
IBM Tivoli Monitoring
Workbench User’s Guide
Version 5.1 SH19-4571-00

IBM Tivoli Monitoring
Workbench User’s Guide
Version 5.1 SH19-4571-00

IBM Tivoli Monitoring Workbench User’s Guide, Version 5.1

Copyright Notice

© Copyright IBM Corporation 2000, 2001. All rights reserved. May only be used pursuant to a Tivoli Systems
Software License Agreement, an IBM Software License Agreement, or Addendum for Tivoli Products to IBM
Customer or License Agreement. No part of this publication may be reproduced, transmitted, transcribed, stored
in a retrieval system, or translated into any computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise, without prior written permission of IBM
Corporation. IBM Corporation grants you limited permission to make hardcopy or other reproductions of any
machine-readable documentation for your own use, provided that each such reproduction shall carry the IBM
Corporation copyright notice. No other rights under copyright are granted without prior written permission of
IBM Corporation. The document is not intended for production and is furnished “as is” without warranty of any
kind. All warranties on this document are hereby disclaimed, including the warranties of merchantability
and fitness for a particular purpose.

U.S. Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corporation.

Trademarks

Tivoli, the Tivoli logo, Tivoli Enterprise Console, are trademarks or registered trademarks of International
Business Machines Corporation or Tivoli Systems Inc. in the United States, other countries, or both.

Microsoft, Windows, and Windows NT, are registered trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
Notices

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply that they
will be available in all countries in which Tivoli Systems or IBM operates. Any reference to these products,
programs, or services is not intended to imply that only Tivoli Systems or IBM products, programs, or services
can be used. Subject to valid intellectual property or other legally protectable right of Tivoli Systems or IBM,
any functionally equivalent product, program, or service can be used instead of the referenced product, program,
or service. The evaluation and verification of operation in conjunction with other products, except those expressly
designated by Tivoli Systems or IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents
or pending patent applications covering subject matter in this document. The furnishing of this document does
not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, New York 10504-1785, U.S.A.

ISO 9001 Certification

This product was developed using an ISO 9001 certified quality system.

Certification has been awarded by Bureau Veritas Quality International (BVQI) (Certification No.
BVQI - 92086 / A).

BVQI is a world leader in quality certification and is currently recognized by more than 20
accreditation bodies.

Contents

Figures . vii

Preface. ix
Who Should Read This Guide . ix

What This Guide Contains . ix

Publications . x

IBM Tivoli Monitoring Library . x

Prerequisite Publications. xi

Accessing Publications Online . xi

Ordering Publications . xi

Providing Feedback about Publications . xi

Contacting Customer Support . xi

Conventions Used in This Book . xii

Typeface Conventions . xii

Operating System-dependent Variables and Paths . xii

Chapter 1. Introduction . 1
What Workbench Can Do for You . 1

Compatibility Mode . 2

Common Information Model Implementation . 3

Chapter 2. Resource Models and Related Concepts . 5
Defining Resource Model Elements . 5

Cycles. 5

Dynamic Models . 5

Data Collection . 6

Events. 7

Events and Indications. 7

Attributes . 7

Actions . 7

Thresholds . 8

Parameters . 8

Boolean List . 9

Choice List . 9

Numeric List . 10

String List . 10

Logging . 11

iiiIBM Tivoli Monitoring Workbench User’s Guide

||

||

Logging Elements . 11

Decision Tree Script . 12

Dependencies . 13

Chapter 3. Installation . 15
Software Requirements . 15

Hardware Requirements. 15

Installation Procedure . 15

Chapter 4. Designing a Resource Model . 19
Preliminary Steps . 19

Example of a Resource Model . 19

Problem Analysis . 19

Determining Which Resources to Monitor . 19

Defining a Resource Model . 20

Defining the Highlighted Problems . 21

Defining Thresholds and Parameters . 21

Defining the Monitoring Algorithm . 22

Chapter 5. Creating a Resource Model. 23
About Resource Model Names. 23

Resource Model Creation . 24

Creating an Empty Resource Model. 26

Task 1: Defining a Resource Model . 26

Task 2: Defining a Dynamic Model . 27

Task 3: Defining Events . 30

Task 4: Defining Thresholds . 33

Task 5: Defining Parameters . 34

Task 6: Defining Data to Log . 34

Task 7: Defining the Decision Tree Script . 36

Task 8: Adding Dependencies . 36

Task 9: Debugging a Resource Model . 37

Task 10: Building a Resource Model . 39

Creating a Resource Model from a Monitoring Source . 40

Resource Model Wizard. 43

Creating a Resource Model from a CIM class . 43

Creating a Resource Model from a Monitoring Source . 50

Creating a Resource Model from a Custom Script . 53

Chapter 6. Resource Model Troubleshooting . 56

iv Version 5.1

||

||

||

Appendix A. Service Object Method Library . 57
Basic Object Methods . 57

General Settings . 58

Dynamic Model. 58

Thresholds . 61

Parameters . 61

Events. 63

Logging . 64

Utilities . 64

Mapping Tables. 65

Method CreateMap . 65

Method SetMapNumElement . 66

Method SetMapStrElement . 66

Method GetMapNumValue . 66

Method GetMapStrValue . 67

Method RemoveMapElement . 67

Method RemoveMapAll. 67

Method ExistsMapElement . 68

Method DestroyMap . 68

Advanced Object Methods. 68

General Settings . 68

Dynamic Model. 69

Thresholds . 72

Parameters . 73

Events. 76

Logging . 76

Generic Functions . 77

Deprecated Methods . 78

Exceptions . 78

Appendix B. Examples of Resource Model Creation . 81
Aspects Considered . 81

Processor Monitor . 82

Parametric Event Log . 86

Appendix C. Resource Models for Microsoft Exchange Server 95
Microsoft Exchange Server Resource Models. 95

Microsoft Exchange Server Services . 95

Microsoft Exchange Ports Availability . 97

vIBM Tivoli Monitoring Workbench User’s Guide

||

||

||

||

||

||

||

||

||

||

||

Microsoft Exchange Server Performance . 98

Microsoft Exchange Server Diagnostic Logging . 100

Appendix D. Instrumentation Library Type Interface. 103
ILT Public Operations . 103

enumerateInstances . 103

getProperty . 104

getMultipleProperties . 104

setProperty . 105

invokeMethod . 106

invokeMethod . 106

create . 107

destroy . 108

ILT Support Classes. 108

M12ClassPath . 108

M12IdentityElement . 109

M12ObjectIdentity. 109

M12PropertySet. 109

M12Exception . 110

ParameterSet . 110

ParameterSetList . 110

Writing a provider for UNIX . 111

Creating a MOF file for UNIX. 111

ILT Sample . 112

Appendix E. Error Messages . 115
Identifying a Message . 115

Notation . 115

Messages. 116

Index . 121

vi Version 5.1

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Figures

1. Overview of the whole process . 2
2. Architecture of the Tivoli Monitoring endpoint engine . 3
3. Holes and indications . 7
4. Flowchart showing the script process . 22

viiIBM Tivoli Monitoring Workbench User’s Guide

||

viii Version 5.1

Preface

IBM® Tivoli® Monitoring 5.1 provides services for monitoring the performance of your
resources, including disks, CPU, and applications. This helps you to automatically detect
bottlenecks, and potential resource problems, and act on them proactively. To monitor the
system resources, IBM Tivoli Monitoring 5.1 uses standard resource models and new ones
that can be created with IBM Tivoli Monitoring Workbench 5.1.

IBM Tivoli Monitoring Workbench 5.1 implements WMI technology to access management
information, making it possible to combine information from various hardware and software
management systems. This guide describes how to use IBM Tivoli Monitoring Workbench
5.1 to create new resource models or to modify existing resource models.

Who Should Read This Guide
This guide is intended for developers, who use IBM Tivoli Monitoring Workbench 5.1 to
create resource models that can be used with IBM Tivoli Monitoring 5.1. It is also useful for
performance analysts, who may wish to develop new resource models themselves, or modify
the existing ones. System administrators may also need this book to understand how
resource models are created, and what functions can be built into resource models using
IBM Tivoli Monitoring Workbench 5.1. Users of this guide must be familiar with the
following:

¶ IBM Tivoli Monitoring 5.1

¶ Visual Basic or Java™ Script programming

¶ Windows® Management Instrumentation (WMI)

¶ System fundamentals, including system resources and network characteristics

¶ Operating system fundamentals

What This Guide Contains
The IBM Tivoli Monitoring Workbench User’s Guide, Version 5.1 contains the following
sections:

¶ Chapter 1, “Introduction”

Provides an overview of IBM Tivoli Monitoring Workbench 5.1 and its integration with
IBM Tivoli Monitoring 5.1.

¶ Chapter 2, “Resource Models and Related Concepts”

Describes, resource models and their components, and illustrates some general concepts
related to them.

¶ Chapter 3, “Installation”

Describes the installation process.

¶ Chapter 4, “Designing a Resource Model”

Provides some information about designing a resource model. It also gives a concrete
example of a resource model.

¶ Chapter 5, “Creating a Resource Model”

Describes the procedures for creating, debugging and building a new resource model.

ixIBM Tivoli Monitoring Workbench User’s Guide

¶ Chapter 6, “Resource Model Troubleshooting”

Describes resource model possible outcomes.

¶ Appendix A, “Service Object Method Library”

Provides syntax for creating objects for your resource models. It also includes a list of
possible errors.

¶ Appendix B, “Examples of Resource Model Creation”

Provides some examples of resource models, which are explained and documented on
the basis of the tasks you can perform and the settings you can specify.

¶ Appendix C, “Resource Models for Microsoft Exchange Server”

Provides a description of Microsoft Exchange Server resource models and some
instructions to use them on Tivoli Monitoring.

¶ Appendix D, “Instrumentation Library Type Interface”

Describes the Instrumentation Library Type (ILT) interface implemented by Tivoli
Monitoring and provides guidelines for writing a UNIX provider.

¶ Appendix E, “Error Messages”

Provides a list of the error messages you can get, with the corresponding explanations
and user actions.

Publications
This section lists publications in the IBM Tivoli Monitoring library and any other related
documents. It also describes how to access Tivoli publications online, how to order Tivoli
publications, and how to make comments on Tivoli publications.

IBM Tivoli Monitoring Library
The following documents are available in the IBM Tivoli Monitoring library:

¶ IBM Tivoli Monitoring Workbench User’s Guide, Version 5.1, SH19-4571

Describes how to use IBM Tivoli Monitoring Workbench 5.1 to create new resource
models or to modify existing resource models.

¶ IBM Tivoli Monitoring User’s Guide, Version 5.1, SH19-4569

Describes how to install, customize, and use IBM Tivoli Monitoring 5.1 to manage
system and application resources.

¶ IBM Tivoli Monitoring Resource Model Reference, Version 5.1, SH19-4570

Provides a list of resource models you can use with IBM Tivoli Monitoring 5.1.

¶ IBM Tivoli Monitoring Release Notes, Version 5.1, GI10-5797

Provides late-breaking information about the products of this library.

Versions of these documents in PDF and HTML formats can be found on the IBM Tivoli
Monitoring 5.1 product CD. They are stored in the Books directory, and can be accessed by
selecting the file Books/infocenter.html with your Web browser. This displays an HTML
page from which all of the documents can be accessed in either format.

Updated versions of these documents might be placed from time-to-time on the Tivoli
Customer Support Web site (see “Accessing Publications Online” on page xi for more
details).

What This Guide Contains

x Version 5.1

Prerequisite Publications
To be able to use the information in this book effectively, you must have some prerequisite
knowledge, which you can get from the following books:

¶ Implementing Tivoli Manager for Windows NT®, SG24-5519

Provides information about IBM Tivoli Monitoring used on Windows NT platforms.
This is a redbook, available from http://www.redbooks.ibm.com

¶ WMI documentation:

Provides information about WMI technology and some important concepts used in this
guide. This is available at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wmisdk/aboutwmi_1lpl.asp

¶ CIM documentation:

Provides information about CIM technology and some important concepts used in this
guide. This is available at:

http://www.dmtf.org/spec/cims.html

Accessing Publications Online
You can access many Tivoli publications online at the Tivoli Customer Support Web site:

http://www.tivoli.com/support/documents/

These publications are available in PDF or HTML format, or both. Translated documents are
also available for some products.

Ordering Publications
You can order many Tivoli publications online at the following Web site:

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

You can also order by telephone by calling one of these numbers:

¶ In the United States: 800-879-2755

¶ In Canada: 800-426-4968

¶ In other countries, for a list of telephone numbers, see the following Web site:
http://www.tivoli.com/inside/store/lit_order.html

Providing Feedback about Publications
We are very interested in hearing about your experience with Tivoli products and
documentation, and we welcome your suggestions for improvements. If you have comments
or suggestions about our products and documentation, contact us in one of the following
ways:

¶ Send an e-mail to pubs@tivoli.com.

¶ Complete our customer feedback survey at the following Web site:
http://www.tivoli.com/support/survey

Contacting Customer Support
If you have a problem with any Tivoli product, you can contact Tivoli Customer Support.
See the Tivoli Customer Support Handbook at the following Web site:

http://www.tivoli.com/support/handbook/

Publications

xiIBM Tivoli Monitoring Workbench User’s Guide

http://www.redbooks.ibm.com
http://msdn.microsoft.com/developer/sdk/wmisdk/whitepapers.asp
http://msdn.microsoft.com/developer/sdk/wmisdk/whitepapers.asp
http://www.dmtf.org/spec/cims.html
http://www.tivoli.com/support/documents/
http://www.ibm.com/shop/publications/order
http://www.tivoli.com/inside/store/lit_order.html
http://www.tivoli.com/support/survey/
http://www.tivoli.com/support/handbook/

The handbook provides information about how to contact Tivoli Customer Support,
depending on the severity of your problem, and the following information:

¶ Registration and eligibility

¶ Telephone numbers and e-mail addresses, depending on the country you are in

¶ What information you should gather before contacting support

Conventions Used in This Book
This book uses several conventions for special terms and actions, operating
system-dependent commands and paths, and margin graphics.

Typeface Conventions
The following typeface conventions are used in this book:

Bold Lowercase and mixed-case commands, command options, and flags that
appear within text appear like this, in bold type.

Graphical user interface elements (except for titles of windows and dialogs)
and names of keys also appear like this, in bold type.

Italic Variables, values you must provide, new terms, and words and phrases that
are emphasized appear like this, in italic type.

Monospace Commands, command options, and flags that appear on a separate line, code
examples, output, and message text appear like this, in monospace type.

Names of files and directories, text strings you must type, when they appear
within text, names of Java methods and classes, and HTML and XML tags
also appear like this, in monospace type.

Operating System-dependent Variables and Paths
This book uses the UNIX® convention for specifying environment variables and for
directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables and replace each forward slash (/) with a backslash (\) in directory
paths.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Contacting Customer Support

xii Version 5.1

Introduction

This chapter provides a general overview of the IBM ® Tivoli® Monitoring Workbench 5.1
(hereafter also referred to as the workbench) and its integration with IBM Tivoli Monitoring
5.1 (hereafter also referred to as Tivoli Monitoring).

The workbench provides an integrated environment for developing and modifying resource
models for Tivoli Monitoring. The workbench produces a complete package that can be
installed on the Tivoli Monitoring server through the command line.

What Workbench Can Do for You
The workbench is a programming tool for creating, modifying, debugging and packaging
resource models. Resource models are used at an endpoint to collect and analyze data
regarding the state and performance of different resources, such as disks, memory, CPU, or
applications. After you have created a resource model, you install it on your Tivoli
Monitoring server and include it in a profile.

Resource models created with former versions of the product can be reused with Tivoli
Monitoring 5.1 (although resource models created for UNIX endpoints will need to be
redistributed), while resource models created with Tivoli Monitoring 5.1 are not compatible
with former versions of the product.

Tivoli Monitoring provides a set of default resource models. You can use the workbench to
expand the collection of the available resource models according to the requirements of your
system.

When you create a resource model you specify sets of values, for example:

¶ Thresholds you do not want your resource to exceed

¶ Ranges of instances within which to limit the data collection

¶ Events you want your system to generate if the monitored resource state is not
satisfactory.

When you create a resource model you can also specify that the monitoring results must be
sent to the Tivoli Enterprise Console® server, or to Tivoli Business Systems Manager® In
this way you can perform a more complete management of all your resources.

You enter all these settings in the displayed dialogs and they are automatically included in
the decision tree script. The script contains the settings you have entered in the dialogs, and
the monitoring algorithm that governs the whole process. The monitoring algorithm is
developed using either Visual Basic or Java™ Script and specifies how to use each setting to
create the process more suitable to your needs.

1

1IBM Tivoli Monitoring Workbench User’s Guide

|
|
|
|

1.
In

tro
d

u
ctio

n

The following figure illustrates the whole process and the connection between the
workbench and Tivoli Monitoring:

Compatibility Mode
Starting with IBM Tivoli Monitoring 5.1, a compatibility mode is provided to allow Tivoli
Monitoring users to use Tivoli Distributed Monitoring (Classic Edition) monitoring sources
and custom scripts inside a Tivoli Monitoring resource model. This is achieved through the
implementation of new procedures to be run on the workbench.

To collect data about system resources, Tivoli Monitoring relies on a Common Information
Model (CIM) Object Manager implementation (WMI on Windows® or a Tivoli Monitoring
endpoint engine on the other supported platforms). With the compatibility mode, Tivoli
Monitoring can collect data not only from CIM data sources but also from Tivoli Distributed
Monitoring (Classic Edition) monitoring sources.

The compatibility mode provides an easy way to import Tivoli Distributed Monitoring
(Classic Edition) monitoring sources into a resource model without the user having to write
any additional code. This mode is implemented through a set of procedures that import
Tivoli Distributed Monitoring (Classic Edition) monitoring sources.

Resource Model

Tivoli
Monitoring
Server

Install Resource Model

EventsDynamic
Model

Deploy Resource Model

Events

Tivoli Monitoring
Workbench

Tivoli Monitoring

Tivoli Management Agent
(Endpoint)

CIM

Tivoli Monitoring
Engine

Data

Resource

Resource Model

Thresholds Parameters
Decision Tree
Script

Actions

Logging

Tivoli
Business
Systems
Manager

Tivoli
Enterprise
Console
Server

Figure 1. Overview of the whole process

What Workbench Can Do for You

2 Version 5.1

|

|
|
|
|

|
|
|
|
|

|
|
|
|

Common Information Model Implementation
Tivoli Monitoring implements the Common Information Model (CIM) standard from the
Distributed Management Task Force (DMTF). CIM is a model for describing management
information in a network environment. The model applies the basic techniques of the
object-oriented paradigm.

To obtain data from the monitored resources, Tivoli Monitoring may use processes included
in the endpoint’s operating system. On Windows systems it uses the Windows Management
Instrumentation (WMI), which is Microsoft’s implementation of CIM. On UNIX® and Linux
platforms the information collection agent is incorporated in the Tivoli Monitoring endpoint
engine based on CIM specifications.

The following picture shows the architecture of the Tivoli Monitoring endpoint engine.

The service object API enables the resource model scripts to use CIM objects, monitoring
collections, and custom scripts in any combination. Specifically to Windows and
UNIX/Linux environments, the WMI and CIM Object Manager (CIMOM) respectively are
responsible for loading the providers that, in turn, get performance and availability data from
system and application resources.

At the provider layer, an Instrumentation Library Type (ILT) interface is provided, using a
parameters passing mechanism. The CIM provider is implemented by an ILT Manager for
Java™. On Windows platforms, the ILT Manager for Java is a WMI provider DLL.

Refer to Appendix D, “Instrumentation Library Type Interface” on page 103 for details on
the ILT interface available with Tivoli Monitoring and the guidelines to use it.

Windows

Management

Instrumentation

Service Object API

Provider

ILT

Provider

UNIX and Linux

CIM Object

Manager

COM

Objects

Resource

Model
Best

Practice

Back Office Applications

Resource

Model
Best

Practice

Resource

Model
Best

Practice

Resource

Model
Best

Practice

Resource

Model
Best

Practice

Resource

Model
Best

Practice

Resource

Model
Best

Practice

Tivoli Monitoring 5.1 Endpoint Engine

ILT ILT

Operating System Resources

Windows

Platforms

Unix and

Linux

Platforms

Monitored

Resources

Provider

Layer

CIM

Layer

CIM

Interface

C
u

st
o

m
S

cr
ip

ts

M
o

n
it

o
r

P
ro

b
e
s

C
o
m

p
at

ib
il

it
y

M
o
d
e

Figure 2. Architecture of the Tivoli Monitoring endpoint engine

What Workbench Can Do for You

3IBM Tivoli Monitoring Workbench User’s Guide

|

|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|

1.
In

tro
d

u
ctio

n

What Workbench Can Do for You

4 Version 5.1

Resource Models and Related Concepts

This chapter provides a description of resource models and their elements, and it illustrates
some general concepts that will help you to use the workbench in the Tivoli Monitoring
environment.

Defining Resource Model Elements
Resource models represent the core of the workbench. In a resource model, you can specify
the resources you want to monitor at runtime, the resource data to be collected, and the
monitoring algorithm to gather and analyze the data.

Resource models contain the following elements:

¶ Dynamic model

¶ Events

¶ Thresholds

¶ Parameters

¶ Logging

¶ Decision tree script

¶ Dependencies

Cycles
When a resource model is run at an endpoint, it gathers data at regular intervals, known as
cycles. The duration of a cycle is the cycle time. At each cycle the resource model collects
the required data, analyzes it, generates the events and triggers whatever actions are
required. Cycle times, which are expressed in seconds, are specified by the user when the
resource model is defined.

Dynamic Models
The dynamic model is considered the essential element of a resource model. In the dynamic
model is specified:

¶ Which resources are going to be monitored

¶ The properties of each resource

¶ The mechanism used for collecting the data

A dynamic model contains a set of predefined Common Information Model (CIM) classes
that describe the status of each resource. A class is a list of properties relevant to a specific
resource. The workbench shows the list of available CIM classes contained in the CIM

2

5IBM Tivoli Monitoring Workbench User’s Guide

2.
R

eso
u

rce
M

o
d

els
an

d
R

elated
C

o
n

cep
ts

repository of WMI. The instances of the classes are provided by WMI providers. If the
resource you need is not described by any class contained in CIM repository, you can add it,
together with its associated provider.

When you define a dynamic model, you must specify a CIM class and its properties for the
specific resource. For example, if you are monitoring your CPU usage, you can consider the
process class with all its instances. You can use as class properties CPU usage for process,
process name, and process ID.

Data Collection
Resource models collect data in two modes: synchronous and asynchronous. In addition, it is
possible to filter the collected data and to sort it in different orders.

Synchronous Data Collection
Synchronous collection means that the data is routed to the resource model as soon as it is
collected. By default, at each cycle, data is collected, routed to the resource model and
analyzed. If needed, data collection may span multiple cycles.

Data Sorting
With synchronous data collection, data can be sorted in either ascending (from the lowest to
the highest) or descending (from the highest to the lowest) order. For an example of data
sorting, see “Defining a Filter and a Sort Order” on page 20. When data needs to be sorted,
a key element has to be specified to rule the sorting.

Asynchronous Data Collection
Asynchronous collection is an across-cycle collection. This means that data collection starts
within one cycle and continues into the following cycle, when the data is made available.
Between two cycles, the collected data is stored in cache. Typically, you use an
asynchronous collection when monitoring asynchronous resources, like the Windows NT®

EventLog. In this case, collecting data synchronously might unnecessarily impact your
system performance.

Asynchronous collection is available for Windows resource models only. It is not supported
by UNIX resource models.

Data Filtering
You can filter the monitored data by writing a WQL query, asking the resource model to
collect only those instances that satisfy certain conditions.

Filtering is available for Windows resource models, only. It is not supported by UNIX
resource models.

Example: You can specify that you want to collect only process instances where CPU usage
is greater than 60%. In this case, you can write a WQL WHERE clause that reads:
"where PercentProcessorTime > 60"

The value expressed in this query is fixed and cannot be changed from Tivoli Monitoring
dialogs.

Note: WQL is a query language used by WMI. For more information see the WMI Web
site.

Dynamic Models

6 Version 5.1

Events
Generally speaking, an event is a change in the status of a resource. In a Tivoli Monitoring
environment, an event notifies the system administrator about the state of a specific
resource.

Events and Indications
In the workbench a distinction is made between indications and events. An indication is
generated when the state of a given resource meets defined criteria. By itself, an indication
does not trigger any specific action. When indications are aggregated they become an event.

When you define an event, you must specify under what conditions a certain number of
indications are aggregated into an event. You also specify whether these indications must be
consecutive, or whether the sequence may be interrupted by one or more monitoring cycles
that do not register any indication. The cycles during which no indication is generated are
called holes.

Only events can notify that there is a problem in the resource state, trigger an action and, if
enabled, send a notification to the Tivoli Enterprise Console server or to the Tivoli Business
Systems Manager.

Attributes
In the workbench it is possible to qualify an event by specifying attributes relevant to it. The
attributes can be both string and numeric values, and can be chosen according to the
information that must be collected by the resource model.

Example: An event may indicate that the disk space is not sufficient. By specifying
attributes, such as disk name, or available disk space, a more precise indication of the
problem can be generated.

Actions
With the workbench, it is possible to associate one or more recovery actions with a specific
event. These actions are automatically triggered when the event occurs and, typically, are
used for restoring satisfactory system service level.

Each time a given event occurs, the system provides a notification of the event, triggers a
recovery action to restore satisfactory conditions and, if the action is successful, provides a
notification that the action was performed.

Actions are associated with either the execution of a CIM method or the execution of a
program.

Cycle time

Resource
performance

Base line
settings

Indications

Hole

Figure 3. Holes and indications

Events

7IBM Tivoli Monitoring Workbench User’s Guide

|
|

2.
R

eso
u

rce
M

o
d

els
an

d
R

elated
C

o
n

cep
ts

Example: If you are monitoring Windows NT services and an event is generated when a
service stops, you can associate the event with a recovery action that restarts the interrupted
service.

CIM Methods
The workbench can associate events with CIM class methods, which can be invoked to
restore a satisfactory resource state. In CIM, each class has attributes that characterize the
object and a set of methods that are actions related to that object. Actions invoke methods
that are provided by WMI. An action can invoke one method at a time.

When you select a class within the workbench, the related methods that are defined by WMI
are automatically displayed.

A method can be static or non static. A static method is defined with respect to a class, a
non-static method is defined with respect to an instance.

Programs
The workbench can associate an event with the execution of a program. In this case, the
user can also indicate a set of arguments (for example environment variables) that must be
associated with the execution of the program.

Thresholds
Each resource model defines one or more thresholds. A threshold is a numeric value that is
specified in the customization phase and that is used according to the monitoring algorithm
written in the script. The threshold value specified in the workbench dialogs is a default one,
but it can be changed from within the Tivoli Monitoring dialogs when a profile is defined.
Typically, this value represent a limit for a satisfactory resource state. If the monitored
resource exceeds this limit, an indication is generated.

Example: If you are monitoring your disk space and you do not want it to drop under 70%,
you can consider 70 your threshold, so that the system generates an indication each time
your disk space is less than 70%.

Example: You are monitoring your CPU usage and are collecting data on the CPU used by
each process; if you are interested only in the 10 most consuming processes, your threshold
may be 10. You can specify the default value in the Thresholds dialog, then add the
following instructions in the Init function of the decision tree script. For more information
about the decision tree script, see “Decision Tree Script” on page 12.
"where PercentProcessorTime >"

+Str(Svc.GetThreshold("HighCpuThresh")

For each threshold a description can be added to explain how each value is used within the
monitoring algorithm, and the logic and meaning behind the specific value. For more details
on the use of thresholds, see “Thresholds Dialogs” on page 84.

Parameters
While thresholds can be only numeric values, parameters can be lists of numbers or strings.
Using parameters enables you to customize your resource model. You can define different
parameters, as required. For each parameter you can specify a value, which can be a list of
numbers or strings. This list can represent the instances you want to monitor, or a limit you
do not want your resource to exceed, depending on how you use this setting in your script.
The lists will then be displayed in the Tivoli Monitoring dialogs, and depending on the type
of list you select in the workbench, the lists will appear in different forms on Tivoli

Events

8 Version 5.1

|
|
|
|

Monitoring. Within the workbench you can define default values and then let the operator
customize the settings in Tivoli Monitoring. When you specify the parameters, you can
choose one among the following kinds of lists:

¶ Boolean List

¶ Choice List

¶ String List

¶ Numeric List

For more details on the use of parameters, see “Parameters Dialogs” on page 88.

Boolean List
Boolean lists enable you to specify a list of values, and then to decide which to consider
(select them as TRUE) and which to ignore (select them as FALSE) during monitoring.

Example: If you are monitoring Windows EventLog but you want to monitor only two
event types out of five available, in the workbench you can enter the names of all the event
types and select them as TRUE or FALSE, accordingly.

When you use a boolean list in the workbench, the output you get in Tivoli Monitoring
dialogs is a check box list, as shown in the following figure.

The values selected as TRUE in the workbench, appear as checked options in Tivoli
Monitoring dialog, the values selected as FALSE in the workbench, appear as clear options
in Tivoli Monitoring.

Choice List
Choice lists are lists of mutually exclusive values. These lists can contain several values, but
the Tivoli Monitoring operator can select and use only one of them at a time.

Example: You can provide your resource model with two types of filters (AND / OR). In
the choice list on the workbench you can insert both filter types, but the Tivoli Monitoring
operator will select only one of them at a time.

Parameters

9IBM Tivoli Monitoring Workbench User’s Guide

2.
R

eso
u

rce
M

o
d

els
an

d
R

elated
C

o
n

cep
ts

Choice lists in the workbench are represented in Tivoli Monitoring dialogs as drop down
lists, as shown in the following figure.

Here, if the operator selects And, an event will be generated when all of the conditions
specified are met. If the operator selects Or, an event will be generated when any of the
conditions specified is met.

Numeric List
Numeric lists are lists of numeric values, such as event IDs. When you use a numeric list in
the workbench, the output you get in Tivoli Monitoring dialogs is a simple list, as shown in
the following figure.

String List
String lists are lists of string values, such as application names. When you use a string list in
the workbench, the output you get in Tivoli Monitoring dialogs is a simple list, as shown in

Parameters

10 Version 5.1

the following figure.

Note: Within the workbench, regardless the type of list you choose, the list content is
displayed in the script either as a numeric or a string list.

Logging
This function allows you to store data regarding the attributes of a resource. Data is stored
in a local database and can be accessed using Tivoli Monitoring Web Health Console. For
more information, see Tivoli Monitoring User’s Guide. Within the workbench you specify
what and how to log, however logging is disabled by default in Tivoli Monitoring. Tivoli
Monitoring operator has to enable it selecting a specific option.

Logging Elements
The logging function contains the following elements:

Context
A general problem to which the resource activity relates. An example of context can
be disk space.

Resource
The resource whose state you want to log, in relation to the defined context. An
example of resource can be a logical disk. A single context can contain more than
one resource.

Properties
Specific attributes of the defined resource. An example of properties of the resource
logical disk can be free space. For each resource you can specify multiple properties,
which can be both numeric and string values. Among the specified properties, you
must define key properties that clearly identify the instance of a resource.

The database browser of the Tivoli Monitoring Web Health Console shows historical logged
data on a specific endpoint and for a specific resource model. With logged data, you can use
the database browser to identify specific instances of resource problems over the past 6, 12,
or 24 hours.

For more information, see Tivoli Monitoring Web Health Console.

Parameters

11IBM Tivoli Monitoring Workbench User’s Guide

2.
R

eso
u

rce
M

o
d

els
an

d
R

elated
C

o
n

cep
ts

Decision Tree Script
The workbench automatically generates the decision tree script part that contains the
information you have specified when you created and configured the resource model. If you
change one of the settings in the workbench dialogs, the corresponding data is automatically
updated in the script. You cannot modify these settings directly in the script. The script also
contains the algorithm that you write in Visual Basic or Java Script to govern the whole
process. The decision tree script contains three basic functions and one subroutine. By
default, they produce a return value equal to 0, however, you can specify different codes to
be returned under specific circumstances. For more information see Chapter 6, Chapter 6,
“Resource Model Troubleshooting” on page 55. The default functions are the following:

Main A subroutine used by workbench for debugging the resource model. Tivoli
Monitoring monitoring engine does not call it. This subroutine performs the
following actions:

¶ Creates the TMWService.Utils.

¶ Calls the SetDefaultConfiguration function.

¶ Calls the Init function.

¶ Enters the monitoring loop (collect data, visit the decision tree script, and wait cycle
time).

Note: Do not modify this subroutine. If you do, unpredictable results may occur.

SetDefaultConfiguration
Initializes the object on the basis of the settings defined in the Events, Thresholds,
Parameters, and Actions dialogs. If you change one of the settings contained in these
dialogs, the corresponding data is updated in this function. On the contrary, you
cannot change those settings modifying them directly in this function. The
SetDefaultConfiguration function is called just once, when the resource model is
started. Therefore, if necessary, you can write additional initialization code at the end
of this function.

Init Called after that the settings defined in the SetDefaultConfiguration function have
been replaced with the values coming from the profiles of Tivoli Monitoring. At this
point the settings are replaced with the new ones.

Visit Tree
Contains the monitoring algorithm and is called at the beginning of each cycle. You
have to write the monitoring algorithm in Visual Basic or Java Script, and define
how to use all the values and variables previously set. This function checks the
algorithm and implements it. It processes the collected data according to thresholds
and parameters settings, and, if necessary, sends an event. It is also possible to
define the algorithm in such a way that the execution of the data collection is
entirely controlled by the algorithm itself (see the details about the Collect on
demand checkbox in “Task 2: Defining a Dynamic Model” on page 27) . As an
example, a specific collection could be executed based upon the results of a previous
collection.

Decision Tree Script

12 Version 5.1

|
|
|
|
|
|

Dependencies
To run a resource model on an endpoint, you may need to transfer additional files. For
example, to add a new class to the CIM repository, you need the files that define the class
(MOF) and the provider (DLL). A MOF file is a text file that contains definitions of classes
and instances using the Managed Object Format (MOF) language.

In these cases you can add dependencies to your resource model, and transfer the required
files with the model.

Dependencies

13IBM Tivoli Monitoring Workbench User’s Guide

2.
R

eso
u

rce
M

o
d

els
an

d
R

elated
C

o
n

cep
ts

14 Version 5.1

Installation

Before you install the product, be sure that you have satisfied all the prerequisites listed
below.

Software Requirements
To install the workbench, you must have either of the following software installed and
running:

¶ Windows NT 4.0 Service Pack 5 or higher, plus WMI Version 1.1 or higher
(recommended 1.5)

¶ Windows 2000

¶ Windows XP Professional Code

¶ In order to debug Java Script resource models for Windows on Windows systems, you
need a Java Script debugger. You can download a Microsoft debugger from this URL:

http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28001169

Hardware Requirements
The minimum hardware requirements for the workbench are listed in the following table.

Hardware Minimum Required

Disk space 10 MB

RAM 64 MB

Processor 133 MHz

Installation Procedure
If you are running a previous version of the workbench, you need to uninstall it and install
Tivoli Monitoring Workbench 5.1. All resource models created with a previous version of
the product are supported by Tivoli Monitoring Workbench 5.1.

To install the workbench, perform the following steps:

1. Open the ITM5.1WB folder and browse to the Disk 1 folder.

2. From Disk 1, double click the Setup.exe file.

3

15IBM Tivoli Monitoring Workbench User’s Guide

|
|

|

3.
In

stallatio
n

http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28001169

The following dialog opens:

3. From the InstallShield Wizard dialog click Next to proceed with the installation.

4. In the next InstallShield Wizard dialog, select the components you wish to install. For a
full installation, selects all components. Click Next to proceed with the installation.

Installation Procedure

16 Version 5.1

5. The installation runs. Once the execution is complete, you see the InstallShield Wizard
Complete panel.

6. Click Finish to close the installation procedure.

Now you have successfully installed the workbench.

Installation Procedure

17IBM Tivoli Monitoring Workbench User’s Guide

3.
In

stallatio
n

Installation Procedure

18 Version 5.1

Designing a Resource Model

This chapter, provides generic advices about designing resource models.

Before you create a resource model it is recommended that you have a clear idea of your
objectives and prerequisites. Only at that point you should use the workbench to create the
resource model.

Preliminary Steps
You need to create an overall design, considering all the steps you are going to take with
your resource model. To do so, you determine the objectives and functions of your resource
model, and draw some general specifications. The following tasks will help you design your
resource model:

1. Gathering all the information necessary to perform an accurate problem analysis.

2. Determining which resources you want to monitor.

3. Defining the resource model you are going to create.

4. Defining which problems you want your resource model to highlight.

5. Defining a list of thresholds and parameters to use as external inputs.

6. Defining the monitoring algorithm (draw a simple flow chart of the decision tree script.)

Once you have executed these tasks, you can proceed with creating the resource model.

Example of a Resource Model
A server is configured with one processor, and we want to find out whether the CPU has
enough capacity. In this case, the objective of the resource model is to monitor CPU usage.

Problem Analysis
First of all, we have to determine what data we need to collect for a proper assessment of
our CPU usage. In this case, we want to gather some information about our processor
capacity and about the CPU capacity used by the processes we run most frequently.

Determining Which Resources to Monitor
We now consider what kind of resource monitoring can provide us with the required
information. Because resource models access data provided by WMI, we have to find out
whether the resource we want to monitor is defined by WMI. In our example, we need the
following data for the processor and its processes:

Processor

¶ Current CPU Usage

4

19IBM Tivoli Monitoring Workbench User’s Guide

4.
D

esig
n

in
g

a
R

eso
u

rce
M

o
d

el

¶ Processor Type

Processes

¶ Process Name

¶ Process ID

¶ Process CPU Usage

In this case, all this data is made available by WMI.

Defining a Resource Model
Next, we must determine more in detail the objectives of our monitoring and the attributes
required to meet the objectives. Many of the values that we set here are default values that
can be changed later in the Tivoli Monitoring profiles. However, whenever possible, the
default values should be appropriate.

Defining a Cycle Time
Starting from the type of resources that we are going to check, we can determine the cycle
time of our monitoring. A thorough analysis of the resource allows us to obtain all the
required information, reducing to the minimum the impact of the monitoring activity on our
system performance. There are two main factors to consider: how fast a given resource
changes its status, and the fact that, by running a resource model, we increase the overhead
on our system. In this example, given that the resources we are considering change their
status quite frequently, a cycle time of 10 seconds is a reasonable compromise between
monitoring status variations and saving system performance.

Defining a Filter and a Sort Order
In this case, we are not interested in processes with low CPU consumption because they do
not affect our CPU performance too severely. Thus, we can apply a filter to our data
collection, so that we collect data on CPU usage only for those processes that use at least
20% of CPU capacity. Also, we can sort the obtained results in ascending order of CPU
usage. So, if the most consuming process does not exceed the 20% threshold, the other
processes will not be monitored at all: by acting this way we can save system performance.

Defining the Highlighted Problems
After determining the kind of monitoring we want to perform, we have to identify the
possible problems we want to detect, and we must give a name to the event generated by
each problem. Following our example, we want to identify the following problems:

¶ Excessive CPU usage

¶ Excessively consuming process

For each of the above problems, we want an event to be generated after persistent indication
of the problem. How persistent an indication must be, before it is aggregated into an event?
We define that 10 consecutive occurrences of either problem should generate an event. Now
we need to determine what attributes may qualify each event more in detail. If we define
adequate attributes, we can obtain useful information regarding the presence of a problem as
well as its possible causes. For each event, the following information may be of interest:

Event: Excessive CPU usage Event: Excessively consuming process

Current CPU usage Process name

Most consuming process name Process ID

Most consuming process ID Process CPU usage

Example of a Resource Model

20 Version 5.1

Event: Excessive CPU usage Event: Excessively consuming process

Most consuming process usage

Processor type

To understand how attributes can help us, let’s see what conclusion we can derive, assuming
that the following results have been detected for the following event:

Excessive CPU Usage:

Current CPU usage 90%

Most consuming process name Mail Application

Most consuming process ID 443

Most consuming process usage 10%

Processor type Pentium 133¬

Given this data, it does not seem that our most consuming process is too consuming,
therefore it is not likely to be the cause of our problems. Consequently, our CPU
performance must be low because of several concurrent processes. Considering the type of
processor we are using, perhaps the system load is too heavy and we need a more powerful
processor.

After specifying each event with its attributes, we must determine which is the key attribute
among them, if any. A key attribute is the most representative one, and clearly identifies the
event it refers to. For example, for the event concerning the excessive CPU usage, there is
no key attribute, while for the event concerning the excessively consuming process, the key
attributes can be the process name and the process ID.

Defining Thresholds and Parameters
For each of the events, we can then specify some values that govern the data collection.
These values are thresholds (only numbers) and parameters (lists of numbers and strings).
We do not necessarily need to use both, because sometimes, when we define one, we do not
need the other. In our example we use thresholds and will not need parameters, however, in
other cases, it may be useful to use both. The values we define here can be used in different
ways in the script, therefore now we must know which values we need and how to use
them. For our example, the following thresholds may be adequate:

Thresholds Default Values

Maximum CPU usage 90%

Excessively consuming process 25%

Processes considered 10

These values mean that we want the system to generate an indication each time our current
CPU usage is higher than 90%, and each time a single process uses more than 25% CPU.
Furthermore, in our data collection, we do not want to consider all running processes, but
only the 10 most consuming ones. To help the user of this resource model, we must explain
the logic behind these values in the description of each threshold, and give each value its
function when we specify it in the decision tree script. In this example, considering our
objectives, we don’t need to set any values for the parameters. For an example about the
usage of parameters, see “Parametric Event Log” on page 86.

Example of a Resource Model

21IBM Tivoli Monitoring Workbench User’s Guide

4.
D

esig
n

in
g

a
R

eso
u

rce
M

o
d

el

Defining the Monitoring Algorithm
After we have defined our resource model, we must determine the monitoring algorithm. We
can start by drawing a flow-chart that shows how the algorithm works. The flow-chart must
reflect what we will write in our script: in other words, it must describe how all the
components interact with each other and what final result we will get. According to our
example, the flowchart can be the following:

Note: In this example processes are sorted in a descending order with respect to CPU
usage. Therefore, when the loop meets the first process that does not exceed the
threshold, it ends without considering any of the following processes.

Most Consuming
Process Usage

Next
Process

Send Event

Excessive
CPU Usage

Get total
CPU Usage

Yes

No

101 Number of
Processes

END

Yes

No

Excessively
Consuming
Process

Process
CPU Usage

>25%

Total
CPU Usage

>90%

Send Event

Figure 4. Flowchart showing the script process

Example of a Resource Model

22 Version 5.1

Creating a Resource Model

This chapter describes the procedures to create, debug and build a new resource model.

It also explains how to import Tivoli Distributed Monitoring (Classic Edition) monitoring
sources or a custom script into a resource model. Only synchronous monitors can be
imported.

The workbench provides a wizard for creating new resource models. Basically, the wizard,
starting from a selected CIM class taken from the WMI repository, or starting from a
monitoring collection, or from a custom script, displays a sequence of dialogs with default
values already filled in to drive the user to create simple resource models. At the end of the
wizard process all the needed Visual Basic or JavaScript code is automatically generated.

About Resource Model Names
Resource models and their components have the following names and descriptions that are
used in different contexts; for example, names used in scripts are different from those
displayed in the Tivoli Monitoring dialogs.

Note: The workbench does not support double-byte characters, because the decision tree
script does not handle them. It is recommended that text information and names are
entered in English, so that the resource model can be run appropriately from the
Tivoli Monitoring application. If you write text information in a language different
from English, and then export the resource model and install it on the server, all text
information will be handled altogether, regardless whether it is in English or not. So,
it is recommended that you install translated message catalogs separately. For more
information, see “Exporting the Message Catalog” on page 40.

Internal Name
The names of your resource models, thresholds, parameters and events as
you call them in the decision tree script. These names are used inside a
monitoring algorithm written in Visual Basic or Java Script: as such, they
must be alphanumeric, start with an alphabetic letter, and contain no blanks.

Descriptive Name
The names of your resource models, thresholds, parameters, events and
actions as they appear in the Tivoli Monitoring dialogs and in the message
catalog. These names should be more meaningful to you than the internal
names. As opposed to internal names, they are not subject to naming
conventions.

Description Some text describing your resource models, thresholds, parameters, events
and actions. Here you can specify what the specific element does and the
logic on which it is based. For thresholds and parameters, you can explain in

5

23IBM Tivoli Monitoring Workbench User’s Guide

|
|
|

|
|
|
|
|

|
|

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

this text box how you intend to use the values specified inside the decision
tree script. For example, you can include some information about the units
of measurement of the inserted values and the range within which the values
may vary.

Alias A name for the selected class of a dynamic model. This name is used in the
decision tree script. It is recommended that you use a meaningful but simple
alias. If you do not type an alias, the class name called in the decision tree
script is the Selected Class name with the whole path.

Category Internal Name
A name for the resource model. This name appears in internal databases and
is used to define groups that include similar resource models.

Category Descriptive Name
A meaningful name for the resource model. This name appears in the Tivoli
Monitoring dialogs when the operator opens a profile containing that
resource model. It appears also in the message catalog. This name is used to
define groups that include similar resource models.

The following figure shows an example of how these names and descriptions appear in the
Tivoli Monitoring dialogs:

Resource Model Creation
When you create a resource model, you can choose to code the decision tree script in Visual
Basic or Java Script. Visual Basic code can be used to create Windows resource models
only. Java Script code can be used to create resource models for Windows and UNIX
platforms.

About Resource Model Names

24 Version 5.1

The first displayed dialog requests to select the language that will be used to create the
decision tree script.

After selecting the language, you can choose to create a resource model according to one of
the different procedures shown in the following dialog:

If you select the Resource Model Wizard option, a series of dialogs guides you through the
whole process of creating a simplified resource model without writing any scripts or code.
The resource model produced in this way is quite simple and provides a limited range of
possibilities. However, once is created, you can modify and customize it by editing the
decision tree script and the information contained in the GUIs, just as you would do with
any other resource model.

The Resource Model Wizard option also enables you to import a Tivoli Distributed
Monitoring (Classic Edition) monitoring collection or custom script into a resource model.

To create a resource model using the wizard, see “Creating a Resource Model from a CIM
class” on page 43.

If you select the Step-by-step Resource Model option, dialogs guide you through the
procedure in the sequence of steps shown in Chapter 4, “Designing a Resource Model” on
page 19. However, when you have completed this procedure, you still have to write the
script that governs the resource model.

If you select the Empty Resource Model option, you can define the resource model
elements without following a specific sequence. The definition is done by opening the
resource model tree structure and double-clicking on the required element, as shown on the

Resource Model Creation

25IBM Tivoli Monitoring Workbench User’s Guide

|
|

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

left pane of the following figure.

After entering the required information in the dialogs that show for each element, you still
have to write the script that governs the resource model.

Creating an Empty Resource Model
To create a new resource model following the standard menus, you have to perform the
following series of tasks, but not necessarily in the order given. Also, you can skip those
tasks for which your resource model does not include the described elements. For more
information about resource models, see “Defining Resource Model Elements” on page 5.

The following task sequence applies to Windows systems. If you are creating a resource
model for UNIX platforms some steps may be slightly different. Where necessary, these
differences are pointed out.

Task 1: Defining a Resource Model
To define an empty resource model, perform the following steps.

1. From the New Resource Model Workspace, select Empty Resource Model and click
OK. The General Settings dialog opens.

2. In the Internal Name text box, type a name for your resource model. For more
information about naming conventions, see “About Resource Model Names” on
page 23.

Resource Model Creation

26 Version 5.1

3. In the Cycle Time text box, type a value for the time interval (in seconds) between two
successive data collections. This is the default value that is displayed and can be
modified in the Tivoli Monitoring dialogs when the operator opens this resource model.

4. In the Category Internal Name text box, type a name for this resource model. This
name will be used by internal databases to define groups that include similar resource
models.

5. In the Category Descriptive Name text box, type a name for this resource model. This
name will appear in the Tivoli Monitoring dialogs and in the message catalog.

6. In the Descriptive Name text box, type a meaningful name for your resource model.

7. In the Major Version text box, type the number you want to indicate the major version
of your resource model.

8. In the Minor Version text box, type the number you want to indicate the minor version
of your resource model.

9. In the Description text box, type a description of your resource model.

10. In the Supported Platforms box, select the platforms you want to support this resource
model. The available options are enabled only if you are creating a resource model in
Java Script.

11. Click Apply to create your resource model.

Although you have created the new resource model, this model is not complete; you still
have to define the resource model components.

Task 2: Defining a Dynamic Model
The dynamic model is a necessary element of a resource model. Here you specify the
resources you want to monitor and how to collect the data.

When you define a dynamic model you have the option to either select CIM classes for the
resources you want to monitor, or to import a monitoring source (Distributed Monitoring
Classic Probe). You can as well select both options at the same time. The steps below show
the definition of a dynamic model through CIM classes, refer to “Creating a Resource Model
from a Monitoring Source” on page 40 if you wish to import a monitoring source.

The available CIM classes are stored in the CIM repository of WMI. The instances of the
classes are provided by WMI providers. If the resource that needs to be monitored is not
described by any class contained in the CIM repository, then a new class can be added. To
add a new class to the CIM repository, a Managed Object Format (MOF) text file that
defines the class has to be written along with the provider (DLL). The MOF file must be
installed on the WMI and, in order to run the resource model on an endpoint, the MOF file
and the provider must also be transferred to the endpoint: this is done by adding a
dependency to the resource model.

To define a dynamic model though CIM classes, perform the following steps:

1. From your resource model, double-click Dynamic Model.

2. Double-click CIM Classes.

3. In the Connect to namespace dialog, specify the required namespace and click OK. The
default namespace is root\CIMV2. Use the browse button to locate another namespace,
or to connect to a remote workstation. Connecting to a remote workstation enables you
to browse and select one of the CIM classes of that workstation and run a data
collection test remotely.

Creating an Empty Resource Model

27IBM Tivoli Monitoring Workbench User’s Guide

|
|
|
|
|

|
|
|
|
|
|
|
|

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

When you connect to a namespace, you are connecting to WMI and accessing all the
available classes.

4. In the WMI DM Workbench Login dialog, type your user name and password, if
necessary.

5. Click OK. The Dynamic Model dialog opens.

6. To change the namespace, select one from the Classes in drop-down list, or use the
browse button to locate one.

7. From the class list, select the required class. The corresponding properties are displayed
in the Class Properties group.

8. In the Class Properties group, from the Available box, select the properties you want
to list in your collection and move them in the Selected box.

9. In the Use Alias text box, type a simple alias for your class name to use in your script.

10. In the Collection Info group, select the required sort option for the collected data:

No Sort Implies no sequence order.

Sort Ascending
Sorts from the lowest value to the highest.

a. In the Sorting Field text box, type the key element for the sort.

b. For Windows resource models only: in the Number of Instances text box, type the
number of instances to be in your data collection.

Sort Descending
Sorts from the highest value to the lowest, on the basis of the sorting
key element you choose.

Asynchronous
For Windows resource models only: starts data collection at a cycle and

Creating an Empty Resource Model

28 Version 5.1

carries it on until the following cycle, when the collection is made
available. Specify the type of information you want to obtain, from the
following:

¶ Instance creation

¶ Instance modification

¶ Instance deletion

Note: Asynchronous collection can be selected only for those classes whose providers
support __InstanceOperationEvent. For more information, see WMI Web site.

11. In the Every text box, type the number of cycles you want to elapse between two
successive data collections.

¶ Every = 0, means that the collection is executed only once

¶ Every = 1, means that the collection is executed at every cycle

¶ Every = n, means that the collection is executed at every ″n ″ cycles

¶ Every = -1, means that the collection is invoked and controlled by the monitoring
algorithm of the Visit Tree section of the Decision Tree Script. This value is
automatically set if you have selected the Collect on demand check box.

This text box is not displayed if you select the asynchronous collection.

12. For Windows resource models only: in the WHERE Clause text box type a WQL
where statement (query) to define filtering criteria for data collection if required. For
more information, see “Data Collection” on page 6.

13. For Windows resource models only: click Collection Test to see an example of the
collected instances of the class you have defined.

If you are performing an asynchronous collection, data collection starts when you click
Collection Test. Next, a pop-up dialog opens and you can click OK to stop the data
collection. In this way you are simulating a cycle time interval.

The Collected Instances dialog opens and shows the results of data collection.

14. Click Close to return to Dynamic Model dialog.

15. Click OK to apply your changes and close your dynamic model.

Creating an Empty Resource Model

29IBM Tivoli Monitoring Workbench User’s Guide

|

|

|

|
|
|

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

Task 3: Defining Events
When you define an event, you have to specify the attributes that qualify it. In particular,
you have to select the most significant attribute for the aggregation process. For more
information regarding events, see “Events” on page 7.

While defining an event, you can also indicate if you want the system to notify the Tivoli
Enterprise Console server, or the Tivoli Business Systems Manager, that an event was
generated. The Tivoli Monitoring operator can change these selections later, when the
resource model is included in a Tivoli Monitoring profile. You can also define the degree of
severity and the message that will specify the notification of the event.

To define an event, perform the following steps:

1. From your resource model, double-click Events. The Events dialog opens.

2. Type an internal name in the Internal Name text box, as shown in the following figure.

3. In the Attributes group, click Add, to define a new attribute.

4. In the Adding Event Attribute dialog, specify the name and type of the attribute to
insert, as shown in the following figure. Click OK to return to the Events dialog.

5. Click the Up and Down buttons to change the attribute order in the list. It must be the
same order you follow when you specify the attributes in the SendEvent method in the
monitoring algorithm. For more information about the monitoring algorithm, see
“Decision Tree Script” on page 12.

6. In the Attributes box, dialog, click Key to move the selected attribute to Keys box.
Move here the key attributes for your data collection. For more information about key
attributes, see “Attributes” on page 7.

7. In the Number of Occurrences text box, specify the number of indications that must
occur before an event is generated. For more information about indications, see “Events
and Indications” on page 7. This will be the default value that the user can change at
runtime in the Tivoli Monitoring application.

Creating an Empty Resource Model

30 Version 5.1

8. In the Number of Holes text box, type the maximum number of monitoring cycles
allowed with no indications, for an event to be generated. This will be the default value
that the user can change at runtime in the Tivoli Monitoring application.

9. Select Clearing Event if you want the system to send a clearing event when the
circumstances that generated the event have passed. The Tivoli Enterprise Console
server and the Tivoli Business Systems Manager use the clearing event to close the
corresponding error event.

For example, if the resource being monitored is a service, the event would be sent if
the service was not available. The event might have an action associated with it to
restart the service (or the restart might be done manually), and when the engine detects
that the service is available again, a clearing event could be sent, to close the original
event. The clearing event itself is not displayed at the Tivoli Enterprise Console server
or at the Tivoli Business Systems Manager Java Console.

10. Select Send to TEC if you want to send the event notification to the Tivoli Enterprise
Console server as a default.

11. Select Send to TBSM if you want to send the event notification to the Tivoli Business
Systems Manager as a default.

12. In the Message text box, type the message you want to send when the event is notified
to the Tivoli Enterprise Console server or to the Tivoli Business Systems Manager.
When typing the message, specify one or more event attributes between @ symbols.
For example: ″This process @ProcessName@, @ProcessID@ is consuming too much
CPU″.

13. From the Severity drop-down list, select the degree of severity for notification to the
Tivoli Enterprise Console server or to the Tivoli Business Systems Manager.

14. Type a descriptive name and a description in the corresponding text boxes.

15. Click OK to apply your changes and close the Events dialog.

To associate a recovery action with the event, see “Adding Actions”.

Adding Actions
If you want your system to perform some recovery actions on the occurrence of an event,
you can associate actions with the event. For more information regarding actions, see
“Actions” on page 7.

You can define actions as either the execution of a CIM method or the execution of a
program.

To define an action, click Actions on the Events dialog. The Actions dialog opens.

Creating an Empty Resource Model

31IBM Tivoli Monitoring Workbench User’s Guide

|
|

|

|

|

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

CIM Methods
To associate an action with the execution of a CIM method, perform the following steps:

1. From the Actions dialog, click Add CIM Method. The Connect to namespace dialog
opens, connecting you to WMI.

2. Specify the required namespace and click OK. The default namespace is root\CIMV2.
Use the browse button to locate another namespace.

3. In the WMI DM Workbench Login dialog, type your user name and password, if
necessary.

4. Click OK. The Action Browser dialog opens, which lists the available classes, and for
each class its methods and their parameters. For more information about actions and
methods, see “Actions” on page 7.

5. From the WMI Class Browser list, select the class that includes the required action.

The list in the upper part of the Methods group shows all the methods of the selected
class, and specifies whether the methods are static or non static. For more information
about the differences between the two, see “CIM Methods” on page 8.

6. The Instance Key group-box is displayed only if you select non-static methods. If you
have selected a static method, ignore this step. In the Instance Key group-box, select
an attribute from the Handle drop down list. The selected attribute is a key to associate
the action to the required instance. The list displays the string attributes that are
associated to the event and compatible with the instance key property. For more
information, about event attributes, see “Attributes” on page 7.

7. In the Method Parameters group-box, click Set Parameter to associate an event
attribute to the selected method parameter. The following dialog opens.

Creating an Empty Resource Model

32 Version 5.1

|

|

|

8. From the Event Attribute drop down list, select the attribute you want to associate
with your method parameter.

9. Click OK to return to the Action Browser dialog.

10. Type a descriptive name and a description in the corresponding text boxes.

11. Click OK to apply this method.

12. In the Actions dialog, click Close to return to the Events dialog. To define additional
actions as CIM methods, click Add CIM Method and repeat the procedure.

Programs
To associate an action with the execution of a program, perform the following steps:

1. From the Actions dialog, click Add Program. The Define the Run Program Action
opens.

2. Type the internal name (an identifier for the Run Program Action), the Shell command
(the command line which launches a process), a descriptive name and a description, in
the corresponding text boxes.

Note: Make sure you always indicate a slash (″/″) in the Shell command path (for
example, c:/action.bat). This is true also for a Windows endpoint.

3. Click OK to complete the definition of this action.

4. In the Actions dialog, click Close to return to the Events dialog. To define additional
actions as the execution of a program, click Add Program and repeat the procedure.

Task 4: Defining Thresholds
For each resource model, you can define one or more thresholds. For more information
about thresholds, see “Thresholds” on page 8. Usually, the numeric value you enter in this
dialog represents a limit above or below which you do not want your resource to perform.
Alternatively, you can use this value as a numeric parameter whose function you must
specify in the monitoring algorithm. The default values that you define here can be modified
later when this resource model is included in a profile on the Tivoli Monitoring server.

To define a threshold, perform the following steps:

1. From your resource model, double-click Thresholds. The Thresholds dialog opens.

Creating an Empty Resource Model

33IBM Tivoli Monitoring Workbench User’s Guide

|
|

|
|
|

|

|
|
|

|
|

|

|
|

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

2. Type an internal name in the corresponding text box, as shown in the following figure.

3. In the Default Value text box, type a numeric value.

4. Type a descriptive name and a description in the corresponding text boxes.

5. Click OK to close and apply this threshold.

Task 5: Defining Parameters
For each resource model, you can define one or more lists of parameters. For more
information regarding parameters, see “Parameters” on page 8. To define parameters, you
must select the most appropriate type of list and then type the required information. The
default values that you define here can be modified later when this resource model is
included in a profile on the Tivoli Monitoring server.

To define parameters, perform the following steps:

1. From your resource model, double-click Parameters. The Parameters dialog opens.

2. Type an internal name in the corresponding text box as shown in the following figure.

3. Type a descriptive name and a description in the corresponding text boxes.

4. From the Type drop-down list, select the required type of list. For more details on the
types of lists, see “Parameters” on page 8.

5. Click Add Value and specify the parameter as required.

6. Click OK to apply the parameters.

Task 6: Defining Data to Log
If you want to store data about the attributes of the resource you are monitoring, you can
use the logging function. To implement logging in a resource model, first you have to define
what data you want to log, then you have to call the DefineLogInst method in the decision
tree script. For more information about this method, see “Method DefineLogInst” on
page 76.

Creating an Empty Resource Model

34 Version 5.1

In the resource models you create, logging is disabled by default, but the operator can
enable it from the Tivoli Monitoring dialogs.

Logged data is stored in a database that can be accessed through the Tivoli Monitoring Web
Health Console. For more information, see “Logging” on page 11.

To define the resource attributes that the resource model can log, with reference to the
specified context, perform the following steps:

1. From your resource model, double-click Logging.

2. In the Logging dialog, specify the required information, as shown in the following
figure:

3. In the Context text box, type the name of a general problem that the resource logging
relates to. Example: the bytes transferred to a resource.

4. In the Resource text box, type the name of the resource whose state you want to log in
relation to the specified context. Example: the logical disk.

5. Click Add. The Adding Logging Attribute dialog opens, which you use to include the
specific properties you want to log. These are attributes of the resource you have
specified. Example: the name of the disk and the number of bytes transferred per
second.

6. In the Attribute Name text box, type the specific attribute you wan to log. Often, but
not always, these attributes are properties of the class to which the monitored resource
belongs.

7. Select either STRING or NUMERIC to specify the attribute type.

8. Select the Key Attribute check-box if you want this attribute to identify the resource
instance. Each logging context can have more than one key attribute.

Creating an Empty Resource Model

35IBM Tivoli Monitoring Workbench User’s Guide

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

9. Click OK to return to the Logging dialog. For each attribute you want to add, repeat
the procedure from step 5 on page 35.

10. Click OK to save your settings and close Logging dialog.

Task 7: Defining the Decision Tree Script
The decision tree script implements the settings defined during the creation of the resource
model. In the decision tree script, you have to write a monitoring algorithm that controls the
whole process. The monitoring algorithm is written in Visual Basic or Java Script and
appears on the right of the main window when you open a resource model, as shown in the
following figure. For more information about the decision tree script, see “Decision Tree
Script” on page 12.

Note: The workbench implements the Sax interpreter, which differs slightly from other
Visual Basic interpreters, such as Microsoft Visual Studio«. For more information,
refer to the following web site: http://www.saxsoft.com/Basic/Details

In the script, you can edit the predefined functions. You can add additional code, but you
cannot modify the settings specified in the previous dialogs. If you try to modify them from
the script, the new settings will not be saved. However, you can add additional steps to the
functions, as long as you are careful writing the new lines of code.

Note: Do not modify remarks contained in tags like <<....>> ... <<\...>>, otherwise the
workbench can produce unpredictable results.

When you write the monitoring script, you must specify how your resource model works.
When you specify the event attributes, you must list them in the same order as they appear
in the Events dialog. For more information on writing the monitoring algorithm in the
decision tree script, refer to the syntax descriptions in Appendix A, “Service Object Method
Library” on page 57.

Task 8: Adding Dependencies
If you need to transfer additional files with the resource model, you can use the dependency
function. For more information about adding dependencies, see “Dependencies” on page 13.
To include additional files to your resource model, perform the following steps:

Creating an Empty Resource Model

36 Version 5.1

http://www.saxsoft.com/Basic/Details

1. From your resource model, click Dependencies to see all the platforms supported by the
resource model, as shown in the following figure.

2. Double-click on the platform for which you want to add dependencies.

3. The Open dialog is displayed.

4. In the Open dialog, browse to the file you want to transfer and click Open. The file is
automatically copied into the Dependencies folder of your resource model.

5. To remove a file from the Dependencies folder, right-click on it and select Remove.

6. To view a file added to the Dependencies folder, right-click on it and select Extract.

Task 9: Debugging a Resource Model
After creating your resource model, you can test it. To debug a resource model, run the
script to make sure it does not generate any errors. If a pop-up error dialog appears, see
“Exceptions” on page 78 and correct the error. Also, in the decision tree script, the lines
containing the error are highlighted. When you have fixed all the errors, run the resource
model again. To make sure that the resource model actually detects the problems that you
have specified, simulate those problems on your workstation when you run the resource
model.

To debug a resource model, perform the following steps:

1. Open your resource model.

Creating an Empty Resource Model

37IBM Tivoli Monitoring Workbench User’s Guide

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

2. From the menu bar, click the Run button to start debugging:

The Event Aggregator Status is displayed at the bottom of the main dialog, as shown in
the following figure:

3. In the Event Aggregator Status, data is updated dynamically and provides you with the
following information:

EventName The name of the event that is being generated.

Key The key attribute selected for the indication aggregation process.

Default_Occurrences
The number of occurrences that you specified in the Events dialog for
the indication aggregation process.

Current_Occurrences
The number of currently registered occurrences.

Default_Holes
The number of holes that you specified in the Events dialog.

Current_Holes
The number of currently registered holes.

Sent Typically, this reads FALSE, but becomes TRUE when an event is
generated.

Note: For more information about the upper-right pane in this dialog, refer to the Sax Basic
Help online.

Remote Debugging
If you want, you can also debug your resource model on a remote workstation (only for
CIM data collections). This can be useful, for example, if you want to test a resource model
on a system without installing the workbench on it. To debug a resource model remotely,
perform the following steps:

1. Open your resource model.

Creating an Empty Resource Model

38 Version 5.1

2. From the Debug menu, select Remote WMI data collection.

3. In the Login dialog, type the name of the host you are connecting to, your user name
and password.

Now, you are connected to a remote system and if you run a debug of your resource model,
it will automatically collect data from the remote system. To run remote debugging, it is
necessary that the remote system has either Windows 2000, or Windows NT with WMI
installed, while the workbench is not necessary.

Task 10: Building a Resource Model
After testing your resource model, you have to build it into a TAR file and then install it on
the Tivoli Monitoring server.

Building the Package
To build your resource model into a complete package that can later be installed on the
Tivoli Monitoring server, perform the following steps:

1. Open your resource model.

2. From the Build menu, select Build package. The Save As dialog opens.

3. Save the file with a .tar extension.

4. To install the resource model on your Tivoli Monitoring server, from the command line
type the following command:
wdmrrm -add filename.tar

This command adds a new resource model to the list of available resource models on Tivoli
Monitoring.

Building the TEC BAROC
To see your resource model events on the Tivoli Enterprise Console, you have to build and
export a TEC BAROC file. This file contains all the event definitions specified in the
BAROC language. This file can be installed on a TEC Rule base and allows the Tivoli
Enterprise Console to display the events of your resource model.

To build a TEC BAROC file, perform the following steps:

1. Open your resource model.

2. From the Build menu, select Build TEC BAROC. The Save As dialog opens.

3. Save the file with a .baroc extension.

Creating an Empty Resource Model

39IBM Tivoli Monitoring Workbench User’s Guide

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

Exporting the Message Catalog
Optionally, you can build a message file containing all the information that will be displayed
in Tivoli Monitoring dialogs. This can be useful if you want to translate your text
information into other languages. The workbench is designed to generate resource model
packages that contain all the strings for the English Locale, therefore DBCS characters are
not supported. All localized strings should be handled separately from the workbench.

The recommended way to work is to export the English message catalog, then translate it
into the desired language, compile it using Gencat tool (included in the Application
Development Environment), and finally install it manually in the message bundle on the
TME server.

Note: Before compiling Japanese message catalogs with Gencat, you need to convert the
original files into UTF8 files issuing the following Framework command:
wiconv

To export a message catalog, perform the following steps:

1. Open your resource model.

2. From the Build menu, select Export Message Catalog. The Save As dialog opens.

3. Save the file with a .msg extension.

Building an HTML File
You can build an HTML document that contains all the information related to your resource
model and included in the descriptive sections of the resource model components.

To build an HTML file, perform the following steps:

1. Open your resource model.

2. From the Build menu, select Build .Html Documentation. The Save As dialog opens.

3. Save the file with a .html extension.

Creating a Resource Model from a Monitoring Source
You can import a monitoring source (or a whole monitoring collection) also in a resource
model that already exists, by opening the resource model tree structure. You can also import,
in the same resource model, monitoring sources that belong to different monitoring
collections.

In this procedure, only the definitions of the imported sources are included in the decision
tree script automatically. However, you must write the monitoring algorithm that governs the
resource model.

To import a monitoring source into a resource model, perform the following steps:

1. From the workbench main dialog, open the resource model tree structure.

Creating an Empty Resource Model

40 Version 5.1

|

|
|
|
|

|
|
|

|

|

2. Under the Dynamic Model element, right-click DM Classic Probes, and select the
required file format:

3. Select the required file format to import and browse to the file location.

If you are importing a .csl file, specify the preprocessing settings in the displayed dialog:

a. In the Preprocessor text-box, specify the preprocessor you want to use to resolve the
preprocessing guidelines used in the .csl file. The specified preprocessor must be in
the system path. The workbench automatically installs a default preprocessor and
points to it.

b. In the Preprocessing options text-box, specify the same options used by the mcsl
command with Tivoli Distributed Monitoring (Classic Edition).

These options are passed verbatim to the C preprocessor. In addition to these
preprocessor arguments, the workbench also passes the value of the MCSLCPPARGS
environment variable. Arguments from the environment variable follow on the
preprocessor command line those arguments that are given explicitly as preprocessor
options. For more information, see the Tivoli Distributed Monitoring User’s Guide,
Version 3.6.2.

c. Click OK, and, if prompted, save the preprocessing options so that they are available
the next time you import a .csl file.

After the operation is completed successfully, some information about the selected
monitoring collection appear in the displayed dialog.

Creating a Resource Model from a Monitoring Source

41IBM Tivoli Monitoring Workbench User’s Guide

|
|
|

|

|

|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

4. In the Importing Monitoring Sources dialog, from the Available Monitoring Sources
list, double-click the sources you want to import, switching No to Yes.

5. Select the required sources, and click Import.

In the decision tree script, the definitions of the imported sources are automatically
specified under the dynamic model section, as shown in the following window:

The selected monitoring sources are automatically added to the resource model. Now, you
just need to write the monitoring algorithm in the decision tree script, as explained before in
this chapter.

Creating a Resource Model from a Monitoring Source

42 Version 5.1

|
|
|

|

|

|
|
|

|

|
|
|

Resource Model Wizard
An alternate way to create a resource model is by using a wizard that guides you through a
series of dialogs. Following this method you don’t have to write any scripts or code: you
can produce WQL queries and decision tree scripts by means of GUI buttons and options.

The resource model you create in this way is simple and provides you with a limited range
of possibilities during resource model creation. However, a resource model created using the
wizard is just like any other resource model. This means that, after creating it, you can
modify and customize it by editing the decision tree script, adding parameters, or writing
filtering queries, just as you would do with any other resource model.

The Resource Model Wizard enables you to create a resource model starting from either:

¶ a selected CIM class taken from the WMI repository

¶ or a monitoring collection

¶ or a custom script

Creating a Resource Model from a CIM class
To create a resource model (from a CIM class) with the wizard, perform the following steps:

1. Open the File menu and select New to create a new resource model.

2. From the displayed dialog, select the language and click OK.

3. From the New Resource Model Workspace, select Resource Model Wizard and click
OK.

4. The Select Data Source Type dialog opens. Select CIM/WMI and click Next.

Resource Model Wizard

43IBM Tivoli Monitoring Workbench User’s Guide

|

|

|

|
|

|

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

5. In the Connect to namespace dialog, specify the required namespace and click OK. The
default namespace is root\CIMV2. Use the browse button to locate another namespace.

6. In the WMI DM Workbench Login dialog, type your user name and password, if
necessary, and click OK. The Select a Class dialog opens.

Selecting a Class
In the Select a Class dialog you can choose the class and the specific properties of the
resource you want to monitor.

The class list shows all the available classes. When you select a class, all corresponding
properties corresponding to the selected class are listed in the Class Properties table.

Note: If you select a class that is not included in WMI repository, you have to add to the
dependencies the corresponding MOF file and, possibly, the provider.

If you run a collection test at this point, the resource model collects data about all the
properties of the selected class.

After selecting a class, click Next to open the dialog to select the specific class properties
you want to monitor.

Resource Model Wizard

44 Version 5.1

|

Selecting Properties
In the Select Properties dialog you can create a list of properties you want to monitor, that
are relevant to the class you have selected in the previous dialog.

The Available table lists all the properties available for the selected class. In turn,
double-click each of the specific properties you want to monitor, and move it to the Selected
table.

In this way you include a specific set of properties in your resource model. If you run a
collection test at this point, the resource model collects instances of only the selected
properties.

If you click the Back button and run a collection test from the previous dialog, the resource
model still limits the data collection to the selected properties.

Click Next to proceed with the wizard.

Applying Filtering Conditions
You can omit filtering if you do not want to apply filtering criteria to data collection. When
you create a resource model following the standard menus, you can write a query in WQL
language, specifying how to limit the data collection. For more information about filtering,
see “Data Filtering” on page 6.

From the Filtering dialog you can obtain the same result without writing any code. You can
build the conditions that make up your query by clicking buttons and selecting items from

Resource Model Wizard

45IBM Tivoli Monitoring Workbench User’s Guide

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

lists, as shown in the Filtering dialog:

The Properties table lists the properties you have selected for the specified class. You can
use each of them to create a filter and define the instances you want to collect.

Building a Filtering Query
Building a filtering query means creating a logical expression by means of the logical
operators displayed in the buttons located between the tables. The expression associates the
properties listed in the Properties table with certain conditions. Buttons are enabled or
disabled, complying with the logic of the expression.

The filtering query you are building using the GUI is shown in WQL language in the lower
pane of the dialog.

To build a filtering query using the GUI, perform the following steps:

1. From the Properties table, double-click the property whose instances you want to filter.
The Enter the condition dialog opens, enabling you to enter the condition you want to
apply to that property. The possible conditions you can set vary, depending on whether
the property is a string or a numeric value.

2. In the Enter the condition dialog, select an item from the drop down list and enter a
value in the text box to complete the filtering condition.

3. Click OK to return to the Filtering dialog.

4. If you want to add one or more conditions, click one of the enabled buttons between the
tables and repeat the procedure from step 1.

5. Click Delete if you want to delete the last condition displayed in the Condition table.

Resource Model Wizard

46 Version 5.1

6. After completing your filtering query, click Collection Test if you want to see the result
of the filtered data collection.

7. Click Next to proceed with the resource model wizard.

Specifying Event Triggering Conditions
To complete your resource model you have to specify when you want an event to be
generated and whether you want it to be notified to the Tivoli Enterprise Console server or
to the Tivoli Business Systems Manager.

In the following dialog you select one or more properties out of all monitored properties.
Then you specify the conditions that must be satisfied to generate an event.

Example. An event is generated when Process Name is equal to Explorer, and another is
generated when the process Status is not equal to Running.

To specify this information, perform the following steps:

1. From the Specify the event triggering condition dialog, double-click the property you
want to associate with event triggering. The Enter the Triggering Condition dialog
opens:

2. From the drop-down list on the top of the dialog, select the logical operator to associate
with the selected property.

The options displayed in the list for a numeric property are as follows:

> Records the value of the selected property, compares it to the value you
specify in the text box, and triggers an event if the current value is
greater than the specified value.

< Records the value of the selected property, compares it to the value you
specify in the text box, and triggers an event if the current value is less
than the specified value.

= Records the value of the selected property, compares it to the value you
specify in the text box, and triggers an event if the current value is
equal to the specified value.

<> Records the value the value of the selected property, compares it to the
value you specify in the text box, and triggers if the current value is not
equal to the specified value.

>= Records the value of the selected property, compares it to the value you

Resource Model Wizard

47IBM Tivoli Monitoring Workbench User’s Guide

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

specify in the text box and triggers an event if the current value is
larger than or equal to the specified value.

<= Records the value of the selected property, compares it to the value you
specify in the text box and triggers an event if the current value is
smaller than or equal to the specified value.

Increases at least by
Checks the current value of the selected property against the previous
value and triggers an event if the current value is greater than the
previous one by a value equal to or greater than the value you specify
in the text box.

% increases at least by
Checks the current value of the selected property as a percentage of the
previous value and triggers an event if current value is greater than the
previous one by a value equal to or greater than the value you specify
in the text box.

Decreases at least by
Checks the current value of the selected property against the previous
value and triggers an event if the current value is smaller than the
previous one by a value equal to or greater than the value you specify
in the text box.

% decreases at least by
Checks the current value of the selected property as a percentage of the
previous value and triggers an event if current value is smaller than the
previous one by a value equal to or greater than the value you specify
in the text box.

Changes by Compares the previous and current values of the selected property and
triggers an event if between these two values there is a difference equal
to the value you specify in the text box.

Changes at least by
Compares the previous and current values of the selected property and
triggers an event if between these two values there is a difference equal
to or greater than the value you specify in the text box.

Is out of the range
Compares the current value of the selected property against the defined
range limits, and triggers an event if the current value falls outside the
specified range.

The options displayed in the list for a string property are as follows:

Is equal to Records the value of the selected property, compares it to the value you
specify in the text box, and triggers an event if the current value is
equal to the specified value.

Is not equal to
Records the value of the selected property, compares it to the value you
specify in the text box, and triggers an event if the current value is
different from the specified value.

Resource Model Wizard

48 Version 5.1

Contains Records the value of the selected property, compares it to the value you
specify in the text box, and triggers an event if the current value
contains the specified value.

3. Enter either a string or numeric value in the text box next to the drop-down list. In this
way, you build a logical expression, specifying a value and the logical operator that
associates it with the selected property.

4. In the upper-right text box, enter a number that represents the number of occurrences of
the specified condition that must be detected before the resource model generates an
event.

5. In the second text box on the right, enter a number that represents the number of holes
allowed before the resource model generates an event. For more information about
holes, see “Events and Indications” on page 7.

6. From the Event severity drop-down list, select the severity degree you want to apply to
this event.

7. Select the first the check box if you want an event to be generated when the conditions
that had previously caused an event have resolved.

8. Select the remaining two check boxes if you want to notify this event to the Tivoli
Enterprise Console server or to the Tivoli Business Systems Manager.

9. Click OK to return to Specify the triggering conditions dialog.

10. Repeat the procedure for each event you want to generate.

11. Click Next to proceed with the wizard.

Selecting the Properties to Log
The Select the properties to Log dialog provides an optional step. That is, you can click
Finish to end the creation of the resource model, or you can use the dialog to log the
monitoring results of one or more properties.

To perform logging, select the required properties in the Selected Properties list box and
move them to the Logged Properties list box using the upper arrow button.

Resource Model Wizard

49IBM Tivoli Monitoring Workbench User’s Guide

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

Click Finish to proceed with the resource model creation.

Enter a Cycle Time
The last step you have to perform to complete the creation of a resource model through the
wizard is to specify the time interval you want to elapse between two successive monitoring
cycles.

This value is expressed in seconds and must be entered in the following dialog:

After typing the required value, click OK to close the dialog and complete the resource
model creation.

Creating a Resource Model from a Monitoring Source
To import using the wizard a monitoring collection created with Tivoli Distributed
Monitoring (Classic Edition), perform the following steps:

1. Open the File menu and select New to create a new resource model.

2. From the displayed dialog, select the language of your resource model and click OK.

3. From the New Resource Model Workspace, select Resource Model Wizard and click
OK.

The Select Data Source Type dialog opens:

4. Select Distributed Monitoring (Classic Edition) collection and click Next.

Resource Model Wizard

50 Version 5.1

|

|
|

|

|

|
|

|
|

|

|

The Import the Monitoring Collection dialog opens.

5. Select the required file format to import, and browse to the file location.

If you are importing a .csl file, specify the preprocessing settings in the displayed
dialog:

a. In the Preprocessor text-box, specify the preprocessor you want to use to resolve
the preprocessing guidelines used in the .csl file. The specified preprocessor must be
in the system path. The workbench automatically installs a default preprocessor and
points to it.

b. In the Preprocessing options text-box, specify the same options used by the mcsl
command with Tivoli Distributed Monitoring (Classic Edition).

These options are passed verbatim to the C preprocessor. In addition to these
preprocessor arguments, the workbench also passes the value of the
MCSLCPPARGS environment variable. Arguments from the environment variable
follow on the preprocessor command line those arguments that are given explicitly
as preprocessor options. For more information, see the Tivoli Distributed Monitoring
User’s Guide, Version 3.6.2.

c. Click OK, and, if prompted, save the preprocessing options so that they are
available the next time you import a .csl file.

Resource Model Wizard

51IBM Tivoli Monitoring Workbench User’s Guide

|
|

|

|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

After the operation is completed successfully, some information about the selected
monitoring collection appears in the displayed dialog.

6. Click Next. The Select Monitoring Sources dialog opens.

7. To see the details about a particular monitoring source, select it in the Available list
and click Details.

8. From the Available list, double-click the monitoring sources you want to import in your
resource model. This list displays all sources that belong to the selected monitoring
collection. You can import all sources, or a subset of them.

If you select a source that has arguments, the Monitoring Source Argument
Configuration dialog opens.

9. The Arguments text box displays a list of all mandatory arguments to be specified for
the selected source.

10. In the Insert arguments for the monitoring source text box, specify the required
arguments, separated by blanks.

The arguments you specify here identify the monitored resource. They are included in
the resource model structure as parameters of the resource model itself, therefore they

Resource Model Wizard

52 Version 5.1

|
|

|
|

|

|
|

|
|
|

|
|
|

|

|
|

|
|

|
|

represent instances of the monitored resource. So, you can modify a resource model at
a later time, adding new parameters to it to monitor more instances of the same
resource.

11. Click Next and follow the remaining dialogs of the wizard to configure triggering
conditions, logging, and cycle time. These steps are the same as those described in the
creation through the wizard of a resource model from a CIM class.

When you have completed the procedure, the workbench produces a resource model that
contains both the definition of the imported monitoring source, and the code necessary to
implement the logic of the analysis.

Creating a Resource Model from a Custom Script
Now that it is more fully integrated with Tivoli Distributed Monitoring (Classic Edition), the
workbench enables you to use resource models to launch shell commands or scripts and
retrieve the output.

You need only to include in the resource model the commands or the scripts you want to
launch, and they will be embedded in the resource model, together with its other
components.

To Launch a Shell Command Using the Wizard
To include a shell command in a resource model, perform the following steps:

1. Open the File menu and select New to create a new resource model.

2. From the New dialog, select the language of your resource model and click OK.

3. From the New Resource Model Workspace dialog, select Resource Model Wizard and
click OK.

The Select Data Source Type dialog opens:

Resource Model Wizard

53IBM Tivoli Monitoring Workbench User’s Guide

|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|

|

|

|
|

|
|

|

5.
C

reatin
g

a
R

eso
u

rce
M

o
d

el

4. Select Custom Script. The Import the Custom Script dialog opens.

5. In the Shell command text box, type the command you want to launch when you run
this resource model. This could be, for example, a command to determine whether a file
is contained in the specified directory.

6. In the Script type group-box, select the kind of output you expect from the command.

7. Click Next and follow the remaining dialogs of the wizard to configure triggering
conditions, logging, and cycle time. These steps are the same as those described in the
resource model wizard creation, included in this chapter.

In the triggering dialog, for example, you can specify that you want an event to be
generated if the command output is equal to the given string, that is, if the file is found
in the directory.

To Import a Script with the Wizard
With the workbench, you can also import a custom script (like a bash, or perl script) into a
resource model, so that the script is launched when you run the resource model.

To import a custom script, follow the procedure described in “To Launch a Shell Command
Using the Wizard” on page 53, from step 1, to step 3.

From the Import the Custom Script dialog, browse to the file that contains your script.

The workbench automatically imports that file and adds it to the dependencies of the
resource model. Therefore, the file containing the script is automatically installed on the
endpoint, together with the resource model.

Resource Model Wizard

54 Version 5.1

|
|

|

|
|
|

|

|
|
|

|
|
|

|
|
|

|
|

|

|
|
|

Resource Model Troubleshooting

When a resource model is run through the Tivoli Monitoring application, the action the
engine can take depends on the state of the resource model. The various possible states are
either assigned automatically by the engine, or specified by the user in the decision tree
script. The resource model states are displayed together with the monitoring results, by the
command line, Tivoli Monitoring Web Health Console, or Tivoli Business Systems Manager,
when enabled.

The following table shows the states automatically assigned by the engine, the external
causes from which the states result, and the related actions taken by the engine.

Resource Model State Cause of the State Action Taken by Engine

Running Resource model running
successfully.

None

Stopped User stopped the resource mode, or
it has successfully finished running.

None

Disabled User action. None

Scheduled User has scheduled resource model
for a later time.

None

Error An error is preventing the resource
model from running.

Every 3 minutes the engine
automatically tries to rerun it.

Missing prerequisites Required prerequisites are missing. None

Not compiled An error in Visual Basic or Java
Script code.

None

You can program resource model states so that they derive from the return codes generated
by the monitoring algorithm you write. You can use the VisitTree, in the Init, or in the
SetDefaultConfiguration functions to specify what return codes are given for particular states
of the resource models.

All resource model states listed in the following table are caused by return codes as
specified in the monitoring algorithm. Therefore when you write the monitoring algorithm,
you can foresee specific situations that could cause the resource model to fail. You can
specify a return code that must be returned in these situations. Return codes match with
specific resource model states and cause the engine to take some actions.

Example: You have created a resource model that monitors some files. You know that
sometimes one of these file can be temporarily locked, This would prevent the resource
model from running successfully. You can bypass this problem adding a few lines to the
VisitTree function, specifying that if one file is not accessible, the VisitTree must return a

6

55IBM Tivoli Monitoring Workbench User’s Guide

6.
R

eso
u

rce
M

o
d

el
Tro

u
b

lesh
o

o
tin

g

specific code included between 601 and 800. This return code means that the resource model
state is Retrying and the engine will keep on trying to run it until it finds the file unlocked.

In the following table, the first column lists the resource model states. The second column
lists the return code ranges. The third column lists how Tivoli Monitoring interprets resource
model states and the consequent actions it takes.

Resource Model State Cause of the State Action Taken by the Engine

Failed 1-200. The resource
model has failed

VisitTree return code: 201-400 None

Failing 1-200. The resource
model has an error.

VisitTree return code: 401-600 The engine automatically
retries every three minutes to

run the resource model.

Retrying 1-200. The resource
model is running

VisitTree return code: 601-800 Retries 3 times in each cycle
time, indefinitely, to run the

resource model.

Unable to start 1-200. The
resource model is unable to

start. Assumed missing
prerequisites.

Init, or SetDefaultConfiguration
return code: 801-1000

None

Recovering 1-200. The
resource model is running

VistTree return code: 1001-1100 Once per cycle, for three
cycles only, tries to rerun the
resource model. After three

unsuccessful attempts,
interprets the resource model

as failed.

Failed after recovery The resource model failed in three
successive cycles. Interpreted as

failed.

None

Note: If in the monitoring algorithm you specify a return code that is not included in the
supported ranges, the workbench assumes this return code to be 0 (successful).

The return codes that are displayed by the Tivoli Monitoring Web Health Console are not
the same return codes you enter in the monitoring algorithm. Those displayed by the Tivoli
Monitoring Web Health Console are the result of the following formula:

modulus of return code / 200

That means the remainder of the return code divided by 200. Example: if the VisitTree
returns 1051, the Tivoli Monitoring Web Health Console displays: Recovering 51.

You can use different return codes to better specify different causes for the same resource
model state. For example, a resource model that monitors some files can be in Retrying state
because it finds a file locked (one return code), or because this file does not exist (another
return code).

Resource Model Troubleshooting

56 Version 5.1

Service Object Method Library

This Appendix, describes the Class Object library. This library contains the syntax required
to express all main functions needed to create an object in a resource model.

The chapter also contains a list of possible errors users can get when they run a resource
model, as well as guidelines for producing the main and most useful scripts.

The workbench also allows you to program your own functions, to create customized scripts.
If you do this, the results are less predictable, so it is essential to test your scripts thoroughly
before distributing them.

Note: All methods described in this appendix are written in Visual Basic. The same
methods can also be written in Java Script, by modifying the syntax and complying
with the code rules. The following table lists some examples of the same methods
expressed in both languages:

Visual Basic Java Script

GetNumOfInst (ClassName As String) As Long int GetNumOfInst (String className)

GetNumProperty (ClassName As String,
idxAs Long, PropName As String) As Double

double GetNumProperty (String className, int
index, String propertyName)

DefineClass (Source As String, AliasName As
String, RealClassName As String, WhereClause
As String,NumProps As String, StrProps As
String, SortType As String, SortField As
String, Top as long, Every as long)

DefineClass (String source, String aliasName,
String realName, String whereClause, String
numProperties, String strProperties, String
sortType, String sortField, int Top, int every)

The main differences between the two languages are pointed out in the following table:

Visual Basic Java Script

Parameter name As Parameter Type. Parameter Type Parameter name.

The type of value returned by the function is
expressed at the end of the function. Example:
GetNumProperty(...) As Double

The type of value returned by the function is
expressed at the beginning of the function.
Example: double GetNumProperty(...)

- Instructions end with a semicolon.

Basic Object Methods
This section describes basic methods for the TMWService Object. You can refer to it for the
syntax required to call the specific methods.

A

57IBM Tivoli Monitoring Workbench User’s Guide

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

General Settings
The following methods help you to express functions for resource model configuration.

Method GetModelName
Syntax

Object.GetModelName() As String

Description
Returns the name of the resource model.

Error code
S_OK.

Method GetCycleTime
Syntax

Object.GetCycleTime() As Double

Description
Returns the cycle time value.

Error code
S_OK.

Dynamic Model
The following methods help you to express functions for dynamic model configuration.

Method GetNumOfInst
Syntax

Object.GetNumOfInst(ClassName As String) As Long

Parameters

ClassName
The name of the class.

Description
Returns the number of the collected instances of the class named ClassName in the
current monitoring cycle.

Remarks
The ClassName must be previously defined through in the Dynamic model dialog.

Error codes
S_OK; TMWSERVICE_E_CLASS_NOT_FOUND.

Method GetNumProperty
Syntax

Object.GetNumProperty(ClassName As String,

idx As Long, PropName As String) As Double

Parameters

ClassName
The name of the class.

idx The instance index.

Basic Object Methods

58 Version 5.1

PropName
The name of a NUMERIC property.

Description
Returns the value of the property named PropName of the instance number idx of
the class named ClassName.

Remarks
idx counter goes from 0 to NumOfInst -1.

Error codes
S_OK; TMWSERVICE_E_PROPERTY_NOT_FOUND.

Method GetStrProperty
Syntax

Object.GetStrProperty(ClassName As String,

idx As Long, PropName As String) As String

Parameters

ClassName
The name of the class.

idx The instance index.

PropName
The name of a STRING property.

Description
Returns the value of the property named PropName of the instance number idx of
the class named ClassName.

Remarks
idx counter goes from 0 to NumOfInst -1.

Error codes
S_OK; TMWSERVICE_E_PROPERTY_NOT_FOUND.

Method AssociateParameterToClass
Syntax

Object.AssociateParameterToClass (ParameterName As String,
ClassName As String)

Parameters

ParameterName
The name of the parameter to use as the argument for the provider
operations on the specified class.

ClassName
The name of the class whose provider operations are to be executed
using the specified parameter as an argument.

Description
Defines an existing parameter as the argument for the provider operations on the
class named ClassName.

Remarks
This method is for UNIX platforms, only.

Basic Object Methods

59IBM Tivoli Monitoring Workbench User’s Guide

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

Method AssociateParameterToClassProperty
Syntax

Object.AssociateParameterToClassProperty (ParameterName As String, ClassName
As String, Property As String)

ParameterName
The name of the parameter to use as the argument for the provider
operations on the specified class property.

ClassName
The name of the class which the property belongs to.

PropertyName
The name of the property whose provider operations are to be executed
using the specified parameter as an argument.

Description
Defines an existing parameter as the argument for the provider operations on the
class property named ClassProperty.

Remarks
This method is for UNIX platforms, only.

Method CallDMNumProbe
Syntax

Object.CallDMNumProbe(ProbeKey As String, Arguments As String) As Double

Parameters

Probekey
A key that uniquely identifies the monitoring source; is always in the
form CollectionName.MonitorName.

Arguments
A string that contains the monitor arguments separated by blanks.

Returns
The numeric value resulting from the monitor call.

Description
This method runs the monitoring source identified by ProbeKey and returns its
output.

Remarks
The monitoring source activation must return within 60 seconds, otherwise an error
is generated.

Error codes
TMWSERVICE_E_PROBE_WRONG_ARGS_NUM
TMWSERVICE_E_PROBE_NOT_LOAD
TMWSERVICE_E_PROBE_NOT_FOUND
TMWSERVICE_E_NO_INTERP_SUPPORT TMWSERVICE_E_NO_DATA
TMWSERVICE_E_IMPLIED_ERROR
TMWSERVICE_E_ERRORVALUE_SCRIPT_ERROR S_OK.

Basic Object Methods

60 Version 5.1

|

|

|

|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

Method CallDMStrProbe
Syntax

Object.CallDMStrProbe(ProbeKey As String, Arguments As String) As String

Parameters

Probekey
A key that uniquely identifies the monitoring source; is always in the
form CollectionName.MonitorName.

Arguments
A string that contains the monitor arguments separated by blanks.

Returns
The string value resulting from the monitor call.

Description
This method runs the monitoring source identified by ProbeKey and returns its
output.

Remarks
The monitoring source activation must return within 60 seconds, otherwise an error
is generated.

Error codes
TMWSERVICE_E_PROBE_WRONG_ARGS_NUM
TMWSERVICE_E_PROBE_NOT_LOAD
TMWSERVICE_E_PROBE_NOT_FOUND
TMWSERVICE_E_NO_INTERP_SUPPORT TMWSERVICE_E_NO_DATA
TMWSERVICE_E_IMPLIED_ERROR
TMWSERVICE_E_ERRORVALUE_SCRIPT_ERROR S_OK.

Thresholds
The following methods help you to express functions for threshold configuration.

Method GetThreshold
Syntax

Object.GetThreshold(ThName As String) As Double

Parameters

ThName
The name of the threshold.

Description
Returns the value of the threshold named ThName.

Error codes
S_OK; TMWSERVICE_E_THRESHOLD_NAME_NOT_DEFINED.

Parameters
The following methods help you to express functions for parameters configuration.

Method GetNumParameterCount
Syntax

Object.GetNumParameterCount(ParamName As String) As Long

Basic Object Methods

61IBM Tivoli Monitoring Workbench User’s Guide

|

|

|

|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

Parameters

ParamName
The name of a NUMERIC parameter.

Description
Returns the number of values contained by the parameter named ParamName.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NOT_DEFINED.

Method GetStrParameterCount
This method is used to retrieve the number of items of string, boolean, and choice list types.
For the string lists, the returned value is the number of elements. For the boolean lists, the
returned value is the number of elements set to true. For the choice lists, the returned value
is 1.

Syntax
Object.GetStrParameterCount(ParamName As String)_

As Long

Parameters

ParamName
The name of a STRING parameter.

Description
Returns the number of values contained by the parameter named ParamName.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NOT_DEFINED.

Method GetNumParameter
Syntax

Object.GetNumParameter(ParamName As String,_

idx As Long) As Double

Parameters

ParamName
The name of a NUMERIC parameter.

idx The index of the parameter value.

Remarks
idx counter goes from 0 to NumOfInst -1.

Description
Returns the NUMERIC value contained at the index idx of the parameter named
ParamName.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NOT_DEFINED;
TMWSERVICE_E_PARAMETER_BAD_INDEX.

Basic Object Methods

62 Version 5.1

Method GetStrParameter
This method is used to retrieve the values of string, boolean, and choice list types. For the
string lists, the returned values are the element value. For the boolean lists, the returned
values are the values of the elements set to true. For the choice lists, the returned value is
the selected value.

Syntax
Object.GetStrParameter(ParamName As String, idx As Long) As String

Parameters

ParamName
The name of a STRING parameter.

idx The index of the parameter value.

Description
Returns the STRING value contained at the index idx of the parameter named
ParamName.

Remarks
idx counter goes from 0 to NumOfInst -1.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NOT_DEFINED;
TMWSERVICE_E_PARAMETER_BAD_INDEX.

Events
The following methods help you to express functions for events configuration.

Method SendEventEx
Syntax

Object.SendEventEx(EventName As String, mapHndl As Integer)

Parameters

EventName
The name of the event to send.

mapHndl
The handle of a mapping table returned by a call to CreateMap that
contains all the keys required to set the event attributes.

Description
This method sends the event named EventName and specifies its attributes.

Remarks
The event named EventName must be previously defined through a DefineEvent in
the SetDefaultConfiguration Subroutine. The mapping table associated to the handle
mapHndl must contain, as keys, all the attributes defined for the given event.

Error codes
TMWSERVICE_E_MAP_KEY_NOT_FOUND
TMWSERVICE_E_ANALYZER_EVENT_NOT_GOT
TMWSERVICE_E_SPAWN_EVENT_FAILED
TMWSERVICE_E_EVENT_NOT_DECLARED
TMWSERVICE_E_EVENT_PROP_NOT_FOUND
TMWSERVICE_E_EVENT_INDICATION_FAILED S_OK.

Basic Object Methods

63IBM Tivoli Monitoring Workbench User’s Guide

|

|

|

|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

Logging
The following methods help you to express functions for data logging.

Method LogInstEx
Syntax

Object.LogInstEx(contextName As String, Resource As String, mapHndl As Integer)

Parameters

context
The logging context.

pResource
The resource that the attributes refer to.

mapHndl
The handle of a mapping table returned by a call to CreateMap that
contains all the keys required to set the logging attributes.

Description
This method logs the attributes of the resource named Resource in the given context.

Remarks
The context and the resource must be previously defined through a DefineLogInst in
the SetDefaultConfiguration Subroutine. The mapping table associated to the handle
mapHndl must contain as keys all the attributes defined for the given logging
context.

Error codes
TMWSERVICE_E_MAP_KEY_NOT_FOUND
TMWSERVICE_E_ANALYZER_EVENT_NOT_GOT
TMWSERVICE_E_SPAWN_EVENT_FAILED
TMWSERVICE_E_EVENT_NOT_DECLARED
TMWSERVICE_E_EVENT_PROP_NOT_FOUND
TMWSERVICE_E_EVENT_INDICATION_FAILED S_OK.

Utilities
The following methods help you to express functions for tracing activity.

MethodTrace
Syntax

Object.Trace(LogLevel As Integer, Message As String)

Parameters

LogLevel
The log level of the message (0..3, 0 is the highest).

Message
The Message to Trace.

Description
Writes the Message in the DM for Window Trace if the LogLevel is greater than or
equal to the DMW Trace level.

Basic Object Methods

64 Version 5.1

|

|

|

|

|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

Remarks
Call this method for debugging. To change the trace level from the Tivoli
Monitoring server, type the following command:
wdmtrceng

For more information, see Tivoli Monitoring User’s Guide.

Error code
S_OK.

Method GetInterp
Syntax

Object.GetInterp()As String

Description
Returns the interp of the workstation on which the resource model is running.

Error codes
w32-x86 on Windows NT and Windows 2000 platforms; aix-r1;
hpux10;linux-ix86;linux-s390;solaris2 on UNIX platforms.

Method Shell
Syntax

Object.Shell(shell As String) As String

Parameters

shell The command line to launch the new process.

Returns
The standard output of the launched process.

Description
The Shell method is used to run a new program on the monitored host and to
retrieve its output.

Remarks
It is possible to launch customized scripts that are available on the endpoint by
issuing, for example,
perl myperl.pl

The launched process must return within 60 seconds, otherwise an error is generated.

Error codes
TMWSERVICE_E_NO_INTERP_SUPPORT TMWSERVICE_E_NO_DATA
TMWSERVICE_E_IMPLIED_ERROR
TMWSERVICE_E_ERRORVALUE_SCRIPT_ERROR S_OK.

Mapping Tables
Method CreateMap

Syntax
Object.CreateMap() As Integer

Returns
The handle of a new mapping table.

Basic Object Methods

65IBM Tivoli Monitoring Workbench User’s Guide

|

|

|

|

||

|
|

|
|
|

|
|
|

|

|

|
|
|
|

|

|

|

|

|
|

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

Description
This method creates a new mapping table and returns a handle to it.

Remarks
To avoid memory leaks, call the DestroyMap method when the mapping table is no
longer required.

Error code
S_OK.

Method SetMapNumElement
Syntax

Object.SetMapNumElement(hndl As Integer, key As String, val As Double)

Parameters

hndl The handle of a mapping table returned by a call to CreateMap.

key The key to store.

val The numeric value to store.

Description
This method inserts the key-val pair in the mapping table associated to the given
handle.

Error codes
TMWSERVICE_E_MAP_HANDLE_NOT_FOUND S_OK.

Method SetMapStrElement
Syntax

Object.SetMapStrElement(hndl As Integer, key As String, val As String)

Parameters

hndl The handle of a mapping table returned by a call to CreateMap.

key The key to store.

val The string value to store.

Description
This method inserts the key-val pair in the mapping table associated to the given
handle.

Error codes
TMWSERVICE_E_MAP_HANDLE_NOT_FOUND S_OK.

Method GetMapNumValue
Syntax

Object.GetMapNumValue (hndl As Integer, key As String) As Double

Parameters

hndl The handle of a mapping table returned by a call to CreateMap.

key The key to lookup.

Returns
The numeric value associated to the given key.

Mapping Tables

66 Version 5.1

|
|

|
|
|

|
|

|

|

|

|

||

||

||

|
|
|

|
|

|

|

|

|

||

||

||

|
|
|

|
|

|

|

|

|

||

||

|
|

Description
This method retrieves the value associated to the key in the mapping table linked
with the given handle.

Error codes
TMWSERVICE_E_MAP_HANDLE_NOT_FOUND
TMWSERVICE_E_MAP_KEY_NOT_FOUND S_OK.

Method GetMapStrValue
Syntax

Object.GetMapStrValue(hndl As Integer, key As String) As String

Parameters

hndl The handle of a mapping table returned by a call to CreateMap.

key The key to lookup.

Returns
The string value associated to the given key.

Description
This method retrieves the value associated to the key in the mapping table linked to
the given handle.

Error codes
TMWSERVICE_E_MAP_HANDLE_NOT_FOUND
TMWSERVICE_E_MAP_KEY_NOT_FOUND S_OK.

Method RemoveMapElement
Syntax

Object.RemoveMapElement(hndl As Integer, key As String)

Parameters

hndl The handle of a mapping table returned by a call to CreateMap.

key The key to remove from the mapping table.

Description
This method removes the value associated to the key in the mapping table linked to
the given handle.

Error codes
TMWSERVICE_E_MAP_HANDLE_NOT_FOUND S_OK.

Method RemoveMapAll
Syntax

Object.RemoveMapAll(hndl As Integer)

Parameters

hndl The handle of a mapping table returned by a call to CreateMap.

Description
This method removes all the elements contained in the mapping table associated to
the handle hndl, but it does not destroy the mapping table.

Mapping Tables

67IBM Tivoli Monitoring Workbench User’s Guide

|
|
|

|
|
|

|

|

|

|

||

||

|
|

|
|
|

|
|
|

|

|

|

|

||

||

|
|
|

|
|

|

|

|

|

||

|
|
|

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

Remarks
This method does not free all the resources used by a mapping table. If you want to
make them available, call the DestroyMap method.

Error codes
TMWSERVICE_E_MAP_HANDLE_NOT_FOUND S_OK.

Method ExistsMapElement
Syntax

Object.ExistsMapElement(hndl As Integer, key As String) As Boolean

Parameters

hndl The handle of a mapping table returned by a call to CreateMap.

key The key to check whether an element exists.

Returns
TRUE if the key exists in the given mapping table, or FALSE if it does not exist.

Description
This method checks whether the given key is contained in the mapping table
associated to the given handle.

Error codes
TMWSERVICE_E_MAP_HANDLE_NOT_FOUND S_OK.

Method DestroyMap
Syntax

Object.DestroyMap(hndl As Integer)

Parameters

hndl The handle of a mapping table returned by a call to CreateMap.

Remarks
Call the DestroyMap to free the resources used by a mapping table.

Description
This method destroys a the mapping table associated to the handle hndl.

Error codes
TMWSERVICE_E_MAP_HANDLE_NOT_FOUND S_OK.

Advanced Object Methods
This section contains a description of the advanced methods of the TMWService Object. You
should never call these methods directly, because the calls to these methods are always
generated by the workbench

General Settings
The following methods help you to express functions for resource model configuration.

Method SetModelName
Syntax

Object.SetModelName(ModelName As String)

Parameters

Mapping Tables

68 Version 5.1

|
|
|

|
|

|

|

|

|

||

||

|
|

|
|
|

|
|

|

|

|

|

||

|
|

|
|

|
|

ModelName
The name of the resource model.

Description
Sets the resource model name.

Remarks
Do not call this method outside the SetDefaultConfiguration(...) function.

Error code
S_OK.

Method SetCycleTime
Syntax

Object.SetCycleTime(CycleTime As Double)

Parameters

CycleTime
The cycle time of the resource model.

Description
Sets the resource model cycle time.

Remarks
Do not call this method outside the SetDefaultConfiguration(...) function.

Error code
S_OK.

Dynamic Model
The following methods help you to express functions for dynamic model configuration.

Method DefineClass
Syntax

Object.DefineClass(Source As String, AliasName As String,_

RealClassName As String, WhereClause As String,_

NumProps As String, StrProps As String, SortType As String,_

SortField As String, Top as long, Every as long)

Parameters

Source
The data source name (It can be only ″CIM″.)

AliasName
An alias for the class name.

RealClassName
The class full path.

WhereClause
A where clause used to filter the instances.

NumProps
Comma-separated values with the names of class NUMERIC
attributes.

Advanced Object Methods

69IBM Tivoli Monitoring Workbench User’s Guide

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

StrProps
Comma-separated values with the names of class STRING attributes.

SortType
Used to sort the collected instances. It can be set to Ascending,
Descending, or None.

SortField
A NUMERIC field used for sorting the collected instances.

Top Used only when the instances are sorted, to specify the maximum
number of instances to collect. Set to 0 to get all the instances.

Every
Specifies the number of cycle times that have to elapse between two
successive data collections. The default is 1.

Description
Adds a new data class to the resource model dynamic model.

Remarks
The ClassName must be previously defined in the Dynamic Model dialog.

Error codes
S_OK; TMWSERVICE_E_CLASS_NAME_NOT_VALID;
TMWSERVICE_E_SOURCE_NOT_SUPPORTED.

Method DefineCimClassAsync
Syntax

Object.DefineClassAsync(AliasName As String,_

RealClassName As String,_

EvType As String, NumProps As String, StrProps As String)

Parameters

AliasName
An alias for the class name.

RealClassName
The class full path.

EvType
Used to specify the kind of asynchronous collection. It can be set to
InstanceCreation, InstanceModification, or InstanceDeletion.

NumProps
Comma-separated values with the names of class NUMERIC
attributes.

StrProps
Comma-separated values with the names of class STRING attributes.

Description
Adds a new data class to the resource model dynamic model.

Error codes
S_OK; TMWSERVICE_E_CLASS_NAME_NOT_VALID.

Advanced Object Methods

70 Version 5.1

Method RemoveClass
Syntax

Object.RemoveClass(ClassName As String)

Parameters

ClassName
The name of the class.

Description
Removes the data class named ClassName from the resource model dynamic model.

Error codes
S_OK; TMWSERVICE_E_PROPERTY_NOT_FOUND.

Method CollectData
Syntax

Object.CollectData()

Description
Collects data for all the classes belonging to the resource model dynamic model.

Remarks
This method is called from Tivoli Monitoring engine before the VisitTree function is
called. By default, it is called every cycle time, unless otherwise specified in the
Every option of the Dynamic Model dialog. Do not call this method. If you invoke
this method, a new collection of the data defined in the resource model starts. So if,
for example, you are in a loop, you risk changing data during the analysis

Error codes
S_OK; TMWSERVICE_E_COLLECTOR_UNABLE_TO_USE_PROV;
TMWSERVICE_E_COLLECTOR_CRITICAL_ERROR;
TMWSERVICE_E_COLLECTOR_PROV_NOT_READY.

Method CollectClassData
Syntax

Object.CollectClassData(ClassName As String)

Parameters

ClassName
The name of the class.

Description
Collects data only for the specified class.

Remarks
Do not call this method if you are analyzing the defined class. Invoking this method,
a new collection of the data defined in the resource model starts. So if, for example,
you are in a loop, you risk changing data during the analysis.

Error codes
S_OK; TMWSERVICE_E_COLLECTOR_UNABLE_TO_USE_PROV;
TMWSERVICE_E_COLLECTOR_CRITICAL_ERROR;
TMWSERVICE_E_COLLECTOR_PROV_NOT_READY.

Advanced Object Methods

71IBM Tivoli Monitoring Workbench User’s Guide

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

Method DefineDMNumProbe
Syntax

Object.DefineDMNumProbe(key As String, numOfArgs As Long)

Parameters

key A key that uniquely identifies the monitoring source, always in the
form CollectionName.MonitorName.

numOfArgs
The number of arguments required by the monitor.

Description
This method adds to the dynamic model a Tivoli Distributed Monitoring (Classic
Edition) monitoring source that returns a numeric value.

Error code
S_OK.

Method DefineDMStrProbe
Syntax

Object.DefineDMStrProbe(key As String, numOfArgs As Long)

Parameters

key A key that uniquely identifies the monitoring source, always in the
form CollectionName.MonitorName

numOfArgs
The number of arguments required by the monitor.

Description
This method adds to the dynamic model a Tivoli Distributed Monitoring (Classic
Edition) monitoring source that returns a string value.

Error code
S_OK.

Thresholds
The following methods help you to express functions for threshold configuration.

Method DefineThreshold
Syntax

Object.DefineThreshold(ThName As String, value As Double)

Parameters

ThName
The name of a new threshold.

value The threshold default value.

Description
Defines a new threshold.

Remarks
This method is called inside the
<<THRESHOLDS_INFO>>...<<\THRESHOLDS_INFO>> tags after you have
defined a threshold in the Thresholds dialog.

Advanced Object Methods

72 Version 5.1

|

|

|

|

||
|

|
|

|
|
|

|
|

|

|

|

|

||
|

|
|

|
|
|

|
|

Error codes
S_OK; TMWSERVICE_E_THRESHOLD_NAME_NOT_VALID.

Parameters
The following methods help you to express functions for parameters configuration.

Method DefineStrParameter
Syntax

Object.DefineStrParameter(ParamName As String, values As String)

Parameters

ParamName
The name of a new STRING parameter.

values Comma-separated values of the parameter default values.

Description
Defines a new STRING parameter.

Remarks
This method is called inside the
<<PARAMETERS_INFO>>...<<\PARAMETERS_INFO>> tags after you have
defined a parameter in the Parameters dialog.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NAME_NOT_VALID.

Method DefineNumParameter
Syntax

Object.DefineNumParameter(ParamName As String, values As String)

Parameters

ParamName
The name of a new NUMERIC parameter

values Comma-separated values of the parameter default values.

Description
Defines a new NUMERIC parameter.

Remarks
This method is called inside the
<<PARAMETERS_INFO>>...<<\PARAMETERS_INFO>> tags after you have
defined a parameter in the Parameters dialog.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NAME_NOT_VALID.

Method AddStrParameter
Syntax

Object.AddStrParameter(ParamName As String, Value As String)

Parameters

ParamName
The name of a STRING parameter.

Advanced Object Methods

73IBM Tivoli Monitoring Workbench User’s Guide

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

Value A STRING value.

Description
Adds the given Value at the end of the parameter named ParamName.

Remarks
This method is called after you have defined a new parameter in the Parameters
dialog.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NOT_DEFINED;
TMWSERVICE_E_PARAMETER_BAD_INDEX.

Method AddNumParameter
Syntax

Object.AddNumParameter(ParamName As String, Value As Double)

Parameters

ParamName
The name of a NUMERIC parameter.

Value A NUMERIC value.

Description
Adds the given Value at the end of the parameter named ParamName.

Remarks
This method is called after you have defined a new parameter in the Parameters
dialog.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NOT_DEFINED;
TMWSERVICE_E_PARAMETER_BAD_INDEX.

Method RemoveStrParameter
Syntax

Object.RemoveStrParameter(ParamName As String, idx As Long)

Parameters

ParamName
The name of a STRING parameter.

idx The index of a parameter value.

Description
Removes the value contained at the given index and shifts down all the values after
the removed one.

Remarks
idx counter goes from 0 to NumOfInst -1.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NOT_DEFINED;
TMWSERVICE_E_PARAMETER_BAD_INDEX.

Advanced Object Methods

74 Version 5.1

Method RemoveNumParameter
Syntax

Object.RemoveNumParameter(ParamName As String, idx As Long)

Parameters

ParamName
The name of a NUMERIC parameter.

idx The index of a parameter value.

Description
Removes the value contained at the given index and shifts down all the values after
the removed one.

Remarks
idx counter goes from 0 to NumOfInst -1.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NOT_DEFINED;
TMWSERVICE_E_PARAMETER_BAD_INDEX.

Method ReplaceStrParameter
Syntax

Object.ReplaceStrParameter(ParamName As String,_

idx As Long, Value As String)

Parameters

ParamName
The name of a STRING parameter.

idx The index of a parameter value.

Value A STRING value.

Description
Replaces the value contained at the given index with the new value.

Remarks
idx counter goes from 0 to NumOfInst -1.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NOT_DEFINED
TMWSERVICE_E_PARAMETER_BAD_INDEX

Method ReplaceNumParameter
Syntax

Object.ReplaceNumParameter(ParamName As String,_

idx As Long, Value As Double)

Parameters

ParamName
The name of a NUMERIC parameter.

idx The index of a parameter value.

Value A NUMERIC value.

Advanced Object Methods

75IBM Tivoli Monitoring Workbench User’s Guide

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

Description
Replaces the value contained at the given index with the new value.

Remarks
idx counter goes from 0 to NumOfInst -1.

Error codes
S_OK; TMWSERVICE_E_PARAMETER_NOT_DEFINED;
TMWSERVICE_E_PARAMETER_BAD_INDEX.

Events
The following methods help you to express functions for events configuration

Method DefineEvent
Syntax

Object.DefineEvent(EventName As String,_

NumAttrs As String, StrAttrs As String)

Parameters

EventName
The name of a new event.

NumAttrs
Comma-separated values with the names of the NUMERIC attributes
of the event.

StrAttrs
Comma-separated values with the names of the STRING attributes
of the event.

Description
Defines a new Event.

Remarks
This method is called inside the <<EVENTS_INFO>>...<<\EVENTS_INFO>> tags
after you have defined an event in the Events dialog.

Error codes
S_OK; TMWSERVICE_E_EVENT_REDEFINITION

Logging
The following methods help you to express functions for data logging.

Method DefineLogInst
Syntax

Object.DefineLogInst(Context As String,_

Resource As String_

Keys As String, NumAttrs As String, StrAttrs As String)

Parameters

Context
The name of a new logging context.

Resource
The resource name.

Advanced Object Methods

76 Version 5.1

Keys The resource key properties.

NumAttrs
Comma-separated values with the names of resource NUMERIC
attributes.

StrAttrs
Comma-separated values with the names of resource STRING
attributes.

Description
Defines a logging context.

Remarks
This method is called inside the <<LOGGING_INFO>>...<<\LOGGING_INFO>>
tags after you have defined a context in the Logging dialog.

Error codes
S_OK; TMWSERVICE_E_INST_EVENT_REDEFINITION

Generic Functions
The following methods help you to express functions for generic activities.

Method EndVisit
Syntax

Object.EndVisit()

Description
Is called at the end of each cycle, to perform clean up operations.

Error code
S_OK;

Method Dispose
Syntax

Object.Dispose()

Description
Is called at the end of the monitoring loop, to perform clean up operations.

Error code
S_OK.

Method GetProfileName
Syntax

Object.GetProfileName() As String

Returns
The profile name.

Description
Returns the name of the profile to which the resource model belongs.

Error code
S_OK.

Advanced Object Methods

77IBM Tivoli Monitoring Workbench User’s Guide

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

Method GetGlobalCounter
Syntax

Object.GetGlobalCounter() As String

Returns
The value of the current monitoring loop.

Description
Returns the value of the current monitoring loop. When a resource model starts its
monitoring this value is set to 0, and it is increased by one after each successful call
to the VisitTree function.

Error code
S_OK.

Deprecated Methods
Some methods used with Tivoli Distributed Monitoring (Advanced Edition), Version 4.1 are
being replaced by new ones.

The SendEvent method is deprecated. To send an event, use the SendEventEx method.

The LogInst method is deprecated. To log the attributes of a resource, use the LogInstEx
method, instead.

Exceptions
This table contains a list of exceptions you may encounter, with the corresponding message.

Exceptions Description Remarks

0x80041001 TMWSERVICE_E_FAILED Generic Error.

0x80041002 TMWSERVICE_E_UNABLE_TO_CONNECT_WMI It is not possible to get access to
WMI Service.

0x80041003 TMWSERVICE_E_ANLYZER_EVENT_NOT_FOUND The TMW_AnalyzerEvent
cannot be found, the MOF file
compilation may have failed.

0x80041004 TMWSERVICE_E_CANNOT_GET_SINK It is not possible to get the
Event Sink.

0x80041005 TMWSERVICE_E_CANNOT_RESTART_COLLECTOR The data collector cannot be
restarted.

0x80041006 TMWSERVICE_E_ANLYZER_EVENT_NOT_GOT The definition of the
TMW_AnalyzerEvent was not
found in the CIM Repository.

0x80041007 TMWSERVICE_E_SPAWN_EVENT_FAILED It is not possible to spawn a new
instance of the event.

0x80041008 TMWSERVICE_E_EVENT_NOT_DECLARED The event or the logging context
has not been defined.

0x80041009 TMWSERVICE_E_EVENT_INDICATION_FAILED WMI errors occurred while the
TMW_AnalyzerEvent, or the
TMW_InstEvent was being sent.

0x8004100a TMWSERVICE_E_EVENT_WRONG_NUM_OF_ARGS Wrong number of arguments.

0x8004100b TMWSERVICE_E_CIM_CLASS_NOT_FOUND The class has not been defined.

0x8004100c TMWSERVICE_E_THRESHOLD_NAME_NOT_VALID The name for the threshold is
not allowed.

0x8004100d TMWSERVICE_E_THRESHOLD_NAME_NOT_DEFINED The threshold has not been
defined.

0x8004100e TMWSERVICE_E_EVENT_REDEFINITION The event was already defined.

Advanced Object Methods

78 Version 5.1

|

|
|

|

|
|

Exceptions Description Remarks

0x8004100f TMWSERVICE_E_PARAMETER_NOT_DEFINED The parameter has not been
defined.

0x80041010 TMWSERVICE_E_PARAMETER_NAME_NOT_VALID The name for the threshold is
not allowed.

0x80041011 TMWSERVICE_E_CLASS_NAME_NOT_VALID The name for data class is not
allowed.

0x80041012 TMWSERVICE_E_CIM_PROPERTY_NOT_FOUND The property does not belong to
the given class.

0x80041013 TMWSERVICE_E_PARAMETER_BAD_INDEX The parameter index is out of
the bound.

0x80041014 TMWSERVICE_E_COLLECTOR_UNABLE_TO_USE_PROV The provider is not able to
collect data.

0x80041015 TMWSERVICE_E_COLLECTOR_CRITICAL_ERROR It is not possible to collect data.
The class name might be wrong,
or the query invalid.

0x80041016 TMWSERVICE_E_COLLECTOR_PROV_NOT_READY The provider is not able to
collect data; it may be busy.

0x80041017 TMWSERVICE_E_DEPENDENCY_NOT_FOUND It is not possible to find the
dependency file.

0x80041018 TMWSERVICE_E_CANNOT_SAVE_WORKSPACE It is not possible to save the
workspace.

0x80041019 TMWSERVICE_E_CANNOT_LOAD_WORKSPACE It is not possible to load the
workspace.

0x8004101a TMWSERVICE_E_INST_EVENT_NOT_GOT The definition of the
TMW_InstEvent was not found
in the CIM Repository.

0x8004101b TMWSERVICE_E_INST_EVENT_NOT_FOUND The TMW_InstEvent cannot be
found. The MOF file
compilation might have failed.

0x8004101e TMWSERVICE_E_INST_EVENT_REDEFINITION The logging context was already
defined.

0x80041020 TMWSERVICE_E_NOT_VALID_WORKSPACE_FILE It is not possible to load the
workspace because of a bad
workspace file format.

0x80041021 TMWSERVICE_E_ACTION_RULE_NOT_FOUND The action rule was not found.

0x80041022 TMWSERVICE_E_ACTION_NOT_FOUND The action was not found.

0x80041023 TMWSERVICE_E_SOURCE_NOT_SUPPORTED The data source is not allowed.

0x80041024 TMWSERVICE_E_PROBE_NOT_FOUND The Tivoli Distributed
Monitoring (Classic Edition)
monitoring source has not been
defined.

0x80041025 TMWSERVICE_E_PROBE_NOT_LOAD The Tivoli Distributed
Monitoring (Classic Edition)
monitoring source
implementation is not available.

0x80041026 TMWSERVICE_E_NO_INTERP_SUPPORT The Tivoli Distributed
Monitoring (Classic Edition)
monitoring source
implementation is not available
for the given platform.

0x80041027 TMWSERVICE_E_NO_DATA The Tivoli Distributed
Monitoring (Classic Edition)
monitoring source
implementation has returned an
empty output.

0x80041028 TMWSERVICE_E_IMPLIED_ERROR The Tivoli Distributed
Monitoring (Classic Edition)
monitoring source
implementation is getting an
error due to bad arguments.

Exceptions

79IBM Tivoli Monitoring Workbench User’s Guide

|||
|
|
|
|||
|
|
|
|||
|
|
|
|
|||
|
|
|
|
|||
|
|
|
|

A
.

S
ervice

O
b

ject
M

eth
o

d
L

ib
rary

Exceptions Description Remarks

0x80041029 TMWSERVICE_E_ERRORVALUE_SCRIPT_ERROR The Tivoli Distributed
Monitoring (Classic Edition)
monitoring source
implementation contains an
internal script error.

0x8004102a TMWSERVICE_E_PROBE_WRONG_ARGS_NUM A wrong number of arguments
has been specified in a call to a
Tivoli Distributed Monitoring
(Classic Edition) monitoring
source.

0x8004102b TMWSERVICE_E_MAP_HANDLE_NOT_FOUND The handle of the mapping table
is invalid.

0x8004102c TMWSERVICE_E_MAP_KEY_NOT_FOUND The given key is not contained
in the mapping table associated
to the given handle.

0x8004102d TMWSERVICE_E_EVENT_PROP_NOT_FOUND A property required for sending
an event or for logging a call is
not contained in the mapping
table associated to the given
handle.

0x8004102e TMWSERVICE_E_CONTEX_PROP_NOT_FOUND The context property is not
available.

0x8004102f TMWSERVICE_E_PARAMETER_IS_EMPTY The parameter doesn’t contain
any value.

0x80041030 TMWSERVICE_E_NOT_WORKSPACE_TOO_NEW The resource model workspace
is too new for the current
version of the workbench.

Exceptions

80 Version 5.1

|||
|
|
|
|
|||
|
|
|
|
|||
|
|||
|
|
|||
|
|
|
|
|||
|
|||
|
|||
|
|

Examples of Resource Model Creation

This Appendix describes examples related to the creation of resource models.

Note: The resource models considered in this appendix are intended for Windows platforms
and the decision tree scripts are written in Visual Basic.

Aspects Considered
The following examples of resource models are presented with focus on specific settings and
options. Each resource model shows some specific functions:

In the Processor Monitor example, the following items are treated

¶ Dynamic Model

v Sorting

v Use of the WHERE clause

v Selective data collection (number of instances)

¶ Events

v Use of attributes

v Aggregation process

v Clearing event option

v Use of actions (non static method)

¶ Thresholds

¶ Code example (Decision Tree Script)

In the Parametric Event Log resource model, the following items are treated

¶ Dynamic Model

¶ Asynchronous collection

v Instance creation

¶ Events

v Use of attributes

v Aggregation process

v Send to TEC option

¶ Parameters

B

81IBM Tivoli Monitoring Workbench User’s Guide

B
.

E
xam

p
les

o
f

R
eso

u
rce

M
o

d
el

C
reatio

n

v Boolean list

v Choice list

v Numeric list

v String list

¶ Use of logging

¶ Code example (Decision Tree Script)

Processor Monitor
The processor resource model monitors CPU usage, by collecting data about the most
CPU-consuming process, and CPU percentage used by the most consuming processes. This
resource model focuses mainly on dynamic model, threshold and event configurations, and
includes a recovery action.

General Settings Dialog
The following panel shows the General Settings dialog.

It specifies that this resource model collects data about CPU usage considering both
processor and processes. Data collection is performed every 10 seconds.

Dynamic Model Dialogs
The Dynamic Model dialog of the following panel shows that the selected class is the
CIMV2:TMW_Process class.

Aspects Considered

82 Version 5.1

The properties associated with the selected class contain both numeric and string values.
They provide information about the process ID, name and CPU usage. Collected data is
sorted in ascending order, on the basis of CPU usage percentage. Only the ten most
consuming processes are considered. Data collection is performed at every cycle time. To
filter the collected data, a WHERE Clause specifies that the application does not have to
monitor Total and Idle processes. They are Windows automatic processes whose CPU usage
is of no interest in our resource model. For more information about filtering, see “Data
Filtering” on page 6.

The Dynamic Model dialog in the following figure shows that the selected class is
CIMV2:TMW_Processor class.

The properties associated with the selected class contain both numeric and string values.
They provide information about processor type and usage percentage. Collected data is not
sorted. Data collection is performed at every cycle time.

Events Dialog
The Events dialog of the following figure is associated with process data collection.

The attributes considered include string and numeric values. They provide information about
CPU usage percentage, process name, and process ID. Process ID, is the key attribute that
drives the aggregation process, therefore it appears also in the Aggregation Settings text
box. An event is generated after ten indications (number of occurrences) and three holes.

Aspects Considered

83IBM Tivoli Monitoring Workbench User’s Guide

B
.

E
xam

p
les

o
f

R
eso

u
rce

M
o

d
el

C
reatio

n

The event notification is not sent to the Tivoli Enterprise Console server. The Clearing
Event check box is selected, so a clearing event is sent when the conditions that caused the
event are no longer present.

Actions Dialog
The Action Browser dialog of the following figure shows the action associated to the CPU
Usage Process event. The action is automatically performed when the event is generated.

The selected method is not static and it terminates the process that is using most of the CPU
capacity, according to the values specified in the Events and Thresholds dialogs. The Process
name is the key that associates the terminate method to the actual process that has to be
terminated. The information contained in the Method Parameters group specifies that this
method is triggered on the basis of the numeric value represented by the CPU usage of the
considered process. For more information about actions and methods, see “Actions” on
page 7.

Thresholds Dialogs
The Thresholds dialog of the following figure shows the threshold set for the Process
dynamic model.

The Default Value represents a maximum limit of CPU capacity that can be used by a
single process. If a process uses more than 25% of CPU capacity, an indication is triggered.
The Thresholds dialog of the following figure shows the threshold set for the Processor

Aspects Considered

84 Version 5.1

dynamic model.

The Default Value represents the maximum limit of CPU that can be used by all the
processes together. If overall CPU usage exceeds 90%, an indication is triggered.

Decision Tree Script
All the settings implemented in the previous dialogs appear automatically in the first parts of
the decision tree script, as shown in the following code sample:
Public Sub Main ()

....................

Public Function SetDefaultConfiguration (Svc As Object) As Long

’ General info section
’<<GENERAL_INFO>>
Svc.SetModelName "CPUUsage"
Svc.SetProfileName "277210437"
Svc.SetCycleTime 10
’<<\GENERAL_INFO>>

’ Thresholds section
’<<THRESHOLDS_INFO>>
Svc.DefineThreshold "TotCPU", 90
Svc.DefineThreshold "HighProcessCPU", 25
’<<\THRESHOLDS_INFO>>

’ Parameters section
’<<PARAMETERS_INFO>>
’<<\PARAMETERS_INFO>>

’ Dynamic model section
’<<DATA_INFO>>
Svc.DefineClass "CIM", "Process", "ROOT\CIMV2:TMW_Process",_

"where Process <> ""_Total"_

" and Process <> ""Idle""",_

"ID,PercentProcessorTime", "Process", _

"Ascending", "PercentProcessorTime", 10, 1
Svc.DefineClass "CIM", "Processor", "ROOT\CIMV2:TMW_Processor", "", _

"PercentProcessorTime", "Processor",_

"None", "", 0, 1
’<<\DATA_INFO>>

’ Event definition section
’<<EVENTS_INFO>>
Svc.DefineEvent "HighCPUUsage",_

"CurrCpuUsage,WorstProcessID,WorstProcessCPUUsage",_

"WorstProcessName"
Svc.DefineEvent "CPUUsageProcess",_

Aspects Considered

85IBM Tivoli Monitoring Workbench User’s Guide

B
.

E
xam

p
les

o
f

R
eso

u
rce

M
o

d
el

C
reatio

n

"CPUUSage,ProcessID", "ProcessName"
’<<\EVENTS_INFO>>

’ Logging definition section
’<<LOGGING_INFO>>
’<<\LOGGING_INFO>>

’ Place your additional intializing code below

SetDefaultConfiguration = 0

End Function

Visit Tree Function
The following code example contains the visit tree function that is called cyclically every
cycle time. This function implements the monitoring algorithm.
Public Function VisitTree(Svc As Object) As Long
Dim i As Long, n As Long
If Svc.GetNumProperty _

"Processor", 0 , "PercentProcessorTime") > Svc.GetThreshold ("TotCPU") Then

Svc.SendEvent "HighCPUUsage", _

Svc.GetNumProperty ("Processor", 0 , "PercentProcessorTime") , _

Svc.GetNumProperty ("Process", 0 , "ID"), _

Svc.GetNumProperty ("Process", 0 ,_

"PercentProcessorTime"), _
Svc.GetStrProperty ("Process", 0 , "Process")

End If

i=0
n= Svc.GetNumOfInst ("Process")
Do While i < n
If Svc.GetNumProperty ("Process", i ,_

"PercentProcessorTime") > Svc.GetThreshold_

("HighProcessCPU") Then
Svc.SendEvent "HighCPUUsageProcess", _
Svc.GetNumProperty ("Process", i ,_

"PercentProcessorTime"), _

Svc.GetNumProperty ("Process", i , "ID"), _
Svc.GetStrProperty ("Process", i , "Process")

i=i+1

Else
i=n

End If
Loop

VisitTree = 0

End Function

Parametric Event Log
The Parametric Event Log resource model monitors Windows EventLog, and collects data
about each new instance created in the log. This resource model focuses mainly on the
Parameters settings and shows a sample of all types of available parameter lists. For more
details on this topic, see “Parameters” on page 8.

Aspects Considered

86 Version 5.1

Dynamic Model Dialog
The Dynamic Model of the following figure shows that the selected class is Win32_NT
LogEvent.

The properties related to the selected class are both numeric and string values. The kind of
data collection selected is asynchronous. For more information on asynchronous data
collection, see “Asynchronous Data Collection” on page 6.

Events Dialog
The Events dialog is depicted in the following figure.

The attributes considered include string and numeric values. They provide information about
the time when the events have been generated and written in the log, the degree of severity
of the event, the workstation where the events occur, and the event IDs. Event ID,
SourceName and ComputerName are also key attributes that drive the aggregation process,
therefore they appear also in the Aggregation Settings text box. An event is generated after
one indication (number of occurrences) and no holes. The event notification is sent to the
Tivoli Enterprise Console server, with the corresponding message and a severity level
indication (WARNING). The Clearing Event check box is not selected, so a clearing event
is not sent when the conditions that caused the event are no longer present.

Aspects Considered

87IBM Tivoli Monitoring Workbench User’s Guide

B
.

E
xam

p
les

o
f

R
eso

u
rce

M
o

d
el

C
reatio

n

Parameters Dialogs
The following figures show several Parameters dialogs, providing an example for each type
of list. Depending on the kind of list selected, the collected results will be displayed
differently on Tivoli Monitoring dialogs. For more information about parameter lists, see
“Parameters” on page 8.

The following dialog depicts a boolean list.

The boolean list contains different types of log files. Application, Security, and System log
files are considered, but they are all set to FALSE as default values. Later, if required, they
can be set to TRUE from the Tivoli Monitoring dialog.

The following dialog depicts a choice list.

The choice list shows the type of filter applied to the parameters specified with this dialog.
You can select and or or filter. If you select the and filter, an event is generated only when
all of the conditions specified by the other parameters are met. If you select the or filter an
event is generated when any of the conditions specified by the other parameters is met. The
default value is and, but it can be changed at a later time from the Tivoli Monitoring
dialogs. The following figure illustrates the Parameters dialog selecting a numeric list type
and showing the numbers of the required Event IDs. The inserted value must be the numeric
value of the Event ID indicated in the Windows Event Log. The numeric values of the Event

Aspects Considered

88 Version 5.1

IDs are displayed in the Values text box.

The following dialog depicts a string list.

The string list shows the workstations that originated the event. The Values list box shows
the names of the workstations, exactly as they are indicated in the Windows EventLog.

Logging Dialog
The Logging dialog is depicted in the following figure.

The context to which the logging activity belongs is the EventLog. Event Log Occurrences
are the resources whose activity is logged. Severity, Event ID and the name of the computer
where the event occurs are the properties on which data logging is focused.

Aspects Considered

89IBM Tivoli Monitoring Workbench User’s Guide

B
.

E
xam

p
les

o
f

R
eso

u
rce

M
o

d
el

C
reatio

n

Decision Tree Script
All settings implemented in the previous dialogs appear automatically in the first parts of the
decision tree script, as shown in the following code sample:
Public Sub Main()
..........................
End SubPublic Function SetDefaultConfiguration (Svc As Object) As Long

’ General info section
’<<GENERAL_INFO>>
Svc.SetModelName "ParamEventLog"
Svc.SetProfileName "281239968"
Svc.SetCycleTime 60
’<<\GENERAL_INFO>>

’ Thresholds section
’<<THRESHOLDS_INFO>>
’<<\THRESHOLDS_INFO>>

’ Parameters section
’<<PARAMETERS_INFO>>
Svc.DefineNumParameter "Eids",_

"44.00,78.00"
Svc.DefineStrParameter "Computers",_

"RM 156,MI 479"
Svc.DefineStrParameter "LogType", "Application,Security,System"
Svc.DefineStrParameter "Win2kLogs", "Directory Service,_

File Replication Service,DNS Server"
Svc.DefineStrParameter "Severity", "error,information,_

warning,audit failure,audit success"
Svc.DefineStrParameter "Source", ""
Svc.DefineStrParameter "FilterType", "and,or"
’<<\PARAMETERS_INFO>>

’ Dynamic model section
’<<DATA_INFO>>
Svc.DefineClassAsync "Win32_NTLogEvent",_

"ROOT\CIMV2:Win32_NTLogEvent","InstanceCreation",_

"RecordNumber,EventIdentifier",_

"TimeWritten,TimeGenerated,_

SourceName,ComputerName,Logfile,Type,Message"
’<<\DATA_INFO>>

’ Event definition section
’<<EVENTS_INFO>>
Svc.DefineEvent "TMW_NTEventLogOccurred",_

"EvtID", "Logfile,SourceName,TimeGenerated,_

TimeWritten,ComputerName,Message,severity"
’<<\EVENTS_INFO>>

’ Logging definition section
’<<LOGGING_INFO>>
Svc.DefineLogInst "EventLog",_

"Event log Occurrences", "EvtID", "EvtID", "severity,ComputerName"
’<<\LOGGING_INFO>>

’ Place your additional intializing code below

SetDefaultConfiguration = 0

End Function

Aspects Considered

90 Version 5.1

Visit Tree Function
The following code sample contains the visit tree function that is called once every cycle
time. This function implements the monitoring algorithm.
Public Function VisitTree(Svc As Object) As Long
’Variable declaration
.......................

Eids_Flag = 0
Severity_Flag = 0
LogType_Flag = 0
Source_Flag = 0
Computers_Flag = 0
Win2kLogs_Flag = 0
BoolOper_Flag = 0
Total_Flag = 0

numTotal = Svc.GETNUMOFINST("Win32_NTLogEvent")
i = 0
Do While i < numTotal

’get all the property of the instance

numEvtID = Svc.GetNumProperty_

("Win32_NTLogEvent", i, "EventIdentifier")
strLogfile = Svc.GetStrProperty("Win32_NTLogEvent",_

i, "Logfile")
strSourceName = Svc.GetStrProperty("Win32_NTLogEvent",_

i, "SourceName")
strTimeGenerated = Svc.GetStrProperty("Win32_NTLogEvent",_

i, "TimeGenerated")
strTimeWritten = Svc.GetStrProperty("Win32_NTLogEvent",_

i, "TimeWritten")
strComputerName = Svc.GetStrProperty("Win32_NTLogEvent",_

i, "ComputerName")
strMessage = Svc.GetStrProperty("Win32_NTLogEvent",_

i, "Message")
numRecord = Svc.GetNumProperty("Win32_NTLogEvent",_

i, "RecordNumber")
strType = Svc.GetStrProperty_

("Win32_NTLogEvent", i, "Type")

Svc.LogInst "EventLog",_

"Event log Occurrences", numEvtID, strType, strComputerName

i = i + 1

’verify the parameters;

numSeverity = Svc.GetStrParameterCount("Severity")

If numSeverity = 0 Then
Total_Flag = Total_Flag + 1

Else
j = 0
Do While j < numSeverity

SevElem = Svc.GetStrParameter_

("Severity", j)

If strType = SevElem Then
Severity_Flag = 1
Total_Flag = Total_Flag + 1

Aspects Considered

91IBM Tivoli Monitoring Workbench User’s Guide

B
.

E
xam

p
les

o
f

R
eso

u
rce

M
o

d
el

C
reatio

n

j = numSeverity
End If
j = j + 1

Loop
End If

numEvs = Svc.GetNumParameterCount("Eids")
If numEvs = 0 Then

Total_Flag = Total_Flag + 1
Else

j = 0
Do While j < numEvs

EvtID = Svc.GetNumParameter_

("Eids", j)

If numEvtID = EvtID Then
Eids_Flag = 1
Total_Flag = Total_Flag + 1
j = numEvs

End If
j = j + 1

Loop
End If

numLogType = Svc.GetStrParameterCount_

("LogType")
If numLogType = 0 Then

Total_Flag = Total_Flag + 1
Else

j = 0
Do While j < numLogType

LogTypeElem = Svc.GetStrParameter("LogType", j)
If strLogfile = LogTypeElem Then

LogType_Flag = 1
Total_Flag = Total_Flag + 1
j = numLogType

End If
j = j + 1

Loop
End If

numSource = Svc.GetStrParameterCount_

("Source")
If numSource = 0 Then

Total_Flag = Total_Flag + 1
Else

j = 0
Do While j < numSource

SourceElem = Svc.GetStrParameter_

("Source", j)
If strSourceName = SourceElem_

Then
Source_Flag = 1
Total_Flag = Total_Flag + 1
j = numSource

End If
j = j + 1

Loop
End If

numComputers = Svc.GetStrParameterCount("Computers")
If numComputers = 0 Then

Total_Flag = Total_Flag + 1
Else

Aspects Considered

92 Version 5.1

j = 0
Do While j < numComputers

CompElem = Svc.GetStrParameter_

("Computers", j)
If strComputerName = CompElem_

Then
Computers_Flag = 1
Total_Flag = Total_Flag + 1
j = numComputers

End If
j = j + 1

Loop
End If

numWin2kLogs = Svc.GetStrParameterCount("Win2kLogs")
If numWin2kLogs = 0 Then

Total_Flag = Total_Flag + 1
Else

j = 0
Do While j < numWin2kLogs

Win2kLogsElem = Svc.GetStrParameter("Win2kLogs", j)
If strLogfile = Win2kLogsElem_

Then
Win2kLogs_Flag = 1
Total_Flag = Total_Flag + 1
j = numWin2kLogs

End If
j = j + 1

Loop
End If

’Verify if and or or
BoolOperElem = Svc.GetStrParameter_

("FilterType", 0)
If BoolOperElem = "and" Then

BoolOper_Flag = 1
Total_Flag = Total_Flag + 1

End If

’Process the flags

Select Case strType
Case Is = "warning"

strTecSeverity = "WARNING"
Case Is = "information"

strTecSeverity = "HARMLESS"
Case Is = "error"

strTecSeverity = "MINOR"
Case Is = "audit success"

strTecSeverity = "HARMLESS"
Case Is = "audit failure"

strTecSeverity = "MINOR"
Case Else

strTecSeverity = "HARMLESS"
End Select

If Total_Flag = 7 Then

Svc.SENDEVENT _

"TMW_NTEventLogOccurred", _
numEvtID, _

strLogfile, _

Aspects Considered

93IBM Tivoli Monitoring Workbench User’s Guide

B
.

E
xam

p
les

o
f

R
eso

u
rce

M
o

d
el

C
reatio

n

strSourceName, _
strTimeGenerated, _
strTimeWritten, _
strComputerName, _
strMessage, _

strTecSeverity

Else
If BoolOper_Flag = 0 Then

If (Eids_Flag

+ Severity_Flag

+ LogType_Flag + Source_Flag

+ Computers_Flag + Win2kLogs_Flag)_

> 0 Then

Svc.SENDEVENT "TMW_NTEventLogOccurred", _
numEvtID, _

strLogfile, _
strSourceName, _
strTimeGenerated, _
strTimeWritten, _
strComputerName, _
strMessage, _

strTecSeverity

End If
End If

End If

’Reset the flags
Eids_Flag = 0
Severity_Flag = 0
LogType_Flag = 0
Source_Flag = 0
Computers_Flag = 0
Win2kLogs_Flag = 0
BoolOper_Flag = 0
Total_Flag = 0

’End while
Loop

’End DECISIONTREE

VisitTree = 0

End Function

Aspects Considered

94 Version 5.1

Resource Models for Microsoft Exchange
Server

The workbench comes with a set of sample, default resource models. These samples can be
used to produce other resource models that can be installed on Tivoli Monitoring. All
samples provided correspond to resource models installed with Tivoli Monitoring. For more
information on using the samples, see Tivoli Monitoring User’s Guide.

In this chapter you will find a description of the Microsoft Exchange Server resource models
and some instructions to use them with Tivoli Monitoring.

Microsoft Exchange Server Resource Models
The following models are specifically tailored to detect problems with Microsoft Exchange
Server resources and services:

¶ Microsoft Exchange Server services

¶ Microsoft Exchange Server ports availability

¶ Microsoft Exchange Server performance

¶ Microsoft Exchange Server diagnostic logging

Microsoft Exchange Server Services
The Microsoft Exchange Services resource model checks that Microsoft Exchange Server 5.5
components are available.

All components of Exchange Server are implemented as Windows services. The basic
components supply services for managing the Microsoft Exchange Directory, storing and
forwarding messages, and other essential functions.

Services, like any other installed software, can become corrupted or unstable. The resource
model checks that these services are not stopped or unstable to ensure that Microsoft
Exchange is working correctly. Unstable services must be stopped to ensure they do not
harm other functions of Microsoft Exchange.

You can also configure the resource model to monitor any other, optional, components of
Microsoft Exchange Server that you have installed.

Prerequisites
If you want to monitor Microsoft Exchange Server 5.5 resources, Tivoli Monitoring
(Resource Models for Microsoft Exchange Server 5.5) and Microsoft Exchange server 5.5.
must be installed on the Tivoli management region server.

C

95IBM Tivoli Monitoring Workbench User’s Guide

C
.

R
eso

u
rce

M
o

d
els

fo
r

M
icro

so
ft

E
xch

an
g

e
S

erver

Problems Highlighted
The Microsoft Exchange Services resource model highlights the following problems:

¶ Key services

All components of Microsoft Exchange Server are implemented as Windows services.

The basic components supply services for managing the Microsoft Exchange Directory,
storing and forwarding messages, and other essential functions.

¶ Unstable services

Services, like any other installed software, can become corrupted or unstable. The
resource model checks that Microsoft Exchange services are stable. Unstable services
must be stopped to ensure they do not harm other functions of Microsoft Exchange.

Parameters
The Microsoft Exchange Services resource model has the following parameters:

¶ Microsoft Exchange core components

¶ Optional Microsoft Exchange components

Microsoft Exchange Core Components
The following services are key to Microsoft Exchange Server:

¶ Microsoft Exchange System Attendant

¶ Microsoft Exchange Directory Service

¶ Microsoft Exchange Information Store

¶ Microsoft Exchange Message Transfer Agent

Optional Microsoft Exchange Components
The following services are optional to Microsoft Exchange Server:

¶ Microsoft Exchange Connector for Lotus® cc:Mail

¶ Microsoft Exchange Directory Synchronization

¶ Microsoft Exchange Event Service

¶ Microsoft Schedule Free+Busy Connector

¶ Microsoft Mail Connector Interchange

¶ Microsoft Exchange Key Management Server

Events
The Microsoft Exchange Services resource model generates the following events:

¶ Service failing

¶ Service stopped

Service Failing
The associated string is TMW_ExcServicesFailingService. This event is generated when any
Microsoft Exchange Server service is not in a stable state. Services that are not stable can
cause problems for the local machine and for connected machines over the network.

Services that are not stable should be stopped to prevent them from causing any bottlenecks
or damage.

Microsoft Exchange Server Resource Models

96 Version 5.1

TMW_ExcServicesFailingService has the following event properties:

ServiceStatus
The current status of the service.

Name
The name of the service being examined.

StartMode
The start mode of the service.

State The current state of the service.

Service Stopped
The associated string is TMW_ExcServicesStoppedService. This event is generated when
any Microsoft Exchange Server service is stopped. If a key service is stopped, it must be
restarted to ensure Microsoft Exchange is working properly.

TMW_ExcServicesStoppedService has the following event properties:

ServiceStatus
The current status of the service.

Name
The name of the service being examined.

StartMode
The start mode of the service.

Built-in Actions
The Microsoft Exchange Services resource model generates the following built-in action:

Restart Service
If a key service is in a stopped or paused state, this action restarts the service. The
system administrator is also notified.

Microsoft Exchange Ports Availability
The Microsoft Exchange Ports Availability resource model checks the availability of all ports
used in the Microsoft Exchange Server organization.

Prerequisites
The Microsoft Exchange Services resource model requires Microsoft Exchange Server 5.5.

Problems highlighted
The Microsoft Exchange Ports Availability resource model highlights when one or more
Microsoft Exchange ports are not available.

Parameters
The Microsoft Exchange Ports Availability resource model has the following parameters,
which you can specify to monitor the ports on which Microsoft Exchange Server listens for
specific types of communications:

Port Number Microsoft Exchange Server Listens for

Port 110 Incoming connection requests from POP3 clients for message
download

Port 143 Incoming connection requests from IMAP4 clients, for message
download and retrieval

Microsoft Exchange Server Resource Models

97IBM Tivoli Monitoring Workbench User’s Guide

C
.

R
eso

u
rce

M
o

d
els

fo
r

M
icro

so
ft

E
xch

an
g

e
S

erver

Port Number Microsoft Exchange Server Listens for

Port 25 Incoming SMTP messages to Internet Mail Connector and Internet
Mail Service

Port 80 Incoming connections from Microsoft Outlook Web Access Server

Port 389 Incoming connections from LDAP clients

Events
The Microsoft Exchange Ports Availability resource model generates the following event:

¶ A Microsoft Exchange port is not available

A Microsoft Exchange Port is Not Available
The associated string is TMW_ExcPortProblem.

The event is generated when one or more of the Microsoft Exchange ports that are being
monitored by the resource model is not available.

Built-in actions
The Microsoft Exchange Ports Availability resource model contains no built-in actions.

Microsoft Exchange Server Performance
The Microsoft Exchange Server Performance resource model monitors a set of Microsoft
Exchange Server performance counters.

Prerequisites
The Microsoft Exchange Services resource model requires Microsoft Exchange Server 5.5.

Problems Highlighted
The Microsoft Exchange Services resource model highlights performance problems of the
following components of Microsoft Exchange Server:

¶ Microsoft Exchange Internet Mail Connector

¶ Microsoft Exchange Directory Service

¶ Microsoft Exchange Information Store

¶ Microsoft Exchange Message Transfer Agent

Events
The Microsoft Exchange Services resource model generates the following events:

¶ Microsoft Exchange Message Transfer Agent queue length is high

¶ Non-zero queue size for Information Store

¶ Failing Directory Synchronization

¶ Slow Message Transfer Agent message delivery

¶ Slow Information System Delivery

¶ Long Internet Mail Connector outbound queue

¶ Slow Information System local delivery

¶ High queue length

¶ Long Internet Mail Connector inbound queue

Microsoft Exchange Server Resource Models

98 Version 5.1

Microsoft Exchange Message Transfer Agent Queue Length Is High
The associated string is TMW_HighPersistentWorkQueueMessage.

This event is generated when the queue length for the Message Transfer Agent, either for
inbound and outbound messages, is persistently high.

Non zero queue size for Information Store
The associated string is TMW_PossibleMTADown.

The size of the queue of messages outbound from the Information Store to the Message
Transfer Agent is zero under normal conditions. This event is generated if the following
conditions apply for a significant duration:

¶ The size of the queue stays at a non-zero value

¶ The Message Transfer Agent is down or its performance is reduced.

Failing Directory Synchronization
The associated string is TMW_FailedSync.

The counter of directory synchronization requests not answered by other servers in this
Microsoft Exchange site, should be zero. This event is generated if this counter remains at a
non-zero value. This indicates that a server missed the synchronization. Scan the Event Log
to find the name of the server.

Slow Message Transfer Agent message delivery
The associated string is TMW_SlowMTADelivery.

This event is generated to show how long a message can expect to remain in the Message
Transfer Agent queue before being delivered.

Slow Information System Delivery
The associated string is TMW_SlowISDelivery.

This event is generated when the message delivery rate is low. A high value could indicate a
performance problem with the Message Transfer Agent.

Long Internet Mail Connector Outbound Queue
The associated string is TMW_HighIMCQueueOut.

This event is generated when a large number of messages has been queued from Microsoft
Exchange Server for delivery to the Internet.

Slow Information System local delivery
The associated string is TMW_SlowISLocalDelivery.

This event is generated when local IS delivery is slow. A high average value of the time
required for the last ten local deliveries inside the information system could indicate a
performance problem within the information store.

High queue length
The associated string is TMW_HighQueueLength.

This event is generated when the queue length is high.

Long Internet Mail Connector inbound queue
The associated string is TMW_HighIMCQueueIn.

Microsoft Exchange Server Resource Models

99IBM Tivoli Monitoring Workbench User’s Guide

C
.

R
eso

u
rce

M
o

d
els

fo
r

M
icro

so
ft

E
xch

an
g

e
S

erver

This event is generated if the number of messages received from the Internet destined for
Microsoft Exchange Server is high.

Thresholds
The Microsoft Exchange Services resource model has the following thresholds:

¶ Internet Mail Connector inbound queue

¶ Average time for delivery

¶ Time Message Transfer Agent delivery

¶ Internet Mail Connector outbound queue

¶ MTA work queue length

¶ Message Transfer Agent connections queue length

¶ Average time for local delivery

Internet Mail Connector Inbound Queue
This is the count of messages received from the Internet destined for Microsoft Exchange
Server. The default threshold setting is 20.

Average Time for Delivery
This is the average time taken for the last ten messages to be submitted to the Message
Transfer Agent for remote delivery. The default threshold setting is 5.

Time Message Transfer Agent Delivery
This is an estimate of the delay in the Message Transfer Agent queue before messages are
delivered or sent. A high value indicates a problem either in performance or in transmitting
to other servers. The default threshold setting is 60.

Internet Mail Connector Outbound Queue
This is the count of messages from Microsoft Exchange Server that are queued for delivery
to the internet. The default threshold setting is 20.

MTA Work Queue Length
This is the queue length for the whole of the Message Transfer Agent. A high number
indicates a problem either in performance or in transmitting to other servers. The default
threshold setting is 30.

Message Transfer Agent Connections Queue Length
This value is related to each work queue within the Message Transfer Agent. If a large
queue is detected in the Message Transfer Agent, this counter pinpoints the exact connection
responsible. The default threshold setting is 20.

Average Time for Local Delivery
This is the average length of time the last ten local delivery messages waited for transport to
a mailbox in the same information store. The default threshold setting is 5.

Microsoft Exchange Server Diagnostic Logging
Microsoft Exchange logs events in the Windows event log. You can use the Microsoft
Exchange Server Diagnostic Logging resource model to filter events for specific Microsoft
Exchange components by event type and forward the filtered events to the Tivoli Enterprise
Console.

Microsoft Exchange Server Resource Models

100 Version 5.1

Prerequisites
The Microsoft Exchange Services resource model requires Microsoft Exchange Server 5.5.

Parameters
The Microsoft Exchange Server Diagnostic Logging resource model has the following
parameters:

¶ Event type

¶ Event source

Event Type
This parameter allows you to specify the severity of the events to be monitored. You can
choose one or more of the following severity levels:

¶ Information

¶ Warning

¶ Error

¶ Success audit

¶ Failure audit

These severities are mapped to the following Tivoli Enterprise Console server severities:

¶ Information -> Harmless

¶ Warning -> Warning

¶ Error -> Minor

¶ Success audit -> Harmless

¶ Failure audit -> Minor

Event Source
Each Microsoft Exchange Server component generates different kinds of events. This
parameter allows you to specify the source of the event you want to monitor.

You can specify one or more of the following sources:

¶ Microsoft Exchange Directory Service

¶ Microsoft Exchange Directory Synchronization

¶ Microsoft Exchange Information Store

¶ Microsoft Exchange Private Information Store

¶ Microsoft Exchange Public Information Store

¶ Microsoft Exchange Internet Mail Service

¶ Microsoft Exchange KM Server

¶ Microsoft Exchange Message Transfer Agent

¶ Microsoft Exchange Connector for Lotus cc:Mail

¶ Microsoft Exchange Microsoft Mail Connector

¶ Microsoft Exchange Microsoft Free+Busy Connector

Microsoft Exchange Server Resource Models

101IBM Tivoli Monitoring Workbench User’s Guide

C
.

R
eso

u
rce

M
o

d
els

fo
r

M
icro

so
ft

E
xch

an
g

e
S

erver

You can set the required level of detail of the events to be logged in the Configuring
Diagnostic Logging property page on Microsoft Exchange Server components.

Events
The Microsoft Exchange Server Diagnostic Logging resource model generates the following
event:

¶ Microsoft Exchange logged an event

Microsoft Exchange Logged An Event
This event is generated whenever the Microsoft Exchange Server Diagnostic Logging
resource model detects that one of the event types you specified has been generated by one
of the event source components you specified.

Microsoft Exchange Server Resource Models

102 Version 5.1

Instrumentation Library Type Interface

This appendix describes the Instrumentation Library Type (ILT) interface and provides
indications to use it. It is composed of three sections: the first section documents the public
operations of the ILT interface, the second section documents the support classes, the third
and last section provides guidelines and samples for creating a UNIX provider.

ILT Public Operations
This section describes the Public Operations available with the ILT interface.

Note: some public operation are not supported by Tivoli Monitoring . When that is the case,
the operation is indicated as not supported.

enumerateInstances
Supported: YES

Syntax
public java.util.Enumeration enumerateInstances (M12ClassPath classPath,

java.lang.String mappingString,

ParameterSet parms)

throws M12Exception

Parameters

classPath
The M12ClassPath identifying the class whose instances have to be
enumerated.

mappingString
Any string that has been specified in the M12_Instrumentation
qualifier for the ENUM operation type for this class.

parms A ParameterSet object filled by the client with parameters for ILT.

Description
Returns all M12ObjectIdentity objects that identify all the instances belonging to the
class specified in the classPath.

Returns
Enumeration of instances identity (M12ObjectIdentity).

Exceptions Thrown
M12Exception

D

103IBM Tivoli Monitoring Workbench User’s Guide

|

|
|
|
|

|

|

|
|

|

|

|

|

|

|

|

|

|
|
|

|
|
|

||

|
|
|

|
|

|
|

D
.

In
stru

m
en

tatio
n

L
ib

rary
Typ

e
In

terface

getProperty
Supported: YES

Syntax
public java.lang.String getProperty (M12ObjectIdentity targetInstance,

java.lang.String propertyName,

java.lang.String mappingString,

ParameterSet parms)

throws M12Exception

Parameters

targetInstance
M12ObjectIdentity that identifies the instance of the resource to be
accessed.

propertyName
The property whose value is required.

mappingString
Any string that has been specified in the M12_Instrumentation
qualifier for the GET operation type for this property.

parms A ParameterSet object filled by the client with parameters associated
to this property.

Description
Gets the value (in String format) of the specified property for the identified object.

Returns
String - the value for property propertyName. Property values have to be CIM
standard types and ILT converts them to string format according to the CIM
standards.

Exceptions Thrown
M12Exception

getMultipleProperties
Supported: YES

Syntax
public M12PropertySet getMultipleProperties (M12ObjectIdentity targetInstance,

java.util.Vector propertyList,

java.lang.String mappingString,

ParameterSet parms)

throws M12Exception

Parameters

targetInstance
M12ObjectIdentity that identifies the instance of the resource to be
accessed.

propertyList
The list of properties whose value is required.

ILT Public Operations

104 Version 5.1

|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|
|

||
|

|
|

|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|
|
|

|
|

mappingString
Any string that has been specified in the M12_Instrumentation
qualifier for the GET operation type for the class which the specified
instance belongs to.

parms A ParameterSet object filled by the client with parameters associated
to the class which the specified instance belongs to.

Description
Gets the value (in String format) of the specified properties for the identified object.

Returns
M12PropertySet - the values of the requested properties.

Exceptions Thrown
M12Exception

setProperty
Supported: NO

Syntax
public java.lang.String setProperty (M12ObjectIdentity targetInstance,

java.lang.String propertyName,

java.lang.String propertyValue,

java.lang.String mappingString,

ParameterSet parms)

throws M12Exception

Parameters

targetInstance
M12ObjectIdentity that identifies the instance of the resource to be
accessed.

propertyName
The property whose value is to be set.

propertyValue
The property value to be set.

mappingString
Any string that has been specified in the M12_Instrumentation
qualifier for the SET operation type for this property.

parms A ParameterSet object filled by the client with parameters associated
to this property.

Description
Sets the value (in String format) of the specified property for the identified object.

Returns
String - the new value of the specified property.

Exceptions Thrown
M12Exception

ILT Public Operations

105IBM Tivoli Monitoring Workbench User’s Guide

|
|
|
|

||
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|

|
|
|

||
|

|
|

|
|

|
|

D
.

In
stru

m
en

tatio
n

L
ib

rary
Typ

e
In

terface

invokeMethod
Supported: YES

Syntax
public java.lang.String invokeMethod (M12ClassPath classPath,

java.lang.String methodName,

java.lang.String mappingString,

ParameterSet parms,

ParameterSet inParms,

ParameterSet outParms,

throws M12Exception

Parameters

classPath
The M12ClassPath that identifies the class whose method has to be
called.

methodName
The name of the method to be called.

mappingString
Any string that has been specified in the M12_Instrumentation
qualifier for the INVOKE operation type for this method.

parms A ParameterSet object filled by the client with parameters for this
method.

inParms
A ParameterSet object filled by the client with parameters to be
passed to the method.

outParms
A ParameterSet object created by the client and filled by the method
with output results.

Description
Invokes the specified method on the CIM instance belonging to the class specified in
the classPath.

Returns
String - the result of the method. Result values have to be CIM standard types and
ILT converts them to string format according to the CIM standards.

Exceptions Thrown
M12Exception

invokeMethod
Supported: YES

Syntax
public java.lang.String invokeMethod (M12ObjectIdentity targetInstance,

java.lang.String methodName,

java.lang.String mappingString,

ParameterSet parms,

ParameterSet inParms,

ILT Public Operations

106 Version 5.1

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|
|

||
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|

|

|

|

|

|

|

ParameterSet outParms,

throws M12Exception

Parameters

targetInstance
M12ObjectIdentity that identifies the instance whose method has to
be called.

methodName
The name of the method to be called.

mappingString
Any string that has been specified in the M12_Instrumentation
qualifier for the INVOKE operation type for this method.

parms A ParameterSet object filled by the client with parameters for this
method.

inParms
A ParameterSet object filled by the client with parameters to be
passed to the method.

outParms
A ParameterSet object created by the client and filled by the method
with output results.

Description
Invokes the specified method on the identified CIM instance.

Returns
String - the result of the method. Result values have to be CIM standard types and
ILT converts them to string format according to the CIM standards.

Exceptions Thrown
M12Exception

create
Supported: NO

Syntax
public void create (M12ObjectIdentity targetInstance,

java.lang.String mappingString,

ParameterSet parms)

throws M12Exception

Parameters

targetInstance
M12ObjectIdentity that identifies the instance of the resource to be
created.

mappingString
Any string that has been specified in the M12_Instrumentation
qualifier for the CREATE operation type for the class whose instance
to be created will belong to.

parms A ParameterSet object filled by the client with parameters for the
ILT.

ILT Public Operations

107IBM Tivoli Monitoring Workbench User’s Guide

|

|

|

|
|
|

|
|

|
|
|

||
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|

||
|

D
.

In
stru

m
en

tatio
n

L
ib

rary
Typ

e
In

terface

Description
Creates an instance of the resource that will be identified by the specified
targetInstance.

Returns
void

Exceptions Thrown
M12Exception

destroy
Supported: NO

Syntax
public void destroy (M12ObjectIdentity targetInstance,

java.lang.String mappingString,

ParameterSet parms)

throws M12Exception

Parameters

targetInstance
M12ObjectIdentity that identifies the instance of the resource to be
deleted.

mappingString
Any string that has been specified in the M12_Instrumentation
qualifier for the DESTROY operation type for the class whose
instance to be deleted belongs to.

parms A ParameterSet object filled by the client with parameters for the
ILT.

Description
Deletes an instance of the resource identified by the specified targetInstance.

Returns
void

Exceptions Thrown
M12Exception

ILT Support Classes
This section described the set of classes supported by the ILT interface.

M12ClassPath
Syntax Detail:

public M12ClassPath (java.lang.String className)

public M12ClassPath (java.lang.String className, java.lang.String nameSpace)

Method Detail:

ILT Public Operations

108 Version 5.1

|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|

||
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

||

public java.lang.String getClassName ()

public java.lang.String getNameSpace ()

M12IdentityElement
Syntax Detail:

public M12IdentityElement (java.lang.String className, M12PropertySet identity)

public M12IdentityElement (java.lang.String className, java.lang.String nameSpace, M12PropertySet i

Method Detail:

public java.lang.String getClassName ()

public java.lang.String getNameSpace ()

public M12PropertySet getIdentity ()

M12ObjectIdentity
Syntax Detail:

public M12ObjectIdentity (M12IdentityElement[] scopingPath)

Method Detail:

public M12IdentityElement[] getScopingPath ()

M12PropertySet
Syntax Detail:

public M12PropertySet ()

public M12PropertySet (java.util.Properties prop)

public M12PropertySet (M12PropertySet propertySet)

Method Detail:

public void setProperty (java.lang.String propertyName, java.lang.String propertyValue)

public java.lang.String getProperty (java.lang.String propertyName)

public java.util.Enumeration propertyNames ()

ILT Support Classes

109IBM Tivoli Monitoring Workbench User’s Guide

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||

D
.

In
stru

m
en

tatio
n

L
ib

rary
Typ

e
In

terface

public int size ()

M12Exception
Syntax Detail:

public M12Exception (java.lang.Exception e)

public M12Exception (java.lang.Exception e, java.lang.String message)

Method Detail:

public java.lang.Exception getTargetException ()

ParameterSet
Syntax Detail:

public ParameterSet ()

public ParameterSet (ParameterSet paramSet)

Method Detail:

public void setParam (java.lang.String paramName, java.lang.Object paramValue)

public java.lang.Object getParam (java.lang.String paramName)

public void removeParam (java.lang.String paramName)

public java.util.Enumeration parametersNames ()

ParameterSetList
Syntax Detail:

public ParameterSetList ()

Method Detail:

public void addParameterSet (java.lang.String parameterSetName, ParameterSet parameterSet)

public ParameterSet getParameterSet (java.lang.String paramName)

public void removeParameterSet (java.lang.String parameterSetName)

public java.util.Enumeration parameterSetNames ()

ILT Support Classes

110 Version 5.1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Writing a provider for UNIX
On UNIX platforms the provider environment is Java. The provider code is written as Java
classes that implement the ILT interface described in this chapter.

There are two technologies used to create data providers: the first technology is writing the
code that interacts with the managed resource, the second is writing the CIM classes that
model the managed resource. The CIM classes definitions specify what code to invoke to
retrieve the desired data.

The following sections show simplified elements for creating a provider.

Creating a MOF file for UNIX
The first step consists in writing a Mof file for UNIX providers (in other words a textual
definiton of a CIM class) and in loading the Mof file to WMI so that the Workbench can be
used to create resource models for UNIX. Note that the Mof file must have DOS style
CR/LF newlines, otherwise the classes wil not show up in WMI.

The usual namespace in WMI is root\cimv2, but for UNIX you load the Mof files into
root\default:

mofcomp -N:root\default Sample01.mof

M12_Instrumentation is a non-standard qualifier which applies to Class, Property and
Method. Its format is:

[M12_Instrumentation(″Java.<path to ILT>|<mappingstring>|<operation>″].

This qualifier is used to identify which ILT (″path to ILT″) is able to perform the specified
operation.

<path to ILT> is the Java class that implements the ILT and that must be specified with the
complete package (with no .class extension).

<mappingstring> is a string whose meaning is known to the ILT.

The allowed operations are:

¶ Enum (only for the qualifier associated with the class)

¶ Get (for the qualifier associated with class and property)

¶ Invoke (for the qualifier associated with class and method)

It is required that all classes have an M12_Instrumentation qualifier for the Enum operation.
It is also required that an M12_Instrumentation qualifier for the Get operation be present for
every non-key property. As an alternative, when the instrumentation string is the same for
every property, a single M12_Instrumentation qualifier for the Get operation can be set at
class level. It is also required that an M12_Instrumentation qualifier for the Invoke operation
be present for every method. As an alternative, when the instrumentation string is the same
for every method, a single M12_Instrumentation qualifier for the Invoke operation can be set
at class level.

The following is an example of Mof file for UNIX:
//**
[
Description ("Unix File Systems info"),
provider("com.tivoli.dmunix.ep.touchpoint.cimom.ifc.M12JavaProvider"),
M12_Instrumentation ("Java.com.tivoli.dmunix.ep.ilts.DMXFileSystemIlt | | ENUM"),
M12_Instrumentation ("Java.com.tivoli.dmunix.ep.ilts.DMXFileSystemIlt | | GET")

]
class DMXFileSystem

Writing a provider for UNIX

111IBM Tivoli Monitoring Workbench User’s Guide

|

|
|

|
|
|
|

|

|

|
|
|
|

|
|

|

|
|

|

|
|

|
|

|

|

|

|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

D
.

In
stru

m
en

tatio
n

L
ib

rary
Typ

e
In

terface

{
[key]string mountPoint;
sint32 usedKBytes;
sint32 availKBytes;

[provider("com.tivoli.dmunix.ep.touchpoint.cimom.ifc.M12JavaProvider"),
M12_Instrumentation ("Java.com.tivoli.dmunix.ep.ilts.DMXFileSystemIlt || GET")]

sint32 totalKBytes;

};

Properties not associated with any ″provider″ or ″M12_Instrumentation″ qualifier are
collected by calling the getMultpleProperties method, while all other properties are collected
through a getProperty method.

ILT Sample
The following is a sample of ILT:
package com.tivoli.dmunix.ep.ilts;

import java.util.*;
import com.tivoli.javautils.Trace;
import com.tivoli.dmunix.ep.touchpoint.base.*;
import com.tivoli.dmunix.ep.providers.DMXFileSystem;

public class DMXFileSystemIlt implements ILTInterface {

public String getProperty (M12ObjectIdentity targetInstance, String propertyName,
String mappingString, ParameterSet parms)

throws M12Exception {
try {
M12IdentityElement idElem = (targetInstance.getScopingPath())[0];
M12PropertySet propSet = idElem.getIdentity();
String mountPoint = propSet.getProperty("mountPoint");
if (propertyName.equals("totalKBytes")) {
Integer res = new Integer(DMXFileSystem.getTotalKBytes(mountPoint));
return res.toString();
}
} catch (Exception e) {
...................
}
}

public M12PropertySet getMultipleProperties (M12ObjectIdentity targetInstance, Vector propertyList, String ma
throws M12Exception {
try {
M12IdentityElement idElem = (targetInstance.getScopingPath())[0];
M12PropertySet propSet = idElem.getIdentity();
String mountPoint = propSet.getProperty("mountPoint");
M12PropertySet result = new M12PropertySet();
for (int i = 0; i < propertyList.size(); i++) {
String propertyName = (String)propertyList.elementAt(i);
if (propertyName.equals("usedKBytes")) {
Integer res = new Integer(DMXFileSystem.getUsedKBytes(mountPoint));
result.setProperty(propertyName,res);
}
if (propertyName.equals("availKBytes")) {
Integer res = new Integer(DMXFileSystem.getAvailKBytes(mountPoint));result.setProperty(propertyName,res);
}
}
return result;
} catch (Exception e) {
...................
}
}

public Enumeration enumerateInstances (M12ClassPath classPath, String mappingString,

Writing a provider for UNIX

112 Version 5.1

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ParameterSet parms)
throws M12Exception {
try {
Vector result = new Vector();
String[] mountPoints = DMXFileSystem.getMountPoints();
if (mountPoints == null) {
trace.log(1,"DMXFileSystemIlt","enumerateInstances: no instances found");
return null;
}
for (int i=0; i<mountPoints.length; i++) {
M12IdentityElement idElem;
M12PropertySet propSet = new M12PropertySet();
propSet.setProperty("mountPoint",mountPoints[i]);
idElem = new M12IdentityElement(classPath.getClassName(),
classPath.getNameSpace(),
propSet);
result.add(new M12ObjectIdentity(new M12IdentityElement[] {idElem}));
}
return result.elements();
} catch (Exception e) {
................
}
}
...........................

}

If the ILT interfaces with native libraries (through JNI, the Java Native Interface), these
libraries must be added to the resource model as a dependency.

ILTs must be packaged into .jar files and added to the resource model as dependencies.

Writing a provider for UNIX

113IBM Tivoli Monitoring Workbench User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

D
.

In
stru

m
en

tatio
n

L
ib

rary
Typ

e
In

terface

Writing a provider for UNIX

114 Version 5.1

Error Messages

This appendix lists the messages that can be displayed when creating or debugging a
resource model with the workbench.

The messages are listed in ascending numeric order.

Identifying a Message
Messages are of different types but are all identified in the same way. The following
example shows a typical message and explains its identifying components.

Identity Message

AMW0500E The Action Browser is unable to get the class definition.

AMW This prefix identifies the message as belonging to the workbench.

0XXX The unique serial number of the message.

E Is the type of message and can be:

I Information messages provide feedback about something that has happened
in the product or system that may be important. These messages also give
guidance when you are requesting a specific action from the product.

W Warning messages call your attention to an exception condition that is not
necessarily an error but may cause problems if not attended to.

E Error messages indicate that an action cannot be completed because of a
user or system error. These error messages always require user response.

Notation
Some messages, especially information and warning messages, are multi-purpose. The same
basic text can contain different strings such as different command names or application
names, according to the way the application was behaving when the message was generated.
These messages are shown in the following sections with the string identity displayed in
italics at the appropriate part of the message.

E

115IBM Tivoli Monitoring Workbench User’s Guide

E
.

E
rro

r
M

essag
es

Messages
The following messages can be displayed.

AMW0500E The Action Browser is unable to get the class
definition

Explanation: WMI Service is not working properly.

User Response: Close the workbench, stop and restart WMI
Service, then try again. If the problem persists contact the
customer support.

AMW0510W There are some invalid fields. List of one or
more of the empty fields.

Explanation: Some fields are empty or incorrect.

User Response: Enter the appropriate information in the
required fields.

AMW0511E Errors occurred during the creation of the
Event Aggregator profile <profile>

Explanation: WMI Service is corrupted or some of its
components are not properly installed.

User Response: Close the workbench, stop and restart WMI
Service, then try again. If the problem persists reinstall the
WMI Service, or contact customer support.

AMW0513E An error occurred during data collection

Explanation: Error <error_number> occurred during data
collection. WMI, or a provider may not be working properly, or
you may not have the authorization required to perform data
collection.

User Response: Ensure that WMI and the provider are
working properly, if they are not, stop and restart them. If you
are collecting data remotely, ensure that you have the required
authorization.

AMW0514W No instance was found

Explanation: No instance was found for the class
<classname>.

User Response: If you expect some instances for this class,
ensure that the provider is available and the MOF file is
correctly compiled.

AMW0515E Unable to find WMI

Explanation: The Windows Management Instrumentation
Service is not available on this workstation. The workbench can
not run without that service

User Response: Install WMI Service.

AMW0516E Unable to create an instance of
TMWService.IAnalyzer interface

Explanation: An internal error occurred, a new workspace
cannot be created.

User Response: Uninstall and reinstall the workbench; if the
problem persists contact customer support.

AMW0517E An error occurred during general settings
modification

Explanation: Error <error_number> occurred during general
settings modification. Refer to the workbench documentation
for more details about the TMWService error codes.

User Response: Make sure that the entered information
complies with naming conventions.

AMW0519E An error occurred while opening a saved
workspace

Explanation: Error <error_number> occurred. A saved
workspace could not be opened. Workspace file may be
corrupted, or you are trying to open a workspace created with a
higher version of the workbench.

User Response: If the workspace is not corrupted, install the
workbench new version.

AMW0520E An error occurred. Workspace could not be
saved

Explanation: Error <error_number> occurred. The workspace
could not be saved. Unable to write on the target file due to
disk full or missing authorization.

User Response: Check that the storage media is accessible.

AMW0521E An error occurred during VBA code running

Explanation: Error occurred: <Line_number
_Column_number>.

User Response: Fix the VBA error on the given line and
column.

AMW0522E An error occurred during Action Manager
creation

Explanation: Action Manager profile <profile_name> could
not be created. WMI Service is corrupted, or some of its
components are not properly installed.

User Response: Close the workbench, stop and restart WMI
Service, then try again. If the problem persists, reinstall WMI,
or contact customer support.

Messages

116 Version 5.1

AMW0523E A required tag has been removed. Unable to
update the settings in the code

Explanation: During the editing of the resource model code,
the tag <tag_name> has been removed. It is not possible to
update the general info.

User Response: Insert the removed tag in the
SetDefaultConfiguration function.

AMW0532E Unable to create an instance of
TMWService.IAnalyzer interface while
scanning for new items

Explanation: An internal error occurred.

User Response: Uninstall and reinstall the workbench, if the
problem persists contact customer support.

AMW0533E An error occurred during the scanning for
new items

Explanation: The function SetDefaultConfiguration is missing
or contains errors.

User Response: Make sure that the function is available, or
fix VBA errors.

AMW0537E The attribute name is not specified

Explanation: The attribute name field is empty.

User Response: Specify an attribute name.

AMW0542E The property named <property_name> has
already been used

Explanation: The name <property_name> cannot be used for
this property because has already been used.

User Response: Specify a different name.

AMW0545E Parameter string value not specified

Explanation: The parameter field must contain a string value.

User Response: Enter a valid string value.

AMW0546E An error occurred during general setting
modification

Explanation: Error <error_number> occurred during general
setting modification, refer to the workbench documentation for
more details about the TMWService error codes.

User Response: Make sure that the entered information
complies with naming conventions.

AMW0547E An error occurred. Class could not be added

Explanation: Error <error_number> occurred when you tried
to add the class, refer to the workbench documentation for
more details about the TMWService error codes.

User Response: Ensure that the selected class had not been
already added.

AMW0548E An error occurred. Event could not be added

Explanation: Error <error_number> occurred when you tried
to add the event, refer to the workbench documentation for
more details about the TMWService error codes.

User Response: Ensure that there is not any existing event
with the same name and that the entered information complies
with naming conventions.

AMW0549E An error occurred during the event
modification

Explanation: Error <error_number> occurred when you tried
to modify the event definition, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: Ensure that there is not any existing event
with the same name and that the entered information complies
with naming conventions.

AMW0551E An error occurred. Threshold could not be
added

Explanation: Error <error_number> occurred when you tried
to add the threshold definition refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: Ensure that there is not any existing threshold
with the same name and that the entered information complies
with naming conventions.

AMW0553E An error occurred during the threshold
modification

Explanation: Error <error_number> occurred when you tried
to modify the threshold definition refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: Ensure that there is not any existing threshold
with the same name and that the entered information complies
with naming conventions.

Messages

117IBM Tivoli Monitoring Workbench User’s Guide

E
.

E
rro

r
M

essag
es

AMW0554E An error occurred. Class definition could not
be modified

Explanation: Error <error_number> occurred when you tried
to modify the class definition, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: Ensure that there is not any existing class
with the same name and that the entered information complies
with naming conventions.

AMW0556E An error occurred. Parameter could not be
added

Explanation: Error <error_number> occurred when you tried
to add the parameter, refer to the workbench documentation for
more details about the TMWService error codes.

User Response: Ensure that there is not any existing
parameter with the same name and that the entered information
complies with naming conventions.

AMW0557E An error occurred. Parameter definition
could not be modified

Explanation: Error <error_number> occurred when you tried
to modify the parameter definition, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: Ensure that there is not any existing
parameter with the same name and that the entered information
complies with naming conventions.

AMW0559E An error occurred. Dependency file could not
be added

Explanation: Error <error_number> occurred when you tried
to add the dependency file, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: Ensure that there is not any existing
dependency file with the same name and that the file is
accessible.

AMW0560E An error occurred. Dependency file could not
be modified

Explanation: Error <error_number> occurred when you tried
to modify the dependency file, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: Ensure that there is not any existing
dependency file with the same name and that the file is
accessible.

AMW0561E An error occurred. Class definition could not
be removed

Explanation: Error <error_number> occurred when you tried
to remove the class definition, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: None.

AMW0562E An error occurred. Event definition could not
be removed

Explanation: Error <error_number> occurred when you tried
to to remove the event definition, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: Ensure that there is not any existing event
with the same name and that the entered information complies
with naming convention.

AMW0563E An error occurred. Action could not be
removed

Explanation: Error <error_number> occurred when you tried
to remove the action, refer to the workbench documentation for
more details about the TMWService error codes.

User Response: None.

AMW0564E An error occurred. Threshold definition could
not be removed

Explanation: Error <error_number> occurred when you tried
to remove the threshold definition, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: None.

AMW0565E An error occurred. Parameter definition
could not be removed

Explanation: Error <error_number> occurred when you tried
to remove the parameter definition, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: None.

AMW0566E Error <error_number> occurred. Dependency
file could not be removed

Explanation: Error <error_number> occurred when you tried
to remove the dependency file, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: None.

Messages

118 Version 5.1

AMW0567E An error occurred. Logging context could not
be added

Explanation: Error <error_number> occurred when you tried
to add the logging context, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: Ensure that there is not any context and
resource with the same names and that the entered information
complies with naming conventions.

AMW0569E An error occurred. Logging context could not
be modified

Explanation: Error <error_number> occurred when you tried
to modify the logging context, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: Ensure that there is not any existing context
and resource with the same names and that the entered
information complies with naming conventions.

AMW0570E An error occurred. Logging context could not
be removed

Explanation: Error <error_number> occurred when you tried
to remove the logging context, refer to the workbench
documentation for more details about the TMWService error
codes.

User Response: None.

AMW0571E No Resource Model Available

Explanation: You are trying to export files from an empty
workspace.

User Response: Configure your workspace.

AMW0594E Unable to remove the event attribute

Explanation: The event attribute cannot be removed because
it is associated to the parameter <paramener_name>, in the
action <action_name>.

User Response: None.

AMW0597E Export Package failed

Explanation: The dependencies could not be copied to
directory <directory_name>.

User Response: Ensure that there is enough disk space and
that you have write access.

AMW0598E Export Package failed

Explanation: File <filename> cannot be opened. Unable to
write to the target file because there is not enough disk space or
you have not the required authorization.

User Response: Ensure that the storage media is accessible.

AMW0599E Unable to extract the dependency file
<filename>

Explanation: The specified file could not be extracted.

User Response: Ensure that there is enough disk space and
that you have write access.

AMW0633E Unable to get the class definition

Explanation: WMI Service is not working properly.

User Response: Close the workbench, stop and restart WMI
Service, then try again. If the problem persists contact customer
support.

AMW0634E Unable to add property: type not supported

Explanation: You are trying to add a parameter of a type that
is not supported.

User Response: Specify a valid parameter type.

AMW0635E Unable to collect instances of the class
<class_name>

Explanation: Error <error_number> occurred during data
collection.

User Response: Close the workbench, stop and restart WMI
Service, then try again. If the problem persists contact customer
support.

AMW0641E Macro still active

Explanation: There are some active macros. You cannot exit
Windows without closing all the active macros.

User Response: Close active macros before quitting Windows.

AMW0643I It is not possible to remove the class property.

Explanation: The specified property could not be removed,
because it is a key for the selected class.

User Response: Do not remove that property.

Messages

119IBM Tivoli Monitoring Workbench User’s Guide

||

|
|

| E
.

E
rro

r
M

essag
es

AMW0644E The monitoring collection cannot be
imported.

Explanation: The monitoring collection cannot be imported
from the file FileName due to the following error:

User Response: Make sure that the preprocessor and the
preprocessing options are correctly set. Ensure that the Path
environment variable contains the folder where the preprocessor
is located. Check also if the .csl file contains errors.

AMW0645E Asynchronous monitors cannot be imported.

Explanation: You have tried to import an asynchronous
monitor source. The workbench does not asynchronous
monitors to be imported.

User Response: Import a synchronous monitor.

AMW0646W The monitor MonitorName is not available for
the platform Platform.

Explanation: The monitor MonitorName is not available for
the platform Platform, therefore it cannot be used by this

resource model when running on the given platform. Anyway
the package building will proceed.

User Response: Do not use the monitor MonitorName on the
platform Platform, or import a monitor source that supports the
given platform.

AMW0647E Probe ProbeName collection test failed.

Explanation: Error ErrorDescription occurred during probe
collection test.

User Response: Ensure that the probe is available on
w32-ix86.

AMW0648E No javascript debugger available

Explanation: No javascript debugger has been found on this
machine. It is not possible to debug javascript resource models
unless you install a javascript debugger

User Response: Install a javascript debugger. To download the
latest version of the Microsoft Script debugger please visit:
http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=280011

Messages

120 Version 5.1

||
|

|
|

|
|
|
|

||

|
|
|

|

||
|

|
|

|
|

|
|
|

||

|
|

|
|

||

|
|
|

|
|
|

Index

A
actions 7

definition 31
restart service 97

advanced methods
dynamic model 69
dynamic model, CollectClassData 71
dynamic model, CollectData 71
dynamic model, DefineCimClassAsync 70
dynamic model, DefineClass 69
dynamic model, RemoveClass 71
events 76
events, DefineEvent 76
general settings 68
generic functions 77
generic functions, Dispose 77
generic functions, EndVisit 77
generic functions, GetGlobalCounter 78
generic functions, GetProfileName 77
logging 76
logging, DefineLogInst 76
parameters 73
parameters, AddNumParameter 74
parameters, AddStrParameter 73
parameters, DefineNumParameter 73
parameters, DefineStrParameter 73
parameters, RemoveNumParameter 75
parameters, RemoveStrParameter 74
parameters, ReplaceNumParameter 75
parameters, ReplaceStrParameter 75
thresholds 72
thresholds, DefineThreshold 72

advanced methods, general settings
SetCycleTime 69
SetModelName 68

aggregating indications 7
asynchronous data collection 6
attributes 7

B
basic methods

dynamic model 58
dynamic model, GetNumOfInst 58, 59, 60
dynamic model, GetNumProperty 58
dynamic model, GetStrProperty 59
events 63
general settings 58
general settings, GetCycleTime 58
general settings, GetModelName 58
logging 64
parameters 61

basic methods (continued)
parameters, GetNumParameterCount 61
parameters, GetStrParameter 63
parameters, GetStrParameterCount 62
thresholds 61
thresholds, GetThreshold 61
tracing, Trace 64
utilities 64

books
feedback x
online x
ordering x

boolean list 9
building

HTML file 40
package 39
resource model 39
TEC BAROC 39

C
choice list 9
CIM class methods 8
collecting data

asynchronously 6
synchronously 6

context, logging 11
creating a resource model 23
Customer Support xi
cycle time 5
cycle time definition

example 20

D
data

filtering 6
data collection

asynchronous 6
synchronous 6

data logging 11
data sorting 6
debugging 37
debugging, remote 38
decision tree script 12

definition 36
Init function 12
main subroutine 12
SetDefaultConfiguration function 12
Visit Tree function 12

121IBM Tivoli Monitoring Workbench User’s Guide

In
d

ex

dependencies 13
definition 36

directory names, notation xii
dynamic model

definition 27
dynamic models 5

E
e-mail contact xi
environment variables, notation xii
errors 78
events 7

actions 7
attributes 7
definition 30
TCP/IP resource model 98

events and indications 7
examples of resource models 81
exporting

message catalog 40

F
feedback about publications xi
filtering 6
filtering definition

example 20
function

Init 12
SetDefaultConfiguration 12
Visit Tree 12

H
hardware requirements 15
HTML file, building 40

I
indications 7
Init function 12
installation procedure 15

K
key attributes 7

L
logging 11

context 11
properties 11
resource 11

M
main subroutine 12
manuals

feedback x
online x
ordering x

message catalog, exporting 40
methods 8
monitoring algorithm, flow-chart 22

N
notation

environment variables xii
path names xii
typeface xii

numeric list 10

O
object methods

advanced 68
basic 57

online publications xi
ordering publications xi

P
package, building 39
parameters 8

boolean list 9
choice list 9
definition 34
numeric list 10
string list 10

Parametric Event Log
decision tree script 90
dynamic model 87
events 87
logging 89
parameters 88
resource model 86
visit tree function 91

path names, notation xii

122 Version 5.1

Processor Monitor
actions 84
decision tree script 85
dynamic model 82
events 83
general settings 82
resource model 82
thresholds 84
visit tree function 86

properties, logging 11
publications

feedback x
online x
ordering x

R
recovery actions 7
remote debugging 38
requirements

hardware 15
software 15

resource model
building 39
creation 23, 24
debugging 37
definition 26
description 23
descriptive name 23
example 19
internal name 23
manual creation 26
naming convention 23
troubleshooting 55

resource model design
preliminary steps 19

resource model example
Parametric Event Log 86
Processor Monitor 82

resource model examples 81
resource model wizard 43
resource, logging 11
restart service action 97

S
SetDefaultConfiguration function 12
software requirements 15
sorting

data 6
sorting, procedure 28
string list 10
subroutine

Main 12
synchronous data collection 6

T
TCP/IP resource model

events 98
TEC BAROC, building 39
thresholds 8

definition 33
Tivoli Customer Support xi

V
variables, notation for xii
Visit Tree function 12

W
wizard 43

add filtering conditions 45
select a class 44
select a property 45
select properties to log 49
specify event triggers 47

123IBM Tivoli Monitoring Workbench User’s Guide

In
d

ex

124 Version 5.1

SH19-4571-00

	Contents
	Figures
	Preface
	Who Should Read This Guide
	What This Guide Contains
	Publications
	IBM Tivoli Monitoring Library
	Prerequisite Publications
	Accessing Publications Online
	Ordering Publications
	Providing Feedback about Publications

	Contacting Customer Support
	Conventions Used in This Book
	Typeface Conventions
	Operating System-dependent Variables and Paths

	Introduction
	What Workbench Can Do for You
	Compatibility Mode
	Common Information Model Implementation

	Resource Models and Related Concepts
	Defining Resource Model Elements
	Cycles

	Dynamic Models
	Data Collection
	Synchronous Data Collection
	Asynchronous Data Collection
	Data Filtering

	Events
	Events and Indications
	Attributes
	Actions
	CIM Methods
	Programs

	Thresholds
	Parameters
	Boolean List
	Choice List
	Numeric List
	String List

	Logging
	Logging Elements

	Decision Tree Script
	Dependencies

	Installation
	Software Requirements
	Hardware Requirements
	Installation Procedure

	Designing a Resource Model
	Preliminary Steps
	Example of a Resource Model
	Problem Analysis
	Determining Which Resources to Monitor
	Defining a Resource Model
	Defining a Cycle Time
	Defining a Filter and a Sort Order

	Defining the Highlighted Problems
	Defining Thresholds and Parameters
	Defining the Monitoring Algorithm

	Creating a Resource Model
	About Resource Model Names
	Resource Model Creation
	Creating an Empty Resource Model
	Task 1: Defining a Resource Model
	Task 2: Defining a Dynamic Model
	Task 3: Defining Events
	Adding Actions

	Task 4: Defining Thresholds
	Task 5: Defining Parameters
	Task 6: Defining Data to Log
	Task 7: Defining the Decision Tree Script
	Task 8: Adding Dependencies
	Task 9: Debugging a Resource Model
	Remote Debugging

	Task 10: Building a Resource Model
	Building the Package
	Building the TEC BAROC
	Exporting the Message Catalog
	Building an HTML File

	Creating a Resource Model from a Monitoring Source
	Resource Model Wizard
	Creating a Resource Model from a CIM class
	Selecting a Class
	Selecting Properties
	Applying Filtering Conditions
	Specifying Event Triggering Conditions
	Selecting the Properties to Log
	Enter a Cycle Time

	Creating a Resource Model from a Monitoring Source
	Creating a Resource Model from a Custom Script
	To Launch a Shell Command Using the Wizard
	To Import a Script with the Wizard

	Resource Model Troubleshooting
	Service Object Method Library
	Basic Object Methods
	General Settings
	Method GetModelName
	Method GetCycleTime

	Dynamic Model
	Method GetNumOfInst
	Method GetNumProperty
	Method GetStrProperty
	Method AssociateParameterToClass
	Method AssociateParameterToClassProperty
	Method CallDMNumProbe
	Method CallDMStrProbe

	Thresholds
	Method GetThreshold

	Parameters
	Method GetNumParameterCount
	Method GetStrParameterCount
	Method GetNumParameter
	Method GetStrParameter

	Events
	Method SendEventEx

	Logging
	Method LogInstEx

	Utilities
	MethodTrace
	Method GetInterp
	Method Shell

	Mapping Tables
	Method CreateMap
	Method SetMapNumElement
	Method SetMapStrElement
	Method GetMapNumValue
	Method GetMapStrValue
	Method RemoveMapElement
	Method RemoveMapAll
	Method ExistsMapElement
	Method DestroyMap

	Advanced Object Methods
	General Settings
	Method SetModelName
	Method SetCycleTime

	Dynamic Model
	Method DefineClass
	Method DefineCimClassAsync
	Method RemoveClass
	Method CollectData
	Method CollectClassData
	Method DefineDMNumProbe
	Method DefineDMStrProbe

	Thresholds
	Method DefineThreshold

	Parameters
	Method DefineStrParameter
	Method DefineNumParameter
	Method AddStrParameter
	Method AddNumParameter
	Method RemoveStrParameter
	Method RemoveNumParameter
	Method ReplaceStrParameter
	Method ReplaceNumParameter

	Events
	Method DefineEvent

	Logging
	Method DefineLogInst

	Generic Functions
	Method EndVisit
	Method Dispose
	Method GetProfileName
	Method GetGlobalCounter

	Deprecated Methods
	Exceptions

	Examples of Resource Model Creation
	Aspects Considered
	Processor Monitor
	General Settings Dialog
	Dynamic Model Dialogs
	Events Dialog
	Thresholds Dialogs
	Decision Tree Script

	Parametric Event Log
	Dynamic Model Dialog
	Events Dialog
	Parameters Dialogs
	Logging Dialog
	Decision Tree Script

	Resource Models for Microsoft Exchange Server
	Microsoft Exchange Server Resource Models
	Microsoft Exchange Server Services
	Prerequisites
	Problems Highlighted
	Parameters
	Events
	Built-in Actions

	Microsoft Exchange Ports Availability
	Prerequisites
	Problems highlighted
	Parameters
	Events
	Built-in actions

	Microsoft Exchange Server Performance
	Prerequisites
	Problems Highlighted
	Events
	Thresholds

	Microsoft Exchange Server Diagnostic Logging
	Prerequisites
	Parameters
	Events

	Instrumentation Library Type Interface
	ILT Public Operations
	enumerateInstances
	getProperty
	getMultipleProperties
	setProperty
	invokeMethod
	invokeMethod
	create
	destroy

	ILT Support Classes
	M12ClassPath
	M12IdentityElement
	M12ObjectIdentity
	M12PropertySet
	M12Exception
	ParameterSet
	ParameterSetList

	Writing a provider for UNIX
	Creating a MOF file for UNIX
	ILT Sample

	Error Messages
	Identifying a Message
	Notation
	Messages

	Index

