
WebSphere Data Interchange

October 2005 © 2005 IBM Corporation

2005 B2B Customer Conference 
Pioneering New Horizons – Solutions that Evolve

Managing Your WDI Environment 

David Hixon
Product Architect, WDI and WPG



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Agenda

§ Environments

§ Log Files

§ * Transaction Store

§ * Alerts

§ Replay/Resend

§ * Overdue Acknowledgments

§ Other topics:  monitoring, backup/restore



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Environments

§ Batch

– JCL

– ediservr

§ Real Time

– CICS

– MQ Triggering

§ API

– C++ and Java

– Utility



WebSphere Data Interchange

October 2005 © 2005 IBM Corporation

Using and Managing Log Files

Separating logs by application



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Using and Managing Log Files

§ Issues with log files

§ Tools and techniques for dealing with log files

– Logical logs

– Pruning logs

– Restoring logs

– Reducing the number of logged messages

– Securing the logs

– Correlating logs

– Operating without the Event Log

§ Best practices discussion



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Issues with log files

§ They fill up or get too big and need to be pruned 
(archived)

§ How can you view events that have been 
archived?

§ How can you archive such that events can be 
found and restored?

§ How can you correlate log entries with the 
PRTFILE

§ They could contain confidential information



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Logical Logs

§Why

– Security

– Easier problem determination?

– Allow archiving on different schedules

§ How logical logs are implemented

– Logical name in a single DB2 table

§ How to specify different log files

– APPLID parameter on EDIFFS

– APPLID property in the properties file



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Creating Logical Logs



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Configuring Applications to Use Logical Logs



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Pruning the Log

§ UNLOAD LOG ENTRIES command
§ This command reads all the entries in the event log associated w ith the Application ID. The entries selected for removal are copied to 

the archive file, and all other entries associated with the Application ID are copied to the hold file.  Event log entries that are 
associated with active or held transactions in the Transaction Store are not eligible for archive and are not selected for remov al. The 
entries selected for removal are copied to the archive file and immediately deleted.  To ensure concurrency, set the number of 
deletes (Numdels) performed before a COMMIT is issued to a relatively low value. This command may be run as the first step of a 
multi-step process. (See the table on 5.)

§ APPLID(application ID)
§ ARCHIVEFILE(event log archive file name)

§ ARCHIVETYPE( event log archive file type)

§ HOLDFILE(event log hold file name)
§ HOLDTYPE( event log hold file type)

§ IFCC(override condition codes)

§ LOGAEID(starting event log associated entry ID) TO(ending event log associated entry ID)
§ LOGDATE( starting event log date) TO(ending event log date)

§ LOGFORM(starting event log format ID ) TO(ending event log format ID)

§ LOGTIME( starting event log time) TO(ending event log time)

§ LOGUSER(starting event log user ID) TO(ending event log user ID)
§ NUMDELS(number of database deletes before commit)

§ SETCC(condition codes)

§ Example:  Unload log entries from the application log file for application EDIFFS dated December 14, 2001.

§ PERFORM UNLOAD LOG ENTRIES WHERE APPLID(EDIFFS) LOGDATE(12/14/01) ARCHIVEFILE(ARCHTRAN) HOLDFILE 
(HOLDTRAN)



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Restoring Log Entries

§ LOAD LOG ENTRIES command

§ This command copies the selected HOLDFILE records back into the event log table. In a DB2 environment, 
you can restore deleted records to the event log by specifying t he ARCHIVEFILE value from the UNLOAD 
LOG ENTRIES command as the value for the HOLDFILE keyword on this command.

§ APPLID(application ID)

§ HOLDFILE(event log hold file name)

§ HOLDTYPE(event log hold file type)

§ IFCC(override condition codes)

§ LOGAEID(starting event log associated entry ID)

§ TO(ending event log associated entry ID)

§ LOGDATE(starting event log date) TO(ending event log date)

§ LOGFORM(starting event log format ID) TO(ending event log format ID)

§ LOGTIME(starting event log time) TO(ending event log time)

§ LOGUSER(starting event log user ID) TO(ending event log user ID)

§ NEWAPPLID(new application ID)

§ SETCC(condition codes )
§ Example:  Copy the held records for EDIFFS with a log date of 12/14/01 back into the event log table.

§ PERFORM LOAD LOG ENTRIES WHERE APPLID(EDIFFS) LOGDATE(12/14/01)



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Reducing the number of logged messages

§ IGNOREWARN(Y) - Used for data transformation maps, it filters all 
warning messages.  PERFORM TRANSFORM WHERE . . . 
IGNOREWARN(Y) 

§ FILTERMSGS(msg_id, msg_id) - For data transformation processing. 
Filters messages in the list, if severity is less than 8. Maximum length is 
80. Up to 11 individual messages may be filtered. PERFORM 
TRANSFORM WHERE        . . . FILTERMSGS(TR0016, TR0004)

§ DIERRFILTER(msg_id, . . . ) keyword - Specifies the initial set of errors 
to filter for this translation session.  PERFORM DEENVELOPE AND 
TRANSLATE WHERE . . . DIERRFILTER(TR0016, TR0004)

§ DIERRFILTER special variable – S/R mapping only.  When SET or 
SAVED, the translator parses the value of the variable as an ind icator of 
the errors to ignore. The DIERRFILTER variable value should cons ist of 
a list of the error codes to be ignored. 

§ Some objects can added to eliminate messages, like NETCOMMANDs
FSUPPORT, or a profile may be missing (but harmless)



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Securing the Logs

§ Use the DB2 view security technique to create 
views that can only see certain logical logs

§ CREATE VIEW EDIBUYER.EDIELOG AS SELECT * 
FROM EDIEC32E.EDIELOG WHERE APPLID = 
‘PURCHSNG’



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Correlating Logs

§ On Windows the log can be correlated to the 
transaction store by matching on event log date 
and time with the transaction store created date 
and time

§ On AIX and z/OS the log can be correlated to the 
transaction store by matching the transaction 
handle to the event ID



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Operating without Logs

§ Pros

– Can save time and improve throughput in environments 
that are “pushing the envelope” if turned off

§ Cons

– Only way to detect certain database errors

– Only way to debug remotely using just the client 
(combination of event log and trx store)

– A more controlled and reliable repository for error msgs 
than PRTFILEs



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Best Practices Discussion

§ Separate logs by application

§ Filter warning messages

§ Limit access using DB2 view technique

§ Run periodic jobs to unload the logs

§ Organize unload files by how they are searched

§ Synchronize unloads with the transaction store

§ If performance is not good enough, consider 
running without the event log



WebSphere Data Interchange

October 2005 © 2005 IBM Corporation

Managing the Transaction Store

Keeping the amount of data in the 
transaction store under control



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Managing the Transaction Store

§ Issues with the Transaction Store

§ Tools and techniques for dealing with the Transaction Store

– Logical Transaction Stores

– Pruning the Transaction Store

– Restoring to the Transaction Store

– Reducing the volume of data put to the Transaction Store

– Securing the Transaction Store

– Correlating events with the Transaction Store

– Operating without the Transaction Store

§ Best practices discussion



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Issues with the Transaction Store

§ It fills up or gets too big and need to be pruned 
(archived)

§ How can you view messages that have been 
archived?

§ How can you archive such that messages can be 
found and restored?

§ How can you correlate messages with log entries 
and with the PRTFILE

§ It could contain confidential information



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Logical Transaction Stores

§Why

– Security

– Deadlocks and Timeouts

– Allow archiving on different schedules

§ How logical transaction stores are implemented

– Replicate the transaction store tables

§ How to specify different transaction stores

– Use DB2 aliases similar to how security is implemented

– Control which one is used by the HLQ or AuthID



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Creating Logical Transaction Stores

§ Replicate the transaction store tables

– CREATE TABLE EDIENU32.EDITSEV

– CREATE TABLE EDIENU32.EDITSGP

– CREATE TABLE EDIENU32.EDITSTU

– CREATE TABLE EDIENU32.EDITSTH 

– CREATE TABLE EDIENU32.EDITSTI 

– CREATE TABLE EDIENU32.EDITSAU

– CREATE TABLE EDIENU32.EDITSTO



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Configuring Applications to Use Logical Stores

§ Set the AuthID or HLQ appropriately on the 
database connection parameters



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Archiving the Transaction Store

§ TRANSACTION DATA EXTRACT command This command extracts detailed 
information about transactions, sorted by transaction handle. You can use this 
command to create report data to: 

§ Report on the number of purchase orders sent in a given period of time 

§ Report on the total number of bytes sent in a given period of ti me (this can be 
useful for charging back costs to other departments based on their EDI usage) 

§ Create a customized functional acknowledgment tracking report by application or 
by department; for example, an exception report on purchase orders sent more 
than 2 days ago that have not been acknowledged 

§ Create an exception report flagging missing control numbers for inbound 
envelopes You can also use this command for functions other than reporting, 
such as: 

§ Archiving Transaction Store data 

§ Loading status data directly into the application by application key; for example, 
the status for each invoice sent could be loaded into the billing system by invoice 
number 



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Purging the Transaction Store

§ PURGE command

§ This command marks a transaction for purging from the Transaction Store but does not remove it. 

§ ACFIELD(starting application control field data) TO(ending application control field data) 

§ APPLID(application ID) 

§ APPRECID(application receiver department ID) 

§ APPSNDID(sender’s department ID) 

§ BATCH(translated transaction batch ID) 
§ DIR(processing direction) 

§ DLVDATE(starting delivery date) TO(ending delivery date) 

§ DLVTIME(starting delivery time) TO(ending delivery time) 

§ ENVDATE(starting transaction envelope date) TO(ending transaction envelope date)

§ ENVTIME(starting transaction envelope time) TO(ending transaction envelope time)

§ ENVTYPE(transaction envelope type) 

§ EPURDATE(starting transaction purge date) TO(ending transaction purge date) 

§ FORMAT(data format ID)

§ FUNACKP(pending functional acknowledgment) 

§ GRPCTLNO(starting sender’s group control number) TO(ending sender’s group control number) 

§ HANDLE(starting transaction ID) TO(ending transaction ID) 

§ IFCC(override condition codes) 



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Purging the Transaction Store (cont.)

§ INTCTLNO(starting sender’s interchange control nbr) TO(ending sender’s interchange control nbr) 

§ INTRECID(interchange receiver ID) 

§ INTSNDID(interchange sender ID) 

§ NETACKP(pending network acknowledgment) 

§ NETID(network ID) 

§ NETSTAT(network transaction status)

§ SETCC(condition codes) 
§ SNDDATE(starting request sent date) TO(ending request sent date) 

§ SNDTIME(starting request sent time) TO(ending request sent time) 

§ STDTRID(EDI standard transaction set ID) 

§ STSTAT(transaction status) 

§ TPID(trading partner ID) 

§ TPNICKN(trading partner nickname) TRERLVL(maximum translation error level) 

§ TRXCTLNO(starting transaction set control number) TO(ending transaction set control number) 

§ TRXDATE(starting transaction date) TO(ending transaction date) 

§ TRXSTAT(transaction processing status) 

§ TRXTIME(starting transaction time) TO(ending transaction time)

§ Example:  Mark for purging all EDI documents that have been delivered to trading partner PISCES and 
accepted. PERFORM PURGE WHERE TPNICKN(PISCES) TRXSTAT(61)



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Pruning the Transaction Store

§ REMOVE TRANSACTIONS command This command deletes transactions from the transaction store

§ ACFIELD(starting application control field data) TO(ending application control field data) 
§ APPLID(application ID) 

§ APPRECID(application receiver department ID) 

§ APPSNDID(sender’s department ID) 

§ BATCH(translated transaction batch ID) 

§ DIR(processing direction)

§ DLVDATE(starting delivery date) TO(ending delivery date) 

§ DLVTIME(starting delivery time) TO(ending delivery time) 

§ ENVDATE(starting transaction envelope date) TO(ending transaction envelope date) 

§ ENVTIME(starting transaction envelope time) TO(ending transaction envelope time) 

§ ENVTYPE(transaction envelope type) 

§ EPURDATE(starting transaction purge date) TO(ending transaction purge date) 

§ FORMAT(data format ID) 
§ FUNACKP(pending functional acknowledgment) 

§ GRPCTLNO(starting sender’s group control number) TO(ending sender’s group control number)

§ HANDLE(starting transaction ID) TO(ending transaction ID) 

§ IFCC(override condition codes) 

§ INTCTLNO(starting sender’s interchange control nbr) TO(ending sender’s interchange control nbr) 

§ INTRECID(interchange receiver ID) 



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Pruning the Transaction Store (cont.)

§ INTSNDID(interchange sender ID) 

§ MAXRUNTIME(maximum remove runtime minutes) 

§ NETACKP(pending network acknowledgment) 

§ NETID(network ID) NETSTAT(network transaction status) 

§ NUMDELS(number of database deletes before commit ) 

§ SETCC(condition codes ) 

§ SNDDATE(starting request sent date) TO(ending request sent date) 
§ SNDTIME(starting request sent time) TO(ending request sent time) 

§ STANDALONE(operate DataInterchange only) 

§ STDTRID(EDI standard transaction set ID) 

§ STSTAT(transaction status) 

§ TPID(trading partner ID) 

§ TPNICKN(trading partner nickname) 

§ TRERLVL(maximum translation error level) 

§ TRXCTLNO(starting transaction set control number) TO(ending transaction set control number) 

§ TRXDATE(starting transaction date) TO(ending transaction date) TRXSTAT(transaction processing status ) 

§ TRXTIME(starting transaction time) TO(ending transaction time) 

§ Example:  Delete all eligible transactions that are more than 30 days old. Only transactions that have a status 
of PURGE-USER REQUEST or PURGE-DATE EXPIRED are eligible. PERFORM REMOVE 
TRANSACTIONS WHERE HANDLE(*-999) TO(*-30) 



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Restoring Entries to the Transaction Store

§WDI does not support restoring messages to the 
transaction store

§ You can create a viewer tool for the TRANSACTION 
DATA EXTRACTs to handle the requirement for 
viewing archived transactions

§ Another option is to create a parallel “archive”
transaction store 

– Move data to the archive stores to purge

– Back up the archive stores and empty them

– Restore to the archive store and view there 



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Reducing the Volume of Data put to the Transaction Store



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Securing the Transaction Store

§ Use the DB2 view security technique to create 
views that can only see certain logical logs

§ CREATE VIEW EDIBUYER.EDIELOG AS SELECT * 
FROM EDIEC32E.EDIELOG WHERE APPLID = 
‘PURCHSNG’



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Correlating Events with the Transaction Store

§ On Windows the log can be correlated to the 
transaction store by matching on event log date 
and time with the transaction store created date 
and time

§ On AIX and z/OS the log can be correlated to the 
transaction store by matching the transaction 
handle to the event ID



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Operating without the Transaction Store

§ Pros

– Can save time and improve throughput in environments 
that are “pushing the envelope” if turned off

– If transactions are logged else anyway, may be 
redundant

§ Cons

– Can’t do duplicate detection, FA reconciliation, overdue 
FA detection, delayed enveloping, etc.

– Can’t do remote debugging through the client



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Best Practices Discussion

§ Separate Transaction Stores by application for best 
performance

§ Limit messages stored to just the ones that are required

§ Limit access using DB2 view technique

§ Run periodic jobs to unload the Transaction Store

§ Organize unload files by how they are searched

§ Synchronize unloads with the event log

§ If performance is not good enough, consider running 
without the Transaction Store



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Best Practices Case Study

§ Nestle GLOBE
– PURGEINT parameter is 40 days
– One APPLID=EDIFFS
– Store=Y, Images=Y, FuncAck Images=Y, Log EDI Std 

Data=Log to Event Log, Management Reporting=ON
– Archive daily to 2 files (sent & received) using PERFORM 

TRANSACTION DATA EXTRACT SELECTING 
INTERCHANGE(Y) GROUP(Y) TRANSACTION(Y) IMAGE(Y) 
WHERE FUNACKP(N) STSTAT(3)  WHERE FUNACKP(N) 
STSTAT(4) DIR(S|R);

– PERFORM REMOVE executed in next step of archive job
– Statistics cleaned up using PERFORM REMOVE STATISTICS 

WHERE PRIORTO(*-30) NUMDELS(25)



WebSphere Data Interchange

October 2005 © 2005 IBM Corporation

Generating Alerts

How to get notified when 
something goes wrong



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Alerts

§Ways of detecting when something goes wrong

§ An architecture for alerting

§ Best practices case study



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Ways of Detecting When Something Goes Wrong

§ Condition codes

§ API return codes

§ Trigger exit programs

§ Triggering off the PRTFILE Queue

§ PRTFILE scanning



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Using JCL Condition Codes to Trigger Alerts

§ Send/Receive Translation (S/R maps)

– 1 and 2 may be OK based on acceptable error level

– 3-119 should be data related errors, WDI can continue

– 120 and greater are serious problems, WDI is probably down

– Use IFCC() SETCC() to filter uninteresting events like “no data 
in input file” (6)

§ Data Transformation (DT maps)

– 0, 4 are OK

– 8 indicates a data related error, WDI can continue

– 12 is a serious problem, WDI is probably down



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Using ediservr Return Codes to Trigger Alerts

§ ediservr return codes

– Value is 0, 8, or 12

– 8 means data error, msg in exception status

– 12 means severe error, WDI is now likely unable to 
process any messages



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Using API Return Codes to Trigger Alerts

§ Anything other than 0 or 5 is a severe API 
configuration error

– assume WDI is now unable to process any messages

§ 5 is a utility error, use GetRetCodes(rc, erc)

– RC=8 means data error, msg in exception status

– RC=12 means severe error, WDI is now likely unable to 
process any messages



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Using Trigger Exit Programs to Trigger Alerts

§ bool bProceed msgTransform(void* pvExitContext, long rc, long ccbrc, 
long ccberc) 

§ Results of the transformation
– contained in rc, ccbrc and ccberc
– Meaning is the same as for the C++ API 

§ Return values
– SYNC_CONTINUE - syncpoint and then continue processing. 
– SYNC_TERM - syncpoint and then terminate.
– CONTINUE - roll back the current message and continue processing 

from the input queue.
– TERMINATE - roll back the current message and terminate the 

adapter.



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Triggering Off the PRTFILE or Failure Queues

§ If genprtfile=onerror | blank in the wdi.properties 
file, then the PRTFILE will be sent to a queue

§ You can trigger off of that queue

§ The failure queue will also receive the bad 
message if an error occurs

§ You can trigger off of the FAILURE queue as well

§ Both provide the same set of trigger events



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Using PRTFILE scanning to Trigger Alerts

§When using DT maps

– The regex “FF0584 The PERFORM TRANSFORM 
command completed with a severity code of (08|12)”
should do it

§When using send/recv maps

– The regex “FF0162 Immediate error attempting to 
translate the next transaction, return code = (8|12)”



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

An Architecture for Generating Alerts

§ The user can generate Events when using WDI that can be handled by various Event 
handlers like EMail, Pager etc.

§ The selection criteria used for generating these Events is based on Severity Threshold and/or 
Message ID's. The user can chose to generate events for any messages that have Severity 
greater than (0/4/8/12) or for any particular Message occurrence.

§ The message ID selection takes precedence over Severity in case both are used for filtering. 
Message IDs can be selected to be include or excluded from the output.

§ The output of this event generation can be a PRINT file/XML format Print file/ADF format print 
file/Event log. This output is generated at the end of a transformation.

§ The Application defaults has entries for above 4 outputs, corresponding criteria (Message ID's 
and Severity thresholds) and a destination profile entry. 

§ The output file generated is routed to a destination and this destination is defined in the 
Destination Profile. There could be multiple destination profiles defined in a system.

§ The following are different type of destinations and the corresponding technique to pick the 
output file.
– MQ Queue - A trigger program gets invoked for each event messages. 
– File Directory - A program waits on the directory and picks any files created in that directory.
– Datasets/File - A program is invoked at the end of translation that processes t he file.
– CICS TS Queue - A transaction is triggered that reads data out of the queue.



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

An Architecture for Generating Alerts (cont.)

§ The "Plugin Event handler" module handles the above reading of the output. 

§ Each of the destination profile has an Event Handler Profile associated with it.
§ This Event handler profile refers to the actual handler program that processes the event 

output. It also has all properties required by the Handler as Key/Value Pairs. The user can 
define multiple Handler profiles.

§ The "Plugin Event handler" module fetches data to the Handler program along with 
corresponding handler properties.

§ Email handler program is one of these Event handlers that is provided with WDI.

§ This Email handler program is written in Java using JavaMail API. It uses SMTP protocol to 
send Emails. This is an open source and the user is given a chance to customize the 
program.

§ The user can add any other handler programs to WDI based on the requirements. 

§ The email programs send a message either to an error processor, the trading partner, or both.
§ The email programs logs a the fact that it successfully sent a message, who it sent it to and 

for what failed message.

§ If the error email message bounces, then send a message to the error processor in the host 
company.



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Best Practices Case Study

§ Lynn Draiss of New York State DMV

§ JCL job step after WDI step 
– count output documents produced and append to PRTFILE 
– Put the modified PRTFILE on an MQ queue to a Windows box

§ VB program on Windows box
– Scans PRTFILE and checks each message ID against a list of known message IDs
– If a “notify” or unrecognized message ID comes up, then

• creates a word doc describing the problem taking information from the messages
• Send the word doc to the trading partner via their email address in the WDI Trading 

partner Profile
• Log the Message ID, the email and the date/time and that it was sent

– Checks the “from” mailbox for “bounce” messages and forwards them to an 
administrator for manual processing

§ Result is a huge reduction in manual processing of failed inbound 
messages



WebSphere Data Interchange

October 2005 © 2005 IBM Corporation

Replay/Resend

Reprocessing failed messages



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Replay/Resend

§ Use cases for replay/resend

§ Tools for resending and replaying messages

§ Best practices discussion



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Use Cases for Replay and Resend

§ Replay
– An inbound message failed translation because of an 

error in the map or the configuration

– Message was moved to exception status

– User has fixed the problem and wants to retry the msg

§ Resend
– A trading partner claims they never received a msg that 

you sent to them
– User wants to resend the previously sent message



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Tools for Replay/Resend – Transaction Store

§ RECONSTRUCT command - This command takes information that has been 
saved in the Transaction Store and rebuilds an interchange just as it was sent or 
received (using the same control numbers). This command can be used if your 
trading partner lost an interchange you sent, and you must send the same 
interchange again. It can also be used to rebuild interchanges sent to you.

§ Syntax 
– RECONSTRUCT DIR(processing direction) FILEID(processing file ddname) 

IFCC(override condition codes) INTCTLNO(starting sender’s interchange control 
nbr) TO(ending sender’s interchange control nbr) INTRECID(interchange receiver 
ID) INTSNDID(interchange sender ID) PAGE(pageable translation) 
RAWDATA(translate to raw data format) SETCC(condition codes) TPNICKN(trading
partner nickname) RECONSTRUCT 

§ Example PERFORM RECONSTRUCT WHERE TPNICKN(MYTP) 
INTRECID(123456789) INTCTLNO(5) DIR(R) FILEID(AUDITOR)



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Tools for Replay/Resend – Transaction Store

§ REENVELOPE command This command takes the EDI transactions from the Transaction Store that were 
previously enveloped, envelopes them again, and places the results in an envelope file.

§ Syntax REENVELOPE ACFIELD(starting application control field data) TO(ending application control field 
data) APPLID(application ID) APPRECID(application receiver department ID) APPSNDID(sender’s
department ID) BATCH(translated transaction batch ID) DIERRFILTER(initial error filter set) 
ENVDATE(starting transaction envelope date) TO(ending transaction envelope date) ENVPRBREAK(start
new envelope) ENVTIME(starting transaction envelope time) TO(ending transaction envelope time) 
ENVTYPE(transaction envelope type) EPURDATE(starting transaction purge date) TO(ending transaction 
purge date) FILEID(processing file ddname) FIXEDFILEID(fixed-to-fixed output ddname) FORMAT(data
format ID) FUNACKP(pending functional acknowledgment) GRPCTLNO(starting sender’s group control 
number) TO(ending sender’s group control number) HANDLE(starting transaction ID) TO(ending transaction 
ID) IACCESS(IEXIT access) IAREA(IEXIT information) IEXIT(interchange control program) IFCC(override 
condition codes) INMEMTRANS(transactions in memory) INTCTLNO(starting sender’s interchange control 
nbr) TO(ending sender’s interchange control nbr) INTRECID(interchange receiver ID) INTSNDID(interchange
sender ID) ITPBREAK(new interchange envelope) ITYPE(IEXIT program type) NETACKP(pending network 
acknowledgment) NETID(network ID) NETSTAT(network transaction status ) OPTRECS(optional record type) 
OUTFILE(output data file name for SAP Status)OUTTYPE(output data file type for SAP Status ) 
PAGE(pageable translation) RAWDATA(translate to raw data format) RECOVERY(recovery unit of work ) 
SAPUPDT(track SAP status) SNDDATE(starting request sent date) TO(ending request sent date) 
SNDTIME(starting request sent time) TO(ending request sent time) SERVICESEGVAL(service segment 
validation level) SETCC(condition codes) STDTRID(EDI standard transaction set ID) TPID(trading partner ID) 
TPNICKN(trading partner nickname) TRERLVL(maximum translation error level) TRXCTLNO(starting
transaction set control number) TO(ending transaction set control number) TRXDATE(starting transaction 
date) TO(ending transaction date) TRXSTAT(transaction processing status ) TRXTIME(starting transaction 
time) TO(ending transaction time) VERIFY(verify transaction status) REENVELOPE 

§ Example
– PERFORM REENVELOPE WHERE HANDLE(20011214101533000001) TRXSTAT(31) 



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Tools for Replay – MQ Adapter Based

§WDI adapter

– Saves input messages as files in the rcv directory 

– Files are named MQ_Msg_ID.rcv

– These files can be requeued using standard MQ tools 
like rfhutil

§ Multi-threaded adapter

– Saves input messages that fail to the failure, or back out 
queue

– Messages can be requeued from the failure queue using 
standard MQ tools



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Tools for Replay JCL and Command Line Based

§ Failed input messages are written to the exception 
file

§ For DT maps all input msg types go to the 
exception file

§ For Send/Recv maps

– Data Formats, only the failing document is written to the 
exception file

– For EDI nothing is written to the exception file

§ For replay manually retranslate the exception file



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Best Practices Discussion

§ For enveloped data types like EDI, smaller 
messages with fewer included documents (ideally 
just one) are going to have fewer issues 
associated with reprocessing them

§ If you must handle inbound envelopes with 
multiple documents, use envelope level recovery 
if possible so that you can reprocess entire input 
envelopes

§ If you can’t use envelope recovery, then avoid 
replay if possible and have sender resend instead 



WebSphere Data Interchange

October 2005 © 2005 IBM Corporation

Dealing with Overdue Acknowledgments

Handling the situation when there 
is no answer at the other end



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Overdue Acknowledgments

§ Overdue acknowledgment use cases

§ Tools for detecting overdue functional 
acknowledgments

§ Best practices discussion

§ Best practices case study



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Overdue Acknowledgment Use Cases

§ Real time use case
– If a message isn’t acknowledged within 15 minutes then 

resend the message
– If the message is resent 3 times and still no 

acknowledgment, then fail the message and raise an 
alert

§ Batch use case
– Once a day process all the received functional 

acknowledgments
– Format a report detailing any unacknowledged messages 

more than 3 days old



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Tools for Detecting Overdue Functional Acknowledgments

§ TRANSACTION DATA EXTRACT command This command extracts detailed information about 
transactions, sorted by transaction handle

§ Syntax TRANSACTION DATA EXTRACT ACFIELD(starting application control field data) TO(ending 
application control field data) APPLICATION(write application data record) APPLID(application ID) 
APPRECID(application receiver department ID) APPSNDID(sender’s department ID) BATCH(translated
transaction batch ID) CONCATENATE(concatenate extract data) DIR(processing direction) 
DLVDATE(starting delivery date) TO(ending delivery date) DLVTIME(starting delivery time) TO(ending 
delivery time) ENVDATE(starting transaction envelope date) TO(ending transaction envelope date) 
ENVTIME(starting transaction envelope time) TO(ending transaction envelope time) ENVTYPE(transaction
envelope type) EPURDATE(starting transaction purge date) TO(ending transaction purge date) 
FORMAT(data format ID) FUNACKP(pending functional acknowledgment) GROUP(write group data record) 
GRPCTLNO(starting sender’s group control number) TO(ending sender’s group control number) 
HANDLE(starting transaction ID) TO(ending transaction ID) IFCC(override condition codes ) IMAGE(write
image data record) INTCTLNO(starting sender’s interchange control nbr) TO(ending sender’s interchange 
control nbr) INTERCHANGE(write interchange data record) INTRECID(interchange receiver ID) 
INTSNDID(interchange sender ID) NETACKP(pending network acknowledgment) NETID(network ID) 
NETSTAT(network transaction status) RECEIVEACKDATA(write detailed acknowledgment data) 
RECEIVEACKIMAGE(write receive acknowledgment record) SENDACKDATA(write detailed 
acknowledgment data) SENDACKIMAGE(write acknowledgment record) SETCC(condition codes ) 
SNDDATE(starting request sent date) TO(ending request sent date) SNDTIME(starting request sent time) 
TO(ending request sent time) STDTRID(EDI standard transaction set ID) STSTAT(transaction status ) 
TPID(trading partner ID) TPNICKN(trading partner nickname) TRANSACTION(write transaction data record) 
TRERLVL(maximum translation error level) TRXCTLNO(starting transaction set control number) TO(ending 
transaction set control number) TRXDATE(starting transaction date) TO(ending transaction date) 
TRXSTAT(transaction processing status) TRXTIME(starting transaction time) TO(ending transaction time) 
USERPGM(user program) TRANSACTION DATA EXTRACT 

§ Example: PERFORM TRANSACTION DATA EXTRACT SELECTING INTERCHANGE(Y) GROUP(Y) 
TRANSACTION(Y) WHERE FUNACKP(Y) ENVDATE(01/01/01) TO(*-3)



WebSphere Data Interchange

© 2005 IBM CorporationOctober 2005

Best Practices Case Study

§ Jeff Pesick, Australian Customs

– They have created a custom logging program that 
• Records outbound messages
• Matches inbound acknowledgments to the outbound 

messages
• Periodically checks for unacknowledged messages and 

resends ones for which acknowledgments are overdue
• After several resends it notifies operations via an email 

message


