
IBM MQSeries Workflow for OS/390

Customization and Administration
Version 3 Release 1

SC33-7030-00

IBM

IBM MQSeries Workflow for OS/390

Customization and Administration
Version 3 Release 1

SC33-7030-00

IBM

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xiii.

First Edition (March 1999)

This edition applies to Version 3, Release 1, Modification 0 of IBM MQSeries Workflow for OS/390 (product number
5655–A96) and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has
been removed, address your comments to:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

FAX (Germany): 07031+16-3456
FAX (Other Countries): (+49)+7031-16-3456

IBM Mail Exchange: DEIBMBM9 at IBMMAIL
Internet: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who should read this book. xi
How this book is organized xi
How to get additional information xii
How to send your comments xiii
Notices xiii

Trademarks. xiv
How to read the syntax diagrams xiv

Part 1. Customization 1

Chapter 1. Planning your configuration 3
Deciding your MQSeries Workflow for OS/390
identifiers 3

Installation scope identifiers 5
System group scope identifiers 6
System scope identifiers 7
Flags and high level qualifiers. 8
Subsystem identifiers 9
Customization identifiers 9

Evaluate database requirements 10
More detailed database planning (optional) 11

Chapter 2. Things that you must do
before starting customization 13
Post-installation 13

Create the MMS message catalogs 14
Copy LPALIB member 15

Pre-customization. 15
Data set allocation 15
Create input files for customization 16

Chapter 3. Customizing MQSeries
Workflow for OS/390 17
System customization 17

General DB2 customization 17
Workflow DB2 customization 18
Program execution server directory DB2
customization 19
Program execution server mapping DB2
customization 21
MQSeries customization 22
OS/390 trace customization 22
CICS API support customization 23
IMS API support customization 24
Workflow server customization 25
LAN client customization 25
System customization verification 26

Verify Workflow client sample application 27

Program execution customization 29
Customize CICS EXCI invocation 30
Customize MQSeries CICS bridge invocation 31
Customize IMS CPIC invocation 34
Customize MQSeries IMS bridge invocation 36
Customize program execution server directory 38
Configure program execution samples 39
Verify program execution samples 40

Part 2. System administration . . . 43

Chapter 4. Introduction to system
administration 45
Objects you will need to administer or use . . . 45
Administration in an MQSeries Workflow system 47
System administration client/server components 48

The administration server 49
The administration console. 50

Overview of administration tasks 50
System and server administration tasks . . . 50
Program and user administration tasks. . . . 51

Chapter 5. Administration console
tasks 53
Administration server commands. 53

Starting the administration server and
administration console 53
Stopping the administration server 53

System commands 54
Starting the system 54
Stopping the system 54
Restarting the system 55

Server commands 55
Starting servers 56
Stopping servers 57
Restarting servers 57
Displaying the number of instances of a server 58

Chapter 6. Buildtime administration
tasks 59
Defining process models 59

Defining server properties 59
Defining program properties 60
Defining the connection between a program
activity and the PES 64

Uploading process models to the host 65
Importing and exporting process models 65

Using the FDL import/export tool 65

Chapter 7. Program execution 67
Administering the Program Execution Server
directory 69

Adding a new service definition and the related
user resolution information 70

© Copyright IBM Corp. 1998, 1999 iii

Adding a user-defined invocation type 71
Adding a user-defined mapping type 71
Importing the PES directory 71

Administering programs. 72
Enabling an OS/390 program to be executed as
a program activity. 72
Enabling an OS/390 program to run as safe
application 73
Disabling a program 73
Authorizing a user to access an OS/390
program 73
Revoking a user’s access to OS/390 programs 74

Administering program mapping 74
Importing a program mapping definition . . . 74
Enabling a program’s mapping 76
Disabling a program’s mapping 77
Deleting a program mapping definition 77
Enabling a mapping type 77
Disabling a mapping type 78

Administering invocation types 78
Enabling an invocation type 78
Disabling an invocation type 78

Program execution security 79
Information in the PES directory that is relevant
to security 80
Program security 80

Chapter 8. Performance tuning 81
Changing the number of running server instances 81
Changing the number of server instances per
address space 81

Chapter 9. Problem determination . . . 83
Server problems 83

The administration server cannot be started 83
The administration server does not respond to
server commands. 83
The program execution server cannot be started 84
One or more program execution server
instances terminate, the request is still in state
running 84
A dump is written before all server instances
are started 84
Cannot stop servers 84
Changes made to the program mapping
definition are not activated 85
Changes made to the machine profile are not
activated. 85

Resource and performance problems 86
User response times are unacceptably long 86
Invalid password 86
Running out of spool space 86

The MQSeries Workflow for OS/390 system trace
facility 87

Turning tracing on 87
Restarting the component and reproducing the
problem 88
Viewing the trace 88
Turning tracing off 89

Tracing in CICS 89
What do I do if I get an SVC dump? 89

Create a problem summary 89

Part 3. Appendixes 91

Appendix A. Program Execution
Server directory 93
PES directory structure 93

Invocation section 94
Mapping section 94
Security section 94

PES directory template 95
PES directory dependencies on the process
model’s OS/390 program definitions. 97

Appendix B. The PES directory import
tool’s syntax and semantics 99
Return codes 99
PES directory import examples 99

Importing a PES directory source file 99
Importing a PES directory and writing a log file 100
Deleting the PES directory 100

Appendix C. Program mapping import
tool syntax 101
Creating a new program mapping definition . . . 101
Replacing an existing program mapping definition 101
Inserting a program mapping definition. 102
Deleting a program mapping definition 102
Listing program mapping definitions. 102
Control statement execution 102
Example control statements 103

Appendix D. Naming and code page
restrictions 105
Naming Buildtime objects 105
Restrictions for passwords in CICS 105

Appendix E. FDL code page
conversion tool 107
Using the FDL code page conversion tool. . . . 107
Options 107
Return codes 108

Appendix F. FDL import/export tool 109
FDL import/export tool’s syntax 109
Options for the import / export tool 111
Log file and errors 111

Return codes 112
Examples 112

FDL import examples 112
FDL export examples 113
Translate examples 114

Appendix G. Customization parameter
file 115

Appendix H. Machine profile 117

iv Customization and Administration

Appendix I. Environment variable file 119

Glossary 121

Bibliography 125
MQSeries Workflow for OS/390 publications . . . 125
MQSeries Workflow publications 125
Workflow publications 125

Other useful publications 125
Licensed books 125

Index 127

Readers’ Comments — We’d Like to
Hear from You 133

Contents v

vi Customization and Administration

Figures

1. Customization parameters for a Workflow
system. 4

2. Customization parameters for DB2 5
3. Implementation of the administration

component in an MQSeries Workflow system 49
4. Program properties: Data page. 61
5. Program properties: OS/390 page. 62

6. Program Activity Properties: connecting a
program to the PES 64

7. OS/390 Program execution server:
component structure 68

8. Program mapping definition process and
components 75

© Copyright IBM Corp. 1998, 1999 vii

viii Customization and Administration

Tables

1. Installation scope identifiers 5
2. System group identifiers 6
3. System scope identifiers 7
4. Flags and high level qualifiers 8
5. Subsystem identifiers 9
6. Customization identifiers 9
7. Sample scenario characteristics suitable for

the suggested database allocations 10
8. Files that define the databases 11
9. Suggested buffer pool sizes and allocation 12

10. Create MMS message catalogs 14
11. Copy LPALIB member 15
12. Data set allocation 15
13. Create input files for customization 16
14. General DB2 customization 17
15. Workflow DB2 customization 18
16. Program execution directory DB2

customization 20
17. Program execution server mapping DB2

customization 21
18. MQSeries customization 22
19. OS/390 trace customization. 22
20. CICS API support customization 23
21. IMS API support customization 24
22. Workflow server customization 25
23. Customize the MQSeries client connection 26
24. Customize the MQSeries Workflow client 26
25. System customization verification. 27
26. Verify Workflow client sample application 27

27. Customizing program execution invocation
types 29

28. Customize CICS EXCI invocation 30
29. Customize MQSeries CICS bridge invocation 31
30. Customize IMS CPIC invocation 34
31. Customize MQSeries IMS bridge invocation 36
32. Customize program execution server

directory 38
33. Configure program execution samples 39
34. Verify program execution samples 40
35. System and server administration tasks 51
36. Program and user administration tasks: tool

dependencies 51
37. Server types 56
38. Server properties that can be changed 59
39. Server properties that should not be changed 60
40. Program properties: OS/390 page settings 62
41. Program mapping parser and import tool’s

return codes 76
42. Meaningful security setting combinations in

Buildtime 79
43. Extended trace format converter return codes 88
44. PES directory import tool’s options 99
45. PES directory import tool’s return codes 99
46. FDL code page conversion tool’s return codes 108
47. FDL import/export tool’s return codes 112
48. Machine profile settings 117
49. Environment variable file settings. 119

© Copyright IBM Corp. 1998, 1999 ix

x Customization and Administration

About this book

This book provides information about customization and administration functions
and practises within an IBM MQSeries Workflow for OS/390 system. It explains
the basic concepts of system administration and describes how to use the MQSeries
Workflow administration console to administer and oversee an MQSeries Workflow
for OS/390 system or system group. For information about administration of
MQSeries Workflow on operating systems other than OS/390, see IBM MQSeries
Workflow: Administration Guide .

It is assumed that you have read the IBM MQSeries Workflow: Concepts and
Architecture book and are familiar with the MQSeries Workflow system structure.
You should also understand how MQSeries Workflow uses DB2 to store domain,
system group, and system properties.

Who should read this book

This book is intended for a system administrator who is the first person defined in
an MQSeries Workflow system. A system administrator does the following:
v Installs and customizes MQSeries Workflow for OS/390 and its prerequisite and

corequisite products.
v Administrates MQSeries Workflow for OS/390 databases and the day-to-day

operation of MQSeries Workflow for OS/390.

This book does not describe installation of MQSeries Workflow products. It
assumes that your MQSeries Workflow for OS/390 system has already been set up
as described in the MQSeries Workflow for OS/390: Program Directory.

How this book is organized
v “Part 1. Customization” on page 1 describes how to customize MQSeries

Workflow for OS/390. It contains the following chapters:

– “Chapter 1. Planning your configuration” on page 3 provides tables to
photocopy and complete for use during customization.

– “Chapter 2. Things that you must do before starting customization” on
page 13 describes post-installation tasks that must be performed once, and
pre-customization tasks that must be performed each time you want to create
a new MQSeries Workflow for OS/390 system.

– “Chapter 3. Customizing MQSeries Workflow for OS/390” on page 17 guides
you through the process necessary to customize an MQSeries Workflow for
OS/390 system.

v “Part 2. System administration” on page 43 introduces the concepts and
components of system administration in an MQSeries Workflow system and
explains how to start and use the MQSeries Workflow for OS/390 administration
console. Details regarding error logging and problem determination using a trace
facility are also given.

– “Chapter 4. Introduction to system administration” on page 45 gives an
overview of the objects and tasks involved in administrating this product.

© Copyright IBM Corp. 1998, 1999 xi

– “Chapter 5. Administration console tasks” on page 53 describes the
command-driven administration interface that is used to start and stop the
system and servers.

– “Chapter 6. Buildtime administration tasks” on page 59 describes the
administration tasks connected with the Buildtime tool, and process models.

– “Chapter 7. Program execution” on page 67 covers all tasks relating to the
program execution server, such as administering programs, users, mappings,
and invocation types.

– “Chapter 8. Performance tuning” on page 81 describes some specific ways to
improve system performance.

– “Chapter 9. Problem determination” on page 83 describes solutions to specific
problems, and describes how to use the tracing facilities.

v ″Part 3″ contains the following appendixes:
– “Appendix A. Program Execution Server directory” on page 93 describes the

structure of the program execution server’s configuration directory and its
dependencies on values in the OS/390 program definitions made in the
process model using MQSeries Workflow Buildtime.

– “Appendix C. Program mapping import tool syntax” on page 101 describes
the database utility language used to modify the program mapper’s database.

– “Appendix E. FDL code page conversion tool” on page 107 contains details
about how convert process model information between different code pages,
in case your uploading method fails to preserve your FDL files.

– “Appendix F. FDL import/export tool” on page 109 provides the syntax,
options, and examples of the tool for importing and exporting process model
information in the FDL file format.

– “Appendix D. Naming and code page restrictions” on page 105 describes the
restrictions for naming OS/390 objects in theMQSeries Workflow Buildtime
process model.

– “Appendix G. Customization parameter file” on page 115 contains a copy of
the template file that must be customized each time a new Workflow system
is generated.

– “Appendix H. Machine profile” on page 117 describes contents of the profile
file that determines the behavior of servers and tools when they are started.

– “Appendix I. Environment variable file” on page 119 describes contents of the
environment variable file that determines the behavior of servers and tools
when they are started.

– At the back of the book there is a glossary that defines terms as they are used
in this book, a bibliography, and an index.

How to get additional information

Visit the MQSeries Workflow home page at
http://www.software.ibm.com/ts/mqseries/workflow

For a list of additional MQSeries Workflow publications, refer to “MQSeries
Workflow publications” on page 125.

xii Customization and Administration

http://www.software.ibm.com/ad/flowmark

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
MQSeries Workflow for OS/390 documentation, choose one of the following
methods:
v Send your comments by e-mail to: s390id@de.ibm.com. Be sure to include the

name of the book, the part number of the book, the version of MQSeries
Workflow for OS/390, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

About this book xiii

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

IBM accepts no responsibility for the content or use of non-IBM web sites
mentioned in this publication or accessed through an IBM web site that is
mentioned in this publication.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX DB2 Universal Database MVS/VSA

CICS IBM OS/390

CICS/ESA IMS/ESA VTAM

DB2 MQSeries

Microsoft, Windows, Windows NT and the Windows logo are registered
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

How to read the syntax diagrams

In this manual diagrams are used to illustrate programming syntax. To use a
diagram, follow a path from left to right, top to bottom, adding elements as you
go. In these diagrams, all spaces and other characters are significant.

Each diagram begins with a double right arrowhead and ends with a right and left
arrowhead pair.

The following rules apply to the syntax diagrams used in this book:
v The ÊÊ─── symbol indicates the beginning of a statement.

The ───Ê symbol indicates that the statement syntax is continued on the next
line.
The Ê─── symbol indicates that a statement is continued from the previous line.

xiv Customization and Administration

The ───ÊÍ symbol indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the Ê───
symbol and end with the ───Ê symbol.

v Required items appear on the horizontal line (the main path).

ÊÊ required_item ÊÍ

v Optional items normally appear below the main path.

ÊÊ required_item
optional_item

ÊÍ

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

ÊÊ required_item
optional_item

ÊÍ

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

ÊÊ required_item required_choice1
required_choice2

ÊÍ

If choosing one of the items is optional, the entire stack appears below the main
path.

ÊÊ required_item
optional_choice1
optional_choice2

ÊÍ

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

ÊÊ required_item
default_choice

optional_choice
optional_choice

ÊÍ

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

ÊÊ required_item · repeatable_item ÊÍ

About this book xv

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

ÊÊ required_item ·

,

repeatable_item ÊÍ

If the repeat arrow contains a number in brackets, the number represents the
maximum number of times that item can appear.

ÊÊ required_item ·

(5)

repeatable_item ÊÍ

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Keywords appear in uppercase (for example, FROM). Variables appear in all
lowercase letters (for example, column name). They represent user-supplied
names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

v Syntax diagrams may be broken into fragments. A fragment is indicated by
vertical bars with the name of the fragment between the bars. The fragment is
shown following the main diagram, like so:

A Fragment

A Fragment:

Keyword value

xvi Customization and Administration

Part 1. Customization

Chapter 1. Planning your configuration 3
Deciding your MQSeries Workflow for OS/390
identifiers 3

Installation scope identifiers 5
System group scope identifiers 6
System scope identifiers 7
Flags and high level qualifiers. 8
Subsystem identifiers 9
Customization identifiers 9

Evaluate database requirements 10
More detailed database planning (optional) 11

Chapter 2. Things that you must do before
starting customization 13
Post-installation 13

Create the MMS message catalogs 14
Copy LPALIB member 15

Pre-customization. 15
Data set allocation 15
Create input files for customization 16

Chapter 3. Customizing MQSeries Workflow for
OS/390 17
System customization 17

General DB2 customization 17
Workflow DB2 customization 18
Program execution server directory DB2
customization 19
Program execution server mapping DB2
customization 21
MQSeries customization 22
OS/390 trace customization 22
CICS API support customization 23
IMS API support customization 24
Workflow server customization 25
LAN client customization 25

Customize the MQSeries client connection 26
Customize the MQSeries Workflow client 26

System customization verification 26
Verify Workflow client sample application 27
Program execution customization 29

Customize CICS EXCI invocation 30
Customize MQSeries CICS bridge invocation 31
Customize IMS CPIC invocation 34
Customize MQSeries IMS bridge invocation 36
Customize program execution server directory 38
Configure program execution samples 39
Verify program execution samples 40

© Copyright IBM Corp. 1998, 1999 1

2 Customization and Administration

Chapter 1. Planning your configuration

Before starting to customize your MQSeries Workflow for OS/390 system, you
should plan your configuration. This includes planning the following:
1. “Installation scope identifiers” on page 5

2. “System group scope identifiers” on page 6

3. “System scope identifiers” on page 7

4. “Flags and high level qualifiers” on page 8

5. “Subsystem identifiers” on page 9

6. “Customization identifiers” on page 9

7. “Evaluate database requirements” on page 10

We recommend that you copy and complete the following tables before starting
customization. It may be necessary for the information to be agreed and exchanged
between the following people:

v OS/390 system administrator
v CICS administrator
v IMS administrator
v DB2 administrator
v RACF administrator
v MQSeries administrator
v MQSeries Workflow local area network (LAN) administrator
v MQSeries Workflow for OS/390 administrator

Deciding your MQSeries Workflow for OS/390 identifiers

You install the product image from the tape to the location that is specified by the
MQSeries Workflow for OS/390 installation high level qualifier InstHLQ. Each time
that you want to create a new MQSeries Workflow for OS/390 system you must
specify a new customization high level qualifier CustHLQ. It determines where the
new system files are copied and customized. We recommend that you copy and
complete the following tables for each MQSeries Workflow for OS/390 system you
want to plan.

The identifiers decided here will be entered into the customization parameter file
during “Pre-customization” on page 15. During “Create input files for
customization” on page 16, these parameters are automatically substituted in the
customization jobs. The customization parameter file is listed in “Appendix G.
Customization parameter file” on page 115.

The main system components and associated customization parameters are
illustrated in Figure 1 on page 4 and Figure 2 on page 5.

© Copyright IBM Corp. 1998, 1999 3

Multiple Workflow system groups can exist and can share one DB2 subsystem. A
Workflow system group contains one system. Each Workflow system consists of
servers for administration, program execution, execution, scheduling, and clean-up.

Workflow system group
SystemGroup
SystemGroupLocale

ServerUserID
ServerGroupID

Component Trace
CTComponent
CTStartSuffix
CTStopSuffix
CTWriter

LE
LEInstHLQ

C/C++
CCPPInstHLQ

ICONV
ICONVInstHLQ

IPCS
IPCSInstHLQ

IMS*
IMSInstHLQ

CICS*

CICSInstHLQ
CICSGroup

CICSFlag

MQSeries
MQInstHLQ
QueueManager

DB2
See DB2 subsystem fig.

* CICS, IMS, and COBOL are optional.

Workflow system
UniqueSystemKey
CustHLQ
System
SystemQualifier

Scheduling server

Clean-up server

Administration server

Program execution
server instances

Execution server
instances

COBOL
COBOLInstHLQ

Figure 1. Customization parameters for a Workflow system

4 Customization and Administration

Installation scope identifiers

The following identifiers have scope over a Workflow installation.

Table 1. Installation scope identifiers

Parameter Your value

Name in
customization
parameter file Description

InstHLQ MQWFIHLQ MQSeries Workflow for OS/390 installation high level
qualifier. This qualifier is determined when the product
image is installed from tape, this is described in
MQSeries Workflow for OS/390: Program Directory.

CustHLQ MQWFCHLQ The high level qualifier for the MQSeries Workflow for
OS/390 system you want to customize.

Data storage group

Audit trail storage group

DB2 subsystem

DB2InstHLQ
DB2SubSystem
DB2Plan
SystemGroupQualifier

DataStorageGroupVolumeSet

AuditStorageGroupVolumeSet

DataStorageGroupName

AuditStorageGroupName

DataStorageGroupDataSet

AuditStorageGroupDataSet

PESMappingCollection
PESMappingDatabaseName
PES mapping database

PESDirectoryCollection
PESDirectoryDatabaseName
PES directory database

WorkflowCollection
WorkflowDatabaseName
Workflow database

Figure 2. Customization parameters for DB2

Chapter 1. Planning your configuration 5

System group scope identifiers

The following identifiers have scope over a Workflow system group.

Table 2. System group identifiers

Parameter Your value

Name in
customization
parameter file Description

SystemGroup MQWFSGNM MQSeries Workflow for OS/390 system group name.
This name must be unique within your MQSeries
Workflow domain.

SystemGroupLocale MQWFSGLC MQSeries Workflow for OS/390 system group locale
setting. This is used to set the locale for all servers and
tools. It selects the correct code page conversion. Use
'C' for the default on your machine or a specific locale
setting, for example, 'De_DE.IBM-273' for German. The
MQSeries Workflow for OS/390 servers and utilities
load the active locale from the C environment variable
LC_ALL to determine to which local code page MQSeries
Workflow messages from remote clients should be
converted. The LC_ALL environment variable is set and
propagated to the MQSeries Workflow programs with
the LE runtime option ENVAR.

SystemGroupPrefix DB2SGPRE DB2 system group object qualifier. This is used to prefix
all DB2 objects created for this SystemGroup.

DataStorageGroup
Name

DB2STGNW DB2 storage group name where your MQSeries
Workflow for OS/390 data will be stored. Specify the
volume name or '*' for SMS managed volumes.

DataStorageGroup
DataSetPrefix

DB2STGPW DB2 storage group data set prefix for run-time data.

DataStorageGroup
VolumeSet

DB2STGVW DB2 storage group volume set for runtime data.

AuditStorageGroup
Name

DB2STGNA DB2 storage group name for the audit trail data.

AuditStorageGroup
DataSetPrefix

DB2STGPA DB2 storage group data set prefix for audit trail data.

AuditStorageGroup
VolumeSet

DB2STGVA DB2 storage group volume set for the audit trail data.
Specify the volume name or '*' for SMS managed
volumes.
Note: For performance reasons this should not be the
same volume used for DataStorageGroupVolumeSet.

WorkflowDatabaseName DB2DBNAM DB2 Workflow database name.

PESMapping
DatabaseName

DB2MDBNM DB2 program execution server (PES) mapping database
name.

PESDirectory
DatabaseName

DB2PDBNM DB2 PES directory database name.

WorkflowCollection DB2DBCOL DB2 Workflow database collection name.

PESMappingCollection DB2MDCOL DB2 PES mapping database collection name.

PESDirectoryCollection DB2PDCOL DB2 PES directory database collection name.

DB2Plan DB2PLANN DB2 database plan name.

6 Customization and Administration

System scope identifiers

The following identifiers have scope over a Workflow system.

Table 3. System scope identifiers

Parameter Your value

Name in
customization
parameter file Description

UniqueSystemKey MQWFUKEY Unique key for an MQSeries Workflow for OS/390
system, may be up to eight uppercase characters long.
This is the name given to the Workflow server start job,
and must be unique within SYS1.PROCLIB. This key is
used in the START command to start an administration
server on the System associated with this key.

SystemQualifier MQWFSYSP MQSeries Workflow for OS/390 system qualifier used
to prefix MQSeries Workflow for OS/390 object names,
for example queue names and profile keys. This
identifier may be up to eight uppercase characters long.

System MQWFSYSN MQSeries Workflow for OS/390 system name. This
name must be unique within the system group. This is
the system where the administration server is started
when the start administration server command is
issued: START UniqueSystemKey.AdminServerID.

ServerUserID STTSKUID The server started task RACF user ID used by all
MQSeries Workflow for OS/390 servers. This is the
default user ID that OS/390 programs will be run
under, by the PES, as a result of MQSeries Workflow
process activity requests for OS/390 program
invocations. This user ID requires EXECUTE rights on
DB2Plan

ServerGroupID STTSKGRP The server started task RACF group ID for all
MQSeries Workflow for OS/390 servers.

CTComponent CTRCNAME CTRACE component name.

CTStartSuffix CTRCPMS1 CTRACE PARMLIB member suffix (start writer). This
value may be in the range 00..99.

CTStopSuffix CTRCPMS2 CTRACE PARMLIB member suffix (stop writer). This
value may be in the range 00..99.

CTWriter CTRCWPRC CTRACE writer procedure name. This must not be
more than seven characters long.

Chapter 1. Planning your configuration 7

Flags and high level qualifiers

The following flag and high level qualifiers are used during customization.

Table 4. Flags and high level qualifiers

Parameter Your value

Name in
customization
parameter file Description

CICSFlag Use one of the
values provided
in the
customization
parameter file.

CICSFL This parameter determines whether a CICS installation
library is included. The default setting in the
customization parameter file assumes that CICS is
installed. If you do not have CICS installed, later when
you reach step 2 of “Create input files for
customization” on page 16, you will only have to
comment out the default line and remove the comment
symbol from the front of the alternative setting. For
more details see the comment sections of the listing in
“Appendix G. Customization parameter file” on
page 115.

CICSInstHLQ * CICSLPFX CICS installation high level qualifier.

DB2InstHLQ DB2INHLQ DB2 installation high level qualifier.

MQInstHLQ MQPREFIX MQSeries installation high level qualifier.

LEInstHLQ LELIBPFX Language Environment installation high level qualifier.

CCPPInstHLQ CLIBRPFX C/C++ installation high level qualifier.

COBOLInstHLQ * CBLIBPFX COBOL installation high level qualifier

IMSInstHLQ * IMSLIBPX IMS installation high level qualifier.

ICONVInstHLQ ICONVPFX ICONV installation high level qualifier. This should
point to the unicode converter data sets mentioned
below, it is normally the same as the Language
Environment high level qualifier (LEInstHLQ). The
value is substituted in the environment variable file, see
“Appendix I. Environment variable file” on page 119. In
the following example, ICONVInstHLQ should be set to
SYS1:

SYS1.SCEEUCS2
SYS1.SCEEUCS2.UCMAP
SYS1.SCEEUCS2.UCONVTBL

IPCSInstHLQ IPCSPRFX IPCS installation high level qualifier.

* CICS, IMS, and COBOL are optional.

8 Customization and Administration

Subsystem identifiers

The following subsystem identifiers are required for customization.

Table 5. Subsystem identifiers

Parameter Your value

Name in
customization
parameter file Description

DB2SubSystem DB2SSYSN Name of the DB2 subsystem that is to be used by
MQSeries Workflow for OS/390.

QueueManager MQQMNAME Name of the MQSeries queue manager that is to be
used by MQSeries Workflow for OS/390.
Note: If you want to run CICS applications that use the
MQSeries Workflow for OS/390 application program
interface (API), this must be the same queue manager
that is used by CICS.

CICSGroup CICSGRPN CICS group name used for program execution server
invocations.

Customization identifiers

These identifiers are not present in the customization parameter file. Many of these
parameters are optional, depending on which invocation types you intend to use.

Table 6. Customization identifiers

Parameter Your value Description

DB2AdminUserID The user ID of the DB2 administrator. This user ID requires SYSADM
rights to be able to perform the customization process. This can be
granted with the command

GRANT SYSADM TO DB2AdminUserID

MQWFAdminUserID The user ID of the MQSeries Workflow for OS/390 administrator. This
user ID requires EXECUTE rights on DB2Plan to be able to execute the
tools that update the runtime databases.

MQHostName The TCP/IP host name of the OS/390 where the queue manager is
installed. This value is required during “Customize the MQSeries client
connection” on page 26.

applid This value is required during “Customize CICS EXCI invocation” on
page 30 and “Customize program execution server directory” on
page 38.

netid This value is required during “Customize IMS CPIC invocation” on
page 34 and “Customize program execution server directory” on
page 38.

luname This value is required during “Customize IMS CPIC invocation” on
page 34 and “Customize program execution server directory” on
page 38.

CICSBridge
InputQueue

This value is required during “Customize MQSeries CICS bridge
invocation” on page 31 and “Customize program execution server
directory” on page 38.

IMSBridge
InputQueue

This value is required during “Customize MQSeries IMS bridge
invocation” on page 36 and “Customize program execution server
directory” on page 38.

Chapter 1. Planning your configuration 9

Table 6. Customization identifiers (continued)

Parameter Your value Description

XCFGroupName This value is required during “Customize MQSeries IMS bridge
invocation” on page 36. The MQSeries instance and the target IMS
system must belong to the same XCF group.

XCFMemberIMS This value is required during “Customize MQSeries IMS bridge
invocation” on page 36. It represents the IMS system as a member in the
XCF group XCFGroupName.

XCFMemberMQ This value is required during “Customize MQSeries IMS bridge
invocation” on page 36. It represents the MQSeries instance as a member
in the XCF group XCFGroupName.

PESDirectory
SourceFile

Your PES directory is based on a skeleton. After customizing the source
file, any new changes will have to be made to your source file. This
value is required during “Customize program execution server
directory” on page 38.

Evaluate database requirements

If you want to use two storage groups, ten buffer pools, approximately 600MB of
primary allocation for Workflow data, and about 160MB of primary allocation for
audit trail data; you can use the suggested database allocations in Table 9 on
page 12, and no further planning is necessary. Otherwise, more detailed database
planning is required.

The suggested database allocations are suitable for the operational Workflow
scenario described in Table 7.

Table 7. Sample scenario characteristics suitable for the suggested database
allocations

Parameter Value

Program activities per process 10

Process lifetime 1 day

Finished processes kept 7 days

Created processes 100 per day

Work items per program activity 10

Audit trail condensed

Audit trail clean-up every 7 days

Average small container size 512 bytes

Average large container size 4096 bytes

10 Customization and Administration

More detailed database planning (optional)

If the suggested values are not acceptable for your requirements, this step helps
you to determine the size and organization of your database. Later, you will use
the values that are decided here to customize the jobs that create the DB2 objects
for MQSeries Workflow for OS/390.

This is a planning phase. You should not modify any of the files mentioned here,
copies of these files will be generated during “Pre-customization” on page 15.

The values you decide on must be consistent with your values that you have
already planned, especially those in Table 2 on page 6.

1. Print a copy of InstHLQ.SFMCCNTL(FMCHJDBP) to help you decide how many
buffer pools and which buffer pool sizes you want.

2. Print a copy of InstHLQ.SFMCDB2(FMCHDDST) to help you decide how many
storage groups you want to use, and whether you want to use volume names
or SMS managed volumes in the storage group definitions.

3. To help you decide which buffer pool or storage group you want to use for
each database, table space, or index, and estimate the required sizes for table
spaces and indexes, print a copy of the files listed in Table 8.

Table 8. Files that define the databases

Database name (see
Table 2 on page 6) Database definitions

Table space
definitions

Table and index
definitions

Workflow
DatabaseName

InstHLQ.SFMCDB2
(FMCHDDDB)

InstHLQ.SFMCDB2
(FMCHDDTS)

InstHLQ.SFMCDB2
(FMCHDDTB)

PESDirectory
DatabaseName

InstHLQ.SFMCDB2
(FMCHDDPD)

InstHLQ.SFMCDB2
(FMCHDDPS)

InstHLQ.SFMCDB2
(FMCHDDPT)

PESMapping
DatabaseName

InstHLQ.SFMCDB2
(FMCHDDMD)

InstHLQ.SFMCDB2
(FMCHDDMS)

InstHLQ.SFMCDB2
(FMCHDDMT)

Table 9 on page 12 provides a summary of the suggested table space sizes, buffer
pool sizes, and buffer pool allocations. It is recommended that you use a copy of
this table for your detailed planning.

Chapter 1. Planning your configuration 11

Table 9. Suggested buffer pool sizes and allocation

Suggested
table
space
size in
1000 KB
(PRIQTY)

Storage
group

Buffer pool IDs

BP
32K

BP0 BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8

Suggested buffer pool size (x1000 pages)

Database or 8 8 6 6 6 4 4 4 4 6

Table space

Database - v

PESDIRTS 1 v

MAPPING 1 v

TEMPLT32 12 v

TEMPLT04 12 v

CONTAINR 120 v

PROCESS 12 v

WORKITEM 72 v

NTFYITEM 12 v

ACTWI 20 v

PROCACT 12 v

PROGACT 12 v

BLOCKACT 12 v

BLOCK 12 v

STAFF04 16 v

STAFF32 16 v

MPOOL 1 v

TOPLGY32 20 v

TEST 12 v

ADMIN 12 v

MODEL 20 v

LIST 12 v

Indexes - v v

ADTTRAIL * 160 * v

Note: * The audit trail table space ADTTRAIL should be on a separate volume for
performance reasons. By default it is allocated to the volume
AuditStorageGroupVolumeSet and all other tables and databases are allocated
to the volume DataStorageGroupVolumeSet. See your values in Table 2 on
page 6.

12 Customization and Administration

Chapter 2. Things that you must do before starting
customization

Before starting customization, you should check the following:
1. You have MQSeries for OS/390 Version 2.1 installed, and one queue manager

is available for MQSeries Workflow for OS/390.
2. You have DB2 for OS/390 Version 5.1 installed, and one subsystem is available

for MQSeries Workflow for OS/390.
3. To perform customization, you must have DB2 SYSADM rights.
4. IBM Resource Access Control Facility (RACF) authority to alter the MQSeries

Workflow for OS/390 installation data sets, and the right to create MQSeries
objects.

Note: This manual assumes that you are using RACF for your security. If you
are using a different security system, you must apply the equivalent
security access controls for your system.

5. RACF authority to alter PROCLIB and PARMLIB.
6. The load library InstHLQ.SFMCLINK must be Advanced Program Facility (APF)

authorized.
7. You should have configured the Resource Recovery Service (RRS) as described

in OS/390 MVS Programming: Resource Recovery.
8. Then you are ready to perform “Post-installation” followed by

9. “Pre-customization” on page 15

Post-installation

After performing the installation as described in MQSeries Workflow for OS/390:
Program Directory, you are ready to update the MVS Message Services (MMS)
message catalog, and copy the LPALIB member.

Note: Before submitting each JCL, be sure to insert your own job card.

© Copyright IBM Corp. 1998, 1999 13

Create the MMS message catalogs

To add the MQSeries Workflow for OS/390 messages to MMS, you must do the
following:

Table 10. Create MMS message catalogs

Step
number

Required or
optional Description Action Verification

1 Required Update parameters in
JCLs. 1. Edit InstHLQ.SFMCCNTL(FMCHJMM1)

a. Replace <MQWFIHLQ> with your MQSeries Workflow for
OS/390 installation high level qualifier, see InstHLQ in
Table 1 on page 5.

b. Replace <MMSVOL> with the volume name where the
VSAM cluster for the MQSeries Workflow for OS/390
message catalogs should reside.

c. Replace <STORCLAS> with the storage class of the volume
where the VSAM cluster for the MQSeries Workflow for
OS/390 message catalogs should reside.

2. Edit InstHLQ.SFMCCNTL(FMCHJMM2)

a. Replace <MQWFIHLQ> with your MQSeries Workflow for
OS/390 installation high level qualifier.

3. Edit InstHLQ.SFMCPARM(FMCHYMMS)

a. Replace <MQWFIHLQ> with your MQSeries Workflow for
OS/390 installation high level qualifier.

2 Required Create the VSAM
clusters.

Submit JCL
InstHLQ.SFMCCNTL(FMCHJMM1)

rc = 0

3 Required Load the input files
InstHLQ.SFMCMSG
(FMCHMxxx) to the
VSAM clusters.

Submit JCL
InstHLQ.SFMCCNTL(FMCHJMM2)

rc = 0

4 Required Copy MMS PARMLIB
member.

Being careful not to overwrite an existing PARMLIB member: Copy
InstHLQ.SFMCPARM(FMCHYMMS) to your system PARMLIB.

5 Required Rename the MMS
PARMLIB member.

Being careful not to overwrite an existing PARMLIB member,
rename the MMS PARMLIB member that you copied in step 4 to
MMSLSTxx.

6 Required Provide RACF profile. Give the system address space MMS read access to the VSAM
clusters created in step 2.

7 Required Access the PARMLIB
member.

Either

v Specify MMS(xx) on the INIT statement in
SYS1.PARMLIB(CONSOLnn), or

v Issue the operator command SET MMS=xx

14 Customization and Administration

Copy LPALIB member

To add the MQSeries Workflow for OS/390 LPALIB member to your system you
must do the following:

Pre-customization

Each time that you want to create a new MQSeries Workflow for OS/390 system,
you must perform a customization. Before starting customization, you must
perform the following pre-customization task. This creates the libraries and copies
files from the installation image (InstHLQ) to the location for the new system that
is to be customized (CustHLQ). The information you enter during this task is used
to generate customization files.

Data set allocation

This step creates the data sets that are required for customization.

Table 12. Data set allocation

Step
number

Required or
optional Description Action Verification

1 Required Copy allocation job. Copy the JCL InstHLQ.SFMCCNTL(FMCHJACD) to a private partitioned
data set.

2 Required Customize allocation
job.

Edit your copy of FMCHJACD, and make the changes described in the
comment header of the file (replace <MQWFCHLQ> with your
MQSeries Workflow for OS/390 customization high level qualifier,
see CustHLQ in Table 1 on page 5).

3 Required Allocate
customization data
sets.

Submit your copy of FMCHJACD. rc=0 indicates that the following
libraries have been created:

1. CustHLQ.SFMCCNTL

2. CustHLQ.SFMCDATA

3. CustHLQ.SFMCDB2

4. CustHLQ.SFMCMQS

5. CustHLQ.SFMCPARM

6. CustHLQ.SFMCPROC

7. CustHLQ.SFMCREXX

8. CustHLQ.GENPROC

9. CustHLQ.GENPARM

Note: The last two libraries are
for the generated PROCLIB and
PARMLIB members.

Table 11. Copy LPALIB member

Step
number

Optional or
required Description Action

1 Required Copy LPALIB
member.

Being careful not to overwrite an existing LPALIB member: Copy
InstHLQ.SFMCLINK(FMCHXTRC) to SYS1.LPALIB.

Chapter 2. Things that you must do before starting customization 15

Create input files for customization

In this task you specify all the identifiers that the customization process requires,
and generate customization files from the values you have entered. If you later
realize that the identifiers were not correct, you must repeat this task before
repeating the customization process.

Table 13. Create input files for customization

Step
number

Required or
optional Description Action Verification

1 Required Copy customization
templates. 1. Copy the JCL

CustHLQ.SFMCCNTL(FMCHJCCT)
to a private partitioned data
set.

2. Edit your copy of FMCHJCCT
as described in the comment
header.

3. Submit your copy of
FMCHJCCT

rc=0 for the copy step. The JCL
also deletes any members in the
libraries for the generated
PROCLIB and PARMLIB
members CustHLQ.GENPROC and
CustHLQ.GENPARM. rc=8 can be
accepted for the delete step, it
indicates that there was nothing
to delete.

2 Required Edit the
customization
parameter file.

Edit the customization parameter template member
CustHLQ.SFMCDATA(FMCHECIF), and enter your values from the
tables in “Chapter 1. Planning your configuration” on page 3, as
described in the comment sections of the file.
Note: This file is described in “Appendix G. Customization
parameter file” on page 115. From now on, this member will
contain your customization parameters. This member is used as an
input file for the generation process in step 3.

3 Required Generate all the JCLs
necessary to
customize this
product.

1. Copy the JCL
CustHLQ.SFMCCNTL(FMCHJCUS)
to a private partitioned data
set.

2. Edit your copy of FMCHJCUS
as described in the comment
header.

3. Submit your copy of
FMCHJCUS.

This requires rc=0. The program
performs some syntax checking
on the length and value of the
variables you specified in the file
CustHLQ.SFMCDATA(FMCHECIF).
The program then substitutes
your values for variables in the
customization template files.
Some PROCLIB and PARMLIB
members are also copied with
new names to the library
CustHLQ.GENPROC and
CustHLQ.GENPARM.

When you have completed this stage, the JCL files that are required in the next
chapter will contain all the customization parameters that you determined in
“Chapter 1. Planning your configuration” on page 3.

16 Customization and Administration

Chapter 3. Customizing MQSeries Workflow for OS/390

This chapter will guide you through the customization tasks necessary to make
MQSeries Workflow for OS/390 functional within your system. This procedure
consists of the following stages:
v “System customization” is required.

v “Verify Workflow client sample application” on page 27 is optional.

v “Program execution customization” on page 29 is optional.

System customization

To customize the MQSeries Workflow for OS/390 system, you must perform the
following tasks in the given sequence:

1. “General DB2 customization”

2. “Workflow DB2 customization” on page 18

3. “Program execution server directory DB2 customization” on page 19

4. “Program execution server mapping DB2 customization” on page 21

5. “MQSeries customization” on page 22

6. “OS/390 trace customization” on page 22

7. “CICS API support customization” on page 23

8. “IMS API support customization” on page 24

9. “Workflow server customization” on page 25

10. “LAN client customization” on page 25

11. “System customization verification” on page 26

After completing the above tasks, you will be able to connect a MQSeries
Workflow client to MQSeries Workflow for OS/390.

General DB2 customization

Before performing this customization you should ensure that you have DB2 SYSADM
grants. This can be granted with the command:
GRANT SYSADM TO DB2AdminUserID

Before submitting each JCL, be sure to insert your own job card.

Table 14. General DB2 customization

Step
number

Required or
optional Description Action Verification

1 Required Bind the plan for the
DB2 sample
application DSNTEP2.

Submit JCL CustHLQ.SFMCCNTL(FMCHJBTE)
Note: Use your value for CustHLQ from
Table 1 on page 5.

rc=0

© Copyright IBM Corp. 1998, 1999 17

Table 14. General DB2 customization (continued)

Step
number

Required or
optional Description Action Verification

2 Optional If you want to change
the buffer pool names
and sizes:

Edit CustHLQ.SFMCDB2(FMCHJDBP), and change the VOLUMES
parameter as necessary.

Required Define buffer pools. Submit JCL CustHLQ.SFMCCNTL(FMCHJDBP) rc=0

3 Optional If you want the
storage groups to use
more than one
volume name, or SMS
managed volumes:

Edit CustHLQ.SFMCDB2(FMCHDDST), and change the buffer pool
definitions.

Required Create storage
groups.

Submit JCL CustHLQ.SFMCCNTL(FMCHJDST) rc=0

Workflow DB2 customization

To create, populate, and verify the Workflow database, you must perform the
following steps:

Table 15. Workflow DB2 customization

Step
number

Required or
optional Description Action Verification

1 Optional If you want to change
the default buffer
pool name or the
storage group for the
database:

Edit CustHLQ.SFMCDB2(FMCHDDDB), and change the buffer pool
name and storage group.

Required Create Workflow
database.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDDB)

rc=0

2 Optional If you want to change
the buffer pool names
to be used for the
table spaces, or the
value for the primary
space allocation:

Edit CustHLQ.SFMCDB2(FMCHDDTS), and change the buffer pool
names. You can also change the value for the primary space
allocation PRIQTY to the required size (in KB).

Required Create Workflow table
spaces.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDTS)

rc=0. If you get a non-zero return
code, you can roll back the
complete action by dropping the
Workflow database using the job
FMCHJEDB. After this step you have
to start again with Step number 1:
Create Workflow database.

18 Customization and Administration

Table 15. Workflow DB2 customization (continued)

Step
number

Required or
optional Description Action Verification

3 Optional If you want to change
the buffer pools, or
the value for the
primary space
allocation for the
indexes:

Edit CustHLQ.SFMCDB2(FMCHDDTB), and change the buffer pool
names. You can also change the value for the primary space
allocation PRIQTY to the required size (in KB).

Required Create Workflow
tables.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDTB)

rc=0. If you get a non-zero return
code, you can roll back the
complete action by dropping the
Workflow table spaces using the
job FMCHJETS. After this step you
have to start again with Step
number 2: Create Workflow table
spaces.

4 Required Bind the Workflow
packages and add the
Workflow Collection
to the Workflow plan.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBDB)

rc=4 can be accepted.

5 Required Be sure that RRS is
active.

If RRS is not active, you can activate it by issuing the command:

START RRS

6 Required Populate the
Workflow database
with initial settings.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJRBS)

rc=0. If you get a non-zero return
code, you can roll back the
complete action by deleting the
contents of the Workflow tables
using the job FMCHJEDC. After this
step you have to start again with
Step number 5: Populate the
Workflow database.

7 Required Populate the
Workflow database
with initial topology
settings.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJRIB)

rc=0

8 Required Run the DB2 utility
RUNSTATS for the
Workflow database.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJRST)

rc=4 can be accepted.

9 Required Rebind the Workflow
packages.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBDB)

rc=4 can be accepted.

10 Required Verify the Workflow
database
configuration.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJCCH)

Verify that each SELECT statement
returns at least one row of data.

Program execution server directory DB2 customization

The program execution server (PES) directory contains the information about
services and invocations that enables the PES to invoke CICS and IMS programs.

Chapter 3. Customizing MQSeries Workflow for OS/390 19

Table 16. Program execution directory DB2 customization

Step
number

Required or
optional Description Action Verification

1 Optional If you want to change
the buffer pool names
or storage group for
the database:

Edit CustHLQ.SFMCDB2(FMCHDDPD), and change the buffer pool
names. You can also change the storage group.

Required Create the PES
directory database.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDPD)

rc=0

2 Optional If you want to change
the buffer pool names
for the table space, or
if you want to change
the primary space
allocation:

Edit CustHLQ.SFMCDB2(FMCHDDPS), and change the buffer pool
names to be used for the table space. You can also set the value for
the primary space allocation (PRIQTY) to the required size (in KB).

Required Create the PES
directory table space.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDPS)

rc=0. If you get a non-zero
return code, you can roll back
the complete action by dropping
the PES directory database using
the job FMCHJEPD. After this step
you have to start again with Step
number 1: Create the PES directory
database.

3 Optional If you want to change
the buffer pools, or if
you want to change
the primary space
allocation for the
indexes:

Edit CustHLQ.SFMCDB2(FMCHDDPT), and change the buffer pool
name for the index definition. You can also set the value for the
primary space allocation (PRIQTY) to the required size (in KB).

Required Create the PES
directory table.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDPT)

rc=0. If you get a non-zero
return code, you can roll back
the complete action by dropping
the PES directory table space
using the job FMCHJEPS. After this
step you have to start again with
Step number 2: Create the PES
directory table space.

4 Required Bind the PES
directory packages
and add the PES
directory collection to
the Workflow plan.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBPD)

rc=0

5 Required Import the PES
directory.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJPIB)
Note: For subsequent executions
of this step, use FMCHJPIC

rc=0

6 Required Run the DB2 utility
RUNSTATS.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJSPD)

rc=0

7 Required Rebind the PES
directory packages.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBPD)

rc=0

8 Required Verify the PES
directory database
configuration.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJCPD)

Verify that the SELECT statement
returns at least one row of data.

20 Customization and Administration

Program execution server mapping DB2 customization

This customization creates the PES mapping database that is used by the default
program mapper. If you do not want to invoke any legacy applications that would
require program mapping, you can skip this, and continue customization at
“MQSeries customization” on page 22.

Table 17. Program execution server mapping DB2 customization

Step
number

Required or
optional Description Action Verification

1 Optional If you want to change
the default buffer
pool name, or storage
group for the
database:

Edit CustHLQ.SFMCDB2(FMCHDDMD), and change the buffer pool
names.

Required Create the PES
mapping database.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDMD)

rc=0

2 Optional If you want to change
the buffer pool names
to be used for the
table space, or if you
want to change the
value for the primary
space allocation:

Edit CustHLQ.SFMCDB2(FMCHDDMS), and change the buffer pool
names to be used for the table space. You can also set the value for
the primary space allocation (PRIQTY) to the required size (in KB).

Required Create the PES
mapping table space.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDMS)

rc=0. If you get a non-zero return
code, you can roll back the
complete action by dropping the
PES mapping database using the
job FMCHJEMD. After this step you
have to start again with Step
number 1: Create the PES mapping
database.

3 Optional If you want to change
the buffer pools, or
the primary space
allocation for the
index:

Edit CustHLQ.SFMCDB2(FMCHDDMT), and change the buffer pool
name for the index definition. You can also set the value for the
primary space allocation (PRIQTY) to the required size (in KB).

Required Create the PES
mapping tables.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDMT)

rc=0. If you get a non-zero return
code, you can roll back the
complete action by dropping the
PES mapping table spaces using
the job FMCHJEMS. After this step
you have to start again with Step
number 2: Create the PES mapping
space.

4 Required Bind the PES
mapping packages
and add the PES
mapping collection to
the Workflow plan.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBMA)

rc=0

Chapter 3. Customizing MQSeries Workflow for OS/390 21

MQSeries customization

This defines all the MQSeries resources required by MQSeries Workflow for
OS/390. Before you perform this customization, make sure that your queue
manager is started.

Table 18. MQSeries customization

Step
number

Required or
optional Description Action Verification

1 Required Define the MQSeries
resources (except for
program execution.)

Submit JCL CustHLQ.SFMCCNTL(FMCHJDMQ) rc=0

2 Required Define the MQSeries
resources required by
MQSeries Workflow
for OS/390program
execution.

Submit JCL CustHLQ.SFMCCNTL(FMCHJPMQ) rc=0

OS/390 trace customization

One Workflow Server Trace exists for each Workflow system. As this trace uses
OS/390 system components (Component Trace or CTRACE for short), you must
also update system resources. You are provided with two templates for members
of SYS1.PARMLIB which control the tracing of Workflow servers. You are provided
with one template for a JCL procedure member of SYS1.PROCLIB which controls a
CTRACE external writer. Finally, you must provide and specify in the JCL
procedure, the trace output data sets for the external writer.

Table 19. OS/390 trace customization

Step
number

Required or
optional Description Action

1 Required Look up variable
values.

Check Table 3 on page 7, and note the values that you planned for
the following identifiers:

1. The two digits nn for CTStartSuffix.

2. The two digits mm for CTStopSuffix.

3. The value for CTWriter.

Note: These are the values that you should have assigned to the
variables <CTRCPMS1>, <CTRCPMS2>, and <CTRCWPRC>
respectively, in file CustHLQ.SFMCDATA(FMCHECIF)

2 Required Check system
libraries.

Make sure that the system (or the sysplex) does not already
contain the members:

1. SYS1.PARMLIB(CTIFMCnn).

2. SYS1.PARMLIB(CTIFMCmm).

3. SYS1.PROCLIB(CTWriter).

Where nn, mm, and CTWriter are the values from step 1.

3 Required Copy PARMLIB
members.

1. Copy the Component Trace Start PARMLIB member
CustHLQ.GENPARM(CTIFMCnn) to SYS1.PARMLIB

2. Copy the Component Trace Stop PARMLIB member
CustHLQ.GENPARM(CTIFMCmm)) to SYS1.PARMLIB

4 Required Copy PROCLIB
member

1. Copy the trace writer CustHLQ.GENPROC(CTWriter) to
SYS1.PROCLIB

22 Customization and Administration

Table 19. OS/390 trace customization (continued)

Step
number

Required or
optional Description Action

5 Required Create the extended
trace output data sets.

1. Edit data set CustHLQ.SFMCCNTL(FMCHJCTR)

2. Submit JCL CustHLQ.SFMCCNTL(FMCHJCTR)

6 Required Provide RACF
profiles.

Give SYS1.PROCLIB(CTWriter) update access to the trace data sets
created in step 5.

CICS API support customization

If you want to use the MQSeries Workflow for OS/390 API and trace in CICS, then
you must perform this customization. If you only want to use CICS legacy
applications, or if you do not want to use CICS at all you can skip this
customization, and continue at “IMS API support customization” on page 24.

Before starting this customization, you should ensure that CICS uses the same
MQSeries queue manager that the MQSeries Workflow for OS/390 system uses
and should perform a CICS shutdown.

Table 20. CICS API support customization

Step
number

Required or
optional Description Action Verification

1 Required Enable LE and
C/C++ features in
CICS.

If they are not already enabled:

1. Enable LE in CICS.
Note: The CSD definitions necessary to accomplish this task
are located in SystemQualifier.SCEESAMP(CEECCSD)

2. Enable the C/C++ feature in CICS.
Note: A sample that may help you with this task is located in
SystemQualifier.SCLBSAM(CLB3YCSD)

2 Required Specify the location
of the Workflow
executables, and
start-up parameters.

1. Edit your CICS start-up job.

2. Find the DFHRPL entry.

3. Add the MQSeries Workflow for OS/390 library called
InstHLQ.SFMCLOAD to the DFHRPL entry.

4. Specify an EDSALIM value of at least 200M and a CICS region
size that will accommodate your EDSALIM setting. For example,
specify the CICS parameter EDSALIM=200M and REGION=220M in
your CICS start-up job.

3 Required Create user profile,
machine profile, and
environment data in
VSAM format.

1. Edit CustHLQ.SFMCCNTL(FMCHJCPR)

2. Change the CICSVOL value to the name
of the volume where you want the
profiles to be located.

3. Submit JCL
CustHLQ.SFMCCNTL(FMCHJCPR)

rc=0

4 Optional If you do not want to
use the value for
CICSGroup that you
specified in Table 5
on page 9:

Change the group in the CSD file:

1. Edit the CSD file CustHLQ.SFMCDATA(FMCHEPRO)

2. Change the GROUP values to the one(s) you intended for the
Workflow executable, profiles, etc..

Chapter 3. Customizing MQSeries Workflow for OS/390 23

Table 20. CICS API support customization (continued)

Step
number

Required or
optional Description Action Verification

5 Required Update CICS CSD
with file definitions
for C++ and
MQSeries Workflow
for OS/390.

1. Edit CustHLQ.SFMCCNTL(FMCHJCUP)

2. Change the CICSNAME value to the name
of the CICS system that you are
customizing.

3. Submit JCL
CustHLQ.SFMCCNTL(FMCHJCUP)

rc=0

6 Required Make MQSeries CICS
stubs available in
CICS.

Make the MQSeries CICS Stubs IMQB23IC and IMQS23IC available
to CICS. For more information see MQSeries for OS/390: System
Management.

7 Required Restart CICS. Restart CICS.

8 Required Make the C/C++
group CLB and the
MQSeries Workflow
for OS/390 group
available in CICS.

1. Make the C/C++ group CLB available in CICS, with the
command:

CEDA ADD G(CLB) LIST(xxx)

2. Make the MQSeries Workflow for OS/390 group (CICSGroup,
unless you changed it in step 4) available in CICS, with the
command:

CEDA ADD G(yyy) LIST(xxx)

where xxx is a LIST used at CICS start-up, and yyy is the
MQSeries Workflow for OS/390 group.

9 Required Verify profile access. 1. Logon to CICS.

2. Perform: CEMT I FI(FMCHEUPR)

3. One file should be displayed. Try to open the file by typing
″OPE″ over ″CLO″ (and pressing enter). If this works without
resulting in an error message, the profile access has been
established. If you get an error message, retry the previous
steps for enabling CICS API support. If this does not help,
contact your IBM representative.

4. You can now close the file again by typing ″CLO″ over ″OPE″
Since CICS will then disable the file, type ″ENA″ over ″UNE″
(UNEnabled).

IMS API support customization

This makes MQSeries Workflow for OS/390 DLLs available to IMS so that
programs using the MQSeries Workflow for OS/390 container API can be executed
in IMS. If you only want to use IMS legacy applications, or if you do not want to
use IMS at all you can skip this customization, and continue at “Workflow server
customization” on page 25.

Table 21. IMS API support customization

Step
number

Required or
optional Description Action

1 Required Provide load modules
for IMS

Add all members with the prefix ″FMCH3″ from the library
InstHLQ.SFMCLOAD library to your IMS PGMLIB library.

24 Customization and Administration

Workflow server customization

To enable a Workflow server, a JCL procedure has to be provided in SYS1.PROCLIB.
For each Workflow system, you must copy a template into SYS1.PROCLIB, and then
customize it. This is necessary to start the MQSeries Workflow for OS/390 servers
as a started task.

Table 22. Workflow server customization

Step
number

Required or
optional Description Action Verification

1 Required Copy definitions for
Workflow servers into
a procedure library.

Copy the JCL procedure CustHLQ.GENPROC(UniqueSystemKey) to
SYS1.PROCLIB, where UniqueSystemKey is your value in Table 3 on
page 7.

2 Required Assign RACF user ID
and group to the
Workflow server
started task.
Note: This is the
ServerUserID, see
Table 3 on page 7

Submit JCL CustHLQ.SFMCCNTL(FMCHJDSC) rc=0

3 Required Provide RACF profile. Give the ServerUserID assigned in Step 2 read access to the data set
CustHLQ.SFMCDATA.

4 Required
only if you
want console
messages to
be in
uppercase,
otherwise
optional

Modify the Workflow
server start job
definitions.

1. Edit SYS1.PROCLIB(UniqueSystemKey).

2. If you want console messages from the server address space to
be in uppercase, change the value for LANGC to ENP (the default
value is ENU).

3. If you want, you can modify the DD statements for the stdout
and stderr output, and the simple trace output.

4. If you want to, you can modify the sysout class for stdout,
stderr, and simple trace output.

5 Required
only if you
want servers
and tools to
give MMS
messages in
uppercase

Modify the language
setting in the machine
profile.

Edit the machine profile CustHLQ.SFMCDATA(FMCHEMPR), and change
the Language setting to ENP for uppercase U.S. English. The default
value is ENU (mixed-case U.S. English).
Note: These messages are generally routed to SYSOUT data sets

6 Required Grant the server user
ID execute access to
the database plan.

Issue the command:

GRANT EXECUTE ON PLAN DB2Plan TO ServerUserID

using your values for DB2Plan in Table 2 on page 6, and
ServerUserID in Table 3 on page 7.

LAN client customization

This task describes how to configure a MQSeries Workflow LAN client to connect
to a MQSeries Workflow for OS/390 server. This task consists of two parts:
1. “Customize the MQSeries client connection” on page 26

2. “Customize the MQSeries Workflow client” on page 26

Note: It is very important that you check the files called Readme.1st and
Readme.xxx (where xxx is your language code) on the MQSeries Workflow
Version 3.1.2 CD.

Chapter 3. Customizing MQSeries Workflow for OS/390 25

Customize the MQSeries client connection

To set up an MQSeries client connection you must do the following:

Table 23. Customize the MQSeries client connection

Step
number

Required or
optional Description Action

1 Required Install MQSeries
client.

Install an MQSeriesclient from the MQSeries CD as described in the
MQSeries Workflow product documentation.

2 Required Define the connection
to MQSeries on
OS/390 by setting the
environment variable
MQSERVER

For Windows 95/NT and OS/2 clients
set MQSERVER=QueueManager.CL.TCP/TCP/MQHostName

For UNIX clients
export MQSERVER=QueueManager.CL.TCP/TCP/MQHostName

where QueueManager is your value from Table 5 on page 9, and
MQHostName is your value from Table 6 on page 9. Note: By setting
the variable MQSERVER, existing settings for MQCHLLIB and MQCHLTAB
will be over-ruled.

3 Optional Test the MQSeries
client connectivity.

Execute the sample program IMQWRLDC that is provided on the
MQSeries CD.

For more information about MQSeries client connection, see the MQSeries
documentation MQSeries Clients. Now your MQSeries client connection is defined;
you are ready to customize the MQSeries Workflow client.

Customize the MQSeries Workflow client

To set up an MQSeries Workflow client you must do the following:

Table 24. Customize the MQSeries Workflow client

Step
number

Required or
optional Description Action

1 Required Install an MQSeries
Workflow client.

Install an MQSeries Workflowclient from the MQSeries Workflow
Version 3.1.2 CD as described in IBM MQSeries Workflow: Installation
Guide.

2 Required Update MQSeries
Workflow machine
profile.

Issue the following command in the MQSeries Workflow client’s
binary directory:

fmczchk -c prf:m,FMLSegmentation,N

Now you have customized the MQSeries Workflow client.

System customization verification

This verification tests if the client system can connect to MQSeries Workflow for
OS/390 by logging on as ADMIN, a predefined, and always available user ID.

26 Customization and Administration

Verify Workflow client sample application

This customization verification stage is optional, if you wish, you can skip to
“Program execution customization” on page 29.

This uses a sample application to verify that the workstation client can work with
MQSeries Workflow for OS/390 on the host system. Using the client, you should
be able to query templates, instances, and work lists. In addition, you should be
able to instantiate templates, start instances and start work items.

Table 26. Verify Workflow client sample application

Step
number

Required or
optional Description Action Verification

1 Required Start the OS/390
administration server.

On the OS/390 system console, issue
the command

START UniqueSystemKey.AdminServerID

where UniqueSystemKey is your value
specified in Table 3 on page 7, and
AdminServerID is a made-up name
used to identify the administration
server.

rc=0

Table 25. System customization verification

Step
number

Required or
optional Description Action Verification

1 Required Start the OS/390
administration server.

On the OS/390 system console, issue the
command

START UniqueSystemKey.AdminServerID

where UniqueSystemKey is your value
specified in Table 3 on page 7, and
AdminServerID is a made-up name used to
identify the administration server for the
system identified by UniqueSystemKey.

rc=0

2 Required Start the runtime
client.

Double-click on the runtime client icon. You are prompted for
a user ID and
password.

3 Required Logon. Logon using the user ID ADMIN, and the
password ″password″.

If no error message is
displayed, the
verification is
complete.

4 Required Logoff. Logoff the runtime client.

5 Required Stop the OS/390
administration server.

On the OS/390 system console, issue the
command

MODIFY AdminServerID,STOP ADM

where AdminServerID is the name you used
when starting the server.

rc=0

Chapter 3. Customizing MQSeries Workflow for OS/390 27

Table 26. Verify Workflow client sample application (continued)

Step
number

Required or
optional Description Action Verification

2 Required Import the Workflow
sample process
model.

Submit JCL
InstHLQ.SFMCCNTL(FMCHJFDL)
Note: The user performing this step
should have DB2 SYSADM rights.

rc=0

3 Required Start the OS/390
execution server.

On the OS/390 system console, issue
the command:

MODIFY AdminServerID,START EXE

where AdminServerID is the name you
used in step 1, when starting the
server.

rc=0

4 Required Start the runtime
client.

Double-click on the runtime client
icon.

You are prompted for the
client’s user ID and
password.

5 Required Logon. Logon using the user ID ADMIN, and the password ″password″.

6 Required Start a new process
instance. 1. Look up your process templates.

2. Create an instance of the process template named Edit.

3. Refresh the instance window.

Note: For more information about using the runtime client, refer
to IBM MQSeries Workflow: Getting Started with Runtime.

7 Required Start a new workitem. 1. Start the process instance.

2. Refresh the workitem window.

An editor should be
displayed. A new
workitem named
Edit_Activity should
appear in the workitem
window.

8 Required Terminate the
workitem.

1. Close the editor.

2. Refresh the instance and workitem
windows.

The workitem named
Edit_Activity is finished,
and the instance has
terminated.

9 Required Logoff. Log off the runtime client.

10 Required Stop the execution
server.

On the OS/390 system console, issue
the command:

MODIFY AdminServerID,STOP EXE

rc=0

11 Required Stop the OS/390
administration server.

On the OS/390 system console, issue
the command:

MODIFY AdminServerID,STOP ADM

rc=0

28 Customization and Administration

Program execution customization

This customization is optional, depending on your program execution
requirements:

Table 27. Customizing program execution invocation types

Program type Invocation type Customization required

CICS EXCI “Customize CICS EXCI invocation” on page 30

MQSeries CICS Bridge “Customize MQSeries CICS bridge invocation” on page 31

IMS CPIC “Customize IMS CPIC invocation” on page 34

MQSeries IMS Bridge “Customize MQSeries IMS bridge invocation” on page 36

If you want to be able to invoke CICS and/or IMS programs, then it is
recommended that you also perform:

1. “Customize program execution server directory” on page 38

2. “Configure program execution samples” on page 39

3. “Verify program execution samples” on page 40

The following manuals may help you customize program execution:

v OS/390 MVS Programming: Resource Recovery

v CICS for OS/390: CICS Resource Definition guide

v CICS for OS/390: CICS RACF Security Guide

v CICS for OS/390: CICS Internet and External Interfaces Guide

v CICS for MVS/ESA External CICS Interfaces

v MQSeries for OS/390 Version 2.1 System Management Guide

Chapter 3. Customizing MQSeries Workflow for OS/390 29

Customize CICS EXCI invocation

The program execution server supports EXCI invocations of OS/390 programs as
part of a process activity. You only need to perform this customization if you want
the program execution server to be able to invoke CICS programs using the EXCI
invocation:

Table 28. Customize CICS EXCI invocation

Step
number

Required or
optional Description Action Verification

1 Required Define group
resources
CONNECTION
and SESSIONS.

Decide or identify the name of the group (GroupName) that will contain
the resource definition ConnectionName for the connection and sessions. In
that group:

1. Create a generic EXCI CONNECTION resource definition with the
following values:

a. ACCESSMETHOD=IRC

b. PROTOCOL=EXCI

c. CONNTYPE=GENERIC

d. If user security checking is required (user IDs are checked, but no
passwords are required), then specify ATTACHSEC=IDENTIFY.
Note: This option makes Step number 4: Enable user IDs required.

e. If no user security checking is required specify ATTACHSEC=LOCAL so
that the invoked applications will be run under the default user ID
of the target CICS.
Note: This option makes Step number 4: Enable user IDs
unnecessary.

2. Define a SESSIONS resource definition with the following values

a. CONNECTION= ConnectionName

b. PROTOCOL=EXCI

c. RECEIVEPFX=RC

d. RECEIVECOUNT=4

2 Required Make sure IRC
is started.

If IRC is not already started, issue the
CICS command:

CEMT SET IRC OPEN

Verify that the IRC status is OPEN
with the CICS command:

CEMT I IRC

Optional Add IRC start
to CICS start
job.

You can add the CICS parameter IRCSTRT=YES in the CICS start job so that
IRC is opened when CICS is started. If you do not add this parameter,
you will have to open IRC on the CICS system manually each time CICS
is restarted. This is done using the CICS command: CEMT SET IRC OPEN.

3 Required Define the
RACF profiles
required to
give the
program
execution
server
authority to
run CICS
applications
using EXCI
calls.

1. Identify the RACF user ID of the PES (see ServerUserID in Table 3 on
page 7), the ID of the of the CICS server region (see applid in Table 6
on page 9), and the names of the RACF profiles for resources used by
CICS application server programs that are to be executed by the PES
using EXCI.

2. Define RACF FACILITY class profile DFHAPPL.applid with universal
access NONE

3. Give the ServerUserID and all users READ access to the RACF FACILITY
class profile DFHAPPL.applid.

4. Give ServerUserID and all users READ access to the RACF profiles for
the transaction CSMI on the target CICS.
Note: EXCI uses the CICS transaction CSMI to run requested CICS
programs.

30 Customization and Administration

Table 28. Customize CICS EXCI invocation (continued)

Step
number

Required or
optional Description Action Verification

4 Required Enable user
IDs.

If you set ATTACHSEC =IDENTIFY in step number 1.1.d above then the
invoked applications will be run using the RACF user ID userid of the
MQSeries Workflow user making the request. It is therefore necessary to
give these userids the appropriate authority to RACF profiles of all
resources accessed by CICS application server programs that the users can
cause to be invoked by the program execution server. If no userid is
passed, the invoked application will run under the PES user ID. In this
case you must give the corresponding authorization for the CICS
resources to the ServerUserID in Table 3 on page 7.

Customize MQSeries CICS bridge invocation

The program execution server supports MQSeries CICS bridge invocations of
OS/390 programs as part of a process activity. For more information, see MQSeries
for MVS/ESA System Management Guide - Customize the CICS bridge. You only need
to perform the following customization if you want the program execution server
to be able to invoke CICS programs using MQSeries CICS bridge invocation:

Table 29. Customize MQSeries CICS bridge invocation

Step
number

Required or
optional Description Action

1 Required Prepare CICS
to run the
CICS bridge.

1. Make sure that the MQSeries CICS adapter is set up and customized
on CICS. For more information see MQSeries for OS/390 Version 2.1
System Management Guide — MQSeries CICS adapter.

2. Define CICS bridge transactions and programs by running the
resource definition utility DFHCSDUP on the CICS system using the
sample MQInstHLQ.SCSQPROC(CSQ4CKBC).

3. Add group CSQCKB to startup group list on the CICS.

2 Required Define the
MQSeries
queue for the
request
messages to the
CICS bridge.

1. Define a local MQSeries queue CICSBridgeInputQueue (see your value
in Table 6 on page 9) with attributes:

a. SHARE

b. MSGDLVSQ(FIFO)

c. DEFPERSIST(YES)

d. HARDENBO

Chapter 3. Customizing MQSeries Workflow for OS/390 31

Table 29. Customize MQSeries CICS bridge invocation (continued)

Step
number

Required or
optional Description Action

3 Required
only if
security
checks are
required.

Define user ID
under which
the CICS
bridge
(monitor) is
started as a
surrogate user
ID of all RACF
user IDs for
which program
execution
requests to the
CICS bridge
should be
issued

1. For each MQSeries Workflow user ID mqwf_uid define a profile named
mqwf_uid.DFHSTART in the RACF SURROGATE class without any general
access rights using the RACF command:

RDEFINE SURROGAT mqwf_uid.DFHSTART UACC(NONE) OWNER(mqwf_uid)

2. Give READ access to surrogate_id to all of the above define profiles by
issuing for each mqwf_uid using the RACF command:

PERMIT mqwf_uid.DFHSTART CLASS(SURROGAT) ID(surrogate_id)
ACCESS(READ)

where

surrogate_id
Name of the user ID to be defined as surrogate user ID of all
RACF user IDs to be allowed to run CICS bridge invocations.
This must be the user ID under which the CICS bridge (monitor
task) is started.

mqwf_uid
RACF user IDs of all MQSeries Workflow users to be allowed to
run CICS bridge invocations.

Note: Set the CICS startup parameter XUSER=YES to enable surrogate user
checking.

4 Required
only if
security
checks are
required.

Give access
rights to
request queue
and reply
queues used by
the CICS
bridge and the
dead-letter
queue.

1. Give READ access to the CICS bridge request queue to the user ID of
the CICS bridge monitor (the user ID under which the CICS bridge is
started) and to all RACF user IDs for which CICS bridge request
should be issued (RACF user IDs corresponding to MQSeries
Workflow user IDs).

2. Give WRITE access to the CICS bridge request queue to the
ServerUserID (see your value in Table 3 on page 7).

3. Give READ access to the CICS bridge reply to queue(s) to the
ServerUserID.

4. Give WRITE access to each reply queue to those RACF user IDs for
which the bridge should put reply messages on that queue.

5. Give WRITE access to all reply to queues to the user ID of the CICS
bridge monitor.

6. Give WRITE access to the dead-letter queue to all RACF user IDs for
which requests should be issued and to the user ID of the CICS
bridge monitor.

5 Required
only if the
target CICS
requires
security
checks for
RACF user
IDs of
MQSeries
Workflow
users.

Define RACF
authority
access to CICS
programs to
RACF user IDs
of MQSeries
Workflow
users.

1. Identify the RACF user IDs mqwf_userid of MQSeries Workflow users
who should be allowed to run applications on the target CICS using
MQSeries bridge invocation.

2. Identify the names of RACF profiles for resources that are used by
CICS application server programs using the MQSeries CICS bridge
invocation.

3. For each mqwf_userid define appropriate authority to RACF profiles
for all resources accessed by the CICS application server programs
that the program execution request should process invocation
requests.

32 Customization and Administration

Table 29. Customize MQSeries CICS bridge invocation (continued)

Step
number

Required or
optional Description Action

6 Required
only if the
CICS bridge
should run
with an
authentication
level of
LOCAL.

Define RACF
authority
access to CICS
programs to
CICS default
user id.

1. For the CICS default user ID (CICS DFLTUSER) define appropriate
authority to RACF profiles of all resources accessed by the CICS
application server programs for which program execution request
should be processed.

7 Required Start the CICS
bridge
transaction
CKBR on the
CICS with
authority LOCAL
(the default) to
run with
authority
associated to
the CICS
default user id
(CICS
DFLTUSER) or
with authority
IDENTIFY if the
RACF user IDs
but no
passwords
should be
checked.

1. Start the CICS bridge with the CICS command:

CKBR Q=InputQueue AUTH=LOCAL

or

CKBR Q=InputQueue AUTH=IDENTIFY

where InputQueue is your value for CICSBridgeInputQueue in Table 6
on page 9.

2. See MQSeries for OS/390 System Management Guide - Starting the CICS
bridge for further information and other ways how to start the CICS
bridge. The user ID under which the CICS bridge is started is the user
ID of the CICS bridge monitor.

Note: Since MQSeries Workflow for OS/390 does not support passwords
the authority levels, VERIFY_UOW and VERYFY_ALL are not supported by
CICS bridge invocations.

The CICS bridge is now ready to process request messages. If the authorization
level is LOCAL the CICS bridge is running with the authority of the CICS default
user ID. If the authorization level is IDENTIFY a corresponding CICS program
started by the bridge will be run with the user ID as specified in the MQMD
header of the request message. There is no password checking.

Chapter 3. Customizing MQSeries Workflow for OS/390 33

Customize IMS CPIC invocation

The program execution server supports IMS invocations of OS/390 programs as
part of a process activity. You only need to perform this customization if you want
the program execution server to be able to invoke IMS programs using the CPIC
invocation. For more information about APPC, refer to OS/390 MVS Planning:
APPC/MVS Management.

Table 30. Customize IMS CPIC invocation

Step
number

Required or
optional Description Action

1 Required Define a system
base LU for
CPIC requests to
use for APPC
conversations.

Since the CPIC call cannot specify a dedicated LU from which a
conversation should be allocated, it is necessary to use a system LU as
the default local LU. This step is performed as follows:

1. If the APPCPMxx PARMLIB member contains LUADD statements with
BASE and NOSCHED, the last one of these defines the system base LU. If
a new LU has to be defined as base LU another LUADD statement has
to be added to the end of the APPCPMxx member.

2. If there are no LUADD statements with parameter NOSCHED, but some
with parameter BASE, the last one of these LUADDs defines the system
base LU as long as it is associated with the APPC/MVS transaction
scheduler explicitly with SCHED(ASCH) or implicitly, without a SCHED
parameter. Add a new LUADD statement defining the new base LU to
the end of the APPCPMxx member, if you do not want to use the
current one.

3. If there is no base LU defined at all, define one by adding a LUADD
statement with parameters BASE and optionally, with NOSCHED or
SCHED(ASCH).

2 Required If the system
base LU defined
in step 1 is
associated with
the APPC/MVS
transaction
scheduler (ASCH):

Make sure that there is a PARMLIB member ASCHPMxx available defining
the scheduling characteristics of the ASCH, as described below:

1. If there is already an ASCHPMxx member in the SYS1.PARMLIB this can
be used to run the ASCH address space.

2. If there is no ASCHPMxx PARMLIB member you must create one. For
details on how to create one, see OS/390 MVS Planning: APPC/MVS
Management, ″Defining Scheduling Characteristics with ASCHPMxx.″

There are no CPIC invocation specific definitions needed in ASCHPMxx.

3 Required Define an APPC
LU associated
with the target
IMS system
(service).

This is the partner LU for a CPIC invocation issuing a request to be
performed on that target IMS. The IMS ID is passed as scheduler name
for this LU.

1. Put LUADD statement to APPCPMxx PARMLIB member with following
parameters:

a. ACBNAME(<ims_lu>) — where ims_lu is the name of the APPC LU
to be associated with the target IMS.

b. BASE

c. SCHED(<ims_id>) — where ims_id is the (1-4 character) ID of the
target IMS as defined in the IMSCTRL installation macro.

Now the target IMS system is defined as APPC component LU and
CPIC invocations can issue requests to the IMS using the LU defined
here as the partner LU.

34 Customization and Administration

Table 30. Customize IMS CPIC invocation (continued)

Step
number

Required or
optional Description Action

4 Required Define a system
base APPC LU
for VTAM that
is enabled for
protected
conversation
support.

1. In a member of SYS1.VTAMLST define an APPL statement for the above
defined system base LU with:

a. ACBNAME=<base_lu> — where base_lu is the name of the system
base LU.

b. APPC=YES

c. ATNLOSS=ALL

d. SYNCLVL=SYNCPT

e. VERIFY=NONE or VERIFY=OPTIONAL

Note: For more information about VTAM definitions, see VTAM
Resource Definition Guide.

Now the system base LU is defined in VTAM and supports distributed
syncpoint conversations.

5 Required Define APPC
LU of target
IMS to VTAM
enabled for
protected
conversation
support.

1. In a member of SYS1.VTAMLST define an APPL statement for the target
IMS LU defined in step 3 with:

a. ACBNAME=<ims_lu> — where ims_lu is the name of the APPC LU to
be associated with the target IMS.

b. APPC=YES

c. ATNLOSS=ALL

d. SYNCLVL=SYNCPT

e. If no security checks are required SECACPT=NONE
Note: If no security checks are required this LU will not accept
conversations with any security information, that means the
security information from a CPIC allocate request is not passed to
this LU.

f. If security checks are required — SECACPT=ALREADYV or
SECACPT=AVPV
Note: If security checks are required this LU will accept
conversations with a user ID that is indicated as having already
been verified, since no password is passed on the CPIC invocation.

g. VERYFY=NONE or VERIFY=OPTIONAL

The target IMS LU has now been defined in VTAM and supports
distributed syncpoint conversations.

6 Required If security
checks are
required, you
may decide to
prohibit general
access to the LU
of the target
IMS, and grant
access to the
RACF user IDs
representing
MQSeries
Workflow users
who are to be
allowed to run
transactions on
the target IMS:

1. Prohibit general access to LU of target IMS by defining a RACF
profile using the command RDEFINE APPL <ims_lu> UACC(NONE) —
where ims_lu is the name of the APPC LU to be associated with the
target IMS.

2. Give READ access to MQSeries Workflow for OS/390 RACF user IDs
by issuing the RACF command PERMIT <ims_lu> CLASS(APPL)
ID(<user_id>) ACCESS(READ) repeatedly for each user ID or a RACF
group ID.

3. Activate the above made definitions by issuing the RACF command
SETROPTS CLASSACT(APPL) RACLIST(APPL)

4. To activate the definitions, issue the RACF command SETROPTS
RACLIST(APPL) REFRESH

Note: For more information about using RACF, see OS/390 Security Server
(RACF) Command Language Reference. The target IMS LU (the target IMS
via APPC) is now only accessible for MQSeries Workflow users who
should be allowed to run transactions on that system.

Chapter 3. Customizing MQSeries Workflow for OS/390 35

Table 30. Customize IMS CPIC invocation (continued)

Step
number

Required or
optional Description Action

7 Required Make
APPC/MVS
ready to work
with the
previously
defined APPC
LUs.

1. If APPC/MVS is not running, start the APPC/MVS address space by
issuing the command START APPC,SUB=MSTR,APPC=xx — where xx is
the suffix in the name of the PARMLIB member APPCPMxx containing
the definitions of the APPC LUs made in step number 3.

2. If the system base LU is associated to the APPC/MVS transaction
scheduler (ASCH) start the ASCH address space by issuing the
command START ASCH,SUB=MSTR,ASCH=xx where xx is the suffix in the
name of the PARMLIB member ASCHPMxx containing the configuration
of the ASCH.

3. If APPC/MVS is already running and the changes in APPCPMxx must
be activated, issue the command SET APPC=xx. For more information,
see OS/390 MVS Planning: APPC/MVS Management, ″Starting the
APPC and ASCH Address Spaces.″.

The APPC/MVS is now ready to send out-bound requests from a CPIC
invocation to the target IMS system as specified by the connection
parameters for CPIC invocations.

8 Required Make
APPC/IMS LU
ready to receive
inbound
requests from
CPIC
invocations.

1. Start APPC/IMS on the target IMS by issuing the command /START
APPC

2. If security checking is required, change the APPC/IMS security level
to allow user ID checking by issuing the command /SECURE APPC
CHECK — then the user ID from an inbound request will be checked
using the RACF resource class TIMS.

3. If no security checking is required on IMS for inbound requests,
switch off APPC/IMS security checking by issuing the command
/SECURE APPC NONE

The target IMS is now ready to call transactions requested by inbound
requests from CPIC invocations via its APPC LU.

Customize MQSeries IMS bridge invocation

The program execution server supports IMS invocations of OS/390 programs as
part of a process activity. You only need to perform this customization if you want
the program execution server to be able to invoke IMS programs using the
MQSeries IMS bridge.

Table 31. Customize MQSeries IMS bridge invocation

Step
number

Required or
optional Description Action

1 Required Define
parameters for
MQSeries.

1. Define XCFGroupName and XCFMemberMQ (see your values in Table 6
on page 9) where the member name represents the MQSeries instance
by OTMACON keyword of the CSQ6SYSP macro.
Note: The MQSeries instance and the target IMS system must belong
to the same XCF group.

For more information, see the MQSeries for OS/390 System Management
Guide.

36 Customization and Administration

Table 31. Customize MQSeries IMS bridge invocation (continued)

Step
number

Required or
optional Description Action

2 Required Define
parameters for
IMS.

In the IMS parameter list

1. Define the XCFGroupName using the GRNAME parameter.
Note: The MQSeries instance and the target IMS system must belong
to the same XCF group.

2. Define the XCFMemberIMS of the IMS system using the USERVAR
parameter.

3. Define OTMA = Y in the IMS parameter list so that OTMA (and the IMS
bridge) are started automatically when IMS is started.

For more information, see the MQSeries for OS/390 System Management
Guide.

3 Required Tell MQSeries
the XCF group
and member
name of the IMS
system.

1. Define an MQSeries storage class with the XCF group that MQSeries
and the target IMS belong to (see XCFGroupName in Table 6 on
page 9), and with the XCF member name of the IMS (see
XCFMemberIMS in Table 6 on page 9).

4 Required Define the
MQSeries queue
for the request
messages to the
IMS bridge.

1. Define a local MQSeries queue IMSBridgeInputQueue (see your value
in Table 6 on page 9) with the storage class defined in step 3, and the
attributes:

a. MSGDLVSQ(FIFO)

b. DEFPERSIST(YES)

c. HARDENBO

5 Required
only if
security
checking is
required.

Set up security
levels for the
MQ IMS bridge.

So that user IDs will be checked, but no passwords are required:

1. Identify the MQSeries subsystem user ID, unless the access levels for
both RACF profiles are defined by the universal access fields.

2. Define RACF profile IMSXCF.XCFGroupName.XCFMemberMQ in the
RACF FACILITY class, giving an access level of READ to the MQSeries
subsystem user ID.

6 Required
only if
security
checking is
required.

Set up security
levels for
OTMA.

So that user IDs will be checked, but no passwords are required:

1. Define an OTMA security level of CHECK by issuing the IMS command:

/SECURE OTMA CHECK

2. Define RACF profile IMSXCF. XCFGroupName.XCFMemberIMS in the
RACF FACILITY class, giving an access level of UPDATE to the MQSeries
subsystem user ID.

7 Required
only if no
security
should be
active.

Switch off
OTMA security.

1. Issue the command:

/SECURE OTMA NONE

Chapter 3. Customizing MQSeries Workflow for OS/390 37

Customize program execution server directory

This prepares the connection information in the PES directory, and imports it
information into the PES directory database.

Table 32. Customize program execution server directory

Step
number

Required or
optional Description Action Verification

1 Required Add EXCI,
CPIC, and
MQSeries bridge
connection
parameters to
the PES
directory.

Edit CustHLQ.SFMCDATA(FMCHEDTP), and substitute your values for the
following connection parameters for CICS and/or IMS.

1. If you intend to use CICS EXCI invocation, customize the EXCI
invocation section in the following way:

a. Change <applid> to the application identifier of the CICS system
you want to use.

2. If you intend to use MQSeries CICS bridge invocation, customize the
MQSeries CICS bridge invocation section in the following way:

a. Change <queuemanager> to the name of the MQSeries queue
manager you want to use (see your value for QueueManager in
Table 5 on page 9).

b. Change <queuename> to the name of the MQSeries CICS bridge
input queue, see your value for CICSBridgeInputQueue in Table 6
on page 9.

3. If you intend to use IMS CPIC invocation, customize the CPIC
invocation section in the following way:

a. Change <netid> to the APPC network identifier of the IMS system
you want to use

b. Change <luname> to the LU Name of the IMS system you want to
use.

c. If the mode name of your IMS LU is not #INTER, then change
#INTER to your value.

4. If you intend to use MQSeries IMS bridge invocation, customize the
MQSeries IMS bridge invocation section in the following way:

a. Change <queuemanager> to the name of the MQSeries queue
manager you want to use (see your value for QueueManager in
Table 5 on page 9).

b. Change <queuename> to the name of the MQSeries IMS bridge
input queue, see your value for IMSBridgeInputQueue in Table 6 on
page 9.

2 Required Import the PES
directory.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJPIC)

rc=0. A problem at this stage may
be caused by errors in FMCHEDTP, or
may require that you repeat
“Program execution server
directory DB2 customization” on
page 19.

Now you are ready to perform “Configure program execution samples” on
page 39.

38 Customization and Administration

Configure program execution samples

This prepares the sample programs that are provided with MQSeries Workflow for
OS/390. They will be used to verify program execution.

Table 33. Configure program execution samples

Step
number

Required or
optional Description Action

1 Required Import mapping
sample definitions for
the legacy sample
programs into the
program execution
mapping database.

Submit JCL CustHLQ.SFMCCNTL(FMCHJMPR)

2 Required Copy sample
programs.

Copy the following files to your IMS PGMLIB:

1. InstHLQ.SFMCLOAD(FMCH3ICS)

2. InstHLQ.SFMCLOAD(FMCH3IMS)

3 Required Make sample
programs known to
CICS/IMS.

1. Define the programs FMCH2CMT and FMCH2CCT to your CICS
system using LANG(LE370) and DATALOCATION(ANY).

2. Define the programs FMCH3IMS and FMCH3ICS to your IMS
system.

3. Define the transactions FMCH3IMT and FMCH3ICT to your IMS
system with type TP.

4 Required Import sample process
model.

Submit JCL CustHLQ.SFMCCNTL(FMCHJPDL)

5 Required Enable PES to execute
sample programs.

If security is active for either CICS or IMS, then you must enable
the ServerUserID defined in Table 3 on page 7 to execute the
sample programs, and all resources required by them.

Now you are ready to perform “Verify program execution samples” on page 40.

Chapter 3. Customizing MQSeries Workflow for OS/390 39

Verify program execution samples

This is the final verification that you have configured your MQSeries Workflow for
OS/390 system correctly for program execution. This task allows you to runs the
sample CICS an IMS legacy programs using different invocation types. The four
sample processes are:
1. CICSMapping starts the CICS legacy sample program FMCH2CMT using the

MQSeries CICS bridge invocation type. This CICS program uses the default
mapper.

2. CICSContainer starts the CICS sample program FMCH2CCT using the EXCI
invocation type. This program uses the MQSeries Workflow container API.

3. IMSMapping starts the IMS legacy sample program FMCH3IMS using the CPIC
invocation type. This program uses the default mapper.

4. IMSContainer starts the IMS sample program FMCH3ICS using the MQSeries
IMS bridge invocation type. This program uses the MQSeries Workflow
container API.

Table 34. Verify program execution samples

Step
number

Required or
optional Description Action Verification

1 Required Ensure that the
necessary
subsystems are
running.

If necessary, start DB2, MQSeries QueueManager, CICS, or IMS.

2 Required Start the
OS/390
administration
server.

On the OS/390 system console, issue
the command

START UniqueSystemKey.AdminServerID

where UniqueSystemKey is your value
specified in Table 3 on page 7, and
AdminServerID is a made-up name
used to identify the administration
server.

rc=0

3 Required Start the
MQSeries
Workflow for
OS/390 system.

On the OS/390 system console, issue
the command:

MODIFY AdminServerID,START

rc=0

4 Required Start the
runtime client.

Double-click on the runtime client
icon.

You are prompted for the client’s
user ID and password.

5 Required Logon. Logon using the user ID ADMIN, and
the password ″password″.
Note: For more information on using
the runtime client, refer to IBM
MQSeries Workflow: Getting Started with
Runtime.

You will see the basic tree view
with the icons labeled:

v Process template lists

v Process instance lists

v Worklists

If this is the first time that the
client has been run, you will not
see any elements.

6 Required Create new
process template
list.

Create process template lists for the
sample processes.

You will see the sample items:

1. CICSMapping

2. CICSContainer

3. IMSMapping

4. IMSContainer

40 Customization and Administration

Table 34. Verify program execution samples (continued)

Step
number

Required or
optional Description Action Verification

7 Required Create process
instances.

1. Create process instances for the
processes you want to test.

2. Create process instance list items
for the sample processes.

You will see the sample items:

1. CICSMapping

2. CICSContainer

3. IMSMapping

4. IMSContainer

8 Required Create
workitems.

1. Select all process instance items
and start them.

2. Click OK for every window that
appears.

3. Create new worklist.

You will see workitems for:

1. CICSMapping_Activity

2. CICSContainer_Activity

3. IMSMapping_Activity

4. IMSContainer_Activity

9 Required Start new
workitems.

1. Start new workitems

a. CICSMapping_Activity

b. CICSContainer_Activity

c. IMSMapping_Activity

d. IMSContainer_Activity

2. Refresh the workitem list.

After successful completion, each
workitem returns ″Finished″.

10 Optional Check results of
CICSMapping
_Activity.

The CEEOUT section of your CICS job should contain:

FMCH2CMT: MQWF Program Execution Customization
LastName: Smith
FirstName: John
Zip: 12345
Salary: 1000.42
Tax: 15.5
Customer LastName : EINSTEIN
Customer FirstName : ALBERT
Customer PhoneNumber : 3048
Customer LastName : NEWTON
Customer FirstName : ISAAK
Customer PhoneNumber : 4041
Customer LastName : KOHL
Customer FirstName : HELMUT
Customer PhoneNumber : 5154
New Salary: 1080.45

11 Optional Check results of
CICSContainer
_Activity.

The CEEOUT section of your CICS job should contain:

FMCH2CCT: MQWF Program Execution Customization
OutContainer Name = SimpleDS
InContainer Name = SimpleDS
Set OutputContainer long value ml rc = 0
Main: Set OutputContainer rc = 0

Chapter 3. Customizing MQSeries Workflow for OS/390 41

Table 34. Verify program execution samples (continued)

Step
number

Required or
optional Description Action Verification

12 Optional Check results of
IMSMapping
_Activity.

The latest SYSxxxx section of your IMS region job should contain:

FMCH3IMS: MQWF Program Execution Customization
LastName: Smith
FirstName: John
Zip: 12345
Salary: 1000.42
Tax: 15.5
Customer LastName : EINSTEIN
Customer FirstName : ALBERT
Customer PhoneNumber : 3048
Customer LastName : NEWTON
Customer FirstName : ISAAK
Customer PhoneNumber : 4041
Customer LastName : KOHL
Customer FirstName : HELMUT
Customer PhoneNumber : 5154
New Salary: 1080.45
ISRT: CEETDLI successful

13 Optional Check results of
IMSContainer
_Activity.

The latest SYSxxxx section of your IMS region job should contain:

FMCH3ICS: MQWF Program Execution Customization
OutContainer Name = SimpleDS
InContainer Name = SimpleDS
Set OutputContainer long value ml rc = 0
Main: Set OutputContainer rc = 0

14 Required Logoff. Log off the runtime client.

15 Required Stop the
MQSeries
Workflow for
OS/390 system.

On the OS/390 system console, issue
the command:

MODIFY AdminServerID,STOP

rc=0

16 Required Stop the OS/390
administration
server.

On the OS/390 system console, issue
the command:

MODIFY AdminServerID,STOP ADM

rc=0

Congratulations, you have now
configured and verified your
MQSeries Workflow for OS/390
system.

42 Customization and Administration

Part 2. System administration

Chapter 4. Introduction to system
administration 45
Objects you will need to administer or use . . . 45
Administration in an MQSeries Workflow system 47
System administration client/server components 48

The administration server 49
The administration console. 50

Overview of administration tasks 50
System and server administration tasks . . . 50
Program and user administration tasks. . . . 51

Chapter 5. Administration console tasks . . . 53
Administration server commands. 53

Starting the administration server and
administration console 53
Stopping the administration server 53

System commands 54
Starting the system 54
Stopping the system 54
Restarting the system 55

Server commands 55
Starting servers 56

Starting execution servers 56
Starting program execution server instances 56

Stopping servers 57
Restarting servers 57

Restarting the program execution server 57
Restarting the administration server 57

Displaying the number of instances of a server 58

Chapter 6. Buildtime administration tasks . . . 59
Defining process models 59

Defining server properties 59
Defining program properties 60
Defining the connection between a program
activity and the PES 64

Uploading process models to the host 65
Importing and exporting process models 65

Using the FDL import/export tool 65

Chapter 7. Program execution 67
Administering the Program Execution Server
directory 69

Adding a new service definition and the related
user resolution information 70
Adding a user-defined invocation type 71
Adding a user-defined mapping type 71
Importing the PES directory 71

Administering programs. 72
Enabling an OS/390 program to be executed as
a program activity. 72

Creating a program mapping 72
Defining a new program in the process
model. 72
Defining a security profile 73

Enabling an OS/390 program to run as safe
application 73
Disabling a program 73
Authorizing a user to access an OS/390
program 73
Revoking a user’s access to OS/390 programs 74

Administering program mapping 74
Importing a program mapping definition . . . 74

Return codes 76
Enabling a program’s mapping 76
Disabling a program’s mapping 77
Deleting a program mapping definition 77
Enabling a mapping type 77
Disabling a mapping type 78

Administering invocation types 78
Enabling an invocation type 78
Disabling an invocation type 78

Program execution security 79
Information in the PES directory that is relevant
to security 80
Program security 80

Chapter 8. Performance tuning 81
Changing the number of running server instances 81
Changing the number of server instances per
address space 81

Chapter 9. Problem determination 83
Server problems 83

The administration server cannot be started 83
Is an administration server already running? 83
Are its queues inhibited? 83

The administration server does not respond to
server commands. 83
The program execution server cannot be started 84

Are its queues inhibited? 84
One or more program execution server
instances terminate, the request is still in state
running 84
A dump is written before all server instances
are started 84

Are there too many server instances per
address space? 84

Cannot stop servers 84
Did you wait long enough?. 85
Do your transactions take longer than 30
seconds? 85
PES cannot be stopped. 85

Changes made to the program mapping
definition are not activated 85

Have you restarted the program execution
server? 85

Changes made to the machine profile are not
activated. 85

Have you restarted the administration
server? 85

© Copyright IBM Corp. 1998, 1999 43

Resource and performance problems 86
User response times are unacceptably long 86

Is tracing turned on?. 86
Are enough server instances running? . . . 86
Are too many server instances running? 86
Does the workload exceed your system’s
capacity? 86

Invalid password 86
Are you using an old version of the runtime
client? 86

Running out of spool space 86
Is tracing turned on?. 86

The MQSeries Workflow for OS/390 system trace
facility 87

Turning tracing on 87
Restarting the component and reproducing the
problem 88
Viewing the trace 88
Turning tracing off 89

Tracing in CICS 89
What do I do if I get an SVC dump? 89

Create a problem summary 89

44 Customization and Administration

Chapter 4. Introduction to system administration

This chapter introduces you to system administration in an MQSeries Workflow for
OS/390 system and describes the two main system administration components,
namely, the administration server and the administration console.

Objects you will need to administer or use

The administration of MQSeries Workflow for OS/390 requires that you use the
following MQSeries Workflowand OS/390 objects and products.

Workflow system
A set of Workflow servers that includes:
v One administration server.
v One or more execution server instances.
v One scheduling server.
v One clean-up server
v Zero or more program execution server instances.

How many of each type are started automatically when the system is
started can be specified in Buildtime.

System console
Before you can administer a system, you must start the administration
server for that system. You do this by issuing the start command on the
system console. Having an administration server running makes the
administration console available.

Administration server
The component that performs administration functions within an MQSeries
Workflow system. For OS/390 the administration server must be started
manually from the system console, as described in “Starting the
administration server and administration console” on page 53.

Administration console
The MQSeries Workflow for OS/390 administration console accepts
administration commands for starting and stopping systems and servers.
You can also use it to display how many of server instances are running.
For more information, see “Chapter 5. Administration console tasks” on
page 53.

Execution server
The component that performs the processing of process instances at
runtime. MQSeries Workflow allows multiple execution server instances to
be started.

Program execution server
The program execution server (PES) manages all requests for programs to
be executed on CICS or IMS service systems. These programs may be
either MQSeries Workflow applications running in CICS or IMS using
input and output containers or existing legacy programs that require a
mapping routine to transform these containers to the programs call and
reply parameter. Invoking legacy programs requires the definition of
forward and backward mappings. The PES supports different invocation

© Copyright IBM Corp. 1998, 1999 45

types and mapping types. Connection information is stored in the PES
directory. The PES provides a security mechanism to restrict program
access to dedicated users.

Program execution server directory
The program execution server directory defines invocation types, mapping
types, and the services where MQSeries Workflow program activities can
be executed. It also contains information to map an MQSeries Workflow
user ID to an OS/390 execution user ID. The PES directory must be
updated when you add services, users, invocation types, and mapping
types.

Invocation type
An invocation type specifies the type of invocation that is used by the
program execution server to execute a request. This type is part of the
program definition in the process model and must also be defined in the
program execution server directory. An invocation type is uniquely
associated with an invocation exit.

Mapping type
A mapping type specifies the type of mapping that is used by the program
execution server to execute a legacy program. This type is part of the
program definition in the process model and must also be defined in the
program execution server directory. A mapping type is uniquely associated
with a mapping exit.

Invocation exit
An invocation exit is the executable that is called by the program execution
server to perform an invocation according to the invocation type specified
in the program definition.

Mapping exit
A mapping exit is the executable that is called by the program execution
server to perform mapping according to the mapping type specified in the
program definition.

Program mapping
The program execution server provides a default program mapper. You can
define mapping rules for legacy programs so that they can be invoked.
How to write program mapping rules is described in MQSeries Workflow for
OS/390: Programming. How to administrate program mapping is described
in “Administering program mapping” on page 74.

Buildtime
The MQSeries Workflow Buildtime is used to define process models and
system configurations. Buildtime runs on a Windows workstation, you will
use it to define the services to be made available to the MQSeries
Workflow activities. Buildtime exports the process models in a format that
is known as MQSeries Workflow Definition Language (FDL). You can use
Buildtime to define the number of instances of execution and program
execution servers that are started when the system is started up. You will
have to transfer the FDL file to your OS/390 system, and import it into the
MQSeries Workflow for OS/390 database using the import tool. See
“Chapter 6. Buildtime administration tasks” on page 59. For more
information about Buildtime see IBM MQSeries Workflow: Getting Started
with Buildtime.

CICS If you want to make CICS programs available to MQSeries Workflow
activities, you may have to install and configure an MQSeries CICS bridge
or the EXCI invocation type. For information about setting up CICS

46 Customization and Administration

invocation types see “Customize CICS EXCI invocation” on page 30 and
“Customize MQSeries CICS bridge invocation” on page 31.

DB2 DB2 databases are used as repository for Workflow process models and to
store the in-flight state of created and running process instances. Each
MQSeries Workflow for OS/390 system group needs its own database, and
contains one system. Multiple MQSeries Workflow for OS/390 system
groups can share one DB2 subsystem.

IMS If you want to make IMS programs available to MQSeries Workflow
activities, you may have to install and configure an MQSeries IMS bridge
or the CPIC invocation type. For information about setting up IMS
invocation types see “Customize IMS CPIC invocation” on page 34 and
“Customize MQSeries IMS bridge invocation” on page 36.

MQSeries
MQSeries Workflow for OS/390 uses MQSeries message transportation,
and requires a MQSeries for OS/390 queue manager.

RACF RACF is used to define the security for resources such as queues and
programs. Various administration tasks require RACF settings to be
defined or changed.

Note: This manual assumes that you are using RACF for your security. If
you are using a different security system, you must apply the
equivalent security access controls for your system.

System trace
You can use the system trace facility for problem determination. For
information about tracing see “The MQSeries Workflow for OS/390 system
trace facility” on page 87.

Address spaces
During normal operation, you should only administer servers and systems
using the administration console. On OS\390, servers run in address
spaces. Several servers may run in the same address space, but for each
server type a different address space is used. For a single-instance server
like the administration server this means that it runs alone in an address
space. Some of the servers are multiple-instance servers: If the workload
requires it, additional server instances of this server type can be started.
The number of server instances that can run in a single address space
depends on the size of the instances. The maximum number of server
instances that shall be started in one address space is a tuning parameter,
which can be changed when tuning the performance (see “Changing the
number of server instances per address space” on page 81). If more than
this maximum number of server instances is started, additional address
spaces will be used.

Administration in an MQSeries Workflow system

System administration is implemented using an administration component that
controls and manages any MQSeries Workflow system within a system group. It
provides vital management, control, security, and operational functions that govern
the running of a particular selected system within a system group. The
administration component is made up of an administration server and the
administration console.

Chapter 4. Introduction to system administration 47

MQSeries Workflow has a hierarchical structure. The domain is the highest level in
the hierarchy and may contain no more than one system group. Each system
group is made up of one system which contains an administration server, one or
more execution server instances, one scheduling server, one clean-up server, and
zero or more program execution server instances. All Workflow systems running in
the same OS/390 system have their own administration server, but are
administered by the same administration console.

An MQSeries Workflow system has a tiered structure:
v Tier 1 — Client tier

Tier 1 contains the MQSeries Workflow system clients, application programming
interfaces, and Buildtime. They use the MQSeries client and MQSeries Workflow
APIs to connect with the second tier.

v Tier 2 — Server tier

Tier 2 can be split into two parts. The first part contains all the various MQSeries
Workflow servers. This is the working center where all the scheduling,
distribution, clean-up, administration, server communication, and execution is
done. The administration server is located in this tier. It communicates with the
other components in the system using MQSeries techniques. The server tier also
contains the administration console.
The second part contains the MQSeries Workflow database. This holds system
status and setup information for the complete system. The administration server
accesses system tables within the database and returns the contents back to the
administration console when requested to do so. The database is automatically
updated by the administration server in response to system events.

The administration console is the user interface to the administration server and is
used by a system administrator to request services from the administration server,
see “Chapter 5. Administration console tasks” on page 53. For details on how to
use the administration utility to administer the MQSeries Workflow system on AIX,
and Windows NT, see IBM MQSeries Workflow: Administration Guide.

For further details about the system structure, see IBM MQSeries Workflow: Concepts
and Architecture.

System administration client/server components

Every MQSeries Workflow system has an administration server. Using the
administration console, any authorized system administrator can access an
administration server within any specified system as long as those systems are
members of system groups that are in the same domain.

Figure 3 on page 49 illustrates the implementation of the administration component
within an MQSeries Workflow system. All administration components within a
system group are implemented in a similar way.

48 Customization and Administration

The administration server

The administration server is the working center of the administration component.
It is responsible for the management of all components in an MQSeries Workflow
system. It performs administrative functions in response to system administration
requests, as well as, automatic internal functions that are transparent to the system
administrator. The administration server communicates with all other components
in an MQSeries Workflow system and is responsible for session management in the
MQSeries Workflow system. It handles all logon requests and checks user
identification, password, and authorization for a requested session.

Workflow
system settings

Database
Tables

State table

Sytem log
table

Session table

Error log table

Client API

User
Client

Administration
Console

Server
input queues

Client
input queues

Administration
server

input queue

Queues

Clients

Administration Server

Figure 3. Implementation of the administration component in an MQSeries Workflow system

Chapter 4. Introduction to system administration 49

The administration server is always the first component in an MQSeries Workflow
system that is started. After you have started the administration server, you can
start the system. The system must be shut down using the administration server.
The administration server can be restarted while the system is running. Shutting
down the administration server does not shut down the complete system.

The administration server sends messages via queues that are managed by
MQSeries, and has access to various system tables held in the system database.

Queues
All components in the system receive messages from input queues that are
managed by MQSeries. MQSeries is used to manage communications
within an MQSeries Workflow system. The administration server uses
MQSeries to send messages to all system server and client input queues. It
maintains its own input queue from which all messages are received. The
administration server uses boot queues for the start-up of the program
execution server.

Database tables

The administration server accesses domain, system group, and system
tables in the MQSeries Workflow database. The following lists the tables
that can be accessed by the administration server:
v The administration server state table, which lists the administration

server state properties, and the operational status of system servers.
v Property tables for all servers.
v The system properties table in which properties that determine the

behavior of the system are contained
v The system group properties table in which properties that determine

the behavior of the system group and some system properties are
contained.

v The domain properties table contains properties that determine the
behavior of the domain and some system group and system properties.

v A session table in which a session record is created for each authorized
user after logon.

The administration console

The administration console provides a command line interface to the
administration server. It allows the OS/390 administrator to start and stop
MQSeries Workflow systems and servers, and to query how many server instances
are running. The tasks that can be performed from the OS/390 administration
console are described in “Chapter 5. Administration console tasks” on page 53.

Overview of administration tasks

To administrate MQSeries Workflow for OS/390 systems, servers, programs, and
users you will have to use several different administration tools.

System and server administration tasks

The following table gives you an overview of the main system and server tasks
that can be performed using the system and administration consoles.

50 Customization and Administration

Table 35. System and server administration tasks

Task

System
console

command

Admin
console

command

“Starting the administration server and administration console” on page 53 v

“Stopping the administration server” on page 53 v v

“Starting the system” on page 54 v

“Stopping the system” on page 54 v

“Restarting the system” on page 55 v

“Starting servers” on page 56 v

“Stopping servers” on page 57 v

“Restarting servers” on page 57 v

“Displaying the number of instances of a server” on page 58 v

System console
Before you can administer a system, you must start the administration
server for that system. You do this by issuing the start command on the
system console. Having an administration server running makes the
administration console available.

Administration console
You issue commands to start and stop systems and servers using the
administration console. You can also use it to display how many server
instances are running. The console commands are entered on the system
console, but are forwarded by the administration console program to the
administration server specified.

Program and user administration tasks

The following table gives you an overview of which administration tools and
components are required for each administration task. The recommended sequence
that the tools should be used are described in each task description.

Table 36. Program and user administration tasks: tool dependencies

Task
Buildtime PES

directory
RACF Program

mapping

“Defining process models” on page 59 v

“Uploading process models to the host” on page 65

“Importing and exporting process models” on page 65

“Enabling an OS/390 program to be executed as a program
activity” on page 72

v v v v

“Disabling a program” on page 73 v

“Enabling an OS/390 program to run as safe application” on
page 73

v

“Authorizing a user to access an OS/390 program” on page 73 v v

“Revoking a user’s access to OS/390 programs” on page 74 v v

“Importing a program mapping definition” on page 74 v

“Enabling a program’s mapping” on page 76 v v

“Disabling a program’s mapping” on page 77 v

Chapter 4. Introduction to system administration 51

Buildtime
You will use the MQSeries Workflow Buildtime tool to modify server and
program properties in the process model definition. Exporting the process
model creates a FDL file that must be uploaded to the mainframe, and
then imported into the Workflow database. You can also define the number
of instances of each server type that are to started when the system is
started.

PES directory
You must modify the PES directory to define new services, invocation
types, mapping types, or new users. After changing the PES directory, you
must import it into the PES directory database.

RACF When you add programs or users, you have to use RACF (or an equivalent
security program) to enable access to the necessary resources.

Program mapping
If you define or change a program mapping for a legacy application, you
must run the import tool to update the program mapping database.

52 Customization and Administration

Chapter 5. Administration console tasks

You administer the MQSeries Workflow system using the administration console.
This console allows tasks to be performed using command line calls. Before you
can use the administration console, the administration server and console must be
running as described in “Starting the administration server and administration
console”.

The following sections describe three groups of commands:

v “Administration server commands”

v “System commands” on page 54

v “Server commands” on page 55

Administration server commands

Starting the administration server and administration console

If necessary, start DB2, MQSeries QueueManager, CICS, or IMS.

Before you can issue any administration console commands, the administration
server and console must be started. You start the administration server and the
administration console by issuing the following command on the system console:
START UniqueSystemKey.AdminServerID

This establishes the connection between the administration server ID and the
system specified in UniqueSystemKey.

UniqueSystemKey
Your value specified during planning in Table 3 on page 7. It must be
unique within the OS/390 image, and not more than 8 characters long.

AdminServerID
A name you will use to identify the administration server when you issue
console commands. It must be unique within the OS/390 image, and not
more than 8 characters long. As there is only one administration server per
Workflow system, it is recommended that you construct the name from the
letters FMCA and some unique characters from the system name, for
example FMCASYS1.

For example, START MQWFS1.FMCASYS1.

Only one administration server can be started for each system. After executing this
command you can start the system, see “Starting the system” on page 54.

Stopping the administration server

You can stop the administration server by issuing the following command on the
system console:
STOP AdminServerID

© Copyright IBM Corp. 1998, 1999 53

This has the same effect as the stop server command:
MODIFY AdminServerID,STOP ADM

AdminServerID
The ID that was specified when the administration server was started.

For example, STOP FMCASYS1.

When the last administration server on the OS/390 image is stopped, the
administration console terminates.

System commands

You can start and stop any MQSeries Workflow for OS/390 system from the
administration console, but only if an administration server is running on that
system. These tasks are described in:
v “Starting the system”

v “Stopping the system”

Starting the system

Which and how many server instances will be started is specified in the server
settings in Buildtime, see “Defining server properties” on page 59 for more
information.

To start the MQSeries Workflow for OS/390 system, issue the console command:
MODIFY AdminServerID,START

or the short form
F AdminServerID,S

AdminServerID
The ID that was specified when the administration server was started. The
UniqueSystemKey associated with this by the start command identifies the
system that will be started.

For example: MODIFY FMCASYS1,START will start the system where the
administration server FMCASYS1 is running

Note: The server start and stop time settings in Buildtime are ignored by
MQSeries Workflow for OS/390.

Stopping the system

To stop the MQSeries Workflow for OS/390 system, issue the console command:
MODIFY AdminServerID,STOP

or the short form
F AdminServerID,P

54 Customization and Administration

AdminServerID
The ID that was specified when the administration server was started. The
UniqueSystemKey associated with this by the start command identifies the
system that will be stopped.

For example: MODIFY FMCASYS1,STOP will stop the system where the administration
server FMCASYS1 is running.

This stops all servers (except for the administration server) that are running on the
Workflow system. How to stop the administration server is described in “Stopping
the administration server” on page 53.

Restarting the system

Changes made to the machine profile or the environment variable file will only
affect new server instances and tools that are started. If you want such changes to
affect all running server instances then you must restart the whole system,
including the administration server in the following sequence:
1. “Stopping the system” on page 54

2. “Stopping the administration server” on page 53

3. “Starting the administration server and administration console” on page 53

4. “Starting the system” on page 54

5. Then start extra server instances if required, see “Starting servers” on page 56.

which requires the command sequence:
MODIFY AdminServerID,STOP
STOP AdminServerID
START UniqueSystemKey.AdminServerID
MODIFY AdminServerID,START
MODIFY AdminServerID,START ServerType [INST(NumberOfInstances)]

Server commands

You can start and stop any MQSeries Workflow for OS/390 servers from the
administration console. You can also query how many server instances are
running. These tasks are described in:
v “Starting servers” on page 56

v “Stopping servers” on page 57

v “Restarting servers” on page 57

v “Displaying the number of instances of a server” on page 58

All server commands require AdminServerID that was specified when the
administration server was started; this uniquely identifies the Workflow system
that the command will be executed on. Server commands also require one of the
following ServerType names to identify which server type the command applies to:

Chapter 5. Administration console tasks 55

Table 37. Server types
ServerType Server Instantiation type

ADM Administration server. Single instance
SCH Scheduling server Single instance
CLE Clean-up server. Single instance
EXE Execution server. Multiple instance
PES Program execution server. Multiple instance

Note: The address spaces also use the ServerType as an identifier.

Starting servers

To start a given number of instances of an MQSeries Workflow server, issue the
following command:
MODIFY AdminServerID,START ServerType [INST(NumberOfInstances)]

or the short form
F AdminServerID,S ServerType [INST(NumberOfInstances)]

AdminServerID
The administration server that is to start the server.

ServerType
The type of server to be started. You cannot start the administration server
using this command, see “Starting the administration server and
administration console” on page 53.

NumberOfInstances
This optional parameter specifies how many new instances of the server
should be started. The default value is specified in the server settings in
Buildtime. Single instance server types can have only one instance.
Multiple instance server types can have many instances.

Note: To verify the success of this command you can issue the display command:
MODIFY AdminServerID,DISPLAY ServerType RUNINSTANCE

For example, MODIFY FMCASYS1,S PES would start the program execution server
with the number of instances specified in the process model.

Starting execution servers

To activate the MQSeries Workflow for OS/390 system at least one execution
server must be running. It is possible to start multiple instances of the execution
server to share the work load. For example, if you want to start 2 new execution
servers running on the system where AdminServerID is running, issue the
command:
MODIFY AdminServerID,START EXE INST(2)

or the short form:
F AdminServerID,S EXE INST(2)

Starting program execution server instances

Starting the PES is no different to starting any other MQSeries Workflow server.
For example, if you want to start 3 new instances of the PES, issue the command:
MODIFY AdminServerID,START PES INST(3)

56 Customization and Administration

Stopping servers

To stop all MQSeries Workflow for OS/390 servers of a particular type, issue the
console command:
MODIFY AdminServerID,STOP ServerType

or the short form
F AdminServerID,P ServerType

AdminServerID
The administration server that is to stop the server instances, effectively
identifying the system.

ServerType
The type of server to be stopped.

For example, MODIFY FMCASYS1,P EXE would stop all execution server instances on
the system where the administration server named FMCASYS1 is running.

Note: To verify the success of this command you can issue the display command:
MODIFY AdminServerID,DISPLAY ServerType RUNINSTANCE

The server instances must complete the current transaction within a defined time
window. If some server instances ignore the stop command, repeat the command.
If this does not help, see “Cannot stop servers” on page 84.

Restarting servers

Occasionally, you may want to restart the instances of a particular server type. You
can do this by simply issuing the stop server command, followed by the start
server command.

Restarting the program execution server

There are special circumstances when you may need to restart the PES, for
example:
v If you have modified an existing and currently activated program mapping

definition in the process model, you must restart the PES. Doing this forces the
mapping engine to use the new mapping settings. This situation is described in
“Enabling a program’s mapping” on page 76.

To restart the PES, you simply issue the stop command and then the start
command. For example, if your administration server ID is FMCASYS1, and you
want 4 PES instances:
MODIFY FMCASYS1,STOP PES
MODIFY FMCASYS1,START PES INST(4)

Restarting the administration server

There are special circumstances when you may need to restart the administration
server, for example:
v If you have modified the machine profile. For example:

– To change the maximum number of server instances that will be started in a
single address space.

– To change the server queue disable time period.

Chapter 5. Administration console tasks 57

v If you want to activate changes made to the server properties in the process
model.

To restart the administration server, you simply issue the stop command and then
the start command. There is no need to stop the system, the system can continue
while the administration server is restarted.

For example, if your administration server ID is FMCASYS1, and your
UniqueSystemKey is MQWFS1 (see your value in Table 3 on page 7), then
MODIFY FMCASYS1,STOP ADM
START MQWFS1.FMCASYS1

will restart the administration server.

Displaying the number of instances of a server

You can find out how many server instances are currently running on a given
system by issuing the console command:
MODIFY AdminServerID,DISPLAY ServerType [RUNINSTANCE]

or the short form
F AdminServerID,D ServerType RUNINST

AdminServerID
The name of the administration server (effectively a system) where you
want to count the server instances.

ServerType
The type of server instances to be counted.

For example, MODIFY FMCASYS1,DISPLAY EXE RUNINSTANCE will display the number
of execution server instances that are running on the system where administration
server FMCASYS1 is running.

58 Customization and Administration

Chapter 6. Buildtime administration tasks

Some administration tasks, for example, adding new programs or defining server
properties, need changes in the process model. For more information about the
Buildtime tool see IBM MQSeries Workflow: Getting Started with Buildtime.

This chapter only describes the settings and actions that are specific to using
Buildtime to perform administration tasks for MQSeries Workflow for OS/390.

Defining process models

You must use the Buildtime tool to define the programs and servers that are
running as a part of MQSeries Workflow for OS/390. Each server and program in
the system has a set of properties that can be changed in Buildtime.

Note: To avoid code page conversion problems when uploading FDL to the host,
your Buildtime object names should conform to the guidelines that are
described in “Appendix D. Naming and code page restrictions” on page 105.

The main administration tasks relating to Buildtime are:

v “Defining server properties” which includes:

– Specifying the number of server instances to be started when the system is
started.

– Specifying the user support mode for the program execution server.
v “Defining program properties” on page 60

v “Defining the connection between a program activity and the PES” on page 64

After you have changed properties, and exported the process model, you will have
an FDL file that must be imported into the Workflow database, as described in
“Importing and exporting process models” on page 65.

Defining server properties

The following OS/390 server properties can be modified in the process model.

Table 38. Server properties that can be changed

Property Description Initial default
value

Number of
instances

The number of servers that will be started when
the system is started.

5

User support (PES
specific)

Indicates whether the PES is able to execute
programs using the ServerUserID or the ID of
the user requesting the invocation. Agent selects
the ServerUserID, Program selects UserID option.
Note: In Buildtime, the Program option may be
displayed as Starter

Agent

© Copyright IBM Corp. 1998, 1999 59

The following OS/390 server properties should not be modified.

Table 39. Server properties that should not be changed

Property Description Value

Name Fixed name for the OS/390 program
execution server.

PESERVER

Implementation
support

External

Platform OS/390

Attach mode Local

Support mode Safe

Start time This setting is ignored on OS/390.

Stop time This setting is ignored on OS/390.

Defining program properties

Every OS/390 program that is to be executed as part of a MQSeries Workflow
process activity must be defined in the process model. The following screen-shots
show and describe the pages and parameters that are required for defining an
OS/390 program in Buildtime.

A program is defined by its name. You must also specify any optional input and
output data structures, specific settings for the program itself, and the platform
that the program runs on.

60 Customization and Administration

Figure 4 shows the program properties data page for the an example program
named IMSProgramWithMapping. The option Execution user = Starter means that the
PES has to execute the program using the execution user ID of the starter of the
activity. This option requires the PES setting User support = Starter. In this case,
the PES has to map the Workflow user ID of the starter of the request to an
execution user ID known to OS/390. See “Adding a new service definition and the
related user resolution information” on page 70.

For more information about these settings, see “Program execution security” on
page 79.

Figure 4. Program properties: Data page

Chapter 6. Buildtime administration tasks 61

You must complete this screen to define an OS/390 program. The following
program property settings are important for correct execution.

Table 40. Program properties: OS/390 page settings

OS/390 program
property Description

Service The service name is the logical name of the service system where the program is executed. This
setting is mandatory. This name may be up to 8 characters long, uppercase only, first character
(A..Z,$,#,@), other characters (A..Z,0..9,-,$,#,@). The value entered must match a service name in
the PES directory. The service must be defined for the invocation type that is used.

Invocation type This defines the logical name of the invocation type that is used to invoke the program. This
setting is mandatory. This name may be up to 8 characters long, uppercase only, first character
(A..Z,$,#,@), other characters (A..Z,0..9,-,$,#,@). The value entered here must match an invocation
type that is defined in the PES directory.

Executable The name of the program to be executed, as defined to the service system. This setting is
mandatory. This name may be up to 8 characters long, uppercase only, first character
(A..Z,$,#,@), other characters (A..Z,0..9,-,$,#,@).

Service type This defines the type of service system on which the program runs. The value specified here
must match the service type that is specified in the invocation section in the PES directory, for
the invocation type that is specified in this page. This setting is mandatory.

Executable type This defines the type of executable. For CICS programs it should be set to DPL. For IMS
programs it should be set to MPP or IFP. This setting is mandatory.

Figure 5. Program properties: OS/390 page

62 Customization and Administration

Table 40. Program properties: OS/390 page settings (continued)

OS/390 program
property Description

Mapping routine
call

If set to no, the PES will not call the mapping routine for invocations of this program. If set to
yes, the PES will call the mapping routine for invocations of this program. It uses the mapping
formats and parameters that are specified below.

Mapping type This defines the logical name of the mapping type. If mapping is used for the program, the
name entered here must match a type specified in the mapping section in the PES directory. The
mapping type supplied by IBM is called ’DEFAULT’.If Mapping routine call = yes, then this
setting is required.

Forward mapping
format

This defines the logical name of the forward mapping that is to be used to map the contents of
the program’s input container. The name entered here must match the name of the forward
mapping definition that is imported into the mapping database. For more information about
creating program mappings, see MQSeries Workflow for OS/390: Programming.

Backward
mapping format

This defines the logical name of the backward mapping that is to be used to map the legacy
application data. The name entered here must match the name of the backward mapping
definition that is imported into the mapping database.

Forward mapping
parameters

These parameters are only required if the mapping uses user-types that require mapping
parameters. For more information about user-types and creating program mappings, see
MQSeries Workflow for OS/390: Programming.

Backward
mapping
parameters

These parameters are only required if the mapping uses user-types that require mapping
parameters. For more information about user-types and creating program mappings, see
MQSeries Workflow for OS/390: Programming.

Local user If set to yes, the OS/390 program will be executed under the OS/390 user ID associated with
the calling MQSeries Workflow user ID. This mapping is defined in the service section of the
PES directory. If set to no, the OS/390 program will be executed under the ServerUserID. In this
case, no user resolution information is required in the PES directory for this service.

Security checking If set to yes, the PES security routine will be called for each invocation. In this case a security
profile must defined as described in “Program security” on page 80.

Duration For OS/390 programs, this value is set to Forever.

Chapter 6. Buildtime administration tasks 63

Defining the connection between a program activity and the
PES

After an OS/390 program has been defined, it must be associated with a program
activity, and the program execution server. This is done on the screen that is shown
in Figure 6. You can reach this Buildtime screen in the following way:

1. Select the process containing the activity that should execute the OS/390
program.

2. Open the process diagram.
3. Select activity and open its properties notebook.

The information you enter on this screen defines the connection between the
program and the program execution server. You must perform the following:
1. Click on the flashlight button to find the program name and select the program,
2. Clear the User program execution agent check box.
3. Click on the flashlight button to find the program execution server and select

PESERVER.
4. Press OK, close the process diagram and save the process.

Figure 6. Program Activity Properties: connecting a program to the PES

64 Customization and Administration

Uploading process models to the host

After exporting the process model information from the Buildtime database into an
FDL file, you must upload it to the host before you can import the FDL file into
the Workflow database. Ideally, inter-platform character conversion should be
performed automatically during the upload process. You can use FTP or any other
text transfer method to upload the FDL file to the host providing the code page
conversion does not corrupt the data. Only if your transfer method corrupts the
data during the upload process, should you upload your FDL file as a binary
image, and then use the tool described in “Appendix E. FDL code page conversion
tool” on page 107.

Note: To avoid problems with code page conversion during the upload process,
your Buildtime object names should conform to the guidelines that are
described in “Appendix D. Naming and code page restrictions” on page 105.

Importing and exporting process models

To activate the modified properties, you will need to import the uploaded FDL
process model into the MQSeries Workflow for OS/390 database. This is done
using the import/export tool, see “Using the FDL import/export tool”.

You can also use the import/export tool to do the following:

v Translate workflow definitions from Buildtime.
v Translate an existing process model in the Workflow database.
v Import an FDL file that you created outside of MQSeries Workflow.
v Export Workflow definitions from the Workflow database into an FDL file.

For more information about the export and translation options, see “FDL
import/export tool’s syntax” on page 109, “FDL export examples” on page 113, and
“Translate examples” on page 114.

Using the FDL import/export tool

If you define or change your process model definition in Buildtime, you will need
to import it into your Workflow database. If you want to export a single object, or
all workflow objects from your Workflow database you can use the export option
of the FDL import/export tool.

The following describes how to use the import/export tool named FMCH0IBA :
1. Customize the JCL CustHLQ.SFMCCNTL(FMCHJRIF)

a. Specify the options that the import tool should use (see “Options for the
import / export tool” on page 111)

b. Specify the input and output files using the predefined DD-names FMCIIMP,
FMCIEXP, FMCICMD, and FMCILOG, as illustrated in “FDL import examples” on
page 112.

c. If you want to use a specific log file instead of SYSOUT you will need to
specify a data set for the DD-name FMCILOG.

2. Submit the JCL CustHLQ.SFMCCNTL(FMCHJRIF)

Chapter 6. Buildtime administration tasks 65

66 Customization and Administration

Chapter 7. Program execution

The program execution server (PES) manages program execution requests for
programs running on external services like CICS or IMS. These programs may be
legacy programs or may use MQSeries Workflow APIs. Legacy programs require
mapping to transform Workflow data containers to (and from) the format and
representation of parameters expected by the existing application. Programs
invoked by the PES must conform to a request-reply model. The PES has a
component based structure as shown in Figure 7 on page 68.

Invocation and mapping
Programs are executed on external services that the PES connects to via an
invocation exit. Such an exit is based on an invocation protocol like CICS
External Interface (EXCI), IMS/APPC or the MQSeries CICS and IMS
Bridges. Each invocation exit is uniquely identified by the PES by an
invocation type. Similarly, program mapping is performed by program
mapping exits. Each mapping exit is uniquely identified by the PES by a
mapping type. You can define user exits for mapping and invocation. The
external interfaces these exits have to conform to are described in MQSeries
Workflow for OS/390: Programming.

PES directory
Which invocation and mapping exits can be used by the PES at run-time is
defined in the PES directory. This directory is the link between the
Workflow program definitions specified in the process model and the
components and resources necessary to run the program sucessfully. For
instance, if a program specifies an invocation type EXCI, the directory
must contain a definition for this invocation type. For more information
about the PES directory, see “Administering the Program Execution Server
directory” on page 69 and “Appendix A. Program Execution Server
directory” on page 93.

Security
The PES can invoke programs on behalf of different MQSeries Workflow
users. A Workflow user ID must be resolved to an execution user ID
known to OS/390, as described in “Adding a new service definition and
the related user resolution information” on page 70. The PES can perform
security checks to ensure that only authorized users can run a program, as
described in “Program security” on page 80.

Run-time properties
The PES is a multi-instance server, with each server instance running as a
single task. Server instances can process both synchronous and
asynchronous invocation types. A server instance is blocked while it
processes a synchronous request. For this reason it is important to ensure
that there are enough PES instances to handle the request workload .
Asynchronous requests are split into a request part and a reply part that
are correlated to fulfill the request. All program execution server instances
share the same external resources.

Error handling
The program execution server distinguishes between recoverable and
non-recoverable errors. Recoverable errors are returned as an error
indication and processing continues with the next request. Unrecoverable
errors cause the PES instance to terminate, and an error indication is
written to FMCERR.

© Copyright IBM Corp. 1998, 1999 67

The PES processes a synchronous request in the following way:

1. Analyze the request.
2. Locate the invocation type and service in the directory.
3. For a legacy program locate the mapping type in the directory.
4. If the program has to be run on behalf of a specific user, get the connection

information from the directory and the execution user ID.
5. Check the security requirements for service, invocation type, the program to

be executed and the execution user ID.
6. For a legacy program call the mapping routine to map input container to

program parameter data.
7. Call the invocation routine to handle the request.
8. For a legacy program call the mapping routine to map output parameters to

the output container.
9. If none of the above step has failed, the PES returns a completion message.

10. If any of the above steps fails, and the error is considered recoverable, the PES
returns an error indication. For a non-recoverable errors the PES instance will
terminate.

Figure 7. OS/390 Program execution server: component structure

68 Customization and Administration

Invocation types supported
Invocation types may be defined as asynchronous or synchronous
invocation exits. The IBM supplied invocation types are EXCI and MQCICS
for CICS, CPIC and MQIMS for IMS. The definitions for these types are
contained in the directory template source file provided by IBM. The types
of CICS and IMS programs that can be executed depends on the invocation
protocol used by the invocation type.

CICS program types supported
The PES supports the invocation of CICS DPL programs. CICS 3270
applications and CICS transactions are not supported.

IMS program types supported
The PES supports the invocation of IMS MPP and FastPath programs. Each
program has to have a single input message and a single, pre-defined
output message. The execution of IMS conversations is not supported. A
sequence of non-conversational transactions can be modeled as a sequence
of separate program execution requests.

Mapping types supported
MQSeries Workflow for OS/390 supplies a program mapping type named
DEFAULT which should be able to handle most mapping requirements. A
user type can be defined to handle special cases that are not covered by
the DEFAULT mapping types’ interface types. For more information about
how to define mappings and user types, see MQSeries Workflow for OS/390:
Programming. The mapping type to be used for each program is defined in
the process model as shown in Figure 5 on page 62.

User-defined invocation and mapping types
You can extend the program execution server by defining your own
mapping and invocation types, and their corresponding exits. These
user-defined types may be used instead of an IBM supplied type, or in
parallel. These exits are defined in MQSeries Workflow for OS/390:
Programming.

If you define your own invocation and mapping types, they must be
defined consistently in the process model and in the PES directory, as
explained in more detail in “PES directory dependencies on the process
model’s OS/390 program definitions” on page 97.

Administering the Program Execution Server directory

The PES directory provides persistent runtime information for the OS/390 program
execution server. It is a DB2 database, and it must be located in the same DB2
subsystem as the MQSeries Workflow for OS/390 database. The directory is a
read-only database; any data retrieved from the directory is not cached within the
program execution server. The directory may be updated while the server is
running.

The directory is the connecting element between the program properties specified
in the process model and the existing OS/390 services. It contains information
about invocation types, and the services that can be called using each invocation
type. It also defines the users that can use a service, and the mapping types. The
PES directory’s structure, template, and dependencies are described
in“Appendix A. Program Execution Server directory” on page 93.

Chapter 7. Program execution 69

In order to define new invocation types, mapping types, or services, you must add
new definitions to your current PES directory source file as described in the
following sections. After you have changed your PES directory source file, you will
have to activate it by importing it into the PES directory database. This is done
using the PES directory import tool, see “Importing the PES directory” on page 71.

You can also use the import tool to perform the following:

v Update existing service definitions.
v Delete existing service definitions.
v Delete the entire contents of the PES directory database.

For more information about the possible options, see:
v “Appendix B. The PES directory import tool’s syntax and semantics” on page 99,

and

v “PES directory import examples” on page 99.

Adding a new service definition and the related user
resolution information

To add a new service definition, you have to update the PES directory source as
provided in CustHLQ.SFMCDATA(FMCHEDTP), then import it as described in
“Importing the PES directory” on page 71. For more information about the PES
directory structure see “Appendix A. Program Execution Server directory” on
page 93.

The following example shows how to add a second service definition to an existing
EXCI invocation type in your PES directory source file. In the example below, a
service system named CICSEXC2 that is reached through EXCI is defined.
(INVOCATION1SERVICE<m>)

type =CICS
name =CICSEXC2
connectionParameters =APPLID=<applid>;TRANSID=CSMI
user =INVOCATION1SERVICE1USER

; user section of PES Directory

(INVOCATION1SERVICE<m>USER1)
userID =<user1>
executionUserID =<xxxxxxxx>

(INVOCATION1SERVICE<m>USER2)
userID =<user2>
executionUserID =<xxxxxxxx>

1. In your version of the PES directory source, copy an existing CICS service
definition INVOCATION1SERVICE<m>.

Note: The “PES directory template” on page 95 shows the template that is
provided in CustHLQ.SFMCDATA(FMCHEDTP).

2. Replace <m> with the number of the service inside the invocation section. For
example, if you have already defined two service definitions for the first
invocation type during customization, you should use the number three.

3. Set the value for name to the name of the service. For example, CICSEXC2.
4. For the CICSEXC2 service, set the connectionParameters value for APPLID to the

application ID.

70 Customization and Administration

5. To add user resolution information, substitute <user1> with the MQSeries
Workflow user identification used to start the program and <xxxxxxxx> with
the execution user identification for this user as defined in RACF.
Each additional user may be added by appending a corresponding
INVOCATION1SERVICE<m>USER<n+1> section containing userID and
executionUserID.

Additional CICS service systems may be added by appending an
INVOCATION1SERVICE<m+1> section and completing it in the same way as described
above.

Adding an IMS system that is reached by CPIC is similar, except that you have to
add CPIC connectionParameters: netid, luname, and mode. Additional IMS service
systems may be added by appending an INVOCATION2SERVICE<m+1> section and
completing it in the same way as described above.

Adding a user-defined invocation type

To add a new invocation type to the PES directory you need to:
1. Copy an existing invocation section including the service and user sections.
2. Increase the running suffix numbers of the invocation for all sub-sections. For

example, if you copied the section (KEYTOINVOCATION5), change it and all
subsequent keys that refer to this new invocation type to (KEYTOINVOCATION6).

3. Then update
(KEYTOINVOCATION6)
type = <your invocation type>
exitName = <your invocation exit dll name>
exitParameters = <parameters needed by your invocation exit>.

4. Add or change the service definitions according to the new invocation section:
(INVOCATION6SERVICE1)
type = <service type>
name = <service name>
connectionParameters = <connection parameters as needed by the new invocation>
user = < ... user section ...>

5. Add or change the user related information as required.

Adding a user-defined mapping type

To add a new mapping type to the PES directory you need to:
1. Copy the last existing mapping section KEYTOMAPPING<m>.
2. Increase the running number of the mapping section, for instance if you copied

(KEYTOMAPPING1), use KEYTOMAPPING2 for all subsequent keys referring to this
new mapping type.

3. Then update
(KEYTOMAPPING2)
type = <your mapping type>
exitName = <your mapping exit dll name>
exitParameters = <parameters needed by your mapping exit>

Importing the PES directory

After changing the PES directory source file you need to import it into the PES
directory runtime database. You do this using the FMCH1PIT tool in the following
way:

Chapter 7. Program execution 71

1. Customize the JCL CustHLQ.SFMCCNTL(FMCHJPIF)

a. Specify the options the import tool should use. These options are described
in “Appendix B. The PES directory import tool’s syntax and semantics” on
page 99.

b. Specify the input file using the predefined DD-name FMCDIMP.
c. If you want to use a specific log file instead of SYSOUT you must specify a

data set using the predefined DD-name FMCDLOG.
2. Submit the JCL CustHLQ.SFMCCNTL(FMCHJPIF)

Administering programs

Program administration consists of the following tasks:
v “Enabling an OS/390 program to be executed as a program activity”

v “Enabling an OS/390 program to run as safe application” on page 73

v “Disabling a program” on page 73

v “Authorizing a user to access an OS/390 program” on page 73

v “Revoking a user’s access to OS/390 programs” on page 74

Enabling an OS/390 program to be executed as a program
activity

To enable an OS/390 program to run as an MQSeries Workflow program activity
you need to perform the following tasks:
1. “Defining program properties” on page 60

2. “Creating a program mapping”

3. “Defining a security profile” on page 73

Creating a program mapping

If you want to invoke an OS/390 legacy program as an activity, you may have to
create a program mapping. The program mapping transforms between the different
format and data representations that are used by MQSeries Workflow and the
invoked program. For more information about creating a program mapping, see
MQSeries Workflow for OS/390: Programming.

If you have created a program mapping, you will have to activate the mapping in
the process model. This task is described in “Enabling a program’s mapping” on
page 76.

Defining a new program in the process model

You must define the new program in the process model using the MQSeries
Workflow Buildtime program. Then you must import the process model FDL file
into the Workflow database. These tasks are described in the following:
1. “Defining program properties” on page 60

2. “Uploading process models to the host” on page 65

3. “Importing and exporting process models” on page 65

72 Customization and Administration

Defining a security profile

If you defined the program in Buildtime with the option Security checking=Yes,
then you must define a security profile for service, invocation type, executable and
execution user identification as described in“Program security” on page 80.

Enabling an OS/390 program to run as safe application

When an IMS program runs as a safe application, each invocation request will
cause it to be executed once and only once, or not at all. Safe applications are
executed in the same transactional context as the program execution server request
transaction. This uses the OS/390 Resource Recovery Service (RRS).

For a program to run as a safe application, the following conditions must be
satisfied:
1. The program must not issue its own RRS commit and RRS rollback calls.
2. The program must be invoked using a transactional invocation such as CPIC.
3. The PES must be defined as supporting safe mode in the process model — this

is the default setting.
4. The program must be defined as using Execution mode=Safe in the process

model.

This makes the PES call the program in a transactional context using the invocation
type specified in the programs’ external settings definition in the process model.

Setting Execution mode in the program’s process model definition to Normal
disables the safe-mode execution of the program. In normal execution mode the
program is guaranteed to be executed at least once.

Disabling a program

You can disable a program by removing its definition from the process model,
exporting the process model as an FDL file, and then importing it into the
Workflow database.

Authorizing a user to access an OS/390 program

If a program has been defined in the process model with Security routine call set
to yes, and Local user set to yes (as shown in Figure 5 on page 62), then every
MQSeries Workflow user ID that is to be able to start the corresponding activity
must be specified in the PES directory, and associated with a valid execution user
ID. You must provide this user resolution information for the service where the
program is executed.

To authorize a user to access an OS/390 program you must do the following:

1. If the program has no security profile, you must create one, as described in
“Program security” on page 80.

2. Authorize the user by giving read access to the security program profile.
3. Update the PES directory entries for the service and the invocation type,

adding the MQSeries Workflow user ID and the corresponding execution
userID, as described in “Adding a new service definition and the related user
resolution information” on page 70.

Chapter 7. Program execution 73

4. Reload the PES directory as described in “Importing the PES directory” on
page 71 .

Revoking a user’s access to OS/390 programs

There are two possible ways to revoke a user’s access to an OS/390 program:
1. By removing their execution user ID’s access to the security profile for the

program.
2. By deleting the user’s ID mapping associated with the service in the PES

directory, then reloading the PES directory.

If you want to revoke a user’s access to all OS/390 services, mappings may exist
for that user’s MQSeries Workflow user ID in several service sections in the PES
directory. You should ensure that all of them are commented out or deleted.

Administering program mapping

The program execution server uses a program mapping exit to transform the
format and representation of parameters in data containers so that it can be
accepted by existing IMS and CICS applications. This allows you to define
MQSeries Workflow processes that invoke legacy applications on the mainframe,
without having to modify the legacy application.

MQSeries Workflow for OS/390 offers a mapping type named DEFAULT which can
be used to convert and translate data between legacy applications and MQSeries
Workflow. You can write your own exit to perform this conversion, providing it
conforms to the MQSeries Workflow for OS/390 mapping exit interface. Mapping
exits can be used in parallel to the default mapping exit or replace the default
mapping exit. The invocation and reply data can be mapped separately by defining
the interfaces and structure and connect them to each other. You can find more
information about creating a program mapping in MQSeries Workflow for OS/390:
Programming.

After you have created a program’s mapping definitions:
v You must import the mapping definitions into the mapping database as

described in “Importing a program mapping definition”.

v A program mapping in the mapping database only becomes active after the
mapping has been enabled as described in “Enabling a program’s mapping” on
page 76.

Importing a program mapping definition

After you have created a program mapping definition you must import it into the
mapping database. If the corresponding program mapping definition already
exists, and is already active, importing new definitions will immediately affect this
mapping. If you have modified mapping definitions in the mapping database, you
must restart the PES, as described in “Restarting the program execution server” on
page 57.

74 Customization and Administration

To import a new program mapping definition, or to update an existing mapping
definition you must do the following:

1. Create the program mapping definitions as described in MQSeries Workflow for
OS/390: Programming.

2. Customize a copy of CustHLQ.SFMCCNTL(FMCHJMPR), so that the first DD FMCIN
uses the new mapping definitions. FMCHJMPR contains statements similar to this:
/**
//*
//* Description:
//* Invoke the default program mapper parser and import tool
//*
//**
//*
//PROCLIB JCLLIB ORDER=(CustHLQ.SFMCPROC)
//*
//* Invoke Program Mapping Parser
//*
//FMCRMPRS EXEC PROC=FMCHPBAT,PROGRAM=FMCH1XMP,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/'
//**** Mapping Definitions
//FMCIN DD DSN=CustHLQ.SFMCDATA(FMCHEMDL),DISP=SHR
//**** Work File
//FMCOUT DD DSN=&&BIN,DISP=(NEW,PASS),
// DCB=(RECFM=U,BLKSIZE=6144,LRECL=0),
// SPACE=(CYL,(2,2))
//**** Listing
//FMCLST DD SYSOUT=*
//*

Figure 8. Program mapping definition process and components

Chapter 7. Program execution 75

//* Invoke Program Mapping Import Tool
//*
//FMCRMUTL EXEC PROC=FMCHPBAT,PROGRAM=FMCH1XMU,COND=(8,LE),
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/'
//**** Work File
//FMCIN DD DSN=*.FMCRMPRS.FMCHPBAT.FMCOUT,DISP=(SHR,DELETE)
//**** Program Mapping Import Tool Control Statements
//FMCCTL DD DSN=CustHLQ.SFMCDATA(FMCHEMCT),DISP=SHR
//**** Listing
//FMCLST DD SYSOUT=*
//*

3. Customize a copy of CustHLQ.SFMCDATA(SFMCEMCT) which contains the control
statements for the utility so that the parsed mapping definitions are created.
Update DD FMCCTL to use the new control statements.

4. Run your copy of FMCHJMPR.

Note: You may find it helpful to view the sample mapping definition
CustHLQ.SFMCDATA(FMCHEMDL) and the sample control statements
CustHLQ.SFMCDATA(FMCHEMCT).

Return codes

The program mapping parser and import tool can return the following return
codes:

Table 41. Program mapping parser and import tool’s return codes

Value Description
Effect of modifications to the
database (import tool only)

0 Successful execution Any database modifications have
been completed.4 Warning

12 Error The import tool has made a rollback
of the transaction. The database
remains unchanged.16 Severe error

Enabling a program’s mapping

To make a program mapping active, you must modify the process model
definition, turning the mapping on and specifying the necessary mapping names
and parameters:
1. Enable the mapping in the process model using Buildtime:

a. Locate (or create) the program properties definition for the program that
requires the program mapping, then set the following properties as
described in “Defining program properties” on page 60:

1) Mapping routine call = yes

2) Mapping type = DEFAULT

3) Forward mapping format = name of the forward mapping definition
4) Backward mapping format = name of the backward mapping definition
5) If the mapping uses user-types that require mapping parameters, they

should be specified in the fields Forward mapping parameters and
Backward mapping parameters.

2. Upload the new process model to the host, as described in “Uploading process
models to the host” on page 65.

76 Customization and Administration

3. Import the process model on the host, as described in “Using the FDL
import/export tool” on page 65.

4. If mapping definitions were modified, then restart the PES as described in
“Restarting the program execution server” on page 57.

Disabling a program’s mapping

A program mapping can be disabled by doing the following:
v Disable the program mapping in the process model using Buildtime by doing

the following:
1. Set Mapping routine call = no in Figure 5 on page 62.

2. Upload the new process model to the host, as described in “Uploading
process models to the host” on page 65.

3. Import the process model on the host, as described in “Using the FDL
import/export tool” on page 65.

Deleting a program mapping definition

When program mappings have been disabled, the corresponding definitions should
also be deleted from the program mapping database. To delete program mapping
definitions, you must do the following:
1. Create a member for the program mapping import tool which contains delete

statements for the program mapping definitions which should be deleted. For
more information, see “Appendix C. Program mapping import tool syntax” on
page 101.

2. Customize a copy of CustHLQ.SFMCCNTL(FMCHJMPR) so that the member created
in step 1 is used in the FMCCTL DD-statement.

3. Submit your copy of FMCJMPR.

Note: The program mapping import tool checks whether the program mappings
which should be deleted are no longer referenced anywhere in other
program mapping definitions. If they are still used the deletion will fail.

Enabling a mapping type

To activate a new program mapping type, you must perform the following steps:
1. Create a mapping exit DLL as described in MQSeries Workflow for OS/390:

Programming.
2. Provide the mapping exit DLL to MQSeries Workflow for OS/390. Either copy

the DLL into the data set CustHLQ.SFMCLOAD, or concatenate the data set name,
where the mapping exit DLL is stored, to SFMCLOAD.

3. Define the new mapping exit in the PES directory. Replicate the entry called
(KEYTOMAPPING1) in the PES directory template, choose the next free number
(e.g. KEYTOMAPPING2) and choose a new type name other than DEFAULT, insert the
correct exit name (DLL name) and optionally provide exit initialization
parameters (exit parameters). Definitions needed for sample mapping exit (See
CustHLQ.SFMCSRC(FMCHSMEX)):
(KEYTOMAPPING2)
type =SAMPLE
exitName =SAMPEXT
exitParameters =LONG=L FLOAT=F

Chapter 7. Program execution 77

4. Import the new PES directory definitions as described in “Importing the PES
directory” on page 71.

5. Enter the new mapping type name in the process model definition of the
OS/390 program. Replacing the default mapping type DEFAULT as shown in
Figure 5 on page 62.

6. Import the new process model into the Workflow database as described in
“Importing and exporting process models” on page 65.

Disabling a mapping type

To deactivate a program mapping type:
1. Delete all references to the mapping type from all OS/390 program properties,

as shown in Figure 5 on page 62.

2. Import the changes, as described in “Importing and exporting process models”
on page 65.

3. Delete the mapping type from the PES directory.
4. Import the new PES directory definitions as described in “Importing the PES

directory” on page 71.

Administering invocation types

If you have defined an invocation type in the PES directory, and in the process
model, you can then enable the invocation type.

Enabling an invocation type

In order to make a new invocation type and its corresponding exit known to
MQSeries Workflow for OS/390 the following steps are necessary:
1. The invocation type must be defined in the PES directory as described in

“Adding a user-defined invocation type” on page 71.

2. The invocation exit DLL for MQSeries Workflow for OS/390 must be copied
into InstHLQ.SMFCLOAD, or the data set containing that DLL must be
concatenated to the DD statement FMCSVLIB in the JCL procedure
CustHLQ.SFMCPROC (FMCHPSRV).

3. The service and its connection parameters must be defined in the PES directory
as described in “Adding a new service definition and the related user
resolution information” on page 70.

Note: If there is more then one asynchronous invocation exit recognizing the same
kind of reply messages, it is unpredictable which of the exits will handle a
reply message.

Disabling an invocation type

To disable an invocation type you should do the following:
1. Delete all references to the invocation type from all OS/390 program properties,

as shown in Figure 5 on page 62.

2. Import the changes, as described in “Importing and exporting process models”
on page 65.

78 Customization and Administration

3. Delete the invocation type from the PES directory.
4. Import the new PES directory definitions as described in “Importing the PES

directory” on page 71.

Program execution security

The program execution server accepts requests for program invocations from
MQSeries Workflow users on different operating system platforms. The programs
may be defined with additional security checking.

The program to be invoked can either be run using the ServerUserID or the user ID
of the request starter. This is determined by the program property Execution user
that is shown in Figure 4 on page 61.

1. Execution user=Agent causes the program to be run using the ServerUserID.
2. Execution user=Starter causes the program to be run using the user ID request

starter. In this case Local user=Yes is required; this is set on the Figure 5 on
page 62. The MQSeries WorkflowID of the request starter must be resolved to a
local execution user ID under which the program will be run.

Note: If Local user is set to no, run-time error FMC32203 (Local user ID is
required to execute program) will be generated .

The program property Security checking=Yes/No determines whether a security
check is to be performed for requests before they are executed. You must set this
property in Figure 5 on page 62.

The following combinations of settings are meaningful:

Table 42. Meaningful security setting combinations in Buildtime

Buildtime settings How the PES handles an invocation request

PES property:
User support

program property:
Execution user

Program Starter

In this case Local user=Yes is mandatory, which means that the PES uses
the starter’s MQSeries Workflow user ID in the PES directory to obtain the
execution user ID that the program should be run using.

If Security checking=Yes then a security check will be performed on the
execution user ID.

If the security check is passed successfully (or if Security checking=No)
then the program will be invoked using the request starter’s execution user
ID.

Program Agent

If Security checking=Yes then a security check will be performed on the
ServerUserID.

If the security check is passed successfully (or if Security checking=No)
then the program will be invoked using the ServerUserID.

The setting of Local user has no effect.

Chapter 7. Program execution 79

Information in the PES directory that is relevant to security

The program execution server directory is where user ID mappings are defined.

If you have set the program properties Execution user=Starter and Local user=Yes
as described in point 2 on page 79 above, then the MQSeries Workflow ID of the
user who caused the invocation request must be mapped to an execution user ID
under which the program will be run. This mapping is defined in the service
subsection of the PES directory, as described in “Adding a new service definition
and the related user resolution information” on page 70.

Program security

If a program is defined with Security checking=Yes, then it must have a security
profile defined for the executable. The profile name is
SystemQualifier.service.invocationtype.executable, for example,
FMC.IMSCPIC.CPIC.FMCH3IMT. Where service, invocationtype, and executable are the
values that are defined in the program properties screen that is shown in Figure 5
on page 62.

All user IDs that are to be able to invoke the service must be given read access to
the program’s profile. A program defined with Local user=No will be executed
under the ServerUserID. In this case the ServerUserID must be given read access to
the program’s profile. If Local user=Yes then the program will be executed under
the execution user ID defined in the PES directory.

80 Customization and Administration

Chapter 8. Performance tuning

You can tune the performance of your MQSeries Workflow for OS/390 system in
the following ways:
v “Changing the number of running server instances”

v “Changing the number of server instances per address space”

Note: Some other performance issues are covered in “User response times are
unacceptably long” on page 86.

Changing the number of running server instances

The number of instances of each server type that are started when you start the
system is specified in the process model. By default, the execution server and the
PES are started with five server instances.

You can start additional servers using the administration console, as described in
“Starting servers” on page 56. You should avoid having too many as this may
cause the servers to terminate abnormally.

Changing the number of server instances per address space

The maximum number of each server type that can be started in one address space
is defined in the machine profile, see “Appendix H. Machine profile” on page 117.

This only applies to the multiple instance servers:

v The number of Execution server instances started per address space is set with
the variable ExeSvrsPerAS.

v The number of Program execution server instances started per address space is
set with the variable PESvrsPerAS.

The initial value for the execution server and the program execution server is five
server instances per address space. This means that starting six servers will start
two address spaces. The optimum number of server instances that can run in one
address space depends on your hardware and configuration.

© Copyright IBM Corp. 1998, 1999 81

82 Customization and Administration

Chapter 9. Problem determination

This chapter describes how you can solve various problem situations involving
MQSeries Workflow for OS/390:
1. If you have problems with servers, see “Server problems”.

2. If you have problems with resources or performance, see:
a. “Resource and performance problems” on page 86

b. “Chapter 8. Performance tuning” on page 81

3. If none of the previous solutions apply, you may decide to use one of the
following:
a. “The MQSeries Workflow for OS/390 system trace facility” on page 87

b. “Tracing in CICS” on page 89

4. If you got an SVC dump, see “What do I do if I get an SVC dump?” on
page 89.

Server problems

The administration server cannot be started

Is an administration server already running?

It is not possible to start an administration server on a Workflow system where
there is already one running. Issue the display command to check if an
administration server is already running.
MODIFY AdminServerID,DISPLAY ADM RUNINSTANCE

Are its queues inhibited?

The administration server requires three MQSeries alias queues to be operational
otherwise it cannot be started. These queues are:
v Boot request queueBOOT.REQUEST

v Administration client queueADC

v Administration input queueADM

The administration server will terminate if these queues are in the state
PUT_INHIBITED or GET_INHIBITED. Check the status of these queues, and enable
them if necessary. If the simple trace is activated, these improper queue states will
be recorded in the trace. These will show up as MQSeries reason codes
MQRC_PUT_INHIBITED or MQRC_GET_INHIBITED.

The administration server does not respond to server
commands

This may happen if you issue commands before the server indicates that it is
ready. Wait for this indication, and then try again.

© Copyright IBM Corp. 1998, 1999 83

The program execution server cannot be started

Are its queues inhibited?

The PES requires five MQSeries alias queues to be operational, otherwise it cannot
be started. These queues are:
v Boot request queueBOOT.REQUEST

v Boot reply queueBOOT.REPLY

v PES input queuePES.PESERVER

v Working queuesPES.PESERVER.COR andPES.PESERVER.RPL

The PES will terminate if these queues are in the state PUT_INHIBITED or
GET_INHIBITED. Check the status of these queues, and enable them if necessary. If
the simple trace is activated, these improper queue states will be recorded in the
trace. These will show up as MQSeries reason codes MQRC_PUT_INHIBITED or
MQRC_GET_INHIBITED.

One or more program execution server instances terminate,
the request is still in state running

The request has caused an unrecoverable PES error. These errors include:
v Program execution directory inconsistencies, for instance caused by wrong

user-defined keys.
v Mismatches between process model program definitions and PES directory

contents. For instance a service name defined for a program is not defined in the
PES directory.

v PES is unable to establish a connection to a service. This might be caused by
invalid connection parameters specified in the PES directory for this service.

If an error occurs, an error description (error ID and message text) is always
written to FMCOUT, if tracing is turned on it is also written to FMCTRC. Refer to the
error description corresponding to the error ID in MQSeries Workflow for OS/390:
Messages. Correct the error and restart the request.

A dump is written before all server instances are started

Are there too many server instances per address space?

If less than the specified number of server instances are started, and then a dump
is written, the value for the number of server instances started per address space
should be reduced. This is described in “Changing the number of server instances
per address space” on page 81.

Cannot stop servers

The stop server command works by disabling the server input queue for a given
length of time, and then re-enabling the queue as soon as all the server instances
have stopped, or after the queue disable period. When a server completes its
current transaction, it will check its input queue. If the input queue is disabled, the
server will shut itself down.

84 Customization and Administration

Did you wait long enough?
1. Issue the stop server command.
2. Wait at least 30 seconds, this is the initial queue disable period.
3. Issue the display command to check how many server instances are running.
4. If there are still some instances running, you can try repeating from step 1

again.
5. If this does not work, use CANCEL. Any transactions being performed by server

instances in the cancelled address space will be rolled back.

Do your transactions take longer than 30 seconds?

If a server’s current transaction takes longer than the queue disable time (initially
30 seconds), it is possible that the server never finds the queue disabled, and so
does not shut down. Simply repeating the stop server command may work.

If this problem persists, you can try increasing the value for the
WaitBetweenQInhibitAndAllowed setting in the machine profile
CustHLQ.SFMCDATA(FMCHEMPR), see “Appendix H. Machine profile” on page 117 for
more information. After changing the machine profile you must
perform“Restarting the administration server” on page 57.

PES cannot be stopped

The following program execution server characteristics may affect attempts to stop
it:
v The PES cannot be stopped within five minutes of it being started.
v While handling a synchronous invocation, the PES is blocked for the duration of

the transaction. Check your service system.

Changes made to the program mapping definition are not
activated

Have you restarted the program execution server?

Changes to a program mapping in the program mapping database may require a
PES restart, as described in “Restarting the program execution server” on page 57.

Changes made to the machine profile are not activated

Have you restarted the administration server?

Changes to the machine profile will only become active after the administration
server is restarted, as described in “Restarting the administration server” on
page 57. All existing server instances will continue to use the old machine profile
settings. After the restart all new server instances will use the new machine profile
settings.

If you do not want any servers to continue using the old machine profile, you
must also restart the whole MQSeries Workflow for OS/390 system.

Chapter 9. Problem determination 85

Resource and performance problems

User response times are unacceptably long

Performance problems may be caused by one or more of the following:

Is tracing turned on?

Operation is significantly slower when tracing is active. Turning tracing off is
described in “Turning tracing off” on page 89.

Are enough server instances running?

It is possible that there are not enough server instances to cope with the workload.

For the PES, this can happen because a PES instance is blocked while it processes a
request that is synchronous. So having a high request rate, or having requests that
cannot be completed quickly may require that you start more server instances. You
can start additional execution server instances, see “Starting servers” on page 56.

Are too many server instances running?

In this case restart fewer servers instances, as described in “Restarting servers” on
page 57.

Does the workload exceed your system’s capacity?

If you have eliminated the above possibilities, it may be that the workload exceeds
your system’s capacity.

Invalid password

Are you using an old version of the runtime client?

This can happen when an old runtime client tries to connect to a newer
administration server. You should install the MQSeries Workflow Version 3.1.2
runtime client.

Running out of spool space

Is tracing turned on?

This problem can be caused by the trace facility. Check which servers have been
started with trace turned on. Trace entries are written even when the servers are
idle. Reduce the trace level as described in “Turning tracing on” on page 87 (or
turn it off) and restart the server type that was being traced.

86 Customization and Administration

The MQSeries Workflow for OS/390 system trace facility

Trace is used to diagnose reproducible problems by recording statements and
instructions that will be executed within the MQSeries Workflow for OS/390
system in the sequence in which they occur. The trace facility records system
events in data sets.

The trace facility provides two types of tracing:
1. Simple trace writes all trace entries directly to the data set, allocated as SYSOUT

in the server JCL procedure SYS1.PROCLIB(UniqueSystemKey).
2. Extended trace is a powerful tool exploiting the OS/390 Component Trace

system services. It works with wrap around buffers in storage, so that when
several server types are running, and the extended trace has been activated,
their trace entries will be written to each server’s storage. When a buffer is full,
the following trace information will be written to another buffer and the full
buffer is passed to an asynchronous Component Trace external writer in order
to be written to a data set.

Note: Extended trace is only available on servers, it does not provide
information on MQSeries Workflow for OS/390 tools.

To produce a trace of the MQSeries Workflow for OS/390 system, you must
perform the following steps:
1. “Turning tracing on”

2. “Restarting the component and reproducing the problem” on page 88

3. “Viewing the trace” on page 88

4. “Turning tracing off” on page 89

Turning tracing on

To turn tracing on, select the trace level and type of trace you want:
1. Edit the machine profile file CustHLQ.SFMCDATA(FMCHEMPR):

a. To get the most important trace entries, set the value:
MQWorkflowMachine.SystemQualifier.FMC_TRACE_CRITERIA:3,FFFF,FFFFFFFF

b. To get a good overview, set the value:
MQWorkflowMachine.SystemQualifier.FMC_TRACE_CRITERIA:33,FFFF,FFFFFFFF

c. To get maximum information, set the value:
MQWorkflowMachine.SystemQualifier.FMC_TRACE_CRITERIA:99,FFFF,FFFFFFFF

Note: This trace level significantly reduces the performance of the system,
and requires a large quantity of disk space.

2. Edit the environment variable file CustHLQ.SFMCDATA(FMCHEENV)

a. If you want extended trace, set
FMC_SIMPLE_TRACE_ONLY=NO

Note: This is the default, and is recommended because it does not create
any synchronous input/output overhead.

b. If you want simple trace, set
FMC_SIMPLE_TRACE_ONLY=YES

Chapter 9. Problem determination 87

Now any servers or tools that you start will produce the trace information you
specified.

Restarting the component and reproducing the problem

After starting the trace:
1. Run the component that is causing the problem.
2. Reproduce the problem.
3. If extended trace has been activated:

a. Issue the following command on the OS/390 system console:
TRACE CT,,COMP=CTComponent,PARM=CTIFMCmm

where CTComponent and mm are your values for the CTRACE component
name, and the two character CTRACE suffix CTStopSuffix — these values
were defined in Table 3 on page 7.

b. Run the JCL CustHLQ.SFMCCNTL(FMCHJTRC). This converts the format of the
extended trace data sets into the same format as the simple trace.
The extended trace data set format converter FMCHJTRC can return the
following return codes:

Table 43. Extended trace format converter return codes

Value Description Explanation

0 Successful
completion

The formatted results of the
extended trace are available in the
job output of FMCHJTRC.

4 Warning No trace data was found. The input
data set may be empty.

8 Error Invalid trace buffer records were
detected. Due to the use of the
CTRACE external writer WRAP
option, it is possible that the oldest
records in the data set have been
partially overwritten, and are
unusable.

12 Severe error Invalid trace buffer header records
were detected. Either the trace data
set has been corrupted, or the input
data set was not created by a
CTRACE external writer.

Viewing the trace

After reproducing the error, you can view the results of the trace in the following
way:
1. The results of the simple trace is in the SYSOUT data sets of the started job.

a. The DD statement for tools is FMCTRC00.
b. The DD statements for servers are FMCTRCxx, ...01, ...02,

2. The formatted results of the extended trace will be available in the job output
of FMCHJTRC. The fields in each line are: Date, time, filename, line number,
current trace settings (level, category, component), process name, address space
ID, server ID, function name, and description. The following is an example line
from a log file:

88 Customization and Administration

1998-06-09, 10:27:47.94, FMC.DUMMY.CPP#(DUMMY1)(421), (33,SC,Kr),
Process Name(131-01), TestClass::Find(const TestString&), ifstream.close()

Turning tracing off

To deactivate the trace:
v Edit data set CustHLQ.SFMCDATA(FMCHEMPR) and specify

MQWorkflowMachine.SystemQualifier.FMC_TRACE_CRITERIA:0,0000,00000000

If you have been tracing a server, it will continue writing trace data until it is
stopped or restarted, as described in “Stopping servers” on page 57 and “Restarting
servers” on page 57.

If necessary, send the trace file to the appropriate IBM support personnel. Tracing
should be turned off when it is no longer required because MQSeries Workflow for
OS/390 operation can be significantly slower when tracing is active. Delete the
trace file when the problem is solved and you do not need it any longer.

Tracing in CICS

All MQSeries Workflow for OS/390 components running in CICS use the CICS
trace facilities to generate trace entries. Trace parameters are read from the machine
and user profile and from the environment VSAM files that where generated
during customization. The settings in the environment file overrule the machine
profile settings. The settings affect all MQSeries Workflow for OS/390 programs
running in the corresponding CICS region.

To print the contents of the CICS auxiliary trace data set, submit the JCL
CustHLQ.SFMCCNTL(FMCHJCTC).

The type of information that is provided, and the parameters for the MQSeries
Workflow for OS/390 trace are described in “The MQSeries Workflow for OS/390
system trace facility” on page 87. For more information about the CICS trace
facilities see CICS/ESA: Problem Determination Guide and CICS Transaction Server for
OS/390: CICS Problem Determination.

What do I do if I get an SVC dump?

Create a problem summary

When a dump occurs various information is available for analysis. You can run the
job FMCHJDMP, which calls an exec FMCHKDMP under IPCS. This analyses the SVC
dump from a Workflow server. The output of this job presents various information
about the system, the server instance that caused the problem, and also an analysis
of the language environment. This information is presented in the same format as
a CEEDUMP.

This allows you to create and submit a problem summary which is considerably
reduced in size compared to the dump data set. This problem summary will be
sufficient for the analysis of most problems.

Chapter 9. Problem determination 89

90 Customization and Administration

Part 3. Appendixes

© Copyright IBM Corp. 1998, 1999 91

92 Customization and Administration

Appendix A. Program Execution Server directory

The program execution server directory contains information that is used by the
program execution server. It contains the exit names, types and parameters for
program invocations and program mappings. It also contains service definitions to
connect to the CICS and IMS systems, and the user resolution information to
execute a program under the correct user ID. You need to modify the PES directory
whenever you want to add any of the following:
1. A new mapping type.
2. A new invocation type.
3. A new service.
4. A new user.

Using Buildtime, you can add OS/390 invocation and service definitions to your
process model on a program’s OS/390 settings page. The PES directory provides
the connection parameters for these invocations and services.

Note: Some key values in the PES directory must match the identifiers that are
used in the process model in Buildtime; these dependencies are described in
“PES directory dependencies on the process model’s OS/390 program
definitions” on page 97.

PES directory structure

This section describes the internal structure of the PES directory. You will need to
understand the structure to be able to perform program execution customization
and to add new services and new users.

The PES directory has a Key=KeyValue structure that is similar to an OS/2 .ini file.
The values specified for the primary and secondary keys can either define a final
value, or a user-defined key. A user-defined key refers to another subsection of the
current section.

User-defined keys are case-sensitive, and can be up to 32 characters long. Valid
characters are: uppercase [A – Z], lowercase [a – z], and numerics [0 – 9]. Final
values are case-sensitive, can consist of any characters, up to a maximum length of
254 characters.

The PES directory contains a root entry consisting of the primary key directory. A
secondary key programExecution defines an area for the program execution server
named PESERVER. The contents of the PESERVER section are described in the
following:
v “Invocation section” on page 94

v “Mapping section” on page 94

v “Security section” on page 94

© Copyright IBM Corp. 1998, 1999 93

Invocation section

The invocation section defines each invocation type that is supported by the
program execution server. For each invocation type, it defines the exit name, exit
parameters, and a list of service subsections that can be accessed using that
invocation type.

The “PES directory template” on page 95 already contains definitions for invocation
sections for EXCI, CPIC, and MQSeries CICS and IMS Bridge invocation types.

Service subsection

The service subsections within the invocation section contains the following:
v Connection parameters necessary to connect to service systems using the given

invocation type.
v User resolution information to translate the MQSeries Workflow user

identification of the caller to a local OS/390 user ID that is known to the
security system.

Connection parameters: The connection parameters provided depend on the
invocation type:
v For EXCI invocation, the connection parameter is applid.
v For CPIC invocation, the connection parameters are netid, luname, and mode.
v For MQ invocation, the connection parameters are queuemanager and

inputqueuename.

Note: Multiple parameter assignments are separated by a semicolon (’;’).

User resolution: User resolution information is only required if a program is to
run under a local user ID associated with the MQSeries Workflow user starting the
execution request. This only applies to programs that are defined in the process
model with Execution user=Yes and Local user=Yes. In this case, you have to add
userID/executionUserID pairs to provide a mapping from each MQSeries
Workflow userID who may access that service, mapping on to the OS/390
executionUserID that the program is to run under.

The reason for having this mapping is that MQSeries Workflow user IDs may be
up to 32 characters long, whereas OS/390 user IDs are restricted to 8 characters.

Mapping section

The mapping section defines the program mapping types that the program
execution server supports. For each mapping type, it defines the DLL name of the
exit that is used by the mapping type, and the initialization parameters. The
standard program mapping type defines the default mapper that is provided with
MQSeries Workflow for OS/390.

Security section

The security section is reserved for future use and must not be modified.

94 Customization and Administration

PES directory template

A PES directory template file is provided in CustHLQ.SFMCDATA(FMCHEDTP). It
contains definitions for the invocations types (EXCI, CPIC, MQCICS, and MQIMS) and
the DEFAULT mapping type. It contains:
v A service section for each invocation type.
v A user section for each service section.

These have to be completed during program execution customization. The
template contains the following:

;//**
;//*
;//* Description: Program Execution Server Directory Template
;//*
;//**
; Area of PES directory

(directory)

programExecution =keyToAreaOfPES ; Area of PES1

(keyToAreaOfPES1)
pesName =PESERVER
invocation =keyToInvocation
security =keyToSecurity
mapping =keyToMapping

; Invocation section of PES1

(keyToInvocation1)
type =EXCI
exitName =FMCH0IEC
exitParameters =
service =invocation1Service

; Service section of PES1

(invocation1Service1)
type =CICS
name =CICSEXCI
connectionParameters =APPLID=<applid>;TRANSID=CSMI
user =invocation1Service1User

; User section of PES directory

(invocation1Service1User1)

userID =<user1>
executionUserID =<executionUser1>

(invocation1Service1User2)

userID =<user2>
executionUserID =<executionUser2>

(keyToInvocation2)

type =CPIC
exitName =FMCH0ICI
exitParameters =
service =invocation2Service

(invocation2Service1)

Appendix A. Program Execution Server directory 95

type =IMS
name =IMSCPIC
connectionParameters =NETID=<netid>;LUNAME=<luname>;MODE=#INTER
user =invocation2Service1User

(invocation2Service1User1)

userID =<user1>
executionUserID =<executionUser1>

(keyToInvocation3)

type =MQCICS
exitName =FMCH0ICM
exitParameters =
service =invocation3Service

(invocation3Service1)

type =CICS
name =CICSMQBR
connectionParameters =QUEUEMANAGER=<queuemanager>;INPUTQUEUE=<inputqueue>
user =invocation3Service1User

(invocation3Service1User1)

userID =<user1>
executionUserID =<executionUser1>

(keyToInvocation4)

type =MQIMS
exitName =FMCH0IIM
exitParameters =
service =invocation4Service

(invocation4Service1)

type =IMS
name =IMSMQBR
connectionParameters =QUEUEMANAGER=<queuemanager>;INPUTQUEUE=<inputqueue>
user =invocation4Service1User

(invocation4Service1User1)

userID =<user1>
executionUserID =<executionUser1>

(keyToMapping1)
type =DEFAULT
exitName =FMCH0XME
exitParameters =

(keyToSecurity1)

type =
exitName =
exitParameters =

96 Customization and Administration

PES directory dependencies on the process model’s OS/390 program
definitions

When you define a service in the PES directory, some of the key values you use
must exactly match the following identifiers provided in the program’s OS/390
properties that are shown in Figure 5 on page 62. These identifiers are:

v Service name, for example CICSEXCI, or IMSCPIC.
v Service type, for example CICS, or IMS.
v Invocation type, for example EXCI, or CPIC.
v Mapping type, for example DEFAULT.

Note: The values are case-sensitive.

Appendix A. Program Execution Server directory 97

98 Customization and Administration

Appendix B. The PES directory import tool’s syntax and
semantics

You can start the import tool FMCH1PIT using the following options:

Table 44. PES directory import tool’s options

Option
DD-names

used Description

c FMCDIMP
FMCDLOG

Creates new directory entries. If an entry already exists, an
error is returned.

d FMCDIMP
FMCDLOG

Deletes existing directory entries. If an entry does not exist,
an error is returned.

e FMCDLOG Erases everything in the directory database.

i FMCDIMP
FMCDLOG

Inserts directory entries. If an entry does not exist, it will be
created. If an entry already exists, it will be replaced.

r FMCDIMP
FMCDLOG

Replaces existing directory entries. If an entry does not
exist, an error is returned.

The PES directory source file containing the entries to be imported must be
specified using the predefined DD-name FMCDIMP. The import tool writes
information, warning, and error messages to the log file that is specified by the
DD-name FMCDLOG. If you specify //FMCDLOG DD SYSOUT=*, the messages will be
written to SYSOUT.

Return codes

The PES directory import tool can return the following return codes:

Table 45. PES directory import tool’s return codes

Value Description
Effect of modifications to

the database

0 Successful execution Any database
modifications have been
completed.4 Warning

12 Error The tool has made a
rollback of the transaction.
The database remains
unchanged.

16 Severe error

PES directory import examples

The following JCL examples illustrate the use of the import options and DD
statements.

Importing a PES directory source file

This example job imports the source file that is specified using the DD name
FMCDIMP, creating the new entries in the directory.

© Copyright IBM Corp. 1998, 1999 99

//FMCHJPIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH1PIT,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// c'
//*
//FMCDIMP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(PES)
//FMCDLOG DD SYSOUT=*
//*

Importing a PES directory and writing a log file

This example job imports the source file specified by the DD name FMCDIMP by
updating the contained entries in the directory. All information, warning, and error
messages will be written to the log file specified by the DD name FMCDLOG.
//FMCHJPIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH1PIT,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// r'
//*
//FMCDIMP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(PES)
//FMCDLOG DD DISP=SHR,DSN=CustHLQ.SFMCDATA(LOG)
//*

Deleting the PES directory

This example job deletes the complete contents of the PES directory.
//FMCHJPIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH1PIT,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// e'
//*
//FMCDLOG DD DISP=SHR,DSN=CustHLQ.SFMCDATA(LOG)
//*

100 Customization and Administration

Appendix C. Program mapping import tool syntax

The program mapping exit reads the mapping definitions from the mapping
database. You must use control statements to perform the following updates to the
mapping database:
v “Creating a new program mapping definition”

v “Replacing an existing program mapping definition”

v “Inserting a program mapping definition” on page 102

v “Deleting a program mapping definition” on page 102

v “Listing program mapping definitions” on page 102

All control statements have the same format: keyword type element

1. The first word is a keyword which defines the action.
2. The second word defines which type of program mapping definition should be

processed.

Note: Valid types are: STRUCTURE, INTERFACE, USERTYPE, BACKWARDMAPPING, and
FORWARDMAPPING.

3. The third word defines which element of this type should be processed.

Note: You can use the wildcard character ’*’. You can combine wildcard control
statements with non–wildcard control statements. The wildcard control
statements can be used to select all elements of the mapping definition
or mapping database without explicitly naming them.

C and C++ style comments are allowed. Single line comments may start with the
characters ’//’, and multi-line comments begin with ’/*’, and end with ’*/’.

Creating a new program mapping definition

To create a new entry, specify:
CREATE EntryType EntryName

To create all entries of a given type, specify:
CREATE EntryType *

Note: If an entry already exists, the activity is rolled back, and you will get an
error message.

Replacing an existing program mapping definition

To replace a specific entry for EntryType and EntryName, use the control statement:
REPLACE EntryType EntryName

To replace all entries for EntryType, use the control statement:
REPLACE EntryType *

© Copyright IBM Corp. 1998, 1999 101

Note: If the entry does not exist, the database transaction is rolled back, and you
will get an error message.

Inserting a program mapping definition

To insert a specific entry for EntryType and EntryName, use the control statement:
INSERT EntryType EntryName

For example, INSERT USERTYPE UT1

Note: If the entry already exists, it will be overwritten.

To insert all entries for EntryType, use the control statement:
INSERT EntryType *

Deleting a program mapping definition

To delete a specific entry for EntryType and EntryName, use the control statement:
DELETE EntryType EntryName

To delete all entries for EntryType, use the control statement:
DELETE EntryType *

Note: If the entry does not exist, the database transaction is rolled back, and you
will get an error message.

You can delete the whole database with the control statements:
DELETE USERTYPE *
DELETE FORWARDMAPPING *
DELETE BACKWARDMAPPING *
DELETE INTERFACE *
DELETE STRUCTURE *

Listing program mapping definitions

You can list all entries for a given type, with the control statement:
LIST EntryType *

This statement lists the entries by name and type in alphabetical order.

Control statement execution

The control statements are executed on the program mapper’s database as a
transaction. If any of the statements fail, the whole transaction is rolled back, and
an error is returned. The control statements are not necessarily executed in the
order that they are defined in the control member. The control statements are
executed in the following sequence:
1. Any command for forward mapping definitions, in alphabetical order of the

forward mapping name, followed by forward mapping commands that use the
wildcard.

102 Customization and Administration

2. Any command for backward mapping definitions, in alphabetical order of the
backward mapping name, followed by backward mapping commands that use
the wildcard.

3. Any command for structure definitions, in alphabetical order of the structure
name, followed by structure commands that use the wildcard.

4. Any command for interface definitions, in alphabetical order of the interface
name, followed by interface commands that use the wildcard.

5. Any command for user type definitions, in alphabetical order of the user type
name, followed by user type commands that use the wildcard.

6. List commands in alphabetical order of definitions for forward mapping,
backward mapping, structure, interface, and user type.

Example control statements

The following example creates all user types, mapping definitions, and replaces
usertype UT1:
REPLACE USERTYPE UT1 // Replace existing UT1
CREATE USERTYPE * // Create all other usertypes

Appendix C. Program mapping import tool syntax 103

104 Customization and Administration

Appendix D. Naming and code page restrictions

MQSeries Workflow for OS/390 exploits the iconv function set of the C/C++
Compiler on OS/390 by converting incoming messages to to Unicode (UCS-2) and
then to the local codepage. MQSeries Workflow for OS/390 relies on the converters
available on the system and does not provide them as part of the product. Please
see the OS/390 C/C++ Programming Guide for a list of supported unicode
converters. There may be more converters available as PTF’s.

You should verify that the code pages installed on all cooperating MQSeries
Workflow platforms allow correct character conversion for all code points for a
message round-trip.

MQSeries Workflow for OS/390 requires that certain naming restrictions are
followed.

Naming Buildtime objects

The names given to MQSeries Workflow for OS/390 objects in the Buildtime
should conform to the rules for naming MQSeries objects. If you follow these rules,
no code page conversion problems should occur when you transfer the FDL file to
the host. Names should only contain the following characters:
v Uppercase A-Z
v Lowercase a-z
v Numerics 0-9
v Period (.)
v Forward slash (/)
v Underscore (_)
v Percent sign (%)
v Parentheses (())

If you use object names which not conform to the rules for naming MQSeries
objects, your transfer method’s code page conversion may corrupt the FDL data
during the upload process. In this case you should upload your FDL file as a
binary image, and then use the tool described in “Appendix E. FDL code page
conversion tool” on page 107.

Restrictions for passwords in CICS

Passwords specified in the Logon API call from CICS programs must only include
characters contained in codepage IBM-1047.

© Copyright IBM Corp. 1998, 1999 105

106 Customization and Administration

Appendix E. FDL code page conversion tool

If you have code page conversion problems when uploading your process model
information, you can upload the FDL file as a binary image and then use the tool
FMCH1CNV to convert the FDL file between particular source and target code pages.

Using the FDL code page conversion tool

In order to use this tool you have to transfer the FDL file as binary image to the
host. The FDL file should be stored in a data set that has a variable record format.
To use the fmch1cnv tool you should do the following:
1. Customize the JCL CustHLQ.SFMCCNTL(FMCHJCNV)

a. Specify the options the conversion tool should use, see “Options”.

b. Specify the input and output files using the predefined DD-names FMCCIMP
and FMCCEXP.

c. If you want to use a specific log file instead of SYSOUT, you should specify a
data set for the DD-name FMCCLOG.

2. Submit the JCL CustHLQ.SFMCCNTL(FMCHJCNV)

Options

You can start the conversion tool FMCH1CNV using the following options:

Option Argument Description

s source code page Name of the code set in which the input data is
encoded. If you omit this option, the code page used
is taken from the input file.

t target code page Name of the code set to which the output data is to
be converted. If you omit this option, the local code
page of your system determined at run-time is used.

Notes:

1. An equal sign (=), a comma (,), a colon (:), or a blank character can be used as
an option delimiter.

2. The predefined DD-names: FMCCIMP, FMCCEXP, and FMCCLOG must be used to
specify the input file, output file, and log file.

3. The record length of the output data set must have at least the same length as
the longest line of the FDL input file transferred to the host.

4. The FDL conversion tool writes information, warning, and error messages to
the log file that is specified by the DD-name FMCCLOG. By specifying //FMCCLOG
DD SYSOUT=* the messages are written to SYSOUT.

5. Please see the OS/390 C/C++ Programming Guide for a list of supported code set
converters.

© Copyright IBM Corp. 1998, 1999 107

Return codes

The FDL code page conversion tool can return the following return codes:

Table 46. FDL code page conversion tool’s return codes

Value Description

0 Successful execution

4 Warning

12 Error

16 Severe error

108 Customization and Administration

Appendix F. FDL import/export tool

Process model information is created in the Buildtime tool, and exported in FDL
file format. You must use the import/export tool to:
v Import process model information into the Workflow database.
v Translate process model information that is stored in the Workflow database.
v Export process model information from the Workflow database.

FDL import/export tool’s syntax

The following syntax diagram shows how to use the FMCH0IBA tool:

Import tool FMCH0IBA syntax

ÊÊ ·FMCH0IBA
Logon
Import
Export

ÊÍ

Logon:

-p = password
-u = userid

Import:

(1)
-i
-o
-t

Export:

(2)
-e
-c = EntityManagingCommand

(3)
@

EntityManagingCommand:

© Copyright IBM Corp. 1998, 1999 109

·

″ EXPORT ObjectList ″
ObjectLevel (4)
ObjectServer DEEP

TRANSLATE PROCESS Name

ObjectList:

ORGANIZATION
PERSON
ROLE
PROCESS
PROCESS CATEGORY
PROGRAM
STRUCTURE
SYSTEM

(5)
DOMAIN
GROUP

· Name
*

ObjectLevel:

LEVEL · integer
*

ObjectServer:

SERVER

·

*

Name TYPE CLEANUP_SERVER
EXECUTION_SERVER
PROGRAM_EXECUTION_SERVER
SCHEDULING_SERVER

Notes:

1. When option i is selected, the file specified by the DD name FMCIIMP is imported
into the Workflow database.

2. When option e is selected, entities specified are exported from the Workflow
database to the file specified by the DD name FMCIEXP.

3. When a @ is specified after option c, the commands contained in the file
specified by the DD name FMCICMD are executed.

4. The DEEP option is only valid for EXPORT PROCESS. It means that all referenced
objects, for example, nested subprocesses, are exported to the output file.

5. To export the domain you only have to specify the key word DOMAIN without
specifying the name of the entity.

110 Customization and Administration

v An equal sign (=), a comma (,), a colon (:), or a blank character can be used as
an option delimiter.

v You may specify any one of these options only once.
v Either option i or option c may be specified, but not both.
v You can use multiple words for option c enclosed in quotes, delimited by a

blank character (space).
v The predefined DD-names: FMCIIMP , FMCIEXP , FMCICMD , and FMCILOG must be

used to specify the import file, export file, command file, and log file.
v If you want to export entities with names that contain spaces, for example, for

an entity named ″Default Data Structure″, you must enclose the name using two
consecutive apostrophes —''Default Data Structure''.

Options for the import / export tool

You can start the import/export tool FMCH0IBA using the following options:

Option Argument Description

c ″Command string″ This accepts an entity command string in quotes (″). If
you specify an at sign (@) the import tool executes the
commands contained in the file specified by the
DD-name FMCICMD.

e Exports all workflow objects from your Workflow
database to the output file specified by the DD-name
FMCIEXP.

i Imports into the Workflow database the entities from
the import FDL file specified by the DD-name FMCIIMP.

o Overwrites an existing database entity, however, only in
import mode.

p password This is the password for the specified user ID.
t Translates a process model, however, only in import

mode. Any error messages that occur while translating a
process model can be found in a separate log file, called
uid.XLATE.LOG.

u userid This is the logon user ID for the Workflow database.

Log file and errors

The import tool writes information, warning, and error messages to the log file
that is specified by the DD-name FMCILOG . By specifying //FMCILOG DD SYSOUT=*
the messages are written to SYSOUT .

If the import tool detects any errors when importing a file, you will receive a
non-zero return code.

Appendix F. FDL import/export tool 111

Return codes

The import/export tool can return the following return codes:

Table 47. FDL import/export tool’s return codes

Value Description
Effect of modifications to

the database

0 Successful execution Any database
modifications have been
completed.

1 Information

2 Warning

4 Validation error

The tool has made a
rollback of the
transaction. The database
remains unchanged.

8 Syntax error

12 Error

16 Input error

20 Severe error

24 Internal error

Examples

FDL import examples

The following JCL examples show the use of the import options and DD statements.
The example JCL jobs start the import tool, log on using the user ID uid and a
password pwd:

To import an FDL file

This JCL job imports the FDL file that is specified by the DD name FMCIIMP .
//FMCHJRIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH0IBA,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// -u uid -p pwd -i -o'
//*
//FMCIIMP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(FDL)
//FMCILOG DD SYSOUT=*
//*

To import an FDL file and translate the contained process
models

This job imports the FDL file that is specified by the DD name FMCIIMP and
translates the imported process models.

//FMCHJRIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH0IBA,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// -u uid -p pwd -i -o -t'
//*
//FMCIIMP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(FDL)
//FMCILOG DD SYSOUT=*
//*

112 Customization and Administration

To import an FDL file and write messages in a separate log file

This job imports the FDL file that is specified by the DD name FMCIIMP. All
information, warning, and error messages will be written to the log file that is
specified by the DD name FMCILOG.

//FMCHJRIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH0IBA,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// -u uid -p pwd -i -o'
//*
//FMCIIMP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(FDL)
//FMCILOG DD DISP=SHR,DSN=CustHLQ.SFMCDATA(LOG)
//*

FDL export examples

The following JCL examples show the use of the export options and DD statements.
The example JCL jobs start the import/export tool, log on using the user ID uid
and a password pwd:

To export all workflow entities

This JCL job export the entities from the Workflow database to the output file
specified by the DD name FMCIEXP.

//FMCHJRIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH0IBA,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// -u uid -p pwd -e'
//*
//FMCIEXP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(OUT)
//FMCILOG DD SYSOUT=*
//*

To export all people

This JCL job export the definitions for all persons from the Workflow database to
the output file specified by the DD name FMCIEXP.

//FMCHJRIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH0IBA,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// -u uid -p pwd -e -c"EXPORT PERSON*"'
//*
//FMCIEXP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(OUT)
//FMCILOG DD SYSOUT=*
//*

To export an individual process (deep)

This JCL job exports the definitions for the process process1 and all nested
subprocesses of this process from the Workflow database to the output file
specified by the DD name FMCIEXP.

//FMCHJRIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH0IBA,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// -u uid -p pwd -e -c"EXPORT PROCESS process1 DEEP"'
//*
//FMCIEXP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(OUT)
//FMCILOG DD SYSOUT=*
//*

Appendix F. FDL import/export tool 113

To export Workflow entities using a command file

his job export entities from the Workflow database to the file specified by the DD
name FMCIEXP, using the commands in the file that is specified by the DD name
FMCICMD.

//FMCHJRIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH0IBA,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// -u uid -p pwd -e -c @'
//*
//FMCICMD DD DISP=SHR,DSN=CustHLQ.SFMCDATA(CMD)
//FMCIEXP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(OUT)
//FMCILOG DD SYSOUT=*
//*

Translate examples

The following JCL examples show how to translate existing process models that
have already been imported into the database. The example JCL jobs start the
import tool, log on using the user ID uid and a password pwd:

To translate existing models

This job translates an existing process model in the MQSeries Workflow for OS/390
run-time database with the process name process1.

//FMCHJRIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH0IBA,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// -u uid -p pwd
// -c "TRANSLATE PROCESS process1"'
//*
//FMCILOG DD SYSOUT=*
//*

To translate existing process models using a command file

This job translates the existing process models using the commands in the file that
is specified by the DD name FMCICMD.

//FMCHJRIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH0IBA,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/
// -u uid -p pwd -c @'
//*
//FMCICMD DD DISP=SHR,DSN=CustHLQ.SFMCDATA(CMD)
//FMCILOG DD SYSOUT=*
//*

114 Customization and Administration

Appendix G. Customization parameter file

All the customization parameters for an MQSeries Workflow for OS/390 system
are entered into the customization parameter file. Each time that you create a new
MQSeries Workflow for OS/390 system, you must copy and complete this file. This
is done during pre-customization.

The customization parameter file template is CustHLQ.SFMCDATA(FMCHECIF).
During pre-customization (in step 2 of the task “Create input files for
customization” on page 16) you will to enter your system’s customization
parameters from the tables in “Chapter 1. Planning your configuration” on page 3.
The following step then generates the JCLs necessary to customize the Workflow
system that is defined in this file.

The template file contains the following:

****** LIST OF PARAMETERS TO CUSTOMIZE ******

**** PARAMETERS FOR SCOPE INSTALLATION ****

MQWFIHLQ ='MQWFIHLQ' *** MQWF Installation High Level Qualifier
MQWFCHLQ ='MQWFCHLQ' *** MQWF Customization High Level Qualifier

**** PARAMETERS FOR SCOPE DOMAIN ****

*NOT USED AT THE MOMENT

**** PARAMETERS FOR SCOPE SYSTEM GROUP ****

MQWFSGNM ='MQWFSGNM' *** MQWF System Group Name
MQWFSGLC ='MQWFSGLC' *** MQWF System Group Locale Setting

*** (is used to set the locale for
*** all servers and tools, use
*** 'C' for the default on your machine
*** or a specific locale setting, e.g.
*** De_DE.IBM-273 for German)

DB2SGPRE ='DB2SGPRE' *** DB2 System Group Object Qualifier
*** (is used for the DB2 objects created
*** for this System Group e.g.
*** 'DB2SGPRE'.TABLENAME)

**** DB2 Storage Group for Workflow Data ****
DB2STGNW ='DB2STGNW' *** DB2 Storage Group Name
DB2STGPW ='DB2STGPW' *** DB2 Storage Group Dataset Name Prefix
DB2STGVW ='DB2STGVW' *** DB2 Storage Group Volume

*** (VOLUME for volume name or
*** '*' for SMS managed volumes)

**** DB2 Storage Group for Audit Trail Data ****
DB2STGNA ='DB2STGNA' *** DB2 Storage Group Name
DB2STGPA ='DB2STGPA' *** DB2 Storage Group Dataset Name Prefix
DB2STGVA ='DB2STGVA' *** DB2 Storage Group Volume

© Copyright IBM Corp. 1998, 1999 115

*** (VOLUME for volume name or
*** '*' for SMS managed volumes)

**** DB2 Databases ****
DB2DBNAM ='DB2DBNAM' *** DB2 Database Name
DB2MDBNM ='DB2MDBNM' *** DB2 PES Mapping Database Name
DB2PDBNM ='DB2PDBNM' *** DB2 PES Directory Database Name

**** DB2 Collections ****
DB2DBCOL ='DB2DBCOL' *** DB2 Database Collection Name
DB2MDCOL ='DB2MDCOL' *** DB2 PES Mapping Database Collection Name
DB2PDCOL ='DB2PDCOL' *** DB2 PES Directory Database Collection Name

DB2PLANN ='DB2PLANN' *** DB2 Plan Name

**** PARAMETERS FOR SCOPE SYSTEM ****

MQWFUKEY ='MQWFUKEY' *** MQWF Unique System Key
*** (e.g. for started task name)

MQWFSYSP ='MQWFSYSP' *** MQWF System Prefix
*** (e.g. part of MQSeries object naming
*** and profile keys)

MQWFSYSN ='MQWFSYSN' *** MQWF System Name

STTSKUID ='STTSKUID' *** MQWF Server Started Task RACF UserId
STTSKGRP ='STTSKGRP' *** MQWF Server Started Task RACF GroupId

CTRCNAME ='CTRCNAME' *** CTRACE Component Name
CTRCPMS1 ='CTRCPMS1' *** CTRACE Parmlib Member Suffix (Start Writer)
CTRCPMS2 ='CTRCPMS2' *** CTRACE Parmlib Member Suffix (Stop Writer)
CTRCWPRC ='CTRCWPRC' *** CTRACE Writer Procedure Name (max. 7 chars)

**** PARAMETERS FOR CUSTOMIZATION ****

**** CICS ****

*** (Used to control whether to include a CICS installation library
*** into the steplib concatenation of the jcl procedures. One of the
*** following two lines must be commented out with a '*'. If CICS
*** is not installed the parameter CICSLPFX must not be customized.)

CICSFL =' ' *** if CICS is Installed
CICSFL =' ' *** if CICS is NOT Installed

CICSLPFX ='CICSLPFX' *** CICS Installation High Level Qualifier

**** High Level Qualifiers ***

DB2INHLQ ='DB2INHLQ' *** DB2 Installation High Level Qualifier
MQPREFIX ='MQPREFIX' *** MQSeries Installation High Level Qualifier
LELIBPFX ='LELIBPFX' *** Language Environment High Level Qualifier
CLIBRPFX ='CLIBRPFX' *** C/C++ Installation High Level Qualifier
CBLIBPFX ='CBLIBPFX' *** Cobol Installation High Level Qualifier
IMSLIBPX ='IMSLIBPX' *** IMS Installation High Level Qualifier
ICONVPFX ='ICONVPFX' *** ICONV Installation High Level Qualifier
IPCSPRFX ='IPCSPRFX' *** IPCS Installation High Level Qualifier

**** Subsystems ****

DB2SSYSN ='DB2SSYSN' *** DB2 Subsystem Name
MQQMNAME ='MQQMNAME' *** MQSeries Queue Manager Name
CICSGRPN ='CICSGRPN' *** CICS Group Name

116 Customization and Administration

Appendix H. Machine profile

Each MQSeries Workflow for OS/390 system has a machine profile in
CustHLQ.SFMCDATA(FMCHEMPR). This profile contains system settings that affect the
operation of MQSeries Workflow for OS/390 servers and tools. Some of the values
are substituted automatically during customization, these must not be changed.
Changes made to the machine profile will affect new server instances and tools
that are started. If you want the changes to affect all running server instances then
you must restart the system as described in “Restarting the system” on page 55.

Table 48. Machine profile settings

Variable
Value may

be changed? Description

System No This value should be your value for System in Table 3 on page 7. This value is
substituted from the customization parameter file, see “Appendix G.
Customization parameter file” on page 115.

SystemGroup No This value should be your value for SystemGroup in Table 2 on page 6. This value is
substituted from the customization parameter file, see “Appendix G.
Customization parameter file” on page 115.

DatabaseName No This value should be your value for WorkflowDatabaseName in Table 2 on page 6.
This value is substituted from the customization parameter file, see “Appendix G.
Customization parameter file” on page 115.

DbPlan No This value should be your value for DB2Plan in Table 2 on page 6. This value is
substituted from the customization parameter file, see “Appendix G.
Customization parameter file” on page 115.

DbSubSystem No This value should be your value for DB2SubSystem in Table 5 on page 9. This value
is substituted from the customization parameter file, see “Appendix G.
Customization parameter file” on page 115.

ExecutionServer
OperationMode

No For future use.

APITimeOut Tune
carefully

API timeout in milliseconds.

FMLConnectName No QueueManager and Workflow context.

FMLConnect
DelayTime

Tune
carefully

Interval in milliseconds to wait between consecutive retries to reconnect to the
QueueManager.

FMC_TRACE_
CRITERIA

Yes Determines the level of trace detail provided by newly started servers or tools, as
described in “Turning tracing on” on page 87 and “Turning tracing off” on page 89.
Valid values are between 0,0000,00000000 (no trace) and 99,FFFF,FFFFFFFF (full
trace).

Language Yes The three letter language code selects which language version of the MMS
messages the servers will send to the OS/390 system console. Valid values are:

ENU For mixed-case U.S. English. This is the default value.

ENP For uppercase U.S. English. This option may be required if you are using
a double-byte character set.

If other languages become available in the future, they will be found as
InstHLQ.SFMCMSG(FMCHMxxx), where xxx is the language code.

AdminSvrsPerAS No The maximum number of administration servers that will be started per address
space is one.

ClnupSvrsPerAS No The maximum number of clean-up servers that will be started per address space is
one.

© Copyright IBM Corp. 1998, 1999 117

Table 48. Machine profile settings (continued)

Variable
Value may

be changed? Description

DistSvrsPerAS No For future use.

ExeSvrsPerAS Tune
carefully

The maximum number of execution servers that will be started per address space.
For more information, see“Changing the number of server instances per address
space” on page 81.

GwySvrsPerAS No For future use.

ModelSvrsPerAS No For future use.

PESvrsPerAS Tune
carefully

The maximum number of program execution servers that will be started per
address space. For more information, see“Changing the number of server instances
per address space” on page 81.

SchedSvrsPerAS No The maximum number of scheduling servers that will be started per address space
is one.

ServerStartProc No This identifies the server start procedure.

WaitBetweenQ
InhibitAnd
Allowed

Tune
carefully

Determines how many seconds a server queue is disabled for by the server stop
command. “Cannot stop servers” on page 84 describes a situation when you may
wish to change this value.

After customization, your machine profile will look like the following, with your
values from “Chapter 1. Planning your configuration” on page 3 automatically
substituted for the identifiers shown in italics:

**
*
* Description: MQ WorkFlow machine profile.
*
**
*
MQWorkflowMachine.SystemQualifier.System:System
MQWorkflowMachine.SystemQualifier.SystemGroup:SystemGroup
MQWorkflowMachine.SystemQualifier.DatabaseName:WorkflowDatabaseName
MQWorkflowMachine.SystemQualifier.DbPlan:DB2Plan
MQWorkflowMachine.SystemQualifier.DbSubSystem:DB2SubSystem
MQWorkflowMachine.SystemQualifier.ExecutionServerOperationMode:Standalone
MQWorkflowMachine.SystemQualifier.APITimeOut:180000
MQWorkflowMachine.SystemQualifier.FMLConnectName:SystemGroup.System,QueueManager
MQWorkflowMachine.SystemQualifier.FMLConnectDelayTime:30
MQWorkflowMachine.SystemQualifier.FMC_TRACE_CRITERIA:00,0000,00000000
MQWorkflowMachine.SystemQualifier.Language:ENU
MQWorkflowMachine.SystemQualifier.AdminSvrsPerAS:1
MQWorkflowMachine.SystemQualifier.ClnupSvrsPerAS:1
MQWorkflowMachine.SystemQualifier.DistSvrsPerAS:1
MQWorkflowMachine.SystemQualifier.ExeSvrsPerAS:5
MQWorkflowMachine.SystemQualifier.GwySvrsPerAS:1
MQWorkflowMachine.SystemQualifier.ModelSvrsPerAS:1
MQWorkflowMachine.SystemQualifier.PESvrsPerAS:5
MQWorkflowMachine.SystemQualifier.SchedSvrsPerAS:1
MQWorkflowMachine.SystemQualifier.ServerStartProc:UniqueSystemKey
MQWorkflowMachine.SystemQualifier.WaitBetweenQInhibitAndAllowed:30

118 Customization and Administration

Appendix I. Environment variable file

Each MQSeries Workflow for OS/390 system has an environment variable file in
CustHLQ.SFMCDATA(FMCHEENV). This file contains system settings that affect the
operation of MQSeries Workflow for OS/390 servers and tools. Some of the values
are substituted automatically during customization, these must not be changed.
Changes made to the environment variable file will affect new server instances and
tools that are started. If you want the changes to affect all running server instances
then you must restart the system as described in “Restarting the system” on
page 55.

Table 49. Environment variable file settings

Variable
Value may be

changed? Description

_ICONV_UCS2_PREFIX No Your value for ICONVInstHLQ in Table 4 on page 8.

LC_ALL No Selects the codepage to be used by the Workflow servers and tools.
This is set to your value for SystemGroupLocale, see Table 2 on page 6
for more details.

FMC_SIMPLE_TRACE_ONLY Yes Activates simple tracing in newly started servers and tools. Valid
values are YES or NO. For more information, see “Turning tracing on”
on page 87.

FMC_SYSTEM_QUALIFIER No This is set to your value for SystemQualifier in Table 3 on page 7.

FMC_ELAPSED_TIME No This must be set to YES.

FMC_IENV No This must be set to 1.

After customization, your machine profile will look like the following, with your
values from “Chapter 1. Planning your configuration” on page 3 automatically
substituted for the identifiers shown in italics:
_ICONV_UCS2_PREFIX=ICONVInstHLQ
LC_ALL=SystemGroupLocale
FMC_SIMPLE_TRACE_ONLY=NO
FMC_SYSTEM_QUALIFIER=SystemQualifier
FMC_ELAPSED_TIME=YES
FMC_IENV=1

© Copyright IBM Corp. 1998, 1999 119

120 Customization and Administration

Glossary

This glossary defines terms and abbreviations
used in this and other MQSeries Workflow for
OS/390 publications. If you do not find the term
you are looking for, refer to the index or the IBM
Dictionary of Computing, New York: McGraw-Hill,
1994.

A
administration console. The MQSeries Workflow
component that accepts commands for starting and
stopping systems and servers. It also allows the
number of server instances to be queried.

administration server. The MQSeries Workflow
component that performs administration functions
within an MQSeries Workflow system.

administration server ID. This name is used when
issuing administration console commands. It identifies
which administration server will execute a given
command. This identifier must be unique within the
OS/390 image, and not more than 8 characters long.

activity. One of the steps that make up a process
model. This can be a program activity, process activity,
or block activity.

API. See application programming interface.

application programming interface. An interface
provided by the MQSeries Workflow workflow
manager that enables programs to request services from
the MQSeries Workflow workflow manager. The
services are provided synchronously.

B
backward mapping. Conversion of output data
created by an OS/390 legacy application into an
MQSeries Workflow container. This conversion is
performed by the program execution server’s program
mapper.

backward mapping definition. Part of the MDL which
connects an interface definition and structure definition.

bridge. See MQSeries bridges.

Buildtime. An MQSeries Workflow component with a
graphical user interface for creating and maintaining
workflow process models, administering resources, and
the system network definitions.

C
CICS bridge. See MQSeries bridges.

cleanup server. The MQSeries Workflow component
that physically deletes information in the MQSeries
Workflow run-time database, which had only been
deleted logically.

container API. An MQSeries Workflow API that
allows programs executing under the control of
MQSeries Workflow to obtain data from the input and
output container of the activity and to store data in the
output container of the activity. See also data container.

CPIC. An invocation type that allows the program
execution server to run an application synchronously on
an IMS service. CPIC is based on IMS/APPC.

D
data container. Storage for the input and output data
of an activity or process. See also container API.

data structure. A named entity that consists of a set of
data structure members. Input and output containers
are defined by reference to a data structure, and adopt
the layout of the referenced data structure type.

data structure member. One of the variables of which
a data structure is composed.

’DEFAULT’ mapping. The mapping type provided by
IBM.

domain. A set of MQSeries Workflow system groups
which have the same meta-model, share the same staff
information, and topology information. Communication
between the components in the domain is via message
queuing.

E
EXCI. An invocation type that allows the program
execution server to run an application synchronously on
a CICS service. EXCI is based on the CICS External
CICS Interface provided by CICS Version 4.1 and
higher to allow non-CICS applications to call programs
running under CICS.

executable. The name of the program as defined to
the service system.

execution user ID. The OS/390 user ID used by the
program execution server to execute a program request.

© Copyright IBM Corp. 1998, 1999 121

execution server. The MQSeries Workflow component
that performs the processing of process instances at
runtime.

export tool. A utility program for retrieving
information from the Workflow database and making it
available in MQSeries Workflow Definition Language
(FDL) format.

F
FDL. The MQSeries Workflow definition language
used to exchange MQSeries Workflow information
between MQSeries Workflow system groups. The
language is used by the import and export function of
MQSeries Workflow and contains the workflow
definitions for staff, programs, data structures, and
topology. This allows non-MQSeries Workflow
components to interact with MQSeries Workflow. See
also export tool and import tool.

forward mapping. Conversion of MQSeries Workflow
containers into a format accepted by an OS/390 legacy
application. This conversion is performed by the
program execution server’s program mapper.

forward mapping definition. Part of the MDL which
connects a structure definition and interface definition.

I
import tool. A utility program that accepts
information in the Workflow definition language (FDL)
format and places it in a Workflow database.

IMS bridge. See MQSeries bridges.

interface. The definition of the data structure accepted
by an OS/390 CICS or IMS legacy application. This
definition is used by the ’DEFAULT’ mapping exit to
convert the data to (and from) an MQSeries Workflow
program’s structure.

interface definition. Part of the MDL which defines
the interface used by a legacy application.

interface element. Part of an interface definition. An
interface element has a name, a type, and a cardinality.
It is mapped on to a structure element by a mapping rule.

invocation exit. The DLL specified by the invocation
type. The exit is based on an invocation protocol like
CICS EXCI or the MQSeries CICS and IMS bridges.

invocation protocol. The way the PES connects to a
service like CICS or IMS in order to invoke a program
on that service system.

invocation type. The name used to identify the
invocation exit to use. An invocation type must be
defined in the program execution server directory,
where it is associated with one or more services. In the

process model, an invocation type must also be
associated with each program that the PES is to be able
to invoke.

L
local user. The RACF user under which the program
is executed.

M
mapping definition language. The language used to
define mapping rules for the ’DEFAULT’ mapping exit.

mapping exit. Used by the PES to convert data
between MQSeries Workflow and legacy applications.
The exit is identified by a mapping type defined in the
PES directory and in Buildtime. The exit is only called if
mapping has been enabled in Buildtime.

mapping rules. Part of a forward mapping or backward
mapping definition that defines the mapping between
individual interface elements and structure elements.
Mapping rules are defined using the mapper definition
language.

mapping type. The name used to identify which
mapping exit to use. The mapping type is defined in
the PES directory and must match the Buildtime
definitions for the legacy application. The mapping
type provided with MQSeries Workflow for OS/390 is
named ’DEFAULT’.

MDL. See mapping definition language.

message queuing. A communication technique
provided my MQSeries that uses asynchronous
messages for communication between software
components.

’MQCICS’. An invocation type that allows the
program execution server to run an application
asynchronously on a CICS service. The corresponding
invocation exit uses the MQSeries CICS Bridge
invocation protocol.

’MQIMS’. An invocation type that allows the program
execution server to run an application asynchronously
on an IMS service. The corresponding invocation exit
uses the invocation protocol MQSeries IMS Bridge.

MQSeries. The cross-platform, reliable message
passing system on which the MQSeries Workflow
product family is built.

MQSeries bridges. The program execution server
supports two asynchronous invocation types: the
MQSeries CICS bridge and the MQSeries IMS bridge.

122 Customization and Administration

MQSeries Workflow. The IBM product for business
process automation. In this manual this term is used
when refering to the MQSeries Workflow product
family.

MQSeries Workflow for OS/390. This product;
extending IBM’s business process automation to the
OS/390 platform. This term is always used to
distinguish it from MQSeries Workflow for other
platforms.

P
PES. See program execution server.

PES directory. See program execution server directory.

process activity. An activity that is part of a process
model. When a process activity is executed, an instance
of the process model is created and executed.

process definition. See process model.

process model. A set of processes represented in a
process model. The processes are represented in
graphical form in the process diagram. The process
model contains the definitions for staff, programs, and
data structures associated with the activities of the
process. After having translated the process model into
a process template, the process template can be
executed over and over again.

program execution server. The MQSeries Workflow
for OS/390 component that manages the invocation of
programs running on OS/390.

program execution server directory. The PES directory
defines invocation types, mapping types, and the services
where MQSeries Workflow program activities can be
executed. It also contains information to map an
MQSeries Workflow user ID to an OS/390 execution
user ID. The PES directory must be updated when you
add services and users.

program mapping import tool. Component of the
MQSeries Workflow program mapping exit which reads
the result of the program mapping parser and inputs
the compiled program mapping definitions into the
program mapping DB.

program mapping parser. Component of the
MQSeries Workflow for OS/390 program mapping exit
which parses the MDL and creates an intermediate file
which is used by the program mapping import tool.

S
safe application. An application that is guaranteed to
execute once and only once, or not at all. A safe
application is invoked in the same transactional context
as the program execution request. This requires the

specification of a transactional invocation type. MQSeries
Workflow program execution normally guarantees
execution at least once.

scheduling server. The MQSeries Workflow
component that schedules actions based on time events,
such as resuming suspended work items, or detecting
overdue processes.

security routine. The routine to check whether a local
user is allowed to access an executable on a service
system with a given invocation type.

server. The servers that make up an MQSeries
Workflow system are called Program Execution Server,
Execution Server, Administration Server, Scheduling Server,
and Cleanup Server.

service. The name of a CICS or IMS system that the
program execution server accesses to execute programs.

structure. The definition of the MQSeries Workflow
structure passed into or out of an activity
implementation. This definition is used by the ’DEFAULT’
mapping exit to convert the data to (and from) a legacy
application’s interface.

structure element. Part of a structure definition. A
structure element has a name, a type, and a cardinality.
It is mapped on to an interface element by a mapping
rule.

system. The smallest MQSeries Workflow unit within
an MQSeries Workflow domain. It consists of a set of
the MQSeries Workflow servers: one administration
server, one or more execution server instances, and zero
or more program execution server instances, and
optionally, one scheduling server and/or one clean-up
server.

system group. Each system group needs its own
database, and contains one system. Multiple system
groups can share the same DB2 subsystem.

T
translate. The action that converts a process model
into a run-time process template.

U
user ID. An alphanumeric string that uniquely
identifies an MQSeries Workflow user. MQSeries
Workflow for OS/390 handles two types of user IDs,
(1) MQSeries Workflow user IDs. (2) Execution user IDs.

user type definition. A user defined interface type. If
you need to map a data type that is not supported by
the default mapper type, you can define a user type,
and write a type conversion program which handles
the conversion of that particular data type. This must
use the user type exit.

Glossary 123

user type interface. A user defined interface type. If
you need to map a data type that is not supported by
the default mapper type, you can define a user type,
and write a type conversion program which handles
the conversion of the particular data type. This must
use the user type exit.

W
workflow. The sequence of activities performed in
accordance with the business processes of an enterprise.

Workflow Management Coalition. A non-profit
organization of vendors and users of workflow
management systems. The coalition’s mission is to
promote workflow standards for workflow
management systems to allow interoperability between
different implementations.

workflow model. Synonym for process model.

Workflow system. See system.

124 Customization and Administration

Bibliography

To order any of the following publications,
contact your IBM representative or IBM branch
office.

MQSeries Workflow for OS/390
publications

This section lists the publications included in the
MQSeries Workflow for OS/390 library.
v MQSeries Workflow for OS/390: Customization

and Administration, SC33-7030, explains how to
customize and administer an MQSeries
Workflow for OS/390 system.

v MQSeries Workflow for OS/390: Programming,
SC33-7031, explains the C and Cobol
application programming interfaces (APIs),
and the program exits.

v MQSeries Workflow for OS/390: Messages,
SC33-7032, explains the MQSeries Workflow
for OS/390 system messages.

v MQSeries Workflow for OS/390: Program
Directory, GI10-0483, explains how to install
MQSeries Workflow for OS/390.

MQSeries Workflow publications

This section lists the publications included in the
MQSeries Workflow library.
v IBM MQSeries Workflow: List of Workstation

Server Processor Groups, GH12-6357, lists the
processor groups for MQSeries Workflow.

v IBM MQSeries Workflow: Concepts and
Architecture, GH12-6285, explains the basic
concepts of MQSeries Workflow. It also
describes the architecture of MQSeries
Workflow and how the components fit
together.

v IBM MQSeries Workflow: Getting Started with
Buildtime, SH12-6286, describes how to use
Buildtime of MQSeries Workflow.

v IBM MQSeries Workflow: Getting Started with
Runtime, SH12-6287, describes how to get
started with the Client.

v IBM MQSeries Workflow: Programming Guide,
SH12-6291, explains the application
programming interfaces (APIs).

v IBM MQSeries Workflow: Installation Guide,
SH12-6288, contains information and
procedures for installing and customizing
MQSeries Workflow.

v IBM MQSeries Workflow: Administration Guide,
SH12-6289, explains how to administer an
MQSeries Workflow system.

Workflow publications
v IBM Systems Journal, Vol. 36. No. 1, 1997 by

Frank Leymann, Dieter Roller, you can also refer
to the Internet:
http://www.almaden.ibm.com/journal/
sj361/leymann.html

v Workflow Handbook 1997, published in association
with WfMC, edited by Peter Lawrence

Other useful publications
v MQSeries Clients, GC22-1632.
v DB2 for OS/390 Administration Guide,

SC26-8957.
v DB2 for OS/390 SQL Reference, SC26-8966.
v DB2 for OS/390 Application Programming and

SQL Guide, SC26-8958.
v DB2 for OS/390 Command Reference, SC26-8960.
v DB2 for OS/390 Utility Guide and Reference,

SC26-8967.

Licensed books

The licensed books that were declassified in
OS/390 Version 2 Release 4 appear on the OS/390
Online Library Collection, SK2T-6700. The
remaining licensed books for OS/390 Version 2
appear on the OS/390 Licensed Product library,
LK2T-2499, in unencrypted form.

© Copyright IBM Corp. 1998, 1999 125

126 Customization and Administration

Index

Special Characters
_ICONV_UCS2_PREFIX 119

A
activity 121
activity, process 123
activity properties, program 64
address space, changing the number of

server instances per 81
address space, too many server instances

per 84
address spaces 47
administering program mappings 74
administration console 45, 48, 50, 51, 53,

121
administration server 4, 45, 48, 49, 56,

121
administration server, starting the 53
administration server, stopping the 53
administration server cannot be

started 83
administration server commands 53
administration server ID 121
administration tasks 50, 51
administration tasks using Buildtime 59
AdminServerID 27, 40, 53, 55
AdminSvrsPerAS 117
alias queues, MQSeries 83, 84
API 121
APITimeOut 117
APPC LU for VTAM 34
APPC/MVS transaction scheduler 34
APPCPM 34
application programming interface 121
applid 9, 70
applId, EXCIC connection parameter 94
ASCHPMxx 34
asynchronous invocation types 69
attach mode 60
audit trail storage group 5
AuditStorageGroupDataSet 5
AuditStorageGroupDataSetPrefix 6
AuditStorageGroupName 5, 6
AuditStorageGroupVolumeSet 5, 6
authorizing a user 73

B
backward mapping 103, 121
backward mapping format 63
backward mapping parameters 63
BACKWARDMAPPING 101
bibliography 125
boot queues 50
bridge 121
bridge invocation, customize MQSeries

IMS 36
buffer pool 10
buffer pools 12
Buildtime 46, 51, 59, 65, 93, 105, 121

C
CANCEL 85
capacity, system’s 86
CCPPInstHLQ 4, 8
CEECCSD 23
CICS 4, 46
CICS, restrictions for passwords in 105
CICS, tracing in 89
CICS API support customization 23
CICS bridge 121
CICS bridge, MQSeries 29
CICS bridge invocation, customize

MQSeries 31
CICS EXCI invocation, customize 30
CICS flag 8
CICS program types 69
CICS stubs, MQSeries 24
CICSBridgeInputQueue 9, 31, 33
CICSContainer, sample program 40
CICSFlag 4, 8
CICSGroup 4, 9
CICSInstHLQ 4, 8
CICSMapping, sample program 40
CKBR 33
CLB3YCSD 23
clean-up server 4, 56
cleanup server 121
CLEANUP_SERVER export 110
client, runtime 86
client connection, customize the

MQSeries 26
client customization, LAN 25
client sample application, verify 27
client tier 48
ClnupSvrsPerAS 117
code page conversion tool 107
command file 114
commands, server 55
commands, system 54
component trace 4
configuration, planning your 3
connection parameters 38
connection parameters in PES

directory 94
CONNECTION resource definition 30
ConnectionName 30
connectionParameters 70, 71, 95, 96
container API 121
CPIC 29, 38, 69, 121
CPIC connection parameters 94
CPIC invocation, customize IMS 34
creating a program mapping 72
CSD file 23
CSQ6SYSP macro 36
CSQCKB group 31
CTComponent 4, 7, 88
CTIFMCxx 22
CTStartSuffix 4, 7, 22
CTStopSuffix 4, 7, 22, 88
CTWriter 4, 7, 22
CustHLQ 3, 4, 5

customization identifiers 9
customization parameter file 115
customization verification 27

D
data container 121
data storage group 5
data structure 121
database requirements 10
database utility, program mapping 101
DatabaseName 117
DataStorageGroup DataSetPrefix 6
DataStorageGroupDataSet 5
DataStorageGroupName 6
DataStorageGroupVolumeSet 5, 6
DatatStorageGroupName 5
DB2 47
DB2 customization 17, 18, 20, 21
DB2 customization parameters 5
DB2 requirements 10
DB2InstHLQ 5, 8
DB2Plan 5, 6, 25
DB2SubSystem 5, 9
DbPlan 117
DbSubSystem 117
DEEP export 110, 113
DEFAULT mapping 121
DEFAULT mapping type 69
defining a security profile 73
defining process models 59
defining program properties 60
defining server properties 59
definition, process 123
deleting a program mapping

definition 77
deleting the PES directory 100
DFHCSDUP resource definition

utility 31
DFHRPL 23
DFLTUSER 33
directory, PES 123
directory, program execution server 123
directory database 68
directory database, PES 5
directory routine 68
disabling a program 73
disabling a program mapping 74, 77
disabling a program mapping type 78
disabling an invocation type 78
displaying server instances 58
DistSvrsPerAS 118
domain 48, 121
DOMAIN export 110
DSNTEP2 17
dump analyzer 89
duration 63

E
EDSALIM 23
enabling a mapping type 77

© Copyright IBM Corp. 1998, 1999 127

enabling a program mapping 74, 76
environment variable file 119
EXCI 29, 38, 69, 121
EXCI connection parameters 94
EXCI invocation, customize CICS 30
executable 62, 121
executable type 62
execution invocation types,

customizing 29
execution mode 73
execution samples, verify program 40
execution server 4, 45, 56, 122
EXECUTION_SERVER export 110
execution servers, starting 56
execution user 79
execution user ID 121
ExecutionServerOperationMode 117
executionUserID 70, 95
ExeSvrsPerAS 81, 118
exitName 71, 95
exitParameters 71, 95
EXPORT database 110
export tool 111, 122
export tool return codes 112
exporting FDL 113
exporting process models 65
extended trace 87, 88

F
FDL 46, 59, 65, 111, 112, 113, 114, 122
FDL code page conversion tool 107
FMC_ELAPSED_TIME 119
FMC_IENV 119
FMC_SIMPLE_TRACE_ONLY 87, 119
FMC_SYSTEM_QUALIFIER 119
FMC_TRACE_CRITERIA 87, 89, 117
FMCCTL 76
FMCDIMP 72, 99
FMCDLOG 72
FMCH0IBA 65, 111, 112, 113, 114
FMCH0IBA import/export tool

syntax 109
FMCH0XME default mapper 96
FMCH1PIT PES directory import tool 71
FMCH2CCT sample CICS program 39,

40
FMCH2CMT sample CICS program 39,

40
FMCH3ICS 39
FMCH3ICS sample IMS program 39, 40
FMCH3ICT sample IMS transaction 39
FMCH3IMS 39
FMCH3IMS sample IMS program 39, 40
FMCH3IMT sample IMS transaction 39
FMCH3xxx 24
FMCHDDDB 11, 18
FMCHDDMD 11, 21
FMCHDDMS 11, 21
FMCHDDMT 11, 21
FMCHDDPD 11, 20
FMCHDDPS 11, 20
FMCHDDPT 11, 20
FMCHDDST 11, 18
FMCHDDTB 11, 19
FMCHDDTS 11, 18
FMCHECIF customization parameter

file 115

FMCHEDTP 38, 70
FMCHEDTP PES directory template 95
FMCHEENV 87, 112, 113, 114
FMCHEENV environment variable

file 119
FMCHEMCT sample control

statements 76
FMCHEMDL 76
FMCHEMDL sample mapping

definition 76
FMCHEMPR 85, 87, 89
FMCHEMPR machine profile 117
FMCHEPRO 23
FMCHEUPR 24
FMCHJBDB 19
FMCHJBMA 21
FMCHJBPD 20
FMCHJBTE 17
FMCHJCCH 19
FMCHJCPD 20
FMCHJCPR 23, 24
FMCHJCTC 89
FMCHJCTR 23
FMCHJDBP 11, 18
FMCHJDDB 18
FMCHJDMD 21
FMCHJDMP SVC dump analyzer 89
FMCHJDMQ 22
FMCHJDMS 21
FMCHJDMT 21
FMCHJDPD 20
FMCHJDPS 20
FMCHJDPT 20
FMCHJDSC 25
FMCHJDST 18
FMCHJDTB 19
FMCHJDTS 18
FMCHJEDB 18
FMCHJEDC 19
FMCHJEMD 21
FMCHJEMS 21
FMCHJEPD 20
FMCHJEPS 20
FMCHJETS 19
FMCHJFDL 28
FMCHJMPR 39, 75
FMCHJPDL 39
FMCHJPIB 20
FMCHJPIC 20, 38
FMCHJPIF PES directory import tool 72
FMCHJPMQ 22
FMCHJRBS 19
FMCHJRIB 19
FMCHJRIF 65
FMCHJRST 19
FMCHJSPD 20
FMCHJTRC 88
FMCHSMEX sample mapping exit

definitions 77
FMCICMD 65, 110, 111, 114
FMCIEXP 65, 111
FMCIIMP 65, 110, 111, 112, 113
FMCILOG 65, 111, 113
FMCIN 75
FMCOUT 84
FMCTRC 84
FMCTRC00, tool trace DD statement 88

FMCTRCxx, server trace DD
statement 88

FMCZCHK 26
FMLConnectDelayTime 117
FMLConnectName 117
forward mapping 102, 122
forward mapping definition 122
forward mapping format 63
forward mapping parameters 63
FORWARDMAPPING 101
FTP 65

G
GET_INHIBITED 83, 84
GwySvrsPerAS 118

H
high level qualifiers 8

I
ICONVInstHLQ 8
import 110
import / export tool 65
import/export tool syntax 109
import tool 111, 112, 113, 114
import tool, PES directory 71
import tool return codes 112
importing process models 65
IMQB23IC 24
IMQS23IC 24
IMQWRLDC, MQSeries sample 26
IMS 4, 47
IMS API support customization 24
IMS bridge 122
IMS bridge, MQSeries 29
IMS bridge invocation, customize

MQSeries 36
IMS conversations 69
IMS CPIC invocation, customize 34
IMS program types 69
IMSBridgeInputQueue 9, 37
IMSContainer, sample program 40
IMSInstHLQ 4, 8
IMSMapping, sample program 40
input queues 50
inputQueue, MQ invocation connection

parameters 94
installation scope identifiers 5
instances, changing the number of

running server 81
instances, too few server 86
instances, too many server 86
instances per address space, changing the

number of server 81
instances per address space, too many

server 84
InstHLQ 3, 5
INTERFACE 101
interface 122
interface, mapping 103
interface element 122
invalid password 86
invocation, customize CICS EXCI 30
invocation, customize IMS CPIC 34

128 Customization and Administration

invocation, Customize MQSeries CICS
bridge 31

invocation, customize MQSeries IMS
bridge 36

invocation exit 46, 122
invocation protocol 122
invocation routine 68
invocation section in PES directory 94
invocation type 46, 62, 70, 97, 122
invocation type, adding a new 71
invocation type, disabling an 78
invocation type, new 93
invocation type, user-defined 68
invocation types 69
invocation types, customizing 29
IPCS 4
IPCSInstHLQ 4, 8
IRC 30

L
LAN client customization 25
Language 117
language environment 4
LC_ALL 119
legacy program mapping 46
LEInstHLQ 8
local user 63, 79, 122
logon 110
luname 9, 38
LUName, CPIC connection

parameter 94

M
machine profile 81, 85, 117
machine profile changes not

activated 85
mapper, program 51
mapper, user-defined 68
mapping, backward 103
mapping, forward 102
mapping, program 46
mapping database 5, 68
mapping database utility 101
mapping definition, creating a new

program 101
mapping definition, deleting a

program 77, 102
mapping definition, inserting a

program 102
mapping definition, replacing a

program 101
mapping definition language 122
mapping definition sample 76
mapping definitions, listing

program 102
mapping exit 46, 122
mapping import tool return codes 76
mapping interface 103
mapping properties 76
mapping routine 68
mapping routine call 63
mapping rules 122
mapping section in PES directory 94
mapping structure 103
mapping type 46, 63, 97, 122

mapping type, adding a new 71
mapping type, disabling a 78
mapping type, enabling a 77
mapping type, new 93
mapping types 69
mapping user IDs 94
mapping user type 103
MDL 122
message queuing 122
mode, CPIC connection parameter 94
model, process 123
ModelSvrsPerAS 118
MQ invocation connection

parameters 94
MQCHLLIB 26
MQCHLTAB 26
MQCICS 69
MQHostName 9, 10
MQIMS 69
MQInstHLQ 4, 8
MQRC_GET_INHIBITED 83, 84
MQRC_PUT_INHIBITED 83, 84
MQSeries 4, 26, 47, 50, 122
MQSeries alias queues 83, 84
MQSeries bridges 38, 69, 122
MQSeries CICS bridge 29
MQSeries CICS bridge customization 31
MQSeries CICS bridge invocation,

customize 31
MQSeries CICS stubs 24
MQSeries client connection,

customization 26
MQSeries customization 22
MQSeries IMS bridge 29
MQSeries IMS bridge invocation,

customize 36
MQSeries Workflow 123
MQSeries Workflow client

customization 26
MQSeries Workflow Definition Language,

(FDL) 122
MQSeries Workflow for OS/390 123
MQSERVER 26
mqwf_uid 32
mqwf_userid 32
MQWorkflowMachine 87

N
naming Buildtime objects 105
netid 9, 38
netId, CPIC connection parameter 94
new invocation type 93
new mapping type 71, 93
new service 93
new user 93
NumberOfInstances 56

O
ORGANIZATION export 110
OTMACON 36

P
parameter file, customization 115
PARMLIB 13

password, invalid 86
passwords in CICS, restrictions for 105
performance problems 86
performance tuning 81
PERSON export 110
PES 56, 123
PES, cannot stop 85
PES (program execution server) 45
PES directory 46, 51, 93, 123
PES directory, connection parameters 94
PES directory, deleting the 100
PES directory, invocation section 94
PES directory, mapping section 94
PES directory, security 80
PES directory, security section 94
PES directory, service section 94
PES directory administration 69
PES directory customization 20
PES directory database 5
PES directory dependencies 97
PES directory import tool 71
PES directory import tool examples 99
PES directory import tool return

codes 99
PES directory routine 68
PES directory structure 93
PES directory template 95
PES mapping database 5
PES mapping DB2 customization 21
PESDirectoryCollection 5, 6
PESDirectoryDatabaseName 5, 6
PESDirectorySourceFile 10
PESERVER 60, 93, 95
PESMappingCollection 5, 6
PESMappingDatabaseName 5, 6
pesName 95
PESvrsPerAS 81, 118
PGMLIB 39
planning your configuration 3
PRIQTY 18, 19, 20, 21
problem determination 83
problems, resource and performance 86
problems, server 83
PROCESS 110
process activity 123
PROCESS CATEGORY export 110
process definition 123
PROCESS export 110
process model 123
process models 111, 112, 113, 114
process models, defining 59
process models, importing and

exporting 65
process models, uploading 65
PROCLIB 13
program, disabling a 73
program activity 72
program activity properties 64
program administration tasks 51
program execution invocation types,

customizing 29
program execution samples 39
program execution samples, verify 40
program execution security 79
program execution server 4, 45, 56, 123
program execution server, starting 56

Index 129

program execution server component
structure 68

program execution server directory 46,
93, 123

program execution server directory,
connection parameters 94

program execution server directory,
customize 38

program execution server directory,
invocation section 94

program execution server directory,
mapping section 94

program execution server directory,
service section 94

program execution server directory
administration 69

program execution server directory
template 95

PROGRAM_EXECUTION_SERVER
export 110

program execution server properties 60
PROGRAM export 110
program mapper 51
program mapping 46
program mapping, creating a 72
program mapping, disabling 77
program mapping, enabling a 76
program mapping changes not

activated 85
program mapping database 68
program mapping database utility 101
program mapping definition,

creating 101
program mapping definition,

deleting 77, 102
program mapping definition,

inserting 102
program mapping definition,

replacing 101
program mapping definitions,

listing 102
program mapping import tool return

codes 76
program mapping properties 76
program mapping type, disabling a 78
program mappings, administering 74
program properties 62
program properties, defining 60
program properties in Buildtime 62
program security 80
programExecution 95
programExecution PES directory key 93
properties, program 62
properties, program activity 64
properties, server 60
PUT_INHIBITED 83, 84

Q
queue manager 13
QueueManager 9, 38
QUEUEMANAGER 96
queueManager, MQ invocation

connection parameters 94
queues 50
queues, MQSeries alias 83, 84

R
RACF 13, 47, 51, 68, 73
RACF profile 80
REGION 23
resource problems 86
resource recovery service 73
restarting servers 57
return codes, extended trace format

converter 88
return codes, import/export tool 112
return codes, PES directory import

tool 99
return codes, program mapping import

tool 76
revoking a user 74
ROLE export 110
rollback 111, 112
RRS 19, 73
rules, mapping 122
RUNSTATS 19, 20
runtime client 86

S
safe application 123
safe applications 73
samples, verify program execution 40
SchedSvrsPerAS 118
scheduling server 4, 56, 123
SCHEDULING_SERVER export 110
security, program 80
security, program execution 79
security checking 63
security in the PES directory 80
security profile, defining a 73
security routine 68, 123
security routine call 73
security section in PES directory 94
SELECT 19
server 123
server, program execution 123
server, scheduling 123
server administration tasks 51
server cannot be started,

administration 83
server commands 55
server commands, administration 53
server customization 25
server instances, changing the number of

running 81
server instances, displaying 58
server instances, too few 86
server instances, too many 86
server instances per address space,

changing the number of 81
server instances per address space, too

many 84
server problems 83
server properties 60
server properties, defining 59
server setting restrictions 60
server tier 48
server trace 88
ServerGroupID 4, 7
servers, cannot stop 84
servers, restarting 57
servers, starting 56

servers, stopping 57
ServerStartProc 118
ServerType 55
ServerUserID 4, 7, 31, 32, 39, 79
service 62, 123
service, new 93
service definition, adding a new 70
service name 71, 97
service properties in Buildtime 62
service section in PES directory 94
service type 62, 71, 97
SESSIONS resource definition 30
SFMCEMCT 76
simple trace 87
spool space, running out 86
start time 60
starting execution servers 56
starting servers 56
starting the administration server 53
starting the program execution server 56
starting the system 54
stop PES, cannot 85
stop servers, cannot 84
stop time 60
stopping servers 57
stopping the administration server 53
stopping the system 54
STRUCTURE 101
structure, mapping 103
structure definition 123
structure element 123
STRUCTURE export 110
subsystem identifiers 9
support mode 60
surrogate_id 32
SVC dump analyzer 89
synchronous invocation types 69
syntax, import/export tool 109
SYSOUT 65, 111, 114
System 4, 7
system 48
System 117
system 123
system, starting the 54
system, stopping the 54
system administration tasks 51
system commands 54
system console 45, 51
system customization verification 27
SYSTEM export 110
system group 48, 123
system group scope identifiers 6
system’s capacity 86
system scope identifiers 7
system trace 47, 87
SystemGroup 6, 117
SystemGroupPrefix 6
SystemGroupQualifier 5
SystemQualifier 4, 7, 87

T
table space 10, 12
tasks, administration 50, 51
tasks, server administration 51
tasks, system administration 51
tool trace 88
trace, system 47

130 Customization and Administration

trace, viewing the 88
trace criteria 87
trace customization 22
tracing 86, 87
tracing in CICS 89
transaction scheduler, APPC/MVS 34
transactions 85
transferring files to the host 65
TRANSID 70
transId, EXCIC connection parameter 94
translate 110
TRANSLATE 110, 114
translating FDL process models 111, 112,

114
translating process models 65
tuning, performance 81

U
UniqueSystemKey 4, 7, 27, 40, 53
updating a program mapping 74
uploading files to the host 65
user, authorizing a 73
user, new 93
user, revoking a 74
user administration tasks 51
user-defined invocation type 68
user-defined mapper 68
user ID 73, 79, 123
user resolution 94
user resolution information 70
user type, mapping 103
user type definition 123
userID 70, 95
USERTYPE 101

V
volumes 12
VOLUMES 18
VTAM, APPC LU for 34

W
WaitBetweenQInhibitAndAllowed 85,

118
Windows NT 26
Workflow client, customize the

MQSeries 26
Workflow client sample application,

verify 27
Workflow database 5
Workflow Definition Language

(FDL) 122
Workflow server customization 25
Workflow system 45
workflow system 124
Workflow system customization

parameters 4
Workflow system group 4
WorkflowCollection 5, 6
WorkflowDatabaseName 5, 6

X
XCFGroupName 9, 37
XCFMemberIMS 37

XCFMemberMQ 36

XCFMemberName 10

Index 131

132 Customization and Administration

Readers’ Comments — We’d Like to Hear from You

IBM MQSeries Workflow for OS/390
Customization and Administration
Version 3 Release 1

Publication No. SC33-7030-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC33-7030-00

SC33-7030-00

IBM
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM

Program Number: 5655–A96

Printed in Denmark by IBM Danmark A/S

SC33-7030-00

