
DB2 Server for VSE & VM

Application Programming

Version 7 Release 5

SC09-2889-02

IBM

DB2 Server for VSE & VM

Application Programming

Version 7 Release 5

SC09-2889-02

IBM

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 407.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling

1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Manual vii

Audience and Purpose of This Book vii

Organization of This Book viii

Related Publications ix

Syntax Notation Conventions ix

SQL Reserved Words xii

Conventions for Representing DBCS Characters . . xiii

Components of the Relational Database

Management System xiv

Summary of Changes xvii

Summary of Changes for DB2 Version 7 Release 5 xvii

Enhancements, New Functions, and New

Capabilities xvii

Chapter 1. Getting Started 1

What is the DB2 Server for VSE & VM Product? . . 2

What is SQL? 3

Embedding SQL Statements in Host Language

Programs 4

Writing a Program 4

Chapter 2. Designing a Program 7

Defining the Main Parts of a Program 8

Creating the Prolog 8

Creating the Body 12

Creating the Epilog 15

Using Logical Units of Work 18

Defining the Logical Unit of Work 18

Beginning a Logical Unit of Work 18

Considering the CICS/VSE Logical Unit of Work

(DB2 Server for VSE Only) 18

Ending a Logical Unit of Work 19

Summary 20

Using Host-Dependent Sample Applications . . . 21

Chapter 3. Coding the Body of a

Program 23

Defining Static SQL Statements 25

Naming Conventions 25

Coding SQL Statements to Retrieve and Manipulate

Data 26

Retrieving Data 26

Defining an SQL Query 26

Retrieving or Inserting Multiple Rows 33

Retrieving Single Rows 38

Constructing Search Conditions 39

Performing Arithmetic Operations 39

Using Null Values 41

Using the Predicates of a Search Condition . . . 41

Using Functions 43

Using Column Functions 43

Using Scalar Functions 44

Using Data Types 44

Assigning Data Types When the Column Is

Created 44

Using Long Strings 45

Using Datetime Data Types 46

Using Character Subtypes and CCSIDs 46

Converting Data 48

Truncating Data 49

Using a Double-Byte Character Set (DBCS) . . . 51

Using Expressions 52

Using Arithmetic Operators 52

Using Special Registers 53

Concatenating Character and Graphic Strings . . 54

Using Host Variables 55

Using Host Structures 55

Using Constants 56

Using Indicator Variables 59

Using Views 61

Creating a View 62

Querying Tables through a View 63

Using Views to Manipulate Data 64

Dropping a View 65

Joining Tables 66

Joining Tables Using the Database Manager . . 66

Performing a Simple Join Query 66

Joining Another User’s Tables 67

Analyzing How a Join Works 67

Using VARCHAR and VARGRAPHIC within Join

Conditions 68

Using Nulls within Join Conditions 68

Joining a Table to Itself Using a Correlation

Name 68

Imposing Limits on Join Queries 70

Using SELECT * In a Join 71

Grouping the Rows of a Table 71

Using VARCHAR and VARGRAPHIC within

Groups 72

Using Nulls within Groups 72

Using Select-Lists in Grouped Queries 72

Using a WHERE Clause with a GROUP BY

Clause 72

Using the HAVING Clause 73

Combining Joins 73

Illustrating Grouping with an Exercise 74

Nesting Queries 76

Using the IN Predicate with a Subquery 79

Considering Other Subquery Issues 80

Executing Subqueries Repeatedly: Correlation . . 80

Writing a Correlated Subquery 81

How the Database Manager Does Correlation . . 82

Illustrating a Correlated Subquery 83

Using a Subquery to Test for the Existence of a

Row 88

Table Designation Rule for Correlated Subqueries 88

Combining Queries into a Single Query: UNION 89

SQL Comments within Static SQL Statements . . . 92

Using Stored Procedures 92

© Copyright IBM Corp. 1987, 2007 iii

|

||

Writing Stored Procedures 94

Returning Information from the SQLCA 95

Language Environment (LE) Considerations . . 96

Preparing to Run a Stored Procedure 96

Calling Stored Procedures 96

Authorization 97

AUTHIDs 97

Stored Procedure Parameters 98

Datatype Compatibility 99

Conventions for Passing Stored Procedure

Parameters 99

Coding Examples 101

Special Considerations for C 101

Special Considerations for PL/I 101

Result Sets 101

Using the DESCRIBE PROCEDURE SQL

Statement 105

Using the DESCRIBE CURSOR SQL Statement 106

Chapter 4. Preprocessing and

Running a DB2 Server for VM

Program 111

Defining the Steps to Execute the Program . . . 112

Comparing Single User Mode to Multiple User

Mode 112

Using 31-Bit Addressing 112

Initializing the User Machine 113

Using VM Implicit Connect 113

Preprocessing the Program 114

Using the SQLPREP EXEC Procedure 114

Preprocessing with an Unlike Application Server 132

Using the Preprocessor Option File 132

Using the Flagger at Preprocessor Time 133

Improving Performance Using Preprocessing

Parameters 134

Using the INCLUDE Statement 141

Compiling the Program 142

Link-Editing and Loading the Program 142

Link-Editing the Program with DB2 Server for

VM TEXT Files 143

Including the TEXT File in the Link-Editing . . 143

Creating a Load Module Using the CMS

GENMOD Command 144

Running the Program 144

Using a Consistency Token 144

Loading the Package and Rebinding 145

Using Multiple User Mode 145

Using Single User Mode 146

Specifying User Parameters in Single User Mode 147

Distributing Packages across Like and Unlike

Systems 147

Binding to Create Package 148

Chapter 5. Preprocessing and

Running a DB2 Server for VSE

Program 153

Defining the Steps to Execute the Program . . . 154

Using 31-Bit Addressing 154

How DB2 Establishes User IDs for CICS/VSE

Transactions 155

User IDs for Remote CICS/VSE Transactions 156

Using Batch for Remote CICS/VSE Transactions 156

Preprocessing the Program 156

Preprocessing by Mode 158

Defining the Preprocessing Parameters 160

Using the Preprocessor Option Member . . . 170

Using the Flagger at Preprocessor Time 170

Using the CICS/VSE Translator 171

Improving Performance Using Preprocessing

Parameters 172

Using the INCLUDE Statement 179

Compiling the Program 180

Link-Editing and Loading the Program 180

Link-Editing the Program with Supplementary

Information 180

Running the Program 182

Using a Consistency Token 182

Loading the Package and Rebinding 182

Running by Mode 183

Running under CICS/VSE Support 184

Accessing Other DB2 Family Application

Servers 184

Installing Applications that Access the Database

Manager 184

Installing a Batch Application 184

Installing an Online CICS/VSE Application . . 185

Distributing Packages across Like and Unlike

Systems 187

Creating a Package Using CBND and Batch

Binding 188

Chapter 6. Testing and Debugging 195

Doing Your Own Testing 196

Checking Warnings and Errors at Preprocessor

Time 196

Testing SQL Statements 197

Using the Automatic Error-Handling Facilities . . 197

Using the SQLCA 199

Examining Errors 200

Handling Errors in a Select-List 212

Handling Arithmetic Errors 212

Handling Numeric Conversion Errors 213

Handling CCSID Conversion Errors 214

Chapter 7. Using Dynamic Statements 215

Dynamically Defining SQL Statements 216

Comparing Non-Query Statements to Query

Statements 216

Using Non-Query Statements 216

Executing Non-Parameterized Statements . . . 216

Executing Parameterized Statements 218

Using Query Statements 220

Executing a Non-Parameterized Select-Statement 220

Executing a Parameterized SELECT Statement 227

Executing a Parameterized Non-Query Statement 230

Generating a SELECT Statement 230

Using an Alternative to a Scanning Routine . . . 231

Ensuring Data Type Equivalence in a Dynamically

Defined Query 232

Summarizing the Fields of the SQLDA 234

iv Application Programming

||

 |

 | |

Using the SQLN Field 236

Using the SQLD Field in the SQLDA 236

Using the PREPARE Statement 237

SQL Functions Not Supported in Dynamic

Statements 238

Chapter 8. Using Extended Dynamic

Statements 239

Contents 239

Using Extended Dynamic Statements to

Maintain Packages 240

Illustrating the Use of Extended Dynamic

Statements 244

Grouping Extended Dynamic Statements in an

LUW 250

Mapping Extended Dynamic Statements to

Static and Dynamic Statements 253

SQL Functions Not Supported in Extended

Dynamic Statements 254

Chapter 9. Maintaining Objects Used

by a Program 255

Managing Dbspaces 256

Defining Dbspaces 256

Modifying the Size of Dbspaces 259

Automatically Locking Dbspaces 260

Overriding Automatic Locking 260

Deleting the Contents of Dbspaces 261

Other Data Definition Statements 262

Using Tables, Indexes, Statistics, Synonyms,

Comments, and Labels 262

Using Stored Procedures and PSERVERS . . . 265

Chapter 10. Assigning Authority and

Privileges 269

Defining User Access to the Database 270

Defining Authority Types for the Database . . 270

Granting Authority to Users 270

Revoking Authority from Users 271

Defining Privileges 271

Defining Privileges on Tables and Views . . . 272

Defining Privileges on Packages 273

Chapter 11. Special Topics 277

Using Datetime Values with Durations 278

Using Durations 278

Resolving Peculiarities of Date Arithmetic . . . 278

Using Field Procedures 281

Assigning Field Procedures to Columns . . . 283

Understanding Field Procedure Rules 283

Using CMS Work Units (DB2 Server for VM) . . . 286

Using Work Units in Application Programs . . 287

How Locking Works with CMS Work Units . . 289

Environmental Considerations 289

Ensuring Data Integrity 289

Ensuring Entity Integrity 290

Using Unique Constraints 290

When Creating a View 290

Ensuring Referential Integrity 290

Switching Application Servers 302

Identifying Switching Options 302

Comparing Switching to Other Methods (DB2

Server for VM) 302

How to Switch Servers (DB2 Server for VSE) 303

Accessing a New Application Server 304

Illustrating Sample Code 305

Preprocessing the Program on Multiple

Application Servers 306

Condition Handling with LE/VSE (DB2 Server for

VSE) 307

Appendix A. Using SQL in Assembler

Language 309

Using ARIS6ASD, an Assembler Language Sample

Program (DB2 Server for VSE Only) 310

Using ARIS6ASC, an Assembler Language Sample

Program (DB2 Server for VM Only) 310

Acquiring the SQLDSECT Area 310

Imposing Usage Restrictions on the SQLDSECT

Area 312

Rules for Using SQL Statements in Assembler

Language 314

Identifying Rules for Case 314

Declaring Host Variables 314

Embedding SQL Statements 316

Using the INCLUDE Statement 316

Using Host Variables in SQL Statements . . . 317

Using DBCS Characters in Assembler Language 317

Handling SQL Errors 317

Using Dynamic SQL Statements in Assembler

Language 318

Defining DB2 Server for VSE & VM Data Types for

Assembler Language 319

Using Reentrant Assembler Language Programs 320

Using Stored Procedures 326

Appendix B. Using SQL in C 331

A C Sample Program 332

Rules for Using SQL in C 332

Placing and Continuing SQL Statements . . . 332

Delimiting SQL Statements 333

Identifying Rules for Case 333

Identifying Rules for Character Constants . . . 333

Using the INCLUDE Statement 333

Using the CONNECT Statement (DB2 Server for

VSE) 334

Using the C Compiler Preprocessor 334

Declaring Host Variables 334

Using Host Variables in SQL Statements . . . 339

Using the Pointer Type Attribute 339

Using Host Variables as Function Parameters 341

Using C Variables in SQL: Data Conversion

Considerations 342

Using C NUL-Terminated Strings and

Truncation 342

Calculating Dates 342

Using Trigraphs 343

Using DBCS Characters in C 343

Considering Preprocessor-Generated Statements 343

Contents v

Handling SQL Errors 346

Using Dynamic SQL Statements in C 347

Defining DB2 Server for VSE & VM Data Types for

C 348

Using Reentrant C Programs 350

Using Stored Procedures 350

Appendix C. Using SQL in COBOL 353

A Sample COBOL Program 354

Rules for Using SQL in COBOL 354

Placing and Continuing SQL Statements . . . 354

Delimiting SQL Statements 355

Identifying Rules for Case 355

Declaring Host Variables 356

Using Host Variables in SQL Statements . . . 359

Using Long VARCHAR Host Variables (DB2

Server for VSE) 359

Using Preprocessor Options 359

Handling SQL Errors 363

Using Dynamic SQL Statements in COBOL . . 364

Defining DB2 Server for VSE & VM Data Types

for COBOL 366

Using Reentrant COBOL Programs 368

Using the DYNAM Compiler Option 369

Using Stored Procedures 369

Appendix D. Using SQL in Fortran 371

A Fortran Sample Program 372

Rules for Using SQL in Fortran 372

Placing and Continuing SQL Statements . . . 372

Placing Data Statements 373

Using Fortran Common Areas (DB2 Server for

VSE) 373

Identifying Rules for Case 373

Declaring Host Variables 373

Embedding SQL Statements 375

Using Host Variables in SQL Statements . . . 375

Using Variable Length Character Strings . . . 375

Using DBCS Characters in Fortran 376

Using the INCLUDE Statement 377

Using Fortran Variables in SQL: Data

Conversion Considerations 377

Handling SQL Errors 377

Handling Program Interrupts 378

Using Dynamic SQL Statements in Fortran . . . 378

Restrictions When Using the Fortran Preprocessor 379

Defining DB2 Server for VSE & VM Data Types for

Fortran 380

Appendix E. Using SQL in PL/I 383

Using PL/I Sample Programs 384

Rules for Using SQL in PL/I 384

Placing and Continuing SQL Statements . . . 384

Delimiting SQL Statements 384

Using the INCLUDE Statement 385

Declaring Static External Variables 385

Identifying Rules for Case 385

Declaring Host Variables 385

Using Host Variables in SQL Statements . . . 388

Using PL/I Variables in SQL: Data Conversion

Considerations 388

Using DBCS Characters in PL/I 388

Using SQL Statements in PL/I Subroutines . . 389

Coding the SIZE Parameter in VSE JCL (DB2

Server for VSE) 390

Handling SQL Errors 390

Handling Program Interrupts 390

Using Dynamic SQL Statements in PL/I 391

Defining DB2 Server for VSE & VM Data Types for

PL/I 393

Using Stored Procedures 394

Appendix F. Decision Tables to Grant

Privileges on Packages 397

How to Use the Decision Tables 398

Decision Tables 399

Notices 407

Programming Interface Information 409

Trademarks 409

Bibliography 411

Index 415

Contacting IBM 427

Product information 427

vi Application Programming

About This Manual

This preface:

v Identifies the book’s audience and purpose

v Describes the book’s organization

v Lists related publications

v Explains how to read the syntax diagrams

v Presents the conventions for describing MIXED data values.

Audience and Purpose of This Book

This book is for application programmers writing programs in assembler language,

C, COBOL,

12 Fortran, or PL/I. Throughout the book, the term host languages will

often be used to refer to any or all of these particular languages.

This book assumes that you can write programs in one of these host languages for

a Virtual Storage Extended/Enterprise Systems Architecture (VSE/ESA) operating

system, or a Virtual Machine/Enterprise Systems Architecture (VM/ESA)

environment. You may also find it useful to know how to use CICS® and ICCF (or

equivalent products) for a VSE/ESA system, and the conversational monitor

system (CMS) for VM/ESA system.

The purpose of the book is to explain how to write application programs that use

the Structured Query Language (SQL) to access data stored in DATABASE 2

Server for Virtual Machine/Enterprise Systems Architecture (DB2 Server for VM)

and in DATABASE 2 Server for Virtual Storage Extended/Enterprise Systems

Architecture (DB2 Server for VSE) tables. To achieve its purpose, the book:

v Introduces basic concepts

v Provides in-depth discussion of complex areas

v Offers tips of what to do and what not to do

v Focuses more on the Data Manipulation Language of SQL than on the Data

Definition Language or the Data Control Language. (The details of the latter two

components of SQL are of greater interest to the database administrator than to

the application programmer.)

v Describes the host language interfaces and the preprocessor process

v Supplements the material with examples

v Acts as a reference pointer to the appropriate chapters of the DB2 Server for VSE

& VM SQL Reference manual for details on such technical facts as naming

conventions, rules, and syntax.

The REXX Interface to the DB2 Server for VM product (DB2 Server RXSQL) is a

separately priced feature of this product. For information on this interface, see the

DB2 REXX SQL for VM/ESA Installation and Reference manual.

Programmers writing in APL2 should refer to the APL2 Programming: Using

Structured Query Language manual.

1. Throughout this book, COBOL is used to represent either OS/VS COBOL, VS COBOL II, IBM COBOL for MVS and VM, or IBM

COBOL for VSE; except where noted otherwise.

2. Throughout this book, CICS/VSE is used to represent either CICS/VSE or CICS/TS in VSE; except where noted otherwise.

© Copyright IBM Corp. 1987, 2007 vii

Organization of This Book

The following information provides a brief description of each chapter and

appendix in the book.

This preface identifies the audience, the purpose, and the use of the book.

Summary of Changes describes the new features of DB2 Server for VSE & VM

Version 7 Release 5.

Chapter 1, “Getting Started,” on page 1 provides an overview of the application

server, the SQL language that accesses the application server, and the host

application languages that embed the SQL language.

Chapter 2, “Designing a Program,” on page 7 describes the basic framework for

designing a DB2 Server for VSE & VM application based on its three main parts:

the prolog, body, and epilog.

Chapter 3, “Coding the Body of a Program,” on page 23 describes the coding

entered in the program body to retrieve and manipulate DB2 Server for VSE & VM

data. Data retrieval is described in terms of tables, associated views, and the

various means of accessing and selecting table data. Data manipulation focuses on

inserting, updating, and deleting data.

Chapter 4, “Preprocessing and Running a DB2 Server for VM Program,” on page

111 and Chapter 5, “Preprocessing and Running a DB2 Server for VSE Program,”

on page 153 provide information on the steps you take to preprocess and run an

application program. These steps include initial preparation of the system, as well

as preprocessing, compiling, link-editing, loading, and running the program.

Chapter 6, “Testing and Debugging,” on page 195 shows you how to test a new

program, process program errors, and monitor program execution.

Chapter 7, “Using Dynamic Statements,” on page 215 describes how to

dynamically process SQL statements that are specified at run time.

Chapter 8, “Using Extended Dynamic Statements,” on page 239 explains how

extended dynamic SQL statements can be used to create and maintain packages of

SQL statements. The SQL statements that create and maintain the packages are

available only in an application written in the assembler language.

Chapter 9, “Maintaining Objects Used by a Program,” on page 255 discusses the

management of DB2 Server for VSE & VM objects. First it describes the database

space (dbspace); then it discusses the data objects used to manage the data itself,

including tables, indexes, synonyms, comments, and labels.

Chapter 10, “Assigning Authority and Privileges,” on page 269 explains the

techniques used to control user access to, and user manipulation of, the data. A

section on user access discusses granting and revoking database authority, while a

section on privileges describes assigning of user privileges for tables, views and

packages.

Chapter 11, “Special Topics,” on page 277 covers various special topics, such as

ensuring data integrity, that supplement the material in the preceding chapters.

viii Application Programming

Appendixes A through E describe information specific to each application host

language.

Appendix F contains decision tables used by the system to grant privileges on

packages.

The Bibliography lists the full titles and order numbers of related publications. It is

followed by the Index.

Related Publications

v DB2 Server for VSE & VM Overivew

v DB2 Server for VSE & VM Interactive SQL Guide and Reference

v DB2 Server for VSE & VM Database Services Utility

v DB2 Server for VSE & VM Quick Reference

v DB2 Server for VSE & VM SQL Reference

v DB2 Server for VSE Messages and Codes

v DB2 Server for VM Messages and Codes.

You will need to consult the DB2 Server for VSE & VM SQL Reference manual

extensively for technical details and the sample tables while working with this

book. The sample tables are used for many of the examples in this book.

Syntax Notation Conventions

Throughout this manual, syntax is described using the structure defined below.

v Read the syntax diagrams from left to right and from top to bottom, following

the path of the line.

The ►►─── symbol indicates the beginning of a statement or command.

The ───► symbol indicates that the statement syntax is continued on the next

line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the

►─── symbol and end with the ───► symbol.

v Some SQL statements, Interactive SQL (ISQL) commands, or database services

utility (DBS Utility) commands can stand alone. For example:

Others must be followed by one or more keywords or variables. For example:

v Keywords may have parameters associated with them which represent

user-supplied names or values. These names or values can be specified as either

constants or as user-defined variables called host_variables (host_variables can only

be used in programs).

►► SAVE ►◄

►► SET AUTOCOMMIT OFF ►◄

About This Manual ix

v Keywords appear in either uppercase (for example, SAVE) or mixed case (for

example, CHARacter). All uppercase characters in keywords must be present;

you can omit those in lowercase.

v Parameters appear in lowercase and in italics (for example, synonym).

v If such symbols as punctuation marks, parentheses, or arithmetic operators are

shown, you must use them as indicated by the syntax diagram.

v All items (parameters and keywords) must be separated by one or more blanks.

v Required items appear on the same horizontal line (the main path). For example,

the parameter integer is a required item in the following command:

This command might appear as:

 SHOW DBSPACE 1

v Optional items appear below the main path. For example:

This statement could appear as either:

 CREATE INDEX

or

 CREATE UNIQUE INDEX

v If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For

example:

Here, the command could be either:

 SHOW LOCK DBSPACE ALL

or

 SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main

path. For example:

►► DROP SYNONYM synonym ►◄

►► SHOW DBSPACE integer ►◄

►► CREATE

UNIQUE
 INDEX ►◄

►► SHOW LOCK DBSPACE ALL

integer
 ►◄

x Application Programming

Here, the command could be:

 BACKWARD

or

 BACKWARD 2

or

 BACKWARD MAX

v The repeat symbol indicates that an item can be repeated. For example:

This statement could appear as:

 ERASE NAME1

or

 ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one

choice from the stacked items, or repeat a choice. For example:

v If an item is above the main line, it represents a default, which means that it will

be used if no other item is specified. In the following example, the ASC keyword

appears above the line in a stack with DESC. If neither of these values is

specified, the command would be processed with option ASC.

►► BACKWARD

integer

MAX

 ►◄

►►

ERASE

▼

name

►◄

►►

VALUES

(

▼

 ,

constant

host_variable_list

NULL

special_register

)

►◄

►►
 ASC

DESC

►◄

About This Manual xi

v When an optional keyword is followed on the same path by an optional default

parameter, the default parameter is assumed if the keyword is not entered.

However, if this keyword is entered, one of its associated optional parameters

must also be specified.

In the following example, if you enter the optional keyword PCTFREE =, you

also have to specify one of its associated optional parameters. If you do not

enter PCTFREE =, the database manager will set it to the default value of 10.

v Words that are only used for readability and have no effect on the execution of

the statement are shown as a single uppercase default. For example:

 Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the

same thing.

v Sometimes a single parameter represents a fragment of syntax that is expanded

below. In the following example, fieldproc_block is such a fragment and it is

expanded following the syntax diagram containing it.

SQL Reserved Words

The following words are reserved in the SQL language. They cannot be used in

SQL statements except for their defined meaning in the SQL syntax or as host

variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or

dbspaces unless they are enclosed in double quotation marks (").

►►
 PCTFREE = 10

PCTFREE = integer

►◄

►►

REVOKE ALL
 PRIVILEGES

►◄

►►

NOT NULL

UNIQUE

PRIMARY KEY

 fieldproc_block ►◄

fieldproc_block:

 FIELDPROC program_name

▼

,

(

constant

)

xii Application Programming

ACQUIRE

ADD

ALL

ALTER

AND

ANY

AS

ASC

AVG

BETWEEN

BY

CALL

CHAR

CHARACTER

COLUMN

COMMENT

COMMIT

CONCAT

CONNECT

COUNT

CREATE

CURRENT

DBA

DBSPACE

DELETE

DESC

DISTINCT

DOUBLE

DROP

EXCLUSIVE

EXECUTE

EXISTS

EXPLAIN

FIELDPROC

FOR

FROM

GRANT

GRAPHIC

GROUP

HAVING

IDENTIFIED

IN

INDEX

INSERT

INTO

IS

LIKE

LOCK

LONG

MAX

MIN

MODE

NAMED

NHEADER

NOT

NULL

OF

ON

OPTION

OR

ORDER

PACKAGE

PAGE

PAGES

PCTFREE

PCTINDEX

PRIVATE

PRIVILEGES

PROGRAM

PUBLIC

RESOURCE

REVOKE

ROLLBACK

ROW

RUN

SCHEDULE

SELECT

SET

SHARE

SOME

STATISTICS

STORPOOL

SUM

SYNONYM

TABLE

TO

UNION

UNIQUE

UPDATE

USER

VALUES

VIEW

WHERE

WITH

WORK

Conventions for Representing DBCS Characters

When MIXED data values are shown in examples then the following conventions

are used:

Convention Meaning

< Represents the DBCS delimiter character X '0E'.

> Represents the DBCS delimiter character X '0F'.

x Represents an SBCS character (x can be any lowercase letter).

▌XX▐ Represents a DBCS character (▌XX▐ can be any double-byte

uppercase letter).

About This Manual xiii

Components of the Relational Database Management System

Figure 1 depicts a typical configuration with one database and two users.

Figure 2 on page xv depicts a typical configuration with one database, one batch

partition user, and a CICS
®

partition with several interactive users.

Storage
Pool

Database

Application Server

Communication Link (IUCV, APPC/VM or TCP/IP)

MDISK LINK

Database Manager

Database
Machine

User
Machine

Applications

Application Requester

Interactive SQL

Resource Adapter
Data System Control

Relational Data System

Database Storage
Subsystem

Preprocessors

DBS Utility

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

Resource Adapter

Figure 1. Basic Components of the RDBMS in VM/ESA

xiv Application Programming

The database is composed of :

v A collection of data contained in one or more storage pools, each of which in turn

is composed of one or more database extents (dbextents). A dbextent is a VM

minidisk or a VSE VSAM cluster.

v A directory that identifies data locations in the storage pools. There is only one

directory per database.

v A log that contains a record of operations performed on the database. A database

can have either one or two logs.

The database manager is the program that provides access to the data in the

database. In VM it is loaded into the database virtual machine from the production

disk. In VSE it is loaded into the database partition from the DB2 Server for VSE

library.

The application server is the facility that responds to requests for information from

and updates to the database. It is composed of the database and the database

manager.

The application requester is the facility that transforms a request from an

application into a form suitable for communication with an application server.

Online Resource Adapter

Interactive SQL

CICS Application

Batch Resource Adapter

Data System Control

Relational Data System

Database Storage
Subsystem

Application Requester

Application Server

Application Requester

Database Manager

Applications
Storage

Pool

ent

ent

Dbextent

Log

Database

DB2
for VSE
Library

Directory
Application
Program

VSE Batch
Partition

VSE

VSAM

Database
Partition

CICS Partition

Figure 2. Basic Components of the RDBMS in VSE/ESA

About This Manual xv

xvi Application Programming

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM

database management system for this edition of the book. Several manuals are

affected by some or all of the changes discussed here. For your convenience, the

changes made in this edition are identified in the text by a vertical bar (|) in the

left margin. This edition may also include minor corrections and editorial changes

that are not identified.

This summary does not list incompatibilities between releases of the DB2 Server

for VSE & VM product; see either the DB2 Server for VSE & VM SQL Reference, DB2

Server for VM System Administration, or the DB2 Server for VSE System

Administration manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 5

Version 7 Release 5 of the DB2 Server for VSE & VM database management

system is intended to run on the Z/VM Version 5 Release 2 or later environment

and on the Z/VSE(®) Version 3 Release 1 or later environment.

Enhancements, New Functions, and New Capabilities

The following have been added to DB2 Version 7 Release 5:

Explain Option on DBSU REBIND PACKAGE Command

This new functionality allows the EXPLAIN(YES/NO) option on REBIND

PACKAGE command. If EXPLAIN(YES) is issued, then all four update tables

(structure, plan, cost, reference) will be updated. If EXPLAIN(NO) is issued, then

none of the four update tables will be updated.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE & VM Database Services Utility

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

v DB2 Server for VSE & VM SQL Reference

For Fetch only

This new functionality accepts the ″FOR FETCH ONLY″ clause after a cursor select

statement. It causes a cursor to become read-only (no UPDATEs or DELETEs are

permitted using this cursor). If a read-only cursor is referenced in an UPDATE or

DELETE statement, SQLCODE -510 will be issued and the statement is not

processed. In addition, under the SBLOCK preprocessor option, ″FOR FETCH

ONLY″ forces blocking to be used on the read-only cursor regardless of whether

there is a COMMIT. If there is no ″FOR FETCH ONLY″ clause, under SBLOCK,

blocking would only be done if a COMMIT was absent.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

© Copyright IBM Corp. 1987, 2007 xvii

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v DB2 Server for VSE & VM SQL Reference

Application Message Formatter

This functionality provides an Application Programming Interface (API) that

retrieves the descriptive text for an SQLCODE, given an SQLCA input parameter.

The API will be available for Assembly, COBOL, C, PL/I and FORTRAN.

In DB2 for VM and DB2 for VSE Online, the user may specify the language of the

returned text. The languages supported by DB2 for VSE/VM are American English

(AMENG), uppercase English (UCENG), German (GER), French (FRANC) and

Japanese (KANJI). VSE Batch does not support switching to another language.

Therefore the default will be used regardless of the user’s specification. The values

of SQLCODE, SQLSTATE, SQLERRD1 and SQLERRD2 will be automatically

appended to the returned text. The user may also specify to have the entire

SQLCA included. If the SQLCODE could not be found in the repository, the entire

SQLCA will be returned in the buffer.

If the SQLCA was set by another product (such as DB2 UBD), the descriptive text

is retrieved if the SQLCODE exists in the DB2 for VM/VSE repositories. However,

the token substitutions may not be correct.

For more information, see DB2 Server for VSE & VM Application Programming.

Convert buffer read/write to compiler macro

The DRDA code has over 100 small modules. Each call to an external module has a

certain amount of overhead associated with it. Certain modules are called very

frequently and this can add up to a significant amount of time. This functionality

improves the performance by converting few modules to macros or internal

procedures, to reduce this overhead.

Modify Build Tree Creation

This functionality modifies Build Tree creation used by DRDA parsing and

generation. It is built in such a way that every code point that is used to search

through the tree must be converted to a different format before the search can be

done. If modified build tree was created with the converted point, then the code

point would not have to be converted every time the tree must be searched. This

improves the performance of the DRDA code path length with the minimal search.

Split code point search routines

When parsing a data stream within each parser action routine, a binary search is

done to find the specific code point. Some action specific routines are quite large,

so the binary search can be long. Splitting and spreading the code point evenly

among other modules would reduce the overheads and improves the performance

of the DRDA code path length.

DRDA Multi-Row Insert

Multi Row insert is a means of caching homogenous insert statements and sending

them as a block to the server for processing. This reduces the overhead of sending

a large number of singular inserts and receiving as many responses.

Buffering of homogenous inserts eliminates the need to send an SQL statement to

the DB2 server every time an insert is made, thereby improving performance over

DRDA.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE & VM Application Programming

xviii Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM System Administration

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

v DB2 Server for VSE & VM SQL Reference

Connection Pooling for DRDA TCP/IP in Online Resource

Adapter

Connection pooling is a technique that allows multiple users to share a cached set

of pre-established connections that provide access to a database. Establishing a

connection between a user and a server takes a sizeable time. Users who have

validated their entry to a database once need not establish a connection every time

a request is submitted. Instead, they can use a pre-established connection from a

pool of such connections and get their results much faster.

From the user’s point of view, there is a considerable improvement in response

time after this line item is implemented.

For more information, see the following documentation on DB2 Server for VSE &

VM:

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Operation

v DB2 Server for VSE & VM Performance Tuning Handbook

IBM DB2 Server for VSE, Client Edition

This feature allows the customer the flexibility to install and use only the client

(run-time support) component of DB2 Server for VSE without the requirement to

buy and install the server component during the installation process of DB2 server

for VSE product. The client-only installation enables customers to reduce the total

cost of ownership when they have their databases residing on a non-local platform

(like VM, z/OS, LUW) and have a large number of their DB2 applications on VSE

(like ISQL on CICS, DBSU on VSE, other online/batch applications on VSE).

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE System Administration

v DB2 Server for VSE Program Directory

IBM DB2 Server for VM, Client Edition

This feature allows the customer the flexibility to install and use only the client

(run-time support) component of DB2 Server for VM without the requirement to

buy and install the server component during the installation process of DB2 server

for VM product. The client-only installation enables our customers to reduce the

total cost of ownership when they have their databases residing on a non-local

platform (like VM, z/OS, LUW) and have a large number of their DB2 applications

on VM (like ISQL, DBSU, other user applications on VM).

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VM System Administration

v DB2 Server for VM Program Directory

Summary of Changes xix

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Handling Commit Responses from DB2 UDB Stored Procedures

This feature will allow DB2 Resource Manager on VSE/VM to accept and process

results of a stored procedure running in a UDB server with a COMMIT statement

in the stored procedure.

Currently, DB2 for VM/VSE client does not handle responses from ’COMMIT’

statements coded in DB2 UDB stored procedures. Implementation of this feature

will enable handling responses of COMMIT statements in DB2 UDB stored

procedures and thus allow users to have COMMIT statements in their stored

procedures, while using DB2 for VM/VSE client.

COMMIT statements, however, are not allowed in stored procedures on the DB2

Server for VM/VSE.

For more information, see DB2 Server for VSE & VM Application Programming.

Make on-line programs AMODE 31 RMODE ANY

This feature converts DB2 server for VSE online program which presently operate

under 24 bit addressing mode from AMODE 24, to AMODE 31 RMODE ANY.

Presently, all the online programs are loaded below 16M line. Implementation of

this line item ensures that all the online program will be loaded above the 16M

line, which results in more virtual storage below the line, which can be utilized by

other applications.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE System Administration

v DB2 Server for VSE Program Directory

Provide BIND File Support in VM and in VSE Batch Environments

This feature provides the facility of binding packages across servers. The process of

binding is achieved by dividing the program preparation method into two steps.

The first step does the precompilation of the embedded SQL programs with the

prep parameter ’BIND’. Invocation of VSE/VM preprocessor creates a ’bindfile’.

The bindfile can be bound against any DB2 server using VSE/VM binder. During

this process, the access path is generated, SQL statements are verified,

authorization checks are performed, and package on the target server is created.

This line item eliminates the need of re-prepping the source code or porting of

packages across DB2 servers.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 REXX SQL for VM/ESA Installation and Reference

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

Convert TCP/IP LE/C interface to EZASMI API

The feature of converting TCP/IP LE/C interface to EZASMI API intends to

replace the current LE/C interface and implement the EZA Assembler Interface

(EZASMI)to enhance performance in DB2 Client/Server for VSE over DRDA.

Currently, either LE/C interface or CSI Assembler Interface is used for TCP/IP

functions. The EZASMI interface makes the code all Assembler.

xx Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

For more information, see DB2 Server for VSE Program Directory

Summary of Changes xxi

|

xxii Application Programming

Chapter 1. Getting Started

What is the DB2 Server for VSE & VM Product? . . 2

What is SQL? 3

Embedding SQL Statements in Host Language

Programs 4

Using DB2 Server RXSQL (DB2 Server for VM

Only) 4

Writing a Program 4

© Copyright IBM Corp. 1987, 2007 1

What is the DB2 Server for VSE & VM Product?

The DB2 Server for VSE & VM product is a database management system that uses

the relational data model. You can think of a relational data model as a collection

of ordinary two-dimensional tables, where each table has a specific number of

columns, unordered rows, and a specific item of data at the intersection of every

column and row. You access data by performing operations on tables. All you need

to know are the names of tables and of the columns that contain the desired data.

The sample tables in Appendix G of the DB2 Server for VSE & VM SQL Reference

manual are used in examples throughout this manual. In Table 1, the

DEPARTMENT table has columns DEPTNO, DEPTNAME, MGRNO, and

ADMRDEPT.

 Table 1. DEPARTMENT Table Contents

DEPTNO DEPTNAME MGRNO ADMRDEPT

A00 SPIFFY COMPUTER SERVICE

DIV.

000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

D01 DEVELOPMENT CENTER ? A00

D11 MANUFACTURING SYSTEMS 000060 D01

D21 ADMINISTRATION SYSTEMS 000070 D01

E01 SUPPORT SERVICES 000050 A00

E11 OPERATIONS 000090 E01

E21 SOFTWARE SUPPORT 000100 E01

Suppose, for example, you want a list of all the different departments

(DEPTNAME) in your company. You could get this information simply by

knowing the name of the table DEPARTMENT and of the column DEPTNAME

that the data is in, and coding this in an appropriate SQL statement.

2 Application Programming

DB2 Server for VSE

You can use the database management system under any supported Virtual

Storage Extended (VSE) operating system. Application programs running

under VSE can be:

v Online programs operating in CICS partitions, controlled by the Customer

Information Control System/Virtual Storage Extended (CICS/VSE) or the

Customer Information Control system/Transaction Server (CICS/TS)

v Batch programs operating in interactive partitions controlled by the IBM

Interactive Communications and Control Facility (ICCF).

v Pure batch programs.

Under the VSE operating system, you can write batch or online programs to

access one or more DB2 Server for VSE application servers, or application

servers using VSE Guest Sharing. In addition, you can write batch or online

programs to access one or more DB2 family application servers using DRDA

Remote Unit of Work (RUOW). The application server is the facility that

receives and processes requests to access data.

Access to multiple application servers is not available for CICS application

programs; however, CICS programs running in different CICS partitions can

access different application servers.

DB2 Server for VM

You can use the DB2 Server for VM database management system under any

supported Virtual Machine (VM) operating system. Application programs

running under VM can be:

v Online programs that operate in virtual machines and are controlled by the

conversational monitor system (CMS).

v Noninteractive programs that operate in virtual machines in VM.

You can also write distributed applications that can access multiple

application servers, as well as application servers other than DB2 Server for

VSE & VM such as DB2 for MVS. The DB2 Server for VM application server

is the facility that receives and processes requests to access data.

For a discussion of terms and concepts, such as application server, that are

used throughout this manual, refer to the DB2 Server for VSE & VM Overview,

the DB2 Server for VSE & VM SQL Reference, and the DRDA: Every Manager's

Guide manuals.

What is SQL?

DB2 Server for VSE & VM data is handled by the Structured Query Language

(SQL), which contains statements that retrieve, delete, insert, and update tables in a

DB2 Server for VSE & VM database. You can embed these statements in

application programs written in any of the following host languages: assembler

language, C, COBOL, Fortran, PL/I, or REXX (for DB2 Server for VM).

Chapter 1. Getting Started 3

These SQL statements do all data handling, thereby decreasing the data handling

done by the programs themselves. Programs that access DB2 Server for VSE & VM

data can also access data from other sources, such DL/I databases (for VSE) and

CMS files (for VM).

Embedding SQL Statements in Host Language Programs

Programs that use the DB2 Server for VSE & VM database management system are

host programs because they act as hosts for SQL. How you embed SQL statements

varies for each of the supported host languages.

The core of SQL is the same for each host language. For this reason, the SQL

statements are presented throughout this book in basic form unless otherwise noted:

that is, without any of the language-dependent delimiters.

In this book, examples that have combinations of SQL statements and host

language statements are shown in a language-independent form called pseudocode.

Pseudocode shows program logic but must be recoded in a specific programming

language before it can be used. When SQL statements are shown in pseudocode

examples, they are preceded by the words EXEC SQL to help you distinguish them

from the pseudocode. When shown by themselves, they are not preceded by these

words.

To use SQL statements in a programming language, you must be familiar with the

rules for embedding them in that language. These rules are discussed in Appendix

section of this manual (one for each language).

You should browse through the appropriate appendix before you continue reading,

and refer to it as needed when you are ready to code your first DB2 Server for

VSE & VM application. You can also refer to Chapter 6 of the DB2 Server for VSE &

VM SQL Reference manual for information on SQL statements.

Using DB2 Server RXSQL (DB2 Server for VM Only)

The REXX Interface Installation (DB2 Server RXSQL) extends the support of the

database manager to include REXX as a host language. SQL statements are

supported in DB2 Server RXSQL by DB2 Server RXSQL requests that are imbedded

in REXX programs. Because REXX is an interpretive language, DB2 Server RXSQL

requests do not need to be preprocessed or compiled before they are run. You can

compile REXX programs, but this has no effect on the DB2 Server RXSQL requests.

You can use DB2 Server RXSQL to:

v Make prototypes and test application programs

v Write application programs for production environment

v Write interpretive as well as compiled code.

For a discussion of application programming using REXX, refer to the DB2 REXX

SQL for VM/ESA Installation and Reference manual.

Writing a Program

Writing a program that accesses DB2 Server for VSE & VM data consists of the

following steps: Designing the program entails determining what tasks the

program must perform, and then creating a plan for the program to perform these

tasks. The structure of the program should be based on its three main parts:

prolog, body, and epilog. Coding the program entails using SQL statements and

tools to manipulate DB2 Server for VSE & VM data. The operations on the data

4 Application Programming

must conform to the design of the program. Preparing the program for execution

entails preprocessing, compiling, link-editing, and loading it. Testing and

debugging the program entails:

v Executing the program using test data

v Checking the results

v Identifying errors created in the previous steps

v Correcting the errors.

Releasing the program entails putting it into production (that is, making it

available to its intended users). In this step, you control who will be allowed to

run the program and to work with the data that it accesses.

Chapter 1. Getting Started 5

6 Application Programming

Chapter 2. Designing a Program

Defining the Main Parts of a Program 8

Creating the Prolog 8

Declaring Variables That Interact with the

Database Manager 8

Handling Errors with the SQL

Communications Area 11

Using Additional Nonexecutable Statements 12

Creating the Body 12

Connecting to the Application Server 12

Defining Objects 14

Manipulating Objects 14

Controlling Application Server Resources . . 14

Granting Authorities and Privileges 14

Creating the Epilog 15

Ending the Program 15

Using Logical Units of Work 18

Defining the Logical Unit of Work 18

Beginning a Logical Unit of Work 18

Considering the CICS/VSE Logical Unit of Work

(DB2 Server for VSE Only) 18

Ending a Logical Unit of Work 19

Using the COMMIT Statement 19

Using the ROLLBACK Statement 19

Summary 20

Using Host-Dependent Sample Applications . . . 21

© Copyright IBM Corp. 1987, 2007 7

Defining the Main Parts of a Program

A DB2 Server for VSE & VM application program contains three main parts: the

prolog, the body, and the epilog. Certain SQL statements must appear at the

beginning and end of the program to handle the transition from the host language

to the embedded SQL statements.

The prolog is at the beginning of every program and must contain:

v SQL statements that provide for error handling by setting up the SQL

communications area or by declaring an SQLCODE variable.

v Declarations of all variables that the database manager uses to interact with the

host program.

The body contains the SQL statements that will enable you to access and manage

data. Among the statements included in this section are:

v The CONNECT statement, which establishes a connection to an application

server

v Data manipulation statements (for example, the select-statement)

v Data definition statements (for example, the CREATE statement)

v Data control statements (for example, the GRANT statement).

The epilog is at the end of the application program, and contains SQL statements

that:

v Save (commit) or do not use (rollback) changes made to data.

v Release the program’s connection to the application server.

Creating the Prolog

Declaring Variables That Interact with the Database Manager

All host program variables that interact with the database manager must be

declared in an SQL declare section. A program may contain multiple SQL declare

sections. An SQL declare section is a group of host program variable declarations

that are preceded by the SQL statement BEGIN DECLARE SECTION and followed by

the SQL statement END DECLARE SECTION. Host program variables declared in an

SQL declare section are host variables and can be used in host-variable references

in SQL statements.

The attributes of each host variable depend on how the variable is used in the SQL

statement. For example, variables that receive data from or store data in DB2

Server for VSE & VM tables must have data type and length attributes compatible

with the column being accessed. To determine the data type for each variable, you

must be familiar with DB2 Server for VSE & VM data types, shown in Table 6 on

page 44. Each column of every table is assigned a data type when the table is

created.

Relating Host Variables to an SQL Statement: Host variables can be used to

receive data from the database manager or to transfer data from the host program

to the database manager. Host variables that receive data from the database

manager are output host variables. Host variables that transfer data from the host

program to the database manager are input host variables.

Consider the following SELECT INTO statement:

8 Application Programming

SELECT HIREDATE, EDLEVEL

 INTO :HDATE, :LVL

 FROM EMPLOYEE

 WHERE EMPNO = :IDNO

It contains two output host variables, HDATE and LVL, and one input host

variable, IDNO. The database manager uses the data stored in the host variable

IDNO to determine the EMPNO of the row that is retrieved from the EMPLOYEE

table If a row that meets the search criteria is found, HDATE and LVL receive the

data stored in the columns HIREDATE and EDLEVEL respectively. This statement

illustrates an interaction between the host program and the database manager

using columns of the EMPLOYEE table.

Each column of a table is assigned a data type and each data type can be related to

a host language data type. For example, the INTEGER data type is a 31-bit binary

integer. This is equivalent to the following data description entries in each of the

host languages, respectively:

COBOL:

 01 variable-name PICTURE S9(9) COMPUTATIONAL.

Assembler:

 variable-name DS F

C:

 long variable-name;

Fortran

 INTEGER variable-name

PL/I:

 DCL variable-name BINARY FIXED(31);

All the host language equivalents for a particular DB2 Server for VSE & VM data

type are listed at the end of each host language appendix.

After you determine which column a host variable interacts with, you need to find

out what DB2 Server for VSE & VM data type that column has. Do this by

querying the DB2 Server for VSE & VM catalog, which is a set of tables containing

information about all tables created in the database. This catalog is described in the

DB2 Server for VSE & VM SQL Reference manual.

After you have determined the data types, you can refer to the conversion charts at

the end of the host language appendixes, and code the appropriate declarations.

Table 2 shows the declarations in each host language.

Chapter 2. Designing a Program 9

Table 2. Examples of Declarations and Embedded SQL Statements

Assembler Col. 1 Col. 16 Col. 72

 | | |

 EXEC SQL BEGIN DECLARE SECTION

 HDATE DS CL10

 LVL DS H

 IDNO DS CL6

 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR GOTO ERRCHK

 EXEC SQL SELECT HIREDATE, EDLEVEL *

 INTO :HDATE, :LVL *

 FROM EMPLOYEE *

 WHERE EMPNO = :IDNO

 .

 .

 .

 ERRCHK

C EXEC SQL BEGIN DECLARE SECTION;

 char HDATE[11];

 short LVL;

 char IDNO[7];

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL WHENEVER SQLERROR GOTO ERRCHK;

 EXEC SQL SELECT HIREDATE, EDLEVEL

 INTO :HDATE, :LVL

 FROM EMPLOYEE

 WHERE EMPNO = :IDNO;

 .

 .

 .

 ERRCHK: errout();

COBOL Cols. 8 12

 | |

 DATA DIVISION.

 FILE SECTION.

 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 HDATE PICTURE X(10).

 01 LVL PICTURE S9(4) COMPUTATIONAL.

 01 IDNO PICTURE X(6).

 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.

 EXEC SQL WHENEVER SQLERROR GOTO ERRCHK END-EXEC.

 EXEC SQL SELECT HIREDATE, EDLEVEL

 INTO :HDATE, :LVL

 FROM EMPLOYEE

 WHERE EMPNO = :IDNO END-EXEC.

 .

 .

 .

 ERRCHK.

10 Application Programming

Table 2. Examples of Declarations and Embedded SQL Statements (continued)

Fortran Col. 7

 |

 EXEC SQL BEGIN DECLARE SECTION

 CHARACTER*10 HDATE

 INTEGER*2 LVL

 CHARACTER*6 IDNO

 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA

 EXEC SQL WHENEVER SQLERROR GOTO 4000

 EXEC SQL SELECT HIREDATE, EDLEVEL

 * INTO :HDATE, :LVL

 * FROM EMPLOYEE

 * WHERE EMPNO = :IDNO

 .

 .

 .

 4000 CONTINUE

PL/I Col. 2

 |

 EXEC SQL BEGIN DECLARE SECTION;

 DCL HDATE CHARACTER(10);

 DCL LVL BINARY FIXED(15);

 DCL IDNO CHARACTER(6);

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL WHENEVER SQLERROR GOTO ERRCHK;

 EXEC SQL SELECT HIREDATE, EDLEVEL

 INTO :HDATE, :LVL

 FROM EMPLOYEE

 WHERE EMPNO = :IDNO;

 .

 .

 .

 ERRCHK:

Table 2 also shows the BEGIN and END DECLARE SECTION statements for DB2

Server for VSE. Observe how the delimiters for SQL statements differ for each

language. For the exact rules of placement, continuation, and delimiting of these

statements, see the appendixes of this book.

Handling Errors with the SQL Communications Area

The SQL Communications Area (SQLCA) is discussed in detail in “Using the

Automatic Error-Handling Facilities” on page 197. This section presents an

overview. To declare the SQLCA, code this statement in your program:

 INCLUDE SQLCA

When you preprocess your program, the database manager inserts host language

variable declarations in place of the INCLUDE SQLCA statement. The system

communicates with your program using the variables for warning flags, error

codes, and diagnostic information.

The system returns a return code in SQLCODE after executing each SQL statement.

The SQLCODE is an integer value that summarizes the execution of the statement.

Refer to the DB2 Server for VSE & VM SQL Reference manual for a detailed

description of the SQLCODE field. Refer to the DB2 Server for VM Messages and

Codes or the DB2 Server for VSE Messages and Codes manuals for information about

specific SQLCODEs.

Chapter 2. Designing a Program 11

A return code is also returned in SQLSTATE after each SQL statement is executed.

SQLSTATE is a character field that provides common error codes across IBM’s

relational database products. SQLSTATE values comply with the SQL92 standard.

For a discussion of SQLSTATE, refer to the DB2 Server for VSE & VM SQL Reference

manual. For more information about specific SQLSTATEs, refer to the DB2 Server

for VM Messages and Codes or the DB2 Server for VSE Messages and Codes manuals.

When a statement is executed successfully, SQLCODE is set to 0 (SQLSTATE is

'00000'). A negative SQLCODE indicates an error condition. Positive SQLCODES

indicate that a statement has executed successfully but a warning code may be

issued which means that you must verify whether the SQL statement was executed

without unexpected results.

The system supports the use of a stand-alone SQLCODE. If you request this

support, do not include the SQLCA definition in your program. However, you

must provide the integer variable SQLCODE (SQLCOD in Fortran). For a detailed

discussion, see “Using the Automatic Error-Handling Facilities” on page 197.

If you want the system to control error checking after each SQL statement, use the

WHENEVER statement. The following WHENEVER statement indicates to the

system what to do when it encounters a negative SQLCODE:

 WHENEVER SQLERROR GO TO errchk

That is, whenever an SQL error (SQLERROR) occurs, program control is

transferred to code that follows a specific label, such as ERRCHK. This code

should include logic to analyze the error indicators in the SQLCA. Depending

upon the ERRCHK definition, action may be taken to execute the next sequential

program instruction, to perform some special functions, or, as in most situations, to

roll back the current logical unit of work (LUW) and terminate the program. See

“Using Logical Units of Work” on page 18 for more information on LUWs.

Using Additional Nonexecutable Statements

Generally, other nonexecutable SQL statements are also part of the prolog. These are

discussed later in this manual, and in the DB2 Server for VSE & VM SQL Reference

manual. Examples of other nonexecutable statements are:

v INCLUDE text_file_name

v INCLUDE SQLDA

Creating the Body

Connecting to the Application Server

Your program must establish a connection to the application server before it can

run any executable SQL statements. This connection identifies the authorization ID

of the user who is running the program, and the name of the application server on

which the program will be run.

12 Application Programming

DB2 Server for VM

The program can establish the connection in two ways:

v Issue the CONNECT statement to explicitly request the connection.

You can then specify the authorization ID and the name of the target

application server. See the DB2 Server for VSE & VM SQL Reference manual

for a detailed discussion of the CONNECT statement. Not all forms of the

CONNECT statement are available when you are using DRDA protocol.

v Allow the application requester to connect implicitly, using the VM logon

ID established by the SQLINIT command.

DB2 Server for VSE

VSE non-interactive (batch) and ICCF application programs must establish the

connection by explicitly issuing the CONNECT statement. You can enter the

authorization ID and the name of the target application server. See the DB2

Server for VSE & VM SQL Reference manual for a detailed discussion of the

CONNECT statement.

The CONNECT statement must be the first SQL statement executed in the

batch application. If you release the connection in any logical unit of work

other than the last one, issue a new CONNECT statement to reestablish the

connection. If the first SQL statement is a CONNECT statement without the

TO clause, the default application server is connected. For more information

about the defaults that determine which application server is accessed, refer

to the DB2 Server for VSE System Administration manual. CICS online

applications can establish the connection in two ways:

v Issue the CONNECT statement to explicitly request the connection. You can

then specify the authorization ID and the name of the target application

server. See the DB2 Server for VSE & VM SQL Reference manual for a

detailed discussion of the CONNECT statement.

v Allow the application to connect implicitly, allowing the user ID and

password checking to be performed by the interactive system.

Unless the TO parameter is specified by a CICS application on a CONNECT

statement, the CICS application will first establish connections to the default

application server. On subsequent CONNECTs performed by that application,

if the TO parameter is not specified then the connection to the previously

connected server will be maintained. For more information about the defaults

that determine which application server is accessed, refer to the DB2 Server for

VSE System Administration manual.

 The authorization ID established by the connection must have been granted both

the privilege to execute the program’s package and CONNECT authority for the

target application server. For DB2 Server for VM, the package has authority to

perform the actions specified in the statements in the program if the owner of the

package has the authority. For DB2 Server for VSE, the package has the authority

to access database resources specified in the SQL statements in the program if the

owner of the package has the authority.

Chapter 2. Designing a Program 13

DB2 Server for VSE

After the connection has been established, your program can issue SQL

statements that manipulate data, define and maintain database objects, and

begin control operations, such as, granting user authority, and committing

changes to the database. See the DB2 Server for VSE & VM SQL Reference

manual for a more detailed discussion of the CONNECT statement.

Defining Objects

The following are some of the statements that you can use to create and drop

database objects such as tables, indexes, and synonyms. (These statements are

discussed in Chapter 9, “Maintaining Objects Used by a Program,” on page 255.)

v CREATE TABLE

v DROP TABLE

v ALTER TABLE

v CREATE INDEX

v DROP INDEX

v CREATE VIEW

v DROP VIEW

v CREATE SYNONYM

v DROP SYNONYM

v CREATE PROCEDURE

v ALTER PROCEDURE

v DROP PROCEDURE

v CREATE PSERVER

v ALTER PSERVER

v DROP PSERVER

Manipulating Objects

The following are some of the statements that you can use to manipulate database

objects:

v SELECT

v INSERT

v UPDATE

v DELETE

These statements are discussed in detail in Chapter 3, “Coding the Body of a

Program,” on page 23.

Note: Refer to the DB2 Server for VSE & VM SQL Reference manual for a

description of select-statements.

Controlling Application Server Resources

The following are some of the statements that you can use to manage logical units

of work, dbspaces, and locks:

v CONNECT

v ACQUIRE DBSPACE

v DROP DBSPACE

v ALTER DBSPACE

v UPDATE STATISTICS

Granting Authorities and Privileges

There are two statements to use to assign and withdraw privileges on objects or

authorities to user IDs:

v GRANT

14 Application Programming

v REVOKE

They are discussed in detail in Chapter 10, “Assigning Authority and Privileges,”

on page 269.

Creating the Epilog

Ending the Program

The application epilog is the logical end of your DB2 Server for VSE & VM

application program. To properly end your program:

1. End the current logical unit of work (if one is in progress) by explicitly issuing

either a COMMIT statement if you want the changes to be committed (saved in

the database), or a ROLLBACK statement if you do not want them to be saved.

2. Release your connection to the application server.

DB2 Server for VSE

The two tasks are accomplished differently for VSE batch or ICCF

applications, and for CICS transactions.

Chapter 2. Designing a Program 15

DB2 Server for VM

Although an implicit COMMIT or ROLLBACK statement is automatic for any

application that accesses an application server, you should still issue an

explicit COMMIT or ROLLBACK statement. For DB2 Server for VM

application programs that are not executed through an EXEC, implicit

COMMIT or ROLLBACK processing occurs when the application program is

completed. For those that are executed through an EXEC, this processing does

not occur until the EXEC is completed. To sever the connection and cause the

COMMIT or ROLLBACK to take effect from an EXEC, the SQLRMEND EXEC

must be invoked. See “Invoking Applications in CMS SUBSET” on page 288

for limitations on the use of SQLRMEND, and the DB2 Server for VSE & VM

Database Administration manual for more information on this EXEC.

When an implicit COMMIT or ROLLBACK is invoked, the logical unit of

work will be committed if the termination was normal, or rolled back if the

termination was abnormal. An application is terminated normally when it

returns to CMS or, in single virtual machine mode, to the DB2 Server for VM

calling routine. Any other kind of termination, such as HX, CMS abend,

program check, or any user machine termination, is abnormal.

In the VM environment, user-written interactive SQL applications are

provided with an inherent facility to cancel an SQL statement without

terminating the running application. This cancellation facility is invoked with

the SQLHX immediate command established by the DB2 application

requester. The only special processing ability required of the application is

that it be sensitive to the -914 SQLCODE (SQLSTATE '57014'). If the user ID

and password were established with an explicit SQL CONNECT, you must

reissue the CONNECT statement. If you do not, the user ID password and

application server revert to the value established by the implicit CONNECT.

The application can modify the basic cancel facility by defining additional

names for the DB2 Server for VM-defined SQLHX command or by requesting

the system to remove the SQLHX command and the exit it invokes. Use the

ARIRCAN macro to do these modifications. For more details on the

ARIRCAN macro interface (RMXC) and the SQLHX command, see the DB2

Server for VM System Administration manual.

For more information on CMS, consult the VM/ESA: CMS Command Reference

or the VM/ESA: CMS User’s Guide manuals.

 Ending the Program for VSE Batch or ICCF Applications (DB2 Server for VSE

Only): You can enter either

 COMMIT RELEASE

to end the current logical unit of work and commit the changes to the database, or

 ROLLBACK RELEASE

to end the current logical unit of work and restore the changes made to the

database. The RELEASE keyword is optional; it releases your connection to the

application server. You should always explicitly end your logical unit of work;

however, you should release the connection only when ending the last logical unit

of work (if your program has more than one) or when changing your authorization

ID or the connected application server. If you release the connection in any logical

16 Application Programming

unit of work other than the last logical unit of work, enter a new CONNECT

statement to reestablish the connection. You should not release and reestablish the

connection unnecessarily because this may degrade the performance of your

program. Begin subsequent logical units of work with an explicit CONNECT

statement if the previous logical unit of work was terminated using the RELEASE

option.

If you do not code a RELEASE as described above, the system issues one implicitly

for you upon task/program termination. Not coding the RELEASE when ending

the last logical unit of work is inefficient, however; DB2 Server for VSE resources

are held until the application terminates even though you may not be using them.

Note: If you forget to end your logical unit of work, the system interrogates a VSE

flag to determine whether the program connection (to the application server)

terminated normally or abnormally. If the program terminated normally, the

system issues a COMMIT statement on behalf of the program. If the

program terminated abnormally, the system issues a ROLLBACK statement.

Once again, to avoid confusion, always explicitly end your logical units of work.

Ending the Program for CICS/VSE Transactions (DB2 Server for VSE Only):

 You can enter

 COMMIT

to end the current logical unit of work and commit the changes to the database, or

 ROLLBACK

to end the current logical unit of work and restore the changes made to the

database. You do not have to explicitly release your connection to the application

server (although you can, if you wish). DB2 Server for VSE online support

automatically releases the connection for use by other CICS/VSE transactions

when the current logical unit of work is committed or rolled back.

If your transaction contains more than one logical unit of work, however, it is not

necessary to re-CONNECT to the application server every time you want to start a

logical unit of work. When the connection to the database manager is implicitly

dropped, DB2 Server for VSE online support remembers the user ID, password,

and server-name established in the transaction’s original CONNECT. The next time

a logical unit of work is begun in that same transaction, online support implicitly

issues a CONNECT for you. The re-connection is transparent to the transaction.

You do not have to explicitly issue a COMMIT if that is how you want to end the

logical unit of work. A normal transaction termination causes a COMMIT

statement to be issued on behalf of the transaction.

A CICS/VSE syncpoint or syncpoint rollback also causes the system to issue a

COMMIT or ROLLBACK on behalf of the transaction. Conversely, a DB2 Server for

VSE COMMIT or ROLLBACK statement causes a CICS/VSE syncpoint to be taken.

If your application is using multiple resources, however, you should issue the

SYNCPOINT statement or SYNCPOINT ROLLBACK statement instead of the DB2

Server for VSE COMMIT statement or ROLLBACK statement. Internally,

SYNCPOINT statements are always more efficient than the corresponding SQL

statements.

Under the CICS/VSE system, an interactive transaction can establish a user exit

that will get control at points where an SQL program might be canceled. Control is

Chapter 2. Designing a Program 17

transferred when the online resource manager is about to wait either for an SQL

statement to complete3 or for a cross partition link to become available. The user

exit can be used to cause the current SQL statement to be canceled. The cancel will

cause a -914 SQLCODE (SQLSTATE '57014') to be returned to the transaction and a

ROLLBACK to be performed on the logical unit of work. A macro (ARIRCAN) is

available to establish the user exit. (The ARIRCAN macro can also be used to set

user data for the CIRD transaction.) For more details on the ARIRCAN macro

interface and the coding of the exit, see CANCEL Exit in the DB2 Server for VSE &

VM Diagnosis Guide and Reference manual.

Using Logical Units of Work

Defining the Logical Unit of Work

A logical unit of work (LUW) is a sequence of SQL statements (possibly with

intervening host language code) that the database manager treats as a whole.

The system ensures the consistency of data at the LUW level, by ensuring that

either all operations within an LUW are completed, or none are completed.

Suppose, for example, that money is to be deducted from one account and added

to another. If both these updates are placed in a single LUW, and if a system

failure occurs while they are in progress, then when the system is restarted, the

data is automatically restored to the state it was in before the LUW began. If a

program error occurs, all changes made by the statement in error are restored.

Work done in the LUW prior to execution of the statement in error is not undone,

unless you specifically roll it back. To determine whether the LUW terminated

automatically, you should check the value of SQLWARN6 in the SQLCA. See

“Using the Automatic Error-Handling Facilities” on page 197 for more information.

Beginning a Logical Unit of Work

An LUW is begun implicitly with the first executable SQL statement and is ended

by either a COMMIT or a ROLLBACK statement, or when the program ends.

The following are examples of statements that do not start a logical unit of work:

 BEGIN DECLARE SECTION INCLUDE SQLCA

 END DECLARE SECTION INCLUDE SQLDA

 WHENEVER

An executable SQL statement always occurs within an LUW. If such a statement is

encountered after you end an LUW, it automatically starts another.

Considering the CICS/VSE Logical Unit of Work (DB2 Server

for VSE Only)

For logical unit of work processing to function as described in this manual, ALL

CICS/VSE INSTALLATIONS MUST DO THE FOLLOWING:

1. The CICS System Initialization Table (DFHSIT) must be generated with

DBP=YES.

If this is not done, the CICS/VSE system attempts to commit all changes,

regardless of whether a rollback was intended. (Alternatively, DBP=xx can be

specified if a suffixed version of the CICS/VSE Dynamic Backout Program is

being used.)

3. This exit is not available when a transaction is using the DRDA protocol to access remote application servers.

18 Application Programming

2. In addition, each online application that has access to the application server

must have Dynamic Transaction Backout set to YES. You can do this by

specifying DTB=YES in the resource definition online (RDO) facility (or

DFHCSDUP).

Your installation can specify DTB=YES on the initial DFHCSDUP statement, or

DTB=YES on each entry DFHCSDUP statement for applications having access

to the database manager.

Note: DTB=NO is not supported in RDO. All transactions defined in the macro

with DTB=NO are handled in RDO as if DTB=YES had been specified.

For more information, see the CICS/VSE Resource Definition (Online)

manual.

For more information, refer to the CICS/VSE System Programming Reference or the

CICS Transaction Server for VSE/ESA V1R1.0 Resource Definition Guide manuals.

Ending a Logical Unit of Work

When you end an LUW, you can use either the COMMIT statement to save its

changes, or the ROLLBACK statement to ensure that these changes are not saved.

Using the COMMIT Statement

This statement ends the current LUW, and commits any changes made during it.

Changes should be committed as soon as application requirements permit. In

particular, programs should be written so that uncommitted changes are not held

over a terminal read request, which can result in locks and other resources being

held for a long time.

Each application program must explicitly end its LUW before terminating. If you

do not end it explicitly, the system automatically commits (upon successful

termination of the program) all changes made by the program during its pending

LUW unless one of the following conditions occurs:

v A log full condition is encountered.

v Some other system condition occurs that causes database manager processing to

end.

v Control is not returned to CMS (DB2 Server for VM only). For a discussion of

this subject, see the section on the SQLRMEND EXEC in the DB2 Server for VSE

& VM Database Administration manual.

See “Creating the Epilog” on page 15 and “Using the Automatic Error-Handling

Facilities” on page 197 for more information about program termination.

Note: The COMMIT statement has no effect on the contents of host variables.

Using the ROLLBACK Statement

This statement ends the current LUW, and restores the data to the state it was in

prior to the LUW beginning.

Note: The ROLLBACK statement has no effect on the contents of host variables.

Under some circumstances, the system automatically backs out of an LUW. Refer

to “Automatically Locking Dbspaces” on page 260 for more information.

Chapter 2. Designing a Program 19

Note: If you use a ROLLBACK statement in a routine that was entered because of

an error or warning and you use the SQL WHENEVER statement, specify

WHENEVER SQLERROR CONTINUE and WHENEVER SQLWARNING

CONTINUE before the ROLLBACK. This avoids a program loop if the

ROLLBACK fails with an error or warning.

The ROLLBACK statement should not be issued if a severe error occurs (indicated

by an S in the SQLWARN0 field of the SQLCA). The only statement that can be

issued after a severe error is a CONNECT statement.

Summary

Figure 3 on page 20 summarizes the general framework for a DB2 Server for VSE

& VM application in pseudocode format. This framework works for VSE batch or

ICCF applications, and for CICS/VSE transactions. This framework must, of

course, be tailored to suit your own program.

Start Program
EXEC SQL BEGIN DECLARE SECTION

DECLARE USERID FIXED CHARACTER (8)
DECLARE PW FIXED CHARACTER (8)

.

.
(other host variable declarations)

.

.
EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK
READ FROM SYSIPT USERID, PW

.

.

.
EXEC SQL CONNECT . . .
EXEC SQL SELECT . . .
EXEC SQL INSERT . . .
EXEC SQL DELETE . . .
EXEC SQL UPDATE . . .

.

.

.
EXEC SQL COMMIT RELEASE
ERRCHK

.

.

.
End Program

Application
Prolog

Application
Body (SQL
statements)

Application
Epilog

Figure 3. Pseudocode Framework for Coding Programs

20 Application Programming

Using Host-Dependent Sample Applications

Some host-dependent sample application programs and the DB2 Server for VSE

JCL streams the DB2 Server for VM EXECs that can be used to preprocess,

compile, link or edit, and run them are shipped with this product. These programs

manipulate data in the tables by using embedded SQL statements and printing the

results. You may want to model your initial programs from these sample

applications. See Table 3 for DB2 Server for VM information on these samples.

Table 4 for DB2 Server for VSE information on these samples.

 Table 3. Sample Application Programs - DB2 Server for VM

Language Program Name EXEC Appendix

Assembler ARIS6ASC SQLASMC A

C ARIS6CC SQLC B

COBOL ARIS6CBC SQLCBLC C

Fortran ARIS6FTC SQLFTN D

PL/I ARIS6PLC SQLPLI E

 Table 4. Sample Application Programs - DB2 Server for VSE

Language Program Name JCL (Z type member) Appendix

Assembler ARIS6ASD ARIS6ASD A

C ARIS6CD ARIS6CD B

COBOL ARIS6CBD ARIS6CBD C

COBOL II ARIS6CBD ARIS6C2D C

Fortran ARIS6FTD ARIS6FTD D

PL/I ARIS6PLD ARIS6PLD E

DB2 Server for VM

As an example, to preprocess, compile, link edit, and run the sample COBOL

program from a DB2 Server for VM user machine enter:

 SQLCBLC

DB2 Server for VSE

Generalized job control to invoke the VSE programs is shown in Figure 4 on

page 22.

The sample programs and job control were written for the compiler levels

stated in the prolog of the sample programs. If you want to run the sample

applications on a different level compiler, refer to the appropriate compiler

manual.

Each of the above applications assumes that the user SQLDBA has a

password of SQLDBAPW. If the samples are run with a userid other than

SQLDBA, or if the password has been changed, the parameters in the

generalized JCL must also be changed. Along with these changes, the host

variables used by the CONNECT statement in the sample programs must also

be modified to reflect a new user ID or password.

Chapter 2. Designing a Program 21

The DB2 Server for VM sample programs and EXECs were written for the

compiler levels stated in the prolog of these programs. If you wish to run them on

a different level compiler, refer to the appropriate compiler manual.

* **

* ** GENERALIZED JCL TO PREPROCESS, COMPILE, LINKEDIT AND **

* ** EXECUTE THE SAMPLE PROGRAMS ON VSE SYSTEMS. **

* **

*

// JOB ARISSAMP PREPROCESS SAMPLE PROGRAM

// EXEC PROC=ARIS75PL *-- DB2 for VSE Library ID PROC

// DLBL SQLGLOB,......,DISP=(OLD,KEEP) *-- SQLGLOB Parameter file

// ASSGN SYS089,SYSPCH *-- Save SYSPCH assignment

// DLBL IJSYSPH,’PREPROCESSOR.OUTPUT’,0 *-- PREPROCESSOR output//10

// EXTENT SYSPCH,....... *--

 ASSGN SYSPCH,... *-- Assign to disk

*

// EXEC PGM=ARIPRPx,SIZE=AUTO,PARM=’USERID=SQLDBA/SQLDBAPW, *

 PREPNAME=ARIS6xxx’ *-- Invoke DB2 for VSE PREPROCESSOR

 READ MEMBER ARIS6xxx.A *-- sample program name

/*

 CLOSE SYSPCH,SYS089 *-- Close & Assign SYSPCH

// DLBL IJSYSIN,’PREPROCESSOR.OUTPUT’,0 *-- Input File

// EXTENT SYSIPT,...... *-- Same as SYSPCH in

 ASSGN SYSIPT,... *-- preprocess step

*

// OPTION CATAL *-- Link Edit (catalog)

 PHASE ARIS6xxx,* *-- Name of executable phase

// EXEC compiler *-- Compile

 INCLUDE ARIPRDID *-- DB2 for VSE Batch Resource

 Adapter stub

 INCLUDE *-- Include runtime routines

*

 ENTRY ARIS6xxx *--

// EXEC LNKEDT *-- Link Edit

 CLOSE SYSIPT,SYSRDR *-- Reset SYSIPT

// ASSGN *-- Program assignments

// EXEC PGM=ARIS6xxx,SIZE=(....) *-- Execute Phase

 data input to sample program *-- Input data

/*

/&

DB2 Server for VSE

Notes:

1. JCL must be changed to specify the correct device address, DASD extents, compiler references.

2. Replace ARIPRPx with the preprocessor name.

See “Preprocessing the Program” on page 156 for a list of the preprocessor names.

3. Replace ARIS6xxx with sample program name.

4. See “Preprocessing by Mode” on page 158 for a list of preprocessor work files.

5. See “Link-Editing and Loading the Program” on page 180 for a complete list of modules to be included.

6. The SQLGLOB DLBL statement must be added in the JCL if it has not been added to the system

standard label subarea.

Figure 4. Generalized Execution JCL for Sample Programs (Multiple User Mode) - DB2 Server for VSE

22 Application Programming

Chapter 3. Coding the Body of a Program

Defining Static SQL Statements 25

Naming Conventions 25

Coding SQL Statements to Retrieve and Manipulate

Data 26

Retrieving Data 26

Defining an SQL Query 26

Using the SELECT Clause 28

Using the FROM Clause 30

Using the WHERE Clause 30

Using the GROUP BY Clause 30

Using the HAVING Clause 31

Using the ORDER BY Clause 31

Using the FOR UPDATE OF Clause 32

Using the WITH Clause 33

Retrieving or Inserting Multiple Rows 33

Using the Cursor with a Select-Statement . . 33

Declaring a Cursor 33

Using a Cursor in an Application Program . . 34

Manipulating the Cursor 34

Illustrating the Use of the Query Cursor . . . 38

Retrieving Single Rows 38

Constructing Search Conditions 39

Performing Arithmetic Operations 39

Using Null Values 41

Using the Predicates of a Search Condition . . . 41

Evaluating Predicates 42

Using Additional Types of Predicates 43

Using Functions 43

Using Column Functions 43

Using Scalar Functions 44

Using Data Types 44

Assigning Data Types When the Column Is

Created 44

Using Long Strings 45

Defining Long Strings 45

Performing Operations on Long Strings . . . 46

Programming Tip 46

Using Datetime Data Types 46

Using Character Subtypes and CCSIDs 46

Determining Default Subtypes and CCSIDs . . 47

Assigning Subtypes and CCSIDs When a

Column Is Created 48

Assigning Subtypes and CCSIDs to Data in a

Program 48

Converting Data 48

Summarizing Data Conversion 49

Truncating Data 49

Using a Double-Byte Character Set (DBCS) . . . 51

Using Expressions 52

Using Arithmetic Operators 52

Using Special Registers 53

Concatenating Character and Graphic Strings . . 54

Using Host Variables 55

Using Host Structures 55

Using Constants 56

Using Numeric Constants 56

Using Character Constants 57

Using Graphic Constants 58

Using Date and Time Constants 59

Using Indicator Variables 59

Notes Common to Both Input and Output

Indicator Variables 60

Notes on Input Indicator Variables 60

Notes on Output Indicator Variables 61

Using Views 61

Creating a View 62

Querying Tables through a View 63

Using Views to Manipulate Data 64

Dropping a View 65

Joining Tables 66

Joining Tables Using the Database Manager . . 66

Performing a Simple Join Query 66

Joining Another User’s Tables 67

Analyzing How a Join Works 67

Using VARCHAR and VARGRAPHIC within Join

Conditions 68

Using Nulls within Join Conditions 68

Joining a Table to Itself Using a Correlation

Name 68

Rules for Table Designation 70

Imposing Limits on Join Queries 70

Using SELECT * In a Join 71

Grouping the Rows of a Table 71

Using VARCHAR and VARGRAPHIC within

Groups 72

Using Nulls within Groups 72

Using Select-Lists in Grouped Queries 72

Using a WHERE Clause with a GROUP BY

Clause 72

Using the HAVING Clause 73

Combining Joins 73

Illustrating Grouping with an Exercise 74

Nesting Queries 76

Using the IN Predicate with a Subquery 79

Considering Other Subquery Issues 80

Executing Subqueries Repeatedly: Correlation . . 80

Writing a Correlated Subquery 81

How the Database Manager Does Correlation . . 82

Illustrating a Correlated Subquery 83

Using a Subquery to Test for the Existence of a

Row 88

Table Designation Rule for Correlated Subqueries 88

Combining Queries into a Single Query: UNION 89

String Columns 91

Numeric Columns 91

Datetime/Timestamp Columns 92

SQL Comments within Static SQL Statements . . . 92

Using Stored Procedures 92

Writing Stored Procedures 94

Returning Information from the SQLCA 95

Language Environment (LE) Considerations . . 96

Preparing to Run a Stored Procedure 96

© Copyright IBM Corp. 1987, 2007 23

Calling Stored Procedures 96

Authorization 97

AUTHIDs 97

Stored Procedure Parameters 98

Datatype Compatibility 99

Conventions for Passing Stored Procedure

Parameters 99

The GENERAL Linkage Convention 99

The GENERAL WITH NULLS Linkage

Convention 100

Coding Examples 101

Special Considerations for C 101

Special Considerations for PL/I 101

Result Sets 101

Coding Client Programs to Process Results

Sets 102

Result Set Processing 103

Using the DESCRIBE PROCEDURE SQL

Statement 105

Using the DESCRIBE CURSOR SQL Statement 106

Coding Summary to Process Result Sets . . 107

24 Application Programming

Defining Static SQL Statements

This chapter describes how to code SQL statements directly into a program for

subsequent preprocessing. These statements which are known before running the

program are called static SQL statements. Those that are not known until the

program is actually run, and have to be built dynamically at run time from input

by the user, are called dynamic and extended dynamic SQL statements. Refer to

Chapter 7, “Using Dynamic Statements,” on page 215 for a detailed description of

dynamic statements and, Chapter 8, “Using Extended Dynamic Statements,” on

page 239 for a detailed description of extended dynamic statements.

Naming Conventions

The following is a list of the identifiers that must conform in general to specific

naming rules:

v Authorization names

v Column names

v Constraint names

v Correlation names

v Cursor names

v Dbspace names

v Descriptor names

v Host variable names

v Index names

v Package names

v Passwords

v Procedure names

v Server names

v Statement names

v Synonyms

v Table names

v View names.

For a description of the naming rules, refer to the DB2 Server for VSE & VM SQL

Reference manual.

You can access a data object (table, view, dbspace, or package) owned by someone

else if you know the owner’s authorization-name and have the appropriate DB2

Server for VSE & VM privileges. You need to qualify references to the object by

prefixing its name with the owner’s authorization-name followed by a period. For

example, to access the table called EMPLOYEE which is owned by SMITH, enter

SMITH.EMPLOYEE.

When you specify the owner along with an object name, you have fully qualified the

object and uniquely identified the table. For example, you cannot have two

SMITH.EMPLOYEE tables at the same time.

To avoid confusion and errors, use fully qualified object names. This is especially

true if you are coding programs that will be preprocessed by another user.

Chapter 3. Coding the Body of a Program 25

Coding SQL Statements to Retrieve and Manipulate Data

The DB2 Server for VSE & VM product provides application programmers with

statements for retrieving and manipulating data; the coding task consists of

embedding these statements into the host language code. This chapter shows how

to code statements that will retrieve and manipulate data for one or more rows of

data in DB2 Server for VSE & VM tables. (It does not go into the details of the

different host languages. For exact rules of placement, continuation, and delimiting

SQL statements, see the host language appendixes.)

Retrieving Data

One of the most common tasks of an SQL application programmer is to retrieve

data. This is done using the select-statement, which is a form of query that searches

for rows of tables in the database that meet specified search conditions. If such

rows exist, the data is retrieved and put into specified variables in the host

program, where it can be used for whatever it was designed to do.

After you have written a select-statement, you code the SQL statements that define

how information will be passed to your application.

You can think of the result of a select-statement as being a table having rows and

columns, much like a table in the database. If only one row is returned, you can

deliver the results directly into host variables specified by the SELECT INTO

statement. For example, the following statement will deliver the salary of the

employee with the last name of 'HAAS' into the host variable EMPSAL:

 SELECT SALARY

 INTO :EMPSAL

 FROM EMPLOYEE

 WHERE LASTNAME=’HAAS’

If more than one row is returned, you must use a cursor to fetch them one at a

time. A cursor is a named control structure used by an application program to

point to a specific row within an ordered set of rows.

Writing select-statements, defining cursors, and using the SELECT INTO statement

are discussed in the next few sections. For a detailed definition of queries, refer to

the DB2 Server for VSE & VM SQL Reference manual.

Defining an SQL Query

This section discusses the three forms of a query: the subselect, the fullselect, and the

select-statement.

Figure 5 shows the most basic form, the subselect query.

 The subselect query retrieves the columns specified in the SELECT clause from the

tables specified in the FROM clause, applies whatever restrictions the optional

clauses; (WHERE, GROUP BY, and HAVING) might put on the scope of the rows

►► select-clause from-clause

where-clause

group-by-clause
 ►

►
having-clause

 ►◄

Figure 5. Format of the Subselect

26 Application Programming

selected; and presents the results in a result table, which will be called R. The rows

of R are unordered. Only the SELECT clause and the FROM clause are mandatory.

An example of a subselect query is:

 SELECT EMPNO, LASTNAME

 FROM EMPLOYEE

 WHERE WORKDEPT = ’E11’

Figure 6 shows the fullselect query.

 The fullselect query is a merge of two result tables (R1 and R2) from two subselects

into one final result table (R). The merging is done by the UNION operator. The

rows of R are unordered. (For a description of the UNION operation, see

“Combining Queries into a Single Query: UNION” on page 89.)

An example of a fullselect is:

 SELECT EMPNO, WORKDEPT, ’EDUCATION’

 FROM EMPLOYEE

 WHERE EDLEVEL > 16

 UNION ALL

 SELECT RESPEMP, DEPTNO, ’STAFFING’

 FROM PROJECT

 WHERE PRSTAFF > 5

By using the literal 'EDUCATION' in the first subselect and 'STAFFING' in the

second, you will be able to tell from R which row was included as a result of

which criterion (or query).

Figure 7 shows the select-statement.

 The select-statement can optionally put the rows of R from the fullselect in order by

the values of the columns identified in the ORDER BY clause. Alternatively, the

select-statement can allow the rows of R to be subsequently updated in the

►►

▼

 | union |

subselect

(fullselect)

►◄

union:

 UNION

UNION ALL

Figure 6. Format of the Fullselect

►► fullselect

order-by-clause

update-clause

with-clause

 ►◄

Figure 7. Format of the Select-statement

Chapter 3. Coding the Body of a Program 27

application program, under the restriction that this only be done to those columns

listed in the update-clause (FOR UPDATE OF). (This explanation excludes

consideration of the preprocessor NOFOR support, which is discussed in the next

chapter.) Also, the with-clause may be used to select which isolation level that is to

be used by the query. This overrides any other isolation level specification.

An example of a select-statement is:

 SELECT EMPNO, FIRSTNME, LASTNAME, HIREDATE

 FROM EMPLOYEE

 ORDER BY HIREDATE, LASTNAME

Note: In this example, the UNION operator and some of the optional clauses in

the fullselect are not used.

The distinction among these three forms of query is often quite subtle and

academic. It can be useful, however, when other SQL statements specify the form

of query that is allowed as part of the statement. For example, CREATE VIEW and

INSERT are two statements that use the subselect. This tells you that you cannot

incorporate UNION or ORDER BY in the query component of those statements.

Using the SELECT Clause

 This clause is the first part of a subselect query. It consists of the keyword SELECT

followed by a select-list, which usually consists of one or more expressions.

(Expressions are discussed later in this chapter.)

The following are examples of select-lists that can occur in queries to the sample

tables:

 SELECT EMPNO, FIRSTNME, LASTNAME

 SELECT EMPNO, BONUS + COMM

 SELECT SALARY * 1.10

 SELECT 250

 SELECT HIREDATE + 1 YEAR

If you specify DISTINCT immediately after SELECT, the system eliminates

duplicates from the query-result. (You can use DISTINCT only once in any query.)

For example, the following SELECT clause returns the set of different departments:

►►

SELECT
 ALL

DISTINCT

▼

*

,

expression

table_name.*

view_name.*

correlation_name.*

►◄

Figure 8. Format of the SELECT clause

28 Application Programming

Similarly, the following SELECT clause returns the set of different departments and

jobs:

 ALL indicates that duplicates are not to be eliminated. This is the default.

SQL provides a special shorthand notation for selecting all the columns of a table:

 SELECT *

For example, the following statement returns the entire row from the

DEPARTMENT table for manager number 000010:

 SELECT *

 INTO :DEPART, :NAME, :MGR, :EMPDEPT

 FROM DEPARTMENT WHERE MGRNO = ’000010’

As a good programming practice, however, you should explicitly specify every

column you want to be returned by your query. This will avoid programming

errors when, for example, a new column is added to a table but your program is

using SELECT * and making no provision to store the extra column value.

If you specify a constant as a select-list expression, that constant occurs in every

row returned by the query. For example, the following figure shows a query that

returns a constant:

 An alphabetic constant, such as 'NAME IS', is always enclosed within single

quotation marks (') when used in an SQL statement. A numeric constant should

not be enclosed this way.

SELECT DISTINCT WORKDEPT

DB manager returns
only one of these

WORKDEPT

A00
A00
C01
D11

SELECT DISTINCT WORKDEPT, JOB

DB manager
returns only
one of these

WORKDEPT JOB

E21
E21
E21
E21

MANAGER
FILEREP
FILEREP
FILEREP

SELECT 'NAME IS', LASTNAME
FROM EMPLOYEE
WHERE EMPNO='000140'

EXPRESSION 1

NAME IS

LASTNAME

NICHOLLS

Chapter 3. Coding the Body of a Program 29

Using the FROM Clause

 This clause specifies the name of the table from which you want to retrieve data. If

you are authorized, you can access a table that is owned by someone else, by

adding the name of the owner before the table_name with a period. For example, to

specify the table EMPLOYEE owned by user SMITH:

 FROM SMITH.EMPLOYEE

Because any number of users can define a table with the same name, you should

always use fully qualified table names. This avoids confusion if you are writing a

program that someone else will preprocess.

As Figure 9 indicates, multiple table names are possible, and some or all of these

names can have corresponding correlation names. These aspects of the FROM

clause are discussed later in this chapter.

Using the WHERE Clause

 This clause specifies your search conditions. If you do not include it, all the rows

of the table will be used to calculate the expressions in the select-list. Here are some

examples of WHERE clauses:

 WHERE SALARY > 30000

 WHERE EMPNO = :X

 WHERE SALARY < :R1 AND EDLEVEL = :Y

Search conditions are discussed in “Constructing Search Conditions” on page 39.

Using the GROUP BY Clause

 This clause lets you group rows with matching values in one or more columns.

Here is an example of the use of the GROUP BY clause:

►►

FROM

▼

 ,

table_name

view_name

correlation_name

►◄

Figure 9. Format of the FROM Clause

►► WHERE search_condition ►◄

Figure 10. Format of the WHERE Clause

►►

GROUP BY

▼

 ,

column_name

►◄

Figure 11. Format of the GROUP BY Clause

30 Application Programming

SELECT WORKDEPT, SUM(SALARY)

 FROM EMPLOYEE

 GROUP BY WORKDEPT

For more information, see “Grouping the Rows of a Table” on page 71.

Using the HAVING Clause

 This clause specifies the conditions that must be satisfied by the group. Here is an

example:

 SELECT WORKDEPT, SUM(SALARY)

 FROM EMPLOYEE

 GROUP BY WORKDEPT HAVING WORKDEPT <> ’A00’

For more information, see “Grouping the Rows of a Table” on page 71.

Using the ORDER BY Clause

 This clause delivers the rows of the result table in the order specified. You can

indicate order by specifying a list of column names or integers that refer to

select-list items. For example, ORDER BY 3,5 denotes ordering primarily by the

third item and secondarily by the fifth item in the select-list. By using integers in

the ORDER BY clause, you can order the query result by a selected expression that

is not a simple column name.

The following query returns results ordered by the expression SALARY + COMM:

 SELECT EMPNO, SALARY+COMM

 FROM EMPLOYEE

 WHERE WORKDEPT=’D11’

 ORDER BY 2

You cannot specify ordering by a column that is not in the select-list. For example,

the following statement would fail because FIRSTNME is not in the select-list:

 The optional word ASC indicates ascending order, and is the default. DESC

indicates descending order. ORDER BY 2,5 DESC indicates ascending order on

item 2 and descending order on item 5. Character data is ordered alphabetically,

numeric data algebraically, and datetime data chronologically. Null values are

►► HAVING search_condition ►◄

Figure 12. Format of the HAVING Clause

►►

ORDER BY

▼

 ,

ASC

column_name

integer

DESC

►◄

Figure 13. Format of the ORDER BY Clause

SELECT SALARY, LASTNAME
FROM EMPLOYEE
ORDER BY FIRSTNAME Incorrect

Chapter 3. Coding the Body of a Program 31

sorted first in descending order, and last in ascending order. If you do not specify

an ORDER BY clause, rows will be delivered in an order determined by the

system.

By default, string data is sorted based on the System/390® collating sequence.

However, the collating sequence required for certain alphabets is different from the

default System/390 collating sequence. Users expect that sorted data will match

the order that is culturally correct for them, and that searches on data will return

the result that is correct for the sorting sequence of their language. They are at ease

with only one sort order, the one used in their dictionaries, telephone directories,

book indexes, and so on.

A way to accommodate special sorting requirements is to use Field Procedures.

Field Procedures can be used to encode data being inserted into a column. The

encoding effectively alters the collating sequence for the data in the column,

enabling the special sorting requirements to be met by the System/390 collating

sequence. For more information, see “Using Field Procedures” on page 281.

Trailing blanks in variable string (VARCHAR and VARGRAPHIC) columns do not

affect the relative order of rows delivered by the ORDER BY clause. Because the

system does not use the trailing blanks when it compares VARCHAR or

VARGRAPHIC rows, two columns that differ only by their number of trailing

blanks may not maintain their relative positions.

Using the FOR UPDATE OF Clause

 This clause is optional for static SQL if NOFOR support is specified at preprocessor

time.

The update-clause (FOR UPDATE OF) tells the system that you might want to

update some columns of the result table. To update with a cursor, use the WHERE

CURRENT OF clause in an UPDATE statement. (See “Manipulating the Cursor” on

page 34.) You can update only those columns that you list in the update-clause. A

column can be in the update-clause without being in the select-list; therefore, you can

update columns that are not explicitly retrieved by the cursor. The update-clause is

not required for deletion of the current row of a cursor. Deletion with a cursor is

done using the WHERE CURRENT OF clause in a DELETE statement. For an

explanation of the DELETE statement, see the DB2 Server for VSE & VM SQL

Reference manual.

Note: If you do not want to be bound by the above restriction on which columns

can be updated, you simply invoke NOFOR support at preprocessor time

and omit the update-clause. In this situation, the preprocessor will assist you

by issuing warning or error messages if your program tries to update

columns that are not in the current database. If the conditions identified by

the warning messages are not corrected, unexpected error messages can

subsequently occur at program run time.

►►

FOR UPDATE OF

▼

 ,

column_name

►◄

Figure 14. Format of the UPDATE clause

32 Application Programming

Using the WITH Clause

The WITH clause specifies the isolation level for the query, which overrides any

other isolation level specification. For example, a statement specifying WITH UR in

a package prepped with ISOL(CS) will use an isolation level of uncommitted read.

For more information on isolation levels, see “Selecting the Isolation Level to Lock

Data” on page 134 (DB2 Server for VM) or “Selecting the Isolation Level to Lock

Data” on page 172 (DB2 Server for VSE).

Retrieving or Inserting Multiple Rows

Using the Cursor with a Select-Statement

The previous section showed how to use a select-statement to create an SQL query.

You can now use that query to retrieve values into an application program from

multiple rows in a table.

To do so, you must first declare an SQL cursor, which is a control structure that

points to a row in a table. The rows returned by the query are called the result table

of the cursor.

A cursor can be in an open or a closed state. In the open state, it maintains a

position in its result table on a certain row (called the current row). If you delete the

current row, the cursor will be positioned between the two rows that surrounded

the deleted rows. If you request the next row and receive a message that there are

no more rows (SQLCODE 100 and SQLSTATE '02000'), the cursor will be

positioned after the last row. Before you OPEN the cursor, it is said to be

positioned before the first row.

Declaring a Cursor

Use the DECLARE CURSOR statement to define a cursor. This statement associates

a cursor_name with a specified select-statement, insert-statement, or statement-name.

For example:

 DECLARE C1 CURSOR FOR SELECT LASTNAME, FIRSTNME

 FROM EMPLOYEE WHERE SALARY>:AMT

 DECLARE C2 CURSOR FOR INSERT INTO ACTIVITY

 (ACTNO, ACTKWD, ACTDESC)

 VALUES (:ACT, :KEYWORD, :DESC)

►► WITH RR

CS

UR

 ►◄

Figure 15. Format of the WITH clause

►► DECLARE cursor_name CURSOR FOR select-statement

insert-statement

statement_name

 ►◄

Figure 16. Format of the DECLARE CURSOR statement

Chapter 3. Coding the Body of a Program 33

Note: Statement-name is only used with dynamic SQL. For an explanation of its

use, see “Retrieving the Query Result” on page 226.

The select-statement or insert-statement is a part of the DECLARE CURSOR

statement, so you must not place EXEC SQL in front of SELECT or INSERT

(however, do place it in front of the DECLARE).

Using a Cursor in an Application Program

Your program may contain many DECLARE CURSOR statements that define

different cursors and associate them with different queries. During the processing

of a program, several cursors may be in the open state at one time. It is possible to

define more than one cursor that operates on the same data within the same

logical unit of work. It is also possible to open a cursor and then operate on the

same data with a non-cursor operation such as a Searched DELETE. However,

mixing these operations should be avoided, because the result of one operation can

adversely affect another. For example, do not update a row using a Positioned

UPDATE and subsequently delete it with another cursor operation or with a

Searched DELETE.

The DECLARE CURSOR statement that defines a cursor must occur earlier in the

program than any statement operating on that cursor. It does not result in any

processing when the program is executed (that is, it does not automatically open

the cursor).

The scope of a cursor-definition is an entire program. Therefore, cursor names must

be unique within a program. You cannot have two DECLARE CURSOR statements

in the same program that use the same cursor-name, even if they are in different

blocks or procedures.

For additional detail on the DECLARE CURSOR statement, see the DB2 Server for

VSE & VM SQL Reference manual.

Manipulating the Cursor

After you define a cursor, you can manipulate it using the SQL statements shown

in Table 5. (See the DB2 Server for VSE & VM SQL Reference manual for a complete

description of these statements.)

 Table 5. SQL Statements for Manipulating Cursors

Statements for

Manipulating Query and

Insert Cursors

Statements for

Manipulating Query

Cursors

Statements for

Manipulating Insert

Cursors

OPEN FETCH PUT

CLOSE Positioned DELETE

Positioned UPDATE

The OPEN Statement:

 Partial Format:

►► OPEN cursor_name ►◄

If you are opening a query-cursor (a cursor defined in terms of a select-statement),

this statement examines the input host variables (if any) used in the definition of

34 Application Programming

the cursor, determines the result table for the cursor, and leaves it in the open

state. When the system executes an OPEN statement for a query-cursor, it positions

the cursor before the first row of the result table. After the query-cursor is opened,

the system does not reexamine its input variables until you close and reopen the

cursor. No rows in the result table are fetched to the host program until a FETCH

statement is executed. Always open the cursor before issuing the first FETCH or

PUT statement.

If you are opening an insert-cursor and your program is blocking, this statement

prepares the system to block the rows that are to be inserted. With an insert-cursor,

you can change the values of the input host variables between inserts; you do not

have to close and reopen the cursor.

The FETCH Statement:

 Partial Format:

►►

FETCH

cursor_name

INTO

▼

 ,

host_variable_list

►◄

This statement can be executed only when the indicated cursor is in the open state.

The position of the cursor is advanced to the next row of the result table, and the

selected columns of this row are delivered into the output host variables referenced

in the host_variable_list.

The following is an example of the FETCH statement:

 A cursor can move forward only when it is in its result table; the system cannot

return to rows that have already been fetched (other than closing the cursor and

reopening it).

If the result table of the cursor is empty, or if all its rows have already been

fetched, the system returns the not found return code (SQLCODE=100 and

SQLSTATE='02000') and the cursor is positioned after the last row of the result

table. To perform further operations with the cursor, you must close and reopen it.

It is possible for two or more rows in the result table to have exactly the same

values. (For example, many rows of the EMPLOYEE table may have the same

WORKDEPT, and you might define a cursor that selects only WORKDEPT from

the table.) These duplicate values are not eliminated from the result table unless

you specify DISTINCT in the SELECT clause of the DECLARE CURSOR statement.

You can use indicator variables in the INTO clause. (For a detailed discussion of

indicator variables, see “Using Indicator Variables” on page 59.) Each main

variable in the INTO clause may, at your option, have an associated indicator

OPEN QUERY1
FETCH QUERY1 INTO :E1, :B1

DECLARE QUERY1 CURSOR FOR
SELECT EMPNO, BONUS*1.10
FROM EMPLOYEE
WHERE WORKDEPT='D11'

The values are
returned in these
host variables.

Chapter 3. Coding the Body of a Program 35

variable. If a null value is returned, and you haven’t provided an indicator

variable, a negative SQLCODE is returned to your program and execution of the

statement is halted.

The PUT Statement:

 Partial Format:

►► PUT cursor_name ►◄

This statement can be executed only when the indicated cursor is in the open state.

The PUT statement inserts one row of data as defined by a cursor. The contents of

input host variables referenced in the host_variable_list (defined in the VALUES

clause of the DECLARE CURSOR statement for insert) are delivered to the

database.

For instance, the following statements insert a new row of data into the

EMPLOYEE table:

 DECLARE CC CURSOR FOR

 INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME, EDLEVEL)

 VALUES (:EMP, :FIRST, :MID, :LAST, :ED)

 OPEN CC

 PUT CC

 CLOSE CC

The values represented by the host variables :EMP, :FIRST, :MID, :LAST, and :ED

are placed into the corresponding columns of the new row. The other columns are

assigned the null value.

After the PUT statement is executed, you can assign different values to the input

host variables to add another row. Alternatively, you can place constants in the

VALUES clause of the DECLARE CURSOR statement instead of host variables.

This causes identical values to be inserted into the related columns for each PUT.

The PUT statement is used mostly for inserting multiple rows of data into a table

in groups or blocks (although, it also works with non-blocked inserts). Blocked

inserts are specified with the BLOCK preprocessor parameter. If blocking is in

effect, rows are not inserted until the block is full, or until a CLOSE statement is

issued. For information on preprocessing your program with the BLOCK option

specified, see “Preprocessing the Program” on page 114 (DB2 Server for VM) or

“Preprocessing the Program” on page 156 (DB2 Server for VSE). For information

on using the BLOCK option in DRDA protocol for DB2 Server for VM see “Using

the Blocking Option to Process Rows in Groups” on page 139.

The Positioned DELETE Statement:

 Partial Format:

►► DELETE FROM table_name WHERE CURRENT OF cursor_name ►◄

This statement can be executed only when the indicated cursor is in the open state

and positioned on a row of the result table. It deletes that particular row from the

36 Application Programming

table. The cursor itself remains where it was; it is considered to be in the between

position and, cannot be used for further deletions or updates until it is

repositioned by a FETCH statement.

From the example under the FETCH statement, you could delete a row from the

EMPLOYEE table after doing a FETCH, by issuing:

 DELETE FROM EMPLOYEE

 WHERE CURRENT OF QUERY1

The Positioned UPDATE Statement:

 Partial Format:

►► UPDATE table_name set_clause WHERE CURRENT OF cursor_name ►◄

This statement is similar to the DELETE statement, except that it updates the row

of the table on which the cursor is positioned rather than deleting it, leaving the

position of the cursor unchanged. When using this statement, you must specify the

update-clause in the select-statement.

The following example updates the SALARY column of each fetched row of the

EMPLOYEE table:

 DECLARE QUERY2 CURSOR FOR

 SELECT LASTNAME, FIRSTNAME, MIDINITT

 FROM EMPLOYEE

 WHERE WORKDEPT = 'D21'

 FOR UPDATE OF SALARY

 OPEN QUERY2

 FETCH QUERY2 INTO :LAST, :FIRST, :MID

 UPDATE EMPLOYEE

 SET SALARY = SALARY + :DELTA

 WHERE CURRENT OF QUERY2

 CLOSE QUERY2

The CLOSE Statement:

 Format:

►► CLOSE cursor_variable ►◄

The indicated cursor leaves the open state, and its result table becomes undefined.

No FETCH or PUT statement can be executed on the cursor, and no DELETE or

UPDATE statement can refer to its current position until the cursor is reopened by

an OPEN statement. The CLOSE statement permits the resources associated with

maintaining an open cursor to be released. It should be placed in your program so

that it is executed as soon as the program is finished using a cursor.

If your program is blocking, you can close an insert-cursor with an incomplete

block to insert the remaining rows.

Chapter 3. Coding the Body of a Program 37

Always close a cursor before committing changes. If changes are committed before

an insert cursor (that is being blocked) is closed, an error occurs.

Illustrating the Use of the Query Cursor

Figure 17, which shows a fragment of pseudocode, illustrates the use of a query

cursor C1. It finds the employees of all the rows of the EMPLOYEE table whose

department number matches host variable DEPT. The FETCH statements retrieve

the selected columns successively into host variables EMP, FNAME, and LNAME.

After the results are retrieved, they are displayed on the console.

 Recall that SQLCODE is set to +100 (SQLSTATE '02000') when there are no rows

remaining to be fetched.

Retrieving Single Rows

The SELECT INTO statement finds the only row of the table specified in the

FROM clause that satisfies the given search condition. From this row, the system

selects the columns that you supplied in the select-list. The results are inserted in

the host variables that you specified in the INTO clause. The data type and length

attributes of the host variables must be compatible with the data type and length

attributes of the expressions in the select-list. If specified, the WITH clause specifies

the isolation level to be used on the query and overrides any other isolation level

specification.

DEPT = ' D11'

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, LASTNAME
FROM EMPLOYEE
WHERE WORKDEPT=:DEPT
ORDER BY EMPNO

EXEC SQL OPEN C1

EXEC SQL FETCH C1 INTO :EMP, :FNAME, : LNAME
DO WHILE (SQLCODE=0)

DISPLAY (EMP, FNAME, LNAME)
EXEC SQL FETCH C1 INTO :EMP, :FNAME, :LNAME

END-DO

DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1

Initialize DEPT (the
input host variable).

Declare cursor C1.

Open the cursor.

Fetch the next row of
the result table into
the ouput host
variables and display
them.

When the result table
is empty, close the
cursor.

Figure 17. Using a Cursor

38 Application Programming

For example, the following statement selects the employee number, last name, and

yearly salary from the EMPLOYEE table where the employee number is '000130'. It

places the result in the host variables EMP, NAME, and PAY:

 SELECT EMPNO, LASTNAME, SALARY

 INTO :EMP, :NAME, :PAY

 FROM EMPLOYEE

 WHERE EMPNO = ’000130’

If the number of expressions in the select-list is greater than the number of output

host variables in the INTO clause, a warning flag (called SQLWARN3) in the

SQLCA is set to W. Also, if more than one row satisfies the search condition in a

SELECT INTO statement, an error condition occurs, and the values of the host

variables are unpredictable.

Constructing Search Conditions

One of the most common operations in SQL is to search through a table, choosing

certain rows for processing. A search condition is the criterion for choosing rows.

In the following select-statement example, CODE = 'A' AND PART='B' AND

TYPE='X' constitute the search condition:

 SELECT * FROM T1

 WHERE CODE = 'A' AND PART='B' AND TYPE='X'

When you are constructing search conditions, be careful to perform arithmetical

operations only on numeric data types, and to make comparisons only among

compatible data types. Graphic data types are compatible only with other graphic

data types. If you use a host variable in an expression, its host language data type

must be compatible with the rest of the expression.

Performing Arithmetic Operations

Whenever an arithmetic or comparison operator has operands of two different

types, the database manager evaluates it in the greater of the two types: FLOAT

takes precedence over DECIMAL, which takes precedence over INTEGER, which

takes precedence over SMALLINT. For example, if the PRICE column is of type

INTEGER and has the value 25, the expression PRICE*.5 will evaluate to 12.5, a

decimal value. The predicate PRICE*.5=12 is false, because the decimal value forces

the predicate to be evaluated in decimal. (Decimal values are stored in

System/390™ packed decimal format.)

The system computes all floating-point values in normalized form, as described in

the ESA/390 Principles of Operation manual. When a floating-point value is stored in

a table, it may not be stored exactly as entered. For example, an SQL INSERT

►►

select-clause

INTO

▼

 ,

host_variable_list

►

► from-clause

where-clause

with-clause
 ►◄

Figure 18. Format of the SELECT INTO statement

Chapter 3. Coding the Body of a Program 39

statement could specifically insert the constant 3E0 into a column. Internally,

however, the value might actually be stored as 2.9999. Floating-point values may

become even more imprecise when arithmetic operations are performed on them.

You should use the BETWEEN predicate (described later) when comparing

floating-point values.

If the operands of an arithmetic or comparison operator are both single-precision

and double-precision floating-point data, the former is converted to the latter

before any comparison is made or any arithmetic operation performed. If the

equals (=) comparison operator compares these two types of data, the result of the

comparison may not be what you expected. In the following examples, column C1

is defined to contain single-precision floating-point data and column C2 is defined

to contain double-precision floating-point data:

 INSERT INTO T1 (C1, C2) VALUES (10.95, 10.95)

 SELECT * FROM T1

 WHERE C1 = 10.95

 SELECT * FROM T1

 WHERE C2 = 10.95

 SELECT * FROM T1

 WHERE C1 = C2

The first and second select statements here will return rows that contain the value

10.95. The third select will not return any rows. This is because the 10.95 cannot be

exactly expressed as a floating-point value. The double-precision floating-point

representation has more significant bits than the single-precision floating-point

representation. When the single-precision floating-point value is converted to

double-precision float, X’00’s are added to the last four bytes of the

double-precision equivalent. The single-precision float data is therefore not equal to

the double-precision float data and hence the search condition in the last select

above is not satisfied.

Decimal numbers have a maximum precision of up to 31 digits. In contrast, a

double-precision floating point number preserves up to approximately 17 digits. So

when a decimal number with precision greater than 17 is promoted to a

floating-point number, digits are lost. Because floating-point numbers can have a

larger magnitude than decimal numbers, the float data type is higher than the

decimal in the data type promotion scheme. The following example shows how

this can cause unexpected results:

 SELECT * FROM DEPARTMENT WHERE 1E0 + 12345678901234567890.1

 = 12345678901234567890.1;

You would expect this statement to return no rows, because adding one to a

constant makes it unequal to itself. To execute this statement, the system promotes

the two decimal numbers to floating-point values. When this is done, all but the

first 17 digits are lost. When ’1E0’ is added to the first decimal number, > it is not

large enough to change the converted decimal value. The end result is that both

sides of the expression evaluate as being equal. It is therefore important to be

careful when combining floating-point and decimal data types in expressions.

Arithmetic operations between two items of type SMALLINT produce a result of

type INTEGER, in order to avoid possible overflow problems (as might easily

occur in multiplication). When INTEGER or SMALLINT values are used in a

division computation, the result is of type INTEGER, and any remainder is

dropped. (See “Converting Data” on page 48 for conversion information.)

40 Application Programming

Using Null Values

The system allows nulls in values in a table. A null is a nonexistent value; that is,

it represents a value that is undefined. You can think of a null value as an empty

space, or as a space reserved for later insertion of data.

When null values occur within expressions, the value of the expression is also null.

For example, in the following predicate both SALARY and COMM may be a null

value:

 If either SALARY or COMM is null, expression1 above is null.

Using the Predicates of a Search Condition

A search condition is a collection of one or more predicates. Each predicate specifies

a test that is applied to the rows of the table. You can connect predicates with the

logical operators AND and OR. For example:

 predicate1 AND predicate2 OR predicate3

The keyword NOT can be used to negate a predicate:

 predicate1 AND NOT predicate2

The precedence rule among the keywords is as follows:

1. NOT is applied

2. AND is applied

3. OR is applied.

Use parentheses to override this precedence rule if necessary. For example, the

search condition in Figure 19 contains three predicates; it is used to find the rows

of the EMPLOYEE table pertaining to an employee from department D11 who also

has 17 or 18 years of education.

SALARY + COMM < 100

expression1 expression2

Chapter 3. Coding the Body of a Program 41

Figure 19 also shows that the format of a predicate is a comparison between two

values or expressions. This format is represented as follows:

 expression comparison-operator expression

A comparison-operator may be any of the following:

 = "equal to"

 ¬= "not equal to"

 <> "not equal to"

 > "greater than"

 >= "greater than or equal to"

 < "less than"

 <= "less than or equal to"

The above symbols are the only comparison operators that you can use in SQL

statements. For example, the system does not recognize ≠ even if it is supported in

the host language. The correct representation of inequality is ¬= or <>.

For a detailed description of search conditions, see the DB2 Server for VSE & VM

SQL Reference manual.

Evaluating Predicates

The following rules apply when the system evaluates predicates:

1. When two character strings are compared, EBCDIC alphabetic ordering is used.

For example:

 ’A’ < ’B’

 ’A’ < ’ABLE’

 ’Z’ < ’35’

 ’A1’ < ’B’

 ’a’ < ’A’

2. When two short strings are compared, trailing blanks are not significant. For

example, if the NAME column of a table is of type CHAR(10), you can write

NAME='SMITH' in your search condition, and the condition will be satisfied by

the database value:

 'SMITH '.

Trailing blanks are significant in the LIKE predicate; see the DB2 Server for VSE

& VM SQL Reference manual.

3. In performing an arithmetic operation, if either of the operands is null, the

result of the operation is null.

Search Condition:

Predicate 1:

WORKDEPT='D11' AND (EDLEVEL = 17 OR EDLEVEL = 18)

WORKDEPT = 'D11'

Predicate 3

Predicate 2

Predicate 1

expression

comparison operator

expression

Figure 19. Breakdown of Search Conditions and Predicates

42 Application Programming

4. In performing a comparison operation, if either of the expressions is null, the

result of the comparison is unknown, and the row being evaluated does not

qualify for inclusion in the result table.

5. No predicates are permitted on long host variables. Except for LIKE, predicates

are not permitted on long columns.

6. When decimal numbers of different scales are compared, the shorter scale is

extended with trailing zeros sufficient to match the scale of the larger number.

For example, 25.45 is equal to 25.4500.

7. When two graphic strings are compared, the value of the respective data

columns is compared in a manner similar to that used for character data types.

The single character sequencing is generally of no value for graphic ordering.

However, you can specify the sorting sequence of graphic characters in a

graphic column by associating the column with a field procedure. For more

information on field procedures refer to “Using Field Procedures” on page 281.

8. If a query is executed against an empty table, the database manager may not,

for performance reasons, carry out all validation checks. For example, an

invalid date string in a host variable is not flagged as an error unless a row is

being evaluated.

Using Additional Types of Predicates

In addition to the basic predicates that compare two expressions, the system

provides the predicates listed below, which you can use either alone or with other

predicates by including the keywords AND, OR, and NOT to form a search

condition. For detailed information on the rules and use of these predicates, see the

DB2 Server for VSE & VM SQL Reference manual.

v BETWEEN

v IN

v LIKE

v NULL

v EXISTS

v Quantified (SOME, ALL).

Using Functions

There are two types of functions. Column functions apply the function to a group of

values in a column and produce one result value. Scalar functions apply the

function to one or more values in each row and produce a result value for each

row.

Using Column Functions

The column functions are:

 AVG MAX MIN SUM COUNT

The argument of a column function is an expression containing a column name

(optionally preceded by DISTINCT or ALL— ALL is the default). The argument

follows the function and must be enclosed in parentheses.

DISTINCT indicates that duplicate values are to be eliminated before the function

is applied. The following example counts the number of different projects that

satisfy the search condition:

 SELECT COUNT(DISTINCT PROJNO)

For a detailed discussion of each of the column functions, see the DB2 Server for

VSE & VM SQL Reference manual.

Chapter 3. Coding the Body of a Program 43

Using Scalar Functions

The scalar functions are:

 CHAR FLOAT MINUTE TIMESTAMP

 DATE HEX MONTH TRANSLATE

 DAY HOUR SECOND VALUE

 DAYS INTEGER STRIP VARGRAPHIC

 DECIMAL LENGTH SUBSTR YEAR

 DIGITS MICROSECOND TIME

You can use scalar functions wherever an expression can be used. The first or only

argument of each scalar function is an expression. If the value of any expression is

a null value, the result will be a null value as well, except for the VALUE function.

For a detailed discussion of each of the scalar functions, see the DB2 Server for VSE

& VM SQL Reference manual.

Using Data Types

Assigning Data Types When the Column Is Created

Each column of every DB2 Server for VSE & VM table is given an SQL data type

when the column is created. Table 6 shows the data types and how they are stored

internally.

 Table 6. SQL Data Types

SQL Data Type How Stored

INTEGER or INT Stored as a signed 31-bit binary integer

SMALLINT Stored as a signed 15-bit binary integer

DECIMAL[(p[,s])] or

DEC[(p[,s])] ⁴ , ⁵

Stored as a packed decimal number of precision p and scale s. Precision is the total

number of digits; scale is the number of digits to the right of the decimal point. For

example, 251.66 fits in a DECIMAL(5,2) data area. When precision and scale are

calculated, if the precision is greater than 31, leading zeros will be removed until it is

equal to 31. Trailing zeros are not removed. The default scale is 0 and the default

precision is 5.

FLOAT(n) ¹ Stored as a single-precision (4-byte) floating-point number in short System/390

floating-point format, or as a double-precision (8-byte) floating-point number in long

System/390 floating-point format.

CHARACTER[(n)] or

CHAR[(n)] ³

Stored as a character string of fixed length n, where ≤ 254. The default length is 1.

VARCHAR(n) ² , ³ Stored as a varying-length character string of maximum length n, where n ≤ 32767. If

254 < n ≤ 32767, VARCHAR(n) is considered a long string.

LONG VARCHAR ³ Stored as a varying-length character string of maximum length 32767.

GRAPHIC[(n)] Stored as a string of double-byte character set (DBCS) characters of fixed length n,

where n ≤ 127. The default length is one DBCS character.

VARGRAPHIC(n) ² Stored as a varying-length string of DBCS characters of maximum length n, where n ≤

16383. If 127 < n ≤ 16383, VARGRAPHIC(n) is considered a long string.

LONG VARGRAPHIC Stored as a varying-length string of DBCS characters of maximum length 16383.

DATE Stored as a string of 4 bytes. Each byte is two packed decimal digits. The first two

bytes are the year, the next is the month, and the last is the day.

TIME Stored as a string of 3 bytes. Each byte is two packed decimal digits. The first byte is

the hour, the next is the minute, and the last is the second.

44 Application Programming

Table 6. SQL Data Types (continued)

SQL Data Type How Stored

TIMESTAMP Stored as a string of 10 bytes. Each byte is two packed decimal digits. The first 4

bytes are the date, the next 3 are the time, and the last 3 are the microsecond.

Notes:

1. The FLOAT data type refers to either single-precision floating-point data (4

bytes) or double-precision floating point-data (8 bytes).

v REAL and FLOAT(n), where n is from 1 to 21, are synonyms. They are both

stored as 4 bytes.

v FLOAT, DOUBLE PRECISION, and FLOAT(n), where n is from 22 to 53, are

synonyms. They are all stored as 8 bytes.

v When single- and double-precision floating-point data are compared to one

another, the result of the comparison may not be what you expected. See

“Constructing Search Conditions” on page 39.

2. These data types have some special considerations to watch out for.

v For the CREATE TABLE and ALTER TABLE statements, when VARCHAR(n)

or VARGRAPHIC(n) has “n” greater than 254 or 127 respectively, the

database manager treats the column as a long string when storing and

retrieving data. Long strings are discussed in the next section.

The column is treated as VARCHAR or VARGRAPHIC, however, in two

respects:

– The value stored in the LENGTH and SYSLENGTH columns of

SYSTEM.SYSCOLUMNS is “n”.

– The value returned to the user in the SQLLEN field of the SQLDA is “n”.

When n is less than 255 (VARCHAR) or 128 (VARGRAPHIC) on these

statements, the treatment of the column is unchanged.

v Trailing blanks are not considered relevant in comparisons of VARCHAR or

VARGRAPHIC values, unless these values are either concatenated, returned

to the application program, or used in a scalar function.

For example, if string X1 = "STRING " and string X2 = "STRING" and X3 =

X1 CONCAT X2 then X3 will be equal to "STRING STRING". However, X1 is

considered equal to X2 in a compare statement such as a SELECT...WHERE.

3. Columns defined with these data types can contain MIXED or BIT data.

4. NUMERIC is a synonym for DECIMAL, and may be used when creating or

altering tables. In such cases, however, the CREATE or ALTER function will

establish the column (or columns) as DECIMAL.

5. C application programs can use the decimal data type so that host variables can

match table definitions and do not have to do C numeric conversions for table

columns that are defined as decimal.

Using Long Strings

Defining Long Strings

A long string column is either a LONG VARCHAR, LONG VARGRAPHIC,

VARCHAR(n) (where 254 < n ≤ 32 767), or VARGRAPHIC(n) (where 127 < n ≤ 16

383). Long strings are intended for storage of unstructured data such as text

strings, images, and drawings. For a list of restrictions on the use of long strings,

refer to the section on data types in the DB2 Server for VSE & VM SQL Reference

manual.

Chapter 3. Coding the Body of a Program 45

Performing Operations on Long Strings

The only operations permitted on long strings are:

v SELECT in an outer-level query (not in a subquery).

v INSERT into the database from an input host variable (not from a constant or

from a subquery). You can, however, insert null values into long strings with the

usual INSERT statement mechanisms. (That is, you are not restricted to host

variables when inserting nulls.)

v UPDATE from an input host variable or UPDATE to the null value. (SET

LONGFIELD=:X and SET LONGFIELD=NULL are permitted, but SET

LONGFIELD=’HELLO’ and SET LONGFIELD=OTHERFIELD are not permitted.)

v DELETE of rows containing long strings.

Programming Tip

The restrictions on the use of long strings can usually be avoided by the

appropriate use of the SUBSTR function.

Using Datetime Data Types

Datetime is a collective DB2 Server for VSE & VM term that includes date, time,

and timestamp. Although datetime values can be used in certain arithmetic

operations and are compatible with certain strings, they are neither strings nor

numbers. Conversely, strings and numbers are not datetime values. A datetime

value is either:

v A DATE, TIME, or TIMESTAMP column value

v A value returned by the DATE, TIME, or TIMESTAMP scalar functions

v A value returned by the CURRENT DATE, CURRENT TIME, or CURRENT

TIMESTAMP special registers.

Datetime values of the same type can be subtracted. If date1 and date2 are DATE

columns, date1 - date2 is a valid expression. Date1 - '01/01/2000' is also a valid

expression because '01/01/2000' is a valid string representation of a date. However,

'01/01/2000' - '12/20/1999' is not valid because strings cannot be subtracted and a

string is interpreted as a date only if the other operand is a value of data type

DATE. Scalar functions are provided to explicitly convert strings to datetime

values. The following expression is valid: DATE('01/01/2000') - '12/20/1999'.

For detailed information on the components and valid formats and lengths of the

date, time, and timestamp data types and the assignment of these data types to

host variables or CHAR-type columns, see the DB2 Server for VSE & VM SQL

Reference manual.

Using Character Subtypes and CCSIDs

Character subtypes and coded character set identifiers (CCSIDs) provide a means

of identifying the character data representation scheme to be used for character

and graphic data in your system. For example, by using a certain CCSID, you can

specify that all character data in your system is single-byte EBCDIC data.

Subtypes are a way of specifying that you want to use the application server

system default CCSID associated with that subtype. CCSIDs apply to both

character and graphic data, while subtypes apply only to character data.

For a detailed description of coded character sets and CCSIDs, see the DB2 Server

for VSE & VM SQL Reference manual.

46 Application Programming

For most applications, you do not need to specify subtypes or CCSIDs, because the

system defaults can usually meet your character data representation requirements.

If this is not the case, you may have to become familiar with Character Data

Representation Architecture (CDRA). Refer to the section about data integrity

concerns in the Character Data Representation Architecture Reference and Registry

manual for a discussion of using CDRA to meet your requirements.

The following are examples of problems that can be solved by the specification of

CCSIDs or subtypes. The solutions to these problems are discussed in “Assigning

Subtypes and CCSIDs When a Column Is Created” on page 48 and “Assigning

Subtypes and CCSIDs to Data in a Program” on page 48.

v A column is required in a table to contain mixed data (that is, data that can

contain both double-byte and single-byte characters), but the system default

specifies that all newly created columns will be used to contain single-byte

character set data only.

v A table creation program is required that is to be used at multiple sites, all of

which can use different system default subtype and CCSID values. The tables to

be created must have the ability to store data of a particular CCSID.

v An application program written in assembler language must insert data into a

graphic column, but variables with a graphic data type are not supported.

Determining Default Subtypes and CCSIDs

Refer to the SYSTEM.SYSOPTIONS catalog table to determine the application

server system defaults. The rows containing the following values in the

SQLOPTION column are important: CHARSUB, CCSIDSBCS, CCSIDMIXED,

CCSIDGRAPHIC, and CHARNAME.

DB2 Server for VM

For the application requester system defaults, invoke the SQLINIT EXEC

using the QUERY option. The fields that contain important information are

CCSIDSBCS, CCSIDMIXED, CCSIDGRAPHIC, and CHARNAME. (For a

discussion of the SQLINIT EXEC, refer to the DB2 Server for VSE & VM

Database Administration manual.)

 Examples of items that assume application requester system defaults are input and

output SQLDA elements (the default can be overridden), and host variables.

The following are examples of items that assume application server system

defaults:

v Columns (default can be overridden)

v Special registers.

The following are examples of items that assume application requester system

defaults:

v Input and output SQLDA elements (default can be overridden)

v Host variables.

For information on setting system defaults, refer to the DB2 Server for VM System

Administration or the DB2 Server for VSE System Administration manual.

Chapter 3. Coding the Body of a Program 47

Assigning Subtypes and CCSIDs When a Column Is Created

There are three ways to assign subtypes or CCSIDs to a column:

v Use the application server system defaults.

v Use the preprocessor parameters CHARSUB, CCSIDSBCS, CCSIDMIXED, and

CCSIDGRAPHIC to override the system default for columns created by the

CREATE TABLE and ALTER TABLE statements in the package. (See

“Preprocessing the Program” on page 114 (DB2 Server for VM) “Preprocessing

the Program” on page 156 (DB2 Server for VSE) for information on these

parameters.)

v Use the subtype or CCSID clause in a column’s definition within the CREATE

TABLE or ALTER TABLE statement to override the application server system

default or the preprocessor default. (For more information on these statements,

refer to the DB2 Server for VSE & VM SQL Reference manual.)

Assigning Subtypes and CCSIDs to Data in a Program

There are two ways to assign subtypes or CCSIDs to the data items in a program:

v Use application requester system defaults

v Execute the SQL statement using dynamic SQL so that the data items can be

described in a user-defined SQLDA. A CCSID can be assigned to each data item

in the SQLDA.

For examples of how to build an SQLDA that contains CCSID information, see

Chapter 7, “Using Dynamic Statements,” on page 215. For a more detailed

discussion on using the SQLDA, refer to the DB2 Server for VSE & VM SQL

Reference manual.

Converting Data

For the database manager, the operands in an assignment or comparison operation

must be compatible. For example, a character string cannot be compared to a

numeric string, a graphic string cannot be compared to a character string, and an

arithmetic operation cannot contain a character string operand. Refer to the DB2

Server for VSE & VM SQL Reference manual for more details about compatible data

types.

Operands that are compatible but are not identical in data types, lengths, datetime

formats, or CCSIDs, can be used in assignment and comparison operations but

require data conversion as follows:

v For assignment operations, conversion is done before the data is assigned. For

example, if a host variable is defined as a SMALLINT field and a column is

defined as INTEGER, a SELECT INTO operation converts the INTEGER column

to SMALLINT before it is assigned to the host variable. In this situation,

overflow may occur if the value is too large to fit into a SMALLINT field.

Depending on the data types and the host language, some data may be lost. The

DB2 Server for VSE & VM SQL Reference manual discusses potential data loss in

the assignment of COBOL integers.

To retrieve a datetime value, (that is, a DATE, TIME, or TIMESTAMP), it must

be assigned to a character string host variable. The assignment operation

converts the datetime value to a character string representation. Whenever a

string representation of a datetime value is used in any other operation with a

datetime value, the operation is performed with a temporary copy of the string

that has been converted to the data type of the datetime value.

48 Application Programming

If a conversion error occurs when the database manager assigns a value to a

host variable in the INTO clause of a SELECT or FETCH statement, and if you

have provided an indicator variable for the affected host variable, the system

returns the following:

– A value of −2 in the indicator variable

– An undefined value in the host variable

– Warning values in both SQLCODE and SQLSTATE that are appropriate for

the condition.

If you have not provided an indicator variable, both SQLCODE and SQLSTATE

return error codes (a negative value for SQLCODE, and a data exception for

SQLSTATE).

v For comparison operations, one field may be converted if necessary to match the

data type, length, or CCSID of another. For example, if two character strings in a

comparison operation have different CCSIDs (one is an SBCS string and the

other is a mixed string), a temporary copy of the SBCS data is converted to the

mixed data CCSID before the data is compared.

For more information about data conversion and conversion errors, see the

discussion about assignments and comparisons in the DB2 Server for VSE & VM

SQL Reference manual.

Summarizing Data Conversion

Data conversion is summarized in tabular form in the DB2 Server for VSE & VM

SQL Reference manual. Overflow (loss on the left) or truncation (loss on the right)

may occur on some conversion attempts.

Truncating Data

Truncations are handled differently for numeric, character, and datetime data.

Numeric data Truncation of zeros on the left, or of the fractional

part of decimal or floating-point values

(single-precision or double-precision) takes place

without error or warning. Any other loss of data

on conversion is an overflow error. If overflow

occurs in an outer select and an indicator variable

is supplied for the host variable, the indicator

variable is set to −2 and a positive SQLCODE is

returned; otherwise, a negative SQLCODE is

returned.

Character data When output from the database manager does not

fit into a host variable, a warning is returned.

SQLWARN1 is set to indicate truncation. In this

case, if you provide an indicator variable, the value

within it denotes the actual length of the variable

in characters before truncation.

 When an input character string value does not fit

into a DB2 Server for VSE & VM column, an error

results.

 Whenever truncation occurs, it follows specific

rules depending on the character subtype involved.

Also, padding may occur when a string is assigned

to either a fixed-length host variable or to a

fixed-length column and the source string is

Chapter 3. Coding the Body of a Program 49

shorter than the length of the target. Padding, like

truncation, follows rules depending on subtype.

These rules are in the DB2 Server for VSE & VM

SQL Reference manual.

 SBCS and mixed are the only two types of

character data truncation. In mixed truncation, the

integrity of target data is ensured. For example, if

’ab<▌CCDDEE▐>cd’ is truncated to a length of 6, the

result with mixed truncation is ’ab<▌CC▐>’. The

system counts to byte 6. Because this would split a

double-byte character, the number of bytes is

rounded to the next lowest whole number. It also

always ensures that the < and > characters

correctly identify the double-byte characters.

 Table 7 shows the type of truncation that occurs

depending on the subtype of the source and target

data.

 Table 7. Truncation Types

Subtype of Source Subtype of Target Result

Mixed Mixed Mixed truncation

SBCS SBCS SBCS truncation

Mixed SBCS SBCS truncation1

SBCS Mixed SBCS truncation1

Note:

1. If the source data contains DBCS data, a conversion error occurs during SBCS

truncation.

 Table 8 shows the results of SBCS and mixed

truncation when selecting ’ab<▌CCDDEE▐>fg’ into

various host variables:

 Table 8. Examples of Mixed Data Truncation and SBCS Truncation

Target Host Variable SBCS Truncation Mixed Truncation

CHAR(6) ’ab<CCD’ ’ab<▌CC▐>’

CHAR(7) ’ab<CCDD’ ’ab<▌CC▐>�’

VARCHAR(7) ’ab<CCDD’ ’ab<▌CC▐>’

 Note: For mixed data, the only difference between

the second and the third example is the

length of the resulting VARCHAR string. A

blank is added to the fixed string.

TIME data When the seconds part of a retrieved ISO, JIS, or

EUR format TIME value is truncated, SQLWARN1

is set to indicate that truncation has occurred. The

seconds that are truncated are placed in the

indicator variable if one is provided.

TIMESTAMP data On output, any portion of the microseconds part of

a TIMESTAMP may be truncated (including the

decimal point). However, no warning is given

50 Application Programming

(SQLWARN1 is not set). If an indicator variable is

provided, it is unchanged.

For more information about how computations are performed internally or how

overflows can occur, refer to the section about arithmetic operations in the DB2

Server for VSE & VM Database Administration manual.

Using a Double-Byte Character Set (DBCS)

DBCS characters can be used in identifiers, constants, and data in DB2 Server for

VSE & VM programs. Strings containing DBCS characters are formatted as

<▌XXXX▐>, where < represents the shift-out character, and > represents the shift-in

character. Each XX represents one double-byte character set character. The <>

delimiters are single-byte character set (SBCS) characters.

In identifiers, characters constants, and character data, the delimiters are significant

so redundant delimiter pairs are not removed. For example, the following strings

of DBCS characters are not equivalent:

<▌AABB▐><▌CCDD▐> and <▌AABBCCDD▐>

In graphic data and constants, the delimiters are not significant.

Each DBCS character requires 2 bytes for its representation; therefore, an even

number of bytes must be between the < and >. The number of bytes used to

represent a string of DBCS characters is equal to:

 2 * the number of DBCS characters + 2 (for mixed data)

 2 * the number of DBCS characters (for graphic data)

Strings of DBCS characters cannot span lines, whereas mixed strings containing

strings of DBCS and SBCS characters can span lines if each string of DBCS

characters in the mixed string is on one input record. For a discussion of the rules

for using DBCS characters in constants, see “Using Character Constants” on page

57 and “Using Graphic Constants” on page 58.

To use DBCS characters in application programs, you must know the following:

v To use host identifiers that contain DBCS characters in DB2 Server for VM, your

compiler must support DBCS and the application requester must have the DBCS

option set to YES. To check whether this setting is correct, do an SQLINITQRY; if

you need to change this setting, issue an SQLINIT with the DBCS option set to

YES. (For a detailed discussion of the SQLINIT EXEC, see the DB2 Server for VSE

& VM Database Administration manual.)

v To use host identifiers in DB2 Server for VSE, the DBCS option in the

SYSTEM.SYSOPTIONS catalog must be set to yes. Your compiler must also

support DBCS.

v To use SQL identifiers that contain DBCS characters, the application server must

support DBCS characters and mixed data. To verify this for the application

server, make sure that in the SYSTEM.SYSOPTIONS catalog table the

CHARNAME setting identifies a mixed character set and the DBCS setting is

YES. In addition, DBCS characters must be permitted in the particular identifier.

For a discussion of rules for using DBCS characters in identifiers, refer to the

DB2 Server for VSE & VM SQL Reference manual.

v To use host variables with graphic data type, the preprocessor must allow a

graphic data type for the host language of the source program. This is true for

COBOL and PL/I only in DB2 Server for VSE. The DB2 Server for VM

Chapter 3. Coding the Body of a Program 51

preprocessors that allow graphic data type are COBOL and PL/I. If you need

this facility when using another language, see the appendix for that language for

a discussion of alternative actions.

v To use graphic and mixed constants (that is, character constants that contain

DBCS characters) in an application program, the DB2 Server for VM application

server and application requester or DB2 Server for VSE application server must

support mixed data. To verify this for the application server, make sure that the

CHARNAME setting in the SYSTEM.SYSOPTIONS catalog table identifies a

mixed character set. To verify this for the DB2 Server for VM application

requester, issue an SQLINIT command with the QRY option. The CHARNAME

value returned identifies a mixed character set. For a discussion of character sets,

refer to > the DB2 Server for VM System Administration or the DB2 Server for VSE

System Administration manual. If the DB2 Server for VM application requester

does not support DBCS characters, you can obtain this support by using the

SQLPREP GRaphic option (available to COBOL and PL/I only).

Using Expressions

An expression refers to a column, a constant, a host variable, an SQL special register

(for example, the USER special register), the SQL keyword NULL, a column

function, a scalar function, an arithmetic expression, or any of these that can be

connected by the concatenation operator. (The concatenation operator is discussed

later in this chapter.) Using expressions, you can do calculations on data as part of

a query. The calculations are performed before the data is returned to your

program.

Table 9 shows a simple arithmetic expression:

 Table 9. Breakdown of an Arithmetic Expression

Expression

(BONUS - :MARKDOWN * .80)

constant
host variable
column name

Using Arithmetic Operators

There are four arithmetic operators that you can use:

 * multiplication

 / division

 + addition

 - subtraction

Usually, the system reads an arithmetic expression from left to right, first applying

any negations, then any multiplication or division operations, and then finally any

additions and subtractions. For example, in the following expression:

 BONUS - :MARKDOWN * .80

The system would take the value of the host variable MARKDOWN, multiply it by

.80, and then subtract the result from the bonus.

You can change this order-of-precedence by using parentheses. For instance, if the

above example were coded:

 (BONUS - :MARKDOWN) * .80

52 Application Programming

The system would first subtract MARKDOWN from BONUS, and then multiply

the result by .80. The two results would probably end up being quite different.

Host variables can be used in arithmetic expressions. For example:

 PRICE * :QUANTITY + 1.44

As mentioned earlier, you must precede the names of host variables by a colon (:)

to distinguish them from column names. That is, the following is interpreted as a

host variable:

 :PROJNO

The following, however, is interpreted as a column name:

 PROJNO

Numeric constants can stand alone or be used in arithmetic combination with other

constants or host variables or column names to form expressions. All three of the

following are valid expressions:

 200 -798.9768 PRICE * :QUANTITY + 1.44

Character constants cannot be used in arithmetic combinations, except when a

character string representing a datetime value is used in datetime arithmetic. The

following expression is valid:

 HIRE_DATE - ’2000-01-01’

The following expression is not valid:

 ’FUDGE’*’GUMDROP’+’LEMON’

If you attempt to combine two pieces of data that do not have compatible data

types with arithmetic operators, an error code is returned. The system performs

data conversion on different types of data that are compatible.

Using Special Registers

Any of the following special registers can be used wherever an expression of the

appropriate data type is used:

v CURRENT DATE (defined as DATE)

v CURRENT SERVER (defined as CHAR(18))

v CURRENT TIME (defined as TIME)

v CURRENT TIMESTAMP (defined as TIMESTAMP)

v CURRENT TIMEZONE (defined as DECIMAL(6,0))

v USER (defined as CHAR(8))

Using CURRENT DATE, TIME, and TIMESTAMP: The values of all datetime

special registers in the same statement are based on the same time-of-day (TOD)

clock reading.

In the examples below, one uses the select-statement and the other uses the

UPDATE statement.

 SELECT CURRENT DATE, PRSTDATE

 FROM PROJECT

 ORDER BY PRSTDATE

 UPDATE PROJECT SET PRSTDATE = CURRENT DATE,

 PRENDATE = ’2000-01-20’

 WHERE PROJNAME = ’OPERATION’

Chapter 3. Coding the Body of a Program 53

Using CURRENT TIMEZONE: The CURRENT TIMEZONE is a signed

time-duration containing the local time zone value. A negative value represents

differentials west of the Greenwich-Mean-Time (GMT). A positive value represents

differentials east of the GMT. CURRENT TIMEZONE can be used to convert local

time into GMT by subtracting CURRENT TIMEZONE from local time. CURRENT

TIMEZONE can be subtracted from a TIME or TIMESTAMP data type.

The following example shows a query that involves CURRENT TIMEZONE.

 SELECT RECEIVED - CURRENT TIMEZONE

 FROM IN_TRAY

Using CURRENT SERVER: This special register holds the server name of the

application server currently connected. It has a CHAR(18) data type.

The following example shows a query that includes the CURRENT SERVER special

register:

 SELECT ID, INDATE, INTIME

 FROM SAMP1

 WHERE INRDB=CURRENT SERVER

Using USER: This special register is evaluated as the currently connected userid

that is, the user ID of the person who is running the program, regardless of who

preprocessed it. USER behaves exactly like a fixed-length character string constant

of length 8, with trailing blanks if the user ID has fewer than eight characters.

Notes:

1. You cannot use this keyword in an arithmetic expression (for example,

USER+3).

2. You can use it in a predicate where you compare it to a character string (for

example, USER = 'JIM').

3. You can use it in the LIKE predicate, where it is treated as a pattern.

4. You can, with some restrictions, use it in the SET clause of an UPDATE

statement, or in the VALUES clause of an INSERT statement. In both cases, the

data in the target column must be character data type (CHAR or VARCHAR).

The following is a valid expression that includes the USER special register:

 SELECT *

 FROM SYSTEM.SYSCATALOG

 WHERE CREATOR = USER

Concatenating Character and Graphic Strings

You can use the concatenation operator (CONCAT) to concatenate character strings

or graphic strings. Long strings cannot be used with the concatenation operator.

The following example shows the concatenation of employees’ last names and jobs,

separated by a hyphen:

 SELECT LASTNAME CONCAT '-' CONCAT JOB FROM EMPLOYEE

For a full description of this operation, including rules for character subtypes and

CCSIDs, see the DB2 Server for VSE & VM SQL Reference manual.

Note: The || symbol is a synonym for CONCAT. Because the | symbol is not in a

consistent position in all code pages, the use of || could impair code

portability.

54 Application Programming

Using Host Variables

As previously stated, host variables are host program variables that are declared in

an SQL declare section. The host program can use these variables to interact with

the database manager.

You can use host variables to pass data to or receive data from the database

manager. Host variables used to contain column data or data used to evaluate an

expression are called main variables. The data type and length attributes of a main

variable depend on the data type and length of the column or expression to which

the variable relates.

You can also use host variables to communicate information to and from the

database manager about the contents of the main variable. If a host variable is

used in this context, it is an indicator variable. Only use host variables that are

declared with a data type equivalent to 15-bit integer as indicator variables. Refer

to “Using Indicator Variables” on page 59 for a description of their use.

Several SQL statements permit the use of host variables. Refer to the DB2 Server for

VSE & VM SQL Reference manual for the syntax of these SQL statements. The

syntax diagrams indicate whether host variables are permitted or required.

For a description of how to declare host variables, refer to the appropriate host

language appendix.

Using Host Structures

A host structure is a special form of host variable. It is any two-level structure or

substructure declared in an SQL declare section. Host structures can replace all or

part of a host_variable_list. A host_variable_list can contain references to more than

one host structure.

The elements of the host structure comprise the list of main variables in the

host_variable_list. To provide indicator variable support for the elements of the host

structure, you must use an indicator array. An indicator array of n elements

provides indicator variable support for the first n elements of the host structure.

The elements of host structures and structures that contain host structures can

replace scalar host variables in an SQL statement. You can qualify the element

name with the names of parent structures and substructures. The following syntax

diagram shows the format of a structure element reference.

 It is only necessary to qualify a structure or element name where failure to do so

would result in an ambiguous reference.

Elements of indicator arrays cannot be used as host variables and host structures

(or structures that contain host structures) cannot be declared as arrays or contain

arrays.

►►

struct_name.
 element_name ►◄

Chapter 3. Coding the Body of a Program 55

Refer to the appropriate host language appendix for rules on the declaration of

host structures and indicator arrays. Refer to the DB2 Server for VSE & VM SQL

Reference manual for more information on the use of host structures and indicator

arrays in SQL statements.

Using Constants

Constants (also called literals) can be numeric or character data. They are fixed

values that can be coded into SQL statements. Like host variables, they are used in

various clauses in a number of different SQL statements.

The following example shows a character string constant coded in a WHERE

clause:

 DECLARE C CURSOR FOR

 SELECT *

 FROM EMPLOYEE

 WHERE LASTNAME = ’PEREZ’

Constants can be used in the SELECT clause to set up a new column in the result

table, which has the specified constant in each of its occurrences. For example, the

statement:

 DECLARE C CURSOR FOR

 SELECT LASTNAME, ’WOW’, 100.0

 FROM EMPLOYEE

 WHERE COMM > 3200

would have the following result table:

 Using Numeric Constants

Integer constants consist of a number with an optional sign, such as -56, 103, or

+786. (If you do not include a sign, the system assumes that the number is

positive.) All integer constants are 4 bytes long; that is, there are no constants with

a data type of SMALLINT.

Decimal constants consist of a number with a decimal point, such as 78.9687,

-.00132, 64570., or +1672.80. If you do not supply a decimal point, the constant is

interpreted as an integer. In storage, the number occupies a maximum of 16 bytes.

Precision p, where 1 ≤ p ≤31, is the total number of digits. Scale s, where 0 ≤ s ≤p,

is the number of those digits that are to the right of the decimal point. Leading

and trailing zeros are included in both precision and scale. When the precision and

scale are calculated, if the precision is greater than 31, leading zeros are removed

until the precision is equal to 31. Trailing zeros are never removed. When decimal

data values are multiplied or divided, an overflow condition may occur.

Consider the following:

 a string of thirty one 9’s. * 1.0

 LASTNAME EXPRESSION 1 EXPRESSION 2

 ___________ _______________ _________________

 LUCCHESI WOW 100.0

 HAAS WOW 100.0

 THOMPSON WOW 100.0

 GEYER WOW 100.0

56 Application Programming

The string of 9’s is treated as DECIMAL(31,0) and 1.0 as DECIMAL(2,1). The

precision and scale of the product will then be 31 and 1 (DECIMAL(31,1)),

respectively. This will result in a decimal overflow and an arithmetic exception will

occur.

This decimal overflow, can be prevented by changing the constant '1.0' to '1.' This

would define this constant as DECIMAL (1,0) and the resulting product as

DECIMAL (31,0) instead of DECIMAL (31,1). If an expression contains decimal

constants, you can influence its precision and scale by adding leading or trailing

zeros to those constants.

A floating-point constant is an integer or a decimal constant followed by an

exponent marked by the letter E. The E must be followed by an exponent. The 1E0

is acceptable and evaluates to 1. All these are permissible floating-point constants:

-2E5, 2.2E-1, .2E6, +5E+2 or 4E0. All floating-point constants are double-precision in

the system.

Using Character Constants

Character string constants are coded within quotation marks, and are

varying-length character strings of letters, digits, or special characters, such as

'SMITH', '52', or 'k@r -5B'. A character constant implicitly assumes either a FOR

SBCS DATA or a FOR MIXED DATA attribute. You cannot assign the FOR BIT

DATA attribute to a character constant. The constant is assumed to have a subtype

of SBCS unless the following conditions are true. If the following conditions are

true, the constant is assigned a subtype of mixed.

v The application server supports mixed data.

v The constant contains mixed data.

Mixed data is composed of a mix of SBCS and DBCS characters in one string. The

DBCS portions of the string must be correctly formatted strings of DBCS

characters. (For a discussion of the format and rules for using strings of DBCS

characters, see “Using a Double-Byte Character Set (DBCS)” on page 51.) An

example of mixed data is:

 ’abc<▌DEFG▐>hi<▌JKLM▐>nop’

where abc, hi, and nop represent SBCS characters, and ▌DEFG▐ and ▌JKLM▐ represent

DBCS characters.

To obtain a single quotation mark in a string of SBCS characters, you must code

two consecutive single quotation marks. For example, the constant ’DON’’T GO’ is

interpreted as DON’T GO. To obtain a single quotation mark in a string of DBCS

characters, you only need to code a single quotation mark. Refer to the DB2 Server

for VSE & VM SQL Reference manual for more information on mixed strings of

SBCS and DBCS characters.

You can also code a character constant using its hexadecimal representation.

Hexadecimal constants are treated like regular character constants. In DB2 Server

for VM, hexadecimal constants are converted from the application requester default

CCSID to the application server default CCSID before they are used.

The hexadecimal representation of a constant value must be enclosed within single

quotation marks and preceded by an X. For example:

 X’2D’ X’C1C2C3C4’ X’4256457D’

Each pair of hexadecimal numbers (0-9, A-F) represents a single byte. (Either

uppercase or lowercase letters can be used.) Therefore, the number of hexadecimal

Chapter 3. Coding the Body of a Program 57

numbers must be even and, when representing a DBCS character in a mixed

constant, it must be a multiple of 4 (each DBCS character occupies 2 bytes in

storage).

You can use hexadecimal constants to represent SBCS and mixed character data

only. The maximum size for hexadecimal constants is 254 hexadecimal digits (that

is, 127 SBCS characters or 63 DBCS characters).

The following is a valid expression using a hexadecimal constant:

 LASTNAME CONCAT X’FF’ CONCAT FIRSTNME

Using Graphic Constants

Graphic string constants are fully supported in COBOL and PL/I programs, but

with different formats. The system supports three formats of the graphic constant:

the SQL format and two PL/I formats.

The SQL format of the graphic constant is:

 G’<▌XXXX▐>’

Note: N is a synonym for G.

The G identifies the constant that follows as graphic; the <▌XXXX▐> is any valid

string of DBCS characters, and the single quotation marks delimit the constant. You

do not need to double the quotation marks in a graphic constant to obtain a single

quotation mark. Use this format of the graphic constant in all situations except

static SQL statements in PL/I programs.

The PL/I formats of the graphic constant are:

 1. ’<▌XXXX▐>’G

 2. <▌@’XXXX@’@G▐>

Note: N is a synonym for G.

Again, the G indicates that the constant is a graphic constant, and that the string

bound by < and > must be a valid string of DBCS characters. In the second format,

the single quotation marks and the G are within the string of DBCS characters;

they are the DBCS format of the quotation mark and the G. In the second format,

to obtain a single DBCS quotation mark, double the occurrence of the DBCS

quotation mark within the string of DBCS characters. Use either of these formats of

the graphic constant in static SQL statements in PL/I programs.

The PL/I preprocessor converts PL/I format graphic constants into SQL format

graphic constants (G'<▌XXXX▐>') when they appear in SQL statements. This is done

before passing the SQL statement to the application server for processing.

Therefore, some DB2 Server for VSE & VM messages for incorrect syntax may refer

to the SQL format of the constant, even though a PL/I format constant was coded

in your program.

Graphic constants assume the default graphic CCSID. Subtypes do not apply to

graphic data. For example, you cannot assign the FOR BIT DATA attribute to a

graphic constant. For detailed information on CCSIDs and subtypes, see “Using

Character Subtypes and CCSIDs” on page 46.

58 Application Programming

For information on the rules for the format and use of strings of DBCS characters

with DB2 Server for VM, see “Using a Double-Byte Character Set (DBCS)” on page

51.

Using Date and Time Constants

A datetime constant is a character string constant or a decimal constant in a

datetime context, as shown in the following examples:

 END_DATE - ’1999-09-13’

 END_DATE - 10000101.

In the first example, '1999-09-13' is a datetime character string constant; in the

second, 10000101. is a decimal constant. A datetime decimal constant is a date

duration, a time duration, or a timestamp duration. A date duration represents a

number of years, months, and days, and is expressed as a DEC(8,0) number. A

time duration represents a number of hours, minutes, and seconds, and is

expressed as a DEC(6,0) number. A timestamp duration represents a number of

years, months, days, hours, minutes, seconds, and microseconds, and is expressed

as a DEC (20,6) number.

For more detailed information on date and time values, as well as durations, see

“Using Datetime Values with Durations” on page 278.

Using Indicator Variables

Using indicator variables is optional in a host-variable reference. In static SQL

statements, indicator variables can be used to indicate that the corresponding host

variables should be treated as null values or truncated values. Output indicator

variables appear in the INTO clause of a SELECT or FETCH statement, and are

associated with output that is passed from the database to the application

program. Input indicator variables appear in the predicates of WHERE and

HAVING clauses, in the SET clause of an UPDATE statement, with VALUES in an

INSERT statement or in the SELECT clause, and are associated with input that is

passed from the application program to the database.

Output indicator variables should always be used wherever null values are

allowed in the database. Input indicator variables can be used to put null values

into the database. They should, however, not be used in predicates unless there is a

very good reason for doing so, because there may be a significant cost in

performance.

Refer to the DB2 Server for VSE & VM SQL Reference manual for a description of

the format of a host-variable reference that contains an indicator variable.

The following example illustrates the use of indicator variables.

 SELECT FIRSTNME, LASTNAME

 INTO :FNME:FNMEIND, :LNME :LNMEIND

 FROM EMPLOYEE WHERE WORKDEPT = ’A00’

In this example, the indicator variable FNMEIND provides indicator variable

support for the main variable FNME. The indicator variable LNMEIND provides

indicator variable support for the main variable LNME.

The following notes on the use of indicator variables are grouped according to the

type of indicator variable to which they apply.

Chapter 3. Coding the Body of a Program 59

Notes Common to Both Input and Output Indicator Variables

1. The indicator variable must be of a host language data type equivalent to an

SQL SMALLINT.

2. A negative indicator variable indicates a null value for its main variable.

Notes on Input Indicator Variables

When using input indicator variables, be aware of the following:

1. Input indicator variables can be used to indicate that a column value is to be

set to null (when the indicator variable is negative). If you provide an input

indicator variable and assign it a negative value, the null value is inserted in

the column value for the row. If the indicator variable is zero or a positive

value, the main variable is inserted. Truncation does not apply to input

variables.

2. A negative indicator variable can be used in static SQL for any of the following

predicates:

v The basic comparison ones (such as = or >)

v BETWEEN

v IN

v LIKE

v The quantified ones (ANY, ALL)

See the DB2 Server for VSE & VM SQL Reference manual for the different sets of

rules for truth values for these predicates.

3. Do not use input indicator variables in search conditions (WHERE or HAVING

clauses) to test for null values. The correct way to test for nulls is with the

NULL predicate (described earlier):

This will return every row where MGRNO is null.

If MGRIND has been set negative to make MGR null, the truth value is

“UNKNOWN”, and nothing will be returned.

4. On the other hand, there are cases where setting up a negative input indicator

variable in the predicate can prove useful and efficient. For example, if an

application prompts the user to interactively supply information that will

identify an employee (by either number or name), you can design the program

to use only one select-statement to extract the indicated employee data from the

database.

Here is the pseudocode:

 get either empno or lastname from user

 if empno is entered then empnoind = 0, else empnoind = -1

 if lastname is entered then nameind = 0, else nameind = -1

 SELECT * FROM EMPLOYEE

 WHERE EMPNO = :EMPNO:EMPNOIND

 OR LASTNAME = :NAME:NAMEIND

WHERE MGRNO IS NULL Correct

WHERE MGRNO = :MGR:MGRIND Incorrect

60 Application Programming

Notes on Output Indicator Variables

When using output indicator variables, be aware of the following:

1. The value returned in an output indicator variable is coded as shown in

Table 10.

2. Output indicator variables are optional. If a null value is returned, however,

and you have not provided an indicator variable, a negative SQLCODE and an

error SQLSTATE are returned to your program. If your data is truncated and

there is no indicator variable, no error condition results. See “Converting Data”

on page 48 for more information about truncation.

 Table 10. Values Returned in Output Indicator Variables

Value Returned Meaning

0 Denotes that a non-null value that has been returned in the

associated host variable is not null.

< 0 Denotes that the value associated with the host variable is null,

and should be treated exactly the same way as null column

values. A -1 denotes that the null value resulted from a normal

operation. A -2 denotes that the null value resulted from either a

conversion error or an error while evaluating an arithmetic

expression in an outer-select clause.

> 0 Denotes that the system truncated the returned value in the

associated host variable because the host variable was not of

sufficient length.

In addition, if the truncated item was a DBCS character or a string

of DBCS characters, the indicator variable contains the length in

characters before truncation. If the truncated item was a TIME

value, truncated at its seconds part, the indicator variable contains

the seconds. The SQLWARN1 warning flag in the SQLCA is set to

'W' whenever truncation occurs.

Using Views

Views allow multiple users to see different presentations of the same data. For

example, several users may be operating on a table of data about employees. One

may see data about some employees but not others; another may see data about all

employees but none of their salaries; and a third may see data about employees

joined together with some data from another table. Each of these users is operating

on a view that is derived from the real table of data about employees. Each view

appears to be a table and has a name of its own.

You can create views with authorization statements to control access to sensitive

data. For example, you might create a view based on a GROUP BY query that

gives certain users access to the average salary of employees in each department,

but prevents them from seeing any individual salaries.

A view is a dynamic “window” on tables. When you update a real table, you can

see the updates through a view; when you update a view, the real table underlying

the view is updated. There are, however, restrictions on modifying tables through a

view.

Because a view is not physically stored, you cannot create an index on it. However,

if you create an index on the real table underlying a view, you may improve the

performance of queries on the view.

Chapter 3. Coding the Body of a Program 61

Creating a View

In the following example, a view is created from the EMPLOYEE table:

 CREATE VIEW PHONEBOOK (FNAME, LNAME, NUMBER, DEPART, JOBTITLE) AS

 SELECT FIRSTNME, LASTNAME, PHONENO, WORKDEPT, JOB

 FROM EMPLOYEE WHERE JOB <> ’PRES’ WITH CHECK OPTION

The CREATE VIEW statement causes the indicated select-statement to be stored as

the definition of a new view, and gives a name to the view and (optionally) to each

column in it. If you do not specify the column names, the columns of the view

inherit the names of the columns from which they are derived.

You must specify a name for any view column that is not derived directly from a

single table column (for example, if a view column is defined as AVG(SALARY) or

SALARY+COMMISSION). Columns derived in this manner are often called virtual

columns, (and contain virtual data). You must also specify new column names if the

selected columns of the view do not have unique names (for example, if the view

is a join of two tables, each of which has a column named PROJNO).

In general, the data types of the columns of the view are inherited from the

columns on which they are defined. If a view column is defined on a function, the

data type of the view column will be the data type of the function result. (For

more details on functions, refer to the DB2 Server for VSE & VM SQL Reference

manual.)

If you want to prevent the execution of subsequent inserts or updates to the view

that involve data that is outside the domain of the view’s definition (as specified in

the WHERE clause of its subselect), you can add the WITH CHECK OPTION

clause. This clause, however, is not allowed for updateable views that are built on

subqueries. The checking that is performed at insert or update time is performed

according to a set of rules that cover the situation in which a view is dependent on

other views. See the DB2 Server for VSE & VM SQL Reference manual for these

rules.

Some other considerations when creating views are:

v Internal database manager limitations restrict a view to approximately 140

columns. The number of referenced tables, lengths of column names, and

WHERE clauses all further reduce this number.

v If the subselect in a view definition has a “SELECT *” clause, the view has as

many columns as the underlying table. If columns are later added to the

underlying table by ALTER statements, the new columns will not appear in the

view (unless you drop and re-create the view).

►► CREATE VIEW view_name

▼

,

(

column_name

)

 ►

► AS subselect

WITH CHECK OPTION
 ►◄

62 Application Programming

v The name of the view must be unique among all the tables, views, and

synonyms that you have already created. You can refer to another user’s views,

if so authorized, by using the owner-name as a prefix (for example,

SMITH.PHONEBOOK).

v You can define a view in terms of another view: that is, the subselect that defines

a view may refer to one or more other views. In this case, follow the rules listed

under “Using Views to Manipulate Data” on page 64.

v There is no ORDER BY clause in a subselect; therefore, like a table, a view has no

intrinsic order. (Of course, you can specify an ORDER BY clause when you write

queries against the view.)

v Host variables are not permitted in a CREATE VIEW statement. (For example,

predicates such as PRICE = :X are not permitted.)

v The owner of the view is considered to be the authorization ID under which the

program is preprocessed.

v When you define a new view, you receive the same privileges that you have on

the underlying table. If you possess these privileges with the GRANT option,

you can grant privileges on your view to other users. (See Chapter 10,

“Assigning Authority and Privileges,” on page 269 for information on the

GRANT option.) If the view is derived from more than one underlying table,

you receive the SELECT privilege, provided that you have this privilege on all

the tables from which it is derived. (If you have no privileges on the underlying

tables, the CREATE VIEW statement returns an error code.) Only the SELECT

privilege is possible, because multi-table views do not permit insertion, deletion,

or update.

v Primary keys and foreign keys (discussed in “Ensuring Data Integrity” on page

289) cannot be defined on a view.

v If you defined your view on a table that has a primary key, and you make

changes to that view, the view should contain all the columns of the key.

v The subselect is not executed when the view is created, which means that

semantic errors (for example, specifying "WHERE COL = '10'" when COL is a

decimal column) are not detected until the view is used. To determine whether a

statement contains semantic errors, you can enter 'SELECT *' against the view

after creating it.

Querying Tables through a View

You can write queries (select-statements) against views exactly as if they were real

tables. When you make a query against a view, the query is combined with the

definition of the view to produce a new query against real stored tables. This

query is then processed in the usual way. For example, the following query might

be written against the view PHONEBOOK that was defined under “Creating a

View” on page 62:

 SELECT FNAME,LNAME

 FROM PHONEBOOK

 WHERE DEPART = ’D11’

 ORDER BY 2

The system combines the query with the definition of PHONEBOOK, and

processes the resulting internal query:

 SELECT FIRSTNME, LASTNAME

 FROM EMPLOYEE

 WHERE JOB <> ’PRES’

 AND WORKDEPT = ’D11’

 ORDER BY 2

Chapter 3. Coding the Body of a Program 63

During the processing of a query on a view, the system may detect and report

errors (by a negative SQLCODE) in either of two phases:

v The combination of the query with the view-definition (for example, attempting

to add together two strings of character-type)

v The execution of the resulting query on real tables (for example, attempting to

fetch a null value when no indicator variable is provided).

Note: If a view materialization is required to process the view, this view must not

contain any LONG VARCHAR columns in the view definition. For a

detailed description of view materialization, refer to the DB2 Server for VSE

& VM Database Administration manual.

Using Views to Manipulate Data

Like select-statements, INSERT, DELETE, and UPDATE statements can be applied

to a view just as though it were a real stored table. The SQL statement that

operates on the view is combined with the definition of the view to form a new

SQL statement that operates on a stored table. Any data modification made by

such a statement is visible to users of the view, the underlying table, or other

views defined on the same table (if the views “overlap” in the modified area).

The following is an example of an update applied to the view PHONEBOOK,

showing how the update can be modified to operate on the real table EMPLOYEE:

 View Definition for PHONEBOOK:

 CREATE VIEW PHONEBOOK (FNAME, LNAME, NUMBER, DEPART, JOBTITLE) AS

 SELECT FIRSTNME, LASTNAME, PHONENO, WORKDEPT, JOB

 FROM EMPLOYEE WHERE JOB <> ’PRES’ WITH CHECK OPTION

 UPDATE PHONEBOOK

 SET NUMBER = ’9111’

 WHERE LNAME = ’SMITH’

 AND FNAME = ’DANIEL’

becomes:

 UPDATE EMPLOYEE

 SET PHONENO = ’9111’

 WHERE LASTNAME = ’SMITH’

 AND FIRSTNME = ’DANIEL’

 AND JOB <> ’PRES’

Note: Because of the WITH CHECK OPTION, the following update will not be

allowed when Sally takes over as president:

 UPDATE PHONEBOOK

 SET JOBTITLE = ’PRES’

 WHERE LNAME = ’KWAN’

 AND FNAME = ’SALLY’

You must observe the following rules when modifying tables through a view:

1. INSERT, DELETE, and UPDATE of the view are not permitted if the view

involves any of the following operations: join, GROUP BY, DISTINCT, or any

column function such as AVG.

2. A column of a view can be updated only if it is derived directly from a column

of a single stored table. Columns defined by expressions such as SALARY +

BONUS or SALARY * 1.25 cannot be updated. (These columns are sometimes

called virtual columns.) If a view is defined containing one or more such

64 Application Programming

columns, the owner does not receive the UPDATE privilege on these columns.

INSERT statements are not permitted on views containing such columns, but

DELETE statements are.

3. The ALTER TABLE, CREATE INDEX, and UPDATE STATISTICS statements

cannot be applied to a view.

You can use an INSERT statement on a view that does not contain all the columns

of the stored table on which it is based. For example, consider the EMPLOYEE

table with none of the columns defined as NOT NULL. You could insert rows into

the view PHONEBOOK even though it does not contain the MIDINIT, EDLEVEL

or any other columns of the underlying table EMPLOYEE.

You can insert or update rows of a view in such a way that they do not satisfy the

definition of the view. For example, the view PHONEBOOK is defined by the

condition JOB <> ’PRES’. It would be possible to insert rows into PHONEBOOK

having a value equal to ’PRES’ in the JOB column. This insertion takes effect on

the underlying table, EMPLOYEE, but the resulting rows are not visible in the

view PHONEBOOK, because they do not satisfy the definition of PHONEBOOK.

In fact, an update to PHONEBOOK that sets JOB=’PRES’ causes a row to “vanish”

from PHONEBOOK (a cursor positioned on the row retains its position, but later

scans through PHONEBOOK do not see this row). If you want to ensure that all

rows inserted or updated are subsequently visible in the view, then define your

view with 'WITH CHECK OPTION'.

However, the EMPLOYEE table does have columns defined as NOT NULL, and

two of them (MIDINIT and EDLEVEL) are not available through the PHONE view.

If you try to insert a row through the view, the system attempts to insert NULL

values into all the EMPLOYEE columns that are “invisible” through the view.

Because the MIDINIT and the EDLEVEL columns are not included in the view, and

do not permit null values, the system does not permit the insertion through the

view.

Be extremely careful when updating tables through views that may contain

duplicate rows. For example, suppose a view JOBS is defined on the EMPLOYEE

table containing only the columns WORKDEPT and JOB. Because EMPNO is not

included in the view, and many employees may have the same job description, a

user of the view cannot tell which EMPNO corresponds to a given row of the

view. If the user positions a cursor on a row where JOB = ’CLERK’, and then

updates the current row of this cursor, a row of the stored EMPLOYEE table is

updated. However, because there may be many clerks in the EMPLOYEE table,

and the unique qualifier EMPNO is not part of the view, the user cannot control

which employee is updated.

Dropping a View

 Format

►► DROP VIEW view_name ►◄

The DROP VIEW statement drops the definition of the indicated view from the

database. When you drop a view, the system also:

v Drops all other views defined in terms of the indicated view. (The underlying

tables on which the views are defined are not affected.)

Chapter 3. Coding the Body of a Program 65

v Deletes all privileges on the dropped views from the authorization catalog

tables.

v Marks invalid all packages that refer to the dropped views.

The invalid packages remain in the database until they are explicitly dropped by

a DROP PACKAGE statement. When an invalid package is next invoked, the

system attempts to regenerate it and restore its validity. However, if the program

contains any SQL statement that refers to a dbspace, table, or view that has been

dropped, that SQL statement returns an error code at run time.

If a DROP VIEW statement attempts to drop a view that is currently in use by

another running logical unit of work, the statement is queued until that LUW

ends.

Joining Tables

With joins, you can write a query against the combined data of two or more tables.

(You can also join views.)

To join tables, follow these steps:

1. In the FROM clause, list all the tables you want to join.

2. In the WHERE clause, specify a join condition to express a relationship between

the tables to be joined.

Note: The data types of the columns involved in the join condition do not have

to be identical; however, they must be compatible. The join condition is

evaluated the same way as any other search condition, and the same

rules for comparisons apply. (These rules are discussed under “Using

Expressions” on page 52.)

Joining Tables Using the Database Manager

The system forms all combinations of rows from the indicated tables. For each

combination, it tests the join condition. If you do not specify a join condition, all

combinations of rows from tables listed in the FROM clause are returned, even

though the rows may be completely unrelated.

Performing a Simple Join Query

The join query in Figure 20 finds the project number and the last name of the

employees in department D11:

DECLARE C1 CURSOR FOR
SELECT PROJNO, LASTNAME
FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND WORKDEPT = 'D11'

ORDER BY PROJNO, LASTNAME

OPEN C1
FETCH C1 INTO :X, :Y
CLOSE C1

Join
Condition

Figure 20. A Simple Join

66 Application Programming

The WHERE clause above expresses a join condition. If a row from one of the

participating tables does not satisfy the join condition, that row does not appear in

the result of the join. So, if a EMPNO in the EMPLOYEE table has no matching

EMPNO in the EMP_ACT table (or if EMPNO in the EMP_ACT table has no

matching EMPNO in the EMPLOYEE table), that row does not appear in your

result.

Note: More than one table in a join may have a common column name. To identify

exactly which column you are referring to, you must use the table name as a

prefix, as in the example above. Unique column names do not require a

table name prefix.

Here is the query result (based on the example tables):

Joining Another User’s Tables

If you are referring to another user’s table, you must prefix the table name with

the owner-name. If, for example, the tables in the query above belonged to JONES,

you would write:

Analyzing How a Join Works

When writing a join query, it is often helpful to mentally go through the query to

see how SQL develops a JOIN.

PROJNO LASTNAME

______ _____________

MA2111 BROWN

MA2111 BROWN

MA2111 LUTZ

MA2112 ADAMSON

MA2112 ADAMSON

MA2112 WALKER

MA2112 WALKER

MA2112 YOSHIMURA

MA2112 YOSHIMURA

MA2113 JONES

MA2113 JONES

MA2113 PIANKA

MA2113 SCOUTTEN

MA2113 YOSHIMURA

column
table name

owner

DECLARE C1 CURSOR FOR
SELECT PROJNO, LASTNAME
FROM JONES.EMPLOYEE, JONES.EMPACT
WHERE JONES.EMPLOYEE.EMPNO = JONES . EMP_ ACT . EMPNO
AND WORKDEPT = 'D11'
ORDER BY PROJNO, LASTNAME

OPEN C1
FETCH C1 INTO :X, :Y
CLOSE C1

Chapter 3. Coding the Body of a Program 67

For example, look at the previous select-statement. It refers to the EMPLOYEE and

EMP_ACT tables. Joining the two tables will produce one table that contains all the

columns in both tables.

Each EMPNO in the EMPLOYEE table is compared to every EMPNO in the

EMP_ACT table. When the EMPNO column of both tables matches, a row is

formed that contains the combined columns of the “matching” rows. Notice that

the only column name that is common to both tables is EMPNO. If the name of

this EMPNO column were different in each table, the EMPNO column of the result

could have been called either name. This is because of the equality expressed in

the join condition. In fact, the select-list could have specified EMPLOYEE.EMPNO

instead of EMP_ACT.EMPNO, and identical results would have been produced.

Now consider what happens when the second part of the WHERE clause (AND

WORKDEPT=’D11’) is applied.

The result is further reduced so that only the rows with a department name of D11

remain. The entire search condition is now satisfied. The system strips off the

columns not specified in the select-list. This produces the query result previously

shown.

Using VARCHAR and VARGRAPHIC within Join Conditions

If you are joining VARCHAR or VARGRAPHIC columns, trailing blanks are not

used. For example, "JONES" and "JONES " match. If they were from two different

EMPLOYEE tables joined on the LASTNAME column, they would form one row.

Using Nulls within Join Conditions

Like other predicates, a join condition is never satisfied by a null value. For

example, if a row in the EMPLOYEE table and a row in the EMP_ACT table both

have a null EMPNO, neither row will appear in the result of the join.

Joining a Table to Itself Using a Correlation Name

You can write a query in which you join a table to itself, by repeating the table

name two or more times in the FROM clause. This tells the system that the join

consists of combinations of rows from the same table. When you repeat the table

name in the FROM clause, it is no longer unique. You must give one or both table

names in the FROM clause a unique correlation_name to correctly designate the

tables.

You use the correlation names to resolve column name ambiguities in the select-list

and the WHERE clause. Rules for table designation are given at the end of this

section.

For example, the following query finds the total of the values from the ACSTAFF

column (PROJ_ACT table) for activities 60 and 70 for any project that contains both

these activities:

68 Application Programming

This type of join query can also be easily visualized. Each PROJNO in the

PROJ_ACT table is compared to every other PROJNO in the PROJ_ACT table.

When two rows with the same PROJNO are found, a row is formed. The new row

contains the combined columns of the “matching” rows.

Now consider what happens when the second part of the WHERE clause

(PA1.ACTNO = 60 AND PA2.ACTNO = 70) is applied.

The result is further reduced to only the rows with an ACTNO of 60 in the first

ACTNO column and with an ACTNO of 70 in the second ACTNO column.

Finally, the system sorts the query by PROJNO and strips off the columns not

specified in the select-list. This produces:

 If the table is owned by another user, the table name must be qualified in the usual

fashion. For example, here is how to write the above query if the owner of the

PROJ_ACT table is SCOTT:

DECLARE C1 CURSOR FOR

SELECT PA1.PROJNO, PA1.ACSTAFF + PA2.ACSTAFF

FROM PROJ_ACT PA1, PROJ_ACT PA2

WHERE PA1.PROJNO = PA2.PROJNO AND

 PA1.ACTNO = 60 AND PA2.ACTNO = 70

ORDER BY 1

OPEN C1

FETCH C1 INTO

 :PRONUM, :TOTAL

CLOSE C1

 PROJNO EXPRESSION 1 PROJNO EXPRESSION 1

 ------ ------------ ------ ------------

 AD3111 2.30 AD3113 2.00

 AD3111 1.30 AD3113 1.25

 AD3111 2.00 AD3113 1.75

 AD3111 1.00 AD3113 1.50

 AD3112 1.50 AD3113 1.75

 AD3112 1.25 AD3113 2.25

 AD3112 1.75 AD3113 1.50

 AD3112 1.00 AD3113 2.00

 AD3112 1.25 AD3113 1.75

 AD3112 1.00 AD3113 2.00

 AD3112 1.50 AD3113 1.50

 AD3112 0.75 AD3113 0.75

 AD3112 1.50 AD3113 1.25

 AD3112 1.25 AD3113 1.00

 AD3112 1.75 AD3113 1.25

 AD3112 1.00 MA2112 3.00

 AD3112 1.75 MA2112 3.50

 AD3112 1.50 MA2112 3.00

 AD3112 2.00 MA2113 3.00

 AD3112 1.25 MA2113 3.00

Chapter 3. Coding the Body of a Program 69

Rules for Table Designation

1. Only exposed table names and correlation names in the FROM clause can be

referenced in other clauses.

An exposed table name is one that is not followed by a correlation_name (for

example, PROJECT). A nonexposed table name is a table name which is

followed by a correlation_name (for example, PROJECT P). In the latter example,

PROJECT has no scope in the query and cannot be referenced; the table

designator in this case is P.

2. Exposed table names in the FROM clause must be different from each other.

3. Correlation names in the FROM clause must be different from each other and

different from any exposed table names.

These rules are illustrated here:

 The above query is not allowed. EMPLOYEE is a nonexposed table name and

cannot be used to qualify column LASTNAME.

 The above query is allowed. The second table in the FROM clause can be

designated by the exposed table name EMPLOYEE. There is no ambiguity or

conflict with the table name EMPLOYEE in the first table of the FROM clause,

because that is a nonexposed table name.

Imposing Limits on Join Queries

The example of a simple join query in Figure 20 on page 66 had only one join

condition relating the values of EMPNO in two tables. The following limits exist

with respect to joins:

v You can join up to 16 tables in a query

v The maximum number of join columns in a query is 40. Note, however, that this

limit is evaluated after the Optimizer does query transformation internally, and

that this transformation may affect the number of join columns in the query.

DECLARE C1 CURSOR FOR

SELECT PA1.PROJNO, PA1.ACSTAFF + PA2.ACSTAFF

FROM SCOTT.PROJ_ACT PA1, SCOTT.PROJ_ACT PA2

WHERE PA1.PROJNO = PA2.PROJNO AND

 PA1.ACTNO = 60 AND PA2.ACTNO = 70

ORDER BY 1

OPEN C1

FETCH C1 INTO

 :PRONUM, :TOTAL

CLOSE C1

SELECT EMPLOYEE.LASTNAME FROM EMPLOYEE E Incorrect

SELECT EMPLOYEE.LASTNAME FROM EMPLOYEE E, EMPLOYEE Correct

70 Application Programming

For more information on these limits, see the section on 'SQL Limits' in the DB2

Server for VSE & VM SQL Reference manual.

Using SELECT * In a Join

The notation SELECT * in a join query means “select all the columns of the first

table, followed by all the columns of the second table, and so on.” You can also use

the notation SELECT T1.*. to select all the columns of the table T1. However, it is

not recommended that you use either SELECT * or SELECT T1.* for join queries

written in programs because if someone adds a new column to the first table in the

join (by an ALTER TABLE statement), the columns of the second table are no

longer delivered into the correct host variables. To avoid this problem, use a

select-list in which all the columns are specifically listed.

Grouping the Rows of a Table

The DB2 Server for VSE & VM SQL Reference manual shows how to apply the

column functions (SUM, AVG, MIN, MAX, and COUNT) to a table. However, you

can apply these functions only to particular columns in rows that satisfy a search

condition. For example, the following statement finds the average number of

employees for all occurrences of project number AD3111 in the PROJ_ACT table:

 SELECT AVG(ACSTAFF)

 FROM PROJ_ACT

 WHERE PROJNO = ’AD3111’

In contrast, the grouping feature of the database manager permits you to

conceptually divide a table into groups of rows with matching values in one or

more columns. You can then apply a function to each group. For example, to find

the average number of employees for each project in the PROJ_ACT table:

 SELECT PROJNO,AVG(ACSTAFF)

 FROM PROJ_ACT

 GROUP BY PROJNO

 ORDER BY PROJNO

The query yields this result based on the sample table PROJ_ACT:

 PROJNO AVG(ACSTAFF)

 ------ -----------------

 AD3100 0.5000000000000000000000000

 AD3110 1.0000000000000000000000000

 AD3111 0.9357142857142857142857142

 AD3112 0.6227272727272727272727272

 AD3113 0.8461538461538461538461538

 IF1000 0.6000000000000000000000000

 IF2000 0.5500000000000000000000000

 MA2100 0.7500000000000000000000000

 MA2110 1.0000000000000000000000000

 MA2111 1.0000000000000000000000000

 MA2112 1.2142857142857142857142857

 MA2113 1.0714285714285714285714285

 OP1000 0.2500000000000000000000000

 OP1010 2.5000000000000000000000000

 OP2000 0.7500000000000000000000000

 OP2010 1.0000000000000000000000000

 OP2011 0.5000000000000000000000000

 OP2012 0.5000000000000000000000000

 OP2013 0.5000000000000000000000000

 PL2100 1.0000000000000000000000000

Chapter 3. Coding the Body of a Program 71

One or more column functions can be applied to the groups. The following query

finds the maximum, minimum, and average salary for each department, along

with the count of the number of rows in each group (the column function

COUNT(*) evaluates to the number of rows in the group):

 SELECT WORKDEPT, MAX(SALARY), MIN(SALARY), AVG(SALARY), COUNT(*)

 FROM EMPLOYEE

 GROUP BY WORKDEPT

Using VARCHAR and VARGRAPHIC within Groups

If you are grouping a VARCHAR or VARGRAPHIC column, trailing blanks are

ignored. For example, if a select-statement was grouped by DESCRIPTION,

“BOLT” and “BOLT ” would match. They would be placed in the same group.

Using Nulls within Groups

If you are grouping columns that return null values, the null values are grouped in

those columns. The null values may be returned because of undefined column

values or arithmetic exception errors.

If you have defined a VIEW that contains a GROUP BY clause, the view columns

named in the GROUP BY have the same nullability as the corresponding base table

columns.

Using Select-Lists in Grouped Queries

When you use the GROUP BY clause in a query, the database manager returns

only one result row for each group. The select-list of such a query can contain only:

v GROUP BY columns

v Column functions.

For example, this statement is incorrect:

 You cannot include LASTNAME in the select-list because LASTNAME does not

occur in the GROUP BY clause, and is not the operand of a column function. Aside

from breaking language rules, the above statement is incorrect because a

department may have many employees. It is as though you were asking the

system to return multiple values to the same variable at the same time.

Using a WHERE Clause with a GROUP BY Clause

A grouping query can have a standard WHERE clause that eliminates

non-qualifying rows before the groups are formed and the column functions are

computed. Write the WHERE clause before the GROUP BY clause. For example:

 SELECT WORKDEPT, AVG(SALARY)

 FROM EMPLOYEE

 WHERE HIREDATE > ’1970-01-01’

 GROUP BY WORKDEPT

SELECT WORKDEPT, LASTNAME, AVG(SALARY)

FROM EMPLOYEE
GROUP BY WORKDEPT

Wrong

72 Application Programming

Using the HAVING Clause

You can apply a qualifying condition to groups so that the system returns a result

only for the groups that satisfy the condition, by including a HAVING clause after

the GROUP BY clause. A HAVING clause can contain one or more

group-qualifying predicates connected by ANDs and ORs. Each group-qualifying

predicate compares a property of the group such as AVG(ACSTAFF) with one of

the following:

1. Another property of the group (for example, HAVING AVG(ACSTAFF) > 2 *

MIN(ACSTAFF))

2. A constant (for example, HAVING AVG(ACSTAFF) > 1.00)

3. A host variable (for example, HAVING AVG(ACSTAFF) > :LIMIT).

For example, the following query finds the average mean number of employees for

projects having more than three activities:

 SELECT PROJNO,AVG(ACSTAFF)

 FROM PROJ_ACT

 GROUP BY PROJNO

 HAVING COUNT(*) > 3

 ORDER BY PROJNO

You can specify DISTINCT as part of the argument of a column function in the

HAVING clause, because DISTINCT eliminates duplicate values before a function

is applied. Thus, COUNT(DISTINCT PROJNO) computes the number of different

project numbers. You cannot use DISTINCT in both the select-list and HAVING

clause; you can use it only once in a query.

It is possible (though unusual) for a query to have a HAVING clause but no

GROUP BY clause. In this case, the system treats the entire table as one group.

Because the table is treated as a single group, you can have at most one result row.

If the HAVING condition is true for the table as a whole, the selected result (which

must consist entirely of column functions) is returned; otherwise the “not found”

code (SQLCODE = 100 and SQLSTATE='02000') is returned.

Combining Joins

This section discusses the WHERE, GROUP BY, HAVING, and ORDER BY clauses

of the select-statement.

You can use the various query techniques together in any combination. A query

can join two or more tables and can also have a WHERE clause, a GROUP BY

clause, a HAVING clause, and, if defined in a cursor, an ORDER BY clause. The

sequence of application for these clauses is listed below:

1. Conceptually, all possible combinations of rows from the listed tables are

formed.

2. The WHERE clause, which may contain join conditions, is applied to filter the

rows of the conceptual table.

3. The GROUP BY clause is applied to form groups from the surviving rows.

4. The HAVING clause is applied to filter the groups. Only the surviving groups

will return a result.

5. The select-list expressions are evaluated.

6. The ORDER BY clause determines the order in which the query result is

returned.

Chapter 3. Coding the Body of a Program 73

Illustrating Grouping with an Exercise

By now you may be wondering when you need to use which feature. Consider this

problem:

Write a query that returns:

v The department number

v The manager’s employee number

v The total number of activities for all the projects in the department

v The sum of the estimated mean number of employees needed to staff the activities for all

the projects in the department.

Consider only projects that are estimated to end after January, 1 2000, and only include

departments with more than two activities. Finally, order the result by department name.

The first thing that you must do is to find in the example tables the names of the

columns that contain the requested information, so that you can create a select-list:

v “department number” is the DEPTNO column of the DEPARTMENT table.

v “manager’s employee number” is the MGRNO column of the DEPARTMENT

table.

v “activities” is the ACTNO column of the PROJ_ACT table, but the problem

requests the total number of activities for all the projects in a department, so you

must include the column function COUNT(*) in the select-list.

Note: You need the total number of activities for a particular department; this

means that the query will have to group by department.

v “estimated mean number of employees needed to staff the activities” implies the

ACSTAFF column of the PROJ_ACT table. However, the problem requests The

sum of the estimated mean number of employees needed to staff the activities for all

the projects in the department. So you must include the column function SUM

in the select-list; this means that the query will have to group by department.

Note: The columns DEPTNO and MGRNO (from the DEPARTMENT table) and

ACSTAFF (from the PROJ_ACT table) come from different tables so you will

need a join. However, the DEPARTMENT, and PROJ_ACT tables do not

have a common column. To join them, you will have to use the PROJECT

table in a three-table join. PROJECT contains both the DEPTNO column of

the DEPARTMENT table and the PROJNO column of the PROJ_ACT table.

First, define the cursor(s) to be used in your program:

DECLARE C1 CURSOR FOR

Now write a SELECT clause:

 SELECT DEPARTMENT.DEPTNO, MGRNO, SUM(ACSTAFF), COUNT(*)

Note: Since a DEPTNO column appears in both the DEPARTMENT and the

PROJECT tables, you must qualify which table it is from.

Write a FROM clause that lists the three tables used in the join:

 FROM DEPARTMENT, PROJECT, PROJ_ACT

You must include a WHERE clause because of the join condition; one line to join

the DEPARTMENT table to the PROJECT table, and one to join the PROJECT table

to the PROJ_ACT table:

74 Application Programming

WHERE DEPARTMENT.DEPTNO = PROJECT.DEPTNO

 AND PROJECT.PROJNO = PROJ_ACT.PROJNO

However, the problem states that only projects that are estimated to end on or after

January 1, 2000 should be considered. This condition needs to be added to the

WHERE clause:

 AND PRENDATE >= ’2000-01-01’

Note that PRENDATE is a column in the PROJ_ACT table and is unique among all

the column names of the joined tables, so it does not have to be qualified. So far,

the SQL statement is:

 It is now necessary to group by DEPTNO to find the sum for each part, but

MGRNO is also in the select-list, so it must be listed in the GROUP BY clause

(recall the rules for grouping). Including MGRNO in the GROUP BY clause does

not affect the formation of the groups, however, because MGRNO is a property of

a given DEPTNO. The GROUP BY clause is:

 GROUP BY DEPARTMENT.DEPTNO, MGRNO

Note: You can group by PROJECT.DEPTNO if you choose, because of the equality

expressed between DEPARTMENT.DEPTNO and PROJECT.DEPTNO in the

join condition. If you use PROJECT.DEPTNO in the GROUP BY clause,

however, you must also use it in the select-list.

If the table name is fully qualified in the FROM clause, it is good practice to fully

qualify it in the whole statement.

The problem requires that the departments included in the query have at least two

activities for all the projects in the department; a HAVING clause is needed to filter

out the unwanted groups:

 HAVING COUNT(*) > 2

To have the system return the results in DEPTNO order, type:

DECLARE C1 CURSOR FOR

SELECT DEPARTMENT.DEPTNO, MGRNO, SUM(ACSTAFF), COUNT(*)

FROM DEPARTMENT, PROJECT, PROJ_ACT

WHERE DEPARTMENT.DEPTNO = PROJECT.DEPTNO

AND PROJECT.PROJNO = PROJ_ACT.PROJNO

AND PRENDATE >= ’2000-01-01’

DECLARE C1 CURSOR FOR

SELECT DEPARTMENT.DEPTNO, MGRNO, SUM(ACSTAFF), COUNT(*)

FROM DEPARTMENT, PROJECT, PROJ_ACT

WHERE DEPARTMENT.DEPTNO = PROJECT.DEPTNO

AND PROJECT.PROJNO = PROJ_ACT.PROJNO

AND PRENDATE >= ’2000-01-01’

GROUP BY DEPARTMENT.DEPTNO, MGRNO

HAVING COUNT(*) > 2

ORDER BY 1

Chapter 3. Coding the Body of a Program 75

Now you must position the cursor and identify the corresponding host variables

used in your program:

 OPEN C1

 FETCH C1 INTO :DEPT, :MGRN, :TOTSTAFF, :NUMACT

 CLOSE C1

By incorporating the FETCH statement in a suitable host program loop along with

an appropriate output command, this query produces the following result:

Nesting Queries

In all previous queries, the WHERE clause contained search conditions that the

database manager used to choose rows for computing expressions in the select-list.

A query can refer to a value or set of values computed by another query (called a

subquery).

Consider this query which finds all the activities for project IF1000:

 SELECT ACTNO, ACSTAFF

 FROM PROJ_ACT

 WHERE PROJNO = ’IF1000’

Suppose that you want to modify the query so it finds the activities for project

IF1000 whose estimated mean number of employees is greater than the minimum

estimated mean for that project.

The problem involves two queries:

 DEPTNO MGRNO SUM(ACSTAFF) COUNT(EXPRESSION 1)

 ------ ------ ----------------- -------------------

 C01 000030 5.75 10

 D01 ? 2.00 3

 D21 000070 25.40 32

 E21 000100 4.00 7

76 Application Programming

A pseudocode solution for the problem is as follows:

 You can arrive at the same result by using a single query with a subquery.

Subqueries must be enclosed in parentheses, and may appear in a WHERE clause

or a HAVING clause. The result of the subquery is substituted directly into the

1. Find the minimum estimated mean number
of employees for project IF1000

SELECT MIN (ACSTAFF)

INTO :MINSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'

2. Find quotations for project number IF1000
find the estimated mean number of
employees needed to staff the activity.

DECLARE C1 CURSOR FOR
SELECT ACTNO, ACSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'

AND ACSTAFF > ?

OPEN C1
FETCH C1 INTO :AN, :AS
CLOSE C1

EXEC SQL SELECT MIN (ACSTAFF)

INTO :MINSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'

EXEC SQL DECLARE C1 CURSOR FOR

SELECT ACTNO, ACSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'
AND ACSTAFF > :MINSTAFF

EXEC SQL OPEN C1
EXEC SQL FETCH C1 INTO :AN, : AS
DO WHILE (SQLCODE=0)

DISPLAY (AN, AS)
EXEC SQL FETCH C1 INTO :AN, :AS

END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1

Initialize ACSTAFF

Declare cursor using
a subquery that
retrieves quotations

Retrieve quotations

Chapter 3. Coding the Body of a Program 77

outer-level predicate in which the subquery appears; thus, there must not be an

INTO clause in a subquery. For example, this query solves the above problem:

 The example subquery above is indented for ease of reading. Remember, however,

that the syntax of SQL is fully linear and no syntactic meaning is carried by

indentation or by breaking a query into several lines.

By using a subquery, the pseudocode is simplified:

 The subquery above returns a single value MIN(ACSTAFF) to the outer-level

query. Subqueries can return either a single value, no value, or a set of values; each

variation has different considerations. In any case, a subquery must have only a

single column or expression in its select-list, and must not have an ORDER BY

clause.

Returning a Single Value: If a subquery returns a single value, as the one subquery

above did, you can use it on the right side of any predicate in the WHERE clause

or HAVING clause.

Returning No Value: If a subquery returns no value (an empty set), the outer-level

predicate containing the subquery evaluates to the unknown truth-value.

Returning Many Values: If a subquery returns more than one value, you must

modify the comparison operators in your predicate by attaching the suffix ALL,

ANY, or SOME. These suffixes determine how the set of values returned is to be

DECLARE C1 CURSOR FOR
SELECT ACTNO, ACSTAFF
FROM PROJ_ACT
WHERE PROJNO = 'IF1000'
AND ACSTAFF >

(SELECT MIN(ACSTAFF)
FROM PROJ_ACT
WHERE PROJNO = 'IF1000')

OPEN C1
FETCH C1 INTO :AN, :AS
CLOSE C1

Outer-Level Query

Subquery

EXEC SQL DECLARE C1 CURSOR FOR

 SELECT ACTNO, ACSTAFF

 FROM PROJ_ACT

 WHERE PROJNO = ’IF1000’

 AND ACSTAFF >

 (SELECT MIN(ACSTAFF)

 FROM PROJ_ACT

 WHERE PROJNO = ’IF1000’)

EXEC SQL OPEN C1

EXEC SQL FETCH C1 INTO :AN, : AS

DO WHILE (SQLCODE=0)

 DISPLAY (AN, AS)

 EXEC SQL FETCH C1 INTO :AN, :AS

END-DO

DISPLAY (’END OF LIST’)

EXEC SQL CLOSE C1

78 Application Programming

treated in the outer-level predicate. The > comparison operator is used as an

example (the remarks below apply to the other operators as well):

expression > (subquery)

denotes that the subquery must return one value at most (otherwise an error

condition results). The predicate is true if the given column is greater than the

value returned by the subquery.

expression >ALL (subquery)

denotes that the subquery may return a set of zero, one, or more values. The

predicate is true if the given column is greater than each individual value in

the returned set. If the subquery returns no values, the predicate is true.

expression >ANY (subquery)

denotes that the subquery may return a set of zero, one, or more values. The

predicate is true if the given column is greater than at least one of the values

in the set. If the subquery returns no values, the predicate is false.

expression >SOME (subquery)

SOME and ANY are synonymous.

The following example uses a > ALL comparison to find those projects with

activities whose estimated mean number of employees is greater than all of the

corresponding numbers for project AD3111:

Using the IN Predicate with a Subquery

Your query can also use the operators IN and NOT IN when a subquery returns a

set of values. For example, the following query lists the surnames of employees

responsible for projects MA2100 and OP2012:

DECLARE C1 CURSOR FOR

SELECT PROJNO, ACTNO

FROM PROJ_ACT

WHERE ACSTAFF > ALL

 (SELECT ACSTAFF

 FROM PROJ_ACT

 WHERE PROJNO = ’AD3111’)

OPEN C1

FETCH C1 INTO :PN, :AN

CLOSE C1

DECLARE C1 CURSOR FOR

SELECT LASTNAME

FROM EMPLOYEE

WHERE EMPNO IN

 (SELECT RESPEMP

 FROM PROJECT

 WHERE PROJNO = ’MA2100’

 OR PROJNO = ’OP2012’)

OPEN C1

FETCH C1 INTO :LNAME

CLOSE C1

Chapter 3. Coding the Body of a Program 79

The subquery is evaluated once, and the resulting list is substituted directly into

the outer-level query. For example, if the subquery above selects employee

numbers 60 and 330, the outer-level query is evaluated as if its WHERE clause

were:

 WHERE EMPNO IN (60, 330)

The list of values returned by the subquery can contain zero, one, or more values.

The operator IN is equivalent to =ANY, and NOT IN is equivalent to <>ALL.

Considering Other Subquery Issues

A subquery can contain GROUP BY or HAVING clauses. If it is linked by an

unmodified comparison operator such as = or >, the subquery may return one

group. If it is linked by a modified comparison operator ALL, ANY, or SOME,

[NOT] IN, or [NOT] EXISTS , it may return more than one group.

A subquery may include a join, a grouping, or one or more inner-level subqueries.

You may include many subqueries in the same outer-level query, each in its own

predicate and enclosed in parentheses.

Executing Subqueries Repeatedly: Correlation

In all the examples of subqueries above, the subquery is evaluated only once and

the resulting value or set of values is substituted into the outer-level predicate. For

example, recall this query from the previous section:

 This query finds the activities for project IF1000 whose estimated mean number of

employees is greater than the minimum estimated mean for that project. Now

consider the following problem:

Find the project and activity numbers for activities that have an estimated mean

number of employees that is less than the average estimated mean for that activity as

calculated across all projects.

The subquery needs to be evaluated once for every activity number. You can do

this by using the correlation capability of SQL, which permits you to write a

subquery that is executed repeatedly, once for each row of the table identified in the

outer-level query. This type of “correlated subquery” computes some property of

each row of the outer-level table that is needed to evaluate a predicate in the

subquery.

In the first query, the subquery was evaluated once for a particular project; in the

new problem, it must be evaluated once for every activity. One way to solve the

problem is to place the query in a cursor definition and open the cursor once for

each different activity. The activities are determined by using a separate cursor.

 DECLARE C1 CURSOR FOR

 SELECT ACTNO, ACSTAFF

 FROM PROJ_ACT

 WHERE PROJNO = ’IF1000’

 AND ACSTAFF >

 (SELECT MIN(ACSTAFF)

 FROM PROJ_ACT

 WHERE PROJNO = ’IF1000’)

80 Application Programming

Here is a pseudocode solution:

 By using a correlated subquery, you can let the system do the work for you and

reduce the amount of code you need to write.

Writing a Correlated Subquery

To write a query with a correlated subquery, you use the same basic format as an

ordinary outer query with a subquery. However, in the FROM clause of the outer

query, just after the table name, you place a correlation_name. (See “Joining a Table

to Itself Using a Correlation Name” on page 68 for more information on correlation

names.) The subquery may then contain column references qualified by the

correlation_name. For example, if X is a correlation_name, then “X.ACTNO” means

“the ACTNO value of the current row of the table in the outer query.” The

subquery is (conceptually) reevaluated for each row of the table in the outer query.

The following query solves the problem presented earlier. That is, it finds the

project and activity numbers for activities that have an estimated mean number of

employees that is less than the average estimated mean for that activity, as

calculated across all projects.

 SELECT PROJNO,ACTNO,ACSTAFF

 FROM PROJ_ACT X

 WHERE ACSTAFF < (SELECT AVG(ACSTAFF)

 FROM PROJ_ACT

 WHERE ACTNO = X.ACTNO)

EXEC SQL OPEN QUERY1
EXEC SQL FETCH QUERY1 INTO :ACTNO
DO WHILE (SQLCODE = 0)

END-DO
EXEC SQL CLOSE QUERY1
DISPLAY ('END OF LIST')

EXEC SQL DECLARE QUERY1 CURSOR FOR

EXEC SQL DECLARE QUERY2 CURSOR FOR

SELECT DISTINCT ACTNO
FROM PROJ_ACT

SELECT PROJNO, ACSTAFF
FROM PROJ_ACT
WHERE ACTNO = :ACTNO
AND ACSTAFF <

(SELECT AVG(ACSTAFF)
FROM PROJ_ACT
WHERE ACTNO = :ACTNO)

EXEC SQL OPEN QUERY2
EXEC SQL FETCH QUERY2

INTO :PROJNO, :ACSTAFF
DO WHILE (SQLCODE = 0)

DISPLAY (PROJNO, ACTNO, ACSTAFF)
EXEC SQL FETCH QUERY2 INTO :PROJNO, :ACSTAFF

END-DO
EXEC SQL CLOSE QUERY2
SQLCODE = 0
EXEC SQL FETCH QUERY1 INTO :ACTNO

Get the next
activity.

Evaluate the query
for that activity

Get an activity

Retrieve all activity
numbers in PROJ_ACT
(eliminate duplicates)

Retrieve PROJNO and
ACSTAFF for activities
that have fewer employees
than the average for
that activity

Chapter 3. Coding the Body of a Program 81

The pseudocode for the correlated subquery solution is:

How the Database Manager Does Correlation

Conceptually, the query is evaluated as follows:

1. PROJ_ACT, the table identified with the correlation_name X, is placed to the side

for reference. Let this table be called X, because it is the correlation table.

2. The system identifies X.ACTNO with the X table, and uses the values in that

column to evaluate the query. (The entire query is evaluated once for every

ACTNO in the X table.)

 Note: ACTNO = X.ACTNO is not used in the WHERE clause of the outer-level

query as it was in the uncorrelated subquery, because the system keeps track

of the X.ACTNO for which it is evaluating the query.

Suppose another condition is added to the problem:

Find the project and activity numbers for activities that have an estimated end date

after January 1, 2000 and have an estimated mean number of employees that is less than

the average estimated mean for that activity.

The new query is:

EXEC SQL DECLARE QUERY CURSOR FOR

 SELECT PROJNO,ACTNO,ACSTAFF

 FROM PROJ_ACT X

 WHERE ACSTAFF < (SELECT AVG(ACSTAFF)

 FROM PROJ_ACT

 WHERE ACTNO = X.ACTNO)

EXEC SQL OPEN QUERY

EXEC SQL FETCH QUERY INTO :PROJNO, :ACTNO, :ACSTAFF

DO WHILE (SQLCODE=0)

 DISPLAY (PROJNO, ACTNO, ACSTAFF)

 EXEC SQL FETCH QUERY INTO :PROJNO, :ACTNO, :ACSTAFF

END-DO

DISPLAY (’END OF LIST’)

EXEC SQL CLOSE QUERY

EXEC SQL DECLARE QUERY CURSOR FOR

SELECT PROJNO, ACTNO, ACSTAFF
FROM PROJ_ACT X
WHERE ACSTAFF <

(SELECT AVG(ACSTAFF)
FROM PROJ_ACT
WHERE ACTNO = X.ACTNO)

EXEC SQL OPEN QUERY
EXEC SQL FETCH QUERY INTO :PN, :AN., :AS
EXEC SQL CLOSE QUERY

PROJNO ACTNO ACSTAFF

AD3100
AD3110

10
10
60

.

.
.
.

.

.

0.50
1.00
0.80

X

82 Application Programming

The X table in this query is slightly different. Conceptually, whenever there are

other conditions besides the one containing the subquery, they are applied to the

correlation table first. The X table that is derived from the PROJ_ACT table is:

 The values 70, 80, and 130 are used for X.ACTNO. Similarly, if you include a

GROUP BY clause in the outer-level query, that grouping is applied to the

conceptual correlation table first. Thus, if you use a correlated subquery in a

HAVING clause, it is evaluated once per group of the conceptual table (as defined

by the outer-level query’s GROUP BY clause). When you use a correlated subquery

in a HAVING clause, the correlated column-reference in the subquery must be a

property of each group (that is, must be either the group-identifying column or

another column used with a column function).

The use of a column function with a correlated reference in a subquery is called a

correlated function. The argument of a correlated function must be exactly one

correlated column (for example, X.ACSTAFF), not an expression. A correlated

function may specify the DISTINCT option; for example: COUNT(DISTINCT

X.ACTNO). If so, the DISTINCT counts as the single permitted DISTINCT

specification for the outer-level query-block (remember that each query-block may

use DISTINCT only once). For information on query-block, refer to the DB2 Server

for VSE & VM Database Administration manual.

Illustrating a Correlated Subquery

When would you want to use a correlated subquery? The use of a column function

is sometimes a clue. Consider this problem:

List the employees whose level of education is higher than the average for their

department.

First you must determine the select-list items. The problem says to “List the

employees”. This implies that the query should return something to identify the

EXEC SQL DECLARE QUERY CURSOR FOR

SELECT PROJNO, ACTNO, ACSTAFF

FROM PROJ_ACT X

WHERE ACENDATE > ’2000-01-01’

AND ACSTAFF <

 (SELECT AVG(ACSTAFF)

 FROM PROJ_ACT

 WHERE ACTNO = X.ACTNO)

EXEC SQL OPEN QUERY

EXEC SQL FETCH QUERY INTO :PN, :AN., :AS

EXEC SQL CLOSE QUERY

 PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

 ------ ------ ------- ---------- ----------

 AD3111 80 1.25 1999-04-15 2000-01-15

 MA2112 70 1.50 1999-02-15 2000-02-01

 MA2113 70 2.00 1999-04-01 2000-12-15

 MA2113 80 1.50 1999-09-01 2000-02-01

 OP1010 130 4.00 1999-01-01 2000-02-01

Only rows with an ACENDATE greater than '2000-01-01' are included

in this "correlation table".

Chapter 3. Coding the Body of a Program 83

employees. LASTNAME from the EMPLOYEE table should be sufficient. The

problem also discusses the level of education (EDLEVEL) and the employees’

departments (WORKDEPT). While the problem does not explicitly ask for these

columns, including them in the select-list will help illustrate the solution. A part of

the query can now be constructed:

 SELECT LASTNAME, WORKDEPT, EDLEVEL

 FROM EMPLOYEE

Next, a search condition (WHERE clause) is needed. The problem statement says,

“...whose level of education is higher than the average for that employee’s

department”. This means that for every employee in the table, the average

education level for that employee’s department must be computed. This statement

fits the description of a correlated subquery. Some property (average level of

education of the current employee’s department) is being computed for each row.

A correlation_name is needed on the EMPLOYEE table:

 SELECT LASTNAME, WORKDEPT, EDLEVEL

 FROM EMPLOYEE Y

The subquery needed is simple; it computes the average level of education for each

department:

 The complete SQL statement is:

SELECT AVG(EDLEVEL)
FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT

This clause tells the database
manager to compute the subquery
once for each employee in the
outer- level query table.

SELECT LASTNAME, WORKDEPT, EDLEVEL

 FROM EMPLOYEE Y

 WHERE EDLEVEL >

 (SELECT AVG(EDLEVEL)

 FROM EMPLOYEE

 WHERE WORKDEPT = Y.WORKDEPT)

This will produce the following:

 LASTNAME WORKDEPT EDLEVEL

 --------------- -------- -------

 HAAS A00 18

 KWAN C01 20

 PULASKI D21 16

 HENDERSON E11 16

 LUCCHESI A00 19

 PIANKA D11 17

 SCOUTTEN D11 17

 JONES D11 17

 LUTZ D11 18

 MARINO D21 17

 JOHNSON D21 16

 SCHNEIDER E11 17

 MEHTA E21 16

 GOUNOT E21 16

84 Application Programming

Suppose that instead of listing the employee’s department number, you list the

department name. A glance at the sample tables will tell you that the information

you need (DEPTNAME) is in a separate table (DEPARTMENT). The outer-level

query that defines a correlation variable can also be a join query.

When you use joins in an outer-level query, list the tables to be joined in the

FROM clause, and place the correlation_name next to one of these table names.

To modify the query to list the department’s name instead of the number, replace

WORKDEPT by DEPTNAME in the select-list. The FROM clause must now also

include the DEPARTMENT table, and the WHERE clause must express the

appropriate join condition.

This is the modified query:

 This will produce the following:

 The above examples show that the correlation_name used in a subquery must be

defined in the FROM clause of some query that contains the correlated subquery.

However, this containment may involve several levels of nesting. Suppose that

some departments have only a few employees and therefore their average

education level may be misleading. You might decide that in order for the average

level of education to be a meaningful number to compare an employee against,

there must be at least five employees in a department. The new statement of the

problem is:

List the employees whose level of education is higher than the average for that

employee’s department. Only consider departments with at least five employees.

SELECT LASTNAME, DEPTNAME, EDLEVEL

 FROM EMPLOYEE Y, DEPARTMENT

 WHERE Y.WORKDEPT = DEPARTMENT.DEPTNO

 AND EDLEVEL >

 (SELECT AVG(EDLEVEL)

 FROM EMPLOYEE

 WHERE WORKDEPT = Y.WORKDEPT)

 LASTNAME DEPTNAME EDLEVEL

 --------------- ------------------------------------ -------

 HAAS SPIFFY COMPUTER SERVICE DIV. 18

 LUCCHESI SPIFFY COMPUTER SERVICE DIV. 19

 KWAN INFORMATION CENTER 20

 PIANKA MANUFACTURING SYSTEMS 17

 SCOUTTEN MANUFACTURING SYSTEMS 17

 JONES MANUFACTURING SYSTEMS 17

 LUTZ MANUFACTURING SYSTEMS 18

 PULASKI ADMINISTRATION SYSTEMS 16

 MARINO ADMINISTRATION SYSTEMS 17

 JOHNSON ADMINISTRATION SYSTEMS 16

 HENDERSON OPERATIONS 16

 SCHNEIDER OPERATIONS 17

 MEHTA SOFTWARE SUPPORT 16

 GOUNOT SOFTWARE SUPPORT 16

Chapter 3. Coding the Body of a Program 85

The problem implies another subquery because, for each employee in the

outer-level query, the total number of employees in that persons department must

be counted:

 SELECT COUNT(*)

 FROM EMPLOYEE

 WHERE WORKDEPT = Y.WORKDEPT

Only if the count is greater than or equal to 5 is an average to be computed:

 SELECT AVG(EDLEVEL)

 FROM EMPLOYEE

 WHERE WORKDEPT = Y.WORKDEPT

 AND 5 <=

 (SELECT COUNT(*)

 FROM EMPLOYEE

 WHERE WORKDEPT = Y.WORKDEPT)

Finally, only those employees whose level of education is greater than the average

for that department are included:

 This will produce the following:

 Note: The above query is different from the previous correlated subqueries in that

the first subquery may return no values. Suppose that a department with

three employees is being evaluated.

Working from bottom to top, the following occurs:

SELECT LASTNAME, DEPTNAME, EDLEVEL

 FROM EMPLOYEE Y, DEPARTMENT

 WHERE Y.WORKDEPT = DEPARTMENT.DEPTNO

 AND EDLEVEL >

 (SELECT AVG(EDLEVEL)

 FROM EMPLOYEE

 WHERE WORKDEPT = Y.WORKDEPT

 AND 5 <=

 (SELECT COUNT(*)

 FROM EMPLOYEE

 WHERE WORKDEPT = Y.WORKDEPT));

 LASTNAME DEPTNAME EDLEVEL

 --------------- ------------------------------------ -------

 PIANKA MANUFACTURING SYSTEMS 17

 SCOUTTEN MANUFACTURING SYSTEMS 17

 JONES MANUFACTURING SYSTEMS 17

 LUTZ MANUFACTURING SYSTEMS 18

 PULASKI ADMINISTRATION SYSTEMS 16

 MARINO ADMINISTRATION SYSTEMS 17

 JOHNSON ADMINISTRATION SYSTEMS 16

 HENDERSON OPERATIONS 16

 SCHNEIDER OPERATIONS 17

86 Application Programming

The inner-most subquery evaluates to 3. Thus, the expression “AND 5 <= 3” is

false. Because that expression is false, no rows satisfy the search condition of the

next subquery, and a null value is returned to the outer-most query. This causes

the predicate “EDLEVEL > subquery)” to evaluate to the unknown truth value.

The join condition “Y.WORKDEPT = DEPARTMENT.DEPTNO”, however, is

always true:

 The following figure is the “AND” truth table for search conditions; “TRUE AND

UNKNOWN” causes the search condition in the query to be “UNKNOWN,” as

indicated above.

SELECT LASTNAME, DEPTNAME, EDLEVEL
FROM EMPLOYEE Y, DEPARTMENT
WHERE Y . WORKDEPT = DEPARTMENT . DEPTNO

AND EDLEVEL > NULL Predicate is unknown

(SELECT AVG(EDLEVEL)

FROM EMPLOYEE
WHERE WORKDEPT = Y.WORKDEPT

AND 5 <= 3 Predicate is false

(SELECT COUNT(*)

FROM EMPLOYEE

WHERE WORKDEPT = ' A00 '))

WHERE Y.WORKDEPT = DEPARTMENT.DEPTNO AND EDLEVEL > (subquery)

"TRUE" AND "UNKNOWN"

"UNKNOWN"

Chapter 3. Coding the Body of a Program 87

No rows satisfy the search condition, so no employee is listed for department A00;

exactly the result wanted in this case.

Using a Subquery to Test for the Existence of a Row

You can use a subquery to test for the existence of a row satisfying some condition.

In this case, the subquery is linked to the outer-level query by the predicate

EXISTS or NOT EXISTS. (Refer to the DB2 Server for VSE & VM SQL Reference

manual for the syntax of the EXISTS predicate.)

When you link a subquery to an outer query by an EXISTS predicate, the subquery

does not return a value. Rather, the EXISTS predicate is true if the answer set of

the subquery contains one or more rows, and false if it contains no rows.

The EXISTS predicate is often used with correlated subqueries. The example below

lists the departments that currently have no entries in the PROJECT table:

 You may connect the EXISTS and NOT EXISTS predicates to other predicates by

using AND and OR in the WHERE clause of the outer-level query.

Table Designation Rule for Correlated Subqueries

Unqualified correlated references are allowed. For example, assume that table EMP

has a column named SALARY and that table DEPT has a column named BUDGET,

but no column named SALARY.

 SELECT * FROM EMP

 WHERE EXISTS (SELECT * FROM DEPT

 WHERE BUDGET < SALARY)

In this example, the system checks the innermost FROM clause for a SALARY

column. Not finding one, it then checks the next innermost FROM clause (which in

T

F

?

T F ?AND

T

F

?

F

F

F

?

F

?

DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME

FROM DEPARTMENT X

WHERE NOT EXISTS

 (SELECT *

 FROM PROJECT

 WHERE DEPTNO = X.DEPTNO)

ORDER BY DEPTNO

88 Application Programming

this case is the outer FROM clause). It is only necessary to use a qualified

correlated reference when you want the system to ignore a column with the same

name in the innermost tables.

To assist you in these situations, a warning message SQLCODE +12 (SQLSTATE

'01545') is issued whenever an SQL statement is executed that contains an

unqualified correlated reference in a subquery.

Combining Queries into a Single Query: UNION

The UNION operator enables you to combine two or more outer-level queries into

a single query. Each of the queries connected by UNION is executed to produce an

answer set; these answer sets are then combined, and duplicate rows are

eliminated from the result.

When ALL is used with UNION (that is, UNION ALL), duplicate rows are not

eliminated when two or more outer-level queries are combined into a single query.

If you are using the ORDER BY clause, you must write it after the last query in the

UNION. The system applies the ordering to the combined answer set before it

delivers the results to your program using the usual cursor mechanism.

It is possible (though unusual) to write a query using the UNION operator that

does not return results with a cursor. In this instance, only one row must be

retrieved from the tables, and an INTO clause must be placed only in the first

query.

The UNION operator is useful when you want to merge lists of values derived

from two or more tables and eliminate any duplicates from the final result.

UNION ALL will give better performance, however, because no internal sort is

done. This sort is done with the UNION operator to facilitate the elimination of

duplicates.

When both UNION and UNION ALL are used in the same query, processing is

from left-to-right. If the last union operation is UNION, the duplicates will be

eliminated from the final results; if it is UNION ALL, the duplicates will not be

eliminated. However, the left-to-right priority can be altered by the use of

parenthesis. A parenthesized subselect is evaluated first, followed, from

left-to-right, by the other components of the statement. For example, the results of

the following two queries, where A, B, and C are subselects, could be quite

different:

 A UNION (B UNION ALL C)

 (A UNION B) UNION ALL C

In the following example, the query returns all projects for which the estimated

mean number of employees is greater than 0.50, and it returns all the projects

where the proportion of employee time spent on the project is greater than 0.50:

Chapter 3. Coding the Body of a Program 89

The database manager combines the results of both queries, eliminates the

duplicates, and returns the final result in ascending order.

Note: The ascending order is a direct result of the internal sort, which is

performed to facilitate the elimination of duplicates.

 To connect queries by the UNION operator, you must ensure that they obey the

following rules:

v All corresponding items in the select-lists of the queries in the union must be

compatible.

v An ORDER BY clause, if used, must be placed after the last query in the union.

The order-list must contain only integers, not column names. In the example

query above, ORDER BY 1 is acceptable, but ORDER BY PROJNO is not.

 SELECT PROJNO,’MEAN’

 FROM PROJ_ACT

 WHERE ACSTAFF > .50

 UNION

 SELECT PROJNO,’PROPORTION’

 FROM EMP_ACT

 WHERE EMPTIME > .50

 PROJNO EXPRESSION

 ------ ------------

 AD3110 MEAN

 AD3110 PROPORTION

 AD3111 MEAN

 AD3111 PROPORTION

 AD3112 MEAN

 AD3112 PROPORTION

 AD3113 MEAN

 AD3113 PROPORTION

 IF1000 MEAN

 IF1000 PROPORTION

 IF2000 MEAN

 IF2000 PROPORTION

 MA2100 MEAN

 MA2100 PROPORTION

 MA2110 MEAN

 MA2110 PROPORTION

 MA2111 MEAN

 MA2111 PROPORTION

 MA2112 MEAN

 MA2112 PROPORTION

 MA2113 MEAN

 MA2113 PROPORTION

 OP1010 MEAN

 OP1010 PROPORTION

 OP2000 MEAN

 OP2010 MEAN

 OP2010 PROPORTION

 OP2011 MEAN

 OP2011 PROPORTION

 OP2012 MEAN

 OP2012 PROPORTION

 PL2100 MEAN

 PL2100 PROPORTION

90 Application Programming

v None of the queries in a union may select long strings.

v A union may not be specified inside a subquery.

v A union may not be used in the definition of a view.

v VARCHAR and VARGRAPHIC values that differ only by trailing blanks are

considered equal. One of the values will be eliminated as a duplicate value

unless UNION ALL is selected.

Unions between columns that have the same data type and the same length

produce a column with that type and length. If they are not of the same type and

length but they are union-compatible, the resulting column-type is a combination

of the two original columns.

The results of a UNION between two union-compatible items is summarized

below. The first row and first column of the table represent the data-type of the

first and second columns of the UNION join.

String Columns

 CHAR VARCHAR GRAPHIC VARGRAPHIC

CHAR CHAR VARCHAR ERROR ERROR

VARCHAR VARCHAR VARCHAR ERROR ERROR

GRAPHIC ERROR ERROR GRAPHIC VARGRAPHIC

VARGRAPHIC ERROR ERROR VARGRAPHIC VARGRAPHIC

The length attribute of the resulting column will be the greater of the length

attributes of the original columns.

The UNION operators between columns that have the same character subtype and

CCSID produce a column with that subtype and CCSID. If they do not have the

same subtype and CCSID, the resulting subtype and CCSID are determined

following specific rules. For a detailed discussion of these rules, refer to the DB2

Server for VSE & VM SQL Reference manual.

Numeric Columns

 SMALLINT INTEGER DECIMAL SINGLE

PRECISION

DOUBLE

PRECISION

SMALLINT SMALLINT INTEGER DECIMAL DOUBLE

PRECISION

DOUBLE

PRECISION

INTEGER INTEGER INTEGER DECIMAL DOUBLE

PRECISION

DOUBLE

PRECISION

DECIMAL DECIMAL DECIMAL DECIMAL DOUBLE

PRECISION

DOUBLE

PRECISION

SINGLE

PRECISION

DOUBLE

PRECISION

DOUBLE

PRECISION

DOUBLE

PRECISION

SINGLE

PRECISION

DOUBLE

PRECISION

DOUBLE

PRECISION

DOUBLE

PRECISION

DOUBLE

PRECISION

DOUBLE

PRECISION

DOUBLE

PRECISION

DOUBLE

PRECISION

When both of the original columns are DECIMAL data-types, special rules apply

for determining the scale and precision of the resulting column.

Chapter 3. Coding the Body of a Program 91

Where s is the scale of the first column of the UNION join, s’ is the scale of the

second column, p is the precision of the first column, and p’ is the precision of the

second, the resulting column’s precision is:

MIN(31,MAX(s , s’) + MAX(p-s , p’-s’))

The scale of the resulting column is the maximum scale of the original columns of

the UNION join, MAX(s, s’).

When a UNION is performed on a DECIMAL and either an INTEGER or

SMALLINT column, the resulting column’s scale and precision can be calculated

with the previous formulas. However, remember to substitute 11 and 0 for the

precision and scale of an INTEGER column, and 5 and 0 for a SMALLINT column.

Datetime/Timestamp Columns

 DATE TIME TIMESTAMP

DATE DATE ERROR ERROR

TIME ERROR TIME ERROR

TIMESTAMP ERROR ERROR TIMESTAMP

Note: CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are not

union-compatible with DATE, TIME, or TIMESTAMP.

SQL Comments within Static SQL Statements

You can use a comment as a separator within static SQL statements written in the

various host languages. This comment is referred to as an SQL comment (as

opposed to host language comments), and is identified by two consecutive

hyphens (--) on the same line, not separated by a space and not part of a literal, a

string of DBCS characters, a quoted identifier, or an embedded host language

comment. In COBOL, the two hyphens must be preceded by a blank. The comment

ends at the end of the line.

Here is the sample query from the previous discussion on UNION, documented

with a few SQL comments:

 SELECT PROJNO,’MEAN’

 FROM PROJ_ACT -- PROJECT ACTIVITY TABLE

 WHERE ACSTAFF > .50

 -- FIRST QUERY IS FOR ESTIMATED MEAN NUMBER OF EMPLOYEES

 UNION

 -- SECOND QUERY IS FOR PROPORTION OF EMPLOYEE TIME

 SELECT PROJNO,’PROPORTION’

 FROM EMP_ACT -- EMPLOYEE ACTIVITY TABLE

 WHERE EMPTIME > .50

The DB2 Server for VSE & VM SQL Reference manual for the detailed syntax rules

on the use of SQL comments within application programs.

Using Stored Procedures

A stored procedure is a user-written application program that is compiled and

stored at the server. When the database manager is running in multiple user mode,

local applications or remote DRDA applications can invoke the stored procedure.

Since the SQL statements issued by a stored procedure are local to the server, they

92 Application Programming

do not incur the high network costs of distributed statements. Instead, a single

network send and receive operation is used to invoke a series of SQL statements

contained in the stored procedure.

Figure 21 and Figure 22 illustrate how the use of stored procedures reduces

network traffic by decreasing the number of commands that flow between the

application requester and the application server.

 For information on the stored procedure environment, including stored procedure

servers, refer to the DB2 Server for VSE & VM Database Administration manual.

There are several other benefits that can be gained through the use of stored

procedures, including:

v In many applications, the integrity of the host variables used in SQL statements

is critical to the business function provided by the application. For example, a

 Application Server

 Application Requester ┌──────────────────────────┐

 ┌───────────────────────┐ │ │

 │ │ │ │

 │ EXEC SQL CREATE ├──────────► │ Process statement and │

 │ TABLE ... │◄───────────┤ return SQLCA │

 │ │ │ │

 │ EXEC SQL INSERT ... ├──────────► │ Process statement and │

 │ │◄───────────┤ return SQLCA │

 │ │ │ │

 │ EXEC SQL COMMIT ├──────────► │ Process statement and │

 │ WORK ... │◄───────────┤ return SQLCA │

 │ │ │ │

 └───────────────────────┘ │ │

 └──────────────────────────┘

Figure 21. Without Stored Procedures

 Application Server Stored Procedure Server

 ┌───────────────────────┐ ┌────────────────────────┐

 Application Requester │ │ │ │

 ┌───────────────────┐ │ │ │ │

 │ │ │ │ │ │

 │ EXEC SQL CALL ... ├────►│Send request to stored ├───►│Invoke stored procedure │

 │ │ │procedure server │ │application │

 │ │ │ │ │ │

 │ │ │Process statement and │◄───┤EXEC SQL INSERT ... │

 │ │ │return SQLCA ├───►│ │

 │ │ │ │ │ │

 │ │ │Process statement and │◄───┤EXEC SQL UPDATE ... │

 │ │ │return SQLCA ├───►│ │

 │ │ │ │ │ │

 │ Process results │◄────┤Return results to │◄───┤Stored procedure │

 │ │ │application requester │ │completes and returns │

 │ │ │ │ │results │

 │ │ │ │ │ │

 │ EXEC SQL COMMIT ├────►│Process statement and │ │ │

 │ WORK ... │◄────┤return SQLCA │ │ │

 └───────────────────┘ │ │ │ │

 └───────────────────────┘ └────────────────────────┘

Figure 22. With Stored Procedures

Chapter 3. Coding the Body of a Program 93

debit/credit application might need to guarantee that the host variable values do

not change between debit and credit operations. In these applications, the

application designer would like to guarantee that sophisticated users cannot

employ online debugging tools to manipulate the content of SQL statements or

host variables used by the SQL application. By using stored procedures, the

application designer can encapsulate the application’s SQL statements into a

single message to the server, which moves the sensitive processing beyond the

reach of even the most sophisticated workstation user.

v Stored procedures can be used to hide the details of the database design from

client applications. In addition to simplifying the writing of client applications,

this means that if the database design is changed, only the stored procedure

needs to be modified. The more client applications that use the stored procedure,

the greater the benefit.

v Stored procedures can be used to hide sensitive data from application programs.

v Business logic can be encapsulated at the server, rather than being included in

numerous application programs.

v It is easier to maintain an environment in which applications are kept at the

server rather than spread across a number of requesters.

Writing Stored Procedures

Stored procedure that are to be used on a DB2 Server for VSE & VM database can

be written in PL/I, COBOL, C, or Assembler. Stored procedures are very much like

regular application programs, with the following exceptions:

v They must be LE compliant

v They cannot contain the following SQL statements: CONNECT, COMMIT,

ROLLBACK, or CALL

Note: Stored procedures must be written as MAIN programs; they cannot be SUB

programs.

The following is an example of a simple stored procedure. It contains one SQL

statement that SELECTs the salary of a given employee from the

SQLDBA.EMPLOYEE table. The employee number is provided as input, and the

salary and the SQLCODE for the SELECT statement are returned.

94 Application Programming

The following is an example of a CALL statement that could be used to invoke the

procedure shown above:

 CALL SAMP_PROC (’000250’, :SALARY, :SQLCD)

The SQL CALL statement is discussed in more detail in “Calling Stored

Procedures” on page 96.

Returning Information from the SQLCA

Information about the execution of SQL statements within a stored procedure is

not returned to the application that invoked the stored procedure. If SQLCODE,

SQLSTATE, or any other information from the SQLCA is required by the calling

application, that information must be included in the parameter list of the stored

procedure and the parameters must be set explicitly in the stored procedure. This

is because there are many situations in which a negative SQLCODE does not

necessarily indicate a problem (such as dropping a table that does not exist). The

person who writes the stored procedure application must determine what

SQLCODEs should be returned to the caller.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. SAMP1.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 DATA DIVISION.

 FILE SECTION.

 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 CHAR6HV PIC X(6).

 01 SALHV PIC S9(7)V9(2) COMPUTATIONAL-3.

 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 LINKAGE SECTION.

 01 CHAR6 PIC X(6).

 01 SALARY PIC S9(7)V9(2) COMPUTATIONAL-3.

 01 SQLCD PIC S9(9) COMP.

 PROCEDURE DIVISION USING CHAR6 SALARY SQLCD.

 * TURN OFF SQL EXCEPTION PROCESSING *

 EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.

 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

 MOVE CHAR6 TO CHAR6HV.

 EXEC SQL

 SELECT SALARY INTO :SALHV FROM SQLDBA.EMPLOYEE

 WHERE EMPNO = :CHAR6HV

 END-EXEC.

 MOVE SALHV TO SALARY.

 MOVE SQLCODE TO SQLCD.

 STOP RUN.

Chapter 3. Coding the Body of a Program 95

See “Writing Stored Procedures” on page 94 for an example of a stored procedure

that returns an SQLCODE.

Language Environment® (LE) Considerations

As mentioned previously, stored procedures must be LE-compliant. IBM Language

Environment for MVS and VM and the IBM Language Environment for VSE/ESA

establish a common run-time environment for different programming languages. It

combines essential run-time services, such as condition handling and storage

management. All of these services are available through a set of interfaces that are

consistent across programming languages. With LE, you can use one run-time

environment for your applications, regardless of the application’s programming

languages or system resource requirements.

Language Environment is the prerequisite run-time environment for applications

generated with the following IBM compiler products:

v IBM C for VM/ESA

v IBM SAA AD/Cycle C/370

v IBM COBOL for MVS and VM

v IBM SAA AD/Cycle COBOL/370

v IBM PL/I for MVS and VM

v IBM SAA AD/Cycle PL/I MVS and VM

v IBM C for VSE/ESA

v IBM COBOL for VSE/ESA

v IBM PL/I for VSE/ESA

Stored procedures can be written in assembly language as long as the assembly

language program uses the required macros to operate as an IBM Language

Environment application program.

For complete details, see the Language Environment documentation.

Preparing to Run a Stored Procedure

For DB2 Server for VM, once the stored procedure has been written, it must be

preprocessed, compiled, and linked like any application program, and the load

module must be put on a disk that can be accessed by the stored procedure server

that will run the stored procedure. For DB2 Server for VSE, once the stored

procedure has been written, it must be preprocessed, compiled, and linked like any

application program, and the phase must be put in a library that is in the stored

procedure server’s search path. In addition, the CREATE PROCEDURE statement

must be used to define the stored procedure to the database manager. See the DB2

Server for VSE & VM SQL Reference manual for information on the CREATE

PROCEDURE statement.

Calling Stored Procedures

Once a stored procedure has been created and the CREATE PROCEDURE

statement has been used to define it, it can be invoked. The SQL CALL statement

is used in an application program to invoke a stored procedure. The syntax of the

CALL statement is shown in Figure 23 on page 97.

96 Application Programming

For a complete description of the CALL statement, see the DB2 Server for VSE &

VM SQL Reference manual.

As indicated in Figure 23, the procedure name can be a host variable or a constant,

and parameters can be provided in a parameter list or in a descriptor (SQLDA). A

simple example of a CALL statement might look like this:

 EXEC SQL CALL PROC1 (’000250’, :lastname, :salary, :sqlcd)

The CALL statement shown above assumes that none of the input parameters can

have null values. If you need to allow for null values, use indicator variables with

the host variables, as follows:

 EXEC SQL CALL PROC1 (:empno :empnoi,

 :lastname :lnamei,

 :salary :salaryi,

 :sqlcd :sqlcdi)

If you do not know the parameter structure of the procedure, or if you prefer to

use one structure rather than several host variables, you would use the following

form of the CALL statement:

 EXEC SQL CALL PROC1 USING DESCRIPTOR :sqlda

where sqlda is the name of an SQLDA. The parameter information must be put in

the SQLDA before the CALL is issued.

The final example provides maximum flexibility:

 EXEC SQL CALL :procname USING DESCRIPTOR :sqlda

where sqlda is the name of an SQLDA. The parameter information must be put in

the SQLDA before the CALL is issued.

Authorization

Authorization for stored procedures is done on a package level. That is, the issuer

of the CALL statement must be authorized to run the package associated with the

stored procedure. See Chapter 10, “Assigning Authority and Privileges,” on page

269 for more information on authorization.

AUTHIDs

On the CREATE PROCEDURE statement, you can specify an AUTHID. If you do,

then only a user with that AUTHID can run the stored procedure. The AUTHID

corresponds to the SQL ID of a connected user. This facility is useful for testing

modifications to a stored procedure. It allows the database administrator to create

a private copy of the stored procedure, modify and test it, without affecting the

►► CALL procedure-name

host-variable

▼

(

)

,

host-variable

constant

NULL

USING DESCRIPTOR

descriptor-name

 ►◄

Figure 23. Syntax of SQL CALL statement

Chapter 3. Coding the Body of a Program 97

copy of the stored procedure that is publicly accessible. Once the stored procedure

is fully tested, it can replace the existing, publicly accessible stored procedure.

Stored Procedure Parameters

The parameters for a stored procedure are defined on the CREATE PROCEDURE

statement. The CREATE PROCEDURE statement makes an entry in

SYSTEM.SYSPARMS for each parameter. The entry in SYSTEM.SYSPARMS

indicates the datatype, size, and purpose (input, output, or both) of the parameter.

The stored procedure must have a declaration for each parameter that is passed to

it. The declaration of each parameter must be compatible with the datatype and

size specified for it in SYSTEM.SYSPARMS. Table 11 shows the compatible

definitions for parameters in C, COBOL, PL/I, and Assembler.

 Table 11. Definitions of Stored Procedure Parameters

SYSPARMS C COBOL PL/I Assembler

CHAR(n) char

varname[n+1]

PIC X(n) CHAR(n) CLn

CHAR(1) char PIC X(1) CHAR(1) CL1

VARCHAR(n) char

varname[n+1]

01 parm

 49 parml

 PIC S9(4) COMP

 49 parmd

 PIC X(n)

CHAR(n)

VARYING

H,CLn

SMALLINT short PIC S9(4) COMP BIN FIXED(15) H

INTEGER long PIC S9(9) COMP BIN FIXED(31) F

DECIMAL(x,y) DECIMAL[(p,[s])]

or DEC[(p,[s])]

PIC S9(x-y)V9(y) COMP-3 DEC FIXED(x,y) PLn[’decimal

constant’] or

P’decimal

constant’

REAL float COMP-1 BIN FLOAT(21) E

FLOAT double COMP-2 BIN FLOAT(53) D

GRAPHIC(n) not supported PIC G(n) DISPLAY-1 or PIC N(n) GRAPHIC(n) not supported

VARGRAPHIC(n) not supported 01 parm

 49 parml

 PIC S9(4) COMP

 49 parmd

 PIC G(n)

 USAGE IS DISPLAY-1

 or

 49 parmd PIC N(n)

GRAPHIC(n)

VARYING

not supported

Each of the high-level language definitions for stored procedure parameters

support only a single instance (scalar value) of the parameter. There is no support

for structure, array, or vector parameters. In some applications, it may be necessary

to return a table of results, where the table represents multiple occurrences of one

or more of the parameters passed to the stored procedure. Since this support is not

provided by the SQL CALL statement, one of the following techniques may be

used by the application to provide the required capability:

v If the data to be returned is in a table in the database, the calling program can

fetch the rows directly using SQL. Since a DRDA requester can intermix SELECT

and CALL statements in a unit of work, the DRDA block fetch protocol can be

used to retrieve the required data efficiently.

98 Application Programming

v Tabular data can be converted to string format and returned as a character string

parameter to the calling program. The calling program and the stored procedure

can establish a convention for interpreting the content of the character string. For

example, the SQL CALL statement can pass a 1920 byte character string

parameter to a stored procedure, allowing the stored procedure to return a 24 by

80 screen image to the calling program.

Datatype Compatibility

The datatype of a parameter provided on the CALL does not have to be identical

to the datatype expected by the stored procedure, but it must be compatible. That

is, if the stored procedure expects a CHAR(4) parameter, the caller can provide a

character or varchar value with a length of 4 or less. Similarly, if the procedure

expects an integer, most numeric datatypes (decimal, smallint, float) are acceptable,

as long as the number is not too large to be represented by an integer. In general,

datatypes that are considered compatible in other SQL statements are also

considered compatible in an SQL CALL. That is, if the value being provided on the

SQL CALL could be inserted into a column that has the same datatype as the

stored procedure parameter, then it is valid for the SQL CALL statement.

For more information on datatype compatibility, see the DB2 Server for VSE & VM

SQL Reference manual.

Conventions for Passing Stored Procedure Parameters

When an SQL CALL statement is issued, DB2 Server for VSE & VM builds a

parameter list for the stored procedure, containing the parameters provided on the

SQL CALL statement. When the initial parameter list is built, the parameters

contain the values established on entry to the SQL CALL statement. Eventually, the

database manager will run the stored procedure and return values for the

parameters to the calling program. If a stored procedure fails to set one or more of

the output parameters, the database manager will not detect this fact. Instead, it

will return the output parameter(s) to the calling program, with the value(s)

established on entry to the SQL CALL statement.

In order for the stored procedure to receive parameters correctly, the stored

procedure must be coded to accept the parameter list supplied by the database

manager. DB2 Server for VSE & VM supports two parameter list conventions. The

parameter list convention is determined by the value of the PARAMETERSTYLE

column in the SYSTEM.SYSROUTINES catalog table, which can be GENERAL or

GENERAL WITH NULLS.

The GENERAL Linkage Convention

If the GENERAL linkage convention is used:

v Input parameters cannot be NULL.

v NULLs can be passed for output parameters only.

v The stored procedure cannot return NULLs for output parameters.

v A parameter must be defined in the stored procedure for each parameter passed

in the SQL CALL statement.

For performance reasons, the calling application may choose to pass null indicators

with the output parameters on the SQL CALL statement. If the null indicator

associated with an output parameter is negative on entry to the SQL CALL

statement, the application requester transmits only the null indicator to the server.

This can be beneficial when dealing with large output parameters, since the entire

output parameter is not transmitted to the server. Upon successful completion of

Chapter 3. Coding the Body of a Program 99

the SQL CALL statement, none of the null indicators associated with the output

parameters will be null, since the stored procedure is restricted to non-null

parameter values.

When the GENERAL parameter list format is used, register 1 points to a list of

addresses, which in turn point to the individual parameters. Figure 24 describes

the GENERAL parameter list convention.

The GENERAL WITH NULLS Linkage Convention

This is the default. If the GENERAL WITH NULLS linkage convention is used:

v Input parameters can be NULL. This is achieved through the use of indicator

variables, or by specifying the keyword NULL.

v The stored procedure can return NULLs for output parameters, by using

indicator variables.

v A parameter must be defined in the stored procedure for each parameter passed

in the SQL CALL statement. An array of indicator variables, with one indicator

variable for each parameter, must also be defined in the stored procedure.

The indicator variables are passed to the stored procedure as a single parameter -

an array of SMALLINT variables with an element for each indicator variable.

Figure 25 on page 101 describes the GENERAL WITH NULLS parameter list

convention.

Reg 1 Addr of parm 1

Addr of parm 2

Addr of parm 3

Addr of parm n

Parm 1 data

Parm 2 data

Parm 3 data

Parm n data

Figure 24. GENERAL parameter list

100 Application Programming

The stored procedure must determine which input parameters are null by

examining the array of indicator variables. The stored procedure must also assign

values to the indicator variables when returning the output parameters to the

calling program.

The array of indicator variables is not defined in the PARMLIST column of

SYSTEM.SYSROUTINES, and is not specified as a parameter in the SQL CALL

statement. In the SQL CALL statement in the client program, the indicator

variables are coded after each parameter, for example:

 EXEC SQL CALL PROCX (:parm1:indicator1, :parm2:indicator2)

 or

 EXEC SQL CALL PROCX (:parm1 INDICATOR :indicator1, :parm2 INDICATOR :indicator2)

In order to support the linkage conventions described above, the high level

language application must be coded to support the required parameter list

convention.

Coding Examples

For examples of how to code stored procedures to receive and return parameters in

C, COBOL, PL/I, or Assembler, refer to the appendix for that language.

Special Considerations for C

The PLIST(OS) run-time option must be supplied.

Special Considerations for PL/I

The NOEXECOPS procedure option must be supplied.

Result Sets

In addition to returning parameters, a stored procedure can return query data,

known as result sets. A result set is defined by declaring a cursor with the WITH

RETURN clause, opening the cursor within the stored procedure, and leaving it

open when the procedure returns. The resulting rows of data that can be fetched

constitute a result set.

Reg 1 Addr of parm 1

Addr of parm 2

Addr of parm 3

Addr of parm n

Parm 1 data

Parm 2 data

Parm 3 data

Parm n data

Indicator 1

Indicator 2

Indicator 3

Indicator n

Addr of Indicator
vector

Figure 25. GENERAL WITH NULLS parameter list

Chapter 3. Coding the Body of a Program 101

Notes:

 1. For a procedure to return result sets, the RESULT_SETS column in the

SYSTEM.SYSROUTINES entry for that procedure must contain a non-zero

value.

 2. The DB2 Server for VSE & VM requester does not have the capability to

process result sets for procedures invoked over SQLDS protocol. DB2 Server

for VSE & VM returns result sets only to DRDA clients.

 3. If any FETCHes are issued within the stored procedure, the result set rows

returned to the client start with the row after the last row that was fetched

within the stored procedure. That is, if the stored procedure issues three

FETCHes, the result set returned to the client starts with the fourth row.

 4. The stored procedure must not use blocking. This is because if blocking is on,

the application server returns a full block of rows when a FETCH is issued,

leaving the cursor positioned on the row after the last row of the block. If the

stored procedure does not FETCH all of the rows in the block, the rows that

have already been returned to the stored procedure will not be returned to the

application requester.

 5. The name of the stored procedure’s cursor is returned to the client along with

the result set. The client application obtains the cursor name and an

application-oriented description of the result set through extensions to the

SQL DESCRIBE statement. Because of this, the cursor names within the stored

procedures should be meaningful to a DRDA client application.

 6. The SELECT statement associated with the cursor can reference tables,

synonyms, and views.

 7. The database manager does not return result sets for cursors that are closed

before the stored procedure terminates. The application programmer must

issue an SQL CLOSE for each cursor that is not supposed to be returned to

the DRDA client.

 8. Result sets are returned to the DRDA client in the order in which the cursors

were opened by the stored procedure.

 9. When a stored procedure returns result sets, a warning SQLCODE is returned

on the CALL statement. The SQL warning tells the application program that

result sets are present.

10. Assume the RESULTSETS column in system catalog table SYSROUTINES has

the value "x" and the DRDA client supports up to "y" result sets. The database

manager returns the lesser of "x" and "y" result sets to the client (call it "z").

If a stored procedure attempts to return more than "z" result sets, the SQL

CALL statement completes with SQLCODE +464 and SQLSTATE 01609 and

the database manager returns the first "z" result sets.

If the stored procedure returns 1 to "z" result sets, the SQL CALL statement

completes with SQLCODE +466 and SQLSTATE 01610 and the database

manager returns all the result sets.

Coding Client Programs to Process Results Sets

A client application program can receive and process result sets over DRDA from a

stored procedure by using the following SQL Extensions:

v The RESULT SET LOCATOR SQL data type, which allows a host variable to be

used as a unique identifier for a query result set returned by the stored

procedure. This is only supported in client applications written in Assembler, C,

COBOL, or PL/I.

v The SQL ASSOCIATE LOCATORS statement, which associates result set locator

variables with each result set returned by the stored procedure.

102 Application Programming

v The SQL ALLOCATE CURSOR statement, which defines a cursor and associates

it with a result set locator variable. This cursor is then used to fetch the rows in

the result set.

v The SQL DESCRIBE PROCEDURE statement, which allows the client application

retrieve information about the result sets returned by the stored procedure.

v >The SQL DESCRIBE CURSOR statement, which allows the client application to

receive information belonging to the particular result set associated with the

cursor that will be used to fetch the rows in the result set.

A client application programmer should consider the following when calling a

stored procedure that may return result sets:

v The client application can determine how many result sets are returned by using

the DESCRIBE PROCEDURE statement, and determine the contents of each

result set by using the DESCRIBE CURSOR statement.

v By knowing the number and contents of the result sets that a stored procedure

returns, an application program can be simplified. However, if code is written

for the more general case, in which the number and contents of result sets can

vary, major modifications to the client program are avoided if the stored

procedure changes.

v The DB2 Server for VSE & VM requester has read-only access to stored

procedure result sets. The DRDA limited block fetch protocol is used to transmit

the result set to the client, even when the stored procedure’s cursor is

updateable. This means that on UPDATE WHERE CURRENT OF or a DELETE

WHERE CURRENT of statement cannot be issued against a result set. If one of

these commands is issued against a result set, SQLCODE -520 is returned with

SQLSTATE 42828.

For information on how to process result sets on clients other than DB2 Server for

VSE & VM Requester, refer to the following manuals:

1. IBM DB2 Universal Database Call Level Interface Guide and Reference

2. DB2 for OS/390 Application Programming and SQL Guide.

Result Set Processing

If the number of result sets and the characteristics of each result set are know, the

following steps need to be performed in order to access each result set:

v Declare as many result-set locator variables as the number of result sets returned

by the stored procedure.

v Invoke the stored procedure using the SQL CALL statement.

v Issue the ASSOCIATE LOCATORS statement once.

v Issue one ALLOCATE CURSOR statement for each result set returned by the

stored procedure.

Figure 26 on page 104 shows the relationship among the new SQL statements and

the new data type.

Chapter 3. Coding the Body of a Program 103

After the SQL CALL statement is executed, the ASSOCIATE LOCATORS statement

is issued. The ASSOCIATE LOCATORS statement associates the result sets

returned by the stored procedure with the result-set locator variables declared

previously and specified in the ASSOCIATE LOCATORS statement (see (1) in

Figure 26). For each result set returned, the ALLOCATE CURSOR statement is

issued to assign a local cursor name to the result set locator variable (see (2) in

Figure 26). Then, the rows of each result set can be processed by using the FETCH

statement specifying the local cursor name (see (3) in Figure 26).

Note that the order of the association of result sets and result set locator variables

is the order that the stored procedure used in opening the cursor; the first open

cursor issued by the stored procedure is associated with the first result set locator

variable, the second open cursor issued by the stored procedure is associated with

the second result set locator variable, and so on. Also, note that only cursors that

were opened with the option WITH RETURN, and remain open after the

procedure terminates, are returned.

Multiple result sets can be processed in parallel. For example, the first row of the

first result set is processed, the first row of the second result set is processed, then

the second row of the first result set is processed.

After the client program issues an SQL CALL statement, the DESCRIBE

PROCEDURE statement can be used to obtain information about the result sets

returned by the stored procedure. The DESCRIBE PROCEDURE statement should

be used when the number of result sets the stored procedure returned is unknown.

The DESCRIBE PROCEDURE returns the number of result sets returned from the

stored procedure and places information about the results sets in SQLDA.

Likewise, after the client program issued an SQL CALL statement, the DESCRIBE

CURSOR statement can be used to obtain information about a specific result set

returned by the stored procedure. The DESCRIBE CURSOR statement should be

used when the column names and data types of a particular result set are

unknown. After execution of the DESCRIBE CURSOR statement, the SQLDA

contains the information belonging to each column in the result set.

FETCH CURSOR1

RESULT SET LOCATOR1

OPEN RESULT SET 1

OPEN RESULT SET 2

OPEN RESULT SET 3

ASSOCIATE

LOCATORS

RESULT SET LOCATOR2

RESULT SET LOCATOR3

FETCH CURSOR2

FETCH CURSOR3

ALLOCATE

CURSOR1

ALLOCATE

CURSOR2

ALLOCATE

CURSOR3

CLIENT STORED PROCEDURE

1

2

3

Figure 26. Relationship Among the New SQL Statements and the New Data Type

104 Application Programming

Note: When the server is DB2 Server for VSE & VM, private protocol is not

supported. These new statements are only supported for distributed

applications. If any of these statements is executed over private protocol, the

user will receive SQLCODE -947.

Using the DESCRIBE PROCEDURE SQL Statement

After the client program issues an SQL CALL statement, the DESCRIBE

PROCEDURE statement can be used to obtain information about the result sets

returned by the stored procedure. Figure 27 shows the DESCRIBE PROCEDURE

statement.

 The DESCRIBE PROCEDURE statement should be used when the number of result

sets returned by the stored procedure is unknown. The DESCRIBE PROCEDURE

returns the number of result sets returned from the stored procedure and places

information about the result sets in an SQLDA, which must be made large enough

to hold the maximum number of result sets that the stored procedure may return.

To use the SQLDATA field from the DESCRIBE PROCEDURE statement, a result

set locator variable needs to be set up. A subscript variable is not valid in an

ALLOCATE CURSOR statement. For instance, the following is required to use the

SQLDATA variable for a COBOL program:

...

 * Redefine the SQLDATA pointer as PIC S9(9) comp.

SQLDA

SQLVAR1

SQLVAR2

...

...

SQLD = 2

SQLNAME = CURSOR1

SQLIND = -1

SQLDATA = LOCATOR1

SQLNAME = CURSOR2

SQLIND = -1

SQLDATA = LOCATOR2

CLIENT STORED

PROCEDURE

OPEN CURSOR1

OPEN CURSOR2
DESCRIBE

PROCEDURE

Figure 27. DESCRIBE PROCEDURE Statement

Chapter 3. Coding the Body of a Program 105

03 SQLDATA POINTER.

 03 SQLDATANUM REDEFINES SQLDATA S9(9) COMP.

...

 * Declare a result set locator variable to move the SQLDATA

 * POINTER field too, to be used in the ALLOCATE CURSOR statement.

 * You need to redefine this variable as PIC S9(9) comp.

 01 LOCPTR SQL TYPE IS

 RESULT-SET-LOCATOR VARYING.

 01 LOCNUM REDEFINES LOCPTR S9(9) COMP.

...

 * After the DESCRIBE PROCEDURE statement you can

 * move the SQLDATANUM variable to the LOCNUM variable

 MOVE SQLDATANUM(INDEX) TO LOCNUM.

 * You can now allocate the cursor for the result set.

 EXEC SQL ALLOCATE CURSOR1 CURSOR FOR RESULT SET

 :LOCPTR

 END-EXEC.

...

An alternative to using the SQLDATA field as shown above is to use the

ASSOCIATE LOCATORS statement to assign values to locator variables.

Using the DESCRIBE CURSOR SQL Statement

Once the application program issues an SQL CALL statement, the DESCRIBE

CURSOR statement can be used to obtain information about a specific result set

returned by the stored procedure. Figure 28 on page 107 shows the DESCRIBE

CURSOR statement.

106 Application Programming

The DESCRIBE CURSOR statement should be used when the column names and

data types of a particular result set are unknown. After execution of the DESCRIBE

CURSOR statement, the contents of the SQLDA are similar to the execution of a

SELECT statement:

v The first 5 bytes of the SQLDAID are set to ’SQLRS’.

v SQLD contains the number of columns for this result set.

v Each SQLVAR entry gives information about a column.

In an SQLVAR entry:

v The SQLTYPE field contains the data type of the column.

v The SQLLEN field contains the length attribute of the column.

v The SQLNAME field contains the name of the column.

v The cursor name in the statement must have been previously allocated through

the ALLOCATE CURSOR statement.

Coding Summary to Process Result Sets

The following summarizes the steps to code a client application to process result

sets:

1. Declare a result set locator variable for each result set that is returned. If the

number of result sets is unknown, declare enough locator variables for the

maximum number of result sets that might be returned.

2. Call the stored procedure and check the SQL return code for a +466. A 466

SQLCODE indicates that the stored procedure returned one or more result sets.

SQLD = 3

SQLTYPE = CHARACTER

SQLLEN = 5

SQLNAME = COL1

SQLTYPE = CHARACTER

SQLLEN = 15

SQLNAME = COL2

SQLTYPE = INTEGER

SQLLEN = 4

SQLNAME = COL3

SQLVAR 1
2
3

SQLDA

DESCRIBE

CURSOR

SQLVAR1

SQLVAR2

SQLVAR3

RESULT SET 1

COL1 COL2 COL3

5 15 4
...

...

Figure 28. DESCRIBE PROCEDURE Statement

Chapter 3. Coding the Body of a Program 107

3. Determine how many result sets the stored procedure is returning if this is

unknown. Use the SQL statement DESCRIBE PROCEDURE to determine the

number of result sets returned and the corresponding cursor names. DESCRIBE

PROCEDURE places information about the result sets in the SQLDA.

4. Associate result set locators to result sets.

5. Allocate cursors for fetching rows from the result sets.

6. Determine the contents of the result sets if unknown. Use the SQL statement

DESCRIBE CURSOR to determine the format of a result set and put this

information in an SQLDA. For each result set, an SQLDA big enough to hold

descriptions of all columns in the result set is needed. If the DESCRIBE

PROCEDURE statement is not used, host variables of the correct datatype and

size must be provided to receive the result sets.

7. Fetch rows from the result sets into host variables by using the cursors you

allocate with the ALLOCATE CURSOR statements. If the DESCRIBE CURSOR

statement is executed before the FETCH, the following steps should be

performed before fetching any rows:

v Allocate storage for host variables and indicator variables. Use the content of

the SQLDA from the DESCRIBE CURSOR statement to determine how much

storage you need for each host variable.

v Put the address of the storage for each host variable in the appropriate

SQLDATA field of the SQLDA.

v Put the address of the storage for each indicator variable in the appropriate

SQLIND field in the SQLDA.

Fetching rows from a result set is the same as fetching rows from a table.

8. Close all allocated cursors when finished processing the result sets.

The following sections are examples of C language code that accomplish each of

the steps discussed above.

Processing a Known Number of Result Sets: The following example of C

language code shows how to receive result sets when the number of result sets

returned is known. Coding for other languages is similar.

 /***/

 /* Declare result set locators. For this example, */

 /* assume you know that two result sets will be returned. */

 /* Also, assume that you know the format of each result set. */

 /***/

 EXEC SQL BEGIN DECLARE SECTION;

 static volatile SQL TYPE IS RESULT_SET_LOCATOR *loc1, *loc2;

 EXEC SQL END DECLARE SECTION;

...

 /***/

 /* Call stored procedure P1. */

 /* Check for SQLCODE +466, which indicates that result sets */

 /* were returned. */

 /***/

 EXEC SQL CALL P1(:parm1, :parm2, ...);

 if(SQLCODE==+466)

 {

 /***/

 /* Establish a link between each result set and its */

...

 /***/

 /* Associate a cursor with each result set. */

 /***/

108 Application Programming

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;

 EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :loc2;

 /***/

 /* Fetch the result set rows into host variables. */

 /***/

 while(SQLCODE==0)

 {

 EXEC SQL FETCH C1 INTO :order_no, :cust_no;

...

 }

 while(SQLCODE==0)

 {

 EXEC SQL FETCH C2 :order_no, :item_no, :quantity;

...

 }

 /***/

 /* All result sets have been processed, close allocated */

 /* cursor. */

 /***/

 EXEC SQL CLOSE C1;

 EXEC SQL CLOSE C2;

...

 }

Processing a Unknown Number of Result Sets: The following example of C

language code shows how to receive result sets when the number of result sets

returned, or what is in each result set, is unknown.

 /***/

 /* Declare result set locators. For this example, */

 /* assume that no more than three result sets will be */

 /* returned, so declare three locators. Also, assume */

 /* that you do not know the format of the result sets. */

 /***/

 EXEC SQL BEGIN DECLARE SECTION;

 static volatile SQL TYPE IS RESULT_SET_LOCATOR *loc1, *loc2, *loc3;

 EXEC SQL END DECLARE SECTION;

...

 /***/

 /* Call stored procedure P2. */

 /* Check for SQLCODE +466, which indicates that result sets */

 /* were returned. */

 /***/

 EXEC SQL CALL P2(:parm1, :parm2, ...);

 if(SQLCODE==+466)

 {

 /***/

 {

 /***/

 /* Determine how many result sets P2 returned, using the */

 /* statement DESCRIBE PROCEDURE. :proc_da is an SQLDA */

 /* with enough storage to accommodate up to three SQLVAR */

 /* entries. */

 /***/

 EXEC SQL DESCRIBE PROCEDURE P2 INTO :proc_da;

...

 /***/

 /* Now that you know how many result sets were returned, */

 /* establish a link between each result set and its */

 /* locator using the ASSOCIATE LOCATORS. For this example, */

Chapter 3. Coding the Body of a Program 109

/* we assume that three result sets are returned. */

 /***/

 EXEC SQL ASSOCIATE LOCATORS (:loc1, :loc2, :loc3) WITH PROCEDURE P2;

...

 /***/

 /* Associate a cursor with each result set. */

 /***/

 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;

 EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :loc2;

 EXEC SQL ALLOCATE C3 CURSOR FOR RESULT SET :loc3;

 /***/

 /* Use the statement DESCRIBE CURSOR to determine the */

 /* format of each result set. */

 /***/

 EXEC SQL DESCRIBE CURSOR C1 INTO :res_da1;

 EXEC SQL DESCRIBE CURSOR C2 INTO :res_da2;

 EXEC SQL DESCRIBE CURSOR C3 INTO :res_da3;

...

 /***/

 /* Assign values to the SQLDATA and SQLIND fields of the */

 /* SQLDAs that you used in the DESCRIBE CURSOR statements. */

 /* These values are the addresses of the host variables and */

 /* indicator variables into which DB2 will put result set */

 /* rows. */

 /***/

...

 /***/

 /* Fetch the result set rows into the storage areas */

 /* that the SQLDAs point to. */

 /***/

 while(SQLCODE==0)

 {

 EXEC SQL FETCH C1 USING :res_da1;

...

 }

 while(SQLCODE==0)

 {

 EXEC SQL FETCH C2 USING :res_da2;

...

 }

 while(SQLCODE==0)

 {

 EXEC SQL FETCH C3 USING :res_da3;

...

 }

 /***/

 /* All result sets have been processed, close allocated */

 /* cursor. */

 /***/

 EXEC SQL CLOSE C1;

 EXEC SQL CLOSE C2;

 EXEC SQL CLOSE C3;

...

 }

110 Application Programming

Chapter 4. Preprocessing and Running a DB2 Server for VM

Program

Defining the Steps to Execute the Program . . . 112

Comparing Single User Mode to Multiple User

Mode 112

Using 31-Bit Addressing 112

Initializing the User Machine 113

Using VM Implicit Connect 113

Preprocessing the Program 114

Using the SQLPREP EXEC Procedure 114

Executing the SQLPREP EXEC in Single User

Mode 114

Executing the SQLPREP EXEC in Multiple

User Mode 115

DB2 Server for VM Program Preparation

Parameters 115

Parameters for SQLPREP EXEC for Single

and Multiple User Modes 118

Parameters for SQLPREP EXEC for Single

User Mode Only 130

Parameters for SQLPREP EXEC in Multiple

User Mode Only 131

Preprocessing and bindfile 131

Preprocessing with an Unlike Application Server 132

Using the Preprocessor Option File 132

Using the Flagger at Preprocessor Time 133

Improving Performance Using Preprocessing

Parameters 134

Selecting the Isolation Level to Lock Data 134

Using the Blocking Option to Process Rows

in Groups 139

Using the INCLUDE Statement 141

Including External Source Files 141

Including Secondary Input 141

Compiling the Program 142

Link-Editing and Loading the Program 142

Link-Editing the Program with DB2 Server for

VM TEXT Files 143

Using the Resource Adapter Stub Routine 143

Using Other TEXT Files 143

Including the TEXT File in the Link-Editing . . 143

Using the CMS LOAD Command 143

Using the CMS TXTLIB Command 144

Creating a Load Module Using the CMS

GENMOD Command 144

Running the Program 144

Using a Consistency Token 144

Loading the Package and Rebinding 145

Using Multiple User Mode 145

Using Single User Mode 146

Specifying User Parameters in Single User Mode 147

Distributing Packages across Like and Unlike

Systems 147

Binding to Create Package 148

© Copyright IBM Corp. 1987, 2007 111

||

 | |

Defining the Steps to Execute the Program

This section discusses the factors involved in preparing a DB2 Server for VM

application program for operation. The major steps are:

1. Preprocessing

2. Compiling

3. Link-editing and loading

4. Running.

If preprocessing is performed with ″BIND″ and ″NOPACKAGE″ preprocessing

parameters, then additional Binding step is must before Running step to execute

the program successfully.

Note: Program preparation for FORTRAN language is not suported using Binding

step.

You also have to consider a few points before creating a DB2 Server for VM

package. They are:

v Running in single or multiple user mode

v Initializing your machine

v Using VM implicit connect.

Comparing Single User Mode to Multiple User Mode

One important factor that affects how application programs are preprocessed and

executed is whether the database manager is running in single or multiple user

mode.

Running a Program in Single User Mode

In single user mode, the system and your application programs run in a single

virtual machine. The application or preprocessor starts the database machine,

processes the SQL statements, and returns control to CMS. The application server

must be restarted for every invocation of an application program or preprocessor.

The database machine may have more than one application server defined for it,

but only a single application server can be active at any time.

Running a Program in Multiple User Mode

In multiple user mode, one or more applications concurrently access the same

application server. The system runs in one virtual machine while one or more DB2

Server for VM application programs or preprocessors operate in other virtual

machines. More than one application can access the same application server at the

same time, and an application program can access more than one application

server. Use the CONNECT statement to switch application servers from within an

application. This facility is called switching application servers (see “Switching

Application Servers” on page 302).

Using 31-Bit Addressing

The addressing mode of the application server is established when the application

server is started. The addressing mode of the application server is determined by

the information stored in the addressing mode (AMODE) field of the SQLDBN file

associated with the application server.

112 Application Programming

|

|

|

The addressing mode of the application requester is always 31-bit addressing.

Single user mode applications are invoked in the addressing mode of the

application server. If your single user mode application or user exit requires 24-bit

addressing and the addressing mode of the application server is 31-bit, you will

need to change the operating mode or the addressing mode of the application

server.

If the addressing mode of the application server does not match the addressing

mode of the single user mode application, errors may result.

Refer to the DB2 Server for VM System Administration manual for information on

single user mode, user exits, and how to determine and change the addressing

mode. To determine your dependencies on 24-bit addressing, see the VM/ESA:

CMS Application Migration Guide manual.

Initializing the User Machine

To preprocess or run a DB2 Server for VM application program in multiple user

mode, you must associate your user ID with the application server that you want

your program to access. To do this, specify the application server in the SQLINIT

EXEC.

You need only do this once, as long as you continue to operate on the same

application server or are using the CONNECT statement to switch application

servers. Even if you log off and log back on to your virtual machine, you retain

your association with the application server that was established by the SQLINIT

EXEC (the association is recorded on your A-disk).

If you want to switch to a different application server and cannot use the

CONNECT statement to do so, you must end your application program and

invoke the SQLINIT EXEC again, specifying the new application server.

For information on the SQLINIT EXEC, refer to the DB2 Server for VSE & VM

Database Administration manual.

Using VM Implicit Connect

In the VM environment, an explicit CONNECT statement is not required. Instead,

the database manager accepts the password verification of the VM virtual machine

and uses the VM user ID as the DB2 Server for VM user ID. This support is called

“implicit connect.” Implicit connect is possible if either the special user ID

ALLUSERS or the individual users have been granted CONNECT authority.

For example, assume the following GRANT statement:

 GRANT CONNECT TO A, B, C, ALLUSERS

After this statement, any VM user may be implicitly connected to the system.

However, if the following statement is used, only users A, B, C can be implicitly

connected to the system:

 REVOKE CONNECT FROM ALLUSERS

Thus, the special user ID “ALLUSERS” can be used to selectively turn the implicit

connect capability on or off for the total user set, while individual users can retain

implicit connect authority.

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 113

If no explicit CONNECT is performed, an implicit connect occurs when the

database manager receives a request to execute the first executable SQL statement.

If the implicit connect is processed successfully, the statement is executed. As a

result, the SQLCA contains information on the status of the execution of that

statement. Information regarding warning conditions encountered while the

connection was processed is lost. If the connection fails, the SQLCA contains

information on the status of the connection.

Preprocessing the Program

Preprocessing does two things:

v It changes the SQL source code so that it can be processed during host language

compiling

v It converts the SQL statements into a package, and binds the package to the

database.

The preprocessor replaces all the SQL statements in the program with host

language code that invokes the new package. The new version of the program also

contains the SQL statements in comment form. The package contains information

to carry out the SQL requests made by the program. The database manager follows

the best access path to the data for each SQL statement in the program, using

available indexes and data statistics of which the system keeps track.

When the program is run, the new code calls the system to handle each SQL

statement. It also links the program to the application server and translates

messages and statements between the two.

Using the SQLPREP EXEC Procedure

The SQLPREP EXEC is used in both single and multiple user mode to preprocess

application programs.

The preprocessors supplied with the database manager have the following

program names:

ASM Assembler Preprocessor

C C Preprocessor

COBOL COBOL Preprocessor

Fortran Fortran Preprocessor

PLI PL/I Preprocessor

The preprocessor takes source program input from SYSIN, and produces a

modified source program, a source listing, and a package in the database. The

modified source program output is sent to SYSPUNCH, and the source listing to

SYSPRINT. Using the SQLPREP EXEC, you can direct SYSIN, SYSPUNCH, and

SYSPRINT to various virtual devices and CMS files.

The syntax diagram on page “DB2 Server for VM Program Preparation

Parameters” on page 115 lists all the parameters for the SQLPREP EXEC. An

explanation of each parameter follows the figure.

Executing the SQLPREP EXEC in Single User Mode

In single user mode, the SQLPREP EXEC is executed on the database machine.

(The DBname parameter indicates that you are in single user mode, and identifies

114 Application Programming

the application server that you want to access.) The SQLPREP EXEC then issues an

SQLSTART and passes the DBname parameter. If the preprocessor encounters no

errors (warnings are permissible), a package is created or replaced on the specified

application server.

Executing the SQLPREP EXEC in Multiple User Mode

Use the SQLPREP EXEC in multiple user mode to preprocess an application

program on one or more application servers. Use the SQLINIT EXEC to establish

the default application server. If you want to preprocess your application program

on other application servers, use the DBList or DBFile parameter to specify the

other application servers on which you want to preprocess your application. Either

of these parameters temporarily overrides the application server specified by the

SQLINIT EXEC.

For each application server specified, the SQLPREP EXEC:

1. Establishes a link to the application server

2. Preprocesses the application program against the application server

3. Displays summary messages showing the results for this preprocessing step.

A package is created for each application server on which the program was

successfully preprocessed. If an error is encountered during preprocessing on one

of these application servers, and the ERROR parameter was not specified, a

package is not created for that application server. See page 122 for a discussion of

the ERROR option.

When the SQLPREP EXEC is used for more than one application server, only one

copy of the modified source program output is retained (the PUNCH parameter),

but all the source listings (the PRINT parameter) are appended to produce a single

source listing. The NOPUNCH and NOPRINT parameters may be used to

suppress modified source program output and source listings, respectively.

DB2 Server for VM Program Preparation Parameters

The following are parameters for all DB2 Server for VM preprocessors unless

otherwise noted.

►► SQLPREP ASM

C

COBol

FORTran

PLI

 PrepParm ►

► (PREPname= package_id

collection_id.
 ►

►
,PrepFile=

(

fileparms

)

prepparms

 ►

►
,USERid=

authorization_name/password
) ►

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 115

►
sysIN

(

fileparms

)

Reader

sysPRint

(

fileparms

)

Printer

Terminal

 ►

►
sysPUnch

(

fileparms

)

Punch

sysBInd

(

fileparms

)
 ►

►
 (1) (2)

multiple-user-mode-parms

(2)

single-user-mode-parms

►◄

Notes:

1 Optional for multiple-user-mode.

2 Valid for DB2 Server for VM only.

fileparms:

 filename

filetype

filemode

prepparms:

 ,APOST

(1)

,Quote

 ,NOBIND

,BIND

 ,SBLocK

,BLocK

,NOBLocK

,CCSIDGraphic

(integer)

►

►
,CCSIDMixed

(integer)

,CCSIDSbcs

(integer)
 ►

►

,CHARSUB

(

Sbcs

)

Mixed

Bit

 ,NOCHECK

,CHECK

,ERROR

(1)

,COB2

 (1)

,COBRC

►

►
 ,CTOKEN (NO)

,CTOKEN

(

NO

)

YES

,DATE

(

EUR

)

ISO

JIS

LOCAL

USA

 ,NOEXIST

,EXIST

►

►
 ,EXPLAIN (NO)

,EXPLAIN

(

NO

)

YES

(2)

,NOFOR

(3)

,DYNALC

116 Application Programming

|||

|||||||||

||||

|||||||||||

|||||||||||||||||

|||||||||

Notes:

1 COBOL only (DB2 Server for VM only).

2 Implied if STDSQL(89) is specified for DB2 Server for VM.

3 COBOL, PL/I, C, and Assember only.

prepparms (continued):

 ,NOGRaphic

(1)

,GRaphic

 ,ISOLation (RR)

,ISOLation

(

CS

)

RR

(2)

RS

UR

USER

 ,KEEP

,REVOKE

►

►

,LABEL

(label_text)

 ,LineCount (60)

,LineCount

(integer)

►

►

(2)

,OWner

(authorization_name

)

 ,PACKAGE

,NOPACKAGE

 ,PERiod

(2)

,COMma

►

►
 ,PRint

,NOPRint

 ,PUnch

,NOPUnch

(2)

,QUALifier

(collection_id

)

►

►
 ,RELease (COMMIT)

,RELease

(

COMMIT

)

(2)

DEALLOCATE

 ,REPLACE

,NEW

 ,SEQuence

(3)

,NOSEQuence

►

►
 ,SQLApost

(2)

(4)

,SQLQuote

(5)

,NOSQLCA

►

►

,SQLFLAG

(

SAA

)

89

(COMPLETE)

 ,STDSQL (NO)

,STDSQL

(

NO

)

(6)

89

►

►
,TIME

(

EUR

)

ISO

JIS

LOCAL

USA

Notes:

1 COBOL and PL/I only (DB2 Server for VM only).

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 117

||

2 Only meaningful for a non-DB2 Server for VM or -DB2 Server for VSE

application server.

3 C only.

4 COBOL only.

5 Implied if STDSQL(89) is specified.

6 86 is a synonym for 89.

multiple-user-mode-parms:

▼

DBFile

(

fileparms

)

DBList

(

server_name

)

single-user-mode-parms:

 Dbname (server_name)

dcssID

(dcss_id)
 ►

►
LOGmode

(

A

)

L

PARMID

(filename)

N

Y

Parameters for SQLPREP EXEC for Single and Multiple User

Modes

The parameters for the SQLPREP EXEC that apply to both single and multiple user

mode are described below. When choosing names within any of these parameters,

avoid whatever line-end-delimiter character (normally #) is being used in your

installation.

ASM

C

COBol

FORTran

PLI

This parameter identifies to the EXEC the preprocessor to be executed. This

parameter is required, and must be specified first. The order in which you specify

the other keywords is not important.

PREPname=package_id

PREPname=collection_id.package-id

The collection_id.package_id is the name by which the database manager

identifies the package. The collection_id portion is optional, and fully qualifies

the package_id and any unqualified objects referenced within the package.

 If collection_id is not specified, it defaults to the user’s authorization ID at the

application requester site. In the database manager, however, an object’s

collection_id must be the same as the user’s authorization ID at the application

server site. If the collection_id does not match the application server

authorization ID, a preprocessing error results. This restriction does not apply

if the application server authorization ID has DBA authority.

118 Application Programming

The authorization ID at the application requester and application server sites is

the authorization_name specified on the USERid parameter. If the USERid

parameter is not specified, the authorization ID is the VM logon ID at the

application requester site. In some situations, the VM logon ID is converted

before it is received at the application server site. If the authorization ID is the

VM logon ID, the conversion can cause the authorization IDs at each site to

differ.

 To avoid a situation in which the collection_id does not match the application

server authorization ID, explicitly state the collection_id equal to the application

server authorization ID.

 For information on how to determine the authorization ID at the application

server site, refer to the DB2 Server for VM System Administration and the

Distributed Relational Database Connectivity Guide manuals.

USERid=authorization_name/password

The authorization_name is the name by which the application server identifies

the owner of a package. The password should agree with the one established

for this authorization_name by a DB2 Server for VM GRANT CONNECT

statement. This information is used when executing a CONNECT statement to

gain access to the application server, which determines whether proper

authorization exists for the static SQL statements in the program.

 If the USERid option is not specified, refer to the DB2 Server for VM System

Administration manual, Chapter 6, Maintaining Database Security, for more

information about how to resolve the userid and password.

PrepFile=(filename)

PrepFile=(filename filetype)

PrepFile=(filename filetype filemode)

The PrepFile parameter identifies the file name (and optionally the file type

and file mode) of the CMS (or SFS) file containing the list of preprocessor

parameters. If filetype is not specified, PREPPP is used as the default. If filemode

is not specified, A is used as the default and the first file found with the

default file name and file type are used. For a detailed discussion of the

options file, see “Using the Preprocessor Option File” on page 132.

 The following parameters can be specified in the PrepFile or on the command

line.

PrepParm

These parameters specify the preprocessor options.

APOST

Quote (COBOL preprocessor only)

You must include the Quote preprocessor parameter whenever you use the

Quote parameter in the COBOL compiler. Quote causes the preprocessor to

use double quotation marks (") as constant delimiters in the VALUE

clauses of the declarations it generates. If you do not specify this

parameter, the COBOL preprocessor defaults to APOST, and generates

single quotation mark (') delimiters for its internal source declarations.

 The use of a single or double quotation marks in SQL statements is not

affected by this parameter. APOST/Quote is stored in the bind file header

if BIND is specified and a bind file is successfully created after

preprocessing.

NOBIND

BIND

When the NOBIND parameter is specified, the preprocessor does not create

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 119

|

|

|

|

|

|

|

|

|

|

|

a bindfile; NOBIND is the default. When the BIND parameter is specified,

the preprocessor creates a bindfile. One bindfile per program is created

irrespective of number of target databases. The bindfile will not be created

if NOCHECK is in effect and there was an error found during SQL

statement validation. BIND is ignored if CHECK is specified. For a more

detailed discussion of the bind file, see “Preprocessing and bindfile” on

page 131 and “Binding to Create Package” on page 148.

Note: The Fortran preprocessor ignores the BIND parameter, if specified.

NOBLocK

BLocK

SBLocK

IBLocK

When the BLocK parameter is specified under private protocol , all eligible

query cursors return results in groups of rows, and all eligible insert

cursors process inserts in groups of rows. When BLocK parameter is

specified under DRDA, all eligible PUT statements are grouped together

for processing.

 When the IBLocK parameter is specified under DRDA, all eligible

homogenous Insert statements are grouped together for processing.

Homogenous insert statements are defined as a set of insert statements

that:

v Access the same DB2 table

v Access the same set of columns in that table, in the same order

There must be an ’SQL COMMIT’ statement after a set of homogenous

insert statements. This causes the buffer to be sent, processed by the DB2

UDB server and the response is received and parsed by the application

requester.

 The IBLocK parameter does not work under private protocol.

 This improves the performance of programs running in multiple user

mode, where many rows are inserted or retrieved. For a discussion of

eligible cursors, see “Using the Blocking Option to Process Rows in

Groups” on page 139.

 When NOBLocK is specified, rows are not grouped.

 BLock/NOBLock is stored in the bind file header, if BIND is specified and

a bind file is successfully created after preprocessing. If you want to

change the BLocK option, you must recompile (or reassemble), and relink

your program after preprocessing it. You must also use SQLBIND or

rebuild the package if BIND is specified. Preprocessing alone does not

change the BLocK setting. You must also use SQLBIND to rebuild the

package if BIND is specified.

 SBLocK is primarily for use with application servers that support the FOR

FETCH ONLY clause on the DECLARE CURSOR statement. When SBLock

is specified, all eligible cursors return results in group of rows. This is the

default.

 Following is a comparison of the BLocK and SBLocK options as they apply

to the DB2 Server for VM preprocessors:

120 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v If there are COMMIT, ROLLBACK, or dynamically defined statements in

a program, then:

– With BLocK, all eligible cursors are blocked (that is, the data on

which the cursor operates is transferred in groups of rows).

– With SBLocK, the FOR FETCH ONLY clause of the DECLARE

CURSOR statement can be used to select the cursors that are to be

blocked. Cursors without this clause are not blocked.

v If there are no COMMIT, ROLLBACK, or dynamically defined

statements in a program, the effects of BLocK and SBLocK are the same:

all eligible cursors are blocked.

Note: Only the DB2 Server for VM preprocessors turn off SBLocK blocking

because of the presence of COMMIT and ROLLBACK statements. In

non-DB2 Server for VM preprocessors, only the presence of

dynamically defined statements has this effect.

 If you want to change the BLocK option, you must recompile (or

reassemble) and relink your program after preprocessing it. Preprocessing

alone does not change the BLocK setting.

 The blocking of FETCH statements is supported both with the DRDA

protocol and SQLDS protocol. The blocking of PUTs is supported both

with DRDA and SQLDS protocols. The blocking of INSERT statements is

supported only with DRDA protocol and not with SQLDS. See “Using the

Blocking Option to Process Rows in Groups” on page 139 for guidelines on

deciding the programs for which to specify blocking.

CCSIDGraphic (integer)

This parameter specifies the default CCSID attribute to be used for graphic

columns created in the package, if an explicit CCSID is not specified on the

CREATE or ALTER statements in the package. If this parameter is not

specified, the target application server uses the system default. This option

is stored in the bind file header if BIND is specified and a bind file is

successfully created after preprocessing.

CCSIDMixed (integer)

This parameter specifies the default CCSID attribute to be used for

character columns created with the mixed subtype in the package, if an

explicit CCSID is not specified on the CREATE or ALTER statements in the

package. If this parameter is not specified, the target application server

uses the system default. This option is stored in the bind file header if

BIND is specified and a bind file is successfully created after

preprocessing.

CCSIDSbcs (integer)

This parameter specifies the default CCSID attribute to be used for

character columns created with the SBCS subtype in the package, if an

explicit CCSID is not specified on the CREATE or ALTER statements in the

package. If this parameter is not specified, the target application server

uses the system default. This option is stored in the bind file header if

BIND is specified and a bind file is successfully created after

preprocessing.

CHARSUB (Sbcs)

CHARSUB (Mixed)

CHARSUB (Bit)

This parameter specifies the character subtype attribute to be used for

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 121

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

character columns created in the package, if an explicit subtype or CCSID

is not specified. If you do not specify this parameter, the target application

server uses the system default. This option is stored in the bind file header

if BIND is specified and a bind file is successfully created after

preprocessing.

NOCHECK

CHECK

ERROR

If you specify the NOCHECK parameter, the preprocessor executes

normally; that is, it validates all SQL statements when performing package

functions. If NOPACKAGE is specified, package functions are not

performed and so NOCHECK is ignored in this case. NOCHECK will be

stored in the BIND file header if BIND is specified and a bind file is

successfully created after preprocessing; NOCHECK is the default.

 If you specify the CHECK parameter, the preprocessor checks all SQL

statements for validity and generates error messages if necessary, but does

not generate a package or bind file. PACKAGE and BIND are ignored if

CHECK is specified.

 If you specify ERROR, the preprocessor executes normally except that most

statement-parsing errors are tolerated. When one of these errors is

detected, the preprocessor generates an error message in the output listing

and the modified source code in commented form, and continues

processing. The program can be compiled and executed, but the erroneous

statement cannot be executed. If NOPACKAGE is specified, package

functions are not performed and so ERROR is ignored in this case. ERROR

will be stored in the bind file header if BIND is specified and a bind file is

successfully created after preprocessing. You should use the ERROR option

when you are also generating a bind file and intend to bind it against a

remote application server, where at least one statement in the program is

specific to an unlike application server.

COB2 (COBOL preprocessor only)

This parameter enables you to use certain COBOL II functions that are

supported by the COBOL II Release 3 compiler and later. Refer to “Using

the COB2 Parameter (DB2 Server for VM)” on page 360 for a list of those

functions.

COBRC (COBOL preprocessor only)

If this parameter is specified, the preprocessor will generate the statement

'MOVE ZEROS TO RETURN-CODE' after it generates a call to ARIPRDI.

For more information, see “Using the COBRC Parameter” on page 361

CTOKEN (NO)

CTOKEN (YES)

This parameter causes the preprocessor to store a consistency token in the

modified source code and the package. At run time, consistency tokens in

the program’s load module and package must match before the application

server executes the package. CTOKEN(NO) is the default. If CTOKEN(YES)

is specified, the consistency token generated by the preprocessor will be an

8-byte 390 Time-of-Day (TOD) clock value. If CTOKEN(NO) is specified,

the consistency token will be 8 blanks. For a more detailed discussion of

consistency tokens, see “Using a Consistency Token” on page 144. This

option is stored in the bind file header if BIND is specified and a bind file

is successfully created after preprocessing.

DATE (EUR)

122 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

DATE (ISO)

DATE (JIS)

DATE (LOCAL)

DATE (USA)

If this parameter is specified, the output date format chosen overrides the

default format specified at installation time; otherwise, all dates will be

returned in the default format specified at installation time. (See the DB2

Server for VSE & VM SQL Reference manual for a description of these

formats.) This option is stored in the bind file header if BIND is specified

and a bind file is successfully created after preprocessing.

NOEXIST

EXIST

If the EXIST parameter is specified, the preprocessor executes normally;

that is, it generates modified source code and performs package functions.

An error will be generated if objects (such as tables) referenced in

statements in the program do not exist or if proper authorization does not

exist.

 If the NOEXIST parameter is specified, object and authorization existence

is not required, and if not found, a warning will be issued. NOEXIST is the

default. NOEXIST/EXIST is stored in the bind file header if BIND is

specified and a bind file is successfully created after preprocessing.

 EXPLAIN(NO)

EXPLAIN(YES)

This parameter specifies whether explanatory information for all

explainable SQL statements in a package should be produced.

EXPLAIN(NO) is the default.

 If EXPLAIN(YES) is specified, each explainable SQL statement in the

program is explained during preprocessing. If you specify EXPLAIN(YES),

an EXPLAIN ALL is executed. The complete set of explanation tables must,

therefore, be available. If they are not available, you receive an SQLCODE

-649 (SQLSTATE = 42704) and preprocessing is not successful. To interpret

the explanation tables, refer to the DB2 Server for VSE & VM Performance

Tuning Handbook manual. This option is stored in the bind file header if

BIND is specified and a bind file is successfully created after

preprocessing.

NOFOR

This parameter enables you to omit the FOR UPDATE OF clause in the

static cursor query statement, and execute positioned updates to any

column in the result table for which you have UPDATE authority. It is

referred to in this manual as NOFOR support.

Note: This option is also implied if the STDSQL (89) or STDSQL (86)

parameter is specified.

DYNALC

This parameter enables you to preprocess an application program

containing FETCH statements for a cursor that is allocated by a dynamic

ALLOCATE CURSOR statement.

Note: This option is only accepted by the COBOL, PL/I, C, and Assembler

preprocessors.

NOGRaphic

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 123

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

GRaphic (COBOL and PL/I preprocessors only)

The GRaphic parameter indicates to the preprocessor whether graphic

constants can be used in SQL statements and whether DBCS string format

should be validated. NOGRaphic is the default.

 If GRaphic is specified, the preprocessor accepts SQL statements containing

graphic constants, and checks that all strings of DBCS characters are

correctly formatted.

 If NOGRaphic is specified, the preprocessor does not allow graphic

constants in SQL statements, and does not verify the format of strings of

DBCS characters.

Note: If the DBCS parameter of the SQLINIT EXEC is specified as YES, the

graphic option is not used and preprocessing occurs as though

GRaphic had been specified. Refer to “Initializing the User Machine”

on page 113 for a discussion of the SQLINIT EXEC.

ISOLation (RR)

ISOLation (CS)

ISOLation (RS)

ISOLation (UR)

ISOLation (USER)

This parameter lets you specify one of the following isolation levels at

which your program runs:

v Specify RR (repeatable read) to have the database manager hold a lock

on all data read by the program in the current logical unit of work. This

is the default.

v Specify CS (cursor stability) to have the database manager hold a lock

only on the row or page of data pointed to by a cursor.

v Specify UR (uncommitted read) to have the database manager allow

applications to read data without locking, including uncommitted

changes made by other applications.

v RS (read stability) is not supported by application servers. For a

description of RS, see the IBM SQL Reference manual.

v Specify USER to have the application program control its isolation level.

You cannot specify the USER option when you are using DRDA protocol

(if you do, it is ignored and the isolation level defaults to CS).

See “Selecting the Isolation Level to Lock Data” on page 134 for guidelines

on choosing the isolation level for your program. This option is stored in

the bind file header if BIND is specified and a bind file is successfully

created after preprocessing.

Note: If you want to change the ISOLation option, you must recompile (or

reassemble) and relink your program after preprocessing it.

Preprocessing alone does not change the ISOLation setting. You

must also use Binder to rebuild the package if BIND is specified.

Preprocessing alone does not change the ISOLation setting.

KEEP

REVOKE

These parameters are applicable if the program has previously been

preprocessed, and the owner has granted the RUN privilege on the

resulting package to some other users. Specify the KEEP parameter to have

these grants of the RUN privilege remain in effect when the preprocessor

produces the new package. Specify the REVOKE parameter to remove all

124 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

existing grants of the RUN privilege. (These grants will also be removed if

the owner of the program is not entitled to grant all the privileges

embodied in the program.)

 KEEP is the default. KEEP/REVOKE is stored in the bind file header if

BIND is specified and a bind file is successfully created after

preprocessing.

LABEL (label_text)

This parameter specifies a label for the package. Label_text can be up to 30

characters in length; the default is spaces. This option is stored in the bind

file header if BIND is specified and a bind file is successfully created after

preprocessing.

LineCount (integer)

The parameter determines how many lines per page are to be printed in

the output listing. The value integer specifies the number of lines per page.

The valid range for this value is 10 to 32 767. If no value is specified, or if

there is an error in the specification of the LineCount parameter, then the

default value of 60 is used.

OWner (authorization_name)

This parameter specifies the authorization_name of the owner of the package

being created. The OWner parameter is to be used when you are

preprocessing against a non-DB2 Server for VM application server.

However, if you specify this parameter when preprocessing against an

application server, the authorization_name must be the same as the

application server authorization ID. If this parameter is not specified, the

application server selects the default.

 See the section on PREPname on page 118 for a discussion on application

server and application requester authorization IDs.

PACKAGE

NOPACKAGE

If you specify the PACKAGE parameter, the preprocessor performs

package functions and creates a package against a local database.

PACKAGE is ignored if CHECK is specified; PACKAGE is the default. If

you specify the NOPACKAGE parameter, the preprocessor does not

perform package functions and will not create a package. If you specify

NOCHECK as well as NOPACKAGE, NOCHECK is ignored. If you specify

ERROR as well as NOPACKAGE, ERROR is ignored.

PERiod

COMma

This parameter specifies the character that delimits decimals in SQL

statements. PERiod is the default.

 For an application server, the only acceptable decimal delimiter is a period.

PRint

NOPRint

The PRint parameter specifies that the entire preprocessor modified source

listing output is produced. The NOPRint parameter specifies that the

preprocessor listing output is suppressed, except for the summary

messages that are normally printed at the end. PRint is the default.

PUnch

NOPUnch

The PUnch parameter specifies that the preprocessor modified source

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 125

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

output is produced. The NOPUnch parameter specifies that the

preprocessor modified source output is suppressed.

QUALifier (collection_id)

This parameter specifies the default collection_id to be used within the

package to resolve unqualified object names in static SQL statements.

 The QUALifier parameter is meant to be used when preprocessing against

a non-DB2 Server for VM application server. If you specify this parameter

when preprocessing against an application server, the collection_id must be

the same as the application server authorization ID. If you do not specify

this parameter, the default is selected by the application server.

RELease (COMMIT)

RELease (DEALLOCATE)

This parameter specifies when the application server releases the package

execution resources and any associated locks.

 For an application server, the only acceptable action is

RELEASE(COMMIT), which releases resources at the end of a logical unit

of work.

REPLACE

NEW

This parameter specifies whether the package being created is new or

whether it will replace an existing package that has the same name. If

REPLACE is specified and no previous package exists with the same name,

no error or warning is issued, and the package is created. REPLACE is the

default. If NEW is specified, an error will occur if the package already

exists with the same name. REPLACE/NEW is stored in the bind file

header if BIND is specified and a bind file is successfully created after

preprocessing.

Note: If NEW is specified along with KEEP or REVOKE, an error will

occur.

SEQuence

NOSEQuence (C preprocessor only)

If SEQuence is specified, the preprocessor searches only columns 1 through

72 of the source file. When NOSEQuence is specified, the preprocessor

assumes there are no sequence numbers in the input file and it accepts

input from columns 1 to 80. SEQuence is the default.

Note: In the latter case, you must use the NOSEQ and MARGINS (1,80) C

compiler options when compiling the modified source.

SQLApost

SQLQuote (COBOL preprocessor only)

This parameter specifies the character that delimits strings (quoted literals)

in SQL statements. SQLApost and SQLQuote are optional parameters.

SQLApost is the default.

 For an application server, the only acceptable string delimiter is a single

quotation mark.

NOSQLCA

This parameter allows you to declare an SQLCODE without declaring all

of the SQLCA structure. It is referred to as NOSQLCA support in this

manual.

126 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

If you request NOSQLCA support, it is your responsibility to make sure

that there are no explicit declarations of the SQLCA in your application

program. For more information on using SQLCODE without the SQLCA,

refer to “Using the Automatic Error-Handling Facilities” on page 197.

Note: This option is also implied if the STDSQL(89) or STDSQL (86)

parameter is specified.

 SQLFLAG (SAA)

SQLFLAG (89)

SQLFLAG (89(COMPLETE))

This parameter invokes Flagger, a function that flags those static SQL

statements that do not conform to the SQL-89 standard or IBM’s Systems

Application Architecture* (SAA*) standard on an SQL dialect. If you

specify SAA, it provides syntax checking against the SAA Database Level 1

standard. If you specify 89, it will provide syntax checking against the

SQL-89 standard. If you specify 89(COMPLETE), it will provide both

syntax and semantics checking against the SQL-89 standard. Note that you

cannot check both SAA and SQL-89 in the same preprocessor run.

 See “Using the Flagger at Preprocessor Time” on page 133 for more details

on this facility, including an explanation of the SQL-89 standard.

STDSQL (NO)

STDSQL (89)

STDSQL refers to the SQL Standard that has been implemented in the

user’s application program. If NO is specified or the STDSQL parameter is

not used, the preprocessor uses DB2 Server for VM standards. If 89 is

specified, functions specific to ANS SQL standard 89 are also provided by

the preprocessor. STDSQL(NO) is the default. These functions consist of

the following support:

v NOSQLCA

v NOFOR

Note: STDSQL(86) is a synonym for STDSQL(89).

TIME (EUR)

TIME (ISO)

TIME (JIS)

TIME (LOCAL)

TIME (USA)

If this parameter is specified, the output time format chosen overrides the

default format specified during installation. If it is not specified, all times

will be returned in the default format that was specified during

installation. (See the DB2 Server for VSE & VM SQL Reference manual for a

description of these formats.) This option is stored in the bind file header if

BIND is specified and a bind file is successfully created after

preprocessing.

sysBInd

This parameter identifies the name of the bindfile that will be created after

successful completion of preprocessing with ″BIND″ parameter.

 sysBInd (filename)

 sysBInd (filename filetype)

 sysBInd (filename filetype filemode)

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 127

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

This optional parameter identifies the filename (fn), and optionally the

filetype (ft) and filemode (fm), of the CMS bindfile. The filetype

specification defaults to ″BINDFILE″ and filemode defaults to A.

 If this form of the sysBInd parameter is supplied, the following CMS

FILEDEF command is issued for the bindfile:

FILEDEF SYSBIND DISK fn ft fm . . .

(RECFM FB LRECL 80 BLOCK 800)

If this parameter is omitted, filename of the sysin parameter is used as fn,

while ft and fm default to ″BINDFILE″ and A respectively.

sysIN

Two choices exist:

1. sysIN(filename)

sysIN(filename filetype)

sysIN(filename filetype filemode)

This optional parameter identifies the filename (fn), and optionally the

filetype (ft) and filemode (fm), of the CMS file containing the

preprocessor source input. The filetype specification defaults to the

following:

ASM ASMSQL

C CSQL

COBOL COBSQL

Fortran FORTSQL

PL/I PLISQL

The file mode specification will default to A.

The following CMS FILEDEF command is issued for the preprocessor

source input file:

FILEDEF SYSIN DISK fn ft fm (RECFM FB LRECL 80 BLOCK 800)

2. sysIN(Reader)

This specification of the sysIN optional parameter identifies that the

preprocessor source input file is a virtual reader file. The following

CMS FILEDEF command is issued for the preprocessor source input

file:

FILEDEF SYSIN READER (RECFM F LRECL 80)

Note: If the sysIN parameter is not specified, you must enter a CMS

FILEDEF command for the preprocessor source input

(ddname=SYSIN) before issuing the SQLPREP EXEC.

sysPRint

Five choices exist:

1. sysPRint(filename)

sysPRint(filename filetype)

sysPRint(filename filetype filemode)

This optional parameter identifies the filename (fn) and optionally the

filetype (ft) and filemode (fm) of the CMS file containing the preprocessor

source output listing. The filetype specification defaults to LISTPREP,

and the filemode specification to A.

128 Application Programming

|

|

|

|

|

|

|

|

|

If this form of the sysPRint parameter is supplied, the following CMS

FILEDEF command is issued for the preprocessor source output listing

file:

FILEDEF SYSPRINT DISK fn ft fm . . .

 (RECFM FBA LRECL 121 BLOCK 1210 DISP MOD)

2. sysPRint(Printer)

This specification of the sysPRint optional parameter identifies that the

preprocessor source output listing file is directed to a virtual printer

file. If sysPRint(Printer) is specified, the following CMS FILEDEF

command is issued for the preprocessor source output listing file:

FILEDEF SYSPRINT PRINTER (RECFM FA LRECL 121)

3. sysPRint(Terminal)

This specification of the sysPRint optional parameter identifies that the

preprocessor source output listing file is directed to the console

terminal. If sysPRint(Terminal) is specified, the following CMS

FILEDEF command is issued for the preprocessor source output listing

file:

FILEDEF SYSPRINT TERM (RECFM FA LRECL 121)

4. If the sysPRint parameter is not specified and the preprocessor source

input file was assigned to the virtual reader, then the preprocessor

source output listing file is assigned to the virtual printer by the CMS

FILEDEF command described in item 2 above.

5. If the sysPRint parameter is not specified and the preprocessor source

input file was assigned to a CMS file, then the following default CMS

FILEDEF command is issued for the preprocessor source output listing

file:

FILEDEF SYSPRINT DISK fn LISTPREP A . . .

 (RECFM FBA LRECL 121 BLOCK 1210 DISP MOD)

In this example, fn is the file name specification used for the

preprocessor SYSIN file, and file mode is defaulted to A.

Note: If sysPRint and sysIN information is not specified, then the user

must issue a CMS FILEDEF command for the preprocessor source

output listing file (ddname=SYSPRINT) before issuing the SQLPREP

EXEC.

sysPUnch

Four choices exist:

1. sysPUnch(filename)

sysPUnch(filename filetype)

sysPUnch(filename filetype filemode)

This optional parameter identifies the filename (fn) and optionally the

filetype (ft) and filemode (fm) of the CMS file containing the preprocessor

modified source output. The file type specification will default to a

value based on the preprocessor invoked as follows:

ASM ASSEMBLE

C C

COBOL COBOL

Fortran Fortran

PL/I PLIOPT

The file mode specification will default to A.

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 129

If this form of the sysPUnch parameter is supplied, the following CMS

FILEDEF command is issued for the preprocessor modified source

output file:

FILEDEF SYSPUNCH DISK fn ft fm . . .

 (RECFM FB LRECL 80 BLOCK 800)

2. sysPUnch(Punch)

This specification of the sysPUnch optional parameter identifies that the

preprocessor modified source output file is directed to a virtual punch

file. If sysPUnch(Punch) is specified, the following CMS FILEDEF

command is issued for the preprocessor modified source output file:

FILEDEF SYSPUNCH PUNCH (RECFM F LRECL 80)

3. If the sysPUnch parameter is not specified and the preprocessor source

input file was assigned to the virtual reader, then the preprocessor

modified source output file is assigned to the virtual punch with the

CMS FILEDEF command described above in item 2 above.

4. If the sysPUnch parameter is not specified and the preprocessor source

input file is assigned to a CMS file, then the following default CMS

FILEDEF command is issued for the preprocessor modified source

output file:

FILEDEF SYSPUNCH DISK fn ft A . . .

 (RECFM FB LRECL 80 BLOCK 800)

In this example, fn is the file name specification used for the

preprocessor source input file, and file mode is defaulted to A. ft is the

default file type as determined by the previously mentioned method.

Note: If sysPUnch and sysIN information is not specified, then the user

must issue a CMS FILEDEF command for the preprocessor modified

source output file (ddname=SYSPUNCH) before issuing the

SQLPREP EXEC.

Parameters for SQLPREP EXEC for Single User Mode Only

The parameters for the SQLPREP EXEC that apply only to single user mode are:

DBname(dbname)

This mandatory parameter identifies the name of the application server to be

accessed by the SQL statements in the preprocessor source input file.

 This parameter is used as the DBname parameter for the SQLSTART EXEC that

is executed when the database manager is started in single user mode. The

system initialization parameters SYSMODE=S and PROGNAME=progname

(where progname varies according to which preprocessor is being invoked)

will also be supplied in the PARM parameter of the SQLSTART EXEC.

dcssID(dcssid)

This parameter identifies the method by which all DB2 Server for VM modules

will be loaded for execution. If this parameter is specified, it will be used as

the dcssID parameter for the SQLSTART EXEC. If this parameter is omitted,

the dcssID parameter will not be passed to the SQLSTART EXEC.

 Refer to the DB2 Server for VM System Administration manual for more

information.

LOGmode (Y)

LOGmode (A)

LOGmode (N)

LOGmode (L)

This parameter identifies the value to be used for the DB2 Server for VM

130 Application Programming

initialization LOGmode parameter when the database manager is started in

single user mode. If this parameter is omitted, the LOGmode parameter will

not be supplied as an initialization parameter to the SQLSTART EXEC.

 Refer to the DB2 Server for VM System Administration manual for more

information.

 PARMID (filename)

This parameter identifies the file name of a CMS file that contains DB2 Server

for VM initialization parameters. If this parameter is omitted, the PARMID

parameter will not be passed as a parameter to the SQLSTART EXEC.

 Refer to the DB2 Server for VM System Administration manual for more

information.

Parameters for SQLPREP EXEC in Multiple User Mode Only

The parameters for the SQLPREP EXEC that apply only to multiple user mode are:

DBFile (filename)

DBFile (filename filetype)

DBFile (filename filetype filemode)

This optional parameter specifies the file name, the file type, and optionally the

file mode of a CMS file containing a list of application servers on which the

program will be preprocessed. If filetype is not specified, PREPDB will be used

as the default file type. If filemode is not specified, the first file with the given

filename and filetype will be used.

 The rules governing the format of the CMS file are as follows:

v Each record has only one application server name.

v The first word in each record is the application server name.

v Comments can be added to the right of the application server name,

separated from the application server name by a blank. will be treated as a

comment.

v An empty record or a record with an ″*″ in the first position will be treated

as a comment.

DBList (server_name)

This optional parameter specifies a list of application servers on which the

program will be preprocessed.

 Note that this parameter and the DBFile parameter are mutually exclusive.

Preprocessing and bindfile

When a program is preprocessed successfully with ″BIND″ preprocessing

parameter, preprocessor creates a bindfile that contains preprocessing parameters

and modified SQL statements. Preprocessor does not necessarily connect to an

application server for the creation of the bindfile. Preprocessor creates one file per

program that is preprocessed. The bindfile created in preprocessing step is served

as input to the binding process to create the package in any local or remote

application server.

The overall effect of parameters that decide creation of package and bindfile in

combination with few other prep parameters has been summarized below. Some of

the parameters, though not mutually exclusive, can override the effect of other

parameters. The table below mentions various combination of some parameters

that are allowed, but their composite effects are different.

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 131

|

|

|

|

|

|

|

|

|

|

|

|

|

Parameter1 Parameter2 Parameter3 Parameter4 Overall Effect Action

Connection

with

database

required

BIND PACKAGE CHECK ERROR CHECK Only syntax checking NO

BIND NOPACKAGE CHECK ERROR CHECK +

NOPACKAGE

Only syntax checking NO

NOBIND PACKAGE CHECK ERROR CHECK + NOBIND Only syntax checking NO

NOBIND NOPACKAGE CHECK ERROR NOBIND +

NOPACKAGE +

CHECK

Only syntax checking NO

BIND PACKAGE NOCHECK ERROR ALL Creates Bindfile &

Package with error

tolerence

YES

BIND NOPACKAGE NOCHECK ERROR BIND Creates Bindfile NO

NOBIND PACKAGE NOCHECK ERROR ALL Creates Package with

error tolerence

YES

NOBIND NOPACKAGE NOCHECK ERROR NOBIND +

NOPACKAGE

None NO

Preprocessing with an Unlike Application Server

The SQLPREP EXEC accepts only those parameters and options which are listed in

this manual. Some of those options are only meaningful to one or more of the

other IBM relational database server or servers. The SQLPREP EXEC does not filter

out options that are not applicable to an application server before sending them to

that application server.

Equivalent parameters and options for IBM relational database products are given

in the IBM SQL Reference manual. For example, the VALIDATE(BIND) parameter in

the DB2 product for z/OS and the EXIST parameter for the DB2 Server for VM

product are equivalent preprocessing parameters.

When the DB2 Server for VM system acts as an application server and receives an

unsupported preprocessing parameter value, it returns an error message to the

application requester.

Using the Preprocessor Option File

Instead of specifying all the preprocessing parameters (found in PrepParm) in the

SQLPREP EXEC you can use an options file. Maintaining a set of standard options

files has several advantages: they can save you time; they can ensure consistent use

of preprocessing parameters; and the number of parameters that you can use is not

limited by the number of positions on the command line.

You can use a preprocessor options file by including the PrepFile parameter when

you issue the PREP command. The file itself can contain only one preprocessor

parameter per line. If more are found an error message is returned. Blank lines are

ignored, and parameters may be in either upper or lower case. Comments may be

inserted into the options file by placing an asterisk (*) to the left of the comment.

Everything to the right of the asterisk is ignored. The file must be fixed blocked

and must have a record length of 80 bytes. Figure 29 on page 133 is an example of

a preprocessor option file.

132 Application Programming

|

||||||

|

|

|

|

|||||||

|||||

|

||

|||||||

|||||

|

|

||

||||||

|

|

|

|||||||

||||||

|

|

|||||

|

||

|

|

Using the Flagger at Preprocessor Time

The Flagger is invoked at preprocessor time by the optional parameter SQLFLAG

It provides an auditing function on the static SQL statements in the host program.

This function is independent of the other preprocessor functions, and has no

bearing on whether the preprocessor run will complete satisfactorily.

The audit compares the static SQL statements with the SAA standard or the

SQL-89 standard. SQL-89 is a collective term that implies support of SQL as

defined by the Federal Information Processing Standards (FIPS) 127-1. It includes:

v ANSI X.3.135-1989 (without the Integrity Enhancement feature)

v ANSI X.3.168-1989

v ISO 9075-1989 (without the Integrity Enhancement feature)

In addition to basic syntax checking against SQL-89, Flagger optionally performs

semantics checking against SQL-89. This includes some integrity checking between

the SQL statements and the database. For example, it checks:

v Whether a statement contains column names or table names that do not

currently exist.

v Whether a statement contains ambiguity among column names, such as an

unqualified name for a column that exists in more than one of the tables in the

query.

v Whether a statement contains inconsistencies between the data types of the host

variables and their corresponding table columns.

Any statements that do not conform to the standards are flagged in the form of

information messages in the preprocessor output listing. Flagger, however, does

not force you to comply with the standards. The purpose of Flagger is to provide

guidance for those users who want to conform to these standards, so that they can

have SQL consistency across operating environments.

Note: The DB2 Server for VM product is a superset of the SQL-89 standard

without the Integrity Enhancement feature. For example, the datetime data

types are not part of SQL-89 and the CONNECT statement is not part of

SQL-89. The use of extensions such as these will generate information

messages for deviations from the standard specified in the SQLFLAG

parameter.

The Flagger messages generated at preprocessor time range from ARI5500 to

ARI5599, and are further classified as follows:

1. ARI5500-ARI5539 and ARI5570-ARI5599 are information messages that indicate

that an extension to the SQL-89 standard (nonconformance) has been found.

These start with “FLAGGER message.”

2. ARI5540-ARI5569 are warning messages that indicate a failure on the part of

Flagger itself.

* prep parameters for program SAMPLE

 ISOL(CS) *cursor stability isolation level

 TIME(ISO)

 BLOCK *indicate inserts and retrieves in groups

Figure 29. An Example of a Preprocessor Option File

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 133

In this event, SQL-89 semantics checking will be turned off and its syntax

checking may or may not be turned off, depending on the nature of the failure.

However, the preprocessor run itself will continue, and any inconsistencies

discovered by Flagger prior to the failure will be included in the output listing

of the run.

Improving Performance Using Preprocessing Parameters

When preprocessing your program, you can specify two performance parameters,

the SBLocK/BLocK/NOBLocK option, and the ISOLation level option. The format

and use of these options within the SQLPREP EXEC was discussed under

“Preprocessing the Program” on page 114. The next section discusses when you

would want to specify each of these options.

(Other performance considerations are discussed in the DB2 Server for VSE & VM

Database Administration manual.)

Selecting the Isolation Level to Lock Data

The database manager puts locks on data that your program works with, to keep

other users from reading or changing that data. You can specify either to lock all

the data that the current logical unit of work (LUW) has read, to lock just the row

or page of data that a cursor is currently pointing to, or to not lock any data being

read. This is called specifying the isolation level of the lock.

The isolation level used by an application is set using the ISOLation preprocessing

parameter. On SELECT, SELECT INTO, INSERT, searched UPDATE, and DELETE

statements, the WITH clause may be specified to override the value specified on

the preprocessing parameter.

If you choose to put a lock on all the data that your program’s current LUW has

read, this is called specifying isolation level repeatable read. Repeatable read locks are

held until the end of the LUW. If you choose to put a lock on just the row or page

of data that your cursor is pointing to, then you are specifying isolation level cursor

stability. With cursor stability locking, when the cursor moves, the system frees all

the data previously read by the program that was held by the lock. If you choose

not to lock the data that your program will read, this is called specifying isolation

level uncommitted read. With uncommitted read, no locks are held on the data being

read, and as a result, the data can be changed by other applications.

Both repeatable read and cursor stability provide you with the following data

isolation from other concurrent users:

v Your LUW cannot modify or read any data that another active LUW has

modified. Similarly, if your LUW has modified some data, no one else can

modify or read that data until your LUW has ended. Modify means to apply

INSERT, DELETE, UPDATE, or PUT commands; READ means to apply SELECT

or FETCH commands.

v If your LUW has a cursor pointing to a row of data, no other LUW can modify

that data. Similarly, your LUW cannot modify a row to which another user has a

cursor pointing.

In addition to the above, repeatable read locking provides you with the following

data isolation from other concurrent users:

v No other LUW can modify any row that your active LUW has read. Also, you

cannot modify any data that another active LUW, specifying repeatable read, has

read.

134 Application Programming

v You do not have to worry about your data being changed between reads, as

long as you do not end your LUW between those reads.

This extra isolation has its drawbacks, however. When you specify repeatable read

for data in public dbspaces with PAGE or ROW level locking, you reduce the

concurrency of the data. This means that other users may be locked out from the

data for a long time, causing delays in their programs’ executions.

If you specify cursor stability instead, you reduce these locking problems by

making the data more available. With this isolation level, the system does not hold

the locks as long. After a cursor has moved past a row or page of data, the lock on

that data is dropped. This increases concurrency so that other users can access data

faster.

Cursor stability can, however, cause some data inconsistencies. For instance:

1. If a user’s LUW reads data twice, it can get different results. This could happen

if another user modifies the data and commits the changes between read

operations.

2. A modification based on a prior reading can be incorrect. This can occur if

another LUW modifies the rows that a user has read and commits the changes

before that user can do the modification. (Note that when the user is retrieving

data in application programs, the only row that is safe from modification is the

one that is currently being pointed to by a cursor.)

3. If an SQL statement in the user’s LUW is traversing a table by way of an index,

the user might find the same row twice. (This case applies to FETCH cursors,

searched INSERT by way of subselect, and searched UPDATE with subselect

that traverse a table by way of an index.) This can occur because, after the

user’s statement reads the row the first time, another user can update the

column value that is indexed and commit the change. The change could cause

the committed row to be ahead of the row currently being retrieved by the

statement. The first user’s statement would then find the row again with its

updated index column value.

4. If an SQL statement in the LUW is traversing a table by way of an index, it can

fail to find a row (or rows) even if the row meets the selection criteria. (This

situation applies to FETCH cursors, Searched DELETE, Searched INSERT by

way of the subselect, and Searched UPDATE by way of the subselect that

traverse a table by way of an index.) This can occur because while the LUW is

reading, another user modifies the indexed column in the row and commits the

change (as above). The change could cause the committed row to be behind the

row the user’s statement is currently reading. Thus, the statement would not

find the row, even if the row met the selection criteria.

5. If you enter a SELECT statement to retrieve a single row, a cursor is opened

when the system processes the statement and is closed when the row is

returned. All PAGE and ROW level locks are released when the cursor is

closed; therefore, no locks are held after the row is returned. For single-row

processing using a SELECT statement with a fully qualified unique index, a

cursor is not opened and again no locks are held once the row has been

returned. As a result, applications which update a selected column based on

the values retrieved may have unexpected results because the lock was not

held for the duration of the LUW. For example:

HOST_EMPNO = ’000250’

EXEC SQL SELECT SALARY /* HOST_SALARY is 19180 */

 INTO :HOST_SALARY

 FROM EMPLOYEE

 WHERE EMPNO = :HOST_EMPNO;

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 135

HOST_SALARY = HOST_SALARY + 1000; /* HOST_SALARY increased to 20180 */

EXEC SQL UPDATE EMPLOYEE /* UPDATE SALARY in EMPLOYEE */

 SET SALARY = :HOST_SALARY; /* TABLE with HOST_SALARY */

 WHERE EMPNO = :HOST_EMPNO;

EXEC SQL SELECT SALARY /* HOST_SALARY may not be 20180 */

 INTO :HOST_SALARY /* because lock was not held for*/

 FROM EMPLOYEE /* the duration of the LUW */

 WHERE EMPNO = :HOST_EMPNO;

COMMIT WORK;

In the previous example, it is possible that two or more users could read the

salary column with the same value at approximately the same time. They

would then each increment the number and issue the UPDATE statement. The

second user would wait for the first user’s update to finish, and then overwrite

it with the same number.

Unlike RR or CS, uncommitted read does not provide any data isolation from

other concurrent users. Like CS though, concurrency is improved, although at the

risk of data inconsistency. UR can cause similar data inconsistencies as those

described for CS and should only be used when it is not necessary that the data

you are reading be committed.

An application using isolation level UR is still restricted to access only data for

which it has authorization. However, because it will be able to read uncommited

changes, it will be able to read additional rows which an application, with the

same authorization but using RR or CS, could not. This is illustrated by the

following example.

 Rows of table:

 A

 B

 C

 <---D

 E

 Scenario: 1

 U1 reads (using UR) A B

 U2 inserts D

 U1 continues reading C D E

 U2 rolls back

 -- U1 has read a non-existent row

 Scenario: 2

 U1 reads (using CS) A B

 U2 inserts D

 U1 continues reading C, must wait to read D

 U2 rolls back

 U1 continues reading E

 Note: In scenario 1, U1 has read an extra row which U1 in

scenario 2 could not.

When should each of these options be chosen for your program? Usually, you

should specify repeatable read locking. Only use cursor stability if your program

causes or will cause locking problems. For instance, you would probably want to

use cursor stability for transactions that perform terminal reads without

performing a COMMIT or ROLLBACK, or programs that do bulk reading, because

it is handy for programs that browse through large amounts of data. For programs

that perform commits or rollbacks before issuing terminal reads, you should use

repeatable read locking, because they probably will not cause locking problems.

Also, any application that needs to protect itself against updates should also use

repeatable read locking. For programs where concurrency is wanted, for example,

data being queried simultaneous to being updated, you would use uncommitted

read locking. Of course, this would be for applications where data integrity was

136 Application Programming

not important because the data being read may not necessarily have been

committed. For single row processing (UPDATE and DELETE, for example) by

way of unique indexes, cursor stability performs no better, and may perform

worse, than repeatable read isolation.

One additional isolation level exists in DRDA protocol: Read Stability (RS). RS is

not supported by a DB2 Server for VSE & VM application server, but it is

recognized as a valid preprocessing option by the database manager. For more

information on this option, refer to the DB2 Server for VSE & VM SQL Reference

manual.

Upon receiving a request for the RS isolation level, an application server escalates

it to RR and proceeds without indicating the escalation to the application requester.

You can also mix isolation levels, to have your program set, change, and control its

own isolation level as it is running. You can specify mixed isolation level with the

USER option of the ISOLation preprocessor parameter, as detailed under

“Preprocessing the Program” on page 114.

If you choose this option, your program must pass the isolation level value to the

application server by a program variable. It must declare a one-character program

variable and must set this variable to the desired isolation level value before

executing SQL statements. For repeatable read, your program should set this

variable to R; for cursor stability, the variable should be set to C; and for

uncommitted read, the variable should be set to U. The program can change the

variable at any time so that subsequent SQL statements are executed at the new

isolation level value. However, if your program changes the isolation level while a

cursor is OPEN, the change does not take effect for operations on that cursor until

it has been closed and opened again. That is, until the cursor is closed all

operations on that cursor are executed at the isolation level value that was in effect

when the cursor was opened. Note that the changed isolation level will be used

(without error) for SQL statements not referencing the opened cursor.

If the program sets the isolation level variable to a value other than C, R or U, or if

it fails to initialize the variable, the system stops execution and returns an error

code in the SQLCA.

Table 12 shows the isolation level variable name for each of the host languages.

 Table 12. Variable Names for Specifying Mixed Isolation Levels

Host Language Variable Name Example

assembler SQLISL SQLISL DS CL1

C SQLISL char SQLISL;

COBOL SQL-ISL 01 SQL-ISL PIC X(1).

Fortran SQLISL CHARACTER SQLISL

PL/I SQLISL DCL SQLISL CHAR(1);

Note: If you forget to declare the isolation level variable in a PL/I program, the

PL/I compiler issues an informational message which can, in some

environments, be suppressed.

If you preprocess using DRDA protocol, the USER isolation level option is not

supported. In DRDA protocol, the application requester changes any USER

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 137

isolation level request to CS. If you preprocess using SQLDS protocol but later

invoke the package using DRDA protocol, the application server defaults to the CS

isolation level at run time. If a package is preprocessed and invoked using SQLDS

protocol, the isolation level setting is not affected.

Isolation level cursor stability or uncommitted read only has meaning for data in

public dbspaces with ROW or PAGE level locking. Data in private dbspaces or in

public dbspaces with DBSPACE level locking always uses repeatable read isolation.

However, programs which access such data and do not require repeatable read

should be preprocessed with cursor stability or uncommitted read. The data

concurrency requirements might change and cause the data to be moved to a

public dbspace with PAGE or ROW level locking. In this case, the program would

not need to be repreprocessed to run at isolation level cursor stability or

uncommitted read.

To use the features of CS or UR, data must reside in public dbspaces with PAGE or

ROW level locking. DML statements against private dbspaces or public dbspaces

with PAGE or ROW level locking under isolation level CS or UR are handled the

same as if isolation level RR were used.

When the system uses a dbspace scan (that is, does not use an index) to access a

table in a dbspace with ROW level locking using isolation level cursor stability, the

effect is the same as repeatable read. That is, no other LUW can update the table

until the logical unit of work performing the dbspace scan ends. Also, if an LUW

is updating a table, another LUW (using cursor stability) cannot access that table

with a dbspace scan until the updating LUW ends. This reduced concurrency for

dbspace scans does not apply to tables in dbspaces with PAGE level locking, or to

accessing tables through indexes. Because most database accesses will typically use

indexes, the reduced concurrency caused by dbspace scans should not occur

frequently.

The isolation level specification affects UPDATE and DELETE processing as well as

SELECT processing. For UPDATE and DELETE processing, the system acquires

UPDATE locks. UPDATE locks can be acquired for both cursor stability and

repeatable read isolation level settings. If the user actually wants to update or

delete the data, the UPDATE lock is changed to an EXCLUSIVE lock; otherwise,

the UPDATE lock is changed to a SHARE lock.

Note the following about UPDATE LOCKS:

v They are used for page or row locking, but not for dbspace locking.

v They apply to index pages or index keys only for the Searched DELETE

statement.

v For Positioned DELETE processing, the named cursor must have been declared

in the FOR UPDATE clause of the DECLARE CURSOR statement.

v For FETCH processing that uses repeatable read isolation level, these locks are

acquired only if certain predicates are present in the statement. See the DB2

Server for VSE & VM Database Administration manual for more information.

Internally generated SELECT, UPDATE, or DELETE statements use cursor stability

locking no matter what the isolation level is set to. (See “Enforcing Referential

Integrity” on page 299 for information on these statements). Conversely, data

definition statements such as CREATE, ACQUIRE, or GRANT, use repeatable read

locking no matter what the isolation level is set to. These statements, therefore,

should not play a role in your choice of isolation level.

138 Application Programming

Note: Catalog access for SQL statement preprocessing is also always done with

repeatable read locking.

Using the Blocking Option to Process Rows in Groups

You can insert and retrieve rows in groups or blocks, instead of one at a time. This

is called specifying the blocking option. Specifying one of the blocking options

(SBLocK, BLock or IBLocK), improves performance for DB2 Server for VM

application programs that:

v Execute in multiple user mode, and

v Retrieve or insert multiple rows.

You can specify the blocking option as a DB2 Server for VM preprocessor

parameter, or SBL0cK or BLocK as an option on the CREATE PACKAGE statement.

After a program has been preprocessed with the blocking option, all eligible cursor

SELECTs and all eligible cursor INSERTs within the program are blocked. You do

not have to specify a block size or block factor.

When using DRDA protocol, you can specify the block size by using the SQLINIT

EXEC. Performance is closely related to block size when using DRDA protocol.

The programs that would benefit the most from blocking are those that do

multiple-row inserts (with PUT statements or Insert statements) or multiple-row

SELECTs (with FETCH statements). In both cases, a cursor must be defined. (See

“Retrieving or Inserting Multiple Rows” on page 33; for more information on

cursors.) Thus, a general rule for blocking is use blocking for programs that declare

cursors or that have multiple contiguous homogenous insert statements.

A program can use either PUT, FETCH or INSERT statements without being

sensitive to whether the system is blocking. These statements work regardless of

whether you specified the blocking option. What information is returned in the

SQLCA after each PUT, FETCH or INSERT, however, depends on whether blocking

is in effect or not.

Remember that when you preprocess a program with the blocking option, all

eligible INSERT and SELECT cursors are blocked. You cannot specify blocking for

just INSERTs or for just SELECTs. If you specify the blocking option, it

automatically applies to both. However, specifying the IBLocK option applies only

to normal INSERT statements in the application program, that are homogenous

and contiguous.

When are INSERT or SELECT statements not eligible for blocking? The database

manager sometimes overrides blocking for a particular cursor because of storage

limitations in the virtual machine, or because of SQL statement ineligibility. The

following SQL statements are ineligible for blocking and cause blocking to be

overridden automatically for the cursors they refer to:

v DECLARE CURSOR...FOR UPDATE

v Any DECLARE CURSOR statement with a related select-statement containing a

long string

v Any DECLARE CURSOR statement that has a subsequent DELETE...WHERE

CURRENT OF statement

v Any DECLARE CURSOR statement that has a corresponding UPDATE...WHERE

CURRENT OF statement and the program is preprocessed with NOFOR

support.

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 139

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

The system also disqualifies blocking if it cannot fit at least two rows into a block.

(The number of rows that fit into a block may differ from one

PUT/FETCH/INSERT statement to the next, even when such statements operate

on the same table.)

The system does not halt the program when it overrides blocking. Instead, in each

of the above cases, it sets a warning flag in the SQLCA. The warning can be

detected by using WHENEVER SQLWARNING in the program. See “Using the

Automatic Error-Handling Facilities” on page 197 for more information on the

SQLCA and the SQL WHENEVER declarative statement.

Note: The DECLARE CURSOR... statement can also be written without the FOR

UPDATE OF clause, even though positioned updating is subsequently done.

(This is allowed when NOFOR support is invoked at preprocessor time.) In

this case, blocking is also ineligible.

The system also overrides blocking for all programs running in single user mode.

In this instance, the system does not usually return a warning to the SQLCA. A

warning is returned to the SQLCA for programs running in single user mode if:

v The program is preprocessed with the BLocK option

v An SQL statement that is being processed dynamically (with PREPARE) is

disqualified for blocking.

The DBS Utility may get blocking ineligible warnings when it is run in single user

mode because it is preprocessed with the BLocK option, but uses PREPARE to

process SELECT statements.

Note: Always CLOSE a cursor before issuing a COMMIT statement, especially

when blocking. If you commit changes before closing an insert cursor that is

being blocked, you receive an error. If you are using DRDA protocol and if

the HOLD option is in effect, your application does not have to close the

cursor before committing the LUW.

Imposing Blocking Restrictions:

1. The length of host variables in the SQLDA or host_variable_list cannot be

changed after the first FETCH, PUT or INSERT when blocking.

2. The data type of host variables in the SQLDA or host_variable_list cannot be

changed after the first FETCH, PUT or INSERT when blocking.

3. The number of data elements in the host_variable_list or SQLDA cannot be

changed after the first FETCH, PUT or INSERT when blocking.

4. If a COMMIT is issued while a blocking PUT cursor is open, an error occurs.

When blocking is active, a single SQLCA is returned with each block of rows. This

SQLCA is returned to the application program with the last row in the block.

However, for the final block of rows, the FETCH that returns the “not found”

condition (SQLCODE = +100 and SQLSTATE='02000') will return the SQLCA. (For

more information on SQLCA refer to “Using the SQLCA” on page 199). This has

the following implications for application programming:

v No warning conditions are returned to the application until the SQLCA is

returned.

For example, if SQLWARN3 is set (to indicate that the application has fewer

target variables in the INTO clause than the number of items in the SELECT

list), the application will not be notified until either the last row in a block or the

“not found” condition is returned.

140 Application Programming

|

|

|

|

|

|

|

|

|

|

v If SQLWARN1 (truncation occurrence) is set, it is impossible to tell from the

SQLCA information which row (or rows) in a block caused the warning

condition. However, if the application resets the indicator variable to 0 before

each fetch, and then examines the indicator variable after each fetch, truncation

can be detected on an ongoing basis.

Using the Blocking Option in DRDA Protocol: When the database manager is

acting as an application requester in DRDA protocol, no blocking is provided on a

PUT statement using the BLocK option and for a normal INSERT statement using

the IBLocK option.

When the IBLocK or BLocK parameters are specified in DRDA protocol, all eligible

homogenous INSERT/PUT statements are grouped together for processing.

Homogenous INSERT statements are defined as a set of insert statements that:

v Access the same DB2 Table.

v Access the same set of columns in that table, in the same order.

There must be an ’SQL COMMIT’ statement after a set of homogenous insert

statements. This causes the buffer to be sent, processed by the DB2 UDB Server

and response received and parsed by the Application requester.

The IBLocK parameter does not work under private protocol.

This is particularly useful, if you are loading a large amount of data while using

DRDA protocol.

In DRDA protocol, the block size for FETCH/PUT/INSERT statements is

determined by the QRYBLKSIZE parameter in SQLINIT. For information on

SQLINIT, refer to the DB2 Server for VSE & VM Database Administration manual.

Using the INCLUDE Statement

Including External Source Files

The inclusion of external source files is indicated to the DB2 Server for VM

preprocessor by an embedded SQL statement, the INCLUDE statement, in the

user’s source code. This statement can appear anywhere that an SQL statement can

appear, and indicates within the source code where the external source is to be

placed. The syntax for the INCLUDE statement is as follows:

 where text_file_name is a 1- to 8-character identifier that identifies the file name of

the external source file. Text_file_name cannot be delimited by double quotation

marks. The first character must be a letter (A-Z), $, #, or @; the remaining

characters must be letters, digits (0-9), $, #, @, or underscore (_), unless further

restricted by the operating system. Also, text_file_name cannot be SQLCA or

SQLDA, because these are special INCLUDE keywords.

Including Secondary Input

You can use the INCLUDE statement to obtain secondary input from a CMS file. If

a source program input to a DB2 Server for VM preprocessor uses the INCLUDE

facility, any files to be used as secondary input must be accessed by the user. A

search of all accessed CMS mini-disks for the file name and file type is conducted

►► INCLUDE text_file_name ►◄

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 141

|

|

|

|

in standard CMS search order and the first match determines the file mode. This

filename, filetype, and filemode are used as the secondary input or external source.

The CMS file containing the secondary input statements must be fixed-length,

80-character records.

The INCLUDE statement causes input to be read from the specified file name until

the end of the file, at which time the SYSIN input resumes. The file to be included

must have an appropriate file type:

ASMCOPY assembler

CCOPY C

COBCOPY COBOL

FORTCOPY Fortran

PLICOPY PL/I

The file mode is determined by the search of the virtual machine’s accessed

minidisks. If the INCLUDE statement specifies a file name that is not located on

any user-accessed CMS mini-disk, an error will result.

Secondary input must not contain preprocessor INCLUDE statements other than

INCLUDE SQLDA or INCLUDE SQLCA, although it may contain both host

language and SQL statements. If an INCLUDE statement is encountered, an error

will result.

Compiling the Program

After you successfully preprocess your program, you can compile it using your

normal host language compiler. By preprocessing, you have already done all the

translating that the program needs for the database manager. Just use the new

code that you got after you preprocessed. Compile this code as you would any

other program, using the usual compilers.

This book does not cover the specifics of compiling your host-language code.

However, there are several special rules for SQL programs, depending on the host

language, that you must follow:

v If your PL/I application program contains DBCS data, you must specify the

GRAPHIC option for the compiler. If your COBOL application program contains

DBCS data or is reentrant, the output of the DB2 Server for VM preprocessor

must be processed by the COBOL II Release 2 (or later) program.

v If the QUOTE option is used for the DB2 Server for VM COBOL preprocessor, it

should also be used for the COBOL compiler.

v If the NOSEQuence option is used for the DB2 Server for VM C preprocessor,

the NOSEQ and MARGINS (1,80) options must be used with the C compiler.

v If the compiler provides a mechanism whereby run-time program interrupts are

trapped before control returns to CMS, the database manager may not identify

that an abnormal termination has occurred. As a result, an implicit COMMIT is

executed instead of an implicit ROLLBACK. See the host language appendixes

for a discussion of program interrupts.

Link-Editing and Loading the Program

After compilation, programs must be link-edited and loaded before they can be

run.

142 Application Programming

Link-Editing the Program with DB2 Server for VM TEXT Files

To enable your program to communicate with the application server, you must

link-edit your program with one or more DB2 Server for VM TEXT files, one of

which is the resource adapter stub. Every DB2 Server for VM application program

must be link-edited with this stub; Fortran and COBOL programs need to be

link-edited with additional TEXT files.

Using the Resource Adapter Stub Routine

The resource adapter stub routine has a file name of ARIRVSTC, but is invoked by

its entry point name ARIPRDI. To link-edit this stub routine successfully with the

user program, you must INCLUDE ARIRVSTC or place the TEXT files in a CMS

TXTLIB. This will make the entry point ARIPRDI known to the link-edit process.

Using Other TEXT Files

Other files that need to be link-edited, depending on the host language, include:

v For all programs written in Fortran, you must also link-edit the TEXT files

ARIPEIFA and ARIPSTR. If the Fortran program uses the TEXT file ARISSMF,

this file must also be link-edited (refer to “Examining the SQLCA” on page 202

for more information).

v For all reentrant programs written in COBOL, you must also link-edit the TEXT

file ARIPADR4. Non-reentrant COBOL programs may continue to link-edit the

TEXT file ARIPADR until they are repreprocessed and recompiled. After, they

must link-edit the TEXT file ARIPADR4.

v For all programs that use the DBS Utility, you must also include ARIDBS which

is a member of ARISQLLD LOADLIB. (For information on the DBS Utility refer

to the DB2 Server for VSE & VM Database Services Utility manual.)

v For all programs (except Fortran programs) that use the TEXT file ARISSMA,

you must also link-edit this file (refer to “Examining the SQLCA” on page 202

for more information).

v For all programs that use the TEXT file ARIGMSGC, you must also link-edit this

file (refer to “Examining the SQLCA” on page 202 for more information).

If you receive an unresolved external reference message for a module name that

begins with ARI or SQL, check the link process to ensure that all required extra

linkage modules are included.

Some of these modules contain entry points with names that are different from the

module name. The code generated by the DB2 Server for VM preprocessor can

reference one of these entry points, depending on the SQL statements in your

application.

Including the TEXT File in the Link-Editing

Using the CMS LOAD Command

One way to link-edit these TEXT files to your program is to INCLUDE them after

your program name in the CMS LOAD command. Then, when you load your

program, the CMS linkage editor automatically links your program to the TEXT

files relocatable modules that you specified, and resolves virtual storage addresses

among the TEXT files.

For example, SAMPLE1 is the user’s program name and ARIRVSTC is the TEXT

file in the CMS LOAD command below:

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 143

|

|

To see other examples of REXX EXEC’s that use the CMS LOAD command, see

any of the REXX EXEC’s listed in Table 3 on page 21.

Note that if the user machine has READ access to the production minidisk, the

CMS LOAD command will automatically load the needed TEXT file, searching all

accessed CMS minidisks in ascending order (A through Z) for TEXT files that it

needs. For additional information about CMS LOAD, see the VM/ESA: CMS

Command Reference manual.

Using the CMS TXTLIB Command

Instead of specifying ARIRVSTC in the CMS LOAD command, you can put

ARIRVSTC and all your application TEXT files into a TXTLIB. To create a TXTLIB,

enter:

TXTLIB GEN my-lib ARIRVSTC program-name . . .

To add new programs to a TXTLIB, enter the following command:

TXTLIB ADD my-lib program-name2 program-name3 . . .

After a program is in a TXTLIB, enter the following commands to perform the

link-edit:

GLOBAL TXTLIB my-lib

LOAD program-name

For more information about TXTLIB, see the VM/ESA: CMS Command Reference

manual.

Creating a Load Module Using the CMS GENMOD Command

All of the TEXT files are on the DB2 Server for VM production minidisk (Q-disk).

After loading the DB2 Server for VM application, you should create a module by

issuing the CMS GENMOD command. This module can be used in multiple user

mode, but is not required; it is required, however, to run in single user mode. For

example, to create a module for an assembler application program called

SAMPLE1 that has been compiled and added to a TXTLIB called LIBRARY1, enter

the following commands:

GLOBAL TXTLIB LIBRARY1

LOAD SAMPLE1

GENMOD SAMPLE1

This creates a CMS file with a file name of SAMPLE1 and a file type of MODULE.

To see other examples of REXX EXEC’s that use the CMS GENMOD command, see

any of the REXX EXEC’s listed in Table 3 on page 21.

Running the Program

Using a Consistency Token

Consistency tokens ensure that a program’s load module and the database package

are used together. When preprocessing, you can instruct the preprocessor to place a

consistency token in both the load module and the package (see CTOKEN

parameter on page 122). If the two tokens do not match, the application server

prevents the program from running.

LOAD SAMPLE1 ARIRVSTC

144 Application Programming

Note: If you inadvertently forget to compile or link-edit a new version of a

program, you can run an old version of a program with a new version of

the package. Conversely, with multiple application servers, you can

inadvertently run a new version of a program with an old version of the

package. In either situation, you will probably get program errors or

incorrect results if you have not used consistency tokens.

Loading the Package and Rebinding

The package that the preprocessors stored carries out the SQL request. When the

application server loads the package, it checks that the package is still valid. A

package may not be valid if one of its dependencies has been dropped. For

example, some index that the package uses may have been dropped.

Packages are also invalidated when primary keys and referential constraints are

added to, dropped from, activated, or deactivated on tables that the modules

depend on. The following rules apply:

v If a primary key is added, dropped, activated, or deactivated, all packages that

have a dependency on the parent table will be invalidated. This includes any

tables that have a foreign key relationship with the parent table.

v If a foreign key is added, dropped, activated, or deactivated, all packages that

have a dependency on the dependent table or parent table will be invalidated.

The system has an internal change management facility that keeps track of whether

packages are valid or not. If a package is valid, the system begins running the

program; if the package is not valid, the system tries to re-create it. The original

SQL statements are stored with the package when you preprocess the program.

The system uses them to automatically bind the program again. It does this

dynamically (that is, while it is running). If the rebinding works, a new package is

created and stored in the database and the system then continues execution of the

program. If the rebinding does not work, an error code is returned to the program

in the SQLCA, and the program stops running.

A successful rebinding has no negative effect on your program except for a slight

delay in processing your first SQL statement. To minimize this delay, you can use

the DBSU REBIND PACKAGE command to rebind the invalid package after it has

been invalidated, but before it is executed. See the DB2 Server for VSE & VM

Database Services Utility manual for information on this command.

Using Multiple User Mode

When the database manager has been started in multiple user mode, the user

machine should have IPLed CMS and been initialized for DB2 Server for VM

processing (by the SQLINIT EXEC).

If the program has any input or output files, file definitions may be required. The

CMS FILEDEF command is described in the VM/ESA: CMS Command Reference

manual.

In addition, if your application was compiled using a Language Environment

Compiler, the Language Environment must be available at runtime for your

application to use the dynamic library routines. One way to do this is by including

SCEERUN LOADLIB on the GLOBAL LOADLIB list. For more information, see the

compiler documentation.

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 145

If a module was created, you can execute the program by specifying the name of

the module followed by any user program parameters. For example, the following

command starts assembler program SAMPLE1 in multiple user mode, and passes

the user parameters directly to the program:

 If a module was not created, you can execute the program by first specifying the

CMS LOAD command, as described in the previous section, and then the CMS

START command. For example, to execute the program SAMPLE1, enter:

 where:

SAMP is the control section name or entry point name that receives

control at run time. If an asterisk (*) is used (instead of a name),

control is passed to the default entry point.

parm1 parm2 are parameters passed to the program. If parameters are passed,

the control name or section name or * operand must be specified;

otherwise the first parameter is taken as the entry point.

When parameters are passed on the START command, the requirements of both

CMS and the language of the application program must be met. See the VM/ESA:

CMS Command Reference manual, for a description of the CMS START command

and the appropriate language guide or reference manuals for details on how to

pass parameters.

Using Single User Mode

Single user mode application programs are programs that run in the same machine

as the DB2 Server for VM code and that are under the control of the database

manager. In this case, the user machine and the database machine are the same.

Single user mode programs are invoked by starting the application server with the

SQLSTART EXEC. (Before invoking the system, you must enter IPL CMS.) You

must specify both the mode (SYSMODE=S) and your program name

(PROGNAME=name) when you enter the SQLSTART EXEC.

When SQLSTART is invoked, the systems loads the program (identified by the

PROGNAME parameter) and passes control to it after the system is initialized. For

single user mode, the module must be available.

The DB2 Server for VSE & VM Operation manual lists all the initialization

parameters you can specify when you start the system in single user mode. A

system programmer can also determine the best initialization parameters for your

system and pass them on to you.

The following is an example of the SQLSTART EXEC for invoking programs in

single user mode with no user parameters:

SAMPLE1 parm1 parm2

LOAD SAMPLE1 ARIRVSTC

START SAMP parm1 parm2

146 Application Programming

Note: If your program or the database manager ends abnormally, you may receive

a minidump (depending on what initialization parameters were specified).

Mini-dumps are described in the DB2 Server for VSE & VM Diagnosis Guide

and Reference manual.

Specifying User Parameters in Single User Mode

When starting the database manager in single user mode, you can also specify user

parameters to be passed to your application program using the PARM keyword of

the SQLSTART EXEC. The SQLSTART EXEC purges the CMS program and console

stacks. Thus, any program run in single user mode cannot rely on console or

program stack input.

Place a slash (/) between the initialization parameters and the user parameters. For

example:

Note: Only the first 130 characters of the command line are read by CMS. The

exception to this rule occurs when SQLSTART is called from a user-written

EXEC; then CMS reads the first 256 characters. If you specify many

initialization parameters and user parameters, they will not fit on the

command line. Thus, you must use a CMS file for some of the parameters.

Because user parameters cannot be specified in a CMS file, you should

specify the initialization parameters in the CMS file, and the user parameters

on the command line.

A program written in C, PL/I, COBOL or Fortran requires an interface routine to

process the user parameters.

Distributing Packages across Like and Unlike Systems

To run your application program on another DB2 Server for VSE & VM database

manager, you can simply distribute its load module and the DB2 Server for VSE &

VM package. (You do not have to distribute the source code and then preprocess

and compile it on the other system). Reload the package to all application servers

that your package accesses, and send the load module to all DB2 Server for VSE &

VM application requesters that your program accesses. You can unload the package

to be distributed from the application server into a file, and subsequently reload

the file into the new application server. Only the owner of the package or the

database administrator can unload or reload the package.

If the package is distributed among application servers that are at different release

levels of the system or are non-DB2 Server for VM or DB2 Server for VSE servers,

a run-time error occurs if the package uses a feature that is not available on the

application server on which the package was reloaded. To ensure that the load

module and the package that you are distributing are meant to be used together,

use the preprocessor parameter CTOKEN to place the same consistency token in

both the load module and the package. Refer to “Preprocessing the Program” on

page 114. If the two tokens do not match, the application server stops the program

SQLSTART DB(SQLDBA) PARM(SYSMODE=S,LOGMODE=A,DUMPTYPE=N,PROGNAME=SAMPLE1)

SQLSTART DB(SQLDBA)

 PARM(SYSMODE=S,LOGMODE=A,DUMPTYPE=N,PROGNAME=SAMPLE1/parm1,parm2)

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 147

from running. For information on distributing packages on both like and unlike

systems, and on distributing packages using DRDA protocol, refer to the DB2

Server for VSE & VM Database Services Utility manual.

If your application is to run at other DB2 Family application servers, do the

following:

v Use Binding to generate a package at each DB2 application server at which the

application is to be run.

v Binding can be invoked using SQLBIND EXEC.

v SQLBIND EXEC uses the bind file created in the preprocessor step above.

For more information on VM Binding, see “Binding to Create Package.”

Binding to Create Package

Binding is the process of creating the package in target database using the bindfile

as input. Preprocessing with ″BIND″ option and binding are complementary to

each other. Binding can be invoked multiple times to bind the packages to one or

more databases. It must be ensured that bindfile is not corrupted or modified to

get proper results. Creation of package using binding can be done for COBOL, C,

Pl/1 and assembler preprocessed programs only.

SQLBIND exec can be used to perform binding. SQLBIND exec can not be used in

single user mode to bind to DB2 Server for VM. For each application server

specified, the SQLBIND EXEC:

1. Establishes a link to the application server.

2. Binds the bindfile to the application server to create the package.

3. Displays summary messages showing the results for this binding.

4. Creates two files with filename same as bindfile and filetype BINDLST and

BINDOUT in A-disk that must be accesses as R/W. These files contain

summary and output of binding.

To perform binding, you must be either the owner of the program whose bind file

you are binding to a remote server or a database administrator. SQLBIND takes 11

parameters, one of them is positional and mandatory. Parameters and their details

are given below:

►► SQLBIND PACKAGE (package_id)

collection_id.
 ►

►
INfile

(

fn

ft

fm

)
 ►

►
REPLACE

KEEP

NOCHECK

BOPT

(

NEW

,

REVOKE

,

CHECK

)

ERROR

 ►

►
OWner

(

authorization_name

)

QUALifier

(

collection_id

)
 ►

148 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||||||||||||||||||

|

|

||||||||||||||||||||

|

|

||

|

|

|||||||||||||||||||||||||||||

|

||

►

▼

DBFile

(

fn

ft

fm

)

DBList

(

server_name

)

 ►

►
USERid

(

authorization_name/password

)

QRY
 ►◄

PACKAGE(collection_id.package_id)

This parameter identifies the package to be created and the associated bind

file. The associated bind file must be created by the DB2 Server for VSE

preprocessor and its contents must not be changed in any way.

collection_id.package_id is the name by which the database manager identifies

the package to be created and the associated bind file. The collection_id

portion is optional, and fully qualifies the package_id and any unqualified

objects referenced within the package.

 If the collection_id is not specified, and the user_id is, the collection_id

defaults to the user_id. If neither is specified, the collection_id defaults to the

connected authorization-id. You must be the owner of the bind file that you

want to bind. To bind another user’s bind file, you must have DBA authority.

INfile (filename)

INfile (filename filetype)

INfile (filename filetype filemode)

This optional parameter specifies the file name, file type and file mode of the

bindfile. If filename is omitted, SQLBIND is assumed to be the file name while

ftype and fmode is default to BINDFILE and A respectively.

 If this form of the INfile parameter is supplied, the following CMS FILEDEF

command is issued for the bindfile:

 FILEDEF SQLBIND DISK fn ft fm (RECFM FB LRECL 80 BLOCK 800)

BOPT

The BOPT parameter identifies one or more of the following sub-parameters.

NEW/REPLACE

NEW

The NEW parameter is specified if the package to be created does not exist

and is to be created. If the package with the same name and owner already

exists in the remote application server, binding fails.

REPLACE

This parameter is specified if an existing package is to be replaced by the bind.

If the package does not exist, a new package is created without an error or

warning message. REPLACE is the default option.

KEEP/REVOKE

KEEP

KEEP causes the existing grants of RUN privilege to remain in effect when the

package is bound. However, if the owner of the package is not entitled to grant

all privileges embodied in the package, all existing grants of the RUN privilege

are revoked. The KEEP and REVOKE parameters apply if the package has

previously been created and the owner of the package has granted the RUN

privilege on the resulting package to other users. The KEEP and REVOKE

parameters are allowed only with REPLACE.

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 149

|||||||||||||||||||||||||||||||||

|

|

|||||||||||||||||||||||||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

REVOKE

If the REVOKE parameter is specified, all existing grants of the RUN privilege

are revoked. The KEEP and REVOKE parameters are allowed only with

REPLACE.

NOCHECK/CHECK

NOCHECK

This parameter is specified if you want the application server to check all SQL

statements for validity and perform package functions. It will generate a

package if no statement-parsing error was found; If you specify the

NOCHECK parameter, it overrides the ERROR parameter in the bind file.

CHECK

This parameter is specified if you want the application server to check all SQL

statements for validity and generates error messages if necessary, but does not

generate a package; If you specify CHECK parameter, it overrides NOCHECK

or ERROR parameter in the bind file.

ERROR

This parameter specifies how statement parsing errors are tolerated. If the

ERROR option is specified, then syntactic or semantic errors detected at the

application server side will not stop the creation of the package. If the ERROR

option is not specified in both CBND and the bind file, the application server

will not create the package when those errors occur. With the ERROR option, a

syntactic error will cause the DB2 for VSE & VM database to generate an Error

Section in the package. At run-time, invocation of this statement will yield

SQLCODE -525. With the ERROR option, the creation of a package fails only if

there was a DRDA protocol error, or a severe error detected on the Application

Server side.

OWner (authorization_name)

This parameter specifies the authorization_name of the owner of the package

being created. The OWner parameter is to be used when you are binding

against a remote application server. However, if you specify this parameter

when binding against a local DB2 Server for VSE & VM application server, the

authorization_name must be the same as the application server authorization

ID.

QUALifier (collection_id)

This parameter specifies the default collection_id within the package to resolve

unqualified object names in static SQL statements. The QUALifier parameter is

meant to be used when you are binding against a remote application server. If

you specify this parameter when binding against a DB2 Server for VSE & VM

application server, the collection_id must be the same as the application server

authorization ID.

DBList (server_name)

This parameter specifies a list of one or more application servers on which the

bind file will be bound. If this parameter is omitted, the bind file is bound to

the default application server. For more information on establishing a default

application server, see the DB2 Server for VSE & VM Database Administration

manual.

DBFile (filename)

DBFile (filename filetype)

DBFile (filename filetype filemode)

This optional parameter specifies the file name, the file type, and optionally the

file mode of a CMS file containing a list of application servers on which the

150 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

program will be bound. If filetype is not specified, BINDDB will be used as the

default file type. If filemode is not specified, the first file with the given

filename and filetype will be used.

 The rules governing the format of the CMS file are as follows:

v Each record has only one application server name.

v The first word in each record is the application server name.

v Comments can be added to the right of the application server name,

separated from the application server name by a blank. will be treated as a

comment.

v An empty record or a record with an ’*’ in the first position will be treated

as a comment.

Note: DBFILE and DBLIST are mutually exclusive.

USERid (authorization_name/password)

This parameter specifies the userid and password that bind will use to execute

a CONNECT statement to gain access to each application server where the

package will be created. If this parameter is omitted, bind will connect

implicitly to the application server where the package will be created.

QRY

This parameter causes bind to display the preprocessor options stored in the

header of the bind file. No package functions will be performed if QRY is

specified.

 Note: For any options not specified on the bind, the default option will be the

option specified when the package was preprocessed, unless otherwise

noted.

Chapter 4. Preprocessing and Running a DB2 Server for VM Program 151

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

152 Application Programming

Chapter 5. Preprocessing and Running a DB2 Server for VSE

Program

Defining the Steps to Execute the Program . . . 154

Using 31-Bit Addressing 154

How DB2 Establishes User IDs for CICS/VSE

Transactions 155

User IDs for Remote CICS/VSE Transactions 156

Using Batch for Remote CICS/VSE Transactions 156

Preprocessing the Program 156

Preprocessing by Mode 158

Using Multiple User Mode 158

Using Single User Mode 159

Defining the Preprocessing Parameters 160

Using the Preprocessor Option Member . . . 170

Using the Flagger at Preprocessor Time 170

Using the CICS/VSE Translator 171

Improving Performance Using Preprocessing

Parameters 172

Selecting the Isolation Level to Lock Data 172

Using the Blocking Option to Process Rows

in Groups 176

Using the INCLUDE Statement 179

Including External Source Members 179

Including a Library Source 179

Compiling the Program 180

Link-Editing and Loading the Program 180

Link-Editing the Program with Supplementary

Information 180

Including Relocatable Modules 180

Including CICS/VSE Procedures 181

Including CICS/TS Procedures 181

Including Extra Linkage Modules 181

Running the Program 182

Using a Consistency Token 182

Loading the Package and Rebinding 182

Running by Mode 183

Using Multiple User Mode 183

Using Single User Mode 183

Running under CICS/VSE Support 184

Accessing Other DB2 Family Application

Servers 184

Installing Applications that Access the Database

Manager 184

Installing a Batch Application 184

Installing an Online CICS/VSE Application . . 185

Distributing Packages across Like and Unlike

Systems 187

Creating a Package Using CBND and Batch

Binding 188

© Copyright IBM Corp. 1987, 2007 153

 |

 | |

Defining the Steps to Execute the Program

After you code your program, you must follow a series of steps to prepare it to be

run. The number of steps varies depending on the host language of the program

and the environment in which the program is running. However, the steps below

are common in each case. In order to run your DB2 Server for VSE application

program you must:

v Preprocess the SQL code

v Compile the program

v Link-Edit and Load the program

v Run the program.

If the program is an online program, the CICS statements have to be “translated”

before the program is compiled.

When the database manager was installed, your installation may have optionally

chosen to generate the starter database. The statements

// EXEC PROC=ARIS75DB

// EXEC PROC=ARIS75PL

are contained in single user mode job control examples throughout this section in

order to identify the database and the libraries used.

The ARIS75DB procedure contains the DLBL statements required for accessing the

starter database. The ARIS75PL procedure identifies the DB2 Server for VSE

production libraries. To access a different database, you must substitute a different

procedure (or your own DLBL statements) for ARIS75DB. To access your own

libraries, you must substitute a different procedure (or your own VSE LIBDEF

statements) for ARIS75PL.

Determine if the DB2 Server for VSE database and library definition statements are

required by contacting the person who installed the system. Or, refer to the DB2

Server for VSE Program Directory. This manual contains a description of the

database and library definition job control statements required for a database, and

the product-supplied procedures available.

Using 31-Bit Addressing

The application server runs in 31-bit addressing mode (AMODE 31). In single user

mode, the database manager transfers control to the application in the addressing

mode established during link editing of the program. The database manager

continues to operate in 31-bit addressing mode when control returns from the

application program.

If you are writing a multiple user mode application, your application is not

affected by the addressing mode of the application server.

Refer to the DB2 Server for VSE System Administration manual for information on

single user mode and user exits.

154 Application Programming

How DB2 Establishes User IDs for CICS/VSE Transactions

Online DB2 Server for VSE transactions need not issue an SQL CONNECT to

establish the user id within the database manager. When a transaction does not

issue a CONNECT statement with the “userid IDENTIFIED BY password” clause,

DB2 Server for VSE online support attempts to establish the user ID for the

transaction.

This implicit CONNECT capability is useful if your installation requires its

terminal users to sign-on using the CESN transaction. For many DB2 Server for

VSE transactions, your installation might consider the sign-on verification

sufficient. It may also be useful if your installation has just installed the system,

and finds it convenient to have all users identified by one name (for example,

TESTUSER).

DB2 Server for VSE online support establishes a user ID for CICS/VSE transactions

as follows:

1. If the transaction issues an SQL CONNECT statement with the “userid

IDENTIFIED BY password” clause, the user ID is established explicitly for the

application.

2. If the transaction does not issue such a CONNECT statement, the online

support attempts to establish the user ID implicitly as follows:

a. If the transaction had a user ID established for a previous logical unit of

work, and the previous logical unit of work did not specify the RELEASE

option for COMMIT WORK or ROLLBACK WORK, that user ID is used.

(Remember that the connection to the application server is dropped every

time a logical unit of work ends with release; thus, the user ID has to be

re-established if the transaction has more than one logical unit of work

ending with release.) Otherwise...

b. If the user has signed on using the CESN transaction and the transaction is

associated with a terminal, the sign-on user ID is used for the user ID.

Otherwise...

c. The user ID that was specified as an input parameter to the transaction that

enabled the DB2 Server for VSE online support to a particular server

becomes the user ID. This transaction could be either CIRB or CIRA. The

person that invoked CIRB or CIRA will know what the user ID is.

However...

d. A user ID need not be specified when CIRB or CIRA is invoked. It is an

optional parameter. If no user ID was specified, and none of the previous

cases applied, the user ID established for your transaction is CICSUSER.

Once the user ID is determined as described above, one more requirement must be

met in order to successfully complete the connection to the application server.

Either the specific user ID must have been granted CONNECT authority or

“ALLUSERS” must have been granted CONNECT authority. “ALLUSERS” is a

special user ID that permits any user ID to be implicitly connected without having

been specifically granted CONNECT authority. “ALLUSERS” can be used by the

DBA to turn on or off the implicit connect capability.

Earlier in this book, it was recommended that you always explicitly connect to the

application server to avoid confusion. However, it is recognized that many

installations have terminal operators that need not be aware of DB2 Server for VSE

user ID or authorization capabilities. In these cases, the DB2 Server for VSE

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 155

implicit CONNECT support can be very useful. For more details on the CICS

transaction environment, see the DB2 Server for VSE & VM Database Administration

manual.

User IDs for Remote CICS/VSE Transactions

For online DB2 Server for VSE transactions which are accessing a remote server

and which issued an SQL CONNECT statement with the “userid IDENTIFIED BY

password” clause to establish the user ID within the database manager, the user ID

is established explicitly for the transaction.

For online DB2 Server for VSE transactions which are accessing a remote server

and which did not issue an SQL CONNECT statement with the “userid

IDENTIFIED BY password” clause to establish the user id within the database

manager, the Online Resource Adapter will attempt to establish the user ID for the

transaction implicitly as follows:

1. If the transaction had a user ID established for a previous remote logical unit of

work, and the previous logical unit of work did not specify the RELEASE

option for COMMIT WORK or ROLLBACK WORK, and the transaction did not

switch to another application server, that user ID and its corresponding

password are used. (Remember that every time a logical unit of work ends

with RELEASE or the transaction switched to another application server, and

you enter another SQL statement, you are implicitly connected as the CICS

signon userid. Therefore, the user ID has to be re-established if the transaction

has more than one logical unit of work ending with RELEASE or if the

transaction is switching application servers.)

2. The user ID returned by the CICS ASSIGN command is used for the user ID.

Using Batch for Remote CICS/VSE Transactions

Application programs running in batch can connect to remote application servers,

process some work, and then CONNECT to another application server (local or

remote) and do more processing.VSE Batch application programs which are

accessing a remote server and use the SQL CONNECT statement, can manipulate

and access remote data managed by application servers. The CONNECT statement

must be the first SQL statement issued by the Batch application. The VSE Batch

application only accesses one remote database per unit of work.

The current unit of work must be completed by using the COMMIT or

ROLLBACK statements before the CONNECT statement can be used to switch to

another userid or application server.

Before a batch application program can access a remote application server, the

following tasks must be completed:

v VSE TCP/IP support is installed and enabled

v The Dbname Directory has been updated to identify the remote application

server being accessible through TCP/IP

v Update the SQLGLOB file with default parameters for userids accessing remote

servers. This task is optional.

Preprocessing the Program

Preprocessing performs the following actions :

156 Application Programming

v It changes the SQL source code so that it can be processed during host language

compiling

v It does either or both of the following:

– It converts the SQL statements into a package, and binds the package to the

database.

– It creates a bind file that can subsequently be used by the online utility

(CBND) or Batch Binder to create a package in a remote (or local) database.

The preprocessor replaces all the SQL statements in the program with host

language code that invokes the new package. The new version of the program also

contains the SQL statements in comment form. The package, created either by the

preprocessor, by CBND or Batch Binder, contains information to carry out the SQL

requests made by the program. The database manager follows the best access path

to the data for each SQL statement in the program, using available indexes and

data statistics of which the system keeps track.

When the program is run, the new code calls the system to handle each SQL

statement. It also links the program to the application server and translates

messages and statements between the two.

The preprocessors supplied with the database manager have the following

program names:

 ARIPRPA - Assembler Preprocessor

 ARIPRPB - C Preprocessor

 ARIPRPC - COBOL Preprocessor

 ARIPRPF - Fortran Preprocessor

 ARIPRPP - PL/I Preprocessor

You preprocess your program to prepare it to use the system. To preprocess your

program, you invoke the appropriate preprocessor through VSE job control

statements. A job control ASSGN SYSIPT statement should point to your source

program. Other job control statements must point to where the preprocessor

should place the modified source-program output (ASSGN SYSPCH) and printed

output (ASSGN SYSLST).

You can suppress SYSPCH and SYSLST output through NOPRINT and

NOPUNCH parameters to the preprocessor.

The preprocessor requires the job control statement DLBL SQLGLOB. In addition,

when you want the preprocessor to generate a bind file, job control statements

DLBL SQLBIND and DLBL BINDWKF are required. These DLBL statements must

be provided in either the preprocess job control or the system standard label

subarea. For more information see “Creating a Package Using CBND and Batch

Binding” on page 188.

You can supply preprocessor parameters through the VSE EXEC statement PARM

keyword. The preprocessor parameters are described later in this chapter.

If the preprocessor encounters an SQL error, it inserts statements in the modified

source code that cause a subsequent compile (or assemble) to fail.

If the preprocessor encounters a severe error in an SQL statement, all processing

stops. Syntactic checking is only performed on subsequent SQL statements if the

error is not severe. The preprocessor also puts statements in the preprocessed

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 157

|

|

|

|

|

|

|

|

|

program which will cause a subsequent compile to fail. If successful, the

preprocessor places an entry in the SYSTEM.SYSACCESS catalog to record the

newly created package.

Different job control is required to invoke the preprocessors depending on whether

the system is running in multiple user or single user mode.

Preprocessing by Mode

Prior to invoking any of the preprocessors, data sets for input, output, and work

files must be assigned. Data sets used by each of the preprocessors are shown in

Table 13 and Table 14. Many VSE systems may already have the logical units

assigned and data set labels defined during the IPL procedure.

 Table 13. Data Sets Required by All Preprocessors

Data Set Used For

SYSIPT Source input is read from here

SYSPCH Modified source output is written here

SYSLST Print (report) output is written here

SQLGLOB CHARNAME and DBCS options are obtained from this VSAM file

SQLBIND Bind-records (bindfiles) are written to this VSAM file (needed only if the

BIND preprocessor option is specified).

BINDWKF A VSAM work file used when performing VSAM I/O against the bind file

(needed only if the BIND preprocessor option is specified).

 Table 14. Work Files Required for Each Preprocessor

Preprocessor Data Set Requirement

Assembler SYS001 The file must be the same size as the source input file.

C SYS001 The file must be the same size as the source input file.

COBOL SYS001 One logical record for each line of source code plus about 10 records for each

SQL statement. Also, add an allowance for diagnostic messages.

SYS002 Approximately 20 to 60 logical records for each SQL statement. The number

you should reserve depends on the complexity of the SQL statement —

particularly the number of host variables referenced.

SYS003 Approximately 10 to 40 logical records for each SQL statement. (This number

also depends on host variable references.)

SYS004 The file must be the same size as the source input file.

Fortran SYS001 One logical record for each line of source code plus about 10 records for each

SQL statement. Also, add an allowance for diagnostic messages.

SYS002 Approximately 20 to 60 logical records for each SQL statement. The number

you should reserve depends on the complexity of the SQL statement —

particularly the number of host variables referenced.

SYS003 The file must be the same size as the source input file.

PL/I SYS001 The file must be the same size as the source input file.

Using Multiple User Mode

When invoking any preprocessor in multiple user mode, it is recommended that

you specify SIZE=AUTO.

158 Application Programming

||

|

Figure 30 shows generic job control that invokes a preprocessor in multiple user

mode.

 Using Single User Mode

When invoking any preprocessor in single user mode, you must specify

SIZE=AUTO. The job control for single user mode initializes the system with the

preprocessor name and desired parameters. Figure 31 shows generic job control

that invokes a preprocessor in single user mode:

The job control starts the system and invokes the preprocessor. The EXEC

statement initializes the system in single user mode and passes to it (as a

parameter) the name of the preprocessor (ARIPRPx). Note that the slash (/) is

actually written in the EXEC statement. It separates the general DB2 Server for

VSE options (such as SYSMODE and PROGNAME) from the preprocessor options

(such as PREPNAME and USERID). For prepparms, specify desired preprocessor

parameters; the parameters are in the following section.

The DB2 Server for VSE & VM Operation manual lists all the DB2 Server for VSE

initialization parameters for single user mode. However, the person who installs

the system should determine what the best initialization parameters for your

installation are, and pass these on to you.

Note: COBOL programs invoking COBOL SORT cannot be run in single user

mode.

// JOB jobname

// ASSGN SYSIPT,cuu *-- } Optional - may be

// ASSGN SYSPCH,cuu *-- } assigned by

// ASSGN SYSLST,cuu *-- } standard label

// ASSGN SYSxxx,cuu *-- Preprocessor work files

// DLBL SQLGLOB,....,DISP=(OLD,KEEP) *-- } Optional - may be

// DLBL SQLBIND,....,DISP=(OLD,KEEP) *-- } provided by

// DLBL BINDWKF,.... *-- } standard label

*

// EXEC PGM=ARIPRPx,SIZE=AUTO,PARM=’prepparms’

 .

 . Input card stream if SYSRDR and SYSIPT are

 . assigned to the same device or file

 .

/*

/&

Note:

1. JCL must be changed to specify the correct Device address and Library definitions

2. Replace ARIPRPx with preprocessor name

3. PrepParms are discussed in “Defining the Preprocessing Parameters” on page 160.

4. You can code your own LIBDEF statements.

Refer to the DB2 Server for VSE Program Directory for more information on coding LIBDEF statements.

5. You can replace the input card stream with the READ MEMBER statement if the source file has been

cataloged as membertype A.

Refer to the DB2 Server for VSE Program Directory for more information on the READ MEMBER

statement.

Figure 30. Invoking the DB2 Server for VSE Preprocessor in Multiple User Mode

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 159

Defining the Preprocessing Parameters

The following are parameters for all DB2 Server for VSE preprocessors unless

otherwise noted.

Program Preparation Parameters

►► PARM= ' PREPname= package_id

collection_id.
 ►

► ,USERid= authorization_name/password

,DBNAME=

server_name
 ►

►
,PrepFile=

(

membername

)

.membertype

prepparms

 ' ►◄

prepparms:

 ,APOST

(1)

,Quote

 ,NOBIND

(2)

,BIND

 ,NOBLocK

,BLocK

,IBLocK

,CCSIDGraphic

(integer)

►

// JOB jobname

// EXEC PROC=ARIS75DB *-- DB2 for VSE Starter database

// EXEC PROC=ARIS75PL *-- Library definition

// ASSGN SYSIPT,cuu *-- } Optional - may be

// ASSGN SYSPCH,cuu *-- } assigned by

// ASSGN SYSLST,cuu *-- } standard label

// ASSGN SYSxxx,cuu *-- Preprocessor workfiles

// DLBL SQLGLOB,....,DISP=(OLD,KEEP) *-- } Optional - may be

// DLBL SQLBIND,....,DISP=(OLD,KEEP) *-- } provided by

// DLBL BINDWKF,.... *-- } standard label

*

// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,LOGMODE=A, *

 PROGNAME=ARIPRPx/prepparms’

 .

 . Input card stream if SYSRDR and SYSIPT are

 . assigned to the same device or file

 .

/*

/&

Note:

1. JCL must be changed to specify the correct Device address

2. Replace ARIPRPx with preprocessor name

3. PrepParms are discussed in “Defining the Preprocessing Parameters.”

Figure 31. Invoking the DB2 Server for VSE Preprocessor in Single User Mode

160 Application Programming

|

►
,CCSIDMixed

(integer)

,CCSIDSbcs

(integer)
 ►

►

,CHARSUB

(

Sbcs

)

Mixed

Bit

 ,NOCHECK

,CHECK

,ERROR

 (1)

,COB2

 (1)

,COBRC

►

►
 ,CTOKEN (NO)

,CTOKEN

(

)

NO

YES

,DATE

(

EUR

)

ISO

JIS

LOCAL

USA

 ,NOEXIST

,EXIST

►

►
 ,EXPLAIN (NO)

,EXPLAIN

(

NO

)

YES

(3)

,NOFOR

 (4)

,DYNALC

Notes:

1 COBOL only (DB2 Server for VSE only).

2 Ignored by Fortran (DB2 Server for VSE only).

3 Implied if STDSQL(89) is specified for DB2 Server for VSE.

4 COBOL, PL/I, C, and Assembler only.

prepparms (continued):

 ,NOGRaphic

(1)

,GRaphic

 ,ISOLation (RR)

,ISOLation

(

CS

)

RR

USER

 ,KEEP

,REVOKE

►

►

,LABEL

(label_text)

 ,LineCount (60)

,LineCount

(integer)

 ,PACKAGE

,NOPACKAGE

►

►
 ,PRint

,NOPRint

 ,PUnch

,NOPUnch

 ,REPLACE

,NEW

 ,SEQuence

(2)

,NOSEQuence

►

►
 (3)

,NOSQLCA

,SQLFLAG

(

SAA

)

89

(COMPLETE)

►

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 161

►
 ,STDSQL (NO)

,STDSQL

(

NO

)

(4)

89

,TIME

(

EUR

)

ISO

JIS

LOCAL

USA

Notes:

1 PL/1 and COBOL only (DB2 Server for VSE only).

2 C only.

3 Implied if STDSQL(89) is specified.

4 86 is a synonym for 89.

Specify these parameters using the PARM keyword of the VSE job control EXEC

statement. The order in which you specify them is unimportant. You must separate

all preprocessor parameters by a comma or by one or more blanks. (See Table 15.)

Note: The maximum number of bytes that can be included within the quotation

marks after the PARM keyword is 100. Therefore, you should take

advantage of the abbreviations and defaults for the preprocessor parameters.

 Table 15. Specifying Preprocessor Parameters

Multiple User Mode

// EXEC PGM=ARIPRPx,SIZE=AUTO,PARM=’PREP=MYJOB,USERID=SAM/SECRET’

Single User Mode

 Col. 72 -----------------

 |

// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,LOGMODE=A, *

 PROGNAME=ARIPRPx/PREPNAME=MYJOB,USERID=SAM/SECRET’

In single user mode, the first / separates the preprocessor parameters from the DB2 Server for VSE initialization

parameters. The second / separates the authorization-name from the password in the USERID preprocessor

parameter (described below).

If you want to keep the authorization-name and password secret, you must

suppress the printout of the job control EXEC statement that contains the

preprocessor parameters. To do this, surround the preprocessor job control with the

statements shown in Figure 32.

 If the program is preprocessed successfully and PACKAGE was specified, an entry

is made in the DB2 Server for VSE catalog table SYSTEM.SYSACCESS. The

CREATOR column is set to the value specified for authorization-name; the TNAME

NOLOG <--- Suppress display of JCL on the system

// OPTION NOLOG <--- Suppress output to SYSLST

 (c)

 (c)

 (c)

LOG <--- Resume output to the CONSOLE

// OPTION LOG <--- Resume output to SYSLST

Figure 32. Suppressing Job Control Display of Authorization-Name and Password

162 Application Programming

column is set to the value specified for PREPNAME. For more information about

the DB2 Server for VSE catalog, refer to the DB2 Server for VSE & VM SQL

Reference manual.

PREPname=package_id

PREPname=collection_id.package-id

The collection_id.package_id is the name by which the database manager

identifies the package. The collection_id portion is optional, and fully qualifies

the package_id and any unqualified objects referenced within the package.

 If collection_id is not specified, it defaults to the authorization_name specified on

the USERid parameter. If it is specified, it must equal the authorization_name

specified on the USERid parameter.

 USERid=authorization_name/password

The authorization_name is the name by which the application server identifies

the owner of a package. The password should agree with the one established

for this authorization_name by a DB2 Server for VSE GRANT CONNECT

statement. This information is used when executing a CONNECT statement to

gain access to the application server, which determines whether proper

authorization exists for the static SQL statements in the program.

DBNAME=server_name

This parameter identifies the name of the application server to be accessed by

the SQL statements in the preprocessor source file. This parameter is used as

the server_name in the TO clause of the CONNECT statement executed at

preprocessing time. If this parameter is not specified, the preprocessor accesses

the default application server.

 Refer to the DB2 Server for VSE System Administration manual for a discussion

of the default application server.

PrepFile=(membername)

PrepFile=(membername.membertype)

The PrepFile parameter identifies the membername and optionally

membertype of a VSE source member containing the list of preprocessor

parameters. If membertype is not specified, it defaults to A.

 The following parameters can be specified in the PrepFile or in the

preprocessor parameters. For a more detailed discussion of the options file, see

“Using the Preprocessor Option Member” on page 170.

PrepParm

The following parameters specify the preprocessor options.

APOST

Quote (COBOL preprocessor only)

If you do not specify this parameter, the preprocessor defaults to APOST

and generates single quotation mark (') delimiters for its internal source

declarations. The Quote preprocessor parameter should be used whenever

the Quote parameter is used in the COBOL compiler. Quote causes the

preprocessor to use double quotation marks (") as constant delimiters in

the VALUE clauses of the declarations it generates.

 The use of a single quotation mark (') or double quotation marks (") in

SQL statements is not affected by this parameter.

 APOST/Quote is stored in the bind file header if BIND is specified and a

bind file is successfully created after preprocessing.

NOBIND

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 163

BIND

If you specify the NOBIND parameter, the preprocessor does not create a

bind file; NOBIND is the default.

 If you specify the BIND parameter, the preprocessor creates a bind file. A

bind file will not be created if NOCHECK is in effect and there was an

error found during SQL statement validation. BIND is ignored if CHECK is

specified. For a more detailed discussion of the bind file, see “Creating a

Package Using CBND and Batch Binding” on page 188.

Note: The Fortran preprocessor ignores the BIND parameter, if specified.

NOBLocK

BLocK

IBLocK

When the BLock parameter is specified, all eligible query cursors return

results in groups of rows, and all eligible insert cursors process inserts in

groups of rows. If the IBLocK parameter is specified, all normal

homogenous inserts are processed in groups. If you do not specify this

parameter, NOBLock is the default. This improves the performance of

programs running in multiple user mode, where many rows are inserted or

retrieved. For a discussion of eligible cursors, see “Using the Blocking

Option to Process Rows in Groups” on page 176.

 When NOBLocK is specified, rows are not grouped.

 BLock/NOBLock is stored in the bind file header if BIND is specified and

a bind file is successfully created after preprocessing.

 If you want to change the BLocK option, you must recompile (or

reassemble) and relink your program after preprocessing it. You must also

use CBND to rebuild the package if BIND is specified. Preprocessing alone

does not change the BLocK setting. You must also use CBND to rebuild the

package if BIND is specified.

CCSIDGraphic (integer)

This parameter specifies the default CCSID attribute to be used for graphic

columns created in the package, if an explicit CCSID is not specified on the

CREATE or ALTER statements in the package. If this parameter is not

specified, the target application server uses the system default. This option

is stored in the bind file header if BIND is specified and a bind file is

successfully created after preprocessing.

CCSIDMixed (integer)

This parameter specifies the default CCSID attribute to be used for

character columns created with the mixed subtype in the package, if an

explicit CCSID is not specified on the CREATE or ALTER statements in the

package. If this parameter is not specified, the target application server

uses the system default. This option is stored in the bind file header if

BIND is specified and a bind file is successfully created after

preprocessing.

CCSIDSbcs (integer)

This parameter specifies the default CCSID attribute to be used for

character columns created with the SBCS subtype in the package, if an

explicit CCSID is not specified on the CREATE or ALTER statements in the

package. If this parameter is not specified, the target application server

uses the system default. This option is stored in the bind file header if

BIND is specified and a bind file is successfully created after

preprocessing.

164 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

CHARSUB (Sbcs)

CHARSUB (Mixed)

CHARSUB (Bit)

This parameter specifies the character subtype attribute to be used for

character columns created in the package, if an explicit subtype or CCSID

is not specified. If you do not specify this parameter, the target application

server uses the system default. This option is stored in the bind file header

if BIND is specified and a bind file is successfully created after

preprocessing.

NOCHECK

CHECK

ERROR

If you specify the NOCHECK parameter, the preprocessor executes

normally; that is, it validates all SQL statements when performing package

functions. If NOPACKAGE is specified, package functions are not

performed and so NOCHECK is ignored in this case. NOCHECK will be

stored in the BIND file header if BIND is specified and a bind file is

successfully created after preprocessing; NOCHECK is the default.

 If you specify the CHECK parameter, the preprocessor checks all SQL

statements for validity and generates error messages if necessary, but does

not generate a package or bind file. PACKAGE and BIND are ignored if

CHECK is specified.

 If you specify ERROR, the preprocessor executes normally except that most

statement-parsing errors are tolerated. When one of these errors is

detected, the preprocessor generates an error message in the output listing

and the modified source code in commented form, and continues

processing. The program can be compiled and executed, but the erroneous

statement cannot be executed. If NOPACKAGE is specified, package

functions are not performed and so ERROR is ignored in this case. ERROR

will be stored in the bind file header if BIND is specified and a bind file is

successfully created after preprocessing.

 You should use the ERROR option when you are also generating a bind

file and intend to bind it against a remote application server, where at least

one statement in the program is specific to an unlike application server.

COB2 (COBOL preprocessor only)

This parameter enables you to use certain COBOL II functions that are

supported by the COBOL II Release 3 compiler and later. Refer to “Using

the COB2 Parameter (DB2 Server for VSE)” on page 360 for a list of those

functions.

COBRC (COBOL preprocessor only)

If this parameter is specified, the preprocessor will generate the statement

'MOVE ZEROS TO RETURN-CODE' after it generates a call to ARIPRDI.

For more information, see “Using the COBRC Parameter” on page 361

CTOKEN (NO)

CTOKEN (YES)

This parameter causes the preprocessor to store a consistency token in the

modified source code and the package. At run time, consistency tokens in

the program’s load module and package must match before the application

server executes the package. CTOKEN(NO) is the default. If CTOKEN(YES)

is specified, the consistency token generated by the preprocessor will be an

8-byte 390 Time-of-Day (TOD) clock value. If CTOKEN(NO) is specified,

the consistency token will be 8 blanks. For a more detailed discussion of

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 165

consistency tokens, see “Using a Consistency Token” on page 182. This

option is stored in the bind file header if BIND is specified and a bind file

is successfully created after preprocessing.

DATE (EUR)

DATE (ISO)

DATE (JIS)

DATE (LOCAL)

DATE (USA)

If this parameter is specified, the output date format chosen overrides the

default format specified at installation time; otherwise, all dates will be

returned in the default format specified at installation time. (See the DB2

Server for VSE & VM SQL Reference manual for a description of these

formats.) This option is stored in the bind file header if BIND is specified

and a bind file is successfully created after preprocessing.

NOEXIST

EXIST

If the EXIST parameter is specified, the preprocessor executes normally;

that is, it generates modified source code and performs package functions.

An error will be generated if objects (such as tables) referenced in

statements in the program do not exist or if proper authorization does not

exist.

 If the NOEXIST parameter is specified, object and authorization existence

is not required, and if not found, a warning will be issued. NOEXIST is the

default. NOEXIST/EXIST is stored in the bind file header if BIND is

specified and a bind file is successfully created after preprocessing.

 EXPLAIN(NO)

EXPLAIN(YES)

This parameter specifies whether explanatory information for all

explainable SQL statements in a package should be produced.

EXPLAIN(NO) is the default.

 If EXPLAIN(YES) is specified, each explainable SQL statement in the

program is explained during preprocessing. If you specify EXPLAIN(YES),

an EXPLAIN ALL is executed. The complete set of explanation tables must,

therefore, be available. If they are not available, you receive an SQLCODE

-649 (SQLSTATE = 42704) and preprocessing is not successful. To interpret

the explanation tables, refer to the DB2 Server for VSE & VM Performance

Tuning Handbook manual. This option is stored in the bind file header if

BIND is specified and a bind file is successfully created after

preprocessing.

NOFOR

This parameter enables you to omit the FOR UPDATE OF clause in the

static cursor query statement, and execute positioned updates to any

column in the result table for which you have UPDATE authority. It is

referred to in this manual as NOFOR support.

Note: This option is also implied if the STDSQL (89) or STDSQL (86)

parameter is specified.

DYNALC

This parameter enables you to preprocess an application program

containing FETCH statements for a cursor that is allocated by a dynamic

ALLOCATE CURSOR statement.

166 Application Programming

Note: This option is only accepted by the COBOL, PL/I, C, and Assembler

preprocessors.

NOGRaphic

GRaphic (COBOL and PL/I preprocessors only)

The GRaphic parameter indicates to the preprocessor whether graphic

constants can be used in SQL statements and whether DBCS string format

should be validated. NOGRaphic is the default.

 If GRaphic is specified, the preprocessor accepts SQL statements containing

graphic constants, and checks that all strings of DBCS characters are

correctly formatted.

 If NOGRaphic is specified, the preprocessor does not allow graphic

constants in SQL statements, and does not verify the format of strings of

DBCS characters.

Note: If the DBCS value in the GLOBAL SQLGLOB parameters is set to

YES, the graphic option is not used and preprocessing occurs as

though GRaphic had been specified. In addition, the default graphic

option becomes GRaphic.

ISOLation (CS)

ISOLation (RR)

ISOLation (UR)

ISOLation (USER)

This parameter lets you specify one of the following isolation levels at

which your program runs:

v Specify RR (repeatable read) to have the database manager hold a lock

on all data read by the program in the current logical unit of work. This

is the default.

v Specify CS (cursor stability) to have the database manager hold a lock

only on the row or page of data pointed to by a cursor.

v Specify UR (uncommitted read) to have the database manager allow

applications to read data without locking, including uncommitted

changes made by other applications.

v Specify USER to have the application program control its isolation level.

See “Selecting the Isolation Level to Lock Data” on page 172 for guidelines

on choosing the isolation level for your program. This option is stored in

the bind file header if BIND is specified and a bind file is successfully

created after preprocessing.

Note: If you want to change the ISOLation option, you must recompile (or

reassemble) and relink your program after preprocessing it. You

must also use CBND to rebuild the package if BIND is specified.

Preprocessing alone does not change the ISOLation setting.

KEEP

REVOKE

These parameters are applicable if the program has previously been

preprocessed, and the owner has granted the RUN privilege on the

resulting package to some other users. Specify the KEEP parameter to

have these grants of the RUN privilege remain in effect when the

preprocessor produces the new package. Specify the REVOKE

parameter to remove all existing grants of the RUN privilege. (These

grants will also be removed if the owner of the program is not entitled

to grant all the privileges embodied in the program.)

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 167

KEEP is the default. KEEP/REVOKE is stored in the bind file header if

BIND is specified and a bind file is successfully created after

preprocessing.

LABEL (label_text)

This parameter specifies a label for the package. Label_text can be up to

30 characters in length; the default is spaces. This option is stored in

the bind file header if BIND is specified and a bind file is successfully

created after preprocessing.

LineCount (integer)

The parameter determines how many lines per page are to be printed

in the output listing. The value integer specifies the number of lines per

page. The valid range for this value is 10 to 32 767. If no value is

specified, or if there is an error in the specification of the LineCount

parameter, then the default value of 60 is used.

PACKAGE

NOPACKAGE

If you specify the PACKAGE parameter, the preprocessor performs

package functions and creates a package against a local database.

PACKAGE is ignored if CHECK is specified; PACKAGE is the default.

 If you specify the NOPACKAGE parameter, the preprocessor does not

perform package functions and will not create a package. If you

specify NOCHECK as well as NOPACKAGE, NOCHECK is ignored. If

you specify ERROR as well as NOPACKAGE, ERROR is ignored.

PRint

NOPRint

The PRint parameter specifies that the entire preprocessor modified

source listing output is produced. The NOPRint parameter specifies

that the preprocessor listing output is suppressed, except for the

summary messages that are normally printed at the end. PRint is the

default.

PUnch

NOPUnch

The PUnch parameter specifies that the preprocessor modified source

output is produced. The NOPUnch parameter specifies that the

preprocessor modified source output is suppressed.

REPLACE

NEW

This parameter specifies whether the package being created is new or

whether it will replace an existing package that has the same name. If

REPLACE is specified and no previous package exists with the same

name, no error or warning is issued, and the package is created.

REPLACE is the default. If NEW is specified, an error will occur if the

package already exists with the same name. REPLACE/NEW is stored

in the bind file header if BIND is specified and a bind file is

successfully created after preprocessing.

SEQuence

NOSEQuence (C preprocessor only)

If SEQuence is specified, the preprocessor searches only columns 1

through 72 of the source file. When NOSEQuence is specified, the

preprocessor assumes there are no sequence numbers in the input file

and it accepts input from columns 1 to 80. SEQuence is the default.

168 Application Programming

Note: In the latter case, you must use the NOSEQ and MARGINS

(1,80) C compiler options when compiling the modified source.

NOSQLCA

This parameter allows the user to declare an SQLCODE without

declaring all of the SQLCA structure. It is referred to as NOSQLCA

support in this manual.

Note: This option is also implied if the STDSQL(89) or STDSQL (86)

parameter is specified.

SQLFLAG (SAA)

SQLFLAG (89)

SQLFLAG (89(COMPLETE))

This parameter invokes Flagger, a function that flags those static SQL

statements that do not conform to the SQL-89 standard or IBM’s

Systems Application Architecture* (SAA*) standard on an SQL dialect.

If you specify SAA, it provides syntax checking against the SAA

Database Level 1 standard. If you specify 89, it will provide syntax

checking against the SQL-89 standard. If you specify 89(COMPLETE),

it will provide both syntax and semantics checking against the SQL-89

standard. Note that you cannot check both SAA and SQL-89 in the

same preprocessor run.

 See “Using the Flagger at Preprocessor Time” on page 170 for more

details on this facility, including an explanation of the SQL-89

standard.

STDSQL (NO)

STDSQL (89)

STDSQL refers to the SQL Standard that has been implemented in the

user’s application program. If NO is specified or the STDSQL

parameter is not used, the preprocessor uses DB2 Server for VSE

standards. If 89 is specified, functions specific to ANS SQL standard 89

are also provided by the preprocessor. STDSQL(NO) is the default.

These functions consist of the following support:

v NOSQLCA

v NOFOR

Note: STDSQL(86) is a synonym for STDSQL(89).

TIME (EUR)

TIME (ISO)

TIME (JIS)

TIME (LOCAL)

TIME (USA)

If this parameter is specified, the output time format chosen overrides

the default format specified during installation. If it is not specified, all

times will be returned in the default format that was specified during

installation. (See the DB2 Server for VSE & VM SQL Reference manual

for a description of these formats.) This option is stored in the bind file

header if BIND is specified and a bind file is successfully created after

preprocessing.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 169

Using the Preprocessor Option Member

Instead of specifying all the preprocessing parameters in the preprocessor job you

can use an options member. This has several advantages. You can maintain a set of

standard options members. They can save time, and ensure consistent use of

preprocessing parameters.

You can use a preprocessor options member by including the PrepFile parameter

when you are preprocessing. The member can contain only one preprocessor

parameter per line. If more are found an error message is returned. Blank lines are

ignored, and the parameters may be in either upper- or lowercase. You can insert

comments into the options file by placing an asterisk (*) to the left of the comment.

Everything to the right of the asterisk is ignored. The file is a VSE source member.

Using the Flagger at Preprocessor Time

The Flagger is invoked at preprocessor time by the optional parameter SQLFLAG

It provides an auditing function on the static SQL statements in the host program.

This function is independent of the other preprocessor functions, and has no

bearing on whether the preprocessor run will complete satisfactorily.

The audit compares the static SQL statements with the SAA standard or the

SQL-89 standard. SQL-89 is a collective term that implies support of SQL as

defined by the Federal Information Processing Standards (FIPS) 127-1. It includes:

v ANSI X.3.135-1989 (without the Integrity Enhancement feature)

v ANSI X.3.168-1989

v ISO 9075-1989 (without the Integrity Enhancement feature)

In addition to basic syntax checking against SQL-89, Flagger optionally performs

semantics checking against SQL-89. This includes some integrity checking between

the SQL statements and the database. For example, it checks:

v Whether a statement contains column names or table names that do not

currently exist.

v Whether a statement contains ambiguity among column names, such as an

unqualified name for a column that exists in more than one of the tables in the

query.

v Whether a statement contains inconsistencies between the data types of the host

variables and their corresponding table columns.

Any statements that do not conform to the standards are flagged in the form of

information messages in the preprocessor output listing. Flagger, however, does

not force you to comply with the standards. The purpose of Flagger is to provide

guidance for those users who want to conform to these standards, so that they can

have SQL consistency across operating environments.

Note: The DB2 Server for VSE product is a superset of the SQL-89 standard

without the Integrity Enhancement feature. For example, the datetime data

types are not part of SQL-89 and the CONNECT statement is not part of

* prep parameters for program SAMPLE

 ISOL(CS) *cursor stability isolation level

 TIME(ISO)

 BLOCK *indicate inserts and retrieves in groups

Figure 33. The preprocessor option file example.

170 Application Programming

SQL-89. The use of extensions such as these will generate information

messages for deviations from the standard specified in the SQLFLAG

parameter.

The Flagger messages generated at preprocessor time range from ARI5500 to

ARI5599, and are further classified as follows:

1. ARI5500-ARI5539 and ARI5570-ARI5599 are information messages that indicate

that an extension to the SQL-89 standard (nonconformance) has been found.

These start with “FLAGGER message.”

2. ARI5540-ARI5569 are warning messages that indicate a failure on the part of

Flagger itself.

In this event, SQL-89 semantics checking will be turned off and its syntax

checking may or may not be turned off, depending on the nature of the failure.

However, the preprocessor run itself will continue, and any inconsistencies

discovered by Flagger prior to the failure will be included in the output listing

of the run.

Using the CICS/VSE Translator

CICS/VSE provides translators for C, COBOL, PL/I, and assembler language

programs to convert CICS/VSE statements to CICS/VSE calls, similar to the

function performed by the DB2 Server for VSE preprocessors. When program

modules include both SQL and CICS/VSE statements, the appropriate CICS/VSE

translator and the appropriate DB2 Server for VSE preprocessor must be run before

compiling the language. This replaces the CICS/VSE and SQL statements with

appropriate host language statements that invoke the CICS/VSE or database

manager.

SQL statements may contain certain encoding, in quoted strings, that would not be

properly bypassed by the CICS/VSE translators when scanning for CICS/VSE

statements. For example,

"...EXEC CICS ..." "...’..."

When using the QUOTE option in COBOL, the same problem may occur for

single-quoted strings. Also, when SQL statements contain DBCS constants, a

similar problem may arise because DBCS constants may contain single quotation

marks as part of the double-byte character set.

If a CICS/VSE translator is run before the DB2 Server for VSE preprocessor, these

problems may occur in the form of unmatched quotation marks from a CICS/VSE

standpoint, because a translator does not allow for SQL statements embedded in

programs. Therefore, you should run the DB2 Server for VSE preprocessor before

running a CICS/VSE translator. This will ensure that the SQL statements are

commented out before a CICS/VSE translator processes the program.

Currently, there is a problem with running the DB2 Server for VSE preprocessor

before a CICS translator. The preprocessor’s output goes to SYSPCH as 81-byte

records; a CICS/VSE translator, however, accepts only 80-byte input. For COBOL

and PL/I programs this is not a severe problem, because these preprocessors

append the stacker select and punch control character as the eighty-first byte.

While SYSPCH is unblocked, CICS ignores the extra byte.

For assembler and C, however, the card punch control character is appended as the

first byte. In this case it is necessary to process the DB2 Server for VSE assembler

preprocessor output with a utility (OBJMAINT) to eliminate the leading byte

before processing by a CICS translator. See Figure 37 on page 186.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 171

These problems can also be avoided by placing the SQL statements in a separate

module from the one containing CICS statements.

Improving Performance Using Preprocessing Parameters

When preprocessing your program, you can specify two performance parameters,

the BLocK/ NOBLocK option and the ISOLation level option. discussed under

“Preprocessing the Program” on page 156. These options are specified under the

PARM keyword of the job control EXEC statement. The format and use of these

parameters was discussed earlier in this chapter. The next section discusses when

you would want to specify each of these options.

(Other performance considerations are discussed in the DB2 Server for VSE & VM

Database Administration manual.)

Selecting the Isolation Level to Lock Data

The database manager puts locks on data that your program works with, to keep

other users from reading or changing that data. You can specify how long the

system holds the lock on data. You can specify either to lock all the data that the

current logical unit of work (LUW) has read, to lock just the row or page of data

that a cursor is currently pointing to, or to not lock any data being read. This is

called specifying the isolation level of the lock.

The isolation level used by an application is set using the ISOLation preprocessing

parameter. On SELECT, SELECT INTO, INSERT, searched UPDATE, and DELETE

statements, the WITH clause may be specified to override the value specified on

the preprocessing parameter.

If you choose to put a lock on all the data that your program’s current LUW has

read, this is called specifying isolation level repeatable read. Repeatable read locks are

held until the end of the LUW. If you choose to put a lock on just the row or page

of data that your cursor is pointing to, then you are specifying isolation level cursor

stability. With cursor stability locking, when the cursor moves, the system frees all

the data previously read by the program that was held by the lock. If you choose

not to lock the data that your program will read, this is called specifying isolation

level uncommitted read. With uncommitted read, no locks are held on the data being

read, and as a result, the data can be changed by other applications.

Both repeatable read and cursor stability provide you with the following data

isolation from other concurrent users:

v Your LUW cannot modify or read any data that another active LUW has

modified. Similarly, if your LUW has modified some data, no one else can

modify or read that data until your LUW has ended. Modify means to apply

INSERT, DELETE, UPDATE, or PUT commands; READ means to apply SELECT

or FETCH commands.

v If your LUW has a cursor pointing to a row of data, no other LUW can modify

that data. Similarly, your LUW cannot modify a row to which another user has a

cursor pointing.

In addition to the above, repeatable read locking provides you with the following

data isolation from other concurrent users:

v No other LUW can modify any row that your active LUW has read. Also, you

cannot modify any data that another active LUW, specifying repeatable read, has

read.

v You do not have to worry about your data being changed between reads, as

long as you do not end your LUW between those reads.

172 Application Programming

This extra isolation has its drawbacks, however. When you specify repeatable read

for data in public dbspaces with PAGE or ROW level locking, you reduce the

concurrency of the data. This means that other users may be locked out from the

data for a long time, causing delays in their programs’ executions.

If you specify cursor stability instead, you reduce these locking problems by

making the data more available. With this isolation level, the system does not hold

the locks as long. After a cursor has moved past a row or page of data, the lock on

that data is dropped. This increases concurrency so that other users can access data

faster.

Cursor stability can, however, cause some data inconsistencies. For instance:

1. If a user’s LUW reads data twice, it can get different results. This could happen

if another user modifies the data and commits the changes between read

operations.

2. A modification based on a prior reading can be incorrect. This can occur if

another LUW modifies the rows that a user has read and commits the changes

before that user can do the modification. (Note that when the user is retrieving

data in application programs, the only row that is safe from modification is the

one that is currently being pointed to by a cursor.)

3. If an SQL statement in the user’s LUW is traversing a table by way of an index,

the user might find the same row twice. (This case applies to FETCH cursors,

searched INSERT by way of subselect, and searched UPDATE with subselect

that traverse a table by way of an index.) This can occur because, after the

user’s statement reads the row the first time, another user can update the

column value that is indexed and commit the change. The change could cause

the committed row to be ahead of the row currently being retrieved by the

statement. The first user’s statement would then find the row again with its

updated index column value.

4. If an SQL statement in the LUW is traversing a table by way of an index, it can

fail to find a row (or rows) even if the row meets the selection criteria. (This

situation applies to FETCH cursors, Searched DELETE, Searched INSERT by

way of the subselect, and Searched UPDATE by way of the subselect that

traverse a table by way of an index.) This can occur because while the LUW is

reading, another user modifies the indexed column in the row and commits the

change (as above). The change could cause the committed row to be behind the

row the user’s statement is currently reading. Thus, the statement would not

find the row, even if the row met the selection criteria.

5. If you enter a SELECT statement to retrieve a single row, a cursor is opened

when the system processes the statement and is closed when the row is

returned. All PAGE and ROW level locks are released when the cursor is

closed; therefore, no locks are held after the row is returned. For single-row

processing using a SELECT statement with a fully qualified unique index, a

cursor is not opened and again no locks are held once the row has been

returned. As a result, applications which update a selected column based on

the values retrieved may have unexpected results because the lock was not

held for the duration of the LUW. For example:

HOST_EMPNO = ’000250’

EXEC SQL SELECT SALARY /* HOST_SALARY is 19180 */

 INTO :HOST_SALARY

 FROM EMPLOYEE

 WHERE EMPNO = :HOST_EMPNO;

HOST_SALARY = HOST_SALARY + 1000; /* HOST_SALARY increased to 20180 */

EXEC SQL UPDATE EMPLOYEE /* UPDATE SALARY in EMPLOYEE */

 SET SALARY = :HOST_SALARY; /* TABLE with HOST_SALARY */

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 173

WHERE EMPNO = :HOST_EMPNO;

EXEC SQL SELECT SALARY /* HOST_SALARY may not be 20180 */

 INTO :HOST_SALARY /* because lock was not held for*/

 FROM EMPLOYEE /* the duration of the LUW */

 WHERE EMPNO = :HOST_EMPNO;

COMMIT WORK;

In the previous example, it is possible that two or more users could read the

salary column with the same value at approximately the same time. They

would then each increment the number and issue the UPDATE statement. The

second user would wait for the first user’s update to finish, and then overwrite

it with the same number.

Unlike RR or CS, uncommitted read does not provide any data isolation from

other concurrent users. Like CS though, concurrency is improved, although at the

risk of data inconsistency. UR can cause similar data inconsistencies as those

described for CS and should only be used when it is not necessary that the data

you are reading be committed.

An application using isolation level UR is still restricted to access only data for

which it has authorization. However, because it will be able to read uncommited

changes, it will be able to read additional rows which an application, with the

same authorization but using RR or CS, could not. This is illustrated by the

following example.

 Rows of table:

 A

 B

 C

 <---D

 E

 Scenario: 1

 U1 reads (using UR) A B

 U2 inserts D

 U1 continues reading C D E

 U2 rolls back

 -- U1 has read a non-existent row

 Scenario: 2

 U1 reads (using CS) A B

 U2 inserts D

 U1 continues reading C, must wait to

read D

 U2 rolls back

 U1 continues reading E

 Note: In scenario 1, U1 has read an extra

row which U1 in scenario 2 could not.

When should each of these options be chosen for your program? Usually, you

should specify repeatable read locking. Only use cursor stability if your program

causes or will cause locking problems. For instance, you would probably want to

use cursor stability for transactions that perform terminal reads without

performing a COMMIT or ROLLBACK, or programs that do bulk reading, because

it is handy for programs that browse through large amounts of data. For programs

that perform commits or rollbacks before issuing terminal reads, you should use

repeatable read locking, because they probably will not cause locking problems.

Also, any application that needs to protect itself against updates should also use

repeatable read locking. For programs where concurrency is wanted, for example,

data being queried simultaneous to being updated, you would use uncommitted

read locking. Of course, this would be for applications where data integrity was

not important because the data being read may not necessarily have been

committed.

174 Application Programming

You can also mix isolation levels, to have your program set, change, and control its

own isolation level as it is running. You can specify mixed isolation level with the

USER option of the ISOLation preprocessor parameter, as detailed under

“Preprocessing the Program” on page 156.

If you choose this option, your program must pass the isolation level value to the

application server by a program variable. It must declare a one-character program

variable and must set this variable to the desired isolation level value before

executing SQL statements. For repeatable read, your program should set this

variable to R; for cursor stability, the variable should be set to C; and for

uncommitted read, the variable should be set to U. The program can change the

variable at any time so that subsequent SQL statements are executed at the new

isolation level value. However, if your program changes the isolation level while a

cursor is OPEN, the change does not take effect for operations on that cursor until

it has been closed and opened again. That is, until the cursor is closed all

operations on that cursor are executed at the isolation level value that was in effect

when the cursor was opened. Note that the changed isolation level will be used

(without error) for SQL statements not referencing the opened cursor.

If the program sets the isolation level variable to a value other than C, R or U, or if

it fails to initialize the variable, the system stops execution and returns an error

code in the SQLCA.

Table 16 shows the isolation level variable name for each of the host languages.

 Table 16. Variable Names for Specifying Mixed Isolation Levels

Host Language Variable Name Example

assembler SQLISL SQLISL DS CL1

C SQLISL char SQLISL;

COBOL SQL-ISL 01 SQL-ISL PIC X(1).

Fortran SQLISL CHARACTER SQLISL

PL/I SQLISL DCL SQLISL CHAR(1);

Note: If you forget to declare the isolation level variable in a PL/I program, the

PL/I compiler issues an informational message which can, in some

environments, be suppressed.

Isolation level cursor stability or uncommitted read only has meaning for data in

public dbspaces with ROW or PAGE level locking. Data in private dbspaces or in

public dbspaces with DBSPACE level locking always uses repeatable read isolation.

However, programs which access such data and do not require repeatable read

should be preprocessed with cursor stability or uncommitted read. The data

concurrency requirements might change and cause the data to be moved to a

public dbspace with PAGE or ROW level locking. In this case, the program would

not need to be repreprocessed to run at isolation level cursor stability or

uncommitted read.

To use the features of CS or UR, data must reside in public dbspaces with PAGE or

ROW level locking. DML statements against private dbspaces or public dbspaces

with PAGE or ROW level locking under isolation level CS or UR are handled the

same as if isolation level RR were used.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 175

When the system uses a dbspace scan (that is, does not use an index) to access a

table in a dbspace with ROW level locking using isolation level cursor stability, the

effect is the same as repeatable read. That is, no other LUW can update the table

until the logical unit of work performing the dbspace scan ends. Also, if an LUW

is updating a table, another LUW (using cursor stability) cannot access that table

with a dbspace scan until the updating LUW ends. This reduced concurrency for

dbspace scans does not apply to tables in dbspaces with PAGE level locking, or to

accessing through indexes. Because most database accesses will typically use

indexes, the reduced concurrency caused by dbspace scans should not occur

frequently.

The isolation level specification affects UPDATE and DELETE processing as well as

SELECT processing. For UPDATE and DELETE processing, the system acquires

UPDATE locks. UPDATE locks can be acquired for both cursor stability and

repeatable read isolation level settings. If the user actually wants to update or

delete the data, the UPDATE lock is changed to an EXCLUSIVE lock; otherwise,

the UPDATE lock is changed to a SHARE lock.

Note the following about UPDATE LOCKS:

v They are used for page or row locking, but not for dbspace locking.

v They apply to index pages or index keys only for the Searched DELETE

statement.

v For Positioned DELETE processing, the named cursor must have been declared

in the FOR UPDATE clause of the DECLARE CURSOR statement.

v For FETCH processing that uses repeatable read isolation level, these locks are

acquired only if certain predicates are present in the statement. See the DB2

Server for VSE & VM Database Administration manual for more information.

Internally generated SELECT, UPDATE, or DELETE statements use cursor stability

locking no matter what the isolation level is set to. (See “Enforcing Referential

Integrity” on page 299 for information on these statements). Conversely, data

definition statements such as CREATE, ACQUIRE, or GRANT, use repeatable read

locking no matter what the isolation level is set to. These statements, therefore,

should not play a role in your choice of isolation level.

Note: Catalog access for SQL statement preprocessing is also always done with

repeatable read locking.

Using the Blocking Option to Process Rows in Groups

You can insert and retrieve rows in groups or blocks, instead of one at a time. This

is called specifying the blocking option. Specifying one of the blocking options

(BLock or IBLocK), improves performance for DB2 Server for VSE application

programs that:

v Execute in multiple user mode, and

v Retrieve or insert multiple rows.

You can specify the blocking option as a DB2 Server for VSE preprocessor

parameter, or or SBL0cK or BLocK , as an option on the CREATE PACKAGE

statement. After a program has been preprocessed with the blocking option, all

eligible cursor SELECTs and all eligible cursor INSERTs within the program are

blocked. You do not have to specify a block size or block factor. The block size for

inserts and SELECTs is automatically fixed.

The programs that would benefit the most from blocking are those that do

multiple-row inserts (with PUT statements or INSERT statements) or multiple-row

176 Application Programming

|

|

|

|

|

|

|

|

SELECTs (with FETCH statements). In both cases, a cursor must be defined. (See

“Retrieving or Inserting Multiple Rows” on page 33 for more information on

cursors.) Thus, a general rule for blocking is use blocking for programs that declare

cursors or that have multiple contiguous homogenous insert statements.

A program can use either PUT, FETCH or INSERT statements without being

sensitive to whether the system is blocking. These statements work regardless of

whether you specified the blocking option. What information is returned in the

SQLCA after each PUT, FETCH or INSERT, however, depends on whether blocking

is in effect or not.

Remember that when you preprocess a program with the blocking option (BLocK),

all eligible INSERT and SELECT cursors are blocked. You cannot specify blocking

for just INSERTs or for just SELECTs. If you specify the blocking option (BLocK), it

automatically applies to both. However, specifying the IBLocK option applies only

to normal Insert statements in the application program, that are homogenous and

contiguous.

When are INSERT or SELECT statements not eligible for blocking? The system

sometimes overrides blocking for a particular cursor because of storage limitations

in the database partition, or because of SQL statement ineligibility.

v DECLARE CURSOR...FOR UPDATE

v Any DECLARE CURSOR statement with a related select-statement containing a

long string

v Any DECLARE CURSOR statement that has a subsequent DELETE...WHERE

CURRENT OF statement

v Any DECLARE CURSOR statement that has a corresponding UPDATE...WHERE

CURRENT OF statement and the program is preprocessed with NOFOR

support.

The system also disqualifies blocking if it cannot fit at least two rows into a block.

(The number of rows that fit into a block may differ from one

PUT/FETCH/INSERT statement to the next, even when such statements operate

on the same table.)

The system does not halt the program when it overrides blocking. Instead, in each

of the above cases, it sets a warning flag in the SQLCA. The warning can be

detected by using WHENEVER SQLWARNING in the program. See “Using the

Automatic Error-Handling Facilities” on page 197 for more information on the

SQLCA and the SQL WHENEVER declarative statement.

Note: The DECLARE CURSOR... statement can also be written without the FOR

UPDATE OF clause, even though positioned updating is subsequently done.

(This is allowed when NOFOR support is invoked at preprocessor time.) In

this case, blocking is also ineligible.

The system also overrides blocking for all programs running in single user mode.

In this instance, the system does not usually return a warning to the SQLCA. A

warning is returned to the SQLCA for programs running in single user mode if:

v The program is preprocessed with the BLocK option

v An SQL statement that is being processed dynamically (with PREPARE) is

disqualified for blocking.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 177

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

The DBS Utility may get blocking ineligible warnings when it is run in single user

mode because it is preprocessed with the BLocK option, but uses PREPARE to

process SELECT statements.

Note: Always CLOSE a cursor before issuing a COMMIT statement, especially

when blocking. If you commit changes before closing an insert cursor that is

being blocked, you receive an error.

Imposing Blocking Restrictions:

1. The length of host variables in the SQLDA or host_variable_list cannot be

changed after the first PUT, FETCH or INSERT when blocking.

2. The data type of host variables in the SQLDA or host_variable_list cannot be

changed after the first PUT, FETCH or INSERT when blocking.

3. The number of data elements in the host_variable_list or SQLDA cannot be

changed after the first PUT, FETCH or INSERT when blocking.

4. If a COMMIT is issued while a blocking PUT cursor is open, an error occurs.

When blocking is active, a single SQLCA is returned with each block of rows. This

SQLCA is returned to the application program with the last row in the block.

However, for the final block of rows, the FETCH that returns the “not found”

condition (SQLCODE = +100 and SQLSTATE='02000') will return the SQLCA. (For

more information on SQLCA refer to “Using the SQLCA” on page 199). This has

the following implications for application programming:

v No warning conditions are returned to the application until the SQLCA is

returned.

For example, if SQLWARN3 is set (to indicate that the application has fewer

target variables in the INTO clause than the number of items in the SELECT

list), the application will not be notified until either the last row in a block or the

“not found” condition is returned.

v If SQLWARN1 (truncation occurrence) is set, it is impossible to tell from the

SQLCA information which row (or rows) in a block caused the warning

condition. However, if the application resets the indicator variable to 0 before

each fetch, and then examines the indicator variable after each fetch, truncation

can be detected on an ongoing basis.

Using the Blocking Option in DRDA Protocol: When the database manager is

acting as an application requester in DRDA protocol, blocking is provided on a

PUT statement using the BLocK option and for a normal INSERT statement using

the IBLocK option.

When the IBLocK or BLocK parameters are specified under DRDA, all eligible

homogenous INSERT statements/PUT statements are grouped together for

processing. Homogenous INSERT statements are defined as a set of INSERT

statements that:

v Access the same DB2 Table.

v Access the same set of columns in that table, in the same order.

There must be an ’SQL COMMIT’ statement after a set of homogenous INSERT

statements. This causes the buffer to be sent, processed by the DB2 UDB Server

and response received and parsed by the Application requester.

The IBLocK parameter does not work under private protocol. This is particularly

useful if you are loading a large amount of data while using DRDA protocol.

178 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

In DRDA protocol, the block size for FETCH/PUT/INSERT statements is

determined by the QRYBLKSIZE parameter in SQLGLOB. For information on

SQLGLOB, refer to the DB2 Server for VSE & VM Database Administration manual.

Using the INCLUDE Statement

Including External Source Members

The inclusion of external source members is indicated to the DB2 Server for VSE

preprocessor by an embedded SQL statement, the INCLUDE statement, in the

user’s source code. This statement can appear anywhere that an SQL statement can

appear, and indicates within the source code where the external source is to be

placed. The syntax for the INCLUDE statement is as follows:

 where text_file_name identifies the external source member. The text_file_name is a 1

to 8 character identifier and cannot be delimited by double quotation marks. The

first character must be a letter (A-Z), $, #, or @; the remaining characters must be

letters, digits (0-9), $, #, @, or underscore (_) unless further restricted by the

operating system. Also, text_file_name cannot be SQLCA or SQLDA, as these are

special INCLUDE keywords.

The statements contained in the external source specified by may be host language

statements or SQL statements (except for another INCLUDE statement). INCLUDE

statements may not be nested, but the external source may contain INCLUDE

SQLDA or INCLUDE SQLCA statements.

Note: The INCLUDE statement can be in an SQL DECLARE section, or the entire

SQL DECLARE section can be within external source members.

Including a Library Source

The INCLUDE statement may be used to obtain secondary input from a VSE

source member.

INCLUDE causes input to be read from the specified source member until the end

of that source member is read. At this time, SYSIPT input resumes. (File records

representing the source statements must be unblocked, fixed-length, 80-character

records.) The source member must be cataloged as the following source types:

 A - assembler

 B - C

 C - COBOL

 G - Fortran

 P - PL/I

If the INCLUDE statement specifies a source member that is not cataloged for the

appropriate source member type, an error results.

Source member input must not contain preprocessor INCLUDE statements other

than INCLUDE SQLDA or INCLUDE SQLCA, although it may contain both host

language and DB2 Server for VSE statements. If an INCLUDE statement is

encountered, an error will result.

►► INCLUDE text_file_name ►◄

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 179

|

|

|

Within the INCLUDE statement, text_file_name specifies a “source member” in the

DB2 Server for VSE library. The source member type is determined by the

preprocessor that is invoked.

The text_file_name specification must not contain the source member type identifier;

the source member type will be based on the aforementioned preprocessor.

Compiling the Program

After you successfully preprocess your program, you can compile it using your

normal host language compiler, and create an object deck. Use the modified source

output of the DB2 Server for VSE preprocessor as input to the compiler. By

preprocessing, you have already done all the translating that the program needs

for the database manager. However, if the program is an on-line program, the CICS

statements have to be “translated” before the program is compiled. Just use the

new code that you got after you preprocessed. Compile this code as you would

any other program, using the usual compilers.

This book does not cover the specifics of compiling your host-language code.

However, there are several special rules for SQL programs, depending on the host

language, that you must follow:

v If your PL/I application program contains DBCS data, you must specify the

GRAPHIC option for the compiler. If your COBOL application program contains

DBCS data or is reentrant, the output of the DB2 Server for VSE preprocessor

must be processed by the COBOL II Release 2 (or later) program.

v If the QUOTE option is used for the DB2 Server for VSE COBOL preprocessor, it

should also be used for the COBOL compiler.

v If the NOSEQuence option is used for the DB2 Server for VSE C preprocessor,

the NOSEQ and MARGINS (1,80) options must be used with the C compiler.

Link-Editing and Loading the Program

After compilation, programs must be link-edited and loaded before they can be

run.

Link-Editing the Program with Supplementary Information

Including Relocatable Modules

To allow your program to communicate with the database manager, you must

link-edit your program with one or more DB2 Server for VSE relocatable modules.

One of these relocatable modules is called the resource adapter stub. Every DB2

Server for VSE application program must be link-edited with this stub. Fortran and

COBOL programs need to be link-edited with additional relocatable modules. Also,

depending on the nature of your program, you may have to link-edit with others.

For instance, when link-editing a module that uses CICS/VSE, you may have to

INCLUDE a CICS/VSE module immediately following the PHASE system control

statement and before the EXEC ASSEMBLY system control statement. Whether you

INCLUDE this module depends on your host language.

When you load your program, the VSE linkage editor automatically links your

program to all modules that you included. The linkage editor also resolves virtual

storage addresses between files.

180 Application Programming

Including CICS/VSE Procedures

When link-editing a module that uses CICS/VSE, you should include the following

procedures for your application:

v For all assembler applications, you must have an INCLUDE for CICS/VSE

module DFHEAI immediately following the PHASE system control statement

and before the EXEC ASSEMBLY system control statement. DFHEAI must be the

phase entry point.

v For all C applications, you must have an INCLUDE for CICS/VSE module

DFHELII. This module must be the phase entry point.

v For all COBOL applications, you must have an INCLUDE for CICS/VSE module

DFHECI immediately following the PHASE system control statement and before

the EXEC IGYCRCTL (EXEC FCOBOL in OS/VS COBOL) system control

statement. DFHECI must be the phase entry point.

v For all PL/I applications, you must have an INCLUDE for CICS/VSE module

DFHPL1I immediately following the PHASE system control statement and

before the EXEC PLIOPT (EXEC IEL1AA in IBM PL/I for VSE) system control

statement. DFHPL1I must be the phase entry point.

See Figure 37 on page 186 for an example of these procedures.

Including CICS/TS Procedures

When link-editing a module that uses CICS/TS, you must include the following

procedures for your application:

v For all assembler applications, you must have an INCLUDE for CICS/TS

module DFHEAI immediately following the PHASE system control statement

and before the EXEC ASMA90 system control statement. DFHEAI must be the

phase entry point.

v For all C, COBOL, and PL/I applications, you must have an INCLUDE for

CICS/TS module DFHELII, following the PHASE link-edit statement and before

the EXEC statement for the compiler. This module must be the phase entry

point.

Including Extra Linkage Modules

When link-editing any DB2 Server for VSE application, you must include some

extra linkage modules following the application program module that uses the

database manager. Use these extra modules as indicated below:

v For all batch and ICCF applications, you must include the linkage module

ARIPRDID.

v For all online (CICS/VSE) applications, you must include the linkage module

ARIRRTED.

In addition to the modules listed above, some of these may be required:

v For all programs written in COBOL (regardless of whether they are batch, ICCF,

or online), you must also include the module ARIPADR4. Include ARIPADR if

your program was preprocessed prior to SQL/DS Version 2 Release 2. (You need

not include it if VSE autolink is used.)

Note: If you use a COBOL SORT in your program, include ARIPADR4 (or

ARIPADR) and ARIPRDID (or ARIRRTED) before the compile step.

v For all programs written in Fortran, you must also include the modules

ARIPEIFA and ARIPSTR. If the Fortran program uses the module ARISSMF, this

file must also be included. See the discussion of the SQLCA in Chapter 6,

“Testing and Debugging,” on page 195.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 181

v For all programs that will include the DBS utility (regardless of whether they are

batch, ICCF, or online), you must also include the modules ARISYSDD,

ARIDSQLA, and ARIDDFP.

v All programs (except Fortran programs) that use the module ARISSMA, must

also link-edit this module. See the discussion of the SQLCA in Chapter 6,

“Testing and Debugging,” on page 195 for further information.

v All programs that use the module ARIGMSGD, must also link-edit this module.

See the discussion of the SQLCA in Chapter 6, “Testing and Debugging,” on

page 195 for further information.

If you receive an unresolved external reference message for a module name that

begins with ARI or SQL, check the link process to ensure that all required extra

linkage modules are included.

Some of these modules contain entry points with names that are different from the

module name. The code generated by the DB2 Server for VSE preprocessor can

reference one of these entry points, depending on the SQL statements in your

application.

Running the Program

Using a Consistency Token

Consistency tokens ensure that a program’s load module and the database package

are used together. When preprocessing, you can instruct the preprocessor to place a

consistency token in both the load module and the package (see CTOKEN

parameter 165. If the two tokens do not match, the application server prevents the

program from running.

Note: If you inadvertently forget to compile or link-edit a new version of a

program, you can run an old version of a program with a new version of

the package. Conversely, with multiple application servers, you can

inadvertently run a new version of a program with an old version of the

package. In either situation, you will probably get program errors or

incorrect results if you have not used consistency tokens.

Loading the Package and Rebinding

The package that the preprocessors or CBND stored carries out the SQL request.

When the application server loads the package, it checks that the package is still

valid. A package may not be valid if one of its dependencies has been dropped.

For example, some index that the package uses may have been dropped.

Packages are also invalidated when primary keys and referential constraints are

added to, dropped from, activated, or deactivated on tables that the modules

depend on. The following rules apply:

v If a primary key is added, dropped, activated, or deactivated, all packages that

have a dependency on the parent table will be invalidated. This includes any

tables that have a foreign key relationship with the parent table.

v If a foreign key is added, dropped, activated, or deactivated, all packages that

have a dependency on the dependent table or parent table will be invalidated.

The system has an internal change management facility that keeps track of whether

packages are valid or not. If a package is valid, the system begins running the

program; if the package is not valid, the system tries to re-create it. The original

182 Application Programming

|

|

|

SQL statements are stored with the package when you preprocess the program.

The system uses them to automatically bind the program again. It does this

dynamically (that is, while it is running). If the rebinding works, a new package is

created and stored in the database and the system then continues execution of the

program. If the rebinding does not work, an error code is returned to the program

in the SQLCA, and the program stops running.

A successful rebinding has no negative effect on your program except for a slight

delay in processing your first SQL statement. To minimize this delay, you can use

the DBSU REBIND PACKAGE command to rebind the invalid package after it has

been invalidated, but before it is executed. See the DB2 Server for VSE & VM

Database Services Utility manual for information on this command.

Running by Mode

Using Multiple User Mode

The job control for multiple user mode executes the application program; the

application server must already be initialized. The application program

communicates with the application server, which resides in a separate partition,

through the DB2 Server for VSE linkage module (ARIPRDID or ARIRRTED). The

linkage module is given control for each SQL statement in the application program.

You can invoke the application with standard job control statements or CICS/VSE

procedures. It is recommended that you specify SIZE=AUTO. (Specify SIZE=750K

for PL/I programs.) Figure 34 shows job control for invoking programs in multiple

user mode:

Using Single User Mode

The job control for single user mode invokes the application server and passes to

the system the name of the application to be run. The system then loads and

invokes the application program. Once the single user mode application receives

control, it accesses the application server in the same way as multiple user mode

applications. The system supports the VSE register save conventions. See the DB2

Server for VSE System Administration manual for more about single user mode

execution using the VSE register save conventions.

The DB2 Server for VSE & VM Operation manual lists all the initialization

parameters you can specify when you start the system in single user mode. A

system programmer can also determine the best initialization parameters for your

installation and pass them on to you.

Figure 35 on page 184 shows job control for invoking programs in single user

mode. The SIZE=AUTO specification is required. (Specify SIZE-AUTO, 750K for

PL/I programs.)

// JOB USER PROGRAM

// EXEC PGM=MYPROG,SIZE=AUTO

/*

/&

Figure 34. Invoking a User Program in Multiple User Mode

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 183

If your program or the system abnormally ends, you may receive a mini-dump

(depending on what initialization parameters were specified when the system was

started). Mini-dumps are described in the DB2 Server for VSE System Administration

manual.

Running under CICS/VSE Support

DB2 Server for VSE-CICS/VSE support must be initialized before applications can

be run as CICS/VSE transactions. Usually the CICS/VSE support is initialized

when the system is started. Once the support is started, you can use normal

CICS/VSE procedures to invoke transactions that use the system. See the DB2

Server for VSE System Administration manual for more information on starting and

stopping CICS/VSE support.

Accessing Other DB2 Family Application Servers

If your VSE/ESA has been initialized as a VSE/ESA guest system under VM, your

(multiple user mode) VSE application can access a DB2 Server for VM application

server. Therefore, if the application was designed to run in single user mode it

must be converted to multiple user mode. This conversion can be accomplished by

modifying the job control language (JCL). See the DB2 Server for VSE System

Administration manual for more information on VSE Guest Sharing.

Your online CICS/VSE application can also use the DRDA protocol to access other

DB2 Family application servers, including DB2 Server for VM, DB2 Universal

Database Server for OS/390, or DB2 Universal Database (UDB). Before doing this,

the DRDA requester code must be installed on your VSE system. Also each DB2

Family server to be accessed must be defined to the DB2 Server for VSE online

resource adapter as a remote application server. See the DB2 Server for VSE System

Administration manual for more details on defining remote application servers.

Installing Applications that Access the Database Manager

Installing a Batch Application

Installing a batch application involves running the application through a DB2

Server for VSE preprocessor. The preprocessor output must be compiled (or

assembled), and the object decks must be link-edited. Refer to Figure 36 on page

185 for generic JCL for these tasks.

// JOB SINGLE

// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,PROGNAME=name’

/*

/&

Figure 35. Invoking a User Program in Multiple User Mode

184 Application Programming

Installing an Online CICS/VSE Application

Two steps are required to install an online application:

1. You must run the application through a DB2 Server for VSE preprocessor. If the

application uses the EXEC CICS interface, it must also be run through the

CICS/VSE translator. The CICS/VSE translator output must be compiled (or

assembled), and the object decks must be link-edited.

2. CICS/VSE must be made aware of the application. You must define the

CICS/VSE transaction identifier to be used to activate the application, and

define the phase associated with the transaction identifier. Refer to Figure 37 on

page 186 for generic JCL for these tasks.

// MYPROG program name

*

// DLBL IJSYSPH,’PREPROCESSOR.OUTPUT’,0 *-- PREPROCESSOR output

// EXTENT SYSPCH,........ *--

 ASSGN SYSPCH,.... *-- SYSPCH assignment

*

// LIBDEF *-- Library definitions

*

// ASSGN SYSxxx,... *-- Preprocessor workfiles

*

// DLBL SQLGLOB,....,DISP=(OLD,KEEP) *-- SQLGLOB parm file

// DLBL SQLBIND,....,DISP=(OLD,KEEP) *-- BIND output file

// DLBL BINDWKF,.... *-- BIND work file

*

// EXEC ARIPRPx,SIZE=AUTO,PARM=’USERID=SQLDBA/SQLDBAPW,PREPNAME=MYPROG,*

 KEEP,....... ’ *-- Invoke DB2 for VSE PREPROCESSOR

*

* MYPROG input here if SYSRDR and SYSIPT assigned to same device

*

/*

 CLOSE SYSPCH,00D *-- Close SYSPCH

*

// DLBL IJSYSIN,’PREPROCESSOR.OUTPUT’,0 *-- Input File

// EXTENT SYSIPT,........ *--

 ASSGN SYSIPT,.... *--

*

// OPTION CATAL *--

 ACTION MAP *--

 PHASE MYPROG,* *--

// EXEC compiler *-- Compile

 INCLUDE ARIPRDID *-- DB2 for VSE Resource

 Adapter stub

 INCLUDE *-- Include runtime routines

*

// EXEC LNKEDT *-- Link Edit

 CLOSE SYSIPT,00C *-- Reset SYSIPT

/*

/&

Notes:

1. JCL must be changed to specify the correct DASD extents, Device address, Compiler references & Library

definitions

2. Replace ARIPRPx with the preprocessor name

3. See Table 14 on page 158 for a list of preprocessor work files

4. See “Link-Editing and Loading the Program” on page 180 for a complete list of modules to be included.

Figure 36. Creating an Object Deck and Phase for a Batch Program (Multiple User Mode)

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 185

// MYPROG program name

// DLBL IJSYSPH,’PREPROCESSOR.OUTPUT’,0 *-- PREPROCESSOR output

// EXTENT SYSPCH,...... *--

 ASSGN SYSPCH,... *-- SYSPCH assignment

// LIBDEF *-- Library definitions

// ASSGN SYSxxx,... *-- Preprocessor workfiles

// DLBL SQLGLOB,....,DISP=(OLD,KEEP) *-- SQLGLOB parm file

// DLBL SQLBIND,....,DISP=(OLD,KEEP) *-- BIND output file

// DLBL BINDWKF,.... *-- BIND work file

// EXEC ARIPRPx,SIZE=AUTO,PARM=’USERID=SQLDBA/SQLDBAPW,PREPNAME=MYPROG,*

 KEEP,....... ’ *-- Invoke DB2 for VSE PREPROCESSOR

*

* MYPROG input here if SYSRDR and SYSIPT assigned to same device

*

/*

 CLOSE SYSPCH,00D *-- Close SYSPCH

*

* For ASSEMBLER only, convert to 80 byte input format for

* CICS Translator, dropping the stacker select prefix added

* to SYSPCH above. See notes for details

*

// DLBL IJSYSIN,’PREPROCESSOR.OUTPUT’,0 *--} For ASSEMBLER replace

// EXTENT SYSIPT,..... *--} with statements in the

 ASSGN SYSIPT,... *--} notes section

*

// DLBL IJSYSPH,’TRANSLATOR.OUTPUT’,0 *-- CICS Translator output

// EXTENT SYSPCH,...... *--

 ASSGN SYSPCH,... *--

*

// EXEC DFHExP1$,SIZE=400K *-- CICS Translator

 CLOSE SYSIPT,00C *--

 CLOSE SYSPCH,00D *--

*

// DLBL IJSYSIN,’TRANSLATOR.OUTPUT’,0 *-- CICS Translator output

// EXTENT SYSIPT,....... *-- (input to the compiler)

 ASSGN SYSIPT,... *--

*

// OPTION CATAL *--

 ACTION MAP *--

 PHASE MYPROG,* *--

 INCLUDE DFHxxxx *-- CICS host language module

// EXEC compiler *-- Compile

 INCLUDE ARIRRTED *-- DB2 for VSE Resource

 Adapter stub

 INCLUDE *-- Include runtime routines

// EXEC LNKEDT *-- Link Edit

 CLOSE SYSIPT,00C *-- Reset SYSIPT

/*

/&

Figure 37. Creating an Object Deck and Phase for an Online Program (Multiple User Mode) (Part 1 of 2)

186 Application Programming

Distributing Packages across Like and Unlike Systems

To run your application program on another DB2 Server for VSE & VM database

manager, you can simply distribute its load module and the DB2 Server for VSE &

VM package. (You do not have to distribute the source code and then preprocess

and compile it on the other system). Reload the package to all application servers

that your package accesses, and send the load module to all DB2 Server for VSE &

VM application requesters that your program accesses. You can unload the package

to be distributed from the application server into a file, and subsequently reload

the file into the new application server. Only the owner of the package or the

database administrator can unload or reload the package.

If the package is distributed among application servers that are at different release

levels of the system, a run-time error occurs if the package uses a feature that is

not available on the application server on which the package was reloaded. To

ensure that the load module and the package that you are distributing are meant

to be used together, use the preprocessor parameter CTOKEN to place the same

consistency token in both the load module and the package. Refer to

“Preprocessing the Program” on page 156. If the two tokens do not match, the

application server stops the program from running. For information on distributing

packages on both like and unlike systems, refer to the DB2 Server for VSE & VM

Database Services Utility manual.

If your Batch/VSE or CICS/VSE application is to run at other DB2 Family

application servers, do the following:

v When you preprocess your application, specify the BIND option so that a bind

file is created.

v If CICS/VSE, CICS translate, compile, and linkedit the preprocessor source

output to create a VSE phase.

v If Batch, compile, and linkedit the preprocessor source output to create a VSE

phase.

Notes:

1. JCL must be changed to specify the correct DASD extents, Device address, Compiler/Translator references and

Library definitions

2. Replace ARIPRPx with the preprocessor name

3. Replace DFHExP1$ with the CICS Host Language Translator

4. See Table 14 on page 158 for a list of preprocessor work files

5. See “Link-Editing and Loading the Program” on page 180 for a complete list of modules to be included

6. For assembler and C, the following statements are to replace the three statements identified in the JCL:

 // DLBL UIN,’PREPROCESSOR.OUTPUT’,0 *-- Output from DB2 for VSE Preprocessor

 // EXTENT SYS004,.....

 // ASSGN SYS004,...

 // DLBL UOUT,’OBJMAINT.OUTPUT’,0 *-- Output from strip operation

 // EXTENT SYS005,.....

 // ASSGN SYS005,..

 // EXEC OBJMAINT

 ./ LIST PARM=JOB

 ./ BLOCK BLKSIZE=80

 ./ COPY

 /*

 // DLBL IJSYSIN,’OBJMAINT.OUTPUT’,0 *-- Input to Translator

 // EXTENT SYSIPT,.....

 // ASSGN SYSIPT,..

Figure 37. Creating an Object Deck and Phase for an Online Program (Multiple User Mode) (Part 2 of 2)

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 187

|

|

|

|

|

|

|

|

v Use the CBND transaction or Batch Binder to generate a package at each DB2

application server at which the application is to be run. CBND uses the bind file

created in the preprocessor step above.

For more information on CBND, see “Creating a Package Using CBND and Batch

Binding.”

Creating a Package Using CBND and Batch Binding

Binding is the process of creating packages against local or remote application

server. Binding can be performed through online binder (CICS transaction CBND)

or Batch Binder (program ARIPBIN). Both CBND or Batch Binder require that

preprocessing creates the bindfile successfully. The same bindfile can be used as

input for CBND or ARIPBIN. The output of preprocessing with ″BIND″ option is

termed as bind-record (bindfile) in VSE. The bind-record (bindfile) contains prep

parameters and modified SQL statements for each preprocessed program. In VSE,

one bind-record (bindfile) per program is written to the KSDS VSAM bindfile as a

series of records. The bind-records for multiple programs can be written to the

VSAM bindfile, unlike VM that creates one CMS bindfile for each program. CBND

or Batch Binder takes specific bind-record(bindfile) as input from the VSAM

bindfile for the package creation.

Note: In VSE, the terms bindfile and bind-record are same. These tems are used

interchangeably. VSAM bindfile refers to a VSAM KSDS dataset that stores

bind-record (bindfile) for each preprocessed program as a sequence of

records.

CBND -Online Binding

If a bind-record (bind file) file is generated after preprocessing, it can be used to

create a package in a remote or local application server. This enables the CICS

online application program to access a remote DRDA server. To convert the SQL

statements in a bind file into a package, use the CBND CICS transaction. CBND

can be used to bind all applications whose bind file was generated by the

preprocessor to a remote or local server. To create a package locally, for a Fortran

application, you still need to run the batch preprocessor. Executing the

preprocessor with the BIND option and executing CBND are complementary. The

preprocessor creates and stores the bind file in a master or private VSAM file and

CBND reads the bind file back into an application server.

If using the CBND command, you must be either the owner of the program whose

bind file you are binding to a remote server or a database administrator.

A second level transaction, CB2D, is required for CBND to complete the bind

process. The CB2D transaction is invoked internally by CBND through an EXEC

CICS START command. One or more CB2D transactions can be started by one

CBND transaction based on the number of application servers specified in the

CBND DBLIST input parameter. Each CB2D is responsible for connecting to a

target database and creating a package. This transaction needs to be defined

during installation to fully enable the CBND function.

The CBND transaction has 13 parameters:

188 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Batch Binder

If a bind-record (bind file) is generated after processing, it can be used to create a

package in a remote or local application server. Batch Binder can be used to bind

all applications whose bind-record (bind file) was generated by the preprocessor, to

a remote or local server. Executing the preprocessor with the BIND option and

executing Batch Binder are complementary. Batch Binder cannot be used to create

the packages for FORTRAN.

Batch Binder can be invoked by calling batch binding phase ARIPBIN through jcl

to perform binding. Batch Binder jcl must use same DLBL statement for SQLBIND

that was used at the time of preprocessing the program. Binder does not require

bind Work file. Batch binder takes 11 parameter through param parameters.

 Table 17. Data Sets Required by All Preprocessors

Data Set Used For

SYSLST Print (report) output is written here

SQLGLOB CHARNAME and DBCS options are obtained from this VSAM file

SQLBIND SQLBIND points to VSAM bindfile

►► CBND PACKAGE(package_id)

collection_id.
 ►

►
INfile

(

private_file_id

)
 ►

►

▼

▼

NEW

REPLACE

KEEP

REVOKE

OWner

(

authorization_name

)

QUALifier

(

collection_id

)

NOCHECK

CHECK

ERROR

,

DBList

(

server_name

)

USERid

(

authorization_name/password

)

MSGQueue

(

name

)

QRY

 ►◄

Note: For any options not specified on the CBND transaction, the default option will be

the option specified when the package was preprocessed, unless otherwise noted.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 189

||||||||||||||

|

|

||||||||||||||||

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||

||

||

||

||

|

|

Refer to DB2 Server for VSE Program Directory for more information on coding

LIBDEF statements.

Binding Parameters (BindParms)

Binding parameters mentioned below are common to CBND and Batch Binder

unless otherwise stated.

 Table 18. Binding Parameters

Parameter Description

PACKAGE (positional

parameter 1)

This parameter identifies the package to be created and the

associated bind file. The associated bind file must be created by the

DB2 Server for VSE preprocessor and its contents must not be

changed in any way. collection_id.package_id is the name by which

the database manager identifies the package to be created and the

associated bind file. The collection_id portion is optional, and fully

qualifies the package_id and any unqualified objects referenced

within the package.

If the collection_id is not specified, and the user_id is, the

collection_id defaults to the user_id. If neither is specified, the

collection_id defaults to the connected authorization-id.

You must be the owner of the bind file that you want to bind. To

bind another user’s bind file, you must have DBA authority.

// JOB BATCH BINDER

// LIBDEF *,SEARCH=(STSPVT.DEVELOP,STSPVT.DB2750)

// ASSGN SYSIPT,SYSRDR

// DLBL VSEUCAT,’VSEMCH.USER.CATALOG’,,VSAM

// DLBL SQLGLOB,’V750.DB2750.GLOB.FILE’,,VSAM,CAT=V750CAT, X

 DISP=(OLD,KEEP)

// DLBL SQLBIND,’V750.DB2750.BIND.FILE’,,VSAM,CAT=V750CAT, X

 DISP=(OLD,KEEP)

// EXEC PGM=ARIPBIN,SIZE=AUTO,PARM=’bindparms’

/*

/&

Figure 38. Invoking the DB2 Server for VSE Binder (Part 1 of 2)

Notes:

1. JCL must be changed to specify the correct libdef and library.

2. Parameters of ’bindparms’ are discussed in ″Binding Parameters″ below.

3. A typical invocation of ARIPBIN phase with bind parameters:

// EXEC ARIPBIN,SIZE=AUTO,PARM=’PACKAGE(COLID.PACK),DB(DBNAME), X

 USERID(USER1/PASSWD1),OWNER(OWNER1),NEW’

Figure 38. Invoking the DB2 Server for VSE Binder (Part 2 of 2)

190 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|

|

|

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Table 18. Binding Parameters (continued)

Parameter Description

REPLACE This parameter is specified if an existing package is to be replaced

by the bind. If the package does not exist, a new package is created

without an error or warning message.

KEEP causes the existing grants of RUN privilege to remain in

effect when the package is bound. However, if the owner of the

package is not entitled to grant all privileges embodied in the

package, all existing grants of the RUN privilege are revoked. The

KEEP and REVOKE parameters apply if the package has

previously been created and the owner of the package has granted

the RUN privilege on the resulting package to other users. The

KEEP and REVOKE parameters are allowed only with REPLACE.

If the REVOKE parameter is specified, all existing grants of the

RUN privilege are revoked. The KEEP and REVOKE parameters

are allowed only with REPLACE.

NEW The NEW parameter is specified if the package to be created does

not exist and is to be created. If the package with the same name

and owner already exists in the remote application server, binding

fails.

OWner This parameter specifies the authorization_name of the owner of the

package being created. The OWner parameter is to be used when

you are binding against a remote application server. However, if

you specify this parameter when binding against a local DB2

Server for VSE & VM application server, the authorization_name

must be the same as the application server authorization ID.

QUALifier This parameter specifies the default collection_id within the package

to resolve unqualified object names in static SQL statements.

The QUALifier parameter is meant to be used when you are

binding against a remote application server. If you specify this

parameter when binding against a DB2 Server for VSE & VM

application server, the collection_id must be the same as the

application server authorization ID.

NOCHECK This parameter is specified if you want the application server to

check all SQL statements for validity and perform package

functions. It will generate a package if no statement-parsing error

was found; If you specify the NOCHECK parameter, it overrides

the ERROR parameter in the bind file

CHECK This parameter is specified if you want the application server to

check all SQL statements for validity and generates error messages

if necessary, but does not generate a package; If you specify

CHECK parameter, it overrides NOCHECK or ERROR parameter

in the bind file.

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 191

|

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

||

|

|

|

||

|

|

|

|

|

||

|

|

|

|

|

|

||

|

|

|

|

||

|

|

|

|

Table 18. Binding Parameters (continued)

Parameter Description

ERROR This parameter specifies how statement parsing errors are

tolerated. If the ERROR option is specified, then syntactic or

semantic errors detected at the application server side will not stop

the creation of the package. If the ERROR option is not specified in

both binding and the bind file, the application server will not

create the package when those errors occur.

With the ERROR option, a syntactic error will cause the DB2 for

VSE & VM database to generate an Error Section in the package.

At run-time, invocation of this statement will yield SQLCODE -525

With the ERROR option, the creation of a package fails only if

there was a DRDA protocol error, or a severe error detected on the

AS side.

QRY This parameter causes binder (online/batch) to display the

preprocessor options stored in the header of the bind file. No

package functions will be performed if QRY is specified.

For CBND only:

The preprocessor options will be displayed at the terminal where

CBND was invoked. MSGQueue is ignored if QRY is specified.

An example of displayed output of binding with QRY option is as

follows:

 ARI5418I - THE BIND OPTIONS CURRENTLY IN EFFECT FOR

 - PACKAGE SQLDBA.MYPROG ARE:

 - NOCHECK

 - KEEP

 - BLOCK

 - ISQL(CS)

 - EXPLAIN(NO)

 - APPLICATION SERVER DEFAULT DATE

 - APPLICATION SERVER DEFAULT TIME

 - NOEXIST

 - REPLACE

 - APOST

 - CTOKEN(NO)

 - CCSIDS(500)

 - CCSIDM(0)

 - CCSIDG(0)

 - APPLICATION SERVER DEFAULT CHARSUB

 - DEFAULT PACKAGE LABEL

192 Application Programming

|

||

||

|

|

|

|

|

|

|

|

|

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Table 18. Binding Parameters (continued)

Parameter Description

INfile This parameter identifies the 7-character VSAM file name that

stores the bind-records (bindfiles) created by the preprocessor. This

file is used as DLBL filename which identifies the VSAM bindfile

used for input. If this parameter is omitted, the bind-record

(bindfile) is assumed to reside in the master VSAM file named

SQLBIND. If your bind-record (bindfile) resides in a private VSAM

file, you will then specify the 7-character private file name.

SQLBIND is also used as the DLBL label which identifies the

bindfile used for input. DLBL label name must be SQLBIND

irrespective of usage of private VSAM file or default VSAM file.

For CBND only:

VSAM bindfile must be defined to CICS through FCT or RDO

(CICS/ESA R410). Default SQLBIND is defined to CICS during

installation. If using private VSAM bindfile, you must make sure

that this VSAM file is properly defined to CICS.

DBname This parameter applies to Batch Binder only. This parameter

specifies the name of the target application server. If this parameter

is omitted, the bind file is bound to the default application server.

DBList This parameter applies to CBND only. This parameter specifies a

list of application servers on which the bind file will be bound.

If this parameter is omitted, the bind file is bound to the default

application server. For more information on establishing a default

application server, see the DB2 Server for VSE & VM Database

Administration manual.

USERid This parameter specifies the userid and password that CBND or

Batch Binder will use to execute a CONNECT statement to gain

access to each application server where the package will be

created. This parameter cannot be omitted for Batch Binder.

If this parameter is omitted, CBND will connect implicitly to the

application server where the package will be created. That is, the

online resource adapter will establish the userid for this particular

CBND transaction. For more information on how the userid is

established in the case of an implicit connect, see the DB2 Server for

VSE & VM Database Administration manual.

MSGQueue This parameter applies to CBND only. This parameter specifies the

name of the temporary storage queue to be used to store the bind

error or warning message (if any). If this parameter is omitted, no

error or warning message will be stored, CBND will just display a

summary report of the bind process on the terminal where CBND

was invoked. The summary report contains the bind options used

for the bind process, host variables, declarations, and the result of

the bind. The user can browse the message queue specified using

CEBR when CBND completes. This queue is kept in main storage

and is not recoverable. It stays until it is purged by CEBR or if

CICS is recycled. The user must determine when they should

delete queues that are no longer needed to prevent possible short

on temporary storage situations.

The preprocessor requires the job control statement DLBL SQLGLOB. In addition,

when you want the preprocessor to generate a bind file, job control statements

DLBL SQLBIND and DLBL BINDWKF are required. These DLBL statements must

Chapter 5. Preprocessing and Running a DB2 Server for VSE Program 193

|

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||

|

|

||

|

|

|

|

|

||

|

|

|

|

|

|

|

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

be provided in either the preprocess job control or the system standard label area.

The DLBL SQLBIND indicates the VSAM file into which the preprocessor should

place the output bind file. The BINDWKF indicates the work file into which the

preprocessor should use when performing VSAM I/O against the bind file. The

DLBL SQLGLOB contains the CHARNAME and DBCS options which are

necessary for bind file creation. See Figure 39. As mentioned earlier, you can

suppress SQLBIND output through CHECK and NOBIND parameters of the

preprocessor.

A user can choose to store the bind file generated by the preprocessor in a master

DB2 Server for VSE VSAM bind file, or in a private VSAM bind file.

If a user chose to have his application program’s bind file stored in the master DB2

Server for VSE VSAM bind file, the user should specify the recommended VSAM

dataset name “DB2.BIND.MASTER” on the DLBL SQLBIND job control statement.

This master VSAM bind file is defined to the system when DB2 Server for VSE

Version 7 Release 1 was installed. Therefore, the user does not need to define or set

up the file. However, if a different cluster name was used to define the master

VSAM file, the user should then specify the corresponding dataset name used.

If a user chose to have the application program’s bind file stored in a private

VSAM bind file, the user must specify the name of the private VSAM bind file on

the DLBL SQLBIND job control. The user must first define the private VSAM bind

file, using the same VSAM characteristics as the master VSAM bind file. For more

information on how to define the VSAM cluster for the private bind file, see the

DB2 Server for VSE Program Directory.

// DLBL SQLBIND,’DB2.BIND.MASTER’,,VSAM,CAT=catalog,DISP=(OLD,KEEP)

// DLBL BINDWKF,’DB2.BIND.WORKF’,,VSAM,CAT=catalog

// DLBL SQLGLOB,’DB2.SQLGLOB.MASTER’,,VSAM,CAT=catalog,DISP=(OLD,KEEP)

Figure 39. DLBL Statements for SQLBIND and SQLGLOB VSAM file

194 Application Programming

|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Chapter 6. Testing and Debugging

Doing Your Own Testing 196

Checking Warnings and Errors at Preprocessor

Time 196

Testing SQL Statements 197

Using the Automatic Error-Handling Facilities . . 197

Using the SQLCA 199

Using the SQLERRM Field 200

Using the SQLWARN Field 200

Examining Errors 200

Using the WHENEVER Statement 200

Determining the Scope of the WHENEVER

Statement 201

Examining the SQLCA 202

Handling Errors in a Select-List 212

Handling Arithmetic Errors 212

Handling Numeric Conversion Errors 213

Handling CCSID Conversion Errors 214

© Copyright IBM Corp. 1987, 2007 195

Doing Your Own Testing

Checking Warnings and Errors at Preprocessor Time

If errors or warnings are detected during preprocessing, the preprocessor inserts

messages into the modified source code and preprocessor listing files to indicate

that a problem was encountered. A return code is also issued indicating the

severity of the problem.

Messages associated with warning conditions are inserted into the files in comment

form so that the compilation of the modified source code is not inhibited. A return

code of 4 is issued and, if no problems of greater severity are found, package

processing occurs. All warnings should be investigated, because they may indicate

a situation that must be corrected before the program is executed. For example, if

you use the NOEXIST preprocessor option and a table is not found at

preprocessing time, the database manager issues a warning because it assumes that

the table will be created before the program is executed. If the program is executed

and the table is not found, the successful execution of the program is inhibited and

an error results.

DB2 Server for VM

Messages associated with error conditions are treated differently if the

preprocessor option ERROR is specified.

When you are preprocessing without the ERROR option, messages are

inserted in the files in uncommented form so that the compilation process is

inhibited. A return code of 8 or greater is issued, and no package processing

occurs.

When preprocessing with the ERROR option, most statement-parsing errors

are tolerated. Messages associated with these errors are inserted into the files

in commented form, and the return code is downgraded to a warning:

detection of these errors does not inhibit package processing. However, some

statement-parsing errors, such as errors with host identifiers and all errors

that could jeopardize the integrity of the package, are too severe to be

ignored. Such errors are treated as outlined for preprocessing without the

ERROR option.

Because the ERROR option allows preprocessing to complete successfully

even though errors have been detected, ensure that each statement is

preprocessed successfully on the application server on which the statement

will be executed. Check the preprocessor listing associated with the binding

application server.

DB2 Server for VSE

When you are preprocessing, messages associated with error conditions are

inserted in the files in uncommented form so that the compilation process is

inhibited. A return code of 8 or greater is issued, and no package processing

occurs.

 To check for error and warning conditions:

196 Application Programming

1. Scan the modified source code or preprocessor listing file for error and warning

message. Error message numbers are formatted as ARInnnnE, and warning

message numbers as ARInnnnW or ARInnnnI.

Messages generated during preprocessor initialization and termination are

stored in the listing file, not in the modified source code. A listing file

containing these messages is produced regardless of whether the NOPRint

preprocessor parameter is specified.

2. Look up the message numbers, SQLCODES and SQLSTATES issued by the

system in the DB2 Server for VM Messages and Codes or the DB2 Server for VSE

Messages and Codes manual.

3. If the error was detected by a non-DB2 Server for VM application server or

non-DB2 Server for VSE application server, look up the SQLCODE and

SQLSTATE explanations in the Messages and Codes manual associated with the

database management system that detected the problem.

4. Use ISQL HELP for online information about messages and SQLCODEs issued

by the database manager. To obtain limited online help information for

SQLSTATEs, type HELP SQLSTATE from ISQL.

Testing SQL Statements

Several facilities are available to help you test SQL statements:

v Interactive facilities such as ISQL or QMF can be used for testing statements;

however, the range of statements that can be tested with these facilities is

limited. For example, you cannot test the following:

– Statements that use host language delimiters, host variables, cursors, or

statement names.

– Dynamic or extended dynamic SQL statements.

For other static SQL statements, however, these facilities are fast and easy to use,

and you can do data definitions, authorizations, and data control tasks. For

information on ISQL, see the DB2 Server for VSE & VM Interactive SQL Guide and

Reference manual.

v The DBS Utility can be used for testing the same range of SQL statements that

can be tested using ISQL or QMF. In addition, it lets you use file input and

output, which makes submitting and reviewing test conditions easier, and lets

you set up and restore test databases with DBS Utility data load and unload

commands. For information on the DBS Utility, see the DB2 Server for VSE & VM

Database Services Utility manual.

v DB2 Server RXSQL can be used for testing statements with host variables,

statement names, and cursors. You can test dynamic and extended dynamic SQL

statements. DB2 Server RXSQL can be used to prototype application programs.

For information on DB2 Server RXSQL, see the DB2 REXX SQL for VM/ESA

Installation and Reference manual.

Using the Automatic Error-Handling Facilities

Every SQL application program must provide for error handling, by declaring an

SQL Communications Area (or alternatively, just the SQLCODE variable, as

described later in this section). This area receives messages that the database

manager sends to the program. By testing certain fields of this area, you can test

for certain conditions during the program’s execution.

Error handling helps protect the integrity of the database when a program fails.

For example, consider the two-step operation needed to transfer $500 from one

account to another in a bank:

Chapter 6. Testing and Debugging 197

1. Subtract $500 from account A

2. Add $500 to account B.

If the system or your program fails after the first statement is executed, some

customer has just “lost” $500. This type of incomplete update is said to leave the

database in an inconsistent state.

To avoid creating an inconsistent state, use a logical unit of work (LUW). An LUW

is a group of related SQL statements, possibly with intervening host language

code, that you want treated as a unit. The two steps in the previous example

would make up a single LUW. SQL requests within an LUW can be made against

a remote application server; such an LUW is called a remote unit of work.

LUWs prevent inconsistencies caused by system errors or SQL statement errors.

For system errors, the system automatically restores all changes made during the

LUW where it encountered the error. This rollback of the LUW is identified by a

negative SQLCODE and a W in the SQLWARN6. When a non-severe SQL error

occurs, the system restores all changes made by the statement in error. This

statement rollback is identified by a negative SQL code and a blank in

SQLWARN6. For work done in the LUW before execution of the statement in error,

do the following:

v Declare an SQL Communications Area (or just the SQLCODE variable)

v Code an SQL WHENEVER statement

v Code the actions to be taken if an error occurs.

To declare the SQL Communications Area (SQLCA), code this statement in your

program:

 INCLUDE SQLCA

When you preprocess your program, the system inserts host language variable

declarations in place of the INCLUDE SQLCA statement, and SQL communicates

with your program using this group of variables. The system uses the variables for

warning flags, error codes, and diagnostic information. All these variables are

discussed in the DB2 Server for VSE & VM SQL Reference manual.

The system returns a return code in SQLCODE after executing each SQL statement.

When a statement is executed successfully, SQLCODE is set to 0 (SQLSTATE is

'00000'). The system indicates error conditions by returning a negative SQLCODE.

A positive SQLCODE indicates normal or warning conditions experienced while

executing the statement.

The system also returns a return code in SQLSTATE after executing each SQL

statement. SQLSTATE provides common return codes for IBM’s relational database

products. SQLSTATE values comply with the SQL92 standard. For a discussion of

return codes in SQLSTATE, refer to the DB2 Server for VSE & VM SQL Reference

manual.

The system supports a stand-alone SQLCODE. If you request this support, you

must not include the SQLCA definition in your program. You must, however,

provide the integer variable SQLCODE (SQLCOD in Fortran). Refer to “Parameters

for SQLPREP EXEC for Single and Multiple User Modes” on page 118 or “Defining

the Preprocessing Parameters” on page 160 for information on the preprocessor

parameters that provide NOSQLCA support.

The following WHENEVER statement specifies a system action that is to occur

when an SQL error (that is, a negative SQLCODE) is returned:

198 Application Programming

WHENEVER SQLERROR GO TO ERRCHK

That is, whenever an SQL error (SQLERROR) occurs, program control is

transferred to code which follows a specific label, such as ERRCHK. This code

should include logic to analyze the error indicators in the SQLCA. Depending on

how ERRCHK is defined, action may be taken to execute the next sequential

program instruction, to carry out some special functions, or, as in most cases, to

roll back the current LUW and end the program.

Using the SQLCA

As mentioned previously, the database manager returns a return code in the

SQLCA after almost every SQL statement. The only statements that do not return

SQLCODEs are SQL declarative statements, which are not executed; therefore, no

SQLCODE can be returned. (Never test for an SQLCODE after a declarative

statement.) The following are examples of declarative statements:

v BEGIN DECLARE SECTION

v END DECLARE SECTION

v WHENEVER

v INCLUDE SQLCA

v INCLUDE SQLDA.

When a nondeclarative statement is in error, the system reverses any changes to

the database caused by that statement. For any previous work done in the LUW,

you have to tell the system what action to take.

Table 19 shows a representation of the SQLCA structure with host-language

independent data type descriptions. (Refer to the appendixes for the SQLCA data

types of a particular programming language.)

 Table 19. SQLCA Structure (in Pseudocode)

SQLCA -- a structure composed of:

 SQLCAID -- character string of length 8

 SQLCABC -- 31-bit binary integer

 SQLCODE -- 31-bit binary integer

 SQLERRM -- varying character string of maximum length 70

 SQLERRP -- character string of length 8

 SQLERRD -- an array composed of:

 SQLERRD(1) -- 31-bit binary integer

 SQLERRD(2) -- 31-bit binary integer

 SQLERRD(3) -- 31-bit binary integer

 SQLERRD(4) -- 31-bit binary integer

 SQLERRD(5) -- 31-bit binary integer

 SQLERRD(6) -- 31-bit binary integer

 SQLWARN -- a sub-structure composed of:

 SQLWARN0 -- single character

 SQLWARN1 -- single character

 SQLWARN2 -- single character

 SQLWARN3 -- single character

 SQLWARN4 -- single character

 SQLWARN5 -- single character

 SQLWARN6 -- single character

 SQLWARN7 -- single character

 SQLWARN8 -- single character

 SQLWARN9 -- single character

 SQLWARNA -- single character

 SQLSTATE - character string of length 5

Chapter 6. Testing and Debugging 199

The DB2 Server for VSE & VM SQL Reference manual explains the structure of the

SQLCA, and describes each field in detail. Some tips about SQLERRM and

SQLWARN fields are provided below.

Using the SQLERRM Field

The message texts associated with particular SQLCODEs (which can be found in

the DB2 Server for VM Messages and Codes or the DB2 Server for VSE Messages and

Codes manual) or retrieved with a call to ARIGMSG (refer to “Examining the

SQLCA” on page 202 for more information), often include variables which are

returned in the SQLERRM field of the SQLCA. In some situations, the format of

the last variable in the SQLERRM field is 'FOnn', which specifies the format

number of the SQLCODE message text. The 'FO' is an abbreviation for format, and

'nn' represents the number that identifies the version of the message text that

applies. If there is more than one variable returned through SQLERRM, the

variables are separated by X'FF'.

The first two bytes of SQLERRM (which is varying-length) contain the total length

of the string.

See “Handling Numeric Conversion Errors” on page 213 for the values of this field

when a numeric conversion occurs in an outer select and “Handling Errors in a

Select-List” on page 212 for the values when an error occurs while evaluating

expressions in an outer select.

Using the SQLWARN Field

This field contains characters that warn of various conditions encountered during

the processing of your statement. Alternatively, specific warnings may be indicated

by positive values in the SQLCA field, SQLCODE. For example, a warning

indicator is set when the system ignores null values in computing an average.

When the system encounters a particular condition, it sets the corresponding

warning character to a designated value, such as W, N, or Z. When the system

encounters two different warning conditions and must set the warning character to

either W or N, the system randomly chooses one value. If the system encounters

three different warning conditions and must set the value of the warning character

to W, N, or Z, the system sets the value of the warning character to W or N, but

not Z. The warning character Z is, therefore, overridden by W or N. One or more

warning characters may be set to W regardless of the code returned in SQLCODE.

The meanings of the warning characters are listed in the DB2 Server for VSE & VM

SQL Reference manual.

Because there is only one return code structure in each program, you should copy

out of the structure any information that you wish to save before the next SQL

statement is executed. Of particular note are the SQLCODE and the warning

indicators (SQLWARN).

Examining Errors

Using the WHENEVER Statement

The WHENEVER statement is a nonexecutable statement that assists you in

reacting to unusual conditions, based on data returned in the SQLCA.

The following three conditions can be addressed with WHENEVER statements:

SQLERROR Occurs when SQLCODE is negative.

200 Application Programming

|

|

|

|

|

|

|

|

|

|

SQLWARNING

Occurs when SQLCODE is positive but not 100, or when

SQLCODE is zero and SQLWARN0 is W.

NOT FOUND Occurs when SQLCODE is 100 (SQLSTATE is '02000').

Each SQL statement is within the scope of one WHENEVER statement for each of

the three conditions. A WHENEVER statement for an already specified condition

can be overridden at any time by coding another WHENEVER statement for the

same conditions.

One of three actions can be taken for a WHENEVER statement:

GOTO or GO TO Transfers control to a specified location.

STOP Terminates the program. The STOP action cannot

be used with the NOT FOUND condition.

CONTINUE Executes the next sequential instruction.

If a WHENEVER statement is not coded for a condition, it is processed as if the

condition were CONTINUE.

For a full discussion of the WHENEVER statement, see the DB2 Server for VSE &

VM SQL Reference manual.

Determining the Scope of the WHENEVER Statement

The scope of a WHENEVER statement is determined by its position in the source

program listing, not by its place in the logic flow. (This is because WHENEVER is

a declarative statement.) For example:

 In the pseudocode program fragment above, the scope of the first WHENEVER is

only the SELECT INTO statement. The second WHENEVER applies to the DROP

INDEX statement (and to all SQL statements that follow it until another

WHENEVER is encountered). The CREATE INDEX and DELETE statements are

not covered by a WHENEVER (there is no preceding WHENEVER); therefore, the

default CONTINUE action applies for WHENEVER conditions.

DO WHILE (X > Y)
EXEC SQL CREATE INDEX I1 ON EMP_ACT (ACTNO)

.
(host language code)

.

.
EXEC SQL DELETE FROM EMP_ACT

WHERE EMPN = '000220'

EXEC SQL WHENEVER SQLERROR STOP
.

(host language code)
.
.

EXEC SQL SELECT EMPNO, PROJNO, ACTNO INTO :EMPNUM.

.
EXEC SQL WHENEVER SQLERROR CONTINUE

END-DO
EXEC SQL DROP INDEX I1

..
.

(host language code)
.

First WHENEVER

Second WHENEVER

Chapter 6. Testing and Debugging 201

Examining the SQLCA

The SQLCA structure can be examined using the WHENEVER statement. You can

test for both general (SQLCODE < 0 | SQLWARN0 <> blank) and specific

(SQLCODE = -911 | SQLWARN6 = ’W’) warning or error conditions. To do this,

use a WHENEVER statement with a GOTO somewhere in the source program

before the SQL statements for which you want to directly examine the SQLCA.

For example, Figure 40 shows pseudocode for an error handling routine:

 When an error occurs, control is passed to the ERRCHK label. Then, in order to

prevent a program loop in this routine, a WHENEVER SQLERROR CONTINUE

statement is issued. (It is safe to do this because WHENEVER statements never

return an SQLCODE.) Next, the severity of the error is determined. If a severe

error occurs, the execution of any SQL statements on this application server (except

a CONNECT statement) terminates the application abnormally. The pseudocode

example reports the error and ends.

If the error is not severe, the pseudocode example displays an informational

message giving the SQLCODE, and an attempt is made to undo any changes. The

pseudocode example determines whether the ROLLBACK successfully completed,

by checking the SQLCODE after the ROLLBACK statement.

 EXEC SQL WHENEVER SQLERROR GOTO ERRCHK

 .

 .

 .

ERRCHK: * Prevent further errors from branching here

 EXEC SQL WHENEVER SQLERROR CONTINUE

 * Handle severe errors first

 IF SQLWARN0 = ’S’

 DISPLAY(’A SEVERE ERROR HAS OCCURRED.’)

 DISPLAY(’SQLCODE = ’ SQLCODE)

 .

 .

 .

 STOP

 END-IF

 * Describe the error

 DISPLAY(’AN ERROR HAS OCCURRED.’)

 DISPLAY(’SQLCODE =’ SQLCODE)

 .

 .

 .

 EXEC SQL ROLLBACK WORK

 * Check for errors

 IF SQLCODE < 0

 DISPLAY(’ROLLBACK WORK FAILED. SQLCODE = ’)

 DISPLAY(SQLCODE)

 .

 .

 .

 * Recovery from error is complete.

 ELSE

 DISPLAY(’ROLLBACK WORK SUCCEEDED.’)

 .

 .

 .

 END-IF

Figure 40. Pseudocode Error-Handling Routine

202 Application Programming

After a severe error, only a CONNECT statement is permitted. If the application

program reconnects to the application server in which the severe error occurred,

two possibilities exist. If the application server has been restarted or has otherwise

recovered, the application may continue; otherwise, another severe error will result.

If your application program is accessing multiple application servers, you can enter

a CONNECT statement to switch to another application server and continue

processing.

Retrieving the Text Message for an SQLCODE using SQLCA: If an SQL error

occurs, the error message can be retrieved through a call to ARIGMSG for both

VSE and VM. The pseudo formats of these calls in each of the languages are:

CALL ARIGMSG,(PSQLCA, PMESSAGE, PBYTESALLOCATED, PRC, IDSPSQLCA, PLANGUAGE), VL

 /* Assembly Language */

ARIGMSG(PSQLCA, PMESSAGE, PBYTESALLOCATED, PRC, IDSPSQLCA, PLANGUAGE)

 /* C */

CALL ’ARIGMSG’ USING PSQLCA, PMESSAGE, PBYTESALLOCATED, PRC, IDSPSQLCA, PLANGUAGE.

 /* COBOL */

CALL ARIGMSG(PSQLCA, PMESSAGE, PBYTESALLOCATED, PRC, IDSPSQLCA, PLANGUAGE)

 /* Fortran */

CALL ARIGMSG(PSQLCA, PMESSAGE, PBYTESALLOCATED, PRC, IDSPSQLCA, PLANGUAGE);

 /* PL/I */

Descriptions of the various parameters are given in Table 20.

 Table 20. SQLCA Parameter Description

Parameter Name Description

PSQLCA A pointer to the SQLCA structure.

PMESSAGE A pointer to a fixed length character array to store

the error message. The returned text is formatted as

one continuous string. The SQLCODE, SQLSTATE,

SQLERRD(1), and SQLERRD(2) fields of SQLCA are

automatically appended to the returned text. Memory

for PMESSAGE must be allocated within the

application program and must be large enough to

store the entire text and SQLCA fields. The appended

SQLCA will require 58 bytes.

PBYTESALLOCATED A pointer to an integer (4 bytes) used both as an

input and output parameter. On input, it specifies the

number bytes allocated for PMESSAGE by the

application program. On output, it returns the

number of those bytes that were actually used to

store the returned text and SQLCA fields.

PRC A pointer to an integer (4 bytes) return code

specifying whether any errors occurred in retrieving

the text.

Chapter 6. Testing and Debugging 203

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||

||

||

||

|

|

|

|

|

|

|

|

||

|

|

|

|

|

||

|

|

Table 20. SQLCA Parameter Description (continued)

Parameter Name Description

IDSPSQLCA An integer specifying whether the entire SQLCA will

be appended to the end of the returned message. The

append will occur if the flag is 1. The format of the

appended string will be:

SQLCODE = sqlcode. SQLSTATE = sqlstate. SQLERRD

= sqlerrd(0), sqlerrd(1), sqlerrd(2), sqlerrd(3), sqlerrd(4),

sqlerrd(5).

SQLWARN = sqlwarn0, sqlwarn1, sqlwarn2, sqlwarn3,

sqlwarn4, sqlwarn5, sqlwarn6, sqlwarn7, sqlwarn8,

sqlwarn9, sqlwarnA.

The string will be 111 bytes long. If a severe error

occurred in retrieving the message, the API will

override the user’s specification and output all the

SQLCA fields.

PLANGUAGE A pointer to a fixed length character array specifying

the language identifier of the message repository.

Supported language identifiers, LANGID, are

AMENG, UCENG, FRANC, GER, and KANJI. The

LANGID may consist of both upper and lower case

letters. Only the first five (or first three if using GER)

characters of the LANGID will be processed to

determine the specified language. Therefore

″AMeng″, ″UCENGword″, or ″GERcat in the hat″ will

be interpreted as AMENG, UCENG, and GER

respectively. The default language may be used by

specifying a LANGID starting with one or more

blank spaces such as ″ ″ or ″ ″ or ″ GER ″.

Note: DB2 for VSE Batch does not support switching

to another language. Therefore the default is used

regardless of the LANGID specification.

Descriptions of the various return codes stored in RC are given in Table 21.

 Table 21. ARIGMSG Return Codes

Return Codes Description

0 The message was returned successfully.

+1 The memory allocated to store either the text or appended

SQLCA fields was insufficient causing the message to be

truncated.

-1 One or more parameters are invalid (such as pointer to

SQLCA was null, etc).

-2 The specified language ID is invalid or is not enabled.

-3 The message repository could not be accessed.

-4 The SQLCODE number is out of range (invalid).

-5 The message for the SQLCODE could not be found in the

repository

204 Application Programming

|

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||

||

||

||

|

|

||

|

||

||

||

||

|

|

Note: For return codes -1, -2, and -3 the message buffer will be empty. For codes -4

and-5 the buffer will contain all the SQLCA fields. If a truncation error (code

1) occurs in addition to another error (either code -4 or -5), the API will

generate the truncation error code.

A pseudocode program demonstrating the use of ARIGMSG is shown in Figure 41

on page 206:

Chapter 6. Testing and Debugging 205

|

|

|

|

|

|

|

Sample outputs of the pseudocode program in Figure 41 are:

1. The message was successfully retrieved:

 SYSTEM.NEWCATALOG was not found in the system catalog.

 SQLCODE = -204. SQLSTATE = 42704. SQLERRD = -100, 0.

EXEC SQL INCLUDE SQLCA

.

.

MAIN PROGRAM

.

 EXEC SQL SELECT MAX(NCOLS) INTO :MAX_NCOLS FROM SYSTEM.NEWCATALOG;

 *If there was an error

 IF SQLCODE <> 0 THEN

 *Declare 1) character arrays to store the returned text and the language ID

 * 2) integers to store the number of bytes allocated

 * and the return code from ARIGMSG

 DECLARE SMESSAGESTRING AS CHARACTER(400)

 DECLARE SLANGUAGESTRING AS CHARACTER(5)

 DECLARE INUMBEROFBYTES, IRETURNCODE AS INTEGER

 *SMESSAGESTRING may store up to 400 bytes

 INUMBEROFBYTES = 400;

 *Find the addresses of the variables declared above

 DECLARE PSQLCA, PMESSAGE, PBYTESALLOCATED, PRC, PLANGUAGE AS POINTER

 PSQLCA = ADDRESSOF(SQLCA)

 PMESSAGE = ADDRESSOF(SMESSAGESTRING)

 PBYTESALLOCATED = ADDRESSOF(INUMBEROFBYTES)

 PRC = ADDRESSOF(IRETURNCODE)

 PLANGUAGE = ADDRESSOF(SLANGUAGESTRING)

 *Specify the language ID

 SLANGUAGESTRING = "Ameng"

 .

 *Now retrieve the error message and set the IDSPSQLCA flag to 0

 *(so that not all the SQLCA fields are appended).

 CALL ARIGMSG(PSQLCA, PMESSAGE, PBYTESALLOCATED, PRC, 0 , PLANGUAGE);

 *If there was a severe error in the retrieval

 IF IRETURNCODE < 0 THEN

 IF IRETURNCODE = -1 THEN

 * If one or more of the six parameters was invalid

 *(such as the pointer PLANGUAGE was null)

 ELSEIF IRETURNCODE = -2 THEN

 * If the specified language ID is invalid (such as "Canadianese")

 ELSEIF IRETURNCODE = -3 THEN

 *If the message repository could not be accessed

 ELSE

 * If the message still could not be retrieved then output the entire SQLCA.

 * INUMBEROFBYTES now stores the length (in bytes)

 * of the returned text and SQLCA

 IF IRETURNCODE= -4 THEN

 * If the SQLCODE was out of range (invalid)

 CALL DISPLAYMESSAGE(SMESSAGESTRING, INUMBEROFBYTES)

 ELSE

 * If the message for the SQLCODE could not be retrieved from the repository

 CALL DISPLAYMESSAGE(SMESSAGESTRING, INUMBEROFBYTES)

 END IF

 END IF

 *If the message was retrieved successfully or with minor errors

 *(such as having the message truncated)

 ELSE

 *Print the error message

 CALL DISPLAYMESSAGE(SMESSAGESTRING, INUMBEROFBYTES)

 END IF

 END IF

Figure 41. Pseudocode to Display the SQL Error Message

206 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|

2. The message was truncated:

 SYSTEM.NEWCATALOG was not found in the system.

3. The message was not retrieved because it could not be found in the repository:

 SQLCODE = -204. SQLSTATE = 42704. SQLERRD = -100, 0, 0, 0, 0, 0.

 SQLWARN = , , , , , , , , , , .

DB2 Server for VSE

Notes:

1. For assembler you must INCLUDE modules ARIPRDID and ARIGMSGD

before the link-edit step.

2. For C you must:

v Within the program itself, append the end-of-string character ″\0″ to

end of the returned text before displaying it on the screen.

v Include the statement

#pragma linkage (ARIGMSG,OS);

to indicate that System/390 linkage is used in the call to ARIGMSG.

v INCLUDE modules ARIPRDID and ARIGMSGD before the link-edit

step.

3. For COBOL you must INCLUDE modules ARIPRDID, ARIPADR4, and

ARIGMSGD before the link-edit step. If the program was preprocessed

prior to SQL/DS Version 2 Release 2, use ARIPADR instead of ARIPADR4.

4. For Fortran you must INCLUDE modules ARIPRDID, ARIPEIFA,

ARIGMSGD, and ARIPSTR before the link-edit step.

5. For PL/I you must:

v Declare ARIGMSG as an external entry point to indicate that

System/390 linkage is used in the call to ARIGMSG:

 DCL ARIGMSG ENTRY EXTERNAL OPTIONS(ASM,RETCODE);

v INCLUDE modules ARIPRDID and ARIGMSGD before the link-edit

step.

Chapter 6. Testing and Debugging 207

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||
|
|

DB2 Server for VM

Notes:

1. For assembler language, load modules ARIRVSTC and ARIGMSGC, as

follows:

 LOAD program_name ARIRVSTC ARIGMSGC

2. For C, you must:

v Within the program itself, append the end-of-string character ″\0″ to

end of the returned text before displaying it on the screen.

v Include the statement:

#pragma linkage (ARIGMSG,OS);

to indicate that System/390 linkage is used in the call to ARIGMSG.

v Load modules ARIRVSTC and ARIGMSGC:

 LOAD program_name ARIRVSTC ARIGMSGC (RESET CEESTART

3. For COBOL, load modules ARIRVSTC, ARIPADR (or ARIPADR4), and

ARIGMSGC:

 LOAD program_name ARIRVSTC ARIPADR (or ARIPADR4) ARIGMSGC

4. For Fortran, load modules ARIRVSTC, ARIPEIFA, ARIPSTR, and

ARIGMSGC:

 LOAD program_name ARIRVSTC ARIPEIFA ARIPSTR ARIGMSGC

5. For PL/I, you must:

v Declare ARIGMSG as an external entry point, to indicate that

System/390 linkage is used in the call to ARIGMSG:

 DCL ARIGMSG ENTRY EXTERNAL OPTIONS(ASM,RETCODE);

v Load modules ARIRVSTC and ARIGMSGC:

 LOAD program_name ARIRVSTC ARIGMSGC (RESET CEESTART

Using TEXT Files to Get SQLCA Field Information: When an SQL error occurs,

you can examine the SQLCA in order to determine the problem. To reduce the

time taken to do so, you can issue a call from the application to either a DB2

Server for VSE module, a DB2 Server for VM TEXT file ARISSMF (for Fortran

programs), or a TEXT file ARISSMA (for all other programs). The pseudo formats

of these calls in each of the languages are:

 CALL ARISSMA,(SQLCA,S1,S2,S3,S4,S5),VL /* Assembly Language */

 ARISSMA(SQLCA,S1,S2,S3,S4,S5) /* ’C’ */

 CALL ’ARISSMA’ USING SQLCA S1 S2 S3 S4 S5. /* COBOL */

 CALL ARISSMF(SQLCA,SQLERP,S1,S2,S3,S4,S5) /* Fortran */

 CALL ARISSMA(SQLCA,S1,S2,S3,S4,S5); /* PL/I */

In this example, S1, S2, S3, S4, and S5 are character strings declared within the

program and according to the rules of the specific language. Each string will

contain information on specific SQLCA fields, after the call to ARISSMA/ARISSMF.

Table 22 shows the parameter name for the strings, their SQL name, their lengths,

and the corresponding SQLCA fields.

 Table 22. SQLCA Error Information Strings

Parameter Name SQL Name Length SQLCA Field

S1 SQLCSTR1 13 SQLCODE

208 Application Programming

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||
|
|

|

Table 22. SQLCA Error Information Strings (continued)

Parameter Name SQL Name Length SQLCA Field

S2 SQLCSTR2 13 SQLERRD1

S3 SQLCSTR3 13 SQLERRD2

S4 SQLCSTR4 12 SQLERRP (part 1)

S5 SQLCSTR5 14 SQLERRP (part 2)

DB2 Server for VSE

Notes:

1. For assembler you must INCLUDE modules ARIPRDID and ARISSMA

before the link-edit step.

2. For C you must:

v Declare the strings 1 character longer than that shown in the table. Also,

within the program itself, you must append the end-of-string character

“\0” to the last position within each of the character strings before

displaying them on the screen.

v Include the statement

 #pragma linkage (ARISSMA,OS);

to indicate that System/390 linkage is used in the call to ARISSMA.

v INCLUDE modules ARIPRDID and ARISSMA before the link-edit step.

3. For COBOL you must INCLUDE modules ARIPRDID, ARIPADR4, and

ARISSMA before the link-edit step. If the program was preprocessed prior

to SQL/DS Version 2 Release 2, use ARIPADR instead of ARIPADR4.

4. For Fortran you must INCLUDE modules ARIPRDID, ARIPEIFA,

ARISSMF, and ARIPSTR before the link-edit step.

5. For PL/I you must:

v Declare ARISSMA as an external entry point to indicate that

System/390 linkage is used in the call to ARISSMA:

 DCL ARISSMA ENTRY EXTERNAL OPTIONS(ASM,RETCODE);

v INCLUDE modules ARIPRDID and ARISSMA before the link-edit step.

Chapter 6. Testing and Debugging 209

DB2 Server for VM

Notes:

1. For assembler language, load modules ARIRVSTC and ARISSMA, as

follows:

 LOAD program_name ARIRVSTC ARISSMA

2. For C, you must:

v Declare the strings one character longer than that shown in the table.

Also, within the program itself, you must append the end-of-string

character “\0” to the last position within each of the character strings

before displaying them on the screen.

v Include the statement:

#pragma linkage (ARISSMA,OS);

to indicate that System/390 linkage is used in the call to ARISSMA.

v Load modules ARIRVSTC and ARISSMA:

 LOAD program_name ARIRVSTC ARISSMA (RESET CEESTART

3. For COBOL, load modules ARIRVSTC, ARIPADR (or ARIPADR4), and

ARISSMA:

 LOAD program_name ARIRVSTC ARIPADR (or ARIPADR4) ARISSMA

4. For Fortran, load modules ARIRVSTC, ARIPEIFA, ARIPSTR, and

ARISSMF:

 LOAD program_name ARIRVSTC ARIPEIFA ARIPSTR ARISSMF

5. For PL/I, you must:

v Declare ARISSMA as an external entry point, to indicate that

System/390 linkage is used in the call to ARISSMA:

 DCL ARISSMA ENTRY EXTERNAL OPTIONS(ASM,RETCODE);

v Load modules ARIRVSTC and ARISSMA:

 LOAD program_name ARIRVSTC ARISSMA (RESET CEESTART

 ARISSMA/ARISSMF returns information in the strings to your program. This

information can be displayed or can be written to a file. The format in which the

information is returned is shown below.

SQLCSTR1 PRCS/nnnnnnnn; where n is the decimal representation of the

absolute value of the SQLCODE, right-justified, and padded with

0’s for a total length of 8 digits.

SQLCSTR2 PRCS/nnnnnnnn; where n is the decimal representation of the

absolute value of the SQLERRD1, right-justified and padded with

0’s for a total length of 8 digits.

SQLCSTR3 PRCS/nnnnnnnn; where n is the decimal representation of the

absolute value of the SQLERRD2, right-justified and padded with

0’s for a total length of 8 digits.

SQLCSTR4 FLDS/SQLERRP. This value is always returned in the string.

SQLCSTR5 VALU/Caaaaaaaa; where a is left-justified, padded by blanks, and is

the module name provided in field SQLERRP.

 Suppose the SQLCA fields have the following values when the error occurred:

210 Application Programming

SQLCODE = -901

 SQLERRD1 = -160

 SQLERRD2 = -33

 SQLERRP = ARIXOEX

then the values of the strings will be:

 SQLCSTR1 ==> PRCS/00000901

 SQLCSTR2 ==> PRCS/00000160

 SQLCSTR3 ==> PRCS/00000033

 SQLCSTR4 ==> FLDS/SQLERRP

 SQLCSTR5 ==> VALU/CARIXOEX

These values may be displayed as shown in the pseudocode in Figure 42:

DB2 Server for VSE

Another reason an application might want to process the SQLERROR

condition is for graceful cleanup and termination. An example of this is a

CICS/VSE conversational transaction. Rather than abnormally terminating on

SQLERROR, a conversational transaction might do the following:

v Issue a CICS/VSE SYNCPOINT ROLLBACK or SQL ROLLBACK. This

backs out uncommitted changes to CICS/VSE and DB2 Server for VSE

recoverable resources.

v Issue an error message to the terminal user. Such a message typically

informs the user of the state of affairs and identifies the user’s options for

proceeding with the transaction.

The ISQL transaction handles SQLERROR in a similar manner. That is, rather

than terminating the ISQL session, the user is given an error message and

allowed to proceed.

 EXEC SQL WHENEVER SQLERROR GOTO ERROR

 .

 .

 .

ERROR: * Display string information

 CALL ARISSMA

 DISPLAY(’SQLCSTR1 =’SQLCSTR1)

 DISPLAY(’SQLCSTR2 =’SQLCSTR2)

 DISPLAY(’SQLCSTR3 =’SQLCSTR3)

 DISPLAY(’SQLCSTR4 =’SQLCSTR4)

 DISPLAY(’SQLCSTR5 =’SQLCSTR5)

Figure 42. Pseudocode to Display Error Information

Chapter 6. Testing and Debugging 211

DB2 Server for VM

The processing of the SQLERROR condition not only allows an application to

terminate normally, but also permits easy recovery from errors. An example

of this is the ISQL application. Rather than terminating the ISQL session, the

user is given an error message and allowed to proceed. In fact, the

application could give the user the opportunity to indicate whether backout is

necessary. ISQL does this when you omit the WHERE clause in an UPDATE

or DELETE statement by checking SQLWARN4. That way, you have the

chance to confirm that all the rows in the table are to be deleted or updated.

Additional code could be added to the pseudocode example to check for this

situation.

Handling Errors in a Select-List

The database manager tolerates the occurrence of certain errors resulting from the

execution of expressions occurring in a select_list of an outer select statement.

Handling Arithmetic Errors

The arithmetic errors that can be tolerated are listed in Table 23.

 Table 23. Tolerated Arithmetic Errors

Arithmetic Errors That Will Be Tolerated

v DECIMAL

– Divide Exception

– Decimal Overflow
v FLOAT

– Divide Exception

– Exponent Overflow
v INTEGER, SMALLINT

– Divide Exception

– Fixed Point Overflow

Note: FLOAT can be either single-precision or double-precision float. Refer to

“Assigning Data Types When the Column Is Created” on page 44 for more

information on floating-point data types.

Errors in date and time arithmetic are not tolerated. For example,

 DATE(’9999-12-31’) + 1 DAY

results in a negative SQLCODE because the result would be an invalid date.

In the next example however, if the value of C2 is zero, the arithmetic error would

be tolerated.

 DATE(’1999-12-31’) + C1/C2 DAYS

The expression in the outer select_list may be by itself, or it can be an argument in

a scalar or column function other than the column functions AVG and SUM.

If the errors occur on an outer select_list, and every output host variable that is

associated with the expression that is in error has an associated output indicator

variable, the system does the following:

v The output indicator variable for each arithmetic expression in error is set to -2.

212 Application Programming

v A positive warning SQLCODE is placed in the SQLCA.

v SQLWARN0 in the SQLCA remains unaffected.

v The value of the associated host variable is undefined.

v Execution of the statement continues, such that all expressions and values not

having arithmetic errors are returned.

v If the statement is a FETCH, the cursor remains open.

However, if the errors do not occur on the outer select_list, or if there are arithmetic

errors on the select_list and not every output host variable that is associated with

the expression in error has an associated output indicator variable, the system

takes the following actions:

v A negative error SQLCODE -802 (SQLSTATE '22003') is returned in the SQLCA.

v The values of the host variables and any supplied indicator variables in the

select_list are undefined.

v Execution of the statement is halted.

v If the statement is a FETCH, the cursor will remain open.

In either case, the SQLERRM of the SQLCA error message will identify the first

expression in error in the outer select_list. The following are returned in the error

message:

v The exception type

v The arithmetic operation being performed at the time of the error

v The data type of the select_list items being manipulated

v The ordinal position of the expression in error.

Depending on when the error is detected, some parts of the error message will be

blank.

Handling Numeric Conversion Errors

The numeric conversion errors that can be tolerated are listed in Table 24.

 Table 24. Tolerated Numeric Conversion Errors

v FLOAT to

– DECIMAL

– INTEGER

– SMALLINT
v DECIMAL to

– DECIMAL

– FLOAT

– INTEGER

– SMALLINT
v INTEGER to

– DECIMAL

– SMALLINT
v SMALLINT to

– DECIMAL

Note: FLOAT can be either single-precision or double-precision float. Refer to

“Assigning Data Types When the Column Is Created” on page 44 for more

information on floating-point data types.

If an error occurs while converting numeric values into the data type of the host

variables, and output indicator variables are provided with host variables, for

which numeric conversion errors occurred, the system does the following:

Chapter 6. Testing and Debugging 213

v The output indicator variable for each host variable for which a numeric

conversion error occurred is set to -2.

v If no other warning SQLCODE is contained in the SQLCA, then a positive

warning SQLCODE is placed in the SQLCA and the error message tokens in

SQLERRM will identify the first conversion error.

v SQLWARN0 in the SQLCA is unaffected.

v The values of the associated host variables are undefined.

v Execution of the statement continues such that all values not in error are

returned to your program.

v If the statement is a FETCH then the cursor will remain open.

If output indicator variables are not provided for host variables for which numeric

conversion errors occurred, the system does the following:

v A negative error SQLCODE is placed in the SQLCA

v The SQLCA error message tokens identify the first conversion error

v The values of the host variables and indicators are undefined

v Execution of the statement is halted

v If the statement is a FETCH then the cursor will remain open.

In either case, the SQLERRM of the SQLCA will identify the first expression in

error, and the following will be returned in the error message:

1. The data type of the value being moved into the host variable

2. The ordinal position of the expression in error

3. The data type of the host variable.

Handling CCSID Conversion Errors

The database manager tolerates CCSID conversion errors in which a character or

characters have been mapped to the defined error byte.

If this occurred during CCSID conversion of data to be returned to the user, and

output indicator variables are provided with host variables, the system does the

following:

v For each host variable for which the CCSID conversion error byte mapping has

occurred, the output indicator is set to -2.

v If no other warning SQLCODE is in the SQLCA, a positive warning SQLCODE

is placed there, and the error message tokens in SQLERRM will identify the first

conversion error.

v SQLWARN0 in the SQLCA is unaffected.

v The values of the associated host variables are undefined.

v Execution of the statement continues and returns all correct values to your

program.

v For a FETCH statement, the cursor remains open.

If output indicator variables are not provided for host variables for which CCSID

conversion errors occurred, the database manager does the following:

v A negative SQLCODE is placed in the SQLCA.

v The SQLCA error message tokens identify the first conversion error.

v The values of the host variables, and any indicators, are undefined.

v Execution of the statement is halted.

v For a FETCH statement, the cursor remains open.

214 Application Programming

Chapter 7. Using Dynamic Statements

Dynamically Defining SQL Statements 216

Comparing Non-Query Statements to Query

Statements 216

Using Non-Query Statements 216

Executing Non-Parameterized Statements . . . 216

Executing Parameterized Statements 218

Using Query Statements 220

Executing a Non-Parameterized Select-Statement 220

Using the PREPARE and DESCRIBE

Statements 220

Declaring the SQL Descriptor Area (SQLDA) 220

Processing a Run-Time Query Using the

SQLDA 221

Allocating Storage for the SQLDA Using the

SQLVAR Array 222

Initializing the SQLN Field of the SQLDA 222

Inserting Values in the SQLDA 222

Analyzing the Elements of SQLVAR 224

Allocating Storage for the Result of the

Select-Statement 225

Retrieving the Query Result 226

Executing a Parameterized SELECT Statement 227

Generating an Additional SELECT Statement 227

Executing a Parameterized Non-Query Statement 230

Generating a SELECT Statement 230

Using an Alternative to a Scanning Routine . . . 231

Ensuring Data Type Equivalence in a Dynamically

Defined Query 232

Summarizing the Fields of the SQLDA 234

Using the SQLN Field 236

Using the SQLD Field in the SQLDA 236

Using the PREPARE Statement 237

SQL Functions Not Supported in Dynamic

Statements 238

© Copyright IBM Corp. 1987, 2007 215

Dynamically Defining SQL Statements

Previous chapters have described how to code various SQL statements directly into

a program and have the database manager preprocess them. For some kinds of

applications, however, it is desirable to execute SQL statements that are not known

until the program is actually running. An example would be a program to support

an interactive user who wishes to type queries and receive results at a terminal. In

this case, you cannot embed the SQL statements in the program and have the DB2

Server for VSE & VM preprocessor recognize them, because the program reads the

statements from a terminal when it is running. To support applications such as

this, the system provides facilities for executing SQL statements that are specified

at run time.

For a detailed description of each of these statements, see the DB2 Server for VSE &

VM SQL Reference manual. The following SQL statements define dynamic

statements.

v PREPARE - prepares a single statement for execution

v DESCRIBE - obtains information about columns in the select_list of a prepared

select-statement

v EXECUTE - executes a non-select-statement in a package

v EXECUTE IMMEDIATE - prepares a single statement and immediately executes

it

v DECLARE CURSOR - in connection with OPEN, FETCH, PUT, and CLOSE,

executes a SELECT or an INSERT statement

v OPEN (cursor)

v FETCH (cursor)

v PUT (cursor)

v CLOSE (cursor).

Comparing Non-Query Statements to Query Statements

The SQL statements that you can dynamically define and execute fall into one of

two categories: non-query SQL statements (such as ALTER, CREATE, DELETE,

INSERT, and UPDATE) and query statements (such as SELECT). General usage

techniques for both categories are discussed below; specific statement syntax is

shown in the following sections.

Using Non-Query Statements

Executing Non-Parameterized Statements

The simplest SQL statements to execute dynamically are those that do not return

any result other than values in the SQLCA. No output host variables are used. This

is the case with all data definition and data control statements, and with all data

manipulation statements except SELECT.

Suppose an inventory control program is designed around the following table:

 CREATE TABLE INVENTORY

 (PARTNO SMALLINT NOT NULL,

 DESCRIPTION VARCHAR(24) ,

 QONHAND INTEGER)

The program reads SQL DELETE statements similar to these from a terminal:

216 Application Programming

DELETE FROM INVENTORY WHERE PARTNO =221

 DELETE FROM INVENTORY WHERE PARTNO =315

 DELETE FROM INVENTORY WHERE PARTNO =807

After reading a statement, the program immediately executes it.

SQL statements must be prepared before they can be executed. Because the SQL

statements are read at run time, they have not been prepared. An SQL statement

called EXECUTE IMMEDIATE causes an SQL statement to be prepared and

executed—all at run time. Here is a pseudocode solution to the above problem:

 EXEC SQL BEGIN DECLARE SECTION

 DECLARE DSTRING VARYING CHARACTER (80)

 .

 .

 EXEC SQL END DECLARE SECTION

 READ DSTRING FROM TERMINAL

 EXEC SQL EXECUTE IMMEDIATE :DSTRING

A DELETE statement is read into a host variable called DSTRING. DSTRING is

then used as a parameter in the EXECUTE IMMEDIATE statement, causing the

DELETE statement to be immediately prepared and executed.

A host variable can be used as a parameter for the EXECUTE IMMEDIATE

statement. The table below shows how the host variable must be declared in the

different languages:

 Table 25. Declaring of Host Variables

Language

Fixed-

Length

Variable

Varying-Length

Variable String Constant

Assembler X

C X

COBOL X X

Fortran X X

PL/I X X X

The Fixed-Length Variable refers to CHAR host variables, Varying-Length Variable

refers to VARCHAR host variables, and String Constant refers to quoted character

string constants. The following is an example of a String Constant dynamic

statement:

 EXECUTE IMMEDIATE ’DELETE FROM INVENTORY WHERE PARTNO=201’

The SQL statement submitted to EXECUTE IMMEDIATE must not contain host

language delimiters or SQL delimited identifiers. That is, the statement must be in

basic form. Avoid using either delimited identifiers or strings of DBCS characters

in statements specified in string constants.

Note: The preferred method is to use a host variable rather than the string

constant.

The EXECUTE IMMEDIATE statement itself, however, must have appropriate

delimiters. For example, in COBOL all SQL statements must be preceded by EXEC

SQL, and followed by the END-EXEC keyword as follows:

Chapter 7. Using Dynamic Statements 217

EXEC SQL EXECUTE IMMEDIATE

 ’DELETE FROM INVENTORY WHERE PARTNO = 201’

 END-EXEC.

If the host language you are using permits it, you can concatenate a constant to a

variable. For example, PL/I uses two vertical bars (||) as the concatenation

symbol:

 EXEC SQL EXECUTE IMMEDIATE ’DELETE FROM INVENTORY WHERE’ || PREDS;

Note: The concatenation symbol used here is not the same as the concatenation

operator discussed in Chapter 3, “Coding the Body of a Program,” on page

23.

The “EXEC SQL” and the semicolon (;) are the host language delimiters for PL/I.

At run time, the variable PREDS should contain a character string representing one

or more predicates that complete the DELETE statement. The variable PREDS must

not be used as a host variable, since it is being concatenated to the constant string.

Executing Parameterized Statements

In the example above, note that the DELETE statements that were dynamically

executed contained no host variables. That is, they were executed only once, with a

single value for PARTNO. Suppose that you wanted to execute the DELETE

statement repeatedly with different values, without having to key in the entire

statement each time. Consider how it might be done if you coded the DELETE

statement directly in a program:

 READ PART FROM SYSIPT

 DO WHILE (PART ¬= 0)

 EXEC SQL DELETE FROM INVENTORY WHERE PARTNO = :PART

 READ PART FROM SYSIPT

 END-DO

The loop is repeated until a PART of 0 is read.

Now, suppose that you wish to read both the DELETE statement and the part

numbers from a terminal for dynamic execution. When this is done, the DELETE

statement itself should not contain host variables; rather, it should contain question

marks (?) to indicate where the value is to be substituted:

 DELETE FROM INVENTORY WHERE PARTNO = ?

This type of statement is called a parameterized SQL statement (a parameter is an

input host variable). Thus far, none of the dynamic statements contained any

parameter markers, and they could be executed using EXECUTE IMMEDIATE.

Parameterized SQL statements require a slightly more complex facility called

PREPARE and EXECUTE. This facility can be thought of as an EXECUTE

IMMEDIATE performed in two steps. The first step (PREPARE) causes the

parameterized statement to be prepared, and gives it a name of your choosing.

(This name should not be declared as a host variable.) The second step (EXECUTE)

causes the statement to be executed using values that you supply for the

parameters. After a statement is prepared, it can be executed many times. Here is

the pseudocode:

218 Application Programming

You must not execute a dynamically defined statement after ending the logical unit

of work in which the statement was prepared. If you do, an error is issued.

In routines similar to the above example, the number of parameters and their data

types must be known, because the host variables that provide input data are

declared when the program is being written.

Naturally, this greatly limits the number of different SQL statements that you can

read in. In the above example, the only SQL statements that can be executed are

those containing a single parameter. This single parameter is defined as a 15-bit

integer in the program, and must be used as such. For example, the pseudocode

above can also process the statements below. (At the terminal, the user types in a

statement followed by values for the parameter markers.)

 INSERT INTO INVENTORY (PARTNO) VALUES(?)

For each value you provide for “?”, the INSERT statement is executed, and a new

row is inserted into INVENTORY. The value you provide is placed in the PARTNO

column. The other columns of the table are given the null value (provided they are

nullable).

 UPDATE INVENTORY SET DESCRIPTION = ’GEAR’ WHERE PARTNO = ?

For each value you provide for “?”, the UPDATE statement is executed, and the

DESCRIPTION column of the INVENTORY table is set to ’GEAR’.

 UPDATE INVENTORY SET QONHAND = 0 WHERE PARTNO = ?

For each value you provide for “?”, the UPDATE statement is executed, and the

QONHAND column in the INVENTORY table is set to 0.

Obviously there are some applications for this kind of dynamic statement

processing, but they are quite specialized. Suppose new parts are added to the

inventory. Each part is a different kind of gear, and none of the parts are yet in the

warehouse. The input stream for the pseudocode above would be as follows:

 INSERT INTO INVENTORY (PARTNO) VALUES (?)

 301

 302

 303

 304

 0

 UPDATE INVENTORY SET DESCRIPTION = ’GEAR’ WHERE PARTNO = ?

 301

 302

 303

 304

DO

.

.

.

READ DSTRING FROM TERMINAL
DO WHILE (DSTRING = ")
EXEC SQL PREPARE S1 FROM :DSTRING
READ PART FROM TERMINAL
DO WHILE (PART = 0)

EXEC SQL EXECUTE S1 USING :PART
READ PART FROM TERMINAL

END-DO
READ DSTRING FROM TERMINAL

END-DO

.

.

.

END-DO

Preprocess the DELETE
statement and call it
S1.

Execute S1 (the DELETE
statement) repeatedly
using different values
for PARTNO.

Chapter 7. Using Dynamic Statements 219

0

 UPDATE INVENTORY SET QONHAND = 0 WHERE PARTNO = ?

 301

 302

 303

 304

 0

Using Query Statements

Executing a Non-Parameterized Select-Statement

Using the PREPARE and DESCRIBE Statements

A somewhat more complex facility is needed for executing a dynamically defined

select-statement. Usually, a select-statement returns the result of a query into one or

more host variables. When the query is read from a terminal at run time, however,

you cannot know in advance how many and what type of variables to allocate to

receive the result. The database manager therefore provides a special statement

called DESCRIBE by which a program can obtain a description of the data types of

a query result. After using the DESCRIBE statement, the program can dynamically

allocate storage areas of the correct size and type to receive the result of the query.

If DESCRIBE is used on a prepared SQL statement that was not a SELECT, the

system indicates this by returning a zero in the variable SQLD of the SQL

descriptor area.

When handling a run-time query, the program first uses the PREPARE statement

which (as in the previous section) preprocesses the SQL statement. The PREPARE

step also associates a statement-name with the query. The DESCRIBE statement is

then used to obtain a description of the answer set. On the basis of this

description, the program dynamically allocates a storage area suitable to hold one

row of the result. The program then reads the query result by associating the name

of the statement with a cursor and by using cursor manipulation statements

(OPEN, FETCH, and CLOSE).

SELECT INTO statements cannot be executed dynamically.

Declaring the SQL Descriptor Area (SQLDA)

Dynamically defined queries center around a structure called the SQL Descriptor

Area (SQLDA). The SQLDA is usually a based structure; that is, storage for it is

allocated dynamically at run time. Figure 43 on page 221 is a representation of the

SQLDA structure with host-language-independent data type descriptions. Each

host language has different considerations for the SQLDA structure; you should

read the section on dynamic statements in the appropriate appendix before you

attempt to code a program that uses the SQLDA. In addition, see “Summarizing

the Fields of the SQLDA” on page 234 for information about the fields of the

SQLDA.

220 Application Programming

Note: The SQLLEN field can be divided into two subfields. The subfields are used

only when working with DECIMAL values. Such usage is described in the

following section.

To include the declaration of the descriptor area in an assembler, C, or PL/I

program, specify:

 INCLUDE SQLDA

The INCLUDE SQLDA statement must not be placed in the SQL declare section.

As with the SQLCA, you can code this structure directly instead of using the

INCLUDE SQLDA statement. If you choose to declare the structure directly, you

can specify any name for it. For example, you can call it SPACE1 or DAREA

instead of SQLDA.

Processing a Run-Time Query Using the SQLDA

To process a run-time query, you must declare the SQLDA structure. Below is an

illustration showing the SQLDA structure as a box; similar illustrations are used in

following examples. Remember that SQLDA is a based structure (or, in assembler,

a DSECT); no storage has actually been allocated yet.

 The meanings of the various fields are described as they are used. A summary of

the meanings of the fields of the SQLDA is presented later for quick reference.

If a select-statement is assigned to the variable QSTRING, it can be read in from

SYSIPT (DB2 Server for VSE) a terminal (DB2 Server for VM) or assigned within

the program itself. In this example, the following select-statement is read in from the

terminal:

 SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = 221

SQLDA -- a based structure composed of:

 SQLDAID -- character string of length 8

 SQLDABC -- 31-bit binary integer

 SQLN -- 15-bit binary integer

 SQLD -- 15-bit binary integer

 SQLVAR -- an array composed of:

 SQLTYPE -- 15-bit binary integer

 SQLLEN -- 15-bit binary integer

 SQLPRCSN -- 1-byte (used for DECIMAL)

 SQLSCALE -- 1-byte (used for DECIMAL)

 SQLDATA -- 31-bit binary integer (pointer)

 SQLIND -- 31-bit binary integer (pointer)

 SQLNAME -- varying-length character string

 of up to 30 characters

Figure 43. SQLDA Structure (in Pseudocode)

S Q L D A I D

SQLDABC SQLN SQLD

(1) (2)

SQLIND 11

SQLNAME

SQLVAR
.SQLDATA

(1) SQLTYPE
(2) SQLLEN
11 is the length
of the character
string in SQLNAME.
SQLNAME is a 30-byte
area immediately
following 11.

Chapter 7. Using Dynamic Statements 221

This select-statement has no INTO clause. When it is read in, it is assigned to the

host variable QSTRING, which is then preprocessed by the PREPARE statement:

 READ QSTRING FROM TERMINAL

 EXEC SQL PREPARE S1 FROM :QSTRING

Allocating Storage for the SQLDA Using the SQLVAR Array

Now you can allocate storage for the SQLDA. The techniques for acquiring storage

are language dependent; refer to the appropriate compiler or assembler manual.

Note: The usage of the SQLDA depends on the USING clause option of the

DESCRIBE statement (discussed later in this chapter). In this section, it is

assumed that the NAMES option of the USING clause has been specified.

The amount of storage you need to allocate depends upon how many

elements you want to have in the SQLVAR array. Each select_list item must

have a corresponding SQLVAR array element. Therefore, the number of

select_list items determines how many SQLVAR array elements you should

allocate. However, because select-statements are specified at run time, it is

not possible to know how many select_list items there will be. Consequently,

you must guess.

Suppose, in this example, that no more than three items are ever expected in

the select_list. This means that the SQLVAR array should have a dimension

of three, because each item in a select_list must have a corresponding entry

in SQLVAR.

Initializing the SQLN Field of the SQLDA

Having allocated an SQLDA of what you hope will be adequate size, you must

now initialize the SQLDA field called SQLN. SQLN is set to the number of

SQLVAR array elements you have allocated (that is, SQLN is the dimension of the

SQLVAR array). In this example, you must set SQLN to 3. Here’s the pseudocode

for what was done so far:

 Allocate an SQLDA of size 3

 SQLN = 3

Inserting Values in the SQLDA

Having allocated storage, you can now DESCRIBE the statement. (Make sure that

SQLN is set before the DESCRIBE.)

 DESCRIBE S1 INTO SQLDA

When the DESCRIBE is executed, the system places values in the SQLDA. These

values provide information about the select_list.

Figure 44 on page 223 shows the contents of the SQLDA after the DESCRIBE is

executed for the example select-statement. The third SQLVAR element is not shown

because it was not used.

222 Application Programming

The SQLDAID and SQLDABC fields are initialized by the system when a

DESCRIBE statement is executed (you can ignore these for now).

If you do not allocate a large enough SQLDA structure, SQLD will be set to the

number of required SQLVAR elements after the DESCRIBE. Suppose, for example,

that the select-statement contained four select_list expressions instead of two. The

SQLDA was allocated with an SQLVAR dimension of three. The system cannot

describe the entire select_list because there is not enough storage. In this case,

SQLD is set to the actual number of select_list expressions; the rest of the structure

is ignored. Thus, after a DESCRIBE it is a good practice to check SQLN. If SQLN is

less than SQLD, you need to allocate a larger SQLDA based on the value in SQLD:

 EXEC SQL DESCRIBE S1 INTO SQLDA

 IF (SQLN < SQLD)

 Allocate a larger SQLDA using the value of SQLD.

 Reset SQLN to the larger value.

 EXEC SQL DESCRIBE S1 INTO SQLDA

 END-IF

For the example select-statement, however, the SQLDA was of adequate size.

SQLVAR has a dimension of three, and there are only two select_list expressions.

SQLN remains set to 3, and SQLD is set to 2.

Eye-catcher S Q L D A SQLN and SQLD

148 3 2

449 24 500(2)

X ' 01 ' (1) 11 D E

S C R I P T I O

Note:

1. The hexadecimal value

X ' 01 ' is in byte 1.

Bytes 2, 3, and 4 are

undefined.

2. Bytes 1 and 2

contain X ' 000 '. The

value 500 is in bytes

3 and 4.

SQLVAR

Element 1

7 Q O N H A N

D

497 4

SQLVAR

Element 2

N

Figure 44. Contents of SQLDA after Executing the DESCRIBE

Chapter 7. Using Dynamic Statements 223

If you use DESCRIBE on a non-select-statement, SQLD is set to 0. If your program

is designed to process both query and non-query statements, you can describe each

statement (after it is prepared) to determine whether it is a query. This example

routine is designed to process only query statements, so no test is provided.

Analyzing the Elements of SQLVAR

Your program must now analyze the elements of SQLVAR. Remember that each

element describes a single select_list expression. Consider again the select-statement

that is being processed:

 SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = 221

The first item in the select_list is DESCRIPTION. As illustrated in the beginning of

this section, each SQLVAR element contains the fields SQLTYPE, SQLLEN,

SQLDATA, SQLIND, and SQLNAME. The system returns a code in SQLTYPE that

describes the data type of the expression and tells you whether nulls are

applicable. For a detailed explanation on how to interpret the codes returned in

SQLTYPE, refer to the DB2 Server for VSE & VM SQL Reference manual.

For example, SQLTYPE is set to 449 in the first SQLVAR element. This indicates

that DESCRIPTION is a VARCHAR column and that nulls are permitted in the

column.

The system sets SQLLEN to the length of the column. For character strings,

SQLLEN is set to the maximum number of bytes of the string. For graphic strings,

SQLLEN is set to the maximum number of double-byte characters in the string.

For decimal data, the precision and scale are returned in the first and second bytes,

respectively. (Recall that the SQLLEN field has two sub-fields called SQLPRCSN

and SQLSCALE for this purpose.) For other data types, SQLLEN is set as follows:

SMALLINT -- SQLLEN = 2

INTEGER -- SQLLEN = 4

Single precision float -- SQLLEN = 4

Double precision float -- SQLLEN = 8

DATE -- SQLLEN = 10 or LOCAL

TIME -- SQLLEN = 8 or LOCAL

TIMESTAMP -- SQLLEN = 26

Note: For DATE, TIME, and TIMESTAMP, see “Using Datetime Data Types” on

page 46.

Because the data type of DESCRIPTION is VARCHAR, SQLLEN is set equal to the

maximum length of the character string. For DESCRIPTION, that length is 24.

When the select-statement is later executed, a storage area large enough to hold a

VARCHAR(24) string will be needed. In addition, because nulls are permitted in

DESCRIPTION, a storage area for a null indicator variable would also be needed.

For character and graphic string columns, the system puts the CCSID attribute of

the column in bytes 3 and 4 of the SQLDATA field. In Figure 44 on page 223,

DESCRIPTION is a character column; therefore, the CCSID of DESCRIPTION is

stored in the SQLDATA field of element 1. The example shows a CCSID of 500,

which means that the data stored in the column is stored in CCSID 500 format.

For character string columns, the database manager stores an indicator in byte 1 of

the SQLIND field. The indicator is set according to the subtype associated with the

column. In Figure 44 on page 223, the indicator for DESCRIPTION is set to X'01',

which means that DESCRIPTION has a subtype of SBCS. Columns with a subtype

of SBCS can contain single-byte character set characters only. For DB2 Server for

VM, byte 1 is not set when DRDA protocol is in use.

224 Application Programming

The last field in an SQLVAR element is a varying-length character string called

SQLNAME. The first two bytes of SQLNAME contain the length of the character

data. The character data itself is usually the name of the field used in the select_list

expression (DESCRIPTION in the above example). The exceptions to this are

select_list items that are unnamed, such as functions (for example, SUM(SALARY))

and expressions (A+B-C). These exceptions are described in greater detail under

“Summarizing the Fields of the SQLDA” on page 234.

The second SQLVAR element in the above example contains the information for

the QONHAND select_list item. The 497 code in SQLTYPE indicates that

QONHAND is an INTEGER column that permits nulls. For an INTEGER data

type, SQLLEN is set to 4. SQLNAME contains the character string QONHAND,

and has the length byte set to 7.

Allocating Storage for the Result of the Select-Statement

After analyzing the result of the DESCRIBE, you can allocate storage for variables

that will contain the result of the select-statement. For DESCRIPTION, a varying

character field of length 24 must be allocated; for QONHAND, a binary integer of

31 bits (plus sign) must be allocated. Both QONHAND and DESCRIPTION permit

nulls, so you must allocate two additional halfwords to function as indicator

variables.

After the storage is allocated, you must change the SQLDA. For each element of

the SQLVAR array, do the following:

v Set SQLDATA to the address of the area in which the results will be placed.

v Set SQLIND to the address of the area in which the indicator information will be

placed.

v If the data type of the area in which the results will be stored is character or

graphic and you want to override the CCSID of the data area with, for example,

the CCSID of the column, you must do the following:

– For DB2 Server for VM, if you are using the SQLDS protocol, change the 6th

position of the SQLDAID field to '+'. For example, set the SQLDAID field to

'SQLDA+ '.

– For DB2 Server for VSE, change the 6th position of the SQLDAID field to '+'.

For example, set the SQLDAID field to 'SQLDA+ '.

– Set the length of the SQLNAME field to 8. (The length here is not the

SQLLEN field, but is the length associated with the SQLNAME field. For

example, in the SQLDA defined for C, the field referred to is sqlname.length.)

– Initialize bytes 1 and 2 of the SQLNAME field to 0

– Put the CCSID override value in bytes 3 and 4 of the SQLNAME field.

Note: When no override is present, the CCSID of the data area defaults to the

application requester’s default.

In the following example, the SQLDA is updated to contain the appropriate

addresses. Because a CCSID override is not required, the SQLNAME field is not

modified. Here is what the structure now looks like:

Chapter 7. Using Dynamic Statements 225

This is the pseudocode for what was done so far:

 EXEC SQL INCLUDE SQLDA

 .

 .

 READ QSTRING FROM TERMINAL

 EXEC SQL PREPARE S1 FROM :QSTRING

 Allocate an SQLDA of size 3.

 SQLN = 3

 EXEC SQL DESCRIBE S1 INTO SQLDA

 IF (SQLN < SQLD)

 Allocate a larger SQLDA using the value of SQLD.

 Reset SQLN to the larger value.

 EXEC SQL DESCRIBE S1 INTO SQLDA

 END-IF

 Analyze the results of the DESCRIBE.

 Allocate storage to hold select_list results.

 Set SQLDATA and SQLIND for each select_list item.

Retrieving the Query Result

Now comes the easy part: retrieving the query result. Dynamically defined queries,

as noted earlier, must not have an INTO clause. Thus, all dynamically defined

queries must use a cursor. Special forms of the DECLARE, OPEN, and FETCH

statements are used for dynamically defined queries.

The DECLARE CURSOR statement for the example query is as follows:

 DECLARE C1 CURSOR FOR S1

The only difference is that the name of the prepared select-statement (S1) is used

instead of the select-statement.

The actual retrieval of result rows is as follows:

 EXEC SQL OPEN C1

 EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA

 DO WHILE (SQLCODE = 0)

 DISPLAY (results pointed to by SQLDATA and SQLIND

 for all pertinent SQLVAR elements)

S Q L D A

148 3 2

449 24

11 D E

S C

N

497 4

7 Q O N H

D

Main Variable:

Varying Character (24)

Indicator:

Halfword

Main Variable:

Binary Integer Fullword

Indicator:

Halfword

226 Application Programming

EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA

 END-DO

 DISPLAY (’END OF LIST’)

 EXEC SQL CLOSE C1

The cursor is opened, and the result table is evaluated. (Note that there are no

input host variables needed for the example query. Methods of providing input

host variables are discussed later.) The query result rows are then returned using a

FETCH statement (which does not have output host variables in this example).

This statement returns results into the data areas referenced in the descriptor called

SQLDA. The same SQLDA that was set up by DESCRIBE is now being used for

the output of the select-statement.

The next section describes a more general routine in which you can process queries

that have parameters in the WHERE clause. You should not read that section until

you have coded some of the simpler dynamic queries discussed thus far.

Executing a Parameterized SELECT Statement

In the example above, the query that was dynamically executed had no parameters

(input host variables) in the WHERE clause:

 SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = 221

Suppose you wanted to execute the same query a number of times using different

values for PARTNO. A parameterized SQL statement is needed:

 SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = ?

Generating an Additional SELECT Statement

In previous parameterized SQL statements, the number of parameters and their

data types had to be known. What if they are unknown? The DESCRIBE statement,

at first glance, is not feasible because it describes only select_lists. With some

additional programming, however, you can use the DESCRIBE statement to obtain

information about the parameter markers (?). Specifically, the code must scan the

FROM and WHERE clauses to determine the table and column with which the

parameter marker (?) is associated. The code can then construct a select-statement

using those column names in the select_list. For the parameterized statement above,

the following query can be generated:

 SELECT PARTNO FROM INVENTORY

The query (assigned to WSTRING below) can then be preprocessed and described:

 Allocate an SQLDA of size 3.

 SQLN = 3

 EXEC SQL PREPARE S2 FROM :WSTRING

 EXEC SQL DESCRIBE S2 INTO SQLDA

Here is what the SQLDA looks like after the fabricated select-statement is described.

Only the first element of SQLVAR is shown because the others are not used:

Chapter 7. Using Dynamic Statements 227

An analysis of the SQLDA shows that there is only one parameter marker (?), and

that parameter is associated with PARTNO. The SQLTYPE value (500) indicates

that PARTNO contains integer halfwords. Thus, you need to allocate a binary

integer halfword for the parameter marker (?) variable. SQLDATA must then be set

to point to this area.

Previously, the SQLDA was used in a FETCH statement, and query results were

returned into the storage areas pointed to by SQLDATA and SQLIND. In other

words, the SQLDA was used for output. Now, the SQLDA is going to be used to

provide input values for the WHERE clause by an OPEN statement. When the

SQLDA is being used for input, you must assign values to the dynamically

allocated storage areas pointed to by SQLDATA. If the SQLTYPE value returned by

DESCRIBE indicates that the field permits nulls, you must either supply an

indicator variable pointed to by SQLIND, or reset SQLTYPE to indicate that nulls

are not permitted. If indicator variables are not required, you should reset

SQLTYPE. For example, if the SQLTYPE returned by DESCRIBE is 501, you should

set it to 500 before using the SQLDA to provide input. After the storage for the

parameter markers is allocated, you should read in values and assign them to

those areas. Here is the completed SQLDA (assuming 221 is read in for the

parameter marker (?)):

 After an SQLDA is set up in this fashion, it can be referred to in an OPEN

statement that contains a USING clause. For example, a previously declared cursor

called C1 is opened using SQLDA:

 OPEN C1 USING DESCRIPTOR SQLDA

Because SQLDA currently has 221 in the field pointed to by SQLDATA, C1 is

evaluated using that value.

Figure 45 on page 229 shows the pseudocode for the complete example. Two

SQLDA-like structures are used. One is called SQLDA, and is the usual structure;

the other (declared directly) is called SQLDA1. The fields of SQLDA1 are suffixed

Eye-catcher S Q L D A SQLN and SQLD

148 3 1

500 2 (SQLDATA)

(SQLIND) 6 P A

R T N O
SQLVAR
Element 1

Eye-catcher S Q L D A SQLN and SQLD

148 3 1

500 2

(SQLIND) 6 P A

R T N O
SQLVAR

Element 1

Value for "?":

221

228 Application Programming

with a “1”; for example, SQLDATA1 and SQLN1. An asterisk in position 1 of the

pseudocode denotes a comment.

 EXEC SQL INCLUDE SQLDA

 Directly declare SQLDA1.

 .

 .

 .

* Read in a parameterized query.

*

 READ QSTRING FROM TERMINAL

*

* PREPARE and DESCRIBE the query; set up the output SQLDA.

*

 EXEC SQL PREPARE S1 FROM :QSTRING

 Allocate an SQLDA of size 3.

 SQLN = 3

 EXEC SQL DESCRIBE S1 INTO SQLDA

 IF (SQLN < SQLD)

 Allocate a larger SQLDA using the value of SQLD.

 Reset SQLN to the larger value.

 EXEC SQL DESCRIBE S1 INTO SQLDA

 END-IF

 Analyze the results of the DESCRIBE.

 Allocate storage to hold select list results.

 Set SQLDATA and SQLIND for each select_list item.

*

* Declare a cursor.

*

 EXEC SQL DECLARE C1 CURSOR FOR S1

*

* Fabricate a query so PREPARE and DESCRIBE can be used to

* set up the input SQLDA1.

*

 Scan the FROM clause and the WHERE clause of QSTRING for

 parameter markers (?) and generate an appropriate

 query in WSTRING.

 Allocate an SQLDA1 of size 1 (1 was obtained from the scan).

 SQLN1 = 1

 EXEC SQL PREPARE S2 FROM :WSTRING

 EXEC SQL DESCRIBE S2 INTO SQLDA1

 Analyze the results of the DESCRIBE.

 Reset SQLTYPE1 to reflect that there is no indicator variable.

 Allocate storage to hold the input values (the parameter marker (?)

 values).

 Set SQLDATA1 for each parameter marker (?) value.

*

* Read in input parameters and retrieve the query results using

* cursor C1. Note that the pseudocode reads in only one parameter

* marker (?). Your actual code must provide for the possibility

* that more than one parameter marker (?) might be provided.

*

Figure 45. Parameterized Query Statement (Part 1 of 2)

Chapter 7. Using Dynamic Statements 229

Executing a Parameterized Non-Query Statement

“Executing Parameterized Statements” on page 218, introduces parameterized

statements, however, it is necessary to know the number of parameter markers (?)

and their data types before run time. The preceding section shows how you can

analyze a parameterized query so that a select-statement can be generated and

subsequently described. The same principle can be used for parameterized

non-query statements.

Generating a SELECT Statement

For example, suppose this DELETE statement is read from the terminal and

assigned to DSTRING:

 DELETE FROM QUOTATIONS WHERE PARTNO = ? AND SUPPNO = ?

Suppose also that the number of parameter markers (?) and their corresponding

data types are unknown before run time. The same routine that you coded to scan

the FROM and WHERE clauses of select-statements can be used to scan the above

DELETE statement. Then, a SELECT statement containing the relevant columns can

be constructed:

 SELECT PARTNO, SUPPNO FROM QUOTATIONS

This select-statement is then prepared and described as in the previous section. The

setup of the SQLDA is also identical: once the SQLDA is analyzed, space to hold

the parameter marker values is allocated, and these values are read in and

assigned to these locations. The SQLDA will be used for input to the WHERE

clause of the SQL statement; no indicator variables are allowed. Because the

statement is a non-query statement, the SQLDA is pointed to in the EXECUTE

statement. Figure 46 on page 231 illustrates the pseudocode for a parameterized

non-query statement.

 READ PARM FROM TERMINAL

 DO WHILE (PARM ¬= 0)

 Assign PARM to area pointed to by SQLDATA1.

 EXEC SQL OPEN C1 USING DESCRIPTOR SQLDA1

 EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA

 DO WHILE (SQLCODE = 0)

 DISPLAY (results pointed to by SQLDATA and SQLIND)

 EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA

 END-DO

 EXEC SQL CLOSE C1

 DISPLAY (’ENTER ANOTHER VALUE OR 0’)

 READ PARM FROM TERMINAL

 END-DO

 DISPLAY (’END OF QUERY’)

Figure 45. Parameterized Query Statement (Part 2 of 2)

230 Application Programming

You may need a more complex scanning routine, depending on how many

different non-query statements you wish to process. For example, the above

routine would have to be modified if you wanted to process INSERT statements. In

that case, you would have to scan for the table and column names.

Note: Indicator variables are permitted when you are providing input to the

INSERT statement with EXECUTE.

Using an Alternative to a Scanning Routine

In the previous sections on parameterized statements (both query and non-query),

you must rely on a scanning routine to generate a query. Once the query is

generated, DESCRIBE obtains information about the columns and expressions

associated with a parameter marker.

If you have not coded a scanning routine that generates a query, there is a simple

alternative: have the user describe the parameter markers for you, and fill in the

SQLDA yourself. There is no rule that says you must use a DESCRIBE to fill in the

SQLDA. When using the SQLDA for input or output, it does not matter what fills

it in, as long as the needed values are there.

When you use the SQLDA for input (which is always the case for parameter

markers), not all fields have to be filled in. Specifically, SQLDAID and SQLDABC

need not be filled in. Thus, if you choose this method, you will need to ask the

user for the following:

1. How many parameter markers (?) are there?

 EXEC SQL INCLUDE SQLDA

 .

 .

 .

 READ DSTRING FROM TERMINAL

 Scan the FROM clause and the WHERE clause of DSTRING for

 parameter markers (?) and generate an appropriate query

 in WSTRING.

 Allocate an SQLDA of size 2 (2 was obtained from the scan).

 SQLN = 2

 EXEC SQL PREPARE S2 FROM :WSTRING

 EXEC SQL DESCRIBE S2 INTO SQLDA

 Analyze the results of the DESCRIBE.

 Reset SQLTYPE to reflect that there is no indicator variable.

 Allocate storage to hold the input values (the parameter marker (?)

 values).

 Set SQLDATA for each parameter marker (?) value.

 EXEC SQL PREPARE S1 FROM :DSTRING

 Read parameter marker (?) values from the terminal.

* A zero parameter value terminates the DO loop.

 DO WHILE (parameters ¬= 0)

 Assign the values to the storage allocated for

 input variables.

 EXEC SQL EXECUTE S1 USING DESCRIPTOR SQLDA

 Prompt user for more values.

 Read parameter marker (?) values from the terminal.

 END-DO

 .

 .

 .

Figure 46. Parameterized Non-Query Statement

Chapter 7. Using Dynamic Statements 231

2. What are the data types and lengths of these parameters?

In addition, if the routine is to handle both query and non-query statements, you

may want to ask the user what category of statement it is. (Alternatively, you can

write code to look for the SELECT keyword.)

The code that interrogates the user and sets up the SQLDA would take the place of

the scanning routine and DESCRIBE in the previous sections:

 With a Scanning Routine:

 .

 .

 .

 READ DSTRING FROM TERMINAL

 Scan the FROM and WHERE clauses of DSTRING for parameter markers (?)

 and generate an appropriate query in WSTRING.

 Allocate an SQLDA of size 2 (2 was obtained from the scan).

 SQLN = 2

 EXEC SQL PREPARE S2 FROM :WSTRING

 EXEC SQL DESCRIBE S2 INTO SQLDA

 Analyze the results of the DESCRIBE.

 Reset SQLTYPE to reflect that there is no indicator variable.

 Allocate storage to hold the input values

 (the parameter marker (?) values).

 Set SQLDATA for each parameter marker (?) value.

 .

 .

 .

 Without a Scanning Routine:

 .

 .

 .

 READ DSTRING FROM TERMINAL

 Interrogate user for number of parameter markers (?).

 Allocate an SQLDA of that size.

 Set SQLN and SQLD to the number of parameter markers (?).

 For each parameter marker (?):

 Interrogate user for data types, lengths, and

 indicators.

 Set SQLTYPE and SQLLEN.

 Allocate storage to hold the input values

 (the parameter marker (?) values).

 Set SQLDATA and SQLIND (if applicable) for each

 parameter marker (?).

 .

 .

 .

The statement can then be processed in the usual manner.

Ensuring Data Type Equivalence in a Dynamically Defined Query

In previous uses of the SQLDA for input or output, SQLTYPE always described the

data type of the storage area pointed to by SQLDATA. In the following example,

the type code 500 (originally obtained with a DESCRIBE of the select-statement)

describes the data type of the main variable.

232 Application Programming

In previous sections, the select_list item, the type code, and the data type of the

storage area allocated for holding query results are all equivalent. That is, in the

above example, PARTNO is a SMALLINT column (with no nulls permitted), 500 is

the type code meaning SMALLINT NOT NULL, and the area allocated is a binary

integer halfword. To force a data conversion, you must allocate a storage area

having a different data type and then change SQLTYPE in the SQLDA. Suppose

that you wanted to select the SMALLINT part numbers into an integer area. Here

is the sequence of instructions needed:

 EXEC SQL PREPARE S1 FROM :STRING

 EXEC SQL DESCRIBE S1 INTO SQLDA

 Allocate a binary integer fullword of storage.

 Set SQLDATA to point to it.

 SQLTYPE = 496

When the FETCH is executed, SMALLINT is converted to INTEGER. Similarly, you

could have converted the retrieved PARTNO values to FLOAT merely by setting

SQLTYPE to 480 and by allocating a floating-point word of storage.

This conversion can be done when the SQLDA is used for input also. Consider the

normal case:

 As before, PARTNO is SMALLINT. The main variable is also allocated as

SMALLINT (binary integer halfword), and the SQLTYPE that describes the main

variable represents a SMALLINT. To perform data conversion on input, you need

to change only the SQLTYPE and the type of storage allocated to hold the input

values. This is done exactly as in the previous example. To insert a floating-point

variable into the SMALLINT PARTNO column, for example, these steps are

needed:

FETCH USING DESCRIPTOR

SQLDA
SELECT PARTNO

FROM INVENTORY

WHERE DESCRIPTION = 'GEAR'

500

Binary Halfword

Main Variable:

Figure 47. The FETCH Using Descriptor

EXECUTE USING DESCRIPTOR

INSERT INTO INVENTORY (PARTNO)
SQLDA

VALUES (?)
500

Binary Halfword

Main Variable:

Figure 48. The EXECUTE Using Descriptor

Chapter 7. Using Dynamic Statements 233

EXEC SQL PREPARE S1 FROM :STRING

 EXEC SQL PREPARE S2 FROM ’SELECT PARTNO FROM INVENTORY’

 EXEC SQL DESCRIBE S2 INTO SQLDA

 Allocate an 8-byte floating-point area.

 Set SQLDATA to point to it.

 Assign a floating-point number to the area.

 SQLTYPE = 480

 EXEC SQL EXECUTE S1 USING DESCRIPTOR SQLDA

All dynamic data conversion is done according to the rules summarized under

“Converting Data” on page 48.

If you change the SQLTYPE code and then allocate a storage area of an incorrect

type, the system treats the storage area as though it were of the type indicated by

SQLTYPE. For example, suppose SQLTYPE indicates that the storage area pointed

to by SQLDATA is an INTEGER, but that the actual area allocated is a binary

integer halfword (SMALLINT). The field is treated as though it is an INTEGER,

not a SMALLINT. This type of error may yield confusing results.

When a datetime data code is used in an SQLDA on a FETCH, the system assumes

that the variable declared to hold the result is fixed-length character.

Summarizing the Fields of the SQLDA

This section summarizes the SQLDA structure and related information.

As you have learned in the previous sections, the SQLDA can be used in any

number of ways. In general, the fields within the SQLDA must be initialized either

by using a DESCRIBE statement or by user code. Once they are initialized, the

SQLDA can be used for input (in EXECUTE, OPEN, and PUT) or for output (in

FETCH).

Figure 49 on page 235 summarizes the sequence of events needed to initialize the

SQLDA for use in processing dynamically defined statements in DB2 Server for

VM. In any case, you must always initialize SQLN before the DESCRIBE.

234 Application Programming

Sequence of Events

SQLDA

Fields:

First,

DESCRIBE

initializes:

Then

you must

initialize:

Next, if you intend

to use the

SQLDA for input

(EXECUTE or

OPEN), you must

place values in

the locations

pointed to by

SQLDATA and

SQLIND. When

the SQLDA is

used for output

(FETCH), the

system places

values in those

areas.

EXECUTE,

OPEN, PUT

and FETCH

use:

SQLDAID(3)

SQLDABC

SQLN(1)

SQLD

SQLVAR

SQLTYPE

SQLLEN

SQLDATA

SQLIND(2)

SQLNAME(3)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Notes:

1. You must set SQLN before the DESCRIBE.

2. Only provide indicator variables if they are allowed. In dynamic SQL, indicator variables

should be used for output. They can be used for input in an INSERT or UPDATE, but not

in predicates.

3. Only update the SQLDAID and SQLNAME fields if a CCSID override is required. The database

manager extracts the CCSID from the 3rd and 4th byte of the SQLNAME field only

when the following are true:

* The data type of the user data area is character or graphic

* If the SQLDS protocol is being used, the 6th byte of the SQLDAID field has been set to '+'.

For example, the SQLDAID field is 'SQLDA+ '.

* The length of the SQLNAME field is 8

* The first two bytes of data in the SQLNAME field are X ' 0000 '.

Figure 49. SQLDA Initialization - DB2 Server for VM

Chapter 7. Using Dynamic Statements 235

If you do not use a DESCRIBE to set up the SQLDA, you need only fill in those

fields that are actually used by the OPEN, FETCH, PUT, or EXECUTE statements.

For applications that override the defaults for subtypes and CCSIDs, the SQLDA

provides output information on subtypes and CCSIDs. The DB2 Server for VSE &

VM SQL Reference manual contains a description of the structure of the SQLDA,

and an explanation of each field within the SQLDA. The following are some

additional guidelines for using the SQLN and SQLD fields.

Using the SQLN Field

Always set this value when the structure is allocated. When the USING clause of

the DESCRIBE statement is set to NAMES, LABELS, or ANY, specify the maximum

number of expected select_list items. When you set the USING clause option to

BOTH, specify twice the number of expected select_list items.

Using the SQLD Field in the SQLDA

If the statement being described is not a select-statement, the database manager

returns a zero in SQLD. If the statement is a select-statement, SQLD is set to indicate

Sequence of Events

SQLDA

Fields:

First,

DESCRIBE

initializes:

Then

you must

initialize:

Next, if you intend

to use the

SQLDA for input

(EXECUTE or

OPEN), you must

place values in

the locations

pointed to by

SQLDATA and

SQLIND. When

the SQLDA is

used for output

(FETCH), the

system places

values in those

areas.

EXECUTE,

OPEN, PUT

and FETCH

use:

SQLDAID(3)

SQLDABC

SQLN(1)

SQLD

SQLVAR

SQLTYPE

SQLLEN

SQLDATA

SQLIND(2)

SQLNAME(3)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Notes:

1. You must set SQLN before the DESCRIBE.

2. Only provide indicator variables if they are allowed. In dynamic SQL, indicator variables

should be used for output. They can be used for input in an INSERT or UPDATE, but not

in predicates.

3. Only update the SQLDAID and SQLNAME fields if a CCSID override is required. The database

manager extracts the CCSID from the 3rd and 4th byte of the SQLNAME field only

when the following are true:

* The data type of the user data area is character or graphic

* The 6th byte of the SQLDAID field has been set to '+'.

For example, the SQLDAID field is 'SQLDA+ '.

* The length of the SQLNAME field is 8

* The first two bytes of data in the SQLNAME field are X ' 0000 '.

Figure 50. SQLDA Initialization DB2 Server for VSE

236 Application Programming

the number of SQLVAR elements. This number is either the number of select_list

elements (when the USING clause of the DESCRIBE statement is set to NAMES,

LABELS, or ANY), or twice the number of select_list elements (if the USING clause

is set to BOTH).

In the second case (USING clause set to BOTH), your program should reset SQLD

to half its value before issuing a subsequent FETCH or PUT. This is because only

the first N/2 elements contain information; the rest contains label information only.

If (after a DESCRIBE) SQLD is greater than SQLN, the SQLVAR array is not large

enough to contain descriptions for all the select_list items. In this case, you must

allocate a larger SQLDA based on the value of SQLD. The value in SQLN is not

changed.

If you set the value of SQLD yourself, and you set it to less than SQLN, the excess

elements of the SQLVAR array are ignored.

Using the PREPARE Statement

Although a statement to be “prepared” cannot contain any host variables, it can

contain parameters to be filled in when the statement is executed. These

parameters are denoted by parameter markers (?). You can specify parameters only

in places where a data value could be used. (A parameter cannot represent the

name of a table or a column.) The pseudocode example below prepares an INSERT

statement that has three parameters:

QSTRING=’INSERT INTO DEPARTMENT(DEPTNO,DEPTNAME,ADMRDEPT) VALUES (?,?,?)’

PREPARE S1 FROM :QSTRING

Each time S1 is executed, values must be supplied for the three parameters that

were specified with question marks.

If your program constructs dynamic SQL statements by manipulating quoted

strings, remember that SQL uses two single quotation marks to represent a

quotation mark inside a quoted string. The following example illustrates this rule:

 PREPARE S1 FROM ’INSERT INTO DEPARTMENT(DEPTNO,DEPTNAME,ADMRDEPT)

 VALUES (’A00’,’SPIFFY COMPUTER SERVICE DIV.’,’A00’’)’

In this example, the text beginning with INSERT and ending with A00'') is a

constant string. Each pair of quotation marks is collapsed to a single quotation

mark.

In COBOL, a constant string-spec is treated as a COBOL character string and is

affected by the Quote/APOST option. This option determines the character string

delimiters. If you use the same character (" or ') in the constant string-spec as the

one established by Quote/APOST option for the outer string delimiters,

unexpected string termination can result.

►► PREPARE statement_name FROM string_constant

host_variable
 ►◄

Figure 51. Format of the PREPARE statement

Chapter 7. Using Dynamic Statements 237

It is best to avoid using a constant string-spec whenever it may contain quotation

marks. Instead, you should build the SQL statement as a host variable string-spec,

using the known host language rules for character strings. For SQL statements that

contain graphic constants, be aware that some DBCS characters may contain the

encodings for EBCDIC quote. This could cause unintentional termination of host

language strings that contain DBCS characters.

A parameter marker (?) can appear in an SQL statement to be “prepared” in any

place that a host variable may appear, with the following exceptions:

v A parameter marker cannot be used in a select_list or a FROM-clause (but it may

be used in the WHERE clause of a SELECT statement).

The following examples are invalid:

 SELECT ? FROM EMPLOYEE

 SELECT EMPNO FROM ?

The following example is valid:

 SELECT * FROM EMPLOYEE WHERE EMPNO = ?

v At least one of the operands of the arithmetic and comparison operators, or of

the BETWEEN and IN predicates, must not be a parameter marker.

The following examples are invalid:

 SELECT * FROM EMPLOYEE WHERE SALARY > ? + ?

 SELECT * FROM EMPLOYEE WHERE ? = ?

 SELECT * FROM EMPLOYEE WHERE ? IN (?,?)

The following examples are valid:

 SELECT * FROM EMPLOYEE WHERE SALARY > 20000 + ?

 SELECT * FROM EMPLOYEE WHERE SALARY = ?

 SELECT * FROM EMPLOYEE WHERE ? IN (?,?,20000)

v A parameter marker cannot be the sole argument of a scalar function. It,

however, can be used in an arithmetic expression as long as the other parameter

is a number.

The following example is invalid:

 SELECT * FROM EMPLOYEE WHERE HIREDATE > DATE(?)

The following example is valid:

 SELECT * FROM EMPLOYEE WHERE HIREDATE > DATE(14+?)

v A parameter marker cannot be used as the sole operand in an arithmetic

expression that involves a datetime value.

The following examples are invalid:

 SELECT * FROM EMPLOYEE WHERE HIREDATE = START_DATE + ?

 SELECT * FROM EMPLOYEE WHERE HIREDATE = 10000000. + ?

The following example is valid:

 SELECT * FROM EMPLOYEE WHERE HIREDATE = HIREDATE + (1000000.+?)

SQL Functions Not Supported in Dynamic Statements

The following SQL functions are not supported in dynamic SQL:

v Syntax and semantic flagging of the dynamically executed statement

v SQL comments

v Negative indicator variables in predicates

v Optional choice for the FOR UPDATE OF clause in cursor query statements

(NOFOR support).

v SQL CALL statement.

238 Application Programming

Chapter 8. Using Extended Dynamic Statements

Contents

Using Extended Dynamic Statements to

Maintain Packages 240

Illustrating the Use of Extended Dynamic

Statements 244

Developing a Query Application 244

Developing a Language Preprocessor . . . 246

Grouping Extended Dynamic Statements in an

LUW 250

Considering Virtual Storage in an LUW (DB2

Server for VM Only) 252

Using COMMIT WORK and ROLLBACK

WORK Statements (DB2 Server for VSE

Only) 252

Considering Virtual Storage in a Logical Unit

of Work (DB2 Server for VSE Only) 252

Mapping Extended Dynamic Statements to

Static and Dynamic Statements 253

SQL Functions Not Supported in Extended

Dynamic Statements 254

© Copyright IBM Corp. 1987, 2007 239

Using Extended Dynamic Statements to Maintain Packages

Extended dynamic statements support the direct creation and maintenance of

packages for DB2 Server for VSE & VM data. For DB2 Server for VSE, extended

dynamic statements can only be used with assembler language. For DB2 Server for

VM, extended dynamic statements can only be used with assembler language or in

the optional DB2 Server RXSQL feature (described in the DB2 REXX SQL for

VM/ESA Installation and Reference manual). Refer to the DB2 Server for VSE & VM

SQL Reference manual for a detailed discussion of the restrictions with DRDA

protocol.

Note: This topic is more advanced than previous sections and the techniques

discussed here are not relevant to all application programs.

Before reading this chapter, you should be familiar with how to use packages as

described in “Preprocessing the Program” on page 114 (DB2 Server for VM) or

“Preprocessing the Program” on page 156 (DB2 Server for VSE), and dynamically

defined statements, as described in Chapter 7, “Using Dynamic Statements,” on

page 215. Extended dynamic statements provide a function similar to that

provided by the DB2 Server for VSE & VM preprocessors, but may be particularly

useful where:

v The current preprocessors do not support the language of the application or

support program.

v SQL statements are conceived and built dynamically, but are executed

repetitively (in a different logical unit of work). In this case it is more efficient to

avoid having to repeat the preprocessing of statements each time they are

executed, as would be required for normal dynamic statements.

v You want to build and maintain an application package of SQL statements to be

shared by a group of users.

v The utilization of program storage is critical and there are a significant number

of predefined “transactions” involving DB2 Server for VSE & VM data.

Individual SQL statements can be added or deleted without affecting or repeating

the preprocessing of other SQL statements in the package.

The following extended dynamic statements are supported. (They are described in

detail in the DB2 Server for VSE & VM SQL Reference manual.)

v CREATE PACKAGE—build an empty package

v PREPARE—add a statement to a package

v DESCRIBE—obtain information about columns in the select_list of a prepared

select-statement

v EXECUTE—execute a statement in a package

v DECLARE CURSOR—in connection with OPEN, FETCH, PUT, and CLOSE,

execute a SELECT or an INSERT statement in a package

v OPEN (cursor)

v FETCH (cursor)

v PUT (cursor)

v CLOSE (cursor)

v DROP STATEMENT—delete a statement from a package.

Except for CREATE PACKAGE and DROP STATEMENT, the names of these

statements are the same as the corresponding “normal” dynamic statements

discussed in Chapter 7, “Using Dynamic Statements,” on page 215, but their format

240 Application Programming

and meaning are somewhat different. For example, the statement-id, package-id,

and cursor-name fields are all specified by host variables.

Unlike dynamic statements which are related through a specific statement name,

extended dynamic statements are related through the symbolic host variables used

for the statement-id and package-id. This relationship is shown in Figure 52.

Because the statement-id and package-id are host variables, actual values can be

substituted when the program is executed. STMTID is returned by an extended

PREPARE statement, and is used as input by the subsequent extended EXECUTE

(or DECLARE CURSOR) statement.

 The differences between dynamic and extended dynamic statements are illustrated

in Figure 53. As shown in this figure, the normal dynamic statements are intended

primarily for supporting an interactive environment. As such, the PREPARE and

EXECUTE commands must be used within the same logical unit of work. In

contrast, extended dynamic statements are generally used in a compile

environment where the EXECUTE (or DECLARE CURSOR) may be in a logical

HOST PROGRAM VARIABLES

USERNAME PROGRAMX

PREPARE FROM :STRING

SETTING :STMTID

IN :USER.:PROG

EXECUTE :STMID

IN :USER.:PROG

USING :SQLDA

SQLDA

STRUCTURE

CREATE PROGRAM :USER.PROG

SELECT * FROM EMPLOYEE

Figure 52. Relationship between Extended Dynamic Statements Expressed Using Host

Program Variables

Chapter 8. Using Extended Dynamic Statements 241

unit of work that is different from the one where the SQL statement was prepared.

This makes it possible to PREPARE statements at different times. In DB2 Server for

VSE & VM terms, they can be prepared in one logical unit of work (stored in a

package), and called out for execution from another logical unit of work (from the

same or a different program). This is made possible by passing the program and

statement identifiers between the preparation environment and the execution

environment.

 CREATE PACKAGE and DROP STATEMENT have no counterparts in the normal

dynamic statement set.

CREATE PACKAGE creates an empty package and is normally followed by

extended PREPARE statements to add statements to the package. If the CREATE

PACKAGE has a MODIFY option, the package may even be changed in another

logical unit of work. The change may take the form of additional extended

PREPAREs (adding statements to those already there), or DROP STATEMENTs

(deleting statements previously prepared). If a program is created with the

NOMODIFY option, it cannot be changed without completely replacing it. You do

this by using CREATE PACKAGE with the REPLACE option and specifying the

same package-id. When you use DB2 Server for VM DRDA protocol, there is no

support for the MODIFY option. The MODIFY option of the CREATE PACKAGE

statement defaults to NOMODIFY.

DYNAMICALLY DEFINED

STATEMENTS

(INTERACTIVE)

S1

S1

S2

C1

C1

C1

C1

PREPARE

PREPARE FROM :STRING

FROM :STRING

DECLARE CURSOR FOR... S2

FETCH INTO...

OPEN

CLOSE

EXECUTE USING...

EXTENDED DYNAMIC

STATEMENTS

(COMPILED)

PREPARE FROM :STRING

SETTING :STMTID :PROGIN

:STMTID

:STMTID :PROG

:PROG

:CURS

:CURS

:CURS

:CURS

OPEN

CLOSE

FETCH INTO...

IN

IN

CURSOR

Names must be resolved

in the same logical unit

of work and program

Pass Values between

logical units of work

or programs

Figure 53. Comparing Dynamic to Extended Dynamic Statements

242 Application Programming

The DROP PACKAGE statement is not listed as an extended dynamic statement,

because it has general applicability for all packages, not just those that are built

with extended dynamic statements. (See the DB2 Server for VSE & VM SQL

Reference manual for more information on the DROP PACKAGE statement.) Like

the extended dynamic statements, DROP PACKAGE permits the package name to

be specified as a host program variable.

DB2 Server for VM

Like all SQL statements, extended dynamic statements require preprocessing,

but are only supported by the assembler preprocessor. Once they are

preprocessed (and the containing program is compiled), the program holding

them may itself be used to process SQL statements and create packages. That

is, it may prepare SQL statements for repetitive execution. A package created

in SQLDS protocol that uses extended dynamic statements is not supported

in DRDA protocol, nor is a package created in DRDA protocol that uses

extended dynamic statements supported in SQLDS protocol. The

nonmodifiable environment, when using extended dynamic statements, is

supported with the following restrictions:

v The Positioned UPDATE or Positioned DELETE statements are not

supported.

v If you use the basic format of the extended PREPARE statement to prepare

a statement that contains parameter markers, you must include the USING

DESCRIPTOR clause to identify an input SQLDA structure.

v The prepare single row format of the extended PREPARE statement is not

supported.

v The NODESCRIBE option of the CREATE PACKAGE statement is not

supported.

v Cursors are unsupported if they are declared with the “WITH HOLD”

clause.

Chapter 8. Using Extended Dynamic Statements 243

DB2 Server for VSE

Like all SQL statements, extended dynamic statements require preprocessing,

but are only supported by the assembler preprocessor. Once they are

preprocessed (and the containing program is compiled), the program holding

them may itself be used to process SQL statements and create packages. That

is, it may prepare SQL statements for repetitive execution. A package created

in SQLDS protocol that uses extended dynamic statements is not supported

in DRDA protocol, nor is a package created in DRDA protocol that uses

extended dynamic statements supported in SQLDS protocol. The

nonmodifiable environment, when using extended dynamic statements, is

supported with the following restrictions:

v The Positioned UPDATE or Positioned DELETE statements are not

supported.

v If you use the basic format of the extended PREPARE statement to prepare

a statement that contains parameter markers, you must include the USING

DESCRIPTOR clause to identify an input SQLDA structure.

v The prepare single row format of the extended PREPARE statement is not

supported.

v The NODESCRIBE option of the CREATE PACKAGE statement is not

supported.

v The temporary extended prepare format of the extended PREPARE

statement is not supported.

v The using output descriptor clause in the extended EXECUTE statement is

not supported.

v The USER parameter in the ISOLATION option of the CREATE PACKAGE

statement is not supported.

v The LOCAL parameter in the DATE or TIME option of the CREATE

PACKAGE statement is not supported.

v Cursors are unsupported if they are declared with the “WITH HOLD”

clause. However, VSE Online and Batch applications may use the “WITH

HOLD” clause against other DRDA servers if they support it, except when

extended dynamic statements are used.

Illustrating the Use of Extended Dynamic Statements

Developing a Query Application

Consider the following example. A support group needs to develop a program that

dynamically accepts SQL statements for execution and does not know what SQL

statements will be processed. This is a typical application for normal dynamic SQL

statements. But since there is also a requirement for repetitively executing the

preprocessed statements at a later time (stored SQL application) without having to

repeat the PREPARE, it is an application for extended dynamic statements.

A program that handles preparation of end user SQL statements can also execute

these statements. This is essentially a query language program (but it supports

more than just select-statements). The program may also support deleting

statements from and adding them to existing packages. (See the beginning of this

chapter for a list of extended dynamic statements for doing this, as well as

statements to control execution.)

244 Application Programming

The program may use CREATE PACKAGE and extended PREPARE to build a

package and prepare the end-user SQL statements. However, you must first

preprocess the program itself, by running it through the assembler preprocessor

and the assembler. See Figure 54 (the application program is referred to as a

“Support Program”).

 The resulting support program can accept end-user SQL statements, and create

packages in the database to hold them. For example, there can be a separate

package to hold the SQL statements for each end-user. A more advanced support

program may even accept end-user commands that are at a higher level than that

supported by the system, and then translate them to SQL statements before

preparing them.

The package P is built by the support program (by CREATE PACKAGE) for the

particular SQL statements. If the support program allows both adding SQL

statements to and dropping them from P, then the support program must utilize

and be preprocessed with a DROP STATEMENT as well as the PREPARE. Of

course, there are a few other ordinary SQL statements that may be appropriate for

the support program: WHENEVER, COMMIT/ROLLBACK, and so on to make it

complete.

So far, this example has not addressed execution of the end-user SQL statements.

We have already listed the extended dynamic statements that support execution

(extended EXECUTE, DECLARE CURSOR, and so on). The support program

would ordinarily support end-user commands to retrieve data and update data

(using either direct SQL statements or higher level commands that require

conversion). This addition does not alter the concept shown in Figure 54, except to

add additional extended dynamic statements to the support program.

SUPPORTPROGRAM

SUPPORTPROGRAM

CREATE PACKAGE

Scan User Commands

PREPARE

COMMITWORK

DB2 for VSE & VM
ASSEMBLER PREPROCESSOR

ASSEMBLER

Object
End User
Commands

DB2 for VSE & VM

P

Package

Figure 54. An Example of an Interpretive Support Program for Building and Executing SQL

Statements in a Package

Chapter 8. Using Extended Dynamic Statements 245

The DESCRIBE statement can be used in the same way as shown under normal

dynamic statements.

Note that only one “copy” of each extended dynamic statement need be provided

in the support program, because each of these statements is parameterized with

host variables that can be dynamically changed for each use. For example, one

DECLARE CURSOR statement may service all cursor retrievals, even if they are

concurrently open, because each can be given a different cursor name by the host

variable value for the cursor name, and a different statement identifier by the host

variable value for the statement-id. This is important in cases where the use of

program storage is critical and there are a significant number of predefined

transactions.

Developing a Language Preprocessor

The previous example is structurally simple. It assumes that the support program

remains in control as an interpreter through preparation, maintenance, and

execution of the user’s SQL statements.

For a typical language preprocessor program such as those provided with the DB2

Server for VSE & VM product, however, this is not the case. If you write a support

program for a new language preprocessor, you would probably separate the two

parts, each with SQL statements:

1. One for preparation of end-user SQL statements and creation of a package.

2. Another for supporting the execution of the SQL statements that were prepared

by the first part.

The SQL facilities required are similar to the previous example, except that no

package maintenance functions are needed. The language preprocessor has the

following characteristics:

v It is a batch program, rather than an interpreter.

v Because it requires extended dynamic statements, it is written in assembler

language. (This was also true in the previous example.) Alternatively, at least

part of it must be written in assembler language (the part that contains the

extended dynamic statements) and the remaining part must be written in a

language that is capable of calling an assembler module.

v Rather than accepting predefined commands from the end-user, the end-user’s

source language code is scanned for SQL statements, which must be identified

by some defined convention (for example, EXEC SQL) for proper recognition.

v The support program must record information about host program variables in a

control structure that is added to the end-user’s source program and passed by a

generated call to the execution-time part of the support program. This control

structure builds SQLDA structures that are passed to or received from the

system (refer to the extended EXECUTE, OPEN and FETCH statements).

v The execution part of the support program is link/loaded with the user’s

application program, where it is available to handle the execution-time

functions.

v As each end-user SQL statement is prepared, the package-id and the

statement-id (returned by the system along with the package-id) must be saved

in a control structure (again generated into the end-user’s source program) for

use by the execution-time support program.

v For each SQL statement in the end-user’s source program, a call must be

generated to the execution-time support program, passing the control structure,

containing the host variable, package-id, and statement-id information for the

current SQL statement.

246 Application Programming

v The execution-time support program must build the SQLDA structures required,

set values in host variables required by the execution-time extended dynamic

statements, and then execute these statements.

This process is illustrated in Figure 55, Figure 56, Figure 57, and Figure 58. The

support program is the preprocessor for language X. It preprocesses the end-user

program, modifying the source (adding control structures and generating calls to

pass to the support program Part 2 at execution-time). Once the modified end-user

source has been compiled by the language X compiler, it is combined in one load

module with the object code for the support program Part 2, which provides the

DB2 Server for VSE & VM support for execution-time functions (DECLARE

CURSOR, and so on).

Figure 55 shows the preprocessing and assembly steps for the two parts of the

support program. For DB2 Server for VM, no packages are created, because there

are no SQL statements in either part that need to be stored in a package.

Figure 56 on page 248 shows how the two resulting object modules of the support

program process end-user SQL statements.

OBJECT
SUPPORTPROGRAM

PARTI

SOURCE
SUPPORTPROGRAM

PARTI

Preparation Time
Functions

SQLStatement
Expansions and
SQLCalls Added

DB2 for VSE & VM
Assembler

Preprocessor
Assembler

OBJECT
SUPPORTPROGRAM

PARTII

SOURCE
SUPPORTPROGRAM

PARTII

Execution Time
Functions

SQLStatement
Expansions and
SQLCalls Added

DB2 for VSE & VM
Assembler

Preprocessor
Assembler

Figure 55. Preprocessing and Assembling of a Two-Part Support Program

Chapter 8. Using Extended Dynamic Statements 247

Part 1 scans the end-user’s source for SQL statements, uses CREATE PACKAGE to

build an empty package, P, uses extended PREPARE statements to add SQL

statements to P, and uses a COMMIT statement to finalize P. It also adds calls and

control structures, required by Part 2 of the support program, to the user’s source

program and comments out the original SQL statement.

Part 2 of the support program works with the package, P, executing the SQL

statements scanned and prepared by Part 1, and using the control structures

passed in the calls generated by Part 1. Part 2 must be link/loaded with any

end-user module that is preprocessed by Part 1.

DB2 for VSE & VM

SOURCE
END-USER PROGRAM

P, LANGUAGE X.

EXPANDED SOURCE
END-USER PROGRAM, P

SELECT

ScanRoutines

Build/Setup
Routines

SELECTCommented Out
and replaced by Control
Structure and a Call to

Support Program, Part II

COMPILE
(LANGUAGE X)

OBJECT, END-USER
PROGRAM, P

Linked with

OBJECT
SUPPORTPROGRAM

PARTI

OBJECT
SUPPORTPROGRAM

PARTII

Set up Extended Dynamic
Statements needed for

Execution Time and
Execute Them

DECLARE CURSOR

FETCHOPEN

CLOSE

COMMITWORK

DESCRIBE

EXECUTE

CREATE PACKAGE

Preprocessing End-User
Program, P.

Execution of End-User
Program, P.

Packages

P

PREPARE

COMMITWORK

Figure 56. Preprocessing and Executing an End-User Program by a Two-Part Support

Program

248 Application Programming

Figure 57 shows Part 1 of the support program in more detail, with pseudocode to

illustrate a simple user program that includes a DECLARE...CURSOR FOR

SELECT..., an OPEN of that cursor, and a FETCH for the same cursor. Control

structures are shown in more detail, and some particular values for parameters are

given. The value 26 returned from the PREPARE statement is only for purposes of

illustration, representing a unique identifier returned by the system to identify the

statement within the package P. A user ID may be necessary to identify the owner

of the package, but it is omitted here for simplicity. Other statements, such as

CLOSE (cursor) and COMMIT are not shown in order to simplify the illustration.

 Figure 58 on page 250 shows the execution-time flow between the end-user’s object

program and the support program (Part 2) in more detail. The two calls shown

correspond to the two calls generated in Figure 57. This example does not go far

enough to illustrate that two calls of the same type (two opens, for example)

would share the same set of logic and the same extended dynamic statement

(OPEN) in the support program.

DB2 for VSE & VM

END USER'S SOURCE PROGRAM
(P)

SUPPORTPROGRAM (OBJECT)
PARTI

External Invocation Passing:
Program Name (P) and User's Source

Declare Variables
A,B,C

DECLARE C1 CURSOR
FOR SELECT...

OPEN C1

CALLSP2

CALLSP2

SCAN
Record Name, Type, Length of

Variables found
SCAN
Move SQLStatement (SELECT...)

SCAN
Build a control structure in

end-user's source:

Build a call to Support Program,
Part II

SCAN
Build a Control Structure in

end-user's source:

FETCH C1
INTO :A, :B, :C

Build a call to Support Program,
Part II

Ctl Structure

Ctl Structure

()

()

COMPILE

Package

P

26

Call Type:
Cursor:
Program:
Stmtid:

OPEN
C1
P
26

Call Type: Fetch

Cursor

Program

Stmtid

C1

P

26

Variables Type Len

A

B

C

CHAR

DEC

INTEGER

10

6,2

4

26

Put Program (P) into "PROG"
CREATE PACKAGE :PROG

into variable "Q"
PREPARE FROM :Q SETTING :S

IN PACKAGE :PROG

Figure 57. Pseudocode Example of Preprocessing the End-User Program P

Chapter 8. Using Extended Dynamic Statements 249

Grouping Extended Dynamic Statements in an LUW

There are primarily three cases to consider when determining the proper grouping

of extended dynamic statements in a logical unit of work:

1. An LUW contains a CREATE PACKAGE without the MODIFY option. This

would be the case for a language preprocessor application.

2. An LUW contains a CREATE PACKAGE with the MODIFY option. This would

be the case for an application that gets new SQL statements from its users, then

prepares and executes them immediately (but also has them available for later

execution, because they are stored in a package).

3. An LUW contains no CREATE PACKAGE (the referenced package has been

created with the MODIFY option in another LUW). This would be the case for

an application that prepares, executes, or changes statements in a package that

was created previously.

In the first case, the only other extended dynamic statement permitted is the

PREPARE statement, and it must reference only the program that is specified in

the CREATE PACKAGE statement. If the LUW is terminated by a COMMIT

statement, a DB2 Server for VSE & VM package is created. If no extended

PREPARE statements were executed, the package is empty and the COMMIT

statement returns an SQLCODE of -759 (SQLSTATE '42943'). If a ROLLBACK

END USER'S OBJECT
PROGRAM (P)

OBJECT SUPPORTPROGRAM
PARTII

CALLSP2 (OPEN) CALLTYPE: OPEN

SETCursor Name in
host variable, C
(Value 'C')

SETSTMT-id in
host variable, SI
(Value 26)

SETProgram in
host variable, PI
(Value 'P')

DECLARE :C CURSOR
FOR :SI
IN PROGRAM:PI

OPEN :C

CALLTYPE: FETCH

Set Cursor, STMT-id, and
Program, as above

Build a SQLDA
Structure Using
variable information
for A, B, C,

FETCH :C USING
DESCRIPTOR SQLDA

MOVE A, B, C results
from SQLDAto
Passback Area

Control
Structure

Passback
Area

CALLSP2 (FETCH)

Control
Structure

DB2 for VSE & VM

Package

P

Figure 58. Pseudocode Example of Executing the End-User Program P

250 Application Programming

statement terminates the LUW, no package is created. In Figure 59, Example 1 is a

valid illustration of this case.

DB2 Server for VM

If you are using DRDA protocol, MODIFY defaults to NOMODIFY when

specified on the CREATE PACKAGE statement. No error is returned if

MODIFY is specified. If a COMMIT statement is used for an empty package

(that is, the package contains no statements) created with the NOMODIFY

option, one of the following SQLCODEs is received:

v When using the SQLDS protocol, no package is created, and an SQLCODE

of -759 (SQLSTATE '42943') is issued.

v When using the DRDA protocol, a package containing an indefinite section

is created, and an SQLCODE of 0 (SQLSTATE '00000') is returned.

 In the second case, the rules discussed above for case 1 apply, but Extended

DESCRIBE, EXECUTE, DECLARE CURSOR, OPEN, FETCH, DROP STATEMENT,

and CLOSE statements may also be used in the same LUW, referencing the

1 2 3

4 5 6

7 8

IN X1

IN X2

IN X3

IN X2

IN X2

IN X2

DESCRIBE

EXECUTE

EXECUTE

PREPARE

DESCRIBE

EXECUTE

EXECUTE

PREPARE

DROP STATEMENT

PREPARE

IN Z

IN Y

IN Y

...............

...............

...............

...............

...............

...............

...................

...................

......

COMMIT WORK

COMMIT WORK

EXECUTE

DROP STATEMENT

PREPARE

DECLARE..CURSOR

OPEN

FETCH

CLOSE

DESCRIBE

EXECUTE

IN X2

IN X1

IN X1

IN X1

IN X1

IN X1

......................

.......

......................

.......

......................

......................

X

PREPARE

COMMIT WORK

IN X.....................

CREATE PACKAGE

USING OPTION

NOMODIFY

CREATE PACKAGE

USING OPTIONS

MODIFY, DESCRIBE

PREPARE

DESCRIBE

EXECUTE

DECLARE..CURSOR

OPEN

FETCH

CLOSE

COMMIT WORK

Y

IN Y

IN Y

IN Y

IN Y

......................

....................

......................

......

CREATE PACKAGE

USING OPTION MODIFY

PREPARE

CREATE PROGRAM

X4

IN X4
X5

...................

INVALID

DROP STATEMENT

EXECUTE

PREPARE

DESCRIBE

IN X1

IN X2

IN X1

IN X2

INVALID INVALID

.......

.....................

...................

.................

IN Z.....................

INVALID

Figure 59. Placement of Extended Dynamic Statements in Logical Units of Work

Chapter 8. Using Extended Dynamic Statements 251

statements just added to or already contained in the current package. However,

you cannot reference a package other than the one created in the current LUW. In

Figure 59 on page 251, example 2 is a valid example of this case. Example 3

illustrates an invalid case 2 sequence. If the current LUW is committed before

extended PREPAREs are used to add statements to it (it is empty), it still may be

extended in a later LUW (since it is modifiable, it may make sense to leave it

empty initially).

In case 3, where the current LUW contains no CREATE PACKAGE, extended

dynamic statements may reference any package that has been created with a

CREATE PACKAGE statement. However, after an extended dynamic statement that

causes modification of the package is used (an extended PREPARE or DROP

STATEMENT), subsequent extended dynamic statements in the same LUW may

only refer to the modified package. Once the LUW is terminated, reference to any

package that has been created by a CREATE PACKAGE may be resumed. (Note

that this does not preclude additional restrictions: to modify a package, you must

have created it with the MODIFY option, and to DESCRIBE a statement in a

package, it must have been created with the DESCRIBE option.)

For example, if packages X1, X2, and X3 have been created with a CREATE

PACKAGE, where X1 and X2 have the MODIFY and DESCRIBE options. Examples

1, 2, 4, and 5 in Figure 59 on page 251 are valid, while Examples 3, 6, 7, and 8 are

invalid.

Considering Virtual Storage in an LUW (DB2 Server for VM Only)

If virtual storage consumption by the database manager is an important

consideration, you must be aware of the trade-off in using modifiable packages.

The amount of virtual storage required to represent statements prepared in the

current LUW may be significantly more than that required for previously prepared

statements. If you enter a COMMIT before executing the statement, the virtual

storage requirement for the package will be considerably less, but additional work

will be performed to store the updated package and to reload it for execution.

You should make this trade-off based on the nature of the preprocessing in your

application.

When declaring extended dynamic cursors, you must consider virtual storage

requirements. Cursor names are dynamically mapped to statement numbers when

DECLARE CURSOR statements are executed. A small amount of virtual storage is

required for each uniquely named cursor declared in an LUW. This storage is not

released until the end of the LUW. The amount of storage held, therefore, can

become quite large when many unique cursor names are declared.

Using COMMIT WORK and ROLLBACK WORK Statements (DB2

Server for VSE Only)

It is a good practice to always do a COMMIT WORK or ROLLBACK WORK in

your program that contains extended dynamic statements before you terminate the

program. If you use extended dynamic statements in a CICS/VSE transaction, it is

imperative that a COMMIT or ROLLBACK WORK be done before ending the

transaction. (A CICS abnormal termination may occur, especially if the logical unit

of work contains a CREATE PACKAGE statement.)

Considering Virtual Storage in a Logical Unit of Work (DB2

Server for VSE Only)

If virtual storage consumption by the database manager is an important

consideration, you should be aware of the trade-off in using modifiable packages.

252 Application Programming

The amount of virtual storage required to represent statements prepared in the

current LUW may be significantly more than that required for previously prepared

statements. If you enter a COMMIT WORK before executing the statement, the

virtual storage requirement for the package will be considerably less, but

additional work will be performed to store the updated package and to reload it

for execution.

You should make this trade-off based on the nature of the preprocessing in your

application.

When declaring extended dynamic cursors, you must consider virtual storage

requirements. Cursor names are dynamically mapped to statement numbers when

DECLARE CURSOR statements are executed. A small amount of virtual storage is

required for each uniquely named cursor declared in an LUW. This storage is not

released until the end of the LUW. The amount of storage held, therefore, can

become quite large when many unique cursor names are declared.

Mapping Extended Dynamic Statements to Static and Dynamic

Statements

Table 26 shows how static and dynamic SQL statements are mapped to the SQL

statements that preprocess and execute them.

 Table 26. Mapping Extended Dynamic to Static and Dynamic Statements

Static and Dynamic SQL

Statement

SQL Statement

Executed at

Preprocessing Time

SQL Statement Executed at

Run Time

CLOSE N/A Extended CLOSE

COMMIT N/A COMMIT

CONNECT N/A CONNECT

DECLARE CURSOR FOR

statement

Basic Extended

PREPARE of statement

Extended DECLARE

CURSOR

DECLARE CURSOR FOR

statement_name

See Table 27 Extended DECLARE

CURSOR

DESCRIBE statement_name N/A Extended DESCRIBE

DROP PACKAGE N/A DROP PACKAGE

EXECUTE N/A Extended EXECUTE

EXECUTE IMMEDIATE

string_constant

Basic Extended

PREPARE of

string_constant

Extended EXECUTE

EXECUTE IMMEDIATE

host_variable

Empty Extended

PREPARE

Temporary Extended

PREPARE

Extended EXECUTE

FETCH N/A Extended FETCH

OPEN N/A Extended OPEN

PREPARE string_constant Basic Extended

PREPARE of

string_constant1

N/A

PREPARE host_variable Empty Extended

PREPARE1

Temporary Extended

PREPARE

PUT N/A Extended PUT

Chapter 8. Using Extended Dynamic Statements 253

Table 26. Mapping Extended Dynamic to Static and Dynamic Statements (continued)

Static and Dynamic SQL

Statement

SQL Statement

Executed at

Preprocessing Time

SQL Statement Executed at

Run Time

ROLLBACK N/A ROLLBACK

SELECT INTO Single row Extended

PREPARE

Extended EXECUTE

Other executable statements Basic Extended

PREPARE

Extended EXECUTE

Non-executable statements N/A N/A

Note:

1. See Table 27 if used in context of a cursor.

Table 27 shows the SQL statements that prepare statements executed with a cursor.

 Table 27. Preprocessing Related PREPARE and DECLARE CURSOR Statements

Example Statements

Extended Dynamic SQL Statement

Executed at Preprocessing Time

PREPARE string_constant

DECLARE CURSOR statement_name

Basic Extended PREPARE

N/A

PREPARE host_variable

DECLARE CURSOR statement_name

Empty Extended PREPARE

N/A

DECLARE CURSOR statement_name

PREPARE string_constant

Empty Extended PREPARE

Temporary Extended PREPARE1

DECLARE CURSOR statement_name

PREPARE host_variable

Empty Extended PREPARE

N/A

Note:

1. This example is not supported in packages created with the NOMODIFY option

specified.

SQL Functions Not Supported in Extended Dynamic

Statements

The following SQL facilities are not supported for statements that are prepared

using extended dynamic SQL, unless the application program that performs the

extended PREPARE statement supplies the support:

v Checking of the statement for conformance to SQL-89 or SAA standards

v Use of SQL comments

v Optional choice for the FOR UPDATE OF clause in cursor query statements

v Use of negative indicator values in predicates, unless the statement is prepared

using the descriptor format of the extended PREPARE statement.

These restrictions do not apply to Fortran application programs, because the DB2

Server for VSE & VM preprocessors provide the necessary support.

Refer to the DB2 Server for VSE & VM SQL Reference manual for more information

on restrictions that apply to extended dynamic statements.

254 Application Programming

Chapter 9. Maintaining Objects Used by a Program

Managing Dbspaces 256

Defining Dbspaces 256

Finding Available Space 257

Specifying Properties of Dbspaces 258

Modifying the Size of Dbspaces 259

Automatically Locking Dbspaces 260

Overriding Automatic Locking 260

Deleting the Contents of Dbspaces 261

Other Data Definition Statements 262

Using Tables, Indexes, Statistics, Synonyms,

Comments, and Labels 262

Creating Tables 263

Modifying Tables 263

Dropping Tables 263

Using Indexes 263

Updating Catalog Tables for Table and Index

Activity 264

Using Synonyms 264

Using Comments 264

Using Labels 264

Using Stored Procedures and PSERVERS . . . 265

Using Stored Procedures 265

Example of a Stored Procedure Definition 265

Using PSERVERs 266

Example of a Stored Procedure Server

Definition 267

© Copyright IBM Corp. 1987, 2007 255

Managing Dbspaces

This section discusses the data definition statements for dbspaces and should be

read in conjunction with the DB2 Server for VSE & VM SQL Reference manual,

which contains the syntax, authorization rules, and usage rules of these statements.

Note: This section applies to DB2 Server for VSE & VM application servers only.

Defining Dbspaces

A dbspace is a portion of the database that can contain one or more tables and any

associated indexes. Each table that is stored is placed in a dbspace chosen by the

creator of the table.

Dbspaces are defined when the database is generated and may be added later by

the ADD DBSPACE process. Each dbspace remains unnamed and available until it

is acquired with an ACQUIRE DBSPACE statement, generally by the Database

Administrator (DBA). An acquired dbspace can be later returned to the list of

available dbspaces by the DROP DBSPACE statement.

The user who acquires a dbspace can either specify from which storage pool the

database manager is to acquire the dbspace, or can allow the system to choose the

storage pool by default. Storage pool are collections of DB2 Server for VSE data

sets or DB2 Server for VM minidisks called dbextents, and control the distribution

of the database across direct access storage devices (DASD).

Storage pools can be recoverable or nonrecoverable. Recoverable storage pools protect

their data using the automatic recovery for data updates. With nonrecoverable

storage pools, system overhead is reduced, but if there is a system failure, some

data may be lost, because the burden of recovery is placed on the user.

Nonrecoverable storage pools are particularly useful in cases where large amounts

of data are loaded from an external source, and that data is never modified

thereafter. See the DB2 Server for VM System Administration or the DB2 Server for

VSE System Administration manual for more information about storage pools.

The acquiring user also gives a name to the dbspace, and defines certain

characteristics for it. If it is to be private, the user who acquires it becomes its

owner; if it is of type public, its owner becomes public.

If you have DBA authority, you can acquire a dbspace for another user by

concatenating the userid to the dbspace-name:

 ACQUIRE PRIVATE dbspace NAMED JONES.SPACE1

In the above statement, the owner of the dbspace is user JONES. User JONES can

refer to the dbspace as simply SPACE1.

A user holding RESOURCE authority can create new tables in any public dbspace,

or in any private dbspace owned by that user. Users who do not have RESOURCE

authority can also create tables in any private dbspace that was acquired for that

user by the DBA. Only users having DBA authority can create tables in a private

dbspace owned by another user.

The ability to access and update tables belonging to another user is controlled by

the system. Authorized users can access and update tables in any dbspace of any

type, by adding the owner-name as a prefix to the table name (for example,

SMITH.INVENTORY).

256 Application Programming

Note: Even users who are authorized to access data in someone else’s dbspace

may not be permitted to do so if the dbspace is in use.

An attempt to read data in a private dbspace results in a negative SQLCODE if any

data in the dbspace has been modified by a still-active logical unit of work. An

attempt to modify data in a private dbspace results in a negative SQLCODE if any

data in the dbspace has been read or modified by a still-active logical unit of work. If

the locked data you attempt to access is in a public dbspace, your program waits

and does not regain control until the lock is freed. If you attempt to update locked

data in a private dbspace, the system immediately returns control to your program,

with a negative SQLCODE.

The size of the space that is locked is the lock size. The lock size on a private

dbspace is always the entire dbspace, while the default lock size on a public

dbspace is somewhat smaller to allow for more concurrency. Thus, you should

place tables in public dbspaces if you expect that more than one user may need

concurrent access to them. On the other hand, because operations on private

dbspaces do not pay the overhead of acquiring individual locks within the

dbspace, a private dbspace is an efficient place to store tables for the exclusive use

by one user at a time. The cost of smaller locks is higher overhead. Table 28 and

Table 29 summarize the database manager locking mechanism.

Refer to the DB2 Server for VSE & VM Diagnosis Guide and Reference manual for

more information on locking.

 Table 28. Locking Summary for Private Dbspaces

If you attempt to: But another user has already:

 read the data (acquired a share

lock)

modified the data (acquired

an exclusive lock)

Read data You are allowed to read the data You receive a negative

SQLCODE

Modify data You receive a negative

SQLCODE

You receive a negative

SQLCODE

The lock size for a private dbspace is always the entire dbspace.

 Table 29. Locking Summary for Public Dbspaces

If you attempt to: But another user has already:

 read the data (acquired a share

lock)

modified the data (acquired

an exclusive lock)

Read data You are allowed to read the

data

Your program waits

Modify data Your program waits Your program waits

The lock size of a public dbspace defaults to a page (4096 bytes). The lock size can be

changed by the ACQUIRE DBSPACE or ALTER DBSPACE statements.

Finding Available Space

The ACQUIRE DBSPACE statement causes the system to find an available dbspace

of the requested type (public or private) and give it the dbspace-name you specify.

The dbspace-name must be an SQL identifier, as described in the DB2 Server for

VSE & VM SQL Reference manual; you can use it to refer to the DBSPACE in other

SQL statements, such as CREATE TABLE.

Chapter 9. Maintaining Objects Used by a Program 257

If the dbspace type is public, its owner becomes public; if the type is private, its

owner becomes the user who preprocessed the program in which the ACQUIRE

DBSPACE is embedded. Dbspace names must be unique within all the dbspaces

owned by the same user, but may duplicate the name of a dbspace owned by

another user.

Specifying Properties of Dbspaces

You can optionally specify one or more of the following properties of a dbspace, in

any order. Separate the parameters with commas.

NHEADER Number of Header Pages. The number of 4096-byte logical pages

in the dbspace that are reserved for header pages. The system uses

header pages to record information about the contents of the

dbspace.

Notes:

1. NHEADER cannot be larger than eight pages.

2. If NHEADER is not specified, the default is eight pages.

3. You cannot change NHEADER after the dbspace has been

acquired. If you choose a small number for NHEADER, it may

limit the number of tables that can be created in the dbspace.

PAGES Number of Pages. The minimum number of 4096-byte logical

pages that you require for this dbspace.

Notes:

1. The system may actually give you more pages than you request

because it acquires storage in units of 128 pages. However, of

the available dbspaces, the one chosen will be the smallest that

will satisfy the size specified for PAGES. The system determines

the number of pages that you receive by rounding the number

you specify to the next higher multiple of 128 pages. For

example, if you specify PAGES=53, the system acquires a block

of 128 pages. If you specify PAGES=130, the system acquires

256 pages.

2. If you do not specify PAGES, the system acquires the smallest

available dbspace by default.

PCTINDEX Percentage of Index Pages. The percentage (0 to 99) of all pages in

the dbspace that are reserved for indexes.

Notes:

1. If you do not specify PCTINDEX, the default is 33 percent.

2. You cannot change PCTINDEX after the dbspace has been

acquired. If you choose a small number for PCTINDEX, it may

limit the number of indexes that can be created on tables in the

dbspace. (If you find that the PCTINDEX is too small, you can

acquire another dbspace and move the data there.)

PCTFREE Percentage of Free Space. The percentage (0 to 99) of the space on

each page that the system is to keep empty when data is inserted

into the dbspace.

Notes:

1. If you do not specify PCTFREE, the default is 15 percent.

2. Typically a user might acquire a dbspace with PCTFREE set to

some value such as 25 percent. The dbspace is then loaded with

data by the Database Services Utility (described in the DB2

258 Application Programming

Server for VSE & VM Database Services Utility manual). The

system ensures that at least 25 percent of the space on each

page is left empty. After the initial loading of the dbspace, the

user can set PCTFREE to zero by means of the ALTER

DBSPACE statement (described later). Then, in subsequent

insertions, the system places new data in the space reserved

during initial loading. Using reserved free space in this way

results in a more favorable physical clustering of data on pages

when the data is loaded, and, therefore, improves access time.

The DB2 Server for VSE & VM Database Administration manual

discusses data clustering in more detail.

3. The value of PCTFREE is critical during mass insertion of data

into a dbspace (for example, a DBS Utility DATALOAD

command). Refer to the appendix on estimating the number of

data pages required in the DB2 Server for VSE & VM Database

Administration manual for more information on the dbspace

percent free specification.

LOCK Lock Size. Applicable to public dbspaces only (private always locks

a dbspace). The valid specifications for size are DBSPACE, PAGE,

and ROW.

Notes:

1. The lock size determines the size of the locks that are acquired

when a user reads or updates data. If you specify ROW, the

system locks only an individual row in the table; PAGE or

DBSPACE cause the smallest lockable unit to be a page (4096

bytes) or a dbspace, respectively. Key-level locking is used for

indexes on tables in dbspaces for which row-level locking is

specified.

2. In general, using larger locking units causes less overhead to be

spent in acquiring locks, but also limits concurrency.

3. The default lock size for each public dbspace is PAGE.

STORPOOL Storage Pool Number. Indicates from which storage pool a dbspace

is to be acquired.

Notes:

1. If a dbspace of the specified type and size is not available in

this storage pool, the ACQUIRE DBSPACE is unsuccessful, and

a negative SQLCODE is returned.

2. If you do not specify STORPOOL, the system acquires a

dbspace of the correct type and size from any recoverable storage

pool. To acquire a dbspace from a nonrecoverable storage pool,

you must specify the STORPOOL parameter.

Modifying the Size of Dbspaces

The ALTER DBSPACE statement enables you to alter the percentage of free space

that is reserved on each data page when records are inserted into a public or

private dbspace. It also enables you to alter the lock size of a public dbspace. (You

cannot alter the lock size of a private dbspace.)

When you acquire a dbspace, you should set the percentage (0 to 99) of free space

to some number greater than zero (the default is 15 percent). A typical use of

ALTER DBSPACE is to set the percentage of free space to zero (PCTFREE=0) after

initial loading of data into a dbspace; subsequent insertions can then take

Chapter 9. Maintaining Objects Used by a Program 259

advantage of the free space that is reserved during the loading process. It is also

possible to increase PCTFREE again for a later loading phase.

To alter the lock size of a public dbspace at any time, use the LOCK parameter.

(You can specify both the PCTFREE and LOCK parameters when altering a public

dbspace, in either order, separated with a comma. Each may be specified only

once.) The valid lock sizes are ROW, PAGE, and DBSPACE, as described under the

ACQUIRE DBSPACE statement. When an ALTER DBSPACE statement is executed

to alter the lock size of a dbspace, the system acquires an exclusive lock on the

entire dbspace and holds the lock until the end of the current logical unit of work.

The newly selected lock size then becomes effective for subsequent logical units of

work.

Automatically Locking Dbspaces

When you operate the database manager in single user mode, there is no

contention from other users when you attempt to access data; there may be

however in multiple user mode. To provide for concurrent access, the system

internally acquires locks on data accessed by a logical unit of work.

All LUWs automatically acquire exclusive locks on all data that they modify, and

share locks on data that they are reading. Exclusive locks prevent other users from

either reading or modifying the data; share locks permit other users to read, but

prevent them from modifying the data.

For UPDATE and DELETE processing, the system acquires update locks. If the user

wants to change the data, the update lock is changed to an exclusive lock; otherwise,

the update lock is changed to a share lock. An update lock is acquired for a Positioned

DELETE only if the cursor was declared with the FOR UPDATE clause. This type

of lock is also acquired on a parent table when changes are made to its dependent

tables. In general, locks are held to the end of the LUW in which they are acquired.

(See “Selecting the Isolation Level to Lock Data” on page 134 (DB2 Server for VM)

or “Selecting the Isolation Level to Lock Data” on page 172 (DB2 Server for VSE)

for more information.)

Potential deadlocks are automatically detected and corrected. A deadlock occurs

when two LUWs are each waiting to access data that the other has locked. The

system detects this situation and backs out the most recent LUW, meaning that all

changes made to the database during the LUW are restored, and then the locks

that were acquired for the LUW are released. The other application can then

proceed. If your LUW is backed out, a negative SQLCODE is returned and

SQLWARN6 is set to W.

Locking is automatic and requires no user intervention. However, certain

statements permit users to adjust or override the normal locking. You can adjust

the size of the lockable data units with the LOCK option of the ACQUIRE

DBSPACE and ALTER DBSPACE statements. You can also override automatic

locking and explicitly acquire certain kinds of locks with the LOCK statement as

discussed below.

Note: Only single user mode prevents locking.

Overriding Automatic Locking

The LOCK statement overrides the automatic locking mechanism and explicitly

acquires a lock on a table or dbspace, which is held the end of the current LUW.

260 Application Programming

The LOCK statement is useful only in multiple user mode. In single user mode,

there is no contention for resources, and, hence, no locking. When running in

single user mode, all LOCK statements are ignored.

An exclusive lock prevents other users from either reading or changing any data in

the locked table or dbspace. A share lock permits other users to read, but prevents

them from modifying, the data in the locked object.

The requested lock may be unavailable because other LUWs are reading or

modifying the indicated data. If this is the case, the LUW that requested the lock

waits until the other active LUWs have ended. The system then grants the lock,

and the requesting LUW proceeds normally.

The LOCK statement is entirely optional, as the system has fully automatic locking.

You may issue all SQL queries and updates independently of explicit LOCK

statements.

The LOCK statement is useful mainly for avoiding the overhead of acquiring many

small locks when scanning over a table. For example, suppose some dbspace has

been acquired with a lock size of ROW. If you know that you will be accessing all

the rows of a table within that dbspace, you may want to explicitly lock the entire

table to avoid the overhead of acquiring locks on each individual row.

In a private dbspace, a LOCK statement on a table is the same as one on the entire

dbspace, because locking is always done at the DBSPACE level for private

dbspaces.

Deleting the Contents of Dbspaces

The DROP DBSPACE statement deletes the entire contents of a dbspace. When the

logical unit of work is committed, the dbspace is available to be acquired. The

DROP DBSPACE statement is a much faster way to delete the contents of a

dbspace than by deleting the data one row at a time or dropping one table at a

time. (You can use DROP DBSPACE with both public and private dbspaces.)

For any table that is dropped implicitly by the DROP DBSPACE statement, all

referential constraints in which it is a dependent are dropped, and all referential

constraints in which it is a parent are also dropped. Furthermore, any unique

constraints defined in the table are dropped.

When a dbspace is dropped, packages for programs that operate on that dbspace

are marked invalid. In addition, if a parent table has been dropped, the packages

with tables dependent on that parent table are also marked invalid, because the

relationship between the parent table and its dependent tables was dropped.

If one of these programs is running, the system does not drop the dbspace until

the running program ends its current LUW. The invalid packages remain in the

database until they are explicitly dropped using the DROP PACKAGE statement

(discussed in the DB2 Server for VSE & VM SQL Reference manual).

When an invalid package is invoked, the system attempts to dynamically

re-preprocess it. If the package was not invalidated because the relationship

between a parent table and its dependent tables was dropped, and the program

contains any SQL statement that refers to a dbspace or table that has been

dropped, that SQL statement returns a negative SQLCODE at execution time.

Chapter 9. Maintaining Objects Used by a Program 261

Other Data Definition Statements

In addition to SQL data definition statements for dbspaces, there are those that

enable you to:

v Create and drop tables (CREATE TABLE and DROP TABLE)

v Create and drop indexes on tables (CREATE INDEX and DROP INDEX)

v Add new columns to existing tables; and add, drop, activate, or deactivate

primary keys, foreign keys, and unique constraints (ALTER TABLE)

v Create and drop synonyms for table names (CREATE SYNONYM and DROP

SYNONYM)

v Enter comments about tables into the DB2 Server for VSE & VM catalog tables

(COMMENT ON)

v Label tables and columns in dynamic SQL application programs (LABEL ON).

The following discussion is only an introduction to these statements. Refer to the

DB2 Server for VSE & VM SQL Reference manual for their syntax and detailed usage

rules.

Using Tables, Indexes, Statistics, Synonyms, Comments, and

Labels

One advantage of the database manager is that you can define new objects in the

database without stopping the system or invoking special utilities. This provides

great flexibility: for example, your application program can create a table for

storing and manipulating some temporary result, and drop the table when it is no

longer needed.

Data definition statements automatically update the catalog tables that describe the

database. (These catalog tables are explained in the DB2 Server for VSE & VM SQL

Reference manual.) If an error occurs while you are processing a data definition

statement, the system stops processing the statement, and reverses only the

changes resulting from the statement in error. Any work done before the execution

of the statement in the LUW will not be affected. If you want to, you can enter a

ROLLBACK statement to undo any other changes made in the LUW.

Also, if you plan to DROP and re-CREATE the object later in the program, make

sure that you start a new LUW after you drop the object. For example, if you write

a procedure that creates and drops a temporary table, make sure that your

program issues a COMMIT before the end of the procedure. (For more information

on the LUW refer to “Using Logical Units of Work” on page 18.)

Some data definition statements may invalidate the packages of one or more

programs previously preprocessed. For example, dropping the index used by a

program to access a table will invalidate the package of that program. Other

examples include adding keys (primary or foreign) to a table, or dropping,

activating, or deactivating keys on the table. When the program is used, a new

package is created based on the dependencies currently available. No changes need

be made to the program. The process of creating the new package called rebinding

is entirely transparent to programs, except for a slight delay in processing the first

SQL statement. (Rebinding is discussed in Chapter 4, “Preprocessing and Running

a DB2 Server for VM Program,” on page 111 (DB2 Server for VM) or Chapter 5,

“Preprocessing and Running a DB2 Server for VSE Program,” on page 153 (DB2

Server for VSE).)

262 Application Programming

Creating Tables

Use the CREATE TABLE statement to create a new table in the database and to

define the datatypes and subtypes of all the columns in the table. You can also use

it to define primary keys and foreign keys which may be used to ensure referential

integrity. This is done by specifying a primary key, a foreign key, and a delete or

update rule that defines the relationship. Only a primary key is required for entity

integrity.

If you specify the NOT NULL option for a column, the system does not permit

null values in that column. Any statement that attempts to place a null value in

such a column is rejected with an error code.

You can also associate a field procedure with a column. For more information on

field procedures see “Using Field Procedures” on page 281.

You can define a unique constraint when creating a table. This consists of one or

more columns where the combined value in these columns is unique. This enables

you to ensure data integrity for columns where a primary key would not be

practical.

Note: Instead of declaring a column to be of DECIMAL (or NUMERIC) data type

with a scale of 0, you should consider declaring it INTEGER or SMALLINT.

These data types use storage more effectively, and other processing will be

more efficient. If the precision is less than 5, use SMALLINT; if the precision

ranges from 5 to 7, use INTEGER.

Once a table has been created, you may not change the data types of its columns

or drop a column from the table. However, you may add new columns, a primary

key, foreign keys, and unique constraints by using the ALTER TABLE statement.

Modifying Tables

Use the ALTER TABLE statement to add a new column to an existing table, or to

add, drop, activate or deactivate primary keys, foreign keys, and unique

constraints.

Dropping Tables

Use the DROP TABLE statement to drop a table from the database. All indexes,

primary and foreign keys, unique constraints, views defined on the table, and all

privileges granted on the table, are also dropped. All contents of the table are lost.

However, users can have previously defined synonyms (by a CREATE SYNONYM

statement) for the name of the table that was dropped; these synonyms remain in

effect even though the table no longer exists.

Using Indexes

Use the CREATE INDEX statement to create an index on one or more columns of a

table, and to give a name to the new index. The indicated table must exist, but it

may be empty.

You can create an index on a column in either ascending (ASC) or descending

(DESC) order. Ascending order is the default. Performance may be improved for

queries that access the indexed column in the specified order.

An index is maintained until it is explicitly dropped with a DROP INDEX

statement, or until its table or dbspace is dropped.

Chapter 9. Maintaining Objects Used by a Program 263

Indexes are invisible to application programs in the sense that the system provides

no means for using an index directly. The database manager selects the index, if

any, that is to be used in processing a given query or data manipulation statement.

Updating Catalog Tables for Table and Index Activity

Use the UPDATE STATISTICS statement to bring up to date the internal statistics

recorded by the system for a table and its indexes. These statistics, which are

contained in the catalog tables, include the size of the table, various index

characteristics, and other information. The system uses these statistics when

choosing access paths for SQL statements. If the statistics are not kept up to date,

less efficient access paths may be chosen.

You should invoke the UPDATE STATISTICS statement for a table after a

significant number of changes have been made to its data since it updated; for

example, if a table has been changed by 20 percent or more.

Using Synonyms

Use the CREATE SYNONYM statement to define an alternative name for a table or

view. For example, the following statement defines the alternative name PEOPLE

to refer to the table named EMPLOYEE whose owner is SMITH:

 CREATE SYNONYM PEOPLE FOR SMITH.EMPLOYEE

The right-hand side of the CREATE SYNONYM statement (SMITH.EMPLOYEE in

the above example) must be the name of a table or a view, not another synonym.

Synonyms are commonly used when a group of users all want to share a table.

Suppose one user, ADAMS, creates a table called DATA. All users sharing this

table can then enter the statement:

 CREATE SYNONYM DATA FOR ADAMS.DATA

Each user can then refer to the shared table as DATA, without using the fully

qualified name ADAMS.DATA. (Remember that ADAMS must authorize the other

users to access his table.)

Once created, a synonym remains in effect until it is explicitly dropped by a DROP

SYNONYM statement.

Using Comments

Use the SQL COMMENT ON statement to associate remarks or comments with

your tables or views, or with columns in your tables or views. The comment you

specify is placed into one of the catalog tables.

Using Labels

Use the SQL LABEL ON statement to define a label for a table name or a column

name. Unlike synonyms, labels cannot be used as identifiers. Instead, they can be

used in displays created by applications that process SQL statements dynamically.

You can enter SQL statements using the actual table and column names (which are

easier to enter). The program can display the results using the labels (which are

easier to understand) instead of the table and column names.

Labels are ignored by DBS Utility and ISQL SELECT processing. Only column

names will identify SQL select-statement output displayed by DBS Utility or ISQL

processing.

264 Application Programming

Using Stored Procedures and PSERVERS

Using Stored Procedures

Before a stored procedure can run, you must define it to DB2. Use the SQL

statement CREATE PROCEDURE to define a stored procedure to DB2. To alter the

definition, use the ALTER PROCEDURE statement.

Table 30 lists the characteristics of a stored procedure and the CREATE

PROCEDURE and ALTER PROCEDURE parameters that correspond to those

characteristics.

 Table 30. Characteristics of a Stored Procedure

Characteristic CREATE/ALTER PROCEDURE Parameter

Stored procedure name

Parameter declarations

PROCEDURE

External name EXTERNAL NAME

Language LANGUAGE ASSEMBLE

LANGUAGE C

LANGUAGE COBOL

LANGUAGE PLI

Parameter style PARAMETER STYLE GENERAL

PARAMETER STYLE GENERAL WITH NULLS

Name of group of servers

where stored procedure can

run

SERVER GROUP server-group-name

Whether or not a stored

procedure can run in default

server group

DEFAULT SERVER GROUP YES

DEFAULT SERVER GROUP NO

Load module stays in

memory after it executes

STAY RESIDENT NO

STAY RESIDENT YES

Run-time options RUN OPTIONS options

Maximum number of result

sets returned

RESULT SETS integer

Commit work on return from

stored procedure

COMMIT ON RETURN YES

COMMIT ON RETURN NO

For information on the parameters for the CREATE PROCEDURE or ALTER

PROCEDURE statement, see the DB2 Server for VSE & VM SQL Reference manual.

Example of a Stored Procedure Definition

Suppose you have written and prepared a stored procedure that has these

characteristics:

v The name is B.

v It takes two parameters:

– An integer input parameter named V1

– A character output parameter of length 9 named V2

v It is written in the C language.

v The load module name is SUMMOD.

v The parameters can have null values.

v It should be deleted from memory when it completes.

Chapter 9. Maintaining Objects Used by a Program 265

v The Language Environment run-time options it needs are:

 MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)

v It can be executed by any stored procedure server in the group named

PAYROLL.

v It can return at most 10 result sets.

v When control returns to the client program, DB2 should not commit updates

automatically

This CREATE PROCEDURE statement defines the stored procedure to DB2:

 CREATE PROCEDURE B(V1 INTEGER IN, V2 CHAR(9) OUT)

 LANGUAGE C

 EXTERNAL NAME SUMMOD

 PARAMETER STYLE GENERAL WITH NULLS

 STAY RESIDENT NO

 RUN OPTIONS ’MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)’

 SERVER GROUP PAYROLL

 DEFAULT SERVER GROUP NO

 RESULT SETS 10

 COMMIT ON RETURN NO;

Later, you need to make the following changes to the stored procedure definition:

v The stored procedure can also be run in the default server group in addition to

the group of stored procedure servers named PAYROLL.

Execute this ALTER PROCEDURE statement to make the changes:

 ALTER PROCEDURE B

 DEFAULT SERVER GROUP YES;

Using PSERVERs

Stored procedures are executed by stored procedure servers. These servers are

organized into named groups. Use the SQL statement CREATE PSERVER to add a

stored procedure server to a group. To alter the definition, use the ALTER

PSERVER statement.

Table 31 lists the characteristics of a stored procedure server and the CREATE

PSERVER and ALTER PSERVER parameters that correspond to those

characteristics.

 Table 31. Characteristics of a Stored Procedure

Characteristic CREATE/ALTER PSERVER Parameter

Stored Procedure server name PSERVER procedure-server

Name of the group to which

the stored procedure server

belongs

GROUP group-name

Whether or not the database

manager should issue a

START PSERVER command

when the database initializes

AUTOSTART NO

AUTOSTART YES

A description of the stored

procedure server

DESCRIPTION description

For information on the parameters for the CREATE PROCEDURE or ALTER

PROCEDURE statement, see the DB2 Server for VSE & VM SQL Reference manual.

266 Application Programming

Example of a Stored Procedure Server Definition

Suppose you must set up a stored procedure server that has these characteristics:

v The name is SERVER1

v It is part of stored procedure group PAYROLL

v The database manager is not to issue a START PSERVER command when it

initializes

This CREATE PSERVER statement defines the stored procedure server to DB2:

 CREATE PSERVER SERVER1

 GROUP PAYROLL

 AUTOSTART NO

Later, you need to make the following changes to the stored procedure server

definition:

v The database manager should issue a START PSERVER command when it

initializes

v The description of the stored procedure server is to be ″This is the first server

used by payroll procedures″

Execute this ALTER PROCEDURE statement to make the changes:

 ALTER PSERVER SERVER1

 AUTOSTART YES

 DESCRIPTION ’This is the first server used by payroll procedures’

Chapter 9. Maintaining Objects Used by a Program 267

268 Application Programming

Chapter 10. Assigning Authority and Privileges

Defining User Access to the Database 270

Defining Authority Types for the Database . . 270

Granting Authority to Users 270

Revoking Authority from Users 271

Defining Privileges 271

Defining Privileges on Tables and Views . . . 272

Revoking Privileges 272

Defining Privileges on Packages 273

Assigning User Privileges to the Owner . . 273

Assigning Privileges to Others 274

Differences Between Static and Dynamic

Statements 274

Revoking the Run Privilege 275

Recording Assigned Privileges in the Catalog

Tables 275

© Copyright IBM Corp. 1987, 2007 269

Defining User Access to the Database

Defining Authority Types for the Database

When a database is initially generated, there is only one user defined for it. This

user, referred to as SQLDBA, has a special authority called “DBA” authority. Only

someone with DBA authority can grant authorities to other users.

The types of authorities are:

CONNECT Authorization to access the database

RESOURCE Authorization to acquire space in the database

SCHEDULE Authorization to issue a connect without a password (internal to

the on-line Resource Adapter)

DBA Authorization to perform database administration functions.

 Granting any one of these authorities to a user who does not already have the

CONNECT authority causes that user to be granted CONNECT authority. For

example, if resource authority is granted to a user who currently has no

authorities, the user will have both RESOURCE and CONNECT authority; if DBA

authority is granted, the user will have DBA, CONNECT, SCHEDULE, and

RESOURCE authorities.

Granting Authority to Users

The following information applies to the GRANT statement and to DB2 Server for

VSE & VM application servers only. For a discussion of authorities for another

application server, refer to that product’s library.

Note: In discussions about granting authorities and privileges in this chapter, the

“grantor” is defined as the user who preprocessed the program in which the

GRANT statement appears. However, for dynamically defined GRANT

statements, the grantor is determined at run time, based on the connected

authorization ID.

The System Authorities form of the GRANT statement allows a user having DBA

authority to grant authorities to other users. See the DB2 Server for VSE & VM SQL

Reference manual for the syntax.

The IDENTIFIED BY clause is optional when granting any of the authorities. If the

clause is included, a password is added or changed for each user specified. If the

password is the same as the one that currently exists for the user, the change has

no real effect. If no passwords are given, none is assigned and previously assigned

passwords are retained.

User IDs and passwords are limited to eight characters. They can be entered in

double quotation marks to bypass checking under the rules of SQL identifier

naming. Embedded blanks are not permitted, even in double quotation marks. If

you specify IDENTIFIED BY, you must include a password for every user ID

specified. The passwords and user IDs must correspond as indicated in the

statement format above.

You can change your password by issuing the following form of the CONNECT

statement which does not require special authority.

 CONNECT ... IDENTIFIED BY ...

270 Application Programming

To do this, you need only have CONNECT authority, and may or may not have

already been assigned a password.

Granting CONNECT to ALLUSERS is a special case that establishes implicit

connect capability for all users in the system when operating under the CICS/VSE

system or VM. ALLUSERS may be specified only once for DB2 Server for VM. (See

“Using VM Implicit Connect” on page 113.)

(CICS/VSE connect considerations are discussed in Chapter 5, “Preprocessing and

Running a DB2 Server for VSE Program,” on page 153 for DB2 Server for VSE.)

Granting an authority that a user already possesses has no additional effect, except

for changing the password if it is specified.

You should not grant CONNECT authority to SYSTEM or PUBLIC. They are used

internally.

Revoking Authority from Users

Note: In discussions about revoking authorities and privileges in this chapter, the

“revoker” is defined as the user who preprocessed the program in which the

REVOKE statement appears. However, for dynamically defined REVOKE

statements, the revoker is determined at run time, based on the connected

authorization ID.

The System Authorities form of the REVOKE statement allows a user having DBA

authority to revoke an authority from any other users regardless of who originally

granted it. The only exceptions are:

v Anyone with DBA authority cannot revoke their authority

v No one can revoke RESOURCE authority from a user who has DBA authority.

See the DB2 Server for VSE & VM SQL Reference manual for the syntax of the

REVOKE statement.

If you enter REVOKE for an authority that a user does not have, the revocation is

ignored.

Revoking a user’s CONNECT authority causes any other authorities to be revoked

as well, and the user is deleted from the catalog table SYSUSERAUTH. Revoking

CONNECT authority does not cause objects owned by that user to be dropped; if

they should be dropped, this can be done by a user with DBA authority.

Revoking DBA authority automatically causes all other authorities except

CONNECT to be revoked. Revoking RESOURCE or SCHEDULE authority implies

no other revocations.

Defining Privileges

The system keeps track of the privileges that each authorization ID has, and makes

sure that each ID performs only authorized operations on the database.

Authorized users can create and drop tables or views, and compile and run

programs that operate on these tables or views. Anyone who creates a table or

view or compiles a program can selectively share the use of that table, view, or

program with other authorization IDs.

Chapter 10. Assigning Authority and Privileges 271

The privileges you need vary depending on what operations you want to perform.

There are two categories of privileges: privileges on tables and views, and

privileges on programs.

Defining Privileges on Tables and Views

You can have any or all of the following privileges on specific tables and views:

ALTER Privilege to add new columns and keys to a table

(does not apply to views)

DELETE Privilege to delete rows from tables and views

INDEX Privilege to create new indexes on a table (does not

apply to views)

INSERT Privilege to insert new rows into tables or views

REFERENCES Privilege to add, drop, activate, or deactivate a

foreign key relationship (does not apply to views)

SELECT Privilege to retrieve data from tables or views

UPDATE Privilege to change column values in tables or

views.

When you create a new table or view, you are automatically given full privileges

on it. In most situations, you are also given the GRANT option on each privilege

which enables you to grant any or all of these individual privileges to other

authorization IDs. When you grant a privilege, you may include the GRANT

option so that the recipient will be able to grant the privilege to others in turn.

If you grant the privileges on an object to PUBLIC, all authorization IDs (including

those that do not yet exist) will have the same privileges that you have.

If you have DBA authority, you have the same privileges on an object and you can

grant those privileges (or drop the object) in the same way that the owner of the

object can.

Any privilege that you hold on a table or view may be exercised directly through

ISQL and the DBS utility as well as application programs.

Privileges on tables and views are listed in the database manager catalog tables.

SYSTABAUTH and SYSCOLAUTH. To check what privileges you hold or have

granted to other authorization IDs, make the suitable queries on these tables. See

the DB2 Server for VSE & VM SQL Reference manual for more information on the

catalog tables.

Revoking Privileges

Once you have granted a privilege, you can revoke it by issuing a REVOKE

statement. (You can never revoke a privilege from yourself.) If you revoke a

privilege from user LEENA, it is automatically revoked from all authorization IDs

to whom LEENA granted it, unless the other authorization IDs have another

independent source for the same privilege. The most common and most convenient

way to enter a REVOKE statement is through ISQL or the DBS utility. You can

code REVOKE statements within a program; however, because the user ID and

passwords in the REVOKE statements cannot be host variables, the statements

have limited use.

272 Application Programming

If you attempt to revoke a privilege that is currently in use by a running program,

the REVOKE statement is queued until the program ends its current logical unit of

work. For example, if you revoke the UPDATE privilege from user MARY, but

MARY’s program is running and is already making updates, your REVOKE

statement does not take effect until MARY’s updates are finished.

The database manager can also automatically revoke privileges on views, or drop

the view definition. Suppose BILL grants GENE the SELECT privilege with the

GRANT option on the EMPLOYEES table. GENE then defines a view called

SALARY on this table, and grants the SELECT privilege on that view to other

users. After some time, BILL decides to revoke the SELECT privilege on the

EMPLOYEES table from GENE. When BILL does so, the system also automatically

revokes the SELECT privilege from SALARY also, including all SELECT privileges

on SALARY that GENE passed on. If after this process GENE holds no privileges

on SALARY, the definition of SALARY is dropped.

Defining Privileges on Packages

Assigning User Privileges to the Owner

Application programs must be preprocessed before they are compiled or

assembled. Successfully preprocessing an application program results in the

creation or replacement of a package in the database. The contents of the package

are then used to satisfy database requests at run time.

When the package is created, the system determines the level of the RUN privilege

to be given to the owner (EXECUTE privilege can be used as a synonym for RUN

privilege). This depends on such factors as the preprocessed SQL statements, the

existence and ownership of the referenced objects (tables, indexes, dbspaces, and so

on), and the owner’s authorization level (DBA, RESOURCE, or CONNECT) for

DB2 Server for VM, and (DBA, RESOURCE, SCHEDULE, or CONNECT) for DB2

Server for VSE.

The owner of a package is assigned the RUN privilege based on the following

rules:

v If the owner does not have DBA authority, the RUN privilege is assigned when

the preprocessor successfully creates or replaces the package.

v If the owner has DBA authority, the RUN privilege is assigned when none of the

preprocessed SQL statements depends on the owner having DBA authority.

There is an exception to this rule: if an SQL statement selects information from a

table on which the owner does not have the explicit SELECT privilege, and the

owner has DBA authority, then the owner may still be assigned the RUN

privilege. This will depend on the result of preprocessing all the other SQL

statements in the program.

When a particular SQL statement references objects that do not exist or have

different attributes at preprocessing time, the system still creates a package for the

program and assigns RUN privilege to the owner. In this case, the required objects

must be correctly defined at run time, or execution of the program will fail.

In fact, the determination of whether an owner receives the RUN privilege is based

on the aggregate “score” of all preprocessed SQL statements in the program. Each

statement is individually assigned an authorization score; at the end of the

preprocessing phase, the system picks the lowest score, and assigns that to the

owner.

Chapter 10. Assigning Authority and Privileges 273

The scores, and the decision tables used to assign them, are discussed in

Appendix F, “Decision Tables to Grant Privileges on Packages,” on page 397.

Assigning Privileges to Others

The database manager provides a GRANT statement that allows the owner of a

package to grant the RUN privilege on the package to other users.

Determining When the Owner Can Grant the RUN Privilege: The owner of a

package is assigned the GRANT RUN privilege when all preprocessed SQL

statements in the program allow the owner to GRANT RUN. If the owner can

grant the RUN privilege on a package, a user with DBA authority has the same

ability.

Circumstances which enable an owner to gain the GRANT RUN privilege include:

v The owner has the necessary privileges (with the GRANT option) to access any

referenced objects.

v The package does not contain any statements that require DBA authority. The

following are examples of operations that require DBA authority:

– Acquiring a public dbspace

– Creating a table in another user’s dbspace or in a SYSTEM dbspace

– Acquiring a dbspace for another user

– Altering another user’s table when the owner doesn’t have explicit ALTER

authority on the table

– Locking another user’s dbspace

– Commenting on another user’s table

– Dropping another user’s object

– Locking another user’s table

– Altering another user’s dbspace

– Creating an index on another user’s table when the owner doesn’t have

explicit INDEX authority on that table

– Creating a table for another user

– Inserting, deleting, or updating another user’s table when the owner doesn’t

have the explicit authority to do so.

Note: The following statements also require DBA authority, but do not affect the

RUN privilege, because they are not checked until run time (when they may

be rejected).

v ALTER DBSPACE when the owner qualifier is not given

v LOCK DBSPACE when the owner qualifier is not given

v DROP DBSPACE when the owner qualifier is not given

v CREATE TABLE in someone else’s dbspace or in a SYSTEM dbspace

when the DBSPACE owner qualifier is not given.

Differences Between Static and Dynamic Statements

There is a difference between static, dynamic, and extended dynamic SQL

statements, when determining the privileges of the owner and other users of the

package being run.

Static At preprocessing time the objects referenced in

static statements are checked for existence, for

usage consistent with the definitions in the

database, and to determine whether the package

owner has the required privileges. This process

allows the person who is preprocessing a package

to encapsulate a set of object privileges that he or

she possesses into that package and to

subsequently grant them to others.

274 Application Programming

Dynamic All dynamic statements are checked at the time the

PREPARE or EXECUTE IMMEDIATE statement is

run and the privileges on the objects referenced in

the statement are checked against those of the

authorization ID of the runner of the package.

There is, therefore, no way to encapsulate object

privileges with dynamic statements.

Extended Dynamic For modifiable packages, all statements are checked

against the privileges of the person who is

preparing or modifying the package, as per static

SQL. For nonmodifiable packages, statements

prepared with extended PREPARE Filling Empty

Section statement are checked as per dynamic SQL,

and statements prepared with the other forms of

extended PREPARE are checked as per static SQL.

Revoking the Run Privilege

The REVOKE statement may be used to revoke the RUN privilege on a package in

the same way it revokes privileges on tables and views.

In some situations, the system automatically revokes the RUN privilege from a

number of users. Suppose user GENE has preprocessed a program that makes use

of some privilege, such as SELECT. GENE receives the RUN privilege on the

package with the GRANT option, and grants this privilege to other users.

If the SELECT privilege is now revoked from GENE, the package associated with

the program is automatically marked invalid. When the program is run (by GENE

or any other user), the system attempts to regenerate a valid (fully authorized)

package. At the time of this regeneration process, the following outcomes are

possible:

1. GENE has all the privileges required by the program, and furthermore has the

GRANT option on all these privileges. In this case, the package is regenerated,

all existing grants of the RUN privilege on the program remain in effect, and

execution proceeds normally.

2. For some SQL statements in the program, GENE lacks the necessary privilege,

or has the privilege without the GRANT option. In this case, GENE retains the

RUN privilege on the program, but all existing grants of the RUN privilege are

revoked. When the program is run, those SQL statements for which GENE has

the necessary privilege execute successfully, and others return error codes.

Recording Assigned Privileges in the Catalog Tables

The database manager records the current RUN and GRANT RUN privileges held

by all authorization IDs in the SYSPROGAUTH catalog table. The entries in the

catalog identify:

v The grantor

v The grantee

v The package that is the subject of the RUN privilege

v A marker indicating that the grantee holds either RUN (‘Y’) or GRANT RUN

(‘G’) authority.

The entries are added to the catalog tables as an application is preprocessed. The

entries may depend, of course, on whether the package satisfies the various

Chapter 10. Assigning Authority and Privileges 275

conditions described in the preceding sections. The system also makes entries in

the SYSPROGAUTH catalog table when someone grants the RUN privilege to

another authorization ID.

The system also updates the SYSUSERAUTH, SYSCOLAUTH, and SYSTABAUTH

catalog tables. The package’s dependency on some authorization is recorded in

these catalog tables. For example, when a package requires RESOURCE authority

to execute successfully, an entry is made in SYSUSERAUTH to reflect that

dependency. The system uses the catalog table entries to keep track of valid and

invalid packages.

276 Application Programming

Chapter 11. Special Topics

Using Datetime Values with Durations 278

Using Durations 278

Resolving Peculiarities of Date Arithmetic . . . 278

Summarizing Addition Operations 280

Summarizing Subtraction Operations . . . 281

Using Field Procedures 281

Assigning Field Procedures to Columns . . . 283

Understanding Field Procedure Rules 283

Input from an Application Program 284

Output to an Application Program 284

Comparison 284

Referential Integrity 284

Scalar Functions 285

Column Functions 285

Concatenation 285

The IN and BETWEEN Predicates 286

The LIKE Predicate 286

Sorting 286

Null Values 286

Unions and Joins 286

Sub-SELECTS 286

Using CMS Work Units (DB2 Server for VM) . . . 286

Using Work Units in Application Programs . . 287

Processing the First SQL Statement in the

Work Unit 287

Invoking Another Application Program . . . 287

Invoking Applications in CMS SUBSET . . . 288

Processing Applications Concurrently . . . 288

Accessing the Database from Different Points

in the Program 288

Copying Data across Databases 288

How Locking Works with CMS Work Units . . 289

Environmental Considerations 289

Performance Considerations 289

Ensuring Data Integrity 289

Ensuring Entity Integrity 290

Using Unique Constraints 290

When Creating a View 290

Ensuring Referential Integrity 290

Defining Terms 290

Ensuring Referential Integrity in New Tables 292

Adding Referential Integrity to Existing

Tables 293

Managing Table Relationships 294

Modifying Applications to Ensure Integrity 295

Modifying Data in Tables Containing

Referential Constraints 295

Generating SQL Statements in Response to

Table Modifications 299

Enforcing Referential Integrity 299

Removing Referential Constraints 301

Switching Application Servers 302

Identifying Switching Options 302

Comparing Switching to Other Methods (DB2

Server for VM) 302

How to Switch Servers (DB2 Server for VSE) 303

Accessing a New Application Server 304

Illustrating Sample Code 305

Preprocessing the Program on Multiple

Application Servers 306

Condition Handling with LE/VSE (DB2 Server for

VSE) 307

© Copyright IBM Corp. 1987, 2007 277

Using Datetime Values with Durations

Using Durations

A duration is a value that represents an interval of time. The value may be a

constant, a column name, a host variable, a function, an expression, or an

expression followed by a duration attribute. Numbers are interpreted as durations

only in certain contexts as defined in the DB2 Server for VSE & VM SQL Reference

manual; the arithmetic of using date, time, and timestamp is discussed in detail.

Figure 61 on page 280 and Figure 62 on page 281 summarize this topic.

Resolving Peculiarities of Date Arithmetic

What does it mean to add a month to a given date? Presumably the result should

be the same day of the next month. That is, one month after January 1 is February

1, and one month after February 1 is March 1. But what is one month after January

31? This difficulty (which is the reason why certain contracts are always dated the

first of the month) is resolved by the further assumption that the result should be

the last day of February. Thus, adding a month to a given date gives the same day

of the next month except when the next month does not have such a day, in which case

the result is the last day of that month. But, one month from the last day of a

month is not necessarily the last day of the next month. One month from the last

day of February, for example, is not the last day of March. Thus (a date) + (a

simple duration of months) - (a simple-duration of months) is not necessarily equal

to the original date.

The definition of a month does not permit a consistent system of date arithmetic. If

this is a problem, it can be avoided by using days rather than months. For

example, to increment the date date3 by the difference between the dates date1 and

date2, the expression:

DATE (DAYS(date1) - DAYS(date2) + DAYS(date3))

will give an accurate result whereas date1 - date2 + date3 may not. Figure 60 on

page 279 shows how SQLWARN7 provides warnings during date arithmetic when

the resulting date has to be adjusted to derive a valid date.

278 Application Programming

Let D1 be the DATE 2000-02-29, a leap year:

 SQLWARN7

 D1 + 1 DAY = 2000-03-01 ’ ’

 D1 + 2 MONTHS = 2000-04-29 ’ ’

 D1 + 1 YEAR = 2001-02-28 ’W’

 D1 + 4 YEARS = 2004-02-29 ’ ’

Let N be DEC(8,0) and set to 00010203.

 D1 + N

 = 2000-02-29 + 1 YEAR + 2 MONTHS + 3 DAYS

 = 2001-02-28 + 2 MONTHS + 3 DAYS ’W’

 = 2001-04-28 + 3 DAYS

 = 2001-05-01

Let D2 be the DATE 2001-03-31:

 SQLWARN7

 D2 + 1 MONTH = 2001-04-30 ’W’

 D2 + 2 MONTHS = 2001-05-31 ’ ’

Figure 60. Setting SQLWARN7 during Date Arithmetic. When incrementing or decrementing

dates, SQLWARN7 is set when the resulting date is an invalid date because of a leap year or

month difference, and a valid date is derived.

Chapter 11. Special Topics 279

Summarizing Addition Operations

v An X denotes valid datetime addition operation.

v STRING means a character string in a valid datetime format.

DATETIME ADDITION = OPERAND + OPERAND

LEFT OR RIGHT OPERAND

DURATIONS

SIMPLE

DATE X X X X DATE

TIME X X X X

TIME

TIME

TIME
STAMP X X X X X X X X X X STAMP

LEFT OR
RIGHT

OPERAND

RESULT
DATA
TYPE

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

T
I

M
E
S
T
A
M
P

S
T
R
I
N
G

D
A
T
E

T
I

M
E

Y
E
A
R

M
O
N
T
H

D
A
Y

H
O
U
R

M
I
N
U
T
E

S
E
C
O
N
D

M
I
C
R
O

S
E
C
O
N
D
S

Figure 61. Datetime Addition

280 Application Programming

Summarizing Subtraction Operations

v 1 or 2 denotes a valid datetime subtraction operation.

v 1 means a result data type of DECIMAL(8,0), DECIMAL(6,0) or DECIMAL(20,6)

which is deemed as a date duration, time duration, or timestamp duration

respectively. 2 means a result data type of date, time, or timestamp.

v STRING means a character string in a valid datetime format.

Using Field Procedures

Field procedures enable you to alter the sorting sequence of values entered in a

single short string column (CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC). For

some applications the standard EBCDIC sorting sequence is not appropriate. For

example, telephone directories sometimes require that names like “McCabe” and

“MacCabe” appear next to each other, and the standard sorting routine would

separate them. Another example is a national language character set that does not

use the Roman alphabet. For example, Kanji (Japanese) can only be sorted properly

using a field procedure.

DATETIME SUBTRACTION = MINUEND - SUBTRAHEND

S U B T R A H E N D

DURATIONS

SIMPLE

DATE 1 1 2 2 2 2 1=(8,0)

2=DATE

TIME 1 1 2 2 2 2 1=(6,0)

2=TIME

2=TIME

1=(20,6)

TIME
STAMP 1 1 2 2 2 2 2 2 2 2 2 2 STAMP

MINUEND

RESULT
DATA
TYPE

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

T
I
M
E
S
T
A
M
P

S
T
R
I
N
G

D
A
T
E

T
I
M
E

Y
E
A
R

M
O
N
T
H

D
A
Y

H
O
U
R

M
I
N
U
T
E

S
E
C
O
N
D

M
I
C
R
O

S
E
C
O
N
D
S

Figure 62. Datetime Subtraction

Chapter 11. Special Topics 281

If you assign a field procedure to a column, it is called whenever values in that

column are changed or are inserted, and it transforms (encodes) the original value

into one value that sorts properly.

When you retrieve a row from the encoded column, the same field procedure

decodes it into the original form. You will never see the encoded string. From a

user’s point of view, all a field procedure does is change the sorting sequence for a

column.

For example, consider a table with a short string column that contains the four

divisions in a company: North, South, East, and West. Divisions are usually sorted

as follows:

 East

 North

 South

 West

You can, however, write a field procedure that encodes North as 1, South as 2, East

as 3 and West as 4. The divisions would then be sorted as follows:

 North

 South

 East

 West

Note: The encoded values do not have to be the same data type as the decoded

values. Refer to the DB2 Server for VSE & VM SQL Reference manual for a

description of the catalog table SYSCOLUMNS, which contains the

descriptions of decoded columns, and SYSFIELDS, which contains the

descriptions of the corresponding encoded columns.

While field procedures are used primarily to alter the standard EBCDIC sorting

sequence, they can also be used in any application program that requires short

strings to be stored differently from how they are inserted or retrieved.

For a sample field procedure and the rules for writing field procedures, refer to the

DB2 Server for VM System Administration or the DB2 Server for VSE System

Administration manual.

DB2 Server for VSE & VM provides two field procedures for performing cultural

sorts. They are:

FP870L2

Sample field procedure for cultural sorting for the Latin 2 code page

(Regions: Slovenia, Poland, and Romania).

FP102CY

Sample field procedure for cultural sorting for the Cyrillic code page

(Regions: Russia, Bulgaria, Serbia, and Montenegro).

If Data Propagator Capture for VSE or VM is being used on tables that have

columns with field procedures, “1-way” field procedures must be defined on the

Data Propagator Change Data (CD) tables to properly propagate this data. Refer to

the DB2 Server for VM System Administration or the DB2 Server for VSE System

Administration manual for more information.

282 Application Programming

Assigning Field Procedures to Columns

To assign a field procedure to a new column, include the FIELDPROC clause on

either the CREATE TABLE or ALTER TABLE statement. To assign field procedures

to columns in an existing table, you must unload the data, recreate the table to

include the field procedures, and they reload the data back into the table. If you

create a column without a field procedure, you cannot add one later.

Refer to the DB2 Server for VSE & VM SQL Reference manual for the syntax

diagrams for the CREATE and ALTER TABLE statements. The fieldproc-block for

these diagrams is shown below.

 For example:

 ALTER TABLE SCOTT.SUPPLIERS ADD RATING CHAR(6) FIELDPROC MYFLDPRO (10,5)

The constants (10,5), that follow the program_name MYFLDPRO are optional

parameters, defined when the field procedure is written and passed to the field

procedure when it is invoked.

Understanding Field Procedure Rules

In most cases you will not have to worry about the rules that define when a field

procedure encodes or decodes a short string. However, if you understand when

the database manager calls field procedures, this can help you understand their

performance implications. The less you call field procedures to encode or decode

strings the better your application’s performance will be.

Understanding when field procedures are called can also help you to avoid some

pitfalls. For example, consider a table TABLE_A with a column COLUMN_A that

has fieldproc F1, and consider these two statements:

 SELECT SUBSTR(MAX(COLUMN_A,1,5)) FROM TABLE_A

 SELECT MAX(SUBSTR(COLUMN_A,1,5)) FROM TABLE_A

You might assume that the two statements should return essentially the same

result; however, different results can be returned depending on your coding. In the

first statement, the database manager does the following:

1. Finds the maximum encoded value in COLUMN_A

2. Decodes the result from MAX with field procedure F1

3. Applies the SUBSTR function to the decoded value of the result from MAX.

In the second statement, the database manager does the following:

1. Decodes the value in COLUMN_A with field procedure F1

2. Applies the SUBSTR function to the decoded value in COLUMN_A

3. Applies the MAX function to the result of the SUBSTR function.

That is, the first statement MAX is applied to encoded values, and the second is

applied to decoded values.

►► FIELDPROC program_name

▼

,

(

constant

)

 ►◄

Figure 63. fieldproc-block Syntax

Chapter 11. Special Topics 283

The rest of this section covers the rules that define when a field procedure encodes

or decodes a short string.

Input from an Application Program

The field procedure is called to encode data when your application program inserts

or updates data. This includes the following statements:

v INSERT

v PUT

v UPDATE

Output to an Application Program

The field procedure is called to decode data when your application program

fetches or selects data. This includes the following statements:

v FETCH

v SELECT INTO

Comparison

If a column with a field procedure is compared to a constant, the constant is first

encoded by the field procedure. The comparison is then performed between the

encoded values in the column and the encoded value of the constant.

Host-variables, parameter markers, and the USER special register are treated the

same way.

For example, consider the following SQL statement where COLUMN_A has field

procedure F1:

 SELECT * FROM MY_TABLE WHERE COLUMN_A > ’SMITH’

When processing the above statement, the database manager first encodes 'SMITH',

and then for each row in MY_TABLE, compares F1 to the encoded value in

COLUMN_A.

A field procedure can only encode short strings values. If the variable or constant

is of a data type other than CHAR, VARCHAR, GRAPHIC or VARGRAPHIC, a

negative SQLCODE is returned.

If a column with a field procedure is compared to another column, both columns

must have field procedures with the same program_name, comparable encoded data

type, and the same CCSID. If not, a negative SQLCODE is returned.

Referential Integrity

If a primary key column has a field procedure, then the foreign key column must

have the same field procedure, and the CCSIDs of both key columns must be the

same. Otherwise, a negative SQLCODE is returned. For two field procedures to be

the same, their program_names, encoded data type, encoded data length, and input

parameters must be identical.

For example, the following is correct:

 CREATE TABLE PRIMARY

 (COLUMN_A CHAR(10) FIELDPROC F1 NOT NULL,

 COLUMN_B INTEGER)

 PRIMARY KEY(COLUMN_A)

 CREATE TABLE FOREIGN

 (COLUMN_A CHAR(10) FIELDPROC F1 NOT NULL,

 COLUMN_B CHAR(10))

284 Application Programming

ALTER TABLE FOREIGN

 ADD FOREIGN KEY (COLUMN_A)

 REFERENCES PRIMARY ON DELETE SET NULL

Scalar Functions

All scalar functions operate on decoded values. For example, if ’V’ is a string in a

column with a field procedure, HEX(’V’) returns the hexadecimal representation of

’V’. The result is not associated with the original column’s field procedure.

However, if the result of a scalar function is compared to a column that is

associated with a field procedure, this result is encoded by the comparison

column’s field procedure. The comparison is then made between the encoded

value of the column and the encoded result of the scalar function. This is

consistent with how columns with field procedures are compared to constants.

For example:

1. Consider a table (MY_TABLE) with COLUMN_A that has field procedure F1

and COLUMN_B that has field procedure F2. Consider the following SQL

statement:

 SELECT * FROM MY_TABLE WHERE COLUMN_A > SUBSTR(COLUMN_B,3,3)

For each row of MY_TABLE, the following occurs:

a. The encoded values of COLUMN_B are decoded by field procedure F2.

b. The substring operation is applied to the decoded value of COLUMN_B.

c. The result of the substring operation is encoded by field procedure F1.

d. Finally, the encoded value of COLUMN_A is compared to the encoded

result of the substring operation.

2. Consider a table (MY_TABLE) with three columns, where COLUMN_A has

field procedure F1, COLUMN_B has field procedure F2, and COLUMN_C is

NOT NULL and has field procedure F3. Consider the following SQL statement:

 SELECT * FROM MY_TABLE WHERE COLUMN_A > VALUE(COLUMN_B,COLUMN_C)

For each row of MY_TABLE, the following occurs:

a. If the value of COLUMN_B is not null, then COLUMN_B is decoded, using

F2. Call the result ’M’.

b. If the value of B is null, then C is decoded, using F3. Call the result ’M’.

c. ’M’ is then encoded using F1.

d. The encoded result of the VALUE function is then compared to the encoded

value of COLUMN_A.

Note: A field procedure is never called to encode or decode a NULL value. A

NULL value always maps to a NULL.

3. If a column with a field procedure is the argument of the LENGTH function,

first it is decoded by the field procedure, and then the length of the result is

returned. Of course, if the column data type is a fixed length (for example,

CHAR(15)), there is no need to actually decode the column value. The length

returned by the function is simply the fixed length of the column (15 in this

example).

Column Functions

The column functions MAX and MIN operate on encoded values. The remaining

column functions operate on numeric data, and are not affected by field

procedures.

Concatenation

The concatenation operator is basically a scalar function, and follows the same

rules as a scalar function.

Chapter 11. Special Topics 285

For example, consider a table (MY_TABLE) with COLUMN_A that has field

procedure F1 and COLUMN_B that has field procedure F2. Now, consider the

following SQL statement:

 SELECT * FROM MY_TABLE WHERE COLUMN_A > ’ADDITION’ CONCAT COLUMN_B

For each row in MY_TABLE, the following occurs:

1. The value of COLUMN_B is decoded by F2.

2. ’ADDITION’ is concatenated with the decoded value in COLUMN_B.

3. The result of the concatenation is encoded by field procedure F1.

4. The encoded result of the concatenation is compared to the encoded value of

COLUMN_A.

The IN and BETWEEN Predicates

These predicates operate the same as a comparison between a column with a field

procedure and a constant.

The LIKE Predicate

This predicate operates on decoded values.

Sorting

Indexes will be based on encoded values. The ORDER BY and GROUP BY clauses

will sort the data according to the encoded format. The database manager also

sorts values during a UNION operation.

Null Values

While a column with a field procedure may be defined to allow null values, the

field procedure is never called to process a null value. A decoded null value

always maps to an encoded null value, and an encoded null always maps to a

decoded null.

Unions and Joins

The rules for comparing two columns with field procedures apply to unions and

joins. The two columns must have the same field procedure.

Sub-SELECTS

All the rules described above apply to sub-SELECTs.

For example:

 SELECT * FROM TABLE_1

 WHERE COLUMN_A=(SELECT COLUMN_B FROM TABLE_2);

 SELECT * FROM TABLE_1

 WHERE COLUMN_A IN (SELECT COLUMN_B FROM TABLE_2);

If the columns COLUMN_A and COLUMN_B have different field procedures these

statements are invalid (field procedure comparison rules apply). For example:

 INSERT INTO T1 (COLUMN_A) SELECT COLUMN_B FROM T2;

In this statement, the decoded data types for COLUMN_A and COLUMN_B must

be compatible. If so, the value in COLUMN_B will be decoded with F2. The

decoded value is then encoded by F1, and the resulting value is inserted into

COLUMN_A.

Using CMS Work Units (DB2 Server for VM)

Application programs can use the CMS work unit facility, which supports the

following DB2 Server for VM functions:

286 Application Programming

v One application can invoke another, independent of the processing of the

invoked application.

v An application can be invoked in the CMS SUBSET, independent of the program

from which the CMS SUBSET was invoked.

v Applications can issue concurrent server requests for DB2 Server for VM

resources.

v An application can establish more than one path into the same database.

v An application can copy data from one DB2 Server for VM database to another

without first having to write the data to a temporary file.

Note: You should not use the CMS SUBSET function if the WORKUNIT option in

SQLINIT/SQLGLOB is set to NO.

Using Work Units in Application Programs

Associated with each work unit is a unique work unit id assigned by CMS. When

you invoke your program, a default work unit id identifies the currently active

work unit for your program. To switch to a new work unit, you must explicitly

change the currently active work unit.

Use the CMS routines shown in Table 32 to manage work units:

 Table 32. Routines to Manage Work Units

CSL Call Function Description

DMSGETWU Get

 work unit id

Obtains and reserves a work unit id from CMS.

You must invoke this routine for each separate

work unit you wish to manage.

DMSPUSWU Push

 work unit id

Pushes the work unit id onto the work unit stack.

Makes the pushed work unit the currently active

one.

DMSPOPWU Pop

 work unit id

Pops the work unit id from the top of the stack.

The next work unit on the stack becomes the

currently active one.

Processing the First SQL Statement in the Work Unit

Although a work unit may have been established and made the currently active

work unit, it is not known to the database manager until the first SQL statement in

the work unit is executed. When this SQL statement is processed, the work unit id

is obtained from CMS, a logical path (work unit) is established between the

application and the DB2 Server for VSE & VM resource, and the user is connected

to either the default application server or the explicitly connected application

server. (The default application server is the one established by the SQLINIT

EXEC.) The CONNECT statement can be used to connect to the desired application

server.

If the work unit id is already known, no change occurs in the database to which

the user is connected in that work unit, unless the user explicitly issues a

CONNECT to change the database.

Invoking Another Application Program

One DB2 Server for VSE & VM application can be invoked from another. By

starting a separate CMS work unit before invoking the second application, the

calling application will not be affected by any COMMIT or ROLLBACK statement

issued from the called application. When the called application pops its work unit

Chapter 11. Special Topics 287

id from the top of the stack, control is returned to the first application. The calling

application is in the same state as it was before it called the other application. The

calling application and the called application can access the same database or

different databases.

Figure 64 illustrates how the calling program can be isolated from the work

committed or rolled back by the called program.

 Invoking Applications in CMS SUBSET

A DB2 Server for VSE & VM application (for example ISQL) can interrupt

processing of its logical unit of work to go into CMS SUBSET and invoke another

DB2 Server for VSE & VM application. The processing done by the invoked

application does not affect the invoking program. When control is returned to the

invoking program, the LUW is in the same state as it was before going into CMS

SUBSET.

To prevent the application in the CMS SUBSET from affecting any work done by

the invoking application in normal CMS, the SQLRMEND EXEC cannot be used

with the COMMIT ALL or ROLLBACK ALL parameters while in CMS SUBSET

mode. (See the DB2 Server for VSE & VM Database Administration manual for more

information on the SQLRMEND EXEC.)

Processing Applications Concurrently

More than one DB2 Server for VSE & VM application can concurrently process

against the same DB2 Server for VSE & VM database or different DB2 Server for

VSE & VM databases. The application server ensures that processing done by one

application is independent of that done by another. In order to do this, the server

acquires and manages work units for each application.

Accessing the Database from Different Points in the Program

By acquiring two or more work units, an application can logically access the same

database from different points in the application. These work units (and their paths

into the database) cannot be processed concurrently.

Copying Data across Databases

Applications can copy data from one database to another by following these steps:

1. Establish a work unit #1.

2. CONNECT to database #1.

3. Establish a work unit #2.

4. CONNECT to database #2.

5. Make work unit #1 the current work unit.

6. Open a cursor and read into an array as many rows as feasible.

7. Make work unit #2 the current work unit.

Program 1 Program 2

WU1 WU2

Start .
.
.

COMMIT/ROLLBACK

End

Establish WU2
Call Program 2
Re-establish WU1

.

.

.

.

.

Figure 64. Program Transitioning Using CMS Work Units

288 Application Programming

8. Open an insert cursor and put all rows from an array into a table.

9. Repeat until all rows are read and put into a table.

How Locking Works with CMS Work Units

If an active work unit requests a SHARE lock on a DB2 Server for VSE & VM

resource, and a suspended work unit has an EXCLUSIVE lock on the same

resource, the active work unit has to wait until the EXCLUSIVE lock is released.

Since the suspended work unit cannot resume processing until the active work

unit is released or suspended, the user will be in an infinite wait state unless a

cancel is issued or the agent is forced off.

This same locking problem will occur if the suspended work unit has a SHARE

lock on the resource and the active work unit requests an EXCLUSIVE lock on the

same resource.

Environmental Considerations

To use CMS work units, your CMS virtual machine and the database virtual

machine must be running under the VM/ESA operating system, the application

server must be running in multiple user mode, and the Work Unit option in the

SQLINIT EXEC must be set to yes (the default) at initialization time. See the DB2

Server for VSE & VM Database Administration manual for more information on

SQLINIT EXEC.

The database manager does not reuse links for different work units. If you no

longer need a work unit, you should enter either COMMIT RELEASE or

ROLLBACK RELEASE, to free the (APPC/VM) path for reuse.

Performance Considerations

There is a degradation in performance when SQLINIT WORKUNIT (YES) is

specified either directly, or indirectly as the default. This applies even if the

application is not using multiple work units.

Ensuring Data Integrity

Data integrity refers to the accuracy and correctness of data in the database. When

related changes are made to a database, the database manager maintains integrity

of the data by ensuring that either all or none of the changes are made. This

protects other users and programs from using inconsistent or wrong data. This

type of integrity is called atomic integrity.

Data integrity is also maintained by ensuring the uniqueness of certain data in the

database. For example, the SUPPLIERS table must not have duplicate supplier

numbers (SUPPNO). Using this integrity rule, the database manager ensures that

duplicates do not exist. This type of integrity is called entity integrity.

For consistency and integrity, when one table references values in another table,

the referenced values must exist in both tables, or the reference is not valid. The

database manager automatically enforces rules that you define on the tables. These

rules are called referential constraints. Enforcement of referential constraints ensures

the referential integrity of the data referenced.

Chapter 11. Special Topics 289

Ensuring Entity Integrity

The rule that each row in the EMPLOYEE table must represent one and only one

employee is an example of entity integrity. By defining a primary key on the table,

you can ensure that duplicate rows do not occur, thereby enforcing entity integrity.

For example, in the following SQL statement, the column EMPNO is defined as a

primary key, so a unique index is automatically created on that column. This

enforces uniqueness of the data in that column.

 CREATE TABLE EMPLOYEE

 (EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 SALARY DECIMAL(9,2) ,

 PRIMARY KEY (EMPNO)

)

Using Unique Constraints

A unique constraint enables you to enforce data integrity without having to

enforce entity integrity. While a primary key can ensure that each row in the

EMPLOYEE table represents one and only one employee, a unique constraint can

ensure that each entry in another column is unique. For example, a company has

one telephone for every employee and wants to maintain a set of unique phone

numbers. Its database, however, already uses an employee number as a primary

key. A unique constraint can ensure that no phone numbers are repeated in the

table. Also, if the phone number consists of several columns (area code, 7-digit

number, extension), the unique constraint can include all those columns.

 CREATE TABLE EMPLOYEE

 (EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 AREACODE CHAR(3) NOT NULL,

 PHONENUM CHAR(7) NOT NULL,

 PHONEEXT CHAR(4) NOT NULL,

 PRIMARY KEY (EMPNO)

 UNIQUE PHONE (AREACODE,PHONENUM,PHONEEXT)

)

The ALTER TABLE command can be used to add, activate, deactivate, or remove a

unique constraint. Another way to remove a unique constraint is either by

dropping the table or the dbspace. Although a unique index is created when the

unique constraint is created, the constraint cannot be dropped by dropping the

index.

When Creating a View

The WITH CHECK OPTION clause in the CREATE VIEW statement is an example

of data integrity in the maintenance of data defined by a view. See “Creating a

View” on page 62.

Ensuring Referential Integrity

Defining Terms

Referential integrity defines the condition on a set of tables in which the existence

of values in one table depends on the existence of the same values in another table.

By enforcing referential constraints (referential integrity rules) that are part of the

table definitions, the database manager ensures the referential integrity of the data

in the tables.

290 Application Programming

Figure 65 on page 291 shows examples of relationships supported by the database

manager.

 You should be familiar with the following terms:

Relationship A relationship is formed by connecting two tables

directly. The tables are related through matching

column values in the tables. For example, in

Figure 65, tables T1 and T2 show a simple

relationship. T3 has two relationships with T4. T5

has two paths to T7 (one directly, the other through

T6), but only one relationship with T7. T5 also has a

relationship with T6. Tables are connected to each

other when relationships are formed.

Referential Constraint A relationship between a primary key and a

foreign key, along with a set of rules that define

how the relationship is maintained. This

relationship is that every foreign key value must

match a primary key value or be null.

Referential Cycle A set of referential constraints such that each table

in the set is a descendent of itself.

Referential Structure A set of tables that are related to each other by

T11

T9

T1

T2

T3

T4

T5

T6

T7

T8

T10

Figure 65. Table Relationships with Referential Integrity. T1, T2, ... are tables. Arrows point

from parent tables to dependent tables.

Chapter 11. Special Topics 291

referential constraints. For example, T5 is a parent

of both T6 and T7, which are its dependents. T7 is

also a dependent of T6.

Parent Table A table whose primary key is referenced in a

referential constraint. For example, T1 is the parent

of T2.

Dependent Table A table with a foreign key that is related to another

table (the parent) through a referential constraint.

For example, T4 is a dependent of T3.

Delete-Connected Table A table that may be involved in a delete operation

on another table.

Descendent Table A table is a descendent table if it is a dependent

table or a dependent of a descendent table. For

example, in Figure 65 on page 291, both T6 and T7

are descendent tables of T5.

Parent Row A row in a parent table with a primary key value

that is referenced by the foreign key value in at

least one row in a dependent table.

Dependent Row A row in a dependent table with a foreign key

value that matches a primary key value in the

parent table referenced in the referential constraint.

Self-Referencing Table A self-referencing table is both the parent and the

dependent table in the same relationship. This

relationship is not supported by the DB2 Server for

VSE & VM product. For example, T11 is a

self-referencing table.

Primary Key A set of non-null columns that together uniquely

identify every row in a table. The values in these

columns are known as primary key values.

Foreign Key A set of columns whose values are called foreign

key values. A foreign key only exists as part of a

referential constraint.

Ensuring Referential Integrity in New Tables

To ensure referential integrity in new tables, you must specify a primary key, a

foreign key, and a delete rule that together define the relationship between the

parent table and the dependent table. Delete rules specify what will happen to the

dependent rows if the corresponding parent row is deleted. Insert and update rules

are automatically defined on tables when primary keys and foreign keys are

defined on those tables.

The relationship is defined when the new table is created using the CREATE

TABLE statement.

You should be aware of the referential constraints of the tables you manipulate, as

well as the rules for those tables. In this way you can avoid violating any

referential constraints, and take appropriate action should you inadvertently do so.

In the example below, the EMPLOYEE table is the parent of the DEPARTMENT

table. This relationship is established by specifying a primary key (EMPNO) on the

EMPLOYEE table and a foreign key (MGRNO) on the DEPARTMENT table. This

relationship specifies that every manager listed in the DEPARTMENT table is also

292 Application Programming

listed in the EMPLOYEE table. The REFERENCES privilege is required on the

parent table. The foreign key is nullable.

 Adding Referential Integrity to Existing Tables

To add referential integrity to existing tables, you must add a primary key, a

foreign key, and a delete rule that together define the relationship between the

parent table and the dependent table. Delete rules specify what will happen to the

dependent rows if the corresponding parent row is deleted. Insert and update rules

are implicitly defined on tables when primary keys and foreign keys are defined

on those tables.

The relationship is defined using the ALTER TABLE statement.

When keys (primary or foreign) are added to an existing table, any packages that

depend on the table are invalidated. When the application programs are run again,

the packages will be dynamically repreprocessed. Refer to “Running the Program”

on page 144 (DB2 Server for VM) or “Running the Program” on page 182 (DB2

Server for VSE) for more information on dynamic repreprocessing.

As in the case of new tables, you should be aware of the referential constraints of

the tables you manipulate as well as the rules for those tables, in order to avoid

violating any referential constraints or to take appropriate action should you

inadvertently do so.

Consider the existing DEPARTMENT and PROJECT tables. The PROJECT table

was created by the following CREATE TABLE statement:

 The following ALTER TABLE statement adds a referential constraint to the

PROJECT table, thereby establishing a relationship between it and the existing

DEPARTMENT table:

CREATE TABLE EMPLOYEE

(EMPNO

FIRSTNME

MIDINIT

LASTNAME

WORKDEPT

PHONENO

SALARY

PRIMARY KEY (EMPNO)

CHAR(6) NOT NULL

VARCHAR(12) NOT NULL

CHAR(1) NOT NULL

VARCHAR(15) NOT NULL

CHAR(3) ,

CHAR(4) ,

DECIMAL(9,2) ,

)

CREATE TABLE DEPARTMENT

(DEPTNO

DEPTNAME

MGRNO

PRIMARY KEY (DEPTNO)

FOREIGN KEY MNUM (MGRNO)

REFERENCES EMPLOYEE ON DELETE SET NULL)

CHAR(3) NOT NULL

VARCHAR(36) NOT NULL

CHAR(6) ,

,

primary key

primary key

foreign key

CREATE TABLE PROJECT

(PROJNO

PROJNAME

DEPTNO

RESPEMP

PRSTAFF

PRIMARY KEY (PROJNO)

CHAR(6) NOT NULL

VARCHAR(24) NOT NULL

CHAR(3) NOT NULL

CHAR(6) NOT NULL

DECIMAL(5,2) ,

)

primary key

foreign key (To be added)

Chapter 11. Special Topics 293

ALTER TABLE PROJECT

 ADD FOREIGN KEY DNUM (DEPTNO)

 REFERENCES DEPARTMENT ON DELETE CASCADE;

In this relationship, DEPARTMENT is the parent table and PROJECT is the

dependent table. This specifies that every department that is responsible for a

project is also in the DEPARTMENT table.

Note: The ALTER TABLE statement can also be used to defer the enforcement of

referential constraints or cause the removal of referential constraints. These

topics are discussed in the section “Enforcing Referential Integrity” on page

299.

Managing Table Relationships

The ALTER TABLE statement can be used to add, drop, activate, or deactivate

primary and foreign keys. Various clauses of the statement alter the keys that

establish relationships between tables. When the ALTER TABLE statement

establishes or changes relationships, specific privileges are required on parent

tables and dependent tables. Table 33 shows the privileges that are required.

 Table 33. Privileges to Use the ALTER TABLE Statement

 ALTER TABLE Clause

Privilege on

 Parent Table

Privilege on

 Dependent Table

Add Column ALTER

Add Primary Key ALTER

Add Foreign Key REFERENCES ALTER

Drop Primary Key ALTER

 REFERENCES1

ALTER

Drop Foreign Key REFERENCES ALTER

Deactivate Primary Key ALTER

 REFERENCES1

ALTER

Deactivate Foreign Key REFERENCES ALTER

Activate Primary Key ALTER

 REFERENCES1

ALTER

Activate Foreign Key REFERENCES ALTER

Note: The REFERENCES privilege is required only if the parent table has

dependents.

You can grant to or revoke from another user the privilege to add, drop, activate,

or deactivate a relationship between a parent table and its dependent. In order to

enter any of these statements, you must have the REFERENCES privilege on the

parent table whenever a referential constraint is to be:

v Created on a new table (CREATE TABLE)

v Added to an existing table (ALTER TABLE)

v Dropped, activated, or deactivated (ALTER TABLE).

294 Application Programming

By revoking the privileges previously granted on tables in a referential structure,

you can prevent the accidental removal of constraints that your applications may

depend on.

Modifying Applications to Ensure Integrity

Applications that currently enforce consistency and integrity of their data can be

modified to let the database manager do the checking. Using the referential

constraints and the integrity rules that apply to the tables containing the data, the

system checks that the rules are adhered to, and thereby enforces integrity of the

data. As this function can be performed by the database manager, some existing

code can be removed from the application.

Modifying Data in Tables Containing Referential Constraints

To maintain the consistency and integrity of the data, the database manager checks

that integrity rules for insert, update, and delete operations are followed.

Applying Insert Rules: The database manager checks the implicit insert rules when

a row is inserted into either the parent or a dependent table in a referential

structure. When a row is inserted into a parent table, the database manager checks

that the primary key remains unique and does not contain null values. When a

row is inserted into a dependent table, the database manager checks each foreign

key for the following:

v Each has a matching primary key in the parent table, or

v Each contains a null value in one or more of its columns.

Assuming for the moment that department D21 does not already exist in the

parent table (DEPARTMENT), the following INSERT statement adds a new row to

DEPARTMENT.

 INSERT INTO DEPARTMENT (DEPTNO,DEPTNAME,MGRNO,ADMRDEPT)

 VALUES (‘D21’,‘ADMINISTRATION SYSTEMS’,‘000070’,‘D01’)

Note: The primary key (the DEPTNO column) in the DEPARTMENT table remains

unique and does not contain null values.

 Table 34. Part of Department Table

DEPTNO DEPTNAME MGRNO

A00 SPIFFY COMPUTER SERVICE DIV. 000010

B01 PLANNING 000020

C01 INFORMATION CENTER 000030

D01 DEVELOPMENT CENTER ?

D11 MANUFACTURING SYSTEMS 000060

E11 OPERATIONS 000090

D21 ADMINISTRATION SYSTEMS 000070

Assuming for the moment that project IF2000 does not already exist in the

dependent table (PROJECT), the following INSERT statement adds a new row with

DEPTNO = C01 to PROJECT. This value for DEPTNO must exist in the parent

(DEPARTMENT) table.

 INSERT INTO PROJECT (PROJNO,PROJNAME,DEPTNO,RESPEMP,PRSTAFF)

 VALUES (‘IF2000’,‘USER EDUCATION’,‘C01’,‘000030’,1.00)

Chapter 11. Special Topics 295

Applying Update Rules: When a key value is updated, the database manager

checks the implicit update rules. A key value may be updated when a parent row

(primary key) or a dependent row (foreign key) is updated. If the primary key is

updated due to updates made to the parent table, the database manager checks

that the updated primary key is unique and is not null. All rows in the dependent

table that reference the primary key must first be deleted or updated, or an error

will occur. This ensures that the dependent table is not referencing an “old”

primary key.

If foreign keys are updated, the database manager checks that each updated

foreign key has either a matching primary key in the corresponding parent table,

or that the updated foreign key is a null key. A foreign key is null when one or

more of its column values are null.

Notes:

1. If a searched update contains a subquery, any table referenced in the subquery

must not be a dependent of the table in the UPDATE clause. (See the DB2

Server for VSE & VM SQL Reference manual for more information.) In the

example below, the NAME table must not be a descendent of the EMPLOYEE

table:

 UPDATE EMPLOYEE

 SET SALARY = 65000.00

 WHERE LASTNAME = ’SMITH’ AND EXISTS

 (SELECT * FROM NAME

 WHERE LASTNAME = ’SMITH’)

2. In recoverable storage pools, when a searched update is performed against a

column or set of columns, defined in a unique index, primary key, or unique

constraint, uniqueness is checked after all rows have been updated. If

duplicates exist, then the statement is rolled back.

3. In nonrecoverable storage pools, searched updates are sensitive to the order

(ascending or descending) of the data. Since a unique index is automatically

created on a primary key column, you cannot use a searched update against a

primary key column. This ensures that updates to the primary key are

independent of the order of the data.

4. Positioned updates are sensitive to the order (ascending or descending) of the

data. Since a unique index is automatically created on a primary key column,

you cannot use a positioned update against a primary key column. This

ensures that updates to the primary key are independent of the order of the

data.

The following operations change the DEPTNO B01 to F01 in the DEPARTMENT

table. Since DEPTNO is a primary key in the parent table, the foreign key with

DEPTNO equal to B01 must also be changed in the dependent table (PROJECT).

Primary
key
column

Part of parent table (DEPARTMENT)

DEPTNO DEPTNAME MGRNO

C01 INFORMATION CENTER 000030

Foreign
key column

Part of dependent table (PROJECT)

PROJNO

IF2000

PROJNAME

USER EDUCATION

DEPTNO

C01

RESPEMP

000030

PRSTAFF

1.00

296 Application Programming

INSERT INTO DEPARTMENT (DEPTNO,DEPTNAME,MGRNO,ADMRDEPT)

 VALUES (‘F01’,‘PLANNING’,‘000020’‘,A00’)

 UPDATE PROJECT

 SET DEPTNO = ’F01’

 WHERE DEPTNO = ’B01’

 DELETE FROM DEPARTMENT

 WHERE DEPTNO = ’B01’

 The example below changes the DEPTNO A00 to D11 for the ADMIN SERVICES

project in the PROJECT table. Since DEPTNO is a primary key in the parent table,

the database manager ensures that DEPTNO D11 in the dependent table

(PROJECT) also exists in the parent table (DEPARTMENT).

 UPDATE PROJECT

 SET DEPTNO = ’D11’

 WHERE PROJNAME = ’ADMIN SERVICES’

 Applying Delete Rules: The database manager does not do any checking when

data is deleted from dependent tables. The delete rule in a referential constraint

clause defines what action should be taken by the database manager when a

parent row is deleted. The delete rules are:

Primary
key
column

Part of parent table (DEPARTMENT)

DEPTNO DEPTNAME MGRNO

F01 PLANNING 000020

Foreign
key column

Part of dependent table (PROJECT)

PROJNO

PL2100

PROJNAME

WELD LINE PLANNING

DEPTNO

F01

RESPEMP

000020

PRSTAFF

1.00

Primary
key
column

Part of parent table (DEPARTMENT)

DEPTNO DEPTNAME MGRNO

D11 MANUFACTURING
SYSTEMS

000060

Foreign
key column

Part of dependent table (PROJECT)

PROJNO

AD3100

PROJNAME

ADMIN SERVICES

DEPTNO

D11

RESPEMP

000010

PRSTAFF

6.50

Chapter 11. Special Topics 297

v The RESTRICT rule prevents the deletion of a parent row unless all the

dependent rows have been deleted first. This is the default rule.

v The SET NULL rule sets all nullable columns of the foreign key to null before

deleting the parent row. At least one column of the foreign key must be nullable.

v The CASCADE rule deletes rows at each level containing dependent tables that

have the referential constraint CASCADE.

Restrictions on Using Delete Rules:

v If a table with a referential constraint of CASCADE has dependent tables that

have different delete rules, such as RESTRICT, a delete operation is successful

only if the object row is not found in the dependent table. If the object row is

found in the dependent table, the CASCADE delete operation is rolled back.

That is, the SET NULL and RESTRICT rules maintain their referential integrity

between parent and dependent tables.

v A table cannot be delete-connected to itself in a referential cycle involving two

or more tables.

v If a dependent table is delete-connected to the parent table through multiple

delete paths, each path must have the same delete rule and this rule cannot be

SET NULL.

v If a Searched DELETE contains a subquery, any table referenced in the subquery

and any table that has a referential constraint of CASCADE or SET NULL with

the table referenced in the subquery must not be a dependent of the table in the

FROM clause. (See the DB2 Server for VSE & VM SQL Reference manual for more

information.)

In the following example, the NAME table must not be a descendent of the

EMPLOYEE table:

 DELETE FROM EMPLOYEE

 WHERE LASTNAME = ’SMITH’ AND EXISTS

 (SELECT * FROM NAME

 WHERE LASTNAME = ’SMITH’)

In the example below, the row with EMPNO equal to 000050 is deleted from the

EMPLOYEE table:

 DELETE FROM EMPLOYEE

 WHERE LASTNAME = ’GEYER’

Primary
key
column

Part of parent table (DEPARTMENT)

DEPTNO DEPTNAME MGRNO

E01
SUPPORT SERVICES

?

Foreign
key column

Part of PROJECT table

PROJNO

OP1000

PROJNAME

OPERATION SUPPORT

DEPTNO

E01

RESPEMP

?

PRSTAFF

6.00

Foreign
key
column

Foreign
key column

298 Application Programming

Because the EMPLOYEE table is a parent table and the delete rule is SET NULL in

the relationship that exists between the EMPLOYEE table and the DEPARTMENT

table, the database manager sets MGRNO equal 000050 to null in the

DEPARTMENT table. Also, because the EMPLOYEE table is a parent table and the

delete rule is SET NULL in the relationship that exists between the EMPLOYEE

table and the PROJECT table, the database manager sets RESEMP equal 000050 to

null in the PROJECT table. (Refer to Figure 66 on page 300 for more information.)

In the example below, the row with DEPTNO equal to D01 is deleted from the

DEPARTMENT table:

 DELETE FROM DEPARTMENT

 WHERE DEPTNAME = ’DEVELOPMENT CENTER’

Because the DEPARTMENT table is a parent table and the CASCADE rule was set

in the relationship that exists between the DEPARTMENT table and the PROJECT

table, the row with DEPTNO D01 is also deleted from the PROJECT table.

Generating SQL Statements in Response to Table Modifications

When INSERT, UPDATE, and DELETE statements are issued against tables in a

referential structure, the database manager generates internal SQL statements,

which it uses to ensure the consistency and integrity of the data in the tables. The

number of rows affected, the cost of processing the INSERT, UPDATE, DELETE,

and the internally generated statements are returned in the SQLERRD fields in the

SQLCA. The SQLERRD(3) gives the number of rows that were processed

successfully. Upon successful completion of the DELETE statement, SQLERRD(5)

contains the number of dependent rows that were successfully deleted or set to

null. For other data-manipulating language (DML) statements, SQLERRD(5) is set

to zero. The relative cost of processing all the statements is given in the

SQLERRD(4) field.

Additional information on internally generated statements can be found in tables

updated by the EXPLAIN statement. (This statement is discussed in the DB2 Server

for VSE & VM SQL Reference manual.) To determine this information, enter the

EXPLAIN statement for the INSERT, UPDATE, or DELETE statement.

Enforcing Referential Integrity

Referential constraints may be enforced as soon as they are defined, or their

enforcement may be deferred. If the constraints are enforced as soon as they are

defined, the insert, update, and delete integrity rules are enforced immediately

when the INSERT, UPDATE, and DELETE statements are issued.

To defer the enforcement of a constraint is to render the constraint inactive so that

it is not immediately enforced when the INSERT, UPDATE, and DELETE

statements are issued. This is done by deactivating either the primary key, the

dependent foreign key(s), or the foreign key(s). If any of these keys are

deactivated, both the parent and the dependent tables become inactive and

unavailable for data manipulation statements to general users (that is, other than

the DBA and the owner of the tables). However, these tables are available for data

definition statements.

When a primary key is deactivated, all active dependent foreign keys are implicitly

deactivated, and the primary key index is dropped from the parent table. Both

parent and dependent tables become inactive. A primary key cannot be implicitly

deactivated.

Chapter 11. Special Topics 299

With a table in an inactive state, only the owner of the table or a database

administrator (DBA) can enter data manipulating language (DML) statements

against it. No one can enter INSERT, UPDATE, and DELETE statements that cause

statements to be generated against an inactive table.

When keys (either primary or foreign) are activated, the constraints are

automatically verified. If they cannot be verified because of integrity problems, an

error message is returned, and the tables remain unavailable for data manipulation

statements entered by users other than the DBA or the owner.

When keys (either primary or foreign) are activated or deactivated, packages that

depend on the table are invalidated. When the program is run again, it is

dynamically repreprocessed.

In general, you would defer the enforcement of referential constraints between

tables when large amounts of data are to be loaded, or when data is to be loaded

in an order that violates the referential constraint at some point during the loading

operation. For further information, refer to the DB2 Server for VSE & VM Database

Administration manual.

The relationships among the EMPLOYEE, DEPARTMENT, and PROJECT tables are

shown in Figure 66.

DEPARTMENT

MGRNO
DEPTNO

. . . .

PROJECT

DEPTNO
RESEMP

. . . .

WORKDEPT
EMPNO

. . . .

EMPLOYEE

(R)

(N)

(N)(N)

Figure 66. Relationships among the TABLES. Arrows point from primary keys in parent tables

to foreign keys in dependent tables. Delete rules are labeled as (C) = CASCADE, (N) = SET

NULL, (R) = RESTRICT.

300 Application Programming

Then,

 ALTER TABLE DEPARTMENT DEACTIVATE PRIMARY KEY

explicitly deactivates the primary key in DEPARTMENT, and implicitly deactivates

the foreign keys DNUM in the PROJECT table and WORKNUM in the EMPLOYEE

table. The DEPARTMENT, EMPLOYEE, and PROJECT tables become inactive.

Therefore, only the owner of these tables or the DBA can enter data manipulation

statements against the tables.

However,

 ALTER TABLE DEPARTMENT DEACTIVATE FOREIGN KEY MNUM

will not affect the primary key in the EMPLOYEE table. However, both the

EMPLOYEE table and the DEPARTMENT table become inactive since the foreign

key affects both tables. As mentioned earlier, when tables become inactive, only the

owner of the tables or the DBA can enter data manipulation statements against

them.

Removing Referential Constraints

To remove a referential constraint, you must drop the foreign key. When a table

that contains foreign keys is dropped, the referential constraints associated with

that table are removed. You can drop a table explicitly with the DROP TABLE

statement, or implicitly with the DROP DBSPACE statement. You can also drop the

foreign key with the ALTER TABLE statement, provided that you have the ALTER

privilege on the dependent table and the REFERENCES privilege on the parent

CREATE TABLE EMPLOYEE

(EMPNO
FIRSTNME
MIDINIT
LASTNAME
WORKDEPT
PHONENO
SALARY
PRIMARY KEY (EMPNO)

CHAR(6)
VARCHAR(12)
CHAR(1)
VARCHAR(15)
CHAR(3)
CHAR(4)
DECIMAL(9,2)

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

,
,
,
)

NOT NULL,
NOT NULL,

,
,

CREATE TABLE DEPARTMENT

(DEPTNO
DEPTNAME
MGRNO
PRIMARY KEY (DEPTNO)
FOREIGN KEY MNUM (MGRNO)

REFERENCES EMPLOYEE ON DELETE SET NULL)

CHAR(3)
VARCHAR(36)
CHAR(6)

primary key

primary key

foreign key

ALTER TABLE EMPLOYEE ADD FOREIGN KEY WORKNUM (WORKDEPT)
REFERENCES DEPARTMENT ON DELETE SET NULL

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

,
,

CREATE TABLE PROJECT

(PROJNO
PROJNAME
DEPTNO
RESPEMP
PRSTAFF
PRIMARY KEY (PROJNO)
FOREIGN KEY DNUM (DEPTNO)

REFERENCES DEPARTMENT ON DELETE CASCADE)

CHAR(6)
VARCHAR(24)
CHAR(3)
CHAR(6)
DECIMAL(5,2)

primary key

foreign key

Chapter 11. Special Topics 301

table. For descriptions of the above three statements, see Chapter 9, “Maintaining

Objects Used by a Program,” on page 255.

When a table that contains a primary key is dropped, the database manager drops

the primary key and any foreign keys that reference the primary key and removes

the referential constraints associated with those foreign keys. The ALTER TABLE

statement can also be used to drop a primary key directly. To use the ALTER

TABLE statement for this purpose, you must have the ALTER and REFERENCES

privileges on the parent table as well as the ALTER privilege on all dependent

tables.

When keys are dropped, any packages that depend on the table are invalidated.

When the program is run again, it is dynamically repreprocessed. The new

package no longer contains internally generated statements to enforce referential

integrity.

Switching Application Servers

You can access multiple application servers from within an application program,

but only one application server can be accessed at a time. DB2 Server for VM

application servers can reside on the same processor as the user, or on another

processor (in the TSAF collection or the SNA network). VSE application servers

must reside on the same processor as the user, if DRDA protocol is not being used.

If the VSE application server does not reside on the same processor as the

CICS/VSE online user, the VSE application server must be accessed during the

DRDA protocol. This VSE server must be defined as a remote DRDA server to the

DB2 Server for VSE Online Resource Adapter. VM application servers, accessed

through VSE guest sharing or using the DRDA protocol, may reside on the same

processor as the user, or on another processor (in the TSAF collection or the SNA

network). If a program is written to access multiple application servers, its package

must exist on all of them.

This section discusses these authorities in more detail, and explains how to switch

application servers from your application program. For a detailed discussion on

establishing communication links between application requesters and application

servers, refer to the DB2 Server for VM System Administration or the DB2 Server for

VSE System Administration manual.

Identifying Switching Options

Use the CONNECT statement to switch among application servers if you want

application programs to connect to different application servers while running. For

more information on the CONNECT statement, see the DB2 Server for VSE & VM

SQL Reference manual.

Comparing Switching to Other Methods (DB2 Server for VM)

Figure 68 on page 303 and Figure 70 on page 306 show how an application

program, indicated by PGM, accesses three application servers with and without

switching application servers in the program. The application servers can reside on

the same processor as the program or on a different processor.

The application server specified by the SQLINIT EXEC is the default application

server. In Figure 70 on page 306 the default application server is DB01.

If you are not switching application servers in the program, to access another

application server you must terminate the program, reissue the SQLINIT EXEC,

302 Application Programming

and run the program again. In Figure 68, for example, to switch from application

server DB01 to application server DB02, you must terminate the program PGM,

reissue SQLINIT, and run the program again.

 When you are switching application servers in the program, an application

program can switch to a new application server during execution with the

CONNECT statement. Like the SQLINIT method, a package for the program must

exist on all application servers it accesses, and each logical unit of work must end

before you switch to a different application server. See “Parameters for SQLPREP

EXEC for Single and Multiple User Modes” on page 118 for the options used to

preprocess the program on multiple application servers.

 How to Switch Servers (DB2 Server for VSE)

Figure 69 on page 304 shows how an application program, indicated by PGM,

accesses three application servers by switching application servers in the program.

The application servers can reside on the same processor as the program or on a

different processor. When you are switching application servers in the program, an

application program can switch to a new application server during execution with

the CONNECT statement. A package for the program must exist on all application

servers it accesses, and each logical unit of work must end before you switch to a

different application server. See “Preprocessing the Program on Multiple

Application Servers” on page 306 for more details.

PGM PGM PGMSQLINIT

DB(DB01)

SQLINIT

DB(DB02)

SQLINIT

DB(DB03)

Application

Server

DB01

Application

Server

DB02

Application

Server

DB03

Figure 67. Switching Application Servers NOT Implemented within the Program

PGMSQLINIT
DB(DB01)

Application
Server
DB01

Application
Server
DB02

Application
Server
DB03

Figure 68. Switching Application Servers Implemented

Chapter 11. Special Topics 303

Accessing a New Application Server

An DB2 Server for VM application accesses the application server established by

the SQLINIT command when:

v The first CONNECT statement in an application does not contain the TO clause.

v Either a COMMIT RELEASE or ROLLBACK RELEASE statement is executed

and the next statement is not a CONNECT statement with the application server

name specified in the TO clause.

v No CONNECT statement is executed by an application. That is, an implicit

connect is performed.

An DB2 Server for VSE application accesses the default application server when:

v The first CONNECT statement in an application does not contain the TO clause.

v Either a COMMIT RELEASE or ROLLBACK RELEASE statement is executed by

a batch application and the subsequent CONNECT statement does not contain

the TO clause.

v No CONNECT statement is executed by a CICS/VSE application. That is, an

implicit connect is performed.

DB2 Server for VSE

For more information about the defaults that determine the application server

that is accessed, refer to the DB2 Server for VSE System Administration manual.

 The application accesses a new application server after executing: An application

accesses a specific application server after executing:

v a CONNECT statement with the application server name specified in the TO

clause.

DB2 Server for VSE

You must enter a CONNECT statement from a batch application after a

COMMIT RELEASE statement or ROLLBACK RELEASE statement to

reestablish the user ID and target application server. Otherwise subsequent

SQL statements are not successful (SQLCODE -563). A null CONNECT

statement is not sufficient.

 For DB2 Server for VM to query the user ID and the identity of the application

server to which you are currently connected, as well as the relational database

management system (RDBMS) running the application server, do one of the

PGM

Application
Server
DB01

Application
Server
DB02

Application
Server
DB03

Figure 69. Switching Application Servers Implemented - DB2 Server for VSE

304 Application Programming

following from within an application program. For DB2 Server for VSE to query

the user ID and the identity of the application server to which you are currently

connected, enter one of the following from within an application program.

v A null CONNECT statement, which returns the user ID and the identification of

the RDBMS (DB2 Server for VM) and the application server in the SQLCA. Refer

to the discussion of the CONNECT statement in the DB2 Server for VSE & VM

SQL Reference manual for a description of the format and location of the

information that is returned.

For DB2 Server for VSE if a null CONNECT is issued as the first SQL statement

in a batch application, blanks are returned in the SQLCA for the user ID and

application server name and the execution of subsequent SQL statements are not

successful (SQLCODE -563).

v A SELECT statement requesting the USER and CURRENT SERVER, which

returns the user ID and the identification of the application server in the host

variables associated with the USER and CURRENT SERVER special registers.

If you are using DB2 Server for VM, from your terminal, enter:

v An SQLQRY command, which displays the user ID and the identification of the

RDBMS and the application server on the terminal. Refer to the discussion of the

SQLQRY command in the DB2 Server for VSE & VM Database Administration

manual for a description of the format of the information that is returned and

the restrictions on the use of the SQLQRY command.

Illustrating Sample Code

Figure 70 on page 306 shows how an application can take advantage of switching

application servers.

Chapter 11. Special Topics 305

In the above example, the application connects to three application servers (DB01,

DB02, and DB03), and performs a series of operations when accessing each one.

When accessing DB01, the program retrieves information from the application

server (with the FETCH statement) and processes the information.

Next, it accesses DB02, and some rows are deleted from a table; then accesses

DB03, and rows are inserted into a table.

Preprocessing the Program on Multiple Application Servers

An application program that allows access to multiple application servers with the

CONNECT statement must exist on every application server that the program is to

access.

The DB2 Server for VSE preprocessors provide the DBNAME parameter to

preprocess a program on different application servers. In addition, the CBND

transaction provides the DBLIST parameter to create a package on different

application servers.

The DB2 Server for VM SQLPREP EXEC provides the option to preprocess a

program on multiple application servers with the DBFile or DBList parameter.

However, an application using either of these parameters is preprocessed on one

application server at a time. Each of the application servers provided in the DBFile

or DBList parameter preprocesses the program separately and consecutively, and

generates a source listing. These source listings are concatenated.

Program In User's Machine

Declarations, (and so forth)

DB_NAME = 'DB01'
EXEC SQL CONNECT TO :DB_NAME
EXEC SQL DECLARE CUR1 CURSOR FOR SELECT . . .
EXEC SQL OPEN CUR1
DO until all rows fetched:

EXEC SQL FETCH CUR1 INTO

(Use data)
END DO
EXEC SQL CLOSE CUR1
EXEC SQL COMMIT RELEASE

.

.

.
DB_NAME = 'DB02'
EXEC SQL CONNECT TO :DB_NAME
EXEC SQL DELETE FROM . . . WHERE . . .
EXEC SQL COMMIT RELEASE

.

.

.
DB_NAME = 'DB03"
EXEC SQL CONNECT TO :DB_NAME
EXEC SQL INSERT INTO . . . VALUES . . .
EXEC SQL COMMIT RELEASE

Application
Server
DB01

Application
Server
DB02

Application
Server
DB03

Figure 70. Pseudocode Illustrating How to Switch Application Servers

306 Application Programming

When an application that accesses different application servers is being

preprocessed, certain warnings may be issued by the preprocessor. For example, if

TABLE1 exists in DB01, but your application program is preprocessed against

DB02 or DB03, you will receive warning messages that the table does not exist in

those application servers. If your program does not access TABLE1 in DB02 or

DB03, these messages can be ignored; however, if TABLE1 will be accessed in

either DB02 or DB03, you must create TABLE1 in the accessed application server.

You should repreprocess the program on the application servers that you updated

before executing the program. If you are using the preprocessing option

CTOKEN=NO, you only need to preprocess the application program on one

application server. If you specify CTOKEN=YES, you must repreprocess on all

application servers that the program accesses to get the same timestamp.

During execution, the table being referenced in an SQL statement may reside in the

currently accessed application server or in another application server. In fact, a

table of the same name, but with different attributes, may be in the application

server. The database manager issues a warning message that there are

inconsistencies, but preprocessing will continue. The statement causing the

warning remains in the package, and will only cause an application failure if it is

referenced at run time. Conditions that will generate a warning and the

corresponding SQLCODE include:

v Column column was not found in table owner.table. (SQLCODE = +205 and

SQLSTATE='01533')

v Incompatible data types were found in an expression or compare operation.

(SQLCODE = +401 and SQLSTATE='01578')

v The string representation of a date/time value has invalid syntax. (SQLCODE =

+180 and SQLSTATE='01572')

For more information on preprocessing against unlike DB2 Server for VM

application servers, refer to “Preprocessing the Program” on page 114.

Condition Handling with LE/VSE (DB2 Server for VSE)

The DB2 Server for VSE environment is sensitive to errors or conditions. A failing

SQL transaction or application can potentially leave a DB2 Server for VSE database

in an inconsistent state. For this reason, it is essential that DB2 Server for VSE

knows about the failure of a transaction or application that has been updating a

database so that it can perform database rollback.

When a user runs an application with the TRAP(ON) run-time option of LE/VSE

and the DB2 Server for VSE application is running in Single User Mode, LE/VSE

and DB2 Server for VSE keep track of calls to and returns from the database. If a

program interrupt or abend occurs when the application is running, the LE/VSE

condition manager is informed whether the problem occurred in the application or

in the database manager. If the program interrupt or abend occurs in the database

manager, the LE/VSE condition handler passes the condition back to DB2 Server

for VSE.

If a program interrupt or abend occurs in the application outside the database

manager, the LE/VSE condition manager will perform its own condition handling

actions. If the condition manager gets control then the user must do one of the

following:

v Resolve the error completely so that the application can continue.

Chapter 11. Special Topics 307

v Make sure that the application terminates abnormally by using the

ABTERMENC(ABEND) run-time option of LE/VSE to transform all abnormal

terminations into operating system abends in order to cause DB2 Server for VSE

to do the necessary recovery processing when the DB2 Server for VSE server is

warm started.

Note: The following methods are available for specifying any LE/VSE run-time

options, including ABTERMENC(ABEND):

1. As an installation wide default through the CEEDOPT assembler

language source file.

2. In the assembler user exit routine CEEBXITA.

3. As an application default through the CEEUOPT assembler language

source file. CEEUOPT is assembled into an object module which is

linked with the application program.

4. In JCL through the PARM parameter of the JCL EXEC statement.

5. In PL/I source code through the PLIXOPT string.

See the IBM Language Environment for VSE/ESA Programming Guide for more

details.

v Provide a modified run-time assembler user exit (CEEBXITA) that transforms all

abnormal terminations into operating system abends. The assembler user exit

should check the return code and reason code or the CEEAUE_ABTERM bit,

and request an abend by setting the CEEAUE_ABND flag to ON, if appropriate.

Note: CEEBXITA assembler user exit is intended for use by the application

programmer. It is not intended for DB2 Server for VSE use. See the IBM

Language Environment for VSE/ESA Programming Guide for more details.

308 Application Programming

Appendix A. Using SQL in Assembler Language

Using ARIS6ASD, an Assembler Language Sample

Program (DB2 Server for VSE Only) 310

Using ARIS6ASC, an Assembler Language Sample

Program (DB2 Server for VM Only) 310

Acquiring the SQLDSECT Area 310

Imposing Usage Restrictions on the SQLDSECT

Area 312

Rules for Using SQL Statements in Assembler

Language 314

Identifying Rules for Case 314

Declaring Host Variables 314

Embedding SQL Statements 316

Using the INCLUDE Statement 316

Using Host Variables in SQL Statements . . . 317

Using DBCS Characters in Assembler Language 317

Handling SQL Errors 317

Using Dynamic SQL Statements in Assembler

Language 318

Defining DB2 Server for VSE & VM Data Types for

Assembler Language 319

Using Reentrant Assembler Language Programs 320

Using Stored Procedures 326

© Copyright IBM Corp. 1987, 2007 309

Using ARIS6ASD, an Assembler Language Sample Program (DB2

Server for VSE Only)

ARIS6ASD is an assembler language sample program for VSE systems that is

shipped with the DB2 Server for VSE product. It resides on the production disk for

the base product. You may find it useful to print this sample program before going

through this appendix as the hard copy will provide an illustration for many of the

topics discussed here.

Note, for example, how the program satisfies the requirements of the application

prolog and epilog. Near the beginning of the program, all the host variables are

declared, the SQLDSECT area is acquired (and set to zero), and error handling is

defined. Near the logical end of the program, the database changes are rolled back,

to assure that the database remains consistent for each use of the sample program.

(For your own applications, of course, you will enter a COMMIT statement.)

The DS and DC statements for the host variables were determined by referring to

Table 35 on page 319, which shows the assembler representation for each of the

DB2 Server for VSE data types supported by assembler programs. When you are

coding your own applications, you must obtain the data types of the columns that

your host variables interact with. This can be done by querying the catalog tables.

These tables are described in the DB2 Server for VSE & VM SQL Reference manual.

Using ARIS6ASC, an Assembler Language Sample Program (DB2

Server for VM Only)

ARIS6ASC is an assembler language sample program for VM systems that is

shipped with the DB2 Server for VM product. It resides on the production disk for

the base product. You may find it useful to print this sample program before going

through this appendix as the hard copy will provide an illustration for many of the

topics discussed here.

Note, for example, how the program satisfies the requirements of the application

prolog and epilog. Near the beginning of the program, all the host variables are

declared, the SQLDSECT area is acquired (and set to zero), and error handling is

defined. Near the logical end of the program, the database changes are rolled back,

to assure that the database remains consistent for each use of the sample program.

(For your own applications, of course, you will enter a COMMIT statement.)

The DS and DC statements for the host variables were determined by referring to

Table 35 on page 319, which shows the assembler representation for each of the

DB2 Server for VM data types supported by assembler programs. When you are

coding your own applications, you must obtain the data types of the columns that

your host variables interact with. This can be done by querying the catalog tables.

These tables are described in the DB2 Server for VSE & VM SQL Reference manual.

Acquiring the SQLDSECT Area

The assembler preprocessor puts all the variables and structures it generates within

a DSECT named SQLDSECT. The preprocessor also generates a fullword variable

called SQLDSIZ, which contains the length of the SQLDSECT DSECT in bytes.

Thus, for all assembler programs, you must provide an area of size SQLDSIZ, set

the area to zero, and provide addressability to the SQLDSECT DSECT.

310 Application Programming

Figure 71 shows DB2 Server for VSE sample code that does just that for VSE batch

and ICCF applications:

DB2 Server for VM

Use CMSSTOR OBTAIN macros to acquire storage. If you want to use CMS

OS or DOS simulation, you can use the following macros:

v GETMAIN for a CMS OS/VS program

v GETVIS for a CMS VSE program.

Note that SQLDSIZ is in bytes, and that you need the length in doublewords

for the CMSSTOR macro.

 Figure 72 on page 312 shows sample DB2 Server for VM pseudocode that can be

used to acquire the SQLDSECT area.

TESTNAME CSECT

 STM 14,12,12(13)

 BALR regx,0

 USING *,regx

 L 0,SQLDSIZ

 GETVIS ADDRESS=(1),LENGTH=(0)

 LR regy,1

 USING SQLDSECT,regy

 (add code to zero the area)

 .

 .

 .

 END

This area is needed only until the program is finished executing all SQL statements, at

which time the area should be freed (FREEVIS).

Figure 71. Acquiring the SQLDSECT Area for VSE Batch and ICCF Applications - (DB2

Server for VSE)

Appendix A. Using SQL in Assembler Language 311

If you know the approximate size of the SQLDSECT that will be generated in your

program, you can define an area (AREA DS CLxxxx) within your program and use

this as your SQLDSECT area. Your program will not be re-entrant if you use this

method.

The preprocessor generates the code to calculate SQLDSIZ directly in front of the

last statement in the source program. Make the last statement an END statement.

If the assembler preprocessor is run with the CHECK option, SQLDSECT and

SQLDSIZ are not generated. Errors occur if you attempt to assemble the output

generated by the preprocessor when the CHECK option is specified. See Chapter 4,

“Preprocessing and Running a DB2 Server for VM Program,” on page 111 or

Chapter 5, “Preprocessing and Running a DB2 Server for VSE Program,” on page

153 for more information about preprocessor parameters.

For DB2 Server for VSE CICS/VSE transactions, Figure 71 on page 311 does not

apply. Figure 73 is a CICS/VSE example.

 Note: You must provide a save area for all assembler programs.

Imposing Usage Restrictions on the SQLDSECT Area

There are two performance considerations about the SQLDSECT area that you

should be aware of:

v Acquire and clear the SQLDSECT area only once.

The DB2 Server for VSE examples shown in Figure 71 on page 311 and Figure 73

assume that the TESTNAME is entered once.

TESTNAME CSECT

 STM 14,12,12(13)

 BALR regx,0

 USING *,regx

 LA regy,7(0,0)

 A regy,SQLDSIZ

 SRL regy,3

 (save computed doubleword length for CMSSTOR RELEASE)

 LR 0,regy

 CMSSTOR OBTAIN,DWORDS=(0)

 LR regz,1

 USING SQLDSECT,regz

 (add code to zero the area)

 .

 .

 .

 (add code to free storage by CMSSTOR RELEASE)

 END

This area is needed only until the program is finished executing all SQL statements, at

which time the area should be freed (CMSSTOR RELEASE).

Figure 72. Acquiring a Dynamic SQLDSECT Area - DB2 Server for VM

label1 EQU regx

 EXEC CICS GETMAIN SET(label1) LENGTH(SQLDSIZ+2) INITIMG(00)

 USING SQLDSECT,regx

Figure 73. Acquiring the SQLDSECT Area for CICS/VSE Applications - DB2 Server for VSE

312 Application Programming

The DB2 Server for VM example shown in Figure 72 on page 312 assumes that

the TESTNAME is entered once. If TESTNAME is a subroutine of a mainline

module, and if TESTNAME is invoked many times, you should acquire the

SQLDSECT in the mainline module. The following is an example of how this

may be done:

1. In TESTNAME add an entry card as follows:

 ENTRY SQLDSIZ

This allows the field containing the size information for the SQLDSECT area

to be accessed externally.

2. The mainline module can now access the size information using the

following sequence:

For DB2 Server for VM

 L regy,=V(SQLDSIZ) GET POINTER TO FIELD CONTAINING SIZE

 LA 0,7(0,0) ROUND UP FOR DOUBLEWORDS

 A 0,0(,regy) SET LENGTH + 7

 SRL 0,3 CONVERT BYTES TO DOUBLEWORDS

 CMSSTOR OBTAIN,DWORDS=(0) GET STORAGE

 LR regy,1 SAVE POINTER TO SQLDSECT

 (Zero the SQLDSECT area.)

For DB2 Server for VSE

 L regy,=V(SQLDSIZ) GET POINTER TO FIELD CONTAINING SIZE

 L 0,0(,regy) SET LENGTH

 GETVIS ADDRESS=(1),LENGTH=(0)

 LR regy,1 SAVE POINTER TO SQLDSECT

 (Zero the SQLDSECT area.)

3. When the mainline module calls TESTNAME, it should pass the pointer to

the SQLDSECT. Assuming that regy still contains the pointer, TESTNAME

simply issues the appropriate USING statement as follows:

 TESTNAME CSECT

 STM 14,12,12(13)

 BALR regx,0

 USING SQLDSECT,regy

 .

 .

Depending on how many times TESTNAME is invoked, the above could be

an important performance consideration. Using the technique reduces the

path length because you only need to get, clear, and free storage once.

Further, the cleared SQLDSECT area serves as a “first pass” flag for the

batch/ICCF and CMS resource adapters. Thus, by letting the mainline

module initialize the SQLDSECT area only once, you further avoid

significant resource adapter “first pass” processing.

v Provide only one SQLDSECT area.

If you structure an application so that the mainline module invokes several

modules that each contain SQL commands, you need to provide only one

SQLDSECT area. The area that you provide must be the largest SQLDSECT area.

For example, suppose the mainline module invokes MODA and MODB, each of

which contains SQL commands, but which have different SQLDSECT area

requirements. The mainline module must satisfy the larger of the two

requirements.

By inserting the following into MODA and MODB, you could allow the

mainline module to calculate the SQLDSECT area requirement:

 INTO MODA: INTO MODB:

 MODADSIZ DC A(SQLDSIZ) MODBDSIZ DC A(SQLDSIZ)

Appendix A. Using SQL in Assembler Language 313

ENTRY MODADSIZ ENTRY MODBDSIZ

 . .

 . .

The mainline module could reference the above entries and provide for the

maximum SQLDSECT area. The following example shows how the mainline

module could determine the requirement of MODA:

 L regy,=V(MODADSIZ) GET POINTER TO POINTER FIELD

 L regy,0(,regy) GET POINTER TO FIELD CONTAINING SIZE

 L 0,0(,regy) SET LENGTH.

The same technique could be used to access the SQLDSIZ of MODB. Given the

two SQLDSIZ values, the mainline module should provide for a SQLDSECT area

equal in size to the greater SQLDSIZ value.

By using only one SQLDSECT area for your application, you reduce the storage

requirement and minimize the first pass processing.

Rules for Using SQL Statements in Assembler Language

This section lists the rules for embedding SQL statements within an assembler

program.

Note: OPSYN and ICTL assembler statements may not be used.

Identifying Rules for Case

Uppercase must be used for all SQL statements, except for text within quotation

marks, which will be left in the original case.

Declaring Host Variables

The following example shows an SQL declare section for an assembler program:

 The preceding example illustrates the following rules:

Col. 1 Col.16 Col. 72

| | |

| | |

LABEL EXEC SQL BEGIN DECLARE SECTION

AA DS F

BB DC H’3’ comment

* comment card or

* comment section

CC DC CL80’xxxx......................................xxxx*

 xxxx...............xxxxx’

XYZ DSECT

DD DS D

EE DS CL5

FF DS H,CL40

 ORG FF

GG DS H

HH DS CL40 comment

* continued comment

II DS PL5

JJ DC PL5’123.45’

KK DS 0H

LL DS CL12

XX DS CL10 *

 continuation of comment

LABEL2 EXEC SQL END DECLARE SECTION comment

314 Application Programming

1. All assembler variables that are to be used in SQL statements must be

declared, and their declarations must appear within one or more sections that

begin with:

 EXEC SQL BEGIN DECLARE SECTION

and end with:

 EXEC SQL END DECLARE SECTION

Each of these two statements must be totally contained on one line.

Note: There is no semicolon delimiter at the end of the SQL statements. There

may be a label on either of the statements, and host language

comments are allowed after the statements.

 2. Host language comments are allowed on any statement within the SQL

declare section, as are host language comment line images (* in column 1).

 3. The assembler preprocessor processes the statements in the declare section as

follows:

a. If there is no label, the preprocessor ignores the statement and goes on to

the next.

b. If there is a label, but the opcode is not DS or DC, the preprocessor ignores

the statement and goes on to the next.

c. If there is a label and a DS or DC opcode, the operand is checked. The

operand must be an acceptable data type, as shown in Table 35 on page

319. Here are some examples:

 F

 F’5’

 H

 H’100’

 CL255

 CL5’ABCDE’

 H,CL5

 H’5’,CL5’ABCDE’

 D

 D’2.5E10’

 PL2

 PL5’123.45’

 P’123’

 P’123.45’

 P’1234’

 P’123.456’

 H,CL32767

The first character of the operand may also be zero and used as follows:

 0H

 0F

 0D

 0C

In this case, the line is ignored and the next line is processed.

If there are no errors at this stage, the variable is validly defined as a host

variable. If there are errors, the line is flagged as an error, and the next line

is processed.

 4. The database manager allows host variable names, statement labels, and SQL

descriptor area names of up to 256 characters in length, subject to any

assembler language restrictions mentioned in this appendix.

 5. The opcode for a declare statement must be coded on the first line of the

statement. Because the line length is 71, this limits the length of host variable

names to 68 characters.

Appendix A. Using SQL in Assembler Language 315

6. Continuations are allowed by coding a non-blank character in column 72 of

the line to be continued, and coding the continuation anywhere from columns

16 to 71 inclusive on the next line, leaving 1-15 blank.

 7. Continuation of tokens (the basic syntactical units of a language) is allowed

from one line to the next, by coding the first part of the token up to column

71 of the line to be continued, and coding the second part of the token from

column 16 on the continuation line. If either column 71 of the continued line

or column 16 of the continuation line is blank, the token will not be

continued. See the DB2 Server for VSE & VM SQL Reference manual for a

discussion on tokens.

 8. The declare section can be anywhere that a normal DS or DC can be used.

Because the assembler preprocessor is a two-pass operation, the declare

section can come after the SQL statements that use the host variables.

 9. There can be more than one SQL declare section in a program.

10. Host variable names cannot contain variable symbols (for example,

&ABCDEFG, &SYSNDX, &SYSPARM). These names must be resolved at

preprocessing time. Variable symbols will be resolved at assembly time.

Embedding SQL Statements

The following are the rules for embedding SQL statements within assembler

programs:

1. Each SQL statement must be preceded by EXEC SQL, which must be on the

same line. Only blanks can appear between the EXEC and SQL. There must not

be a semicolon (;) delimiter on the SQL statement.

2. The first line of an SQL statement can have a label beginning in column 1. If

there is no label, the statement must begin in column 2 or greater.

3. Rules for continuation of statements and tokens are the same as those described

for host variables.

4. No host language comments are allowed within an SQL statement. Any such

comments are considered part of the SQL statement.

5. If an entire statement must be contained on one line, there cannot be SQL

comments embedded in the statement. There are three such statements:

v BEGIN DECLARE SECTION

v END DECLARE SECTION

v INCLUDE.

6. Avoid using labels or variable names that begin with SQL, ARI, or RDI. Also

avoid names beginning with PID, PBC, PA, PB, PC, PD, PE, PL, or PN where

these letters are followed by numbers. These names may conflict with names

generated by the assembler preprocessor.

7. All SQL statements must be in one CSECT.

8. The EXEC SQL must be coded on the first line of the statement. Because the

line length is 71, this limits the length of a LABEL to 62 characters.

Using the INCLUDE Statement

To include external secondary input, specify the following at the point in the

source code where the secondary input is to be included:

 EXEC SQL INCLUDE text_name

Text_name is the A-Type source member of a VSE library. Text_name is the file name

of a CMS file with an “ASMCOPY” file type, located on a CMS minidisk accessed

by the user.

316 Application Programming

The INCLUDE statement must be completely contained on one line. There may be

a label on the command, and host language comments are allowed after the

command.

Using Host Variables in SQL Statements

When you place host variables within an SQL statement, you must put a colon (:)

in front of every host variable, to distinguish them from the SQL identifiers (such

as a column name). When the same variable is used outside of an SQL statement,

do not use a colon.

A host variable can represent a data value, but not an SQL identifier. For example,

you cannot assign a character constant, such as “MUSICIANS”, to a host variable,

and then use that host variable in a CREATE TABLE statement to represent the

table name. The following pseudocode sequence is invalid:

Using DBCS Characters in Assembler Language

The rules for the format and use of DBCS characters in SQL statements are the

same for assembler language as for other host languages supported by the

database manager. For a discussion of these rules, see “Using a Double-Byte

Character Set (DBCS)” on page 51.

Assembler language does not provide a way to define graphic host variables. If

you want to add graphic data to or retrieve it from DB2 Server for VSE & VM

tables, you must execute the affected statements dynamically. By doing so, the data

areas that are referenced by each statement can be described in an SQLDA. In the

SQLDA, you must set the data type of the areas containing graphic data to one of

the graphic data types. For a discussion of the SQLDA, refer to the DB2 Server for

VSE & VM SQL Reference manual.

Handling SQL Errors

There are two ways to declare the SQL communication area (SQLCA):

v You can code the following statement in your source program:

 EXEC SQL INCLUDE SQLCA

The preprocessor replaces this with a declaration of the SQLCA structure.

v You may declare the SQLCA directly, as shown in Figure 74 on page 318.

Incorrect
IT = ' MUSICIANS '
CREATE TABLE :TT (NAME ...

Appendix A. Using SQL in Assembler Language 317

You must not declare the SQLCA within the SQL declare section. The meaning

of the fields is explained in DB2 Server for VSE & VM SQL Reference manual.

You may find that the only variable in the SQLCA you really need is SQLCODE. If

this is the case, declare just the SQLCODE variable, and invoke NOSQLCA support

at preprocessor time.

Using Dynamic SQL Statements in Assembler Language

An SQLDA structure may be required for dynamically executed SQL statements.

There are two ways to declare the SQLDA structure:

v You can code the following statement in your source program:

 EXEC SQL INCLUDE SQLDA

The preprocessor replaces this with a declaration of the SQLDA structure.

v You can declare the SQLDA directly, as shown in Figure 75 on page 318.

SQLCA DS 0F

SQLCAID DS CL8

SQLCABC DS F

SQLCODE DS F

SQLERRM DS H,CL70

SQLERRP DS CL8

SQLERRD DS 6F

SQLWARN DS 0C

SQLWARN0 DS CL1

SQLWARN1 DS CL1

SQLWARN2 DS CL1

SQLWARN3 DS CL1

SQLWARN4 DS CL1

SQLWARN5 DS CL1

SQLWARN6 DS CL1

SQLWARN7 DS CL1

SQLWARN8 DS CL1

SQLWARN9 DS CL1

SQLWARNA DS CL1

SQLSTATE DS CL5

Figure 74. SQLCA Structure (in Assembler)

SQLDA DSECT

SQLDAID DS CL8

SQLDABC DS F

SQLN DS H

SQLD DS H

SQLVAR DS 0F

SQLVARN DSECT

SQLTYPE DS H

SQLLEN DS 0H

SQLPRSCN DS CL1

SQLSCALE DS CL1

SQLDATA DS A

SQLIND DS A

SQLNAME DS H,CL30

&SYSECT CSECT

Figure 75. SQLDA Structure (in Assembler)

318 Application Programming

The SQLDA structure must not be declared within an SQL declare section. When

you specify INCLUDE SQLDA, the assembler preprocessor generates a CSECT

statement at the end of the SQLDA. This CSECT is generated with the name of the

CSECT currently active in your program.

You must not specify a constant string on a PREPARE or EXECUTE IMMEDIATE

statement. You can only specify a host variable defined as a variable-length

character string:

 EXEC SQL PREPARE S1 FROM :STRING1

 EXEC SQL EXECUTE IMMEDIATE :STRING1

 .

 .

 EXEC SQL BEGIN DECLARE SECTION

 STRING1 DS H,CLxxxxx (xxxxx <= 8192)

 EXEC SQL END DECLARE SECTION

The halfword of STRING1 must contain the length of the string, and the character

portion must contain the string itself when the PREPARE or EXECUTE

IMMEDIATE statement is executed.

See Appendix B of the DB2 Server for VSE & VM SQL Reference manual for more

information on the individual fields within SQLDA.

Defining DB2 Server for VSE & VM Data Types for Assembler

Language

 Table 35. DB2 Server for VSE & VM Data Types for Assembler

Description

DB2 Server for VSE &

VM Keyword

Equivalent Assembler

Declaration

A binary integer of 31 bits, plus sign. INTEGER or INT F

A binary integer of 15 bits, plus sign. SMALLINT H

A packed decimal number, precision p, scale s

(1≤p≤31 and 0≤s≤p). In storage the number occupies

a maximum of 16 bytes. Precision is the total

number of digits. Scale is the number of digits to

the right of the decimal point.

DECIMAL[(p[,s])] or

DEC[(p[,s])]¹

1

PLn[‘decimal constant’] or

P‘decimal constant’

For declarations using PLn, the

precision is 2n-1 (n is the number

of bytes). For the declarations

using P, the length of the decimal

constant, excluding the decimal

point and sign, is the precision.

For the declarations using P or PL,

the scale is that of the decimal

constant. For the declarations

using P, the decimal constant must

be specified. For the declarations

using PLn, the decimal constant is

optional. If it is not specified, the

scale is 0.

A single precision (4-byte) floating-point number in

short System/390 floating-point format.

REAL or FLOAT(p), 1 ≤

p ≤ 21

E

A double precision (8-byte) floating-point number in

long System/390 floating-point format.

FLOAT or FLOAT(p), 22

≤ p ≤ 53 or DOUBLE

PRECISION

D

A fixed-length character string of length n where 0

< n ≤ 254.

CHARACTER[(n)] or

CHAR[(n)]

CLn

Appendix A. Using SQL in Assembler Language 319

Table 35. DB2 Server for VSE & VM Data Types for Assembler (continued)

Description

DB2 Server for VSE &

VM Keyword

Equivalent Assembler

Declaration

A varying-length character string of maximum

length n. If n > 254 or ≤ 32,767; this data type is

considered a long field. (See “Using Long Strings”

on page 45.) (Only the actual length is stored in the

database.)

VARCHAR(n) H,CLn

A varying-length character string of maximum

length 32 767 bytes.

LONG VARCHAR H,CLn

A fixed-length string of n DBCS characters, where 0

< n ≤ 127.

GRAPHIC[(n)] Not supported.

A varying-length string of n DBCS characters. If n >

127 or ≤ 16 383, this data type is considered a long

field. (See “Using Long Strings” on page 45.)

VARGRAPHIC(n) Not supported.

A varying-length string of DBCS characters of

maximum length 16 383.

LONG VARGRAPHIC Not supported.

A fixed or varying-length character string

representing a date. The minimum and maximum

lengths vary with both the format used and

whether it is an input or output operation. See the

DB2 Server for VSE & VM SQL Reference manual for

more information.

DATE CLn or H,CLn

A fixed or varying-length character string

representing a time. The minimum and maximum

lengths vary with both the format used and

whether it is an input or output operation. See the

DB2 Server for VSE & VM SQL Reference manual for

more information.

TIME CLn or H,CLn

A fixed or varying-length character string

representing a timestamp. The lengths can vary on

input and output. See the DB2 Server for VSE & VM

SQL Reference manual for more information.

TIMESTAMP CLn or H,CLn

Notes:

1. NUMERIC is a synonym for DECIMAL, and may be used when creating or

altering tables. In such cases, however, the CREATE or ALTER function will

establish the column (or columns) as DECIMAL.

Using Reentrant Assembler Language Programs

A reentrant program has the characteristic of dynamic allocation of space for data

and save areas. This reentrant characteristic can be used in assembler programs. In

this case, the data and save areas are allocated in a calling (driver) program and

passed to a called (reentrant) program as parameters. Storage for these areas need

not be allocated in the called program.

A convenient use for reentrancy is the use of an SQLDA structure declared as a

DSECT in the calling program. This, in combination with an INCLUDE SQLDA

statement in the called program, permits the passing back of values, extracted by a

SELECT/FETCH in the called program, in a clean and simple manner. A

DESCRIBE statement can be used by the called program to fill the SQLDA

320 Application Programming

structure, or it can be hand-filled in the driver program. Other SQL statements (for

example, INSERT, DELETE, UPDATE) utilize a single data location to communicate

just an SQLCODE.

If statement results other than the SQLCODE are desired, an SQLCA structure can

be allocated in the driver program. However, unlike the SQLDA structure

allocation by a DSECT, the fields of the SQLCA structure must be hard-coded into

the driver, because the driver will not be preprocessed. An INCLUDE SQLCA

statement, within a DSECT, is then required in the called program. SQLCA

communication between the two programs can be achieved by passing the address

of the first field of the SQLCA structure to the reentrant program.

The “Locda DSECT” structure is hard-coded in the Driver Program, instead of

being defined by an “EXEC SQL INCLUDE SQLDA”, so that there is no need to

preprocess the Driver Program. This example assumes there is only a single host

variable returned by the FETCH. For production application programming, it is

recommended that macros be created for defining the SQLCA and SQLDA

structures (with optional DSECT statement) when used in programs that will not

be preprocessed.

The following are skeleton programs illustrating the use of the SQLDA structure,

and a single data location for communicating SQLCODEs. The reentrant example

illustrates only a FETCH statement. If more than one “action” statement (INSERT,

DELETE, and so on) is used, then various flags are needed to direct access to the

individual operations. The required modifications to include an SQLCA structure

follow these skeletons.

Appendix A. Using SQL in Assembler Language 321

Driver CSECT , Driver Program

* Standard Linkage Conventions ...

 STM R14,R12,12(R13) Save callers registers

 :

Qstring DC H’57’,CL57’SELECT DESCRIPTION FROM INVENTORY WHERE QONHA $

 ND < 100’ SQL Statement to be executed

 :

 LA R13,Save1 Subroutine Register Savearea Address

* Forward and backward chain saveareas together

 :

 LA R4,1 ’1’ indicates 1st call to subroutine

 ST R4,Loccode SQLCODE returned from subroutine

* (Also used as 1st call switch)

 :

* Create SQLDA structure to pass to subroutine:

* (OR Subroutine could fill in by using DESCRIBE)

 LA R4,LSQLDA Point R4 at SQLDA area

 USING Locda,R4 reference SQLDA fields

 :

 LA R7,Outarea+1 Address where DESCRIPTION stored

 ST R7,Locdata

 LA R7,Indaddr Address where Indicator Value stored

 ST R7,Locind

* NOTE: Setting of other SQLDA fields is not shown, but may be required

 :

*

* Loop to call reentrant subroutine (Loop needed for Cursor operation)

LOOP EQU *

*

* Blank Output area for next FETCH result:

 :

 LA R1,Parmlist Parms passed to subroutine through R1

 L R15,=V(Reentran) Load Subroutine Entry Point address

 BALR R14,R15 Call Reentrant Subroutine

 CLC Loccode,F0 Any error from subroutine ?

 BE FetchOK No, continue as normal

 CLC Loccode,F100 Cursor EOF occurred ???

 BE Final Yes, all done.

 B Errchk No, some kind of error, go handle.

*

FetchOK EQU *

* Test indicator values for NULL, etc, and handle as appropriate:

 :

*

* Output result from a Fetch: (Data conversion may be necessary)

 :

*

* Branch back to Loop for another Fetch

 B LOOP

 :

Errchk EQU *

* Handle errors returned by subroutine.

 :

Final EQU *

* Program complete, restore registers and return to caller

 :

 BR R14 Return to caller

 :

Figure 76. Driver Program (Part 1 of 2)

322 Application Programming

* Declare Section

 :

 :

F0 DC F’0’ ’NO ERRORS’ retcode from subroutine

F100 DC F’100’ ’CURSOR EOF’ retcode from subroutine

 :

SaveRA DS 18F register savearea for use by Resource

* ... Adapter when called by subroutine

Save1 DS 18F subroutine register savearea

Loccode DS F SQLCODE variable passed to subroutine

* (return code from subroutine)

 :

Parmlist DS 0D Subroutine Parameter List:

 DC A(Qstring) SQL Statement to execute

 DC A(LSQLDA) Local SQLDA area

 DC A(Loccode) Return Code from subroutine

 DC A(Hostvar) Host Variable Workarea

 DC A(SaveRA) Resource Adapter register savearea

 :

Indaddr DS F Indicator area

Outarea DS CL80 Fetch value return area

 :

LSQLDA DS CL500 Local SQLDA area

Hostvar DS CL500 Subroutine Host Variable workarea

 :

Locda DSECT , Describes SQLDA fields

Locdaid DS CL8

Locdabc DS F

Locn DS H

Locd DS H

Locvar DS 0F assumes one one Host Variable used

Loctype DS H

Loclen DS 0H

Locprcsn DS X

Locscale DS X

Locdata DS A

Locind DS A

Locname DS H,CL30 ...end of Local SQLDA area

 :

 :

 END Driver ...end of Driver Program

Figure 76. Driver Program (Part 2 of 2)

Appendix A. Using SQL in Assembler Language 323

Reentran CSECT , Reentrant Subroutine

* Standard Linkage Conventions. Register Savearea address in R13.

 STM R14,R12,12(R13) Save callers registers

 :

* Get Parameter addresses

 L R3,0(0,R1) Point to Qstring

 L R4,4(0,R1) Point to SQLDA area

 USING SQLDA,R4 Reference SQLDA fields

 L R5,8(0,R1) Point to Loccode (SQLCODE) return code

 USING LSQLCODE,R5 Reference Passed SQLCODE variable

 L R6,12(0,R1) Point to Hostvar workarea

 USING Hostvar,R6 Reference Hostvar workarea

 LR R7,R13 R7 points to callers savearea

 L R13,16(0,R1) Point R13 at "our" passed savearea ...

* ... for use by Resource Adapter calls

* Forward and backward chain saveareas together

 ST R13,8(0,R7) Caller savearea points to "our" savearea

 ST R7,4(0,R13) "our" savearea points to caller savearea

 :

* Check if this is first call to subroutine:

 CLC F0,0(R5) If NOT zero, it is first call

 BE Next Is zero - NOT first call

 EXEC SQL CONNECT ...

 :

 LH R1,0(R3) Get length of Qstring

 LA R1,1(R1,0) Length minus 1 for EXecute ...

* ... plus 2 for length Halfword ...

* ... equals length + 1.

 EX R1,MOVQSTR move length & Qstring to Hostvar area

 EXEC SQL PREPARE S1 FROM :QSTRING

 CLC SQLCODE,F0 Any errors ?

 BNE Exit Yes, return it to caller

 :

* Fill in passed SQLDA structure (possibly with DESCRIBE),

* if not done in Driver program.

 :

 EXEC SQL DECLARE C1 CURSOR FOR S1

 :

 EXEC SQL OPEN C1

 :

Next EQU *

 EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA

 CLC SQLCODE,F100 Cursor EOF reached ??

 BNE Exit No, return to caller (even if error)

 :

*

* All Fetched, Close Cursor before returning

Done EQU *

 EXEC SQL CLOSE C1

 CLC SQLCODE,F0 Any error ?

 BNE Exit Yes, return error to caller

*

* Return ’CURSOR EOF’ return code to caller

 MVC 0(4,R5),F100 R5 points to Loccode

 :

Exit EQU * Return to caller

 :

Figure 77. Reentrant Program (Part 1 of 2)

324 Application Programming

To include full SQLCA communications between the Driver Program and the

Reentrant program, you must modify both programs.

* Restore registers and return to caller

* Our return code is in Loccode

 L R13,4(0,R13) Load callers savearea address

 LM R14,R12,12(R13) Restore callers registers

 BR R14 Return to caller

 :

* Declare section

MOVQSTR MVC QSTRING(1),0(R3) EXecuted during 1st call

F0 DC F’0’ ’NO ERRORS’ retcode from subroutine

F100 DC F’100’ ’CURSOR EOF’ retcode from subroutine

 :

* Include the SQLDA DSECT

 EXEC SQL INCLUDE SQLDA

 :

Hostvar DSECT , Passed Host Variable Workarea

QSTRING DS CL500

 :

LSQLCODE DSECT , Passed SQLCODE variable

SQLCODE DS F

 :

 END Reentran ...end of Reentrant Subroutine

Figure 77. Reentrant Program (Part 2 of 2)

Appendix A. Using SQL in Assembler Language 325

Using Stored Procedures

The following example shows how to define the parameters in a stored procedure

that uses the GENERAL linkage convention. PLIST=OS must be specified.

In the Driver program, replace the ″Loccode″ variable definition with an ″SQLCA″

structure definition and update the 3rd address constant in the ″Parmlist″, as follows:

 :

Save1 DS 18F subroutine register savearea

Locca DS 0D SQLCA structure passed to subroutine

Loccaid DS CL8

Loccabc DS F

Loccode DS F SQLCODE

Locerrm DS H,CL70

Locerrp DS CL8

Locerrd DS 6F

Locwarn DS 0C

Locwarn0 DS CL1

Locwarn1 DS CL1

Locwarn2 DS CL1

Locwarn3 DS CL1

Locwarn4 DS CL1

Locwarn5 DS CL1

Locwarn6 DS CL1

Locwarn7 DS CL1

Locwarn8 DS CL1

Locwarn9 DS CL1

LocwarnA DS CL1

Locstate DS CL5 ... end of local SQLCA structure

 :

Parmlist DS 0D Subroutine Parameter List:

 DC A(Qstring) SQL Statement to execute

 DC A(LSQLDA) Local SQLDA area

 DC A(Locca) SQLCA returned from subroutine <----

 DC A(Hostvar) Host Variable Workarea

 DC A(SaveRA) Resource Adapter register savearea

 :

In the Reentrant program, change from just referencing the ″SQLCODE″ variable,

through the ″LSQLCODE DSECT″, to referencing the full ″SQLCA″ structure, through the

″PASSEDCA DSECT″, as follows:

 :

 L R5,8(0,R1) Point to Locca (SQLCA) return codes

 USING PASSEDCA,R5 Reference Passed SQLCA structure

 :

 :

PASSEDCA DSECT , Passed SQLCA structure

 EXEC SQL INCLUDE SQLCA include SQLCA field definitions

 :

Figure 78. SQLCA Changes for Driver/Reentrant Programs

326 Application Programming

The following example shows how to define the parameters in a stored procedure

that uses the GENERAL WITH NULLS linkage convention.

 * CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *

 * THE GENERAL LINKAGE CONVENTION. *

 A CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

 USING PROGAREA,R13

 .

 .

 * GET THE PASSED PARAMETER VALUES. THE GENERAL LINKAGE CONVENTION*

 * FOLLOWS THE STANDARD ASSEMBLER LINKAGE CONVENTION: *

 * ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS TO THE *

 * PARAMETERS. *

 L R7,0(R1) GET POINTER TO V1

 MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF V1

 .

 .

 .

 L R7,4(R1) GET POINTER TO V2

 MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2

 .

 .

 .

 CEETERM RC=0

 * VARIABLE DECLARATIONS AND EQUATES *

 R1 EQU 1 REGISTER 1

 R7 EQU 7 REGISTER 7

 PPA CEEPPA , CONSTANTS DESCRIBING CODE BLOCK

 LTORG , PLACE LITERAL POOL HERE

 PROGAREA DSECT

 ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART

 LOCV1 DS F LOCAL COPY OF PARAMETER V1

 LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2

 .

 .

 .

 PROGSIZE EQU *-PROGAREA

 CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA

 CEECAA , MAPPING OF THE COMMON ANCHOR AREA

 END A

Figure 79. Stored Procedures - Using GENERAL Linkage Convention

Appendix A. Using SQL in Assembler Language 327

 * CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *

 * THE GENERAL WITH NULLS LINKAGE CONVENTION *

 B CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

 USING PROGAREA,R13

 .

 .

 * GET THE PASSED PARAMETER VALUES. THE GENERAL WITH NULLS LINKAGE*

 * CONVENTION IS AS FOLLOWS: *

 * ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS. IF N *

 * PARAMETERS ARE PASSED, THERE ARE N+1 POINTERS. THE FIRST *

 * N POINTERS ARE THE ADDRESSES OF THE N PARAMETERS, JUST AS *

 * WITH THE GENERAL LINKAGE CONVENTION. THE N+1ST POINTER IS *

 * THE ADDRESS OF A LIST CONTAINING THE N INDICATOR VARIABLE *

 * VALUES. *

 L R7,0(R1) GET POINTER TO V1

 MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF V1

 L R7,8(R1) GET POINTER TO INDICATOR ARRAY

 MVC LOCIND(2*2),0(R7) MOVE VALUES INTO LOCAL STORAGE

 LH R7,LOCIND GET INDICATOR VARIABLE FOR V1

 LTR R7,R7 CHECK IF IT IS NEGATIVE

 BM NULLIN IF SO, V1 IS NULL

 .

 .

 .

 L R7,4(R1) GET POINTER TO V2

 MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2

 L R7,8(R1) GET POINTER TO INDICATOR ARRAY

 MVC 2(2,R7),=H(0) MOVE ZERO TO V2’S INDICATOR VAR

 .

 .

 .

 CEETERM RC=0

Figure 80. Stored Procedure - Using GENERAL WITH NULLS Linkage Convention (Part 1 of 2)

328 Application Programming

 * VARIABLE DECLARATIONS AND EQUATES *

 R1 EQU 1 REGISTER 1

 R7 EQU 7 REGISTER 7

 PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

 LTORG , PLACE LITERAL POOL HERE

 PROGAREA DSECT

 ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART

 LOCV1 DS F LOCAL COPY OF PARAMETER V1

 LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2

 LOCIND DS 2H LOCAL COPY OF INDICATOR ARRAY

 .

 .

 .

 PROGSIZE EQU *-PROGAREA

 CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA

 CEECAA , MAPPING OF THE COMMON ANCHOR AREA

 END B

Figure 80. Stored Procedure - Using GENERAL WITH NULLS Linkage Convention (Part 2 of 2)

Appendix A. Using SQL in Assembler Language 329

330 Application Programming

Appendix B. Using SQL in C

A C Sample Program 332

Rules for Using SQL in C 332

Placing and Continuing SQL Statements . . . 332

Delimiting SQL Statements 333

Identifying Rules for Case 333

Identifying Rules for Character Constants . . . 333

Using the INCLUDE Statement 333

Using the CONNECT Statement (DB2 Server for

VSE) 334

Using the C Compiler Preprocessor 334

Declaring Host Variables 334

Using Host Variables in SQL Statements . . . 339

Using the Pointer Type Attribute 339

Using Host Variables as Function Parameters 341

Using C Variables in SQL: Data Conversion

Considerations 342

Using C NUL-Terminated Strings and

Truncation 342

Calculating Dates 342

Using Trigraphs 343

Using DBCS Characters in C 343

Considering Preprocessor-Generated Statements 343

Handling SQL Errors 346

Using Dynamic SQL Statements in C 347

Defining DB2 Server for VSE & VM Data Types for

C 348

Using Reentrant C Programs 350

Using Stored Procedures 350

© Copyright IBM Corp. 1987, 2007 331

A C Sample Program

ARIS6CD is a C language sample program for VSE systems that is shipped with

the DB2 Server for VSE product. ARIS6CC is a C language sample program for

VM systems that is shipped with the DB2 Server for VSE product. It resides on the

production disk for the base product. You may find it useful to print this sample

program before going through this appendix as the hard copy will provide an

illustration for many of the topics discussed here.

The program satisfies the requirements of the application prolog and epilog. Near

the beginning of the program all the host variables are declared, and error

handling is defined. Near the logical end of the program, the database changes are

rolled back, to assure that the database remains consistent for each use of the

sample program. (For your own applications, of course, you will enter a COMMIT

statement.)

To determine the types of C host variables to declare, refer to Table 38 on page 348

which gives the C representation for each of the DB2 Server for VSE & VM data

types. Note the following:

v C expects a character array to end in a hex 00 null character when used to

contain a character string. This null character is referred to as NUL, and is coded

as ’\0’ in a C program. An SQL character string does not end in a NUL.

Therefore, SQL will try to add a NUL to a character string when storing it in a

character array host variable, and it will expect a NUL, which it will remove,

when setting an SQL column value from a C character host variable. To account

for the NUL, declare character array host variables to one character longer than

the length of the SQL character data they are to contain. For all the rules

concerning NULs, see “Using C NUL-Terminated Strings and Truncation” on

page 342.

There are two other types of nulls to be aware of. Quite separate from the NUL

character described above, C refers to a pointer value as NULL, in a similar way

to PL/I. A C NULL pointer has a value of 0, and C allows the word NULL in

pointer assignments and expressions. This use of NULL is distinct from the DB2

Server for VSE & VM NULL, which means an undefined column or expression

value. The word NULL can be used in a C program to mean either. You can

always determine which is meant by the context.

When you are coding your own applications, you will need to obtain the data

types of the columns that your host variables interact with. This can be done by

querying the catalog tables. (These tables are described in the DB2 Server for VSE &

VM SQL Reference manual.)

Rules for Using SQL in C

Placing and Continuing SQL Statements

All statements in your C program, including SQL statements, must be contained in

columns 1 through 72 of your source file. Columns 73 through 80 can also be used

if the NOSEQuence C preprocessor option is specified; if NOSEQuence is not

specified, or if SEQuence is specified, these columns will be ignored by the

preprocessor. If NOSEQuence is used, the NOSEQ and MARGINS(1,80) C compiler

options must be used to compile the application program.

332 Application Programming

In a VSE environment, C comments may not start at column 1 because a “/*”

starting at column 1 will be mistaken as an End-Of-Data-File JCL command. Other

VSE restrictions may apply to the use of column 1 in C application programs.

Continuation of SQL statements and host variable declare statements across lines

can be accomplished by breaking the line anywhere a blank can occur.

Continuation of tokens (the basic syntactical units of a language) is allowed from

one line to the next, by coding a backslash (the C continuation character with hex

value X'E0') in the line to be continued immediately after the first part of the token

(leaving the remainder of the line blank), and coding the next part of the token

from column 1 on the continuation line. If column 1 on the continuation line is

blank, the token is not continued. See the DB2 Server for VSE & VM SQL Reference

manual for a discussion of tokens.

You can also use the trigraph ??/ in place of the backslash as the continuation

character. The C preprocessor treats end-of-line like a blank delimiter except when

it is in a literal.

Delimiting SQL Statements

Use delimiters on all SQL statements to distinguish them from regular C

statements. You must begin each SQL statement in your program with EXEC SQL,

and end each statement with a semicolon. EXEC and SQL must be in uppercase on

the same line, with only blanks separating them (no in-line C or SQL comments).

Also, EXEC SQL must be immediately followed by a blank, C comment, or SQL

comment, and it must be preceded by either a blank, C comment, {, }, trigraph ??<,

trigraph ??>,), colon, or semicolon.

Elsewhere within SQL statements, C and SQL comments are allowed anywhere

that blanks are allowed. However, there must not be any comments within SQL

statements that are dynamically defined and executed.

Any SQL statement except INCLUDE can be followed on the same line by another

SQL statement, C statement, or C comment.

Identifying Rules for Case

The keywords EXEC SQL must appear in uppercase in your C program. The rest

of an SQL statement can appear in mixed case, but will be interpreted as

uppercase, except for host variable names and text within quotation marks, which

will be left in the original case.

Note: C host variables are always treated with case sensitivity by the C

preprocessor. This is true for the C compiler too, except for externals, which

C may truncate and fold to uppercase. Keep this in mind when using host

variables with external scope.

Identifying Rules for Character Constants

Remember to follow SQL, not C, conventions when coding such character constant

strings. These strings must be delimited by single quotation marks, and an

embedded backslash is not recognized as an escape character.

Using the INCLUDE Statement

To include external secondary input, specify:

 EXEC SQL INCLUDE text_name

Appendix B. Using SQL in C 333

at the point in the source code where the secondary input is to be included.

DB2 Server for VM

The text_name is the file name of a CMS file with a “CCOPY” file type and

located on a CMS minidisk accessed by the user. It is always folded to

uppercase. If anything is found after an INCLUDE statement, a warning

message is issued and the input is ignored.

DB2 Server for VSE

The text_name is the member name of a “B” type source member of a VSE

library.

 Use the SQL INCLUDE statement instead of the C preprocessor #include directive

to include files that contain SQL host variables or SQL statements.

Using the CONNECT Statement (DB2 Server for VSE)

The CONNECT statement is required to establish a connection between the

database manager and the program. To do an explicit connect, specify:

 EXEC SQL CONNECT :userid IDENTIFIED BY :password;

Both userid and password must be host variables declared as fixed length 8

character strings.

Using the C Compiler Preprocessor

The preprocessor must run before the C compiler and its built-in preprocessor. It is

therefore not possible to contain any C preprocessor directives within an SQL

statement. The SQL INCLUDE statement should be used instead of the C #include

for files that contain SQL host variable declarations or statements.

Declaring Host Variables

You must declare all host variables in an SQL declare section. For a description of

an SQL declare section, refer to “Declaring Variables That Interact with the

Database Manager” on page 8.

Declare host variables in the source file before the first use of the variable in an

SQL statement. You can use the following types of variables in an SQL statement:

v Scalar variables

v Structure variables

v Structure elements

v Array variables

Scalar variables, structure elements, and array elements are data objects. For

information on the use of these variables in an SQL statement, refer to “Using Host

Variables” on page 55 and “Using Host Structures” on page 55.

Note: You can declare non-host variables in an SQL declare section; however,

declarations that do not conform to DB2 Server for VSE & VM declaration

rules may return errors.

The definition of a host variable is subject to the following rules:

334 Application Programming

v A data object declared as a scalar variable or structure element may have any

one of the following basic C data types:

short Short integer

long Long integer

float Floating-point

double

Double-precision floating-point

decimal

Decimal

The keyword int is optional in the declaration of a short or long integer. You

cannot use the unqualified type int when declaring a variable to be used in an

SQL statement: specify short or long.

v A data object declared as an array element can have any of the following basic C

data types:

short Short integer

char Single character

v You can use scalar variables and structure elements as main variables. If they are

declared with a data type of short integer, you can also use scalar variables as

indicator variables.

v Character arrays hold the SQL CHARACTER data types. You should declare

character arrays with one extra character to contain the string terminating NUL.

You can use the unsigned qualifier with character array host variables. It does

not affect the way the system treats them.

An explicit constant decimal array size is required between the brackets, even if

an initializer is used on the declare. Expressions, preprocessor functions (such as

sizeof), octal or hex values, and #defined variables cannot be used as the size of

character arrays.

char value1 [5] = "TEST";
or Correct

char value1 [] = "TEST";
Incorrect

Incorrect

Incorrect

char value1 [sizeof(var)];

char value1 [MAXLEN +1]

char value1 [015];
Incorrect
(octal)

char value1 [5];

Appendix B. Using SQL in C 335

v You can only use short integer arrays as indicator arrays. The following is an

example of an indicator array:

short ind_array [10];

You cannot use indicator array elements as main or indicator variables.

v You can use a structure variable as a host structure or as a varying-length string

definition. The structure declaration must be in the following form when used to

define a varying-length string:

 struct tag {

 short vlen;

 char vstr[nnn];

 } varname1;

The structure tag is optional. Any legal C names can be used for the structure

and the contained variables. The nnn, defining the length of the largest string to

be held in the structure, is specified by you.

This structure defines a VARCHAR or LONG VARCHAR host variable with the

name varnamel and a length nnn You cannot use this structure as a host

structure; you cannot use the elements of the structure as host variables.

The system does not add or expect a NUL at the end of a VARCHAR or LONG

VARCHAR string. If one is needed, you can use a character array host variable,

or you can add one after the data value has been returned, with the statement:

 varname1.vstr[varname1.vlen]=’/0’;

If a NUL is required, ensure that the nnn is one larger than the maximum

allowable string, so that adding the NUL at the end will never overflow the

allocated storage.

A macro is provided to assist in the declaration of VARCHAR structures:

 SQLVARCHAR(varname,nnn)

 will expand to:

 struct{

 short sqllen;

 char sqlstr[nnn];

 }varname;

You can use this macro wherever a structure declaration defines a varying-length

string.

v A structure variable which defines a host structure is any two-level structure,

other than a varying-length string definition, declared in an SQL declare section.

The following example is a host structure:

struct tag{char projno [7];

 short actno;

 long acstaff;

 char acstdate [10];

 char acendate [10];

 }projstrct;

Note: The structure tag is optional.

This structure represents the following list of host variables when used in an

SQL statement:

projno, actno, acstaff, acstdate, acendate

In other words, the two following SQL statements are equivalent:

EXEC SQL SELECT PROJNO, ACTNO, ACTSTAFF, ACSTDATE, ACENDATE

 INTO :projstrct

 FROM PROJ_ACT

 WHERE PROJNO = ‘100000’

336 Application Programming

EXEC SQL SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

 INTO :projno, :actno, :acstaff, :acstdate, :acendate

 FROM PROJ_ACT

 WHERE PROJNO = ‘100000’

A host structure can either be a stand-alone structure or a substructure of a more

complex structure. The following example is a complex structure that contains a

host structure:

struct tag { char empno [7];

 struct taga { char firstname [13];

 char midinit [1];

 char lastname [16];

 } empname;

 char workdept [3];

 char phoneno [4];

 } employee;

The structure empname is a host structure.

You can use the elements of the host structure and the elements of a complex

structure containing a host structure as host variables. In the previous example,

you can use empno, firstname, midinit, lastname, workdept and phoneno as

host variables.

You can code a substructure in the host structure to represent a varying-length

string element if the substructure conforms to the rules for a varying-length

string definition. All of the rules in the description of structures that define

varying-length strings also apply in this situation. The following example is a

host structure that contains a VARCHAR element:

struct tag { struct taga { short fnlen;

 char fntext [12];

 } firstname;

 char midinit [1];

 struct tagb {short 1nlen;

 char 1ntext [15];

 } lastname;

 } empname;

The C preprocessor interprets the structure empname as a host structure

containing 3 elements: firstname with data type VARCHAR and length 12,

midinit with data type CHAR and length 1, and lastname with data type

VARCHAR, and length 15.

Note: Any structure matching the description of a varying-length string

definition is interpreted as a VARCHAR or LONG VARCHAR variable

and cannot be used as a host structure.

v Third level host structures are permitted in C to support varying-length strings.

The following is an example of varying-length string declarations in host

structures.

 EXEC SQL BEGIN DECLARE SECTION;

 struct

 {

 char last??(9??);

 char first??(9??);

 struct

 {

 short addlen;

 char addtext??(200??);

 } address;

 } empname;

 EXEC SQL END DECLARE SECTION;

main()

{

Appendix B. Using SQL in C 337

EXEC SQL SELECT LASTNAME, FIRSTNME, ADDRESS

 INTO :empname

 FROM EMPLOYEE

 WHERE LASTNAME = ’JOHANSON’;

 }

In this example, empname is considered by the C preprocessor to be a two-level

structure because the structure of address matches that of a VARCHAR data

type. As a result, empname may be used in the SELECT statement. If, for example,

addlen was changed from short to long, the structure of address would no

longer match a VARCHAR data type and empname would be considered a

three-level structure. As a result, empname could NOT be used in a SELECT

statement.

v Union, enumeration, bitfield, and void types are not supported. Typedefs are not

supported.

v Auto, static, extern, const, volatile, and _Packed storage classes are supported.

The register storage class is not supported. If no class is specified, the usual C

default storage class applies (which depends on the placement of the declaration

within the source file).

v The system supports any sequence of declaration keywords that is also

supported by the C compiler.

v Initialization of variables on the declaration statement is supported.

v You can declare multiple variables of the same type in the same C declaration

statement. For example:

 static short partno, suppno, time;

 static char name [16] , adr[36];

 static double qonhand, qonorder, price;

Note: You must explicitly declare all structures in C within the multi-level

structure. You cannot declare a structure for reference within another

structure (except for the SQLVARCHAR macro). In the following example,

only dates and product may be used as host structures. orderno and

custnum may be used as scalar host variables and may be qualified as

custord.orderno and ordinfo.custnum or custord.ordinfo.custnum.

 EXEC SQL BEGIN DECLARE SECTION;

 struct

 {

 char orderno??(10??);

 struct

 {

 char custnum??(10??);

 struct

 {

 char ordate??(7??);

 char delivdte??(7??);

 } dates;

 } ordinfo;

 struct

 {

 char stockno??(11??);

 char quantity??(4??);

 } product ;

 } custord ;

 EXEC SQL END DECLARE SECTION;

main()

{

 EXEC SQL SELECT STOCKNO, QUANTITY

338 Application Programming

INTO :product

 FROM ORDER

 WHERE STOCKNO = ’1234567890’;

 }

v You cannot duplicate variable names in a single source file, even if they are in

different blocks or functions. The C preprocessor defines a duplicate variable

name as any name that cannot be referenced unambiguously when fully

qualified. (After a variable is declared in an SQL declare section, it is known to

SQL for all functions and blocks for the rest of the source file, regardless of the

host variable’s actual scope. Therefore, that variable, or another variable with the

same name and type, cannot be used in an SQL statement, even in a scope

outside of the original SQL declare section.) See “Using Host Variables as

Function Parameters” on page 341 for more information.

v The database manager allows host variable names, statement labels, and SQL

descriptor area names of up to 256 characters in length, subject to any C

language restrictions mentioned in this appendix.

Note: Because of the restriction on the number of host variables in a statement,

host structures with greater than 256 fields will not be allowed,

v You should not declare variables whose names begin with SQL, sql, RDI, or rdi

unless otherwise instructed. These names are reserved for the database manager

use.

v Host variable names are case-sensitive. For example, a host variable called

partno is different from one called PartNo.

v Rules for continuation are the same as those described for SQL statements.

Note that other program variables can also be declared as usual outside the SQL

declare section. The previous restrictions do not apply to non-SQL declarations.

Using Host Variables in SQL Statements

When you reference host variables, host structures, structure fields or indicator

arrays in an SQL statement, you must precede each reference by a colon (:) The

colon distinguishes these variables from SQL identifiers (such as column names).

The colon is not required outside an SQL statement.

Using the Pointer Type Attribute

Scalar host variables can be defined as pointers to any C data type that the

database manager supports. The following rules and restrictions apply:

v For the basic C data types, the variable must be declared in the same way it is

referenced in an SQL statement. For example:

 short *partno;

 ...

 SELECT PARTNO INTO :*partno ...

v In the case of character arrays, the array size must be explicitly defined in the

declaration. For example:

Appendix B. Using SQL in C 339

The use of parentheses is required in order for arrays to define a pointer to an

array of 5 characters, as opposed to an array of 5 pointers to characters. (See

“Using C NUL-Terminated Strings and Truncation” on page 342 for the

limitations on string lengths.)

The host variable would then be referenced as *v1_ptr in an SQL statement.

v The asterisk is considered part of the host variable name. This means:

– The asterisk is included in the 256-character length limitation for host variable

names.

– If a host variable is declared with an asterisk, it must always be used within

the SQL statement with the asterisk. If it was declared without an asterisk,

then it must never have one in an SQL statement.

v The programmer is responsible for ensuring that the pointer is set before it is

used.

There are primarily two uses for pointer types with SQL statements:

1. Allocating or sharing storage.

A program could contain a single SQL declare section, and use pointers for

some or all large data areas. Then, before a pointer is used in an SQL

statement, an alloc function could be used to acquire storage and set the

pointer, or the pointer could be set to a shared storage area. This allows the

program to reduce its overall storage requirement. For example:

 EXEC SQL BEGIN DECLARE SECTION;

 ...

 struct tag {

 short vlen;

 char vstr[1000];

 } *vstr_ptr;

 ...

 EXEC SQL END DECLARE SECTION;

 ...

 vstr_ptr = (struct tag *) malloc(sizeof(struct tag));

 EXEC SQL SELECT DESCRIPTION

 INTO :*vstr_ptr FROM TABLE;

 ...

}

2. Passing variables to functions for update.

C usually passes parameters by value. This prevents the called function from

changing the caller’s version of a parameter. Passing a parameter by reference

can be accomplished by the caller explicitly passing a pointer to the data. The

called function then changes the data referenced by the pointer by using the

Correct

Incorrect

Incorrect

char (*v1_ptr) [5];

char *v1_ptr ;

char (*v1_ptr) [];

340 Application Programming

asterisk for indirection. If the value is to be changed with an SQL statement,

the called function must also declare the pointer value of the parameter in an

SQL DECLARE section. For example:

 main()

 {

 EXEC SQL BEGIN DECLARE SECTION;

 ...

 long int partno;

 ...

 EXEC SQL END DECLARE SECTION;

 getdata(&partno);

 ...

 }

 getdata(partno_ptr)

 EXEC SQL BEGIN DECLARE SECTION;

 long int *partno_ptr;

 EXEC SQL END DECLARE SECTION;

 {

 EXEC SQL SELECT PARTNO

 INTO :*partno_ptr FROM TABLE;

 ...

 }

Using Host Variables as Function Parameters

Host variables with the same name can only be declared in one SQL declare

section. When passing a host variable to a function within the same file as the

calling function, the variable can be used in an SQL statement in the called

function without being redeclared in an SQL declare section. For example:

 main()

 {

 EXEC SQL BEGIN DECLARE SECTION;

 ...

 long int partno;

 ...

 EXEC SQL END DECLARE SECTION;

 getdata(partno);

 ...

 }

 getdata(partno)

 long int partno;

 {

 EXEC SQL BEGIN DECLARE SECTION;

 long int qonhand;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT QONHAND

 INTO :qonhand FROM TABLE

 WHERE PARTNO = :partno;

 ...

 }

Given the SQL declaration of partno within main(), partno can be used in any SQL

statement that follows it in the file. If getdata had a different name for the partno

parameter, it would have to be included in getdata’s SQL declare section.

For information on how to allow a called function to update a parameter, refer to

“Using the Pointer Type Attribute” on page 339.

Appendix B. Using SQL in C 341

Using C Variables in SQL: Data Conversion Considerations

Host variables must be type-compatible with the columns with which they are to

be used. For example, if you want to retrieve into a program variable the

QONHAND column of the database, and the data type of QONHAND is

INTEGER, you should declare the program variable to be of type short, long, float,

or double.

The database manager considers the numeric data types compatible as well as the

character string data types (CHAR, VARCHAR, and LONG VARCHAR, including

strings of different declared lengths). Of course, an overflow condition may result

if, for example, you assign a 31-bit integer to a 15-bit integer and the current value

of the 31-bit integer is too large to fit in 15 bits. Truncation also occurs when a

decimal number having a scale greater than zero is assigned to an integer. In

general, overflow occurs when significant digits are lost, and truncation occurs

when nonsignificant digits are lost.

The system also considers the datetime data types to be compatible with character

data types (CHAR, and VARCHAR, but not long fields).

Using C NUL-Terminated Strings and Truncation

The database manager interprets a character string in C as NUL-terminated if the

length of the string is greater than 1 byte and less than 32,768 bytes.

The NUL-byte is mandatory when the database manager receives data from a

NUL-terminated string. You receive an SQLCODE -302 (SQLSTATE '22024') if the

NUL-byte is not found within the defined length of the string. This means that the

maximum number of bytes of data that can be stored in a NUL-terminated string

is one less than the defined length of the string.

When data is sent from the application server to a NUL-terminated string, a

NUL-byte is always appended to the end of the string. If the variable is not big

enough to hold the entire string (including the NUL), then a warning condition is

indicated using the SQLCA SQLWARN flags and the output indicator value, as

shown in the following chart. Truncation will occur even in the case where a

character value of actual length n is to be assigned to a C variable declared as

length n due to the NUL character being inserted at the last byte of the declared

length. When truncation occurs, that last byte is overwritten by NUL.

 Table 36. Warning Flags after Character Truncation

Condition

SQLCA

SQLWARN0

SQLCA

SQLWARN1

Output Indicator

Variable

(if supplied)

Character string, including the

NUL, fits in the declared C

character array.

blank blank 0 (zero)

Actual data truncated. That is,

the C variable declared as less

than or equal to n, to hold a

character value of actual

length n.

W W Original length of

value (n) excluding

the NUL.

Calculating Dates

Date calculations can result in date durations, and the database manager converts

the result into any numeric type of a column or a host variable. However, to

342 Application Programming

involve a date duration in a calculation (for example, to add a duration to a date),

the date duration must be in DECIMAL(8,0) format. The system does not

automatically convert any numeric type of column or host variable to a decimal

value for use in a date calculation. If your C compiler does not support the fixed

decimal data format, the scalar “DECIMAL” conversion function must be used to

explicitly convert a value to decimal type. For example,

 long duration=10100; /* 1 year and 1 month */

 long result_dt;

 EXEC SQL SELECT START_DATE+DECIMAL(:duration,8,0)

 INTO :result_dt FROM TABLE;

Using Trigraphs

A trigraph is a sequence of three characters that you write in place of a C source

character that your input device does not generate. The following trigraphs are

supported by the C preprocessor in an SQL declare section:

 ??([(left bracket)

 ??)] (right bracket)

 ??< { (left brace)

 ??> } (right brace)

The following trigraph is supported in an SQL statement only when used as a

continuation character:

 ??/ \ (backslash)

Using DBCS Characters in C

The rules for the format and use of DBCS characters in SQL statements are the

same for C as for other host languages supported by the system. For a discussion

of these rules, see “Using a Double-Byte Character Set (DBCS)” on page 51.

The C language does not provide a way to define graphic host variables. If you

want to add graphic data to or retrieve it from DB2 Server for VSE & VM tables,

you must execute the affected statements dynamically. By doing so, the data areas

that are referenced by each statement can be described in an SQLDA. In the

SQLDA, you must set the data type of the areas containing graphic data to one of

the graphic data types. For a discussion of the SQLDA, refer to the DB2 Server for

VSE & VM SQL Reference manual.

Considering Preprocessor-Generated Statements

When preprocessing an SQL C program, every executable SQL statement is

translated into control block declarations, assignment statements, and a function

call to pass the control block to the preprocessor at run time. To simplify the

generation of this code during preprocessing, a number of typedef and

communication area definitions are placed just after any initial C compiler

directives or comments.

In addition, to assist the application programmer, the SQLVARCHAR macro is

inserted with the typedefs and communication area definitions.

The preprocessor-generated statements are described in Table 37 on page 344.

These statements are inserted immediately before the first line in the source

program that is not a blank line, a C comment, or a C precompiler directive.

Appendix B. Using SQL in C 343

The C preprocessor imposes two restrictions on the coding of C precompiler

directives:

1. You may not use the #INCLUDE precompile directive to include the main

function of a C program.

2. Conditional precompiler directives that contain C code must come after the first

non-precompiler directive.

 Table 37. C Preprocessor-Generated Statements

Generated Code Purpose

 #pragma linkage (ARIPRDI,OS) To establish correct addressability and

parameter passing conventions with

the system at run time.

 #ifndef SQLVARCHAR

 #define SQLVARCHAR(varname,nnn) \

 struct { \

 short sqllen; \

 char sqlstr[nnn]; \

 } varname

 #endif

Macro that can be used by the

application to simplify the C program.

The definition of this macro can be

changed by including a #define

statement before the first

non-precompiler directive C statement

or SQL statement in your program.

344 Application Programming

Table 37. C Preprocessor-Generated Statements (continued)

Generated Code Purpose

 typedef struct {

 short CALLTYPE;

 char AUTHOR[8];

 short PROG_NAMEL;

 char PROG_NAME[8];

 short SECTION_NUM;

 short CLASS_SECTION;

 char *CODEPTR;

 char *VPARAMPTR;

 char *AUXPARAMPTR;

 char *SQLTIEPTR;

 char SPECIALCALL;

 char CALLFLAG;

 char WAITFLAG;

 char RELEASEFLAG;

 char VPARAMIND;

 char AUXPARAMIND;

 char ERRORFLAG;

 char RDIDESCFLAG;

 long MAILBOXLEN;

 char RDIRELNO;

 char RDICISL;

 char RDIDATE;

 char RDITIME;

 long RDIFDBCK;

 char *RDIEXTP;

 char RDIRESV1[2];

 char RDIRDB16;

 char RDIRESV2;

 } SQL_RDIIN;

 typedef struct {

 char *RDIPTR01;

 char *RDIPTR02;

 } SQL_RDIPT;

 typedef struct {

 short DATA_TYPE;

 short LEN;

 char *DATA_PTR;

 short *INFOPTR;

 short NAMEL;

 char NAME[30];

 } SQL_PVELMS;

 typedef SQL_PVELMS *SQL_PVLMP;

 typedef struct {

 short CURSRLEN;

 char CURSRNAM[18];

 } SQL_RDICURAR;

 typedef union {

 long rdicnstl[2];

 char rdicnstc[8];

 } SQL_RDICONST;

typedefs of allocated control blocks

used when translating executable SQL

statements into C function calls.

static long SQLTIE[12];

 static char RDIRDBN[16];

 static struct {

 char RDIEXTEC[8];

 long RDIEXTFLR;

 char *RDIDBNMP;

 char *RDICONSP;

 char *RDIBPOPT;

 char *RDIXPTRS[6];

 } SQLRDIX;

Communication areas used to save

information about the state of the C

program between run-time calls to the

database manager.

Appendix B. Using SQL in C 345

Handling SQL Errors

A return code structure (the SQLCA) must be in scope for each executable SQL

statement. You can define one by coding the following statement in your source

program:

 EXEC SQL INCLUDE SQLCA;

The preprocessor replaces this statement with the declaration of the SQLCA

structure, and a set of #defines to make referring to the error codes and flags

easier. These are shown in Figure 81.

Note: SQLCA character array variables are not NUL-terminated. They cannot be

directly used by C string manipulation functions.

The SQLCA must not be declared within the SQL declare section. It may be

declared outside all functions in the module, which gives it global scope, or

separately within each function that contains executable SQL statements.

Instead of using the SQL INCLUDE SQLCA statement, the SQLCA can be coded

directly, or #included from a header file.

You may find that the only variable in the SQLCA that you really need is

SQLCODE. If this is the case, declare just the SQLCODE variable, and invoke

NOSQLCA support at preprocessor time.

The number of SQLCODE declarations is not limited by the DB2 Server for VSE &

VM preprocessor. If a stand-alone SQLCODE is specified, the code inserted by the

preprocessor into the C code to expand an EXEC SQL statement will refer to the

address of that SQLCODE. The C compiler determines if multiple declarations

#ifndef SQLCODE

struct sqlca

{

 unsigned char sqlcaid[8];

 long sqlcabc;

 long sqlcode;

 short sqlerrml;

 unsigned char sqlerrmc[70];

 unsigned char sqlerrp[8];

 long sqlerrd[6];

 unsigned char sqlwarn[11];

 unsigned char sqlstate[5];

};

#define SQLCODE sqlca.sqlcode

#define SQLWARN0 sqlca.sqlwarn[0]

#define SQLWARN1 sqlca.sqlwarn[1]

#define SQLWARN2 sqlca.sqlwarn[2]

#define SQLWARN3 sqlca.sqlwarn[3]

#define SQLWARN4 sqlca.sqlwarn[4]

#define SQLWARN5 sqlca.sqlwarn[5]

#define SQLWARN6 sqlca.sqlwarn[6]

#define SQLWARN7 sqlca.sqlwarn[7]

#define SQLWARN8 sqlca.sqlwarn[8]

#define SQLWARN9 sqlca.sqlwarn[9]

#define SQLWARNA sqlca.sqlwarn[10]

#define SQLSTATE sqlca.sqlstate

#endif

struct sqlca sqlca;

Figure 81. SQLCA Structure (in C)

346 Application Programming

within a program section are not acceptable. In addition, the C compiler

determines which region of the code an SQLCODE declaration refers to.

Using Dynamic SQL Statements in C

You must declare an SQLDA structure to execute dynamically defined SQL

statements. You can have the database manager include the structure definition

automatically, by specifying the following statement in your source code:

 EXEC SQL INCLUDE SQLDA;

You can also include the structure definition by directly coding it as shown in

Figure 82.

Note: The SQLDA character array variables sqldaid and sqlname.data are not

NUL-terminated. They cannot be directly used by C string manipulation

functions.

The SQLDA must not be declared within the SQL declare section.

Using the defined preprocessor function SQLDASIZE, your program can

dynamically allocate an SQLDA of adequate size for use with each EXECUTE

statement. For example, the code fragment below allocates an SQLDA that is

adequate for five fields, and uses it in an EXECUTE of statement S3:

 struct sqlda *daptr;

 daptr = (struct sqlda *)malloc(SQLDASIZE(5));

 daptr->sqln=5;

 /* Add code to set the rest of values and

 pointers in the SQLDA */

 EXEC SQL EXECUTE S3 USING DESCRIPTOR *daptr;

Note: The variable that points to the SQLDA is not defined in an SQL declare

section. Its context within an SQL statement (following INTO or USING

DESCRIPTOR) is enough to identify it.

#ifndef SQLDASIZE

struct sqlda {

 unsigned char sqldaid[8];

 long sqldabc;

 short sqln;

 short sqld;

 struct sqlvar {

 short sqltype;

 short sqllen;

 unsigned char *sqldata;

 short *sqlind;

 struct sqlname {

 short length;

 unsigned char data[30];

 } sqlname;

 } sqlvar[1];

};

#define SQLDASIZE(n) \

 (sizeof(struct sqlda)+((n)-1)* \

 sizeof(struct sqlvar))

#endif

Figure 82. SQLDA Structure (in C)

Appendix B. Using SQL in C 347

You can use a similar technique to allocate an SQLDA for use with a DESCRIBE

statement. The following program fragment illustrates the use of SQLDA with

DESCRIBE for three fields and a “prepared” statement S1:

struct sqlda *daptr;

 EXEC SQL DECLARE C1 CURSOR FOR S1;

 daptr = (struct sqlda *)malloc(SQLDASIZE(3));

 daptr->sqln=3;

 EXEC SQL DESCRIBE S1 INTO *daptr;

 if (daptr->sqld > daptr->sqln)

 --get a bigger one

 Set sqldata and sqlind

 EXEC SQL OPEN C1;

 EXEC SQL FETCH C1 USING DESCRIPTOR *daptr;

There is no standard C type to support packed decimal data. If you want to get

data in packed decimal format, the SQLDA must be filled in with an SQLTYPE of

484 and with the appropriate values for precision and scale in SQLLEN. The C

program would then have to deal with the data in its packed format.

See the DB2 Server for VSE & VM SQL Reference manual for more information on

the individual fields within SQLDA.

Defining DB2 Server for VSE & VM Data Types for C

 Table 38. DB2 Server for VSE & VM Data Types for C

Description

DB2 Server for VSE

& VM

Keyword

Equivalent C

Declaration

A binary integer of 31 bits, plus sign. INTEGER or INT long or

long int

A binary integer of 15 bits, plus sign. SMALLINT short or

short int

A packed decimal number, precision p, scale s

(1≤p≤31 and 0≤s≤p). In storage, the number occupies

a maximum of 16 bytes. Precision is the total number

of digits. Scale is the number of those digits that are

to the right of the decimal point.

DECIMAL[(p[,s])]

or DEC[(p[,s])]

1

decimal(p,s)

If your version of the C

compiler does not provide

support for the decimal

data type, C short, long,

float and double host

variables are supported

for conversion to and

from DECIMAL columns.

To preserve decimal places: if

p<7 use float;

else use double.

A single-precision (4-byte) floating-point number, in

short System/390 floating-point format.

REAL or

FLOAT(p),

1 ≤ p ≤ 21

FLOAT

348 Application Programming

Table 38. DB2 Server for VSE & VM Data Types for C (continued)

Description

DB2 Server for VSE

& VM

Keyword

Equivalent C

Declaration

A double-precision (8-byte) floating-point number, in

long System/390 floating-point format.

FLOAT or

FLOAT(p),

22 ≤ p ≤ 53

or DOUBLE

PRECISION

DOUBLE

A fixed-length character string of length 1. CHARACTER[(1)] or

CHAR[(1)]

char or char ..[1]

A NUL-terminated character string of maximum

defined length n. Range of n is 1 ≤ n ≤ 254. The

terminating NUL is mandatory upon input.

VARCHAR(n) char ..[n+1]

A NUL-terminated character string of maximum

defined length of 32 767 bytes, subject to certain

usage limitations. Range of n is 255 ≤ n ≤ 32 766. The

terminating NUL is mandatory upon input.

LONG VARCHAR char ..[n+1]

A varying-length character string of maximum length

n. If n > 254 or ≤ 32 767, this data type is considered

a long field. See “Using Long Strings” on page 45 for

more information.

VARCHAR(n) struct { short ..; char ..[n]; }

A varying-length character string of maximum length

32 767 bytes, subject to certain usage limitations.

LONG VARCHAR struct { short ..; char ..[n]; }

A fixed-length string of n DBCS characters where 0 <

n ≤ 127.

GRAPHIC[(n)] Not supported

A varying-length string of n DBCS characters. If n >

127 or ≤ 16 383, this data type is considered a long

field. See “Using Long Strings” on page 45 for more

information.

VARGRAPHIC(n) Not supported

A varying-length string of DBCS characters of

maximum length 16 383, subject to certain usage

limitations.

LONG VARGRAPHIC Not supported

A NUL-terminated or varying-length character string

representing a date.

DATE see VARCHAR(n)

A NUL-terminated or varying-length character string

representing a time.

TIME see VARCHAR(n)

A NUL-terminated or varying-length character string

representing a timestamp.

TIMESTAMP see VARCHAR(n)

Notes:

1. NUMERIC is a synonym for DECIMAL, and may be used when creating or

altering tables. In such cases, however, the CREATE or ALTER function will

establish the column (or columns) as DECIMAL.

2. For a NUL-terminated string, the declared length should be one more than the

maximum length of a datetime to allow for the terminating NUL-byte, which is

mandatory input. Refer to the DB2 Server for VSE & VM SQL Reference manual

for information on minimum and maximum lengths.

Appendix B. Using SQL in C 349

Using Reentrant C Programs

A reentrant program has the characteristic of dynamic allocation of space for data

and save areas. This characteristic can be employed in C programs. In this case, the

data and save areas are dynamically allocated in a “static” area by the IBM C

Program Product Compiler.

Using Stored Procedures

Figure 83 on page 351 shows how to define the parameters in a stored procedure

that uses the GENERAL linkage convention.

v argv contains an array of pointers to the parameters that were passed to the

stored procedure.

– argv[0] is a special entry containing the address of the stored procedure name

– argv[1] contains the address of parameter 1

– argv[2] contains the address of parameter 2

v argc contains the number of parameters that were passed to the stored

procedure, plus one to account for the procedure name which is passed in

argv[0].

350 Application Programming

Figure 84 on page 352 shows how to define the parameters in a stored procedure

that uses the GENERAL WITH NULLS linkage convention. In this case:

v argv[0] contains the address of the stored procedure name

v argv[1] contains the address of parameter 1

v argv[2] contains the address of parameter 2

v argv[n] contains the address of parameter n

v argv[n+1] contains the address of the indicator variable array

 #pragma options(RENT)

 #pragma runopts(PLIST(OS))

 #include <stdlib.h>

 #include <stdio.h>

 /***/

 /* Code for a C language stored procedure that uses the */

 /* GENERAL linkage convention. */

 /***/

 main(argc,argv)

 int argc; /* Number of parameters passed */

 char *argv[]; /* Array of strings containing */

 /* the parameter values */

 {

 long int locv1; /* Local copy of V1 */

 char locv2[10]; /* Local copy of V2 */

 /* (null-terminated) */

 .

 .

 .

 /***/

 /* Get the passed parameters. */

 /***/

 if(argc==3) /* Should get 3 parameters: */

 { /* procname, V1, V2 */

 locv1 = *(int *) argv[1];

 /* Get local copy of V1 */

 .

 .

 .

 strcpy(argv[2],locv2);

 /* Assign a value to V2 */

 .

 .

 .

 }

 }

Figure 83. Stored Procedure - Using GENERAL Linkage Convention

Appendix B. Using SQL in C 351

#pragma runopts(PLIST(OS))

 #include <stdlib.h>

 #include <stdio.h>

 /***/

 /* Code for a C language stored procedure that uses the */

 /* GENERAL WITH NULLS linkage convention. *

 /***/

 main(argc,argv)

 int argc; /* Number of parameters passed */

 char *argv[]; /* Array of strings containing */

 /* the parameter values */

 {

 long int locv1; /* Local copy of V1 */

 char locv2[10]; /* Local copy of V2 */

 /* (null-terminated) */

 short int locind[2]; /* Local copy of indicator */

 /* variable array */

 short int *tempint; /* Used for receiving the */

 /* indicator variable array */

 .

 .

 .

 /***/

 /* Get the passed parameters. */

 /***/

 if(argc==4) /* Should get 4 parameters: */

 { /* procname, V1, V2, */

 /* indicator variable array */

 locv1 = *(int *) argv[1];

 /* Get local copy of V1 */

 tempint = argv[3]; /* Get pointer to indicator */

 /* variable array */

 locind[0] = *tempint;

 /* Get 1st indicator variable */

 locind[1] = *(++tempint);

 /* Get 2nd indicator variable */

 if(locind[0]<0) /* If 1st indicator variable */

 { /* is negative, V1 is null */

 .

 .

 .

 }

 .

 .

 .

 strcpy(argv[2],locv2);

 /* Assign a value to V2 */

 (++tempint) = 0; / Assign 0 to V2’s indicator */

 /* variable */

 }

 }

Figure 84. Stored Procedure - Using GENERAL WITH NULLS Linkage Convention

352 Application Programming

Appendix C. Using SQL in COBOL

A Sample COBOL Program 354

Rules for Using SQL in COBOL 354

Placing and Continuing SQL Statements . . . 354

Delimiting SQL Statements 355

Identifying Rules for Case 355

Declaring Host Variables 356

Using Host Variables in SQL Statements . . . 359

Using Long VARCHAR Host Variables (DB2

Server for VSE) 359

Using Preprocessor Options 359

Using the QUOTE Parameter 359

Using the COB2 Parameter (DB2 Server for

VSE) 360

Using the COB2 Parameter (DB2 Server for

VM) 360

Invoking COPYBOOKs (DB2 Server for VSE) 360

Using the COBRC Parameter 361

Using the TRUNC Compiler Option 361

Using the INCLUDE Statement 361

Using COBOL Variables in SQL: Data

Conversion Considerations 361

Other Coding Considerations 362

Using DBCS Characters in COBOL 362

Handling SQL Errors 363

Using Dynamic SQL Statements in COBOL . . 364

Defining DB2 Server for VSE & VM Data Types

for COBOL 366

Using Reentrant COBOL Programs 368

Using the DYNAM Compiler Option 369

Using Stored Procedures 369

© Copyright IBM Corp. 1987, 2007 353

A Sample COBOL Program

ARIS6CBD is a COBOL language sample program for VSE systems that is shipped

with the DB2 Server for VSE product. ARIS6CBC is a COBOL sample language

program for VM systems that is shipped with the DB2 Server for VM product. It

resides on the production disk for the base product. You may find it useful to print

this sample program before going through this appendix as the hard copy will

provide an illustration for many of the topics discussed here.

Here is a summary of the program by COBOL Divisions:

v Identification and Environment Divisions

You do not have to do anything different in either of these divisions for DB2

Server for VSE & VM applications.

v Data Division

In the Data Division of any COBOL application, you must declare all host

variables and the SQLCA structure.

The only SQL statements allowed in the Data Division are those shown in the

sample program and the INCLUDE statement; all others must be placed in the

Procedure Division.

The COBOL PICTURE clauses for the host variables are determined by referring

to Table 40 on page 366 which gives the COBOL representation for each of the

DB2 Server for VSE & VM data types. When you are coding your own

applications, you will need to obtain the data types of the columns that your

host variables interact with. This can be done by querying the catalog tables,

which are described in the DB2 Server for VSE & VM SQL Reference manual.

v Procedure Division

The program must explicitly connect to the application server. WHENEVER

statements should be coded to provide for error handling. Near the logical end

of the program, the database changes are rolled back, to ensure that the database

remains consistent for each use of the sample program. (For your own

applications, of course, you will enter a COMMIT statement.)

Rules for Using SQL in COBOL

In this appendix, the term COBOL implies OS/VS COBOL, VS COBOL II, IBM

COBOL for MVS and VM, or VSE IBM COBOL for VSE.

Placing and Continuing SQL Statements

Table 39 shows how SQL statements can be coded

 Table 39. Coding SQL Statements in COBOL Program Sections

SQL Statement Program Section

BEGIN DECLARE SECTION

END DECLARE SECTION

WORKING STORAGE or

LINKAGE SECTION or

FILE SECTION

INCLUDE SQLCA WORKING-STORAGE SECTION

INCLUDE text_file_name PROCEDURE DIVISION or

DATA DIVISION

354 Application Programming

Table 39. Coding SQL Statements in COBOL Program Sections (continued)

SQL Statement Program Section

Other PROCEDURE DIVISION SQL statements are

coded between columns 12 and 72 inclusive.

The system checks that SQL statements are not used in nested programs. Also if

one program immediately follows another program, the second program must not

contain SQL statements.

The rules for continuation of tokens from one line to the next are the same as the

COBOL rules for the continuation of words and constants. If a string-constant is

continued from one line to the next, the first non-blank character in that next line

must be a single quotation mark (') or a double quotation mark ("). If a delimited

SQL identifier (such as “EMP TABLE”) is continued from one line to the next, the

first non-blank character in that next line must be a double quotation mark.

COBOL comment lines, identified by an asterisk * in column 7, can be coded

within an embedded statement.

Delimiting SQL Statements

Delimiters are required on all SQL statements to distinguish them from regular

COBOL statements. You must precede each SQL statement with EXEC SQL, and

terminate each one with END-EXEC. Any desired COBOL punctuation, such as a

period, can be placed after the END-EXEC. For example, suppose an SQL

statement occurs as one of several statements nested inside a COBOL IF-statement.

In this instance, the SQL statement should not be followed by a period.

EXEC SQL must be specified within one line; the same is true for END-EXEC. A

separator (such as a blank space, SQL comment, or end-of-line) must precede the

END-EXEC that terminates an SQL statement; however, no punctuation is required

after the END-EXEC.

If an SQL statement appears within an IF sentence such that a COBOL ELSE clause

immediately follows the SQL statement, the clause must begin with the word

ELSE. In addition, this ELSE must be contained entirely on one line. (No

continuation is allowed for the word ELSE).

SQL WHENEVER and DECLARE CURSOR statements should not be the only

contents of COBOL IF or ELSE clauses as the preprocessor does not generate

COBOL code for these statements.

If an SQL statement terminates a COBOL IF sentence, a period should immediately

follow END-EXEC with no intervening blanks. A blank should follow the period.

Because a COBOL statement can be immediately preceded by a paragraph name,

so can an embedded SQL statement. Similarly, an embedded SQL statement in the

Procedure Division can be immediately followed by a separator period.

Identifying Rules for Case

Mixed case can be used in your COBOL program. The SQL preprocessor will

change the lowercase into uppercase, except for text within quotation marks, which

will be left in the original case.

Appendix C. Using SQL in COBOL 355

Declaring Host Variables

You must declare all host variables in an SQL declare section. For a description of

an SQL declare section, refer to “Declaring Variables That Interact with the

Database Manager” on page 8.

Declare host variables in the source file before the first use of the variable in an

SQL statement. All SQL declare sections must be located in the Working-Storage

Section, the File Section, or the Linkage Section of the Data Division. You can use

the following types of variables in an SQL statement:

v Elementary items (independent or subordinate of a group item)

v Group items

v Tables

For information on the use of these variables in an SQL statement, refer to “Using

Host Variables” on page 55 and “Using Host Structures” on page 55.

Note: You can declare non-host variables in an SQL declare section; however,

declarations that do not conform to DB2 Server for VSE & VM declaration

rules may return errors.

The declaration of a host variable is subject to the following rules:

v All elementary items that are declared in an SQL declare section can be used as

main variables. If these items are declared with a data type of short integer, they

can also be used as indicator variables.

v The only tables accepted by the COBOL preprocessor are tables of short integer

elements. These may only be used as indicator arrays. The following example is

an indicator array declaration:

01 IND_ARRAY.

 05 IND-ELEMENT OCCURS 15 TIMES PIC S9(4) COMP.

The COBOL preprocessor recognizes IND-ELEMENT as the indicator array.

You cannot use indicator array elements as main variables or indicator variables.

v You can use a group item as a host structure or as a varying-length string

definition. The structure must take the following form when used to define a

varying-length string:

01 VARCHAR-FIELD.

 49 LEN-FIELD PIC S9(4) COMP.

 49 TXT-FIELD PIC X(25).

This structure defines a VARCHAR host variable with the name

VARCHAR-FIELD and a length of 25. You cannot use this group item as a host

structure; you cannot use the elementary items in the structure as host variables.

For the rules for varying-length string variables, refer to Table 40 on page 366.

v A group item which defines a host structure is any two-level structure declared

in an SQL declare section. The following example is a host structure:

01 PROJ-STRCT.

 05 PROJNO PIC X(6).

 05 ACTNO PIC S9(4) COMP.

 05 ACSTAFF PIC S9(9) COMP.

 05 ACSTDATE PIC X(10).

 05 ACENDATE PIC X(10).

This structure represents the following list of host variables when used in an

SQL statement:

PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

The two following SQL statements are equivalent:

356 Application Programming

EXEC SQL SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

 INTO :PROJ-STRCT

 FROM PROJ_ACT

 WHERE PROJNO = ‘100000’

EXEC SQL SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

 INTO :PROJNO, :ACTNO, : ACSTAFF, :ACSTDATE, :ACENDATE

 FROM PROJ_ACT

 WHERE PROJNO = ‘100000’

A host structure can be a stand-alone group item or a substructure of a more

complex group item. The following example is a complex group item that

contains a host structure:

01 EMPLOYEE.

 05 EMPNO PIC X(6).

 05 EMPNAME.

 10 FIRSTNAME PIC X(12).

 10 MIDINIT PIC X(1).

 10 LASTNAME PIC X(15).

 05 WORKDEPT PIC X(3).

 05 PHONENO PIC X(4).

The group item EMPNAME is a host structure.

You can use the elementary items in the host structure and the elementary items

in the group item containing a host structure as host variables. In the previous

example, the following elementary items can be used as host variables:

EMPNO, FIRSTNAME, MIDINIT, LASTNAME, WORKDEPT, PHONENO

You can include a subordinate group item in the host structure to represent a

varying-length string element if that group item conforms to the rules for a

varying-length string definition. All of the rules previously stated for the

definition of varying-length strings also apply in this situation. The following

example is a host structure that contains a VARCHAR element:

01 EMPNAME.

 05 FIRSTNAME.

 49 FNLEN PIC S9(4) COMP.

 49 FNTEXT PIC X(12).

 05 MIDINIT PIC X(1).

 05 LASTNAME.

 49 LNLEN PIC S9(4)COMP.

 49 LNTEXT PIC X(15).

The COBOL preprocessor interprets the structure EMPNAME as a host structure

containing three elements: FIRSTNAME with data type VARCHAR and length 12,

MIDINIT with data type CHAR and length 1, and LASTNAME with data type

VARCHAR and length 15.

Note: Any structure that matches the description of a varying-length string

definition is interpreted as a varying-length definition and cannot be used

as a host structure.

v Third-level host structures are permitted in COBOL to support varying-length

strings. The following is an example of varying-length string declarations in host

structures:

 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 EMPNAME.

 05 FIRST-NM PIC X(8).

 05 LAST-NM PIC X(8).

 05 ADDRESS.

 49 ADD-LEN PIC S9(4) COMP.

 49 ADD-TXT PIC X(200).

 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.

Appendix C. Using SQL in COBOL 357

EXEC SQL SELECT FIRSTNAME, LASTNAME, ADDRESS

 INTO :EMPNAME

 FROM EMPLOYEE

 WHERE LASTNAME = ’JOHANSON’

 END-EXEC

In this example, empname is considered by the COBOL preprocessor to be a

two-level structure because the structure of address matches that of a

VARCHAR data type. As a result, empname may be used in the SELECT

statement. If, for example, addlen was changed from "PIC S9(4) COMP" to "PIC

S9(9) COMP", the structure of address would no longer match a VARCHAR data

type and empname would be considered a three-level structure. As a result,

empname could NOT be used in a SELECT statement.

v A host structure field in an SQL statement must be qualified as

structurename.fieldname instead of fieldname OF structurename or fieldname IN

structurename.

In the declaration below, only DATES and PRODUCT may be used as host structures.

ORDERNO and CUSTNUM may be used as scalar host variables, and may be qualified

as CUSTORD.ORDERNO and ORDINFO.CUSTNUM or CUSTORD.ORDINFO.CUSTNUM.

 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 CUSTORD.

 03 ORDERNO PIC X(10).

 03 ORDINFO.

 05 CUSTNUM PIC X(10).

 05 DATES.

 10 ORDDATE PIC X(6).

 10 DELIVDTE PIC X(6).

 03 PRODUCT.

 05 STOCKNO PIC X(10).

 05 QUANTITY PIC X(3).

 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.

 EXEC SQL SELECT STOCKNO, QUANTITY

 INTO :PRODUCT

 FROM ORDER

 WHERE STOCKNO = ’1234567890’

 END-EXEC.

v The following restrictions apply to level numbers:

1. Independent elementary items must have a level number of 01 or 77.

2. Subordinate elementary items must have a level number from 02 to 49.

3. The outermost group item must have a level number of 01.

4. Subordinate group items must have a level number from 02 to 49.

5. Elementary items in a varying-length string definition must have a level

number of 49.

6. Level 66 and level 88 items will be ignored by the preprocessor.

v Except for an indicator array, FILLER is permitted as the name of an elementary

item. If FILLER is used as the name of an elementary item, the item will be

ignored.

v In addition to the clauses discussed in Table 40 on page 366, the COBOL

preprocessor supports the following clauses in declarations imbedded in the

SQL declare section:

358 Application Programming

GLOBAL

EXTERNAL

SYNCHRONIZED

VALUE

v Rules for continuation of variable names and COBOL keywords in declaration

statements are the same as those described for SQL statements.

v The database manager allows host variable names, statement labels, and SQL

descriptor area names of up to 256 characters in length, subject to any COBOL

language restrictions mentioned in this appendix.

Note: Due to the restriction on the number of host variables in a statement, host

structures with greater than 256 fields will not be allowed,

v You should not give any variable a name beginning with SQL or RDI. These

names are reserved for database manager use.

v Comma separators are supported between the clauses of a declaration statement.

Using Host Variables in SQL Statements

When you reference host variables, host structures, structures fields, or indicator

arrays in an SQL statement, you must precede each reference by a colon (:). The

colon distinguishes these variables from SQL identifiers (such as column names).

The colon is not required outside an SQL statement.

Using Long VARCHAR Host Variables (DB2 Server for VSE)

When you code on-line command level application programs in COBOL, be aware

of the following CICS/VSE restriction. The length of the working storage plus the

length of the TGT (TARGET GLOBAL TABLE) must not exceed 64K bytes.

This restriction only applies when using Long VARCHAR Host Variables because

the length of a single long VARCHAR host variable can be up to 32K bytes.

Using Preprocessor Options

Using the QUOTE Parameter

DB2 Server for VSE

If the COBOL compiler QUOTE option is used or if the QUOTE option has

been specified in the CBL statement of COBOL, then the QUOTE (or Q)

option of the preprocessor should also be specified. You should use a single

quotation mark (') to delineate constants used in embedded SQL statements,

regardless of the COBOL compiler QUOTE option.

DB2 Server for VM

If the COBOL compiler QUOTE option is used, the QUOTE (or Q) option of

the preprocessor should also be specified. Use a single quotation mark (') to

delineate constants used in embedded SQL statements, regardless of the

COBOL compiler QUOTE option.

Appendix C. Using SQL in COBOL 359

Using the COB2 Parameter (DB2 Server for VSE)

When the COB2 parameter is specified, certain functions supported by the COBOL

II Release 3 compiler, and later, are also supported by the database manager. These

functions include:

v Literals can be 160 characters long.

v ENDIF will be generated where appropriate when expanding code for the SQL

WHENEVER statement.

In order to make use of these features, you must specify the COB2 option when

preprocessing your application. Existing applications that use these features must

be repreprocessed and recompiled.

Using the COB2 Parameter (DB2 Server for VM)

When the COB2 parameter is specified, certain functions supported by the COBOL

II Release 3 compiler, and later, are also supported by the database manager. These

functions include:

v COBOL keywords can be in mixed case. For example, “Data Division” is

allowed.

v The COBOL picture clause enhancements:

– Can be in mixed case. Thus, “Picture” is allowed.

– Can end in either a period or a comma. For example, “Pic x(10)..”, and “pic

x(10),.” are both valid.

v DB2 Server for VM numeric column types are compatible with the COBOL

variables

 Picture S9(4) USAGE BINARY

 and

 Picture S9(p)[V9(s)] USAGE PACKED-DECIMAL

where “p” is the precision and “s” is the scale.

v The COBOL FILLER is optional. Thus, the following example is valid even

though the fourth field is blank:

 01 HEADING2.

 03 FILLER Pic x(6) VALUE ’ITEM NUMBER’.

 03 FILLER Pic x(5) VALUE SPACES.

 03 FILLER Pic x(11) VALUE ’DESCRIPTION’.

 03 Pic x(4) VALUE SPACES.

 03 FILLER Pic x(8) VALUE ’QUANTITY’.

v Literals can be 160 characters long.

v The system checks that SQL statements are not used in nested programs. Also, if

one program immediately follows another, the second program must not contain

SQL statements.

v ENDIF will be generated where appropriate when expanding code for the SQL

WHENEVER statement.

In order to make use of these features, you must specify the COB2 option when

preprocessing your application. Existing applications that are to make use of these

features must be repreprocessed and recompiled.

Invoking COPYBOOKs (DB2 Server for VSE)

You should not use the COBOL COPY verb to invoke COPYBOOKS that involve

SQL host variables. Instead, use the SQL INCLUDE statement to invoke such

COPYBOOKs. This arrangement is necessary because the preprocessor is run

before the COBOL compiler.

360 Application Programming

Using the COBRC Parameter

When the COBRC parameter is specified, the preprocessor will generate the

statement 'MOVE ZEROS TO RETURN-CODE' after it generates a call to ARIPRDI.

This solves the problem of unexpected or invalid return codes being reported after

a COBOL II (IBM COBOL for MVS and VM or IBM COBOL for VSE) application

ends. For example, a REXX EXEC may contain several steps which each execute

based on a return code from the previous step. If the application programmer has

not set the COBOL special register, RETURN-CODE, the return code is not reliable.

This new parameter may be used instead of explicitly setting the special register.

Limitations:

1. If the user’s COBOL compiler does not support the special register,

RETURN-CODE, the application will not compile successfully. COBOL II

supports it and new versions of COBOL support it, but old versions do not.

2. If the application sets the special register, RETURN-CODE, and then does an

SQL call, the value is not preserved.

 MOVE 4 TO RETURN-CODE.

 EXEC SQL INSERT INTO MYTABLE VALUES (1,2).

 STOP RUN.

The application will end with return code 0 instead of 4 because when the

EXEC SQL statement is expanded the last line generated is 'MOVE ZEROS TO

RETURN-CODE'.

3. If the user’s compiler does not support the special register, RETURN-CODE,

but they have declared a variable called RETURN-CODE, the variable will be

updated which can cause unexpected results for the application.

Using the TRUNC Compiler Option

For Version 3.2 of COBOL II or later, use the TRUNC(BIN) compiler option,

because the system is half-word boundary sensitive. Under this option, receiving

fields are truncated only at halfword, fullword, or doubleword boundaries.

Using the INCLUDE Statement

To include the external secondary input, specify the following at the point in the

source code where the secondary input is to be included:

 EXEC SQL INCLUDE text_file_name END-EXEC.

The text_file_name is a C-Type source member of a VSE library. Text_file_name is

the file name of a CMS file, with a “COBCOPY” file type, located on a CMS

minidisk accessed by the user.

The INCLUDE statement can appear anywhere within the File, Linkage, or

Working Storage Sections of the Data Division, and anywhere within the Procedure

Division, including the Declaratives Section, if one is used. Note that the

INCLUDE statement is the only type of SQL statement that is allowed within the

Declaratives Section of a Procedure Division.

Using COBOL Variables in SQL: Data Conversion Considerations

COBOL variables used in SQL statements must be type-compatible with the

columns of the tables with which they are to be used (stored, retrieved, or

compared). Of course, an overflow condition may occur if, for example, an

INTEGER data item is retrieved into a PICTURE S9(4) variable, and its current

value is too large to fit.

Appendix C. Using SQL in COBOL 361

The database manager recognizes the DISPLAY SIGN LEADING SEPARATE

(DSLS) attribute for COBOL host variables. It converts input host variables in the

DSLS format to the required column format, and output host variables from the

column format to DSLS format.

The character data types CHAR, VARCHAR, and LONG VARCHAR are

considered compatible. The graphic data types GRAPHIC, VARGRAPHIC, and

LONG VARGRAPHIC are considered compatible. A varying-length string is

automatically converted to a fixed-length string, and a fixed-length string is

automatically converted to a varying-length string when necessary. If a

varying-length string is converted to a fixed-length string, it is truncated or

padded on the right with blanks to the correct length. The system also truncates or

pads with blanks if a fixed-length string is assigned to another fixed-length string

of a different size (for example, a variable of PICTURE X(12) is stored in a column

of type CHAR(18)).

The system also considers the datetime data types to be compatible with character

data types (fixed or varying, but not LONG VARCHAR and VARCHAR > 254).

Refer to “Converting Data” on page 48 for a data conversion summary.

Other Coding Considerations

You may want to consider the following points when coding SQL statements and

host variable declarations:

v The preprocessor scans past COBOL NOTE-type comments and line comments

defined by an asterisk (*) in column 7. It does not recognize line comments

identified by a slash (/) in column 7.

v An SQL comment entered in a static SQL statement must be preceded by a

blank.

v When performing subtraction in an SQL statement, delimit the minus sign (-)

with blanks:

 blanks

 | |

 V V

QUANT - :ORDER-AMOUNT

v COBOL keywords can be coded in mixed case. For example, Data Division is

allowed.

Using DBCS Characters in COBOL

DB2 Server for VSE

If your program contains DBCS characters, the following sequence of

processing is necessary:

v DB2 Server for VSE COBOL Preprocessor

v COBOL Kanji Preprocessor

v CICS/VSE Translator, if necessary

v COBOL Compiler.

 The rules for the format and use of DBCS characters in SQL statements are the

same for COBOL as for other host languages supported by the system. For a

discussion of these rules, see “Using a Double-Byte Character Set (DBCS)” on page

51.

362 Application Programming

When coding graphic constants in SQL statements, use the SQL format of the

graphic constant:

 G’<▌XXXX▐>’

Note: N is a synonym for G.

See “Using Graphic Constants” on page 58 for a discussion of graphic constants.

The COBOL preprocessor does not support options for changing the encoding for

the < and > characters.

Handling SQL Errors

You can declare the SQLCA return code structure that is required for the system in

two ways:

1. You may write:

 EXEC SQL INCLUDE SQLCA END-EXEC.

in the Working-Storage Section of your source program. The preprocessor

replaces this with a declaration of the SQLCA structure.

2. You may declare the SQLCA yourself in the Working-Storage Section, as shown

in Figure 85 on page 363.

A COBOL program containing SQL statements must have a Working-Storage

Section. The meanings of the fields within the SQLCA are discussed in the DB2

Server for VSE & VM SQL Reference manual.

In COBOL, the object of a GO TO in the SQL WHENEVER statement must be a

section name or an unqualified paragraph name.

You may find that the only variable in the SQLCA you really need is SQLCODE. If

this is the case, declare just the SQLCODE variable and invoke NOSQLCA support

at preprocessor time.

01 SQLCA.

 05 SQLCAID PIC X(8).

 05 SQLCABC S9(9) COMPUTATIONAL.

 05 SQLCODE PIC S9(9) COMPUTATIONAL.

 05 SQLERRM.

 49 SQLERRML PIC S9(4) COMPUTATIONAL.

 49 SQLERRMC PIC X(70).

 05 SQLERRP PIC X(8).

 05 SQLERRD OCCURS 6 TIMES

 PIC S9(9) COMPUTATIONAL.

 05 SQLWARN.

 10 SQLWARN0 PIC X(1).

 10 SQLWARN1 PIC X(1).

 10 SQLWARN2 PIC X(1).

 10 SQLWARN3 PIC X(1).

 10 SQLWARN4 PIC X(1).

 10 SQLWARN5 PIC X(1).

 10 SQLWARN6 PIC X(1).

 10 SQLWARN7 PIC X(1).

 10 SQLWARN8 PIC X(1).

 10 SQLWARN9 PIC X(1).

 10 SQLWARNA PIC X(1).

 05 SQLSTATE PIC X(5).

Figure 85. SQLCA Structure (in COBOL)

Appendix C. Using SQL in COBOL 363

The number of SQLCODE declarations is not limited by the preprocessor. If a

stand-alone SQLCODE is specified, the code inserted by the preprocessor into the

COBOL code to expand an EXEC SQL statement will refer to the address of that

SQLCODE. The COBOL compiler determines if multiple declarations within a

program section are not acceptable. In addition, the COBOL compiler determines

which region of the code an SQLCODE declaration refers to.

DB2 Server for VSE & VM does not pass the return code in register 15 on

completion of SQL statement processing. The return code and any other

information is passed in the SQLCA. Furthermore, if the COBRC preprocessor

parameter was not specified, DB2 Server for VSE & VM does not set the return

code to zeros on completion of SQL statement processing. If IBM COBOL for MVS

and VM, IBM COBOL for VSE, or COBOL II is being used, this can cause register

15 to be uninitialized and can contain unpredictable data. This appears as very

large return codes when the COBOL application ends. This does not occur with the

DOS/VS COBOL compiler. It is the responsibility of the application programmer to

set the return code to something meaningful. The COBOL special register

RETURN-CODE should be set before the application program ends.

The simplest method is to code the following lines just before a STOP RUN or a

GOBACK statement.

 MOVE ZERO TO RETURN-CODE.

 STOP RUN.

Any return code meaningful to the application can be set. It can also be set to the

SQLCODE if desired.

Using Dynamic SQL Statements in COBOL

The COBOL preprocessor lets you use a descriptor area, the SQLDA, to execute

dynamically defined SQL statements. (See Chapter 7, “Using Dynamic Statements,”

on page 215 for more information on dynamic SQL statements and for more

information on dynamic SQL statements and the SQLDA.) However, the COBOL

preprocessor will not replace the statement EXEC SQL INCLUDE SQLDA with a

declaration of the SQLDA structure, as is done with the SQLCA. Instead, EXEC SQL

INCLUDE SQLDA would just include the secondary input file SQLDA, as described in

“Using the INCLUDE Statement” on page 361.

Before you can use the descriptor area you must properly allocate and initialize it,

and you must manage all its address variables. The following example shows how

you could define a descriptor area in the COBOL Working-Storage section for five

fields:

364 Application Programming

Note: DOS/VS COBOL 3.1 users cannot use the ″USAGE IS POINTER″ clause

implied in this example for the DADATA and DAIND areas. Instead, these areas

must be defined with the characteristics of PIC X(4).

The descriptor area must not be declared within the SQL declare section.

The following pseudocode illustrates a use of the descriptor area, adequate for

three fields:

 When decimal data is used, the values of the SQLPRCSN and SQLSCALE field can

be determined by declaring additional variables. For example:

 01 PRCSNN PIC S9(4) COMP.

 01 PRCSNC REDEFINES PRCSNN.

 15 FILLCHAR1 PIC X.

 15 PRCSNCHAR PIC X.

 01 SCALEN PIC S9(4) COMP.

 01 SCALEC REDEFINES SCALEN.

 15 FILLCHAR2 PIC X.

 15 SCALECHAR PIC X.

The following MOVE statements would move the precision and scale of the nth

selected item into PRCSNN and SCALEN, respectively:

 MOVE SQLPRCSN(n) TO PRCSNCHAR.

 MOVE SQLSCALE(n) TO SCARECHAR.

For COBOL, the string-spec in PREPARE and EXECUTE IMMEDIATE must be in

the same format as the SQL VARCHAR data type (you must set the proper length)

or a quoted string. If a quoted string is used, its length is limited to 120 characters

(the maximum length allowed for COBOL constants). In addition, you cannot use a

single (') or double (") quotation mark within a COBOL constant that is the object

of a PREPARE or EXECUTE IMMEDIATE statement.

 01 DASQL.

 02 DAID PIC X(8) VALUE ’SQLDA ’.

 02 DABC PIC S9(8) COMP VALUE 13216.

 02 DAN PIC S9(4) COMP VALUE 5.

 02 DAD PIC S9(4) COMP VALUE 0.

 02 DAVAR OCCURS 1 TO 300 TIMES

 DEPENDING ON DAN.

 03 DATYPE PIC S9(4) COMP.

 03 DALEN PIC S9(4) COMP.

 03 FILLER REDEFINES DALEN.

 15 SQLPRCSN PIC X.

 15 SQLSCALE PIC X.

 03 DADATA POINTER.

 03 DAIND POINTER.

 03 DANAME.

 49 DANAMEL PIC S9(4) COMP.

 49 DANAMEC PIC X(30).

 - allocate storage for a Descriptor Area of at least size = 3

 - set DAN = 3 (number of fields)

 - set DAD = 3

 - set the rest of the values and pointers in the Descriptor Area

 EXEC SQL EXECUTE S1 USING DESCRIPTOR dasql

Appendix C. Using SQL in COBOL 365

Defining DB2 Server for VSE & VM Data Types for COBOL

 Table 40. DB2 Server for VSE & VM Data Types for COBOL

Description

DB2 Server for VSE

& VM

Keyword

Equivalent COBOL

Declaration

A binary integer of 31 bits, plus sign. INTEGER or INT 01 PICTURE S9(9)

 COMPUTATIONAL.

A binary integer of 15 bits, plus sign. SMALLINT 01 PICTURE S9(4)

 COMPUTATIONAL.

A packed decimal number, precision p, scale s

(1 ≤ p ≤ 31 and 0 ≤ s≤ p). In storage the

number occupies a maximum of 16 bytes.

Precision is the total number of digits. Scale is

the number of those digits that are to the

right of the decimal point.

DECIMAL[(p[,s])]

or DEC[(p[,s])]

01 PICTURE S9(x)[V9(y)]

 COMPUTATIONAL-3.

 or

01 PICTURE S9(x)[V9(y)]

 PACKED-DECIMAL.

 or

01 PICTURE S9(x)[V9(y)]

 DISPLAY SIGN LEADING SEPARATE

Where x + y = p and

 y = s

A single-precision (4-byte) floating-point

number, in short System/390 floating-point

format.

REAL or

FLOAT(p), 1 ≤ p ≤ 21

COMPUTATIONAL-1.

A double-precision (8-byte) floating-point

number, in long System/390 floating-point

format.

FLOAT or

FLOAT(p), 22 ≤ p ≤ 53

or DOUBLE

PRECISION

COMPUTATIONAL-2.

A fixed-length character string of length n

where 0 < n ≤ 254.

CHARACTER[(n)]

or CHAR[(n)]

01 S PICTURE X(n).

A varying-length character string of maximum

length n. If n > 254 or ≤ 32 767, this data type

is considered a long field. (See “Using Long

Strings” on page 45 for more information.)

(Only the actual length is stored in the

database.)

VARCHAR(n) 01 S.

 49 S-LENGTH

 PICTURE S9(4)

 COMPUTATIONAL.

 49 S-VALUE

 PICTURE X(n).

A varying-length character string of maximum

length 32 767 bytes.

LONG VARCHAR 01 S.

 49 S-LENGTH

 PICTURE S9(4)

 COMPUTATIONAL.

 49 S-VALUE

 PICTURE X(n).

A fixed-length string of n DBCS characters

where 0 < n ≤ 127.

GRAPHIC[(n)] 01 GNAME PICTURE G(n)

 [DISPLAY-1].

366 Application Programming

Table 40. DB2 Server for VSE & VM Data Types for COBOL (continued)

Description

DB2 Server for VSE

& VM

Keyword

Equivalent COBOL

Declaration

A varying-length string of n DBCS characters.

If n > 127 or ≤ 16383, this data type is

considered a long field. (See “Using Long

Strings” on page 45 for more information.)

VARGRAPHIC(n) 01 GNAME.

 49 GGLEN

 PICTURE S9(4)

 COMPUTATIONAL.

 49 GGVAL

 PICTURE G(n)

 [DISPLAY-1].

A varying-length string of DBCS characters of

maximum length 16383.

LONG VARGRAPHIC 01 XNAME.

 49 XNAMLEN

 PICTURE S9(4)

 COMPUTATIONAL.

 49 XNAMVAL

 PICTURE G(n)

 [DISPLAY-1].

A fixed or varying-length character string

representing a date. The minimum and

maximum lengths vary with both the format

used and whether it is an input or output

operation. See the DB2 Server for VSE & VM

SQL Reference manual for more information.

DATE 01 S PICTURE X(n).

 or

01 S.

 49 S-LENGTH

 PICTURE S9(4)

 COMPUTATIONAL.

 49 S-VALUE

 PICTURE X(n).

A fixed or varying-length character string

representing a time. The minimum and

maximum lengths vary with both the format

used and whether it is an input or output

operation. See the DB2 Server for VSE & VM

SQL Reference manual for more information.

TIME 01 S PICTURE X(n).

 or

01 S.

 49 S-LENGTH

 PICTURE S9(4)

 COMPUTATIONAL.

 49 S-VALUE

 PICTURE X(n).

A fixed or varying-length character string

representing a timestamp. The lengths can

vary on input and output. See the DB2 Server

for VSE & VM SQL Reference manual for more

information.

TIMESTAMP 01 S PICTURE X(n).

 or

01 S.

 49 S-LENGTH

 PICTURE S9(4)

 COMPUTATIONAL.

 49 S-VALUE

 PICTURE X(n).

Notes:

 1. USAGE or USAGE IS is optional before COMPUTATIONAL, BINARY,

PACKED-DECIMAL, and DISPLAY-1.

 2. The word IS can follow PICTURE or PIC.

 3. COMPUTATIONAL can be abbreviated COMP. PICTURE can be abbreviated

PIC.

Appendix C. Using SQL in COBOL 367

4. COMPUTATIONAL-4. or USAGE BINARY can be substituted for

COMPUTATIONAL for DB2 Server for VM.

 5. The following synonyms are supported:

v COMPUTATIONAL-4 for COMPUTATIONAL

v BINARY for COMPUTATIONAL

v PACKED-DECIMAL for COMPUTATIONAL-3

v N(n) for G(g)

 6. INTEGER and SMALLINT data types can have sliding ranges. For example, if

you want to declare a SMALLINT variable that you know will remain very

small, you could use S9(2) instead of S9(4). Or, you could declare an integer

with a range of S9(7) instead of S9(9). However, only the ranges shown in the

above table allow for the largest possible values of SMALLINT and INTEGER.

Truncation may occur if you declare smaller ranges.

 7. For COMPUTATIONAL types, 9’s may be repeated rather than using the

repetition factors in parentheses (that is, 9999 instead of 9(4)). The same is true

for the X’s in the character types and the G’s in the graphic character types.

 8. In DECIMAL data types, precision is the total number of digits. Scale is the

number of digits to the right of the decimal point.

 9. NUMERIC is a synonym for DECIMAL and, can be used when you are

creating or altering tables. In such cases, however, the CREATE or ALTER

function will establish the column (or columns) as DECIMAL.

10. When a VALUE clause is used for host variables of the form “PIC S9(4)

COMP”, the highest value accepted by COBOL is 9999. If you specify the

COBOL NOTRUNC option, however, a value up to 32 767 can be moved into

the host variable. If host variables are to contain long fields where the length

exceeds 9999, the NOTRUNC option must be set.

Using Reentrant COBOL Programs

A reentrant program has the characteristic of dynamic allocation of space for data

and save areas. This reentrant characteristic can be used in COBOL programs that

use the database manager.

DB2 Server for VSE

Such programs must follow the COBOL compiler’s rules for producing

reentrant programs, and must be repreprocessed, recompiled, and relinked

with the OBJECT file ARIPADR4.

Existing COBOL programs may continue to use ARIPADR until they are

recompiled. Thereafter, they must link-edit the OBJECT file ARIPADR4.

DB2 Server for VM

Such programs must follow the COBOL compiler’s rules for producing

reentrant programs, and must be repreprocessed, recompiled, and relinked

with the TEXT file ARIPADR4.

Existing COBOL programs (preprocessed prior to SQL/DS Version 2 Release

2) may continue to use ARIPADR until they are recompiled. Thereafter, they

must link-edit the TEXT file ARIPADR4.

After programs are recompiled, ARIPADR4 must be in their link or load step.

368 Application Programming

Using the DYNAM Compiler Option

The DYNAM option of the IBM COBOL for MVS and VM, IBM COBOL for VSE,

and VS COBOL II compilers can be used by applications.

If the DYNAM option is used, then it is not necessary to include any of the linkage

modules listed for COBOL programs in “Link-Editing and Loading the Program”

on page 142 (DB2 Server for VM) or “Link-Editing and Loading the Program” on

page 180 (DB2 Server for VSE.

DB2 Server for VSE

Applications using the DYNAM option must have access to the DB2 Server

for VSE production library at run time.

CICS/VSE programs do not support the DYNAM option; they must continue

to be link-edited with the required extra linkage modules.

DB2 Server for VM

COBOL applications that use the DYNAM option must have access to the

DB2 Server for VM production disk at run time.

Using Stored Procedures

The following example shows how to define the parameters in a stored procedure

that uses the GENERAL linkage convention.

The following example shows how to define the parameters in a stored procedure

that uses the GENERAL WITH NULLS linkage convention.

 IDENTIFICATION DIVISION.

 .

 .

 DATA DIVISION.

 .

 .

 LINKAGE SECTION.

 01 PARM1 ...

 01 PARM2 ...

 .

 .

 PROCEDURE DIVISION USING PARM1, PARM2.

 .

 .

Figure 86. Stored Procedure - Using GENERAL Linkage Convention

Appendix C. Using SQL in COBOL 369

IDENTIFICATION DIVISION.

 .

 .

 DATA DIVISION.

 .

 .

 LINKAGE SECTION.

 01 PARM1 ...

 01 PARM2 ...

 01 INDARRAY PIC S9(4) USAGE COMP OCCURS 2 TIMES.

 .

 .

 PROCEDURE DIVISION USING PARM1, PARM2, INDARRAY.

 .

 .

Figure 87. Stored Procedure - Using GENERAL WITH NULLS Linkage Convention

370 Application Programming

Appendix D. Using SQL in Fortran

A Fortran Sample Program 372

Rules for Using SQL in Fortran 372

Placing and Continuing SQL Statements . . . 372

Placing Data Statements 373

Using Fortran Common Areas (DB2 Server for

VSE) 373

Identifying Rules for Case 373

Declaring Host Variables 373

Embedding SQL Statements 375

Using Host Variables in SQL Statements . . . 375

Using Variable Length Character Strings . . . 375

Using DBCS Characters in Fortran 376

Using the INCLUDE Statement 377

Using Fortran Variables in SQL: Data

Conversion Considerations 377

Handling SQL Errors 377

Handling Program Interrupts 378

Using Dynamic SQL Statements in Fortran . . . 378

Restrictions When Using the Fortran Preprocessor 379

Defining DB2 Server for VSE & VM Data Types for

Fortran 380

© Copyright IBM Corp. 1987, 2007 371

A Fortran Sample Program

ARIS6FTD is a Fortran language sample program for VSE systems that is shipped

with the DB2 Server for VSE product. ARIS6FTC is a Fortran language sample

program for VM systems that is shipped with the DB2 Server for VM product. It

resides on the production disk for the base product. You may find it useful to print

this sample program before going through this appendix as the hard copy will

provide an illustration for many of the topics discussed here.

Note, for example, how the program satisfies the requirements of the application

prolog and epilog. Near the beginning of the program all the host variables are

declared, and error handling is defined. Near the logical end of the program, the

database changes are rolled back, to assure the database remains consistent for

each use of the sample program. For your own applications, of course, you will

enter a commit. the host variables are declared, and error handling is defined.

The data description statements for the host variables are determined by referring

to Table 41 on page 380. When you are coding your own applications you will

need to obtain the data types of the columns that your host variables interact with.

This can be done by querying the catalog tables. See the DB2 Server for VSE & VM

SQL Reference manual for more information on catalog tables.

Rules for Using SQL in Fortran

The Fortran SQL preprocessor supports programs written for the VS Fortran

compiler with the LANGLVL (77) option specified. Only FIXED-FORM source

statements are supported.

If Fortran labels are placed on SQL declarative statements, the label will be

removed and an information message given.

The Fortran preprocessor supports a maximum of 255 program units per input

source file (254 subprograms in addition to the main program).

DB2 Server for VM

All the restrictions that apply to extended dynamic statements apply to all

Fortran programs.

Placing and Continuing SQL Statements

All SQL statements must be placed in columns 7 to 72. Columns 73 to 80 may

contain sequence numbers and information; columns 1 to 5 may also contain

statement numbers.

The rules for continuation of tokens from one line to the next are the same as the

Fortran rules for the continuation of words and constants.

An SQL statement may use up to 124 continuation lines in addition to the first line

(for a total of 125 lines including blanks and comments). A continuation line can

be:

v A continued line (that is, a line that does not have a blank or zero in column 6).

v A blank line

v A comment line.

372 Application Programming

These lines must fall between the start of the SQL statement and the next

statement.

Notes:

1. The maximum length of an SQL statement is 8 192 characters

2. This restriction also applies to Fortran IF and ELSE statements

3. A statement is terminated by another statement or by end-of-file.

Placing Data Statements

The Fortran Release 3.0 compiler restricts the placement of data statements in

Fortran programs or subroutines. Some precaution is necessary in order to

eliminate the following warning message during compilation of the program or

subroutine:

 WARNING MSGIFX1935I

 DATA STATEMENT PRECEDES AN EXPLICIT TYPE STATEMENT

During preprocessing, the Fortran preprocessor places inline calls at the end of the

DB2 Server for VSE & VM declare section, if one exists; otherwise, the calls are

placed at the beginning of the program or subroutine. These calls contain data

statements that must be preceded by all declares.

If an SQL declare section does not exist, place the following dummy SQL declare

section after all other program declares to avoid the above warning message:

 EXEC SQL BEGIN DECLARE SECTION

 EXEC SQL END DECLARE SECTION

Since the preprocessor replaces EXEC SQL INCLUDE SQLCA with the declaration of the

SQLCA structure, the SQLCA must be included before the declare section.

The Fortran preprocessor does not recognize a FUNCTION keyword if it is

preceded by a type declaration. The FUNCTION keyword must, therefore, be the

first word in the FUNCTION statement.

Using Fortran Common Areas (DB2 Server for VSE)

For VSE single user mode, items in a Fortran COMMON statement must be

initialized in a BLOCK DATA subroutine and the COMMON statement must be

assigned a name.

Identifying Rules for Case

Mixed case can be used in your Fortran program. The SQL preprocessor will

change the lowercase into uppercase, except for text within quotation marks, which

will be left in the original case.

Declaring Host Variables

Host variables must be explicitly declared to be used in SQL statements. The

following example shows an SQL declare section for a Fortran program:

 EXEC SQL BEGIN DECLARE SECTION (at beginning of section)

 .

 .

 (Data description entries for host variables)

 .

 .

 EXEC SQL END DECLARE SECTION (at end of section)

Appendix D. Using SQL in Fortran 373

Place the data description entries for all the host variables within the SQL declare

sections. You may use the variables appearing in these SQL declare sections in

regular Fortran statements as well as in SQL statements.

A host variable declared within the SQL DECLARE SECTION may not be

continued. The host variable declaration must appear on a single line in order to

be recognized by the preprocessor.

You can also place data description entries for non-host variables in the SQL

declare section as the Fortran preprocessor ignores data description entries within

the SQL declare section that it does not recognize as valid host variable

declarations. No error message is generated; instead, the statement is left for the

Fortran compiler to process. Thus it is possible, though not recommended, to place

all data description entries within an SQL declare section.

The rules for declaring variables within SQL declare sections are:

v Host variables must be valid Fortran variable names according to the version of

the Fortran compiler that is being used. Fortran host variable names are

restricted to a length of 18 bytes.

v Variables named in the SQL declare sections must have data descriptions like

those in Table 41 on page 380.

v Variables cannot be any of the following:

– Vector or array declarations

– Constants defined by a PARAMETER statement

– Any declarations that use expressions to define the length of the variables

– Character variables declared with an undefined length, such as

CHARACTER*(*).

v You should not give any variable a name beginning with SQL, because these

names are reserved for database manager use.

v When host variables are declared as INTEGER, and you are using the

OPTIMIZE(2) or OPTIMIZE(3) compile option, the host variables should be

declared as COMMON.

Under OPTIMIZE 2 or 3, Fortran may make register assignments to the program

variables if they are not in COMMON storage. Under some circumstances, this

can result in the database manager using an inaccurate variable value.

In the following example, NUM must be declared as COMMON if OPTIMIZE 2

or 3 is specified:

 EXEC SQL DECLARE CURSOR C1 FOR INSERT INTO T1 VALUES (:NUM)

 EXEC SQL OPEN C1

 DO 20 NUM=1,10

 EXEC SQL PUT C1

 20 CONTINUE

 *

 EXEC SQL CLOSE C1

v Only the NONE value of the AUTODBL Fortran compile option is supported.

AUTODBL changes the precision of declared variables without altering the

source code. The preprocessor runs before the Fortran compiler and interprets

variable types based strictly on their declaration.

A host variable must be declared earlier than the first use of the variable in an SQL

statement in the program.

374 Application Programming

Embedding SQL Statements

You must precede each SQL statement in your program with EXEC SQL. No

delimiter should be used at the end of each statement.

Fortran source statements and SQL statements cannot be contained on the same

line or within the same continued statement, except when an SQL statement is

used as the imperative statement of a logical IF. Also, only one SQL statement can

be contained in a single line, or within the same continued statement.

Using Host Variables in SQL Statements

When you place host variables within an SQL statement, you must precede each

one by a colon (:), to distinguish it from the SQL identifiers (such as a column

name). When you place a host variable outside of an SQL statement, do not use a

colon.

A host variable can represent a data value, but not an SQL identifier. For example,

you cannot assign a character constant such as ‘MUSICIANS’ to a host variable,

and then use that host variable in a CREATE TABLE statement to represent the

table name. This pseudocode sequence is invalid:

Using Variable Length Character Strings

Fortran does not support variable length character strings (VARCHAR, LONG

VARCHAR). However, it is possible to circumvent this restriction in the following

way:

1. Declare INTEGER*2 to contain the length of the string

2. Declare a CHARACTER*(length) string of data

3. Declare a CHARACTER*(2 + length of string)

4. Declare a COMMON block containing (1) and (2) above

5. Use the EQUIVALENCE statement (name of (1) above, name of (3) above)

6. Specify a DATA BLOCK subroutine to initialize (1) and (2) above

7. When referencing the string in an SQL statement, use (3) above.

8. After preprocessing the Fortran program (but before compilation), change all

occurrences of the data code for the variable(s) in the input or output data

structure(s) from the CHARACTER data code to the corresponding VARCHAR

or LONG VARCHAR data code. For information on how to interpret the data

codes returned in SQLTYPE, see the DB2 Server for VSE & VM SQL Reference

manual.

Figure 88 on page 376 shows an example of how to INSERT a row into the

INVENTORY table using a VARCHAR variable for description.

Note: It is necessary to set the length field (STRNGL) to the corresponding length

of the character string (STRING) before the insert statement is executed.

When the character string is fetched, the first two bytes of the string (STRNGW)

contain the length. The variable STRNGL determines the length.

Incorrect
IT = ' MUSICIANS '
CREATE TABLE :TT (NAME ...

Appendix D. Using SQL in Fortran 375

Using DBCS Characters in Fortran

The rules for the format and use of DBCS characters in SQL statements are the

same for Fortran as for other host languages supported by the system. For a

discussion of these rules, see “Using a Double-Byte Character Set (DBCS)” on page

51.

C*** DB2 Server for VSE & VM STATEMENT ***

C EXEC SQL BEGIN DECLARE SECTION

 CHARACTER ID*8

 CHARACTER PW*8

 INTEGER*2 STRNGL

 CHARACTER*24 STRING

 CHARACTER*26 STRNGW

 COMMON /SDATA/ STRNGL,STRING

 EQUIVALENCE (STRNGL,STRNGW)

 ...

 ...

C*** DB2 Server for VSE & VM STATEMENT ***

C EXEC SQL END DECLARE SECTION

 ...

 ...

C*** DB2 Server for VSE & VM STATEMENT ***

C EXEC SQL INSERT INTO SQLDBA.ACTIVITY

C 1 VALUES(190, ’TSTSYS’,:STRNGW)

C

 SQI002(3, 1) = 1

 SQI002(1, 2) = 452 * SQSHHW + 26 ---> Change 452 to 448

 SQI002(2, 2) = SQLADD(STRNGW)

 SQI002(3, 2) = 0

 SQCALL = ’EXECUTE ’

 SQSTMT = −1

 SQLTYP = ’0’

 SQLCTL(1) = SQLADD (SQCALL)

 SQLCTL(2) = SQLADD (SQCOLL)

 SQLCTL(3) = SQLADD (SQPROG)

 SQLCTL(4) = SQLADD (SQSTMT)

 SQLCTL(5) = SQLADD (SQI002)

 SQLCTL(6) = 0

 SQLCTL(7) = 0

 SQLCTL(8) = 8

 SQLCTL(9) = SQLADD (SQLISL)

 SQLCTL(10) = SQLADD (SQLDAT)

 SQLCTL(11) = SQLADD (SQLTIM)

 SQLCTL(12) = SQLADD (SQLCNT)

 SQLCTL(13) = SQLADD (SQLTYP)

 CALL ARIFOR (SQLCTL)

 ...

 ...

 END

* BLOCK DATA SUBROUTINE

 BLOCK DATA

 COMMON /SDATA/ STRGNL,STRING

 INTEGER*2 STRGNL/3/

 CHARACTER*24 STRING/’SYSTEM TESTING’/

 END

Figure 88. Using a VARCHAR Variable

376 Application Programming

Fortran does not provide a way to define graphic host variables. If you want to

add graphic data to or retrieve it from DB2 Server for VSE & VM tables, you must

execute the affected statements dynamically. By doing so, the data areas that are

referenced by each statement can be described in an SQLDA. In the SQLDA, you

must set the data type of the areas containing graphic data to one of the graphic

data types. (For a discussion of the SQLDA, refer to the DB2 Server for VSE & VM

SQL Reference manual.)

Using the INCLUDE Statement

To include the external secondary input, specify the following at the point in the

source code where the secondary input is to be included:

 EXEC SQL INCLUDE text_name

Text_name is the G-Type source member of a VSE library. Text_name is the file name

of a CMS file (with a “FORTCOPY” file type) located on a CMS minidisk accessed

by the user.

Using Fortran Variables in SQL: Data Conversion

Considerations

Host variables must be type-compatible with the columns with which they are to

be used.

A column of type INTEGER, SMALLINT, or DECIMAL is compatible with a

Fortran variable of INTEGER, INTEGER*2, or INTEGER*4. Of course, an overflow

condition may occur if, for example, an INTEGER data item is retrieved into an

INTEGER*2 variable, and its current value is too large to fit.

Fixed-length and varying-length character data (CHAR, VARCHAR, and LONG

VARCHAR) are considered compatible. A varying-length string is automatically

converted to a fixed-length string, and a fixed-length string is automatically

converted to a varying-length string, when necessary. If a varying-length string is

converted to a fixed-length string, it is truncated or padded on the right with

blanks to the correct length.

The database manager also considers the datetime data types to be compatible

with character data types (CHAR and VARCHAR, but not LONG VARCHAR and

VARCHAR > 254).

Refer to “Converting Data” on page 48 for a data conversion summary.

Handling SQL Errors

There are two ways to declare the return code structure (called SQLCA):

1. You may write:

 EXEC SQL INCLUDE SQLCA

in your source program. The preprocessor replaces this with the declaration of

the SQLCA structure.

2. You may declare the SQLCA structure directly, as shown in Figure 89 on page

378.

Appendix D. Using SQL in Fortran 377

The SQLCA must not be declared within the SQL declare section. The meanings of

the fields within the SQLCA are discussed in the DB2 Server for VSE & VM SQL

Reference manual.

You may find that the only variable in the SQLCA you really need is SQLCODE. If

this is the case, declare just the SQLCOD variable and invoke NOSQLCA support

at preprocessor time.

Note: Fortran requires SQLCOD instead of SQLCODE.

The number of SQLCOD declarations is not limited by the preprocessor. If a

stand-alone SQLCOD is specified, the code inserted by the preprocessor into the

Fortran code to expand an EXEC SQL statement will refer to the address of that

SQLCOD. The Fortran compiler determines if multiple declarations within a

program section are not acceptable. In addition, the Fortran compiler determines

which region of the code an SQLCOD declaration refers to.

Handling Program Interrupts

If a program interrupt occurs and the database manager is unaware of it, you may

get unexpected results. To allow the system to process the interrupt, specify the

run time options NOSTAE and NOSPIE. These options are only available in

Version 2 of Fortran.

Using Dynamic SQL Statements in Fortran

The Fortran preprocessor lets you use a descriptor area, the SQLDA, to execute

dynamically defined SQL statements. (See Chapter 7, “Using Dynamic Statements,”

on page 215 for information on dynamic SQL statements and the SQLDA.)

However, the Fortran preprocessor will not replace the statement EXEC SQL INCLUDE

SQLDA with a declaration of the SQLDA structure, as is done with the SQLCA.

Instead EXEC SQL INCLUDE SQLDA would just include the secondary input file

SQLDA, as described in the section “Using the INCLUDE Statement” on page 377.

Before you can use the descriptor area you must properly allocate and initialize it,

and you must manage all its address variables. The following example shows how

you could define the descriptor area in Fortran for three fields:

 INTEGER*4 SQLCOD,

* SQLERR(6),

* SQLTXL*2

 COMMON /SQLCA1/ SQLCOD,SQLERR,SQLTXL

 CHARACTER SQLERP*8,

* SQLWRN(0:10),

* SQLTXT*70,

* SQLSTT*5

 COMMON /SQLCA2/ SQLERP,SQLWRN,SQLTXT,SQLSTT

Figure 89. SQLCA Structure (in Fortran)

378 Application Programming

The descriptor area must not be declared within the SQL declare section.

The following pseudocode illustrates the use of a descriptor area, adequate for

three fields:

Restrictions When Using the Fortran Preprocessor

The Fortran preprocessor is an extended dynamic preprocessor that uses the

NOMODIFY and DESCRIBE options of the extended CREATE PACKAGE

statement. The other extended CREATE PACKAGE options that are used are taken

from the parameters specified when invoking the preprocessor.

Fortran programs are preprocessed and executed using extended dynamic SQL.

Those that are preprocessed with the DB2 Server for VSE & VM Fortran

preprocessor must, therefore, comply with the same restrictions that apply to

extended dynamic SQL, or programs preprocessed or executed using extended

dynamic SQL.

The following is a partial list of restrictions when using the Fortran preprocessor.

v The BIND preprocessing parameter is ignored by the Fortran preprocessor. (DB2

Server for VSE)

v When declaring a dynamic cursor, if you are using the following format of the

PREPARE statement, you must code it in your program before the DECLARE

CURSOR statement:

 PREPARE statement_name FROM string_constant

This restriction does not apply when using the following format of the

PREPARE statement:

 PREPARE statement_name FROM host_variable

v When using DRDA protocol, the following statements are not supported:

 SELECT INTO

 Positioned UPDATE

 CHARACTER*8 DAID

 INTEGER*4 DABC

 INTEGER*2 DASQLN,

 * DAD,

 * DATYPE_1, DATYPE_2, DATYPE_3,

 * DALEN_1, DALEN_2, DALEN_3,

 * DANLN_1, DANLN_2, DANLN_3

 INTEGER*4 DADATA_1, DADATA_2, DADATA_3,

 * DAIND_1, DAIND_2, DAIND_3

 CHARACTER*30 DANAME_1, DANAME_2, DANAME_3

 COMMON /DASQL/ DAID, DABC, DAN, DAD,

 * DATYPE_1, DALEN_1, DADATA_1, DAIND_1, DANLN_1, DANAME_1,

 * DATYPE_2, DALEN_2, DADATA_2, DAIND_2, DANLN_2, DANAME_2,

 * DATYPE_3, DALEN_3, DADATA_3, DAIND_3, DANLN_3, DANAME_3

 - allocate storage for a Descriptor Area of at least size = 3

 - set DAN = 3 (number of fields)

 - set DAD = 3

 - set the rest of the values and pointers in the Descriptor Area

 EXEC SQL EXECUTE S1 USING DESCRIPTOR dasql

Appendix D. Using SQL in Fortran 379

Positioned DELETE

v When switching between SQLDS protocol and DRDA protocol, you cannot do

the following:

– Preprocess a program using one protocol and then execute it using another

protocol.

– Preprocess a DB2 Server for VM program using one protocol, and then

repreprocess the program using another protocol. If the original program is

dropped with the DROP PACKAGE statement, you can repreprocess the

program using a different protocol.

DB2 Server for VM

Note: If the PROTOCOL option on the application requester is set to AUTO,

the system uses SQLDS protocol to communicate with another DB2

Server for VM application server, and uses DRDA protocol to

communicate with unlike application servers. The system uses DRDA

protocol to communicate with another DB2 Server for VM application

server only when the PROTOCOL option on the application requester

is set to DRDA protocol. The PROTOCOL option is set and queried

using the SQLINIT command.

Refer to “Mapping Extended Dynamic Statements to Static and Dynamic

Statements” on page 253 for details about mapping extended dynamic

statements to non-extended dynamic statements. Refer to the DB2 Server for

VSE & VM SQL Reference for a discussion of DRDA restrictions.

Defining DB2 Server for VSE & VM Data Types for Fortran

 Table 41. DB2 Server for VSE & VM Data Types for Fortran

Description

DB2 Server for VSE

& VM Keyword

Equivalent Fortran

Declaration

A binary integer of 31 bits, plus sign. INTEGER or INT INTEGER

INTEGER*4

A binary integer of 15 bits, plus sign. SMALLINT INTEGER*2

A packed decimal number, precision p, scale s (1 ≤

p ≤ 31 and 0 ≤ s ≤p). In storage the number

occupies a maximum of 16 bytes. Precision is the

total number of digits. Scale is the number of those

digits that are to the right of the decimal point.

DECIMAL[(p[,s])]

or DEC[(p[,s])]¹

1

Not supported.

A single-precision (4- byte) floating-point number,

in short System/390 floating-point format.

REAL or

FLOAT(p),

1 ≤ p ≤ 21

REAL

REAL*4

A double-precision (8- byte) floating-point number,

in long System/390 floating-point format.

FLOAT or

FLOAT(p), 22 ≤ p ≤ 53

or DOUBLE PRECISION

REAL*8

DOUBLE PRECISION

DOUBLEPRECISION

A fixed-length character string of length n where 0

< n ≤ 254.

CHARACTER[(n)]

or CHAR[(n)]

CHARACTER

CHARACTER*n

380 Application Programming

Table 41. DB2 Server for VSE & VM Data Types for Fortran (continued)

Description

DB2 Server for VSE

& VM Keyword

Equivalent Fortran

Declaration

A varying-length character string of maximum

length n. If n > 254 but ≤ 32767, this data type is

considered a long field. (See “Using Long Strings”

on page 45 for more information.)

VARCHAR(n) Not supported.

A varying-length character string of maximum

length 32765 bytes (two bytes less than the DB2

Server for VSE & VM maximum, because of the

length field). (Character strings ≥ 255 are not

supported in Fortran releases prior to Release 1.3.)

LONG VARCHAR Not supported.

A fixed-length string of n DBCS characters where 0

< n ≤ 127.

GRAPHIC[(n)] Not supported.

A varying-length string of n DBCS characters. If n

> 127 but ≤ 16383, this data type is considered a

long field. (See “Using Long Strings” on page 45

for more information.)

VARGRAPHIC(n) Not supported.

A varying-length string of DBCS characters of

maximum length 16383.

LONG VARGRAPHIC Not supported.

A fixed-length character string representing a date.

The minimum and maximum lengths vary with

both the format used and whether it is an input or

output operation. See the DB2 Server for VSE & VM

SQL Reference manual for more information.

DATE CHARACTER

CHARACTER*n

No varying-length equivalent

is supported.

A fixed-length character string representing a time.

The minimum and maximum lengths vary with

both the format used and whether it is an input or

output operation. See the DB2 Server for VSE & VM

SQL Reference manual for more information.

TIME CHARACTER

CHARACTER*n

No varying-length equivalent

is supported.

A fixed-length character string representing a

timestamp. The lengths can vary on input and

output. See the DB2 Server for VSE & VM SQL

Reference manual for more information.

TIMESTAMP CHARACTER

CHARACTER*n

No varying-length equivalent

is supported.

Notes:

1. NUMERIC is a synonym for DECIMAL and can be used when creating or

altering tables. In such cases, however, the CREATE or ALTER function

establishes the column (or columns) as DECIMAL.

An * length specification can also be used to override a length specification

associated with the initial keyword. The following are examples:

 Specification Valid Invalid (ignored)

INTEGER VAR001,VAR002(2) VAR001 4 bytes VAR002

INTEGER*2 VAR001*4,VAR002 VAR001 4 bytes VAR002 2

bytes

INTEGER*4 VAR001*2/10/,VAR002*4 VAR001 2 bytes VAR002 4

bytes

Appendix D. Using SQL in Fortran 381

Specification Valid Invalid (ignored)

INTEGER*5 VAR001*2,VAR002*4 VAR001,VAR002

REAL VAR001*8,VAR002 VAR001 8 bytes VAR002 4

bytes

REAL*8 VAR001,VAR002*4,VAR003 VAR001 8 bytes VAR002 4

bytes VAR003 8 bytes

DOUBLE PRECISION VAR001,VAR002*4 VAR001 8 bytes VAR002 4

bytes

REAL*8 VAR001(10,10)*4,VAR002 VAR002 8 bytes VAR001

REAL*16 VAR001,VAR002*4,VAR003*8 VAR002 4 bytes VAR003 8

bytes

VAR001

CHARACTER VAR1,VAR2*80 VAR1 1 byte

VAR2 80 bytes

CHARACTER*10 VAR1,VAR2*80 VAR1 10 bytes VAR2 80

bytes

CHARACTER*500 VAR1(5),VAR2*1 VAR2 1 byte VAR1

382 Application Programming

Appendix E. Using SQL in PL/I

Using PL/I Sample Programs 384

Rules for Using SQL in PL/I 384

Placing and Continuing SQL Statements . . . 384

Delimiting SQL Statements 384

Using the INCLUDE Statement 385

Declaring Static External Variables 385

Identifying Rules for Case 385

Declaring Host Variables 385

Using Host Variables in SQL Statements . . . 388

Using PL/I Variables in SQL: Data Conversion

Considerations 388

Using DBCS Characters in PL/I 388

Using SQL Statements in PL/I Subroutines . . 389

Coding the SIZE Parameter in VSE JCL (DB2

Server for VSE) 390

Handling SQL Errors 390

Handling Program Interrupts 390

Using Dynamic SQL Statements in PL/I 391

Defining DB2 Server for VSE & VM Data Types for

PL/I 393

Using Stored Procedures 394

© Copyright IBM Corp. 1987, 2007 383

Using PL/I Sample Programs

ARIS6PLD is a PL/I language sample program for VSE systems that is shipped

with the DB2 Server for VSE product. ARIS6PLC is a PL/I language sample

program for VM systems that is shipped with the DB2 Server for VM product. It

resides on the production disk for the base product. You may find it useful to print

this sample program before going through this appendix as the hard copy will

provide an illustration for many of the topics discussed here.

You can learn most of the rules for using SQL within PL/I just by scanning

through the program. Note, in particular, how the program satisfies the

requirements of the application prolog and epilog. Near the beginning of the

program all the host variables are declared and error handling is defined. Near the

logical end of the program, the database changes are rolled back, to assure the

database remains consistent for each use of the sample program. For your own

applications, of course, you will enter a commit.

The DCL statements for the host variables are determined by referring to Table 43

on page 393. That figure gives the PL/I representation for each of the DB2 Server

for VSE & VM data types. When you are coding your own applications, you will

need to obtain the data types of the columns that your host variables interact with.

This can be done by querying the catalog tables, which are described in the DB2

Server for VSE & VM SQL Reference manual.

Rules for Using SQL in PL/I

Placing and Continuing SQL Statements

All statements in your PL/I program, including SQL statements, must be contained

in columns 2 through 72 of your source deck. Normal PL/I continuation rules

apply.

Continuation of tokens (the basic syntactical units of a language) is allowed from

one line to the next, by coding the first part of the token up to column 72 on the

line to be continued and coding the next part of the token from column 2 on the

continuation line. If either column 72 of the continued line or column 2 of the

continuation line is blank, the token is not continued.

See the DB2 Server for VSE & VM SQL Reference manual for a discussion on tokens.

Delimiting SQL Statements

Delimiters are required on all SQL statements to help the database manager

distinguish them from regular PL/I statements. You must precede each SQL

statement in your program with EXEC SQL, and end each statement with a

semicolon. EXEC and SQL must be on the same line, with only blanks separating

them (no in-line host language or SQL comments).

Within SQL statements, host language and SQL comments are allowed anywhere

that blanks are allowed. However, there should not be any host language or SQL

comments within SQL statements that are dynamically defined and executed.

An SQL statement cannot be followed on the same line by another SQL statement,

a normal PL/I statement, or a host language comment. When you preprocess a

program containing such a combination, the trailing statements or host language

comments are ignored and will not appear in the SYSPRINT listing.

384 Application Programming

Using the INCLUDE Statement

To include external secondary input, specify the following at the point in the

source code where the secondary input is to be included:

 EXEC SQL INCLUDE text_file-name;

The text_file-name is the member name of a P-Type source member of a VSE

library or the file name of a CMS file (with a “PLICOPY” file type) located on a

CMS minidisk accessed by the user.

Declaring Static External Variables

A declaration for a variable with the attributes STATIC and EXTERNAL must also

have the attribute INITIAL. If it does not, the declaration generates a common

CSECT, which the database manager cannot handle.

PL/I programming using “DEFAULT RANGE (*) STATIC” gives an error message.

The preprocessor builds control blocks that are incompatible with this statement.

Identifying Rules for Case

The keywords “EXEC SQL” must appear in uppercase in your PL/I program. The

rest of an SQL statement can be in mixed case, but will be interpreted as

uppercase, except for text within quotation marks, which will be left in the original

case.

Declaring Host Variables

You must declare all host variables in an SQL declare section. For a description of

an SQL declare section, refer to “Declaring Variables That Interact with the

Database Manager” on page 8.

Declare host variables in the source file before the first use of the variable in an

SQL statement. You can use the following types of variables in an SQL statement:

v Scalar variables

v Structure variables

v Structure elements

v Array variables

For information on the use of these variables in an SQL statement, refer to “Using

Host Variables” on page 55 and “Using Host Structures” on page 55.

Note: You can declare non-host variables in an SQL declare section; however,

declarations that do not conform to DB2 Server for VSE & VM declaration

rules may return errors.

The declaration of a host variable is subject to the following rules:

v You can use scalar variables and structure elements as main variables. You can

also use them as indicator variables if they are declared with a data type of

short integer.

v The only arrays accepted by the PL/I preprocessor are arrays of short integer

elements. These arrays may be used as indicator arrays only. The following

example is an indicator array:

DCL IND_ARRAY(10) BINARY FIXED(15);

Indicator array elements cannot be used as main or indicator variables.

v A structure variable (which defines a host structure) is any two-level structure

declared in an SQL declare section. The following example is a host structure:

Appendix E. Using SQL in PL/I 385

DCL 01 PROJ_STRCT,

 05 PROJNO CHAR(6),

 05 ACTNO BINARY FIXED(15),

 05 ACSTAFF BINARY FIXED(31),

 05 ACSTDATE CHAR(10),

 05 ACENDATE CHAR(10);

This structure represents the following list of host variables when used in an

SQL statement:

PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

In other words, the two following SQL statements are equivalent:

EXEC SQL SELECT PROJNO, ACTNO, ACTSTAFF, ACSTDATE, ACENDATE

 INTO :PROJ_STRCT

 FROM PROJ_ACT

 WHERE PROJNO = ‘100000’

EXEC SQL SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

 INTO :PROJNO, :ACTNO, :ACSTAFF, :ACSTDATE, :ACENDATE

 FROM PROJ_ACT

 WHERE PROJNO = ‘100000’

A host structure can either be a stand-alone structure or a substructure of a more

complex structure. The following example is a complex structure that contains a

host structure:

DCL 01 EMPLOYEE,

 05 EMPNO CHAR(6),

 05 EMPNAME

 10 FIRSTNAME CHAR(12),

 10 MIDINIT CHAR(1),

 10 LASTNAME CHAR(15),

 05 WORKDEPT CHAR(3),

 05 PHONENO CHAR(4);

The structure EMPNAME is a host structure.

You can use the elements of the host structure and the elements of a complex

structure containing a host structure as host variables. In the previous example,

EMPNO, FIRSTNAME, MIDINIT, LASTNAME, WORKDEPT, and PHONENO can all be used

as host variables.

v DCL or DECLARE must be the first character sequence on the line, but cannot

start in column 1. You can, however, have a carriage control character in column

1. Otherwise, the line is ignored. (You can place inline host language comments

anywhere after the DECLARE or DCL keyword, and you can continue these

comments over multiple lines.)

v DECLARE statements can be continued on additional lines, but you cannot have

more than one DECLARE statement on the same line. All DECLARE statements

must end with a semicolon. Rules for continuation of variable names and PL/I

keywords are the same as those described for SQL statements.

v Declare only one host variable per DCL or DECLARE statement. If you declare

multiple variables, only the first variable is recognized; the others are ignored.

For example:

The next rule provides one exception to this limitation.

v Factoring of scalar variable names, structure element names and indicator array

names is supported. For example, the following declarations are valid:

DCL AA FIXED BIN(15) INIT(7),
BB CHAR(7),
CC BINARY FLOAT(53);

BB and CC are ignored.

386 Application Programming

DCL (X,Y,Z) BINARY FIXED(31);

DCL (ARR1(10), ARR2(5), ARR3(6)) BINARY FIXED (15);

DCL 01 STUCT,

 05 (FLD1, FLD2, FLD3) CHAR(10),

 05 FLD4 CHAR(5);

v In addition to the attributes discussed in Table 43 on page 393, the PL/I

preprocessor also supports the following attributes in declarations imbedded in

an SQL declare section:

ALIGNED

UNALIGNED

INTERNAL

EXTERNAL

STATIC

AUTOMATIC

DEFINED

CONTROLLED

CONNECTED

INITIAL

v In PL/I, the BASED and LIKE functions are not permitted in host structure

declarations.

v You cannot duplicate variable names in a single source file even if they are in

different blocks or functions. The PL/I preprocessor defines a duplicate as any

name that cannot be referenced unambiguously when fully qualified.

v You should not declare variables whose names begin with SQL or RDI, because

these names are reserved for database manager use.

v The database manager allows host variable names, statement labels, and SQL

descriptor area names of up to 256 characters in length, subject to any PL/I

language restriction mentioned in this appendix.

You can have a label on the “EXEC SQL BEGIN DECLARE SECTION;”, but not on

the “EXEC SQL END DECLARE SECTION;”. If you do place a label on this

statement, the preprocessor does not recognize it and assumes that the SQL declare

section has not ended.

When placing host language comments after either of these statements, make sure

the comment ends on the same line. If it does not, PL/I compiler errors result.

Note: Other program variables can also be declared as usual outside the SQL

declare section. The previous restrictions do not apply to non-SQL

declarations.

In the declaration below, only DATES and PRODUCTS may be used as host structures.

ORDERNO and CUSTNUM may be used as scalar host variables and may be qualified as

CUSTORD.ORDERNO and ORDINFO.CUSTNUM or CUSTORD.ORDINFO.CUSTNUM.

 EXEC SQL BEGIN DECLARE SECTION;

 DCL 1 CUSTORD,

 2 ORDERNO CHAR(10),

 2 ORDINFO,

 3 CUSTNUM CHAR(10),

 3 DATES,

 5 ORDDATE CHAR(6),

 5 DELIVDTE CHAR(6),

 2 PRODUCT,

 3 STOCKNO CHAR(10),

Appendix E. Using SQL in PL/I 387

3 QUANTITY CHAR(3);

 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT STOCKNO, QUANTITY

 INTO :PRODUCT

 FROM ORDER

 WHERE STOCKNO = ’1234567890’;

Using Host Variables in SQL Statements

When you reference host variables, host structures, structure fields or indicator

arrays in an SQL statement, you must precede each reference by a colon (:) The

colon distinguishes these variables from SQL identifiers (such as column names).

The colon is not required outside an SQL statement.

Using PL/I Variables in SQL: Data Conversion Considerations

Host variables must be type-compatible with the columns with which they are to

be used. For example, if you want to compare a program variable with the

QONHAND column of the database, and the data type of QONHAND is

INTEGER, you should declare the program variable BIN FIXED(31), BIN

FIXED(15), BIN FLOAT, FLOAT BIN, or FIXED DECIMAL(10). (Refer to

“Assigning Data Types When the Column Is Created” on page 44 for details on the

FLOAT data type.)

The database manager considers the numeric data types compatible, as well as the

character string data types (CHAR, VARCHAR, and LONG VARCHAR, including

strings of different declared lengths), and the graphic string data types (GRAPHIC,

VARGRAPHIC, LONG VARGRAPHIC). Of course, an overflow condition may

result if, for example, you assign a 31-bit integer to a 15-bit integer and the current

value of the 31-bit integer is too large to fit in 15 bits. Truncation also occurs when

a decimal number having a scale greater than zero is assigned to an integer. In

general, overflow occurs when significant digits are lost, and truncation occurs

when nonsignificant digits are lost.

The datetime data types are also considered compatible with character data types

(CHAR, and VARCHAR, but not LONG VARCHAR and VARCHAR > 254).

Refer to “Converting Data” on page 48 for a data conversion summary.

Using DBCS Characters in PL/I

The rules for the format and use of DBCS characters in SQL statements are the

same for PL/I as for other host languages supported by the system. For a

discussion of these rules, see “Using a Double-Byte Character Set (DBCS)” on page

51.

When using the string-constant format of the PREPARE or EXECUTE IMMEDIATE

statement, if the statement in the string-constant contains DBCS characters, you

must append an M to the string-constant. For example:

 EXEC SQL PREPARE S13 FROM

 'SELECT TRANSLATE(''laabb'') || ''l<▌AB▐>'' FROM SYSTEM.SYSCCSIDS'M;

When coding graphic constants in static SQL statements, use one of the following

PL/I formats of the graphic constant:

388 Application Programming

1. '<▌XXXX▐>'G

 2. <@'▌XXXX▐@'@G>

Note: N is a synonym for G.

When coding graphic constants in dynamically executed SQL statements, use the

SQL format of the graphic constant (that is, G'<▌XXXX▐>'). Refer to “Using Graphic

Constants” on page 58 for a discussion of graphic constants.

Using SQL Statements in PL/I Subroutines

The first SQL statement encountered in a sequential scan of your program by the

PL/I preprocessor that requires an in-line call to the resource adapter results in the

generation of control blocks SQLTIE and RDIEXT, and other declarations

commonly used by internal DB2 Server for VSE & VM code that is associated with

the remaining SQL statements in your program. If your program structure involves

SQL statements in multiple procedures, you must maintain structures so that the

SQLTIE and RDIEXT are addressable by all other SQL statement occurrences in

your program.

Figure 90 represents an incorrect structure.

 SQLTIE and RDIEXT will be generated from the CONNECT in B, but it is not

addressable from C, where other SQL statements appear. This can be solved by

putting the CONNECT statement in A, where it will cause SQLTIE and RDIEXT to

be generated at a place that is addressable by both B and C.

A: PROC OPTIONS(MAIN);

 .

 .

 CALL B;

 CALL C;

 .

 .

B: PROC;

 .

 .

 EXEC SQL CONNECT.....

 EXEC SQL DECLARE C1 CURSOR....

 EXEC SQL OPEN C1 ...

 .

 .

 END B;

C: PROC;

 .

 .

 EXEC SQL DECLARE C2 CURSOR....

 EXEC SQL OPEN C2

 .

 .

 .

 END C;

 .

 .

 END A;

Figure 90. Incorrect PL/I Program Structure

Appendix E. Using SQL in PL/I 389

Coding the SIZE Parameter in VSE JCL (DB2 Server for VSE)

When executing PL/I application programs in VSE single user mode, specify

SIZE=750K, not SIZE=AUTO, in the EXEC job control statement.

Handling SQL Errors

There are two ways to declare the return code structure (called SQLCA):

1. You can write the following statement in your source program:

 EXEC SQL INCLUDE SQLCA;

The preprocessor replaces this with the declaration of the SQLCA structure.

2. You may declare the SQLCA structure directly, as shown in Figure 91.

The SQLCA must not be declared within the SQL declare section. The meanings of

the fields in the SQLCA are discussed in the DB2 Server for VSE & VM SQL

Reference manual.

You may find that the only variable in the SQLCA you really need is SQLCODE. If

this is the case, declare just the SQLCODE variable, and invoke NOSQLCA support

at preprocessor time.

The number of SQLCODE declarations is not limited by the preprocessor. If a

stand-alone SQLCODE is specified, the code inserted by the preprocessor into the

PL/I code to expand an EXEC SQL statement will refer to the address of that

SQLCODE. The PL/I compiler determines if multiple declarations within a

program section are not acceptable. In addition, the PL/I compiler determines

which region of the code an SQLCODE declaration refers to.

Handling Program Interrupts

If a program interrupt occurs and the database manager is unaware of it, you may

receive unexpected results. To allow the system to process the interrupt, include

the following declaration statement after the “EXEC SQL END DECLARATION

SECTION” statement:

 DCL 1 SQLCA,

 2 SQLCAID CHAR(8),

 2 SQLCABC BIN FIXED(31),

 2 SQLCODE BIN FIXED(31),

 2 SQLERRM CHAR(70) VAR,

 2 SQLERRP CHAR(8),

 2 SQLERRD (6) BIN FIXED(31),

 2 SQLWARN,

 3 SQLWARN0 CHAR(1),

 3 SQLWARN1 CHAR(1),

 3 SQLWARN2 CHAR(1),

 3 SQLWARN3 CHAR(1),

 3 SQLWARN4 CHAR(1),

 3 SQLWARN5 CHAR(1),

 3 SQLWARN6 CHAR(1),

 3 SQLWARN7 CHAR(1),

 3 SQLWARN8 CHAR(1),

 3 SQLWARN9 CHAR(1),

 3 SQLWARNA CHAR(1),

 2 SQLSTATE CHAR(5);

Figure 91. SQLCA Structure (in PL/I)

390 Application Programming

DCL PLIXOPT CHAR(20) VAR INIT(’TRAP(OFF)’) STATIC EXTERNAL;

If your PL/I compiler is NOT Language Environment enabled, add the following

statement instead:

 DCL PLIXOPT CHAR(20) VAR INIT(’NOSTAE,NOSPIE’) STATIC EXTERNAL;

Using Dynamic SQL Statements in PL/I

You may need to declare an SQLDA structure to execute dynamically defined SQL

statements. You can have the system include the structure automatically by

specifying:

EXEC SQL INCLUDE SQLDA;

in your source code, or by directly coding the structure as shown in Figure 92.

 The SQLDA must not be declared within the SQL declare section. See the DB2

Server for VSE & VM SQL Reference manual for more information on the individual

fields within the SQLDA.

In addition to the structure above, you should declare an additional mapping for

the same area. The SQLPRCSN and SQLSCALE fields of the second mapping are

used when decimal data is used. Table 42 shows this mapping.

 Table 42. SQLDAX Structure (in PL/I)

 DCL 1 SQLDAX BASED(SQLDAPTR),

 2 SQLDAIDX CHAR(8),

 2 SQLDABCX BIN FIXED(31),

 2 SQLNX BIN FIXED(15),

 2 SQLDX BIN FIXED(15),

 2 SQLVARX(SQLSIZE REFER(SQLNX)),

 3 SQLTYPEX BIN FIXED(15),

 3 SQLPRCSN format 1 or format 2,

 3 SQLSCALE format 1 or format 2,

 3 SQLDATAX PTR,

 3 SQLINDX PTR,

 3 SQLNAMEX CHAR(30) VAR;

The SQLPRCSN and SQLSCALE fields can be declared in one of two formats.

 DCL 1 SQLDA BASED(SQLDAPTR),

 2 SQLDAID CHAR(8),

 2 SQLDABC BIN FIXED(31),

 2 SQLN BIN FIXED(15),

 2 SQLD BIN FIXED(15),

 2 SQLVAR(SQLSIZE REFER(SQLN)),

 3 SQLTYPE BIN FIXED(15),

 3 SQLLEN BIN FIXED(15),

 3 SQLDATA PTR,

 3 SQLIND PTR,

 3 SQLNAME CHAR(30) VAR;

 DCL SQLSIZE BIN FIXED(15);

 DCL SQLDAPTR PTR;

Figure 92. SQLDA Structure (in PL/I)

Appendix E. Using SQL in PL/I 391

Table 42. SQLDAX Structure (in PL/I) (continued)

Format 1: 3 SQLPRCSN BIT(8),

 3 SQLSCALE BIT(8),

The fields must be set by bit 8 strings. For example, for a precision of 5 and scale of 2, the

following assignments are required:

 SQLDAPTR->SQLPRCSN = ’00000101’B

 SQLDAPTR->SQLSCALE = ’00000010’B

Format 2: 3 SQLPRCSN CHAR(1),

 3 SQLSCALE CHAR(1),

This format requires the declaration of additional variables. These are a CHAR(2) variable

and a BASED FIXED BIN(15) variable for both precision and scale. For example:

 DCL PRCSNC CHAR(2);

 DCL PRCSNN FIXED BIN(15) BASED (ADDR(PRCSNC));

 DCL SCALEC CHAR(2);

 DCL SCALEN FIXED BIN(15) BASED (ADDR(SCALEC));

The SQLDAX fields for a precision of 5 and scale of 2 would be:

 PRCSNN = 5;

 SCALEN = 2;

 SQLDAPTR->SQLPRCSN = SUBSTR(PRCSNC,2,1);

 SQLDAPTR->SQLSCALE = SUBSTR(SCALEC,2,1);

Format 2, although more complex, allows PL/I manipulation of the precision and scale

fields. For example, the value of the SQLPRCSN field can be determined simply by

reversing the substring operation above. That is:

 SUBSTR(PRCSNC,2,1) = SQLDAPTR->SQLPRCSN;

Such an operation cannot be done using format 1.

Because the PL/I SQLDA is declared as a based structure, your program can

dynamically allocate an SQLDA of adequate size for use with each EXECUTE

statement. For example, the code fragment below allocates an SQLDA adequate for

five fields and uses it in an EXECUTE of statement S3:

 SQLSIZE=5;

 ALLOCATE SQLDA SET(SQLDAPTR);

 /* Add code to set values and pointers in the SQLDA */

 EXEC SQL EXECUTE S3 USING DESCRIPTOR SQLDA;

The statement SQLSIZE=5 determines the size of the SQLDA to be allocated by

means of the PL/I REFER feature. The ALLOCATE statement allocates an SQLDA

of the size desired, and sets SQLDAPTR to point to it. (Before an EXECUTE

statement is issued using this SQLDA, your program must fill in its contents.)

You can use a similar technique to allocate an SQLDA for use with a DESCRIBE

statement. The following program fragment illustrates the use of SQLDA with

DESCRIBE for three fields and a “prepared” statement S1:

 EXEC SQL DECLARE C1 CURSOR FOR S1;

 SQLSIZE = 3;

 ALLOCATE SQLDA SET(SQLDAPTR);

 EXEC SQL DESCRIBE S1 INTO SQLDA;

 IF SQLD > SQLN THEN

 - get a bigger one;

 Set SQLDATA and SQLIND;

 EXEC SQL OPEN C1;

 EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA;

392 Application Programming

Defining DB2 Server for VSE & VM Data Types for PL/I

 Table 43. Data Types for PL/I

Description

DB2 Server for VSE & VM

Keyword Equivalent PL/I Declaration

A binary integer of 31 bits, plus sign. INTEGER or INT BINARY FIXED(31)

A binary integer of 15 bits, plus sign. SMALLINT BINARY FIXED(15)

A packed decimal number, precision

p, scale s (1 ≤ p ≤ 31 and 0 ≤ s ≤ p).

In storage the number occupies a

maximum of 16 bytes. Precision is

the total number of digits. Scale is

the number of those digits that are to

the right of the decimal point.

DECIMAL[(p[,s])] or DEC[(p[,s])]¹

1 FIXED DECIMAL(p,s)

A single-precision (4- byte)

floating-point number, in short

System/390 floating-point format.

REAL or FLOAT(p), 1 ≤ p ≤ 21 BINARY FLOAT(p) or FLOAT

BINARY(p), 1 ≤ p ≤ 21 DECIMAL

FLOAT(p) or FLOAT DECIMAL(p),

1 ≤ p ≤ 7

A double-precision (8- byte)

floating-point number, in long

System/390 floating-point format.

FLOAT or FLOAT(p), 22 ≤ p ≤ 53

or DOUBLE PRECISION

BINARY FLOAT(p) or FLOAT

BINARY(p), 22 ≤ p ≤ 53 DECIMAL

FLOAT(p) or FLOAT DECIMAL(p),

8 ≤ p ≤ 16

A fixed-length character string of

length n where 0 < n ≤ 254.

CHARACTER[(n)] or CHAR[(n)] CHARACTER(n)

A varying-length character string of

maximum length n. If n > 254 or ≤

32 767, this data type is considered a

long field. See “Using Long Strings”

on page 45 for more information.

VARCHAR(n) CHARACTER(n) VARYING

A varying-length character string of

maximum length 32,767 bytes.

LONG VARCHAR CHARACTER(n) VARYING

A fixed-length string of n DBCS

characters where 0 < n ≤ 127.

GRAPHIC[(n)] GRAPHIC(n)

A varying-length string of n DBCS

characters. If n > 127 or ≤ 16 383, this

data type is considered a long field.

See “Using Long Strings” on page 45

for more information.

VARGRAPHIC(n) GRAPHIC(n) VARYING

A varying-length string of DBCS

characters of maximum length 16 383.

LONG VARGRAPHIC GRAPHIC(n) VARYING

A fixed or varying-length character

string representing a date. The

minimum and maximum lengths

vary with both the format used and

whether it is an input or output

operation. See the DB2 Server for VSE

& VM SQL Reference manual for more

information.

DATE CHARACTER(n) or

CHARACTER(n) VARYING

Appendix E. Using SQL in PL/I 393

Table 43. Data Types for PL/I (continued)

Description

DB2 Server for VSE & VM

Keyword Equivalent PL/I Declaration

A fixed or varying-length character

string representing a time. The

minimum and maximum lengths

vary with both the format used and

whether it is an input or output

operation. See the DB2 Server for VSE

& VM SQL Reference manual for more

information.

TIME CHARACTER(n) or

CHARACTER(n) VARYING

A fixed or varying-length character

string representing a timestamp. The

lengths can vary on input and

output. See the DB2 Server for VSE &

VM SQL Reference manual for more

information.

TIMESTAMP CHARACTER(n) or

CHARACTER(n) VARYING

Notes:

1. NUMERIC is a synonym for DECIMAL and may be used when creating or

altering tables. In such cases, however, the CREATE or ALTER function will

establish the column (or columns) as DECIMAL.

2. The data type can be stated in any way that is acceptable to PL/I; BIN

FIXED(31), BINARY FIXED(31), and FIXED BIN(31) are all equivalent. If several

variables have exactly the same attributes, you can combine them in a single

DCL statement:

 DCL (X,Y,Z) BIN FIXED;

Using Stored Procedures

The following example shows how to define the parameters in a stored procedure

that uses the GENERAL linkage convention. The NOEXECOPS procedure option

must be specified.

The following example shows how to define the parameters in a stored procedure

that uses the GENERAL WITH NULLS linkage convention.

 PLISAMP: PROC(PARM1, PARM2, ...)

 OPTIONS(MAIN, NOEXECOPS);

 DCL PARM1 ... /* first parameter */

 DCL PARM2 ... /* second parameter */

 .

 .

 .

Figure 93. Stored Procedure - Using GENERAL Linkage Convention

394 Application Programming

PLISAMP: PROC(PARM1, PARM2, INDSTRUC)

 OPTIONS(MAIN, NOEXECOPS);

 DCL PARM1 ... /* first parameter */

 DCL PARM2 ... /* second parameter */

 DCL 01 INDSTRUC,

 02 IND1 BIN FIXED(15), /* first ind var */

 02 IND2 BIN FIXED(15); /* second ind var */

...

Figure 94. Stored Procedure - Using GENERAL WITH NULLS Linkage Convention

Appendix E. Using SQL in PL/I 395

396 Application Programming

Appendix F. Decision Tables to Grant Privileges on Packages

How to Use the Decision Tables 398 Decision Tables 399

© Copyright IBM Corp. 1987, 2007 397

How to Use the Decision Tables

The DB2 Server for VSE & VM product uses decision tables to determine whether

the owner of a package has the authority or the privilege to execute a given

statement. There are three possible scores for each static statement:

‘G’ Means that the package owner has the necessary authorization or privilege

for this statement such that the owner can receive the RUN privilege.

‘Y’ Means that the package owner has the necessary authorization or privilege

for this statement such that the owner can receive the RUN privilege, but

not the GRANT option on that privilege.

‘D’ Means that the package owner must have DBA authority to execute the

program containing this statement. No entry is made in the authorization

catalog tables.

‘G’ is the highest score, followed by ‘Y’, followed by ‘D’. For example, suppose a

program contains three statements. The package owner receives a ‘G’, on two of

them, but a ‘Y’ on the third (this occurs when the object referenced in the

statement does not exist, or the privileges of the object cannot be resolved). In this

situation, the database manager assigns the package a ‘Y’ (the lower score),

allowing the owner to run the package but not to grant the RUN privilege on the

package to another user. Because the preprocessor does not distinguish between

certain SQL statements that are applied to one application server or to another, you

can compensate by doing one of the following:

v Use dynamic statements that cause RUNAUTH=G on both application servers.

v Create separate packages on each application server. These separate packages

can then be invoked by a mainline program.

v Create dummy tables that have the same user IDs and table names on the other

application server.

Dynamic statements are always given a score of ‘G’.

The next few pages show tables. In these tables:

 ‘G’, ‘Y’, and ‘D’ have the meanings outlined above.

 ‘(G)’ and ‘(Y)’ mean that the score for the statement is either ‘G’ or ‘Y’, an error

message is produced when the program is preprocessed, a partial section for

the statement is placed into the package, and the authority for the statement is

checked again at the time the package is run.

 ‘n/a’ means ‘not applicable’.

 package owner is the authorization ID of the person who preprocesses the

program.

398 Application Programming

Decision Tables

ACQUIRE DBSPACE

 For cases A2 and B2, the system makes an entry in the SYSUSERAUTH catalog

table with RESOURCEAUTH set to ‘Y’. In addition, the NAME column is set to the

package_id and the AUTHOR column is set to the authorization ID of the person

who preprocessed the program. The entry indicates the program’s dependency.

ALTER DBSPACE

Dbspace Owner

Pkg Owner's
Authority

A DBA D G D

PUBLIC

PRIVATE

Dbspace Owner
is Pkg Owner

Dbspace Owner
not Pkg Owner

B RESOURCE (G) G (G)

C None of the above (G) (G) (G)

1 2 3

Dbspace Owner

Pkg Owner's
Authority

A DBA G D

Dbspace Owner
is Pkg Owner

Dbspace Owner
not Pkg Owner

B non-DBA G (G)

1 2

Appendix F. Decision Tables to Grant Privileges on Packages 399

ALTER TABLE

 For cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog

table with the ALTERAUTH columns set to ‘Y’. The entries represent this

package’s dependency on ALTER privilege for the table.

The preprocessor determines which level of RUN privilege to give the owner. For

some SQL statements, privileges are not checked for all objects affected by the

statement. For example, when manipulating primary and foreign keys with the

ALTER TABLE statement, ALTER privilege is only checked for the table_name

following the ALTER TABLE statement rather than all the tables involved.

Additional ALTER and REFERENCES privileges are checked at run time.

COMMENT ON

Table Owner

Pkg Owner's

Authority and

Tbl Privilege

A DBA, no ALTER DD

Table Owner

is Pkg Owner

Table Owner

not Pkg Owner

Table does not

yet exist

B ALTER without GRANT n/a Y

C ALTER with GRANT G G

1 2 3

non-DBA , no ALTER n/a

n/a

n/a

n/a

(G) (G)D

Table/View Owner

Pkg Owner's
Authority

A DBA D

Table/View Owner
is Pkg Owner

Table/View Owner
not Pkg Owner

B non-DBA G (G)

G

1 2

400 Application Programming

CREATE INDEX

 For cases B2, C1, and C2, the system makes an entry in the SYSTABAUTH catalog

table with the INDEXAUTH column set to ‘Y’. The entries represent this package’s

dependency on INDEX authority privilege for the table.

Note: It is possible for the owner of a table to create an index on that table in the

name of another authorization ID. This is true even if the table owner does

not have DBA authority.

CREATE TABLE

 DELETE

There are two decision tables that apply to DELETE:

The Table Where the Deletion Is Applied :

Table on which INDEX is based

Pkg Owner's

Authority and

Tbl Privilege

A
DBA, no INDEX

D

Table Exists and

the Table's Owner

Table does not yet exist

and the Table's Owner

B non-DBA, INDEX

without GRANT
n/a Y

C
non-DBA, INDEX

with GRANT
G G

1 2 3

non-DBA , no INDEX n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

Table Owner

Pkg Owner's
Authority

A DBA D

Table Owner
is Pkg Owner

Table Owner
not Pkg Owner

B non-DBA G (G)

G

1 2

Appendix F. Decision Tables to Grant Privileges on Packages 401

In cases B2, C1, and C2, the application server makes entries in the SYSTABAUTH

catalog table with the DELETEAUTH column set to ‘Y’. The entries represent this

package’s dependency on the DELETE privilege for the table.

Any Tables Referenced in a WHERE Clause :

Note: The authorization checking in the previous decision table precedes the logic

of this table. If the first decision table yields a negative SQLCODE,

processing stops. Otherwise, the system applies the lowest level of

authorization gained from the two decision tables.

 In cases B2, C1, and C2, the application server makes entries in the SYSTABAUTH

catalog table with the SELECTAUTH column set to ‘Y’. The entries represent this

package’s dependency on SELECT privilege for the table.

Table/View on which DELETE is applied

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no DELETE

D

Table/View Exists and
the Table/View's Owner

Table/View does not yet exist
and the Table/View's Owner

B non-DBA, DELETE
without GRANT

n/a Y

C
non-DBA, DELETE
with GRANT

G G

1 2 3

non-DBA , no DELETE n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

Table/Views in WHERE clause

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no SELETE

Table/View Exists and
the Table/View's Owner

Table/View does not yet exist
and the Table/View's Owner

B non-DBA, SELECT
without GRANT

n/a Y

C
non-DBA, SELECT
with GRANT

G G

1 2 3

non-DBA , no SELECT n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

Y

Figure 95. Tables/Views in WHERE clause

402 Application Programming

In case A2, the system makes an entry in the SYSUSERAUTH catalog table to show

this package’s dependency on DBA authority.

GRANT for Authorities Statement

 INSERT:

There are two decision tables that apply to INSERT:

The Table Where the Insertion Is Applied :

 In cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog

table with the INSERTAUTH column set to ‘Y’. The entries represent this package’s

dependency on INSERT privilege for the table.

Any Tables Referenced in a WHERE Clause of a Subselect :

Authority Granted

Authority
of Grantor

A
DBA

B Non-DBA G G

1 2 3

D

GG

D G

DBA
CONNECT to

another userRESOURCE CONNECT to self

4

D

Table/Views to which INSERT is applied

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no INSERT

Table/View Exists and
the Table/View's Owner

Table/View does not yet exist
and the Table/View's Owner

B non-DBA, INSERT
without GRANT

n/a Y

C
non-DBA, INSERT
with GRANT

G G

1 2 3

non-DBA, no INSERT n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

D

Appendix F. Decision Tables to Grant Privileges on Packages 403

Note: The authorization checking in the previous decision table precedes the logic

of this table.

The decision table used here is the same as that used by tables in the WHERE

clause of a DELETE in Figure 95 on page 402.

In cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog

table with the SELECTAUTH column set to ‘Y’. The entries represent this

package’s dependency on SELECT privilege for the table.

In case A2, the system makes an entry in the SYSUSERAUTH catalog table to show

this package’s dependency on DBA authority.

REVOKE for Authorities Statement

 SELECT

There are two decision tables that apply to SELECT:

The Tables in the FROM List :

 In cases B2, C1, and C2, the application server makes entries in the SYSTABAUTH

catalog table with the SELECTAUTH column set to ‘Y’. The entries represent this

package’s dependency on INSERT privilege for the table.

Authority Revoked

Authority
of Revoker

A
DBA

B Non-DBA G G

1 2 3

D

G

D

DBA CONNECTRESOURCE

D

Table/Views in the FROM list

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no SELECT

Table/View Exists and
the Table/View's Owner

Table/View does not yet exist
and the Table/View's Owner

B non-DBA, SELECT
without GRANT

n/a Y

C
non-DBA, SELECT
with GRANT

G G

1 2 3

non-DBA, no SELECT n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

Y

404 Application Programming

In case A2, there are some instances where a ‘Y’ entry is made in the DBAAUTH

column of the SYSUSERAUTH catalog table, showing package dependencies on

DBA authority.

Any Tables Referenced in a WHERE Clause :

Note: The authorization checking in the previous decision table precedes the logic

of this table.

The decision table used here is the same as that used by tables in the WHERE

clause of a DELETE in Figure 95 on page 402.

In cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog

table with the SELECTAUTH column set to ‘Y’. The entries represent this

package’s dependency on SELECT privilege for the table.

In case A2, the system makes an entry in the SYSUSERAUTH catalog table to show

this package’s dependency on DBA authority.

The UPDATE Tables

There are two decision tables that apply to UPDATE:

The Table Where the Update Is Applied :

 In cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog

table with the UPDATEAUTH column set to ‘Y’. The entries represent this

package’s dependency on UPDATE privilege for the table.

Any Tables Referenced in a WHERE Clause :

Note: The authorization checking in the previous decision table precedes the logic

of this table.

Table/Views to which UPDATE is applied

Pkg Owner's
Authority and
Tbl Privilege

A
DBA, no UPDATE

Table/View Exists and
the Table/View's Owner

Table/View does not yet exist
and the Table/View's Owner

B non-DBA, UPDATE
without GRANT

n/a Y

C
non-DBA, UPDATE
with GRANT

G G

1 2 3

non-DBA, no UPDATE n/a

n/a

n/an/a

n/a n/a

(G)

(G)

(G) (Y)

(Y)

D

is Pkg Owner is Pkg Ownernot Pkg Owner not Pkg Owner

4

D

Appendix F. Decision Tables to Grant Privileges on Packages 405

The decision table used here is the same as that used by tables in the WHERE

clause of a DELETE in Figure 95 on page 402.

In cases B2, C1, and C2, the system makes entries in the SYSTABAUTH catalog

table with the SELECTAUTH column set to ‘Y’. The entries represent this

package’s dependency on SELECT privilege for the table.

In case A2, the system makes an entry in the SYSUSERAUTH catalog table to show

this package’s dependency on DBA authority.

There are two decision tables that apply to UPDATE:

The LOCK DBSPACE Table

 The LOCK TABLE Table

 For cases B1, B2, and C2, the system makes entries in the SYSTABAUTH catalog

table. The entries have the SELECTAUTH column set to ‘Y’ to show the package’s

dependency.

Dbspace Owner

Pkg Owner's
Authority

A DBA G D

Dbspace Owner
is Pkg Owner

Dbspace Owner
not Pkg Owner

B non-DBA G (G)

1 2

Table Owner

Pkg Owner's
Authority and
Tbl Privilege

A DBA, no SELECT DD

Table Owner
is Pkg Owner

Table Owner
not Pkg Owner

Table does not
yet exist

B SELECT without GRANT n/a Y

C SELECT with GRANT G G

1 2 3

non - DBA , no SELECT n/a

n/a

n/a

n/a

(G) (G)D

406 Application Programming

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10594-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1987, 2007 407

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

522 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,

which illustrates programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

408 Application Programming

Programming Interface Information

This manual documents intended Programming Interfaces that allow the customer

to write programs to obtain services of DB2 Server for VSE & VM.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 APL2

 CICS

 CICS/VSE

 DATABASE 2

 DataPropagator

 DB2

 DRDA

 IBM

 Language Environment

 OS/390

 QMF

 SQL/DS

 System/390

 VM/ESA

 VSE/ESA

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 409

410 Application Programming

Bibliography

This bibliography lists publications that are

referenced in this manual or that may be helpful.

DB2 Server for VM Publications

v DB2 Server for VSE & VM Application

Programming, SC09-2889

v DB2 Server for VSE & VM Database

Administration, SC09-2888

v DB2 Server for VSE & VM Database Services

Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and

Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995

v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990

v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890

v DB2 Server for VM Messages and Codes,

GC09-2984

v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE & VM Quick Reference,

SC09-2988

v DB2 Server for VM System Administration,

SC09-2980

v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,

SC09-2989

DB2 Server for VSE Publications

v DB2 Server for VSE & VM Application

Programming, SC09-2889

v DB2 Server for VSE & VM Database

Administration, SC09-2888

v DB2 Server for VSE & VM Database Services

Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and

Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995

v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990

v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890

v DB2 Server for VSE Messages and Codes,

GC09-2985

v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE System Administration,

SC09-2981

v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,

SC09-2989

Related Publications

v DB2 Server for VSE & VM Data Restore,

SC09-2991

v DRDA: Every Manager's Guide, GC26-3195

v IBM SQL Reference, Version 2, Volume 1,

SC26-8416

v IBM SQL Reference, SC26-8415

VM/ESA Publications

v VM/ESA: General Information, GC24-5745

v VM/ESA: VMSES/E Introduction and Reference,

GC24-5837

v VM/ESA: Installation Guide, GC24-5836

v VM/ESA: Service Guide, GC24-5838

v VM/ESA: Planning and Administration,

SC24-5750

v VM/ESA: CMS File Pool Planning,

Administration, and Operation, SC24-5751

v VM/ESA: REXX/EXEC Migration Tool for

VM/ESA, GC24-5752

v VM/ESA: Conversion Guide and Notebook,

GC24-5839

v VM/ESA: Running Guest Operating Systems,

SC24-5755

v VM/ESA: Connectivity Planning, Administration,

and Operation, SC24-5756

v VM/ESA: Group Control System, SC24-5757

v VM/ESA: System Operation, SC24-5758

v VM/ESA: Virtual Machine Operation, SC24-5759

v VM/ESA: CP Programming Services, SC24-5760

v VM/ESA: CMS Application Development Guide,

SC24-5761

v VM/ESA: CMS Application Development

Reference, SC24-5762

v VM/ESA: CMS Application Development Guide for

Assembler, SC24-5763

v VM/ESA: CMS Application Development Reference

for Assembler, SC24-5764

© Copyright IBM Corp. 1987, 2007 411

v VM/ESA: CMS Application Multitasking,

SC24-5766

v VM/ESA: CP Command and Utility Reference,

SC24-5773

v VM/ESA: CMS Primer, SC24-5458

v VM/ESA: CMS User’s Guide, SC24-5775

v VM/ESA: CMS Command Reference, SC24-5776

v VM/ESA: CMS Pipelines User’s Guide, SC24-5777

v VM/ESA: CMS Pipelines Reference, SC24-5778

v VM/ESA: XEDIT User’s Guide, SC24-5779

v VM/ESA: XEDIT Command and Macro Reference,

SC24-5780

v VM/ESA: Quick Reference, SX24-5290

v VM/ESA: Performance, SC24-5782

v VM/ESA: Dump Viewing Facility, GC24-5853

v VM/ESA: System Messages and Codes, GC24-5841

v VM/ESA: Diagnosis Guide, GC24-5854

v VM/ESA: CP Diagnosis Reference, SC24-5855

v VM/ESA: CP Diagnosis Reference Summary,

SX24-5292

v VM/ESA: CMS Diagnosis Reference, SC24-5857

v CP and CMS control block information is not

provided in book form. This information is

available on the IBM VM/ESA operating

system home page (http://www.ibm.com/
s390/vm).

v IBM VM/ESA: CP Exit Customization, SC24-5672

v VM/ESA REXX/VM User’s Guide, SC24-5465

v VM/ESA REXX/VM Reference, SC24-5770

C for VM/ESA Publications

v IBM C for VM/ESA Diagnosis Guide, SC09-2149

v IBM C for VM/ESA Language Reference,

SC09-2153

v IBM C for VM/ESA Compiler and Run-Time

Migration Guide, SC09-2147

v IBM C for VM/ESA Programming Guide,

SC09-2151

v IBM C for VM/ESA User’s Guide, SC09-2152

Virtual Storage Extended/Enterprise Systems

Architecture (VSE/ESA) Publications

v IBM VSE/ESA Administration, SC33-6505

v IBM VSE/ESA Diagnosis Tools, SC33-6514

v IBM VSE/ESA General Information, GC33-6501

v IBM VSE/ESA Guide for Solving Problems,

SC33-6510

v IBM VSE/ESA Guide to System Functions,

SC33-6511

v IBM VSE/ESA Installation, SC33-6504

v IBM VSE/ESA Messages & Codes, SC33-6507

v IBM VSE/ESA Networking Support, SC33-6508

v IBM VSE/ESA Operation, SC33-6506

v IBM VSE/ESA Planning, SC33-6503

v IBM VSE/ESA System Control Statements,

SC33-6513

v IBM VSE/ESA System Macros User’s Guide,

SC33-6515

v IBM VSE/ESA System Macros Reference,

SC33-6516

v IBM VSE/ESA System Utilities, SC33-6517

v IBM VSE/ESA Unattended Node Support,

SC33-6512

v IBM VSE/ESA Using IBM Workstations,

SC33-6509

CICS/VSE Publications

v CICS/VSE Application Programming Reference,

SC33-0713

v CICS/VSE Application Programming Guide,

SC33-0712

v CICS Application Programming Primer (VS

COBOL II), SC33-0674

v CICS/VSE CICS-Supplied Transactions, SC33-0710

v CICS/VSE Customization Guide, SC33-0707

v CICS/VSE Facilities and Planning Guide,

SC33-0718

v CICS/VSE Intercommunication Guide, SC33-0701

v CICS/VSE Performance Guide, SC33-0703

v CICS/VSE Problem Determination Guide,

SC33-0716

v CICS/VSE Recovery and Restart Guide, SC33-0702

v CICS/VSE Release Guide, GC33-1645

v CICS/VSE Report Controller User’s Guide,

SC33-0705

v CICS Transaction Server for VSE/ESA V1R1.0

Resource Definition Guide, SC33-0709

v CICS/VSE Resource Definition (Online),

SC33-0708

v CICS/VSE System Definition and Operations

Guide, SC33-0706

v CICS/VSE System Programming Reference,

SC33-0711

v CICS/VSE User’s Handbook, SX33-6079

v CICS/VSE XRF Guide, SC33-0704

412 Application Programming

CICS/ESA Publications

v CICS/ESA General Information, GC33-0803

VSE/Virtual Storage Access Method (VSE/VSAM)

Publications

v VSE/VSAM Commands and Macros, SC33-6532

v VSE/VSAM Introduction, GC33-6531

v VSE/VSAM Messages and Codes, SC24-5146

v VSE/VSAM Programmer’s Reference, SC33-6535

VSE/Interactive Computing and Control Facility

(VSE/ICCF) Publications

v VSE/ICCF Administration and Operation,

SC33-6562

v VSE/ICCF Primer, SC33-6561

v VSE/ICCF User’s Guide, SC33-6563

VSE/POWER Publications

v VSE/POWER Administration and Operation,

SC33-6571

v VSE/POWER Application Programming,

SC33-6574

v VSE/POWER Networking, SC33-6573

v VSE/POWER Remote Job Entry, SC33-6572

Distributed Relational Database Architecture

(DRDA) Library

v Application Programming Guide, SC26-4773

v Architecture Reference, SC26-4651

v Connectivity Guide, SC26-4783

v DRDA: Every Manager's Guide, GC26-3195

v Planning for Distributed Relational Database,

SC26-4650

v Problem Determination Guide, SC26-4782

C/370 for VSE Publications

v IBM C/370 General Information, GC09-1386

v IBM C/370 Programming Guide for VSE,

SC09-1399

v IBM C/370 Installation and Customization Guide

for VSE, GC09-1417

v IBM C/370 Reference Summary for VSE,

SX09-1246

v IBM C/370 Diagnosis Guide and Reference for

VSE, LY09-1805

VSE/REXX Publication

v VSE/REXX Reference, SC33-6642

Other Distributed Data Publications

v IBM Distributed Data Management (DDM)

Architecture, Architecture Reference, Level 4,

SC21-9526

v IBM Distributed Data Management (DDM)

Architecture, Implementation Programmer’s Guide,

SC21-9529

v VM/Directory Maintenance Licensed Program

Specification, GC20-1836

v IBM Distributed Relational Database Architecture

Reference, SC26-4651

v IBM Systems Network Architecture, Format and

Protocol Reference, SC30-3112

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808

v Reference Manual: Architecture Logic for LU Type

6.2, SC30-3269

v IBM Systems Network Architecture, Logical Unit

6.2 Reference: Peer Protocols, SC31-6808

v Distributed Data Management (DDM) General

Information, GC21-9527

CCSID Publications

v Character Data Representation Architecture,

Executive Overview, GC09-2207

v Character Data Representation Architecture

Reference and Registry, SC09-2190

DB2 Server RXSQL Publications

v DB2 REXX SQL for VM/ESA Installation and

Reference, SC09-2891

C/370 Publications

v IBM C/370 Installation and Customization Guide,

GC09-1387

v IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications

v Up and Running!, GC31-8189

v Network Administration and Subsystem

Management Guide, SC31-8181

v Command Reference, SC31-8183

v Message Reference, SC31-8185

v Problem Determination Guide, SC31-8186

Distributed Database Connection Services

(DDCS) Publications

v DDCS User’s Guide for Common Servers,

S20H-4793

v DDCS for OS/2 Installation and Configuration

Guide, S20H-4795

VTAM Publications

Bibliography 413

v VTAM Messages and Codes, SC31-6493

v VTAM Network Implementation Guide, SC31-6494

v VTAM Operation, SC31-6495

v VTAM Programming, SC31-6496

v VTAM Programming for LU 6.2, SC31-6497

v VTAM Resource Definition Reference, SC31-6498

v VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications

v Developing Applications, SH20-6435

v CSP/AD and CSP/AE Installation Planning Guide,

GH20-6764

v Administering CSP/AD and CSP/AE on VM,

SH20-6766

v Administering CSP/AD and CSP/AE on VSE,

SH20-6767

v CSP/AD and CSP/AE Planning, SH20-6770

v Cross System Product General Information,

GH23-0500

Query Management Facility (QMF) Publications

v Introducing QMF, GC27-0714

v Installing and Managing QMF for VSE,

GC27-0721

v QMF Reference, SC27-0715

v Installing and Managing QMF for VM,

GC27-0720

v Developing QMF Applications, SC27-0718

v QMF Messages and Codes, GC27-0717

v Using QMF, SC27-0716

Query Management Facility (QMF) for Windows

Publications

v Getting Started with QMF for Windows,

SC27-0723

v Installing and Managing QMF for Windows,

GC27-0722

DL/I DOS/VS Publications

v DL/I DOS/VS Application Programming,

SH24-5009

COBOL Publications

v VS COBOL II Migration Guide for VSE,

GC26-3150

v VS COBOL II Migration Guide for MVS and

CMS, GC26-3151

v VS COBOL II General Information, GC26-4042

v VS COBOL II Language Reference, GC26-4047

v VS COBOL II Application Programming Guide,

SC26-4045

v VS COBOL II Application Programming

Debugging, SC26-4049

v VS COBOL II Installation and Customization for

CMS, SC26-4213

v VS COBOL II Installation and Customization for

VSE, SC26-4696

v VS COBOL II Application Programming Guide for

VSE, SC26-4697

Data Facility Storage Management

Subsystem/VM (DFSMS/VM) Publications

v DFSMS/VM RMS User’s Guide and Reference,

SC35-0141

Systems Network Architecture (SNA)

Publications

v SNA Transaction Programmer’s Reference Manual

for LU Type 6.2, GC30-3084

v SNA Format and Protocol Reference: Architecture

Logic for LU Type 6.2, SC30-3269

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808

v SNA Synch Point Services Architecture Reference,

SC31-8134

Miscellaneous Publications

v IBM 3990 Storage Control Planning, Installation,

and Storage Administration Guide, GA32-0100

v Dictionary of Computing, ZC20-1699

v APL2 Programming: Using Structured Query

Language, SH21-1056

v ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

v DB2 for VM Control Center Operations Guide,

GC09-2993

v DB2 for VSE Control Center Operations Guide,

GC09-2992

v DB2 Replication Guide and Reference, SC26-9920

414 Application Programming

Index

Special characters
>

convention xiii

See also shift-in character 51

<
convention xiii

See also shift-out character 51

Numerics
24-bit addressing 112

31-bit addressing 112

A
access

concurrent 260

table belonging to other users 30

adding
columns

to a table 263

in SQL expressions 52

additional predicates 43

ALL
select-clause 29

ALL keyword
subqueries 78

ALLOCATE statement of PL/I 392

ALTER TABLE
privileges 294

altering
table 263

AND operator 41

ANSI 133, 170

ANY 78

APOST preprocessor parameter 119, 163

application
CMS 15

application epilog
batch applications 16

CICS/VSE applications 17

ICCF applications 16

application program
example 21

ARIDBS 143

ARIDDFP 181

ARIDSQLA 181

ARIPADR4 143, 181

ARIPEIFA 143

ARIPRDID
DB2 Server for VSE linkage

module 181

ARIPRPA preprocessor 157

ARIPRPC preprocessor 157

ARIPRPF preprocessor 157

ARIPRPP preprocessor 157

ARIPSTR 143

ARIRCAN 16

ARIRRTED, DB2 Server for VSE linkage

module 181

ARIS6ASC
sample program 310

ARIS6ASD
sample program 310

source code 310

ARIS6CBC
sample program 354

source code 354

ARIS6CBD
sample program 354

source code 354

ARIS6CC
sample program 332

source code 332

ARIS6CD
sample program 332

source code 332

ARIS6FTC 372

sample program 372

source code 372

ARIS6FTD 372

sample program 372

source code 372

ARIS6PLC
sample program 384

source code 384

ARIS6PLD
sample program 384

source code 384

ARISSMA 143

ARISSMF 143

ARISYSDD 181

arithmetic error
outer select 281

arithmetic operator
in syntax diagrams x

ASM preprocessor parameter 118

assembler
acquiring the SQLDSECT area 310

data types 319

declaring host variables 314

declaring the SQLCA 317

declaring the SQLDA 318

embedding SQL statements
example 9, 316

sample program 310

stored procedures 326

atomic integrity 289

authority
granting 270

overview 272

revoking from others 272

authorization-ID
naming conventions 25

automatic
revocation of privileges 273

automatic rollback
data definition statements 262

deadlocks 260

B
backing out

changes 19

backout
definition 260

backslash
hex value 333

based structures 220

basic form
description 4

batch applications, modules

required 181

batch program termination 16

batch, application programs
remote CICS/VSE transactions 156

BEGIN DECLARE SECTION 8

BIND
preprocessor parameter 119

BIND preprocessor parameter 164

Binding to Create Package 148

BLocK
preprocessor parameter 120

blocking 139, 176

remote unit of work 121, 141

blocks
pages 258

BOPT
bind parameter 149

C
C programming language

C 348

C compiler preprocessor 334

case sensitivity 333

character constants in SQL

statements 333

considerations 332

data conversion considerations 342

data types 348

date calculations 342

DBCS data 343

declaring host variables 334

declaring SQLCA 346

declaring SQLDA 347

delimiting SQL statements 333

dynamic allocation of SQLDA 347

embedding SQL statements
example 9

INCLUDE statement 333

NUL-terminated strings and

truncation 342

placement of SQL statements 332

preprocessor generated

statements 343

preprocessor parameter 118

reentrant programs 350

stored procedures 350

trigraphs 343

© Copyright IBM Corp. 1987, 2007 415

case sensitivity
C 333

catalog tables 275

CBND transaction 188

CCSIDGraphic preprocessor

parameter 121

CCSIDMixed preprocessor

parameter 121, 164

CCSIDSbcs preprocessor parameter 121,

164

CESN transaction 155

changing
data type of a column 263

CHAR data type
assembler 319

COBOL 366

Fortran 380

PL/I 393

character
data 57

string
constant 57

character constant
SQL statements

C 333

character subtype
CCSID 46

constant 57

default values 46

overriding defaults 47

CHARSUB preprocessor parameter 121,

164

CHECK
bind parameter 150

CHECK preprocessor parameter 165

checking
SQLCA 202

choose
in syntax diagrams x

CICS
See also CICS/VSE

CONNECT considerations 13

CICS/VSE
CONNECT considerations 155

DB2 Server for VSE linkage

module 181

logical unit of work

considerations 18

program termination 17

running in batch 156

table entries required 18

use of WHENEVER 211

CICS/VSE default rules
user IDs 155

CICSUSER default user ID 155

CIRB transaction 155

clause
order 73

CLOSE
format 37

closed state of cursor 33

CMS
applications 15

work units 286

CMS SUBSET
LUW 288

SQLRMEND EXEC 288

COB2 preprocessor parameter 165, 360

COBOL
31-bit addressing 112

COB2 compiler option

consideration 360

COBRC compiler option

consideration 361

column 7 362

continuation of SQL statements 354

COPYBOOKs 360

data conversion considerations 361

data types 366

DBCS data 362

declaring host variables 356

declaring SQLCA 363

delimiting SQL statements 355

DYNAM compiler option 369

dynamic statement restrictions 364

embedding SQL statements
example 9

module required 181

placement of SQL statements 354

preprocessor parameter 118

QUOTE compiler option

consideration 359

sample program 354

stored procedures 369

using the COB2 parameter 360

using the COBRC parameter 361

using the INCLUDE statement 361

COBRC preprocessor parameter 165, 361

colon
used in indicator variables 60

column
correlation function 83

join considerations 67

naming convention 25

virtual 62

combining
queries 89

COMma preprocessor parameter 125

COMMENT ON 264

COMMIT 19

recommendations 16

committing changes
tables 19

common column names 67

comparison
operator 42

compiling
program 142, 180

completion code
See SQLCODE

concatenation
EXECUTE IMMEDIATE 218

operator 54

symbol 54

concurrent
access 260

CONNECT
application programs 12

statement 113

CONNECT authority
description 270

granting 270

connecting DB2 Server for VSE & VM
application programs 12

connecting to the application server
CICS/VSE transactions 155

consistency
of data 18

token 122, 144, 147, 165, 182, 187

constant
CCSID 57

character subtypes 57

search conditions 53

select-list expressions 29

constraint
defer 299

enforce 299

naming conventions 25

referential 291

contention
for resources 260

continuation of SQL statements
assembler 316

C 332

COBOL 354

Fortran 372

PL/I 384

placement of SQL statements 372

conventions
syntax diagram notation ix

conversion of data 232

See also data conversion

See data conversion 232

converting SQL statements 188

COPYBOOKs, COBOL 360

correlation 80

function 83

name 81

subqueries using joins 85

subquery 80

table 82

COUNT(*) in a grouping query 72

CREATE INDEX 263

CREATE SYNONYM 264

CREATE TABLE 263

CREATE VIEW
WITH CHECK OPTION 62

creating
indexes 263

synonym 264

table 263

field procedure 263

NULL value 263

referential integrity 263

unique constraint 263

view 62

CTOKEN preprocessor parameter 122,

165

cultural sorting 32, 282

current row of a cursor 33

cursor
closed state 33

closing 37

current row 33

declaring 33

description 33

fetching 35

inserting 36

locking stability 134, 172

management 33

416 Application Programming

cursor (continued)
name

syntax rules 34

naming convention 25

open state 33

opening 34

ordering results 38

result table 33

scope 34

D
data

consistency 18

inconsistent 18

virtual 62

data code
SQLDA

datetime 234

data conversion
C 342

COBOL 361

dynamically defined statements 232

Fortran 377

join conditions 66

PL/I 388

summary 48

unions 90

data definition 262

data integrity
atomic integrity 289

referential integrity 290

Data Integrity
entity integrity 290

unique on columns 290

Data Propagator Capture
on tables 282

data type
assembler 319

C 348

CHARACTER 44

COBOL 366

DATE 44

DECIMAL 44

description 8, 44

FLOAT 44

Fortran 380

GRAPHIC 44

INTEGER 44

LONG VARCHAR 44

LONG VARGRAPHIC 44

PL/I 393

SMALLINT 44

TIME 44

TIMESTAMP 44

VARCHAR 44

VARGRAPHIC 44

database administrator (DBA)
description 270

date arithmetic
C 342

DATE data type
assembler 319

C 349

COBOL 367

Fortran 380

PL/I 393

datetime
constants 59

DB2 Server for VSE & VM
catalog tables 275

data types, introduction 8

DB2 Server for VSE production

libraries 154

DBA
See database administrator

DBA (database administrator)
granting authority 270

DBCS
See double-byte character set

dbextent
description 256

DBFile
bind parameter 150

DBFile preprocessor parameter
VM 131

DBList
bind parameter 150

DBList preprocessor parameter
VM 131

DBname parameter
preprocessor 130

DBP (Dynamic Backout Program) 18

dbspace 25

creating 256

defining 256

dropping 261

lock size 260

naming conventions 25

owner 256

dcssID parameter
preprocessor 130

deadlock
description 260

DECIMAL data type
assembler 319

C 348

COBOL 366

Fortran 380

PL/I 393

DECLARE CURSOR
coded queries 33

declaring
host variables

assembler 314

C 334

COBOL 356

Fortran 373

PL/I 385

return code structure
assembler 317

C 346

COBOL 363

Fortran 377

PL/I 390

static external variables
PL/I 385

default
in syntax diagrams xi

defining
indexes 263

synonym 264

tables 263

field procedure 263

defining (continued)
tables (continued)

NULL value 263

referential integrity 263

unique constraint 263

view on view 63

DELETE
delete rules 297

rules 297

delete connected
table 292

deleting
tables 263

delimiting SQL statements
assembler 316

C 333

COBOL 355

dynamic execution 217

PL/I 384

dependent
table 292

descendent
table 292

DESCRIBE
usage techniques 220

DFHCSDUP 18

DFHSIT 18

DISPLAY SIGN HEADING

SEPARATE 361

DISTINCT
HAVING clause 73

select-clause 28

distributed applications
application server 3

distributing packages 147, 187

division in SQL expressions 52

double precision float 45

double quotation marks
considerations in COBOL 119, 163

double-byte character set (DBCS)
characters for C 348

constants 58

data 343

assembler 317

C 343

COBOL 362

Fortran 376

PL/I 388

data type 367, 393

assembler 319

Fortran 380

DROP DBSPACE 261

DROP TABLE 263

DROP VIEW 65

dropping
column 263

table 263

view 65

DSECTs used by the database

manager 310

DTB (Dynamic Transaction Backout) 18

duration
date 59, 278

labeled 278

lock 260

time 59, 278

timestamp 59, 280

Index 417

DYNALC preprocessor parameter 123,

166

DYNAM compiler option
COBOL 369

Dynamic Backout Program (DBP) 18

dynamic data conversion 232

assembler 318

C 347

COBOL 364

Fortran 378

PL/I 391

dynamic SQL
description 25

dynamic statements
comparison with extended dynamic

statements 242

data conversion 232

description 240

extended 240, 250

comparison with dynamic

statements 242

introduction 240

relationship between 241

remote unit of work

considerations 251

logical unit of work

considerations 250

SQLDA use 234

Dynamic Transaction Backout (DTB) 18

E
END DECLARE SECTION 8

ending logical units of work
batch applications 16

CICS/VSE transactions 17

ICCF applications 16

entity integrity 290

erasing
tables 263

ERROR
bind parameter 150

error code
See SQLCODE

error handling
application programs 199

description 197

preprocessors 157

ERROR preprocessor parameter 122, 165

error recovery
See error handling

evaluating
predicates 42

examining the SQLCA 202

exclusive lock
description 260, 261

EXEC
sample programs 22

SQLINIT 113

SQLPREP 114

SQLSTART 146

EXECUTE
usage techniques 218

EXECUTE IMMEDIATE
usage techniques 217

EXECUTE privilege
automatic revocation 273

executing applications
multiple user mode 145

single user mode 146

EXIST preprocessor parameter 123, 166

EXISTS predicate 88

expanding tables 263

EXPLAIN preprocessor parameter 123,

166

expression
adding 52

constants used 53

description 52, 53

dividing 52

host variables 53

multiplying 52

subtracting 52

extended dynamic statement
assembler example 244

comparison with dynamic

statements 242

description 240

introduction 240

logical unit of work

considerations 250

relationship between 241

remote unit of work

considerations 251

external source member
including 141

F
FETCH

description 35

error handling for a select-list 212

format 35

fetch and insert blocking 139, 176

field procedure
collating sequence 32

using 281

FIPS 133, 170

Flagger
description 133, 170

SQLFLAG 169

FLOAT data type
assembler 319

C 348

COBOL 366

Fortran 380

PL/I 393

FOR update-clause 32

foreign key 292

Fortran 377

continuation of SQL statements 372

data types 380

declaring host variables 373

embedding SQL statements 375

example 11

long character strings 375

preprocessor
restrictions 379

preprocessor parameter 118

sample program 372

fragment of syntax
in syntax diagrams xii

FROM
correlation name 81

FROM (continued)
description 30

joins 66

PREPARE statement 237

fullselect
description 27

functions
used in grouping 71

G
general rules for naming data objects 25

GRANT option
description 272

granting
authorities 270

already owned 271

graphic constants
PL/I formats 58

SQL format 58

GRAPHIC data type
assembler 319

C 348

COBOL 367

Fortran 380

PL/I 393

GRaphic preprocessor parameter 124,

167

GROUP BY clause
correlated subquery

considerations 83

description 71

subqueries 80

group query 30

See also group-by-clause

See group-by-clause 30

group-by-clause
description 30

grouping
feature 71

grouping queries
VARCHAR 72

VARGRAPHIC 72

H
HAVING clause

correlated subqueries 83

description 31, 73

subqueries 77, 80

header pages 258

hexadecimal constants
within expressions 57

host language
description 4

host structure 314, 334, 356, 373, 385

COBOL 359

description 55

host variable
assembler 317

declared in assembler 314

declared in C 334, 339, 388

declared in COBOL 356

declared in Fortran 373

declared in PL/I 385

description 55

418 Application Programming

host variable (continued)
dynamically defined statements 237

Fortran 375

function parameters
used in C 341

in syntax diagrams ix

INTO clauses 39

naming convention 25

nulls 59

PL/I 388

restriction on use in CREATE

VIEW 63

restriction on use in REVOKE 272

search conditions 53

truncation 59

used in a program 55

host-program variable
See host variable

I
IBLocK preprocessor parameter 120

ICCF applications, modules

required 181

ICCF program termination 16

identifier
description 25

long 68

implicit
connect 113

connection 155

revocation of privileges 273

IN predicate 79

inactive
constraint 299

removing referential constraints 301

table 299

INCLUDE 141, 179

assembler 316

C 333

COBOL 361

Fortran 377

PL/I 385

INCLUDE SQLCA
assembler language 317

C 346

COBOL 363

Fortran 377

PL/I 390

pseudocode 11, 198

INCLUDE SQLDA
assembler language 318

C 347

PL/I 391

pseudocode 221

including
CICS/VSE procedures 181

external source members 141, 179

extra linkage modules 181

input from Source Statement

Library 179

relocatable modules 180

secondary input from VM
CMS file 141

inconsistency
because of cursor stability 135, 173

inconsistency (continued)
cursor stability inconsistencies 135,

173

inconsistent
data 18

state 18, 198

index
creating 263

naming convention 25

restriction for view 61

indicator array
description 55

in assembler 314

in C 334

in COBOL 356

in Fortran 373

in PL/I 385

INDICATOR keyword
indicator variables 60

indicator variable
description 55, 59

detecting nulls 61

detecting truncation 61

FETCH statement 35

in assembler 314

in C 334

in COBOL 356

in Fortran 373

in PL/I 385

meaning of values returned 61

INfile
bind parameter 149

initializing
SQLDA 234

your user machine 113

input host variables 34

INSERT
INSERT rules 295

rules for referential integrity 295

insert and fetch blocking 139, 176

installing
applications 112

INTEGER data type
assembler 319

C 348

COBOL 366

data types 393

Fortran 380

PL/I 393

integrity
atomic 289

data 290

entity 290

referential 290

internal statistics, updating 264

INTO clause
description 38

dynamically defined statements 222

FETCH statement 35

restriction for subqueries 77

unions 89

invoking
PL/I preprocessor

multiple user mode 158

invoking the preprocessor 114, 156

ISO 133, 170

isolation level
cursor stability 134, 172

mixing 137, 175

remote unit of work 137

repeatable read 134, 172

USER option 124, 137, 167, 175

ISOLation preprocessor parameter 124,

167

ISOLATION preprocessor

parameter 137, 175

J
job control examples

multiple user mode

preprocessing 158

suppressing printout 162

join
common column names 67

correlated subqueries 85

data conversion 66

description 66

join variable 68

limits 70

nulls 68

number permitted 70

referring to another user’s table 67,

69

SELECT * 71

single table (to itself) 68

trailing blanks 68

without join conditions 66

K
KEEP

bind parameter 149

KEEP parameter 124, 167

keeping authorization names and

password secret 162

key
foreign 292

primary 292

keyword
in syntax diagrams ix

L
LABEL

SQL 264

LABEL preprocessor parameter 125, 168

limits
joins 70

link-editing
extra modules required 181

module not found 142, 180

loading
COBOL considerations 112

program 142, 180

LOCK 260

ACQUIRE DBSPACE 259

ALTER DBSPACE 259

lock size
definition 257

Index 419

locking
dbspaces

explicitly 260

modifying 257

reading 257

description 260

duration 260

exclusive 260

isolation level
considerations 134, 172

share 260

tables explicitly 260

update 260

LOG job control statement 162

logical operator 41

logical unit of work (LUW)
automatic locking 260

automatic rollback 260, 262

batch considerations 16

CICS/VSE considerations 17, 18, 155

CMS considerations 15, 19

committing work done 19

description 18, 198

error handling 198

ICCF considerations 16

revoking privileges 272

rolling back work done 19

using extended dynamic

statements 250

LOGmode parameter
preprocessor 130

long character strings in Fortran 375

long strings
description 45

use 45

LONG VARCHAR
restrictions 45

unions 90

LONG VARCHAR data type
assembler 319

C 348

COBOL 366

Fortran 380

PL/I 393

LONG VARGRAPHIC
restrictions 45

unions 90

LONG VARGRAPHIC data type
assembler 319

C 349

COBOL 367

Fortran 380

PL/I 393

M
main variable 55, 314, 334, 356, 373, 385

manipulating a cursor 34

maximum
joins 70

merging results of queries 89

mixing isolation levels 137, 175

modifying
locked dbspace 257

tables through a view 64

module not found 142, 180

multiple
row

query results 33

multiple row results 33

multiple user mode 112

executing applications 145

invoking the preprocessors 114, 156,

158

multiple-partition mode
locking considerations 260

multiplication in SQL expressions 52

N
naming

column 25

data object 25

dbspace 25

index 25

table 25

negative SQLCODE
description 11, 198

nesting correlated subqueries 85

NEW
bind parameter 149

NHEADER
ACQUIRE DBSPACE 258

NOBIND preprocessor parameter 119,

164

NOBLocK preprocessor parameter 120

NOCHECK
bind parameter 150

NOCHECK preprocessor parameter 165

NOEXIST preprocessor parameter 123,

166

NOFOR preprocessor parameter 123,

166

NOGRaphic preprocessor

parameter 124, 167

NOLOG job control statement 162

nonexecutable SQL statements 12

NOPACKAGE preprocessor

parameter 125, 168

NOPRint preprocessor parameter 125,

168

NOPUnch preprocessor parameter 125,

168

NOSEQuence preprocessor

parameter 126, 168

NOSQLCA
preprocessor parameter 126

support 127, 169, 198

NOT EXISTS predicate 88

not found SQLCODE (100)
FETCH 35

NOT IN predicate 79

NOT keyword
concatenation 41

NUL-terminated strings and truncation
C 342

null value 86

grouping queries 72

indicator variables 59, 61

joins 68

search conditions 41

NUMERIC
See DECIMAL 45

O
online applications

See CICS/VSE

online environment
See CICS/VSE

online programs
See CICS/VSE

OPEN
description 34

format 34

open state of a cursor 33

operator
arithmetic 52

comparison 42

logical 41

operator ID 155

OPTION LOG job control statement 162

OPTION NOLOG job control

statement 162

optional
default parameter

in syntax diagrams xii

item
in syntax diagrams x

keyword
in syntax diagrams xii

OPTIONS(MAIN) clause 384

OR operator 41

order
clauses 73

ORDER BY clause
description 38

restriction for CREATE VIEW 63

unions 89, 90

ordering
query results 38

output host variables 35

owner
dbspace 256

OWner
bind parameter 150

OWner preprocessor parameter 125

P
package

automatic regeneration 145, 182, 273

description 114, 157

distributing 147, 187

invalidating
DROP DBSPACE 261

DROP VIEW 66

REVOKE 273

PACKAGE
bind parameter 149

PACKAGE preprocessor parameter 125,

168

page
header 258

PAGE lock size 260

PAGES parameter of ACQUIRE

DBSPACE 258

parameter
marker 218, 237

specifying
user 147

420 Application Programming

parameterized statement
description 218

parent table
table 292

parentheses
in syntax diagrams x

PARMID preprocessor parameter 131

password
naming convention 25

PCTFREE
parameter of ACQUIRE dbspace 258

parameter of ALTER DBSPACE 259

PCTINDEX
parameter of ACQUIRE

DBSPACE 258

performance
considerations 134, 172, 289

PERiod preprocessor parameter 125

PL/I 393

attributes of variables 387

continuation of SQL statements 384

data conversion considerations 388

declaring host variables 385

declaring SQLCA 390

declaring SQLDA 391

declaring static external

variables 385

delimiting SQL statements 384

dynamic allocation of SQLDA 391

embedding SQL statements
example 11

placement of SQL statements 384

preprocessing programs coded 158

preprocessor parameter 118

sample program 384

stored procedures 394

using the INCLUDE statement 385

placement of SQL statements
assembler 316

C 332

COBOL 354

Fortran 372

PL/I 384

pointer type attribute
C 339

positions of a cursor 33

positive SQLCODE
description 11, 198

potential deadlocks 260

precedence rules 41, 52

predicates
constants 53

description 41

host variables 53

rules for evaluating 42

PREPARE
format 237

usage techniques 218

PrepFile preprocessor parameter 119,

163

PREPNAME preprocessor

parameter 118, 163

PREPPARM preprocessor parameter 119,

163

preprocessing
description 114

multiple user mode 114, 156

preprocessing (continued)
PL/I 158

parameters 114

programs 157

single user mode 114, 156

Preprocessing
option file 132, 170

preprocessor 114

preprocessor parameters 134, 172

APOST 119, 163

ASM 118

BIND 119, 164

BLocK 120

C 118

CCSIDGraphic 121

CCSIDMixed 121, 164

CCSIDSbcs 121, 164

CHARSUB 121, 164

CHECK 165

COB2 165, 360

COBOL 118, 361

COBRC 165

COMma 125

CTOKEN 122, 165

DATE 122, 166

DBFile 131

DBList 131

DBname 130

dcssID 130

ERROR 122, 165

EXIST 123, 166

EXPLAIN 123, 166

Fortran 118

GRaphic 124, 167

IBLocK 120

ISOLation 124, 167

ISOLATION 137, 175

KEEP 124, 167

LABEL 125, 168

LineCount 125, 168

LOGmode 130

NOBIND 119, 164

NOBLocK 120

NOCHECK 165

NOEXIST 123, 166

NOFOR 123, 166

NOGRaphic 124, 167

NOPACKAGE 125, 168

NOPRint 125, 168

NOPUnch 125, 168

NOSEQuence 126, 168

NOSQLCA 126

OWner 125

PACKAGE 125, 168

PARMID 131

PERiod 125

PL/I 118

PrepFile 119, 163

PREPNAME 118, 163

PREPPARM 119, 163

PRint 125, 168

PUnch 125, 168

QUALifier 126

QUOTE 119, 163, 359

RELease 126

REVOKE 124, 167

SBLocK 120

preprocessor parameters (continued)
SEQuence 126, 168

SQLApost 126

SQLFLAG 169

SQLQuote 126

STDSQL 127, 169

suppressing display 162

sysBInd 127

sysIN 128

SYSIN 169

sysPRint 128

sysPUnch 129

TIME 127, 169

USERid 119, 163

preprocessorparameters
DYNALC 123, 166

primary key 292

PRint preprocessor parameter 125, 168

privilege
automatic revocation 273

description 272

package 273

programs 275

references 294

revoking 275

from others 272

table or view
alter 272

delete 272

description 272

index 272

insert 272

references 272

select 272

update 272

program
interrupts

Fortran 378

PL/I 390

naming convention 25

privileges
revoking 275

sample 21

termination
batch applications 16

program termination
CICS/VSE programs 17

CMS programs 15

ICCF applications 16

programming interface
description 409

programs using DBCS data
assembler 317

C 343

COBOL 362

Fortran 376

PL/I 388

PSERVERs
characteristics 266

example of a definition 267

execution 266

pseudocode
description 4

PUnch preprocessor parameter 125, 168

punctuation mark
in syntax diagrams x

Index 421

PUT
description 36

format 36

Q
QRY

bind parameter 151

QUALifier
bind parameter 150

QUALifier preprocessor parameter 126

qualifiers
column names 67

table names 25

qualify
fully 25

qualifying groups
See having clause

Query
Connected Database 54

querying
tables through a view 63

quotation mark
considerations in COBOL 119, 163

constants 57

QUOTE preprocessor parameter 119,

163, 359

R
reading from a locked dbspace 257

REBIND PACKAGE 145, 183

reentrant programs
assembler 320, 350

C 350

COBOL 368, 369

REFER feature of PL/I 392

references privilege 294

existing applications 295

modifying the contents of tables with

referential constraints 295

referential
constraint 291

cycle
definition 291

description 290

integrity 290

existing tables 293

new tables 292

rules 299

structure 291

register save conventions
support 183

relationship 291

RELEASE option
COMMIT 16

ROLLBACK 16

RELease preprocessor parameter 126

releasing your connection
batch applications 16

CICS/VSE applications 17

CMS applications 19

ICCF applications 16

to DB2 Server for VSE & VM 19

remote unit of work
application program 3

remote unit of work (continued)
blocking 121, 141

considerations in using extended

dynamic statements 251

CURRENT SERVER 54

extended dynamic processing 243,

244

isolation level 137

special register 54

USER isolation 124

repeat symbol
in syntax diagrams xi

repeatable read locking 134, 172

REPLACE
bind parameter 149

required item
in syntax diagrams x

reserved words
SQL xii

RESOURCE authority
granting 270

Resource Definition Online Facility

(RDO) 18

restoring data 19

restriction
unions 90

result code
See SQLCODE

result table
cursor 33

retrieving
columns of a row 29

return code
See SQLCODE

REVOKE 272

bind parameter 150

REVOKE preprocessor parameter 124,

167

revoking
privileges 272

automatic 273

overview 272

programs 275

rollback
description 198

ROLLBACK 16, 19

ROLLBACK WORK 260

rollback, automatic
data definition statements 262

deadlocks 260

rolling back changes 19

ROW lock size 260

rules
evaluating predicates 42

naming data object 25

SQL in assembler 314

SQL in C 332

SQL in Fortran 372

SQL in PL/I 384

S
sample program

ARIS6ASD 310

ARIS6CBC 354

ARIS6CBD 354

ARIS6CC 332

sample program (continued)
ARIS6CD 332

ARIS6FTC 372

ARIS6FTD 372

ARIS6PLC 384

ARIS6PLD 384

EXECs 22

list 21

SBLocK preprocessor parameter 120

SCHEDULE authority
granting 270

scope
cursor 34

WHENEVER statement 201

search condition
See also where-clause

AND operator 41

arithmetic operators 52

comparison operators 42

constant 53

description 39

expressions 53

host variables 53

join conditions 66

NOT keyword 41

OR operator 41

precedence rules 41, 52

predicates 41

SELECT
ALL 29

ALL keyword 78

ANY keyword 78

clause 28

constants 29

correlation 80

DISTINCT keyword 28

error handling 212

EXISTS 88

group-by-clause 30

grouping 71

having-clause 31

INTO clause 38

introduction 26

joins 66

NOT EXISTS predicate 88

order of clauses 73

ordering results 38

SELECT * form 29

select-clause 28

select-list 28

subqueries 76

unions 89

where-clause 30

SELECT *
basic queries 29

join 71

views 62

select list
constants 29

description 28

error handling 212

restrictions
GROUP BY 72

select-statement
description 27

selecting
all columns of a row 29

422 Application Programming

selecting (continued)
isolation level 136, 174

self-referencing table 292

sequence of clauses 73

SEQuence preprocessor parameter 126,

168

share lock
description 260, 261

shift-in character 51

shift-out character 51

single precision float 45

single quotation mark
COBOL considerations 119, 163, 359

considerations in COBOL 119, 163

constant 57

single user mode 112

executing applications 146

invoking a program
example 147

invoking the preprocessors 114, 156

specifying user parameters 147

single virtual machine mode 112

single-partition mode
locking considerations 260

single-row query results 39

SIZE=AUTO
invoking preprocessors 158

SMALLINT data type
assembler 319

C 348

COBOL 366

Fortran 380

PL/I 393

SOME keyword 78

source code
ARIS6ASC 310

ARIS6ASD 310

ARIS6CBC 354

ARIS6CBD 354

ARIS6CC 332

ARIS6CD 332

ARIS6FTC 372

ARIS6FTD 372

ARIS6PLC 384

ARIS6PLD 384

Source Statement Library
input 179

source value 48

special register
description 53

expressions 53

remote unit of work 54

special statements
UPDATE STATISTICS 264

SQL comments
assembler 316

C 333

COBOL 355

Fortran 372

in static SQL statements 92

PL/I 384

SQL declare section 8, 55, 314, 334, 356,

373, 385

SQL Descriptor Area (SQLDA)
assembler declaration 318

C declaration 347

COBOL declaration 364

SQL Descriptor Area (SQLDA) (continued)
Fortran declaration 378

PL/I declaration 391

Structure 234

SQL identifier
description 25

SQL statements
embedding in application program

examples 12

SQL-89
conformance checking 133, 169, 170,

254

SQLApost preprocessor parameter 126

SQLCA (SQL Communications Area)
assembler declaration 317

C declaration 346

COBOL 363

description 199

Fortran 377

PL/I declaration 390

testing 202

SQLCODE 11, 198

SQLCODE 100 (not found)
FETCH 35

SQLD field in the SQLDA 236

SQLDA (SQL Descriptor Area)
summary 234

SQLDAX structure (in PL/I) 391

SQLDSECT, acquiring 310

SQLDSIZ variable 310

SQLERRM
description 200

SQLFLAG preprocessor parameter 169

SQLHX 16

SQLINIT EXEC 113

optional CMS work unit 289

SQLN
field in SQLDA 236

setting 234

SQLPREP EXEC 114

format 114

parameters 114

SQLQRY
remote unit of work 305

SQLQuote preprocessor parameter 126

SQLRMEND EXEC 16

SQLSTART EXEC 146

example 147

SQLWARN
description 200

SQLWARN6
automatic rollback 260

starter database 154

statements
ALTER TABLE 263

BEGIN DECLARE SECTION 8

CLOSE 37

COMMENT ON 264

COMMIT 19

CONNECT 12

CREATE INDEX 263

CREATE SYNONYM 264

CREATE TABLE 263

CREATE VIEW 62

DECLARE 33

DROP DBSPACE 261

DROP SYNONYM 264

statements (continued)
DROP TABLE 263

DROP VIEW 65

END DECLARE SECTION 8

FETCH 35

INCLUDE 141, 179

INCLUDE SQLCA 11, 198

INCLUDE SQLDA 221

LABEL 264

LOCK 260

naming convention 25

OPEN 34

PREPARE 237

PUT 36

REVOKE 272

ROLLBACK 19

SELECT
basic use 26

correlation 80

grouping 71

joins 66

subqueries 76

testing for existence 88

unions 89

UPDATE STATISTICS 264

WHENEVER 201

static SQL
description 25

statistics
tables 264

storage pool
definition 256

nonrecoverable 256

recoverable 256

specifying the placement of

dbspaces 259

stored procedures
assembler 326

authorizing 97

benefits 93

C 350

calling 96

characteristics 265

client application programs 102

COBOL 369

coding examples 101

datatype compatibility 99

example of a definition 265

execution of SQL statements 95

GENERAL linkage convention 99

GENERAL WITH NULLS linkage

convention 100

Language Environment

considerations 96

parameters 98

passing parameters 99

PL/I 394

preparing 96

result sets 101

specifying AUTHIDs 97

using 92, 265

writing 94

STORPOOL parameter of ACQUIRE

DBSPACE 259

structures
based 220

Index 423

subquery
ALL keyword 78

ANY keyword 78

correlation 80

IN predicate 79

introduction 76

involving unions (restriction) 91

many values returned 78

NOT IN predicate 79

single value returned 78

subselect
description 26

subtraction in SQL expressions 52

subtype
character 46

Using 57

success code
See SQLCODE

summary
program framework 20

suppressing SYSPCH and SYSLST

output 157

suppressing the preprocessor parameter

display 162

syncpoints 17

See logical units of work

synonym
creating 264

naming convention 25

syntax diagram
notation conventions ix

sysBInd preprocessor parameter 127

sysIN preprocessor parameter 128

SYSIN preprocessor parameter 169

SYSLST, suppressing preprocessor

output 157

SYSPCH, suppressing preprocessor

output 157

sysPRint preprocessor parameter 128

sysPUnch preprocessor parameter 129

system initialization table 18

Systems Application Architecture (SAA)
conformance checking 133, 169, 170,

254

T
table

accessing 30

altering 263

creating 263

indexes 263

synonyms 264

defining labels 264

delete-connected 292

dependent 292

descendent 292

designator
rules 70, 88

dropping 263

entering comments in catalog

tables 264

exposed table name 70

labels 68

naming convention 25

nonexposed table name 70

table (continued)
or view

privileges 272

parent table 292

self-referencing 292

tables, CICS/VS 18

target value 48

terminal operator id 155

terminating
CMS applications 15

termination
batch programs 16

CICS/VSE programs 17

ICCF applications 16

testing
existence 88

SQLCA 202

TIME data type
assembler 319

C 349

COBOL 367

Fortran 381

PL/I 393

TIMESTAMP
data type

assembler 320

C 349

COBOL 367

Fortran 381

PL/I 394

duration 280

trailing blanks 68, 72

transactions
See CICS/VSE

trigraphs
C 343

U
UNION ALL 89

UNION operator
CCSID 91

character subtypes 91

description 89

ordering results 89, 90

restriction for CREATE VIEW 63

usage restrictions involving
data types 90

LONG VARCHAR data 90

subqueries 91

VARCHAR and

VARGRAPHIC 91

views 91

unions 89

See also UNION operator

See UNION operator 89

unique on columns 290

uniquely identifying an object 25

unresolved external reference 143, 182

UPDATE
rules 296

update rule 296

UPDATE STATISTICS 264

updating
internal statistics 264

user ID
CICS/VSE default rules 155

user ID (continued)
CICSUSER default 155

naming convention 25

USER isolation
remote unit of work 124

user parameters
in single user mode 147

USER special register 54

USERid
bind parameter 151

preprocessor parameter 163

USERid preprocessor parameter 119

V
valid lock size 260

VARCHAR data type
assembler 319

C 348

COBOL 366

Fortran 380

PL/I 393

VARGRAPHIC
constants within expressions 58

data type
assembler 319

C 348

COBOL 367

Fortran 380

PL/I 393

view
CREATE VIEW 62

description 61

DROP VIEW 65

materialization 64

modifying tables through 64

naming convention 25

privileges 272

querying tables through 63

unions
restriction 91

virtual
columns 62

data 62

VM 142

executing applications 144

implicit connect 113

loading a program 142, 180

preprocessing programs 114

VM/CMS file
including secondary input 141

VSE
CICS/VSE CONNECT

considerations 155

compiling a program 180

preprocessing programs 157

register save conventions 183

W
warning

conditions 200

flags 200

WHENEVER 12, 198, 201

WHERE clause
ALL keyword 78

424 Application Programming

WHERE clause (continued)
ANY keyword 78

correlated subquery 80

description 30

EXISTS predicate 88

grouping considerations 72

IN predicate 79

join conditions 66

NOT EXISTS predicate 88

NOT IN predicate 79

subqueries 76

WITH CHECK OPTION 62

WITH clause 33

work units
CMS 286

using 286

writing clauses in order 73

Z
zero SQLCODE

description 11, 198

Index 425

426 Application Programming

Contacting IBM

Before you contact DB2 customer support, check the product manuals for help

with your specific technical problem.

For information or to order any of the DB2 Server for VSE & VM products, contact

an IBM representative at a local branch office or contact any authorized IBM

software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:

v 1-800-237-5511 for customer support

v 1-888-426-4343 to learn about available service options

Product information

DB2 Server for VSE & VM product information is available by telephone or by the

World Wide Web at http://www.ibm.com/software/data/db2/vse-vm

This site contains the latest information on the technical library, product manuals,

newsgroups, APARs, news, and links to web resources.

If you live in the U.S.A., then you can call one of the following numbers:

v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.

v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the IBM

Worldwide page at http://www.ibm.com/planetwide

In some countries, IBM-authorized dealers should contact their dealer support

structure for information.

© Copyright IBM Corp. 1987, 2007 427

428 Application Programming

IBMR

File Number: S370/4300-50

Program Number: 5697-F42

Printed in USA

SC09-2889-02

Spine information:

 IBM DB2 Server for VSE & VM Application Programming Version 7 Release 5

	Contents
	About This Manual
	Audience and Purpose of This Book
	Organization of This Book
	Related Publications
	Syntax Notation Conventions
	SQL Reserved Words
	Conventions for Representing DBCS Characters
	Components of the Relational Database Management System

	Summary of Changes
	Summary of Changes for DB2 Version 7 Release 5
	Enhancements, New Functions, and New Capabilities
	Explain Option on DBSU REBIND PACKAGE Command
	For Fetch only
	Application Message Formatter
	Convert buffer read/write to compiler macro
	Modify Build Tree Creation
	Split code point search routines
	DRDA Multi-Row Insert
	Connection Pooling for DRDA TCP/IP in Online Resource Adapter
	IBM DB2 Server for VSE, Client Edition
	IBM DB2 Server for VM, Client Edition
	Handling Commit Responses from DB2 UDB Stored Procedures
	Make on-line programs AMODE 31 RMODE ANY
	Provide BIND File Support in VM and in VSE Batch Environments
	Convert TCP/IP LE/C interface to EZASMI API

	Chapter 1. Getting Started
	What is the DB2 Server for VSE & VM Product?
	What is SQL?
	Embedding SQL Statements in Host Language Programs
	Using DB2 Server RXSQL (DB2 Server for VM Only)

	Writing a Program

	Chapter 2. Designing a Program
	Defining the Main Parts of a Program
	Creating the Prolog
	Declaring Variables That Interact with the Database Manager
	Handling Errors with the SQL Communications Area
	Using Additional Nonexecutable Statements

	Creating the Body
	Connecting to the Application Server
	Defining Objects
	Manipulating Objects
	Controlling Application Server Resources
	Granting Authorities and Privileges

	Creating the Epilog
	Ending the Program

	Using Logical Units of Work
	Defining the Logical Unit of Work
	Beginning a Logical Unit of Work
	Considering the CICS/VSE Logical Unit of Work (DB2 Server for VSE Only)
	Ending a Logical Unit of Work
	Using the COMMIT Statement
	Using the ROLLBACK Statement

	Summary
	Using Host-Dependent Sample Applications

	Chapter 3. Coding the Body of a Program
	Defining Static SQL Statements
	Naming Conventions
	Coding SQL Statements to Retrieve and Manipulate Data
	Retrieving Data
	Defining an SQL Query
	Using the SELECT Clause
	Using the FROM Clause
	Using the WHERE Clause
	Using the GROUP BY Clause
	Using the HAVING Clause
	Using the ORDER BY Clause
	Using the FOR UPDATE OF Clause
	Using the WITH Clause

	Retrieving or Inserting Multiple Rows
	Using the Cursor with a Select-Statement
	Declaring a Cursor
	Using a Cursor in an Application Program
	Manipulating the Cursor
	Illustrating the Use of the Query Cursor

	Retrieving Single Rows

	Constructing Search Conditions
	Performing Arithmetic Operations
	Using Null Values
	Using the Predicates of a Search Condition
	Evaluating Predicates
	Using Additional Types of Predicates

	Using Functions
	Using Column Functions
	Using Scalar Functions

	Using Data Types
	Assigning Data Types When the Column Is Created
	Using Long Strings
	Defining Long Strings
	Performing Operations on Long Strings
	Programming Tip

	Using Datetime Data Types
	Using Character Subtypes and CCSIDs
	Determining Default Subtypes and CCSIDs
	Assigning Subtypes and CCSIDs When a Column Is Created
	Assigning Subtypes and CCSIDs to Data in a Program

	Converting Data
	Summarizing Data Conversion

	Truncating Data
	Using a Double-Byte Character Set (DBCS)

	Using Expressions
	Using Arithmetic Operators
	Using Special Registers
	Concatenating Character and Graphic Strings
	Using Host Variables
	Using Host Structures
	Using Constants
	Using Numeric Constants
	Using Character Constants
	Using Graphic Constants
	Using Date and Time Constants

	Using Indicator Variables
	Notes Common to Both Input and Output Indicator Variables
	Notes on Input Indicator Variables
	Notes on Output Indicator Variables

	Using Views
	Creating a View
	Querying Tables through a View
	Using Views to Manipulate Data
	Dropping a View

	Joining Tables
	Joining Tables Using the Database Manager
	Performing a Simple Join Query
	Joining Another User’s Tables
	Analyzing How a Join Works
	Using VARCHAR and VARGRAPHIC within Join Conditions
	Using Nulls within Join Conditions
	Joining a Table to Itself Using a Correlation Name
	Rules for Table Designation

	Imposing Limits on Join Queries
	Using SELECT * In a Join

	Grouping the Rows of a Table
	Using VARCHAR and VARGRAPHIC within Groups
	Using Nulls within Groups
	Using Select-Lists in Grouped Queries
	Using a WHERE Clause with a GROUP BY Clause
	Using the HAVING Clause
	Combining Joins
	Illustrating Grouping with an Exercise

	Nesting Queries
	Using the IN Predicate with a Subquery
	Considering Other Subquery Issues
	Executing Subqueries Repeatedly: Correlation
	Writing a Correlated Subquery
	How the Database Manager Does Correlation
	Illustrating a Correlated Subquery
	Using a Subquery to Test for the Existence of a Row
	Table Designation Rule for Correlated Subqueries
	Combining Queries into a Single Query: UNION
	String Columns
	Numeric Columns
	Datetime/Timestamp Columns

	SQL Comments within Static SQL Statements
	Using Stored Procedures
	Writing Stored Procedures
	Returning Information from the SQLCA
	Language Environment® (LE) Considerations
	Preparing to Run a Stored Procedure
	Calling Stored Procedures
	Authorization
	AUTHIDs
	Stored Procedure Parameters
	Datatype Compatibility
	Conventions for Passing Stored Procedure Parameters
	The GENERAL Linkage Convention
	The GENERAL WITH NULLS Linkage Convention

	Coding Examples
	Special Considerations for C
	Special Considerations for PL/I
	Result Sets
	Coding Client Programs to Process Results Sets
	Result Set Processing

	Using the DESCRIBE PROCEDURE SQL Statement
	Using the DESCRIBE CURSOR SQL Statement
	Coding Summary to Process Result Sets

	Chapter 4. Preprocessing and Running a DB2 Server for VM Program
	Defining the Steps to Execute the Program
	Comparing Single User Mode to Multiple User Mode
	Using 31-Bit Addressing
	Initializing the User Machine
	Using VM Implicit Connect

	Preprocessing the Program
	Using the SQLPREP EXEC Procedure
	Executing the SQLPREP EXEC in Single User Mode
	Executing the SQLPREP EXEC in Multiple User Mode
	DB2 Server for VM Program Preparation Parameters
	Parameters for SQLPREP EXEC for Single and Multiple User Modes
	Parameters for SQLPREP EXEC for Single User Mode Only
	Parameters for SQLPREP EXEC in Multiple User Mode Only
	Preprocessing and bindfile

	Preprocessing with an Unlike Application Server
	Using the Preprocessor Option File
	Using the Flagger at Preprocessor Time
	Improving Performance Using Preprocessing Parameters
	Selecting the Isolation Level to Lock Data
	Using the Blocking Option to Process Rows in Groups

	Using the INCLUDE Statement
	Including External Source Files
	Including Secondary Input

	Compiling the Program
	Link-Editing and Loading the Program
	Link-Editing the Program with DB2 Server for VM TEXT Files
	Using the Resource Adapter Stub Routine
	Using Other TEXT Files

	Including the TEXT File in the Link-Editing
	Using the CMS LOAD Command
	Using the CMS TXTLIB Command

	Creating a Load Module Using the CMS GENMOD Command

	Running the Program
	Using a Consistency Token
	Loading the Package and Rebinding
	Using Multiple User Mode
	Using Single User Mode
	Specifying User Parameters in Single User Mode

	Distributing Packages across Like and Unlike Systems
	Binding to Create Package

	Chapter 5. Preprocessing and Running a DB2 Server for VSE Program
	Defining the Steps to Execute the Program
	Using 31-Bit Addressing
	How DB2 Establishes User IDs for CICS/VSE Transactions
	User IDs for Remote CICS/VSE Transactions
	Using Batch for Remote CICS/VSE Transactions

	Preprocessing the Program
	Preprocessing by Mode
	Using Multiple User Mode
	Using Single User Mode

	Defining the Preprocessing Parameters
	Using the Preprocessor Option Member
	Using the Flagger at Preprocessor Time
	Using the CICS/VSE Translator
	Improving Performance Using Preprocessing Parameters
	Selecting the Isolation Level to Lock Data
	Using the Blocking Option to Process Rows in Groups

	Using the INCLUDE Statement
	Including External Source Members
	Including a Library Source

	Compiling the Program
	Link-Editing and Loading the Program
	Link-Editing the Program with Supplementary Information
	Including Relocatable Modules
	Including CICS/VSE Procedures
	Including CICS/TS Procedures
	Including Extra Linkage Modules

	Running the Program
	Using a Consistency Token
	Loading the Package and Rebinding
	Running by Mode
	Using Multiple User Mode
	Using Single User Mode

	Running under CICS/VSE Support
	Accessing Other DB2 Family Application Servers

	Installing Applications that Access the Database Manager
	Installing a Batch Application
	Installing an Online CICS/VSE Application
	Distributing Packages across Like and Unlike Systems
	Creating a Package Using CBND and Batch Binding

	Chapter 6. Testing and Debugging
	Doing Your Own Testing
	Checking Warnings and Errors at Preprocessor Time
	Testing SQL Statements

	Using the Automatic Error-Handling Facilities
	Using the SQLCA
	Using the SQLERRM Field
	Using the SQLWARN Field

	Examining Errors
	Using the WHENEVER Statement
	Determining the Scope of the WHENEVER Statement
	Examining the SQLCA

	Handling Errors in a Select-List
	Handling Arithmetic Errors
	Handling Numeric Conversion Errors
	Handling CCSID Conversion Errors

	Chapter 7. Using Dynamic Statements
	Dynamically Defining SQL Statements
	Comparing Non-Query Statements to Query Statements
	Using Non-Query Statements
	Executing Non-Parameterized Statements
	Executing Parameterized Statements

	Using Query Statements
	Executing a Non-Parameterized Select-Statement
	Using the PREPARE and DESCRIBE Statements
	Declaring the SQL Descriptor Area (SQLDA)
	Processing a Run-Time Query Using the SQLDA
	Allocating Storage for the SQLDA Using the SQLVAR Array
	Initializing the SQLN Field of the SQLDA
	Inserting Values in the SQLDA
	Analyzing the Elements of SQLVAR
	Allocating Storage for the Result of the Select-Statement
	Retrieving the Query Result

	Executing a Parameterized SELECT Statement
	Generating an Additional SELECT Statement

	Executing a Parameterized Non-Query Statement
	Generating a SELECT Statement

	Using an Alternative to a Scanning Routine
	Ensuring Data Type Equivalence in a Dynamically Defined Query
	Summarizing the Fields of the SQLDA
	Using the SQLN Field
	Using the SQLD Field in the SQLDA

	Using the PREPARE Statement
	SQL Functions Not Supported in Dynamic Statements

	Chapter 8. Using Extended Dynamic Statements
	Contents
	Using Extended Dynamic Statements to Maintain Packages
	Illustrating the Use of Extended Dynamic Statements
	Developing a Query Application
	Developing a Language Preprocessor

	Grouping Extended Dynamic Statements in an LUW
	Considering Virtual Storage in an LUW (DB2 Server for VM Only)
	Using COMMIT WORK and ROLLBACK WORK Statements (DB2 Server for VSE Only)
	Considering Virtual Storage in a Logical Unit of Work (DB2 Server for VSE Only)

	Mapping Extended Dynamic Statements to Static and Dynamic Statements
	SQL Functions Not Supported in Extended Dynamic Statements

	Chapter 9. Maintaining Objects Used by a Program
	Managing Dbspaces
	Defining Dbspaces
	Finding Available Space
	Specifying Properties of Dbspaces

	Modifying the Size of Dbspaces
	Automatically Locking Dbspaces
	Overriding Automatic Locking
	Deleting the Contents of Dbspaces

	Other Data Definition Statements
	Using Tables, Indexes, Statistics, Synonyms, Comments, and Labels
	Creating Tables
	Modifying Tables
	Dropping Tables
	Using Indexes
	Updating Catalog Tables for Table and Index Activity
	Using Synonyms
	Using Comments
	Using Labels

	Using Stored Procedures and PSERVERS
	Using Stored Procedures
	Example of a Stored Procedure Definition
	Using PSERVERs
	Example of a Stored Procedure Server Definition

	Chapter 10. Assigning Authority and Privileges
	Defining User Access to the Database
	Defining Authority Types for the Database
	Granting Authority to Users
	Revoking Authority from Users

	Defining Privileges
	Defining Privileges on Tables and Views
	Revoking Privileges

	Defining Privileges on Packages
	Assigning User Privileges to the Owner
	Assigning Privileges to Others
	Differences Between Static and Dynamic Statements
	Revoking the Run Privilege
	Recording Assigned Privileges in the Catalog Tables

	Chapter 11. Special Topics
	Using Datetime Values with Durations
	Using Durations
	Resolving Peculiarities of Date Arithmetic
	Summarizing Addition Operations
	Summarizing Subtraction Operations

	Using Field Procedures
	Assigning Field Procedures to Columns
	Understanding Field Procedure Rules
	Input from an Application Program
	Output to an Application Program
	Comparison
	Referential Integrity
	Scalar Functions
	Column Functions
	Concatenation
	The IN and BETWEEN Predicates
	The LIKE Predicate
	Sorting
	Null Values
	Unions and Joins
	Sub-SELECTS

	Using CMS Work Units (DB2 Server for VM)
	Using Work Units in Application Programs
	Processing the First SQL Statement in the Work Unit
	Invoking Another Application Program
	Invoking Applications in CMS SUBSET
	Processing Applications Concurrently
	Accessing the Database from Different Points in the Program
	Copying Data across Databases

	How Locking Works with CMS Work Units
	Environmental Considerations
	Performance Considerations

	Ensuring Data Integrity
	Ensuring Entity Integrity
	Using Unique Constraints
	When Creating a View
	Ensuring Referential Integrity
	Defining Terms
	Ensuring Referential Integrity in New Tables
	Adding Referential Integrity to Existing Tables
	Managing Table Relationships
	Modifying Applications to Ensure Integrity
	Modifying Data in Tables Containing Referential Constraints
	Generating SQL Statements in Response to Table Modifications
	Enforcing Referential Integrity
	Removing Referential Constraints

	Switching Application Servers
	Identifying Switching Options
	Comparing Switching to Other Methods (DB2 Server for VM)
	How to Switch Servers (DB2 Server for VSE)
	Accessing a New Application Server
	Illustrating Sample Code
	Preprocessing the Program on Multiple Application Servers

	Condition Handling with LE/VSE (DB2 Server for VSE)

	Appendix A. Using SQL in Assembler Language
	Using ARIS6ASD, an Assembler Language Sample Program (DB2 Server for VSE Only)
	Using ARIS6ASC, an Assembler Language Sample Program (DB2 Server for VM Only)
	Acquiring the SQLDSECT Area
	Imposing Usage Restrictions on the SQLDSECT Area
	Rules for Using SQL Statements in Assembler Language
	Identifying Rules for Case
	Declaring Host Variables
	Embedding SQL Statements
	Using the INCLUDE Statement
	Using Host Variables in SQL Statements
	Using DBCS Characters in Assembler Language

	Handling SQL Errors
	Using Dynamic SQL Statements in Assembler Language
	Defining DB2 Server for VSE & VM Data Types for Assembler Language
	Using Reentrant Assembler Language Programs
	Using Stored Procedures

	Appendix B. Using SQL in C
	A C Sample Program
	Rules for Using SQL in C
	Placing and Continuing SQL Statements
	Delimiting SQL Statements
	Identifying Rules for Case
	Identifying Rules for Character Constants
	Using the INCLUDE Statement
	Using the CONNECT Statement (DB2 Server for VSE)
	Using the C Compiler Preprocessor
	Declaring Host Variables
	Using Host Variables in SQL Statements
	Using the Pointer Type Attribute
	Using Host Variables as Function Parameters
	Using C Variables in SQL: Data Conversion Considerations
	Using C NUL-Terminated Strings and Truncation
	Calculating Dates
	Using Trigraphs
	Using DBCS Characters in C
	Considering Preprocessor-Generated Statements

	Handling SQL Errors
	Using Dynamic SQL Statements in C
	Defining DB2 Server for VSE & VM Data Types for C
	Using Reentrant C Programs
	Using Stored Procedures

	Appendix C. Using SQL in COBOL
	A Sample COBOL Program
	Rules for Using SQL in COBOL
	Placing and Continuing SQL Statements
	Delimiting SQL Statements
	Identifying Rules for Case
	Declaring Host Variables
	Using Host Variables in SQL Statements
	Using Long VARCHAR Host Variables (DB2 Server for VSE)
	Using Preprocessor Options
	Using the QUOTE Parameter
	Using the COB2 Parameter (DB2 Server for VSE)
	Using the COB2 Parameter (DB2 Server for VM)
	Invoking COPYBOOKs (DB2 Server for VSE)
	Using the COBRC Parameter
	Using the TRUNC Compiler Option
	Using the INCLUDE Statement
	Using COBOL Variables in SQL: Data Conversion Considerations
	Other Coding Considerations
	Using DBCS Characters in COBOL

	Handling SQL Errors
	Using Dynamic SQL Statements in COBOL
	Defining DB2 Server for VSE & VM Data Types for COBOL
	Using Reentrant COBOL Programs
	Using the DYNAM Compiler Option
	Using Stored Procedures

	Appendix D. Using SQL in Fortran
	A Fortran Sample Program
	Rules for Using SQL in Fortran
	Placing and Continuing SQL Statements
	Placing Data Statements
	Using Fortran Common Areas (DB2 Server for VSE)
	Identifying Rules for Case
	Declaring Host Variables
	Embedding SQL Statements
	Using Host Variables in SQL Statements
	Using Variable Length Character Strings
	Using DBCS Characters in Fortran
	Using the INCLUDE Statement
	Using Fortran Variables in SQL: Data Conversion Considerations

	Handling SQL Errors
	Handling Program Interrupts
	Using Dynamic SQL Statements in Fortran
	Restrictions When Using the Fortran Preprocessor
	Defining DB2 Server for VSE & VM Data Types for Fortran

	Appendix E. Using SQL in PL/I
	Using PL/I Sample Programs
	Rules for Using SQL in PL/I
	Placing and Continuing SQL Statements
	Delimiting SQL Statements
	Using the INCLUDE Statement
	Declaring Static External Variables
	Identifying Rules for Case
	Declaring Host Variables
	Using Host Variables in SQL Statements
	Using PL/I Variables in SQL: Data Conversion Considerations
	Using DBCS Characters in PL/I
	Using SQL Statements in PL/I Subroutines
	Coding the SIZE Parameter in VSE JCL (DB2 Server for VSE)

	Handling SQL Errors
	Handling Program Interrupts
	Using Dynamic SQL Statements in PL/I
	Defining DB2 Server for VSE & VM Data Types for PL/I
	Using Stored Procedures

	Appendix F. Decision Tables to Grant Privileges on Packages
	How to Use the Decision Tables
	Decision Tables

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information

