
IBM MQSeries Workflow for OS/390

Programming Guide
Version 3 Release 1

SC33-7031-00

IBM

IBM MQSeries Workflow for OS/390

Programming Guide
Version 3 Release 1

SC33-7031-00

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xii.

First Edition (March 1999)

This edition applies to Version 3, Release 1, Modification 0 of IBM MQSeries Workflow for OS/390 (product number
5565-A96) and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has
been removed, address your comments to:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

FAX (Germany): 07031+16-3456
FAX (Other Countries): (+49)+7031-16-3456

IBM Mail Exchange: DEIBMBM9 at IBMMAIL
Internet: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About this book ix
Who should read this book. ix
How to get additional information ix
How to send your comments ix
How this book is organized x
How to read the syntax diagrams x
Notices xii
Trademarks. xiii

Part 1. Programming Concepts . . . 1

Chapter 1. Understanding the
programming concept 3
The role of the programmer in modeling a process 3
Programming interfaces. 4

Part 2. The MQSeries Workflow
APIs 5

Chapter 2. Prerequisites for
programming 7

Chapter 3. Building an MQSeries
Workflow application 9
Overview 9
Coding an MQSeries Workflow client application 10
Coding an MQSeries Workflow activity
implementation or support tool 11
Compiling and linking 12

Chapter 4. Handling errors 15
The result object 15
List of return codes 17

Chapter 5. Memory management . . . 21

Chapter 6. Communication protocols
and data access models 23
The push data access model 23
Receiving information 24

Chapter 7. Establishing an MQSeries
Workflow session 27

Chapter 8. Querying data 29
Persistent lists 29
Using filters, sort criteria, and thresholds 29
Handling collections 30

Vector accessor functions 30
FmcjXxxVectorDeallocate 31
FmcjXxxVectorFirstElement 31

FmcjXxxVectorNextElement 32
FmcjXxxVectorSize 33
Examples 33

Chapter 9. Handling Containers 39
Data structure/container type 39
Data member/container element 39
Predefined data members 40

Fixed data members 41
Process information data members 41
Activity information data members 42

Chapter 10. Monitoring a process
instance 47
Obtaining a process instance monitor 47
Ownership of monitors 48

Chapter 11. Authorization
considerations 49

Chapter 12. Function/subprogram
types 53
Basic functions/subprograms 53

Return Codes 53
FmcjXxxEqual 54
FmcjXxxAllocate(). 55
FmcjXxxCopy() 55
FmcjXxxDeallocate 56
FmcjXxxIsComplete() 57

Accessor function/subprograms 62
Return codes 63
Accessing a value of type bool 63
Accessing a value of type char 64
Accessing a value of type date/time. 65
Accessing an enumerated value 65
Accessing a value of type (unsigned) long . . 66
Accessing a multi-valued property 67
FmcjXxxIsNull() 67
Setting a value of type long 68
Setting a value of type unsigned short 69
Setting a value of type FmcjBinary * 70
Updating an object 70
C language Example: accessing values . . . 71
Cobol Example: accessing values 72

Action functions/subprograms 76
Activity implementation functions/subprograms 76

Part 3. OS/390 specific
considerations 79

Chapter 13. Cobol specific
considerations 81
API Call 81

© Copyright IBM Corp. 1999 iii

String handling 81
Function Calls 81
Provided Copybooks. 81
Mapping C to Cobol data types 81
Name changes between Cobol and C 82
Example how to use Strings 91

Chapter 14. CICS specific
considerations 93

Chapter 15. IMS specific
considerations 95

Part 4. Program Execution Server’s
Program Mapping 97

Chapter 16. Introduction 99

Chapter 17. Program mapping
definitions 101
Structure Definition 101
Interface Definition 101
Forward/Backwardmapping Definition 102
Usertype Definition 103

Chapter 18. Mapping algorithm 105
Constants 107
Example 109

Chapter 19. Supported program
mapping definition element types . . . 111
Program mapping structure definition element
types 111
Program mapping interface definition element
types 111

Characters 111
Integer Numbers 111
Float Numbers. 111
Packed Numbers 111
Zoned Numbers 111
Interface 111
Usertypes 111
Valid conversions between MQSeries Workflow
container program mapping element types and
program mapping interface types 112

Chapter 20. Grammar 115
Grammar elements 115

Comments 115
Tokens 115
Keywords 118
Structure definition 118
Interface definition 119
Interface types. 120
Mapping elements 123
UserType definition 125

Chapter 21. Usertype 129
Exit interface 129
Creation of DLL 130
Usertype definition 131

Chapter 22. Size of program mapping
interface definition elements 133

Chapter 23. Activation of Program
Mapping Definitions 135

Chapter 24. Troubleshooting 137
Common Errors 137

Element data mapped is incorrect 137
Elements not mapped 137
Modified mapping definition is not activated 137

Chapter 25. Additional Mapping
Examples 139
Application examples 139

CICS C++ Application 139
CICS COBOL Application 140

MDL examples. 141
Simple datastructure with default name mapping 142
Complex datastructure with default name
mapping 142
Complex datastructure with non default name
mapping 143
Complex datastructure with non default name
mapping with arrays and structures 143
Simple datastructure with all interface types with
CONSTANTS and usertypes 144

Part 5. Program Execution Server
Exits147

Chapter 26. Introduction 149
Return codes and error messages 149

Parameters 149
Return codes 150

Chapter 27. Interfaces for all exits . . . 151
Init. 151

Header files. 151
Function 151
Interface 151

Deinit 152
Header files. 152
Function 152
Interface 152

Chapter 28. Program mapping exit . . 155
Additional program mapping exit specific interfaces 155
Translate 155

Header files. 155
Function 155
Interface 155

Enabling the PES to use a program mapping exit 157

iv Programming Guide

Program mapping exit sample 157

Chapter 29. Program invocation exit 159
Synchronous and asynchronous invocation exits 159

Synchronous invocation exit 159
Asynchronous invocation exit 159

Additional invocation exit specific interfaces . . . 160
HdlRequ 160

Header files. 160
Function 160
Interface 160

Recogn 163
Header files. 163
Function 163
Interface 163

IsAsync 164
Header files. 164
Function 164
Interface 164

Invocation Context 164
GetContext 165

Header files. 165
Function 165
Interface 165

Connection Parameters 166
Connection parameters for synchronous
invocations 166
Connection parameters for asynchronous
invocation 166

Enabling MQSeries Workflow for OS/390 to use an
invocation exit 167
Invocation exit coding example 167

Part 6. Using the MQSeries
Workflow APIs169

Chapter 30. Using the MQSeries
Workflow Runtime API 171
Overview of the Runtime API 171

API classes/objects 175
FmcjActivityInstance 177
FmcjActivityInstanceNotification 180
FmcjActivityInstanceNotificationVector 181
FmcjActivityInstanceVector 181
FmcjBlockInstanceMonitor 182
FmcjContainer 182
FmcjContainerElement 184
FmcjContainerElementVector 185
FmcjControlConnectorInstance 186
FmcjControlConnectorInstanceVector 186
FmcjCDateTime 187
FmcjDllOptions 187
FmcjError 187
FmcjExecutionData 188
FmcjExecutionService 188
FmcjExeOptions 190
FmcjExternalOptions. 190
FmcjGlobal 191
FmcjImplementationData 192
FmcjItem 192

FmcjItemVector 194
FmcjMessage 194
FmcjPersistentList 195
FmcjPerson. 195
FmcjPoint 198
FmcjPointVector 198
FmcjProcessInstance 198
FmcjProcessInstanceList 201
FmcjProcessInstanceListVector 201
FmcjProcessInstanceMonitor 201
FmcjProcessInstanceNotification 202
FmcjProcessInstanceNotificationVector. 202
FmcjProcessInstanceVector 202
FmcjProcessTemplate 203
FmcjProcessTemplateList 204
FmcjProcessTemplateListVector 205
FmcjProcessTemplateVector 205
FmcjProgramData 205
FmcjReadOnlyContainer 206
FmcjReadWriteContainer 206
FmcjResult 207
FmcjService 207
FmcjStringVector 208
FmcjSymbolLayout 208
FmcjWorkitem 209
FmcjWorkitemVector 210
FmcjWorklist 210
FmcjWorklistVector 211

Part 7. Application programming
interfaces213

Chapter 31. FmcjActivityInstance
functions/subprograms 215
FmcjActivityInstanceObtainProcessInstanceMonitor() 215

Properties 215
FmcjActivityInstanceSubProcessInstance() . . . 217

Properties 217

Chapter 32.
FmcjActivityInstanceNotification
functions/subprograms 221
FmcjActivityInstanceNotificationPersistentObject() 221

Properties 221

Chapter 33. FmcjBlockInstanceMonitor
functions/subprograms 225
FmcjBlockInstanceMonitorObtainBlockInstance
Monitor(). 225

Properties 225
FmcjBlockInstanceMonitorObtainProcessInstance
Monitor(). 227

Properties 227
FmcjBlockInstanceMonitorRefresh() 229

Properties 229

Chapter 34. FmcjContainer
functions/subprograms 233

Contents v

FmcjContainerInContainer() 233
Properties 233

FmcjContainerOutContainer() 235
Properties 235

FmcjContainerRemoteInContainer() 236
Properties 237

FmcjContainerRemoteOutContainer() 238
Properties 238

FmcjContainerSetRemoteOutContainer() 240
Properties 240

FmcjContainerSetOutContainer() 242
Properties 242

Chapter 35. FmcjExecutionService
functions/subprograms 245
FmcjExecutionServiceCreateActivityInstanceList() 245

Properties 246
FmcjExecutionServiceCreateProcessInstanceList() 248

Properties 251
FmcjExecutionServiceCreateProcessTemplateList() 254

Properties 256
FmcjExecutionServiceCreateWorklist() 259

Properties 264
FmcjExecutionServiceLogoff(). 266

Properties 266
FmcjExecutionServiceLogon(). 268

Properties 268
FmcjExecutionServicePassthrough() 270

Properties 271
FmcjExecutionServiceQueryActivityInstance
Notifications() 272
FmcjExecutionServiceQueryItems() 277

Properties 281
FmcjExecutionServiceQueryProcessInstanceLists() 283

Properties 283
FmcjExecutionServiceQueryProcessInstance
Notifications() 285

Properties 289
FmcjExecutionServiceQueryProcessInstances() 291

Properties 294
FmcjExecutionServiceQueryProcessTemplateLists() 296

Properties 296
FmcjExecutionServiceQueryProcessTemplates() 298

Properties 300
FmcjExecutionServiceQueryWorkitems() 302

Properties 307
FmcjExecutionServiceQueryWorklists(). 309

Properties 309
FmcjExecutionServiceReceive() 311

Properties 311
FmcjExecutionServiceRemotePassthrough() . . . 313

Properties 313
FmcjExecutionServiceTerminateReceive() 315

Properties 315

Chapter 36. FmcjItem
functions/subprograms 317
FmcjItemDelete() 317

Properties 317
FmcjItemObtainProcessInstanceMonitor() 319

Properties 319
FmcjItemProcessInstance() 321

Properties 321
FmcjItemRefresh() 323

Properties 323
FmcjItemSetDescription() 324

Properties 324
FmcjItemSetName() 326

Properties 326
FmcjItemTransfer() 328

Properties 328

Chapter 37. FmcjPersistentList
functions/subprograms 331
FmcjPersistentListDelete() 331

Properties 331
FmcjPersistentListRefresh() 333

Properties 333
FmcjPersistentListSetDescription() 334

Properties 334
FmcjPersistentListSetFilter() 336

Properties 336
FmcjPersistentListSetSortCriteria() 338

Properties 338
FmcjPersistentListSetThreshold() 339

Properties 339

Chapter 38. FmcjPerson
functions/subprograms 343
FmcjPersonRefresh() 343

Properties 343
FmcjPersonSetAbsence() 344

Properties 344
FmcjPersonSetSubstitute() 346

Properties 346

Chapter 39. FmcjProcessInstance
functions/subprograms 349
FmcjProcessInstanceDelete() 349

Properties 349
FmcjProcessInstanceInContainer() 351

Properties 351
FmcjProcessInstanceObtainMonitor() 353

Properties 353
FmcjProcessInstancePersistentObject() 355

Properties 355
FmcjProcessInstanceRefresh() 357

Properties 357
FmcjProcessInstanceResume() 358

Properties 358
FmcjProcessInstanceSetDescription() 360

Properties 360
FmcjProcessInstanceSetName() 362

Properties 362
FmcjProcessInstanceStart() 364

Properties 364
FmcjProcessInstanceSuspend() 366

Properties 366
FmcjProcessInstanceTerminate() 368

Properties 368

vi Programming Guide

Chapter 40. FmcjProcessInstanceList
functions/subprograms 371
FmcjProcessInstanceListQueryProcessInstances() 371

Properties 372

Chapter 41.
FmcjProcessInstanceNotification
functions/subprograms 375
FmcjProcessInstanceNotificationPersistentObject() 375

Properties 375

Chapter 42. FmcjProcessTemplate
functions/subprograms 379
FmcjProcessTemplateCreateAndStartInstance() 379

Properties 380
FmcjProcessTemplateCreateAndSuspendInstance() 382

Properties 383
FmcjProcessTemplateCreateInstance() 385

Properties 386
FmcjProcessTemplateDelete(). 388

Properties 388
FmcjProcessTemplateInContainer() 390

Properties 390
FmcjProcessTemplatePersistentObject() 391

Properties 391
FmcjProcessTemplateRefresh() 393

Properties 393

Chapter 43. FmcjProcessTemplateList
functions/subprograms 395
FmcjProcessTemplateListQueryProcessTemplates() 395

Properties 395

Chapter 44.
FmcjProcessTemplateVector
functions/subprograms 399
FmcjProcessTemplateVectorDeallocate() 399

Properties 399
FmcjProcessTemplateVectorFirstElement() . . . 400

Properties 400
FmcjProcessTemplateVectorNextElement() . . . 401

Properties 401
FmcjProcessTemplateVectorSize() 402

Properties 402

Chapter 45. FmcjService related
functions/subprograms 405
FmcjServiceSetPassword(). 405

Properties 405
FmcjServiceUserSettings() 407

Properties 407

Chapter 46. FmcjWorkitem
functions/subprograms 409
FmcjWorkitemCheckIn(). 411

Properties 411
FmcjWorkitemCheckOut() 413

Properties 413

FmcjWorkitemFinish() 415
Properties 415

FmcjWorkitemForceFinish() 417
Properties 417

FmcjWorkitemForceRestart() 419
Properties 419

FmcjWorkitemInContainer() 421
Properties 421

FmcjWorkitemOutContainer() 422
Properties 422

FmcjWorkitemPersistentObject() 424
Properties 424

FmcjWorkitemRestart() 426
Properties 426

FmcjWorkitemStart() 427
Properties 427

FmcjWorkitemTerminate() 429
Properties 429

Chapter 47. FmcjWorklist
functions/subprograms 431
FmcjWorklistQueryActivityInstanceNotifications() 431

Properties 432
FmcjWorklistQueryItems() 433

Properties 434
FmcjWorklistQueryProcessInstanceNotifications() 436

Properties 436
FmcjWorklistQueryWorkitems() 438

Properties 438

Part 8. Examples441

Chapter 48. How to create persistent
lists 443
Create a process instance list (C language) . . . 443
Create a process instance list (Cobol language) 444

Chapter 49. How to query persistent
lists 447
Query worklists (C language) 447
Query worklists (Cobol language) 448

Chapter 50. How to query a set of
objects 455
Query process instances (C language) 455
Query process instances (Cobol language) . . . 456
Query work items from a worklist (C language) 459
Query work items from a worklist (Cobol language) 460

Chapter 51. An activity implementation 465
Programming an executable (C language) . . . 465
Programming an executable (Cobol language) 466

Part 9. Appendixes469

Appendix. Audit Trail 471

Contents vii

Glossary 479

Bibliography 485
MQSeries Workflow for OS/390 publications . . . 485
MQSeries Workflow publications 485
Related publications 485

Index 487

Readers’ Comments — We’d Like to
Hear from You 493

viii Programming Guide

About this book

This book describes how to use the IBM MQSeries Workflow for OS/390 Client
Application Programming Interfaces, hereafter called the MQSeries Workflow APIs.
The first part of the book describes the concepts underlying the APIs while the rest
of the book provides for an API reference manual. The book also describes the
MQSeries Workflow predefined data structures, the MQSeries Workflow audit trail
function, and how to debug applications running under the control of MQSeries
Workflow. The main change in this book in comparison with the last version is
“Part 4. Program Execution Server’s Program Mapping” on page 97. It describes
how to use program mappings in order to bring Workflow API containers into a
format acceptable by legacy applications. Additionally there are the PES exits
(mapping and invocation) described.

Note: The licensed books that were declassified in OS/390 Version 2 Release 4
appear on the OS/390 Online Library Collection, SK2T-6700. The remaining
licensed books for OS/390 Version 2 appear on the OS/390 Licensed
Product library, LK2T-2499, in unencrypted form.

Who should read this book

This book is intended for programmers who design and implement programs
using an MQSeries Workflow API and who may participate in designing an
MQSeries Workflow workflow model. It assumes that readers are experienced
OS/390 programmers, and that they understand the process modeling concepts.

How to get additional information

Visit the MQSeries Workflow home page at
http://www.software.ibm.com/ts/mqseries/workflow

For a list of additional publications, refer to “MQSeries Workflow publications” on
page 485.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
MQSeries Workflow documentation, choose one of the following methods:
v Send your comments by e-mail to: s390id@de.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of MQSeries Workflow, and, if applicable, the specific location of the text
you are commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

© Copyright IBM Corp. 1999 ix

How this book is organized

“Notices” on page xii describes some notices and trademarks.

“Part 1. Programming Concepts” on page 1 provides an overview on how to design
applications to work with the MQSeries Workflow workflow manager.

“Part 2. The MQSeries Workflow APIs” on page 5 describes the concepts
underlying the MQSeries Workflow APIs.

“Part 3. OS/390 specific considerations” on page 79 describes some special OS/390
considerations for COBOL, CICS and IMS.

“Part 4. Program Execution Server’s Program Mapping” on page 97 describes how
to use program mappings in order to bring Workflow API containers into a format
acceptable by legacy applications.

“Part 5. Program Execution Server Exits” on page 147 describes how to use
mapping and invocation exits.

“Part 6. Using the MQSeries Workflow APIs” on page 169 provides for an overview
on the functions/subprograms supported by the APIs.

“Part 7. Application programming interfaces” on page 213 describes the MQSeries
Workflow APIs that enable applications to manipulate worklists and work items, to
work with process instances and container data, and to log on to and log off from
an MQSeries Workflow server.

“Part 8. Examples” on page 441 provides some examples that show how to use the
APIs.

“Appendix. Audit Trail” on page 471 describes the MQSeries Workflow audit trail
function.

The back of the book includes a glossary that defines terms as they are used in this
book, a bibliography, and an index.

How to read the syntax diagrams

Throughout this book, syntax is described the following way; all spaces and other
characters are significant:
v Read the syntax diagrams from left to right, from top to bottom, following the

main path of the line.
The ÊÊ— symbol indicates the beginning of a statement.
The —Ê symbol indicates that the statement syntax is continued on the next line.
The Ê— symbol indicates that a statement is continued from the previous line.
The —ÊÍ symbol indicates the end of a statement.

v Diagrams can be broken into fragments. A fragment is indicated by vertical bars
with the name of the fragment between the bars. The fragment itself follows the
same syntactical rules as the main diagram.

x Programming Guide

ÊÊ a-fragment ÊÍ

v Required items appear on the horizontal line, the main path.

ÊÊ required-item ÊÍ

v Optional items appear below (or above) the main path.

ÊÊ required-item
optional-item

ÊÍ

v If you can choose from one or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

ÊÊ required-item required-choice1
required-choice2

ÊÍ

If choosing one of the items is optional, the entire stack appears below the main
path.

ÊÊ required-item
optional-choice1
optional-choice2

ÊÍ

v An arrow returning to the left, above the main path, indicates an item that can
be repeated.

ÊÊ required-item · repeatable-item ÊÍ

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

ÊÊ required-item ·

,

repeatable-item ÊÍ

v Keywords appear in uppercase, for example, NAME. They must be spelled
exactly as shown. Variables appear in lowercase italic letters, for example, string.
They represent user-supplied values.

About this book xi

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

xii Programming Guide

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp.1993, 1998. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:
v AIX
v DB2
v DB2 Universal Database
v FlowMark
v Workflow
v IBM
v MQSeries

About this book xiii

v OS/390
v RISC System/6000

Lotus Notes is a registered trademark, and Domino and Lotus Go Webserver are
trademarks of Lotus Development Corporation.

Microsoft, Windows, Windows NT and the Windows logo are registered
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the U.S. and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

xiv Programming Guide

Part 1. Programming Concepts

This part provides you with a general introduction to the programming concepts
of MQSeries Workflow.

© Copyright IBM Corp. 1999 1

2 Programming Guide

Chapter 1. Understanding the programming concept

This chapter introduces the concept of workflow modeling as it relates to the
design of application programs for use with the IBM MQSeries Workflow, hereafter
referred to as MQSeries Workflow.

The IBM MQSeries Workflow Workflow manager provides a way to model a
process and assign applications to activities in the resulting workflow model. This
enables the workflow manager to automate the control of activities and the flow of
data.

Work can be routed to the person who performs the activity instance. An
application program required to perform an activity instance can be designed to
start when a user starts an activity instance.

The role of the programmer in modeling a process

As workflow models are defined, the applications and data structures needed to
support program activities are identified. Programmers can create new applications
or reengineer existing applications to support these program activities.

To use existing applications with the workflow model, programmers must
determine if the applications used by the enterprise can be functionally
decomposed.

To integrate the applications with the workflow model, the control and flow logic
are separated from the application, the start and exit conditions are moved into the
workflow model, and the program is divided into modules to be invoked by the
workflow manager at the appropriate points.

The resulting modules are applications that are assigned to perform the program
activities defined in the workflow model.

Most applications include many diverse functions, and many can support several
different activities in different stages of a process. Output produced by one
function of a program can be used as input by another function of the same
program. Therefore, the same application can be used to support many different
program activities in a workflow model.

Your enterprise might also use vendor-written programs like word- processing or
spreadsheet applications.

With IBM MQSeries Workflow for OS/390 you will be able to use mappings so
you can support any legacy application with this tool. There may be old
applications where you can’t change the interfaces because other applications or
programs have been configured to work with these long time ago and if you
change one configuration of an interface you will have to change them all. This
mapper enables you to use all legacy applications with your Workflow applications
via the mapping tool.

Return codes, provided by the assigned program, can then be used to evaluate exit
and transition conditions.

© Copyright IBM Corp. 1999 3

Programming interfaces

The MQSeries Workflow workflow manager provides application program
interface (API) support and a set of predefined data structure members to assist
programmers who develop applications for use with workflow models. In
addition, several programming samples are provided.

The MQSeries Workflow predefined data structure members provide information
about the current process, activity, or block, and are associated with the operating
characteristics of a process instance or activity instance.

The following MQSeries Workflow programming aids are described in this book:
v MQSeries Workflow C language API
v MQSeries Workflow Cobol language API

The MQSeries Workflow C language and Cobol language APIs provide
functions/subprograms
v To execute process models, that is, to work with process instances and container

data and to manipulate worklists and work items
v To monitor the progress of execution
v To issue process administrator functions
v To process container data associated with an activity implementation
v To receive information sent by an MQSeries Workflow server

4 Programming Guide

Part 2. The MQSeries Workflow APIs

This part provides an overview on the concepts underlying the MQSeries
Workflow C and Cobol APIs.

© Copyright IBM Corp. 1999 5

6 Programming Guide

Chapter 2. Prerequisites for programming

MQSeries Workflow application development assumes that the appropriate
environment is established. This means that:
v IBM MQSeries Workflow for OS/390 must be installed on the machine where

you are developing your applications.
v A compiler of one of the supported languages is installed and configured.
v BuildTime must be installed on the machine where you are developing your

applications.

© Copyright IBM Corp. 1999 7

8 Programming Guide

Chapter 3. Building an MQSeries Workflow application

Overview

There are essentially two different tasks which you can address by using the
MQSeries Workflow application programming interface (API):
v You can write your own client application instead of using the MQSeries

Workflow provided GUIs (Graphical User Interfaces) or command line interfaces.
For example, you may want to:
– Control the MQSeries Workflow functionality provided to your user.
– Present the MQSeries Workflow functionality in a way that your user is

accustomed to.
– Run selected MQSeries Workflow tasks in batch mode.

v You can write a program that implements an activity or support tool in your
workflow process model.

These two kinds of programs usually contain specific parts which are discussed in
chapters “Coding an MQSeries Workflow client application” on page 10 and
“Coding an MQSeries Workflow activity implementation or support tool” on
page 11.

The concepts underlying the MQSeries Workflow API are common to all programs
using the MQSeries Workflow APIs. They are summarized here and discussed in
more detail in the following chapters.

All persistent objects such as work items and process instances are accessed
through transient objects which represent their state at the time when they were
queried from a server. In the C and Cobol language API a so-called handle
represents a pointer to such a transient object.

In order to request an action on an object, a session must have been established
with an appropriate MQSeries Workflow server. The action itself can then be
executed synchronously.

Only objects for which you are authorized are returned from the server to the
client.

Separate functions in the C language API respectively subprograms in the Cobol
language API, hereafter called functions/subprograms, are available for each action
on an object or to access each property of an object. This approach allows
function/subprogram parameters to be checked by the compiler and best
represents the object-action paradigm supported by MQSeries Workflow.

Detailed error information is provided by a so-called result object. This object is
available in addition to the return code set by action functions/subprograms. See
chapter “Chapter 4. Handling errors” on page 15 for further information on the
result object.

Objects are managed by the application programmer but object memory is owned
by the MQSeries Workflow API. The application programmer determines the

© Copyright IBM Corp. 1999 9

lifetime of transient objects by using allocate, or query, and deallocate mechanisms.
The MQSeries Workflow API hides the internal structure of transient objects.

Coding an MQSeries Workflow client application

An MQSeries Workflow client application typically contains the following parts,
not necessarily divided that clearly.

To set up your program, you typically declare the program variables or objects you
are going to use and you include the MQSeries Workflow API header files or copy
the copybooks you need for your actions.

You should then initialize the MQSeries Workflow API by calling the Connect()
function/subprogram so that resources held by the API are allocated correctly.
Connect() - and Disconnect() - are to be called at the begin respectively end of each
thread.

You then need to allocate a service object which represents the server you are
going to ask services from. Once the service object is allocated, you can log on.
Logon establishes a session between the user logging on and the server
represented by your service object. All subsequent calls requiring client/server
communication run through this session.

After a successful logon, you can issue action or program execution management
functions/subprograms in order to query or manage MQSeries Workflow objects
you are authorized for.

At the end of your program, you log off in order to close the session to the server
and you deallocate any resources held by your program, especially the service
object.

As a last step, you disconnect from the MQSeries Workflow API so that resources
held by the API are deallocated correctly.

┌── #include <MQ Workflow Api-prerequisites (c++)>
│ #include <MQ Workflow API>
│ int main()
│ {

Setup │ Declare objects
│ :
│ Connect
│ Allocate service object
┌── Logon()
┌──
│
│
│

Actions │ MQSeries Workflow API calls
│
│
│
┌──
┌── Logoff()
│ Deallocate service object

Cleanup │ Disconnect
│ return 0;
┌── }

10 Programming Guide

Coding an MQSeries Workflow activity implementation or support tool

An MQSeries Workflow activity implementation or support tool implementation
typically contains the following parts.

To set up your program, you typically declare the program variables or objects you
are going to use and you include the MQSeries Workflow API header files or copy
the copybooks you need for your actions. Include the respective files before the
MQSeries Workflow API headers.

You should then initialize the MQSeries Workflow API by calling the Connect()
function/subprogram so that resources held by the API are allocated correctly.
Connect() - and Disconnect() - are to be called at the begin respectively end of each
thread.

An activity implementation can then retrieve the activity’s input and output
containers from the MQSeries Workflow program execution server that started this
program. A support tool can retrieve the activity’s input container only.

Having access to the containers, you can read and set values according to your
programming logic.

At the end of your program, the activity implementation returns the final output
container to the MQSeries Workflow program execution server. Any resources held
by your program are deallocated. The return value of your program tells the
program execution agent about the overall outcome of your program.

The output container as well as the return code of your program are passed back
to the MQSeries Workflow server which requested the execution of the activity
implementation. The return code (_RC) can be used in exit or transition conditions
in order to guide MQSeries Workflow navigation. 1

1. For compilers which do not support an exit code of an application, it is possible to set the _RC data member of the output
container.

┌── #include <MQ Workflow Api-prerequisites (C++)>
│ #include <MQ Workflow API>
│ int main()
│ {

Setup │ Declare objects
│ :
│ Connect
│ InContainer()
┌── OutContainer() if no support tool
┌──
│
│
│

Actions │ read values
│ set values if no support tool
│
│
┌──
┌── SetOutContainer() if no support tool
│ Deallocate objects

Cleanup │ Disconnect
│ return rc;
┌── }

Chapter 3. Building an MQSeries Workflow application 11

As a last step, you disconnect from the MQSeries Workflow API so that resources
held by the API are deallocated correctly.

Your activity implementation or support tool can as well behave like a client
application (see “Coding an MQSeries Workflow client application” on page 10)
and request services from an MQSeries Workflow server, normally the server from
where its execution had been triggered. The Passthrough() function/subprogram is
then used instead of the Logon() function/subprogram in order to logon to the
server which caused the program execution with the user identification and
authority known to the server from the work item start request.

Compiling and linking

All programs developed for use with MQSeries Workflow must include header
files provided by MQSeries Workflow and link with the corresponding library files.

Note that bool.h and vector.h are part of the Standard Template Library delivered
with MQSeries Workflow and copyrighted by the Hewlett-Packard Company.

The MQSeries Workflow features you use determine which header files to include
and the compilers you use which library files to link with. Depending on the
feature used, the following header files must be included:

Feature C-API Header
Runtime client fmcjcrun.h
Runtime activity implementation:
- container access only fmcjccon.h
- container and server access fmcjcrun.h
Runtime support tool
- container access only fmcjccon.h
- container and server access fmcjcrun.h

For the corresponding Cobol-API copybooks refer to “Chapter 13. Cobol specific
considerations” on page 81

The following JCLs are provided as samples for the development and execution of
IBM MQSeries Workflow for OS/390 applications. They are located in the
SFMCCNTL library delivered with MQSeries Workflow.

Table 1. Provided JCLs

Job Sample

Native OS/390 C full API Compile Job FMCHJ1CF

Native OS/390 C API Run Job FMCHJ1CR

Native OS/390 Cobol full API Compile Job FMCHJ1BF

Native OS/390 Cobol API Run Job FMCHJ1BR

CICS C full API Compile Job FMCHJ2CF

CICS C Container API Compile Job FMCHJ2CC

CICS Cobol full API Compile Job FMCHJ2BF

CICS Cobol Container API Compile Job FMCHJ2BC

IMS C Container API Compile Job FMCHJ3CC

IMS Cobol Container API Compile Job FMCHJ3BC

12 Programming Guide

For more information about CICS/IMS specifics like stubs or precompiler refer to
the documentation of this components.

The compilers given as prerequisites or newer versions can be used to compile and
link your applications accessing the MQSeries Workflow APIs. Your compile and
link options must ensure that the MQSeries Workflow APIs are called with the
calling convention that is defined in the FMC_APIENTRY macro (see file
fmcjcglo.h). FMC_APIENTRY has been defined to the standard C calling
convention and should automatically be applied when you use the header files
provided by MQSeries Workflow.

Access can be gained to C language functions using calls from all languages that
support C calls.

Chapter 3. Building an MQSeries Workflow application 13

14 Programming Guide

Chapter 4. Handling errors

All action, activity implementation, or program execution management
functions/subprograms show whether or not the call has been successfully
executed by returning a so-called return code as their return value. The return code
is one of a set of predefined return codes (see “List of return codes” on page 17).
The exact return codes for each of those functions/subprograms are listed with the
description of each call. You should design your programs to handle all return
codes that can arise.

Additional to the return code, a so-called result object can be accessed which
describes the result of the call in more detail.

Basic and accessor functions/subprograms do not return any value or return the
value queried as their return value. Since they are querying transient objects and
are able to return default values, an error does normally not occur. It can, however,
happen during application development that a wrong handle or a buffer too small
to hold a character value is specified. To look for such erroneous situations, the
result object can be queried (besides checking the trace).

The result object

In general, a result object states the result of the last MQSeries Workflow API
request (in the considered program). It especially allows for analyzing an
erroneous situation in more detail and contains the following information:
v The return code.
v The origin of the result, that is, the file that caused the result to be written, and

the line and function where the error or the completion of the request occurred.
v Parameters (up to five) which describe the objects involved.

The result can be retrieved as a formatted message text with all parameters added
to the text. The current locale is considered when building that message text so
that the message is provided in your selected language.

All results of function/subprogram calls are written into the result object
associated with the thread the request executes in. It is sufficient to access the
result object just once per-thread using the FmcjResultObjectOfCurrentThread
function. As threads are not supported in IBM MQSeries Workflow for OS/390 the
″OfCurrentThread″ is mentioned here for compatibility reasons with versions
supporting threads. The result object is automatically updated with each request.

A result object is automatically allocated by MQSeries Workflow when the first
MQSeries Workflow API call is issued in that program. It can be accessed at any
time and as often as needed.

For example, in the C language, you can access and use a result object in the
following way:
#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

© Copyright IBM Corp. 1999 15

FmcjResultHandle result = 0;
FmcjStringVectorHandle parms = 0;
char buffer[2000] = "";

result= FmcjResultObjectOfCurrentThread();
printf("Accessed result object of current thread\n");

printf("Return code: %i\n", FmcjResultRc(result));
printf("Text : %s", FmcjResultMessageText(result,buffer,2000));
printf("Origin : %s\n", FmcjResultOrigin(result,buffer,2000));
parms= FmcjResultParameters(result);
while (0 != FmcjStringVectorNextResultParmElement(parms, buffer, 2000))

printf("Parameter : %s\n", buffer);

return 0;
}

Note: The NextResultParmElement() function is used on the string vector so that
the result object is not changed while reading the parameters.

For example, in the Cobol language, you can access and use a result object the
following way:

IDENTIFICATION DIVISION.
PROGRAM-ID. "RESOBJ".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.

01 buffer PIC X(2000) VALUE SPACES.

PROCEDURE DIVISION.

PERFORM FmcjResultObjOfCurrentThread.
DISPLAY "Accessed result object of current thread".

SET hdlResult TO FmcjResultHandleReturnValue.
PERFORM FmcjResultRc.
DISPLAY "Return code: " intReturnValue.
MOVE 2000 TO bufferlength.
CALL "SETADDR" USING buffer messageBuffer.
PERFORM FmcjResultMessageText.
DISPLAY "Text : " buffer.
CALL "SETADDR" USING buffer originBuffer.
PERFORM FmcjResultOrigin.
DISPLAY "Origin : " buffer.
PERFORM FmcjResultParms.
SET hdlVector TO FmcjStrVHandleReturnValue.

CALL "SETADDR" USING buffer elementBuffer.
PERFORM FmcjStrVNextResultParmElement.

PERFORM UNTIL pointerReturnValue = NULL
DISPLAY "Parameter : " buffer
PERFORM FmcjStrVNextResultParmElement

END-PERFORM.

STOP RUN.

COPY fmcperf.

IDENTIFICATION DIVISION.
PROGRAM-ID. "RESOBJ".

16 Programming Guide

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.

01 buffer PIC X(2000) VALUE SPACES.

PROCEDURE DIVISION.

CALL "FmcjResultObjectOfCurrentThread"
RETURNING FmcjResultHandleReturnValue.

DISPLAY "Accessed result object of current thread".

SET hdlResult TO FmcjResultHandleReturnValue.
CALL "FmcjResultRc"

USING BY VALUE hdlResult
RETURNING intReturnValue.

DISPLAY "Return code: " intReturnValue.
MOVE 2000 TO bufferlength.
CALL "SETADDR" USING buffer messageBuffer.
CALL "FmcjResultMessageText"

USING BY VALUE hdlResult
messageBuffer
bufferLength

RETURNING pointerReturnValue.
DISPLAY "Text : " buffer.
CALL "SETADDR" USING buffer originBuffer.
CALL "FmcjResultOrigin"

USING BY VALUE hdlResult
originBuffer
bufferLength

RETURNING pointerReturnValue.
DISPLAY "Origin : " buffer.
CALL "FmcjResultParameters"

USING BY VALUE hdlResult
RETURNING FmcjStrVHandleReturnValue.

SET hdlVector TO FmcjStrVHandleReturnValue.

CALL "SETADDR" USING buffer elementBuffer.
CALL "FmcjStringVectorNextResultParmElement"

USING BY VALUE hdlVector
elementBuffer
bufferLength

RETURNING pointerReturnValue.

PERFORM UNTIL pointerReturnValue = NULL
DISPLAY "Parameter : " buffer
CALL "FmcjStringVectorNextResultParmElement"

USING BY VALUE hdlVector
elementBuffer
bufferLength

RETURNING pointerReturnValue
END-PERFORM.

STOP RUN.

List of return codes

The following list shows the numeric values of the return codes that are issued by
the MQSeries Workflow APIs; it is strongly advised to use the symbolic names
instead of the integer values. For Cobol the return codes have a maximum length
of 30 characters. Additional words in the return codes are separated by
underscores and not by hyphens (like it is common for C). In order to avoid

Chapter 4. Handling errors 17

misunderstandings the C version of the return codes is used in this book especially
in the chapter about the APIs (“Part 7. Application programming interfaces” on
page 213).

Table 2. List of return codes
Numeric
value

Symbolic value (C) Symbolic value (Cobol)

0 FMC_OK FMC-OK
1 FMC_ERROR FMC-ERROR
10 FMC_ERROR_USERID_UNKNOWN FMC-ERROR-USERID-UNKNOWN
11 FMC_ERROR_ALREADY_LOGGED_ON FMC-ERROR-ALR-LOGGED-ON
12 FMC_ERROR_PASSWORD FMC-ERROR-PASSWORD
13 FMC_ERROR_COMMUNICATION FMC-ERROR-COMMUNICATION
14 FMC_ERROR_TIMEOUT FMC-ERROR-TIMEOUT
100 FMC_ERROR_INTERNAL FMC-ERROR-INTERNAL
101 FMC_ERROR_SERVER FMC-ERROR-SERVER
102 FMC_ERROR_UNKNOWN FMC-ERROR-UNKNOWN
103 FMC_ERROR_MESSAGE_FORMAT FMC-ERROR-MESSAGE-FORMAT
104 FMC_ERROR_MESSAGE_DATA FMC-ERROR-MESSAGE-DATA
105 FMC_ERROR_RESOURCE FMC-ERROR-RESOURCE
106 FMC_ERROR_NOT_LOGGED_ON FMC-ERROR-NOT-LOGGED-ON
107 FMC_ERROR_NEW_OWNER_NOT_FOUND FMC-ERROR-NEW-OWNER-NOT-FOUND
108 FMC_ERROR_NO_OLD_OWNER FMC-ERROR-NO-OLD-OWNER
109 FMC_ERROR_OLD_OWNER_ABSENT FMC-ERROR-OLD-OWNER-ABSENT
110 FMC_ERROR_NEW_OWNER_ABSENT FMC-ERROR-NEW-OWNER-ABSENT
111 FMC_ERROR_ALREADY_STARTED FMC-ERROR-ALR-STRTD
112 FMC_ERROR_MEMBER_NOT_FOUND FMC-ERROR-MEMBER-NOT-FOUND
113 FMC_ERROR_MEMBER_NOT_SET FMC-ERROR-MEMBER-NOT-SET
114 FMC_ERROR_WRONG_TYPE FMC-ERROR-WRONG-TYPE
115 FMC_ERROR_MEMBER_CANNOT_BE_SET FMC-ERROR-MEMBER-CANNOT-BE-SET
116 FMC_ERROR_MEMBER_INVALID FMC-ERROR-MEMBER-INVAL
117 FMC_ERROR_FORMAT FMC-ERROR-FORMAT
118 FMC_ERROR_DOES_NOT_EXIST FMC-ERROR-DOES-NOT-EXIST
119 FMC_ERROR_NOT_AUTHORIZED FMC-ERROR-NOT-AUTH
120 FMC_ERROR_WRONG_STATE FMC-ERROR-WRONG-STATE
121 FMC_ERROR_NOT_UNIQUE FMC-ERROR-NOT-UNIQUE
122 FMC_ERROR_EMPTY FMC-ERROR-EMPTY
123 FMC_ERROR_NO_MANUAL_EXIT FMC-ERROR-NO-MANUAL-EXIT
124 FMC_ERROR_PROFILE FMC-ERROR-PROFILE
125 FMC_ERROR_INVALID_FILTER FMC-ERROR-INVAL-FILTER
126 FMC_ERROR_PROGRAM_EXECUTION FMC-ERROR-PROGRAM-EXECUTION
127 FMC_ERROR_PROTOCOL FMC-ERROR-PROTOCOL
128 FMC_ERROR_TOOL_FUNCTION FMC-ERROR-TOOL-FUNCTION
129 FMC_ERROR_INVALID_TOOL FMC-ERROR-INVAL-TOOL
130 FMC_ERROR_INVALID_HANDLE FMC-ERROR-INVAL-HANDLE
131 FMC_ERROR_NOT_EMPTY FMC-ERROR-NOT-EMPTY
132 FMC_ERROR_INVALID_USER FMC-ERROR-INVAL-USER
133 FMC_ERROR_OWNER_ALREADY_ASSIGNED FMC-ERROR-OWNER-ALR-ASSIGNED
134 FMC_ERROR_INVALID_NAME FMC-ERROR-INVAL-NAME
135 FMC_ERROR_INVALID_PROGRAMID FMC-ERROR-INVAL-PROGRAMID
136 FMC_ERROR_SIZE_EXCEEDED FMC-ERROR-SIZE-EXCEEDED
406 FMC_ERROR_WRONG_ACT_IMPL_KIND FMC-ERROR-WRONG-ACT-IMPL-KIND
500 FMC_ERROR_NON_LOCAL_USER FMC-ERROR-NON-LOCAL-USER
501 FMC_ERROR_WRONG_KIND FMC-ERROR-WRONG-KIND
502 FMC_ERROR_INVALID_ACTIVITY FMC-ERROR-INVAL-ACT
503 FMC_ERROR_CHECKOUT_NOT_POSSIBLE FMC-ERROR-CHECKOUT-NOT-POSSIBLE

18 Programming Guide

Table 2. List of return codes (continued)
Numeric
value

Symbolic value (C) Symbolic value (Cobol)

800 FMC_ERROR_BUFFER FMC-ERROR-BUFFER
801 FMC_ERROR_INVALID_SESSION FMC-ERROR-INVAL-SESSION
802 FMC_ERROR_INVALID_TIME FMC-ERROR-INVAL-TIME
804 FMC_ERROR_NO_MORE_DATA FMC-ERROR-NO-MORE-DATA
805 FMC_ERROR_INVALID_OID FMC-ERROR-INVAL-OID
807 FMC_ERROR_INVALID_THRESHOLD FMC-ERROR-INVAL-THRESHOLD
808 FMC_ERROR_INVALID_SORT FMC-ERROR-INVAL-SORT
809 FMC_ERROR_OBJECT_IN_USE FMC-ERROR-OBJ-IN-USE
810 FMC_ERROR_INVALID_DESCRIPTION FMC-ERROR-INVAL-DESCRIPTION
811 FMC_ERROR_INVALID_INVOCATION_TYPE FMC-ERROR-INVAL-INV-TYPE
812 FMC_ERROR_OWNER_NOT_FOUND FMC-ERROR-OWNER-NOT-FOUND
813 FMC_ERROR_INVALID_LIST_TYPE FMC-ERROR-INVAL-LIST-TYPE
814 FMC_ERROR_INVALID_RESULT_HANDLE FMC-ERROR-INVAL-RESULT-HANDLE
815 FMC_ERROR_MESSAGE_CATALOG FMC-ERROR-MESSAGE-CATALOG
816 FMC_ERROR_INVALID_SPECIFICATION FMC-ERROR-INVAL-SPECIFICATION
817 FMC_ERROR_QRY_RESULT_TOO_LARGE FMC-ERROR-QRY-RESULT-TOO-LARGE
818 FMC_ERROR_NO_VERSION_2_FILTER FMC-ERROR-NO-VERSION-2-FILTER
900 FMC_ERROR_NO_SYS_ADMIN FMC-ERROR-NO-SYS-ADMIN
901 FMC_ERROR_INVALID_SESSION_MODE FMC-ERROR-INVAL-SESSION-MODE
902 FMC_ERROR_PROGRAM_UNDEFINED FMC-ERROR-PROGRAM-UNDEFINED
903 FMC_ERROR_PEA_NOT_RUNNING FMC-ERROR-PEA-NOT-RUNNING
904 FMC_ERROR_PEA_NOT_LOCAL FMC-ERROR-PEA-NOT-LOCAL
905 FMC_ERROR_INVALID_ABSENCE_SPEC FMC-ERROR-INVAL-ABSENCE-SPEC
1000 FMC_ERROR_NOT_SUPPORTED FMC-ERROR-NOT-SUPPORTED
1012 FMC_ERROR_PROGRAM_NOT_DEFINED FMC-ERROR-PROGRAM-NOT-DEFINED
1014 FMC_ERROR_PEA_NOT_REACHABLE FMC-ERROR-PEA-NOT-REACHABLE
1015 FMC_ERROR_INVALID_PEA_FROM_CTNR FMC-ERROR-INVALID-PEA-FRM-CTNR
1016 FMC_ERROR_INVALID_PEA_FROM_MODEL FMC-ERROR-INVAL-PEA-FRM-MODEL
1017 FMC_ERROR_INVALID_SYSTEM_FROM_CTNR FMC-ERROR-INVAL-SYSTEM-FRM-CTNR
1018 FMC_ERROR_INVALID_SYSTEM_FROM_MODEL FMC-ERROR-INVAL-SYSTEM-FRM-MODEL
1019 FMC_ERROR_SUB_PROC_TERMINATED_BY_ERROR FMC-ERROR-SUB-PROC-TERMINATED-BY-

ERROR
1020 FMC_ERROR_NO_PEA_FOUND_FOR_AUTO_START FMC-ERROR-NO-PEA-FND-FR-AUT-ST
1021 FMC_ERROR_NO_CTNR_ACCESS FMC-ERROR-NO-CTNR-ACCESS

Chapter 4. Handling errors 19

20 Programming Guide

Chapter 5. Memory management

Workflow process models, their instances, and resulting work items are all objects
persistently stored in an MQSeries Workflow database. This means that they exist
independently from an application program.

When persistent objects are queried by an application program, they are
represented by transient objects which carry the states of the persistent objects at the
time of the query. When multiple queries are issued, there can be multiple
transient objects representing the same persistent object, even representing different
states of that object.

The lifetime of transient objects and their memory is fully managed by you, because
you know best when those objects are no longer needed, that is, when objects are
to be deallocated. Transient objects are, however, no longer available when your
application program ends.

Some transient objects are explicitly allocated by you. These are supporting objects,
which do not reflect persistent ones. Examples are the FmcjStringVector when you
specify a set of persons to stand in for or the FmcjExecutionService object, which
allows services to be requested from an execution server.

Transient objects, which do reflect persistent objects are implicitly allocated by you
when you create or when you retrieve persistent objects, for example, by querying.

Although the lifetime of transient objects is fully managed by you, their actual
internal object structure is encapsulated by the MQSeries Workflow API. The
MQSeries Workflow API provides a handle to you so that you can issue requests
against the object.

The MQSeries Workflow API follows the programming by contract concept. This
means that any handle passed to it which is not 0 (NULL) is assumed to be a valid
handle which can be used to access an object.

© Copyright IBM Corp. 1999 21

22 Programming Guide

Chapter 6. Communication protocols and data access models

When you request actions from an MQSeries Workflow server or when you want
to observe the result of actions, you can:
v Use a synchronous protocol to view changes of the object which you used to call

the action.
v Use a synchronous protocol to pull for data created or changed.
v Receive unsolicited information on created or changed objects pushed by the

server.

For example, when you ask a process instance object to be started2:
v As an immediate result, the state of the process instance is updated.
v You can query work items in order to view (pull for) new objects created.
v You can automatically receive new work items sent (pushed) to you.

Applying a synchronous protocol means that you issue a request to an MQSeries
Workflow server and then wait until you receive a response. All action
functions/subprograms operate this way; your application is blocked until the
response arrives or until your timeout set on the execution service object exceeds.

Receiving unsolicited information pushed by an MQSeries Workflow server means
that you set up communication in a way that you are automatically informed
about new or changed objects.

The push data access model

In order to obtain information pushed by an MQSeries Workflow server:
1. The server must be asked for sending data. This means that:
v The settings of the considered process instance must specify

REFRESH_POLICY PUSH. This setting is inherited from the domain level,
through the system group to the system and down to the process template.
Each specification can be overwritten on a lower level.

v The users must be logged on with a Present or PresentHere session mode, that
is, they are enabled to receive information.

2. The application must use functions/subprograms in order to receive data
pushed.

Provided that these prerequisites are fulfilled, the MQSeries Workflow execution
server pushes changes on work items or notifications to the owner of the item:
1. On creation of the item.
2. On deletion of the item.
3. Whenever a primary property of the item changes.

The caller of the action will, however, not receive such information because, as a
result of the action, the transient object has already been updated with relevant
data.

2. C language: FmcjProcessInstanceStart(instance,...); Cobol language: PERFORM FmcjPIStart

© Copyright IBM Corp. 1999 23

Changes on disabled work items are not pushed. Only the deletion of such work
items is pushed.

Examples:

When a process instance is suspended and when its refresh policy is push, the
MQSeries Workflow execution server sends informations to all owners of
non-disabled items which are currently logged on as present.

When the description of a process instance is changed and when the refresh policy
is push, the MQSeries Workflow execution server sends informations to all owners
of process instance notifications which are currently logged on as present.

When a work item is transferred to user N by the owner of the work item and
when the refresh policy of the associated process instance is push, the MQSeries
Workflow execution server sends an information to user N when he/she is
currently logged on as present. The owner of the work item as the requester of the
action does not get any additional information.

Note: Filtering and sorting is left to the application. No indication about affected
worklists is pushed to the client.

Receiving information

The execution service object provides for a means to receive information (execution
data) pushed by an MQSeries Workflow execution server at any time wanted. The
Receive() call blocks the calling application until some information is received or
until the specified timeout value has been reached. This means that an application
typically starts a separate thread for receiving data in order to prevent that the
whole application is blocked.

A timeout value of -1 specifies an indefinite wait time interval. Note that in this
case you must ensure that you stop receiving data before your application ends.
There is a TerminateReceive() function/subprogram which can be used to send a
terminate indication to the receiving part of the application in order to inform that
receiving data may end.

Notes:

1. A Receive() call survives a Logoff() call. The execution server stops, however,
pushing information when logoff has been executed.

2. If information is not received and therefore stays in the client input queue, the
MQSeries expiration mechanism applies in order to get rid of such "dead"
messages. The expiration time of client messages can be configured at system
setup.

When receiving data, a correlation identification can be specified to indicate which
information is to be read. This ID must currently be set to FMCJ_NO_CORRELID
for each Receive() call; note that it is changed as the result of a successful receive.

24 Programming Guide

Once execution data has been received, its type can be determined and the
appropriate action can be called. For example, when a work item creation is
indicated, a conversion from the execution data to a work item can be requested.
When a work item change is indicated, the persistent object ID of the work item
can be requested so that the appropriate work item can be updated.

Figure 1. Handling data sent by an MQSeries Workflow server. Legend: --Ê Inheritance (C++); —Ê provides for access

Chapter 6. Communication protocols and data access models 25

26 Programming Guide

Chapter 7. Establishing an MQSeries Workflow session

In order to communicate with an MQSeries Workflow server, a session must have
been established between the user and that server. The server is either identified
explicitly (system at system group) or taken from the user’s profile. If the
information is not found in the user’s profile, the workstation profile is read.

The session is established by logging on. From then on services can be requested
from the server; the service object which represents the session between the user
logging on and the server, is set up accordingly.

Logon requires that the administration server is up and running on the selected
system because the administration server manages sessions and checks the
authentication of the user. It additionally cares for any severe errors to be written
to the error log.

Any objects which are retrieved or created belong to the session where they have
been queried or created. They carry the session identification so that further actions
on those objects are executed in the same session with the authorization of the
logged-on user.

A single application program or multiple application programs can allocate
multiple service objects and log on with different users or the same user in
parallel. Sessions are kept separate by the service objects. A single service object
thus represents a single session. A second request to log on via a service object will
be rejected if it comes from a different user. Otherwise, it is accepted but not
repeated; the logon request has already been executed successfully.

A session can run in ″default″ mode or in ″present″ mode. When you are operating
in a present session mode, activity instances which are started automatically can be
scheduled on your behalf and you can receive information pushed by an MQSeries
Workflow server. There can only be a single present session.

The service object provides for a timeout value to be set. This is the time the
application waits for the answer from a server. The application is thus blocked
during this time at a maximum. The timeout is specified in milliseconds. A value
of -1 denotes an indefinite timeout value. The timeout value can be changed at any
time.

© Copyright IBM Corp. 1999 27

28 Programming Guide

Chapter 8. Querying data

There are essentially three means of querying data from an MQSeries Workflow
server:
v A query via a service object, which returns all objects authorized for. The

number of objects returned to the client can be restricted by a filter and a
threshold.

v A query using a persistent list definition, which returns all objects qualifying
through the list definition.

v A specific request, like the request for user settings or a refresh request for a
specific object.

Persistent lists

A persistent list represents a set of objects of the same type. Moreover, all objects
which are accessible through the list have the same characteristics. A list can be for
public usage, that is, it is visible by all users, or for private usage, that is, it has an
owner and is only visible by that owner.

The characteristics of the objects contained in the list are given by so-called filter
criteria. The filter criteria specified and the authorization of the user issuing the
query determine the contents of the list. This means that the contents itself is not
stored persistently but determined when a query request is issued.

The number of objects transferred from the server to the client as the result of the
query can be restricted by specifying a threshold. The threshold is used after sort
criteria have been applied.

A list can be a process template list, a process instance list, or a worklist.

Using filters, sort criteria, and thresholds

A filter is a character string specifying criteria which must follow the rules stated
by the filter syntax diagrams. Refer to the appropriate functions/subprograms for
the exact syntax. Some sample criteria are shown here:

A sort criterion is a character string specifying criteria which must follow the rules
stated by the sort criteria syntax diagrams. Refer to the appropriate
functions/subprograms for the exact syntax. Some sample criteria are shown here:
Note that objects are sorted on the server, that is, the code page of the server

determines the sort sequence.

A threshold specifies the maximum number of objects to be returned to the client.
That threshold is applied after the objects have been sorted.

"NAME = 'MyProcessInstance'"
"NAME LIKE 'My*Ins?ance'"
"LAST_MODIFICATION_TIME > '1998-2-19 11:38:0'"
"STATE IN (READY,RUNNING)"

"NAME ASC"
"NAME ASC, LAST_MODIFICATION_TIME DESC"

© Copyright IBM Corp. 1999 29

Handling collections

The result of a query for a set of objects is a vector of objects. The vector is
provided by the caller and filled by the MQSeries Workflow API. The ownership of
the vector elements, the objects, stays with the vector. They are automatically
deleted when the vector is deleted. When an element is read, it becomes an object
on its own and thus has to be deleted when no longer used.

Any objects returned are appended to the supplied vector. If you want to read the
current objects only, you have to clear the vector before you call the query method.
This means that you should set the vector handle to 0 via the
FmcjXxxVectorDeallocate function in “FmcjXxxVectorDeallocate” on page 31.

In the C- and Cobol language, the result of the query is the vector handle
initialized to the set of objects. Special vector accessor functions are provided to
access the objects (see below). When a vector element is read it becomes an object
of its own and thus has to be deleted when no longer used. Any operations on that
object refer to this object only and do not have any impacts on the vector element
from which the object was copied. For example, a Refresh() changes the object only
but not its original copy whithin the vector. This means that a further iteration
through the vector finds any elements that are unchanged.

Vector accessor functions

Vector accessor functions are described below. This is because all these functions
are similar looking and have similar requirements, even for different objects. They
are all handled locally by the API, that is, they do not communicate with the
server. Neither a connection to a server nor specific authorizations are required to
execute.

Return codes

The C language functions or the result object can return the following codes, the
number in parentheses shows their integer value:

FMC_OK(0)
The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is expected, but 0 is passed.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NO_MORE_DATA(804)
The vector contains no or no more element.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

Vector accessor functions allow for the operations listed below; ’Xxx’ denotes some
scope, for example, FmcjXxxVectorFirstElement can stand for
FmcjProcessInstanceVectorFirstElement.

30 Programming Guide

FmcjXxxVectorDeallocate

Allows the application to deallocate the storage reserved for the specified transient
vector object. All elements contained are also deallocated.

The handle is set to 0 so that it cannot be used any longer.

Parameters
hdlVector

Input/Output. The address of the handle to the vector to be deallocated.

FmcjXxxVectorFirstElement

Returns the first element of the vector. That element becomes an object on its own
and has to be deallocated if no longer used. The vector is positioned to the next
element.

If the vector is empty or if an error occurred, 0 (zero) is returned.

C language signature

APIRET FMC_APIENTRY FmcjXxxVectorDeallocate(
FmcjXxxVectorHandle * hdlVector)

Cobol language signature

FmcjXxxVectorDeallocate.

CALL "FmcjXxxVectorDeallocate"
USING
BY REFERENCE

hdlVector
RETURNING

intReturnValue.

C language signature

FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorFirstElement(
FmcjXxxVectorHandle hdlVector)

Chapter 8. Querying data 31

Parameters
hdlVector

Input. The handle of the vector to be queried.

Return type
FmcjXxxHandle

The handle of the first element of the vector or 0.

FmcjXxxVectorNextElement

Returns the vector element at the current vector position; the initial vector position
is the first element. That element becomes an object on its own and has to be
deallocated if no longer used. The vector is positioned to the next element.

If the vector is empty, if there are no more elements in the vector, or if an error
occurred, 0 (zero) is returned.

Parameters
hdlVector

Input. The handle of the vector to be queried.

Return type
FmcjXxxHandle

The handle of the vector element at the current position or 0.

Cobol language signature

FmcjXxxVectorFirstElement.

CALL "FmcjXxxVectorFirstElement"
USING
BY VALUE

hdlVector
RETURNING

FmcjXxxHandleReturnValue.

C language signature

FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorNextElement(
FmcjXxxVectorHandle hdlVector)

Cobol language signature

FmcjXxxVectorNextElement.

CALL "FmcjXxxVectorNextElement"
USING
BY VALUE

hdlVector
RETURNING

FmcjXxxHandleReturnValue.

32 Programming Guide

FmcjXxxVectorSize

Returns the number of elements in the vector.

Parameters
hdlVector

Input. The handle of the vector to be queried.

Return type
unsigned long

The number of elements in the vector.

Examples

In the following, some C language examples on how to read a vector are shown;
note that you can start with a first element call as well as with a next element call.
#include <stdio.h>
#include <fmcjrun.h>
int main()
{
APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hdlVector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
unsigned long i = 0;
unsigned long numElements = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA_Reset

);
if (rc != FMC_OK)
return rc;

printf("Logged on\n");

rc= FmcjExecutionServiceQueryProcessInstances(

C language signature

unsigned long FMC_APIENTRY FmcjXxxVectorSize(
FmcjXxxVectorHandle hdlVector)

Cobol language signature

FmcjXxxVectorSize.

CALL "FmcjXxxVectorSize"
USING
BY VALUE

hdlVector
RETURNING

ulongReturnValue.

Chapter 8. Querying data 33

service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hdlVector);

if (rc != FMC_OK)
return rc;

printf("Queried process instances\n");

hdlInstance= FmcjProcessInstanceVectorFirstElement(hdlVector);
numElements= FmcjProcessInstanceVectorSize(hdlVector);

printf("Instances in the vector:\n");
for(i=0; i< numElements; i++)
{
printf("- name: %s\n",

FmcjProcessInstanceName(hdlInstance,tInfo,
FMC_PROCESS_INSTANCE_NAME_LENGTH));

FmcjProcessInstanceDeallocate(&hdlInstance);
hdlInstance= FmcjProcessInstanceVectorNextElement(hdlVector) ;

}

FmcjProcessInstanceVectorDeallocate(&hdlVector);

FmcjExecutionServiceLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

Using NextElement() call only
#include <stdio.h>
#include <fmcjrun.h>
int main()
{
APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hdlVector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA_Reset

);
if (rc != FMC_OK)
return rc;

printf("Logged on\n");

rc= FmcjExecutionServiceQueryProcessInstances(
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hdlVector);

if (rc != FMC_OK)
return rc;

printf("Queried process instances\n");

printf("Instances in the vector:\n");
while (0 != (hdlInstance= FmcjProcessInstanceVectorFirstElement(hdlVector)))
{

34 Programming Guide

printf("- name:%s \n",
FmcjProcessInstanceName(hdlInstance,tInfo,

FMC_PROCESS_INSTANCE_NAME_LENGTH));
FmcjProcessInstanceDeallocate(&hdlInstance));

}
FmcjProcessInstanceVectorDeallocate(&hdlVector));

FmcjExecutionServiceLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

In the following, some Cobol examples on how to read a vector are shown; note
that you can start with a first element call as well as with a next element call.

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"ADMIN".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numElements PIC 9(9) BINARY.
01 i PIC 9(9) BINARY.
01 buffer PIC X(64) VALUE SPACES.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
PERFORM FmcjESAllocate.

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK THEN GOBACK.
DISPLAY "Logged on".

CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.
PERFORM FmcjESQueryProcInsts.

SET hdlVector TO instances.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK THEN GOBACK.
DISPLAY "Queried Process Instances".

PERFORM FmcjPIVFirstElement.
SET hdlInstance TO FmcjPIHandleReturnValue.
PERFORM FmcjPIVSize.

Chapter 8. Querying data 35

MOVE ulongReturnValue TO numElements.

DISPLAY "Instances in the vector:".
MOVE FMC-PROC-INST-NAME-LENGTH TO bufferLength.
CALL "SETADDR" USING buffer instanceNameBuffer.
PERFORM VARYING i FROM 0 BY 1 UNTIL i >= numElements

PERFORM FmcjPIName
DISPLAY "- name: " buffer
PERFORM FmcjPIDeallocate
PERFORM FmcjPIVNextElement
SET hdlInstance TO FmcjPIHandleReturnValue

END-PERFORM

PERFORM FmcjPIVDeallocate.
PERFORM FmcjESLogoff.
DISPLAY "Logged off".
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"ADMIN".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 buffer PIC X(64) VALUE SPACES.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
PERFORM FmcjESAllocate.

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK THEN GOBACK.
DISPLAY "Logged on".

CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.
PERFORM FmcjESQueryProcInsts.

SET hdlVector TO instances.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK THEN GOBACK.
DISPLAY "Queried Process Instances".

DISPLAY "Instances in the vector:".

36 Programming Guide

MOVE FMC-PROC-INST-NAME-LENGTH TO bufferLength.
CALL "SETADDR" USING buffer instanceNameBuffer.

PERFORM FmcjPIVNextElement.

PERFORM UNTIL FmcjPIHandleReturnValue = NULL
SET hdlInstance TO FmcjPIHandleReturnValue
PERFORM FmcjPIName
DISPLAY "- name: " buffer
PERFORM FmcjPIDeallocate
PERFORM FmcjPIVNextElement

END-PERFORM

PERFORM FmcjPIVDeallocate.
PERFORM FmcjESLogoff.
DISPLAY "Logged off".
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Chapter 8. Querying data 37

38 Programming Guide

Chapter 9. Handling Containers

A container represents input or output data of a process template, process instance,
work item, activity implementation, or support tool at Runtime. Each container is
defined by a data structure which declares the container to be of the type of that
data structure.

Data structure/container type

A data structure is uniquely identified by its name and contains an ordered list of
data members.

The data structures and their usage as input containers or output containers are
defined during modeling. A special data structure called
DEFAULT_DATA_STRUCTURE is provided by MQSeries Workflow and contains
no user-defined data members when installed. The DEFAULT_DATA_STRUCTURE
cannot be deleted, however, it can be extended during modeling.

Data member/container element

A data member of a data structure has a name and a data type. Data types are
either basic and then STRING, LONG, BINARY, or FLOAT, or another data
structure. Using a data structure as the data type of a data member (nesting)
allows for recursive definitions of data members.

A data member can represent a one-dimensional array. If a data member represents
an array, the number of elements in that array is shown in parenthesis ().

A data structure can have up to 512 user-defined data members. A data member
that represents an array of data members counts with as many data members as it
has elements.

Data members are specified using their fully qualified name within the container.
The fully qualified name of a data member is a name in dot notation where the
hierarchy of nested data members is presented from left to right, and their names
are separated by a dot.

If a data member actually specifies an array of data members, the index number of
a specific data member is specified in brackets ([]).

When a data structure denotes the type of a container, then its data members (first
level of any hierarchy) are also called container elements. They define the structural
members of the container. When the data type of a container element (n-th level of
any hierarchy) is a data structure (nesting), then that container element again has
container elements or structural members.

Container elements of a basic data type are also called the leaves of the container.
These are the members which can hold a value, that is, which can be asked for a
value and which can be set to a new value.

© Copyright IBM Corp. 1999 39

For example, assume that the data structure PERSON describes an input container or
output container and that PERSON has been defined as:
PERSON has two structural data members named Name and Addr. Name is of basic

data type STRING and Addr is of data type ADDRESS. That is the data structure
ADDRESS is nested within the data structure PERSON.

The input or output container described by PERSON then has two container
elements or structural members named Name and Addr, where Addr defines a
structure by itself. The container elements or structural members of the container
element Addr are Street and POBOX.

The leaves of the container, that is, the container elements which can carry a value,
and their fully qualified names within the container are:
Note that since the size of the POBOX array is 2, the valid index numbers are 0 and

1. This is because all array indexes start with 0 (zero).

Also note that the fully qualified names are not prefixed with the name of the data
structure PERSON. That data structure denotes the type of the container. There is
only one exception to the rule, when the container itself is specified to be an array,
for example, an array of PERSONs. Then, to set the name of a specific person, the
fully qualified name is specified as

PERSON[i]·Name

Predefined data members

All containers automatically specify data members predefined by MQSeries
Workflow. They can hold values associated with the operational characteristics of
an activity or process. Predefined data members are data members that need not
be defined by the modeler but are automatically available. They can be accessed by
the container API. Their names start with the reserved character "_".

Predefined data member values can be:
v Used to evaluate activity exit criteria.
v Accessed by activity implementations or support tools.
v Dynamically set to change the operational characteristics of subsequent activities.

Predefined data members provide for the flexibility of modelers. The decision on
operational characteristics of a process or activity is taken at Runtime. They also
provide activity implementations and support tools as a means to access the
operational characteristics through the use of API functions/subprograms.

There are the following sets of predefined data members:
v Fixed data members
v Process information data members
v Activity information data members

Name STRING
Addr ADDRESS
Street STRING
POBOX LONG(2)

Name
Addr.Street
Addr.POBOX[0]
Addr.POBOX[1]

40 Programming Guide

Fixed data members provide information about the current activity instance. They
cannot or should not be set using an API function/subprogram.

Process information and activity information data members are associated with the
operational characteristics of a process or activity. They operate the same way as
any user-defined data members. This means that the values for specific operational
characteristics of a process instance or activity instance can be accessed or changed
just like the values for any other user-defined data member.

The following provides the fully qualified name and a brief description of each of
the predefined data members.

There are no arrays of any predefined data member.

Fixed data members

Fixed data members _ACTIVITY, _PROCESS, and _PROCESS_MODEL cannot be set
using API functions/subprograms. Their values can be read using API container
functions/subprograms. Fixed data member _RC cannot be read and should only be
set when your compiler does not support a program exit code.

_ACTIVITY
This data member contains the name of the considered activity instance.
The value of this data member is automatically set when the activity
instance respectively an associated work item is started.

Data type: STRING

_PROCESS
This data member contains the name of the associated process instance.
The value of this data member is automatically set when the activity
instance respectively an associated work item is started.

Data type: STRING

_PROCESS_MODEL
This data member contains the name of the associated process model. The
value of this data member is automatically set when the activity instance
respectively an associated work item is started.

Data type: STRING

_RC This data member contains the return code of the activity implementation.
Typically it is used to evaluate exit and transition conditions. It cannot be
read and is set automatically to the exit code of the activity
implementation when that program ends.

In cases where your compiler does not support an exit code, you can use
the Container API to set its value.

Data type: LONG

Process information data members

Process information data members serve to dynamically specify properties of a
process instance. In general, the process modeler can choose where values for
process instance properties are to be obtained from.
v Values can be inherited from a top-level process instance.

Chapter 9. Handling Containers 41

v Values can be obtained from the process information data members in the input
container. They are then either set as default values or provided in the input
container when the process instance is started.

If specified via the DATA_FROM_INPUT_CONTAINER indicator, the values of the
process information data members are read by MQSeries Workflow when the
process instance is started. If a value for a process information data member is not
set, then a default value is used (see the detailed descriptions below).

_PROCESS_INFO.Role
A role that people assigned to an activity instance of the process instance
must fulfill.

Any role set becomes an additional criterion to roles set for the activity
instance. Only people who are members of all the specified roles are
eligible.

If no role is set and no roles are specified for the activity instance, then no
role criteria are applied.

Data type: STRING

_PROCESS_INFO.Organization
The organization to which people must belong to receive work items of the
process instance. This setting is only regarded if no organization is
specified for the activity instance.

If no organization is set and no organization is specified for the activity
instance, the default is the organization of the person who starts the
process instance.

Data type: STRING

_PROCESS_INFO.ProcessAdministrator
The user ID of the person notified if:
v The process instance is expired.
v No person meets the criteria to perform an activity instance.
v No valid person has been specified for notification.
v The person notified that an activity instance is overdue has exceeded the

time allowed for an action, that is, the second notification is sent.

If not set, the default process administrator is the person who starts the
process instance.

Data type: STRING

_PROCESS_INFO.Duration
Specifies how long the process instance is allowed to take. The value is
expressed in seconds.

If not set, the default is "Endless".

Data type: LONG

Activity information data members

Activity information data members serve to dynamically specify properties of an
activity instance. In general, the process modeler can choose where values for
activity instance properties are to be obtained from.

42 Programming Guide

v Values can be obtained from the activity information data members in the input
container. They are then either set as default values or provided in the input
container when an activity instance or associated work item is started.

If specified, the values of the activity information data members are read by
MQSeries Workflow when the activity instance is scheduled. If a value is not set,
then a default value is used (see the detailed descriptions below).

Following indicators specify that activity information data members are to be read:
v DONE_BY STAFF DEFINED_IN INPUT_CONTAINER
v NOTIFICATION DEFINED_IN INPUT_CONTAINER
v PRIORITY DEFINED_IN INPUT_CONTAINER

_ACTIVITY_INFO.Priority
The numeric value assigned as the priority of an activity instance.
MQSeries Workflow does not deduce any meaning from this value; it is
just used for client purposes. Any integer value between 0 and 9 can be
specified. If the value specified is invalid or the data member is not set, a
default of 0 (zero) is used.

Data type: LONG

_ACTIVITY_INFO.MembersOfRoles
The role or roles a person must fulfill to receive a work item for the
activity instance. Multiple roles may be specified and are then to be
separated by a semicolon (;).

Any role or roles set for this data member become an additional criterion
to the role set for the process instance. Only people who are members of
all the specified roles are eligible.

If not set, the role specified for the process instance is used. If no role is set
for the process instance and no roles are specified for the activity instance,
then no role criteria are applied.

Note: This specification is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.CoordinatorOfRole
The role or roles a person must coordinate to receive a work item for the
activity instance. Multiple roles to coordinate may be specified and are
then to be separated by a semicolon (;).

To receive a work item, the eligible person must be assigned as coordinator
of all the specified roles in addition to being a member of all roles
specified for the process instance and for the activity instance.

If not set, the roles specified by the process instance and the activity
instance are solely used. If no roles to be member of nor roles to coordinate
have been specified, no role criteria are applied.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

Chapter 9. Handling Containers 43

_ACTIVITY_INFO.Organization
The organization to which people must belong to receive work items of the
activity instance.

If an organization is set using this data member, any organization set for
the process instance is ignored.

If not set, the organization specified by the process instance is used. If no
organization is set and no organization is specified for the process instance
properties, the default is the organization of the person who starts the
process instance.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.OrganizationType
This data member is used to indicate if a work item for the activity
instance should be assigned to persons in a child organization.

To make all persons in the specified organization and all of its child
organizations eligible, set the value of this data member to 0.

To limit the persons who are eligible to the members of the specified
organization and the managers of the first level of child organizations, set
this data member to any nonzero value.

If not set, the default is 0. If no organization is set for the
_ACTIVITY_INFO.Organization data member, any value set here is ignored.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: long

_ACTIVITY_INFO.LowerLevel
The level persons must at least have to receive work items of the activity
instance. A value between 0 and 9 can be set. The default value is 0 (zero).

If the level specified here is greater than the value specified for the upper
level, or if the level is not set, the default value of 0 (zero) is used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

_ACTIVITY_INFO.UpperLevel
The level persons should not exceed to receive work items of the activity
instance. A value between 0 and 9 can be set. The default value is 9.

If the level specified here is less than the value specified for the lower
level, or the level is not set, the default value of 9 is used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

44 Programming Guide

_ACTIVITY_INFO.People
This data member is used to specifically identify the people who should
receive a work item of the activity instance. Multiple entries are possible
and are then to be separated by a semicolon (;).

If any people are identified using this data member, any values set for data
members _ACTIVITY_INFO.MembersOfRoles,
_ACTIVITY_INFO.CoordinatorOfRole, _ACTIVITY_INFO.Organization,
_ACTIVITY_INFO.OrganizationType, _ACTIVITY_INFO.LowerLevel, and
_ACTIVITY_INFO.UpperLevel are ignored.

If no value is set, any values set for the above data members are used. If
no values have been set for those, the values set for staff definition for the
process instance are used.

If no values have been set for the process instance, the people in the
organization and all child organizations of the process starter receive a
work item for the activity instance.

Data type: STRING

_ACTIVITY_INFO.PersonToNotify
Used to identify the person to notify if the specified duration to complete
the activity instance expires before the activity instance is complete.

If the user ID specified by the data member is invalid or the data member
is not set, no person is notified.

Data type: LONG

_ACTIVITY_INFO.Duration
Used to specify the maximum number of seconds allowed to complete the
activity.

If the activity is not completed before the specified duration, the defined
person is notified.

If the value specified by the data member is invalid or the data member is
not set, no notification occurs.

Data type: LONG

_ACTIVITY_INFO.Duration2
Used to specify the maximum number of hours allowed to act on an
activity instance notification.

If the notification is not acted on before the specified number of hours
expires, the process administrator is notified.

If the value specified by the data member is invalid or the data member is
not set, no notification occurs.

Data type: LONG

Chapter 9. Handling Containers 45

46 Programming Guide

Chapter 10. Monitoring a process instance

MQSeries Workflow allows for obtaining a monitor for a specified process instance.
A process instance monitor typically allows for:
v Observing the progress of a process instance execution.
v Determining the state of execution, that is, to determine which activity instance

is currently in progress, is waiting to be executed by whom, is InError and
waiting for some action. It allows to determine whether notifications occurred
because the maximum work time was exceeded.

v Viewing the history of execution, that is, what path has been taken through the
process instance and why. It allows to determine where the bottlenecks of
execution are or where the most time-consuming parts are.

Obtaining a process instance monitor

Once a process instance3 has been accessed, a process instance monitor can be
obtained. The transient process instance monitor object then represents all
information about activity instances directly contained in the described process
instance as well as all information on control connector instances connecting those
activity instances.

3. or activity instance or a (work) item

Figure 2. Process instance monitors and block instance monitors

© Copyright IBM Corp. 1999 47

For example, the illustrated process instance monitor describes two program
activities, Program Activity 1 and Program Activity 2, and an activity of type Block,
Block Activity 3. There are two control connectors between these activities.

The process instance monitor can then be asked for the activity instances and the
control connector instances described and their properties can be determined, for
example, the state of the activity and its graphical layout, or the result of control
connector instance evaluation and activities to connect or bend points to be drawn.

When an activity of type Block is encountered, it is possible to obtain its block
instance monitor. Similar to a process instance monitor, a block instance monitor
object represents all information about activity instances directly contained in the
described block activity instance as well as all information on control connector
instances connecting those activity instances. For example, the block instance
monitor of Block Activity 3 describes Block Activity 4, Program Activity 5, and Process
Activity 6. There is a control connector between Block Activity 4 and Process Activity
6.

When an activity of type Process is encountered, it is again possible to obtain its
process instance monitor, either via the embracing monitor object or by retrieving
the implementing (sub)process instance of the activity and then obtaining the
associated process instance monitor. The process instance monitor obtained is a
monitor which is completely separate from any other process instance monitor.

When obtaining a process instance monitor, it is possible to use the deep option in
order to specify that all monitors for activities of kind Block are to be returned
from the MQSeries Workflow execution server in the same step. The block instance
monitors then all show the state of the process instance at this retrieval time. This
means, when a block instance monitor is obtained via an API call, the API finds
this monitor in its cache and provides it to the caller. When the deep option is not
used, it can happen that a block instance monitor is not available. The API then
automatically fetches the requested monitor from the execution server; it then
represents a newer state than the ones previously retrieved.

Note: The deep option is currently ignored.

Ownership of monitors

As any other transient object, a process instance monitor is owned by the caller of
the API. When a process instance monitor is no longer needed, you should
delete/deallocate the object.

A block instance monitor, however, is considered to be part of a process instance
monitor. It is cached by the API as part of the process instance monitor. It cannot
be deallocated in the C language. Deletion in the C++ language only deletes the
C++ representation but not the block instance monitor itself in the API cache. Block
instance monitors are automatically deleted when the owning process instance
monitor is deleted/deallocated. This means that block instance monitor objects or
handles can only be used as long as the containing process instance monitor exists.
When the process instance monitor does no longer exist, then using a block
instance monitor object or handle will return unexpected results; your program can
even trap since the usage of a nonexisting object or handle violates the MQSeries
Workflow programming by contract concept.

48 Programming Guide

Chapter 11. Authorization considerations

In general, authorization is granted to persons, either explicitly or implicitly.
Implicitly means that the authority has been given as the result of performing
some MQSeries Workflow action; performing that action can itself request some
specific authority (See the Administration handbook for more detailed information).

Special authority is granted to a person playing the role of a system administrator.
The system administrator has all privileges except on (work) items. Only the
owner of a (work) item can issue any actions; the system administrator can,
however, transfer the (work) item to himself. The system administrator role must
be assigned to a single person at any time.

When a process instance is started, its process administrator is determined. The
person determined to be the process administrator receives process administration
rights for that process instance.

The person who is to become the process administrator of a process instance is
specified when the process model is defined. Identification of the process
administrator can be done in the following ways:
v Specification of a user identification for the PROCESS_ADMINISTRATOR

keyword. In this case, the process administrator is already known when the
process model is defined.

v Specification of a member in the process input container via the
PROCESS_ADMINISTRATOR TAKEN_FROM specification.

v Specification of DATA FROM INPUT_CONTAINER. The process administrator is
then taken from the process information member
_PROCESS_INFO.ProcessAdministrator field in the input container (see “Process
information data members” on page 41 for details).

The following table shows the authorizations and the MQSeries Workflow
functions which can be called when that authority has been granted. The E/I
(Explicit/Implicit) column indicates how the authorization is granted to persons.

Note: Once a user has authenticated himself to MQSeries Workflow (logged on),
he can retrieve all objects he is authorized to see without any further special
authorization. These are all objects he has created and all objects which are
not specially secured or which are for public usage.

Table 3. Authorization for persons

Name E/I Authorized Functions

Authorization
definition
authorization

E Create, update, and delete authorization information.

Retrieve and update passwords.

The appropriate FDL authorization keyword is
AUTHORIZATION.

Operation
administration
authorization

E Can perform all operation administration functions. The
appropriate FDL authorization keyword is OPERATION.

© Copyright IBM Corp. 1999 49

Table 3. Authorization for persons (continued)

Name E/I Authorized Functions

Process modeling
authorization

E Create, retrieve, update, and delete process models and
process templates. The appropriate FDL authorization
keyword is PROCESS_MODELING.

Staff definition
authorization

E Create, retrieve, update, and delete staff information. As
such, it includes authorization definition authorization.

Create, retrieve, update, and delete public and private
process instance lists, process template lists, and worklists.

The appropriate FDL authorization keyword is STAFF.

Topology definition
authorization

E Create, retrieve, update, and delete topology information.
The appropriate FDL authorization keyword is TOPOLOGY.

Process
authorization

E Can perform the following process instance functions for all
process instances (global process authorization) or for
process instances in categories authorized for (selected
process authorization):

v Create

v Start

v Create and start

v Set process instance name

v Query

v Refresh

Can perform the following process template functions for
all process templates (global process authorization) or for
process templates in categories authorized for (selected
process authorization):

v Query

v Refresh

The appropriate FDL authorization keyword is
PROCESS_CATEGORY.

Process
administration
authorization

E Has process authorization and can perform the following
additional process instance functions for all process
instances (global process administration authorization) or
for process instances in categories authorized for (selected
process administration authorization):

v Delete

v Suspend

v Resume

v Terminate

Can perform the following work item functions for all
process instances (global process administration
authorization) or for process instances in categories
authorized for (selected process administration
authorization):

v Force-finish

v Force-restart

The appropriate FDL authorization keyword is
PROCESS_CATEGORY AS ADMINISTRATOR.

50 Programming Guide

Table 3. Authorization for persons (continued)

Name E/I Authorized Functions

Process
administrator

I Has process administration authority for the appropriate
process instance.

Process creator I Can perform the following process instance functions:

v Set process instance name

v Delete, if not yet started

v Query

v Refresh

v Start

Work item
authority

E Can perform the following functions on (work) items for all
(global work item authority) or for selected persons
(selected work item authority):

v Query

v Refresh

v Transfer

The appropriate FDL authorization keyword is
WORKITEMS_OF.

Workitem owner I Can perform all functions on the assigned (work) item
except:

v Force Finish

v Force Restart

Chapter 11. Authorization considerations 51

52 Programming Guide

Chapter 12. Function/subprogram types

MQSeries Workflow functions/subprograms can be divided into several categories
which characterize the kind and behavior of the request to be executed.

basic to manage transient objects

accessor to read properties of transient objects

action to read or manipulate persistent objects

activity implementation to deal with containers from within an activity
implementation or support tool

Basic and accessor functions/subprograms are described in more detail but
generally below. This is because all these functions/subprograms are similar
looking and have similar requirements, even for different objects. They are all
handled locally by the API, that is, they do not communicate with the server. The
functions/subprograms of the other categories are described separately in “Part 7.
Application programming interfaces” on page 213. Those are the
functions/subprograms which require client/server communication or
communication with the program execution server.

Basic functions/subprograms

Basic functions/subprograms are essentially provided so that transient objects can
be allocated or constructed and deallocated or destructed. They allow for the
construction of supporting objects like service objects. They allow for the
destruction of such objects as well as for the destruction of transient
representations of persistent objects allocated implicitly by the MQSeries Workflow
API. Refer also to “Chapter 5. Memory management” on page 21.

Because of the nature of transient objects, neither a connection to a server nor some
specific authorization is required to execute.

Return Codes

The C and Cobol language functions and the MQSeries Workflow result object can
return the following codes, the number in parentheses shows their integer value:

FMC_OK(0)
The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is expected, but 0 is passed.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

© Copyright IBM Corp. 1999 53

Basic functions/subprograms allow for the basic operations listed below; ’Xxx’
denotes some class or scope, for example, FmcjXxxEqual can stand for
FmcjProcessInstanceEqual.

FmcjXxxEqual

Allows an application to compare two transient objects in order to determine
whether they represent the same persistent or API object.

Comparison is done on the basis of the object identifiers. True is returned if both
transient objects represent the same persistent object. The contents of the transient
objects to be compared are not further checked, that is, it is not checked whether
both transient objects carry the same states of the persistent object.

Exceptions:
v Service objects are equal when they represent the same session.
v Error objects are equal when they report the same error, that is, when they

contain the same return code and the same parameters.
v Program data objects are equal when they belong to the same work item.
v Control connector instance objects are equal when they have the same source

and target activity instances.
v Point and symbol layout objects are equal when their properties are equal.

In the C and Cobol language, the return code of the result object is set to ″invalid
handle″, if one of the handles passed is invalid. True is returned, if both are
invalid, else false.

Parameters
handle1

Input. The first object to be compared.

handle2
Input. The other object to be compared.

C language signature

bool FMC_APIENTRY FmcjXxxEqual(FmcjXxxHandle handle1,
FmcjXxxHandle handle2)

Cobol-language signature

FmcjXxxEqual.

CALL "FmcjXxxEqual"
USING
BY VALUE

handle1
handle2

RETURNING
boolReturnValue.

54 Programming Guide

FmcjXxxAllocate()

Allows the application to set up the respective object. This is needed for
supporting objects like string vectors. Transient objects representing persistent
objects are allocated implicitly by the MQSeries Workflow API when persistent
objects are created or queried from an MQSeries Workflow server.

All constructed objects are transient.

Parameters
handle

Input/Output. The address of the handle to the object to be set when the
object has been constructed. Care that the handle passed is not pointing to
a still valid object since that object is not automatically deallocated before
the new object’s handle is set.

A constructor or FmcjXxxAllocate function/subprogram can require additional
input parameters. See the header files or copybooks for the exact declarations.

FmcjXxxCopy()

Allows the application to make a copy of a particular transient object. That copy
becomes a separate object and thus carries its own state.

An exception is the execution service where a copy points to the same session
established by the original object. This especially means, when you request to log
off on either object, then the (common) session is closed.

C language signature

APIRET FMC_APIENTRY FmcjXxxAllocate(FmcjXxxHandle * handle)

Cobol language signature

FmcjXxxAllocate.

CALL "FmcjXxxAllocate"
USING
BY REFERENCE

handle
RETURNING

intReturnValue.

C language signature

APIRET FMC_APIENTRY FmcjXxxCopy(FmcjXxxHandle handle,
FmcjXxxHandle * newHandle)

Chapter 12. Function/subprogram types 55

Parameters
handle

Input. The handle of the object to be copied.

newHandle
Input/Output. The address of a handle to be set when the object has been
constructed. Care that the handle passed is not pointing to a still valid
object since that object is not automatically deallocated before the new
object’s handle is set.

FmcjXxxDeallocate

Allows the application to delete the specified transient object. Deletion of a
transient object has no impact on the represented persistent object, if any.

The C language handle is set to 0 so that it can no longer be used.

Parameters
handle

Input/Output. The address of the handle to the object to be deallocated.

Cobol language signature

FmcjXxxCopy.

CALL "FmcjXxxCopy"
USING
BY VALUE

handle
BY REFERENCE

newHandle
RETURNING

intReturnValue.

C language signature

APIRET FMC_APIENTRY FmcjXxxDeallocate(FmcjXxxHandle * handle)

Cobol language signature

FmcjXxxDeallocate.

CALL "FmcjXxxVectorDeallocate"
USING
BY REFERENCE

handle
RETURNING

intReturnValue.

56 Programming Guide

FmcjXxxIsComplete()

Returns true when the object has been completely read from an MQSeries
Workflow server, that is, both primary and secondary properties are available (see
also “Accessor function/subprograms” on page 62).

Parameters
handle

Input. The handle of the object to be queried.

Return type
bool True if the object has been completely read from the server, otherwise false.

C language Example: using basic functions
#include <stdio.h>
#include <fmcjcrun.h>
int main()
{
APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjWorkitemVectorHandle wList = 0;
FmcjWorkitemHandle workitem1 = 0;
FmcjWorkitemHandle workitem2 = 0;
FmcjWorkitemHandle workitem3 = 0;

FmcjGlobalConnect();

/* logon */
FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_Reset

);

/* Query Workitems */
rc= FmcjExecutionServiceQueryWorkitems(service,

FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&wList);

printf("\nQuery workitems returns rc : %u\n", rc);
fflush(stdout);

C language signature

bool FMC_APIENTRY FmcjXxxIsComplete(FmcjXxxHandle handle)

Cobol language signature

FmcjXxxIsComplete.

CALL "FmcjXxxIsComplete"
USING
BY VALUE

handle
RETURNING

boolReturnValue.

Chapter 12. Function/subprogram types 57

if (rc == FMC_OK && FmcjWorkitemVectorSize(wList) >= 2)
{ /* access first element */
workitem1= FmcjWorkitemVectorFirstElement(wList);
if (FmcjWorkitemIsComplete(workitem1))
printf("Surprise - more than primary data available\n");

else
printf("Primary data of first workitem available\n");

fflush(stdout);
/* access next element */

workitem2= FmcjWorkitemVectorNextElement(wList) ;
if (FmcjWorkitemEqual(workitem1,workitem2))

printf("Surprise - workitems are equal\n");
else
printf("Workitems represent different objects\n");

fflush(stdout);
/* copy workitem */

FmcjWorkitemCopy(workitem1,&workitem3);
if (! FmcjWorkitemEqual(workitem1,workitem3))

printf("Surprise - workitems are not equal\n");
else
printf("Workitems represent same persistent object\n");

fflush(stdout);
/* cleanup */

FmcjWorkitemDeallocate(&workitem1);
FmcjWorkitemDeallocate(&workitem2);
FmcjWorkitemDeallocate(&workitem3);

}

FmcjWorkitemVectorDeallocate(&wList);

/* logoff */
FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

Cobol Example: using basic functions
IDENTIFICATION DIVISION.
PROGRAM-ID. "BASIC".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 workitem1 USAGE IS POINTER VALUE NULL.
01 workitem2 USAGE IS POINTER VALUE NULL.
01 workitem3 USAGE IS POINTER VALUE NULL.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
* logon

PERFORM FmcjESAllocate.

58 Programming Guide

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

* Query Workitems
CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.
PERFORM FmcjESQueryWorkitems.
SET hdlVector TO workitems.
MOVE intReturnValue TO retCode.
DISPLAY "Query Workitems returns rc : " retCode.

IF retCode = FMC-OK
PERFORM FmcjWIVSize
IF ulongReturnValue >= 2

* access first element
PERFORM FmcjWIVFirstElement
SET workitem1 TO FmcjWIHandleReturnValue
SET hdlItem TO workitem1
PERFORM FmcjWIIsComplete
IF boolReturnValue = 1

DISPLAY "Surprise - more than primary data"
DISPLAY "available"

ELSE
DISPLAY "Primary data of first workitem"
DISPLAY "available"

END-IF

* access next element
PERFORM FmcjWIVNextElement
SET workitem2 TO FmcjWIHandleReturnValue
SET hdlItem2 TO workitem2
PERFORM FmcjWIEqual
IF boolReturnValue = 1

DISPLAY "Surprise - workitems are equal"
ELSE

DISPLAY "Workitems represent different objects"
END-IF

* copy workitem
SET hdlWorkitem TO workitem1
PERFORM FmcjWICopy
SET workitem3 TO newWorkItem
SET hdlItem2 TO workitem3
PERFORM FmcjWIEqual
IF boolReturnValue = 0

DISPLAY "Surprise - workitems are not equal"
ELSE

DISPLAY "Workitems represent same persistent"
DISPLAY "objects"

END-IF

* cleanup
SET hdlWorkitem TO workitem1
PERFORM FmcjWIDeallocate
SET hdlWorkitem TO workitem2
PERFORM FmcjWIDeallocate
SET hdlWorkitem TO workitem3
PERFORM FmcjWIDeallocate

END-IF
END-IF

PERFORM FmcjWIVDeallocate.

Chapter 12. Function/subprogram types 59

* logoff
PERFORM FmcjESLogoff.
DISPLAY "Logged off".
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

IDENTIFICATION DIVISION.
PROGRAM-ID. "BASIC".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 workitem1 USAGE IS POINTER VALUE NULL.
01 workitem2 USAGE IS POINTER VALUE NULL.
01 workitem3 USAGE IS POINTER VALUE NULL.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
CALL "FmcjExecutionServiceAllocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue.

* logon
CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.
* Query Workitems

CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
CALL "FmcjExecutionServiceQueryWorkitems"

USING BY VALUE serviceValue
filter
sortCriteria
FmcjNoThreshold

BY REFERENCE workitems
RETURNING intReturnValue.

MOVE intReturnValue TO retCode.
DISPLAY "Query Workitems returns rc : " retCode.

IF retCode = FMC-OK
CALL "FmcjWorkitemVectorSize"

USING BY VALUE workitems
RETURNING ulongReturnValue

IF ulongReturnValue >= 2

* access first element

60 Programming Guide

CALL "FmcjWorkitemVectorFirstElement"
USING BY VALUE workitems
RETURNING FmcjWIHandleReturnValue

SET workitem1 TO FmcjWIHandleReturnValue
CALL "FmcjItemIsComplete"

USING BY VALUE workitem1
RETURNING boolReturnValue

IF boolReturnValue = 1
DISPLAY "Surprise - more than primary data"
DISPLAY "available"

ELSE
DISPLAY "Primary data of first workitem"
DISPLAY "available"

END-IF

* access next element
CALL "FmcjWorkitemVectorNextElement"

USING BY VALUE workitems
RETURNING FmcjWIHandleReturnValue

SET workitem2 TO FmcjWIHandleReturnValue
CALL "FmcjItemEqual"

USING BY VALUE workitem1
workitem2

RETURNING boolReturnValue
IF boolReturnValue = 1

DISPLAY "Surprise - workitems are equal"
ELSE

DISPLAY "Workitems represent different objects"
END-IF

* copy workitem
CALL "FmcjWorkitemCopy"

USING BY VALUE workitem1
BY REFERENCE workitem3

RETURNING intReturnValue
CALL "FmcjItemEqual"

USING BY VALUE workitem1
workitem3

RETURNING boolReturnValue
IF boolReturnValue = 0

DISPLAY "Surprise - workitems are not equal"
ELSE

DISPLAY "Workitems represent same persistent"
DISPLAY "objects"

END-IF

* cleanup
CALL "FmcjWorkitemDeallocate"

USING BY REFERENCE workitem1
RETURNING intReturnValue

CALL "FmcjWorkitemDeallocate"
USING BY REFERENCE workitem2
RETURNING intReturnValue

CALL "FmcjWorkitemDeallocate"
USING BY REFERENCE workitem2
RETURNING intReturnValue

END-IF
END-IF
CALL "FmcjWorkitemVectorDeallocate"

USING BY REFERENCE workitems
RETURNING intReturnValue.

* logoff
CALL "FmcjExecutionServiceLogoff"

USING BY VALUE serviceValue
RETURNING intReturnValue.

DISPLAY "Logged off".

Chapter 12. Function/subprogram types 61

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

Accessor function/subprograms

Accessor functions/subprograms are provided so that properties of transient
objects can be read or changed. If the transient object represents a persistent one,
then the values that are returned reflect the state of the persistent object when it
was retrieved and used to set the transient object or when it was created or
updated. Retrieval has been done from an MQSeries Workflow server using the
appropriate create, query, or refresh functions/subprograms. Creation or update
can be done on the client when the MQSeries Workflow server sends new
information (pushes information).

Default values are provided to you as long as the transient object is empty or not
complete, or when the accessed property is optional and not set.

Default values are: an empty string or buffer for character-valued properties, 0
(zero) for integer-valued properties, false for boolean-valued properties, a
timestamp with all members set to 0 (zero) for time-valued properties, "NotSet" for
enumeration-valued properties, and an empty vector for multi-valued properties.

By default, the MQSeries Workflow API provides for two views on persistent
objects. They divide the persistent object into so-called primary properties and
so-called secondary properties. Primary properties are considered “more important”
from an access point of view. They are immediately returned when objects are
queried. Secondary properties, and a refresh of the primary properties, are only
returned on an explicit Refresh() request; on a per-object basis. You can use the
IsComplete() function/subprogram to determine whether both primary and
secondary object values have been read from the server.

Besides being primary or secondary, properties of a persistent object can be
optional. This means that they can carry a value or not. When a default value is
returned to you, you can use the IsNull() function/subprogram to determine
whether that value is a value explicitly set or whether that value actually denotes
that no value has been set. For example, when Threshold() returns 0 (zero), the
threshold can have been set to zero, that is, no object is returned to you, or the
threshold cannot have been set to a value, that is, all qualifying objects are
returned to you.

Note that being Null is a concept orthogonal to being completely read. As long as
the object is not complete, IsNull() will return true for a secondary, optional
property because nothing is known yet about the actual value and whether it has
been set or not. For example, the documentation is a secondary and optional
property of an object. When the object has been queried, then only the primary
properties have been retrieved from the server. The Documentation()
function/subprogram returns an empty string or buffer. To determine whether a
documentation has been set at all, you can use the DocumentationIsNull()
function/subprogram. The result will be “true” independent from the actual
documentation setting as long as IsComplete() returns false. The documentation is
assumed to be not set as long as the secondary data has not been retrieved.

62 Programming Guide

Data values are accessible as long as the transient objects exist, regardless of the
state of the persistent objects or of the current logon or logoff state. In general, you
decide about the lifetime of your transient objects.

Because of the nature of transient objects, neither a connection to a server nor some
specific authorization is required to access object properties. The operations listed
below are headlined according to the C type. For more detailed information on the
corresponding Cobol types see Table 5 on page 82.

Return codes

Accessor functions/subprograms provide the value asked for as their return value.
Default values are returned when an error occurred during the execution of the
accessor function/subprogram. You can query the MQSeries Workflow result object
for any errors encountered. It can contain the following codes, the number in
parentheses shows their integer value:

FMC_OK(0)
The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is expected, but 0 is passed.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that means default
values are returned.

FMC_ERROR_BUFFER(800)
The buffer provided is too small to hold the largest possible value. See file
fmcmxcon.h for required lengths.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

Accessor functions/subprograms allow for the operations listed below; ’Xxx’
denotes some class or scope and ″Property″ denotes the property queried. For
example, FmcjXxxProperty() can stand for FmcjItemDescription().

Accessing a value of type bool

Returns the value of a property of type bool. A default of false is returned if no
information is available.

C language signature

bool FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

Chapter 12. Function/subprogram types 63

Parameters
handle

Input. The handle of the object to be queried.

Return type
bool The property value.

Accessing a value of type char

Returns the value of a property of type char. An empty string or buffer is returned
if no information is available. For an explanation of Cobol String handling in IBM
MQSeries Workflow for OS/390 see “Chapter 13. Cobol specific considerations” on
page 81.

Parameters
handle

Input. The handle of the object to be queried.

buffer Input/Output. A pointer to a buffer to contain the property value.

bufferLength
Input. The length of the buffer; must be big enough to hold the largest

Cobol language signature

FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

boolReturnValue.

C language signature

char * FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle,
char * buffer,
unsigned long bufferLength)

Cobol language signature

FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
buffer
bufferlength

RETURNING
pointerReturnValue.

64 Programming Guide

possible value (see file fmcmxcon.h for the minimum required lengths).
You can use a single buffer for retrieving all your character values.

Return type
char*/string

The property value.

Accessing a value of type date/time

Returns the value of a property of type FmcjCDateTime. A zero timestamp is
returned if no information is available.

Parameters
handle

Input. The handle of the object to be queried.

Return type
FmcjCDateTime

The property value.

Accessing an enumerated value

Returns an enumerating value of a property. It is strongly advised to use the
symbolic names in order to determine the actual value instead of the
corresponding integer values. It is not guaranteed that integer values always stay
the same.

"NotSet" or a similar indicator is returned if no information is available.

C language signature

FmcjCDateTime FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

Cobol language signature

FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

dateTimeReturnValue.

C language signature

enum FmcjXxxEnum FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

Chapter 12. Function/subprogram types 65

Parameters
handle

Input. The handle of the object to be queried.

Return type
FmcjXxxEnum

The property value, some element of an enumeration.

Accessing a value of type (unsigned) long

Returns the value of a property of type long or unsigned long. Zero (0) is returned if
no information is available.

Cobol language signature

FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

intReturnValue.

C language signature

long FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

unsigned long FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

Cobol language signature, type unsigned long

FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

ulongReturnValue.

Cobol language signature, type long

FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

longReturnValue.

66 Programming Guide

Parameters
handle

Input. The handle of the object to be queried.

Return type
long/unsigned long

The property value.

Accessing a multi-valued property

Returns the value of a multi-valued property by providing a vector of values. The
vector itself has to be provided by the caller. Use the appropriate vector accessor
functions/subprograms to read a single value (refer to “Handling collections” on
page 30).

An unchanged vector is returned if no information is available.

All values are appended to the supplied vector. If you want to read the actual
values only, you have to clear the vector before you call the accessor
function/subprogram. This means that you should set the vector handle to 0 via
the FmcjXxxVectorDeallocate function.

Parameters
handle

Input. The handle of the object to be queried.

Return type
FmcjYyyVectorHandle

The vector of values of the property.

FmcjXxxIsNull()

This function/subprogram states whether an optional property is set.

C language signature

FmcjYyyVectorHandle FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

Cobol language signature

FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY REFERENCE

handle
RETURNING

intReturnValue.

Chapter 12. Function/subprogram types 67

When the property is a secondary property and the object queried is not yet
completely read, it is unknown whether the property is set or not so that a default
value of true is returned.

Parameters
handle

Input. The handle of the object to be queried.

Return type
bool True if the property is not set, otherwise false.

Setting a value of type long

This function/subprogram sets the specified property to the specified value.

Parameters
handle

Input. The handle of the object to be queried.

C language signature

bool FMC_APIENTRY FmcjXxxPropertyIsNull(FmcjXxxHandle handle)

Cobol language signature

FmcjXxxPropertyIsNull.

CALL "FmcjXxxPropertyIsNull"
USING
BY VALUE

handle
RETURNING

boolReturnValue.

C language signature

void FMC_APIENTRY FmcjXxxSetProperty(FmcjXxxHandle handle,
long newValue)

Cobol language signature

FmcjXxxSetProperty.

CALL "FmcjXxxSetProperty"
USING
BY VALUE

handle
newValue

68 Programming Guide

newValue
Input. The new value of the property.

Return type
bool True if the property is not set, otherwise false.

An example is the FmcjServiceSetTimeout function/subprogram which sets the
timeout value for requests issued by the client to an MQSeries Workflow server via
this FmcjService object. In other words, it sets the time the client is willing to wait
for an answer.

When set, the new timeout value is used for all functions/subprograms requiring
communication between the client and the server. It can be set (changed) as often
as wanted. It is to be provided as microseconds. A negative value is interpreted as
-1, that is, an indefinite timeout.

The default timeout value is taken from the user’s profile; if not found, from the
workstation profile. If it is also not found there, the default is 180000 ms.

Note: It is possible that, even though FMC_ERROR_TIMEOUT is returned when
you issue a client-server call, the MQSeries Workflow server has successfully
processed the request. However, the server could not send back FMC_OK
because communication reported a timeout in the meantime. If the request
has not been processed, increase the value set for the timeout and retry the
call.

Setting a value of type unsigned short

This function/subprogram sets the specified property to the specified value.

Parameters
handle

Input. The handle of the object to be queried.

newValue
Input. The new value of the property.

C language signature

void FMC_APIENTRY FmcjXxxSetProperty(FmcjXxxHandle handle,
unsigned short newValue)

Cobol language signature

FmcjXxxSetProperty.

CALL "FmcjXxxSetProperty"
USING
BY VALUE

handle
newValue.

Chapter 12. Function/subprogram types 69

Setting a value of type FmcjBinary *

This function/subprogram sets the specified property to the specified value.

Parameters
handle

Input. The handle of the object to be queried.

newValue
Input. The new value of the property.

dataLength
Input. The length of the new value.

Updating an object

This function/subprogram updates the specified object with information sent from
an MQSeries Workflow server. The update information must have been provided
for the specified object.

The server pushes update information for work items—as long as they are not
disabled, activity instance notifications, and process instance notifications. The
process setting of the associated process instance must specify REFRESH_POLICY
PUSH for that process instance itself or as a process default. Logon must have
been performed with a present session mode.

C language signature
APIRET FMC_APIENTRY FmcjXxxUpdate(FmcjXxxHandle handle,

FmcjExecutionDataHandle data);

C language signature

void FMC_APIENTRY FmcjXxxSetProperty(FmcjXxxHandle handle,
FmcjBinary const * newValue,
unsigned long dataLength)

Cobol language signature

FmcjXxxSetProperty.

CALL "FmcjXxxSetProperty"
USING
BY VALUE

handle
newValue
dataLength.

70 Programming Guide

Cobol language signature
FmcjXxxUpdate.

CALL "FmcjXxxUpdate"
USING
BY REFERENCE

handle
data

RETURNING
intReturnValue.

Parameters

handle
Input. The handle of the object to be updated.

data Input. The data which is to be used for the update.

Return codes

The C language functions and the MQSeries Workflow result object can return the
following codes, the number in parentheses shows their integer value:

FMC_OK(0)
The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is expected, but 0 is passed.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, it does not yet
represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INVALID_OID(805)
The execution data is no data to update the specified object; it does not
belong to the specified object.

FMC_ERROR_WRONG_KIND(501)
The execution data is no data to update the specified object; it is no update
data.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

C language Example: accessing values
#include <stdio.h>
#include <fmcjcrun.h>
int main()
{
APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjWorkitemHandle workitem = 0;
FmcjStringVectorHandle sList = 0;
char category[FMC_CATEGORY_NAME_LENGTH+1]

Chapter 12. Function/subprogram types 71

char generalBuffer[200]
unsigned long priority = 0;
int enumValue = 0;
FmcjCDateTime startTime;
unsigned long i = 0;

FmcjGlobalConnect();

/* logon */
FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_Reset

);
/* set the timeout for requests */

FmcjExecutionServiceSetTimeout(service, 60000);

/* assumption: workitem has been queried from the server */

/* access a value of type bool */
if (FmcjWorkitemCategoryIsNull(workitem))

printf("Category is not set\n");
else /* access a value of type char */
{ /* use a buffer which fits */
FmcjWorkitemCategory(workitem, category, FMC_CATEGORY_NAME_LENGTH+1);
printf("Category : %s\n", category);

}
/* access a date/time value */

startTime= FmcjWorkitemCategoryStartTime(workitem);
printf("Start time : %s\n",
FmcjDateTimeAsString("startTime, generalBuffer, 200));

/* access a value of type long */
priority = FmcjWorkitemPriority(workitem);
printf("Priority : %u\n", priority);

/* access an enumerated value */
enumValue= FmcjWorkitemCategoryReceivedAs(workitem);
if (enumValue == Fmc_IR_Normal)
printf("Received as: %s\n","qualified user");

...
/* access a multi-valued field */

sList= FmcjWorkitemSupportTools(workitem);
printf("Support tools: ");
for(i=0; i< FmcjStringVectorSize(sList); i++)
{ /* use a large buffer */
printf("%s ", FmcjStringVectorNextElement(sList, generalBuffer, 200));

}

/* logoff */
FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

Cobol Example: accessing values
IDENTIFICATION DIVISION.
PROGRAM-ID. "VALUES".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

72 Programming Guide

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 categBuffer PIC X(34).
01 generalBuffer PIC X(200).
01 i PIC 9(9) BINARY VALUE 0.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
* logon

PERFORM FmcjESAllocate.

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

* set the timeout for requests
MOVE 60000 TO newTimeOutValue.
PERFORM FmcjESSetTimeout.

* assumption: workitem has been queried from the server
* and hdlItem points to this workitem

* access a value of type bool (PIC 9 BINARY)
PERFORM FmcjWICategIsNull.
IF boolReturnValue = 1

DISPLAY "Category is not set"
ELSE

* access a value of type char (POINTER to a PIC X(n))
* use a buffer which fits

CALL "SETADDR" USING categBuffer categoryNameBuffer
MOVE FMC-CATEG-NAME-LENGTH TO bufferLength
PERFORM FmcjWICateg
DISPLAY "Category : " categBuffer

END-IF
* access a date/time value

PERFORM FmcjWIStartTime.
MOVE dateTimeReturnValue TO timeValue.
CALL "SETADDR" USING generalBuffer dateTimeBuffer.
MOVE 200 TO bufferLength.
PERFORM FmcjDateTimeAsString.
DISPLAY "Start time : " generalBuffer.

* access a value of type unsigned long (PIC 9(9) BINARY)
SET hdlWorkitem TO hdlItem.
PERFORM FmcjWIPriority.
DISPLAY "Priority : " ulongReturnValue.

* access an enumerated value (PIC S9(9) BINARY)
PERFORM FmcjWIReceivedAs.
IF intReturnValue = Fmc-IR-Normal

DISPLAY "Received as: qualified user"
END-IF

* access a multi-valued field
PERFORM FmcjWISupportTools.
SET hdlVector TO FmcjStrVHandleReturnValue.
PERFORM FmcjStrVSize.
DISPLAY "Support tools: ".

* use a large buffer
CALL "SETADDR" USING generalBuffer elementBuffer
PERFORM VARYING i FROM 0 BY 1 UNTIL i >= ulongReturnValue

PERFORM FmcjStrVNextElement
DISPLAY generalBuffer

Chapter 12. Function/subprogram types 73

END-PERFORM
* logoff

PERFORM FmcjESLogoff.
DISPLAY "Logged off".
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

IDENTIFICATION DIVISION.
PROGRAM-ID. "VALUES".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 categBuffer PIC X(34).
01 generalBuffer PIC X(200).
01 i PIC 9(9) BINARY VALUE 0.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
* logon

CALL "FmcjExecutionServiceAllocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.

* set the timeout for requests
MOVE 60000 TO newTimeOutValue.
CALL "FmcjServiceSetTimeout"

USING BY VALUE serviceValue
newTimeoutValue.

* assumption: workitem has been queried from the server
* and hdlItem points to this workitem

* access a value of type bool (PIC 9 BINARY)
CALL "FmcjItemCategoryIsNull"

USING BY VALUE hdlItem
RETURNING boolReturnValue.

IF boolReturnValue = 1
DISPLAY "Category is not set"

ELSE
* access a value of type char (POINTER to a PIC X(n))
* use a buffer which fits

74 Programming Guide

CALL "SETADDR" USING categBuffer categoryNameBuffer
MOVE FMC-CATEG-NAME-LENGTH TO bufferLength
CALL "FmcjItemCategory"

USING BY VALUE hdlItem
categoryNameBuffer
bufferLength

RETURNING pointerReturnValue
DISPLAY "Category : " categBuffer

END-IF
* access a date/time value

CALL "FmcjItemStartTime"
USING BY VALUE hdlItem
RETURNING dateTimeReturnValue.

CALL "SETADDR" USING generalBuffer dateTimeBuffer.
MOVE 200 TO bufferLength.
CALL "FmcjDateTimeAsString"

USING BY REFERENCE dateTimeReturnValue
BY VALUE dateTimeBuffer

bufferLength
RETURNING pointerReturnValue.

DISPLAY "Start time : " generalBuffer.
* access a value of type unsigned long (PIC 9(9) BINARY)

SET hdlWorkitem TO hdlItem.
CALL "FmcjWorkitemPriority"

USING BY VALUE hdlItem
RETURNING ulongReturnValue.

DISPLAY "Priority : " ulongReturnValue.
* access an enumerated value (PIC S9(9) BINARY)

CALL "FmcjItemReceivedAs"
USING BY VALUE hdlItem
RETURNING intReturnValue.

IF intReturnValue = Fmc-IR-Normal
DISPLAY "Received as: qualified user"

END-IF
* access a multi-valued field

CALL "FmcjWorkitemSupportTools"
USING BY VALUE hdlItem
RETURNING FmcjStrVHandleReturnValue.

SET hdlVector TO FmcjStrVHandleReturnValue.
CALL "FmcjStringVectorSize"

USING BY VALUE hdlVector
RETURNING ulongReturnValue.

DISPLAY "Support tools: ".
* use a large buffer

CALL "SETADDR" USING generalBuffer elementBuffer
PERFORM VARYING i FROM 0 BY 1 UNTIL i >= ulongReturnValue
CALL "FmcjStringVectorNextElement"

USING BY VALUE hdlVector
elementBuffer
bufferLength

RETURNING pointerReturnValue
DISPLAY generalBuffer

END-PERFORM
* logoff

CALL "FmcjExecutionServiceLogoff"
USING BY VALUE serviceValue
RETURNING intReturnValue.

DISPLAY "Logged off".
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

Chapter 12. Function/subprogram types 75

Action functions/subprograms

Action functions/subprograms are client-server calls, involving communication
with an MQSeries Workflow server. As such, they require to be logged on.

Action functions/subprograms can be issued on service objects and on transient
objects representing persistent ones. These objects remember the context of a user
session so that a communication path to an MQSeries Workflow server can be
established. As a consequence, empty objects cannot be used in order to issue
action calls.

Action functions/subprograms are either synchronous requests waiting for the
server’s reply or functions/subprograms receiving information from an MQSeries
Workflow server.

All action function/subprograms are described separately in “Part 7. Application
programming interfaces” on page 213. You can find examples in “Part 8. Examples”
on page 441.

Activity implementation functions/subprograms

An activity or support tool can be implemented by a program which uses the
MQSeries Workflow API. In this case, the activity implementation
functions/subprograms provide access to the input and output containers of the
activity instance respectively work item or of the input container of the support
tool. They also allow the program implementing an activity to return the updated
output container to MQSeries Workflow so that navigation can continue on the
basis of those values.

A program implementing an activity or support tool is usually executed under the
control of an MQSeries Workflow program execution server on request from some
MQSeries Workflow execution server. When an MQSeries Workflow execution
server receives a request to start a work item or support tool, it determines the
implementing program to be started and sends an appropriate request together
with the input and output containers, if needed, to the logged-on user’s MQSeries
Workflow program execution server. Since containers are sent to the program
execution agent, input and output containers are requested from and returned to
an MQSeries Workflow program execution agent by the implementing program.
You do not have to create a service object and log on to an MQSeries Workflow
execution server to handle containers from within an activity implementation.

However, if you want to access not only containers, for example, if you want to
query information about the process instance the work item is a part of, you have
to log on to the MQSeries Workflow execution server that requested to start your
program. You can use the FmcjExecutionService::Passthrough()
function/subprogram to begin a session with the execution server from within the
activity implementation or support tool program. This way, you can use the
environment of the work item or support tool, that is, you do not need any other
user ID, password, system group, or system information.

An MQSeries Workflow program execution agent can run more than one program
at a time. When a container is requested, it determines the calling program and
provides the container sent by the server for this program’s usage.

76 Programming Guide

If the activity implementation does not handle all work by itself but distributes
work by starting subprograms that run as separate operating system processes, and
when those subprograms request containers, then the CICS COMMAREA/IMS I/O
Area must be supplied to those subprograms.

See “Chapter 51. An activity implementation” on page 465 for activity
implementation examples.

Chapter 12. Function/subprogram types 77

78 Programming Guide

Part 3. OS/390 specific considerations

© Copyright IBM Corp. 1999 79

80 Programming Guide

Chapter 13. Cobol specific considerations

There are two ways to use the Cobol API:
1. directly through the LE ″CALL″ mechanism.
2. by using the FMCPERF copybook and the COBOL ″PERFORM″ mechanism.

The Cobol language signatures and examples given in this document are providing
the information to use the API in either way.

API Call

The Cobol API uses LE ILCs to call the C API

Therefore the compiler option PGMNAME(LM) has to be used to allow
a) calls to functions with names no longer than 30 characters
b) case sensitivity in function names

String handling

Since C strings (char *) are null-terminated strings the Cobol programmer must
provide string parameters null-terminated. String output parameters have to be
checked for the first occurrence of X’00’ to get the correct value. A function cannot
be called with String/PIC X(n) constants but must use a pointer referencing such a
PIC X(n) which must be null-terminated.

Function Calls

Cobol Strings (PIC X(n)) cannot be used directly as parameters for IBM MQSeries
Workflow for OS/390 function calls. A POINTER to a PIC X(n) has to be provided
instead.

Provided Copybooks
Table 4. Provided Copybooks

Copybook Contents

FMCCONST Constants

FMCRCS Return Codes

FMCPERF Subprograms of full API

FMCPERFL Subprograms of lightweight container API

FMCVARS Variables

Mapping C to Cobol data types

Table 5 on page 82 shows how to map C to Cobol data types:

© Copyright IBM Corp. 1999 81

Table 5. Mapping C to Cobol data types

type in C type in Cobol BY VALUE / BY REFERENCE

XxxHandle 01 ptr USAGE IS POINTER.

(pointing to a C++ object)

BY VALUE

XxxHandle * 01 ptr USAGE IS POINTER.

(pointing to a pointer to a C++ object)

BY REFERENCE

char *, char const * 01 ptr USAGE IS POINTER.

(pointing to a PIC X(n))

BY VALUE

FmcjCorrelID * 01 ptr USAGE IS POINTER.

(pointing to a PIC X(24))

BY VALUE

FmcjBinary * 01 ptr USAGE IS POINTER. BY VALUE

FmcjCDateTime const * 01 FmcjCDateTime.

05 the-year PIC 9(4) BINARY.

05 the-month PIC 9(4) BINARY.

05 the-day PIC 9(4) BINARY.

05 the-hour PIC 9(4) BINARY.

05 the-minute PIC 9(4) BINARY.

05 the-second PIC 9(4) BINARY.

BY REFERENCE

int, long, signed long,
enum Xxx

01 int PIC S9(9) BINARY. BY VALUE

APIRET 01 int PIC S9(9) BINARY. n/a (not used as parameters)

unsigned long 01 ulong PIC 9(9) BINARY. BY VALUE

unsigned short 01 ushort PIC 9(4) BINARY. BY VALUE

double 01 double COMP-2. BY VALUE

bool (1=true 0=false) 01 bool PIC 9 BINARY. BY VALUE

long * 01 int PIC S9(9) BINARY. BY REFERENCE

double * 01 double COMP-2. BY REFERENCE

unsigned long const * 01 ulong PIC 9(9) BINARY. BY VALUE

Name changes between Cobol and C

Some of the functions are declared as
#define functionA functionB

In these cases, if you want to call functionA directly via ″CALL″ in Cobol, you
have to use functionB instead. All functions belonging to this category are listed in
the table below.

Table 6. Function Name Mapping

FunctionA FunctionB

FmcjActivityInstanceNotificationCategory FmcjItemCategory

82 Programming Guide

Table 6. Function Name Mapping (continued)

FunctionA FunctionB

FmcjActivityInstanceNotificationCategoryIsNull FmcjItemCategoryIsNull

FmcjActivityInstanceNotificationCreationTime FmcjItemCreationTime

FmcjActivityInstanceNotificationDelete FmcjItemDelete

FmcjActivityInstanceNotificationDescription FmcjItemDescription

FmcjActivityInstanceNotificationDescriptionIsNull FmcjItemDescriptionIsNull

FmcjActivityInstanceNotificationDocumentation FmcjItemDocumentation

FmcjActivityInstanceNotificationDocumentationIsNull FmcjItemDocumentationIsNull

FmcjActivityInstanceNotificationEndTime FmcjItemEndTime

FmcjActivityInstanceNotificationEndTimeIsNull FmcjItemEndTimeIsNull

FmcjActivityInstanceNotificationEqual FmcjItemEqual

FmcjActivityInstanceNotificationIcon FmcjItemIcon

FmcjActivityInstanceNotificationInContainerName FmcjItemInContainerName

FmcjActivityInstanceNotificationIsComplete FmcjItemIsComplete

FmcjActivityInstanceNotificationKind FmcjItemKind

FmcjActivityInstanceNotificationLastModificationTime FmcjItemLastModificationTime

FmcjActivityInstanceNotificationName FmcjItemName

FmcjActivityInstanceNotificationObtainProcessInstanceMonitor FmcjItemObtainProcessInstanceMonitor

FmcjActivityInstanceNotificationOutContainerName FmcjItemOutContainerName

FmcjActivityInstanceNotificationOwner FmcjItemOwner

FmcjActivityInstanceNotificationPersistentOid FmcjItemPersistentOid

FmcjActivityInstanceNotificationProcessAdmin FmcjItemProcessAdmin

FmcjActivityInstanceNotificationProcessInstance FmcjItemProcessInstance

FmcjActivityInstanceNotificationProcessInstanceName FmcjItemProcessInstanceName

FmcjActivityInstanceNotificationProcessInstanceState FmcjItemProcessInstanceState

FmcjActivityInstanceNotificationProcessInstanceSystemGroupName FmcjItemProcessInstanceSystemGroupName

FmcjActivityInstanceNotificationProcessInstanceSystemName FmcjItemProcessInstanceSystemName

FmcjActivityInstanceNotificationReceivedAs FmcjItemReceivedAs

FmcjActivityInstanceNotificationReceivedTime FmcjItemReceivedTime

FmcjActivityInstanceNotificationRefresh FmcjItemRefresh

FmcjActivityInstanceNotificationSetDescription FmcjItemSetDescription

FmcjActivityInstanceNotificationSetName FmcjItemSetName

FmcjActivityInstanceNotificationStartTime FmcjItemStartTime

FmcjActivityInstanceNotificationStartTimeIsNull FmcjItemStartTimeIsNull

FmcjActivityInstanceNotificationTransfer FmcjItemTransfer

FmcjActivityInstanceNotificationUpdate FmcjItemUpdate

FmcjExecutionServiceIsLoggedOn FmcjServiceIsLoggedOn

FmcjExecutionServiceSetPassword FmcjServiceSetPassword

FmcjExecutionServiceSetTimeout FmcjServiceSetTimeout

FmcjExecutionServiceSystemGroupName FmcjServiceSystemGroupName

FmcjExecutionServiceSystemName FmcjServiceSystemName

Chapter 13. Cobol specific considerations 83

Table 6. Function Name Mapping (continued)

FunctionA FunctionB

FmcjExecutionServiceTimeout FmcjServiceTimeout

FmcjExecutionServiceUserID FmcjServiceUserID

FmcjExecutionServiceUserSettings FmcjServiceUserSettings

FmcjProcessInstanceListDelete FmcjPersistentListDelete

FmcjProcessInstanceListDescription FmcjPersistentListDescription

FmcjProcessInstanceListDescriptionIsNull FmcjPersistentListDescriptionIsNull

FmcjProcessInstanceListFilter FmcjPersistentListFilter

FmcjProcessInstanceListFilterIsNull FmcjPersistentListFilterIsNull

FmcjProcessInstanceListName FmcjPersistentListName

FmcjProcessInstanceListOwnerOfList FmcjPersistentListOwnerOfList

FmcjProcessInstanceListOwnerOfListIsNull FmcjPersistentListOwnerOfListIsNull

FmcjProcessInstanceListRefresh FmcjPersistentListRefresh

FmcjProcessInstanceListSetDescription FmcjPersistentListSetDescription

FmcjProcessInstanceListSetFilter FmcjPersistentListSetFilter

FmcjProcessInstanceListSetSortCriteria FmcjPersistentListSetSortCriteria

FmcjProcessInstanceListSetThreshold FmcjPersistentListSetThreshold

FmcjProcessInstanceListSortCriteria FmcjPersistentListSortCriteria

FmcjProcessInstanceListSortCriteriaIsNull FmcjPersistentListSortCriteriaIsNull

FmcjProcessInstanceListThreshold FmcjPersistentListThreshold

FmcjProcessInstanceListThresholdIsNull FmcjPersistentListThresholdIsNull

FmcjProcessInstanceListType FmcjPersistentListType

FmcjProcessInstanceNotificationCategory FmcjItemCategory

FmcjProcessInstanceNotificationCategoryIsNull FmcjItemCategoryIsNull

FmcjProcessInstanceNotificationCreationTime FmcjItemCreationTime

FmcjProcessInstanceNotificationDelete FmcjItemDelete

FmcjProcessInstanceNotificationDescription FmcjItemDescription

FmcjProcessInstanceNotificationDescriptionIsNull FmcjItemDescriptionIsNull

FmcjProcessInstanceNotificationDocumentation FmcjItemDocumentation

FmcjProcessInstanceNotificationDocumentationIsNull FmcjItemDocumentationIsNull

FmcjProcessInstanceNotificationEndTime FmcjItemEndTime

FmcjProcessInstanceNotificationEndTimeIsNull FmcjItemEndTimeIsNull

FmcjProcessInstanceNotificationEqual FmcjItemEqual

FmcjProcessInstanceNotificationIcon FmcjItemIcon

FmcjProcessInstanceNotificationInContainerName FmcjItemInContainerName

FmcjProcessInstanceNotificationIsComplete FmcjItemIsComplete

FmcjProcessInstanceNotificationIsManagedByRemoteSystem FmcjItemIsManagedByRemoteSystem

FmcjProcessInstanceNotificationKind FmcjItemKind

FmcjProcessInstanceNotificationLastModificationTime FmcjItemLastModificationTime

FmcjProcessInstanceNotificationName FmcjItemName

FmcjProcessInstanceNotificationOutContainerName FmcjItemOutContainerName

84 Programming Guide

Table 6. Function Name Mapping (continued)

FunctionA FunctionB

FmcjProcessInstanceNotificationObtainProcessInstanceMonitor FmcjItemObtainProcessInstanceMonitor

FmcjProcessInstanceNotificationOwner FmcjItemOwner

FmcjProcessInstanceNotificationPersistentOid FmcjItemPersistentOid

FmcjProcessInstanceNotificationProcessAdmin FmcjItemProcessAdmin

FmcjProcessInstanceNotificationProcessInstance FmcjItemProcessInstance

FmcjProcessInstanceNotificationProcessInstanceName FmcjItemProcessInstanceName

FmcjProcessInstanceNotificationProcessInstanceState FmcjItemProcessInstanceState

FmcjProcessInstanceNotificationProcessInstanceSystemGroupName FmcjItemProcessInstanceSystemGroupName

FmcjProcessInstanceNotificationProcessInstanceSystemName FmcjItemProcessInstanceSystemName

FmcjProcessInstanceNotificationReceivedAs FmcjItemReceivedAs

FmcjProcessInstanceNotificationReceivedTime FmcjItemReceivedTime

FmcjProcessInstanceNotificationRefresh FmcjItemRefresh

FmcjProcessInstanceNotificationSetDescription FmcjItemSetDescription

FmcjProcessInstanceNotificationSetName FmcjItemSetName

FmcjProcessInstanceNotificationSuspensionTime FmcjItemSuspensionTime

FmcjProcessInstanceNotificationSuspensionTimeIsNull FmcjItemSuspensionTimeIsNull

FmcjProcessInstanceNotificationStartTime FmcjItemStartTime

FmcjProcessInstanceNotificationStartTimeIsNull FmcjItemStartTimeIsNull

FmcjProcessInstanceNotificationTransfer FmcjItemTransfer

FmcjProcessInstanceNotificationUpdate FmcjItemUpdate

FmcjProcessTemplateListDelete FmcjPersistentListDelete

FmcjProcessTemplateListDescription FmcjPersistentListDescription

FmcjProcessTemplateListDescriptionIsNull FmcjPersistentListDescriptionIsNull

FmcjProcessTemplateListFilter FmcjPersistentListFilter

FmcjProcessTemplateListFilterIsNull FmcjPersistentListFilterIsNull

FmcjProcessTemplateListName FmcjPersistentListName

FmcjProcessTemplateListOwnerOfList FmcjPersistentListOwnerOfList

FmcjProcessTemplateListOwnerOfListIsNull FmcjPersistentListOwnerOfListIsNull

FmcjProcessTemplateListRefresh FmcjPersistentListRefresh

FmcjProcessTemplateListSetDescription FmcjPersistentListSetDescription

FmcjProcessTemplateListSetFilter FmcjPersistentListSetFilter

FmcjProcessTemplateListSetSortCriteria FmcjPersistentListSetSortCriteria

FmcjProcessTemplateListSetThreshold FmcjPersistentListSetThreshold

FmcjProcessTemplateListSortCriteria FmcjPersistentListSortCriteria

FmcjProcessTemplateListSortCriteriaIsNull FmcjPersistentListSortCriteriaIsNull

FmcjProcessTemplateListThreshold FmcjPersistentListThreshold

FmcjProcessTemplateListThresholdIsNull FmcjPersistentListThresholdIsNull

FmcjProcessTemplateListType FmcjPersistentListType

FmcjReadOnlyContainerAllLeafCount FmcjContainerAllLeafCount

FmcjReadOnlyContainerAllLeaves FmcjContainerAllLeaves

Chapter 13. Cobol specific considerations 85

Table 6. Function Name Mapping (continued)

FunctionA FunctionB

FmcjReadOnlyContainerArrayBinaryLength FmcjContainerArrayBinaryLength

FmcjReadOnlyContainerArrayBinaryValue FmcjContainerArrayBinaryValue

FmcjReadOnlyContainerArrayFloatValue FmcjContainerArrayFloatValue

FmcjReadOnlyContainerArrayLongValue FmcjContainerArrayLongValue

FmcjReadOnlyContainerArrayStringLength FmcjContainerArrayStringLength

FmcjReadOnlyContainerArrayStringValue FmcjContainerArrayStringValue

FmcjReadOnlyContainerBinaryLength FmcjContainerBinaryLength

FmcjReadOnlyContainerBinaryValue FmcjContainerBinaryValue

FmcjReadOnlyContainerFloatValue FmcjContainerFloatValue

FmcjReadOnlyContainerGetElement FmcjContainerGetElement

FmcjReadOnlyContainerLeafCount FmcjContainerLeafCount

FmcjReadOnlyContainerLeaves FmcjContainerLeaves

FmcjReadOnlyContainerLongValue FmcjContainerLongValue

FmcjReadOnlyContainerMemberCount FmcjContainerMemberCount

FmcjReadOnlyContainerStringLength FmcjContainerStringLength

FmcjReadOnlyContainerStringValue FmcjContainerStringValue

FmcjReadOnlyContainerStructMembers FmcjContainerStructMembers

FmcjReadOnlyContainerType FmcjContainerType

FmcjReadWriteContainerAllLeafCount FmcjContainerAllLeafCount

FmcjReadWriteContainerAllLeaves FmcjContainerAllLeaves

FmcjReadWriteContainerArrayBinaryLength FmcjContainerArrayBinaryLength

FmcjReadWriteContainerArrayBinaryValue FmcjContainerArrayBinaryValue

FmcjReadWriteContainerArrayFloatValue FmcjContainerArrayFloatValue

FmcjReadWriteContainerArrayLongValue FmcjContainerArrayLongValue

FmcjReadWriteContainerArrayStringLength FmcjContainerArrayStringLength

FmcjReadWriteContainerArrayStringValue FmcjContainerArrayStringValue

FmcjReadWriteContainerBinaryLength FmcjContainerBinaryLength

FmcjReadWriteContainerBinaryValue FmcjContainerBinaryValue

FmcjReadWriteContainerFloatValue FmcjContainerFloatValue

FmcjReadWriteContainerGetElement FmcjContainerGetElement

FmcjReadWriteContainerLeafCount FmcjContainerLeafCount

FmcjReadWriteContainerLeaves FmcjContainerLeaves

FmcjReadWriteContainerLongValue FmcjContainerLongValue

FmcjReadWriteContainerMemberCount FmcjContainerMemberCount

FmcjReadWriteContainerStringLength FmcjContainerStringLength

FmcjReadWriteContainerStringValue FmcjContainerStringValue

FmcjReadWriteContainerStructMembers FmcjContainerStructMembers

FmcjReadWriteContainerType FmcjContainerType

FmcjWorkitemCategory FmcjItemCategory

FmcjWorkitemCategoryIsNull FmcjItemCategoryIsNull

86 Programming Guide

Table 6. Function Name Mapping (continued)

FunctionA FunctionB

FmcjWorkitemCreationTime FmcjItemCreationTime

FmcjWorkitemDelete FmcjItemDelete

FmcjWorkitemDescription FmcjItemDescription

FmcjWorkitemDescriptionIsNull FmcjItemDescriptionIsNull

FmcjWorkitemDocumentation FmcjItemDocumentation

FmcjWorkitemDocumentationIsNull FmcjItemDocumentationIsNull

FmcjWorkitemEndTime FmcjItemEndTime

FmcjWorkitemEndTimeIsNull FmcjItemEndTimeIsNull

FmcjWorkitemEqual FmcjItemEqual

FmcjWorkitemIcon FmcjItemIcon

FmcjWorkitemInContainerName FmcjItemInContainerName

FmcjWorkitemIsComplete FmcjItemIsComplete

FmcjWorkitemKind FmcjItemKind

FmcjWorkitemLastModificationTime FmcjItemLastModificationTime

FmcjWorkitemName FmcjItemName

FmcjWorkitemOutContainerName FmcjItemOutContainerName

FmcjWorkitemObtainProcessInstanceMonitor FmcjItemObtainProcessInstanceMonitor

FmcjWorkitemOwner FmcjItemOwner

FmcjWorkitemPersistentOid FmcjItemPersistentOid

FmcjWorkitemProcessAdmin FmcjItemProcessAdmin

FmcjWorkitemProcessInstance FmcjItemProcessInstance

FmcjWorkitemProcessInstanceName FmcjItemProcessInstanceName

FmcjWorkitemProcessInstanceState FmcjItemProcessInstanceState

FmcjWorkitemProcessInstanceSystemGroupName FmcjItemProcessInstanceSystemGroupName

FmcjWorkitemProcessInstanceSystemName FmcjItemProcessInstanceSystemName

FmcjWorkitemReceivedAs FmcjItemReceivedAs

FmcjWorkitemReceivedTime FmcjItemReceivedTime

FmcjWorkitemRefresh FmcjItemRefresh

FmcjWorkitemSetDescription FmcjItemSetDescription

FmcjWorkitemSetName FmcjItemSetName

FmcjWorkitemStartTime FmcjItemStartTime

FmcjWorkitemStartTimeIsNull FmcjItemStartTimeIsNull

FmcjWorkitemTransfer FmcjItemTransfer

FmcjWorkitemUpdate FmcjItemUpdate

FmcjWorklistDelete FmcjPersistentListDelete

FmcjWorklistDescription FmcjPersistentListDescription

FmcjWorklistDescriptionIsNull FmcjPersistentListDescriptionIsNull

FmcjWorklistFilter FmcjPersistentListFilter

FmcjWorklistFilterIsNull FmcjPersistentListFilterIsNull

FmcjWorklistName FmcjPersistentListName

Chapter 13. Cobol specific considerations 87

Table 6. Function Name Mapping (continued)

FunctionA FunctionB

FmcjWorklistOwnerOfList FmcjPersistentListOwnerOfList

FmcjWorklistOwnerOfListIsNull FmcjPersistentListOwnerOfListIsNull

FmcjWorklistRefresh FmcjPersistentListRefresh

FmcjWorklistSetDescription FmcjPersistentListSetDescription

FmcjWorklistSetFilter FmcjPersistentListSetFilter

FmcjWorklistSetSortCriteria FmcjPersistentListSetSortCriteria

FmcjWorklistSetThreshold FmcjPersistentListSetThreshold

FmcjWorklistSortCriteria FmcjPersistentListSortCriteria

FmcjWorklistSortCriteriaIsNull FmcjPersistentListSortCriteriaIsNull

FmcjWorklistThreshold FmcjPersistentListThreshold

FmcjWorklistThresholdIsNull FmcjPersistentListThresholdIsNull

FmcjWorklistType FmcjPersistentListType

To cope with the Cobol restriction of 30 characters per word some class name
prefixes as well as function and constant names had to be abbreviated. The
abbreviations for the class name prefixes are listed in the table below.

Table 7. Abbreviation Class Prefixes

Class Name Abbrevation

FmcjActivityInstanceList FmcjAIL

FmcjActivityInstance FmcjAI

FmcjActivityInstanceNotification FmcjAIN

FmcjActivityInstanceNotificationVector FmcjAINV

FmcjActivityInstanceVector FmcjAIV

FmcjBlockInstanceMonitor FmcjBIM

FmcjContainerElement FmcjCE

FmcjContainerElementVector FmcjCEV

FmcjContainer FmcjC

FmcjControlConnectorInstance FmcjCCI

FmcjControlConnectorInstanceVector FmcjCCIV

FmcjDllOptions FmcjDO

FmcjExeOptions FmcjExeO

FmcjExecutionData FmcjED

FmcjExecutionService FmcjES

FmcjExternalOptions FmcjExtO

FmcjImplementationData FmcjID

FmcjImplementationDataVector FmcjIDV

FmcjPerson FmcjP

FmcjPoint FmcjPnt

FmcjPointVector FmcjPntV

FmcjProgramData FmcjPD

FmcjProcessInstance FmcjPI

88 Programming Guide

Table 7. Abbreviation Class Prefixes (continued)

Class Name Abbrevation

FmcjProcessInstanceList FmcjPIL

FmcjProcessInstanceListVector FmcjPILV

FmcjProcessInstanceMonitor FmcjPIM

FmcjProcessInstanceNotification FmcjPIN

FmcjProcessInstanceNotificationVector FmcjPINV

FmcjProcessInstanceVector FmcjPIV

FmcjPersistentList FmcjPL

FmcjProcessTemplateList FmcjPTL

FmcjProcessTemplateListVector FmcjPTLV

FmcjProcessTemplate FmcjPT

FmcjProcessTemplateVector FmcjPTV

FmcjReadOnlyContainer FmcjROC

FmcjReadWriteContainer FmcjRWC

FmcjStringVector FmcjStrV

FmcjSymbolLayout FmcjSL

FmcjWorkitem FmcjWI

FmcjWorkitemVector FmcjWIV

FmcjWorklist FmcjWL

The abbreviations for function and constant names are listed in the table below
(Note that these abbreviations take place after the class name prefix abbreviations).
Instead of constructing the names with the help of this table you can also search
the FMCPERF copybook for the C function name to get the corresponding Cobol
function and variable names.

Table 8. Abbreviations

Original String Abbrevation

Activity Act

ACTIVITY ACT

Administration Admin

Administration Admin

ADMINSTRATION ADMIN

Already Alr

ALREADY ALR

Authorization Auth

AUTHORIZATION AUTH

Authorized Auth

AUTHORIZED AUTH

Backward Backw

BACKWARD BACKW

Categories Categs

CATEGORIES CATEGS

Chapter 13. Cobol specific considerations 89

Table 8. Abbreviations (continued)

Original String Abbrevation

Category Categ

CATEGORY CATEG

CHECKOUT CHKOUT

Container Ctnr

CONTAINER CTNR

ControlConnector ContrConn

CONTROLCONNECTOR CONTRCONN

Definition Def

DEFINITION DEF

Directory Dir

DIRECTORY DIR

Executable Exec

EXECUTABLE EXEC

EXTERNAL EXT

ForeGround ForeGr

FOREGROUND FOREGR

Forward Forw

FORWARD FORW

FOUND-FOR-AUTO-START FND-FR-AUT-ST

FROM FRM

IMPLEMENTATION IMP

Instance Inst

INSTANCE INST

INVALID INVAL

Invocation Invoc

INVOCATION INVOC

Location Loc

LOCATION LOC

Mapping Map

MAPPING MAP

Monitor Mon

MONITOR MON

Notification Notif

NOTIFICATION NOTIF

Notified Notif

NOTIFIED NOTIF

Object Obj

OBJECT OBJ

Organization Org

ORGANIZATION ORG

90 Programming Guide

Table 8. Abbreviations (continued)

Original String Abbrevation

Parameter Parm

PARAMETER PARM

PersistentOidOf PersOidOf

PERSISTENTOIDOF PERSOIDOF

Persons Pers

PERSON PERS

Process Proc

PROCESS PROC

Second Sec

SECOND SEC

Service Serv

SERVICE SERV

Started Strtd

STARTED STRTD

SUB-PROC SB-PRC

Suspension Susp

SUSPENSION SUSP

System Syst

SYSTEM SYST

Template Templ

TEMPLATE TEMPL

Terminated Term

TERMINATED TERM

Transition Trans

TRANSITION TRANS

The C API uses some variable names that are reserved words in Cobol. These
variable names were changed in the Cobol API by adding ″Value″ to the variable
name. All variables belonging to this category are listed below.
year month day hour minute second data
file function index input line output
owner password service time type timeout

Finally, the variable name ″value″ is used in the C API with different types. In
Cobol this variable is renamed according to its type:

intValue, doubleValue, pointerValue

Example how to use Strings

To call a C function with the signature char* cfunc(char* x) the code looks like the
following:

Chapter 13. Cobol specific considerations 91

IDENTIFICATION DIVISION.
PROGRAM-ID. "STRTEST".
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PTR1 USAGE IS POINTER VALUE NULL.
01 PTR2 USAGE IS POINTER VALUE NULL.
01 STRING-STRUCT1.

05 X PIC X(20).
01 STRING-STRUCT2.

05 Y PIC X(20).
01 STRLEN PIC 99 VALUE 0.

PROCEDURE DIVISION.
MOVE z"Initial String" TO X.
CALL "SETADDR" USING STRING-STRUCT1 PTR1.
CALL "cfunc" USING BY VALUE PTR1

RETURNING PTR2.
CALL "GETADDR" USING STRING-STRUCT2 PTR2.
INSPECT Y TALLYING STRLEN FOR CHARACTERS

BEFORE INITIAL X"00".
DISPLAY "Y is " Y(1:STRLEN).
STOP RUN.

END PROGRAM "STRTEST".

IDENTIFICATION DIVISION.
PROGRAM-ID. "SETADDR".
DATA DIVISION.
LINKAGE SECTION.
01 PTR3 USAGE IS POINTER.
01 STRING-STRUCT3.

05 Z PIC X(20).
PROCEDURE DIVISION USING BY REFERENCE STRING-STRUCT3 PTR3.

SET PTR3 TO ADDRESS OF Z.
GOBACK.

END PROGRAM "SETADDR".

IDENTIFICATION DIVISION.
PROGRAM-ID. "GETADDR".
DATA DIVISION.
LINKAGE SECTION.
01 PTR4 USAGE IS POINTER.
01 STRING-STRUCT4.

05 Z PIC X(20).
01 DUMMY-STRUCT.

05 W PIC X(20).
PROCEDURE DIVISION USING BY REFERENCE STRING-STRUCT4 PTR4.

SET ADDRESS OF DUMMY-STRUCT TO PTR4.
MOVE W TO Z.
GOBACK.

END PROGRAM "GETADDR".

92 Programming Guide

Chapter 14. CICS specific considerations

In CICS Activity implementations and Input-/OutputContainer data are not
retrieved from the PEA as in the LAN version but are sent with the invocation and
stored in the COMMAREA. If the user changes the COMMAREA without using
the IBM MQSeries Workflow for OS/390 API or once the OutputContainer has
been set this data cannot be retrieved anymore.

Information on how to enable CICS to work with IBM MQSeries Workflow for
OS/390 see Customization & Administration.

© Copyright IBM Corp. 1999 93

94 Programming Guide

Chapter 15. IMS specific considerations

In IMS Activity implementations, Input-/OutputContainer data and the
Passthrough ticket are not retrieved from the PEA as in the LAN version but are
sent with the invocation and stored in the I/O AREA. If the user changes the I/O
AREA without using the IBM MQSeries Workflow for OS/390 API or once the
OutputContainer has been set this data cannot be retrieved anymore.

IMS only supports the Container API.

Information on how to enable IMS to work with IBM MQSeries Workflow for
OS/390 see Customization & Administration.

© Copyright IBM Corp. 1999 95

96 Programming Guide

Part 4. Program Execution Server’s Program Mapping

© Copyright IBM Corp. 1999 97

98 Programming Guide

Chapter 16. Introduction

Whenever legacy applications should be invoked by MQSeries Workflow a
mapping of the MQSeries container data into a format acceptable by the legacy
application is needed.

MQSeries Workflow offers a default program mapper with basic functionality. This
chapter gives a quick overview about the program execution server’s (PES)
program mapping component which does the mapping of MQSeries Workflow
containers into a format acceptable by legacy applications. This is a basic mapper
so that legacy applications like IMS and CICS are supported. If there are more
complicate mappings to be done other mapping tools can be used.

In order to make the format of workflow containers acceptable by legacy
applications the content of the workflow containers is put to an interface called
structure. The input/output interface for the legacy application is called interface.
The task for the program mapper is to convert the data between the structure and
interface. Mapping from MQSeries Workflow to the legacy application (a to A, b to
B...) is called forwardmapping and mapping from legacy applications to MQSeries

MQSeries
Workflow
Container

Legacy
Application

Program
Mapper

Figure 3. Program mapping illustration.

Request

Container

Reply

a

A

B

C

D

E

F

Interface

Backward
Mapping

Forward
Mapping

Legacy
Application

(CICS or IMS)

a

a

b
c

d
e

fUser

Program Mapper

Program
Mapping
Database

OS/390
Execution

Server
PES

Structure

Figure 4. LAN - OS/390 structure.

© Copyright IBM Corp. 1999 99

Workflow (A to a, B to b...) backwardmapping. If special conversion between
structure and interface elements is needed a usertype exit (which will be explained
later) can be used.

Mapping is not necessary if the called application is using Workflow API’s to
extract data from the containers.

The way the mapping should be done between structures and interfaces is defined
with a mapping definition language (MDL).

To create a mapping you will have to write the definition of the structure and
interface elements first. Then you connect these structures and interfaces with
forward/backwardmapping program mapping definitions, compile it with a parser
and load it into the mapping database. The elements of the mapper are explained
in detail in the MQSeries Workflow for OS/390: Customization & Administration. The
following graphic illustrates the process:

Figure 5. How to create a program mapping.

100 Programming Guide

Chapter 17. Program mapping definitions

In this chapter the mapping definitions will be explained more detailed. For every
definition a simple example is given additionally.

Structure Definition

A structure defines the MQSeries Workflow container structure which is passed
into the program execution server (PES). The structure definition syntax is identical
to the structure definition syntax used in the Flowmark definition language (FDL).
This allows to export container definitions from Buildtime into a flat file and copy
these structure definitions into the mapping definition language (MDL). A structure
mainly consists of a collection of members (structure elements) who have a type
and cardinality.

Example: This example shows a container in MQSeries Workflow representing an
account representative structure. May there be the name from the holder of the
account (first name and last name defined as a string), the corresponding zip (zip =
postal code, defined as long), salary and tax. The last part of the container shall be
filled with the data of some customers belonging to the holder of the account. The
example for the definition of the CustomerStructure is given later. In order to
define the structure you have to define every single element of the MQSeries
Workflow container which shall be passed to the legacy application (The code for
an example legacy application is given in “Chapter 25. Additional Mapping
Examples” on page 139).
STRUCTURE AccountRepStructure

LastName: STRING;
FirstName: STRING;
Zip: LONG;
Salary: FLOAT;
Tax: FLOAT;
Customers: CustomerStructure(3);

END AccountRepStructure

You will find a more detailed example “Simple datastructure with default name
mapping” on page 142 and the structure definition grammar “Structure definition”
on page 118.

Interface Definition

An interface defines the layout and type of the data accepted by a legacy
application. Every interface element has a fixed size and place (offset) and will be
filled with converted container elements. There is no way to verify whether the
size place and type of the elements actually matches the size place and type
expected by the legacy application. This means the interface definitions have to be
created carefully. Otherwise conversion results are unpredictable and also mapping
runtime errors may occur because of invalid data. Every element of an interface is
mapped to a structure element with the same name. If there is no element with the
same name the interface element is skipped and the container element is
untouched. It is also possible to define a constant for an interface element. See
“Constants” on page 107 for more details.

© Copyright IBM Corp. 1999 101

Example: This example shows an interface of a legacy application representing an
account representative structure. In this case the name from the holder of the
account (first name and last name defined as a string with a maximum of 50
characters, terminated by hex zero and justified left with a pad char ″ ″), the
corresponding zip (defined as an unsigned integer with 16 bits), salary and tax
(defined as float number with 32 bits). The last part of the container shall be filled
with the data of some customers belonging to the holder of the account. The
example for the definition of the CustomerStructure (Array for 3 customers using
another structure ″CustomerInterfaceForCpp″) is given later. In order to define the
interface you have to define every single element of the container used by the
legacy application. The definition of the interface should read as follows:
INTERFACE AccountRepInterfaceForCpp

LastName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
FirstName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
Zip: UNSIGNED INTEGER 16;
Salary: FLOAT 32;
Tax: FLOAT 32;
Customers: ARRAY(3) CustomerInterfaceForCpp;

END AccountRepInterfaceForCpp

You will find a more detailed example “Simple datastructure with default name
mapping” on page 142 and the interface definition grammar “Interface definition”
on page 119.

If you have an interface element and no corresponding structure element no
mapping will be done by the default mapper. If it is required to have some
constants on the legacy application side every interface element may optionally
have a constant statement which defines the constant to create for the legacy
application. The constant is converted in a forwardmapping whether there is a
matching structure element or not. If a backwardmapping occurs a structure
element is set to this constant only if there is an element with the same name or a
mapping rule between the structure and the interface with a constant. See
“Constants” on page 107 for more detailed information.

Forward/Backwardmapping Definition

The connection between a structure and an interface is done via a forwardmapping
and backwardmapping definition. Forwardmapping is used to map a structure into
a format accepted by a legacy application and backwardmapping is used to map
legacy application data into a structure. Mapping done for structure and interface
elements with identical names is called default mapping. In addition it is possible
to do explicit mapping of elements which have different names via rules.
Structures are mapped as a whole into interfaces and arrays are mapped as a
whole if both the structure and interface array have the same size. It is not possible
to map array elements individually. If more powerful mappings are required use
container mapping (See the Buildtime manual).

102 Programming Guide

To create a forwardmapping you have to define which structure shall be mapped
to which interface. To create a backwardmapping you have to define which
interface shall be mapped to which structure. Optional you can use rules to map
elements with different names. See “Chapter 18. Mapping algorithm” on page 105
for more detailed information about default and explicit mapping.

The coding for the mapping according to the diagram would follow as:
/* Mapping from MQSeries Workflow (structure) to legacy appl.(interface) */

FORWARDMAPPING Forward
FROM AccountRepStructure TO AccountRepInterfaceForCpp

END

/* Mapping from legacy appl. (interface) to MQSeries Workflow (structure) */

BACKWARDMAPPING Backward
FROM AccountRepInterfaceForCpp TO AccountRepStructure

END

Note: All structure and interface elements are mapped because they have identical
names (default mapping).

You will find one complete mapping in “Example” on page 109.

Usertype Definition

A usertype can be used by the program mapper whenever the interface types
offered by a default mapper do not offer the required conversion. In this case the
actual data conversion has to be done by a usertype exit which has to reside in a
DLL. See chapter “Chapter 21. Usertype” on page 129.

Example: In order to assign a number to a currency with the corresponding symbol
you need to define a usertype (every mapping type would map the number to the
exact number in a different format but not assign it to a special currency). It is also

LastName

FirstName

Zip

Salary

AccountRepStructure

Tax

Customers

AccountRepInterfaceForCpp

Backwardmapping

Forwardmapping

LastName

FirstName

Zip

Salary

Tax

Customers

default mapping

Figure 6. Default Forward/Backwardmapping

Chapter 17. Program mapping definitions 103

possible to define a usertype which calculates a value of currency A used in the
structure to a currency B used in the interface (for example US dollars to British
pound or the new European currency, the Euro).
USERTYPE SampleUsertype LENGTH(4)

DLL "SAMPUTY","SampleUsertypeExit"
END

INTERFACE SampleUsertypeInterface
DESCRIPTION "Sample Usertype Interface"
SampleElement: USERTYPE SampleUsertype PARMS "$";

END

This example shows the functionality of a usertype. An interface element (defined
as C long) is mapped to a structure element (defined as a string). In
backwardmapping the C long ″4711″ is converted to a string and prefixed with ″$″.
In forwardmapping the string ″$4711″ is truncated to ″4711″ and then converted to
a C long.

Structure

Forwardmapping: Truncate "$"

Backwardmapping: Add "$"

Interface

C longString

$4711 4711

4711$4711

Figure 7. UserType example

104 Programming Guide

Chapter 18. Mapping algorithm

All elements in the MQSeries Workflow container have names. The interface
elements also have to have names. Mapping is done per default on name by name
base if elements have the same name. If element names are different mapping rules
can be used to do explicit mapping.

Structures are mapped as a whole to interfaces if there names are identical. Arrays
are also mapped as a whole. It is also possible to define constants which are
inserted on the legacy application or container side.

If structure or interface elements are not mapped the data in the structure element
or interface element is not modified.

Note: Every structure element can only be mapped to one interface element and
vice versa.

In this example you have 4 structure and interface elements which should be
mapped by the default mapper.

FORWARDMAPPING Forward
FROM Structure1 TO Interface1

END

The default mapper maps structure element A to interface element A and structure
element C to interface element C. It does not map structure element b to interface
element B or structure element d to interface element E, because of the different
names. See also “Simple datastructure with default name mapping” on page 142
for a more detailed example.

If the corresponding structure and interface elements do not have identical names
the mapping has to be defined explicitly. In this case you have to define an
additional mapping rule for the mapping. The mapping definition language (MDL)
and the corresponding grammar is explained in “Chapter 20. Grammar” on
page 115. The following graphic displays a simple forwardmapping with some
non-identical names of the structure and interface elements.

Structure1 Interface1

b
C

d

default mapping

A
B
C

E

A

Figure 8. Default Forwardmapping illustration.

© Copyright IBM Corp. 1999 105

The mapping rules would follow as:
FORWARDMAPPING Forward2 FROM Structure1 TO Interface1

MAP b TO B;
MAP d TO E;

END

Structure elements A and C do not have to be mapped to interface elements A and
C explicitly, this will be done be the default mapper automatically. Refer to
“Complex datastructure with non default name mapping” on page 143 for a more
detailed example.

If you would like a backwardmapping according to the above diagram the
mapping rules would be:
BACKWARDMAPPING Backward1 FROM Interface1 TO Structure1

MAP B TO b;
MAP E TO d;

END

How you map elements to each other only depends on the definition as long as
you do not violate some conversion rules (See “Valid conversions between
MQSeries Workflow container program mapping element types and program
mapping interface types” on page 112). For example it is not allowed to map an
integer to a binary.

A
b

C

d

A

B
C

E

Structure1 Interface1

default mapping
explicit mapping rule

Figure 9. Non-Default Forwardmapping Forward2 illustration.

A
b

C

d

A

B
C

E

Structure1 Interface1

default mapping
explicit mapping rule

Figure 10. Non-Default Backwardmapping Backward1 illustration.

106 Programming Guide

In this case the interface element A will not be mapped to structure element A
because there is a rule from interface element E to structure element A. Interface
element B is mapped because of the explicit rule. Interface element C is mapped to
structure element C because they have the same name (default mapping) and no
explicit mapping for interface element C is defined. Interface element E will be
mapped to structure element A because of a mapping rule for interface element E.
BACKWARDMAPPING Backward2 FROM Interface1 TO Structure1

MAP B TO b;
MAP E TO A;

END

Table 9. Rule mapping with no constant definition

BACKWARDMAPPING FORWARDMAPPING

There exists a definition rule
for forward/
backwardmapping

Map interface element to
structure element

Map structure element to
interface element

There exists no definition
rule for forward/
backwardmapping

Interface element not
mapped to structure element

Interface element undefined

Note:

v If the mapping rules use invalid or non existent interface element names these
rules are ignored during actual mapping. Make sure you use the right names in
forwardmapping and backwardmapping. By contrast structure element names
used in definition rules have to exist. Otherwise runtime errors occur.

v Do not map structure elements to interface elements which are used in other
arrays. The structure element will contain the interface elements with the largest
dimension.

Constants

If it is required to have some constants on the legacy application or structure side
every interface element may optionally have a constant statement which defines
the constant to create for the legacy application or structure element. The constant
is converted in a forwardmapping whether there is a matching structure element
or not. If a backwardmapping occurs the structure element is set to this constant
only if there is an element with the same name or a rule is defined for this
structure element.

A
b

C

d

A

B
C

E

Structure1 Interface1

default mapping
explicit mapping rule

Figure 11. Explicit mapping Backward2 illustration.

Chapter 18. Mapping algorithm 107

Table 10. Mapping with constant definition

Backwardmapping Forwardmapping

There exists a definition rule
for forward/
backwardmapping

Structure element set to
constant

Interface element set to
constant

There exists no definition
rule for forward/
backwardmapping

Structure element not set to
constant

Interface element set to
constant

Example for non-default forwardmapping with constant definitions:

Because structure elements A, C and b are mapped to interface elements A, C and
E (who all have a constant definition) the interface elements A,C and E are set to
Aconst, Cconst and Econst respectively. The interface element B is set to Bconst
because no structure element was mapped to B. So all interface elements are set to
their corresponding constant values. In forwardmapping all interface elements with
a constant definition are set to their constant regardless if there is a mapping to
this element or not. Only if the interface element has no constant definition a
mapping may change the value. Refer to “Simple datastructure with all interface
types with CONSTANTS and usertypes” on page 144 for a more complex example.

Example for default backwardmapping with constant definitions:

A
b

C

d

A

B
C

E

Structure1 Interface1 Constants

Aconst

Bconst

Cconst

Econst

default mapping
explicit mapping rule

Figure 12. Forwardmapping with constants.

A
b

C

d

A

B
C

E

Structure1 Interface1 Constants

Aconst

Bconst

Cconst

Econst

default mapping

Figure 13. Backwardmapping with constants.

108 Programming Guide

Because interface elements B and E are not mapped to structure elements b and d,
b and d are not set to the constant values of Bconst and Econst. Because interface
element A is mapped to structure element A and the interface element A has a
constant Aconst, the structure element A is set to Aconst (same as structure
element C is set to Cconst). Assuming there would be no constant definition for C
on the legacy application side, interface element C would have been mapped to
structure element C as usual.

Example

In this example the structure elements and interface elements do not have the same
names. Therefore they have to be mapped explicitly in the
forward/backwardmapping definition. If they would not be mapped explicitly no
mapping would be done at all because all structure and interface elements have
different names.
STRUCTURE AccountRepStructure

LastName: STRING;
FirstName: STRING;
Zip: LONG;
Salary: FLOAT;
Tax: FLOAT;
Customers: CustomerStructure(3);

END AccountRepStructure

INTERFACE AccountRepInterfaceForCpp
L: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
F: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
Z: UNSIGNED INTEGER 16;
S: FLOAT 32;
T: FLOAT 32;
C: ARRAY(3) CustomerInterfaceForCpp;

END AccountRepInterfaceForCpp

/* Mapping from MQSeries Workflow (structure) to legacy appl.(interface) */

FORWARDMAPPING Forward FROM AccountRepStructure TO AccountRepInterfaceForCpp
MAP LastName TO L;
MAP FirstName TO F;
MAP Zip TO Z;
MAP Salary TO S;
MAP Tax TO T;
MAP Customers TO C;

END

/* Mapping from legacy appl. (interface) to MQSeries Workflow (structure) */

BACKWARDMAPPING Backward FROM AccountRepInterfaceForCpp TO AccountRepStructure
MAP L TO LastName;
MAP F TO FirstName;
MAP Z TO Zip;
MAP S TO Salary;
MAP T To Tax;
MAP C TO Customers;

END

Chapter 18. Mapping algorithm 109

110 Programming Guide

Chapter 19. Supported program mapping definition element
types

Program mapping structure definition element types

All MQSeries Workflow element types are supported:
v LONG
v FLOAT
v STRING
v BINARY

Program mapping interface definition element types

Characters

Characters have a size in bytes, an optional termination character (that means hex
0 for C/C++) and justification and padding.

Integer Numbers

Integers have a sign or are unsigned and a size in bits. Supported sizes are 16 and
32 bits.

Float Numbers

Floats have a size in bits. Supported sizes are 32 and 64 bits.

Packed Numbers

Packed numbers have a size, are either signed with a character for plus and a
character for minus or unsigned with an unsigned character and have a scale.

Zoned Numbers

Zoned numbers have a size, are either signed with a character for plus and a
character for minus or unsigned with an unsigned character and have a scale.

Interface

Interfaces only have a name and define another interface used as interface element.
In this way it is possible to structure the interface in the same way like structures
may be defined to contain other structures.

Usertypes

Whenever the previous interface types do not match the required types it is
possible to define a usertype. For more details see “Chapter 20. Grammar” on
page 115. Usertypes have a name and an optional parameter string which can be

© Copyright IBM Corp. 1999 111

used to pass additional information to the usertype exit. In order to be able to use
usertype this usertype has to be defined and a usertype DLL with an usertype exit
has to be provided. (See “Chapter 21. Usertype” on page 129 for more details):

Valid conversions between MQSeries Workflow container
program mapping element types and program mapping
interface types

The following table lists all possible combinations of structure elements and
interface elements. If they are arrays they have to have the same size. There is one
exception: A character of size 1 can be mapped to a MQSeries Workflow LONG. If
there is an invalid combination used a runtime error will be created (see Messages
for detailed information).

Table 11. Mapping combinations

Workflow Type
Interface Type

String Binary Long Float

CHAR * * *

INTEGER * * *

FLOAT *

PACKED * * *

ZONED * * *

USERTYPE *1 *1 *1 *1

Note: 1 Only available if this type of combination is supported by the user type exit

112 Programming Guide

Table 12. C/C++ data type mappings (legacy application (C/C++) to FDL types (structure))

C/C++ type Interface Structure Comment

char CHAR(1) JUSTIFY LEFT PAD ″ ″ STRING No imbedded
x’00’

char [5] CHAR(5) JUSTIFY LEFT PAD ″ ″ or
CHAR(5) TERMINATEDBY ″<h00>″ JUSTIFY LEFT PAD ″ ″

STRING No imbedded
x’00’

char CHAR(1) JUSTIFY LEFT PAD ″ ″ BINARY

char [5] CHAR(5) JUSTIFY LEFT PAD ″ ″ or
CHAR(5) TERMINATEDBY ″<h00>″ JUSTIFY LEFT PAD ″<h00>″

BINARY

char CHAR(1) JUSTIFY LEFT PAD ″<h00>″ LONG

short SIGNED INTEGER 16 LONG,
STRING

unsigned short UNSIGNED INTEGER 16 LONG,
STRING

int SIGNED INTEGER 32 LONG,
STRING

unsigned int UNSIGNED INTEGER 32 LONG,
STRING

long SIGNED INTEGER 32 LONG,
STRING

unsigned long UNSIGNED INTEGER 32 LONG,
STRING

float FLOAT 32 FLOAT

double FLOAT 64 FLOAT

C
hapter

19.Supported
program

m
apping

d
efinition

elem
ent

types
113

Table 13. Cobol data type mappings (legacy application (COBOL) to FDL types (structure))

Cobol Interface Structure Comment

PIC X(n) CHAR(n) JUSTIFY LEFT PAD ″ ″ STRING No imbedded
x’00’

PIC X(n) CHAR(n) JUSTIFY LEFT PAD ″<h00>″ BINARY

PIC X(1) CHAR(1) JUSTIFY LEFT PAD ″<h00>″ LONG

PIC S999 PACKED-DECIMAL
or COMP-3

PACKED(3) SIGNED MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE 0 LONG, STRING,
FLOAT

PIC S999PP
PACKED-DECIMAL or
COMP-3

PACKED(3) SIGNED MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE 2 LONG, STRING,
FLOAT

PIC S99V9
PACKED-DECIMAL or
COMP-3

PACKED(3) SIGNED MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE -1 LONG, STRING,
FLOAT

PIC S9999 BINARY or COMP-4 SIGNED INTEGER 16 LONG, STRING,
FLOAT

up to 4 digits1

PIC S9(6) BINARY or COMP-4 SIGNED INTEGER 32 LONG, STRING,
FLOAT

between 5 and 9
digits1

COMP-1 FLOAT 32 FLOAT

COMP-2 FLOAT 64 FLOAT

PIC S9(n)V9(m) DISPLAY ZONED(n+m) SIGNED LAST MINUS ″-″ PLUS ″+″ SCALE -m LONG, STRING,
FLOAT

PIC S9(n)V9(m) DISPLAY
SIGN LEADING

ZONED(n+m) SIGNED FIRST MINUS ″-″ PLUS ″+″ SCALE -m LONG, STRING,
FLOAT

PIC S9(n)V9(m) DISPLAY
SIGN TRAILING SEPARATE

ZONED(n+m) SIGNED LAST MINUS ″-″ PLUS ″+″ SEPARATE
SCALE -m

LONG, STRING,
FLOAT

PIC 9(n)V9(m) DISPLAY ZONED(n) UNSIGNED SCALE -m LONG, STRING,
FLOAT

Note: 1 8 bytes BINARY with 10-18 digits are not supported.

114
Program

m
ing

G
uid

e

Chapter 20. Grammar

This chapter describes the program mapper grammar: Base elements of the
grammar are tokens, keywords in uppercase, constants and comments. Combining
the base elements you are able to define mapping elements:
forward/backwardmapping (FM/BM) and structure/interface definitions (IF,ST).
The forward/backwardmapping consists of rules (RL) which combine the structure
and interface elements (IFE,STE). The following graphic shall illustrate the
relationship between all these elements.

Grammar elements

Comments

Comments should be used to document the mapping definition. There exist two
types of comments: C style, for example /* ’comment’ */ and C++ style, for
example // ’comment’ at the end of a line.

Comments started with ’/*’ and ended with ’*/’ can be at any place between
syntax tokens. Comments starting with // can be at the end of every line. Nesting
of ’/* ... */’ is not allowed.

Tokens

Tokens are the base element of the grammar and therefore every token is explained
in detail. For every token at least a syntax diagram and an example is given.

FLOAT_TOKEN

MDL consists of ...

IF

IFE

ST

STE

FM/BM

RL

combines ...
default mapping

Figure 14. Relationship between mapping elements.

© Copyright IBM Corp. 1999 115

ÊÊ
-
+

· 0
1
2
3
4
5
6
7
8
9

.

·
0
1
2
3
4
5
6
7
8
9

·E 0
e - 1

+ 2
3
4
5
6
7
8
9

ÊÍ

Example: -7.42E-4 which would equal -0.000742.

Note: In order to keep the diagrams more simple the possibility to choose a single
number from 0 to 9 will be displayed with

ÊÊ 0 ... 9 ÊÍ

from now on.

Hex_digit

ÊÊ 0 ... 9
A ... F
a ... f

ÊÍ

Examples: 3, F.

Hex_token

ÊÊ < H
h

0 ... 9
A ... F
a ... f

0 ... 9
A ... F
a ... f

> ÊÍ

Example: <H4F>

IDENTIFIER

ÊÊ a ... z
A ... Z
_

· a ... z
A ... Z
_
0 ... 9

ÊÍ

Examples: a_b4_h4, _Z97_bfsd

116 Programming Guide

INT_TOKEN

ÊÊ
-
+

· 0 ... 9 ÊÍ

Examples: -89432, 412

PACKED_TOKEN

ÊÊ p
P

-
+

· 0 ... 9 .

· 0 ... 9

ÊÍ

Examples: p+212.2 equals 212.2, p-142.8 equals -142.8

STRING_TOKEN

ÊÊ ·

·

″ \n ″
<<
>>
hex_token
″″
Any character

’ \n ’
<<
>>
hex_token
’’
Any character

ÊÍ

Example: ″AlbertEinstein″, ″xyz’a″, ’xyz″a’, ’other_example<h15><h12>’

ZONED_TOKEN

ÊÊ z
Z

-
+

· 0 ... 9 .

· 0 ... 9

ÊÍ

Example: z+412.8

Chapter 20. Grammar 117

Keywords

Listed below are all available keywords. Do not name variables with this reserved
keywords, because this would cause problems when doing the mapping (for
example do not name a structure element ’STRUCTURE’).
ARRAY BACKWARDMAPPING BINARY CHAR
CONSTANT DESCRIPTION DLL DOCUMENTATION
END FIRST FLOAT FORWARDMAPPING
FROM IGNORE INTEGER INTERFACE
JUSTIFY LAST LEFT LENGTH
LONG MAP MAPPING MINUS
PACKED PAD PARMS PLUS
RIGHT SCALE SEPARATE SIGNED
STRING STRUCTURE TERMINATEDBY TO
UNSIGNED USERTYPE ZONED

Note: All keywords have to be in uppercase!

Structure definition

Structure

ÊÊ STRUCTURE Name ·
StructureSetting

·
MemberDeclaration

Ê

Ê END
Name

ÊÍ

StructureSetting

ÊÊ DESCRIPTION STRING_TOKEN
DOCUMENTATION STRING_TOKEN

ÊÍ

MemberDeclaration

ÊÊ Name ·
, Name

: MemberType
MemberCardinality

Ê

Ê ·
MemberSetting

; ÊÍ

MemberType

118 Programming Guide

ÊÊ FLOAT
LONG
Name
STRING
BINARY

ÊÍ

MemberCardinality

ÊÊ (INT_TOKEN)
[INT_TOKEN]

ÊÍ

MemberSetting

ÊÊ DESCRIPTION STRING_TOKEN
DOCUMENTATION STRING_TOKEN

ÊÍ

Note:
v Same syntax like structure definitions in FDL.

Interface definition

Interface

ÊÊ Interface Name ·
InterfaceSetting

Ê

Ê ·
InterfaceDeclaration

END
Name

ÊÍ

InterfaceSetting

ÊÊ MemberSetting ÊÍ

InterfaceDeclaration

ÊÊ Name ·
, Name

:
InterfaceCardinality

InterfaceType Ê

Chapter 20. Grammar 119

Ê MemberSetting ; ÊÍ

InterfaceType

ÊÊ CharInterfaceType
CharInterfaceType CONSTANT STRING_TOKEN
IntegerInterfaceType
IntegerInterfaceType CONSTANT INT_TOKEN
FloatInterfaceType
FloatInterfaceType CONSTANT FLOAT_TOKEN
PackedInterfaceType
PackedInterfaceType CONSTANT PACKED_TOKEN
ZonedInterfaceType
ZonedInterfaceType CONSTANT ZONED_TOKEN
Name
UserInterfaceType
UserInterfaceType CONSTANT STRING_TOKEN

ÊÍ

InterfaceCardinality

ÊÊ ARRAY [INT_TOKEN]
(INT_TOKEN)

ÊÍ

Note:
v The sequence of elements is significant and defines the sequence of the elements

in the data area used for forwardmapping and backwardmapping. Every
element has a fixed offset from the start of the data area. Make sure the interface
elements have the size and type of the data the legacy application expects (See
“Valid conversions between MQSeries Workflow container program mapping
element types and program mapping interface types” on page 112 for size
informations).

v The sequence of member definitions in the structure is not relevant for the
mapping. Mapping is done by name from interface elements to structure
elements.

Interface types

PackedInterfaceType

ÊÊ PACKED (INT_TOKEN) PackedAttributeList ÊÍ

PackedAttributeList

ÊÊ SIGNED MINUS STRING_TOKEN PLUS STRING_TOKEN
UNSIGNED STRING_TOKEN

SCALE INT_TOKEN ÊÍ

Examples: p+212.2 equals 212.2, p-142.8 equals -142.8

120 Programming Guide

Scale is used to define the decimal point of the packed number and defines the
factor used by conversion. The packed number is multiplied by 10∧scale in
BACKWARDMAPPING and divided by 10∧scale in FORWARDMAPPING. From
the plus character, minus character and unsigned character only the right nibble is
used that means the value has to be <= x’0f’.

Example:
Packed number is 4711, scale is 0. Decimal number is 4711.
Packed number is 4711, scale is 2. Decimal number is 471100.
Packed number is 4711, scale is -2. Decimal number is 47.11.

Format: PACKED(5) SIGNED MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE 1;

Byte0 Byte1 Byte2

DD DD DS

where D is a digit 0-9 and S is the positive or negative sign

Note:
v The size in bytes used by the packed number is packed number (size + 1) / 2

rounded up to the next integer.
v Packed numbers can create runtime conversion errors if the digits are > 9 or the

sign does not match the sign defined for the interface element.

ZonedInterfaceType

ÊÊ ZONED (INT_TOKEN) PackedAttributeList ÊÍ

ZonedAttributeList

ÊÊ SIGNED FIRST MINUS STRING_TOKEN PLUS STRING_TOKEN
LAST SEPARATE

UNSIGNED

Ê

Ê SCALE ÊÍ

Examples: z+471.1 equals 471.1, z-142.8 equals -142.8.

The size defines the number of significant digits used by the zoned number. Scale
is used to define the decimal point of the zoned number and defines the factor
used by conversion. The zoned number is multiplied by 10∧scale in
backwardmapping and divided by 10∧scale in forwardmapping. FIRST and LAST
define where the sign is located in the number. From the plus character, minus
character and unsigned character only the right nibble is used if the sign is not
separate that means the value has to be <= x’0f’. If the sign is separate the first
character as a whole is used, that means the character has to be <= x’ff’. FIRST and
LAST define the location of the sign (see examples below).

Example:
Zoned number is 4711, scale is 0. Decimal number is 4711.

Chapter 20. Grammar 121

Zoned number is 4711, scale is 2. Decimal number is 471100.
Zoned number is 4711, scale is -2. Decimal number is 47.11.

Format:
ZONED(3) SIGNED LAST LAST MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE 2

Byte0 Byte1 Byte2
FD FD SD

where D is a digit 0-9 and S is the positive, negative or unsigned sign
and F are the zoned bits.

Format:
ZONED(3) SIGNED FIRST LAST MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE 2

Byte0 Byte1 Byte2
SD FD FD

where D is a digit 0-9 and S is the positive, negative or unsigned sign
and F are the zoned bits.

Format:
ZONED(3) SIGNED LAST SEPARATE MINUS ″-″ PLUS ″+″ SCALE 2

Byte0 Byte1 Byte2 Byte3
FD FD FD XX

where D is a digit 0-9 and S is the positive, negative or unsigned sign
and F are the zoned bits and XX is the sign (either x’4E’ or x’60’).

Note:
v The size in bytes used by the zoned number is zoned number size. If the sign is

separate one additional byte is used.
v Zoned numbers can create runtime conversion errors if the digits are > 9 and the

zone does not contain x’f’ or the sign does not match the sign defined for the
interface element.

v FIRST and LAST define where to append the sign.

IntegerInterfaceType

ÊÊ SIGNED
UNSIGNED

INTEGER 16
32

ÊÍ

FloatInterfaceType

ÊÊ FLOAT 32
64

ÊÍ

CharacterInterfaceType

ÊÊ CHAR (INT_TOKEN)
TERMINATEDBY STRING_TOKEN

Ê

122 Programming Guide

Ê
CharInterfaceAttributeList

ÊÍ

CharInterfaceAttributeList:

ÊÊ JUSTIFY LEFT
RIGHT

PAD STRING_TOKEN ÊÍ

The termination character is inserted in forwardmapping and stripped off in
backwardmapping. Padding, alignment and truncation occurs in forwardmapping.
The data is not modified in backwardmapping. The character size in bytes has to
include the termination character and the number of bytes converted is one less
than the specified character size.

Examples for justification:
Length Content Length JUSTIFY(Left) JUSTIFY(RIGHT)
3 'ABC' 4 'ABC ' ' ABC'
3 'AB ' 4 'AB ' ' AB '
3 ' BC' 4 ' BC ' ' BC'
4 'ABCD' 4 'ABCD' 'ABCD'
4 ' BCD' 4 ' BCD' ' BCD'
4 'ABC ' 4 'ABC ' 'ABC '
5 'ABCDE' 4 'ABCD' 'BCDE'
5 ' BCDE' 4 ' BCD' 'BCDE'
5 'ABCD ' 4 'ABCD' 'BCD '

UserInterfaceType

ÊÊ USERTYPE Name
PARMS STRING_TOKEN

ÊÍ

Note: STRING_TOKEN is passed to the UserType exit.

Mapping elements

This chapter illustrates the formal definition and grammar for the MDL. For every
mapping element (structure, interface, forward/backwardmapping etc.) exists a
syntax diagram which explains how to use the elements correctly. Examples:
“Example” on page 109ff and “MDL examples” on page 141ff.

MappingElement

ÊÊ Structure
Interface
Usertype
Mapping

ÊÍ

Chapter 20. Grammar 123

Mapping

ÊÊ Forwardmapping
Backwardmapping

ÊÍ

Backwardmapping

ÊÊ BACKWARDMAPPING Name ·
Backwardsetting

FromToMapping Ê

Ê ·
MappingRule

END
Name

ÊÍ

FromToMapping

ÊÊ FROM Name TO Name ÊÍ

BackwardSetting

ÊÊ MemberSetting ÊÍ

Forwardmapping

ÊÊ FORWARDMAPPING Name ·
Forwardsetting

FromToMapping Ê

Ê ·
MappingRule

END
Name

ÊÍ

ForwardSetting

ÊÊ MemberSetting ÊÍ

124 Programming Guide

MappingRule

ÊÊ MAP First Name TO Second Name ; ÊÍ

Note:
v The first name has to be the interface name in backwardmapping and the

structure element name in forwardmapping. The second name has to be the
interface name in forwardmapping and the structure element name in
backwardmapping (see “Chapter 18. Mapping algorithm” on page 105

UserType definition

UserType

ÊÊ UserType Name ·
UserTypeSetting

UserTypeLength Ê

Ê UserTypeDeclaration END
Name

ÊÍ

UserTypeLength

ÊÊ LENGTH (INT_TOKEN) ÊÍ

Note: The usertype length defines the size of the usertype in bytes.

UserTypeSetting

ÊÊ DESCRIPTION STRING_TOKEN
DOCUMENTATION STRING_TOKEN

ÊÍ

UserTypeDeclaration

ÊÊ DLL STRING_TOKEN , STRING_TOKEN ÊÍ

Note: The first string_token in usertype declaration defines the DLL name, the
second defines the exit entry name so it is possible to use one DLL for
multiple usertypes.

Chapter 20. Grammar 125

Sample MDL for C/C++ and COBOL

In this example every definition is shown in detail and the used variables have the
same name (interface and structure). Therefore the forward and backwardmapping
definition is as simple as possible and an explicit mapping as in the previous
example is unnecessary.
/*

--- Structure definition ---
*/

STRUCTURE AccountRepStructureBackw
LastName: STRING;
FirstName: STRING;
Zip: LONG;
Salary: FLOAT;
Tax: FLOAT;
Customers: CustomerStructure [3];

END AccountRepStructureBackw

STRUCTURE AccountRepStructureForw
LastName: STRING;
FirstName: STRING;
Zip: LONG;
Salary: FLOAT;
Tax: FLOAT;

END AccountRepStructureForw

/* In this example the CustomerStructure contains 3 elements
(last name, first name and phonenumber which are defined as
string) */

STRUCTURE CustomerStructure
LastName: STRING;
FirstName: STRING;
PhoneNumber: STRING;

END CustomerStructure

/*
--- Interface definition for Cobol ---

*/

INTERFACE AccountRepInterfaceForCobol
LastName: CHAR(50) JUSTIFY LEFT PAD ' ';
FirstName: CHAR(50) JUSTIFY LEFT PAD ' ';
Zip: UNSIGNED INTEGER 16;
Salary: PACKED(8) UNSIGNED '<h0c>' SCALE -2;
Tax: PACKED(2) UNSIGNED '<h0c>' SCALE -2;
CustomersOpt: ARRAY(3) CustomerInterfaceForCobol;

END AccountRepInterfaceForCobol

INTERFACE CustomerInterfaceForCobol
LastName: CHAR(50) JUSTIFY LEFT PAD ' ';
FirstName: CHAR(50) JUSTIFY LEFT PAD ' ';
PhoneNumber: CHAR(10) JUSTIFY LEFT PAD ' ';

END CustomerInterfaceForCobol

/*
--- Interface definition for C++ ---

*/

INTERFACE AccountRepInterfaceForCpp
LastName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
FirstName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
Zip: UNSIGNED INTEGER 16;
Salary: FLOAT 32;

126 Programming Guide

Tax: FLOAT 32;
Customers: ARRAY(3) CustomerInterfaceForCpp;

END AccountRepInterfaceForCpp

INTERFACE CustomerInterfaceForCpp
LastName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
FirstName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
PhoneNumber: CHAR(10) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";

END CustomerInterfaceForCpp

/*
-- Forward/backward mapping definition for Cobol ---

*/

FORWARDMAPPING ForwardSampleForCobol
FROM AccountRepStructure TO AccountRepInterfaceForCobol

END ForwardSampleForCobol

BACKWARDMAPPING BackwardSampleForCobol
FROM AccountRepInterfaceForCobol TO AccountRepStructure

END BackwardSampleForCobol

/*
--- Forward/backward mapping definition for C++ ---

*/

FORWARDMAPPING ForwardSampleForCpp
FROM AccountRepStructure TO AccountRepInterfaceForCpp

END ForwardSampleForCpp

BACKWARDMAPPING BackwardSampleForCpp
FROM AccountRepInterfaceForCpp TO AccountRepStructure

END BackwardSampleForCpp

This sample is distributed as FMCEMDL in SFMCDATA.

Chapter 20. Grammar 127

128 Programming Guide

Chapter 21. Usertype

A usertype allows to convert MQSeries Workflow program mapping structure
definition elements if the available interface types do not fulfill the required
conversion. The program mapper will call a user exit every time a conversion for a
usertype is required. It is possible to pass up to 256 characters to the user exit
which have to be defined where the interface element is mapped to the usertype.
This allows to use the same usertype for different conversions and control the
functionality of the exit via passed parameters. In addition it is possible to define
parameters at the same time the forward and backward mapping format are
defined during buildtime called ’forward mapping parameters’ and ’backward
mapping parameters’ and the user exit has access to these parameters. Usertypes
have to have a fixed length.

Exit interface

The exit interface and passed datastructures are defined in the file fmcxmeut.h.

Note: The exit entry point has to have C linkage.

Following parameters are passed:
1. direction of mapping required by PES

Use defined constants to check whether forward or backward mapping should
be done.
#define FMC_PROGRAMMAPPING_USERTYPE_BACKWARDMAPPING 0
#define FMC_PROGRAMMAPPING_USERTYPE_FORWARDMAPPING 1

2. InterfaceDescriptor
Allows to access the interface element data via a pointer to the data buffer. In
addition the length of the usertype in bytes is passed.

Structure Mapper

Forward -
Backward

Mapping

Rules

Legacy
Application

Character

Integer

Float

Packed

Zoned

Usertype

Interface

OS/390
Execution
Server

Figure 15. Usertype exit.

© Copyright IBM Corp. 1999 129

typedef struct {
char* elementData; // pointer to raw data
unsigned long elementDataLength; // length of usertype in bytes

} FmcProgrammMappingInterfaceDescriptor;

Warning: Make sure that the data written into the data buffer during
forwardmapping is not longer than the size of the usertype in bytes. Otherwise
unpredictable effects may occur.

3. StructureDescriptor
Allows to access the structure element. The elementname and length is passed
in addition to a handle to the MQSeries Workflow container. The element can
be accessed with the MQSeries Workflow container API by passing the element
name.
typedef struct {

const char* elementName;
//container element name (zero terminated)

unsigned long elementNameLength;
// container element name length in bytes

FmcjContainerHandle containerHandle;
// container handle

} FmcProgrammMappingStructureDescriptor;

The element name contains the qualified element name and can be used to get
or set the container element with the container API. The name is zero
terminated.

4. BuildTimeParameter, buildTimeParameterLength
During buildtime it’s possible to insert forward and backward mapping
parameters. The length in bytes is passed via buildTimeParameterLength. The
name is zero terminated.

5. InterfaceParameter, interfaceParameterLength
It’s possible to insert a parameter in the interface where the usertype is used.
The length in bytes is passed via interfaceParameterLength. The name is zero
terminated.
Example:
INTERFACE SampleUsertypeInterface

SampleElement: USERTYPE SampleUsertype PARMS "$";
END

6. Return value
A return value <> 0 signals an error to the program mapper and the return
code is set for the activity implementation.
For a sample see sample usertype exit FMCHSMUT in SFMCDATA.

Creation of DLL

The usertype exit has to be available during runtime of the PES. Any entry name
and DLL name can be used but these names have to be identical to the names
used in the usertype definition (See below). There exists a sample JCL FMCHJMUT
in SFMCDATA to build the sample usertype DLL. Please note that it’s possible to
have multiple usertype exits in one DLL if they use different function names.

130 Programming Guide

Usertype definition

The usertype definition defines the name of a usertype and the length of the
usertype in bytes. In addition the DLL name and exit function name have to be
specified.
USERTYPE SampleUsertype LENGTH(4)

DLL "SAMPUTY","SampleUsertypeExit"
END

See FMCHEMUT in SMFCDATA for a sample usertype definition.

Chapter 21. Usertype 131

132 Programming Guide

Chapter 22. Size of program mapping interface definition
elements

The interface definition has to match exactly the layout of the data the legacy
application expects. If there is only one byte mismatch the results are
unpredictable!

The following list summarizes which number of bytes are used by the interface
definition element types.

Table 14. Interface elements size

Type Length Example

Char Size equals length in bytes. Char(2) has a length of 2 bytes.

Integer 2 bytes for INTEGER 16 and 4 bytes for INTEGER 32. -

Float 4 bytes for FLOAT 32 and 8 bytes for FLOAT 64. -

Packed Size used to define the (packed number + 1) divided
by 2 and rounded up

Packed(2) equals 2 bytes, Packed(3) equals 2
bytes and Packed(4) equals 3 bytes.

Zoned Size used to define the zoned number if no separate
sign is defined. Otherwise it is one larger than the
size used to define the zoned number.

Zoned(4) equals 4 bytes as Zoned(4)
SEPERATE equals 5 bytes.

UserType Size of usertype. USERTYPE SampleUsertype LENGTH(4)
equals 4 bytes.

Note: If there is any alignment done by the compiler who is used to compile the
legacy application this alignment also has to be done in the interface
definition.

Example: A C structure defined as follows:
struct S {

int x;
char y;
int z;

};

might be aligned on 4-byte boundary so that
x x x x y z z z z
0 1 2 3 4 5 6 7 8 9 10 11 Byte

and therefore needs following interface definition
INTERFACE i

x: SIGNED INTEGER 32;
y: CHAR(1) JUSTIFY LEFT PAD " ";
pad: CHAR(3) JUSTIFY LEFT PAD "<h00>";
z: SIGNED INTEGER 32;

END

© Copyright IBM Corp. 1999 133

134 Programming Guide

Chapter 23. Activation of Program Mapping Definitions

The activation of a program mapping definition is described in detail in the
MQSeries Workflow for OS/390: Customization & Administration, chapter Administering
Program Mappings. Below you will find a short summary about how to activate a
program mapping definition:
1. Copy sample job to FMCHJMPR.
2. Create an MDL.
3. Update control statements for the input utility.
4. Run and compile MDL and insert MDL into mapping database.
5. If existing MDL elements were modified restart PES to activate modifications.

For new elements there is no PES restart needed.

© Copyright IBM Corp. 1999 135

136 Programming Guide

Chapter 24. Troubleshooting

In order to provide as much help to you as possible this part of the chapter will
give a list of usual problems and typical solutions for it. For a detailed list of error
messages refer to the book Messages (SC33-7032-00).

Common Errors

Element data mapped is incorrect

Most commonly this is because a mismatch between legacy application data layout
and interface definiton.

There is no way for the program mapper to check whether the interface maps
correctly to the data format and layout the legacy application expects. Every
interface should be carefully created and double checked. If there occur runtime
conversion errors (only for packed and zoned interface types) this is mostly caused
by this. In addition reflect alignment on the legacy side in the interface (see
“Chapter 22. Size of program mapping interface definition elements” on page 133
for more details). If the size of one interface element is incorrect (for example
integer 16 instead of integer 32) all the following data will be incorrect.

Elements not mapped

Either the element names are different and no mapping rule was specified or a
mappingrule uses the wrong element names.

Note: If a mapping rule is used in both directions the mapping rule arguments
have to be switched.

Modified mapping definition is not activated

Mapping definitions are reloaded whenever the PES is restarted. It is not sufficient
to import the definition into the program mapping database. New definitions will
be used without a PES restart.

© Copyright IBM Corp. 1999 137

138 Programming Guide

Chapter 25. Additional Mapping Examples

Application examples

CICS C++ Application

This C++ application under CICS displays the data, creates new customers and
increases the salary by 8 percent. It corresponds to the forward/backwardmapping
example in “Forward/Backwardmapping Definition” on page 102.

#pragma XOPTS(SP)

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>

/* --- CustomerStructure --- */
#pragma pack(1)

struct CustomerStructure {
char LastName[50];
char FirstName[50];
char PhoneNumber[10];

};

/* --- AccountRepStructure --- */

struct AccountRepStructure {
char LastName[50];
char FirstName[50];
short Zip;
float Salary;
float Tax;
struct CustomerStructure Customers[3];

};

#pragma pack(1)
int main()
{

struct AccountRepStructure *commarea;

EXEC CICS ADDRESS COMMAREA(commarea) EIB(dfheiptr);

if (dfheiptr->eibcalen <= 0) {
cout << "??? Empty commarea ???" << endl;
EXEC CICS RETURN;

}

// Display all data

cout << "LastName: " << commarea->LastName << endl;
cout << "FirstName: " << commarea->FirstName << endl;
cout << "Zip: " << commarea->Zip << endl;
cout << "Salary: " << commarea->Salary << endl;
cout << "Tax: " << commarea->Tax << endl;

// Create customers

strcpy(commarea->Customers[0].LastName,"EINSTEIN");

© Copyright IBM Corp. 1999 139

strcpy(commarea->Customers[0].FirstName,"ALBERT");
strcpy(commarea->Customers[0].PhoneNumber,"3048");
strcpy(commarea->Customers[1].LastName,"NEWTON");
strcpy(commarea->Customers[1].FirstName,"ISAAK");
strcpy(commarea->Customers[1].PhoneNumber,"4041");
strcpy(commarea->Customers[2].LastName,"HAWKINGS");
strcpy(commarea->Customers[2].FirstName,"STEVEN");
strcpy(commarea->Customers[2].PhoneNumber,"5154");

for (int i=0; i<3; i++) {
cout << "Customer LastName : "

<< commarea->Customers[i].LastName << endl;
cout << "Customer FirstName : "

<< commarea->Customers[i].FirstName << endl;
cout << "Customer PhoneNumber : "

<< commarea->Customers[i].PhoneNumber << endl;
}

// Increase salary by 8%

commarea->Salary *= 1.08;

cout << "New Salary: " << commarea->Salary << endl;

EXEC CICS RETURN;

}

CICS COBOL Application

This COBOL application under CICS is doing the same like “CICS C++
Application” on page 139 (displays the data, creates new customers and increases
the salary by 8 percent). It corresponds to the forward/backwardmapping example
in “Forward/Backwardmapping Definition” on page 102.

IDENTIFICATION DIVISION.
PROGRAM-ID. "SAMPCBL".

DATA DIVISION.

WORKING-STORAGE SECTION.

01 PRINT-SALARY PIC Z(5)9.9(2).
01 PRINT-TAX PIC Z9.99.

LINKAGE SECTION.

01 DFHCOMMAREA.
*
* AccountRepStructure
*

02 LASTNAME PIC X(50).
02 FIRSTNAME PIC X(50).
02 ZIP PIC 9999 COMP-4.
02 SALARY PIC 9(6)V9(2) COMP-3.
02 TAX PIC V99 COMP-3.

*
* CustomerStructure
*

02 CUSTOMERS OCCURS 3 TIMES
INDEXED BY CUSTOMER-INDEX.

03 LAST-NAME PIC X(50).
03 FIRST-NAME PIC X(50).
03 PHONE-NUMBER PIC X(10).

140 Programming Guide

PROCEDURE DIVISION.

IF EIBCALEN <= 0
DISPLAY "??? EMPTY COMMMAREA ???"
EXEC CICS RETURN
END-EXEC

END-IF

*
* Display all data
*

DISPLAY "Lastname: " LASTNAME
DISPLAY "Firstname: " FIRSTNAME
DISPLAY "Zip: " ZIP

MOVE TAX TO PRINT-TAX
MOVE SALARY TO PRINT-SALARY

DISPLAY "Salary: " PRINT-SALARY
DISPLAY "Tax: " PRINT-TAX

*
* Create some customers
*

MOVE "EINSTEIN" TO LAST-NAME(1)
MOVE "ALBERT" TO FIRST-NAME(1)
MOVE "3048" TO PHONE-NUMBER(1)
MOVE "NEWTON" TO LAST-NAME(2)
MOVE "ISAAK" TO FIRST-NAME(2)
MOVE "4041" TO PHONE-NUMBER(2)
MOVE "HAWKINGS" TO LAST-NAME(3)
MOVE "STEPHEN" TO FIRST-NAME(3)
MOVE "5154" TO PHONE-NUMBER(3)

PERFORM
VARYING CUSTOMER-INDEX FROM 1 BY 1

UNTIL CUSTOMER-INDEX > 3
DISPLAY "Customer LastName : "

LAST-NAME(CUSTOMER-INDEX)
DISPLAY "Customer FirstName: "

FIRST-NAME(CUSTOMER-INDEX)
DISPLAY "Customer PhoneNumber: "

PHONE-NUMBER(CUSTOMER-INDEX)
END-PERFORM

* Increase salary by 8%

COMPUTE SALARY = SALARY * 1.08

MOVE SALARY TO PRINT-SALARY
DISPLAY "New Salary: " PRINT-SALARY

EXEC CICS RETURN
END-EXEC

GOBACK.

MDL examples

This chapter illustrates some examples how to use the mapper. There are examples
coded in C, Cobol and for simple and complex datastructure.

Chapter 25. Additional Mapping Examples 141

Simple datastructure with default name mapping

In this example the mapping is defined for a simple data structure and the used
mapping is the default one (which means that every element of a container is
mapped to the element with the same name in the other container).
STRUCTURE SimpleDataStructure

element1: STRING;
element2: STRING;
element3: LONG;
element4: FLOAT;
element5: BINARY;
element6: BINARY;
element7: LONG(20);
END SimpleDataStructure

INTERFACE SimpleDataInterface
DESCRIPTION 'This is an example of a simple interface mapping'
element1: CHAR(10) TERMINATEDBY "<h00>" JUSTIFY LEFT PAD ' ';
element2: CHAR(20) JUSTIFY LEFT PAD "<h00>";
element3: SIGNED INTEGER 16;
element4: FLOAT IBM 32;
element5: CHAR(500);
element6: CHAR(200);
element7: ARRAY (10) SIGNED INTEGER 8;
END SimpleDataInterface

BACKWARDMAPPING SimpleMapping
FROM SimpleDataInterface
TO SimpleDataStructure
END SimpleMapping

FORWARDMAPPING SimpleMapping
FROM SimpleDataStructure
TO SimpleDataInterface
END SimpleMapping

Complex datastructure with default name mapping

In this example the mapping is defined for a complex data structure and the used
mapping is the default one (which means that every element of a container is
mapped to the element with the same name in the other container).
STRUCTURE ComplexDataStructure1

element1: STRING (10);
element2: FLOAT;
END ComplexDataStructure1

STRUCTURE ComplexDataStructure2
element1: STRING (20);
element2: ComplexDataStructure (5);
END ComplexDataStructure2

INTERFACE ComplexDataInterface1
element1: CHAR(10) TERMINATEDBY "<h00>" JUSTIFY LEFT PAD ' ';
element2: FLOAT IBM 32";
END ComplexDataInterface1

INTERFACE ComplexDataInterface2
element1: CHAR(20) JUSTIFY RIGHT PAD ' ';
element2: ARRAY(5) ComplexDataInterface1;
END ComplexDataInterface2

BACKWARDMAPPING ComplexMapping
FROM ComplexDataInterface2
TO ComplexDataStructure2

/*
* Implicitly element1 and element2 are mapped
*/

END ComplexMapping
FORWARDMAPPING ComplexMapping

FROM ComplexDataStructure2

142 Programming Guide

TO ComplexDataInterface2
/*
* Implicitly element1 and element2 are mapped
*/

END ComplexMapping

Complex datastructure with non default name mapping

In this example the mapping is defined for a complex data structure and the used
mapping is not default one (which means that the structure elements of
ComplexDataStructure1 do not have identical names in the interface
ComplexStructure1 and are mapped explicitly).
STRUCTURE ComplexDataStructure1

strs: STRING (10);
flts: FLOAT;
END ComplexDataStructure1

INTERFACE ComplexDataInterface1
stri: CHAR(10) TERMINATEDBY "<h00>" JUSTIFY LEFT PAD ' ';
flti: FLOAT IBM 32;
END ComplexDataInterface1

BACKWARDMAPPING ComplexMapping
FROM ComplexDataInterface1
TO ComplexDataStructure1

MAP stri TO strs;
MAP flti TO flts;

END ComplexMapping
FORWARDMAPPING ComplexMapping

FROM ComplexDataStructure1
TO ComplexDataInterface1

MAP strs TO stri;
MAP flts TO flti;

END ComplexMapping

Complex datastructure with non default name mapping with
arrays and structures

In this example the mapping is defined for a complex data structure and the used
mapping is not default one (which means that the elements (in this case arrays!) of
structure ComplexDataStructure1 do not have identical names in the Interface
ComplexStructure1 and are mapped explicitly).
STRUCTURE ComplexDataStructure1

element1: STRING (10);
element2: FLOAT;
END ComplexDataStructure1

STRUCTURE ComplexDataStructure2
element1: STRING (20);
element2: ComplexDataStructure1 (5);
specials: FLOAT;
END ComplexDataStructure2

STRUCTURE ComplexDataStructure3
element1: STRING (5);
element2: ComplexDataStructure2 (4);
element3: ComplexDataStructure1 (4);
END ComplexDataStructure3

INTERFACE ComplexDataInterface1
element1: CHAR(10) TERMINATEDBY "<h00>" JUSTIFY LEFT PAD ' ';
element2: FLOAT IBM 32;
END ComplexDataInterface1

INTERFACE ComplexDataInterface2
element1: CHAR(20) TERMINATEDBY "<h00>" JUSTIFY RIGHT PAD '*';
element2: ARRAY (5) ComplexDataInterface1;
speciali: FLOAT IBM 32

Chapter 25. Additional Mapping Examples 143

END ComplexDataInterface2
INTERFACE ComplexDataInterface3

element1: CHAR(5) JUSTIFY RIGHT PAD '*';
element2: ARRAY (4) ComplexDataInterface1;
elementx: ARRAY (4) ComplexDataInterface2;
END ComplexDataInterface3

BACKWARDMAPPING ComplexMapping
FROM ComplexDataInterface3
TO ComplexDataStructure3
/* Interface element elementx is explicitly mapped to structure

element element2. All structure and interface elements of this
structure are mapped per default; interface element element2 is
also explicitly mapped with all its subelements. */

MAP 'elementx' to 'element2';
MAP 'element2' to 'element3';

/* element speciali is not mapped per default and an explicit rule
for this element is required */

MAP 'elementx.speciali' to 'element2.specials';

/* Per default mapping element1 with all subelements is mapped */

END ComplexMapping

FORWARDMAPPING ComplexMapping
FROM ComplexDataStructure1
TO ComplexDataInterface1
/* Structure element element2 is explicitly mapped to interface

element elementx. All structure and interface elements of this
structure are mapped per default; structure element element3 is
also explicitly mapped with all its subelements. */

MAP 'element2' to 'elementx';
MAP 'element3' to 'element2';

/* element specials is not mapped per default and an explicit rule
for this element is required */

MAP 'element2.specials' to 'elementx.speciali';

/* Per default mapping element1 with all subelements is mapped */

END ComplexMapping

Simple datastructure with all interface types with CONSTANTS
and usertypes

In this example the mapping is defined for a simple data structure and the used
mapping is not default one (which means that the elements of structure
ComplexDataStructure1 do not have identical names in the interface
ComplexStructure1 and are mapped explicitly). Additional there is a usertype
defined, which converts a 4 byte integer into a Workflow string, seperates every
three digits by a ’.’ and prefixes the string with a currency symbol, for example
$1.234.567.
/* A usertype which converts a 4 byte integer into a Workflow string, seperates
* every three digits by a '.' and prefixes the string with a currency
* symbol, for example $1.234.567 */

USERTYPE user1 LENGTH(4)
DLL "dlluser","user2Inbound"

END user1
STRUCTURE SimpleDataStructure

element1: LONG;
element2: STRING;
element3: LONG;

144 Programming Guide

element7: LONG(20);
element8: STRING;
END SimpleDataStructure

INTERFACE SimpleDataInterface
DESCRIPTION 'This is an example of a simple interface mapping'
/* following integer constant is inserted in forwardmapping
* and removed in backwardmapping */

insert: SIGNED INTEGER 16
CONSTANT 4711

element3: SIGNED INTEGER 16;
element7: ARRAY (100) SIGNED INTEGER 8;
element1: USERTYPE user2 PARMS 'DM'; /* three digits */
element8: USERTYPE user2 PARMS '$'; /* for example $ 12.345 */
element9: CHAR(5) CONSTANT "This is a string constant with some

hex chars <h47><h11>" JUSTIFY RIGHT PAD '*'
element10: PACKED (10) CONSTANT p47.11

SIGNED FIRST MINUS "<h0d>" PLUS "<h0c>" UNSIGNED "<h0c>"
SCALE 5

element11: ZONED (10) CONSTANT z47.11
SIGNED FIRST MINUS "<h0d>" PLUS "<h0c>" SCALE 5

element12: FLOAT IBM 8
CONSTANT +47E11

END SimpleDataInterface
BACKWARDMAPPING SimpleMapping

FROM SimpleDataInterface
TO SimpleDataStructure
END SimpleMapping

FORWARDMAPPING SimpleMapping
FROM SimpleDataStructure
TO SimpleDataInterface
END SimpleMapping

Chapter 25. Additional Mapping Examples 145

146 Programming Guide

Part 5. Program Execution Server Exits

© Copyright IBM Corp. 1999 147

148 Programming Guide

Chapter 26. Introduction

For extensibility of MQSeries Workflow for OS/390 the PES uses exits in following
areas:
v Application invocation
v Legacy application program mapping

There are exits provided by MQSeries Workflow for OS/390 for program mapping
and program invocation. Whenever there are new invocation exits or mapping
exits needed these exits can be used instead of the IBM supplied exits or in
parallel.

Both kind of exits have an interface defined to which every user written exit has to
conform.

Every exit type has to provide an init function which is called from the PES when
the exit is needed the first time. Later the exit specific functions are called (See the
specific exit chapters for more details). A shutdown request for the PES triggers a
call to the deinit function of the exits.

Usually the init function does all the initialization needed for the exit. If there are
informations needed further on in following calls a handle can be filled in the
initialization call which is passed to all following functions (for example DB
handles, connection informations, states, ...). Deinit which is called last normally
deallocates and frees all resources allocated during init.

The exit DLL is loaded by the PES when the exit is needed the first time and
unloaded when the PES terminates.

The main difference between the two types of exits is the following:
v Mapping exits do a data conversion between MQSeries Workflow for OS/390

containers and data acceptable by legacy applications.
v Invocation exits do invoke applications on the application side.

Note:

v Whenever you modify an exit you have to shutdown and reboot the PES
in order to make your changes effective.

v All PES exits have to be reentrant.

Return codes and error messages

All exits use a return code to signal availability of error informations from the exit
functions to the PES. If the return code is not OK 4 parameters used in every
function contain more detailed error information. Errors can be recoverable or
unrecoverable. A recoverable error is passed by the PES to the program activity
and the program activity is set into an error state. An recoverable error causes the
PES instance to terminate. An errorId and errorDescription are written to
FMCERRxx (DDname).

Parameters
char * errorIdBuffer

© Copyright IBM Corp. 1999 149

v Character buffer provided by PES which is 4 characters long and is used
to pass an error number. Has to be set accordingly if the id is shorter
than 4 characters.

v Input/output parameter

long * errorIdBufferLength

v Length of the message number in errorIdBuffer which has to be set by
the exit. The maximum available number of characters is passed in.
Valid lengths are between 0 and the passed in value in
errorIdBufferLength.

v Input/output parameter

char * errorDescriptionBuffer

v Character buffer provided by PES which is 512 characters long and is
used for an error message. Has to be set accordingly if the id is shorter
than 512 characters.

v Input/output parameter

long * errorDescriptionBufferLength

v Length of the description in errorDescriptionBuffer which has to be set
by the exit. The maximum available number of characters is passed in.
Valid lengths are between 0 and the passed in value in
errorDescriptionBufferLength.

v Input/output parameter

The error id may consist of up to 4 digits and is prefixed by the PES by a character
identifying the exit type (I for invocation, M for mapping). In addition the
errorDescription is prefixed by the PES with the dllname of the exit so that every
exit can use the message numbers and the dllname is the identifier of the exit.

Return codes
FMC_EXIT_OK

Function was successful.

FMC_EXIT_RECOVERABLE_ERROR
Function was unsuccessful but recoverable. The PES will return message
FMC32204 (see MQSeries Workflow for OS/390 Messages) with the passed
error information. The PES continues processing. errorIdBuffer,
errorIdBufferLength, errorDescriptionBuffer and
errorDescriptionBufferLength have to be set accordingly .

FMC_EXIT_NONRECOVERABLE_ERROR
Function was unsuccessful and unrecoverable. The errorId and
errorDescription are written to STDERR. The PES instance terminates,
errorIdBuffer, errorIdBufferLength, errorDescriptionBuffer and
errorDescriptionBufferLength have to be set accordingly.

150 Programming Guide

Chapter 27. Interfaces for all exits

Note: All interfaces must have C linkage!

Init

Header files

FMCXMIF.H (program mapping exit) and FMCXIEP.H (invocation exit).

Function
v Initialize exit.
v It is called once when the exit is used the first time.

Interface
long Init

(void ** exitHandle,
void * initializationParameter,
long initializationParameterLength,
char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters
void ** exitHandle

v Pointer passed into the init function which is not used by the PES but
passed to any function called later on. Used to pass exit environment
data between all exit functions

v Input/output parameter

void * initializationParameter

v Parameters defined in the PES directory entry for the exit which can be
used to customize the exit initialization. The parameter is terminated by
zero.

v Input parameter

long initializationParameterLength

v Length of the initializationParameter in bytes.
v Input parameter

char * errorIdBuffer

v See “Return codes and error messages” on page 149 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 149 for detailed
information.

char * errorDescriptionBuffer

© Copyright IBM Corp. 1999 151

v See “Return codes and error messages” on page 149 for detailed
information.

long * errorDescriptionBufferLength

v See “Return codes and error messages” on page 149 for detailed
information.

Return codes

See “Return codes and error messages” on page 149 for the return codes.

Deinit

Header files

FMCXMIF.H (program mapping exit) and FMCXIEP.H (invocation exit).

Function
v Deinitialize exit.
v It is called once when the PES terminates.

Interface
long Deinit

(void ** exitHandle,
char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters
void ** exitHandle

v Pointer passed into the init function which is not used by the PES but
passed to any function called later on. Used to pass exit environment
data between all exit functions.

v Input/output parameter

char * errorIdBuffer

v See “Return codes and error messages” on page 149 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 149 for detailed
information.

char * errorDescriptionBuffer

v See “Return codes and error messages” on page 149 for detailed
information.

long * errorDescriptionBufferLength

v See “Return codes and error messages” on page 149 for detailed
information.

152 Programming Guide

Return codes

See “Return codes and error messages” on page 149 for the return codes.

Chapter 27. Interfaces for all exits 153

154 Programming Guide

Chapter 28. Program mapping exit

There exist a IBM supplied program mapping exit which can be used to convert
and translate data between legacy applications and MQSeries Workflow for
OS/390. Every other mapping exit who is conform to the mapping exit interface
can be used in parallel to the IBM supplied mapping exit or replace the IBM
supplied mapping exit.

The program mapping exit has to be available in a DLL which is loaded by the
PES and used to translate the MQSeries Workflow for OS/390 container data into
data accepted by a legacy application. This DLL has to have two exit functions: init
and deinit (see above) and one exit specific function translate. It is used to do the
actual conversion and translation for forward mappings and backward mappings
every time a legacy application is called. The raw buffer for the legacy application
is available and the container can be accessed via MQSeries Workflow for OS/390
container API calls.

In forward mapping calls the program mapping exit has to extract the data from
the container and translate the data into a raw buffer which is passed to the legacy
application. In backward mapping calls the program mapping exit has to translate
the raw buffer and assign the data to the container.

Additional program mapping exit specific interfaces

A mapping exit has to follow the general rules for PES exits as described in
“Chapter 27. Interfaces for all exits” on page 151.

Translate

Header files

FMCXMIF.H (program mapping exit).

Function
v Translate is called every time by the PES in direction

FMC_PROGRAMMAPPING_BACKWARDMAPPING if backward mapping has
to be done and in direction FMC_PROGRAMMAPPING_FORWARDMAPPING
if forward mapping has to be done.

Interface
long Translate

(void * exitHandle,
short direction,
char * mappingName,
long mappingNameLength,
char * buildTimeParameter,
long buildTimeParameterLength,
void * containerHandle,
char** buffer,
long * bufferLength,

© Copyright IBM Corp. 1999 155

char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters
void * exitHandle

v Pointer passed into the init function which is not used by the PES but
passed to any function called later on. Used to pass exit environment
data between all exit functions

v Input/output parameter

short direction

v Used to identify the translation direction. Either
FMC_PROGRAMMAPPING_BACKWARDMAPPING or
FMC_PROGRAMMAPPING_FORWARDMAPPING

v Input parameter

char * mappingName

v Forward mapping format or backward mapping format defined in the
OS/390 program properties. The name is zero terminated.

v Input parameter

long mappingNameLength

v Length of the mappingNameLength in bytes.
v Input parameter

char * buildTimeParameter

v Forward mapping parameter or backward mapping parameter defined
in the OS/390 program properties. Can be used to customize the
translation process. The parameter is zero terminated.

v Input parameter

long buildTimeParameterLength

v Length of the buildTimeParameter in bytes.
v Input parameter

void * containerHandle

v Containerhandle to the MQSeries Workflow for OS/390 container used
for translation. Argument in MQSeries Workflow for OS/390 container
APIs to access the container.

v Input parameter

char ** buffer

v A valid buffer address for forward mapping calls or has to be set by the
program mapping exit to a valid buffer address in backward mapping
calls. This buffer is passed by the PES to the legacy application in
forward mapping calls and passed to the program mapping exit for data
conversion and setting of container elements in backward mapping calls.

v Input parameter for forward mapping
v Output parameter for backward mapping

long * bufferLength

v Length of the buffer in bytes. Is already set in forward mapping calls
and has to be set in backward mapping calls by the program mapping
exit.

156 Programming Guide

v Input parameter for forward mapping
v Output parameter for backward mapping

char * errorIdBuffer

v See “Return codes and error messages” on page 149 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 149 for detailed
information.

char * errorDescriptionBuffer

v See “Return codes and error messages” on page 149 for detailed
information.

long * errorDescriptionBufferLength

v See “Return codes and error messages” on page 149 for detailed
information.

Return codes

See “Return codes and error messages” on page 149 for the return codes.

See the program mapping sample “Program mapping exit sample” for more
details.

Enabling the PES to use a program mapping exit

In order to use a program mapping exit the exit has to reside in a DLL which has
to be available in a linklibrary used by the PES. Customize sample JCL
FMCHJMEX in InstHLQ.SFMCCNTL and submit JCL.

Then the PES has to know about the program mapping exit by a definition of this
exit in the PES directory. See MQSeries Workflow for OS/390: Customization and
Administration for more informations.

Program mapping exit sample

There exists a C sample program mapping exit (FMCHSMEX in
InstHLQ.SFMCSRC) with a corresponding JCL to compile and link the exit
(FMCHJMEX in InstHLQ.SFMCCNTL).

The sample exit gives an example how a program mapping exit should work in
general. It also shows how the exit can use all the different parameters passed (exit
initialization parameter, forward/backward mapping format and
forward/backward mapping parameters), how error messages can be created and
how the container elements can be accessed.

The exit is able to convert MQSeries Workflow for OS/390 container elements of
type LONG and FLOAT into C types long and double. The elements are converted
in the same sequence that the elements are defined in the container structure.

Chapter 28. Program mapping exit 157

The type of the element is derived from the first character of the element name
and has to be defined in the PES directory entry for the mapping exit
(exitParameters).

ExitParameter syntax: LONG=x FLOAT=y

where x is the character used to identify LONG container elements and y is the
character to identify FLOAT container elements. All elements starting with an
undefined character are ignored.

In addition TRACE=YES can be defined during initialization which enables some
trace print-outs.

Mapping example:
STRUCTURE S

LE1: LONG(2);
FE1: FLOAT;
LE2: LONG;

END;

will be converted so that the following structure is filled with conversion data:
struct S {

long LE1[2];
double FE1;
long LE2;

};

The following three different mapping formats are available:
1. DEFAULT
2. INCREASE_INCOME
3. DECREASE_INCOME

The first format does normal conversion of the values. The second one increases all
values by 8% (default) whereas the third format decreases all values by 8%
(default). If other percentages are needed they can be defined as forward mapping
parameters or backward mapping parameters using the Buildtime tool when the
program properties for OS/390 are defined.

To use the mapping sample you have to
1. compile and link the mapping sample (See JCL FMCHJMEX in

InstHLQSFMCCNTL).
2. update the PES directory with following definition (See MQSeries Workflow for

OS/390: Customization and Administration: Importing a PES directory source file)
(KEYTOMAPPING2)
type =SAMPLE
exitName =SAMPEXT
exitParameters =LONG=L FLOAT=F

3. define a program in BuildTime which uses the sample mapping type SAMPLE
and optionally provide a different increase/decrease amount for
forward/backward mapping parameters.

158 Programming Guide

Chapter 29. Program invocation exit

A program invocation exit is used by the program execution server in order to run
a requested application on a service system like CICS or IMS. The corresponding
invocation request is issued to the program execution server by an MQSeries
Workflow for OS/390 execution server.

To handle an invocation request the program execution server uses an exit
containing the implementation of an invocation type like EXCI. This allows
application developers using MQSeries Workflow for OS/390 to attach their own
invocation types to MQSeries Workflow for OS/390. An invocation exit has to
follow the general rules for program execution server exits as described in “Part 5.
Program Execution Server Exits” on page 147 in this book. As all program
execution server exits invocation exits are available as dynamic link libraries
providing entry points.

Synchronous and asynchronous invocation exits

MQSeries Workflow for OS/390 supports synchronous and asynchronous
invocation exits. They will be characterized by the following. Asynchronous
invocations must base on MQSeries queues.

Synchronous invocation exit

A synchronous invocation exit
v builds up the connection to the service where request should run.
v runs the requested application on that service by use of the invocation protocol.
v removes the connection to the service after the application terminated.
v passes back the output data from the application or an error message if the

invocation failed to the program execution server.
v if - depending on the invocation protocol - connections can be reused by

subsequent calls, the connections are cached after being used a first time and
removed at deinitialization of the invocation exit.

The program execution server ’waits’ for the output from a synchronous invocation
exit.

Asynchronous invocation exit

Within processing a request the program execution server calls an asynchronous
invocation exit twice. First to handle a request, and second to handle a reply. If an
asynchronous invocation exit is called by the program execution server with
parameters describing a request it does not execute a request from the program
execution server directly on the target service system. It only creates a message
consisting of an invocation specific header followed by the data for the requested
application and passes it back to the program execution server. Also it creates a
message descriptor - which is an MQSeries message descriptor MQMD since only
MQSeries based invocations are supported- and passes it also back.

© Copyright IBM Corp. 1999 159

The program execution server then uses message descriptor and message together
with connection parameters to put the message to the input queue as specified by
the connection parameters. The program execution server does not wait until the
requested application has finished but continues with the next request.

If the program execution server gets the reply message consisting of message
descriptor and message data it calls all invocation exits in order to get one which
can deal with that message. The first of these exits recognizing the message will be
called again in order to handle and analyze the reply. Therefore it is important that
reply messages from asynchronous invocations are recognized uniquely. That
means only invocation protocols should be used where the message contains
protocol specific data at the beginning for example CICS bridge header MQCIH or
IMS bridge header MQIIH, so that a reply is not handled by an exit which is not
the right one. Also it is recommended to reflect that format in the message
descriptor (by the Format field in the MQMD structure).

If an exit recognizes the reply it is called to handle it and passes the application
output data back to the program execution server or an error message.

Note: An asynchronous invocation exit does not connect itself to a service. The
MQSeries queues from and to the service are always served by the PES.

Additional invocation exit specific interfaces

Each asynchronous and synchronous invocation exit has to provide the following
additional entry points beside the interfaces to be provided by all program
execution server exits:

HdlRequ

Header files

FMCXIEP.H (invocation exit).

Function
v For a synchronous invocation this method executes an application program

passed as executableName on a service to which it connects as defined by
connectionParameters. In case no error occurred this function returns the output
from the application in a buffer passed back by the programOutput parameter.

v For an asynchronous invocation this method either creates a request message or
it treats the passed-in parameters as reply message. The parameters represent a
request message if an application name is passed as executableName. If zero is
passed as executableName the parameters represent a reply message whose data
are passed as executableParameters and executableParametersLength together
with a message descriptor MQMD as messageDescriptor and
messageDescriptorLength.

Interface
long HdlRequ

(void * exitHandle,
void * invocationContext,
char * serviceName,
long serviceNameLength,

160 Programming Guide

char * connectionParameters,
long connectionParametersLength,
char * executableName,
long executableNameLength,
char * executableType,
long executableTypeLength,
char * executionParameters,
long executionParametersLength,
char ** programOutput,
long * programOutputLength,
char ** messageDescriptor,
char * messageDescriptorLength,
char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters
void * exitHandle

v Reference to the invocation environment for this exit
v Input parameter

void * invocationContext

v Address of data describing the context in which the invocation of the
request should be done.

v For the context information provided by MQSeries Workflow for OS/390
see “Invocation Context” on page 164

v input parameter

char * serviceName

v Name of service as known to MQSeries Workflow for OS/390 where the
requested application has to be performed.

v Input parameter

long serviceNameLength

v Length of serviceName character string
v Input parameter

char * connectionParameters

v Character string providing the parameters needed by the invocation to
connect to the service where the requested program should run. These
parameters are defined for the respective service in the PES directory.

v Input parameter
v See also “Connection Parameters” on page 166

long connectionParametersLength

v Length of connectionParameters
v Input parameter

char * executableName

v Address of buffer containing the name of the executable of the request
v For asynchronous invocations only: the program execution server passes

zero to indicate that this function is called to handle a reply message
from an asynchronously invoked program execution request.

v Input parameter

long executableNameLength

Chapter 29. Program invocation exit 161

v Length of executableName
v Input parameter

char * executableType

v Type of the program specified by the executableName
v Input parameter

long executableTypeLength

v Length of executableType
v Input parameter

char * executionParameters

v Parameters for the program specified by the executable name
v Reply from an asynchronously performed execution request
v Input parameter

long executionParametersLength

v Length of executionParameters or the asynchronous reply
v Input parameter

char ** programOutput

v Address to return buffer containing the output of the executable
v Asynchronous invocations use this parameter also to return the protocol

conformal message to the program execution server corresponding to the
execution request passed in as executableName and
executionParameters.

v Input/output parameter

long * programOutputLength

v Address to length of output data or the protocol conformal message
v Input/output parameter

char ** messageDescriptor

v Address to pass/return a buffer containing a message descriptor
v For asynchronous invocations only
v Input/output parameter

long * messageDescriptorLength

v Address to buffer containing the length of the message descriptor
v For asynchronous invocations only
v Input/output parameter

char * errorIdBuffer

v See “Return codes and error messages” on page 149 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 149 for detailed
information.

char * errorDescriptionBuffer

v See “Return codes and error messages” on page 149 for detailed
information.

long * errorDescriptionBufferLength

162 Programming Guide

v See “Return codes and error messages” on page 149 for detailed
information.

Return Codes
FMC_EXIT_OK

v See “Return codes and error messages” on page 149 for detailed
information.

FMC_EXIT_RECOVERABLE_ERROR

v See “Return codes and error messages” on page 149 for detailed
information.

FMC_EXIT_NONRECOVERABLE_ERROR

v See “Return codes and error messages” on page 149 for detailed
information.

Recogn

Header files

FMCXIEP.H (invocation exit).

Function
v Checks whether the reply message passed in as message descriptor and message

data is recognized by the invocation type this exit represents.
v This method applies to exits for asynchronous invocations. However this entry

point must also be provided by synchronous invocation exits. For these exits
always FMC_INV_NOT_RECOGNIZED has to be returned.

v This function is called against all asynchronous invocation exits when an
invocation reply message is received. It is assumed that there are no ambiguities,
so that the first invocation exit where this function recognizes this message is the
correct one to handle it.

Interface
long Recogn

(void * exitHandle
char * messageDescriptor,
long messageDescriptorLength,
char * messageData,
long messageDataLength)

Parameters
void * exitHandle

v Reference to the invocation environment for this exit
v Input parameter

char * messageDescriptor

v Descriptor of the reply message
v Input parameter

long * messageDescriptorLength

Chapter 29. Program invocation exit 163

v Length of messageDescriptor
v Input parameter

char * messageData

v The data of the reply message
v Input parameter

long messageDataLength

v Length of messageData
v Input parameter

Return Codes
FMC_INV_NOT_RECOGNIZED

The message is not recognized

FMC_INV_RECOGNIZED
The message is recognized

IsAsync

Header files

FMCXIEP.H (invocation exit).

Function
v Returns whether the exit represents an asynchronous invocation.

Interface
long Recogn

(void* exitHandle)

Parameters
void * exitHandle

v Reference to the invocation environment for this exit
v Input parameter

Return Codes
FMC_INV_SYNCHRONOUS

The invocation is synchronous.

FMC_INV_ASYNCHRONOUS
The invocation is asynchronous.

Invocation Context

The PES passes an invocation context to the invocation exit for HdlRequ. It
contains information about the context in which the request should be executed.
The context consists of four different context types: Workflow, Security, Transaction,
and Performance. The context is created by the PES. The content depends on
server and program settings. The workflow context is passed for internal reasons
and is not intended to be used by any invocation exit. The security context is either
set to the PES user ID or the execution user ID resolved for the request. The

164 Programming Guide

transaction context is set to a non-zero value if the request is to be executed as safe
application. The performance context is set to the WLM enclave token, if the PES is
running WLM managed.

An invocation accesses the context by using a C-type interface defined in the
included file fmcxiinv.h.

GetContext

Header files

FMCXIINV.H (invocation context).

Function
v Extracts the value of the context type as specified by a passed in context name.

Interface
int GetContext

(void * invContext,
char * invContextName,
char ** invContextValue,
long * invContextValueLength)

Parameters
void * invContext

v Address of the whole invocation context containing all context types
v Input parameter

char * invContextName

v Name of the requested context type
v Can be one of the character string constants as listed in the Name

column in the Context types table below.
v Input parameter

char ** invContextValue

v Address to which this function puts the pointer to the value of the
requested context type

v Input/output parameter

long * invContextValueLength

v Address to which this function puts the length of the value of the
requested context type

v Input/output parameter

Return Codes
FMC_INV_CTX_ON

Context successfully retrieved

FMC_INV_CTX_NOT_SET
Context has not been set

FMC_INV_CTX_NOT_DEFINED
Context not found

Chapter 29. Program invocation exit 165

Table 15. Context types

Type Meaning Used by Name

Workflow contains Workflow context internal use
only

FMC_WORKFLOW_CTX

Security contains the user
identification the request
should be executed for

invocation exit FMC_SECURITY_CTX

Transaction contains indication that the
request should be executed in
transactional context

invocation exit FMC_TRANSACT_CTX

Performance contains WLM enclave token,
if the PES is running WLM
managed

invocation exit FMC_PERFMGMT_CTX

To link your exit correctly you will have include definition side deck FMCH0XIC
from InstHLQ.SFMCDSD.

Connection Parameters

The parameter connectionParameters of the entry point HdlRequ represents a
character string of up to 254 printable characters. This string contains the
parameters needed by the invocation to connect to the service system in order to
execute an application there.

Connection parameters for synchronous invocations

For synchronous invocations these parameters and the syntax how to specify them
must be defined by the developer of an invocation exit. In most cases it is
recommended to use the following syntax:
<keyword_1>=<value_1>;<keyword_2>=<value_2>;...;<keyword_n>=<value_n>

where the parameters are represented by key-value pairs separated by semicolons.
Nevertheless it is up to you how the syntax of the connection parameters should
be for your invocation exit. Connection parameters and the syntax how to specify
them must be part of the documentation on your invocation exit since an
MQSeries Workflow for OS/390 administrator has to specify this string when
defining this exit to the PES directory.

Connection parameters for asynchronous invocation

Because only asynchronous invocations based on MQSeries queues are supported
the connection parameters for asynchronous invocations and the syntax how to
specify them must be
QUEUEMANAGER=<queuemanagername>;INPUTQUEUE=<inputqueuename>

where <queuemanagername> and <inputqueuename> represent MQSeries queue
manager respectively MQSeries queue and have to follow the corresponding
MQSeries naming rules. These parameters define the MQSeries queue to which the
request message created by an asynchronous invocation exit has to be put.

166 Programming Guide

Enabling MQSeries Workflow for OS/390 to use an invocation exit

In order to use a program invocation exit the exit has to reside in a DLL which has
to be available in a linklibrary used by the PES.

Note:
If there is more then one asynchronous invocation exit recognizing the same
kind of reply messages, it is unpredictable which of the exits will handle a
reply message. This may lead to wrong results without any chance of noticing
it!

See also MQSeries Workflow for OS/390 Customization and Administration Guide -
Adding a new Invocation Type.

Invocation exit coding example

Since an invocation exit assumes there is a special kind of service system available
where an application should run there are no compiling sources provided as
samples but a skeleton for synchronous invocations FMCHSIVS and one for
asynchronous invocations FMCHSIVA both in InstHLQ.SFMCSRC written in C
syntax.

Chapter 29. Program invocation exit 167

168 Programming Guide

Part 6. Using the MQSeries Workflow APIs

© Copyright IBM Corp. 1999 169

170 Programming Guide

Chapter 30. Using the MQSeries Workflow Runtime API

Overview of the Runtime API

There are various tasks which you typically want to address by writing an
MQSeries Workflow application program:
v You can write a client application in order to:

– Manage process instances
– Handle worklists and/or work items
– Administrate process instances or work items
– Monitor the progress of execution

v You can write a program that implements an activity or support tool in your
workflow process (model).

These programs typically use only a subset of the MQSeries Workflow API. For
example, an activity implementation typically only accesses its containers, that is,
only uses the so-called "Container API". The MQSeries Workflow API and its
header files and library structures takes this fact into account (see “Compiling and
linking” on page 12).

In order to ask for Runtime services, a communication must be established
between the client application and an MQSeries Workflow execution server.

As a first step, an FmcjExecutionService object must be constructed/allocated. An
FmcjExecutionService object represents a session between a user and an MQSeries
Workflow execution server. It essentially provides the basic functions/subprograms
to set up a communication path to the specified MQSeries Workflow execution
server and to establish the user session (Logon() respectively Passthrough()), and
finish it (Logoff()). To log on, not only the execution server but also the
administration server must be up and running so that authentication can be done.
This is, however, transparent to you.

When the session to an execution server has been established, you can:

Figure 16. Setting up client/server communication. Legend: --Ê Inheritance (C++); —Ê provides for access; — —Ê
sends messages to

© Copyright IBM Corp. 1999 171

v Query objects for which you are authorized: process templates, process
instances, items (work items, activity instance notifications, process instance
notifications), or lists containing such objects.

v Create persistent lists, that is, persistent views on objects contained in the
MQSeries Workflow database.

v Query information about the logged-on user or change that user’s password.
v Start up respectively shut down a program execution agent associated to the

logged-on user. This becomes necessary when work items are to be executed by
MQSeries Workflow specific means.

All function/subprogram calls update a so-called result object. Detailed
information about an erroneous request can be obtained from there. See
“Chapter 4. Handling errors” on page 15 for more information.

When the session to an execution server has been established, you can create or
query persistent lists (process template lists, process instance lists, worklists) or
query other objects for which you are authorized. Note that in Runtime you can
retrieve the currently valid version of a process template only; you cannot see any
future or past versions.

A persistent list represents a set of objects the user is authorized for. It is a view on
those objects. All objects which are accessible through the list have the same
characteristics. These characteristics are specified by a filter. For example,
depending on the filter specified, a worklist can contain a set of work items only.
No activity instance notifications or process instance notifications are accessible
through that list. The worklist content, the work items, can be queried and their
attributes can be accessed. As soon as a work item has been read from the
execution server, further actions can be called, for example, starting a work item.

Figure 17. Querying objects. Legend: --Ê Inheritance (C++); —Ê provides for access

172 Programming Guide

When (a valid version of) a process template has been retrieved, a process instance
can be created and started. Starting a process instance can require input data. You
can use the container functions/subprograms for reading and writing values. See
“Chapter 9. Handling Containers” on page 39 for more information.

Starting a process instance triggers the scheduling of activity instances and, as a
result of that, the creation of a set of work items and possibly activity instance
notifications or process instance notifications when they are not worked on in time.
A work item implemented by a program can then be executed either by MQSeries
Workflow-specific means or by user-specific means.

When executed by user-specific means, the work item is to be checked out.
Checking out provides for all information needed to execute the underlying
program, the program data and its description of the implementing options and
the input container data.

When executed by MQSeries Workflow-specific means, that program data is
automatically sent to the program execution agent which starts the appropriate
activity implementation. The activity implementation can then access its input and
output containers via an appropriate request to the program execution agent. The
same container accessor functions/subprograms are applicable whether called from
a client application program or from an activity implementation program.

When a work item and thus the associated activity instance has not been executed
successfully, the FmcjError object provides for analyzing the cause of the state
InError.

Figure 18. Dealing with process instances and (work) items. Legend: --Ê Inheritance (C++); —Ê provides for access;
— —Ê data is passed to or results in

Chapter 30. Using the MQSeries Workflow Runtime API 173

When a process instance or item, that is, a work item, an activity instance
notification, or a process instance notification, has been retrieved, you can obtain
the associated process instance monitor. The process instance monitor then allows
for analyzing the states of activity instances and control connector instances. The
path taken through the process instance can thus be determined. In case you want
to present this information graphically, the activity instance symbol layout and the
control connector instance positions and bend points offer support.

Once a process instance monitor has been obtained, you can iterate into the process
model by obtaining block instance monitors for activities of type Block or process
instance monitors for activities of type Process, that is, for subprocess instances.
See “Chapter 10. Monitoring a process instance” on page 47 for more information.

When the process setting specifies a push refresh policy, then the MQSeries
Workflow execution server pushes changes on work items or notifications to a
present client. A client application should then set up a means in order to receive

Figure 19. Monitoring a process instance. Legend: --Ê Inheritance (C++); —Ê provides for access

Figure 20. Handling data sent by an MQSeries Workflow server. Legend: --Ê Inheritance (C++); —Ê provides for
access

174 Programming Guide

such execution data. Once received, the appropriate item can be updated, created,
or deleted depending on the information sent. See “The push data access model”
on page 23 for more information.

API classes/objects

An alphabetical list of C++ classes respectively a list of function prefixes in the C
language follows. All functions/subprograms following this list are valid calls on
the respective C++ object. To become valid C language function calls, they are to
be prefixed by the respective scope name. For example, if you have access to a
work item whose C++ object name is wi or whose C language handle is wi, then a
valid C++ call is wi.Start() and the corresponding C language call is
FmcjWorkitemStart(wi).

The class and function names in Cobol have in several cases been shortened due to
the 30 characters per word limit, see Table 7 on page 88.):

Class/Object Description

FmcjActivityInstance An instance of a workflow process template
activity.

FmcjActivityInstanceNotification A notification associated with an activity
instance.

FmcjActivityInstanceNotificationVector The C language result of a query for activity
instance notifications.

FmcjActivityInstanceVector The C language result of a query for activity
instances.

FmcjBlockInstanceMonitor The monitor for an activity instance of kind
Block.

FmcjContainer The data container of a work item or a process
instance.

FmcjContainerElement An element of a data container.

FmcjContainerElementVector The C language result of a query for container
elements.

FmcjControlConnectorInstance The instance of a control connector between two
activities.

FmcjControlConnectorInstanceVector The result of a query for control connector
instances.

FmcjCDateTime FmcjCDateTime is the representation of date and
time values.

FmcjDllOptions The program implementation definitions for a
dynamic link library.

FmcjError Describes the cause of a state InError.

FmcjExecutionData Information pushed by an MQSeries Workflow
execution server.

FmcjExecutionService The representation of a session between a user
and an MQSeries Workflow exection server so
that services can be requested.

FmcjExeOptions The program implementation definitions for an
executable.

FmcjExternalOptions The program implementation definitions for an
external service.

Chapter 30. Using the MQSeries Workflow Runtime API 175

Class/Object Description

FmcjGlobal A means to group functions/subprograms which
are global API functions/subprograms.

FmcjImplementationData The program implementation definitions.

FmcjItem An item associated to a user; can be a work item
or notification.

FmcjItemVector The C language result of a query for items.

FmcjMessage A means to request an NLS regarding formatted
message for a known message ID.

FmcjPersistentList A list definition stored persistently.

FmcjPerson User-specific settings for the user logged on to
an MQSeries Workflow execution server.

FmcjPerson User-specific settings for the user logged on to
an MQSeries Workflow execution server.

FmcjPoint Describes the bend points of a control connector
instance.

FmcjPointVector The result of a query for bend points.

FmcjProcessInstance An instance of a workflow process template.

FmcjProcessInstanceList A list to group process instances.

FmcjProcessInstanceListVector The C language result of a query for process
instance lists.

FmcjProcessInstanceMonitor The monitor for a process instance.

FmcjProcessInstanceNotification A notification associated with a process instance.

FmcjProcessInstanceNotificationVector The C language result of a query for process
instance notifications.

FmcjProcessInstanceVector The C language result of a query for process
instance notifications.

FmcjProcessTemplate A workflow process template consisting of
activities and containers and their control and
data flow.

FmcjProcessTemplateList A list to group process templates.

FmcjProcessTemplateListVector The C language result of a query for process
template lists.

FmcjProcessTemplateVector The C language result of a query for process
templates.

FmcjProgramData The program definitions of an activity
implementation.

FmcjReadOnlyContainer A data container that can only be read.

FmcjReadWriteContainer A data container that can be read and written to.

FmcjResult The detailed result of a request.

FmcjService Provides for common aspects of MQSeries
Workflow services.

FmcjStringVector The C language result of a query resulting in a
list of strings or the C language means of
providing a list of strings.

FmcjSymbolLayout Describes the graphical layout of an activity
instance.

176 Programming Guide

Class/Object Description

FmcjWorkitem A user assigned activity instance to be worked
on.

FmcjWorkitemVector The C language result of a query for work items.

FmcjWorklist A list to group work items or notifications.

FmcjWorklistVector The C language result of a query for worklists.

FmcjActivityInstance

An activity instance represents an instance of a process template activity.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for an activity
instance object by copying.

Deallocate() Deallocates the storage for an activity instance object.

Equal() Compares two activity instances.

IsComplete() Indicates whether the complete activity instance
information is available.

Kind() States the kind of the activity instance, whether it is a
program, a process, or a block.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when activity instances are queried or if this attribute is
a secondary attribute (S) and set only after the refresh of a specific activity
instance.

Accessor methods Set Description

ActivationTime() P Returns the activation time of the
activity instance.

ActivationTimeIsNull() P Indicates whether an activation
time is set.

Category() P Returns the process category of
the activity instance.

CategoryIsNull() P Indicates whether a category is
set.

Description() P Returns the description of the
activity instance.

DescriptionIsNull() P Indicates whether a description is
set.

Documentation() S Returns the documentation of the
activity instance.

DocumentationIsNull() S Indicates whether a
documentation is set.

Chapter 30. Using the MQSeries Workflow Runtime API 177

Accessor methods Set Description

EndTime() S Returns the ending time of the
activity instance.

EndTimeIsNull() S Indicates whether an end time is
set.

ErrorReason() S Returns an error object describing
the reason why the activity
instance is in state InError.

ErrorReasonIsNull() S Indicates whether an error reason
is set.

ExitCondition() S Returns the exit condition of the
activity instance.

FirstNotificationTime() S Returns the time the first
notification for the activity
instance is to occur or has
occurred.

FirstNotificationTimeIsNull() S Indicates whether a first
notification time is set.

FirstNotifiedPersons() S Returns the persons who received
a first notification for the activity
instance.

FullName() P Returns the fully qualified name
of the activity instance (dot
notation).

Icon() P Returns the icon associated with
the activity instance.

Implementation() P Returns the name of the
implementing program of the
activity instance.

ImplementationIsNull() P Indicates whether an
implementation is set.

InContainerName() S Returns the name of the input
container of the activity instance.

LastModificationTime() P Returns the last time a primary
attribute of the activity instance
was changed.

LastStateChangeTime() P Returns the last time the state of
the activity instance changed.

ManualExitMode() S Returns whether the exit mode of
the activity instance is manual.

ManualStartMode() S Returns whether the start mode
of the activity instance is manual.

Name() P Returns the name of the activity
instance.

OutContainerName() S Returns the name of the output
container of the activity instance.

PersistentOid() P Returns a representation of the
object identification of the activity
instance.

Priority() P Returns the priority of the
activity instance.

178 Programming Guide

Accessor methods Set Description

PriorityIsNull() P Indicates whether a priority is set.

ProcessAdmin() S Returns the process administrator
of the activity instance.

ProcessAdminIsNull() S Indicates whether a process
administrator is set.

ProcessInstanceName() P Returns the name of the process
instance the activity instance is
part of.

ProcessInstanceState() P Returns the state of the process
instance the activity instance is
part of.

ProcessInstanceSystemGroupName() S Returns the name of the system
group of the process instance the
item is part of.

ProcessInstanceSystemName() S Returns the name of the system
of the process instance the
activity instance is part of.

SecondNotificationTime() S Returns the time the second
notification for the activity
instance is to occur or has
occurred.

SecondNotificationTimeIsNull() S Indicates whether a second
notification time is set.

SecondNotifiedPersons() S Returns the persons who received
a second notification for the
activity instance.

Staff() S Returns all persons a work item
for the activity instance has been
assigned to.

StartCondition() S Returns the start condition of the
activity instance.

Starter() P Returns the starter of the activity
instance.

StarterIsNull() P Indicates whether a starter is set.

StartTime() P Returns the start time of the
activity instance.

StartTimeIsNull() P Indicates whether a start time is
set.

State P Returns the state of the activity
instance.

StateOfNotification() S Returns the notification state of
the activity instance.

SupportTools() P Returns the support tools
associated with the activity
instance.

SupportToolsIsNull() P Indicates whether support tools
are set.

SymbolLayout() S Returns the symbol layout of the
activity instance.

Chapter 30. Using the MQSeries Workflow Runtime API 179

Refer to “Action functions/subprograms” on page 76 for detailed descriptions of
action functions/subprograms.

Action methods Description Page

ObtainProcessInstanceMonitor() Retrieves the process instance monitor for
the process instance the activity instance is
part of.

215

SubProcessInstance() Retrieves the process instance implementing
the activity instance of type Process.

217

FmcjActivityInstanceNotification

An activity instance notification represents a notification for an activity instance.
All functions/subprograms of FmcjItem are also applicable to activity instance
notifications.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for an activity instance notification
object by copying.

Deallocate() Deallocates the storage for an activity instance notification object.

Kind() States that the object is an activity instance notification.

Equal() Compares two activity instance notifications.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when activity instance notifications are queried or if
this attribute is a secondary attribute (S) and set only after the refresh of a
specific activity instance notification.

Accessor methods Set Description

ActivityKind() P Returns the kind of the associated activity
instance, whether it is a program or process and
so on.

ErrorReason() S Returns an error object describing the reason why
teh associated activity instacne is in state InError.

ErrorReasonIsNull() S Indicates whether an error reason is set.

ExitCondition() S Returns the exit condition of the associated
activity instance.

Expired() P Returns whether the associated activity instance
has been started and is expired now.

FirstNotificationTime() S Returns the first notification time of the activity
instance, that is, the time when this notification
has been created.

Implementation() P Returns the implementing program or process
name of the associated activity instance.

ImplementationIsNull() P Indicates whether an implementation is set.

180 Programming Guide

Accessor methods Set Description

ManualExitMode() S Returns whether the exit mode of the associated
activity instance is manual.

ManualStartMode() S Returns whether the start mode of the associated
activity instance is manual.

Priority() P Returns the priority of the associated activity
instance.

SecondNotificationTime() S Returns the second notification time of the
associated activity instance.

SecondNotificationTimeIsNull() S Indicates whether a second notification time is
set.

Staff() S Returns all persons a work item for the associated
activity instance has been assigned to.

StartCondition() S Returns the start condition of the associated
activity instance.

StartOverdue() P Returns whether the start of the associated
activity instance is overdue.

State P Returns the state of the associated activity
instance.

StateOfNotification() S Returns the notification state of the associated
activity instance.

SupportTools() P Returns the support tools associated with the
activity instance.

SupportToolsIsNull() P Indicates whether support tools are set.

Refer to “Action functions/subprograms” on page 76 for detailed descriptions of
action functions/subprograms.

Action methods Description Page

PersistentObject() Retrieves the specified activity instance notification. 221

FmcjActivityInstanceNotificationVector

An activity instance notification vector represents the result of a query for activity
instance notifications.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
functions.

Vector methods Description

Deallocate() Deallocates an activity instance notification vector object.

FirstElement() Returns the first element of the activity instance notification vector.

NextElement() Returns the next element of the activity instance notification vector.

Size() Returns the number of elements in the activity instance notification vector.

FmcjActivityInstanceVector

An activity instance vector represents the result of a query for activity instances.

Chapter 30. Using the MQSeries Workflow Runtime API 181

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates an activity instance vector object.

FirstElement() Returns the first element of the activity instance vector.

NextElement() Returns the next element of the activity instance vector.

Size() Returns the number of elements in the activity instance
vector.

FmcjBlockInstanceMonitor

A block instance monitor object represents a monitor of an activity instance of type
Block. All functions/subprograms of a block instance monitor are also applicable to
process instance monitors.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms. All properties are primary because a block
instance monitor is a part of a process instance monitor.

Accessor methods Description

ActivityInstances() Returns the activity instances which are
represented by the block instance monitor,
that is, which are part of the activity
instance of type Block.

ControlConnectorInstances() Returns the control connector instances
which are represented by the block instance
monitor, that is, which are part of the
activity instance of type Block.

Refer to “Action functions/subprograms” on page 76 for detailed descriptions of
action functions/subprograms.

Action methods Description Page

ObtainBlockInstanceMonitor() Returns the block instance monitor for an
activity instance of type Block. The activity
instance is part of the set of activity
instances represented by the block instance
monitor.

225

ObtainProcessInstanceMonitor() Returns the process instance monitor for an
activity instance of type Process. The activity
instance is part of the set of activity
instances represented by the block instance
monitor.

227

Refresh() Refreshes the block instance monitor from
the MQSeries Workflow execution server.

229

FmcjContainer

A container represents an input or output data container of a process instance or
work item. All functions/subprograms of a container are applicable to read-only
and read/write containers.

182 Programming Guide

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

AllLeafCount() Returns the number of leaf elements of the container
including the MQSeries Workflow predefined members.

AllLeaves() Returns all leaf elements of the container including the
MQSeries Workflow predefined members.

ArrayBinaryLength() Returns the length of the value of the specified container leaf
element in the C language. The leaf is part of an array and of
type BINARY.

ArrayBinaryValue() Returns the value of the specified container leaf element in
the C language. The leaf is part of an array and of type
BINARY.

ArrayFloatValue() Returns the value of the specified container leaf element in
the C language. The leaf is part of an array and of type
FLOAT.

ArrayLongValue() Returns the value of the specified container leaf element in
the C language. The leaf is part of an array and of type
LONG.

ArrayStringLength() Returns the length of the value of the specified container leaf
element in the C language. The leaf is part of an array and of
type STRING.

ArrayStringValue() Returns the value of the specified container leaf element in
the C language. The leaf is part of an array and of type
STRING.

BinaryLength() Returns the length of the value of the specified container leaf
element in the C language. The leaf is of type BINARY.

BinaryValue() Returns the value of the specified container leaf element in
the C language. The leaf is of type BINARY.

FloatValue() Returns the value of the specified container leaf element in
the C language. The leaf is of type FLOAT.

GetElement() Provides access to a container element.

LeafCount() Returns the number of user-defined leaf elements of the
container.

Leaves() Returns all user-defined leaf elements of the container.

LongValue() Returns the value of the specified container leaf element in
the C language. The leaf is of type LONG.

MemberCount() Returns the number of structural members in the container.

StringLength() Returns the length of the value of the specified container leaf
element in the C language. The leaf is of type STRING.

StringValue() Returns the value of the specified container leaf element in
the C language. The leaf is of type STRING.

StructMembers() Returns the structural members of the container.

Type() Returns the type of the container, that is, the data structure
name.

Chapter 30. Using the MQSeries Workflow Runtime API 183

Activity implementation
methods

Description Page

InContainer() Accesses the input container from within an
activity implementation.

233

OutContainer() Accesses the output container from within an
activity implementation.

235

RemoteInContainer() Accesses the input container from within a
program started by an activity implementation.

236

RemoteOutContainer() Accesses the output container from within a
program started by an activity implementation.

238

SetRemoteOutContainer() Sets the output container from within a program
started by an activity implementation.

240

SetOutContainer() Sets the output container from within an activity
implementation.

242

FmcjContainerElement

A container element represents an arbitrary element of a container.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a container element object by
copying.

Deallocate() Deallocates the storage for a container element object.

Equal() Compares two container elements.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

ArrayBinaryLength() Returns the length of the value of the specified container
element leaf element in the C language. The leaf is part of an
array and of type BINARY.

ArrayBinaryValue() Returns the value of the specified container element leaf
element in the C language. The leaf is part of an array and of
type BINARY.

ArrayElements() Returns the array elements of the container element.

ArrayFloatValue() Returns the value of the specified container element leaf
element in the C language. The leaf is part of an array and of
type FLOAT.

ArrayLongValue() Returns the value of the specified container element leaf
element in the C language. The leaf is part of an array and of
type LONG.

ArrayStringLength() Returns the length of the value of the specified container
element leaf element in the C language. The leaf is part of an
array and of type STRING.

ArrayStringValue() Returns the value of the specified container element leaf
element in the C language. The leaf is part of an array and of
type STRING.

184 Programming Guide

Accessor methods Description

BinaryLength() Returns the length of the value of the specified container
element leaf element in the C language. The leaf is of type
BINARY.

BinaryValue() Returns the value of the specified container element leaf
element in the C language. The leaf is of type BINARY.

Cardinality() Returns the number of array elements of the container
element.

FloatValue() Returns the value of the specified container element leaf
element in the C language. The leaf is of type FLOAT.

FullName() Returns the fully-qualified dotted name of the container
element.

GetElement() Provides access to an element of the container element.

IsArray() Indicates whether the container element is an array.

IsLeaf() Indicates whether the container element is a leaf.

IsStruct() Indicates whether the container element is a structure itself.

LeafCount() Returns the number of leaf elements of the container
element.

Leaves() Returns all leaf elements of the container element.

LongValue() Returns the value of the specified container element leaf
element in the C language. The leaf is of type LONG.

MemberCount() Returns the number of structural members in the container
element.

Name() Returns the name of the container element.

StringLength() Returns the length of the value of the specified container
element leaf element in the C language. The leaf is of type
STRING.

StringValue() Returns the value of the specified container element leaf
element in the C language. The leaf is of type STRING.

StructMembers() Returns the structural members of the container element.

Type() Returns the type of the container element, that is, the data
structure name.

FmcjContainerElementVector

A container element vector represents the result of a query for container elements
in the C language.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
functions.

Vector methods Description

Deallocate() Deallocates a container element vector object.

FirstElement() Returns the first element of the container element vector.

NextElement() Returns the next element of the container element vector.

Size() Returns the number of elements in the container element vector.

Chapter 30. Using the MQSeries Workflow Runtime API 185

FmcjControlConnectorInstance

A control connector instance object represents a control connector between two
activity instances and its state.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a control
connector instance object by copying.

Deallocate() Deallocates the storage for a control connector
instance object.

Equal() Compares two control connector instance objects on
the basis of their source and target activity instances.

Kind() States the kind of the control connector instance,
whether it is a transition condition or the "otherwise"
connector.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms. All properties are primary properties.

Accessor methods Description

BendPoints() Returns the bend points of the control connector instance.

Name() Returns the name associated with the control connector
instance.

NameIsNull() Indicates whether a name is set.

PersistentOidOfSource() Returns the object ID of the activity instance which is the
source of this control connector instance.

PersistentOidOfTarget() Returns the object ID of the activity instance which is the
target of this control connector instance.

State() Returns the state of the control connector instance, whether it
is evaluated, and the result of evaluation.

TransitionCondition() Returns the transition condition of the control connector
instance.

TransitionConditionIsNull() Indicates whether a transition condition is set.

FmcjControlConnectorInstanceVector

A control connector instance vector represents the result of a query for control
connector instances in the C language.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a control connector instance vector object.

FirstElement() Returns the first element of the control connector
instance vector.

186 Programming Guide

Accessor methods Description

NextElement() Returns the next element of the control connector
instance vector.

Size() Returns the number of elements in the control
connector instance vector.

FmcjCDateTime

An FmcjCDateTime structure represents date and time values in the C and Cobol
language.

Accessor functions Description

FmcjDateTimeAsString Returns the string representation of the date/time structure.

FmcjDateTimeCurrentTime Returns the current date/time.

FmcjDateTimeIsValid Indicates whether the passed date/time is a valid date/time.

FmcjDllOptions

A DllOptions object represents the program implementation definitions for a
dynamic link library. These program implementations can not be executed on the
OS/390 version of MQSeries.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a DLL options object by copying.

Deallocate() Deallocates the storage for a DLL options object.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

EntryPointName() Returns the name of the entry point of the DLL.

ExecuteFenced() States whether the DLL should run in a separate address space.

ExecuteFencedIsNull() Indicates whether execute fended is set.

KeepLoaded() States whether the DLL should stay loaded.

KeepLoadedIsNull() Indicates whether keep loaded is set.

PathAndFileName() Returns the path and file name of the DLL.

FmcjError

An Error object represents a description of the reason why a work item is in state
InError.

Refer to “Chapter 12. Function/subprogram types” on page 53 for detailed
descriptions of basic functions/subprograms.

Chapter 30. Using the MQSeries Workflow Runtime API 187

Basic methods Description

constructor() Constructs an Error object.

Copy() Constructs an activity instance object by copying.

Deallocate() Destructs an activity instance object.

Equal() Compares two activity instance objects.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms. All properties are primary properties.

Accessor methods Description

MessageText() Returns the error as an NLS regarding formatted message.

Parameters() Returns the parameters of the error; these are to be incorporated
into the message text.

Rc() Returns the return code remembered in the Error object.

FmcjExecutionData

An execution data object represents data sent from an MQSeries Workflow
execution server.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for an execution
data object by copying.

Deallocate() Deallocates the storage for an execution data object.

Kind() Returns the kind of the data, whether it is describing a
work item creation, deletion, and so on.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms. All properties are primary properties.

Accessor methods Description

ActivityInstanceNotificationFromData() Creates an activity instance notification from
the execution data.

PersistentOid() Returns a representation of the object ID of
the object described by the execution data.

ProcessInstanceNotificationFromData() Creates a process instance notification from
the execution data.

WorkitemFromData() Creates a work item from the execution data.

FmcjExecutionService

An execution service object represents a user session to an execution server. All
functions/subprograms provided by FmcjService are also applicable.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

188 Programming Guide

Basic methods Description

Allocate() Allocates the storage for an execution service object. The execution
service to connect to is taken from the MQSeries Workflow user’s or
workstation profile.

AllocateForSystem() Allocates the storage for the specified execution service object.

Copy() Allocates and initializes the storage for an execution service object by
copying.

Deallocate() Deallocates the storage for an execution service object.

Equal() Compares two execution service objects.

Action methods Description Page

CreateProcessInstanceList() Creates a new process instance list on the
execution server.

248

CreateProcessTemplateList() Creates a new process template list on the
execution server.

254

CreateWorklist() Creates a new worklist on the execution
server.

259

Logoff() Logs off from the connected execution
server.

266

Logon() Logs on to the execution server. 268

QueryActivityInstanceNotifications() Retrieves the activity instance notifications
the logged-on user has access to.

272

QueryItems() Retrieves the work items or notifications the
logged-on user has access to.

277

QueryProcessInstanceLists() Retrieves the process instance lists the
logged-on user has access to.

283

QueryProcessInstanceNotifications() Retrieves the process instance notifications
the logged-on user has access to.

285

QueryProcessInstances() Retrieves the process instances the
logged-on user has access to.

291

QueryProcessTemplateLists() Retrieves the process template lists the
logged-on user has access to.

296

QueryProcessTemplates() Retrieves the process templates the
logged-on user has access to.

298

QueryWorkitems() Retrieves the work items the logged-on user
has access to.

302

QueryWorklists() Retrieves the worklists the logged-on user
has access to.

309

Receive() Receives execution data sent by an MQSeries
Workflow execution server.

311

TerminateReceive() Places information in the client input queue
to indicate that receiving execution data sent
by an MQSeries Workflow execution server
can end.

315

Activity implementation
methods

Description Page

Passthrough() Establishes a session between an activity
implementation and an execution server.

270

Chapter 30. Using the MQSeries Workflow Runtime API 189

Activity implementation
methods

Description Page

RemotePassthrough() Establishes a session between a program started
by an activity implementation and an execution
server.

313

FmcjExeOptions

An ExeOptions object represents the program implementation definitions for an
executable. These program implementations can not be executed on the OS/390
version of MQSeries.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for an EXE options object by copying.

Deallocate() Deallocates the storage for an EXE options object.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

AutomaticClose() States whether the window in which the EXE starts should
close when the EXE ends.

AutomaticCloseIsNull() Indicates whether automatic close is set.

Environment() States the environment settings for the EXE.

EnvironmentIsNull() Indicates whether an environment is set.

InheritEnvironment() States whether the environment settings should be merged
with the operating system environment settings.

PathAndFileName() Returns the path and file name of the EXE.

RunInXTerm() States whether the EXE should start in a separate xterm.

RunInXTermIsNull() Indicates whether run in xterm is set.

StartInForeGround() States whether the EXE should start in the foreground.

StartInForeGroundIsNull() Indicates whether start in foreground is set.

WindowStyle() States the initial window style.

WindowStyleIsNull() Indicates whether a window style is set.

WorkingDirectoryName() States the working directory for the EXE.

WorkingDirectoryNameIsNull()Indicates whether a working directory is set.

FmcjExternalOptions

An ExternalOptions object represents the program implementation definitions for
an external service.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

190 Programming Guide

Basic methods Description

constructor() Constructs an ExternalOptions object.

Copy() Allocates and initializes the storage for an EXE options object by copying.

Deallocate() Deallocates the storage for an EXE options object.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms. All properties are primary properties.

Accessor methods Description

BackwardMappingFormat() Specifies the format of the mapping from the structure
the executable uses to an MQSeries Workflow container.

BackwardMappingFormatISNull() Indicates whether a backward mapping format is set.

BackwardMappingParameters() Returns backward mapping parameters, if any.

BackwardMappingParameterIsNull() Indicates whether backward mapping parameters are
set.

Codepage() Specifies the code page of the service.

CodepageIsNull() Indicates whether a code page is set.

ExecutableName() Specifies the executable to be invoked by the invocation
type and service.

ExecutableType() Identifies the type of executable.

ForwardMappingFormat() Specifies the format for the mapping from an MQSeries
Workflow container to the structure the executable uses.

ForwardMappingFormatIsNull() Indicates whether a forward mapping format is set.

ForwardMappingParameters() Returns forward mapping parameters, if any.

ForwardMappingParameterIsNull() Indicates whether forward mapping parameters are set.

InvocationType() Specifies the invocation mechanism to invoke the
executable on the service.

IsLocalUser() Returns whether a local user is to be resolved insteadof
using the MQSeries Workflow user ID.

IsMappingRoutineCall() Specifies wheteher forward or backward mapping
routines are to be called.

IsSecurityRoutineCall() Specifies whether a security routine is to be called.

Mapping Type() Identifies the type of mapping that should occur.

Mapping TypeIsNull() Identifies whether a mapping type is set.

ServiceName() Identifies the service that is to be called.

ServiceType() Identifies the type of service to be called, for example
CICS and IMS.

TimeoutPeriod() Specifies a timeout duration.

TimeoutIntervall() Specifies how long the program execution agent or
server should wait for response from the started
service, forever, a time period or never.

TimeoutIntervallIsNull() Indicates whether a timeout intervall is set.

FmcjGlobal

An API global object serves to group global MQSeries Workflow API
functions/subprograms.

Chapter 30. Using the MQSeries Workflow Runtime API 191

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Connect() Initializes the API in the current thread.

Disconnect() Deinitializes the API in the current thread.

FmcjImplementationData

An implementation data object represents the program implementation definitions.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for an
implementation data object by copying.

Deallocate() Deallocates the storage for an implementation data
object.

Kind() States the actual kind of the implementation data,
whether it is a DLL or an EXE.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

CommandLineParameters() Returns the command line parameters to be passed to the
invoked program.

CommandLineParametersIsNull() Indicates whether command line parameters are set.

DllOptions() Returns the description of a DLL, if the implementation is
a DLL.

ExeOptions() Returns the description of an EXE, if the implementation is
an EXE.

ExternalOptions() Returns the description of external options, if the
implementation is an ExternalService.

Platform() Returns the operating system platform this implementation
data describes.

FmcjItem

An item represents a work item, an activity instance notification, or a process
instance notification. This means that all functions/subprograms of an item are
also applicable to work items, activity instance notifications, and process instance
notifications.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for an item object by copying.

192 Programming Guide

Basic methods Description

Deallocate() Deallocates the storage for an item object.

Equal() Compares two items.

IsComplete() Indicates whether the complete item information is available.

Kind() States the actual kind of the item, whether it is a work item or some kind
of notification.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when items are queried or if this attribute is a
secondary attribute (S) and set only after the refresh of a specific item.

Accessor methods Set Description

Category() P Returns the process category of the item.

CategoryIsNull() P Indicates whether a category is set.

CreationTime() P Returns the creation time of the item.

Description() P Returns the description of the item.

DescriptionIsNull() P Indicates whether a description is set.

Documentation() S Returns the documentation of the item.

DocumentationIsNull() S Indicates whether a documentation is set.

EndTime() S Returns the ending time of the item.

EndTimeIsNull() S Indicates whether an end time is set.

Icon() P Returns the icon associated with the item.

InContainerName() S Returns the name of the î of the item.

LastModificationTime() P Returns the last time a primary attribute of the
item was changed.

Name() P Returns the name of the item.

OutContainerName() S Returns the name of the ô of the item.

Owner() P Returns the owner of the item.

PersistentOid() P Returns a representation of the object
identification of the item.

ProcessAdmin() S Returns the process administrator of the item.

ProcessInstanceName() P Returns the name of the process instance the item
is part of.

ProcessInstanceState() P Returns the state of the process instance the item
is part of.

ProcessInstanceSystemGroupName() S Returns the name of the system group of the
process instance the item is part of.

ProcessInstanceSystemName() S Returns the name of the system of the process
instance the item is part of.

ReceivedAs() P Returns the reason why the item was received.

ReceivedTime() P Returns the time when the item was received.

StartTime() P Returns the start time of the item.

StartTimeIsNull() P Indicates whether a start time is set.

Chapter 30. Using the MQSeries Workflow Runtime API 193

Mutator methods Description Page

Update() Updates the item with the execution data sent by an
MQSeries Workflow execution server. The object IDs
of the item and of the object described by the
execution data must match.

70

Refer to “Action functions/subprograms” on page 76 for detailed descriptions of
action functions/subprograms.

Action methods Description Page

Delete() Deletes an item. 317

ObtainProcessInstanceMonitor() Retrieves the process instance monitor for the
process instance the item is part of.

319

ProcessInstance() Retrieves the process instance the item is part of. 321

Refresh() Retrieves the complete information of the item. 323

SetDescription() Sets the description of the item. 324

SetName() Sets the name of the item. 326

Transfer() Transfers an item to the specified user. 328

FmcjItemVector

An item vector represents the result of a query for items in the C language.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor
methods

Description

Deallocate() Deallocates an item vector object.

FirstElement() Returns the first element of the item vector.

NextElement() Returns the next element of the item vector.

Size() Returns the number of elements in the item vector.

FmcjMessage

A message object serves to access the MQSeries Workflow provided message
catalog.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor
methods

Description

MessageText() Returns an NLS regarding formatted message based on the message ID and
the parameters passed.

194 Programming Guide

FmcjPersistentList

A persistent list represents a persistent list definition. All functions/subprograms of
a persistent list are also applicable to process instance lists, process template lists,
and worklists.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

Description() Returns the description of the persistent list.

DescriptionIsNull() Indicates whether a description is set.

Filter() Returns the filter of the persistent list.

FilterIsNull() Indicates whether a filter is set.

Name() Returns the name of the persistent list.

OwnerOfList() Returns the owner of the persistent list.

OwnerOfListIsNull() Indicates whether an owner is set; a public list does not have an
owner.

SortCriteria() Returns the sort criteria of the persistent list.

SortCriteriaIsNull() Indicates whether sort criteria are set.

Threshold() Returns the threshold of the persistent list.

ThresholdIsNull() Indicates whether a threshold is set.

Type() Returns the type of the persistent list, whether it is a public or private
list.

Action methods Description Page

Delete() Deletes the persistent list. 331

Refresh() Refreshes the persistent list. 333

SetDescription() Sets the description of the persistent list. 334

SetFilter() Sets the filter of the persistent list. 336

SetSortCriteria() Sets the sort criteria of the persistent list. 338

SetThreshold() Sets the threshold of the persistent list. 339

FmcjPerson

A person object represents the settings of the logged-on user.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a person object by copying.

Deallocate() Deallocates the storage for a person object.

Equal() Compares two persons.

IsComplete() Indicates whether the complete person information is available.

Chapter 30. Using the MQSeries Workflow Runtime API 195

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when persons are queried or if this attribute is a
secondary attribute (S) and set only after the refresh of a specific person.

Note: The UserSettings() function/subprogram returns all attributes of a person,
primary and secondary.

Accessor methods Set Description

CategoriesAuthorizedFor() P Returns the categories the person is
authorized for.

CategoriesAuthorizedForAsAdmin() P Returns the categories the person is
authorized for as administrator.

Description() P Returns the description of the person.

DescriptionIsNull() P Indicates whether a description is set.

FirstName() P Returns the first name of the person.

FirstNameIsNull() P Indicates whether a first name is set.

IsAbsent() P Indicates whether the person is absent.

IsAdminForCategory() P Indicates whether the person has
administrator rights for the specified
category.

IsAdministrator() S Indicates whether the person is an
administrator.

IsAuthorizedForAllCategories() P Indicates whether the person is
authorized for all categories.

IsAuthorizedForAllCategoriesAsAdmin() P Indicates whether the person is
authorized for all categories as
administrator.

IsAuthorizedForAllPersons() P Indicates whether the person is
authorized to see the items of all
persons.

IsAuthorizedForAuthorizationDefinition() P Indicates whether the person is
authorized to define authorizations.

IsAuthorizedForOperationAdministration() P Indicates whether the person is
authorized for operational
administrations.

IsAuthorizedForProcessDefinition() P Indicates whether the person is
authorized to define process models.

IsAuthorizedForStaffDefinition() P Indicates whether the person is
authorized to define persons.

IsAuthorizedForTopologyDefinition() P Indicates whether the person is
authorized to define topological data.

IsManager() S Indicates whether the person is a
manager.

IsResetAbsence() P Indicates whether the absence flag
should be reset when the person logs
on.

LastName() P Returns the last name of the person.

196 Programming Guide

Accessor methods Set Description

LastNameIsNull() P Indicates whether a last name is set.

Level() P Returns the level of the person.

Manager() S Returns the user identification of the
person’s manager.

ManagerIsNull() S Indicates whether the person’s manager
is set.

MiddleName() P Returns the middle name of the person.

MiddleNameIsNull() P Indicates whether a middle name is set.

NamesOfManagedOrganizations() S Returns the names of organizations the
person manages.

NamesOfRoles() P Returns the names of roles the person
belongs to.

NamesOfRolesToCoordinate() S Returns the names of roles the person
can coordinate.

OrganizationName() P Returns the name of the organization
the person belongs to.

OrganizationNameIsNull() P Indicates whether an organization name
is set.

PersonID() P Returns the person ID of the person.

PersonIDIsNull() P Indicates whether a person ID is set.

PersonsAuthorizedFor() P Returns the persons this person is
authorized for.

PersonsAuthorizedForMe() S Returns the persons which are
authorized for this person.

PersonsToStandInFor() S Returns the persons this person stands
in for.

Phone() P Returns the phone number of the
person.

PhoneIsNull() P Indicates whether a phone is set.

SecondPhone() P Returns the alternate phone number of
the person.

SecondPhoneIsNull() P Indicates whether an alternate phone is
set.

Substitute() P Returns the substitute of the person.

SubstituteIsNull() P Indicates whether a substitute is set.

SystemName() P Returns the home system of the person.

UserID() P Returns the user identification of the
person.

Action methods Description Page

Refresh() Retrieves the complete information of the process
instance.

343

SetAbsence() Sets the absence indicator of the person. 344

SetSubstitute() Sets the substitute of this person. 346

Chapter 30. Using the MQSeries Workflow Runtime API 197

FmcjPoint

A point object represents a bend point of a control connector.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a point object
by copying.

Deallocate() Deallocates the storage for a point object.

Equal() Compares two point objects on the basis of their
contents.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms. All properties are primary properties.

Accessor methods Description

XPosition() Returns the x-coordinate of the point.

YPosition() Returns the y-coordinate of the point.

FmcjPointVector

A point vector represents the result of a query for points.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a point vector object.

FirstElement() Returns the first element of the point vector.

NextElement() Returns the next element of the point vector.

Size() Returns the number of elements in the point vector.

FmcjProcessInstance

A process instance object represents an instance of a workflow process template.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a process instance object by
copying.

Deallocate() Deallocates the storage for a process instance object.

Equal() Compares two process instances.

IsComplete() Indicates whether the complete process instance information is available.

198 Programming Guide

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when process instances are queried or if this attribute is
a secondary attribute (S) and set only after the refresh of a specific process
instance.

Accessor methods Set Description

AuditMode() S Returns the audit mode of the process instance.

Category() P Returns the category of the process instance.

CategoryIsNull() P Indicates whether a category is set.

CreationTime() S Returns the creation time of the process instance.

Creator() S Returns the creator of the process instance.

Description() P Returns the description of the process instance.

DescriptionIsNull() P Indicates whether a description is set.

Documentation() S Returns the documentation of the process
instance.

DocumentationIsNull() S Indicates whether a documentation is set.

EndTime() S Returns the end time of the process instance.

EndTimeIsNull() S Indicates whether an end time is set.

Icon() P Returns the icon associated with the process
instance.

InContainerName() S Returns the name of the î of the process instance.

InContainerNeeded() P Indicates whether an input container is needed to
start the process instance.

LastModificationTime() P Returns the last time a primary attribute of the
process instance was changed.

LastStateChangeTime() P Returns the last time the state of the process
instance was changed.

Name() P Returns the name of the process instance.

NotificationTime() S Returns the notification time of the process
instance.

NotificationTimeIsNull() S Indicates whether a notification time is set.

NotifiedPerson() S Returns the person who received the notification.

NotifiedPersonIsNull() S Indicates whether a notified person is set.

OrganizationName() S Returns the name of the organization of the
process instance.

OrganizationNameIsNull() S Indicates whether an organization name is set.

OutContainerName() S Returns the name of the ô of the process instance.

ParentName() P Returns the name of the parent process instance
of this process instance.

ParentNameIsNull() P Indicates whether a parent name is set.

PersistentOid() P Returns a representation of the object
identification of the process instance.

ProcessAdmin() S Returns the name of the process administrator of
the process instance.

Chapter 30. Using the MQSeries Workflow Runtime API 199

Accessor methods Set Description

ProcessAdminIsNull() S Indicates whether a process administrator is set.

ProcessTemplateName() P Returns the name of the process template the
process instance is derived from.

RoleName() S Returns the name of the role of the process
instance.

RoleNameIsNull() S Indicates whether a role is set.

Starter() S Returns the starter of the process instance.

StarterIsNull() S Indicates whether a starter is set.

StartTime() S Returns the start time of the process instance.

StartTimeIsNull() S Indicates whether a start time is set.

State() P Returns the state of the process instance.

StateOfNotification() S Returns the notification state of the process
instance.

SuspensionExpirationTime() P Returns the suspension expiration time of the
process instance.

SuspensionExpirationTimeIsNull() P Indicates whether the suspension expiration time
is set.

SuspensionTime() P Returns the time the process instance was
suspended.

SuspensionTimeIsNull() P Indicates whether the suspension time is set.

SystemGroupName() P Returns the name of the system group where the
process instance runs.

SystemName() P Returns the name of the system where the process
instance runs.

TopLevelName() P Returns the name of the top level process instance
of this process instance.

Action methods Description Page

Delete() Deletes the process instance. 349

InContainer() Retrieves the input container of the process
instance.

351

PersistentObject() Retrieves the process instance specified by the
passed object identification.

355

Refresh() Retrieves the complete information of the process
instance.

357

Resume() Resumes the execution of a suspended process
instance.

358

SetDescription() Sets the description of the process instance. 360

SetName() Sets the name of the process instance. 362

Start() Starts the process instance. 364

Suspend() Suspends the process instance. 366

SuspendUntil() Suspends the process instance until the specified
time.

366

Terminate() Terminates the process instance. 368

200 Programming Guide

FmcjProcessInstanceList

A process instance list represents a group of process instances. All
functions/subprograms of a persistent list are also applicable to process instance
lists.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a process instance list object by
copying.

Deallocate() Deallocates the storage for a process instance list object.

Equal() Compares two process instance lists.

Action methods Description Page

QueryProcessInstances() Retrieves the process instances qualifying via the
process instance list.

371

FmcjProcessInstanceListVector

A process instance list vector represents the result of a query for process instance
lists.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor
methods

Description

Deallocate() Deallocates a process instance list vector object.

FirstElement() Returns the first element of the process instance list vector.

NextElement() Returns the next element of the process instance list vector.

Size() Returns the number of elements in the process instance list vector.

FmcjProcessInstanceMonitor

A process instance monitor object represents a monitor of a process instance. All
functions/subprograms of FmcjBlockInstanceMonitor are also applicable to process
instance monitors.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Deallocate() Deallocates the storage for a process instance
monitor object. All block instance monitors contained
are also deallocated.

Chapter 30. Using the MQSeries Workflow Runtime API 201

FmcjProcessInstanceNotification

A process instance notification represents a notification raised for a process
instance. All functions/subprograms of an FmcjItem are also applicable to process
instance notifications.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a process instance notification object
by copying.

Deallocate() Deallocates the storage for a process instance notification object.

Kind() States that the object is a process instance notification.

Equal() Compares two process instance notifications.

Refer to “Action functions/subprograms” on page 76 for detailed descriptions of
action functions/subprograms.

Action methods Description Page

PersistentObject() Retrieves the specified process instance
notification.

375

FmcjProcessInstanceNotificationVector

A process instance notification vector represents the result of a query for process
instance notifications.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor
methods

Description

Deallocate() Deallocates a process instance notification vector object.

FirstElement() Returns the first element of the process instance notification vector.

NextElement() Returns the next element of the process instance notification vector.

Size() Returns the number of elements in the process instance notification vector.

FmcjProcessInstanceVector

A process instance vector represents the result of a query for process instances.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor
methods

Description

Deallocate() Deallocates the storage for a process instance vector object.

FirstElement() Returns the first element of the process instance vector.

202 Programming Guide

Accessor
methods

Description

NextElement() Returns the next element of the process instance vector.

Size() Returns the number of elements in the process instance vector.

FmcjProcessTemplate

A process template object represents the Runtime equivalent of a Buildtime
workflow process model.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a process template object by
copying.

Deallocate() Deallocates the storage for a process template object.

Equal() Compares two process templates.

IsComplete() Indicates whether the complete process template information is available.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when process templates are queried or if this attribute
is a secondary attribute (S) and set only after the refresh of a specific process
template.

Accessor methods Set Description

AuditMode() S Returns the audit mode of the process template.

Category() P Returns the category of the process template.

CategoryIsNull() P Indicates whether a category is set.

CreationTime() P Returns the creation time of the process template.

Description() P Returns the description of the process template.

DescriptionIsNull() P Indicates whether a description is set.

Documentation() S Returns the documentation of the process
template.

DocumentationIsNull() S Indicates whether a documentation is set.

Icon() P Returns the icon associated with the process
template.

InContainerName() S Returns the name of the î of the process template.

InContainerNeeded() P Indicates whether an input container is needed to
start an instance of the process template.

LastModificationTime() P Returns the last time a primary attribute of the
process template was changed.

Name() P Returns the name of the process template.

OrganizationName() S Returns the name of the organization of the
process template.

Chapter 30. Using the MQSeries Workflow Runtime API 203

Accessor methods Set Description

OrganizationNameIsNull() S Indicates whether an organization name is set.

OutContainerName() S Returns the name of the ô of the process
template.

PersistentOid() P Returns a representation of the object
identification of the process template.

ProcessAdmin() S Returns the name of the process administrator of
an instance of the process template.

ProcessAdminIsNull() S Indicates whether a process administrator is set.

RoleName() S Returns the name of the role of the process
template.

RoleNameIsNull() S Indicates whether a role is set.

ValidFromTime() P Returns the time when the process template
becomes valid.

Action methods Description Page

CreateAndStartInstance() Creates and starts an instance of the process
template.

379

CreateInstance() Creates an instance of the process template. 385

CreateAndSuspendInstance() Creates and suspends an instance of the process
template.

382

Delete() Deletes the process template. 388

InContainer() Retrieves the input container of the process
template.

390

PersistentObject() Retrieves the process template specified by the
passed object identification.

391

Refresh() Retrieves the complete information of the process
template.

393

FmcjProcessTemplateList

A process template list represents a group of process templates. All
functions/subprograms of a persistent list are also applicable to process template
lists.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a process template list object by
copying.

Deallocate() Deallocates the storage for a process template list object.

Equal() Compares two process template lists.

Action methods Description Page

QueryProcessTemplates() Retrieves the process templates qualifying via the
process template list.

395

204 Programming Guide

FmcjProcessTemplateListVector

A process template list vector represents the result of a query for process template
lists.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor
methods

Description

Deallocate() Deallocates a process template list vector object.

FirstElement() Returns the first element of the process template list vector.

NextElement() Returns the next element of the process template list vector.

Size() Returns the number of elements in the process template list vector.

FmcjProcessTemplateVector

A process template vector represents the result of a query for process templates.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor
methods

Description

Deallocate() Deallocates the storage for a process template vector object.

FirstElement() Returns the first element of the process template vector.

NextElement() Returns the next element of the process template vector.

Size() Returns the number of elements in the process template vector.

FmcjProgramData

A program data object represents the program implementation definitions.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a program data object by copying.

Deallocate() Deallocates the storage for a program data object.

Equal() Compares two program data objects.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

Description() Returns the description of the implementing program.

DescriptionIsNull() Indicates whether a description is set.

Icon() Returns the icon associated with the implementing program.

Chapter 30. Using the MQSeries Workflow Runtime API 205

Accessor methods Description

Implementations() Returns the implementation definitions of the program.

InContainer() Returns the î of the program.

IsUnattended() States whether the program can run unattended.

OutContainer() Returns the ô of the program.

FmcjReadOnlyContainer

A read-only container represents an input data container of a work item. All
functions/subprograms of a container are applicable to read-only containers.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a read-only container object by
copying.

Deallocate() Deallocates the storage for a read-only container object.

Equal() Compares two read-only containers.

FmcjReadWriteContainer

A read/write container represents an î of a process instance or an ô of a work
item. All functions/subprograms of a container are applicable to read/write
containers.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a read/write container object by
copying.

Deallocate() Deallocates the storage for a read/write container object.

Equal() Compares two read/write containers.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

SetArrayBinaryValue() Sets the value of the specified container leaf element in the C
language. The leaf element is part of an array and of type
BINARY.

SetArrayFloatValue() Sets the value of the specified container leaf element in the C
language. The leaf element is part of an array and of type
FLOAT.

SetArrayLongValue() Sets the value of the specified container leaf element in the C
language. The leaf element is part of an array and of type
LONG.

206 Programming Guide

Accessor methods Description

SetArrayStringValue() Sets the value of the specified container leaf element in the C
language. The leaf element is part of an array and of type
STRING.

SetBinaryValue() Sets the value of the specified container leaf element in the C
language. The leaf element is of type BINARY.

SetFloatValue() Sets the value of the specified container leaf element in the C
language. The leaf element is of type FLOAT.

SetLongValue() Sets the value of the specified container leaf element in the C
language. The leaf element is of type LONG.

SetStringValue() Sets the value of the specified container leaf element in the C
language. The leaf element is of type STRING.

FmcjResult

A result object represents the result of a function/subprogram call.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

MessageText() Returns the result as an NLS regarding formatted message.

ObjectOfCurrentThread() Returns the result object associated with the thread from
where this function/subprogram is called.

Origin() Returns the origin of the result, that is, file, line, function.

Parameters() Returns the parameters of the result; these are to be
incorporated into the message text.

Rc() Returns the return code remembered in the result object.

FmcjService

A service object represents common aspects of MQSeries Workflow service objects.
All functions/subprograms of a service are also applicable to execution services.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

IsLoggedOn() Indicates whether a successful logon request has been issued.

SetTimeOut() Sets the time the client will wait for a server to answer (see
“Setting a value of type long” on page 68).

SystemGroupName() Returns the name of the system group where the server
resides.

SystemName() Returns the name of the system where the server resides.

Timeout() Returns the time the client will wait for a server to answer.

UserID() Returns the user identification of the logged-on user.

Chapter 30. Using the MQSeries Workflow Runtime API 207

Action methods Description Page

SetPassword() Sets the password of the logged-on user. 405

UserSettings() Retrieves the user settings of the logged-on user. 407

FmcjStringVector

A string vector serves to represents a set of string information. For example, a
string vector is returned to show the categories the logged-on user is authorized
for. Or, a string vector must be used to specify the persons to stand in for.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor methods Description

AddElement() Adds a string to the string vector.

Allocate() Allocates the storage for a string vector.

Deallocate() Deallocates the storage for a string vector.

FirstElement() Returns the first element of the string vector.

FirstResultParmElement() Returns the first element of a string vector representing the
parameters of a result object; calling this function does not
change the result object and thus allows for a consistent read.

NextElement() Returns the next element of the string vector.

NextResultParmElement() Returns the next element of a string vector representing the
parameters of a result object; calling this function does not
change the result object and thus allows for a consistent read.

RemoveElement() Removes a string from the string vector.

ResultParmDeallocate() Deallocates the storage for a string vector representing the
parameters of a result object; calling this function does not
change the result object and thus allows for a consistent read.

ResultParmSize() Returns the number of elements in a string vector
representing the parameters of a result object; calling this
function does not change the result object and thus allows for
a consistent read.

Size() Returns the number of elements in the string vector.

FmcjSymbolLayout

A symbol layout object represents graphical information of a named icon.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a symbol
layout object by copying.

Deallocate() Deallocates the storage for a symbol layout object.

Equal() Compares two symbol layout objects on the basis of
their contents.

208 Programming Guide

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms. All properties are primary properties.

Accessor methods Description

XPosition() Returns the x-coordinate of the named icon.

XPositionOfName() Returns the x-coordinate of the name associated to the icon.

YPosition() Returns the y-coordinate of the named icon.

YPositionOfName() Returns the y-coordinate of the name associated to the icon.

FmcjWorkitem

A work item represents an activity instance assigned to a user in order to be
worked on. All functions/subprograms of FmcjItem are also applicable to work
items.

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a work item object by copying.

Deallocate() Deallocates the storage for a work item object.

Kind() States that the object is a work item.

Equal() Compares two work items.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when work items are queried or if this attribute is a
secondary attribute (S) and set only after the refresh of a specific work item.

Accessor methods Set Description

ActivityKind() P Returns the kind of the associated activity
instance, whether it is a program or process and
so on.

ErrorReason() S Returns an error object describing the reason why
the associated activity instance is in state InError.

ErrorReasonIsNull() S Indicated whether an error reason is set.

ExitCondition() S Returns the exit condition of the work item.

FirstNotificationTime() S Returns the first notification time of the work
item.

FirstNotificationTimeIsNull() S Indicates whether a first notification time is set.

Implementation() P Returns the name of the implementing program
of the associated activity instance.

ImplementationIsNull() P Indicates whether an implementation is set.

ManualExitMode() S Returns whether the exit mode of the work item
is manual.

ManualStartMode() S Returns whether the start mode of the work item
is manual.

Chapter 30. Using the MQSeries Workflow Runtime API 209

Accessor methods Set Description

Priority() P Returns the priority of the work item.

SecondNotificationTime() S Returns the second notification time of the work
item.

SecondNotificationTimeIsNull() S Indicates whether a second notification time is
set.

Staff() S Returns all persons a work item for the associated
activity instance has been assigned to.

StartCondition() S Returns the start condition of the work item.

State P Returns the state of the work item.

StateOfNotification() S Returns the notification state of the work item.

SupportTools() P Returns the support tools associated with the
work item.

SupportToolsIsNull() P Indicates whether support tools are set.

Action methods Description Page

CheckIn() Checks in the work item. 411

CheckOut() Checks out the work item. 413

Finish() Finishes a manual exit work item. 415

ForceFinish() Force finishes the work item. 417

ForceRestart() Force restarts the work item. 419

InContainer() Retrieves the input container of the work item. 421

OutContainer() Retrieves the output container of the work item. 422

PersistentObject() Retrieves the specified work item. 424

Restart() Restarts the work item. 426

Start() Starts the work item. 427

Terminate() Terminates the work item. 429

FmcjWorkitemVector

A work item vector represents the result of a query for work items.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor
methods

Description

Deallocate() Deallocates the storage for a work item vector object.

FirstElement() Returns the first element of the work item vector.

NextElement() Returns the next element of the work item vector.

Size() Returns the number of elements in the work item vector.

FmcjWorklist

A worklist represents a group of items. All functions/subprograms of a persistent
list are also applicable to worklists.

210 Programming Guide

Refer to “Basic functions/subprograms” on page 53 for detailed descriptions of
basic functions/subprograms.

Basic methods Description

Copy() Allocates and initializes the storage for a worklist object by copying.

Deallocate() Deallocates the storage for a worklist object.

Equal() Compares two worklists.

Refer to “Accessor function/subprograms” on page 62 for detailed descriptions of
accessor functions/subprograms.

Accessor methods Description

BeepOption() Indicates whether a beep should sound when the
contents of the worklist changes.

Action methods Description Page

QueryActivityInstanceNotifications() Retrieves the activity instance notifications
qualifying via the worklist.

431

QueryItems() Retrieves all items qualifying via the
worklist.

433

QueryProcessInstanceNotifications() Retrieves the process instance notifications
qualifying via the worklist.

436

QueryWorkitems() Retrieves the work items qualifying via the
worklist.

438

FmcjWorklistVector

A worklist vector represents the result of a query for worklists.

Refer to “Handling collections” on page 30 for detailed descriptions of vector
access functions.

Accessor
methods

Description

Deallocate() Deallocates a worklist vector object.

FirstElement() Returns the first element of the worklist vector.

NextElement() Returns the next element of the worklist vector.

Size() Returns the number of elements in the worklist vector.

Chapter 30. Using the MQSeries Workflow Runtime API 211

212 Programming Guide

Part 7. Application programming interfaces

This chapter describes the MQSeries Workflow application programming interfaces
in alphabetical order.

Each entry contains a functional description of the API function/subprogram
followed by subsections:

Usage notes
Points to general information about the nature of this call.

Authorization
States the authority required to have the API call executed.

Required connection
States the MQSeries Workflow server a session must have been established
with.

API include file
States the name of the file to be included for the API function/subprogram
declaration.

C language signature
Shows the C language syntax of the API call.

Cobol language signature
Shows the Cobol language syntax of the API call.

Parameters
Describes each of the parameters together with an indicator whether the
parameter is an input or output parameter.

Return type
Describes the value returned by the call.

Return codes
Lists all possible return codes which may be raised by this call.

Examples
Points to an example of the call.

© Copyright IBM Corp. 1999 213

214 Programming Guide

Chapter 31. FmcjActivityInstance functions/subprograms

An FmcjActivityInstance object represents an instance of an activity of a process
template. An activity instance is uniquely identified by its object identifier or by its
fully qualified name within the process instance. The fully qualified name of an
activity instance is a name in dot notation where the hierarchy of nested activities
of type Block is presented from left to right, and their names are separated by a
dot.

FmcjActivityInstanceObtainProcessInstanceMonitor()

This function/subprogram retrieves the process instance monitor for the process
instance the activity instance is part of from the MQSeries Workflow execution
server (action call).

When the deep option is specified, all activity instances of type Block are resolved,
that is, their block instance monitors are also fetched from the server.

Note: Deep is currently not supported.

The application is completely responsible for the ownership of objects, that is, it is
not checked whether the process instance monitor handle already points to some
object when a new one is assigned.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

v ’’

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

© Copyright IBM Corp. 1999 215

C language signature

C language signature
APIRET FMC_APIENTRY FmcjActivityInstanceObtainProcessInstanceMonitor(

FmcjActivityInstanceHandle hdlInstance,
bool deep,
FmcjProcessInstanceMonitorHandle * monitor)

Cobol language signature

Cobol language signature
PERFORM FmcjAINObtainProcInstMon.

FmcjAINObtainProcInstMon.

CALL "FmcjItemObtainProcessInstanceMonitor"
USING
BY VALUE

hdlItem
deep

BY REFERENCE
monitor

RETURNING
intReturnValue.

Parameters
hdlInstance

Input. The activity instance whose process instance monitor is to be
retrieved.

deep Input. An indicator whether activity instances of type Block are to be
resolved, that is, their monitor is also to be provided. Note, deep is
currently ignored.

monitor
Input/Output. The address of the handle to the process instance monitor
respectively the process instance monitor object to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does not yet
represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

216 Programming Guide

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the connection
should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjActivityInstanceSubProcessInstance()

This function/subprogram retrieves the process instance which is implementing
the activity instance from the MQSeries Workflow execution server (action call).

All information about the process instance, primary and secondary, is retrieved.

The application is completely responsible for the ownership of objects, that is, it is
not checked whether the process instance monitor handle already points to some
object when a new one is assigned.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

v ’’

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

Chapter 31. FmcjActivityInstance functions/subprograms 217

C language signature

C language signature
APIRET FMC_APIENTRY FmcjActivityInstanceSubProcessInstance(

FmcjActivityInstanceHandle hdlInstance,
FmcjProcessInstanceHandle * instance)

Cobol language signature

Cobol language signature
PERFORM FmcjAISubProcInst.

FmcjAISubProcInst.

CALL "FmcjActivityInstanceSubProcessInstance"
USING
BY VALUE

hdlInstance
BY REFERENCE

instance
RETURNING

intReturnValue.

Parameters
hdlInstance

Input. The handle of the activity instance object to be queried.

instance
Input/Output. The subprocess instance object to be retrieved (initialized).

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does not yet
represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the connection
should be established is not defined in your profile.

218 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 31. FmcjActivityInstance functions/subprograms 219

220 Programming Guide

Chapter 32. FmcjActivityInstanceNotification
functions/subprograms

An FmcjActivityInstanceNotification object represents a notification on an activity
instance assigned to a user.

Other items assigned to users are process instance notifications and work items.
FmcjItem represents the common properties of such items. In the C++
implementation, FmcjActivityInstanceNotification is thus a subclass of the
FmcjItem class. Similarly, in the C and Cobol language, it takes common
implementations of functions from FmcjItem.

An activity instance notification is uniquely identified by its object identifier.

FmcjActivityInstanceNotificationPersistentObject()

This function/subprogram retrieves the activity instance notification identified by
the passed object identifier from the MQSeries Workflow execution server (action
call).

The MQSeries Workflow execution server from which the activity instance
notification is to be retrieved is identified by the service object. The activity
instance notification handle to be initialized must be a null pointer, respectively the
activity instance notification object to be initialized must be empty. The transient
object is then updated with all information (primary and secondary) of the activity
instance notification.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjActivityInstanceNotificationPersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjActivityInstanceNotificationHandle * hdlitem)

© Copyright IBM Corp. 1999 221

Cobol language signature

Cobol language signature
PERFORM FmcjAINPersistentObj.

FmcjAINPersistentObj.

CALL "FmcjActivityInstanceNotificationPersistentObject"
USING
BY VALUE

serviceValue
oid

BY REFERENCE
hdlItem

RETURNING
intReturnValue.

Parameters
service

Input. The service object representing the session with the execution server.

oid Input. The object identifier of the activity instance notification to be
retrieved.

hdlItem
Input/Output. The address of the handle to the activity instance
notification object to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance notification does no longer exist.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

222 Programming Guide

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 32. FmcjActivityInstanceNotification functions/subprograms 223

224 Programming Guide

Chapter 33. FmcjBlockInstanceMonitor
functions/subprograms

An FmcjBlockInstanceMonitor object represents a monitor for an activity instance
of type Block.

Note: The ownership of a block instance monitor stays with the embracing process
instance monitor. A block instance monitor is automatically deleted when
the process instance monitor is deleted. After that action, using the block
instance monitor handle or object is invalid.

An FmcjBlockInstanceMonitor object represents the common aspects of monitors.
In the C++ implementation, it is the superclass of the FmcjProcessInstanceMonitor
class. Similarly, in the C language, it provides for common implementations of
functions.

FmcjBlockInstanceMonitorObtainBlockInstance Monitor()

This function/subprogram retrieves the block instance monitor for the specified
activity instance from the MQSeries Workflow execution server (action call).

The activity instance must be of type Block.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol)

© Copyright IBM Corp. 1999 225

C language signature

C language signature
FmcjBlockInstanceMonitorHandle
FMC_APIENTRY FmcjBlockInstanceMonitorObtainBlockInstanceMonitor(

FmcjBlockInstanceMonitorHandle hdlMonitor,
FmcjActivityInstanceHandle activity)

Cobol language signature

Cobol language signature
PERFORM FmcjBIMObtainBlockInstMon.

FmcjBIMObtainBlockInstMon.

CALL
"FmcjBlockInstanceMonitorObtainBlockInstanceMonitor"

USING
BY VALUE

hdlMonitor
activity

RETURNING
FmcjBIMHandleReturnValue.

Parameters
activity

Input. The activity instance of type Block whose block instance monitor is
to be retrieved.

Return types
FmcjBlockInstanceMonitor*/Handle

A pointer to the block instance monitor object respectively the handle to
the block instance monitor.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does not yet
represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The specified activity instance is not described by the block instance
monitor.

FMC_ERROR_WRONG_KIND(501)
The specified activity instance is not of type Block.

226 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the connection
should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjBlockInstanceMonitorObtainProcessInstance Monitor()

This function/subprogram retrieves the process instance monitor for the specified
activity instance from the MQSeries Workflow execution server (action call).

The activity instance must be of type Process.

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also fetched from the server.

Note: Deep is currently not supported.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol)

Chapter 33. FmcjBlockInstanceMonitor functions/subprograms 227

C language signature

C language signature
FmcjProcessInstanceMonitorHandle
FMC_APIENTRY FmcjBlockInstanceMonitorObtainProcessInstanceMonitor(

FmcjBlockInstanceMonitorHandle hdlMonitor,
FmcjActivityInstanceHandle activity,
bool deep)

Cobol language signature

Cobol language signature
PERFORM FmcjBIMObtainProcInstMon.

FmcjBIMObtainProcInstMon.

CALL
"FmcjBlockInstanceMonitorObtainProcessInstanceMonitor"

USING
BY VALUE

hdlMonitor
activity
deep

RETURNING
FmcjPIMHandleReturnValue.

Parameters
activity

Input. The activity instance of type Process whose process instance monitor
is to be retrieved.

deep Input. An indicator whether activity instances of type Block are to be
resolved, that is, their monitor is also to be provided. Note, deep is
currently ignored.

Return types
FmcjProcessInstanceMonitor*/Handle

A pointer to the process instance monitor object respectively the handle to
the process instance monitor.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does not yet
represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

228 Programming Guide

FMC_ERROR_DOES_NOT_EXIST(118)
The specified activity instance is not described by the block instance
monitor.

FMC_ERROR_WRONG_KIND(501)
The specified activity instance is not of kind Process.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the connection
should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjBlockInstanceMonitorRefresh()

This function/subprogram refreshes the block instance monitor from the MQSeries
Workflow execution server (action call).

All information about the block instance monitor is retrieved.

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also refreshed from the server.

Note: Deep is currently not supported.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol)

Chapter 33. FmcjBlockInstanceMonitor functions/subprograms 229

C language signature

C language signature
APIRET FMC_APIENTRY FmcjBlockInstanceMonitorRefresh(

FmcjBlockInstanceMonitorHandle hdlMonitor,
bool deep)

Cobol language signature

Cobol language signature
PERFORM FmcjBIMRefresh.

FmcjBIMRefresh.

CALL "FmcjBlockInstanceMonitorRefresh"
USING
BY VALUE

hdlMonitor
deep

RETURNING
intReturnValue.

Parameters
hdlMonitor

Input. The handle of the block instance monitor to be refreshed.

deep Input. An indicator whether activity instances of type Block are to be
resolved, that is, their monitor is also to be provided. Note, deep is
currently ignored.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does not yet
represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the connection
should be established is not defined in your profile.

230 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 33. FmcjBlockInstanceMonitor functions/subprograms 231

232 Programming Guide

Chapter 34. FmcjContainer functions/subprograms

An FmcjContainer object represents a data container of a process template, process
instance, work item, activity implementation, or support tool. A container can be a
read-only input container or a read/write input or output container.

An FmcjContainer object represents the common aspects of read-only and
read/write containers. In the C++ implementation, it is the superclass of the
FmcjReadOnlyContainer and FmcjReadWriteContainer classes. Similarly, in the C
and Cobol language, it provides for common implementations of functions.

The functions/subprograms defined on the FmcjContainer class allow to access the
values of data members of a basic type (container leaves), or to get a substructure
of a container, an FmcjContainerElement object.

FmcjContainerInContainer()

This function/subprogram retrieves the input container from the CICS
COMMAREA/IMS I/O Area.

It can be used from within an activity implementation or support tool.

Note that this function/subprogram call will fail after the COMMAREA/ I/O Area
has been changed with FmcjContainerSetOutContainer or
FmcjContainerSetRemoteOutContainer.

Properties

Usage notes
v See “Activity implementation functions/subprograms” on page 76 for general

information.

Authorization

Be an activity implementation or support tool

Required connection

None but active MQSeries Workflow program execution server

API include file

Runtime: fmcjccon.h (C language) or fmcjcrun.h (C language) respectively
fmcvars.cpy and fmcperf.cpy (Cobol language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjContainerInContainer(

FmcjReadOnlyContainerHandle * input)

© Copyright IBM Corp. 1999 233

Cobol language signature

Cobol language signature
PERFORM FmcjCInCtnr.

FmcjCInCtnr.

CALL "FmcjContainerInContainer"
USING
BY REFERENCE

inputValue
RETURNING

intReturnValue.

Parameters
input Input/Output. The address of the input container handle respectively the

input container of the activity implementation or support tool to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an input container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/subprogram was not called from within an activity
implementation or support tool or the program execution server is not
active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Programming an executable (C language)” on

page 465

v For a Cobol example see “Programming an executable (Cobol language)” on
page 466

234 Programming Guide

FmcjContainerOutContainer()

This function/subprogram retrieves the output container from the CICS
COMMAREA/IMS I/O Area.

It can be used from within an activity implementation.

Note that this function/subprogram call will fail after the COMMAREA/ I/O Area
has been changed with FmcjContainerSetOutContainer or
FmcjContainerSetRemoteOutContainer.

Properties

Usage notes
v See “Activity implementation functions/subprograms” on page 76 for general

information.

Authorization

Be an activity implementation

Required connection

None but active MQSeries Workflow program execution server

API include file

Runtime: fmcjccon.h (C language) or fmcjcrun.h (C language) respectively
fmcvars.cpy and fmcperf.cpy (Cobol language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjContainerOutContainer(

FmcjReadWriteContainerHandle * output)

Cobol language signature

Cobol language signature
PERFORM FmcjCOutCtnr.

FmcjCOutCtnr.

CALL "FmcjContainerOutContainer"
USING
BY REFERENCE

outputValue
RETURNING

intReturnValue.

Chapter 34. FmcjContainer functions/subprograms 235

Parameters
output

Input/Output. The address of the output container handle respectively the
output container of the activity implementation to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/subprogram was not called from within an activity
implementation or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Programming an executable (C language)” on

page 465

v For a Cobol example see “Programming an executable (Cobol language)” on
page 466

FmcjContainerRemoteInContainer()

This function/subprogram retrieves the input container from the CICS
COMMAREA/IMS I/O Area.

It can be used from within a program started by an activity implementation or
support tool, if the COMMAREA/IMS I/O Area got passed to the program.

Note that this function/subprogram call will fail after the COMMAREA/ I/O Area
has been changed with FmcjContainerSetOutContainer or
FmcjContainerSetRemoteOutContainer.

236 Programming Guide

Properties

Usage notes
v See “Activity implementation functions/subprograms” on page 76 for general

information.

Authorization

Be a program started by an activity implementation or support tool

Required connection

None but active MQSeries Workflow program execution server

API include file

Runtime: fmcjccon.h (C language) or fmcjcrun.h (C language) respectively
fmcvars.cpy and fmcperf.cpy (Cobol)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjContainerRemoteInContainer(

char const * programID,
FmcjReadOnlyContainerHandle * input)

Cobol language signature

Cobol language signature
PERFORM FmcjCRemoteInCtnr.

FmcjCRemoteInCtnr.

CALL "FmcjContainerRemoteInContainer"
USING
BY REFERENCE

programID
inputValue

RETURNING
intReturnValue.

Parameters
programID

Input. The program identification by which the activity implementation or
support tool is known to the program execution server.

input Input/Output. The address of the input container handle respectively the
input container of the activity implementation or support tool to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

Chapter 34. FmcjContainer functions/subprograms 237

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an input container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/subprogram was not called from within an activity
implementation or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FmcjContainerRemoteOutContainer()

This function/subprogram retrieves the output container from the CICS
COMMAREA/IMS I/O Area.

It can be used from within a program started by an activity implementation or
support tool, if the COMMAREA/IMS I/O Area got passed to the program.

Note that this function/subprogram call will fail after the COMMAREA/ I/O Area
has been changed with FmcjContainerSetOutContainer or
FmcjContainerSetRemoteOutContainer.

Properties

Usage notes
v See “Activity implementation functions/subprograms” on page 76 for general

information.

Authorization

Be a program started by an activity implementation

Required connection

None but active MQSeries Workflow program execution server

API include file

Runtime: fmcjccon.h (C language) or fmcjcrun.h (C language) respectively
fmcvars.cpy and fmcperf.cpy (Cobol)

238 Programming Guide

C language signature

C language signature
APIRET FMC_APIENTRY FmcjContainerRemoteOutContainer(

char const * programID,
FmcjReadWriteContainerHandle * output)

Cobol language signature

Cobol language signature
PERFORM FmcjCRemoteOutCtnr.

FmcjCRemoteOutCtnr.

CALL "FmcjContainerRemoteOutContainer"
USING
BY REFERENCE

programID
outputValue

RETURNING
intReturnValue.

Parameters
programID

Input. The program identification by which the activity implementation is
known to the program execution server.

output
Input/Output. The address of the output container handle respectively the
output container of the activity implementation to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/subprogram was not called from within an activity
implementation or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

Chapter 34. FmcjContainer functions/subprograms 239

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FmcjContainerSetRemoteOutContainer()

This function/subprogram returns the output container to the MQSeries Workflow
program execution server (activity implementation call).

It can be used from within a program started by an activity implementation as
often as required. Note, however, that the output container is not returned to the
MQSeries Workflow execution server until the activity implementation ends. It is
kept transiently by the CICS COMMAREA/IMS I/O Area.

Note that the functions/subprograms FmcjContainerInContainer,
FmcjContainerOutContainer, FmcjContainerServicePassthrough and ″Remote″
counterparts will fail after this function was called due to an altered
COMMAREA/ I/O Area.

Properties

Usage notes
v See “Activity implementation functions/subprograms” on page 76 for general

information.

Authorization

Be a program started by an activity implementation

Required connection

None but active MQSeries Workflow program execution server

API include file

Runtime: fmcjccon.h (C language) or fmcjcrun.h (C language) respectively
fmcvars.cpy and fmcperf.cpy (Cobol)

C language signature

C language signature

APIRET FMC_APIENTRY FmcjContainerSetRemoteOutContainer(
char const * programID,
FmcjReadWriteContainerHandle const output)

240 Programming Guide

Cobol language signature

Parameters
programID

Input. The program identification by which the activity implementation is
known to the program execution server.

output
Input. The output container handle respectively the output container of the
activity implementation to be passed.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/subprogram was not called from within an activity
implementation or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

Cobol language signature

PERFORM FmcjCSetRemoteOutCtnr.

FmcjCSetRemoteOutCtnr.

CALL "FmcjContainerSetRemoteOutContainer"
USING
BY REFERENCE

programID
BY VALUE

outputValue
RETURNING

intReturnValue.

Chapter 34. FmcjContainer functions/subprograms 241

FmcjContainerSetOutContainer()

This function/subprogram returns the output container to the MQSeries Workflow
program execution server (activity implementation call).

It can be used from within an activity implementation as often as required. Note,
however, that the output container is not returned to the MQSeries Workflow
execution server until the activity implementation ends. It is kept transiently in the
CICS COMMAREA/IMS I/O Area.

Note that the functions/subprograms FmcjContainerInContainer,
FmcjContainerOutContainer, FmcjContainerServicePassthrough and ″Remote″
counterparts will fail after this function was called due to an altered
COMMAREA/ I/O Area.

Properties

Usage notes
v See “Activity implementation functions/subprograms” on page 76 for general

information.

Authorization

Be an activity implementation

Required connection

None but active MQSeries Workflow program execution server

API include file

Runtime: fmcjccon.h (C language) or fmcjcrun.h (C language) respectively
fmcvars.cpy and fmcperf.cpy (Cobol language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjContainerSetOutContainer(

FmcjReadWriteContainerHandle const output)

Cobol language signature

Cobol language signature
PERFORM FmcjCSetOutCtnr.

FmcjCSetOutCtnr.

CALL "FmcjContainerSetOutContainer"
USING
BY VALUE

outputValue
RETURNING

intReturnValue.

242 Programming Guide

Parameters
output

Input. The output container handle respectively the output container of the
activity implementation to be passed.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/subprogram was not called from within an activity
implementation or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Programming an executable (C language)” on

page 465

v For a Cobol example see “Programming an executable (Cobol language)” on
page 466

Chapter 34. FmcjContainer functions/subprograms 243

244 Programming Guide

Chapter 35. FmcjExecutionService functions/subprograms

An FmcjExecutionService object represents a session between a user and an
MQSeries Workflow execution server so that Runtime services may be asked for.

The execution service object essentially provides for the basic
functions/subprograms to set up a communication path to the specified MQSeries
Workflow execution server and to establish the user session (log on), and finish it
(log off).

At FmcjExecutionService construction or allocation time the name of the MQSeries
Workflow system and system group where the execution server resides can be
specified. Default values are taken from the current user’s profile or workstation
profile, in this sequence, when logging on.

When the session to an execution server has been established, you can query
objects for which you are authorized; that means, you can query process templates,
process instances, or work items. The attributes of the queried objects can then be
read and further actions can be requested. For example, once a process template
has been queried, creation of a process instance can be asked for.

When the execution service object is destructed or deallocated and still represents
an active session, logoff is automatically called (provided that there is no other
object referencing this session). It is, however, recommended that logon and logoff
calls are paired before the execution service object is deallocated.

FmcjExecutionServiceCreateActivityInstanceList()

This function/subprogram creates a new user-associated activity instance list on
the MQSeries Workflow execution server so that activities can be grouped to one’s
own taste or for a group of users. (action call).

A activity instance list is represented by its name which is unique per type - public
or private (user). It groups a set of activities which have the same characteristics.
These characteristics are primarily defined via search filters. The number of
activities in the list can be restricted via a threshold which specifies the maximum
number of activities to be returned to the client. That threshold is applied after the
activity instance list has been sorted according to sort criteria specified. Note that
activities are sorted on the server, that is, the code page of the server determines
the sort sequence.

The following rules apply for specifying a activity instance list name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

If no name or an empty name is provided for the activity instance list, MQSeries
Workflow generates a name UserID_n, where UserID is the user identification of
the person logged on and n is some number.

© Copyright IBM Corp. 1999 245

Any name passed remains unchanged; FmcjActivityInstanceListName()
respectively FmcjActivityInstanceListName() returns the name of the activity
instance list.

You can filter on the following properties of the activities to be included in the
activity instance list:
v Category
v Description
v LastModified
v LastStateChange
v Name
v ProcessInstanceName
v State
v Type

You can sort on the following properties of the activities to be included in the
activity instance list:
v Category
v Description
v LastModified
v LastStateChange
v Name
v ProcessInstanceName
v State
v Type

Properties

Asynchronous function/subprogram considerations

None

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

Valid user session

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

246 Programming Guide

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceCreateActivityInstanceList(

FmcjExecutionServiceHandle service,
char const * name,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjActivityInstanceListHandle * newList)

Cobol language signature

Cobol language signature
PERFORM FmcjESCreateActInstList.

FmcjESCreateActInstList.

CALL "FmcjExecutionServiceCreateActivityInstanceList"
USING
BY VALUE

serviceValue
name
typeValue
description
filter
sortCriteria
threshold

BY REFERENCE
newList

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

name Input. A user-defined name for the activity instance list.

description
Input. A user-defined description of the activity instance list.

filter Input. The filter criteria which characterize the activities in the activity
instance list.

sortCriteria
Input. The sort criteria to be applied to the activities in the activity instance
list.

threshold
Input. The threshold which defines the maximum number of activities in
the activity instance list to be passed to the client.

newList
Input/Output. The newly created activity instance list.

Chapter 35. FmcjExecutionService functions/subprograms 247

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to activities.

FMC_ERROR_INVALID_NAME(134)
The specified activity instance list name does not comply with the syntax
rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to activities.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the activity instance list is not unique.

Examples
v For a C language example see “Create a process instance list (C language)” on

page 443 .

v For a Cobol example see “Create a process instance list (Cobol language)” on
page 444.

FmcjExecutionServiceCreateProcessInstanceList()

This function/subprogram creates a process instance list on the MQSeries
Workflow execution server so that process instances can be grouped to one’s own
taste or for a group of users (action call).

A process instance list is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

When the process instance list is to be created for public usage or for the private
usage of another user, that is, not the logged-on user itself, then the logged-on user
needs to have staff definition authorization.

A process instance list groups a set of process instances which have the same
characteristics. These characteristics are defined via search filters. The number of
process instances in the list can be restricted via a threshold which specifies the
maximum number of process instances to be returned to the client. That threshold
is applied after the process instance list has been sorted according to sort criteria
specified. Note that process instances are sorted on the server, that is, the code
page of the server determines the sort sequence.

248 Programming Guide

The following rules apply for specifying a process instance list name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

A process instance list filter is specified as a character string containing a filter on
process instances (refer to “How to read the syntax diagrams” on page x):

Note: A string constant is to be enclosed in single quotes (’).

A pattern is a string constant in which the asterisk and the question mark
have special meanings.

v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.

PILFilter

ÊÊ
NOT

PIPredicate
(PILFilter)

Ê

Ê

·

AND PIPredicate
OR NOT

(PILFilter)

ÊÍ

Chapter 35. FmcjExecutionService functions/subprograms 249

PIPredicate

ÊÊ

·

·

·

PIString BasicPredicate string
PIString BETWEEN string AND string

NOT
PIString IN string

NOT ,

(string)
PIString LIKE pattern

NOT
PIString IS NULL

NOT
PITimeStamp BasicPredicate TimeStamp
PITimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PITimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PITimeStamp IS NULL

NOT
STATE BasicPredicate PIState
STATE IN PIState

NOT ,

(PIState)
NAME BasicPredicate TOP_LEVEL_PROCESS_NAME

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

PIState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

PIString

250 Programming Guide

ÊÊ ADMINISTRATOR
CATEGORY
DESCRIPTION
NAME
PARENT_PROCESS_NAME
TOP_LEVEL_PROCESS_NAME

ÊÍ

PITimeStamp

ÊÊ LAST_MODIFICATION_TIME
LAST_STATE_CHANGE_TIME

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

A process instance list sort criterion is specified as a character string:

Note: The default sort order is ascending.

States are sorted according to the sequence shown in the PIState diagram.

PILOrderBy

ÊÊ ·

,

PIString
PITimeStamp ASC

STATE DESC

ÊÍ

Properties

Asynchronous function/subprogram considerations

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None or staff definition or be the system administrator

Required connection

MQSeries Workflow execution server

Chapter 35. FmcjExecutionService functions/subprograms 251

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceCreateProcessInstanceList(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjProcessInstanceListHandle * newList)

Cobol language signature

Cobol language signature
PERFORM FmcjESCreateProcInstList.

FmcjESCreateProcInstList.

CALL "FmcjExecutionServiceCreateProcessInstanceList"
USING
BY VALUE

serviceValue
name
typeValue
ownerValue
description
filter
sortCriteria
threshold

BY REFERENCE
newList

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

name Input. A user-defined name for the process instance list.

type Input. An indication whether a private or a public list is to be created.

owner Input. The owner of the list when the type is private. Ignored for public
lists.

description
Input. A user-defined description of the process instance list.

filter Input. The filter criteria which characterize the process instances to be
contained in the process instance list.

252 Programming Guide

sortCriteria
Input. The sort criteria to be applied to the process instances in the process
instance list.

threshold
Input. The threshold which defines the maximum number of process
instances in the process instance list to be passed to the client.

newList
Input/Output. The newly created process instance list.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance list name does not comply with the syntax
rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not conform to the
syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum possible value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the process instance list is not found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance list is not unique within the specified
type.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

Chapter 35. FmcjExecutionService functions/subprograms 253

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Create a process instance list (C language)” on

page 443.

v For a Cobol example see “Create a process instance list (Cobol language)” on
page 444.

FmcjExecutionServiceCreateProcessTemplateList()

This function/subprogram creates a process template list on the MQSeries
Workflow execution server so that process templates can be grouped to one’s own
taste or for a group of users (action call).

A process template list is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

When the process template list is to be created for public usage or for the private
usage of another user, that is, not the logged-on user itself, then the logged-on user
needs to have staff definition authorization.

A process template list groups a set of process templates which have the same
characteristics. These characteristics are defined via filters. The number of process
templates in the list can be restricted via a threshold which specifies the maximum
number of process templates to be returned to the client. That threshold is applied
after the process template list has been sorted according to sort criteria specified.
Process templates are sorted on the server, that is, the code page of the server
determines the sort sequence.

The following rules apply for specifying a process template list name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.

254 Programming Guide

v You can use any printable characters depending on your current locale,
including the end-of-line and new-line characters.

A process template list filter is specified as a character string containing a filter on
process templates (refer to “How to read the syntax diagrams” on page x):

Note: A string constant is to be enclosed in single quotes (’).

A pattern is a string constant in which the asterisk and the question mark
have special meanings.

v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.

PTLFilter

ÊÊ
NOT

PTPredicate
(PTLFilter)

Ê

Ê

·

AND PTPredicate
OR NOT

(PTLFilter)

ÊÍ

PTPredicate

ÊÊ

·

·

PTString BasicPredicate string
PTString BETWEEN string AND string

NOT
PTString IN string

NOT ,

(string)
PTString LIKE pattern

NOT
PIString IS NULL

NOT
PTTimeStamp BasicPredicate TimeStamp
PTTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PTTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PTTimeStamp IS NULL

NOT

ÊÍ

BasicPredicate

Chapter 35. FmcjExecutionService functions/subprograms 255

ÊÊ =
>
>=
<
<=
<>

ÊÍ

PTString

ÊÊ CATEGORY
DESCRIPTION
NAME

ÊÍ

PTTimeStamp

ÊÊ LAST_MODIFICATION_TIME ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

A process template list sort criterion is specified as a character string:

Note: The default sort order is ascending.

PTLOrderBy

ÊÊ ·

,

PTString
PTTimeStamp ASC

DESC

ÊÍ

Properties

Asynchronous function/subprogram considerations

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None or staff definition or be the system administrator

256 Programming Guide

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceCreateProcessTemplateList(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjProcessTemplateListHandle * newList)

Cobol language signature

Cobol language signature
PERFORM FmcjESCreateProcTemplList.

FmcjESCreateProcTemplList.

CALL "FmcjExecutionServiceCreateProcessTemplateList"
USING
BY VALUE

serviceValue
name
typeValue
ownerValue
description
filter
sortCriteria
threshold

BY REFERENCE
newList

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

name Input. A user-defined name for the process template list.

type Input. An indication whether a private or a public list is to be created.

owner Input. The owner of the list when the type is private. Ignored for public
lists.

Chapter 35. FmcjExecutionService functions/subprograms 257

description
Input. A user-defined description of the process template list.

filter Input. The filter criteria which characterize the process templates in the
process template list.

sortCriteria
Input. The sort criteria to be applied to the process templates in the
process template list.

threshold
Input. The threshold which defines the maximum number of process
templates in the process template list.

newList
Input/Output. The newly created process template list.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified process template list name does not comply with the syntax
rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not conform to the
syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum possible value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the process template list is not found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process template list is not unique within the specified
type.

258 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Create a process instance list (C language)” on

page 443.

v For a Cobol example see “Create a process instance list (Cobol language)” on
page 444.

FmcjExecutionServiceCreateWorklist()

This function/subprogram creates a worklist on the MQSeries Workflow execution
server so that work items or notifications can be grouped to one’s own taste or for
a group of users (action call).

A worklist is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

When the worklist is to be created for public usage or for the private usage of
another user, that is, not the logged-on user itself, then the logged-on user needs to
have staff definition authorization.

A worklist groups a set of work items or notifications which have the same
characteristics. These characteristics are defined via filters. The number of items in
the worklist can be restricted via a threshold which specifies the maximum number
of items to be returned to the client. That threshold is applied after the worklist
has been sorted according to sort criteria specified. Items are sorted on the server,
that is, the code page of the server determines the sort sequence.

The following rules apply for specifying a worklist name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.

Chapter 35. FmcjExecutionService functions/subprograms 259

v You can use any printable characters depending on your current locale,
including the end-of-line and new-line characters.

A worklist filter is specified as a character string containing a filter on the items in
the worklist (refer to “How to read the syntax diagrams” on page x):

Note: A string constant is to be enclosed in single quotes (’).

A pattern is a string constant in which the asterisk and the question mark
have special meanings.

v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.

WLFilter

ÊÊ
NOT

WLPredicate
(WLFilter)

Ê

Ê

·

AND WLPredicate
OR NOT

(WLFilter)

ÊÍ

260 Programming Guide

WLPredicate

ÊÊ

·

·

·

·

·

·

·

·

TYPE IN ITType
NOT ,

(ITType)
OWNER BasicPredicate string

CURRENT_USER
OWNER BETWEEN string AND string

NOT CURRENT_USER CURRENT_USER
OWNER IN string

NOT CURRENT_USER
,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

ÊÍ

Chapter 35. FmcjExecutionService functions/subprograms 261

AIType

ÊÊ PROCESS_ACTIVITY
PROGRAM_ACTIVITY

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

ITState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

ÊÍ

ITString

ÊÊ DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

ÊÍ

ITTimeStamp

ÊÊ LAST_MODIFICATION_TIME
RECEIVED_TIME

ÊÍ

ITType

262 Programming Guide

ÊÊ WORK_ITEM
PROCESS_NOTIFICATION
FIRST_NOTIFICATION
SECOND_NOTIFICATION

ÊÍ

PIState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

A worklist sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the AIType
diagram.

Item types are sorted according to the sequence shown in the ITType
diagram.

States are sorted according to the sequence shown in the ITState respectively
the PIState diagram.

WLOrderBy

ÊÊ ·

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE
TYPE

ÊÍ

Chapter 35. FmcjExecutionService functions/subprograms 263

Properties

Asynchronous function/subprogram considerations

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None or staff definition or be the system administrator

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceCreateWorklist(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjWorklistHandle * newList)

Cobol language signature

Cobol language signature
PERFORM FmcjESCreateWorklist.

FmcjESCreateWorklist.

CALL "FmcjExecutionServiceCreateWorklist"
USING
BY VALUE

serviceValue
name
typeValue
ownerValue
description
filter
sortCriteria
threshold

BY REFERENCE
newList

RETURNING
intReturnValue.

264 Programming Guide

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

name Input. A user-defined name for the worklist.

type Input. An indication whether a private or a public list is to be created.

owner Input. The owner of the list when the type is private. Ignored for public
lists.

description
Input. A user-defined description of the worklist.

filter Input. The filter criteria which characterize the items in the worklist.

sortCriteria
Input. The sort criteria to be applied to the items in the worklist.

threshold
Input. The threshold which defines the maximum number of items in the
worklist.

newList
Input/Output. The newly created worklist.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified worklist name does not comply with the syntax rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not conform to the
syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum possible value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Chapter 35. FmcjExecutionService functions/subprograms 265

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the worklist is not found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the worklist is not unique within the specified type.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Create a process instance list (C language)” on

page 443.

v For a Cobol example see “Create a process instance list (Cobol language)” on
page 444.

FmcjExecutionServiceLogoff()

This function/subprogram allows the application to finish the specified user
session with an MQSeries Workflow execution server (action call).

When logoff has been successfully executed, no further client/server calls are
accepted using this execution service object.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

266 Programming Guide

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceLogoff(

FmcjExecutionServiceHandle service)

Cobol language signature

Cobol language signature
PERFORM FmcjESLogoff.

FmcjESLogoff.

CALL "FmcjExecutionServiceLogoff"
USING
BY VALUE

serviceValue
RETURNING

intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

For examples see “Part 8. Examples” on page 441.

Chapter 35. FmcjExecutionService functions/subprograms 267

FmcjExecutionServiceLogon()

This function/subprogram allows an application to establish a user session with an
MQSeries Workflow execution server (action call).

A successful Logon() is the prerequisite for using all other action and program
execution management functions/subprograms of the MQSeries Workflow API.

The user ID to log on with must be a registered MQSeries Workflow user.

When logon has been successfully executed, the execution service object represents
that single user session. A further request to log on with a different user ID will be
rejected. You can, however, establish as many sessions as needed, even for the
same user, using different execution service objects; one per session.

At logon time, several options can be specified which define your mode of
operation. The session mode determines whether you are operating in a ″normal″
default session mode or whether the execution server should assume that you are
present. When you are present, activity instances which are started automatically
may be scheduled on your behalf.

There can only be a single present session per user. The present here option can be
used, to force that other session logoff and to newly establish a present session
here.

The following enumeration constants can be used to specify the session mode; it is
strongly advised to use the symbolic names instead of the integer values:

C language integer value

Fmc_SM_Default 0
Fmc_SM_Present 1
Fmc_SM_PresentHere 2

At logon time, you can also specify whether you are back in case you are set to be
absent. When you are not absent you participate in work assignment; otherwise no
work items are assigned to you.

The following enumeration constants can be used to deal with your absence; it is
strongly advised to use the symbolic names instead of the integer values:

C language integer value

Fmc_SA_NotSet 0
Fmc_SA_Reset 1
Fmc_SA_Leave 2

Leave means that your absence setting should stay as is. Reset means that your
absence setting should be reset; you are back. NotSet means that you do not say
anything about your absence, which means that your absence setting is reset or not
according to the definition in your person record.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

268 Programming Guide

Authorization

Be a registered MQSeries Workflow user

Required connection

None

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceLogon (

FmcjExecutionServiceHandle service,
char const * userID,
char const * password,
enum FmcjServiceSessionMode sessionMode,
enum FmcjServiceAbsenceIndicator absenceIndicator)

Cobol language signatures

Cobol language signature
PERFORM FmcjESLogon.

FmcjESLogon.

CALL "FmcjExecutionServiceLogon"
USING
BY VALUE

serviceValue
userID
passwordValue
sessionMode
absenceIndicator

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the session to be
established with the execution server.

userID
Input. The user ID of the user on whose behalf a logon is to be made.

password
Input. The password of the user.

sessionMode
Input. The mode of the session to be established.

absenceIndicator
Input. An indicator to state how to handle any absence set.

Chapter 35. FmcjExecutionService functions/subprograms 269

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_ALREADY_LOGGED_ON(11)
The user is already logged on with present mode or the execution service
object already represents a different user session.

FMC_ERROR_INVALID_ABSENCE_SPEC(905)
An unknown absence setting has been specified.

FMC_ERROR_INVALID_SESSION_MODE(901)
An unknown session mode has been specified.

FMC_ERROR_PASSWORD(12)
Incorrect password.

FMC_ERROR_PROFILE(124)
Required user or workstation profile entries cannot be found.

FMC_ERROR_USERID_UNKNOWN(10)
No user ID registered with MQSeries Workflow has been provided.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

For examples see “Part 8. Examples” on page 441.

FmcjExecutionServicePassthrough()

This function/subprogram can be used by an activity implementation or support
tool to establish a user session with an MQSeries Workflow execution server from
within this program (activity-implementation call).

When successfully executed, a session to the same execution server is set up from
where the work item or support tool implemented by this program was started;
the user on whose behalf the session is set up is the same one on whose behalf the
work item was started.

270 Programming Guide

Note that this function/subprogram call will fail after the COMMAREA/ I/O Area
has been changed with FmcjContainerSetOutContainer or
FmcjContainerSetRemoteOutContainer.

Properties

Usage notes
v See “Activity implementation functions/subprograms” on page 76 for general

information.

Authorization

Activity implementation or support tool started by MQSeries Workflow

Required connection

None but active MQSeries Workflow program execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServicePassthrough(

FmcjExecutionServiceHandle service)

Cobol language signature

Cobol language signature
PERFORM FmcjESPassthrough.

FmcjESPassthrough.

CALL "FmcjExecutionServicePassthrough"
USING
BY VALUE

serviceValue
RETURNING

intReturnValue.

Parameters
service

Input. A handle to the service object which is to represent the session to be
established with the execution server.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

Chapter 35. FmcjExecutionService functions/subprograms 271

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_PROGRAM_EXECUTION(126)
Passthrough was not called from within an activity implementation or
support tool or the program execution server is not active.

FMC_ERROR_USERID_UNKNOWN(10)
The user who started the work item does no longer exist.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Programming an executable (C language)” on

page 465 .

v For a Cobol example see “Programming an executable (Cobol language)” on
page 466.

FmcjExecutionServiceQueryActivityInstance Notifications()

This function/subprogram retrieves the activity instance notifications the user has
access to from the MQSeries Workflow execution server (action call).

Any activity instance notifications retrieved are appended to the supplied vector. If
you want to read the current activity instance notifications only, you have to clear
the vector before you call this function/subprogram. This means that you should
set the vector handle to 0 via the FmcjXxxVectorDeallocate function.

The activity instance notifications to be retrieved can be characterized by a filter.
An activity instance notification filter is specified as a character string:

Note: A string constant is to be enclosed in single quotes (’).

A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.

272 Programming Guide

AINFilter

ÊÊ
NOT

ITPredicate
(AINFilter)

Ê

Ê

·

AND ITPredicate
OR NOT

(AINFilter)

ÊÍ

Chapter 35. FmcjExecutionService functions/subprograms 273

ITPredicate

ÊÊ

·

·

·

·

·

·

·

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

ÊÍ

274 Programming Guide

AIType

ÊÊ PROCESS_ACTIVITY
PROGRAM_ACTIVITY

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

ITState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

ÊÍ

ITString

ÊÊ DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

ÊÍ

ITTimeStamp

ÊÊ LAST_MODIFICATION_TIME
RECEIVED_TIME

ÊÍ

PIState

Chapter 35. FmcjExecutionService functions/subprograms 275

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Activity instance notifications can be sorted. An activity instance notification sort
criterion is specified as a character string:

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the AIType
diagram.

States are sorted according to the sequence shown in the ITState respectively
the PIState diagram.

AINOrderBy

ÊÊ ·

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

ÊÍ

The number of activity instance notifications to be retrieved can be restricted via a
threshold which specifies the maximum number of activity instance notifications to
be returned to the client. That threshold is applied after the activity instance
notifications have been sorted according to the sort criteria specified. Note that the
activity instance notifications are sorted on the server, that is, the code page of the
server determines the sort sequence.

The primary information that is retrieved for each activity instance notification is:
v ActivityType
v Category
v CreationTime
v Description
v Icon

276 Programming Guide

v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

FmcjExecutionServiceQueryItems()

This function/subprogram retrieves the work items or notifications the user has
access to from the MQSeries Workflow execution server (action call).

Any items retrieved are appended to the supplied vector. If you want to read the
current items only, you have to clear the vector before you call this
function/subprogram. This means that you should set the handle to 0 via the
FmcjXxxVectorDeallocate function.

The items to be retrieved can be characterized by a filter. An item filter is specified
as a character string:

Note: A string constant is to be enclosed in single quotes (’).

A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.

ItemFilter

ÊÊ
NOT

ITPredicate
(ItemFilter)

Ê

Ê

·

AND ITPredicate
OR NOT

(ItemFilter)

ÊÍ

Chapter 35. FmcjExecutionService functions/subprograms 277

ITPredicate

ÊÊ

·

·

·

·

·

·

·

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

ÊÍ

278 Programming Guide

AIType

ÊÊ PROCESS_ACTIVITY
PROGRAM_ACTIVITY

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

ITState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

ÊÍ

ITString

ÊÊ DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

ÊÍ

ITTimeStamp

ÊÊ LAST_MODIFICATION_TIME
RECEIVED_TIME

ÊÍ

PIState

Chapter 35. FmcjExecutionService functions/subprograms 279

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Items can be sorted. An item sort criterion is specified as a character string:

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the AIType
diagram.

States are sorted according to the sequence shown in the ITState respectively
the PIState diagram.

ItemOrderBy

ÊÊ ·

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

ÊÍ

The number of items to be retrieved can be restricted via a threshold which
specifies the maximum number of items to be returned to the client. That threshold
is applied after the items have been sorted according to the sort criteria specified.
Note that the items are sorted on the server, that is, the code page of the server
determines the sort sequence.

The primary information that is retrieved for each item is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation

280 Programming Guide

v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryItems(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjItemHandle * items)

Chapter 35. FmcjExecutionService functions/subprograms 281

Cobol language signature

Cobol language signature
PERFORM FmcjESQueryItems.

FmcjESQueryItems.

CALL "FmcjExecutionServiceQueryItems"
USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
items

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

filter Input. The filter criteria which characterize the items to be retrieved.

sortCriteria
Input. The sort criteria to be applied to the items found.

threshold
Input. The threshold which defines the maximum number of items to be
returned to the client.

items Input/Output. The qualifying vector of items.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

282 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query process instances (C language)” on

page 455.

v For a Cobol example see “Query process instances (Cobol language)” on
page 456.

FmcjExecutionServiceQueryProcessInstanceLists()

This function/subprogram retrieves the process instance lists the user has access to
from the MQSeries Workflow execution server (action call).

Any process instance lists retrieved are appended to the supplied vector. If you
want to read the current process instance lists only, you have to clear the vector
before you call this function/subprogram. This means that you should set the
vector handle to 0 via the FmcjXxxVectorDeallocate function.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstanceLists(

FmcjExecutionServiceHandle service,
FmcjProcessInstanceListVectorHandle * lists)

Chapter 35. FmcjExecutionService functions/subprograms 283

Cobol language signature

Cobol language signature
PERFORM FmcjESQueryProcInstLists.

FmcjESQueryProcInstLists.

CALL "FmcjExecutionServiceQueryProcessInstanceLists"
USING
BY VALUE

serviceValue
BY REFERENCE

lists
RETURNING

intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

lists Input/Output. The vector of process instance lists.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447.

v For a Cobol example see “Query worklists (Cobol language)” on page 448.

284 Programming Guide

FmcjExecutionServiceQueryProcessInstance Notifications()

This function/subprogram retrieves the process instance notifications the user has
access to from the MQSeries Workflow execution server (action call).

Any process instance notifications retrieved are appended to the supplied vector. If
you want to read the current process instance notifications only, you have to clear
the vector before you call this function/subprogram. This means that you should
set the vector handle to 0 via the FmcjXxxVectorDeallocate function.

The process instance notifications to be retrieved can be characterized by a filter. A
process instance notification filter is specified as a character string.

Note: A string constant is to be enclosed in single quotes (’).

A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.

PINFilter

ÊÊ
NOT

ITPredicate
(PINFilter)

Ê

Ê

·

AND ITPredicate
OR NOT

(PINFilter)

ÊÍ

Chapter 35. FmcjExecutionService functions/subprograms 285

ITPredicate

ÊÊ

·

·

·

·

·

·

·

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

ÊÍ

286 Programming Guide

AIType

ÊÊ PROCESS_ACTIVITY
PROGRAM_ACTIVITY

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

ITState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

ÊÍ

ITString

ÊÊ DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

ÊÍ

ITTimeStamp

ÊÊ LAST_MODIFICATION_TIME
RECEIVED_TIME

ÊÍ

PIState

Chapter 35. FmcjExecutionService functions/subprograms 287

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Process instance notifications can be sorted. A process instance notification sort
criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the AIType
diagram.

States are sorted according to the sequence shown in the ITState respectively
the PIState diagram.

PINOrderBy

ÊÊ ·

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

ÊÍ

The number of process instance notifications to be retrieved can be restricted via a
threshold which specifies the maximum number of process instance notifications to
be returned to the client. That threshold is applied after the activity instance
notifications have been sorted according to the sort criteria specified. Note that the
process instance notifications are sorted on the server, that is, the code page of the
server determines the sort sequence.

The primary information that is retrieved for each process instance notification is:
v Category
v CreationTime
v Description
v Icon
v Kind

288 Programming Guide

v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstanceNotifications(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceNotificationVectorHandle * notifications)

Chapter 35. FmcjExecutionService functions/subprograms 289

Cobol language signature

Cobol language signature
PERFORM FmcjESQueryProcInstNotifs.

FmcjESQueryProcInstNotifs.

CALL
"FmcjExecutionServiceQueryProcessInstanceNotifications"

USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
notifications

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

filter Input. The filter criteria which characterize the process instance
notifications to be retrieved.

sortCriteria
Input. The sort criteria to be applied to the process instance notifications
found.

threshold
Input. The threshold which defines the maximum number of process
instance notifications to be returned to the client.

items Input/Output. The qualifying vector of process instance notifications.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process instance notifications.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process instance
notifications.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

290 Programming Guide

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query process instances (C language)” on

page 455.

v For a Cobol example see “Query process instances (Cobol language)” on
page 456.

FmcjExecutionServiceQueryProcessInstances()

This function/subprogram retrieves the current process instances the user has
access to from the MQSeries Workflow execution server (action call).

Any process instances retrieved are appended to the supplied vector. If you want
to read the current process instances only, you have to clear the vector before you
call this function/subprogram. This means that you should set the vector handle to
0 via the FmcjXxxVectorDeallocate function.

A filter on process instances is specified as a character string containing a filter
predicate:

Note: A string constant is to be enclosed in single quotes (’).

A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.

PIFilter

ÊÊ
NOT

PIPredicate
(PIFilter)

Ê

Chapter 35. FmcjExecutionService functions/subprograms 291

Ê

·

AND PIPredicate
OR NOT

(PIFilter)

ÊÍ

PIPredicate

ÊÊ

·

·

·

PIString BasicPredicate string
PIString BETWEEN string AND string

NOT
PIString IN string

NOT ,

(string)
PIString LIKE pattern

NOT
PIString IS NULL

NOT
PITimeStamp BasicPredicate TimeStamp
PITimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PITimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PITimeStamp IS NULL

NOT
STATE BasicPredicate PIState
STATE IN PIState

NOT ,

(PIState)
NAME BasicPredicate TOP_LEVEL_PROCESS_NAME

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

292 Programming Guide

PIState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

PIString

ÊÊ ADMINISTRATOR
CATEGORY
DESCRIPTION
NAME
PARENT_PROCESS_NAME
TOP_LEVEL_PROCESS_NAME

ÊÍ

PITimeStamp

ÊÊ LAST_MODIFICATION_TIME
LAST_STATE_CHANGE_TIME

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Process instances can be sorted. A process instance sort criterion is specified as a
character string.

Note: The default sort order is ascending.

States are sorted according to the sequence shown in the PIState diagram.

PIOrderBy

ÊÊ ·

,

PIString
PITimeStamp ASC

STATE DESC

ÊÍ

The number of process instances to be retrieved can be restricted via a threshold
which specifies the maximum number of process instances to be returned to the
client. That threshold is applied after the process instances have been sorted

Chapter 35. FmcjExecutionService functions/subprograms 293

according to the sort criteria specified. Note that the process instances are sorted
on the server, that is, the code page of the server determines the sort sequence.

The primary information that is retrieved for each process instance is:
v Category
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v LastStateChangeTime
v Name
v ParentName
v ProcessTemplateName
v StartTime
v State
v SuspensionTime
v SystemName
v SystemGroupName
v TopLevelName

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstances(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceVectorHandle * instances)

294 Programming Guide

Cobol language signature

Cobol language signature
PERFORM FmcjESQueryProcInsts.

FmcjESQueryProcInsts.

CALL "FmcjExecutionServiceQueryProcessInstances"
USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
instances

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

filter Input. The filter criteria which characterize the process instances to be
retrieved.

sortCriteria
Input. The sort criteria to be applied to the process instances found.

threshold
Input. The threshold which defines the maximum number of process
instances to be returned to the client.

instances
Input/Output. The qualifying vector of process instances.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process instances.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process instances.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Chapter 35. FmcjExecutionService functions/subprograms 295

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query process instances (C language)” on

page 455.

v For a Cobol example see “Query process instances (Cobol language)” on
page 456.

FmcjExecutionServiceQueryProcessTemplateLists()

This function/subprogram retrieves the current process template lists the user has
access to from the MQSeries Workflow execution server (action call).

Any process template lists retrieved are appended to the supplied vector. If you
want to read the current process template lists only, you have to clear the vector
before you call this function/subprogram. This means that you should set the
vector handle to 0 via the FmcjXxxVectorDeallocate function.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessTemplateLists(

FmcjExecutionServiceHandle service,
FmcjProcessTemplateListVectorHandle * lists)

296 Programming Guide

Cobol language signature

Cobol language signature
PERFORM FmcjESQueryProcTemplLists.

FmcjESQueryProcTemplLists.

CALL "FmcjExecutionServiceQueryProcessTemplateLists"
USING
BY VALUE

serviceValue
BY REFERENCE

lists
RETURNING

intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

lists Input/Output. The vector of process template lists.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447.

v For a Cobol example see “Query worklists (Cobol language)” on page 448.

Chapter 35. FmcjExecutionService functions/subprograms 297

FmcjExecutionServiceQueryProcessTemplates()

This function/subprogram retrieves the current process templates from the
MQSeries Workflow execution server (action call).

Any process templates retrieved are appended to the supplied vector. If you want
to read the current process templates only, you have to clear the vector before you
call this function/subprogram. This means that you should set the vector handle to
0 via the FmcjXxxVectorDeallocate function.

A filter on process templates is specified as a character string containing a filter
predicate:

Note: A string constant is to be enclosed in single quotes (’).

A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.

PTFilter

ÊÊ
NOT

PTPredicate
(PTFilter)

Ê

Ê

·

AND PTPredicate
OR NOT

(PTFilter)

ÊÍ

298 Programming Guide

PTPredicate

ÊÊ

·

·

PTString BasicPredicate string
PTString BETWEEN string AND string

NOT
PTString IN string

NOT ,

(string)
PTString LIKE pattern

NOT
PIString IS NULL

NOT
PTTimeStamp BasicPredicate TimeStamp
PTTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PTTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PTTimeStamp IS NULL

NOT

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

PTString

ÊÊ CATEGORY
DESCRIPTION
NAME

ÊÍ

PTTimeStamp

ÊÊ LAST_MODIFICATION_TIME ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Chapter 35. FmcjExecutionService functions/subprograms 299

Process templates can be sorted. A process template sort criterion is specified as a
character string.

Note: The default sort order is ascending.

PTOrderBy

ÊÊ ·

,

PTString
PTTimeStamp ASC

DESC

ÊÍ

The number of process templates to be retrieved can be restricted via a threshold
which specifies the maximum number of process templates to be returned to the
client. That threshold is applied after the process templates have been sorted
according to the sort criteria specified. Note that the process templates are sorted
on the server, that is, the code page of the server determines the sort sequence.

The primary information that is retrieved for each process template is:
v Category
v CreationTime
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v Name

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

300 Programming Guide

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessTemplates(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessTemplateVectorHandle * templates)

Cobol language signature

Cobol language signature
PERFORM FmcjESQueryProcTempls.

FmcjESQueryProcTempls.

CALL "FmcjExecutionServiceQueryProcessTemplates"
USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
templates

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

filter Input. The filter criteria which characterize the process templates to be
retrieved.

sortCriteria
Input. The sort criteria to be applied to the process templates found.

threshold
Input. The threshold which defines the maximum number of process
templates to be returned to the client.

templates
Input/Output. The qualifying vector of process templates.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

Chapter 35. FmcjExecutionService functions/subprograms 301

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process templates.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process templates.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query process instances (C language)” on

page 455.

v For a Cobol example see “Query process instances (Cobol language)” on
page 456.

FmcjExecutionServiceQueryWorkitems()

This function/subprogram retrieves the work items the user has access to from the
MQSeries Workflow execution server (action call).

Any work items retrieved are appended to the supplied vector. If you want to read
the current work items only, you have to clear the vector before you call this
function/subprogram. This means that you should set the vector handle to 0 via
the FmcjXxxVectorDeallocate function.

The work items to be retrieved can be characterized by a filter. A work item filter
is specified as a character string:

Note: A string constant is to be enclosed in single quotes (’).

A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.

302 Programming Guide

WIFilter

ÊÊ
NOT

ITPredicate
(WIFilter)

Ê

Ê

·

AND ITPredicate
OR NOT

(WIFilter)

ÊÍ

Chapter 35. FmcjExecutionService functions/subprograms 303

ITPredicate

ÊÊ

·

·

·

·

·

·

·

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

ÊÍ

304 Programming Guide

AIType

ÊÊ PROCESS_ACTIVITY
PROGRAM_ACTIVITY

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

ITState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

ÊÍ

ITString

ÊÊ DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

ÊÍ

ITTimeStamp

ÊÊ LAST_MODIFICATION_TIME
RECEIVED_TIME

ÊÍ

PIState

Chapter 35. FmcjExecutionService functions/subprograms 305

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Work items can be sorted. A work item sort criterion is specified as a character
string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the AIType
diagram.

States are sorted according to the sequence shown in the ITState respectively
the PIState diagram.

WIOrderBy

ÊÊ ·

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

ÊÍ

The number of work items to be retrieved can be restricted via a threshold which
specifies the maximum number of work items to be returned to the client. That
threshold is applied after the items have been sorted according to the sort criteria
specified. Note that the items are sorted on the server, that is, the code page of the
server determines the sort sequence.

The primary information that is retrieved for each work item is:
v ActivityType
v Category
v CreationTime
v Description
v Icon

306 Programming Guide

v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryWorkitems(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjWorkitemHandle * workitems)

Chapter 35. FmcjExecutionService functions/subprograms 307

Cobol language signature

Cobol language signature
PERFORM FmcjESQueryWorkitems.

FmcjESQueryWorkitems.

CALL "FmcjExecutionServiceQueryWorkitems"
USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
workitems

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

filter Input. The filter criteria which characterize the work items to be retrieved.

sortCriteria
Input. The sort criteria to be applied to the work items found.

threshold
Input. The threshold which defines the maximum number of work items to
be returned to the client.

workitems
Input/Output. The qualifying vector of work items.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to work items.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to work items.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

308 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query process instances (C language)” on

page 455.

v For a Cobol example see “Query process instances (Cobol language)” on
page 456.

FmcjExecutionServiceQueryWorklists()

This function/subprogram retrieves the worklists the user has access to from the
MQSeries Workflow execution server (action call).

Any worklists retrieved are appended to the supplied vector. If you want to read
the current worklists only, you have to clear the vector before you call this
function/subprogram. This means that you should set the vector handle to 0 via
the FmcjXxxVectorDeallocate function.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryWorklists(

FmcjExecutionServiceHandle service,
FmcjWorklistVectorHandle * lists)

Chapter 35. FmcjExecutionService functions/subprograms 309

Cobol language signature

Cobol language signature
PERFORM FmcjESQueryWorklists.

FmcjESQueryWorklists.

CALL "FmcjExecutionServiceQueryWorklists"
USING
BY VALUE

serviceValue
BY REFERENCE

lists
RETURNING

intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with the
execution server.

lists Input/Output. The vector of worklists.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447.

v For a Cobol example see “Query worklists (Cobol language)” on page 448.

310 Programming Guide

FmcjExecutionServiceReceive()

This function/subprogram allows for receiving data pushed by an MQSeries
Workflow execution server (action call).

The correlation ID can be used to receive specific data. Currently, it must specify
Fmcj_No_CorrelID in order to receive any data sent. Note that this parameter is
changed by a successful retrieval of data. You must reset it for each request.

The timeout value specifies how long the application should wait at a maximum
for some data to arrive. If no data arrives, a timeout error is indicated. A timeout
value of -1 indicates an indefinite wait time.

If data is successfully received, the execution data contains the data sent and can
be used for updating objects or for creating new objects. If an object is to be
updated, the persistent object ID of the object described by the execution data can
be obtained, the object can be searched for, and its Update() function/subprogram
can be applied. If an object is to be created, the type of the object described by the
execution data can be obtained, and the appropriate object can be created from the
execution data. See “FmcjExecutionData” on page 188 for functions/subprograms
supported by the execution data.

The following enumeration constants can be used to determine the contents of the
execution data received; it is strongly advised to use the symbolic names instead of
the integer values:

C language integer
value

Fmc_DART_Terminate 2
Fmc_DART_ItemDeleted 1000
Fmc_DART_ItemUpdated 1001
Fmc_DART_Workitem 1002
Fmc_DART_ActivityInstanceNotification 1003
Fmc_DART_ProcessInstanceNotification 1004

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server (present session mode)

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

Chapter 35. FmcjExecutionService functions/subprograms 311

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceReceive(

FmcjExecutionServiceHandle service,
FmcjCorrelID * correlID,
FmcjExecutionDataHandle * data,
signed long timeout)

Cobol language signature

Cobol language signature
PERFORM FmcjESReceive.

FmcjESReceive.

CALL "FmcjExecutionServiceReceive"
USING
BY VALUE

serviceValue
BY REFERENCE

correlID
data

BY VALUE
timeoutValue

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the present session with
the execution server.

correlID
Input/Output. The correlation ID by which this data can be correlated to a
previous request. Must currently be Fmcj_No_CorrelID for each request.

data Output. The data sent by an MQSeries Workflow execution server.

timeout
Input. The maximum time period to wait for some data to arrive.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

312 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the connection
should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447.

v For a Cobol example see “Query worklists (Cobol language)” on page 448.

FmcjExecutionServiceRemotePassthrough()

This function/subprogram can be used by an application program to establish a
user session with an MQSeries Workflow execution server from within this
program (activity-implementation call).

When that activity implementation or support tool decides to distribute work
among other programs and starts those programs as separate operating system
processes, then those processes have to get passed the COMMAREA/IMS I/O
Area be able to retrieve the information needed.

When successfully executed, a session to the same execution server is set up from
where the original work item or support tool was started; the user on whose behalf
the session is set up is the same one on whose behalf the original work item or
support tool was started.

Note that this function/subprogram call will fail after the COMMAREA/ I/O Area
has been changed with FmcjContainerSetOutContainer or
FmcjContainerSetRemoteOutContainer.

Properties

Usage notes
v See “Activity implementation functions/subprograms” on page 76 for general

information.

v ’’

Authorization

Valid program identification

Required connection

None but active MQSeries Workflow program execution server

Chapter 35. FmcjExecutionService functions/subprograms 313

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceRemotePassthrough(

FmcjExecutionServiceHandle service ,
char const * programID)

Cobol language signature

Cobol language signature
PERFORM FmcjESRemotePassthrough.

FmcjESRemotePassthrough.

CALL "FmcjExecutionServiceRemotePassthrough"
USING
BY VALUE

serviceValue
BY REFERENCE

programID
RETURNING

intReturnValue.

Parameters
service

Input. A handle to the service object representing the session to be
established with the execution server.

programID
Input. The program identification by which the starting activity
implementation or support tool is known to the program execution server.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_PROGRAM_EXECUTION(126)
Passthrough was not called from within an activity implementation.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_USERID_UNKNOWN(10)
The user who started the work item does no longer exist.

314 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjExecutionServiceTerminateReceive()

This function/subprogram causes information to be placed into the client input
queue to tell that receiving data from an MQSeries Workflow execution server can
end (action call).

In this way, the receiving part of the application gets to know that receiving data
can end. Any resulting actions are up to the application.

Note: The correlation ID passed must be Fmcj_No_CorrelID for each request.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server (present session mode)

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjExecutionServiceTerminateReceive(

FmcjExecutionServiceHandle service,
FmcjCorrelID * correlID)

Chapter 35. FmcjExecutionService functions/subprograms 315

Cobol language signature

Cobol language signature
PERFORM FmcjESTerminateReceive.

FmcjESTerminateReceive.

CALL "FmcjExecutionServiceTerminateReceive"
USING
BY VALUE

serviceValue
BY REFERENCE

correlID
RETURNING

intReturnValue.

Parameters
service

Input. A handle to the service object representing the present session with
the execution server.

correlID
Input/Output. The correlation ID by which this data can be correlated to a
previous request; must be Fmcj_No_CorrelID for each request.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the connection
should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447.

v For a Cobol example see “Query worklists (Cobol language)” on page 448.

316 Programming Guide

Chapter 36. FmcjItem functions/subprograms

An FmcjItem object represents a work item or an activity instance notification or a
process instance notification.

An FmcjItem object represents the common aspects of work items and notifications.
In the C++ implementation, it is thus the superclass of the FmcjWorkitem,
FmcjActivityInstanceNotification, and FmcjProcessInstanceNotification classes.
Similarly, in the C and Cobol language, it provides for common implementations
of functions.

An item is uniquely identified by its object identifier.

FmcjItemDelete()

This function/subprogram deletes the specified item from the MQSeries Workflow
execution server (client-server call).

The item must be in states Ready, Finished, ForceFinished, or Disabled. If the item is
in the Ready state and represents the only work associated with the activity
instance, then deletion is rejected.

There are no impacts on the transient representation of your item; you have to
destruct or deallocate the transient object when it is no longer needed.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the item owner
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjItemDelete(

FmcjItemHandle hdlItem)

© Copyright IBM Corp. 1999 317

Cobol language signature

Cobol language signature
PERFORM FmcjItemDelete.

FmcjItemDelete.

CALL "FmcjItemDelete"
USING
BY VALUE

hdlItem
RETURNING

intReturnValue.

Parameters
hdlItem

Input. The handle of the item to be deleted.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see
v For a Cobol example see

318 Programming Guide

FmcjItemObtainProcessInstanceMonitor()

This function/subprogram retrieves the process instance monitor for the process
instance the item is part of from the MQSeries Workflow execution server (action
call).

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also fetched from the server.

Note: Deep is currently not supported.

The application is completely responsible for the ownership of objects, that is, it is
not checked whether the process instance monitor handle already points to some
object when a new one is assigned.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQSeries Workflow execution server (present session mode)

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjItemObtainProcessInstanceMonitor(

FmcjItemHandle hdlItem,
bool deep,
FmcjProcessInstanceMonitorHandle * monitor)

Chapter 36. FmcjItem functions/subprograms 319

Cobol language signature

Cobol language signature
PERFORM FmcjAINObtainProcInstMon.

FmcjAINObtainProcInstMon.

CALL "FmcjItemObtainProcessInstanceMonitor"
USING
BY VALUE

hdlItem
deep

BY REFERENCE
monitor

RETURNING
intReturnValue.

Parameters
hdlItem

Input. The item whose process instance monitor is to be retrieved.

deep Input. An indicator whether activity instances of typed Block are to be
resolved, that is, their monitor is also to be provided. Note, deep is
currently ignored.

monitor
Input/Output. The address of the handle to the process instance monitor
respectively the process instance monitor object to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does not yet
represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the connection
should be established is not defined in your profile.

320 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjItemProcessInstance()

This function/subprogram retrieves the process instance the item is a part of from
the MQSeries Workflow execution server (action call).

All information about the process instance, primary and secondary, is retrieved.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjItemProcessInstance(

FmcjItemHandle hdlItem,
FmcjProcessInstanceHandle * instance)

Chapter 36. FmcjItem functions/subprograms 321

Cobol language signature

Cobol language signature
PERFORM FmcjItemProcInst.

FmcjItemProcInst.

CALL "FmcjItemProcessInstance"
USING
BY VALUE

hdlItem
BY REFERENCE

instance
RETURNING

intReturnValue.

Parameters
hdlItem

Input. The handle of the item object to be queried.

instance
Input/Output. The process instance object to be retrieved (initialized).

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

322 Programming Guide

FmcjItemRefresh()

This function/subprogram refreshes the item from the MQSeries Workflow
execution server (action call).

All information about the item, primary and secondary, is retrieved.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjItemRefresh(FmcjItemHandle hdlItem)

Cobol language signature

Cobol language signature
PERFORM FmcjItemRefresh.

FmcjItemRefresh.

CALL "FmcjItemRefresh"
USING
BY VALUE

hdlItem
RETURNING

intReturnValue.

Parameters
hdlItem

Input. The handle of the item object to be refreshed.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

Chapter 36. FmcjItem functions/subprograms 323

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjItemSetDescription()

This function/subprogram sets the description of the item to the specified value
(action call).

If no description is provided (NULL pointer), the description of the item is erased.

The following rules apply for specifying an item description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the item owner
v Be the system administrator

Required connection

MQSeries Workflow execution server

324 Programming Guide

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjItemSetDescription(

FmcjItemHandle hdlItem,
char const * description)

Cobol language signature

Cobol language signature
PERFORM FmcjItemSetDescription.

FmcjItemSetDescription.

CALL "FmcjItemSetDescription"
USING
BY VALUE

hdlItem
description

RETURNING
intReturnValue.

Parameters
hdlItem

Input. The handle of the item object whose description is to be set.

description
Input. A pointer to the description to be set; can be a NULL pointer.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Chapter 36. FmcjItem functions/subprograms 325

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjItemSetName()

This function/subprogram sets the name of the item (action call).

The following rules apply for specifying an item name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale, except

the following:
! " ' () * + , - . / : : < = > [\] x

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

v You cannot use leading digits
v You cannot use keywords AND, OR, NOT, IS, NULL, DIV, MOD, MUL, LOWER,

UPPER, VALUE

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the item owner
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

326 Programming Guide

C language signature

C language signature
APIRET FMC_APIENTRY FmcjItemSetName(

FmcjItemHandle hdlItem,
char const * name)

Cobol language signature

Cobol language signature
PERFORM FmcjItemSetName.

FmcjItemSetName.

CALL "FmcjItemSetName"
USING
BY VALUE

hdlItem
name

RETURNING
intReturnValue.

Parameters
hdlItem

Input. The handle of the item to be dealt with.

name Input. The new name of the item.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_INVALID_NAME(134)
The name does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

Chapter 36. FmcjItem functions/subprograms 327

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjItemTransfer()

This function/subprogram transfers an item to the specified user (action call).

The item must be in states Ready, InError, Executed, Suspending, or Suspended and
the associated process instance in states Running, Suspending, or Suspended.

The user who transfers the item must have work item authorization for the new
user.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the item owner
v Work item authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjItemTransfer(

FmcjItemHandle hdlItem,
char const * userID)

328 Programming Guide

Cobol language signature

Cobol language signature
PERFORM FmcjItemTransfer.

FmcjItemTransfer.

CALL "FmcjItemTransfer"
USING
BY VALUE

hdlItem
userID

RETURNING
intReturnValue.

Parameters
hdlItem

Input. The handle of the item object to be transferred.

userID
Input. The ID of the user to whom the item is to be transferred.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NEW_OWNER_ABSENT(110)
The user to whom the item is to be transferred is absent, that is, the item is
not transferred.

FMC_ERROR_NEW_OWNER_NOT_FOUND(107)
The user to whom the item is to be transferred is unknown.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_OWNER_ALREADY_ASSIGNED(133)
The user to whom the item is to be transferred does already have that
item.

FMC_ERROR_WRONG_STATE(120)
The item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

Chapter 36. FmcjItem functions/subprograms 329

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

330 Programming Guide

Chapter 37. FmcjPersistentList functions/subprograms

An FmcjPersistentList object represents a set of objects of the same type the user is
authorized for. Moreover, all objects which are accessible through this list have the
same characteristics. These characteristics are specified by a filter. Additionally, sort
criteria can be applied and, after that, a threshold to restrict the number of objects
to be transferred from a server to the client.

As the name indicates, the list definition is stored persistently. The objects
contained in the list are, however, assembled dynamically when they are queried.

A persistent list can be a process template list, a process instance list, or a worklist.

An FmcjPersistentList object represents the common aspects of persistent lists. In
the C++ implementation, it is the superclass of the FmcjProcessTemplateList, the
FmcjProcessInstanceList, and the FmcjWorklist classes. Similarly, in the C and
Cobol language, it provides for common implementations of functions.

A persistent list is uniquely identified by its name, type, and owner. It can be
defined for general access purposes; it is then of a public type. Or, it can be defined
for some specific user; it is then of a private type.

FmcjPersistentListDelete()

This function/subprogram deletes the specified persistent list from the MQSeries
Workflow execution server (action call).

The transient representation of the persistent list is not impacted; you have to
destruct or deallocate the transient object when it is no longer needed.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

© Copyright IBM Corp. 1999 331

C language signature

C language signature
APIRET FMC_APIENTRY FmcjPersistentListDelete(

FmcjPersistentListHandle hdlList)

Cobol language signature

Cobol language signature
PERFORM FmcjPLDelete.

FmcjPLDelete.

CALL "FmcjPersistentListDelete"
USING
BY VALUE

hdlList
RETURNING

intReturnValue.

Parameters
hdlList

Input. The handle of the persistent list to be deleted.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

332 Programming Guide

FmcjPersistentListRefresh()

This function/subprogram refreshes the persistent list from the MQSeries
Workflow execution server (action call).

All information about the persistent list is retrieved.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjPersistentListRefresh(

FmcjPersistentListHandle hdlList)

Cobol language signature

Cobol language signature
PERFORM FmcjPLRefresh.

FmcjPLRefresh.

CALL "FmcjPersistentListRefresh"
USING
BY VALUE

hdlList
RETURNING

intReturnValue.

Parameters
hdlList

Input. The handle of the persistent list to be refreshed.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

Chapter 37. FmcjPersistentList functions/subprograms 333

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjPersistentListSetDescription()

This function/subprogram sets the description of the persistent list to the specified
value (action call).

If no description is provided (NULL pointer), the description of the persistent list
is erased.

The following rules apply for specifying a persistent list description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

334 Programming Guide

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjPersistentListSetDescription(

FmcjPersistentListHandle hdlList,
char const * description)

Cobol language signature

Cobol language signature
PERFORM FmcjPLSetDescription.

FmcjPLSetDescription.

CALL "FmcjPersistentListSetDescription"
USING
BY VALUE

hdlList
description

RETURNING
intReturnValue.

Parameters
hdlList

Input. The handle of the persistent list object whose description is to be set.

description
Input. A pointer to the description to be set; can be a NULL pointer.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

Chapter 37. FmcjPersistentList functions/subprograms 335

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjPersistentListSetFilter()

This function/subprogram sets the filter of the persistent list to the specified value
(action call).

If no filter is provided (NULL pointer), the current filter of the persistent list is
erased. This means that all objects authorized for will be selected via this list.

Refer to the appropriate list creation for a description of a valid filter syntax.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjPersistentListSetFilter(

FmcjPersistentListHandle hdlList,
char const * filter)

336 Programming Guide

Cobol language signature

Cobol language signature
PERFORM FmcjPLSetFilter.

FmcjPLSetFilter.

CALL "FmcjPersistentListSetFilter"
USING
BY VALUE

hdlList
filter

RETURNING
intReturnValue.

Parameters
hdlList

Input. The handle of the persistent list object whose filter is to be set.

filter Input. A pointer to the filter to be set; can be a NULL pointer.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 37. FmcjPersistentList functions/subprograms 337

FmcjPersistentListSetSortCriteria()

This function/subprogram sets the sort criteria of the persistent list to the specified
value (action call).

If no sort criteria are provided (NULL pointer), the current sort criteria of the
persistent list are erased. This means that objects selected via this list will not be
sorted.

Refer to the appropriate list creation for a description of a valid sort criteria syntax.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjPersistentListSetFilter(

FmcjPersistentListHandle hdlList,
char const * sortCriteria)

Cobol language signature

Cobol language signature
PERFORM FmcjPLSetSortCriteria.

FmcjPLSetSortCriteria.

CALL "FmcjPersistentListSetSortCriteria"
USING
BY VALUE

hdlList
sortCriteria

RETURNING
intReturnValue.

338 Programming Guide

Parameters
hdlList

Input. The handle of the persistent list object whose sort criteria are to be
set.

sortCriteria
Input. A pointer to the sort criteria to be set; can be a NULL pointer.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjPersistentListSetThreshold()

This function/subprogram sets the threshold of the persistent list to the specified
value (action call).

If no threshold is provided (NULL pointer), the threshold of the persistent list is
erased. This means that all objects contained in the list will be provided when
queried.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Chapter 37. FmcjPersistentList functions/subprograms 339

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjPersistentListSetThreshold(

FmcjPersistentListHandle hdlList,
unsigned long const * threshold)

Cobol language signature

Cobol language signature
PERFORM FmcjPLSetThreshold.

FmcjPLSetThreshold.

CALL "FmcjPersistentListSetThreshold"
USING
BY VALUE

hdlList
threshold

RETURNING
intReturnValue.

Parameters
hdlList

Input. The handle of the persistent list object whose threshold is to be set.

threshold
Input. A pointer to the threshold to be set; can be a NULL pointer.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

340 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_THRESHOLD(807)
The threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 37. FmcjPersistentList functions/subprograms 341

342 Programming Guide

Chapter 38. FmcjPerson functions/subprograms

A Person object represents an MQSeries Workflow user. A person is uniquely
identified by its object identifier or by its user identification.

FmcjPersonRefresh()

This function/subprogram refreshes the person from the MQSeries Workflow
execution server (action call).

All information about the person is retrieved.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjPersonRefresh(FmcjPersonHandle hdlPerson)

Cobol language signature

Cobol language signature
PERFORM FmcjPRefresh.

FmcjPRefresh.

CALL "FmcjPersonRefresh"
USING
BY VALUE

hdlPerson
RETURNING

intReturnValue.

© Copyright IBM Corp. 1999 343

Parameters
hdlPerson

Input. The handle of the person to be refreshed.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjPersonSetAbsence()

This function/subprogram sets the absence indication of the logged-on user to the
specified value (action call).

When a person is absent, this person does not participate in staff resolution, that is,
this person does not get assigned any work items.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

344 Programming Guide

C language signature

C language signature
APIRET FMC_APIENTRY FmcjPersonSetAbsence(

FmcjPersonHandle hdlPerson
bool new value)

Cobol language signature

Cobol language signature
PERFORM FmcjPSetAbsence.

FmcjPSetAbsence.

CALL "FmcjPersonSetAbsence"
USING
BY VALUE

hdlPerson
newValue

RETURNING
intReturnValue.

Parameters
hdlPerson

Input. The handle of the person object whose absence is to be set.

newValue
Input. True, if the person is denoted as absent, else false.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 38. FmcjPerson functions/subprograms 345

FmcjPersonSetSubstitute()

This function/subprogram sets the substitute of the logged-on user (action call).

The substitute must be a registered MQSeries Workflow user ID other than the
logged-on user. If no substitute is provided (NULL pointer), the substitute of the
logged-on user is erased.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjPersistentListSetSubstitute(

FmcjPersonHandle hdlPerson
char const * substitute)

Cobol language signature

Cobol language signature
PERFORM FmcjPSetSubstitute.

FmcjPSetSubstitute.

CALL "FmcjPersonSetSubstitute"
USING
BY VALUE

hdlPerson
substitute

RETURNING
intReturnValue.

Parameters
hdlPerson

Input. The handle of the person object whose substitute is to be set.

substitute
Input. A pointer to the substitute to be set; can be a null pointer.

346 Programming Guide

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not conform to the
syntax rules.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_USERID_UNKNOWN(10)
No user ID registered with MQSeries Workflow has been provided.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 38. FmcjPerson functions/subprograms 347

348 Programming Guide

Chapter 39. FmcjProcessInstance functions/subprograms

An FmcjProcessInstance object represents an instance of a process template. A
process instance is uniquely identified by its object identifier or by its name.
Depending on the keep option when the process instance was created, the unique
process instance name has been supplied by the user or has been generated by
MQSeries Workflow.

The following diagram provides an overview on the possible process instance
states and the actions which are allowed in those states, provided that the
appropriate authority has been granted:

FmcjProcessInstanceDelete()

This function/subprogram deletes the specified process instance from the
MQSeries Workflow execution server (action call).

The process instance must be a top level process and in states Ready, Finished, or
Terminated. The creator can delete the process instance as long as it has not been
started.

There are no impacts on your transient representation of the process instance; you
have to destruct or deallocate the transient object when it is no longer needed.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Figure 21. Process instance states

© Copyright IBM Corp. 1999 349

Authorization

One of:
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceDelete(

FmcjProcessInstanceHandle hdlInstance)

Cobol language signature

Cobol language signature
PERFORM FmcjPIDelete.

FmcjPIDelete.

CALL "FmcjProcessInstanceDelete"
USING
BY VALUE

hdlInstance
RETURNING

intReturnValue.

Parameters
hdlInstance

Input. The handle of the process instance to be deleted.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

350 Programming Guide

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessInstanceInContainer()

This function/subprogram retrieves the input container associated with the process
instance from the MQSeries Workflow execution server (action call).

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

Chapter 39. FmcjProcessInstance functions/subprograms 351

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceInContainer(

FmcjProcessInstanceHandle hdlInstance,
FmcjReadWriteContainerHandle * input)

Cobol language signature

Cobol language signature
PERFORM FmcjPIInCtnr.

FmcjPIInCtnr.

CALL "FmcjProcessInstanceInContainer"
USING
BY VALUE

hdlInstance
BY REFERENCE

inputValue
RETURNING

intReturnValue.

Parameters
hdlInstance

Input. The handle of the process instance object whose input container is to
be retrieved.

input Input/Output. The address of the input container handle respectively the
input container of the process instance to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

352 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessInstanceObtainMonitor()

This function/subprogram obtains a monitor for the process instance from the
MQSeries Workflow execution server (action call).

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also fetched from the server.

Note: Deep is currently not supported.

The application is completely responsible for the ownership of objects, that is, it is
not checked whether the process instance monitor handle already points to some
object when a new one is assigned.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server (present session mode)

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceObtainMonitor(

FmcjProcessInstanceHandle hdlInstance,
bool deep,
FmcjProcessInstanceMonitorHandle * monitor)

Chapter 39. FmcjProcessInstance functions/subprograms 353

Cobol language signature

Cobol language signature
PERFORM FmcjPIObtainMon.

FmcjPIObtainMon.

CALL "FmcjProcessInstanceObtainMonitor"
USING
BY VALUE

hdlInstance
deep

BY REFERENCE
monitor

RETURNING
intReturnValue.

Parameters
hdlInstance

Input. The handle of the process instance object whose monitor is to be
retrieved.

deep Input. An indicator whether activity instances of type Block are to be
resolved, that is, their monitor is also to be provided. Note, deep is
currently ignored.

monitor
Input/Output. The address of the monitor handle respectively the monitor
of the process instance to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does not yet
represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the connection
should be established is not defined in your profile.

354 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessInstancePersistentObject()

This function/subprogram retrieves the process instance identified by the passed
object identifier from the MQSeries Workflow execution server (action call).

The MQSeries Workflow execution server from which the process instance is to be
retrieved is identified by the service object or handle. The process instance handle
to be initialized must be a null pointer respectively the process instance object to
be initialized must be empty. The transient object is then updated with all
information, primary and secondary, of the process instance.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signatures

C language signature
APIRET FMC_APIENTRY FmcjProcessInstancePersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjProcessInstanceHandle * hdlInstance)

Chapter 39. FmcjProcessInstance functions/subprograms 355

Cobol language signatures

Cobol language signature
PERFORM FmcjPIPersistentObj.

FmcjPIPersistentObj.

CALL "FmcjProcessInstancePersistentObject"
USING
BY VALUE

serviceValue
oid

BY REFERENCE
hdlInstance

RETURNING
intReturnValue.

Parameters
service

Input. The service object representing the session with the execution server.

oid Input. The object identifier of the process instance to be retrieved.

hdlInstance
Input/Output. The address of the handle to the process instance object to
be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

356 Programming Guide

FmcjProcessInstanceRefresh()

This function/subprogram refreshes the process instance from the MQSeries
Workflow execution server (action call).

All information about the process instance, primary and secondary, is retrieved.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceRefresh(

FmcjProcessInstanceHandle hdlInstance)

Cobol language signature

Cobol language signature
PERFORM FmcjPIRefresh.

FmcjPIRefresh.

CALL "FmcjProcessInstanceRefresh"
USING
BY VALUE

hdlInstance
RETURNING

intReturnValue.

Parameters
hdlInstance

Input. The handle of the process instance object to be refreshed.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

Chapter 39. FmcjProcessInstance functions/subprograms 357

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessInstanceResume()

This function/subprogram resumes processing of a suspended or suspending
process instance (client-server call).

All non-autonomous subprocesses are also resumed, if the deep option equals true.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

358 Programming Guide

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceResume(

FmcjProcessInstanceHandle hdlInstance,
bool deep)

Cobol language signature

Cobol language signature
PERFORM FmcjPIResume.

FmcjPIResume.

CALL "FmcjProcessInstanceResume"
USING
BY VALUE

hdlInstance
deep

RETURNING
intReturnValue.

Parameters
hdlInstance

Input. The handle of the process instance to be restarted.

deep Input. If deep is true, processing of all non-autonomous subprocesses is
also resumed.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

Chapter 39. FmcjProcessInstance functions/subprograms 359

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessInstanceSetDescription()

This function/subprogram sets the description of the process instance to the
specified value (action call).

If no description is provided (NULL pointer), the description of the process
instance is erased.

The following rules apply for specifying a process instance description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceSetDescription(

FmcjProcessInstanceHandle hdlInstance,
char const * description)

360 Programming Guide

Cobol language signature

Cobol language signature
PERFORM FmcjPISetDescription.

FmcjPISetDescription.

CALL "FmcjProcessInstanceSetDescription"
USING
BY VALUE

hdlInstance
description

RETURNING
intReturnValue.

Parameters
hdlInstance

Input. The handle of the process instance object whose description is to be
set.

description
Input. A pointer to the description to be set; can be a NULL pointer.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 39. FmcjProcessInstance functions/subprograms 361

FmcjProcessInstanceSetName()

This function/subprogram sets the name of the process instance to the specified
value (client-server call).

The process instance must still be in the Ready state.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceSetName(

FmcjProcessInstanceHandle hdlInstance,
char const * name)

362 Programming Guide

Cobol language signature

Cobol language signature
PERFORM FmcjPISetName.

FmcjPISetName.

CALL "FmcjProcessInstanceSetName"
USING
BY VALUE

hdlInstance
name

RETURNING
intReturnValue.

Parameters
hdlInstance

Input. The handle of the process instance object whose name is to be set.

name Input. The name to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_INVALID_NAME(134)
The name does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The process instance name is not unique.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

Chapter 39. FmcjProcessInstance functions/subprograms 363

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessInstanceStart()

This function/subprogram starts a ready process instance (action call).

When successfully executed, the starter is set to the requestor of this action and the
process administrator is determined.

When initial values are to be passed to the process instance to be started, an input
container can be provided - see also FmcjProcessInstance InContainer(). When the
process instance requires input and is started without specifying an input
container, the input-container values are not set. So, when, for example,
input-container values are queried from within an activity implementation,
FMC_ERROR_MEMBER_NOT_SET is returned.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceStart(

FmcjProcessInstanceHandle hdlInstance,
FmcjReadWriteContainerHandle input)

364 Programming Guide

Cobol language signature

Cobol language signatures
PERFORM FmcjPIStart.

FmcjPIStart.

CALL "FmcjProcessInstanceStart"
USING
BY VALUE

hdlInstance
inputValue

RETURNING
intReturnValue.

Parameters
hdlInstance

Input. The handle of the process instance object to be started.

input Input. The input container of the process instance.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 39. FmcjProcessInstance functions/subprograms 365

FmcjProcessInstanceSuspend()

This function/subprogram suspends (temporarily stops) the process instance
(action call).

The process instance must be in state Running. All non-autonomous subprocesses
are also suspended if the deep option equals true. Autonomous subprocesses are
not considered.

The process instance remains in state Suspending as long as there are running
program activity implementations or suspending non-autonomous subprocesses.
When the activity implementations completed their executions and when the
non-autonomous subprocesses reached the Suspended state, the process instance is
put into the Suspended state.

Optionally, a date may be specified up to when the process instance is suspended;
it is then automatically resumed, together with the non-autonomous subprocesses,
if the deep option had been specified.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signatures

C language signatures
APIRET FMC_APIENTRY FmcjProcessInstanceSuspend(

FmcjProcessInstanceHandle hdlInstance,
bool deep)

APIRET FMC_APIENTRY FmcjProcessInstanceSuspendUntil(
FmcjProcessInstanceHandle hdlInstance,
FmcjCDateTime const * time,
bool deep)

366 Programming Guide

Cobol language signatures

Cobol language signatures
PERFORM FmcjPISuspend.

FmcjPISuspend.

CALL "FmcjProcessInstanceSuspend"
USING
BY VALUE

hdlInstance
deep

RETURNING
intReturnValue.

PERFORM FmcjPISuspendUntil.

FmcjPISuspendUntil.

CALL "FmcjProcessInstanceSuspendUntil"
USING
BY VALUE

hdlInstance
BY REFERENCE

timeValue
BY VALUE

deep
RETURNING

intReturnValue.

Parameters
hdlInstance

Input. The handle of the process instance object to be started.

time Input. The date/time respectively a pointer to the date/time up to when
the process instance is to be suspended.

deep Input. An indicator whether also non-autonomous subprocesses are to be
suspended.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Chapter 39. FmcjProcessInstance functions/subprograms 367

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessInstanceTerminate()

This function/subprogram terminates a top level process instance or a remote
subprocess and all of its non-autonomous subprocesses (action call).

The process instance must be in states Running, Suspended, or Suspending.

The process instance is put into state terminating as long as there are running
activity implementations or terminating non-autonomous subprocesses. When the
activity implementations completed their execution or when the non-autonomous
subprocesses terminated, the process instance is put into the Terminated state. When
the process instance has reached the Terminated state, it is deleted depending on the
“delete finished items” option.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

368 Programming Guide

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceTerminate(

FmcjProcessInstanceHandle hdlInstance)

Cobol language signature

Cobol language signature
PERFORM FmcjPITerminate.

FmcjPITerminate.

CALL "FmcjProcessInstanceTerminate"
USING
BY VALUE

hdlInstance
RETURNING

intReturnValue.

Parameters
hdlInstance

Input. The handle of the process instance object to be terminated.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

Chapter 39. FmcjProcessInstance functions/subprograms 369

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

370 Programming Guide

Chapter 40. FmcjProcessInstanceList functions/subprograms

A process instance list represents a set of process instances. All process instances
which are accessible through this list have the same characteristics. These
characteristics are specified by a filter. Additionally, sort criteria can be applied
and, after that, a threshold to restrict the number of process instances to be
transferred from the execution server to the client.

The process instance list definition is stored persistently.

In the C++ implementation, FmcjProcessInstanceList is a subclass of
FmcjPersistentList and thus inherits all its methods. Similarly, in the C and Cobol
language API, all functions of FmcjPersistentList are also applicable to
FmcjProcessInstanceList.

FmcjProcessInstanceListQueryProcessInstances()

This function/subprogram retrieves the primary information for all process
instances characterized by the specified process instance list from the MQSeries
Workflow execution server (action call).

From the set of qualifying process instances, only those are retrieved the user is
authorized for. The user is authorized for a process instance if the process instance:
v Does not belong to any category
v Does belong to a category and the user has global process authorization or

global process administration authorization or selected process authorization or
selected process administration authorization for that category

The primary information that is retrieved for each process instance is:
v Category
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v LastStateChangeTime
v Name
v ParentName
v ProcessTemplateName
v StartTime
v State
v SuspensionExpirationTime
v SuspensionTime
v SystemName
v SystemGroupName
v TopLevelName

© Copyright IBM Corp. 1999 371

Any process instances retrieved are appended to the supplied vector of process
instances. If you want to read those process instances only which are currently
included in the process instance list, you have to clear the vector before you call
this function/subprogram.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceListQueryProcessInstances(

FmcjProcessInstanceListHandle hdlList,
FmcjProcessInstanceVectorHandle * instances)

Cobol language signature

Cobol language signature
PERFORM FmcjPILQueryProcInsts.

FmcjPILQueryProcInsts.

CALL "FmcjProcessInstanceListQueryProcessInstances"
USING
BY VALUE

hdlList
BY REFERENCE

instances
RETURNING

intReturnValue.

Parameters
hdlList

Input. The handle of the process instance list to be queried.

instances
Input/Output. The vector of qualifying process instances.

372 Programming Guide

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance list does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447

v For a Cobol example see “Query worklists (Cobol language)” on page 448

Chapter 40. FmcjProcessInstanceList functions/subprograms 373

374 Programming Guide

Chapter 41. FmcjProcessInstanceNotification
functions/subprograms

An FmcjProcessInstanceNotification object represents a notification on a process
instance assigned to a user.

Other items assigned to users are activity instance notifications and work items.
FmcjItem represents the common properties of such items. In the C++
implementation, FmcjProcessInstanceNotification is thus a subclass of the FmcjItem
class. Similarly, in the C and Cobol language, it takes common implementations of
functions from FmcjItem.

A process instance notification is uniquely identified by its object identifier.

FmcjProcessInstanceNotificationPersistentObject()

This function/subprogram retrieves the process instance notification identified by
the passed object identifier from the MQSeries Workflow execution server (action
call).

The MQSeries Workflow execution server from which the process instance
notification is to be retrieved is identified by the service object. The process
instance notification handle to be initialized must be a null pointer respectively the
process instance notification object to be initialized must be empty. The transient
object is then updated with all information - primary and secondary - of the
activity instance notification.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

© Copyright IBM Corp. 1999 375

C language signatures

C language signature
APIRET FMC_APIENTRY FmcjProcessInstanceNotificationPersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjProcessInstanceNotificationHandle * hdlItem)

Cobol language signatures

Cobol language signature
PERFORM FmcjPINPersistentObj.

FmcjPINPersistentObj.

CALL "FmcjProcessInstanceNotificationPersistentObject"
USING
BY VALUE

serviceValue
oid

BY REFERENCE
hdlItem

RETURNING
intReturnValue.

Parameters
service

Input. The service object representing the session with the execution server.

oid Input. The object identifier of the process instance notification to be
retrieved.

hdlItem
Input/Output. The address of the handle to the process instance
notification object to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance notification does no longer exist.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

376 Programming Guide

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 41. FmcjProcessInstanceNotification functions/subprograms 377

378 Programming Guide

Chapter 42. FmcjProcessTemplate functions/subprograms

An FmcjProcessTemplate object is the frozen state of a process model from which it
is created via translation. All program definitions and data structures referenced by
the process model are copied into the process template (early binding).
Subprocesses are lately bound. Their definitions are only located during execution.

A process template is uniquely identified by its object identifier or by its name and
a valid-from date. This valid-from date determines since when the process template
can be used to create process instances.

When process templates are queried from the execution server, then only valid
process templates are returned.

FmcjProcessTemplateCreateAndStartInstance()

This function/subprogram creates a process instance from the specified process
template and starts the resulting process instance (action call).

Depending on the keepName option, a process instance name must be provided. If
the process instance name is to be kept as is, you cannot provide an empty string.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

If a unique name may be generated by MQSeries Workflow, the following applies:
v If no or an empty process instance name is provided, an instance is created with

a default name ProcessTemplateNameOid, where Oid is a 32 byte printable version
of the process instance object identifier. Since the process instance name cannot
become longer than 63 characters, any process template name longer than 31
characters is shortened.

v If a process instance name is provided, that name is kept as long as it is unique.
If the provided process instance name is already used for another instance, an
instance is created with the name nameOid, where Oid is a 32 byte printable
version of the process instance object identifier. Since the process instance name
cannot become longer than 63 characters, any name longer than 31 characters is
shortened.

The passed name parameter value remains unchanged; FmcjProcessInstanceName()
returns the actual name of the process instance created.

When initial values are to be passed to the process instance to be created and
started, an input container can be provided - see also
FmcjProcessTemplateInContainer(). When a process instance that requires input is
started without specifying an input container, the input-container values are not

© Copyright IBM Corp. 1999 379

set. When, for example, input-container values are queried from within an activity
implementation, FMC_ERROR_MEMBER_NOT_SET is returned.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessTemplateCreateAndStartInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjProcessInstanceHandle * newInstance)

380 Programming Guide

Cobol language signature

Cobol language signatures
PERFORM FmcjPTCreateAndStartInst.

FmcjPTCreateAndStartInst.

CALL "FmcjProcessTemplateCreateAndStartInstance"
USING
BY VALUE

hdlTemplate
name
reserved1
reserved2
inputValue
keepName

BY REFERENCE
newInstance

RETURNING
intReturnValue.

Parameters
hdlTemplate

Input. The handle of the process template object to be used.

name Input. The name of the process instance to be created and started.

input Input. The input container of the process instance.

keepName
Input. True, if only the specified name can be used for the process instance.
False, if a unique name can be generated.

newInstance
Input/Output. The newly created and started process instance.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer valid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the syntax
rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Chapter 42. FmcjProcessTemplate functions/subprograms 381

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique; can also happen when a
process instance with the same name is not yet physically deleted.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessTemplateCreateAndSuspendInstance()

This function/subprogram creates a process instance from the specified process
template and suspends the resulting process instance (action call). Depending on
the keepName option, a process instance name should be provided. If the provided
process instance name is to be kept as is, you cannot provide an empty string.
Optionally, a system group where to create and suspend the process instance may
be provided. If a system group is specified, then also a system at that system
group must be specified to designate the system - actually the execution server -
which should perform the action. If no system and system group name is
provided, then the user’s session determines the location of the process instance; it
is created on the logged on user’s home system group by the connected execution
server.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

If a unique name may be generated by MQSeries Workflow, the following applies:
v If no or an empty process instance name is provided, an instance is created with

a default name ProcessTemplateNameOid, where Oid is a 32 byte printable version
of the process instance object identifier. Since the process instance name cannot
become longer than 63 characters, any process template name longer than 31
characters is shortened.

v If a process instance name is provided, that name is kept as long as it is unique.
If the provided process instance name is already used for another instance, an
instance is created with the name nameOid, where Oid is a 32 byte printable
version of the process instance object identifier. Since the process instance name
cannot become longer than 63 characters, any name longer than 31 characters is
shortened.

The passed name remains unchanged; FmcjProcessInstanceName() returns the
actual name of the process instance created.

382 Programming Guide

When initial values are to be passed to the process instance to be created and
suspended, an input container may be provided - see also
FmcjProcessTemplateInContainer(). When a process instance that requires input is
started/ suspended without specifying an input container, the input-container
values are not set. So, when, for example, input-container values are queried from
within an activity implementation, FMC_ERROR_MEMBER_NOT_SET is returned.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessTemplateCreateAndSuspendInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * systemGroup,
char const * system,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjProcessInstanceHandle * newInstance)

Chapter 42. FmcjProcessTemplate functions/subprograms 383

Cobol language signature

Cobol language signature
PERFORM FmcjPTCreateAndSuspendInst.

FmcjPTCreateAndSuspendInst.

CALL "FmcjProcessTemplateCreateAndSuspendInstance"
USING
BY VALUE

hdlTemplate
BY REFERENCE

name
systemGroup
system

BY VALUE
inputValue
keepName

BY REFERENCE
newInstance

RETURNING
intReturnValue.

Parameters
hdlTemplate

Input. The handle of the process template object to be used.

name Input. The name of the process instance to be created and suspended.

systemGroup
Input. The name of the system group where the process instance is to be
created and suspended.

system
Input. The name of the system at the system group which should create
and suspend the process instance.

input Input. The input container of the process instance.

keepName
Input. True if only the specified name may be used for the process
instance. False if a unique name may be generated.

newInstance
Input/Output. The newly created and suspended process instance.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

384 Programming Guide

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer valid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the syntax
rules.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see
v For a Cobol example see

FmcjProcessTemplateCreateInstance()

This function/subprogram creates a process instance from the specified process
template (action call).

Depending on the keepName option, a process instance name must be provided. If
the process instance name is to be kept as is, you cannot provide an empty string.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

If a unique name may be generated by MQSeries Workflow, the following applies:
v If no name or an empty process instance name is provided, an instance is

created with a default name ProcessTemplateNameOid, where Oid is a 32 byte
printable version of the process instance object identifier. Since the process
instance name cannot become longer than 63 characters, any process template
name longer than 31 characters is shortened.

v If a process instance name is provided, that name is kept as long as it is unique.
If the provided process instance name is already used for another instance, an
instance is created with the name nameOid, where Oid is a 32 byte printable

Chapter 42. FmcjProcessTemplate functions/subprograms 385

version of the process instance object identifier. Since the process instance name
cannot become longer than 63 characters, any name longer than 31 characters is
shortened.

The passed name parameter value remains unchanged; FmcjProcessInstanceName()
returns the actual name of the process instance created.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessTemplateCreateInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
bool keepName,
FmcjProcessInstanceHandle * newInstance)

386 Programming Guide

Cobol language signature

Cobol language signature
PERFORM FmcjPTCreateInst.

FmcjPTCreateInst.

CALL "FmcjProcessTemplateCreateInstance"
USING
BY VALUE

hdlTemplate
name
reserved1
reserved2
keepName

BY REFERENCE
newInstance

RETURNING
intReturnValue.

Parameters
hdlTemplate

Input. The handle of the process template object to be used.

name Input. The name of the process instance to be created.

keepName
Input. True, if only the specified name can be used for the process instance.
False, if a unique name can be generated.

newInstance
Input/Output. The newly created process instance.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer valid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the syntax
rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique; can also happen when a
process instance with the same name is not yet physically deleted.

Chapter 42. FmcjProcessTemplate functions/subprograms 387

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessTemplateDelete()

This function/subprogram deletes the specified process template from the
MQSeries Workflow modeling server (client-server call). Note that the transient
representation is not impacted; you have to destruct/ deallocate the transient
object when it is no longer needed.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

process definition authorization

Required connection

MQSeries Workflow modeling server

API include file

BuildTime: fmcjcbld.h (C language) respectively fmcvars.cpy and fmcperf.cpy
(Cobol language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessTemplateDelete(

FmcjProcessTemplateHandle hdlTemplate)

388 Programming Guide

Cobol language signature

Cobol language signature
PERFORM FmcjPTDelete.

FmcjPTDelete.

CALL "FmcjProcessTemplateDelete"
USING
BY VALUE

hdlTemplate
RETURNING

intReturnValue.

Parameters
hdlTemplate

Input. The handle of the process template to be deleted.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see
v For a Cobol example see

Chapter 42. FmcjProcessTemplate functions/subprograms 389

FmcjProcessTemplateInContainer()

This function/subprogram retrieves the input container associated with the process
template from the MQSeries Workflow execution server (action call).

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessTemplateInContainer(

FmcjProcessTemplateHandle hdlTemplate,
FmcjReadWriteContainerHandle * input)

Cobol language signature

Cobol language signature
PERFORM FmcjPTInCtnr.

FmcjPTInCtnr.

CALL "FmcjProcessTemplateInContainer"
USING
BY VALUE

hdlTemplate
BY REFERENCE

inputValue
RETURNING

intReturnValue.

Parameters
hdlTemplate

Input. The handle of the process template object whose input container is
to be retrieved.

390 Programming Guide

input Input/Output. The address of the input container handle respectively the
input container of the process template to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer valid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessTemplatePersistentObject()

This function/subprogram retrieves the process template identified by the passed
object identifier from the MQSeries Workflow execution server (action call).

The MQSeries Workflow execution server from which the process template is to be
retrieved is identified by the service object or handle. The process template handle
to be initialized must be a null pointer respectively the process template object to
be initialized must be empty. The transient object is then updated with all
information - primary and secondary - of the process template.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Chapter 42. FmcjProcessTemplate functions/subprograms 391

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signatures

C language signature
APIRET FMC_APIENTRY FmcjProcessTemplatePersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjProcessTemplateHandle * hdlTemplate)

Cobol language signatures

Cobol language signature
PERFORM FmcjPTPersistentObj.

FmcjPTPersistentObj.

CALL "FmcjProcessTemplatePersistentObject"
USING
BY VALUE

serviceValue
oid

BY REFERENCE
hdlTemplate

RETURNING
intReturnValue.

Parameters
service

Input. The service object representing the session with the execution server.

oid Input. The object identifier of the process template to be retrieved.

hdlTemplate
Input/Output. The address of the handle to the process template object to
be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

392 Programming Guide

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer valid.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjProcessTemplateRefresh()

This function/subprogram refreshes the process template from the MQSeries
Workflow execution server (action call).

All information about the process template - primary and secondary - is retrieved.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution or modeling server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessTemplateRefresh(

FmcjProcessTemplateHandle hdlTemplate)

Chapter 42. FmcjProcessTemplate functions/subprograms 393

Cobol language signature

Cobol language signature
PERFORM FmcjPTRefresh.

FmcjPTRefresh.

CALL "FmcjProcessTemplateRefresh"
USING
BY VALUE

hdlTemplate
RETURNING

intReturnValue.

Parameters
hdlTemplate

Input. The handle of the process template object to be refreshed.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer valid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

394 Programming Guide

Chapter 43. FmcjProcessTemplateList functions/subprograms

A process template list represents a set of process templates. All process templates
which are accessible through this list have the same characteristics. These
characteristics are specified by a filter. Additionally, sort criteria can be applied
and, after that, a threshold to restrict the number of process templates to be
transferred from the execution server to the client.

The process template list definition is stored persistently.

In the C++ implementation, FmcjProcessTemplateList is a subclass of
FmcjPersistentList and thus inherits all its methods. Similarly, in the C and Cobol
language API, all functions of FmcjPersistentList are also applicable to
FmcjProcessTemplateList.

FmcjProcessTemplateListQueryProcessTemplates()

This function/subprogram retrieves the primary information for all process
templates characterized by the specified process template list from the MQSeries
Workflow execution server (action call).

From the set of qualifying process templates, only those are retrieved, the user is
authorized for. The user is authorized for a process template if the process
template:
v Does not belong to any category
v Does belong to a category and the user has global process authorization or

global process administration authorization or selected process authorization or
selected process administration authorization for that category

The primary information that is retrieved for each process template is:
v Category
v CreationTime
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v Name
v ValidFromTime

Any process templates retrieved are appended to the supplied vector of process
templates. If you want to read those process templates only which are currently
included in the process template list, you have to clear the vector before you call
this function/subprogram.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

© Copyright IBM Corp. 1999 395

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjProcessTemplateListQueryProcessTemplates(

FmcjProcessTemplateListHandle hdlList,
FmcjProcessTemplateVectorHandle * templates)

Cobol language signature

Cobol language signature
PERFORM FmcjPTLQueryProcTempls.

FmcjPTLQueryProcTempls.

CALL "FmcjProcessTemplateListQueryProcessTemplates"
USING
BY VALUE

hdlList
BY REFERENCE

templates
RETURNING

intReturnValue.

Parameters
hdlList

Input. The handle of the process template list to be queried.

templates
Input/Output. The vector of qualifying process templates.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template list does no longer exist.

396 Programming Guide

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447

v For a Cobol example see “Query worklists (Cobol language)” on page 448

Chapter 43. FmcjProcessTemplateList functions/subprograms 397

398 Programming Guide

Chapter 44. FmcjProcessTemplateVector
functions/subprograms

A process template vector represents the result of a query for process templates in
the C and Cobol language API. It provides a subset of the C++ vector functionality.

FmcjProcessTemplateVectorDeallocate()

This function deallocates the storage reserved for the specified transient vector of
process templates. The set of transient process template representations are
considered elements of the vector so that they are also deallocated. The vector
handle is set to 0 so that it can no longer be used.

Properties

Usage notes
v See “Basic functions/subprograms” on page 53 for general information.

Authorization

None

Required connection

None

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signatures

C language signature
APIRET FMC_APIENTRY FmcjProcessTemplateVectorDeallocate(

FmcjProcessTemplateVectorHandle *hdlVector)

Cobol language signature

Cobol language signature
PERFORM FmcjPTLVDeallocate.

FmcjPTLVDeallocate.

CALL "FmcjProcessTemplateListVectorDeallocate"
USING
BY REFERENCE

hdlVector
RETURNING

intReturnValue.

© Copyright IBM Corp. 1999 399

Parameters
hdlVector

Input/Output. The address of the handle to the process template vector
object to be deallocated.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A handle or pointer references an undefined location.

FMC_ERROR_INVALID_HANDLE(130)
The handle of the object to be deallocated is invalid; either 0 or no process
template vector handle.

FmcjProcessTemplateVectorFirstElement()

This function returns the first element of the process template vector. That element
has to be considered as an object on its own, that means you must deallocate the
object if it is no longer needed.

The vector position is advanced to the next element in the process template vector.

A null handle is returned if an error occurred, that means, there is no element in
the vector but you asked for it.

Properties

Usage notes
v See “Accessor function/subprograms” on page 62 for general information.

Authorization

None

Required connection

None

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
FmcjProcessTemplateHandle
FMC_APIENTRY FmcjProcessTemplateVectorFirstElement(

FmcjProcessTemplateVectorHandle hdlVector)

400 Programming Guide

Cobol language signature

Cobol language signature
PERFORM FmcjPTLVFirstElement.

FmcjPTLVFirstElement.

CALL "FmcjProcessTemplateListVectorFirstElement"
USING
BY VALUE

hdlVector
RETURNING

FmcjPTLHandleReturnValue.

Parameters
hdlVector

Input. The handle of the process template vector object to be queried.

Return type
FmcjProcessTemplateHandle

The handle of the first process template in the vector.

FmcjProcessTemplateVectorNextElement()

This function returns the next element of the process template vector from the
current position on. That element has to be considered as an object on its own, that
means you must deallocate the object if it is no longer needed. The vector position
is advanced to the next element.

A null handle is returned if an error occurred, that means, there is no more
element in the vector but you asked for it.

Properties

Usage notes
v See “Accessor function/subprograms” on page 62 for general information.

Authorization

None

Required connection

None

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

Chapter 44. FmcjProcessTemplateVector functions/subprograms 401

C language signature

C language signature
FmcjProcessTemplateHandle
FMC_APIENTRY FmcjProcessTemplateVectorNextElement(

FmcjProcessTemplateVectorHandle hdlVector)

Cobol language signature

Cobol language signature
PERFORM FmcjPTLVNextElement.

FmcjPTLVNextElement.

CALL "FmcjProcessTemplateListVectorNextElement"
USING
BY VALUE

hdlVector
RETURNING

FmcjPTLHandleReturnValue.

Parameters
hdlVector

Input. The handle of the process template vector object to be queried.

Return type
FmcjProcessTemplateHandle

The handle of the next process template in the vector.

FmcjProcessTemplateVectorSize()

This function returns the number of elements in the process template vector.

Properties

Usage notes
v See “Accessor function/subprograms” on page 62 for general information.

Authorization

None

Required connection

None

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

402 Programming Guide

C language signature

C language signature
unsigned long FMC_APIENTRY FmcjProcessTemplateVectorSize(

FmcjProcessTemplateVectorHandle hdlVector)

Cobol language signature

Cobol language signature
PERFORM FmcjPTLVSize.

FmcjPTLVSize.

CALL "FmcjProcessTemplateListVectorSize"
USING
BY VALUE

hdlVector
RETURNING

ulongReturnValue.

Parameters
hdlVector

Input. The handle of the process template vector object to be queried.

Return type
unsigned long

The number of elements in the process template vector.

Chapter 44. FmcjProcessTemplateVector functions/subprograms 403

404 Programming Guide

Chapter 45. FmcjService related functions/subprograms

An FmcjService object represents the common aspects of MQSeries Workflow
service objects. In the C++ implementation, it is thus the superclass of the
FmcjExecutionService Similarly, in the C and Cobol language, it provides for
common implementations of functions.

FmcjServiceSetPassword()

This function/subprogram allows a user’s password to be changed (action call).

Note: The password is case-sensitive.

The following rules apply for specifying a password:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale.

None

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

Logon required

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_FMC_APIENTRY FmcjServiceSetPassword(

FmcjServiceHandle service,
char const * newPassword)

© Copyright IBM Corp. 1999 405

Cobol language signature

Cobol language signature
PERFORM FmcjSrvSetPassword.

FmcjSrvSetPassword.

CALL "FmcjServiceSetPassword"
USING
BY VALUE

serviceValue
newPassword

RETURNING
intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with an
MQSeries Workflow server.

newPassword
Input. The new password to be used.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_USERID_UNKNOWN(10)
The user does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_PASSWORD(12)
The password does not comply with the MQSeries Workflow syntax rules.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

406 Programming Guide

FmcjServiceUserSettings()

This function/subprogram returns the settings of the logged on user (action call).

An empty object respectivly a null pointer is returned if no user has logged on yet
via this service object.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signatures

C language signature
APIRET FMC_FMC_APIENTRY FmcjServiceUserSettings(

FmcjServiceHandle service,
FmcjPersonHandle * user)

Cobol language signatures

Cobol language signature
PERFORM FmcjSrvUserSettings.

FmcjSrvUserSettings.

CALL "FmcjServiceUserSettings"
USING
BY VALUE

serviceValue
BY REFERENCE

user
RETURNING

intReturnValue.

Parameters
service

Input. A handle to the service object representing the session with an
MQSeries Workflow server.

Chapter 45. FmcjService related functions/subprograms 407

user Input/Output. The person object to contain respectively the address of the
person handle to point to the settings of the logged on user.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

408 Programming Guide

Chapter 46. FmcjWorkitem functions/subprograms

An FmcjWorkitem object represents an activity instance assigned to a user in order
to be worked on.

Other items assigned to users are notifications. FmcjItem represents the common
properties of such items. In the C++ implementation, FmcjWorkitem is thus a
subclass of the FmcjItem class. Similarly, in the C and Cobol language, it takes
common implementations of functions from FmcjItem.

A work item is uniquely identified by its object identifier.

The following diagrams provide an overview on the possible work item states and
the actions which are allowed in those states, provided that the appropriate
authority has been granted. Note that the actions and possible states are dependent
on the process instance state, the work item is a part of.

Figure 22. Work item states - process instance state running

© Copyright IBM Corp. 1999 409

Figure 23. Work item states - process instance state suspending or suspended

Figure 24. Work item states - process instance state terminating or terminated

410 Programming Guide

FmcjWorkitemCheckIn()

This function/subprogram allows for the check in of a work item that was
previously checked out for user processing (action call).

Checking in a work item tells MQSeries Workflow that user processing has
finished and workflow processing under the control of MQSeries Workflow can
continue. The return code of the user processing and, optionally, the output
container values are passed back to MQSeries Workflow. As usual, these container
values and the return code can be used in exit conditions to let navigation
continue depending on the success of the processing and in transition conditions to
indicate how to proceed.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the work item owner
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorkitemCheckIn(

FmcjWorkitemHandle hdlWorkitem,
FmcjReadWriteContainerHandle output,
long returnCode)

Chapter 46. FmcjWorkitem functions/subprograms 411

Cobol language signature

Cobol language signature
PERFORM FmcjWICheckIn.

FmcjWICheckIn.

CALL "FmcjWorkitemCheckIn"
USING
BY VALUE

hdlWorkitem
outputValue
returnCode

RETURNING
intReturnValue.

Parameters
hdlWorkitem

Input. The handle of the work item to be dealt with.

output
Input. A handle or pointer to the output container; can be a NULL pointer.

returnCode
Input. The return code of user processing.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is not checked out.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

412 Programming Guide

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjWorkitemCheckOut()

This function/subprogram checks out a ready work item for user processing
(action call).

This means that processing is not done by MQSeries Workflow’s inherent
program-invocation mechanism. MQSeries Workflow assumes that processing is
done by user-specific means and changes the state of the work item to CheckedOut.

The following enumeration constants can be used to specify the requested program
data; it is strongly advised to use the symbolic names instead of the integer values:

C language integer value

Fmc_WS_NotSet 0
Fmc_WS_CommonDataOnly 1
Fmc_WS_SpecifiedDefinitions 2
Fmc_WS_AllDefinitions 4

The following enumeration constants can be used to specify the platform; it is
strongly advised to use the symbolic names instead of the integer values:

C language integer value

Fmc_DP_NotSet 0
Fmc_DP_OS2 1
Fmc_DP_AIX 2
Fmc_DP_Windows95 4
Fmc_DP_WindowsNT 5
Fmc_DP_OS390 6

The requested program definition is then returned.

CommonDataOnly
returns only data common to all platforms, the description, the icon, the
unattended indicator, and the input and output containers. Any platform
specification is ignored.

SpecifiedDefinitions
returns the program definition for the specified platform. A platform must
be specified.

AllDefinitions
returns all available program definitions. Any platform specification is
ignored.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the work item owner

Chapter 46. FmcjWorkitem functions/subprograms 413

v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorkitemCheckOut(

FmcjWorkitemHandle hdlWorkitem,
enum FmcjWorkitemProgramRetrieval requestedData,
enum FmcjImplementationDataBasis platform,
FmcjProgramDataHandle * programData)

Cobol language signature

Cobol language signature
PERFORM FmcjWICheckOut.

FmcjWICheckOut.

CALL "FmcjWorkitemCheckOut"
USING
BY VALUE

hdlWorkitem
requestedData
platform

BY REFERENCE
programData

RETURNING
intReturnValue.

Parameters
hdlWorkitem

Input. The handle of the work item to be dealt with.

requestedData
Input. An indicator which program definitions are to be returned.

platform
Input. The platform for which the program definition is to be returned.

programData
Input/Output. The address of a handle to the program definition
respectively the program definition object to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

414 Programming Guide

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjWorkitemFinish()

This function/subprogram ends the execution of a manual-exit work item (action
call).

The work item must be in state Executed, that is, must run at least once. The work
item is then put into the Finished state. Depending on the “delete finished items”
option, it is deleted.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the work item owner
v Be the system administrator

Required connection

MQSeries Workflow execution server

Chapter 46. FmcjWorkitem functions/subprograms 415

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorkitemFinish(

FmcjWorkitemHandle hdlWorkitem)

Cobol language signature

Cobol language signature
PERFORM FmcjWIFinish.

FmcjWIFinish.

CALL "FmcjWorkitemFinish"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem

Input. The handle of the work item to be dealt with.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

416 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjWorkitemForceFinish()

This function/subprogram ends the execution of a work item which is known to
have completed in cases where MQSeries Workflow did not recognize this event
(action call).

This situation can occur when the execution server aborted before it received the
activity implementation completion message.

The work item must be in states Ready, Running, Executed, InError, Terminating, or
Terminated. The process instance in the states Running, Suspending, Suspended, or
Terminating.

The work item is then put into the ForceFinished state. The exit condition is
considered to be true and navigation proceeds.

Depending on the “delete finished items” option, work item is deleted.

Note: Currently, only a work item implemented by a program (activity kind) can
be force finished.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

Chapter 46. FmcjWorkitem functions/subprograms 417

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorkitemForceFinish(

FmcjWorkitemHandle hdlWorkitem)

Cobol language signature

Cobol language signature
PERFORM FmcjWIForceFinish.

FmcjWIForceFinish.

CALL "FmcjWorkitemForceFinish"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem

Input. The handle of the work item to be dealt with.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

418 Programming Guide

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjWorkitemForceRestart()

This function/subprogram forces MQSeries Workflow to enable the restart of a
work item (action call).

The work item must be in state Running, Executed, CheckedOut, InError, Terminating,
or Terminated. The process instance must be in states Running, Suspending, or
Suspended.

It is then reset into the Ready state. Note that automatic activity instances must
now be started manually.

Note: Currently, only a work item implemented by a program (activity kind) can
be force restarted.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorkitemForceRestart(

FmcjWorkitemHandle hdlWorkitem)

Chapter 46. FmcjWorkitem functions/subprograms 419

Cobol language signature

Cobol language signature
PERFORM FmcjWIForceRestart.

FmcjWIForceRestart.

CALL "FmcjWorkitemForceRestart"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem

Input. The handle of the work item to be dealt with.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

420 Programming Guide

FmcjWorkitemInContainer()

This function/subprogram retrieves the input container associated with the work
item from the MQSeries Workflow execution server (action call).

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the work item owner
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorkitemInContainer(

FmcjWorkitemHandle hdlWorkitem,
FmcjReadOnlyContainerHandle * input)

Cobol language signature

Cobol language signature
PERFORM FmcjWIInCtnr.

FmcjWIInCtnr.

CALL "FmcjWorkitemInContainer"
USING
BY VALUE

hdlWorkitem
BY REFERENCE

inputValue
RETURNING

intReturnValue.

Parameters
hdlWorkitem

Input. The handle of the work item to be dealt with.

input Input/Output. The input container.

Chapter 46. FmcjWorkitem functions/subprograms 421

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjWorkitemOutContainer()

This function/subprogram retrieves the output container associated with the work
item from the MQSeries Workflow execution server (action call).

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the work item owner
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

422 Programming Guide

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorkitemOutContainer(

FmcjWorkitemHandle hdlWorkitem,
FmcjReadWriteContainerHandle * output)

Cobol language signature

Cobol language signature
PERFORM FmcjWIOutCtnr.

FmcjWIOutCtnr.

CALL "FmcjWorkitemOutContainer"
USING
BY VALUE

hdlWorkitem
BY REFERENCE

outputValue
RETURNING

intReturnValue.

Parameters
hdlWorkitem

Input. The handle of the work item to be dealt with.

output
Input/Output. The output container.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

Chapter 46. FmcjWorkitem functions/subprograms 423

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjWorkitemPersistentObject()

This function/subprogram retrieves the work item identified by the passed object
identifier from the MQSeries Workflow execution server (action call).

The MQSeries Workflow execution server from which the work item is to be
retrieved is identified by the service object. The work item handle to be initialized
must be a null pointer respectively the work item object to be initialized must be
empty. The transient object is then updated with all information - primary and
secondary - of the work item.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signatures

C language signature
APIRET FMC_APIENTRY FmcjWorkitemPersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjWorkitemHandle * hdlWorkitem)

424 Programming Guide

Cobol language signatures

Cobol language signature
PERFORM FmcjWIPersistentObj.

FmcjWIPersistentObj.

CALL "FmcjWorkitemPersistentObject"
USING
BY VALUE

serviceValue
oid

BY REFERENCE
hdlWorkitem

RETURNING
intReturnValue.

Parameters
service

Input. The service object representing the session with the execution server.

oid Input. The object identifier of the work item to be retrieved.

hdlWorkitem
Input/Output. The address of the handle to the work item object to be set.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 46. FmcjWorkitem functions/subprograms 425

FmcjWorkitemRestart()

This function/subprogram asks MQSeries Workflow to enable the restart of a work
item (action call).

The work item must be in state Executed. It is then reset into the Ready state.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the work item owner
v Be the system administrator

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorkitemRestart(

FmcjWorkitemHandle hdlWorkitem)

Cobol language signature

Cobol language signature
PERFORM FmcjWIRestart.

FmcjWIRestart.

CALL "FmcjWorkitemRestart"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem

Input. The handle of the work item to be dealt with.

426 Programming Guide

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjWorkitemStart()

This function/subprogram starts a ready work item (action call).

If the associated activity instance is implemented by a program, the program is
started on the program execution server associated to the logged-on user. The
work item is put into the Running state. If the activity implementation or an
associated process activity cannot be started, the work item is put into the InError
state.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of:
v Be the work item owner
v Be the system administrator

Chapter 46. FmcjWorkitem functions/subprograms 427

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorkitemStart(

FmcjWorkitemHandle hdlWorkitem)

Cobol language signature

Cobol language signature
PERFORM FmcjWIStart.

FmcjWIStart.

CALL "FmcjWorkitemStart"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem

Input. The handle of the work item to be dealt with.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

428 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FmcjWorkitemTerminate()

This function/subprogram terminates a work item (action call).

The work item may be in states Ready, Running, InError, or Planning. The work
item is then put into state terminated or terminating.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

One of

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorkitemTerminate(

FmcjWorkitemHandle hdlWorkitem)

Chapter 46. FmcjWorkitem functions/subprograms 429

Cobol language signature

Cobol language signature
PERFORM FmcjWITerminate.

FmcjWITerminate.

CALL "FmcjWorkitemTerminate"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem

Input. The handle of the work item to be dealt with.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/subprogram.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

430 Programming Guide

Chapter 47. FmcjWorklist functions/subprograms

An FmcjWorklist object represents a set of items. All items which are accessible
through this list have the same characteristics. These characteristics are specified by
a filter. Additionally, sort criteria can be applied and, after that, a threshold to
restrict the number of items to be transferred from the execution server to the
client.

The worklist definition is stored persistently. The items contained in the worklist
are, however, assembled dynamically when they are queried.

In the C++ implementation, FmcjWorklist is a subclass of FmcjPersistentList and
thus inherits all its methods. Similarly, in the C and Cobol language API, all
functions of FmcjPersistentList are also applicable to FmcjWorklist.

FmcjWorklistQueryActivityInstanceNotifications()

This function/subprogram retrieves the primary information for all activity
instance notifications characterized by the specified worklist from the MQSeries
Workflow execution server (action call).

From the set of qualifying activity instance notifications, only those are retrieved,
the user is authorized for. The user is authorized for an activity instance
notification if
v He is the owner of the activity instance notification
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each activity instance notification is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

© Copyright IBM Corp. 1999 431

Any activity instance notifications retrieved are appended to the supplied vector of
activity instance notifications. If you want to read those activity instance
notifications only which are currently included in the worklist, you have to clear
the vector before you call this function/subprogram. This means that you should
set the handle to 0 via Deallocate.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorklistQueryActivityInstanceNotifications(

FmcjWorklistHandle hdlList,
FmcjActivityInstanceNotificationVectorHandle * notifications)

Cobol language signature

Cobol language signature
PERFORM FmcjWLQueryActInstNotifs.

FmcjWLQueryActInstNotifs.

CALL "FmcjWorklistQueryActivityInstanceNotifications"
USING
BY VALUE

hdlList
BY REFERENCE

notifications
RETURNING

intReturnValue.

Parameters
hdlList

Input. The handle of the worklist to be queried.

notifications
Input/Output. The vector of qualifying activity instance notifications.

432 Programming Guide

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447

v For a Cobol example see “Query worklists (Cobol language)” on page 448

FmcjWorklistQueryItems()

This function/subprogram retrieves the primary information for all items
characterized by the specified worklist from the MQSeries Workflow execution
server (action call).

From the set of qualifying items, only those are retrieved, the user is authorized
for. The user is authorized for an item if
v He is the owner of the item
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each item is:
v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime

Chapter 47. FmcjWorklist functions/subprograms 433

v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

If the item is an actual work item or an activity instance notification, then
additional primary information is retrieved:
v ActivityType
v Implementation
v Priority
v SupportTools

Any items retrieved are appended to the supplied vector of items. If you want to
read those items only which are currently included in the worklist, you have to
clear the vector before you call this function/subprogram. This means that you
should set the handle to 0 via Deallocate.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorklistQueryItems(

FmcjWorklistHandle hdlList,
FmcjItemVectorHandle * items)

434 Programming Guide

Cobol language signature

Cobol language signature
PERFORM FmcjWLQueryItems.

FmcjWLQueryItems.

CALL "FmcjWorklistQueryItems"
USING
BY VALUE

hdlList
BY REFERENCE

items
RETURNING

intReturnValue.

Parameters
hdlList

Input. The handle of the worklist to be queried.

items Input/Output. The vector of qualifying items.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447

v For a Cobol example see “Query worklists (Cobol language)” on page 448

Chapter 47. FmcjWorklist functions/subprograms 435

FmcjWorklistQueryProcessInstanceNotifications()

This function/subprogram retrieves the primary information for all process
instance notifications characterized by the specified worklist from the MQSeries
Workflow execution server (action call).

From the set of qualifying process instance notifications, only those are retrieved,
the user is authorized for. The user is authorized for a process instance notification
if
v He is the owner of the process instance notification
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each process instance notification is:
v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

Any process instance notifications retrieved are appended to the supplied vector of
process instance notifications. If you want to read those process instance
notifications only which are currently included in the worklist, you have to clear
the vector before you call this function/subprogram. This means that you should
set the handle to 0 via Deallocate.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

436 Programming Guide

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorklistQueryProcessInstanceNotifications(

FmcjWorklistHandle hdlList,
FmcjProcessInstanceNotificationVectorHandle * notifications)

Cobol language signature

Cobol language signature
PERFORM FmcjWLQueryProcInstNotifs.

FmcjWLQueryProcInstNotifs.

CALL "FmcjWorklistQueryProcessInstanceNotifications"
USING
BY VALUE

hdlList
BY REFERENCE

notifications
RETURNING

intReturnValue.

Parameters
hdlList

Input. The handle of the worklist to be queried.

notifications
Input/Output. The vector of qualifying process instance notifications.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

Chapter 47. FmcjWorklist functions/subprograms 437

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447

v For a Cobol example see “Query worklists (Cobol language)” on page 448

FmcjWorklistQueryWorkitems()

This function/subprogram retrieves the primary information for all work items
characterized by the specified worklist from the MQSeries Workflow execution
server (action call).

From the set of qualifying work items, only those are retrieved, the user is
authorized for. The user is authorized for a work item if
v He is the owner of the work item
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each work item is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

Any work items retrieved are appended to the supplied vector of work items. If
you want to read those work items only which are currently included in the
worklist, you have to clear the vector before you call this function/subprogram.
This means that you should set the handle to 0 via Deallocate.

Properties

Usage notes
v See “Action functions/subprograms” on page 76 for general information.

438 Programming Guide

Authorization

None

Required connection

MQSeries Workflow execution server

API include file

Runtime: fmcjcrun.h (C language) respectively fmcvars.cpy and fmcperf.cpy (Cobol
language)

C language signature

C language signature
APIRET FMC_APIENTRY FmcjWorklistQueryWorkitems(

FmcjWorklistHandle hdlList,
FmcjWorkitemVectorHandle * workitems)

Cobol language signature

Cobol language signature
PERFORM FmcjWLQueryWorkitems.

FmcjWLQueryWorkitems.

CALL "FmcjWorklistQueryWorkitems"
USING
BY VALUE

hdlList
BY REFERENCE

workitems
RETURNING

intReturnValue.

Parameters
hdlList

Input. The handle of the worklist to be queried.

workitems
Input/Output. The vector of qualifying work items.

Return codes
FMC_OK(0)

The function/subprogram completed successfully.

FMC_ERROR(1)
A parameter references an undefined location. For example, the address of
a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an object of
the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

Chapter 47. FmcjWorklist functions/subprograms 439

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; maybe the server to connect to is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your IBM
representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C language example see “Query worklists (C language)” on page 447

v For a Cobol example see “Query worklists (Cobol language)” on page 448

The following chapter shows some examples. They are intended to present the
special concept stated in the heading. This means that they are not always
complete and may not destruct all objects created or retrieved.

440 Programming Guide

Part 8. Examples

© Copyright IBM Corp. 1999 441

442 Programming Guide

Chapter 48. How to create persistent lists

The following examples show how to create a persistent list, that is, a persistent
view on a set of objects. They define a view on process instances. Other possible
lists to define are process template lists or worklists.

Create a process instance list (C language)
#include <stdio.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{
APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceListHandle instanceList = 0;
unsigned long threshold = 10;
int enumValue = 0;

char name[50] = "MyTenInstances";
char desc[50] = "This list contains no more than 10 instances";

FmcjGlobalConnect();

/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{
printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}

rc= FmcjExecutionServiceLogon(service,
"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{
printf("Logon failed - rc: u\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}

/* create a process instance list */
rc = FmcjExecutionServiceCreateProcessInstanceList(

service,
name,
Fmc_LT_Private,
"USERID",
desc,
FmcjNoFilter,
FmcjNoSortCriteria,
&threshold,
&instanceList);

if (rc != FMC_OK)
printf("CreateProcessInstanceList returns: %u%\n",rc);

else
printf("CreateProcessInstanceList okay\n");

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

© Copyright IBM Corp. 1999 443

FmcjGlobalDisconnect();
return 0;

}

Create a process instance list (Cobol language)
IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 listName PIC X(50) VALUE z"MyTenInstances".
01 desc PIC X(50)

VALUE z"This list contains no more than 10 instances".

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.

* logon
PERFORM FmcjESAllocate.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
PERFORM FmcjESDeallocate
MOVE -1 TO retCode
GOBACK

END-IF

* create a process instance list
CALL "SETADDR" USING listName name.
CALL "SETADDR" USING localUserID ownerValue.
CALL "SETADDR" USING desc description.
CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.
MOVE Fmc-LT-Private TO typeValue.
PERFORM FmcjESCreateProcInstList.

MOVE intReturnValue TO retCode

444 Programming Guide

IF retCode NOT = FMC-OK
DISPLAY "CreateProcessInstanceList returns - rc: "
DISPLAY retCode

ELSE
DISPLAY "CreateProcessInstanceList okay"

END-IF

PERFORM FmcjESLogoff.
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 listName PIC X(50) VALUE z"MyTenInstances".
01 desc PIC X(50)

VALUE z"This list contains no more than 10 instances".

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
* logon

CALL "FmcjExecutionServiceAllocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue

MOVE -1 TO retCode

Chapter 48. How to create persistent lists 445

GOBACK
END-IF

* create a process instance list
CALL "SETADDR" USING listName name.
CALL "SETADDR" USING localUserID ownerValue.
CALL "SETADDR" USING desc description.
CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
CALL "FmcjExecutionServiceCreateProcessInstanceList"

USING BY VALUE serviceValue
name
Fmc-LT-Private
ownerValue
description
filter
sortCriteria
FmcjNoThreshold

BY REFERENCE
newList

RETURNING
intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "CreateProcessInstanceList returns - rc: "
DISPLAY retCode

ELSE
DISPLAY "CreateProcessInstanceList okay"

END-IF

CALL "FmcjExecutionServiceLogoff"
USING BY VALUE serviceValue
RETURNING intReturnValue.

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

446 Programming Guide

Chapter 49. How to query persistent lists

The following examples show how to retrieve persistent lists from the MQSeries
Workflow execution server and how to query the characteristics of a list. They use
worklists as example. Other possible lists to query are process template lists or
process instance lists.

Query worklists (C language)
#include <stdio.h>
#include <memory.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{
APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjWorklistHandle worklist = 0;
FmcjWorklistVectorHandle lists = 0;
unsigned long numWList = 0;
unsigned long i = 0;
unsigned long enumValue = 0;
char tInfo[4096+1]= "";

FmcjGlobalConnect();

/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{
printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}

rc= FmcjExecutionServiceLogon(service,
"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{
printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}

/* query worklists */
rc = FmcjExecutionServiceQueryWorklists(service, &lists);
if (rc != FMC_OK)

printf("QueryWorklists() returns: %u%\n",rc);
else

printf("QueryWorklists() returns okay\n");

if (rc == FMC_OK)
{
numWList= FmcjWorklistVectorSize(lists);
printf ("Number of worklists returned : %u\n", numWList);

for(i=1; i<= numWList; i++)
{
worklist= FmcjWorklistVectorNextElement(lists);
FmcjWorklistName(worklist, tInfo, 4097);
printf("- Name : %s\n",tInfo);
enumValue= FmcjWorklistType(worklist);

© Copyright IBM Corp. 1999 447

if (enumValue == Fmc_LT_Private)
printf("- Type : %s\n","private");

if (enumValue == Fmc_LT_Public)
printf("- Type : %s\n","public");

FmcjWorklistOwnerOfList(worklist, tInfo, 4097);
printf("- OwnerOfList : %s\n",tInfo);
printf("- OwnerOfList is null ? : %u\n",

FmcjWorklistOwnerOfListIsNull(worklist));
FmcjWorklistDescription(worklist, tInfo, 4097);
printf("- Description : %s\n",tInfo);
printf("- Description is null ? : %u\n",

FmcjWorklistDescriptionIsNull(worklist));
FmcjWorklistFilter(worklist, tInfo, 4097);
printf("- Filter : %s\n",tInfo);
printf("- Filter is null ? : %u\n",

FmcjWorklistFilterIsNull(worklist));
FmcjWorklistSortCriteria(worklist, tInfo, 4097);
printf("- SortCriteria : %s\n",tInfo);
printf("- SortCriteria is null ? : %u\n",

FmcjWorklistSortCriteriaIsNull(worklist));
printf("- Threshold : %u\n",

FmcjWorklistThreshold(worklist));
printf("- Threshold is null ? : %u\n",

FmcjWorklistThresholdIsNull(worklist));

/* deallocate just read object */
FmcjWorklistDeallocate(&worklists);

}

FmcjWorklistVectorDeallocate(&lists);
}

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

Query worklists (Cobol language)
IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYWL".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numWList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).
01 i PIC 9(9) BINARY VALUE 0.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.

* logon

448 Programming Guide

PERFORM FmcjESAllocate.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
PERFORM FmcjESDeallocate
MOVE -1 TO retCode
GOBACK

END-IF

* query worklists
PERFORM FmcjESQueryWorklists.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryWorklists returns - rc: " retCode
ELSE

DISPLAY "QueryWorklists returns okay"
END-IF

IF retCode = FMC-OK
SET hdlVector TO lists
PERFORM FmcjWLVectorSize
MOVE ulongReturnValue TO numWList
DISPLAY "Number of worklists returned : " numWList
PERFORM VARYING i FROM 1 BY 1 UNTIL i >= numWList

PERFORM FmcjWLVectorNextElement
SET hdlList TO FmcjWLHandleReturnValue
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo listNameBuffer
PERFORM FmcjWLName
DISPLAY "- Name : " tInfo
PERFORM FmcjWLType
IF intReturnValue = Fmc-LT-Private

DISPLAY "- Type : private"
END-IF
IF intReturnValue = Fmc-LT-Public

DISPLAY "- Type : public"
END-IF
CALL "SETADDR" USING tInfo userIdBuffer
PERFORM FmcjWLOwnerOfList
DISPLAY "- OwnerOfList : " tInfo
PERFORM FmcjWLOwnerOfListIsNull
IF boolReturnValue = 0

DISPLAY "- OwnerOfList is null ? : false"
ELSE

DISPLAY "- OwnerOfList is null ? : true"
END-IF
CALL "SETADDR" USING tInfo descriptionBuffer
PERFORM FmcjWLDescription
DISPLAY "- Description : " tInfo
PERFORM FmcjWLDescriptionIsNull
IF boolReturnValue = 0

DISPLAY "- Description is null ? : false"
ELSE

Chapter 49. How to query persistent lists 449

DISPLAY "- Description is null ? : true"
END-IF
CALL "SETADDR" USING tInfo filterBuffer
PERFORM FmcjWLFilter
DISPLAY "- Filter : " tInfo
PERFORM FmcjWLFilterIsNull
IF boolReturnValue = 0

DISPLAY "- Filter is null ? : false"
ELSE

DISPLAY "- Filter is null ? : true"
END-IF
CALL "SETADDR" USING tInfo sortCriteriaBuffer
PERFORM FmcjWLSortCriteria
DISPLAY "- SortCriteria : " tInfo
PERFORM FmcjWLSortCriteriaIsNull
IF boolReturnValue = 0

DISPLAY "- SortCriteria is null ?: false"
ELSE

DISPLAY "- SortCriteria is null ?: true"
END-IF
PERFORM FmcjWLThreshold
DISPLAY "- Threshold : " ulongReturnValue
PERFORM FmcjWLThresholdIsNull
IF boolReturnValue = 0

DISPLAY "- Threshold is null ? : false"
ELSE

DISPLAY "- Threshold is null ? : true"
END-IF
PERFORM FmcjWLDeallocate

END-PERFORM
PERFORM FmcjWLVectorDeallocate

END-IF

PERFORM FmcjESLogoff.
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYWL".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numWList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).
01 i PIC 9(9) BINARY VALUE 0.
01 bufferPtr USAGE IS POINTER VALUE NULL.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
* logon

CALL "FmcjExecutionServiceAllocate"

450 Programming Guide

USING BY REFERENCE serviceValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue

MOVE -1 TO retCode
GOBACK

END-IF

* query worklists
CALL "FmcjExecutionServiceQueryWorklists"

USING BY VALUE serviceValue
BY REFERENCE lists

RETURNING intReturnValue.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryWorklists returns - rc: " retCode
ELSE

DISPLAY "QueryWorklists returns okay"
END-IF

IF retCode = FMC-OK
SET hdlVector TO lists
CALL "FmcjWorklistVectorSize"

USING BY VALUE hdlVector
RETURNING ulongReturnValue

MOVE ulongReturnValue TO numWList
DISPLAY "Number of worklists returned : " numWList
PERFORM VARYING i FROM 1 BY 1 UNTIL i >= numWList

CALL "FmcjWorklistVectorNextElement"
USING BY VALUE hdlVector
RETURNING FmcjWLHandleReturnValue

SET hdlList TO FmcjWLHandleReturnValue
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo bufferPtr
CALL "FmcjPersistentListName"

USING BY VALUE hdlList
bufferPtr
bufferLength

RETURNING pointerReturnValue
DISPLAY "- Name : " tInfo
CALL "FmcjPersistentListType"

USING BY VALUE hdlList
RETURNING intReturnValue

IF intReturnValue = Fmc-LT-Private
DISPLAY "- Type : private"

Chapter 49. How to query persistent lists 451

END-IF
IF intReturnValue = Fmc-LT-Public

DISPLAY "- Type : public"
END-IF
CALL "FmcjPersistentListOwnerOfList"

USING BY VALUE hdlList
bufferPtr
bufferLength

RETURNING pointerReturnValue
DISPLAY "- OwnerOfList : " tInfo
CALL "FmcjPersistentListOwnerOfListIsNull"

USING BY VALUE hdlList
RETURNING boolReturnValue

IF boolReturnValue = 0
DISPLAY "- OwnerOfList is null ? : false"

ELSE
DISPLAY "- OwnerOfList is null ? : true"

END-IF
CALL "FmcjPersistentListDescription"

USING BY VALUE hdlList
bufferPtr
bufferLength

RETURNING pointerReturnValue
DISPLAY "- Description : " tInfo
CALL "FmcjPersistentListDescriptionIsNull"

USING BY VALUE hdlList
RETURNING boolReturnValue

IF boolReturnValue = 0
DISPLAY "- Description is null ? : false"

ELSE
DISPLAY "- Description is null ? : true"

END-IF
CALL "FmcjPersistentListFilter"

USING BY VALUE hdlList
bufferPtr
bufferLength

RETURNING pointerReturnValue
DISPLAY "- Filter : " tInfo
CALL "FmcjPersistentListFilterIsNull"

USING BY VALUE hdlList
RETURNING boolReturnValue

IF boolReturnValue = 0
DISPLAY "- Filter is null ? : false"

ELSE
DISPLAY "- Filter is null ? : true"

END-IF
CALL "FmcjPersistentListSortCriteria"

USING BY VALUE hdlList
bufferPtr
bufferLength

RETURNING pointerReturnValue
DISPLAY "- SortCriteria : " tInfo
CALL "FmcjPersistentListSortCriteriaIsNull"

USING BY VALUE hdlList
RETURNING boolReturnValue

IF boolReturnValue = 0
DISPLAY "- SortCriteria is null ?: false"

ELSE
DISPLAY "- SortCriteria is null ?: true"

END-IF
CALL "FmcjPersistentListThreshold"

USING BY VALUE hdlList
RETURNING ulongReturnValue

DISPLAY "- Threshold : " ulongReturnValue
CALL "FmcjPersistentListThresholdIsNull"

USING BY VALUE hdlList
RETURNING boolReturnValue

452 Programming Guide

IF boolReturnValue = 0
DISPLAY "- Threshold is null ? : false"

ELSE
DISPLAY "- Threshold is null ? : true"

END-IF
CALL "FmcjWorklistDeallocate"

USING BY REFERENCE hdlList
RETURNING intReturnValue

END-PERFORM
CALL "FmcjWorklistVectorDeallocate"

USING BY REFERENCE hdlVector
RETURNING intReturnValue

END-IF

CALL "FmcjExecutionServiceLogoff"
USING BY VALUE serviceValue
RETURNING intReturnValue.

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

Chapter 49. How to query persistent lists 453

454 Programming Guide

Chapter 50. How to query a set of objects

The following examples show how to query objects for which you are authorized.
They use a query for process instances in order to demonstrate an ad-hoc query.
They use work items in order to demonstrate how to query the contents of a
predefined list, a worklist.

Query process instances (C language)
#include <stdio.h>
#include <memory.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{
APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceHandle instance = 0;
FmcjProcessInstanceVectorHandle iList = 0;
unsigned long numIList = 0;
unsigned long i = 0;
char tInfo[4096+1]= "";

FmcjGlobalConnect();

/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{
printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}
rc= FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{
printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}
/* query process instances */
rc= FmcjExecutionServiceQueryProcessInstances(

service,
FmcjNoFilter, FmcjNoSortCriteria, FmcjNoThreshold,
&iList);

if (rc != FMC_OK)
printf("QueryProcessInstances() returns: %u%\n",rc);

else
printf("QueryProcessInstances() returns okay\n");

if (rc == FMC_OK)
{
numIList= FmcjProcessInstanceVectorSize(iList);
printf ("Number of instances returned : %u\n", numIList);

for(i=1; i<= numIList; i++)
{
instance= FmcjProcessInstanceVectorNextElement(iList);
FmcjProcessInstanceName(instance, tInfo, 4097);
printf("- Name : %s\n",tInfo);
FmcjProcessInstanceDeallocate(&instance);

}

© Copyright IBM Corp. 1999 455

FmcjProcessInstanceVectorDeallocate(&iList);
}

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

Query process instances (Cobol language)
IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYPI".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numIList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).
01 i PIC 9(9) BINARY VALUE 0.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.

* logon
PERFORM FmcjESAllocate.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
PERFORM FmcjESDeallocate
MOVE -1 TO retCode
GOBACK

END-IF

* query process instances
CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.
PERFORM FmcjESQueryProcInsts.

456 Programming Guide

SET hdlVector TO instances.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryProcessInstances returns: " retCode
ELSE

DISPLAY "QueryProcessInstances returns okay"
END-IF

IF retCode = FMC-OK
PERFORM FmcjPIVSize
MOVE ulongReturnValue TO numIList
DISPLAY "Number of instances returned: " numIList
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo instanceNameBuffer
PERFORM VARYING i FROM 1 BY 1 UNTIL i > numIList

PERFORM FmcjPIVNextElement
SET hdlInstance TO FmcjPIHandleReturnValue
PERFORM FmcjPIName
DISPLAY "- name: " tInfo
PERFORM FmcjPIDeallocate

END-PERFORM
PERFORM FmcjPIVDeallocate

END-IF

PERFORM FmcjESLogoff.
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYPI".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numIList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).
01 i PIC 9(9) BINARY VALUE 0.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
* logon

CALL "FmcjExecutionServiceAllocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

Chapter 50. How to query a set of objects 457

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue

MOVE -1 TO retCode
GOBACK

END-IF

* query process instances
CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
CALL "FmcjExecutionServiceQueryProcessInstances"

USING BY VALUE serviceValue
filter
sortCriteria
FmcjNoThreshold

BY REFERENCE instances
RETURNING intReturnValue.

SET hdlVector TO instances.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryProcessInstances returns: " retCode
ELSE

DISPLAY "QueryProcessInstances returns okay"
END-IF

IF retCode = FMC-OK
CALL "FmcjProcessInstanceVectorSize"

USING BY VALUE hdlVector
RETURNING ulongReturnValue

MOVE ulongReturnValue TO numIList
DISPLAY "Number of instances returned: " numIList
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo instanceNameBuffer
PERFORM VARYING i FROM 1 BY 1 UNTIL i > numIList

CALL "FmcjProcessInstanceVectorNextElement"
USING BY VALUE hdlVector
RETURNING FmcjPIHandleReturnValue

SET hdlInstance TO FmcjPIHandleReturnValue
CALL "FmcjProcessInstanceName"

USING BY VALUE hdlInstance
instanceNameBuffer
FMC-PROC-INST-NAME-LENGTH

RETURNING pointerReturnValue
DISPLAY "- name: " tInfo
CALL "FmcjProcessInstanceDeallocate"

USING BY REFERENCE hdlInstance
RETURNING intReturnValue

END-PERFORM
CALL "FmcjProcessInstanceVectorDeallocate"

USING BY REFERENCE hdlVector
RETURNING intReturnValue

END-IF

458 Programming Guide

CALL "FmcjExecutionServiceLogoff"
USING BY VALUE serviceValue
RETURNING intReturnValue.

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

Query work items from a worklist (C language)
#include <stdio.h>
#include <string.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */

int main (int argc, char ** argv)
{
APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjWorklistVectorHandle wLists = 0;
FmcjWorklistHandle worklist = 0;
FmcjWorkitemVectorHandle wVector = 0;
FmcjWorkitemHandle workitem = 0;
unsigned long numWList = 0;
char tInfo[4096+1] = "";

FmcjGlobalConnect();

/* Logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{
printf("Service object could not be allocated: %u%\n",rc);
return -1;

}

rc= FmcjExecutionServiceLogon(service,
"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet);

if (rc != FMC_OK)
{
printf("Logon failed - rc : %u%\n",rc);
rc= FmcjExecutionServiceDeallocate(&service);
return -1;

}

/* query worklists */
rc = FmcjExecutionServiceQueryWorklists(service, &wLists);
if (rc != FMC_OK)

printf("QueryWorklists() returns: %u%\n",rc);
else

printf("QueryWorklists() returns okay\n");
if (rc == FMC_OK)
{
numWList= FmcjWorklistVectorSize(wLists);
printf ("Number of worklists returned : %u\n", numWList);
if (numWList == 0)
{
printf("No worklist found \n");
FmcjWorklistVectorDeallocate(&wLists);
rc= FmcjExecutionServiceDeallocate(&service);
return -1;

}

worklist= FmcjWorklistVectorFirstElement(wLists);

Chapter 50. How to query a set of objects 459

FmcjWorklistName(worklist, tInfo, 4097);
printf("Name : %s\n",tInfo);

/* query workitems */
rc= FmcjWorklistQueryWorkitems(worklist, &wVector);
printf("\nQuery workitems of list returns rc: %u\n",rc);

if (rc == FMC_OK)
{
while (0 != (workitem= FmcjWorkitemVectorNextElement(wVector)))
{
FmcjWorkitemName(workitem, tInfo, 4097);
printf("- Name : %s\n",tInfo);

FmcjWorkitemDeallocate(&workitem);
}

}

FmcjWorklistDeallocate(&worklist);
FmcjWorklistVectorDeallocate(&wLists);

}

/* Logoff */
rc= FmcjExecutionServiceLogoff(service);
rc= FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

Query work items from a worklist (Cobol language)
IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYWI".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numWList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.

* logon
PERFORM FmcjESAllocate.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.

460 Programming Guide

CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
PERFORM FmcjESDeallocate
MOVE -1 TO retCode
GOBACK

END-IF

* query worklists
PERFORM FmcjESQueryWorklists.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryWorklists returns - rc: " retCode
ELSE

DISPLAY "QueryWorklists returns okay"
END-IF

IF retCode = FMC-OK
SET hdlVector TO lists
PERFORM FmcjWLVectorSize
MOVE ulongReturnValue TO numWList
DISPLAY "Number of worklists returned : " numWList
IF numWList = 0

DISPLAY "No worklist found"
PERFORM FmcjWLDeallocate
PERFORM FmcjESDeallocate
MOVE -1 TO retCode
GOBACK

END-IF

PERFORM FmcjWLVectorFirstElement
SET hdlList TO FmcjWLHandleReturnValue
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo listNameBuffer
PERFORM FmcjWLName
DISPLAY "Name : " tInfo

* query workitems
PERFORM FmcjWLQueryWorkitems
MOVE intReturnValue TO retCode
DISPLAY "Query workitems of list returns rc:" retCode
SET hdlVector TO workitems
CALL "SETADDR" USING tInfo itemNameBuffer
IF retCode = FMC-OK

PERFORM FmcjWIVNextElement
SET hdlItem TO FmcjWIHandleReturnValue
PERFORM UNTIL pointerReturnValue = NULL

PERFORM FmcjWIName
DISPLAY "- Name : " tInfo
PERFORM FmcjWIDeallocate
PERFORM FmcjWIVNextElement

END-PERFORM
END-IF
PERFORM FmcjWLDeallocate
PERFORM FmcjWLVectorDeallocate

END-IF

PERFORM FmcjESLogoff.
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.

Chapter 50. How to query a set of objects 461

MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYWI".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numWList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
* logon

CALL "FmcjExecutionServiceAllocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue

MOVE -1 TO retCode
GOBACK

END-IF

* query worklists
CALL "FmcjExecutionServiceQueryWorklists"

USING BY VALUE serviceValue
BY REFERENCE lists

RETURNING intReturnValue.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryWorklists returns - rc: " retCode

462 Programming Guide

ELSE
DISPLAY "QueryWorklists returns okay"

END-IF

IF retCode = FMC-OK
SET hdlVector TO lists
CALL "FmcjWorklistVectorSize"

USING BY VALUE hdlVector
RETURNING ulongReturnValue

MOVE ulongReturnValue TO numWList
DISPLAY "Number of worklists returned : " numWList
IF numWList = 0

DISPLAY "No worklist found"
CALL "FmcjWorklistDeallocate"

USING BY REFERENCE hdlList
RETURNING intReturnValue

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue

MOVE -1 TO retCode
GOBACK

END-IF

CALL "FmcjWorklistVectorFirstElement"
USING BY VALUE hdlVector
RETURNING FmcjWLHandleReturnValue

SET hdlList TO FmcjWLHandleReturnValue
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo listNameBuffer
CALL "FmcjPersistentListName"

USING BY VALUE hdlList
listNameBuffer
bufferLength

RETURNING pointerReturnValue
DISPLAY "Name : " tInfo

* query workitems
CALL "FmcjWorklistQueryWorkitems"

USING BY VALUE hdlList
BY REFERENCE workitems
RETURNING intReturnValue

MOVE intReturnValue TO retCode
DISPLAY "Query workitems of list returns rc:" retCode
SET hdlVector TO workitems
CALL "SETADDR" USING tInfo itemNameBuffer
IF retCode = FMC-OK

CALL "FmcjWorkitemVectorNextElement"
USING BY VALUE hdlVector
RETURNING FmcjWIHandleReturnValue

SET hdlItem TO FmcjWIHandleReturnValue
PERFORM UNTIL pointerReturnValue = NULL

CALL "FmcjItemName"
USING BY VALUE hdlItem

itemNameBuffer
bufferLength

RETURNING pointerReturnValue
DISPLAY "- Name : " tInfo
CALL "FmcjWorkitemDeallocate"

USING BY REFERENCE hdlWorkitem
RETURNING intReturnValue

CALL "FmcjWorkitemVectorNextElement"
USING BY VALUE hdlVector
RETURNING FmcjWIHandleReturnValue

END-PERFORM
END-IF
CALL "FmcjWorklistDeallocate"

USING BY REFERENCE hdlList

Chapter 50. How to query a set of objects 463

RETURNING intReturnValue
CALL "FmcjWorklistVectorDeallocate"

USING BY REFERENCE hdlVector
RETURNING intReturnValue

END-IF

CALL "FmcjExecutionServiceLogoff"
USING BY VALUE serviceValue
RETURNING intReturnValue.

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

464 Programming Guide

Chapter 51. An activity implementation

The following examples show the concept of how to query and set containers from
within an activity implementation. Refer to the examples provided with the
product for more details.

Programming an executable (C language)
#include <stdio.h>
#include <fmcjccon.h> /* MQ Workflow Container API */
int main()
{
FILE * file1 = 0;
APIRET rc = FMC_OK;
FmcjReadOnlyContainerHandle input = 0;
FmcjReadWriteContainerHandle output = 0;
char stringBuffer[4097]="";

/*- keep results in a file --*/
file1 = fopen ("sample.out", "a");
if (file1 == 0)
return -1;

fprintf(file1,"\n----- C-API Activity Implementation called -----\n");
fflush(file1);

FmcjGlobalConnect();

/*-- retrieve the input container from the PEA who started the program --*/
rc = FmcjContainerInContainer(&input);
fprintf(file1, "Get Input Container - rc: %u\n", rc);
if (rc != FMC_OK)
{
fclose(file1);
return 1;

}

fprintf(file1, "Input Container Name: %s\n",
FmcjReadOnlyContainerType(input, stringBuffer, 4097));

/*-- retrieve the output container from the PEA who started the program -*/
rc = FmcjContainerOutContainer(&output);
fprintf(file1, "Get Output Container - rc: %u\n", rc);
if (rc != FMC_OK)
{
fclose(file1);
return 1;

}

fprintf(file1, "Output Container Name: %s\n",
FmcjReadWriteContainerType(output, stringBuffer, 4097));

/*----- Modify output values --*/
rc= FmcjReadWriteContainerSetLongValue(output, "aFieldInTheOutput",42);
fprintf(file1, "\nSetting long value returns rc: %u\n", rc);

...

/*-- return the output container to the PEA who started the program -----*/
rc = FmcjContainerSetOutContainer(output);
fprintf(file1, "\nSet Output Container - rc: %u\n",rc);
fflush(file1);

© Copyright IBM Corp. 1999 465

FmcjGlobalDisconnect();
fclose(file1);
return 0; // _RC passed to FlowMark

}

Programming an executable (Cobol language)
IDENTIFICATION DIVISION.
PROGRAM-ID. "EXEC".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcrcs.

01 stringBuffer PIC X(4097).
01 fieldName PIC X(39) VALUE z"aFieldInTheOutput".

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

DISPLAY "-- Cobol-API Activity Implementation called --"
PERFORM FmcjGlobalConnect.

* retrieve the input container
PERFORM FmcjCInCtnr.
MOVE intReturnValue TO retCode.
DISPLAY "Get Input Container - rc: " retCode.
IF retCode NOT = FMC-OK

MOVE 1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING stringBuffer containerTypeBuffer.
MOVE 4097 TO bufferLength.
SET hdlContainer TO inputValue.
PERFORM FmcjROCType.
DISPLAY "Input Container Name: " stringBuffer.

* retrieve the output container
PERFORM FmcjCOutCtnr.
MOVE intReturnValue TO retCode.
DISPLAY "Get Output Container - rc: " retCode.
IF retCode NOT = FMC-OK

MOVE 1 TO retCode
GOBACK

END-IF

SET hdlContainer TO outputValue.
PERFORM FmcjRWCType.
DISPLAY "Output Container Name: " stringBuffer.

* modify output values
MOVE 42 TO intValue.
CALL "SETADDR" USING fieldName qualifiedName.
PERFORM FmcjRWCSetLongValue.
MOVE intReturnValue TO retCode.
DISPLAY "Setting long value returns rc: " retCode.

* return the output container
PERFORM FmcjCSetOutCtnr.

466 Programming Guide

MOVE intReturnValue TO retCode.
DISPLAY "Set Output Container - rc: " retCode.

PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

IDENTIFICATION DIVISION.
PROGRAM-ID. "EXEC".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcrcs.

01 stringBuffer PIC X(4097).
01 fieldName PIC X(39) VALUE z"aFieldInTheOutput".

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

DISPLAY "-- Cobol-API Activity Implementation called --"
CALL "FmcjGlobalConnect".

* retrieve the input container
CALL "FmcjContainerInContainer"

USING BY REFERENCE inputValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode.
DISPLAY "Get Input Container - rc: " retCode.
IF retCode NOT = FMC-OK

MOVE 1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING stringBuffer containerTypeBuffer.
MOVE 4097 TO bufferLength.
SET hdlContainer TO inputValue.
CALL "FmcjContainerType"

USING BY VALUE hdlContainer
containerTypeBuffer
bufferLength

RETURNING pointerReturnValue.
DISPLAY "Input Container Name: " stringBuffer.

* retrieve the output container
CALL "FmcjContainerOutContainer"

USING BY REFERENCE outputValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode.
DISPLAY "Get Output Container - rc: " retCode.
IF retCode NOT = FMC-OK

MOVE 1 TO retCode
GOBACK

END-IF

SET hdlContainer TO outputValue.
CALL "FmcjContainerType"

USING BY VALUE hdlContainer
containerTypeBuffer
bufferLength

Chapter 51. An activity implementation 467

RETURNING pointerReturnValue.
DISPLAY "Output Container Name: " stringBuffer.

* modify output values
MOVE 42 TO intValue.
CALL "SETADDR" USING fieldName qualifiedName.
CALL "FmcjReadWriteContainerSetLongValue"

USING BY VALUE hdlContainer
qualifiedName
intValue

RETURNING intReturnValue.
MOVE intReturnValue TO retCode.
DISPLAY "Setting long value returns rc: " retCode.

* return the output container
CALL "FmcjContainerSetOutContainer"

USING BY VALUE outputValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode.
DISPLAY "Set Output Container - rc: " retCode.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

468 Programming Guide

Part 9. Appendixes

© Copyright IBM Corp. 1999 469

470 Programming Guide

Appendix. Audit Trail

When a process instance is executed, MQSeries Workflow writes information about
each significant event into an audit trail. The audit trail is managed in the
MQSeries Workflow relational database.

Whether an audit trail is written at all and if so, how much is written into the
audit trail, is controlled by the AUDIT option of the process instance. There is an
audit specification inheritance from the domain level of MQSeries Workflow
through the system group to the system and down to the process template. Each
specification can be overwritten on a lower level.

Note: There is a deviation from FlowMark Version 2: an audit trail will only be
written for processes imported from Version 2.3 and previous, if AUDIT is
set within the MQSeries Workflow Definition Language (FDL).

The events are written into the audit trail of the MQSeries Workflow system on
which the process instance was started.

Process instances are identified by the process instance name or the process
instance identifier. Both are written into the audit trail. Object identifiers are stored
in their external character format.

Access to the audit trail can be done by applications that use standard SQL. Care
must be taken to avoid any unintentional changes to the audit trail.

Each audit trail record is associated with a timestamp. This timestamp reflects the
date and time the audit trail record was written. As such, it is filled by the
underlying relational database management system (DB2 for OS/390 Special
Register CURRENT_TIMESTAMP). Since it is not guaranteed that all timestamps
are unique, the sequence in which audit trail records with the same timestamp are
retrieved is random.

Table 16 shows the structure of the audit trail in the realational database:

Table 16. Audit Trail Record Layout

Field Name Type Explanation

Timestamp TIMESTAMP Mandatory Date and time the
audit trail record is
written.

Event INTEGER Mandatory Type of event as
indicated in Table 17
on page 475.

Process Name VARCHAR (63) Mandatory Name of the process
instance.

Process Identifier IDENTIFIER Mandatory Object identifier of the
process instance.

© Copyright IBM Corp. 1999 471

Table 16. Audit Trail Record Layout (continued)

Field Name Type Explanation

Toplevel Name VARCHAR (63) Mandatory Name of the top-level
process instance if the
process instance is
executing as
subprocess, or the
same as in process
name if the process
instance is a top-level
process instance.

Toplevel Identifier IDENTIFIER Mandatory Object identifier of the
top-level process
instance if the process
is executing as
subprocess, or the
same as in process
identifier if the process
instance is a top-level
process instance.

Parent Process Name VARCHAR (63) Optional Name of the parent
process instance if the
process instance is
executing as a
subprocess.

Parent Process Identifier IDENTIFIER Optional Object identifier of the
parent process
instance if the process
instance is executing
as a sub-process.

Process Model Name VARCHAR(32) Mandatory Name of the process
model.

Process Model Valid From Date TIMESTAMP Optional Contains the valid
from time of the
associated process
model.

Block Names VARCHAR(254) Optional The concatenated
names of all blocks in
which the activity is
contained in. The
various names are
separated by a dot.

User ID VARCHAR(32) Optional ID of the user
associated with the
event that caused the
audit trail to be
written. If the audit
trail record is written
by the MQSeries
Workflow system, this
field is not filled.

Second user ID VARCHAR(32) Optional ID of the second user
associated with the
event that caused the
audit trail to be
written.

472 Programming Guide

Table 16. Audit Trail Record Layout (continued)

Field Name Type Explanation

Activity Name VARCHAR(32) Optional If the audit trail entry
is associated with an
activity, the field
contains the name of
the activity. If the
audit trail entry is
associated with a
control connector, the
field contains the
name of the activity
that is the source of
the control connector.

Activity Type INTEGER Optional If the audit trail record
is written for an
activity, the field
contains the type of
the activity as defined
in Table 18 on
page 476.

Activity Status INTEGER Optional If the audit trail record
is written for an event
associated with an
activity, the field
contains the status of
the activity encoded as
shown in Table 19 on
page 477.

Second Activity Name VARCHAR(32) Optional If the audit trail is
written for an event
associated with a
control connector, the
field contains the
name of the target
activity.

Command Parameters VARCHAR(1024) Optional If the event is the start
of a program activity,
the field contains the
actual parameters
passed when invoking
the program.

Associated object IDENTIFIER Optional Contains the identifier
of the object associated
with the event. Can be
used to locate the
object in the MQSeries
Workflow database.

Object description VARCHAR(254) Optional Contains the
description of the
object associated with
the event.

Program Name VARCHAR(32) Optional If the event is the start
of a program activity,
the field contains the
name of the program.

Appendix. Audit Trail 473

Table 16. Audit Trail Record Layout (continued)

Field Name Type Explanation

Activity Return Code LONG Optional Return code of the
activity.

The contents of each audit trail record depends on the event. Table 17 on page 475
shows the contents of each field.

The audit trail level field indicates, whether the audit trail is written for a
particular level. If full audit trailing is active, all audit trail records are written. The
following code is used:

v C Condensed audit trail

474 Programming Guide

Table 17. Audit Trail Record Contents

Code Audit Trail
Level

User Id Second User Id Associated object Event

21000 C Process starter Process instance Process started

21001 Issuer of suspend
command

Process instance Process suspended

21002 Issuer of resume
command

Process instance Process resumed

21003 Target of notification Process instance Process notification sent

21004 C Process instance Process ended normally

21005 C Process instance Process terminated

21006 C Activity instance Activity ready

21007 C User on whose behalf the
activity is started

Activity instance Activity started

21008 Target of notification Activity instance First activity notification sent

21009 Target of transfer Source of transfer Work item Work item transferred

21010 Issuer of command User for whom work item
is created

Work item Work item created

21011 C User on whose behalf the
activity was executed

Activity instance Activity ended normally

21012 C Issuer of force-finish
command

Activity instance Activity force-finished

21013 Issuer of restart command Activity instance Activity restarted

21014 C Issuer of finish command Activity instance Activity exited manually

21015 Block started

21016 Block ended

21017 Issuer of create command Process instance Process created

21018 C Issuer of create and start
command

Process instance Process created and started

21020 Issuer of delete command Process instance Process deleted

21022 C Issuer of checkout
command

Activity instance Checkout activity

A
ppend

ix.A
ud

it
Trail

475

Table 17. Audit Trail Record Contents (continued)

Code Audit Trail
Level

User Id Second User Id Associated object Event

21023 Issuer of checkin
command

Activity instance Checkin activity

21024 Target of notification Activity instance Second notification for activity sent

21025 C Process instance Process ended normally and deleted

21026 C Issuer of terminate
command

Process instance Process terminated and deleted

21027 C Issuer of terminate
command

Activity Instance Activity terminated

21030 Issuer of delete work item
command

Work item Work item deleted

21031 C Issuer of force restart
work item command

Activity instance Activity force restarted

21032 User on whose behalf the
activity was executed.

Activity instance Activity implementation completed

21034 Control connector evaluated to true

21037 C Issuer of suspend
command

Process instance The specified user has issued a suspend process
command.

21038 C Issuer of terminate
process command

Process instance The specified user has issued a terminate process
command.

21040 C Issuer of resume
command

Process instance The specified user has issued a resume process
command.

21041 User who has processed
the activity

Activity instance Activity automatically restarted as exit condition
evaluated to false.

21056 Process instance Block ended and loop back to the beginning
because the exit condition failed.

The following table shows the encoding for activity types.

Table 18. Audit Trail Activity Type Encoding

Code Activity Type

21100 Program activity

21101 Process activity

476
Program

m
ing

G
uid

e

Table 18. Audit Trail Activity Type Encoding (continued)

Code Activity Type

21102 Block activity

The following table shows the encoding for activity states. If an event is associated
with a state change, the target state is recorded in the audit trail record.

Table 19. Audit Trail Activity State Encoding

Code Activity State

21200 Ready

21201 Running

21202 Finished

21203 CheckedOut

21204 Force-Finished

21205 Terminated

21206 Suspended

21207 InError

21208 Executed

21209 Skipped

21210 Deleted

21211 Suspending

21212 Terminating

Appendix. Audit Trail 477

478 Programming Guide

Glossary

This glossary defines important terms and
abbreviations used in this publication. If you do
not find the term you are looking for, refer to the
index or the IBM Dictionary of Computing, New
York: McGraw-Hill, 1994.

A
administration server. The MQ Workflow component
that performs administration functions within an MQ
Workflow system. Functions include starting and
stopping of the MQ Workflow system, performing error
management, and participating in administrative
functions for a system group.

activity. One of the steps that make up a process
model. This can be a program activity, process activity,
or block activity.

activity information member. A predefined data
structure member associated with the operating
characteristics of an activity.

API. Application Programming Interface.

application programming interface. An interface
provided by the MQ Workflow workflow manager that
enables programs to request services from the MQ
Workflow workflow manager. The services are
provided synchronously.

audit trail. A relational table in the database that
contains an entry for each major event during
execution of a process instance.

authorization. The attributes of a user’s staff definition
that determine the user’s level of authority in MQ
Workflow. The system administrator is allowed to
perform all functions.

B
backward mapping. Conversion of output data
created by an OS/390 legacy application into an
MQSeries Workflow container. This conversion is
performed by the program execution server’s program
mapper.

backward mapping definition. Part of the MDL which
connects an interface definition and structure definition.

bend point. A point at which a connector starts, ends,
or changes direction.

block activity. A composite activity that consists of a
group of activities, which can be connected with control

and data connectors. A block activity is used to
implement a Do-Until loop; all activities within the
block activity are processed until the exit condition of
the block activity evaluates to true. See also composite
activity.

Buildtime. An MQ Workflow component with a
graphical user interface for creating and maintaining
workflow models, administering resources, and the
system network definitions.

C
cardinality. (1) An attribute of a relationship that
describes the membership quantity. There are four
types of cardinality: One-to-one, one-to-many,
many-to-many, and many-to-one. (2) The number of
rows in a database table or the number of different
values in a column of a database table.

child organization. An organization within the
hierarchy of administrative units of an enterprise that
has a parent organization. Each child organization can
have one parent organization and several child
organizations. The parent is one level above in the
hierarchy. Contrast with parent organization.

cleanup server. The MQ Workflow component that
physically deletes information in the MQ Workflow
Runtime database, which had only been deleted
logically.

composite activity. An activity which is composed of
other activities. Composite activities are block activities
and bundle activities.

container API. An MQ Workflow API that allows
programs executing under the control of MQ Workflow
to obtain data from the input and output container of
the activity and to store data in the output container of
the activity.

control connector. Defines the potential flow of control
between two nodes in the process. The actual flow of
control is determined at run time based on the truth
value of the transition conditions associated with the
control connector.

coordinator. A predefined role that is automatically
assigned to the person designated to coordinate a role.

CPIC. An invocation type that allows the programe
xecution server to run an application synchronously on
an IMS service. CPIC is based on IMS/APPC.

© Copyright IBM Corp. 1999 479

D
data connector. Defines the flow of data between
containers.

data container. Storage for the input and output data
of an activity or process. See input container and output
container.

data mapping. Specifies, for a data connector, which
fields from the associated source container are mapped
to which fields in the associated target container.

data structure. A named entity that consists of a set of
data structure members. Input and output containers
are defined by reference to a data structure and adopt
the layout of the referenced data structure type.

data structure member. One of the variables of which
a data structure is composed.

default control connector. The graphical
representation of a standard control connector, shown
in the process diagram. Control flows along this
connector if no other control path is valid.

domain. A set of MQ Workflow system groups which
have the same meta-model, share the same staff
information, and topology information. Communication
between the components in the domain is via message
queuing.

dynamic staff assignment. A method of assigning staff
to an activity by specifying criteria such as role,
organization, or level. When an activity is ready, the
users who meet the selection criteria receive the activity
to be worked on. See also level, organization, process
administrator, and role.

E
end activity. An activity that has no outgoing control
connector.

EXCI. An invocation type that allows the programe
xecution server to run an application synchronously on
an CICS service. EXCI is based on the CICS External
CICS Interface provided by CICS Version 4.1 and
higher to allow non-CICS applications to call programs
running under CICS.

execution server. The MQ Workflow component that
performs the processing of process instances at
runtime.

exit condition. A logical expression that specifies
whether an activity is complete.

export. An MQ Workflow utility program for
retrieving information from the MQ Workflow database
and making it available in MQ Workflow Definition
Language (FDL) or HTML format. Contrast with import.

F
fixed member. A predefined data structure member
that provides information about the current activity.
The value of a fixed member is set by the MQ
Workflow workflow manager.

(FDL) MQ Workflow Definition Language. The
language used to exchange MQ Workflow information
between MQ Workflow system groups. The language is
used by the import and export function of MQ
Workflow and contains the workflow definitions for
staff, programs, data structures, and topology. This
allows non-MQ Workflow components to interact with
MQ Workflow. See also export and import.

fork activity. An activity that is the source of multiple
control connectors.

form. In Lotus Notes, a form controls how you enter
information into Lotus Notes and how that information
is displayed and printed.

formula. In Lotus Notes, a mathematical expression
that is used, for example, to select documents from a
database or to calculate values for display.

forward mapping. Conversion of MQSeries Workflow
containers into a format accepted by an OS/390 legacy
application. This conversion is performed by the
program execution server’s program mapper.

forward mapping definition. Part of the MDL which
connects an structure definition and interface definition.

fully-qualified name. A qualified name that is
complete; that is, one that includes all names in the
hierarchical sequence above the structure member to
which the name refers, as well as the name of the
member itself.

I
import. An MQ Workflow utility program that accepts
information in the MQ Workflow definition language
(FDL) format and places it in an MQ Workflow
database. Contrast with export.

input container. Storage for data used as input to an
activity or process. See also source and data mapping.

interface. The definition of the data structure accepted
by an OS/390 CICS or IMS legacy application. This
definition is used by the program mapper to convert data
to (and from) an MQSeries Workflow program’s
structure.

interface definition. Part of the MDL which defines
the interface used by a legacy application.

480 Programming Guide

interface element. Part of an interface definition. An
interface element has a name, a type and a cardinality.
It is mapped on to a structure element by a mapping
rule.

invocation exit. The Dll specified by the invocation
type. The exit is based in an invocation protocol like
CICS External CICS Interface, IMS/APPC or the
MQSeries CICS and IMS bridges.

invocation protocol. The way the PES connects to a
service like CICS or IMS in order to invoke a program
on that service.

invocation type. The way the program execution
server connects to a service system (like CICS or IMS)
in order to invoke a program on that service. The
invocation type is part of a program mapping
execution request sent to the PES. To invoke a program,
the PES loads the appropiate invocation exit as defined
for the invocation type. Invocation types include EXCI
and CPIC.

L
level. A number from 0 through 9 that is assigned to
each person in an MQ Workflow database. The person
who defines staff in Buildtime can assign a meaning to
these numbers such as rank and experience. Level is
one of the criteria that can be used to dynamically
assign activities to people.

local user. Identifies a user during staff resolution
whose home server is in the same system group as the
originating process.

local subprocess. A subprocess that is processed in the
same MQ Workflow system group as the originating
process.

logical expression. An expression composed of
operators and operands that, when evaluated, gives a
result of true, false, or an integer. (Nonzero integers are
equivalent to false.) See also exit condition and transition
condition.

M
manager. A predefined role that is automatically
assigned to the person who is defined as head of an
organization.

mapping definition language. The language used to
define mapping definitions for the programm mapping exit.

mapping exit. Used by the PES to convert data
between MQSeries Workflow and legacy applications.
The exit is defined by a mpping type defined in the
PES directory and in Buildtime. The exit is only called if
mapping has been enabled in Buildtime.

mapping rules. Part of a forward mapping or backward
mapping definition that defines the mapping between
individual interface elements and structure elements.
Mapping rules are defined using the mapper definition
language.

mapping type. The name used to identify which
mapping exit to use. The mapping type is defined in
the PES directory and must match the Buildtime
definitions for the legacy application. The mapping
type provided with MQSeries Workflow for OS/390 is
named DEFAULT.

MDL. See mapping definition language.

message queuing. A communication technique that
uses asynchronous messages for communication
between software components.

MQCICS. An invocation type that allows the program
execution server to run an application asynchronously
on a CICS service. The corresponding invocation exit
uses the MQSeries CICS Bridge as invocation protocol.

MQIMS. An invocation type that allows the program
execution server to run an application asynchronously
on an IMS service. The corresponding invocation exit
uses the invocation protocol MQSeries IMS Bridge.

N
navigation. Movement from a completed activity to
subsequent activities in a process. The paths followed
are determined by control connectors, their associated
transition conditions, and by the start conditions of
activities. See also control connector, exit condition,
transition condition, and start condition.

node. (1) The generic name for activities within a
process diagram. (2) The operating system image that
hosts MQ Workflow systems.

notification. An MQ Workflow facility that can notify
a designated person when a process or activity is not
completed within the specified time.

notification work item. A work item that represents
an activity or process notification.

O
organization. An administrative unit of an enterprise.
Organization is one of the criteria that can be used to
dynamically assign activities to people. See child
organization and parent organization.

output container. Storage for data produced by an
activity or process for use by other activities or for
evaluation of conditions. See also sink.

Glossary 481

P
parent organization. An organization within the
hierarchy of administrative units of an enterprise that
has one or more child organizations. A child is one
level below its parent in the hierarchy. Contrast with
child child organization.

parent process. A process instance that contains the
process activity which started the process as a
subprocess.

pattern activity. A single and simple activity in a
bundle activity from which multiple instances, called
pattern activity instances, are created at run time.

person (pl. people). A member of staff in an
enterprise who has been defined in the MQ Workflow
database.

PES. See program execution server.

PES directory. See program execution server directory.

predefined data structure member. A data structure
member predefined by MQ Workflow and used for
communication between user applications and MQ
Workflow Runtime.

process. Synonymously used for a process model and
a process instance. The actual meaning is typically
derived from the context.

process activity. An activity that is part of a process
model. When a process activity is executed, an instance
of the process model is created and executed.

process administrator. A person who is the
administrator for a particular process instance. The
administrator is authorized to perform all operations
on a process instance. The administrator is also the
target for staff resolution and notification.

process category. An attribute that a process modeler
can specify for a process model to limit the set of users
who are authorized to perform functions on the
appropriate process instances.

process definition. Synonym for process model.

process diagram. A graphical representation of a
process that shows the properties of a process model.

process instance. An instance of a process to be
executed in MQ Workflow Runtime.

process instance list. A set of process instances that
are selected and sorted according to user-defined
criteria.

process instance monitor. An MQ Workflow client
component that shows the state of a particular process
instance graphically.

process management. The MQ Workflow Runtime
tasks associated with process instances. These consist of
creating, starting, suspending, resuming, terminating,
restarting, and deleting process instances.

process model. A set of processes represented in a
process model. The processes are represented in
graphical form in the process diagram. The process
model contains the definitions for staff, programs, and
data structures associated with the activities of the
process. After having translated the process model into
a process template, the process template can be
executed over and over again. Workflow model and
process definition are synonyms.

process monitor API. An application programming
interface that allows applications to implement the
functions of a process instance monitor.

process-relevant data. Data that is used to control the
sequence of activities in a process instance.

process status. The status of a process instance.

process template. A fixed form of a process model
from which process instances can be created. It is the
translated form in MQ Workflow Runtime. See also
process instance.

process template list. A set of process templates that
have been selected and sorted according to
user-defined criteria.

program. A computer-based application that serves as
the implementation of a program activity or as a
support tool. Program activities reference executable
programs using the logical names associated with the
programs in MQ Workflow program registrations. See
also program registration.

program activity. An activity that is executed by a
registered program. Starting this activity invokes the
program. Contrast with process activity.

program execution agent. The MQ Workflow
component that manages the implementations of
program activities on LAN platforms.

program execution server. The MQ Workflow
component that manages the implementations of
program activities on OS/390, such as CICS and IMS
programs.

program mapping. Program mapping definitions
passed and supported into the mapping database and
used by the program mapper at runtime to transform
data from legacy applications.

program mapping DB. Database used by the PES exit
which contains program mappings imported by the
program mapping import tool. Used at runtime by the
exit to perform the forward and backward mapping.

482 Programming Guide

program mapping exit. PES exit used to transform
MQSeries Workflow for OS/390 containers into a
format acceptable by legacy applications and vice
versa.

program mapping import tool. Component of the
MQSeries Workflow program mapping exit which reads
the result of the program mapping parser and inputs
the compiled program mapping definitions into the
program mapping DB.

program mapping parser. Component of the
MQSeries Workflow for OS/390 program mapping exit
which parses the MDL and creates an intermediate file
which is used by the program mapping import tool.

program registration. Registering a program in MQ
Workflow so that sufficient information is available for
managing the program when it is executed by MQ
Workflow.

R
role. A responsibility that is defined for staff members.
Role is one of the criteria that can be used to
dynamically assign activities to people.

S
scheduling server. The MQ Workflow component that
schedules actions based on time events, such as
resuming suspended work items, or detecting overdue
processes.

server. The servers that make up an MQ Workflow
system are called Execution Server, Administration
Server, Scheduling Server, and Cleanup Server.

sink. The symbol that represents the output container
of a process or a block activity.

source. The symbol that represents the input container
of a process or a block activity.

specific resource assignment. A method of assigning
resources to processes or activities by specifying their
user IDs.

standard client. The MQ Workflow component, which
enables creation and control of process instances,
working with worklists and work items, and
manipulation of personal data of the logged-on user.

start activity. An activity that has no incoming control
connector.

start condition. The condition that determines
whether an activity with incoming control connectors
can start after all of the incoming control connectors are
evaluated.

structure. The definition of the MQSeries Workflow
structure passed into or out of an activity
implementation.

structure definition. Part of the MDL which defines
the structure used by a program activity.

structure element. Part of an structure definition. A
structure element has a name, a type and a cardinality.
It is mapped on to a interface element by a mapping rule.

subprocess. A process instance that is started by a
process activity.

substitute. The person to whom an activity is
automatically transferred when the person to whom the
activity was originally assigned is declared as absent.

support tool. A program that end users can start from
their worklists in the MQ Workflow MQ Workflow
Client to help complete an activity.

symbolic reference. A reference to a specific data
item, the process name, or activity name in the
description text of activities or in the command-line
parameters of program registrations. Symbolic
references are expressed as pairs of percent signs (%)
that enclose the fully-qualified name of a data item, or
either of the keywords _PROCESS or _ACTIVITY.

system. The smallest MQ Workflow unit within an
MQ Workflow domain. It consists of a set of the MQ
Workflow servers.

system group. A set of MQ Workflow systems that
share the same database.

system administrator. (1) A predefined role that
conveys all authorizations and that can be assigned to
exactly one person in an MQ Workflow system. (2) The
person at a computer installation who designs, controls,
and manages the use of the computer system.

T
top-level process. A process instance that is not a
subprocess and is started from a user’s process instance
list or from an application program.

transition condition. A logical expression associated
with a conditional control connector. If specified, it
must be true for control to flow along the associated
control connector. See also control connector.

translate. The action that converts a process model
into a Runtime process template.

U
user ID. An alphanumeric string that uniquely
identifies an MQ Workflow user.

Glossary 483

V
user type definition. Part of the MDL which defines
the interface used by a user type.

user type interface. A user defined interface type. If
you need to map a data type that is not supported by
the default mapper type, you can define a user type,
and write a type conversion program which handles
the conversion of the particular data type. This must
use the user type exit.

verify. The action that checks a process model for
completeness.

W
workflow. The sequence of activities performed in
accordance with the business processes of an enterprise.

Workflow Management Coalition (WfMC). A
non-profit organization of vendors and users of
workflow management systems. The Coalition’s
mission is to promote workflow standards for
workflow management systems to allow
interoperability between different implementations.

workflow model. Synonym for process model.

work item. Representation of work to be done in the
context of an activity in a process instance.

work item set of a user. All work items assigned to a
user.

worklist. A list of work items and notifications
assigned to a user and retrieved from a workflow
management system.

worklist view. List of work items selected from a
work item set of a user according to filter criteria which
are an attribute of a worklist. It can be sorted according
to sort criteria if specified for this worklist.

484 Programming Guide

Bibliography

To order any of the following publications,
contact your IBM representative or IBM branch
office.

MQSeries Workflow for OS/390
publications

This section lists the publications included in the
MQSeries Workflow for OS/390 library.
v IBM MQSeries Workflow for OS/390:

Customization and Administration, SC33-7030-00,
explains how to customize and administer an
MQ Workflow system.

v IBM MQSeries Workflow for OS/390: Programming
Guide, SC33-7031-00, explains the C and
COBOL application programming interface
(APIs) and the program exits.

v IBM MQSeries Workflow for OS/390: Messages,
SC33-7032-00, explains the MQSeries Workflow
for OS/390 system messages.

v IBM MQSeries Workflow for OS/390: Program
Directory, GI10-0483, explains how to install
MQSeries Workflow for OS/390.

MQSeries Workflow publications

This section lists the publications included in the
MQSeries Workflow library.
v IBM MQSeries Workflow: List of Workstation

Server Processor Groups, GH12-6357, lists the
processor groups for MQSeries Workflow.

v IBM MQSeries Workflow: Concepts and
Architecture, GH12-6285, explains the basic
concepts of MQ Workflow. It also describes the
architecture of MQ Workflow and how the
components fit together.

v IBM MQSeries Workflow: Getting Started with
Buildtime, SH12-6286, describes how to use
Buildtime of MQ Workflow.

v IBM MQSeries Workflow: Getting Started with
Runtime, SH12-6287, describes how to get
started with the MQ Workflow Client.

v IBM MQSeries Workflow: Programming Guide,
SH12-6291, explains the application
programming interfaces (APIs).

v IBM MQSeries Workflow: Installation Guide,
SH12-6288, contains information and
procedures for installing and customizing MQ
Workflow.

v IBM MQSeries Workflow: Administration Guide,
SH12-6289, explains how to administer an MQ
Workflow system.

Related publications
v IBM Systems Journal, Vol. 36. No. 1, 1997 by

Frank Leymann, Dieter Roller— Also availbale at:
http://www.almaden.ibm.com/journal/
sj/361/leymann.html

v Workflow Handbook 1997 published in
association with WfMC. Edited by Peter
Lawrence.

Note: The licensed books that were declassified
in OS/390 Version 2 Release 4 appear on
the OS/390 Online Library Collection,
SK2T-6700. The remaining licensed books
for OS/390 Version 2 appear on the
OS/390 Licensed Product library,
LK2T-2499, in unencrypted form.

© Copyright IBM Corp. 1999 485

486 Programming Guide

Index

A
accessor functions/subprograms;

authorization 63
binary 70
bool 63
char 64
date/time 65
default values 62
definition 62
enumeration 65
error handling 15
functions/subprograms 63
IsNull 67
lifetime of values 63
long 66, 68, 70
multi-valued 67
return codes 63
session requirements 63
ushort 69
vector 30

action functions/subprograms;
definition 76
error handling 15

activating program mappings 135
activity implementation;

container 11
error handling 15
functions 76
input container 233, 236
methods 76
output container 235, 238, 240, 242
passthrough 270
pseudo code 11
remote passthrough 313
return code 11

activity instance
definition 215
monitor, process instance 215
notification 272
overview 177
persistent list, create 245
subprocess instance, retrieval 217
vector functions/subprograms 181

activity instance list
creation 245
filter 245, 246
name 245
sort criteria 245, 246
threshold 245

activity instance notification
definition 221
monitor, process instance 319
object identifier 221
retrieve 221

allocation
copy 55
declaration 55
explicit 21
implicit 21

application
activity implementation 9, 11

application (continued)
client 9, 10
support tool 9, 11

audit trail 471
authorization

accessor functions/subprograms 63
definitions 49
explicit 49
implicit 49
process administrator 49
system administrator 49

B
backwardmapping

constants 102, 107, 108
definition 100, 102
example 103, 106, 107, 109
example with constants 108
grammar 124
non-default backwardmapping 106

Backwardsetting 124
basic functions/subprograms;

definition 53
error handling 15
return codes 53

block instance monitor
definition 225
monitor, block activity 225
monitor, process instance 227
obtain 48
overview 182
ownership 48
refresh 229

C
CharacterInterfaceType 122
characters 111
check in 411
check out 413
comparison 54
compile

headers 12
library files 12

complete
data view 57
function 57, 62

concepts
functions/subprograms 9
memory management 9, 21
object access 9
result object 9
session 9

constructor
copy 55
declaration 55

container
activity implementation 11, 76
array 39

container (continued)
array index 11
basic data types 39
container element 39
data member 39
data structure 39
definition 39
example 40
fixed data members 41
fully qualified name 39
input, process template 390
input, work item 421
input container 233, 236
leave 39
mapping 99
name in dot notation 39
output, work item 422
output container 235, 238, 240, 242
predefined data members 40
read-only 233
read/write 233
structural member 39
support tool 11, 76
value 39

control connector instance

overview 186
vector 186

conversion 112

copy

constructor 55
function 55

D
data access

models 23
pull 23
push 23
view 57, 62

deallocation

declaration 56
FmcjProcessTemplateVector 399
function 31, 56
vector 31

default values 62

description

item 324
persistent list 334
process instance 360
process instance list 249
process template list 254
worklist 259

destructor

declaration 56

development kit

requirement 7

© Copyright IBM Corp. 1999 487

E
equal

comparison 54
function 54

error
handling 15
mapping errors 107
result object 15
return codes 17

execution data 24
overview 188

execution service
activity instance list 245
definition 245
log off 266
log on 268
overview 171
passthrough 270
password 405
process instance list 248
process template list 254
query, activity instance

notification 272
query, item 277
query, process instance 291
query, process instance list 283
query, process instance

notification 285
query, process template 298
query, process template list 296
query, work item 302
query, worklist 309
remote passthrough 313
session, begin 268
session, end 266
session, passthrough 270
session, remote passthrough 313
worklist 259

F
filter

activity instance list 245, 246
activity instance notification 272
definition 29
item 277
persistent list 331, 336
process instance 291
process instance list 248, 249
process instance notification 285
process template 298
process template list 254, 255
work item 302
worklist 259, 260

finish
work item 415
work item, force 417

flat file 101
float numbers 111
float_token 115
FloatInterfaceType 122
FmcjActivityInstance

functions/subprograms 177
ObtainProcessInstanceMonitor() 215
SubProcessInstance() 217

FmcjActivityInstanceNotification
ObtainProcessInstanceMonitor() 319
PersistentObject() 221

FmcjBlockInstanceMonitor
functions/subprograms 182
ObtainBlockInstanceMonitor() 225
ObtainProcessInstanceMonitor() 227
Refresh() 229

FmcjCDateTime 187
FmcjContainer

container element 233
definition 233
InContainer() 233
leaves 233
OutContainer() 235
RemoteInContainer() 236
RemoteOutContainer() 238
SetOutContainer() 242
SetRemoteOutContainer() 240

FmcjControlConnectorInstance
functions/subprograms 186

FmcjDateTime 187
FmcjExecutionData

functions/subprograms 188
FmcjExecutionService

CreateActivityInstanceList() 245
CreateProcessInstanceList() 248
CreateProcessTemplateList() 254
CreateWorklist() 259
definition 245
Logoff() 266
Logon() 268
Passthrough() 270
QueryActivityInstanceNotifications() 272
QueryItems() 277
QueryProcessInstanceLists() 283
QueryProcessInstanceNotifications() 285
QueryProcessInstances() 291
QueryProcessTemplateLists() 296
QueryProcessTemplates() 298
QueryWorkitems() 302
QueryWorklists() 309
Receive() 311
RemotePassthrough() 313
TerminateReceive() 315

FmcjItem
Delete() 317
ObtainProcessInstanceMonitor() 319
ProcessInstance() 321
Refresh() 323
SetDesription() 324
SetName() 326

FmcjPersistentList
Delete() 331
Refresh() 333
SetDescription() 334
SetFilter() 336
SetSortCriteria() 338
SetThreshold() 339

FmcjPoint
functions/subprograms 198

FmcjProcessInstance
Delete() 349
InContainer() 351
ObtainMonitor() 353
PersistentObject() 355
Refresh() 357

FmcjProcessInstance (continued)
Resume() 349
SetDescription() 360
SetName() 362
Start() 364
Suspend() 366
Terminate() 368
Transfer() 328

FmcjProcessInstanceList
QueryProcessInstances() 371

FmcjProcessInstanceMonitor
functions/subprograms 201
ObtainBlockInstanceMonitor() 225
ObtainProcessInstanceMonitor() 227
Refresh() 229

FmcjProcessInstanceNotification
ObtainProcessInstanceMonitor() 319
PersistentObject() 375

FmcjProcessTemplate
CreateAndStartInstance() 379
CreateAndSuspendInstance() 382
CreateInstance() 385
Delete() 388
InContainer() 390
PersistentObject() 391
Refresh() 393

FmcjProcessTemplateList
QueryProcessTemplates() 395

FmcjService
definition 405
SetPassword() 405
UserSettings() 407

FmcjSymbolLayout
functions/subprograms 208

FmcjWorkitem
CheckIn() 411
CheckOut() 413
Finish() 415
ForceFinish() 417
ForceRestart() 419
InContainer() 421
ObtainProcessInstanceMonitor() 319
OutContainer() 422
PersistentObject() 424
Restart() 426
Start() 427
Terminate() 429

FmcjWorklist
QueryActivityInstanceNotifications() 431
QueryItems() 433
QueryProcessInstanceNotifications() 436
QueryWorkitems() 438

FormToMapping 124
forwardmapping

constants 102, 107, 108
default forwardmapping 105
definition 100, 102
example 103, 105, 106, 109
example with constants 108
grammar 124
non-default forwardmapping 105

ForwardSetting 124
fully qualified name 39
function

accessor 62
action 76
activity implementation 76

488 Programming Guide

function (continued)
basic 62
categories 53
client/server call 76
vector accessor 30

G
grammar

comments 115
example 126
interface definitions

InterfaceCardinality 120
InterfaceDeclaration 119
InterfaceSetting 119
InterfaceType 120

interface types
CharacterInterfaceType 122
FloatInterfaceType 122
IntegerInterfaceType 122
PackedAttributeList 120
PackedInterfaceType 120
UserInterfaceType 123
usertype 103
ZonedAttributeList 121
ZonedInterfaceType 121

keywords 118
mapping elements

Backwardmapping 124
Backwardsetting 124
FormToMapping 124
Forwardmapping 124
ForwardSetting 124
Mapping 124
MappingElement 123
MappingRule 125

overview 115
structure definitions

MemberCardinality 119
MemberDeclaration 118
MemberSetting 119
MemberType 118
StructureSetting 118

tokens
float_token 115
hex_digit 116
hex_token 116
identifier 116
int_token 117
packed_token 117
string_token 117
zoned_token 117

usertype
UserType 125
UserTypeDeclaration 125
UserTypeLength 125
UserTypeSetting 125

H
handle

object 9
hex_digit 116
hex_token 116

I
identifier 116

input container
activity implementation 11
process instance 351
process template 390
support tool 11
work item 421

int_token 117
integer numbers 111
IntegerInterfaceType 122
interface

definition 99, 101, 111
example 102, 109
grammar 119
interface element 101
interface element size 133
interface element types

characters 111
definition 111
float numbers 111
integer numbers 111
packed numbers 111
zoned numbers 111

interface elements 100, 102, 105
interface types grammar 120
InterfaceCardinality 120
InterfaceDeclaration 119
InterfaceSetting 119
InterfaceType 120

item
definition 317
delete 317
description, set 324
filter 277, 302
monitor, process instance 319
name 326
object identifier 317
process instance, retrieval 321
properties 324
query 277
refresh 323
sort criteria 280, 306
state 409
threshold 280, 306
transfer 328
worklist 259

J
justification 123

K
keywords 118

L
log off 266
logon

absence setting 268
present 268
session, execution server 268
session mode 268

M
mapping 99, 147

activating program mappings 135

mapping 139, 147 (continued)
application examples 135, 140
array 102, 105
backwardmapping 102, 106, 107, 109
Buildtime 101
constants 101, 102, 105, 107, 108
container 100, 101, 105
data type mappings 113, 114
default mapping 100, 102, 103, 106
errors 107, 137
example 109, 126, 141, 142, 143, 144
explicit mapping 102, 105, 107, 109
flat file 101
Flowmark definition language

(FDL) 101
forwardmapping 102, 105, 107, 109
grammar 115, 126
interface 102, 105
interface definition grammar 119
introduction 99
legacy application 99, 101, 102
mapper 99
mapping algorithm 105
mapping database 100
mapping definition elements 101
mapping definition language

(MDL) 101, 105, 135
mapping rules 100
parser 100
PES 99, 101
program mapping 99
structure 102, 105
structure definition grammar 118
usertype 103
valid conversions 112
Workflow API 100

MappingElement 123
MappingRule 125
MemberCardinality 119
MemberDeclaration 118
MemberSetting 119
MemberType 118
memory

management 9, 21
ownership 9

modules 3
monitor 47

block 225
obtain 47
process instance 215, 227, 319, 353

N
name

activity instance list 245
item 326
persistent list 331
process instance 362, 379, 382, 385
process instance list 248, 249
process template list 254
syntax 326, 362, 379, 382, 385
worklist 259

notification
activity instance notification,

query 272, 431
filter 272, 285
item, query 277

Index 489

notification (continued)
process instance notification,

query 272, 436
sort criteria 276, 288
threshold 276, 288
worklist, create 259

O
object

access 9
memory management 9
optional property 62
persistent 21
primary property 62
secondary property 62
transient 21

object identifier
activity instance notification 221
item 317
process instance 349
process instance notification 375
process template 379
work item 409

output container
activity implementation 11
work item 422

owner
block instance monitor 48
persistent list 331
process instance list 248
process instance monitor 48
process template list 254
transfer, item 328
worklist 259

P
packed numbers 111
packed_token 117
PackedAttributeList 120
PackedInterfaceType 120
parser 100
passthrough 270, 313
password 405
persistent list

activity instance list 245
definition 29, 331
delete 331
description 249, 254, 259, 334
filter 245, 246, 248, 249, 254, 255, 259,

260, 331, 336
name 245, 248, 249, 254, 259, 331
overview 172
owner 248, 254, 259, 331
process instance 248
process template list 254
query 371, 395
query, process instance list 283
query, worklist 431, 433, 436, 438
refresh 333
sort criteria 245, 246, 248, 251, 254,

256, 259, 263, 331, 338
threshold 245, 248, 254, 259, 331, 339
type 248, 254, 259, 331
worklist 259

person
definition 343
password 405
settings, logged on user 407

PES 99, 101
point

overview 198
vector 198

predefined data members 40
_ACTIVITY 41
_ACTIVITY_INFO.CoordinatorOfRole 43
_ACTIVITY_INFO.Duration 45
_ACTIVITY_INFO.Duration2 45
_ACTIVITY_INFO.LowerLevel 44
_ACTIVITY_INFO.MembersOfRoles 43
_ACTIVITY_INFO.Organization 44
_ACTIVITY_INFO.OrganizationType 44
_ACTIVITY_INFO.People 45
_ACTIVITY_INFO.PersonToNotify 45
_ACTIVITY_INFO.Priority 43
_ACTIVITY_INFO.UpperLevel 44
_PROCESS 41
_PROCESS_INFO.Duration 42
_PROCESS_INFO.Organization 42
_PROCESS_INFO.Role 42
_PROCESS_MODEL 41
_RC 41
activity information 40, 42
fixed 40, 41
process information 40, 41

primary view
definition 62
IsComplete() 57

process administrator 49
process instance

create 379, 382, 385
definition 349
delete 349
description 360
filter 291
input container 351
monitor 201, 353
name 349, 362, 379, 382, 385
notification 285
object identifier 349
persistent list, create 248
query 291
refresh 357
remote 382
resume 358
retrieve 355
sort criteria 293, 294
start 364, 379
state 349
suspend 366, 382
terminate 368
threshold 293

process instance list
creation 248
description 249
filter 248, 249
name 248, 249
owner 248
query 283, 371
sort criteria 248, 251
threshold 248
type 248

process instance monitor
monitor, block activity 225
monitor, process instance 227
overview 47, 201
ownership 48
refresh 229

process instance notification
definition 375
monitor,process instance 319
object identifier 375
retrieve 375

process template
create process instance 379, 382, 385
definition 379
delete 388
filter 298
input container 390
name 379
object identifier 379
persistent list, create 254
query 298
refresh 393
retrieve 391
sort criteria 300
start process instance 379
suspend process instance 382
threshold 300
valid-from date 379

process template list
creation 254
description 254
filter 254, 255
name 254
owner 254
query 296, 395
sort criteria 254, 256
threshold 254
type 254

profile
defaults 245
user 245
workstation 245

program execution management
function/subprograms

error handling 15
program execution agent 76

programming
activity implementation 9
client 9
mapping 99
prerequisites 7
support tool 9

property
optional 62
primary 62
secondary 62

protocol
supported 23
synchronous 23
unsolicited 23

pull data 23
push

data, receive 311
enable 23
kind of information 23
receive 24
terminate receive 315

490 Programming Guide

push data 23

Q
query

activity instance notification 272
data 29
item 277
process instance 291
process instance list 283
process instance list, process

instances 371
process instance notification 285
process template list 296
process template list, process

templates 395
vector of objects 30
work item 302
worklist 309, 431
worklist, items 433
worklist, process instance

notification 436
worklist, work item 438

R
read-only container

activity implementation, input
container 233, 236

definition 233
work item, input container 421

read/write container
activity implementation, output

container 235, 238, 240, 242
definition 233
process instance, input container 351
process template, input container 390
work item, output container 422

receive data 311
remote

process instance 382
terminate, subprocess 368

restart
work item 426
work item, force 419

result object
definition 15
error information 9
information contained 15

return code
access functions/subprograms 63
action functions/subprograms 9
activity implementation 11
basic functions/subprograms 53
error handling 15
list of 17

S
secondary view

definition 62
IsComplete() 57

service
execution service 245
password 405

session
absence setting 268

session (continued)
accessor functions/subprograms 268
begin 245, 268, 270, 313
end 245, 266
establish 27
establish, execution server 245
log off 245, 266
log on 245, 268
mode 268
overview 27
passthrough 270
present 268
remote passthrough 313
requirement 9

sort criteria
activity instance list 245, 246
activity instance notification 276
definition 29
item 280, 306
persistent list 331, 338
process instance 293, 294
process instance list 248, 251
process instance notification 288
process template 300
process template list 254, 256
work item 306
worklist 259, 263

start
process instance 364, 379
work item 427

state
item 409
process instance 349
work item 409

string_token 117
structure

definition 99, 101
example 101, 109
grammar 118
MemberCardinality 119
MemberDeclaration 118
MemberSetting 119
MemberType 118
structure definitions 101
structure elements 100, 101, 102, 105
StructureSetting 118

subprocess
resume 358
suspend 366
terminate 368

subprogram
accessor 62
action 76
activity implementation 76
basic 53
categories 53
client/server call 76

support tool
input container 11, 76
pseudo code 11

suspension
process instance 366

symbol layout
overview 208

synchronous protocol 23
syntax rules

description, item 324

syntax rules (continued)
description, persistent list 324
description, process instance 360
name, item 326
name, process instance 362, 379, 382,

385
system

execution server 245
process instance, remote 382

system administrator 49
system group

execution server 245
process instance, remote 382

T
threshold

activity instance list 245
activity instance notifications 276
definition 29
items 280, 306
persistent list 331, 339
process instance list 248
process instance notifications 288
process instances 293
process template list 254
process templates 300
worklist 259

transient object 9
type

persistent list 331
private, persistent list 331
process instance list 248
process template list 254
public, persistent list 331
worklist 259

U
unsolicited information 23
user

default values, profile 245
settings 407

UserInterfaceType 123
usertype

creation of DLL 130
definition 103, 111
example 104, 130
exit interface 129
grammar 125
introduction 129
usertype exit 100, 103
UserTypeDeclaration 125
UserTypeLength 125
UserTypeSetting 125

V
valid conversions 112
vector

accessor function 30
activity instances 181
control connector instances 186
deallocate 31
deallocate, process template 399
first element 31

Index 491

vector (continued)
first element, process template 30
next element 32
next element, process template 401
points 198
query result 30
return codes 30
size 33
size, process template vector 402

view

data view 62
IsComplete() 57
primary 62
secondary 62

W
work item

check in 411
check out 413
definition 409
finish 415
finish, force 417
input container 421
monitor, process instance 319
object identifier 409
output container 422
persistent list, create 259
query 277, 302
query, worklist 438
restart 426
restart, force 419
retrieve 424
start 427
state 409
terminate 429

workflow model 3

worklist

creation 259
definition 431
description 259
filter 259, 260
name 259
owner 259
query 309, 433, 436, 438
query, activity instance

notification 431
sort criteria 259, 263
threshold 259
type 259

workstation profile

default values 245

Z
zoned numbers 111

zoned_token 117

ZonedAttributeList 121

ZonedInterfaceType 121

492 Programming Guide

Readers’ Comments — We’d Like to Hear from You

IBM MQSeries Workflow for OS/390
Programming Guide
Version 3 Release 1

Publication No. SC33-7031-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC33-7031-00

SC33-7031-00

IBM
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM

Program Number: 5655–A96

Printed in Denmark by IBM Danmark A/S

SC33-7031-00

