Allow OMVS REXX services                 */

hostfile = '/etc/hosts'  /* Input hosts file                         */
tcpiphlq = 'TCPIP.OMVS'  /* xxxxINFO data sets HLQ                   */
dotrace = 0              /* Set to 1 for application trace hooks     */

/* Let's start by reading the /etc/hosts file into a REXX stem       */

address syscall "readfile" hostfile "hostline."
if retval = -1 then do
  say hostfile 'not read, errno='errno' - errnojr='errnojr
  exit(8)
end
if hostline.0 = 0 then do
  say hostifle 'is empty - no lines read'
  exit(8)
end

/* Create or allocate existing &userid.HOSTS.LOCAL data set          */

If sysdsn(hosts.local) ~= 'OK' then do
  address TSO "alloc fi(hostloc) da(hosts.local) lrecl(255),
  blksize(0) dsorg(ps) recfm(v b) new catalog"
  alcrc = rc
  If alcrc > 0 then do
    say 'Allocation of new 'userid()'.HOSTS.LOCAL failed - rc = 'alcrc
    exit(alcrc)
  end
end
else do

A

© Copyright IBM Corp. 1998 2002. All rights reserved. 221



  address TSO "alloc fi(hostloc) da(hosts.local) shr"
end

/* Process /etc/hosts lines and create stem var for HOSTS.LOCAL      */

oix = 0
do i=1 to hostline.0
  If dotrace then say 'Trace input  ==> 'hostline.i
  if words(hostline.i) > 0 then do
    if left(word(hostline.i,1),1) = '#' then iterate
    if words(hostline.i) = 1 |,
    left(word(hostline.i,2),1) = '#' then do
      say 'The following line from 'hostfile' is not valid syntax:'
      say '==> 'hostline.i
      iterate
    end
    oix = oix+1
    outline.oix = 'HOST:'||word(hostline.i,1)||':'
    dropline = 0
    do x=2 to words(hostline.i)
      if left(word(hostline.i,x),1) = '#' then leave
      newdata = word(hostline.i,x)||','
      newlength = length(outline.oix) + length(newdata)
      if newlength+4 > 255 then do
        say 'The following output line is too long and will be dropped:'
        say '==> 'outline.oix
        dropline = 1
        leave
      end
      else do
        outline.oix = outline.oix||word(hostline.i,x)||','
      end
    end
    if dropline then
      oix = oix-1
    else do
      outline.oix=left(outline.oix,length(outline.oix)-1)
      outline.oix = outline.oix||'::::'
      If dotrace then say 'Trace output ==> 'outline.oix
    end /*Test for dropping line */
  end /* Input-line with data    */
end /* Do-loop for input lines   */
outline.0 = oix

/* Write lines to &userid.HOSTS.LOCAL and run MAKESITE               */

"EXECIO * DISKW HOSTLOC (STEM OUTLINE. FINIS"
address TSO "MAKESITE HLQ="tcpiphlq

exit(0)
222 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 224.

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX 
Applications, SG24-5228

� OS/390 eNetwork Communications Server for V2R7 TCP/IP Implementation Guide 
Volume 3: MVS Applications, SG24-5229

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 4: 
Connectivity and Routing, SG24-6516 (redpiece available at 
http://www.ibm.com/redbooks  (expected redbook publish date July 2002))

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 5: 
Availability, Scalability, and Performance, SG24-6517 (redpiece available at 
http://www.ibm.com/redbooks  (expected redbook publish date July 2002))

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 6: Policy 
and Network Management, SG24-6839 (redpiece available at 
http://www.ibm.com/redbooks  (expected redbook publish date August 2002))

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security, 
SG24-6840 (redpiece available at http://www.ibm.com/redbooks  (expected redbook 
publish date August 2002))

� TCP/IP in a Sysplex, SG24-5235

� Managing OS/390 TCP/IP with SNMP, SG24-5866

� Secure e-business in TCP/IP Networks on OS/390 and z/OS, SG24-5383

� TCP/IP Tutorial and Technical Overview, GG24-3376

� Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender, 
SG24-5957

� Networking with z/OS and Cisco Routers: An Interoperability Guide, SG24-6297

Other resources
These publications are also relevant as further information sources:

� z/OS V1R2.0 UNIX System Services Planning, GA22-7800

� z/OS V1R2.0 UNIX System Services User’s Guide, GA22-7801

� z/OS V1R1.0-V1R2.0 MVS Initialization and Tuning Guide, SA22-7591

� z/OS V1R2.0 C/C++ Programming Guide, SC09-4765

� z/OS V1R2.0 C/C++ Run-Time Library Reference, SA22-7821

� z/OS V1R2.0 CS: IP Migration, GC31-8773

� z/OS V1R2.0 CS: IP Configuration Guide, SC31-8775
© Copyright IBM Corp. 1998 2002. All rights reserved. 223

http://www.ibm.com/redbooks
http://www.ibm.com/redbooks
http://www.ibm.com/redbooks
http://www.ibm.com/redbooks


� z/OS V1R2.0 CS: IP Configuration Reference, SC31-8776

� z/OS V1R2.0 CS: IP User’s Guide and Commands, SC31-8780

� z/OS V1R2.0 CS: IP System Administrator’s Commands, SC31-8781

� z/OS V1R2.0 CS: IP Diagnosis, GC31-8782

� z/OS V1R2.0 CS: IP Messages Volume 1 (EZA), SC31-8783

� z/OS V1R2.0 CS: IP Messages Volume 2 (EZB), SC31-8784

� z/OS V1R2.0 CS: IP Messages Volume 3 (EZY), SC31-8785

� z/OS V1R2.0 CS: IP Messages Volume 4 (EZZ-SNM), SC31-8786

� z/OS V1R2.0 CS: IP Application Programming Interface Guide, SC31-8788

Referenced Web sites
These Web sites are also relevant as further information sources:

� The z/OS Web pages

http://www-1.ibm.com/servers/eserver/zseries/zos/installation/installz12.html

� z/OS V1R2 Installation Planning Wizard

http://www-1.ibm.com/servers/eserver/zseries/zos/wizards/ipw/ipwv1r2/

� z/OS IP Configuration Wizard

http://www.ibm.com/eserver/zseries/zos/wizards

� SSL protocol pages

http://home.netscape.com/eng/ssl3/ssl-toc.html

� Encryption methodology pages

http://www.verisign.com/repository/crptintr.html
http://www.verisign.com/client/about/introCryp.html

How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order hardcopy from the 
Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images) from this 
Redbooks site. 

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and sometimes 
just a few chapters will be published this way. The intent is to get the information out much 
quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web 
site for information about all the CD-ROMs offered, as well as updates and formats.
224 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://home.netscape.com/eng/ssl3/ssl-toc.html
http://www.verisign.com/repository/crptintr.html
http://www.verisign.com/client/about/introCryp.html


Index

Symbols
/etc/hosts   106, 109
/etc/inetd.conf   112
/etc/networks   108
/etc/protocol   111
/etc/resolv.conf   98
/etc/services   111
@@@@@@@@@IPADDR   208
@@@@DATE   208
@@@@RUNAME   208
@@@@TIME   208
@@@SENSE   208
@@LUNAME   208
@@PRT   208

Numerics
127.0.0.1   69, 87
14.0.0.0   69, 87
3270 data stream   143, 145
3270 DBCS transform mode   180

A
addressing family   24
AF_INET   3, 22, 23, 24
AF_INET socket   6, 23, 24
AF_INET socket address   24
AF_INET transport provider   25
AF_UNIX   22, 24, 25
AF_UNIX socket   22
ALGPRINT   66
alias for host name   109
ALLOWAPPL   190, 203
alternate port number   112
anchor configuration data set   98, 123
AnyNet Sockets over SNA   3
APF authorization   53
API interface   18
APIs   13
APPC/MVS   18
architecture, OS/390 IP   8
ASSORTEDPARMS   74

B
BEGINVTAM   188
BPX.SUPERUSER   43
BPXAS   33
BPXOINIT   33
BPXPARM, CINET   28
BPXPARM, INET   26, 27
BPXPRMxx   17, 27, 28, 29, 30, 65
BPXPRMxx, CINET   26
BPXTCINT   28
© Copyright IBM Corp. 1998 2002. All rights reserved.
BPXTIINT   30, 65
BPXUIINT   30
branding   2, 18
BSD format   107
BUFFERPOOL statements   90

C
canonical mode   22
CEEDUMP   66
Channel Data Link Control (CDLC)

description   10
Channel Protocols   10
Channel-to-Channel (CTC)   10
character string substitution   208
chcp command   139, 140
CICS   59
CINET   25, 26, 28

and BPRPRMxx   30
PFS   120

client IP address   208
client port number   208
Common INET Physical File System (CINET)   26, 120
Common Link Access to Workstation (CLAW)   10
Common Storage   90
Communication Storage Manager (CSM)   11
Comp IDs   53
Component IDs   53
component trace   158
configuration data set names   59
console commands   180
converged sockets   28
CONVXLAT   142
cookbook for creating multiple stacks   129
cron   19
Cross-System Coupling Facility (XCF)   12
cryptography   179
CSA   64, 90
C-sockets   13
CTIEZB00   114, 158
CTRACE   14, 158, 165
CTRLCONN   139
current date   208
current time   208
customization   49

D
Daemons   19
data trace   163, 165
DATASETPREFIX   59, 98, 110, 123
DATE   208
DATTRACE   163
DBCS   142, 178, 212
DBCS transform mode   180, 183
default directory path   46
 225



default group   56
default user   21, 56
default USS table   209
DEFAULTAPPL   190, 202
Direct Memory Access (DMA)   11, 12
directory paths, EZAOEMDR   61
DISCONNECTABLE   203
DISPLAY   215
display   180
DISPLAY TCPIP command   149
Domain Name System   107
DYNAMIC XCF

IPCONFIG definition   89

E
enablement, product   61
Enterprise Extender   13
ENTRYPOINT   27, 28, 65
ENVAR   98, 104
Ephemeral Ports   122
explicit data set allocation   59
EZACFSM1   77
EZAGETIN   140
EZAOEMDR   61
EZAZSSI   63, 64
EZAZSSI JCL procedure   65
EZBPFINI   27, 30, 65
EZBTPUST   203, 209
EZZ4203I   65

F
failing RU name   208
File system attributes   40
FM Header   182
FMH   182
FMIDs   53
fork()   18
forked address spaces   18
FTP

security   58
full-function mode, UNIX System Services   17, 71
full-function, UNIX System Services   17
full-screen support   178

G
GENERIC   203
generic resources   180
Generic Server   121
gethostbyname()   107
getibmopt()   126
getmain   64
getservbyname()   112
GID   20, 55
Gigabit Ethernet   11
graphical mode   22
group ID   20, 55
Groups   54

H
HFS   18, 19
Hierarchical File System   18, 19
high level qualifier (HLQ)   59
High Performance Data Transfer (HPDT)   11
HiperSockets   12
HNGROUP   190
HOME Statement   87
host name alias   109
host name qualifier length   109
host name qualifiers   109
host name resolution   106
hosts file

file format   107
file syntax   109
hosts file   106
name server   106

HOSTS.ADDRINFO   110
HOSTS.LOCAL   106, 109
HOSTS.SITEINFO   110
HSAS   51

need for HSAS   51

I
ICHRIN03   56
iconv functions   139
iconv utility   145
identity, MVS   20
identity, UNIX   20
IDTYPE=IPADDR   216
IEASYSxx   29, 64
IFA104I   61
IFAPRDxx   61
IKJTSOxx   64
implicit data set allocation   59
IMS   59
INADDRANYPORT   65
include files   81
INCLUDE statement   92
INET   25, 26
inetd   19
initapi()   126
installation   49

BPXPRMxx   60
checklist   67
DATASETPREFIX   59
DFSMS   60
explicit data set allocation   59
high level qualifier (HLQ)   59
implicit data set allocation   59
LNKLST   63
LPALST   63
node name   63
PARMLIB   60, 62
planning the installation and migration   50
preinstallation   51
ripple   60
SCHEDxx   64
SMP/E   60
226 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



SMS   60
steps   60
wave   60

Integrated Sockets   27
Integrated Sockets Physical File System (INET)   26
INTERPTCP   190
IP Assist   12
IP names   1
IPA   12
IPADDR   208
IPCS   165
ISHELL   3
ishell   37
ISTEXCGR   181
IUTSAMEH   12
IVTPRMxx   65

L
LAN Channel Station (LCS) protocol   11
line mode   22, 143, 144
LINEMODEAPPL   190, 202
LNKAUTH   53
LNKLST   63
local hosts file   106
local socket   25
Logical Partitions (LPARs)   12
login name   20
LOGMODE   184
LOGON command   179
LOOPBACK   87
loopback   69
LPALST   63
LUMAP   190, 193
LUNAME   208

M
MAKESITE   107, 109, 110
mapping LUs   193
MCS   180
MD5   179
message types   66, 172
messages   66, 172
MODIFY   212
mount table   40
Mounted file system   20
MPC+   11
MSG07   190, 209
msys   15
msys for Setup   73
MULTIPATH   89
multiple AF_INET transport providers   25
multiple ports support   179, 187
Multiple Stacks   51, 117

_BPXK_SETIBMOPT_TRANSPORT environment 
variable   124
_iptcpn()   121
AF-INET PFS   120
back-end stack   118
capacity   120

CINET PFS   120
Common Internet Physical File System   120
cookbook   129
Ephemeral ports   122
example of two-stack configuration   130
fault-tolerant network attachments   119
front-end stack   118
Generic Server   121
INADDRANYCOUNT   122
INADDRANYPORT   122
inetd   121
network attachments   118
NETWORK DOMAINNAME parameter   121
performance   120
Physical File System (PFS)   120
PORTRANGE   122
reasons for multiple stacks   118
resolver configuration data sets   127
selecting a stack   123
setibmopt() socket call   121
SMF accounting   122
Sysplex   119
TSO users   126
VIPA   119

multiple TCP/IP stacks   28
MVPTSSI   63
MVS identity   20

N
name resolution   106
name server and hosts file   106
naming conventions, historical   1
national language support   139
NETSTAT   150
Network Virtual Terminal   176
NLS   139

3270 data stream   143
3270 full-screen mode   143
3270 mode   143
chcp command   139, 140
code page   139
CONVXLAT   142
CTRLCONN   139
DBCS   142
EZAGETIN   140
iconv functions   139
iconv utility   145
line mode   143, 144
programmed symbols (PS)   143
SBDATACONN   139
Telnet   143
Telnet 3270 support   144
TN3270   144
translate table   140
XLATE   139

non-canonical mode   22
NVT   176
 Index 227



O
OBEYFILE   208
OBEYFILE and security   58
OBEYFILE command   58, 92
OE transport providers   23
OESTACK   30
offload   12
OMPROUTE   13, 164
OMVS   33
omvs display   33
OMVS segment   55
onetstat   150
Open Shortest Path First   13
OpenEdition Assembler Callable Services   13
OPERCMDS, generic class   58
oping   157
OS/390 IP

introduction   1
names   1

OS/390 IP APIs   13
OS/390 IP, architecture   8
OS/390 IP, overview   9
OS/390 UNIX System Services   6
OSA-Express   11
OSPF   13
otracert   157
overview, OS/390 IP   9

P
packet trace   163, 165
PARMLIB   62
Path Maximum Transmission Unit

IPCONFIG definition   89
RFC 1191   89

pathname   25
permission bits   20, 45
PFS   24, 25, 120
Physical File System (PFS)   24, 25, 120
PING   157
PKTTRACE   163
platform (VMCF/IUCV path)   3
PORT   65, 190
port number assignment   112
Port Sharing   86
PORT Statement   84
POSIX   2
preinstallation   49
PRINT-EOJ   183
printer support   204
process   19
PROCLIB   65
product customization   49
product enablement   61
product registration   61
profile replacement   181
PROFILE.TCPIP   74
PROGnn   63
Program Directory   52, 59, 67
programmed symbols (PS)   143, 144

PROGxx in SYSx.PARMLIB   53
protocol stack   24, 25
PRT   208
PRTGROUP   190
PRTMAP   190
PS   143, 144
PSP bucket   52, 53
PTP Samehost   12

Q
QSESSION   203
Queued Direct I/O   11
Queued Direct I/O (QDIO)   11

R
RACF   53, 54
RACF facility classes   54
RACF profiles   54
RACF resources   54
RACF STARTED class   56
RACF TERMINAL resource class   57
raw mode   22
Redbooks Web site   224

Contact us   xiii
registration, IFAPRDxx   61
registration, product   61
resolv.conf   98
RESOLVE_VIA_LOOKUP compile symbol   106
Resolver

RESOLVER_CONFIG environment variable   104
Resolver configuration data sets   98, 127
RESOLVER_CONFIG   184
RESOLVER_CONFIG environment variable   104
resource profiles   20
restartable platform   63
RESTRICTAPPL   190, 203
RFC 1058   13
RFC 1583   13
RFC 1646   177
RFC 1647   8, 177, 178
RFC 1723   13
RFC 952 format   107, 109
RIP   13
Root file system   20
RS/6000 Communications Server   21
RUNAME   208

S
S806, abend code   65
SBDATACONN   139
SCHEDxx   64
Secure Sockets Layer   179
security   53

CICS   59
client   58
FTP   57, 58
IMS   59
NFS   57
228 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



server   57
SMTP   58
SNMP   58

security, NCS   57
segment

OMVS   55
SENSE   208
sense code   208
server (SLU) name   208
service name   112
setibmopt()   126
SEZAINST   209
SEZALINK   209
SHA   179
shared hosts file source   109
shell   18
shell access   21
shell interface   18
shell, ISHELL   18
shell, OMVS   18
single AF_INET transport provider   25
SMF   180
SMF record subtype assignment   122
SMF records   16
SMP/E requirements   59
SMS   33
sms display   33
SMTP, security   58
SNMP, security   58
SNMPv1   58
SNMPv2C   58
SNMPv2u   58
socket address   22, 24, 25
Socket Addressing Families   22
SOURCEVIPA   88
spawn()   18
spawned address spaces   18
SPECIFIC   203
SQA   64
SSL   178, 179
stack address space   3
stand-alone PORT   186
STARTED class in RACF   56
STDENV   104
SUBFILESYSTYPE   28
superuser   21, 42, 56, 58
symbolic links   46
SYMDEF   78
SYSCLONE system variable

definition   78
SYSDEF   78
SYSTCPD   183
SYSTCPD DD name   98
System Symbolics

case sensitivity   81, 83
coding   81
CONVSYM JCL utility   77
definition   78
INCLUDE file processing   77
OBEYFILE processing   77

TCPIP.DATA processing   77
TCPIP.PROFILE processing   77

T
TCP/IP Base Functions

HOSTS.LOCAL   106
PROFILE.TCPIP   74
TCPIP.DATA   98

TCP/IP data set names   59
TCP/IP protocol stack   24
TCP/IP system address space   3
TCPCONFIG   84
TCPIP.DATA   98, 123
TCPIPJOBNAME   98, 123
Telnet   143

BEGINVTAM   188
console commands   180
cryptography   179
DBCS   178
DBCS transform mode   180
FM Header   182
FMH   182
full-screen support   178
LOGMODE   184
LOGON command   179
LUMAP   193
MCS   180
multiple ports support   179
Network Virtual Terminal   176
NVT   176
PRINT-EOJ   183
profile replacement   181
RFC 1646   177
RFC 1647   177, 178
Secure Sockets Layer   179
SMF   180
SSL   178, 179
stand-alone PORT   186
Telnet 3270   176
TELNETPARMS   187
TN3270   176, 178
TN3270E   177, 178, 179
USS Messages   207
VT100   178
WLM   181

telnet   175, 176
telnet 3270   176
telnet extensions   212
telnetDEVICE   190
TELNETPARMS   187
terminal RACF class   57
Thread   19
TIME   208
TN3270   176, 178
TN3270E   8, 177, 178, 179
TNDBCSCN   183
TNDBCSER   183
TNDBCSXL   183
TNF   63
TRACERTE   157
 Index 229



translate table   140
translation   140, 212
transport providers   3, 23, 25

U
UDPCONFIG   84
UID   20, 55
UNIX domain socket   25
UNIX identity   20
UNIX permission bits   45
UNIX shell   3
UNIX System Services

full-function mode   17, 71
history   2, 18
minimum mode   17

UNIX, branding   18
Unknown RefID_idtel

NLS   143
Unknown RefID_mapping

LUs   193
user ID   20, 54, 55
user name   20
USS   207
USS sample table coding   209
USSTCP   190

V
VARY   212
vary   180
VARY ACT   212, 213
VARY INACT   212, 213
VARY OBEYFILE   212, 213
VARY QUIESCE   212, 214
VARY RESUME   212, 214
VARY STOP   212, 214
VARY TCPIP command   92
Virtual IP Address   88
Virtual IP Addressing

IPCONFIG definition   88
VMCF   3, 63
VT100   178
VTAMLST   184

W
Web server   19
WLM   181, 213
WLMCLUSTERNAME   213
Workload Manager   18, 86, 181, 185
Workstation Operating Mode   22

X
X/Open   18
X/Open Portability Guides (XPG)   2
X_ADDR environment variable   110
X_SITE environment variable   110
XLATE   139
XPG   18
XPG4   2

Z
z/OS Managed System Infrastructure   15
230 CS for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration



(0.5” spine)
0.475”<->0.873”

250 <-> 459 pages

Com
m

unications Server for z/OS V1R2 TCP/IP Im
plem

entation Guide Volum
e 1: Base and TN3270 Configuration  

  







®

SG24-5227-03 ISBN 0738424153

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL 
INFORMATION BASED ON 
PRACTICAL EXPERIENCE

IBM Redbooks are developed 
by the IBM International 
Technical Support 
Organization. Experts from 
IBM, Customers and Partners 
from around the world create 
timely technical information 
based on realistic scenarios. 
Specific recommendations 
are provided to help you 
implement IT solutions more 
effectively in your 
environment.

For more information:
ibm.com/redbooks

Communications Server for 
z/OS V1R2 TCP/IP 
Implementation Guide 
Volume 1: Base and TN3270 Configuration

Understand and 
implement TCP/IP 
strategies related to 
CS for z/OS

Build and maintain 
your z/OS TCP/IP 
environment 
efficiently

Includes installation, 
base configuration, 
and TN3270

The Internet and enterprise-based networks have led to the rapidly 
increasing reliance upon TCP/IP implementations. The z/Series platform 
provides an environment upon which critical business applications 
flourish. The demands placed on these systems are ever-increasing and 
such demands require a solid, scalable, highly available, and highly 
performing operating system and TCP/IP component. z/OS and 
Communications Server for z/OS provide for such a requirement with a 
TCP/IP stack that is robust and rich in functionality. The 
Communications Server for z/OS TCP/IP Implementation Guide series 
provides a comprehensive, in-depth survey of CS for z/OS.

In Volume 1, we begin by providing an introduction to CS for z/OS. We 
include a survey on the evolution of what was once known as TCP/IP for 
MVS. We cover issues involved in using UNIX System Services as well 
as installation and base configuration of CS for z/OS. We further discuss 
other stack-related issues such as language support and multi-stack 
environments. Finally, because the TN3270 Server is so closely 
integrated with the stack, this volume details the intricacies of the 
server. 

Because of the broad scope of CS for z/OS, this volume is not intended 
to cover all aspects of it. The main goal is to provide sufficient detail to 
install and initialize the TCP/IP stack. Additionally, this volume covers all 
stack-related issues. That is, anything that is system- or stack-related 
falls into the realm of this volume. For more advanced information, 
including routing and network interfaces, please refer to the other 
volumes in the series.

Back cover


	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Communications Server for z/OS IP overview
	1.1 Evolving architecture of TCP/IP on S/390
	1.1.1 MVS OpenEdition or UNIX System Services
	1.1.2 TCP/IP V3 for MVS and TCP/IP for MVS OpenEdition Applications Feature
	1.1.3 OS/390 TCP/IP OpenEdition stack
	1.1.4 OS/390 eNetwork Communications Server V2R5 IP and later

	1.2 Functional overview of Communications Server for z/OS IP
	1.2.1 Operating environment
	1.2.2 Supported connectivity protocols and devices
	1.2.3 Supported routing applications
	1.2.4 Enterprise Extender
	1.2.5 Application programming interfaces (APIs)
	1.2.6 Communications Server for z/OS IP applications
	1.2.7 Diagnostic aids

	1.3 IBM Communications Server for z/OS V1R2 IP enhancements
	1.3.1 Resolver changes
	1.3.2 TN3270 Server enhancements
	1.3.3 Usability and serviceability enhancements


	Chapter 2. Customizing UNIX System Services
	2.1 Customization levels of UNIX System Services
	2.2 UNIX System Services history
	2.3 UNIX System Services concepts
	2.3.1 UNIX Hierarchical File System
	2.3.2 z/OS UNIX user identification
	2.3.3 Accessing the z/OS UNIX shells
	2.3.4 Operating mode
	2.3.5 UNIX System Services communication
	2.3.6 AF_INET transport providers

	2.4 Customization of UNIX System Services
	2.4.1 Started task user IDs
	2.4.2 Parmlib definitions
	2.4.3 OMVS start-up at IPL time
	2.4.4 OMVS displays

	2.5 Working with UNIX System Services: interactive interfaces for the end user
	2.5.1 Displaying OMVS processes
	2.5.2 Working with file systems
	2.5.3 Manipulating files and directories
	2.5.4 Superuser mode

	2.6 Common user errors with UNIX System Services
	2.6.1 Problems with the home directory
	2.6.2 UNIX permission bits
	2.6.3 Default search path and symbolic links
	2.6.4 Incorrect RESOLVER_CONFIG in use


	Chapter 3. Installation
	3.1 First things first
	3.2 Planning your installation and migration
	3.3 Preinstallation
	3.3.1 IP Migration Guide
	3.3.2 z/OS Program Directory
	3.3.3 Program support

	3.4 Security considerations
	3.4.1 APF authorization
	3.4.2 RACF environment
	3.4.3 TCP/IP server functions
	3.4.4 TCP/IP client functions
	3.4.5 UNIX client functions
	3.4.6 TCP/IP built-in security functions

	3.5 Installation
	3.5.1 TCP/IP configuration data set names
	3.5.2 Installation steps

	3.6 Message types: Where to find them
	3.6.1 Messages with prefix of BPX
	3.6.2 Messages with prefix of EZA
	3.6.3 Messages with prefix of EZB
	3.6.4 Messages with prefix of EZY
	3.6.5 Messages with prefix of EZZ
	3.6.6 Messages with prefix of FOM and FSUM
	3.6.7 Eight-digit SNA sense codes and DLC codes

	3.7 Checklist for installation and customization

	Chapter 4. Configuring base functions
	4.1 z/OS IP Configuration Wizard and msys for Setup
	4.1.1 z/OS IP Configuration Wizard
	4.1.2 z/OS msys for Setup

	4.2 PROFILE.TCPIP
	4.2.1 Displaying the TCP/IP Config
	4.2.2 Locating PROFILE.TCPIP
	4.2.3 Configuration features of CS for z/OS IP
	4.2.4 System symbolics
	4.2.5 PROFILE.TCPIP parameters

	4.3 Configuring the system with MVS commands
	4.3.1 Deleting a device and adding/changing a device
	4.3.2 Example: changing an LCS device

	4.4 TCPIP.DATA
	4.4.1 Resolvers
	4.4.2 Resolver configuration for the TCP/IP stack
	4.4.3 MVS application search path
	4.4.4 z/OS UNIX application search path
	4.4.5 Working with TCPDATA
	4.4.6 Testing TCPIP.DATA

	4.5 Configuring the SITE table (HOSTS.LOCAL)
	4.5.1 /etc/hosts
	4.5.2 Maintaining shared source in HOSTS.LOCAL
	4.5.3 Maintaining shared source in /etc/hosts

	4.6 /etc/protocol
	4.7 /etc/services
	4.8 Starting Communications Server for z/OS IP

	Chapter 5. Multiple TCP/IP stacks on z/OS
	5.1 Value of multiple concurrent copies of TCP/IP
	5.2 Managing network attachments
	5.2.1 Fault-tolerant network attachment

	5.3 Performance and capacity issues: multiple stacks
	5.4 Common Internet Physical File System (CINET PFS)
	5.5 Port management overview
	5.6 SMF accounting issues: multiple stacks
	5.7 Selecting a stack
	5.7.1 Standard servers and clients
	5.7.2 Non-standard servers and clients
	5.7.3 TCP/IP TSO clients
	5.7.4 UNIX System Services clients
	5.7.5 Selecting configuration data sets
	5.7.6 Sharing Resolver configuration data sets between two stacks

	5.8 Steps for installing a second stack
	5.9 Example: implementing a two-stack configuration
	5.9.1 Step 1: Stack name and DATASETPREFIX
	5.9.2 Step 2: Network connections
	5.9.3 Step 3: Alter the BPXPRMxx member
	5.9.4 Step 4: Allocate TCPPARMS
	5.9.5 Step 5: Create PROFILE.TCPIP
	5.9.6 Step 6: Create TCPIP.DATA
	5.9.7 Step 7: Create system address space JCL procedure
	5.9.8 Step 8: Create server address space JCL procedures
	5.9.9 Step 9: Create server-specific configuration data sets
	5.9.10 Step 10: Update your name server
	5.9.11 Step 11: Create REXX program to switch TSO users
	5.9.12 Step 12: Create VTAM definitions and USS message 10 tables
	5.9.13 Step 13: Starting the stacks


	Chapter 6. National Language Support (NLS)
	6.1 Server and client translation options
	6.2 Standard translate tables
	6.2.1 Using your country SBCS translate table
	6.2.2 Using your country DBCS translate table

	6.3 Telnet use of translate tables
	6.3.1 Telnet sessions between two z/OS or VM hosts
	6.3.2 Telnet sessions between z/OS and other TCP/IP hosts

	6.4 Code set conversion utilities in UNIX System Services

	Chapter 7. Diagnostic tools
	7.1 DISPLAY TCPIP command
	7.2 NETSTAT and onetstat
	7.2.1 Routing table displays
	7.2.2 Home addresses display
	7.2.3 Device/link displays
	7.2.4 Active sockets displays
	7.2.5 Connection detail display
	7.2.6 TCP/IP storage usage display
	7.2.7 NETSTAT filter enhancements
	7.2.8 NETSTAT performance counters
	7.2.9 Monitoring Sysplex Distributor with NETSTAT

	7.3 PING/oping and TRACERTE/otracert commands
	7.4 Component trace (CTRACE)
	7.4.1 Taking a component trace
	7.4.2 Event Trace for TCP/IP stacks (SYSTCPIP)
	7.4.3 Sample SYSTCPIP trace
	7.4.4 Packet trace (SYSTCPDA)
	7.4.5 OMPROUTE trace (SYSTCPRT)
	7.4.6 Resolver trace (SYSTCPRE)
	7.4.7 Intrusion detection services trace (SYSTCPIS)

	7.5 Obtaining component trace data with a dump
	7.6 Analyzing a trace
	7.6.1 Using the IPCS panels
	7.6.2 Using IPCS and the CTRACE command
	7.6.3 Printing a component trace
	7.6.4 Useful formats

	7.7 Processing IPCS dumps
	7.8 Configuration profile trace
	7.9 Job log versus syslog as diagnosis tool
	7.10 Message types: where to find them

	Chapter 8. TN3270 Telnet server
	8.1 Overview
	8.1.1 Telnet functions
	8.1.2 Telnet printer support

	8.2 Telnet server customization
	8.2.1 Customizing the TCP/IP procedure
	8.2.2 Customizing the VTAM configuration data set
	8.2.3 Customizing the PROFILE data set
	8.2.4 CLID to object mapping
	8.2.5 USS messages
	8.2.6 Using translation tables

	8.3 Operating the Telnet environment
	8.3.1 Telnet VARY commands
	8.3.2 Telnet DISPLAY commands
	8.3.3 VTAM display commands

	8.4 Problem determination
	8.4.1 Telnet DEBUG
	8.4.2 Abend Trap
	8.4.3 CTRACE


	Appendix A. Sample REXX to create HOSTS.LOCAL from /etc/hosts
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections


	Index
	Back cover

